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Preface

ICALP 2006, the 33rd edition of the International Colloquium on Automata,
Languages and Programming, was held in Venice, Italy, July 10–14, 2006. ICALP
is a series of annual conferences of the European Association for Theoretical
Computer Science (EATCS) which first took place in 1972. This year, the ICALP
program consisted of the established track A (focusing on algorithms, automata,
complexity and games) and track B (focusing on logic, semantics and theory of
programming), and of the recently introduced track C (focusing on security and
cryptography foundation).

In response to the call for papers, the Program Committee received 407 sub-
missions, 230 for track A, 96 for track B and 81 for track C. Out of these, 109
papers were selected for inclusion in the scientific program: 61 papers for Track
A, 24 for Track B and 24 for Track C. The selection was made by the Program
Committee based on originality, quality, and relevance to theoretical computer
science. The quality of the manuscripts was very high indeed, and several de-
serving papers had to be rejected.

ICALP 2006 consisted of four invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers presented at the
conference in Track A, together with the paper by the invited speaker Noga
Alon (Tel Aviv University, Israel). A companion volume contains all contributed
papers presented in Track B and Track C together with the papers by the invited
speakers Cynthia Dwork (Microsoft Research, USA) and Prakash Panangaden
(Mc Gill University, Canada). The program had an additional invited lecture by
Simon Peyton Jones (Microsoft Research, UK), which does not appear in the
proceedings.

ICALP 2006 was held in conjunction with the Annual ACM International
Symposium on Principles and Practice of Declarative Programming (PPDP
2006) and with the Annual Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR 2006). Additionally, the following workshops were
held as satellite events of ICALP 2006: ALGOSENSORS 2006 - International
Workshop on Algorithmic Aspects of Wireless Sensor Networks; CHR 2006 -
Third Workshop on Constraint Handling Rules; CL&C 2006 - Classical Logic
and Computation; DCM 2006 - 2nd International Workshop on Developments in
Computational Models; FCC 2006 - Formal and Computational Cryptography;
iETA 2006 - Improving Exponential-Time Algorithms: Strategies and Limita-
tions; MeCBIC 2006 - Membrane Computing and Biologically Inspired Process
Calculi; SecReT 2006 - 1st Int. Workshop on Security and Rewriting Techniques;
WCAN 2006 - 2nd Workshop on Cryptography for Ad Hoc Networks.

We wish to thank all authors who submitted extended abstracts for consid-
eration, the Program Committee for their scholarly effort, and all referees who
assisted the Program Committees in the evaluation process.



VI Preface

Thanks to the sponsors for their support, to the Venice International Uni-
versity and to the Province of Venice for hosting ICALP 2006 in beautiful S.
Servolo. We are also grateful to all members of the Organizing Committee in
the Department of Computer Science and to the Center for Technical Support
Services and Telecommunications (CSITA) of the University of Venice. Thanks
to Andrei Voronkov for his support with the conference management software
EasyChair. It was great in handling the submissions and the electronic PC meet-
ing, as well as in assisting in the assembly of the proceedings.

April 2006 Michele Bugliesi
Bart Preneel

Vladimiro Sassone
Ingo Wegener
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Mariangiola Dezani-Ciancaglini, Università di Torino, Italy
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Abstract. In 1977 Dalenius articulated a desideratum for statistical
databases: nothing about an individual should be learnable from the
database that cannot be learned without access to the database. We give
a general impossibility result showing that a formalization of Dalenius’
goal along the lines of semantic security cannot be achieved. Contrary to
intuition, a variant of the result threatens the privacy even of someone
not in the database. This state of affairs suggests a new measure, dif-
ferential privacy, which, intuitively, captures the increased risk to one’s
privacy incurred by participating in a database. The techniques devel-
oped in a sequence of papers [8, 13, 3], culminating in those described
in [12], can achieve any desired level of privacy under this measure. In
many cases, extremely accurate information about the database can be
provided while simultaneously ensuring very high levels of privacy.

1 Introduction

A statistic is a quantity computed from a sample. If a database is a repre-
sentative sample of an underlying population, the goal of a privacy-preserving
statistical database is to enable the user to learn properties of the population
as a whole, while protecting the privacy of the individuals in the sample. The
work discussed herein was originally motivated by exactly this problem: how
to reveal useful information about the underlying population, as represented
by the database, while preserving the privacy of individuals. Fortuitously, the
techniques developed in [8, 13, 3] and particularly in [12] are so powerful as to
broaden the scope of private data analysis beyond this orignal “representatitive”
motivation, permitting privacy-preserving analysis of an object that is itself of
intrinsic interest. For instance, the database may describe a concrete intercon-
nection network – not a sample subnetwork – and we wish to reveal certain
properties of the network without releasing information about individual edges
or nodes. We therefore treat the more general problem of privacy-preserving
analysis of data.

A rigorous treatment of privacy requires definitions: What constitutes a fail-
ure to preserve privacy? What is the power of the adversary whose goal it is to
compromise privacy? What auxiliary information is available to the adversary
(newspapers, medical studies, labor statistics) even without access to the data-
base in question? Of course, utility also requires formal treatment, as releasing
no information or only random noise clearly does not compromise privacy; we
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c© Springer-Verlag Berlin Heidelberg 2006



2 C. Dwork

will return to this point later. However, in this work privacy is paramount: we
will first define our privacy goals and then explore what utility can be achieved
given that the privacy goals will be satisified1.

A 1977 paper of Dalenius [6] articulated a desideratum that foreshadows for
databases the notion of semantic security defined five years later by Goldwasser
and Micali for cryptosystems [15]: access to a statistical database should not
enable one to learn anything about an individual that could not be learned
without access2. We show this type of privacy cannot be achieved. The obstacle
is in auxiliary information, that is, information available to the adversary other
than from access to the statistical database, and the intuition behind the proof
of impossibility is captured by the following example. Suppose one’s exact height
were considered a highly sensitive piece of information, and that revealing the
exact height of an individual were a privacy breach. Assume that the database
yields the average heights of women of different nationalities. An adversary who
has access to the statistical database and the auxiliary information “Terry Gross
is two inches shorter than the average Lithuanian woman” learns Terry Gross’
height, while anyone learning only the auxiliary information, without access to
the average heights, learns relatively little.

There are two remarkable aspects to the impossibility result: (1) it applies
regardless of whether or not Terry Gross is in the database and (2) Dalenius’
goal, formalized as a relaxed version of semantic security, cannot be achieved,
while semantic security for cryptosystems can be achieved. The first of these
leads naturally to a new approach to formulating privacy goals: the risk to one’s
privacy, or in general, any type of risk, such as the risk of being denied automobile
insurance, should not substantially increase as a result of participating in a
statistical database. This is captured by differential privacy.

The discrepancy between the possibility of achieving (something like) seman-
tic security in our setting and in the cryptographic one arises from the utility
requirement. Our adversary is analagous to the eavesdropper, while our user is
analagous to the message recipient, and yet there is no decryption key to set
them apart, they are one and the same. Very roughly, the database is designed
to convey certain information. An auxiliary information generator knowing the
data therefore knows much about what the user will learn from the database.
This can be used to establish a shared secret with the adversary/user that is
unavailable to anyone not having access to the database. In contrast, consider
a cryptosystem and a pair of candidate messages, say, {0, 1}. Knowing which
message is to be encrypted gives one no information about the ciphertext; in-
tuitively, the auxiliary information generator has “no idea” what ciphertext the
eavesdropper will see. This is because by definition the ciphertext must have no
utility to the eavesdropper.

1 In this respect the work on privacy diverges from the literature on secure function
evaluation, where privacy is ensured only modulo the function to be computed: if
the function is inherently disclosive then privacy is abandoned.

2 Semantic security against an eavesdropper says that nothing can be learned about a
plaintext from the ciphertext that could not be learned without seeing the ciphertext.
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In this paper we prove the impossibility result, define differential privacy, and
observe that the interactive techniques developed in a sequence of papers [8,
13, 3, 12] can achieve any desired level of privacy under this measure. In many
cases very high levels of privacy can be ensured while simultaneously providing
extremely accurate information about the database.

Related Work. There is an enormous literature on privacy in databases; we
briefly mention a few fields in which the work has been carried out. See [1] for a
survey of many techniques developed prior to 1989.

By far the most extensive treatment of disclosure limitation is in the statistics
community; for example, in 1998 the Journal of Official Statistics devoted an
entire issue to this question. This literature contains a wealth of privacy sup-
portive techniques and investigations of their impact on the statistics of the data
set. However, to our knowledge, rigorous definitions of privacy and modeling of
the adversary are not features of this portion of the literature.

Research in the theoretical computer science community in the late 1970’s
had very specific definitions of privacy compromise, or what the adversary must
achieve to be considered successful (see, eg, [9]). The consequent privacy guaran-
tees would today be deemed insufficiently general, as modern cryptography has
shaped our understanding of the dangers of the leakage of partial information.
Privacy in databases was also studied in the security community. Although the
effort seems to have been abandoned for over two decades, the work of Den-
ning [7] is closest in spirit to the line of research recently pursued in [13, 3, 12].

The work of Agrawal and Srikant [2] and the spectacular privacy compromises
achieved by Sweeney [18] rekindled interest in the problem among computer
scientists, particularly within the database community. Our own interest in the
subject arose from conversations with the philosopher Helen Nissenbaum.

2 Private Data Analysis: The Setting

There are two natural models for privacy mechanisms: interactive and non-
interactive. In the non-interactive setting the data collector, a trusted entity,
publishes a “sanitized” version of the collected data; the literature uses terms
such as “anonymization” and “de-identification”. Traditionally, sanitization
employs techniques such as data perturbation and sub-sampling, as well as re-
moving well-known identifiers such as names, birthdates, and social security
numbers. It may also include releasing various types of synopses and statistics.
In the interactive setting the data collector, again trusted, provides an interface
through which users may pose queries about the data, and get (possibly noisy)
answers.

Very powerful results for the interactive approach have been obtained ([13,

3, 12] and the present paper), while the non-interactive case has proven to be
more difficult, (see [14, 4, 5]), possibly due to the difficulty of supplying utility
that has not yet been specified at the time the sanitization is carried out. This
intuition is given some teeth in [12], which shows concrete separation results.
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3 Impossibility of Absolute Disclosure Prevention

The impossibility result requires some notion of utility – after all, a mechanism
that always outputs the empty string, or a purely random string, clearly preserves
privacy3. Thinking first about deterministic mechanisms, such as histograms or
k-anonymizations [19], it is clear that for the mechanism to be useful its output
should not be predictable by the user; in the case of randomized mechanisms the
same is true, but the unpredictability must not stem only from random choices
made by the mechanism. Intuitively, there should be a vector of questions (most
of) whose answers should be learnable by a user, but whose answers are not in
general known in advance. We will therefore posit a utility vector, denoted w.
This is a binary vector of some fixed length κ (there is nothing special about the
use of binary values). We can think of the utility vector as answers to questions
about the data.

A privacy breach for a database is described by a Turing machine C that takes
as input a description of a distribution D on databases, a database DB drawn
according to this distribution, and a string – the purported privacy breach– and
outputs a single bit4. We will require that C always halt. We say the adversary
wins, with respect to C and for a given (D, DB) pair, if it produces a string s
such that C(D, DB, s) accepts. Henceforth “with respect to C” will be implicit.

An auxiliary information generator is a Turing machine that takes as input
a description of the distribution D from which the database is drawn as well as
the database DB itself, and outputs a string, z, of auxiliary information. This
string is given both to the adversary and to a simulator. The simulator has no
access of any kind to the database; the adversary has access to the database via
the privacy mechanism.

We model the adversary by a communicating Turing machine. The theorem
below says that for any privacy mechanism San() and any distribution D sat-
isfying certain technical conditions with respect to San(), there is always some
particular piece of auxiliary information, z, so that z alone is useless to someone
trying to win, while z in combination with access to the data through the pri-
vacy mechanism permits the adversary to win with probability arbitrarily close
to 1. In addition to formalizing the entropy requirements on the utility vectors
as discussed above, the technical conditions on the distribution say that learning
the length of a privacy breach does not help one to guess a privacy breach.

Theorem 1. Fix any privacy mechanism San() and privacy breach decider C.
There is an auxiliary information generator X and an adversary A such that for
all distributions D satisfying Assumption 3 and for all adversary simulators A∗,

Pr[A(D, San(D, DB),X (D, DB)) wins] − Pr[A∗(D,X (D, DB)) wins] ≥ Δ

where Δ is a suitably chosen (large) constant. The probability spaces are over
choice of DB ∈R D and the coin flips of San, X , A, and A∗.
3 Indeed the height example fails in these trivial cases, since it is only through the

sanitization that the adversary learns the average height.
4 We are agnostic as to how a distribution D is given as input to a machine.



Differential Privacy 5

The distribution D completely captures any information that the adversary (and
the simulator) has about the database, prior to seeing the output of the auxiliary
information generator. For example, it may capture the fact that the rows in
the database correspond to people owning at least two pets. Note that in the
statement of the theorem all parties have access to D and may have a description
of C hard-wired in; however, the adversary’s strategy does not use either of these.

Strategy for X and A when all of w is learned from San(DB): To develop
intuition we first describe, slightly informally, the strategy for the special case in
which the adversary always learns all of the utility vector, w, from the privacy
mechanism5. This is realistic, for example, when the sanitization produces a
histogram, such as a table of the number of people in the database with given
illnesses in each age decile, or a when the sanitizer chooses a random subsample
of the rows in the database and reveals the average ages of patients in the
subsample exhibiting various types of symptoms. This simpler case allows us to
use a weaker version of Assumption 3:

Assumption 2. 1. ∀ 0 < γ < 1 ∃nγ PrDB∈RD[|DB| > nγ ] < γ; moreover nγ
is computable by a machine given D as input.

2. There exists an � such that both the following conditions hold:
(a) Conditioned on any privacy breach of length �, the min-entropy of the

utility vector is at least �.
(b) Every DB ∈ D has a privacy breach of length �.

3. Pr[B(D, San(DB)) wins] ≤ μ for all interactive Turing machines B, where
μ is a suitably small constant. The probability is taken over the coin flips of
B and the privacy mechanism San(), as well as the choice of DB ∈R D.

Intuitively, Part (2a) implies that we can extract � bits of randomness from the
utility vector, which can be used as a one-time pad to hide any privacy breach of
the same length. (For the full proof, ie, when not necessarily all of w is learned by
the adversary/user, we will need to strengthen Part (2a).) Let �0 denote the least
� satisfying (both clauses of) Part 2. We cannot assume that �0 can be found in
finite time; however, for any tolerance γ let nγ be as in Part 1, so all but a γ
fraction of the support of D is strings of length at most nγ . For any fixed γ it is
possible to find an �γ ≤ �0 such that �γ satisfies both clauses of Assumption 2(2)
on all databases of length at most nγ . We can assume that γ is hard-wired into
all our machines, and that they all follow the same procedure for computing
nγ and �γ . Thus, Part 1 allows the more powerful order of quantifiersd in the
statement of the theorem; without it we would have to let A and A∗ depend on
D (by having � hard-wired in). Finally, Part 3 is a nontriviality condition.

The strategy for X and A is as follows. On input DB ∈R D, X randomly
chooses a privacy breach y for DB of length � = �γ , if one exists, which occurs
with probability at least 1 − γ. It also computes the utility vector, w. Finally,
it chooses a seed s and uses a strong randomness extractor to obtain from w

5 Although this case is covered by the more general case, in which not all of w need
be learned, it permits a simpler proof that exactly captures the height example.
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an �-bit almost-uniformly distributed string r [16, 17]; that is, r = Ext(s, w),
and the distribution on r is within statistical distance ε from U�, the uniform
distribution on strings of length �, even given s and y. The auxiliary information
will be z = (s, y ⊕ r).

Since the adversary learns all of w, from s it can obtain r = Ext(s, w) and
hence y. We next argue that A∗ wins with probability (almost) bounded by μ,
yielding a gap of at least 1 − (γ + μ+ ε).

Assumption 2(3) implies that Pr[A∗(D) wins] ≤ μ. Let d� denote the maxi-
mum, over all y ∈ {0, 1}�, of the probability, over choice of DB ∈R D, that y is a
privacy breach for DB. Since � = �γ does not depend on DB, Assumption 2(3)
also implies that d� ≤ μ.

By Assumption 2(2a), even conditioned on y, the extracted r is (almost)
uniformly chosen, independent of y, and hence so is y ⊕ r. Consequently, the
probability that X produces z is essentially independent of y. Thus, the simula-
tor’s probability of producing a privacy breach of length � for the given database
is bounded by d�+ε ≤ μ+ε, as it can generate simulated “auxiliary information”
with a distribution within distance ε of the correct one.

The more interesting case is when the sanitization does not necessarily reveal
all of w; rather, the guarantee is only that it always reveal a vector w′ within
Hamming distance κ/c of w for constant c to be determined6. The difficulty with
the previous approach is that if the privacy mechanism is randomized then the
auxiliary information generator may not know which w′ is seen by the adversary.
Thus, even given the seed s, the adversary may not be able to extract the same
random pad from w′ that the auxiliary information generator extracted from w.
This problem is solved using fuzzy extractors [10].

Definition 1. An (M,m, �, t, ε) fuzzy extractor is given by procedures
(Gen,Rec).

1. Gen is a randomized generation procedure. On input w ∈ M outputs an
“extracted” string r ∈ {0, 1}� and a public string p. For any distribution W
on M of min-entropy m, if (R,P ) ← Gen(W ) then the distributions (R,P )
and (U�, P ) are within statistical distance ε.

2. Rec is a deterministic reconstruction procedure allowing recovery of r =
R(w) from the corresponding public string p = P (w) together with any vector
w′ of distance at most t from w. That is, if (r, p) ← Gen(w) and ||w−w′||1 ≤
t then Rec(w′, p) = r.

In other words, r = R(w) looks uniform, even given p = P (w), and r = R(w)
can be reconstructed from p = P (w) and any w′ sufficiently close to w.

We now strenthen Assumption 2(2a) to say that the entropy of the source
San(W ) (vectors obtained by interacting with the sanitization mechanism, all of

6 One could also consider privacy mechanisms that produce good approximations to
the utility vector with a certain probability for the distribution D, where the proba-
bility is taken over the choice of DB ∈R D and the coins of the privacy mechanism.
The theorem and proof hold mutatis mutandis.
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distance at most κ/c from the true utility vector) is high even conditioned on
any privacy breach y of length � and P = Gen(W ).

Assumption 3. For some � satisfying Assumption 2(2b), for any privacy breach
y ∈ {0, 1}�, the min-entropy of (San(W )|y) is at least k+�, where k is the length
of the public strings p produced by the fuzzy extractor7.

Strategy when w need not be fully learned: For a given database DB, let w be
the utility vector. This can be computed by X , who has access to the database.
X simulates interaction with the privacy mechanism to determine a “valid” w′

close to w (within Hamming distance κ/c). The auxiliary information generator
runs Gen(w′), obtaining (r = R(w′), p = P (w′)). It computes nγ and � = �γ (as
above, only now satisfying Assumptions 3 and 2(2b) for all DB ∈ D of length
at most nγ), and uniformly chooses a privacy breach y of length �γ , assuming
one exists. It then sets z = (p, r ⊕ y).

Let w′′ be the version of w seen by the adversary. Clearly, assuming 2κ/c ≤ t
in Definition 1, the adversary can reconstruct r. This is because since w′ and w′′

are both within κ/c of w they are within distance 2κ/c of each other, and so w′′

is within the “reconstruction radius” for any r ← Gen(w′). Once the adversary
has reconstructed r, obtaining y is immediate. Thus the adversary is able to
produce a privacy breach with probability at least 1 − γ. It remains to analyze
the probability with which the simulator, having access only to z but not to the
privacy mechanism (and hence, not to any w′′ close to w), produces a privacy
breach.

In the sequel, we let B denote the best machine, among all those with access
to the given information, at producing producing a privacy breach (“winning”).

By Assumption 2(3), Pr[B(D, San(DB)) wins] ≤ μ, where the probability is
taken over the coin tosses of the privacy mechanism and the machine B, and
the choice of DB ∈R D. Since p = P (w′) is computed from w′, which in turn is
computable from San(DB), we have

p1 = Pr[B(D, p) wins] ≤ μ

where the probability space is now also over the choices made by Gen(), that is,
the choice of p = P (w′). Now, let U� denote the uniform distribution on �-bit
strings. Concatenating a random string u ∈R U� to p cannot help B to win, so

p2 = Pr[B(D, p, u) wins] = p1 ≤ μ

where the probability space is now also over choice of u. For any fixed string
y ∈ {0, 1}� we have U� = U� ⊕ y, so for all y ∈ {0, 1}�, and in particular, for all
privacy breaches y of DB,

p3 = Pr[B(D, p, u⊕ y) wins] = p2 ≤ μ.

7 A good fuzzy extractor “wastes” little of the entropy on the public string. Better
fuzzy extractors are better for the adversary, since the attack requires � bits of
residual min-entropy after the public string has been generated.
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Let W denote the distribution on utility vectors and let San(W ) denote the
distribution on the versions of the utility vectors learned by accessing the data-
base through the privacy mechanism. Since the distributions (P,R) = Gen(W ′),
and (P,U�) have distance at most ε, it follows that for any y ∈ {0, 1}�

p4 = Pr[B(D, p, r ⊕ y) wins] ≤ p3 + ε ≤ μ+ ε.

Now, p4 is an upper bound on the probability that the simulator wins, given D
and the auxiliary information z = (p, r ⊕ y), so

Pr[A∗(D, z) wins] ≤ p4 ≤ μ+ ε .

An (M,m, �, t, ε) fuzzy extractor, where M is the distribution San(W ) on
utility vectors obtained from the privacy mechanism, m satisfies: for all �-bit
strings y which are privacy breaches for some databaseD ∈ DB, H∞(W ′|y) ≥ m;
and t < κ/3, yields a gap of at least

(1 − γ) − (μ+ ε) = 1 − (γ + μ+ ε)

between the winning probabilities of the adversary and the simulator. Setting
Δ = 1 − (γ + μ+ ε) proves Theorem 1.

We remark that, unlike in the case of most applications of fuzzy extractors
(see, in particular, [10, 11]), in this proof we are not interested in hiding partial
information about the source, in our case the approximate utility vectors W ′, so
we don’t care how much min-entropy is used up in generating p. We only require
sufficient residual min-entropy for the generation of the random pad r. This is
because an approximation to the utility vector revealed by the privacy mecha-
nism is not itself disclosive; indeed it is by definition safe to release. Similarly, we
don’t necessarily need to maximize the tolerance t, although if we have a richer
class of fuzzy extractors the impossibility result applies to more relaxed privacy
mechanisms (those that reveal worse approximations to the true utility vector).

4 Differential Privacy

As noted in the example of Terry Gross’ height, an auxiliary information gen-
erator with information about someone not even in the database can cause a
privacy breach to this person. In order to sidestep this issue we change from ab-
solute guarantees about disclosures to relative ones: any given disclosure will be,
within a small multiplicative factor, just as likely whether or not the individual
participates in the database. As a consequence, there is a nominally increased
risk to the individual in participating, and only nominal gain to be had by con-
cealing or misrepresenting one’s data. Note that a bad disclosure can still occur,
but our guarantee assures the individual that it will not be the presence of her
data that causes it, nor could the disclosure be avoided through any action or
inaction on the part of the user.
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Definition 2. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S] (1)

A mechanism K satisfying this definition addresses concerns that any participant
might have about the leakage of her personal information x: even if the partic-
ipant removed her data from the data set, no outputs (and thus consequences
of outputs) would become significantly more or less likely. For example, if the
database were to be consulted by an insurance provider before deciding whether
or not to insure Terry Gross, then the presence or absence of Terry Gross in the
database will not significantly affect her chance of receiving coverage.

This definition extends to group privacy as well. A collection of c participants
might be concerned that their collective data might leak information, even when
a single participant’s does not. Using this definition, we can bound the dilation
of any probability by at most exp(εc), which may be tolerable for small c. Note
that we specifically aim to disclose aggregate information about large groups, so
we should expect privacy bounds to disintegrate with increasing group size.

5 Achieving Differential Privacy

We now describe a concrete interactive privacy mechanism achieving
ε-differential privacy8. The mechanism works by adding appropriately chosen
random noise to the answer a = f(X), where f is the query function and X is
the database; thus the query functions may operate on the entire database at
once. It can be simple – eg, “Count the number of rows in the database satisfy-
ing a given predicate” – or complex – eg, “Compute the median value for each
column; if the Column 1 median exceeds the Column 2 median, then output
a histogram of the numbers of points in the set S of orthants, else provide a
histogram of the numbers of points in a different set T of orthants.”

Note that the complex query above (1) outputs a vector of values and (2) is
an adaptively chosen sequence of two vector-valued queries, where the choice of
second query depends on the true answer to the first query. Although complex,
it is soley a function of the database. We handle such queries in Theorem 4. The
case of an adaptively chosen series of questions, in which subsequent queries
depend on the reported answers to previous queries, is handled in Theorem 5.
For example, suppose the adversary first poses the query “Compute the median
of each column,” and receives in response noisy versions of the medians. Let M
be the reported median for Column 1 (so M is the true median plus noise). The
adversary may then pose the query: “If M exceeds the true median for Column 1
(ie, if the added noise was positive), then . . . else . . . ” This second query is a
function not only of the database but also of the noise added by the privacy
mechanism in responding to the first query; hence, it is adaptive to the behavior
of the mechanism.
8 This mechanism was introduced in [12], where analagous results were obtained for

the related notion of ε-indistinguishability. The proofs are essentially the same.
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5.1 Exponential Noise and the L1-Sensitivity

We will achieve ε-differential privacy by the addition of random noise whose
magnitude is chosen as a function of the largest change a single participant
could have on the output to the query function; we refer to this quantity as the
sensitivity of the function9.

Definition 3. For f : D → Rd, the L1-sensitivity of f is

Δf = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

For many types of queries Δf will be quite small. In particular, the simple count-
ing queries (“How many rows have property P?”) have Δf ≤ 1. Our techniques
work best – ie, introduce the least noise – when Δf is small. Note that sensitivity
is a property of the function alone, and is independent of the database.

The privacy mechanism, denoted Kf for a query function f , computes f(X)
and adds noise with a scaled symmetric exponential distribution with variance
σ2 (to be determined in Theorem 4) in each component, described by the density
function

Pr[Kf (X) = a] ∝ exp(−‖f(X) − a‖1/σ) (3)

This distribution has independent coordinates, each of which is an exponentially
distributed random variable. The implementation of this mechanism thus simply
adds symmetric exponential noise to each coordinate of f(X).

Theorem 4. For f : D → Rd, the mechanism Kf gives (Δf/σ)-differential
privacy.

Proof. Starting from (3), we apply the triangle inequality within the exponent,
yielding for all possible responses r

Pr[Kf (D1) = r] ≤ Pr[Kf (D2) = r] × exp(‖f(D1) − f(D2)‖1/σ) . (4)

The second term in this product is bounded by exp(Δf/σ), by the definition of
Δf . Thus (1) holds for singleton sets S = {a}, and the theorem follows by a
union bound.

Theorem 4 describes a relationship between Δf , σ, and the privacy differential.
To achieve ε-differential privacy, one must choose σ ≥ ε/Δf .

The importance of choosing the noise as a function of the sensitivity of the
entire complex query is made clear by the important case of histogram queries, in
which the domain of data elements is partitioned into some number k of classes,
such as the cells of a contingency table of gross shoe sales versus geographic
9 It is unfortunate that the term sensitivity is overloaded in the context of privacy.

We chose it in concurrence with sensitivity analysis.
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regions, and the true answer to the query is the k-tuple of the exact number of
database points in each class. Viewed näıvely, this is a set of k queries, each of
sensitivity 1, so to ensure ε-differential privacy it follows from k applications of
Theorem 4 (each with d = 1) that it suffices to use noise distributed according to
a symmetric exponential with variance k/ε in each component. However, for any
two databases D1 and D2 differing in only one element, ||f(D1)− f(D2)||1 = 1,
since only one cell of the histogram changes, and that cell only by 1. Thus, we
may apply the theorem once, with d = k and Δf = 1, and find that it suffices
to add noise with variance 1/ε rather than d/ε.

Adaptive Adversaries. We begin with deterministic query strategies F spec-
ified by a set of query functions fρ, where fρ(X)i is the function describing
the ith query given that the first i − 1 (possibly vector-valued) responses have
been ρ1, ρ2, . . . , ρi−1. We require that fρ(X)i = fρ′(X)i if the first i − 1 re-
sponses in ρ and ρ′ are equal. We define the sensitivity of a query strategy
F = {fρ : D → (R+)d} to be the largest sensitivity of any of its possible func-
tions, ie: ΔF = supρΔfρ.

Theorem 5. For query strategy F = {fρ : D → Rd}, the mechanism KF gives
(ΔF/σ)-differential privacy.

Proof. For each ρ ∈ (R+)d, the law of conditional probability says

Pr[KF (X) = ρ] =
∏
i≤d

Pr[KF (X)i = ρi|ρ1, ρ2, . . . ρi−1] (5)

With ρ1, ρ2, . . . , ρi−1 fixed, fρ(X)i is fixed, and the distribution of KF (X)i is
simply the random variable with mean fρ(X)i and exponential noise with vari-
ance σ2 in each component. Consequently,

Pr[KF (X) = ρ] ∝
∏
i≤d

exp(−‖fρ(X)i − ρi‖1/σ) (6)

= exp(−‖fρ(X) − ρ‖1/σ) (7)

As in Theorem 4, the triangle inequality yields (ΔF/σ)-differential privacy.

The case of randomized adversaries is handled as usual, by fixing a “successful”
coin sequence of a winning randomized strategy.
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Abstract. Measurement-based quantum computation has emerged
from the physics community as a new approach to quantum compu-
tation where measurements rather than unitary transformations are the
main driving force of computation. Among measurement-based quan-
tum computation methods the recently introduced one-way quantum
computer [RB01] stands out as basic and fundamental.

In this work we a concrete syntax and an algebra of these patterns
derived from a formal semantics. We developed a rewrite theory and
proved a general standardization theorem which allows all patterns to
be put in a semantically equivalent standard form.

1 Introduction

The emergence of quantum computation has changed our perspective on many
fundamental aspects of computing: the nature of information and how it flows,
new algorithmic design strategies and complexity classes and the very structure
of computational models [NC00]. New challenges have been raised in the physical
implementation of quantum computers. This paper is a contribution to a nascent
discipline: quantum programming languages.

This is more than a search for convenient notation, it is an investigation into
the structure, scope and limits of quantum computation. The main issues are
questions about how quantum processes are defined, how quantum algorithms
compose, how quantum resources are used and how classical and quantum in-
formation interact.

In the mid 1980s Deutsch [Deu87] showed how to use superposition – the
ability to produce linear combinations of quantum states – to obtain compu-
tational speedup. The most dramatic results were Shor’s celebrated polytime
factorization algorithm [Sho94] and Grover’s sublinear search algorithm [Gro98].
Remarkably one of the problematic aspects of quantum theory, the presence of
non-local correlation – an example of which is called “entanglement” – turned
out to be crucial for these algorithmic developments.

Only recently has there been significant interest in quantum programming
languages; i.e. the development of formal syntax and semantics and the use of
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standard machinery for reasoning about quantum information processing. The
first definitive treatment of a quantum programming language was the flowchart
language of Selinger [Sel04]. It was based on combining classical control, as
traditionally seen in flowcharts, with quantum data.

So far the main framework to explore quantum computation has been the cir-
cuit model [NC00], based on unitary evolution. This is very useful for algorithmic
development and complexity analysis. Recently physicists have introduced novel
ideas based on the use of measurement and entanglement to perform computa-
tion [GC99, RB01, RBB03]. This is very different from the circuit model where
measurement is done only at the end to extract classical output. In measurement-
based computation the main operation to manipulate information and control
computation is measurement. This is surprising because measurement creates
indeterminacy yet it is used to express deterministic computation defined by a
unitary evolution.

A computation consists of a phase in which a collection of qubits are set
up in a standard entangled state. Then measurements are applied to individual
qubits and the outcomes of the measurements may be used to determine further
measurements. Finally – again depending on measurement outcomes – local
unitary operators, called corrections, are applied to some qubits; this allows
the elimination of the indeterminacy introduced by measurements. The phrase
“one-way” is used to emphasize that the computation is driven by irreversible
measurements.

Our approach to understanding the structural features of measurement-based
computation is to develop a formal calculus. One can think of this as an “as-
sembly language” for measurement-based computation. Ours is the first pro-
gramming framework specifically based on the one-way model. We first develop
a notation for such classically correlated sequences of entanglements, measure-
ments, and local corrections. Computations are organized in patterns1, and we
give a careful treatment of the composition and tensor product (parallel com-
position) of patterns. We show next that such pattern combinations reflect the
corresponding combinations of unitary operators. An easy proof of universality
follows.

The idea of computing based on measurements emerged from the teleporta-
tion protocol [BBC+93]. The goal of this protocol is for an agent to transmit an
unknown qubit to a remote agent without actually sending the qubit. This pro-
tocol works by having the two parties share a maximally entangled state called
a Bell pair. The parties perform local operations – measurements and unitaries
– and communicate only classical bits. Remarkably, from this classical informa-
tion the second party can reconstruct the unknown quantum state. In fact one
can actually use this to compute via teleportation by choosing an appropriate
measurement [GC99]. This is the key idea of measurement-based computation.

It turns out that the above method of computing is actually universal.
This was first shown by Gottesman and Chuang [GC99] who used two-qubit

1 We use the word “pattern” rather than “program”, which is what they are, because
this corresponds to the commonly used terminology in the physics literature.
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measurements and given Bell pairs. In the one-way computer, invented by
Raussendorf and Briegel [RB01], one uses only single-qubit measurements with
a particular multi-party entangled state, the cluster state.

There are at least two reasons to take measurement-based models seriously:
one conceptual and one pragmatic. The main pragmatic reason is that the one-
way model is believed by physicists to lend itself to easier implementations,
see, for example [Nie04]. Conceptually the measurement-based model highlights
the role of entanglement and separates the quantum and classical aspects of
computation; thus it clarifies in particular the interplay between classical control
and the quantum evolution process.

The main point of this paper is to introduce alongside our notation, a calculus
of local equations over patterns that exploits some special algebraic properties
of the entanglement, measurement and correction operators. More precisely, we
use the fact that that 1-qubit XY measurements are closed under conjugation
by Pauli operators and the entanglement command belongs to the normalizer
of the Pauli group. We show that this calculus is sound in that it preserves
the interpretation of patterns. Most importantly, we derive from it a simple
algorithm by which any general pattern can be put into a standard form where
entanglement is done first, then measurements, then corrections. We call this
standardization.

The consequences of the existence of such a procedure are far-reaching. Since
entangling comes first, one can prepare the entire entangled state needed dur-
ing the computation right at the start: one never has to do “on the fly” en-
tanglements. Furthermore, the rewriting of a pattern to standard form reveals
parallelism in the pattern computation. In a general pattern, one is forced to
compute sequentially and obey strictly the command sequence, whereas after
standardization, the dependency structure is relaxed, resulting in lower depth
complexity.

The full paper develops the one-way model ab initio but there may be cer-
tain concepts with which the reader might not be familiar: qubits, unitaries,
measurements, Pauli operators and the Clifford group; these are all readily ac-
cessible through the excellent book of Nielsen and Chuang [NC00].

2 Measurement Patterns

We first develop a notation for 1-qubit measurement based computations. The
basic commands one can use in a pattern are:

– 1-qubit auxiliary preparation Ni
– 2-qubit entanglement operators Eij
– 1-qubit measurements Mα

i

– and 1-qubit Pauli operators corrections Xi and Zi

The indices i, j represent the qubits on which each of these operations ap-
ply, and α is a parameter in [0, 2π]. Expressions involving angles are always
evaluated modulo 2π. These types of command will be referred to as N , E, M
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and C. Sequences of such commands, together with two distinguished – possibly
overlapping – sets of qubits corresponding to inputs and outputs, will be called
measurement patterns, or simply patterns. These patterns can be combined by
composition and tensor product.

Importantly, corrections and measurements are allowed to depend on previous
measurement outcomes. We prove in the full paper that patterns without those
classical dependencies can only realize unitaries that are in the Clifford group.
Thus dependencies are crucial if one wants to define a universal computing model
and it is also crucial to develop a notation that will handle these dependencies.

Commands. Preparation Ni prepares qubit i in state |+〉i. The entanglement
commands are defined as Eij := ∧Zij (controlled-Z), while the correction com-
mands are the Pauli operators Xi and Zi.

Measurement Mα
i is defined by orthogonal projections on

|+α〉 := 1√
2
(|0〉 + eiα|1〉)

|−α〉 := 1√
2
(|0〉 − eiα|1〉)

followed by a trace out operator. The parameter α ∈ [0, 2π] is called the an-
gle of the measurement. For α = 0, α = π

2 , one obtains the X and Y Pauli
measurements. Operationally, measurements will be understood as destructive
measurements, consuming their qubit. The outcome of a measurement done at
qubit i will be denoted by si ∈ Z2. Since one only deals here with patterns where
qubits are measured at most once (see condition (D1) below), this is unambigu-
ous. We take the specific convention that si = 0 if under the corresponding
measurement the state collapses to |+α〉, and si = 1 if to |−α〉.

Outcomes can be summed together resulting in expressions of the form s =∑
i∈I si which we call signals, and where the summation is understood as being

done in Z2. We define the domain of a signal as the set of qubits on which it
depends.

Dependent corrections will be written Xsi , Z
s
i and Zα,si and dependent mea-

surements will be written t[Mα
i ]s, where s, t ∈ Z2 and α, β ∈ [0, 2π]. The meaning

of dependencies for corrections is straightforward: X0
i = Z0

i = Zα,0i = I (no cor-
rection is applied), while X1

i = Xi, Z
1
i = Zi and Zα,1i = Zαi . In the case of

dependent measurements, the measurement angle will depend on s, t and α as
follows:

t[Mα
i ]s := M

(−1)sα+tπ
i (1)

so that, depending on the parities of s and t, one may have to modify the α to
one of −α, α + π and −α+ π. These modifications correspond to conjugations
of measurements under X and Z:

XiM
α
i Xi = M−α

i (2)
ZiM

α
i Zi = Mα+π

i (3)

and so we will refer to them as the X and Z-actions. Note that these two actions
are commuting, since −α+ π = −α− π up to 2π, and hence the order in which
one applies them doesn’t matter.
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As we will see later, relations (2) and (3) are key to the propagation of de-
pendent corrections, and to obtaining patterns in the standard entanglement,
measurement and correction form. Since the measurements considered here are
destructive ones, the above equations actually simplify to

Mα
i Xi = M−α

i (4)
Mα
i Zi = Mα−π

i (5)

Patterns

Definition 1. Patterns consists of three finite sets V , I, O, and a finite sequence
of commands An . . . A1, read from right to left, applying to qubits in V in that
order, i.e. A1 first and An last, such that:

(D0) no command depends on an outcome not yet measured;
(D1) no command acts on a qubit already measured;
(D2) no command acts on a qubit not yet prepared, unless it is an input qubit;
(D3) a qubit i is measured if and only if i is not an output.

The set V is called the pattern computation space, and we write HV for the as-
sociated quantum state space ⊗i∈VC2. The sets I, O will be called respectively
the pattern inputs and outputs, and we will write HI , and HO for the associ-
ated quantum state spaces. The sequence An . . . A1 will be called the pattern
command sequence, while the triple (V, I, O) will be called the pattern type.

To run a pattern, one prepares the input qubits in some input state ψ ∈ HI ,
while the non-input qubits are all set in the |+〉 state, then the commands are
executed in sequence, and finally the result of the pattern computation is read
back from outputs as some φ ∈ HO. Clearly, for this procedure to succeed, we had
to impose the (D0), (D1), (D2) and (D3) conditions. Indeed if (D0) fails, then
at some point of the computation, one will want to execute a command which
depends on outcomes that are not known yet. Likewise, if (D1) fails, one will
try to apply a command on a qubit that has been consumed by a measurement
(recall that we use destructive measurements). Similarly, if (D2) fails, one will
try to apply a command on a non-existent qubit. Condition (D3) is there to
make sure that the final state belongs to the output space HO, i.e., that all
non-output qubits, and only them, will have been consumed by a measurement
when the computation ends.

We will write (D) for the conjunction of our definiteness conditions (D0),
(D1), (D2) and (D3). Whether a given pattern verifies (D) or not is statically
verifiable on the pattern command sequence. Here is a concrete example:

H := ({1, 2}, {1}, {2}, Xs12 M
0
1E12N2)

with computation space {1, 2}, inputs {1}, and outputs {2}. To run H, one first
prepares the first qubit in some input state ψ, and the second qubit in state |+〉,
then these are entangled to obtain ∧Z12(ψ1 ⊗ |+〉2). Once this is done, the first
qubit is measured in the |+〉, |−〉 basis. Finally an X correction is applied on
the output qubit, if the measurement outcome was s1 = 1.
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A last thing to note, is that one does not require inputs and outputs to be
disjoint subsets of V . This seemingly innocuous additional flexibility is actually
quite useful to give parsimonious implementations of unitaries [DKP05].

Pattern combination. We are interested now in how one can combine patterns
into bigger ones.

The first way to combine patterns is by composing them. Two patterns P1
and P2 may be composed if V1 ∩ V2 = O1 = I2. Provided that P1 has as many
outputs as P2 has inputs, by renaming the pattern qubits, one can always make
them composable.

Definition 2. The composite pattern P2P1 is defined as:
— V := V1 ∪ V2, I = I1, O = O2,
— commands are concatenated.

The other way of combining patterns is to tensor them. Two patterns P1 and
P2 may be tensored if V1 ∩ V2 = ∅. Again one can always meet this condition
by renaming qubits in a way that these sets are made disjoint.

Definition 3. The tensor pattern P1 ⊗ P2 is defined as:
— V = V1 ∪ V2, I = I1 ∪ I2, and O = O1 ∪O2,
— commands are concatenated.

In contrast to the composition case, all unions involved here are disjoint. There-
fore commands from distinct patterns freely commute, since they apply to dis-
joint qubits, and when we say that commands have to be concatenated, this is
only for definiteness.

It is routine to verify that the definiteness conditions (D) are preserved under
composition and tensor product. These details as well as the operational seman-
tics and denotational semantics and the proof of universality are described in
the full paper [DKP]

3 The Measurement Calculus

We turn to the next important matter of the paper, namely standardization. The
idea is quite simple. It is enough to provide local pattern rewrite rules pushing
Es to the beginning of the pattern, and Cs to the end.

The equations. A first set of equations give means to propagate local Pauli
corrections through the entangling operator Eij . Because Eij = Eji, there are
only two cases to consider:

EijX
s
i = Xsi Z

s
jEij (6)

EijZ
s
i = ZsiEij (7)

These equations are easy to verify and are natural since Eij belongs to the
Clifford group, and therefore maps under conjugation the Pauli group to itself.
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A second set of equations give means to push corrections through measure-
ments acting on the same qubit. Again there are two cases:

t[Mα
i ]sXri = t[Mα

i ]s+r (8)
t[Mα

i ]sZri = t+r[Mα
i ]s (9)

These equations follow easily from equations (4) and (5). They express the fact
that the measurements Mα

i are closed under conjugation by the Pauli group,
very much like equations (6) and (7) express the fact that the Pauli group is
closed under conjugation by the entanglements Eij .

Define the following convenient abbreviations:

[Mα
i ]s := 0[Mα

i ]s, t[Mα
i ] := t[Mα

i ]0, Mα
i := 0[Mα

i ]0,
Mx
i := M0

i , M
y
i := M

π
2
i

The rewrite rules. We now define a set of rewrite rules, obtained by orienting
the equations above:

EijX
s
i ⇒ Xsi Z

s
jEij EX

EijZ
s
i ⇒ ZsiEij EZ

t[Mα
i ]sXri ⇒ t[Mα

i ]s+r MX
t[Mα

i ]sZri ⇒ r+t[Mα
i ]s MZ

to which we need to add the free commutation rules, obtained when commands
operate on disjoint sets of qubits:

EijAk ⇒ AkEij where A is not an entanglement
AkX

s
i ⇒ XsiAk where A is not a correction

AkZ
s
i ⇒ ZsiAk where A is not a correction

where k represent the qubits acted upon by command A, and are supposed to
be distinct from i and j. Clearly these rules could be reversed since they hold as
equations but we are orienting them this way in order to obtain termination.

Condition (D) is easily seen to be preserved under rewriting.
Under rewriting, the computation space, inputs and outputs remain the same,

and so do the entanglement commands. Measurements might be modified, but
there is still the same number of them, and they still act on the same qubits. The
only induced modifications concern local corrections and dependencies. If there
was no dependency at the start, none will be created in the rewriting process.

In this conference version of the paper we omit all proofs.

Standardization. Write P ⇒ P ′, respectively P ⇒� P ′, if both patterns have
the same type, and one obtains the command sequence of P ′ from the command
sequence of P by applying one, respectively any number, of the rewrite rules of
the previous section. We say that P is standard if for no P ′, P ⇒ P ′ and the
procedure of writing a pattern to standard form is called standardization2.
2 We use the word “standardization” instead of the more usual “normalization” in

order not to cause terminological confusion with the physicists’ notion of normaliza-
tion.
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One of the most important results about the rewrite system is that it has the
desirable properties of determinacy (confluence) and termination (standardiza-
tion). In other words, we will show that for all P , there exists a unique standard
P ′, such that P ⇒� P ′. It is, of course, crucial that the standardization process
leaves the semantics of patterns invariant. This is the subject of the next simple,
but important, proposition,

Proposition 4. Whenever P ⇒� P ′, [[P ]] = [[P ′]].

We now state the main results. First, we state termination.

Proposition 5 (Termination). For all P, there exists finitely many P ′ such
that P ⇒� P ′.

The next theorem establishes the important determinacy property and further-
more shows that the standard patterns have a certain canonical form which we
call the NEMC form. The precise definition is:

Definition 6. A pattern has a NEMC form if its commands occur in the order
of Ns first, Es , Ms, and then Cs.

We will usually just say “EMC” form since we can assume that all the auxiliary
qubits are prepared in the |+〉 state we usually just elide these N commands.

Theorem 1 (Confluence). For all P, there exists a unique standard P ′, such
that P ⇒� P ′, and P ′ is in EMC form.

We conclude this subsection by emphasizing the importance of the EMC form.
Since the entanglement can always be done first we can always derive the entan-
glement resource needed for the whole computation right at the beginning. After
that only local operations will be performed. This will separate the analysis of
entanglement resource requirements from the classical control.

4 Conclusion

We have presented a calculus for the one-way quantum computer. We have
developed a syntax of patterns and, much more important, an algebra of pattern
composition. We have seen that pattern composition allows for a structured
proof of universality, which also results in parsimonious implementations. We
develop an operational and denotational semantics for this model; in this simple
first-order setting their equivalence is clear.

We have developed a rewrite system for patterns which preserves the
semantics. We have shown further that our calculus defines a quadratic-time
standardization algorithm transforming any pattern to a standard form where
entanglement is done first, then measurements, then local corrections.

We feel that our measurement calculus has shown the power of the formalisms
developed by the programming languages and logics community to analyze quan-
tum computations. The ideas that we use: rewriting theory, (primitive) type
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theory and above all, the importance of reasoning compositionally, locally and
modularly, are standard for the analysis of traditional programming languages.
However, for quantum computation these ideas are in their infancy. It is not
merely a question of adapting syntax to the quantum setting; there are funda-
mental new ideas that need to be confronted. What we have done here is to
develop such a theory in a new, physically-motivated setting.
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Abstract. The notion of concurrent zero knowledge has been intro-
duced by Dwork et al. [STOC 1998] motivated by the growing use of
asynchronous networks as the Internet.

In this paper we show a transformation that, for any language L ad-
mitting a Σ-protocol, produces a 4-round concurrent zero-knowledge ar-
gument system with concurrent soundness in the bare public-key (BPK,
for short) model. The transformation only adds O(1) modular exponenti-
ations, and uses standard number-theoretic assumptions and polynomial-
time simulation.

A tool that we construct and use for our main result is that of efficient
concurrent equivocal commitments. We give an efficient construction of
this gadget in the BPK model that can be of independent interest.

1 Introduction

In several settings the original notion of zero knowledge [1] (which only consid-
ers one prover and one verifier that run the proof in isolation) was insufficient.
The notion of concurrent zero knowledge [2] formalizes security in a scenario
in which several verifiers interact concurrently with the same prover and mali-
ciously coordinate their actions so to extract information from the proofs. This
notion is being studied in the plain model where there is no additional set-up
infrastructure or network assumption. In [3] it has been showed that in the
plain model constant-round black-box concurrent zero knowledge is impossible
for non-trivial languages. In the plain model, the most efficient concurrent zero-
knowledge proof systems has been presented in [4] on top of a more general
result [5]. In [4], any language L that admits an efficient Σ-protocol1 is trans-
formed in a concurrent zero knowledge proof system. Unfortunately both the
round complexity and the number of modular exponentiations required by the
resulting protocol are ω(logn). Other models are being studied to achieve effi-
cient, and, in particular, constant-round concurrent zero-knowledge protocols.
Specifically, the timing model [2] makes other assumptions on the network asyn-
chronousity; the preprocessing model [6] requires an interactive preprocessing

1 The transformation can be applied to a more general class of protocols but in this
paper we focus on Σ-protocols.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 22–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Zero Knowledge on the Internet 23

stage involving all parties; the common random/reference string models [7, 8],
require a trusted third party or a physical assumption; the single-prover model [9]
assumes the existence of only one stateful prover.

The model that seems to have the minimal set-up or network assumptions
is the bare public-key (BPK) model [10], where verifiers register their pub-
lic keys in a public file during a set-up stage. There is no interactive pre-
processing stage, no trusted third party, no physical assumption, no assumption
on the asynchronousity of the network. In this model concurrent soundness is
harder to achieve than sequential soundness, as noted in [11], who discussed
four distinct and increasingly stronger soundness notions. Indeed, the constant-
round concurrent zero-knowledge (in fact, resettable zero-knowledge, a stronger
notion from [10]) protocols in the BPK model presented in [10, 11] only en-
joy sequential soundness. In [12] a constant-round concurrently sound concur-
rent zero-knowledge argument system in the BPK model is presented under
non-standard assumptions on the hardness of computational problems against
sub-exponential-time adversaries. The use of such non-standard assumptions is
referred to as “complexity leveraging” and is very related to the notion of super-
polynomial-time simulation used in [13] and both correspond to relaxed notions
of security.

Equivocal commitment schemes. A commitment scheme is a two-phase protocol
between two polynomial-time Turing machines sen and rec. The security of
this primitive is based on the following properties: 1) hiding, i.e., a cheating rec
can not guess with probability significantly better than 1/2 which message has
been committed over any possible pair of different messages; 2) binding, i.e., a
cheating sen should be able to open a commitment (i.e., to decommit) with both
m and m′ �= m only with very small (i.e., negligible) probability.

An equivocal commitment scheme is a special commitment scheme. It al-
lows an efficient algorithm, referred to as equivocator, to violate at its wish
the binding property and at the same time, no efficient malicious receiver rec�

detects this cheating behavior with respect to commitments and decommit-
ments of honest senders. Obviously any equivocator needs a special feature
that is not available to any malicious sender sen�, otherwise the existence
of the equivocator contradicts the binding property. Several special features
for the equivocator have been proposed in the past as knowledge of an aux-
iliary information [14] (i.e., so called “trapdoor commitments”), knowledge of
the description of the adversarial receiver [15], rewinding capabilities [6]. A
constant-round equivocal commitment scheme in the BPK model was presented
in [16]. As for the case of the notion of soundness, the notion of binding of
an equivocal commitment scheme in the BPK is subtle. The authors of [16]
showed that a concurrent malicious sender could succeed in a protocol that in-
stead is secure with respect to sequential adversarial senders. The construction
given in [16] is a concurrent equivocal commitment scheme in the BPK model
and thus is secure with respect to concurrent malicious senders. In the pro-
posed scheme, the commitment phase needs 3-round while the decommitment
phase is non-interactive. Unfortunately the construction is not practical since the
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number of modular exponentiations it needs is linear in the length of the security
parameter.

Concurrent zero knowledge from concurrent equivocal commitments. In [8] effi-
cient concurrent equivocal commitments are used to achieve efficient concurrent
zero-knowledge argument systems in both the common reference string and the
shared random string models. More concretely, given a language L with an ef-
ficient Σ-protocol and an efficient concurrent equivocal commitment scheme,
the results of [8] produce an efficient 3-round concurrent zero-knowledge argu-
ment system. The transformation only adds a few modular exponentiations to
the computations required by the Σ-protocol. Proof (in contrast to argument)
systems with similar properties have been recently showed in [17]. However the
common reference string and the shared random string models need the existence
of a trusted third party or a physical assumption.

Another efficient transformation was presented in [6]. It adds onlyO(1) rounds
and O(1) modular exponentiations to the computations of the Σ-protocol but
unfortunately they require a strong set-up assumption. [6] needs an interactive
preprocessing for each proof that has to be run later (this seems to be very
problematic in practice).

A very challenging open question is therefore the possibility of constructing a
transformation as efficient as the ones of [6, 8] but that works with a seemingly
better set-up assumption.

In [16], the constructions given in [8, 6] are implemented in the BPK model
under standard number-theoretic assumptions and polynomial-time simulation
using concurrent equivocal commitment schemes in the BPK model. Unfortu-
nately, in contrast with the efficient transformations of [8, 6], the transformation
of [16] adds a number of modular exponentiations that is linear in the size of the
challenge of the Σ-protocol. This overhead is added by their implementation of
the concurrent equivocal commitment scheme in the BPK model.

1.1 Our Results

In this paper we show a more efficient transformation that only adds O(1) rounds
and O(1) modular exponentiations to the ones required by the Σ-protocol and
that works in the BPK model.

More precisely, we show a transformation that, for any language L admitting
a Σ-protocol, produces a 4-round (i.e., the round complexity is optimal [11])
concurrent zero-knowledge argument of knowledge with concurrent soundness in
the BPK model that only adds O(1) modular exponentiations and uses standard
number-theoretic assumptions and polynomial-time simulation. This improves
all previous results since they either were in models with stronger set-up or net-
work assumptions, or they were not efficient, or they were not fully concurrently
secure, or they were using non-standard intractability assumptions.

Following the previous approaches, a tool that we construct and use is that
of efficient concurrent equivocal commitments in the BPK model. We give an
efficient construction of this gadget in the BPK model (it needs only O(1) mod-
ular exponentiations) and that can be of independent interest.
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2 The BPK Model and Its Players

In the BPK model verifiers have to announce their public keys and provers have
to download the file with all public keys before any protocol starts. No public key
is certified and the directory containing the registered users can even be com-
pletely controlled by the adversary. Therefore the BPK model is a relaxed version
of known set-up assumptions in cryptography as the public-key infrastructure,
and the interactive preprocessing. The BPK model does not assume the existence
of any trusted third party neither of any physical assumption. It is therefore more
practical than the common reference and shared random string models (see [8]
for efficient concurrent zero knowledge in these models). Since the BPK model
does not need interaction during the preprocessing, it is more practical then
the interactive preprocessing used in [6] (see Section 5.2 of [6]). Moreover, when
protocols start there is no assumption on the asynchronousity of the network
in contrast to the timing model [2]. When the first stage is completed, only a
bounded number of verifiers can play in the second stage, this is more attractive
than the single-prover requirement of [9].

The BPK model for commitment schemes. The definitions for argument systems
in the BPK model can be found in [11, 16]. Here we give the definitions of
commitment schemes in the BPK model. In particular we consider the notion of
a concurrent equivocal commitment scheme. This definition was implicit in [16].
In our notation we use “for all x” meaning for all values x depending on the
security parameter n and of length polynomial in n. Formally, there exists a
public file F that is a collection of records, each containing a public key.

An (honest) sender sen is an interactive deterministic polynomial-time Turing
machine that takes as input a security parameter 1n, a file F , a string m (i.e.,
the message to be committed), a reference pk to an entry of F and a random
tape. sen after running an interactive protocol with a receiver rec outputs aux
or the special symbol ⊥; later sen uses aux to compute dec and sends the pair
(dec,m) to rec in order to open the committed message m.

An (honest) receiver rec is an interactive deterministic polynomial-time Tur-
ing machine that works along with sen in the following two stages: 1) on input a
security parameter 1n and a random tape, rec generates a key pair (pk, sk) and
stores the public key pk in one entry of the file F ; this stage is executed only
once by each receiver; 2) rec takes as input the secret key sk, and a random
string, and outputs a message com or the special symbol ⊥ after performing an
interactive protocol with a sender sen; later rec receives the pair (dec,m) from
sen and verifies that the pair (com, dec) corresponds to a message m. The in-
teraction between senders and receivers start after all receivers have completed
their first stage.

Malicious senders in the BPK model. We say that sen� is an s-concurrent ma-
licious sender if it is a probabilistic polynomial-time Turing Machine that, on
input 1n and PK, can perform the s(n) interactive protocols with a receiver rec
as follows: 1) if sen� is already running i protocols 0 ≤ i < s(n) he can start
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a new protocol with rec; 2) he can send a message for any running protocol,
receive immediately the response from rec and continue.

Given an s-concurrent malicious sender sen� and a honest receiver rec, an
s-concurrent attack of sen� is performed as follows: 1) the first stage of rec is
run on input 1n and a random string to obtain a pair (pk, sk); 2) sen� is run on
input 1n and pk to start a new protocol; 3) whenever sen� starts a new protocol,
rec uses a new random string r and sk, and interacts with sen�.

Malicious receivers in the BPK model. We say that rec� is an s-concurrent
malicious receiver if it is a probabilistic polynomial-time Turing Machine that,
on input 1n and pk, can perform the following s(n) interactive protocols with a
sender sen: 1) if rec� is already running i protocols 0 ≤ i < s(n) he can decide
the i-th protocol to be started with sen; 2) he can output a message for any
running protocol, receive immediately the next message from sen and continue2.

Given an s-concurrent malicious receiver rec� and a honest sender sen, an
s-concurrent attack of rec� is performed as follows: 1) in its first stage, rec�, on
input 1n and a random string, generates a public file F ; 2) rec� is run on input
1n and F so to start the first protocol with sen; 3) whenever rec� starts a new
protocol, sen uses a new random string, and interacts with rec�.

We now define concurrent equivocal commitments in the BPK model. We
stress that we give a definition that works with an interactive commitment phase
and a non-interactive decommitment phase since these are the properties of the
commitment scheme that we will construct. We assume that parties use n as
security parameter.

Definition 1. (sen, rec, Ver) is a concurrent equivocal commitment scheme
(CS, for short) in the BPK model if:

- correctness: for all m, let sen be a honest sender that receives m as input
in the game described above, then: 1) rec outputs com 2) sen outputs dec
and 3) Ver is an efficient algorithm such that Ver(com, dec,m) = 1.

- binding: for all sufficiently large n, for any s-concurrent malicious sender
sen� that runs the game described above with a honest receiver rec, there is
a negligible function ν such that for all com given in output by rec the prob-
ability that sen� outputs a pair (dec0, dec1) such that Ver(com, dec0,m0) =
1 ∧ Ver(com, dec1,m1) = 1 ∧m0 �= m1 ∧ |m0| = |m1| is less than ν(k).

- hiding: for all sufficiently large n, for any pair of same-length vectors m̄0,
m̄1 of poly(n)-bit messages, and for any s-concurrent malicious receiver
rec� that runs the game described above with a honest sender sen, the view
of rec� when interacting with sen on input m̄0 is computationally indistin-
guishable from the one when interacting with sen on input m̄1, where sen in
the i-th session commits to the i-th element of the vector received as input.

- equivocality: there exists an efficient equivocator M such that for any s-
concurrent malicious receiver rec� it holds that:

2 The message that follows the last message of the commitment phase is the decom-
mitment dec sent by sen.
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• M and rec� output respectively auxi and comi after the commitment
phase of the i-th session; then M on input auxi and any message m,
outputs deci such that Ver(com, deci,m) = 1.

• the distribution of the view of rec� when interacting with M is compu-
tationally indistinguishable from the one when interacting with a honest
sender sen.

3 Equivocal Commitments in the BPK Model

In this section we show an efficient construction for concurrent equivocal com-
mitments in the BPK model that only needs a few modular exponentiations.
For the sake of simplifying the notation, sometimes we omit the modulus from
modular operations.

SimC, simulatable commitment of a message. Consider (p, q, h) such that p, q
are primes, p = 2q + 1, h is a generator of the only subgroup Gq of Z�p that
has order q. In [4] Micciancio and Petrank presented the following perfectly
binding commitment scheme. In order to commit to z ∈ Zq, the sender chooses
a random generator g of Gq and computes ĝ = grmod p, ĥ = hr+zmod p where
r ∈R Zq. sen sends g and com = (ĝ, ĥ). The corresponding decommitment is
the pair (r, z) and it can be verified that com = (gr, hr+z). As discussed in [4],
this commitment scheme that we refer to as SimC, is perfectly binding since
ĝ and ĥ uniquely determine r and r + z. Computational hiding follows from
the DDH assumption. Moreover, in [4] the authors show that such a computed
commitment com is simulatable, in the sense that it admits an efficient 3-round
public-coin honest-verifier zero-knowledge proof system for proving that com is
a commitment of z. Their proof system enjoys optimal soundness as there exists
at most one challenge that allows an adversarial prover to succeed in proving a
false statement. Moreover the simulator perfectly simulates true statements.

SimDlogC, simulatable commitment of a discrete logarithm. A variation of the
proof system for SimC can be used to prove that com is the commitment of the
discrete logarithm in base h of an element h′ of Gq (actually, com is an El Gamal
encryption of h′ and thus it uniquely determines its discrete logarithm in base
h). We refer to this scheme as SimDlogC. The proof system works as follows.
First the prover computes the pair (ḡ, h̄) = (gs, hs) for a randomly chosen s in
Zq and sends this pair to the verifier. The verifier answers sending a random
challenge c in Zq. The prover computes a = cr + s and sends it to the verifier.
Finally the verifier accepts the proof if and only if ĝcḡ = ga and (ĥ/h′)ch̄ = ha.
The only variation with respect to the proof system given in [4] is that here
the verifier checks that (ĥ/h′)ch̄ = ha while in [4], the verifier has to check that
(ĥ/hz)ch̄ = ha. The simulator on input (ĝ, ĥ) randomly chooses a and c and
sets ḡ = ga/ĝc, h̄ = ha/(ĥ/h′)c. Again, the only update with the simulator of [4]
is that h′ is used instead of hz. All properties enjoyed by SimC are obviously
enjoyed by SimDlogC.
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The proof system of SimDlogC is not a proof of knowledge. Note that in order to
compute a commitment com of the discrete logarithm of h′ in base h, knowledge
of this discrete logarithm is not necessary since it is possible to compute com =
(ĝ, ĥ) = (gr, hrh′) with r ∈R Zq. It is possible to honestly run the public-coin
honest-verifier zero-knowledge proof system discussed above on such a computed
commitment. Indeed, notice that the discrete logarithm z of h′ in base h is never
used in the proof. Since we have that ĥ = hrh′ = hr+z, the prover only needs to
know r.

OR-composition of SimDlogC. Given pkb = (p, q, h, hb) for b = 0, 1, the public-
coin honest-verifier zero-knowledge proof system of SimDlogC can be used to
prove that a commitment comb is the commitment of the discrete logarithm of
hb in base h, where hb is an element of Gq.

Let com be a commitment of a message z computed using SimDlogC. If z is
either the discrete logarithm of h0 in base h or of h1 in base h, it is possible
to OR-compose [18, 19] the public-coin honest-verifier zero-knowledge proof sys-
tem of SimDlogC thus proving that com is either a commitment of the discrete
logarithm of h0 in base h or the commitment of the discrete logarithm of h1 in
base h.

Σ-protocols. A Σ-protocol is a 3-round interactive protocol between a PPT
honest prover P and a PPT honest verifier V . P and V receive as common input
a statement “x ∈ L”. P has as auxiliary input a witness y for x ∈ L (L is an
NP-language). At the end of the protocol V decides whether the transcript is
accepting with respect to the statement or not. Σ-protocols have the following
properties: 1) completeness, means that V always accepts when interacting with
P ; 2) public coin, means that V sends random bits only; 3) special soundness,
means that given two accepting transcripts (a, c, z) and (a, c′, z′) for a statement
“x ∈ L”, if c �= c′ then x ∈ L (i.e., the statement is true) and there exists an
efficient extractor, that on input (x, a, c, z, c′, z′) outputs a witness y for x ∈ L; 4)
special honest-verifier zero knowledge, means that there is an efficient algorithm
S, referred to as simulator, that on input a true statement “x ∈ L” outputs
for any c a pair (a, z) such that the triple (a, c, z) is indistinguishable from the
transcript of a conversation between P and V .

Σcom, AND-composition of the Σ-protocol on (ĝ, ĥ). When the discrete loga-
rithm z of h′ is known and the commitment com = (ĝ, ĥ) = (gr, hr+z) of z is
computed using the regular procedure, it is possible to use the Σ-protocol of
Schnorr [20] composed by means of [18, 19] for proving knowledge of either the
discrete logarithm of ĝ in base g and the discrete logarithm of ĥ in base h. In
the example described above one can therefore prove knowledge of both r and
r + z. We refer to Σcom as this AND-composed Σ-protocol.

Efficient equivocal commitments from any efficient Σ-protocol. In [21, 22] trans-
formations that output equivocal commitments fromΣ-protocols were presented.
The message space for the resulting equivocal commitment scheme is exactly
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the challenge space of the considered Σ-protocol. The resulting scheme is non-
interactive and works in the common reference string model. We will use it as
an ingredient in our construction in the BPK model. The commitment scheme
is based on the fact that given a Σ-protocol for proving “x ∈ L”, the simulator
of the special honest-verifier zero-knowledge property, can output for any m a
triple (a,m, z) that is indistinguishable from a real transcript. The sender can
thus use this simulator to commit to m. More precisely, the sender sends a to the
receiver and then opens the commitment sending the pair (m, z). The receiver
outputs m if and only if (a,m, z) is an accepting transcript and ⊥ otherwise.
Knowledge of a witness y for “x ∈ L” allows an equivocator to first send a
and then for any m, to compute z such that (a,m, z) is accepting. The binding
property crucially needs that the prover does not know y. The hiding property
is perfect if the output of the simulator is perfectly indistinguishable from a real
conversation.

For the case of Σcom, using this transformation we obtain an efficient equiv-
ocal commitment scheme ComΣcom since a few modular exponentiations achieve
the commitment and decommitment of an element of Zq.

3.1 Achieving Concurrent Equivocality

We now show our construction of efficient concurrent equivocal commitments in
the BPK model. Our protocol uses SimDlogC and combines it with ComΣcom .

The basic idea is that the receiver rec during the preprocessing stage generates
the public key PK = (pk0 = (p, q, h, h0), pk1 = (p, q, h, h1)) and keeps secret
one of the two discrete logarithms of h0 and h1 in base h. Then during the
protocols he first uses the efficient and special 3-round witness-indistinguishable
proof of knowledge (WI-PoK, for short) for proving knowledge of one of the two
secret keys. This can be obtained by composing the protocol of Schnorr [20]
with the techniques of [18, 19]). This is special since knowledge of the witness
(i.e., the discrete logarithm) is only needed for computing the third message.
Let PoK1, PoK2 and PoK3 be the messages played in these 3 rounds. PoK1 is the
only message played in the first round of the resulting concurrent equivocal
commitment scheme in the BPK model.

The sender sen on input m and PK uses SimDlogC for computing the com-
mitment com = (ĝ, ĥ) that is the commitment of the discrete logarithm of h0 in
base h (we stress that knowledge of this discrete logarithm is not required for
computing this commitment and for running the corresponding proof). Then he
uses the sender algorithm of ComΣcom on input m and com obtaining a pair (a, z)
such that (a,m, z) is an accepting transcript for this Σ-protocol. Then sen uses
the OR-composition of SimDlogC on input com to compute the first message â
for proving that com is either a commitment of the discrete logarithm of h0 in
base h or a commitment of the discrete logarithm of h1 in base h (we stress that
this can be done without knowing the discrete logarithm). The message sent by
sen in the second round is thus (g, com, â, a, PoK2) and its output includes the
decommitment information (m, z, auxz). In the third round the receiver sends
PoK3 and a challenge ĉ.
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sen uses (auxz, ĉ) to compute ẑ and opens the commitment sending (ẑ,m, z).
The receiver verifies the correctness of the opening by checking that (a,m, z)
and (â, ĉ, ẑ) are accepting for their corresponding statements.

The key idea of this new commitment scheme is that once the sender has
played the second round, in order to decommit, com must be a commitment of
either the first secret key or the second secret key (this follows from the optimal
soundness of the OR-composition of SimDlogC ). Moreover since com is perfectly
binding, the witness (that therefore corresponds to either sk0 or sk1) extracted
from two different openings of ComΣcom is fixed and therefore can not be changed
by exploiting concurrent man-in-the-middle attacks3. This is a crucial property
for proving the binding property with respect to s-concurrent malicious senders.
Finally we stress that an equivocator can extract the secret key of the receiver
running the extractor of the witness-indistinguishable proof of knowledge. Then
he can freely equivocate in a straight-line fashion since knowledge of this secret
key allows it to run the equivocator of ComΣcom and the honest prover algorithm
of the OR-composed honest-verifier zero-knowledge proof of SimDlogC. Notice
that the number of extraction procedures that the equivocator has to run is
bounded by the size of the public file.

Theorem 1. Assuming the intractability of the DDH assumption modulo inte-
gers of the form p = 2q + 1, for p, q primes, the previously described protocol is
an efficient concurrent equivocal commitment scheme in the BPK model.

Proof. Completeness can be verified by inspection. The hiding property follows
by the perfect honest-verifier zero-knowledge property of the Σ-protocols and
the proof system of SimDlogC.

Assume by contradiction that an s-concurrent malicious sender sen� succeeds
in computing two decommitments to different messages of the same commitment.
This means that sen� outputs two different messages m,m′ and two string z, z′

such that for the same message a sent during the second round of the protocol,
both transcripts (a,m, z) and (a,m′, z′) are accepting. By the special-soundness
property of Σcom and the optimal soundness of SimDlogC either sk0 or sk1 is
extracted. This can be used by an algorithm A to break the discrete logarithm
assumption as follows. A receives a discrete logarithm challenge pk and then
generates the entry of the public file as PK = (pk0, pk1) where either pk0 or pk1
is equal to pk (the choice is random) while for the other entry A knows the secret
key. A runs the protocol with sen� and as discussed above A extracts one of
two secret keys. If the extracted secret key corresponds to pk then A breaks the
challenge. Assume therefore that A always extracts the already known secret key.
This means that in case A knows sk0, he uses it in the concurrent protocols and
always extracts sk0 from the output of sen�. The opposite case happens when

3 The capability of an s-concurrent malicious sender sen� that runs many concurrent
interactions with the same receiver allows him to mount a man-in-the-middle attack
between the proof of knowledge he receives in a session j and a commitment that
he computes and open in a different session j′. This attack could allow the man-in-
the-middle to equivocate using the same secret key used in the WI-PoK.
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A always uses sk1 and extracts sk1. We can apply the same hybrid arguments
of [16] and thus an efficient algorithm A′ obtains from the output of sen� two
different openings of the commitment of the i-th session. Moreover, from these
openings A′ extracts the same secret key he uses in a given session j. We now
distinguish two cases. 1) The WI-PoK given by A′ is session j is completed before
the second round of session i is played. This case can not happen otherwise A′ by
relaying the messages can break the witness indistinguishability of the WI-PoK.
2) The WI-PoK given by A′ in session j is completed after the second round of
session i is played. In this case, since A′ has not decided yet which witness has
to be used (note that the WI-PoK is special), the probability that the secret key
extracted is the equal to the used one is only 1/2. This contradicts the previous
assumption that A always extract the same witness used in session j.

The equivocality property can be proved as follows. The equivocator runs
the extractor of the WI-PoK given by the receiver and obtains a secret sk.
Then the equivocator uses SimDlogC for computing a commitment of sk. Now
the equivocator can run the honest prover algorithm of Σcom obtaining a and
computes â using the OR-composed proof system of SimDlogC. Later for any
message m he can compute z such that (a,m, z) is accepting for Σcom. The
same can be done for computing â and then ẑ such that (â, ĉ, ẑ) is accepting
for proving that com is a commitment of one of two secret keys. Note that the
equivocator crucially uses knowledge of the secret key and therefore knowledge of
the discrete logarithms of the pair computed by means of SimDlogC to commit
to the secret key. The running time of the equivocator is polynomial, this is the
major benefit of the BPK model. Indeed the equivocator is required to run only
one extraction procedure for each entry of the public file. The remaining part of
the work is straight-line. Since the size of the public file is polynomial, so is the
running time of the equivocator.

The indistinguishability of the equivocator with respect to a real sender can
be proved using the following standard hybrid arguments. The game played by
the prover is modified by letting it to commit to the same secret key used by
the simulator. This change is not noticeable, otherwise the hiding property of
SimDlogC is broken4. The game of this modified prover differs from the simu-
lation only because the prover uses the simulator of Σcom while the simulator
uses the honest prover of Σcom. However, the two distributions are perfectly
indistinguishable.

4 Efficient Concurrent Zero Knowledge

We now briefly show how to obtain a 4-round concurrently sound concurrent
zero-knowledge argument of knowledge in the BPK model for any language L
that admits a Σ-protocol. We show an efficient transformation that only adds
one round and O(1) modular exponentiations. For the definition of concurrent
zero-knowledge with concurrent soundness in the BPK model, please see [16, 11].
4 Note that this step actually requires additional hybrid arguments since the prover

(potentially) commits to a different secret key in a polynomial number of sessions.
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Let ΣL be a Σ-protocol for the language L. The basic idea is that first the
prover computes the first message aL of ΣL, then he uses the concurrent equiv-
ocal commitment scheme constructed in Section 3.1 to compute a commitment
coma of aL that is sent to the verifier. Note this commitment is executed running
the 3-round protocol discussed in Section 3.1. The verifier appends to the third
round of this interactive commitment scheme a challenge cL of ΣL. In the fourth
message the prover simply opens the commitment coma of aL and computes
and sends the third message zL of ΣL. The verifier accepts if and only if both
the commitment has been correctly opened and (aL, cL, zL) is accepted by the
verifier of ΣL.

Completeness is straightforward. Concurrent zero knowledge is obtained as
in the previous works of [6, 8]. The simulator uses the equivocator of the com-
mitment scheme in order to compute commitments that can be equivocated.
Consider session i, let comai be the commitment computed by the simulator and
let ci be the challenge of ΣL sent by V �. The simulator runs the simulator of the
special honest-verifier zero-knowledge property of ΣL for obtaining an accepting
transcript (ai, ci, zi). Then still working as the equivocator it opens comai as
ai and completes the proof. Since the equivocator can compute any polynomial
number of equivocal commitments in polynomial time, and since the additional
work of S is straight-line, the resulting running time of S is still polynomial in
the security parameter. Witness extraction and concurrent soundness follow from
the special soundness of ΣL and the (concurrent) binding of the commitment
scheme.

Alternative construction. The previously discussed construction is modular on
top of a concurrent equivocal commitment scheme. It is also possible to give a
direct construction in which ComΣcom is not used. Indeed, after using SimDlogC
for computing com = (ĝ, ĥ), the standard technique proposed by [18, 19] can be
used directly. Here the prover has to 1) prove that “com is the commitment of
the discrete logarithm of either h0 or h1” using SimDlogC, 2) prove knowledge of
a) a witness for x ∈ L or b) the discrete logarithms of ĝ in base g and either the
one of ĥ in bases h0 or the one of ĥ in bases h1. The honest prover obviously can
complete the protocol using the witness y for “x ∈ L”. Instead, the simulator will
use the secret key committed in com to indistinguishability complete the proof.
Concurrent soundness still holds since the commitment com can correspond to
at most one secret key.
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Abstract. We define and construct Independent Zero-Knowledge Sets
(ZKS) protocols. In a ZKS protocols, a Prover commits to a set S, and
for any x, proves non-interactively to a Verifier if x ∈ S or x /∈ S without
revealing any other information about S. In the independent ZKS proto-
cols we introduce, the adversary is prevented from successfully correlate
her set to the one of a honest prover. Our notion of independence in
particular implies that the resulting ZKS protocol is non-malleable.

On the way to this result we define the notion of independence for com-
mitment schemes. It is shown that this notion implies non-malleability,
and we argue that this new notion has the potential to simplify the design
and security proof of non-malleable commitment schemes.

Efficient implementations of ZKS protocols are based on the notion
of mercurial commitments. Our efficient constructions of independent
ZKS protocols requires the design of new commitment schemes that are
simultaneously independent (and thus non-malleable) and mercurial.

1 Introduction

The notion of Zero Knowledge Sets (ZKS) was introduced by Micali, Rabin and
Kilian in [17]. In these protocols, one party (Alice) holds a secret database Db
which can be accessed by another party (Bob) via queries. When Bob queries the
database on a key x, Alice wants to make sure that nothing apart from Db(x) is
revealed to Bob, who at the same time wants some guarantee that Alice is really
revealing the correct value.

Micali et al. presented a very ingenious solution to this problem, based on a
new form of commitment scheme (later termed mercurial commitments in [14]).
In a nutshell, Alice first commits to the entire database in a very succinct way,
and then when Bob queries a given key x, Alice answers with a “proof” πx that
Db(x) = y according to the original commitment. Their solution is efficient and
based on the discrete logarithm assumption.

A construction based on general assumptions, and allowing more general
queries on the database, was presented in [19]. However their construction re-
quired generic ZK proofs, based on Cook-Levin reductions and thus was less
efficient than [17]. The original construction in [17] has been generalized to hold
under various assumptions in [14] and [5].
� Extended Abstract. An extended version, which contains all formal definitions

and proofs, is available at the IACR Eprint Archive: http://eprint.iacr.org/
2006/155
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Malleability. ZKS protocols guarantee simply that when Bob queries x, only
the value of D(x) is disclosed. However, this is only one of possible attacks
that can be carried on a cryptographic protocol. It is well known that proving
confidentiality may not be sufficient, in an open network like the Internet, where
an Adversary can play the role of “man-in-the-middle” between honest parties.

First formalized in [10], the notion of malleability for cryptographic protocols
describes a class of attacks in which the adversary is able to correlate her values
to secret values held by honest players. In a ZKS protocol, for example, this
would take the form of the adversary committing to a set somewhat related to
the one of a honest player and then using this to her advantage.

The confidentiality property of ZKS protocols does not prevent such an attack
from potentially taking place. Indeed such an attack could be devised against the
protocol from [17]. What we need is an enhanced definition of security, to make
sure that databases committed by one party are independent from databases
committed to by a different party.

Non-Malleable Commitments. The first non-malleable commitment scheme
was presented in [10], but it required several rounds of communication. A break-
trough result came with a paper by Di Crescenzo, Ishai and Ostrovsky (DIO)
[8] which constructed a non-interactive and non-malleable commitment scheme.
Following the DIO approach several other commitment schemes were presented
with improved efficiency or security properties (e.g. [9, 7, 15, 12]).

The DIO approach has a very interesting feature: non-malleability is proven by
showing that the commitment satisfies a basic “independence” property (though
this property is not formally defined as such), and then it is shown that this
property implies non-malleability. All the commitment schemes that followed the
DIO approach have a proof of security structured in a similar way. However the
only “original” part of the proof in each scheme is the proof that the commitment
satisfies this “independence” property. The second part of the proof is basically
identical in all the proofs.

Our Contribution

– We define the notion of Independent Zero Knowledge Sets which enforces the
independence of databases committed by various parties. We also define the
notion of independence for commitment schemes. This definition captures
the crucial notion of security in a DIO-like commitment.
Once this notion of independence is formalized we restate the second part
of the DIO proof as a formal theorem that shows once and for all that
independent commitments are non-malleable.
We believe that isolating the notion of independence has the potential to
simplify the design and security proof of non-malleable commitments in the
future.

– We present efficient independent ZKS protocols. These protocols are enabled
by the efficient constructions of new commitment schemes that are simulta-
neously independent (and thus non-malleable) and mercurial.

– Finally we define various notions of non-malleability for ZKS protocols. We
then ask if the DIO theorem (that independence implies non-malleability for
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commitments) holds for ZKS protocols as well. Surprisingly the answer is not
that simple. We show under which conditions independent ZKS protocols are
also non-malleable.

2 Zero-Knowledge Sets

ZKS Definition. An elementary database Db is a subset of {0, 1}∗ × {0, 1}∗
such that if (x, v) ∈ Db and (x, v′) ∈ Db then v = v′. With [Db] we denote the
support of Db, i.e. the set of x ∈ {0, 1}∗ for which ∃v such that (x, v) ∈ Db. We
denote such unique v as Db(x); if x /∈ [Db] then we also write Db(x) = ⊥. Thus
Db can be thought of as a partial function from {0, 1}∗ into {0, 1}∗.

In a ZKS protocol we have a Prover and Verifier: the Prover has as input a
secret database Db. The Prover runs in time polynomial in |[Db]| (the cardinal-
ity of the support) and the number of queries, while the Verifier runs in time
polynomial in the maximal length of x ∈ [Db], which we assume to be publicly
known. They also have a common input string σ, which can be a random string
(in which case we say that we are in the common random string model) or a
string with some pre-specified structure (in which case we say we are in the
common parameters model).

The Prover first commits in some way to the database Db. This commitment
string is then given as input to the Verifier. Then the Verifier asks a query x
and the Prover replies with a string πx which is a proof about the status of x in
Db. The Verifier after receiving πx outputs a value y (which could be ⊥) which
represents his belief that Db(x) = y, or bad which represents his belief that the
Prover is cheating.

A ZK Set protocol must satisfy completeness, soundness and zero-knowledge.
Informally completeness means that if Db(x) = y the Prover should always
be able to convince the verifier of this fact. Soundness means that no efficient
Prover should be able to produce a commitment to Db, a value x and two proofs
πx, π

′
x that convince the Verifier of two distinct values for Db(x). Finally zero-

knowledge means that an efficient verifier learns only the values Db(x) from his
interaction with the Prover, and nothing else. In particular the Verifier does not
learn the values Db(x′) for an x′ not queried to the Prover (following [13] this
is stated using a simulation condition).

2.1 Mercurial Commitments

A mercurial commitment scheme [14] is a commitment with two extra properties:

1. On input a message m, the sender can create two kinds of commitments: a
hard and a soft commitment.

2. There are two kinds of openings: a regular opening and a partial opening or
teasing.

The crucial properties of a mercurial commitment are: (i) both hard and soft
commitments preserve the secrecy of the committed message (semantic security);



Independent Zero-Knowledge Sets 37

(ii) hard commitments are indistinguishable from soft ones; (iii) soft commit-
ments cannot be opened, but can be teased to any value (even without knowing
any trapdoor information); (iv) hard commitments can be opened or teased only
to a single value (unless a trapdoor is known).

A construction of mercurial commitments was implicitly presented in [17]
based on discrete log. More constructions were presented in [14, 5], including
one based on general assumptions. Let us recall the discrete log construction
and a new one based on RSA1.

Mercurial Commitments based on Discrete Log. This commitment is
based on [1, 18]; the mercurial property was introduced in [17]. The public in-
formation is a cyclic group G of prime order q, where multiplication is easy and
the discrete log is assumed to be hard. Also two generators g, h for G.

To hard commit to M , choose ρ,R ∈r Zq: let hρ = gρh and commit using Ped-
Com with bases g, hρ i.e. compute C = gMhRρ . The hard commitment is hρ, C.
The opening is M,R, ρ and the verification of a hard commitment is to check
the above equations. To soft commit, choose ρ,R ∈r Zq: let hρ = gρ and commit
to 0 using Ped-Com with bases g, hρ i.e. compute C = hRρ . The soft commitment
is hρ, C Notice that in a soft commitment, one actually knows the discrete log
of hρ with respect to g, while in a hard-commitment computing such discrete
log is equivalent to computing logg h. Thus to tease the above soft commitment
to M ′, one produces R′ with R′ = R−M ′ρ−1 mod q. The verification of such a
teasing consists in checking that gM

′
hR

′
ρ = C.

Mercurial Commitments based on RSA. This commitment is based on
[6]; the mercurial property is an original contribution of this paper. The public
information is an RSA modulus N , a prime e, such that GCD(e, φ(N)) = 1;
and s ∈R Z∗N . To hard commit to M , choose ρ,R ∈R Z∗N : let sρ = sρe mod N
and commit using RSA-Com with base sρ i.e. compute C = sMρ R

e. The hard
commitment is sρ, C. The opening is M,R, ρ and the verification of a hard
commitment is to check the above equations. To soft commit, choose ρ,R ∈r
Z∗N : let sρ = ρe and commit to 0 using RSA-Com with base sρ i.e. compute
C = Re. The soft commitment is sρ, C Notice that in a soft commitment, one
actually knows e-root of sρ, while in a hard-commitment computing such root is
equivalent to computing the e-root of s. Thus to tease the above soft commitment
to M ′, one produces R′ with R′ = Rρ−M

′
mod N . The verification of such a

teasing consists in checking that sM
′

ρ (R′)e = C mod N .

2.2 Constructing ZK Sets

Using any mercurial commitment it is possible to construct a ZKS protocol as
shown in [17].

Let l to denote the maximal length of an input x ∈ [Db]. As we said above
we assume this to be a publicly known value. The Prover uses a variation of a

1 This construction of mercurial commitments based on RSA was independently dis-
covered in [14].
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Merkle tree [16]. The Prover builds a tree of height l and stores a commitment
to Db(x) in the x-leaf (notice that if x /∈ [Db] then Db(x) = ⊥). Then the Prover
stores in each internal node a commitment to the contents of its two children:
this is done by hashing the values of the two children using a collision-resistant
hash function and then committing to the resulting value. The final commitment
to Db is the value stored at the root. To prove the value of Db(x) the Prover just
decommits all the nodes in the path from the root to x (in particular this means
that he reveals the values stored at their siblings, but without decommitting
them), thus providing a Merkle-authentication path from the leaf to the root.
The Verifier checks this path by checking the all the decommitments are correct.

Unfortunately the above algorithm runs in time 2l, no matter what the size
of the database is. In order to have the Prover run in time polynomial in |[Db]|,
a pruning step is implemented as follows. First of all, we use mercurial com-
mitments, to compute the commitments. In the above tree, we consider all the
maximal subtrees whose leaves are not in [Db]. We store a soft-commitment in
the roots of those trees. The rest of the tree is computed as above, using the
hard commitments. Now the running time of the Prover is at most 2l|[Db]| since
it is only computing full authentication paths for the leaves inside Db.

The question is now how do you prove the value of Db(x). If x ∈ [Db] then
you just decommit (open) the whole authentication path from its leaf to the
root, as before.

Let x be the a query such that x /∈ [Db], i.e. Db(x) = ⊥. Let y be the last
node on the path from the root to x that has a commitment stored in it. We
associate soft-commitments to the nodes on the path from y to x and their
siblings, including x. Then we compute an authentication path from the root to
x, except that we tease (rather than open) each commitment to the hash of the
commitment of the children. Notice that we can seamlessly do this from the root
to x. Indeed from the root to y these are either hard or soft commitments, and
we only tease the hard ones to their real opening. From y to the leaf those are
soft commitments that can be teased to anything.

3 Independent Zero-Knowledge Sets

Independent Commitments. As we said in the introduction, our starting point
was the DIO approach [8] to build non-malleable commitments. In order to prove
the non-malleability of their commitment scheme they first proved the following
property.

Consider the following scenario: � honest parties2 commit to some messages
and the adversary, after seeing their commitment strings, will also produce a
commitment value. We require that this string must be different from the com-
mitments of the honest parties (otherwise the adversary can always copy the
2 To be precise in [8] only the case � = 1 is considered, and suggested how to easily

extend it to constant �. The case of arbitrary � (polynomial in the security parame-
ter) is presented by Damg̊ard and Groth in [7] to construct reusable non-malleable
commitments.



Independent Zero-Knowledge Sets 39

behavior of a honest party and output an identical committed value). At this
point the value committed by the adversary is fixed, i.e. no matter how the hon-
est parties open their commitments the adversary will always open in a unique
way.

In [8] this property is not formally defined but it is used in a crucial way in
the proof of non-malleability. We put forward a formal definition for it (see full
version) and we say that such a commitment scheme is �-independent. If it is
�-independent for any � (polynomial in the security parameter) we say that is
simply independent.

As mentioned in the Introduction, following the DIO approach, several other
non-malleable commitments were presented (e.g. [9, 7, 15, 12]). All these schemes
are independent according to our definition. Moreover their non-malleability
proofs all share the same basic structure: an “original” part which proves that
they are independent (once one formalizes the notion, as we did) – and a second
part (common to all proofs and which basically goes back to DIO [8]) that the
independence property implies non-malleability.

By formalizing the notion of independence we can then rephrase this second
part of the DIO proof as a separate theorem:

Theorem 1 (DIO [8]). If an equivocable commitment scheme is �-independent
then it is (�, ε)-non-malleable with respect to opening, for any ε. As a conse-
quence, if an equivocable commitment scheme is independent then it is ε-non-
malleable with respect to opening, for any ε.

3.1 Defining Independence for ZK Sets

Let us consider a man-in-the-middle attack for a ZK Sets protocol. In such an
attack, the Adversary would interact with the Verifier but while on the back-
ground is acting as a verifier himself with a real Prover. Of course we can’t
prevent the Adversary from relaying messages unchanged from the Prover to
the Verifier and vice versa. But we would like to prevent an adversary to commit
to a related database to the one committed by the real Prover and then manage
to convince the Verifier that Db(x) is a value different than the real one. When
we define independence for ZKS our goal will be to prevent this type of attacks.
A weak definition. A first approach is to treat ZKS protocols in a similar way
as commitments. Then the definition of independence would go as follows. The
adversary commits to a set after seeing the commitment of the honest prover,
but before making any queries about the set committed by the honest prover.
What we would like at this point is that the set committed by the adversary is
fixed, i.e. it will not depend on the answers that the honest prover will provide
on queries on his own committed set.

We call the above weak independence. This property is easily achieved by
combining any ZKS protocol with any independent commitment.

A Stronger Definition. It may not be reasonable to assume that the ad-
versary does not query the honest provers before committing. Thus a stronger



40 R. Gennaro and S. Micali

definition of independence allows such queries. However once the adversary has
seen the value Db(x) of x in the database Db held by the honest prover, it can
always commit to a set which is related to Db by the mere fact that the adver-
sary knows something about Db (for example the adversary could committ to
Db′ where Db′(x) = Db(x)).

The idea is to make sure that the set committed by the adversary is indepen-
dent from the part of the honest prover’s set that the adversary has not yet seen.
Here is how we are going to formalize this.

Consider an adversary A = (A1,A2) which tries to correlate its database to
the one of a honest prover. A1 sees the commitments of the honest provers,
queries them (concurrently) on some values, and then outputs a commitment
of its own. A2 is given concurrent access to the provers to whom he can ask
several database queries while answering queries related to A1’s commitment.
We would like these answers to be independent from the answers of the honest
provers except the ones provided to A1 before committing.

In other words A1, after seeing the commitments Com1, . . . , Com� of � honest
provers, does the following: (i) queries Comi on some set Qi of indices, which are
answered according to some database Dbi, and then (ii) outputs a commitment
Com of its own.

We now run two copies of A2, in the first we give him access to provers
that “open” the Comi according to the databases Dbi; in the second instead
we use some different databases Db′i. However the restriction is that Db′i must
agree with Dbi on the set of indices Qi. At the end A2 outputs a value x and
the corresponding proof πx with respect to Com. We require that the database
value associated to x in the two different copies of A2 must be the same, which
implies that it is “fixed” at the end of the committing stage.

Of course we must rule out the adversary that simply copies the honest
provers, as in that case achieving independence is not possible (or meaning-
ful). Thus we require that A1 output a commitment Com different from the
honest provers’ Comi. A formal definition follows.

Given two databases Db,Db′ and a set of indices Q we define the operator �
as follows: Db′ �Q Db is the database that agrees with Db′ on all the indices
except the ones in Q where it agrees with Db.
We say that a ZKS protocol is �-independent if the following property holds
(where Qi is the list of queries that A1 makes to the oracle Sim2Dbi(·)(ωi, Comi)):

ZKS �-independence. For any adversary (A1,A2) and for any pair of �-tuple
of databases Db1, . . . , Db� and Db′1, . . . , Db

′
� the following probability

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
(σ, ω0) ← Sim0(1k) ; (Comi, ωi) ← Sim1(ω0) ∀ i = 1, . . . , � ;

(Com,ω) ← ASim2Dbi(·)(ωi,Comi)
1 (σ, ω) with Com �= Comi ∀i ;

(x, πx) ← ASim2Dbi(·)(ωi,Comi)
2 (σ, ω) ;

(x, π′x) ← ASim2Db′
i

�Qi
Dbi(·)(ωi,Comi)

2 (σ, ω) :
bad �= V(σ,Com, x, πx) �= V(σ,Com, x, π′x) �= bad

⎤⎥⎥⎥⎥⎥⎥⎦
is negligible in k.
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The above notion guarantees independence only if the adversary interacts with
a bounded (�) number of honest provers. We say that a ZKS protocol is inde-
pendent if it is �-independent for any � (polynomial in the security parameter).
In this case independence is guaranteed in a fully concurrent scenario where the
adversary can interact with as many honest parties as she wants.
The Strongest Possible Definition. A stronger definition allows A1 to
copy one of the honest provers’ commitments, but then restricts A2 somehow.
Namely, we say that either Com �= Comi for all i, or if Com = Comi for some
i, the answer of A2 must be “fixed” on all the values x which she does not ask
to the ith prover. We call this strong independence.

We say that a ZKS protocol is strongly �-independent if the following property
holds, where Qi (resp. Q′i) is the list of queries that A1 (resp. A2) makes to the
oracle Sim2Dbi(·)(ωi, Comi):

ZKS strong �-independence. For any adversary (A1,A2) and for any pair of
�-tuple of databases Db1, . . . , Db� and Db′1, . . . , Db

′
� the following probability

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(σ, ω0) ← Sim0(1k) ; (Comi, ωi) ← Sim1(ω0) ∀ i = 1, . . . , � ;

(Com,ω) ← ASim2Dbi(·)(ωi,Comi)
1 (σ, ω) ;

(x, πx) ← ASim2Dbi(·)(ωi,Comi)
2 (σ, ω) ;

(x, π′x) ← ASim2Db′
i

�Qi
Dbi(·)(ωi,Comi)

2 (σ, ω) :
bad �= V(σ,Com, x, πx) �= V(σ,Com, x, π′x) �= bad AND

((Com �= Comi ∀i) OR (∃i : Com = Comi AND x /∈ Q′i))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is negligible in k.

Again we say that a ZKS protocol is (strongly) independent if it is (strongly)
�-independent for any � (polynomial in the security parameter).3

3.2 Constructing Independent ZKS

In this section we show how to modify the original protocol presented in [17]
(recalled in Section 2.2) using a different type of commitment which will yield
3 Note that since we need to open the same database commitment according to

two different databases, the definition is stated in terms of the simulated provers.
But simulated executions are indistinguishable from real ones, so that independence
property holds in real life too.

This is the reason why we restrict the database Db′
i to agree with Dbi on the

queries that were asked by the adversary before committing. In our proofs of security
this requirement does not matter (i.e. the adversary would not be able to output
(x, πx, π′

x) such that V outputs different values for Db(x) depending on which proof,
πx or π′

x, is provided, even if Db′ does not agree with Dbi on the set Qi). But the
simulated execution is indistinguishable from the real one only if the answers are
consistent. Thus after A1 has seen a given value for Dbi(x), we need to make sure
that in both copies of A2 the same value appears for Dbi(x), in order to make the
simulated run indistinguishable from a real one.



42 R. Gennaro and S. Micali

strong independence. This new commitment schemes that we introduce are si-
multaneously independent and mercurial.

Strong 1-Independence Based on Discrete Log. The starting point of
this protocol is Pedersen’s commitment, modified as in [17] to make it mercurial.
In order to achieve independence we modify the commitment further, using
techniques inspired by the non-malleable scheme in [9]. We are going to describe
the protocol that achieves strong independence and later show how to modify it
if one is interested in just independence.

DLSI-ZKS

– CRS Generation. On input 1k selects a cyclic group G of order q, a k-
bit prime, where the discrete logarithm is assumed to be intractable and
multiplication is easy. It also chooses three elements g1, g2, h ∈R G. Finally
it selects a collision-resistant function H with output in Zq. The CRS is
σ = (G, q, g1, g2, h,H)

– Prover’s Committing Step. On input Db and the CRS σ. Choose a key pair
sk,vk for a signature scheme. Let α = H(vk) and gα = gα1 g2. Run the prover’s
committing step from [17] on Db and the mercurial commitment defined by
σα = (G, q, gα, h) to obtain Com,Dec. Output Com, vk.

– Prover’s Proving Step. On input x compute πx with respect to σα, Com,Dec
using the prover’s proving step from [17]. Then output Com, πx and sigx a
signature on (Com, x) using sk.

– Verifier. Check that sigx is a valid signature of (Com, x) under vk; if yes, com-
pute α = H(vk) and gα = gα1 g2 and run the [17] Verifier on (σα, Com, x, πx),
otherwise output bad.

Theorem 2. Under the discrete logarithm assumption, DLSI-ZKS is a strong
1-independent zero-knowledge set protocol.

Strong Independence under the Strong RSA Assumption. We are going
to use the mercurial RSA commitment described in Section 2.1. In order to
achieve independence we are going to modify it further using techniques inspired
by [7, 12], which require the Strong RSA assumption [2, 20]. Here is a description
of the protocol.

SRSA-ZKS

– CRS Generation. The key generation algorithm chooses a k-bit modulus, N
as the product of two large primes p, q and a random element s ∈R Z∗N . Also
selects a collision-resistant hash function H which outputs prime numbers
> 2k/2. Notice that such primes are relatively prime to φ(N). The CRS is
σ = (N, s,H). 4

4 We can use the techniques from [12] to implement H efficiently. Also if we choose N
as product of two safe primes, then it is sufficient for H to outputs primes smaller
than 2k/2−1, speeding up all computations.
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– Prover’s Committing Step. On input Db and the CRS σ. Choose a key pair
sk,vk for a signature scheme. Let e = H(vk). Run the Prover’s committing
step from [17] on Db and the mercurial commitment defined by σe = (N, s, e)
to obtain Com,Dec. Output Com, vk.

– Prover’s Proving Step. On input x compute πx with respect to σe, Com,Dec
using the Prover’s proving step from [17]. Then output Com, πx and sigx a
signature on (Com, x) using sk.

– Verifier. Check that sigx is a valid signature of (Com, x) under vk; if yes,
compute e = H(vk) and run the [17] Verifier on (σe, Com, x, πx), otherwise
output bad.

Theorem 3. Under the Strong RSA Assumption, SRSA-ZKS is a strong inde-
pendent zero-knowledge set protocol.

If one is interested in simple independence (rather than strong independence)
both of the above protocols can be simplified by using more efficient one-time
signature schemes for vk and just sign Com. Even more efficiently, to obtain
independence, one can use a message authentication code in place of a signature
scheme (the original idea in [9]). Informally, the basic idea is to commit to a
random MAC key a using a basic trapdoor commitment: call this commitment
A. Set α = H(A) (resp. e = H(A)) and now use it the same way we used α (resp.
e) in DLSI-ZKS (resp. SRSA-ZKS). To answer a query x, open A as a, produce πx
and a MAC of Com under a. However note that both these variations (one-time
signatures or MAC) cannot be used for strong independence as we need to sign
several messages (C, xi) with the same key.

It is possible to obtain strong independence under the newly introduced Strong
DDH assumption over Gap-DDH groups [3]. This approach uses the multi-
trapdoor commitment from [12] based on this assumption, modified it to make
it both mercurial and independent. Details appear in the final version.

4 Independence Versus Non-malleability for ZKS

In the previous section we showed that independence implies non-malleability
for commitments. Does this implication extend to the case of ZKS protocols as
well? The answer, surprisingly, is not that simple.

The first thing to clarify, of course, is a definition of non-malleability for ZKS
protocols. Informally in the commitment case [10], a non-malleable commitment
satisfies the following property. An adversary A is fed with a commitment to a
message m, and she outputs another commitment to a message m′. If A manages
to commit to a message m′ related to m then there is another machine A′ that
outputs a commitment to m′ without ever seeing a commitment tom. So in other
words the commitment is not helping A in committing to related messages.

Our definition of non-malleability for ZKS follows the same paradigm. Except
that, as in the case of independence, we have to deal with the fact that a ZKS
commitment is a commitment to a large string and that the adversary may
receive partial openings before creating her own commitment. For this reason
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we present three separate definitions, each stronger than the previous one and
investigate their relationship with our notion of ZKS independence.

ZKS Weak Non-Malleability. A first attempt would be to consider ZKS
protocols simply as commitments to large strings. In other words, as in the case
of weak ZKS independence, the adversary commits before querying the honest
provers. In this case the definition of ZKS non-malleability would be basically
identical to non-malleability for commitment schemes.

Corollary 1. If a ZKS protocol is weakly �-independent then it is weakly (�, ε)-
non-malleable with respect to opening.

ZKS Non-Malleability. We can strengthen the above definition by allow-
ing the adversary to query the committed databases before producing its own
commitment, which must be different from the ones of the honest provers.

However now we are faced with a “selective decommitment problem” [11].
A ZKS commitment is a commitment to a large set of strings: by allowing the
adversary to query some keys in the database we are basically allowing a selective
decommitment of a subset of those strings (some points in the database).

Thus to obtain this form of ZKS non-malleability we need a commitment
scheme which is secure against the selective decommitment problem. We do not
know if independent or non-malleable commitments are secure in this sense.
Universally composable (UC) commitments [4], on the other hand, are secure in
the selective decommitment scenario.

However to obtain an efficient ZKS protocol, such UC commitments would
have to be used inside the [17] construction, and thus would have to be mercurial
as well. Unfortunately we do not know any commitment that is simultaneously
mercurial and UC (not to mention also non-interactive).

Another approach is to restrict the distribution of the committed databases.
Under this assumption we can prove that independence will suffice.

Let IDB be the family of distributions over databases where each distribu-
tion can be efficiently sampled conditioned on the value of some points in the
database. In other words a distribution DB ∈ IDB if after sampling Db ∈ DB
and a set of points xi it is possible to efficiently sample Db′ ∈ DB such that
Db,Db′ agree on xi. An example of such a class of distributions is the one in
which the value of each element in the database is independent from the others.

Theorem 4. If a ZKS protocol is �-independent then it is (�, ε)-non-malleable
with respect to opening, with respect to the distribution class IDB.

ZKS Strong Non-Malleability. In this definition we allow the adversary
to copy one of the commitments, of the honest provers. Now recall that when
she is queried on her committed database, she can query the honest provers
in the background on their databases. Since she copied the (say) ith committed
database, a distinguisher can always detect a correlation between the adversary’s
and Pi’s answer to the same query x. But we require that this must be all that the
distinguisher can see. In other words, the distinguisher cannot see any correlation
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between the answers of A and the answers of all the other Pj ’s; and cannot see
any correlation between the answers of A and the answers of Pi unless it queries
them on the same value.

Theorem 5. If a ZKS protocol is strongly �-independent then it is strongly (�, ε)-
non-malleable with respect to opening, with respect to the distribution class IDB.
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Abstract. Pass showed a 2-move deniable zero-knowledge argument
scheme for any NP language in the random oracle model at Crypto
2003. However, this scheme is very inefficient because it relies on the cut
and choose paradigm (via straight-line witness extractable technique).
In this paper, we propose a very efficient compiler that transforms any
Σ-protocol to a 2-move deniable zero-knowledge argument scheme in
the random oracle model, which is also a resettable zero-knowledge and
resettably-sound argument of knowledge. Since there is no essential loss
of efficiency in our transform, we can obtain a very efficient undeniable
signature scheme and a very efficient deniable authentication scheme.

Keywords: deniable, efficient, constant-round, resettable zero-knowl-
edge, the random oracle model, resettably-sound argument of knowledge,
Σ-protocol.

1 Introduction

Zero-knowledge interactive proof systems, first proposed by Goldwasser, Micali
and Rackoff [19], have the significant property that they leak no knowledge other
than the validity of the proven assertion. It has been shown in [22] that every NP-
statement can be proved in zero-knowledge if one-way functions exist. Because
of these properties, these proof systems have been found to be very important
tools in many cryptographic applications.

The original definition of zero-knowledge considered the setting in which a
single prover and a verifier execute only one instance of a protocol. However,
in more realistic settings, where many computers are connected through the
Internet and protocols may be concurrently executed, many verifiers may interact
with the same prover simultaneously. Proof systems that are zero-knowledge even
in such a setting are called concurrent zero-knowledge (cZK).

The term “concurrent zero-knowledge” was coined by Dwork, Naor, and Sahai
in [13], and they observed that the zero-knowledge property does not necessarily
carry over to the concurrent setting. Indeed, Goldreich and Krawczyk showed
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in [21] the existence of protocols that are ordinary zero-knowledge and yet fail
dramatically to be zero-knowledge in the concurrent scenario. Moreover, Kilian,
Petrank, and Rackoff showed a negative result in [26] such that any language
that has a 4-move black-box cZK proof argument is in BPP. Canetti, Kilian,
Petrank, and Rosen proved in [7] that black-box cZK proof systems for any
non-trivial language require a non-constant number (Ω̃(log k)) of rounds.

Despite these negative results, many protocols that achieve round efficiency
and adequate security in concurrent settings have been presented under some
additional assumptions. These include cZK under the timing assumption [13], re-
settable zero-knowledges (rZK) in the public-key model [6] and the weak public-
key model [29], cZK in the auxiliary string model [11], universally composable
zero-knowledge in the common reference string (CRS) model [5], etc.

Now even though the notions of cZK in the CRS model and the auxiliary
string model achieve a kind of zero-knowledgeness, they lose some of the spirit
of the original definition. In particular, as is mentioned in [13], these models
are not sufficient to yield the property of deniability. An interactive protocol is
called deniable zero-knowledge if the transcript of its interaction does not leak
any evidence of interaction. For example the simulators in the CRS model and
the auxiliary string model are powerful enough to control their strings, while the
verifiers in these models are never able to control them. As a result, a verifier
interacting with a prover in these models are able to output a transcript that
cannot be generated by the verifier alone. Hence, the verifier’s possession of such
a transcript is an evidence of its interaction with the prover.

The question of whether or not there exists a constant-round deniable cZK
argument under additional assumptions was studied by Pass [34]. He showed
that no black-box constant-round deniable cZK argument for non-trivial lan-
guage exists in the CRS model. It is also shown there that a 2-move constant-
round straight-line witness extractable deniable cZK argument exists for any
NP-language in the random oracle (RO) model. However, this argument sys-
tem is inefficient since it relies on the cut and choose technique. Fischlin also
proposed in [18] a communication efficient straight-line witness extractable zero-
knowledge proof that can be applied to deniable cZK argument. However, this
argument still requires rather large computational complexity.

Besides proving the existence of a certain kind of zero-knowledge protocol
for every language in NP , it is also important for practical applications to con-
struct a compiler which transformsΣ-protocols to certain kind of zero-knowledge
proof systems or arguments. Σ-protocols are 3-move special honest verifier zero-
knowledge protocols with special soundness property. We call such a compiler, a
Σ-compiler. Σ-compilers are useful in practical point of view since many efficient
Σ-protocols for many relations are proposed until now. Σ-compilers for cZK ar-
gument and that for rZK and concurrently sound protocol with small overhead
are proposed by [11] and [37], respectively. The results of Pass [34] and Fischlin
[18] mentioned above are indeed proposal of Σ-compiler for 2-move straight-
line witness extractable deniable zero-knowledge argument in the random oracle
model. However, their Σ-compiler have large overheads.
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Our Contribution
In this paper, we propose a more efficientΣ-compiler for deniable zero-knowledge
argument with very small overhead in the random oracle model. We also prove
that our Σ-compiler simultaneously provides the following properties:

– The resulting protocol is deniable resettable zero-knowledge (rZK).
– The resulting protocol is 2-move (constant-round).
– The computational and communication overhead of compilation is very small.
– The resulting protocol is resettably-sound argument of knowledge (RSAK).

We assume here the existence of an efficient invulnerable generator for some NP
language.

We note that the result of Pass also provides resettable soundness and can,
with slight modification, provide rZK property. (These facts have not been shown
before.) In this sense, the essential improvement in our scheme is with respect
to efficiency.

The overhead of our compiler is computation, verification, and transmission
of Fiat-Shamir transformations of any Σ-protocol, i.e., NIZK-argument. This Σ-
protocol is chosen independently to the proven statement and we choose the most
efficient one within an allowed assumptions. On the other hand, the compiler in
[34] requires the verifier to generate the corresponding NIZK argument by Cut
& Choose method instead of Fiat-Shamir transformation. Thus, its overhead
will be larger than that of ours in the proportion of the security parameter
to one. Fischlin [18] improved efficiency of communication complexity but its
computational overhead is till large.

Although our protocol itself is efficient, it does not provide a straight-line
simulator. It only provides a rather complicated but still polynomially bounded
simulator. This can be compared to cZK protocols under the timing assumption
[13] and rZK protocols in the public-key models [6, 29]. All types of protocols
achieve deniability with efficient non straight-line simulator in different models.
Our protocol is the first that provides an efficient non straight-line simulator in
the random oracle model for what ?

Here, rZK and RSAK [2] are, respectively, stronger notions of cZK and ar-
gument of knowledge. The requirement for rZK is more restricting than that of
cZK in the sense that proof systems or arguments must be cZK even if verifiers
in these protocols are able to reset provers. Meanwhile, protocols which are still
argument of knowledge against provers who can reset verifiers are called RSAK.

The notion of RSAK was proposed by Barak et al. in [2]. As is pointed
out in [6], rZK arguments of knowledge are impossible to achieve for non-
trivial languages as long as the ability of knowledge extractor is limited to
black-box oracle access to the prover. By exchanging the roles of provers and
verifiers, and those of simulators and knowledge extractors, this impossibility
holds for zero-knowledge RSAK. However, the negative result are only with re-
spect to the standard definition and may not hold in the random oracle model
where simulators and knowledge extractors are more powerful than, respectively,
the provers and verifiers in the sense that they are able to control random
oracles.
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Applications
The security of Chaum’s undeniable signature scheme was recently formally
proved in the random oracle model [33], where the confirmation protocol and
the disavowal protocol are both 4-move.

Now by directly applying our Σ-compiler, we can obtain a very efficient 2-
move confirmation protocol and a very efficient 2-move disavowal protocol which
are concurrent deniable zero-knowledge as well. It means that our variant of
Chaum’s undeniable signature scheme is not only more efficient but also secure
even against concurrent attacks.

Further, our protocols are resettably-sound argument of knowledge. Hence,
our protocols remain secure in a setting where parties in protocols are imple-
mented by devices, which cannot reliably keep state (e.g., smart card), being
maliciously reset to prior state. And, the resulting protocols are available in
the setting when it is impossible or too costly to generate fresh randomness on
the fly.

Another application is deniable identification. In Schnorr’s identification
scheme, a cheating verifier (Bob) will compute his challenge as a hashed value
of the first message of the prover (Alice). Then the transcript of the protocol
is an evidence of the fact that Alice executed the protocol with Bob. So the
privacy of Alice is not protected. In this sense, Schnorr’s identification scheme
is not deniable. Now by applying our Σ-compiler, we can obtain a very efficient
2-move deniable identification scheme.

Organization
Our paper is organized as follows. Section 2 describes the basic concepts involved
in constructing the proposed compiler in the random oracle model. Section 3 de-
scribes our approach and then proposes our Σ-compiler for 2-move deniable rZK
that is also RSAK with no essential loss of efficiency in the random oracle model.
Section 4 describes the main idea of the reason why the result of our proposed
compilation is deniable. Section 5 discusses the efficiency of our compiler.

2 Preliminaries

2.1 Notation

For a random oracle RO, RO(x) denotes its output on input x.

Definition 1. A function f(n) is negligible if ∀c > 0 ∃N ∀n > N, f(n) < 1
nc .

Definition 2. Let R ⊂ {0, 1}∗×{0, 1}∗ be a relation. We say that (x,w) satisfies
R if (x,w) ∈ R, where x is called an common input and w is called a witness.
Define LR = {x| ∃w s.t., (x,w) ∈ R}. Also let Rn = R ∩ ({0, 1}n × {0, 1}n).

Definition 3. A generator for a relation R is a deterministic polynomial time
Turing machine GR which outputs (x,w) ∈ Rn on input a random string rG ∈
{0, 1}Q(n), where Q(·) is some polynomial.
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GR is called an invulnerable generator for R if for any polynomial time
nonuniform algorithm A, Pr[(x,A(x)) ∈ R] is negligible in n, where (x,w) ← GR
and the probability is taken over rG.

For example, let R = {((p, g, y = gw mod p), w), where p is a prime, g ∈ Z∗p
has a prime orderq which is close to p and w ∈ Zq. Then GR is an invulner-
able generator for R under the discrete log assumption if it outputs a random
((p, g, y = gw mod p), w) ∈ R.

2.2 Deniable ZK in the Random Oracle Model

We consider the random oracle model, where a prover P and a (malicious) ver-
ifier V ∗ have access to a random oracle O. In the definition of zero-knowledge,
however, a distinguisher D does not have access to O. Hence S has only to gen-
erate a view of V ∗ by providing V ∗ with a fake random oracle O′ which S can
manipulate arbitrarily.

Therefore, V ∗ cannot necessarily generate his view by himself in the real world,
where D has access to O. This means that V ∗ can use the view as an evidence
of the fact that P executed the protocol, and P cannot deny it. Indeed, V ∗ can
show the view as an evidence to the third party who has access to O.

On the other hand, in the definition of deniable zero-knowledge, D has access
to the random oracle O. So S must be able to generate a view of V ∗ which
cannot be distinguished from the real one by D who has access to O. Therefore,
in a deniable zero-knowledge protocol, there is no evidence of the fact that P
executed the protocol because V ∗ can generate his view. Hence P can deny that
fact.

2.3 Concurrent ZK and Resettable ZK

A concurrent zero-knowledge (cZK) protocol is a zero-knowledge proof system
that withstand malicious verifiers who can interact for polynomial times with
the prover in an ”interleaved way” about the same theorem. In a resettable
zero-knowledge (rZK) protocol, a malicious verifier may not only interact for
polynomial times with the prover in an ”interleaved way”, but also enforce that,
in each such interaction, the prover has the same initial configuration (and thus
use the same random tape) [6].

Here, we introduce a deniable variant of rZK in the random oracle model.
Without loss of generality, we assume that each message of the verifier contains
the entire communication history up to that point. Furthermore, we assume that
the prover is memoryless: it responds to each message based solely on the input,
the random input and the received message.

Definition 4. An interactive protocol (P, V ) for a relation R is said to be
(black-box) deniable rZK in the random oracle model if, there exists a proba-
bilistic polynomial time simulator S such that, for every probabilistic polynomial
time adversary V ∗, the following two distribution ensembles are computational
indistinguishable by every probabilistic polynomial time distinguisher who can
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access a random oracle RO: Let each distribution be indexed by a sequence of
common inputs x̄ = (xi)i=1,...,poly(n) and the corresponding sequence of prover’s
auxiliary-inputs w̄ = (wi)i=1,...,poly(n) such that (xi, wi) ∈ Rn for all i.

Distribution 1: This is defined by the following random process which depends
on P and V ∗.
1. Randomly select and fix RO and t = poly(n) random-tapes, {ri}i=1,...,t,

for P , resulting in deterministic strategies P (i,j) = Pxi,wi,rj defined by
Pxi,wi,rj (α) = P (xi, wi, rj , α), for i, j ∈ {1, . . . , t}. Each P (i,j) is called
an incarnation of P . P is allowed to access the random oracle RO.

2. Machine V ∗ is allowed to arbitrarily interact with all the incarnations of
P (i.e., V ∗ sends arbitrary messages to each of the P (i,j) and obtains the
responses of P (i,j) to such messages) and the random oracle RO. Once
V ∗ decides it is done interacting with the P (i,j)’s, it (i.e., V ∗) produces
an output based on its view of these interactions.

Distribution 2: The output of S(x̄). RO is randomly selected and fixed at first.
S has black-box access to the random oracle RO and V ∗∗ and is able to
control a random oracle RO∗. V ∗∗ is the same as V ∗ except that the random
oracle that V ∗∗ accesses is RO∗ rather than RO.

It is important to notice that the simulator is able to control the random oracle,
i.e., choose the outputs of the random oracle, that the verifier accesses but is
unable to control the one that the distinguisher accesses. The latter property is
the key feature of deniability. The former property comes from the fact that the
simulator can black-box access the verifier and is not essential for deniability.
Our simulator leverages this property for simulation while the simulator of Pass
only uses the property that it can catch random oracle queries of the verifier
but does not fully leverage the former property. To leverage this property, our
simulator rewinds the verifier for polynomial times.

Barak et al. defined the notion of RSAK in [2]. Since it is easy to know its
random oracle variant by analogy, we omit to present it here.

2.4 Σ-Protocols and Σ-Compilers

Σ-protocols were introduced by Cramer, Damg̊ard and Schoenmakers in [9].
Informally, a Σ-protocol is a 3-round public-coin special honest verifier zero-
knowledge protocol which satisfies special soundness in the knowledge-extraction
sense. They are widely used in numerous important cryptographic applications
including digital signatures by using the famous Fiat-Shamir methodology [17].

For a relation R, let LR = {x | (x,w) ∈ R}.

Definition 5. A Σ-protocol for relation R, denoted by (AR, CR, ZR, VR), is a
3-round protocol (P, V ) as follows, where P is a prover and V is a verifier. Let
x be a common input and w be the private input to P , where (x,w) ∈ R. Let
rP ∈ {0, 1}n denote the random input of P .

In the first round, P sends a to V , where a is generated by computing a
function AR on input x,w, rP . In the second round, V sends e to P , where e is
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randomly chosen from a set CR. (CR is implicitly indexed by n.) In the third
round, P sends z to V , where z is generated by computing a function ZR on
input x,w, e, rP . Finally, V computes VR(a, e, z) = 1/0, where 1 means accept
and 0 means reject.

We require that the following three conditions are satisfied.

– Completeness. If P and V follow the protocol, V always accepts.
– Special soundness. From any common input x and any pair of accepting

conversations (a, e, z) and (a, e′, z′) with e �= e′, one can efficiently compute
w such that (x,w) ∈ R.

– Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic
polynomial-time Turing machine SR, called a simulator, as follows. For any
x ∈ LR, on input x and a random challenge string e, SR outputs an accepting
conversation (a, e, z) which follows the same probability distribution as the
real conversation between the honest P and V .

A Σ-compiler is a transformation which transforms a Σ-protocol for a relation
R to a zero-knowledge proof system or argument for the same R which satisfies
a certain property.

3 Proposed Σ-Compiler in the Random Oracle Model

3.1 Our Approach

In the model of deniable zero-knowledge protocols, a prover P , a (malicious)
verifier V ∗, and a distinguisher D have access to the same random oracle O as
shown below.

(O ↔ P ) ↔ (V ∗ ↔ O) and D ↔ O. (1)

In this model, P cannot see the queries of V ∗ to O nor control the answers of O.
In the simulation of S, however, the simulator S can provide V ∗ with a fake

random oracle O′ as follows.

O ↔ S ↔ (V ∗ ↔ O′) and D ↔ O. (2)

In the simulated world, S can see the queries of V ∗ to O′ and control the answers
of O′.

In the methods of Pass and Fischlin, S sees the queries of V ∗ to O′, but does
not control the answers of O′. On the other hand, we construct S which both
sees the queries of V ∗ and controls the answers of O′. This is a critical part of
our approach. We use a similar technique for knowledge extractor as well.

3.2 Proposed Compiler

Now we present our Σ-compilers which output 2-move deniable rZK and RSAK
protocols in the random oracle model. respectively. Suppose that there exists a
Σ-protocol for a relation R. Let P and V be a prover and a verifier, respectively,
and let x be a common input and w be the private input to P , where (x,w) ∈ R.
Then our 2-move protocol proceeds as follows.
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1. V chooses a random (x̄, w̄) ∈ R and sends x̄ to P . V then proves that he
knows w̄ non-interactively.

2. P proves that she knows w or w̄ non-interactively.

We use Fiat-Shamir transformation [17] to construct non-interactive arguments,
and use the technique of [9] to construct the P’s message (OR protocol).

Although our protocol is very simple, it has not been known that it is de-
niable zero-knowledge. This is probably because many people believed that the
straight-line extractability of the witness of the verifier is necessary. Our main
contribution is then to proof that the above simple construction is indeed deni-
able zero-knowledge.

We first present Construction 1 which is deniable zero-knowledge only, but
not rZK. We next show Construction 2 which is rZK, where Construction 2 is
obtained by applying a known technique to Construction 1.

Suppose that there exists a Σ-protocol (AR, CR, ZR, SR) for a relation R,
and a Σ-protocol (AR̄, CR̄, ZR̄, SR̄) for a relation R̄ which has an invulnerable
generator GR̄, where R̄ can be the same as R. We assume that CR = CR̄ and

1
|CR| = 1

|CR̄|
is negligible in the security parameter n.

Let x be a common input and w be the private input to P , where (x,w) ∈ R. P
has random tapes rE , rS , rP ∈ {0, 1}n, and V has random tapes rV , rG ∈ {0, 1}n.
They are allowed to have access to a random oracleRO whose output is uniformly
distributed over CR = CR̄.

Construction 1. 1. V sends (x̄, ā, z̄) to P which are generated as follows.
(a) V generates (x̄, w̄) ∈ R̄ by running GR̄ on input rG.
(b) V computes ā = AR(x̄, w̄, rV ).
(c) V queries (x̄, ā) to RO, and RO returns ē to V .
(d) V computes z̄ = ZR(x̄, w̄, ē, rV ).

2. P sends ((a, e, z), (ā′, ē′, z̄′)) to V which are computed as follows.
(a) P computes ē = RO(x̄, ā), and verifies that VR(x̄, ā, ē, z̄) = 1.
(b) P generates a random ē′ ∈ CR̄ by using rE . P then generates a simulated

view (x̄, ā′, ē′, z̄′) by running SR̄ on input (x̄, ē′, rS).
(c) P computes a = AR(x,w, rP ).
(d) P queries (x, a, x̄, ā′) to RO, and RO returns d.
(e) P computes e = d⊕ ē′

(f) P computes z = ZR(x,w, e, rP ).
3. V accepts iff

RO(x, a, x̄, ā′) = e⊕ ē′, VR̄(x̄, ā′, ē′, z̄′) = 1 and VR(x, a, e, z) = 1.

Theorem 1. The above protocol is RSAK for relation R in the random oracle
model.

The proof is given in the full paper [1].

Theorem 2. The above protocol is deniable cZK in the random oracle model.
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The idea of simulation is given in Section 4 and the proof is given in the full
paper [1].

Construction 2. The construction is the same as Construction 1 except the
following changes.

1. P has a pseudorandom function fk : ({0, 1}n)4 → ({0, 1}n)3, where the index
k is randomly chosen by P .

2. P generates its random tapes as (rE , rS , rP ) = f(x, x̄, ā, z̄).

Theorem 3. Construction 2 is rZK as well as RSAK and cZK.

Proof. Construction 1 is admissible and hybrid deniable zero-knowledge, which
implies that Construction 2 is deniable rZK from [6]. See [6] or the full paper [1]
for the definitions of admissible protocols and hybrid deniable zero-knowledge
and the validity of the transformation from Construction 1 to Construction 2.

��

4 Idea of Simulation

This section shows an idea of the proof of Theorem 2. To prove deniable concur-
rent zero-knowledgeness, we need to construct a simulator S for any adversary
V ∗ who creates verifiers V1, V2, · · · , where V1, V2, · · · run our protocol concur-
rently with a single prover P , and all of P, V ∗, S and distinguishersD have access
to the same random oracle O.

In our protocol, V ∗ sends α to P at step 1 and P sends β to V ∗ at step 2,
where α and β are described in Construction 1. We say that C = (ā, ē, z̄) and
C′ = (ā, ē′, z̄′) are a matching pair on x̄ ∈ LR̄ if they are accepting conversations
of the Σ-protocol on input x̄ and ē �= ē′. Then the basic idea is that:

1. S can compute w̄ such that (x̄, w̄) ∈ R̄ if S somehow obtains a matching
pair (C,C′) on x̄. This is due to the special soundness.

2. S can complete the simulation in polynomial time if S uses a fake random
oracle O′. S uses this type of simulation for obtaining (C,C′).

3. P proves that she knows w or w̄. Hence S can simulate, with respect to the
real random oracle O, the role of P if S knows w̄.

For simplicity, suppose that if Vi queries (x̄1, ā1) to O, then Vi always sends some
αi = (x̄1, ā

′, z̄′) to P (and never aborts), where ā′ may not be the same as ā1.
Then S behaves as follows. Fix the random oracle O, and the random tapes of
P and A. Suppose that Vi queries (x̄i, āi) to O at time ti, where t1 < t2 < · · · .

1. S runs V ∗ by using O, and finds that V1 queries (x̄1, ā1) to O at time t1.
2. S repeats the following until S gets a matching pair on x̄1: By using a fake

random oracle O′, S runs V ∗ from t1 until V1 sends some α1 to P .
3. S computes w̄1 from the matching pair. S can, from now on, (as P ) computes

β1 for any α1 (sent by V1) which includes x̄1 because she has w̄1.
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4. S runs V ∗ by using O from the beginning, and finds that V2 queries (x̄2, ā2)
to O at time t2.

5. S repeats the following until S gets a matching pair on x̄2: By using a fake
random oracle O′, S runs V ∗ from t2 until V2 sends some α2 to P .

6. S computes w̄2 from the matching pair. S can now (as P ) computes β2 for
any α2 (sent by V1) which includes x̄2 because she has w̄2,

7. and so on.

If S succeeds in the above simulation, then S can output a transcript which
is the same as the original one. In particular, all the participants use the same
random oracle O. Hence our protocol is deniable cZK.

In the general case where some Vi may abort without outputting z̄, the sim-
ulation gets to be much complicated. In this case, S repeats simulation with
chosen output values of random oracles for many times to obtains two z̄ for
each (x̄, ā) but gives up if its number of repetitions exceeds a certain number
of times (2n2Q(n)). Such a multiple trial is required since there may be (with
some probability) a case when some Vi aborts without outputting z̄ when S is
simulating with chosen output values of random oracles but outputs z̄ when S
is simulating with the output values of real random oracle. The number of times
the S tries to obtain z̄ is 2n2Q(n). Here, Q(n) is the running time of P ∗.

It turns out that such a simulation can be successful with the probability
larger than 1/2. Hence, repeating it for polynomial times enable the successful
simulation with overwhelming probability. The number of time S repeats this
simulation is n. The total running time of the simulator is n3Q(n)2.

The above simulator is not black-box simulator since it needs to know the run-
ning time of verifier. However, it is easy to construct a black-box simulator from
the proposed simulator. The black-box simulator executes the proposed simula-
tor repeatedly until it complete simulation, by, in each execution, it increase the
order of time that it assumes as the running time of verifier.

5 Efficiency

Our protocol (which is illustrated at the beginning of Sec.3) is almost as effi-
cient as the underlying Σ-protocol because Fiat-Shamir transformation and OR-
protocol have very small overhead. Moreover, efficient Σ-protocols are known for
many useful relations. Hence our construction will find a lot of applications.

On the other hand, the compiler of Pass [34] requires a Cut & Choose method
which is very inefficient. Indeed, its overhead is proportion to the security para-
meter n while ours is only a small constant. Fischlin [18] proposed a straight-line
witness extractable proof that has smaller communication complexity than the
method of Pass. However, its overhead still depends on the security parameter
n. Hence, its communication/computation complexity is still larger than that of
ours.

As an example, let us consider the case when our compiler is applied to
Schnorr’s identification protocol illustrated in the following.
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Let p, q be primes such that q|p − 1 and g be a generator of the order q
subgroup of (Z/pZ)∗. The secret key for the prover P is w ∈R Z/qZ and the
public key is x = gw mod p. Let V denote the verifier.

1. P chooses r ∈ Z/qZ randomly and sends a = gr mod p to V .
2. V sends a random c ∈ Z/qZ to P .
3. P sends z = r + cw mod q to V .
4. V accepts iff gz = axc mod p.

The communication cost and computational cost are roughly 1/50 and 1/32,
respectively, of those of Pass’ scheme and are roughly 1/3 and 1/36 1, respec-
tively, of those of Fischlin’s scheme.
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Abstract. The concept of universal designated verifier signatures was
introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003.
We propose two new efficient constructions for pairing-based short sig-
natures. The first scheme is based on Boneh-Boyen signatures and, its
security can be analyzed in the standard security model. We reduce its
resistance to forgery to the hardness of the strong Diffie-Hellman prob-
lem, under the knowledge-of-exponent assumption. The second scheme
is compatible with the Boneh-Lynn-Shacham signatures and is proven
unforgeable, in the random oracle model, under the assumption that
the computational bilinear Diffie-Hellman problem is untractable. Both
schemes are designed for devices with constrained computation capabil-
ities since the signing and the designation procedure are pairing-free.

1 Introduction

Recently many universal designated verifier signature protocols have been pro-
posed (e.g. [13, 17, 18]). The present paper focuses on the proposal of two new
efficient constructions for pairing-based short signatures [3, 5]. The resistance to
forgery of the first scheme relies on the hardness of the strong Diffie-Hellman
problem, under the knowledge-of-exponent assumption, in the standard security
model, and the one of the second scheme relies, in the random oracle model, on
the hardness of a new computational problem (not easier than the widely used
computational bilinear Diffie-Hellman problem).

Related Work. The concept of designated verifier signatures (DVS, for short)
was introduced by Jakobsson, Sako and Impagliazzo in 1996 [10]. These signa-
tures are intended to a specific and unique designated verifier, who is the only
one able to check their validity. Motivated by privacy issues associated with
dissemination of signed digital certificates, Steinfeld, Bull, Wang and Pieprzyk
[17] defined, in 2003, a new kind of signatures called universal designated-verifier
signatures (UDVS, for short). This primitive can function as a standard publicly-
verifiable digital signature scheme but has an additional functionality which al-
lows any holder of a signature to designate the signature to any verifier. Again,
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the designated-verifier can check that the message was signed by the signer,
but is unable to convince anyone else of this fact. Steinfeld et al. proposed an
efficient UDVS scheme constructed using any bilinear group-pair and Laguil-
laumie and the author suggested in [13] a variant which significantly improves
this protocol. Both schemes are compatible with the key-generation, signing and
verifying algorithms of the Boneh-Lynn-Shacham [5] signature scheme (BLS).
In [3], Boneh and Boyen proposed efficient pairing-based short signatures (BB)
whose security can be analyzed in the standard security model. A UDVS scheme
compatible with a variant of Boneh and Boyen’s scheme has been proposed by
Zhang, Furukawa and Imai [18].

Contributions of the Paper. The main contribution of the paper is to pro-
vide a new efficient UDVS protocol compatible with the original Boneh-Boyen
scheme. The idea underlying our design relies on the homomorphic properties
of BB signatures. The new scheme, called UDVS-BB, is unforgeable in the stan-
dard security model assuming the hardness of the strong Diffie-Hellman prob-
lem [3], under the knowledge-of-exponent assumption (KEA) [1, 7]. The proto-
col proposed by Zhang et al. is proven unforgeable assuming the hardness of
the same algorithmic problem, but under a stronger assumption. The compu-
tational workload of UDVS-BB amounts to three exponentiations over bilinear
groups for designating a signature and four pairing evaluations to verify it, and
moreover, the size of the signatures is much smaller than the one of Zhang et
al.’s signatures.

Using the same design principle, we found a new UDVS protocol compatible
with the BLS signatures which is well-suited for devices with constrained compu-
tation capabilities and low bandwidth. Indeed the designation procedure of the
signatures is pairing-free and the resulting size is comparable to the length of
DSA signatures. The security analysis for this scheme, called UDVS-BLS, takes
place in the random oracle model [2]: we show that this scheme is unforgeable
with respect to a new computational assumption weaker than the widely used
computational bilinear Diffie-Hellman assumption.

2 Definitions

2.1 Notations

The set of n-bit strings is denoted by {0, 1}n and the set of all finite binary
strings is denoted by {0, 1}∗. Let A be a probabilistic Turing machine running
in polynomial time (a PPTM, for short), and let x be an input for A. The
probability space that assigns to a string σ the probability that A, on input x,
outputs σ is denoted by A(x). The support of A(x) is denoted by A[x].

Given a probability space S, a PPTM that samples a random element accord-
ing to S is denoted by x R←− S. For a finite set X , x R←− X denotes a PPTM that
samples a random element uniformly at random from X .
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2.2 Universal Designated Verifier Signatures

In this subsection, we recall the definition of UDVS schemes [12, 17].

Definition 1. A universal designated verifier signature scheme Σ is an 8-tuple
Σ = (Setup, SKeyGen,VKeyGen, Sign,Verify,Designate,Fake,DVerify) such that

– (Setup, SKeyGen, Sign,Verify) is a signature scheme:
• Σ.Setup is a PPTM which takes an integer 1k as input. The output

are the public parameters cp which contain a description DM of a set
M ⊆ {0, 1}∗ called the message space. k is called the security parameter
and an element of M is called a message.

• Σ.SKeyGen is a PPTM which takes the public parameters as input. The
output is a pair (sks, pks) where sks is called a signing secret key and pks
a signing public key.

• Σ.Sign is a PPTM which takes the public parameters, a message, and a
signing secret key as inputs and outputs a bit string.

• Σ.Verify is a PPTM which takes the public parameters, a message m,
a bit string σ and a signing public key pks. It outputs a bit. If the bit
output is 1 then the bit string σ is said to be a signature on m for pks.

– Σ.VKeyGen is a PPTM which takes the public parameters as input. The
output is a pair (skv, pkv) where skv is called a verifying secret key and pkv
a verifying public key.

– Σ.Designate is a PPTM which takes the public parameters, a message m, a
signing public key pks, a signature σ on m for pks and a verifying public key
as inputs and outputs a bit string.

– Σ.Fake is a PPTM which takes the public parameters, a message, a signing
public key and a verifying secret key as inputs and outputs a bit string.

– Σ.DVerify is a deterministic PTM which takes the public parameters, a mes-
sage m, a bit string τ , a signing public key pks, a verifying public key pkv
the matching verifying secret key skv as inputs. It outputs a bit. If the bit
output is 1 then the bit string τ is said to be a designated verifier signature
on m from pks to pkv.

Σ must satisfies the following properties, for all k ∈ N\{0}, all cp ∈ Σ.Setup[1k],
all (pks, sks) ∈ Σ.SKeyGen[cp], all (pkv, skv) ∈ Σ.VKeyGen[cp] and all mes-
sages m:

– Correctness of Signature:

∀σ ∈ Σ.Sign[cp,m, sks], Σ.Verify[cp,m, σ, pks] = {1}.

– Correctness of Designation:

∀σ ∈ Σ.Sign[cp,m, sks], ∀τ ∈ Σ.Designate[cp,m, pks, σ, pkv],
Σ.DVerify[cp,m, τ, pks, pkv, skv] = {1}.

– Source Hiding:

Σ.Designate(cp,m, pks, Σ.Sign(cp,m, sks), pkv]) = Σ.Fake(cp,m, pks, skv).
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The correctness properties insure that a properly formed (designated verifier)
signature is always accepted by the (designated) verifying algorithm. The source
hiding property states that given a message m, a signing public key pks, a ver-
ifying public key pkv and a DVS τ on m from pks to pkv it is unconditionally
infeasible to determine if τ was produced by Σ.Designate or Σ.Fake.

For digital signatures, the de facto standard notion of security was defined in
[9], as unforgeability against chosen message attacks (EF-CMA). UDVS scheme
must satisfy a similar property which was formally defined in [12, 13, 17]:

Unforgeability (UDVS-EF-CMA): given a signing public key pks and a verifying
public key pkv, it should be computationally infeasible for an adversary which
engages in polynomially many runs of the protocol with the signer, interleaved
at its own choosing, to produce a DVS from pks to pkv on a new message.

This definition does not capture that the adversary cannot generate a new
signature on a previously signed message (the so-called strong unforgeability).

2.3 Bilinear Maps and Computational Assumptions

The security of asymmetric cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. Bilinear maps such as Weil or Tate
pairing on elliptic curves and hyperelliptic curves have found various applica-
tions in cryptography (e.g. [4, 3, 5]). In the following, we briefly review the basic
definitions about bilinear maps and in order to highlight that our schemes apply
to any secure instanciation of BLS and BB signatures, we do not pin down any
particular generator, but instead parameterize definitions and security results
by a choice of generator.

Definition 2. A prime-order-BDH-parameter-generator is a PPTM that takes
as input k ∈ N \ {0} and outputs a tuple (q,G1,G2,G3, 〈·, ·〉, ψ) satisfying the
following conditions:

1. q is a prime with 2k−1 < q < 2k;
2. (G1,+), (G2,+) and (G3,×) are groups of order q;
3. ψ : G2 −→ G1 is an isomorphism s.t. there exists a PPTM to compute ψ;
4. 〈·, ·〉 : G1 × G2 −→ G3 satisfies the following properties:

(a) 〈[a]Q, [b]R〉 = 〈Q,R〉ab for all (Q,R) ∈ G1 × G2 and all (a, b) ∈ Z2;
(b) 〈·, ·〉 is non degenerate ( i.e. 〈ψ(P ), P 〉 �= 1G3 for some P ∈ G2);
(c) there exists a PPTM to compute 〈·, ·〉.

Notations: In the following, we denote by EG (resp. T) the time complexity
for evaluating exponentiation in a group G (resp. a pairing) and by �i(k) the
bit-length of the representation of elements of a group Gi of k-bit order q.

Let (q,G1,G2,G3, 〈·, ·〉, ψ) be as above, P2 ∈ G2 and let P1 = ψ(P2). In mar-
gin to the classical Diffie-Hellman problems in the groups G1, G2 and G3, the
introduction of bilinear maps in cryptography gives rise to new algorithmic prob-
lems. The unforgeability of UDVS-BLS is based on a new algorithmic problem,
that we call the strong computational bilinear Diffie-Hellman problem:
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Strong Computational Bilinear Diffie-Hellman (SCBDH): let (x, y, z) ∈ N3. Given
([x]P2, [y]P2, [z]P1), compute (Q,R) ∈ G1 × G2 such that 〈Q,R〉 = 〈P1, P2〉xyz.

This problem is not easier than the computational bilinear Diffie Hellman
problem which has already been widely used (e.g. [4, 13, 17]). In particular, the
unforgeability of UDVS-BLS reduces to a weaker assumption than all UDVS
schemes compatible with BLS proposed up to now [13, 17].

To analyze the security of their signatures, Boneh and Boyen [3] introduced
a new computational problem, on which relies also the unforgeability of our
scheme UDVS-BB:

�-Computational Strong Diffie-Hellman (�-CSDH): let x ∈ N. Given � ∈ N and
([x]P2, . . . , [x�]P2) ∈ G�2, compute a pair

(
[(x+ h)−1]P1, h

)
in G1 × [[1, q − 1]].

3 Description of the New Schemes

In this section, we describe our new UDVS schemes. We give in details the ideas
underlying their design, since we are convinced that they may be of independent
interest. The general principle is based on an elegant technique proposed by
Damg̊ard [7] and aimed at making public-key encryption scheme secure against
chosen ciphertext attacks.

3.1 Damg̊ard’s Encryption Scheme and KEA

Let (G,+) be a group of prime order q, let k be the bit size of the represen-
tation of elements of G and let P be a generator of G. In 1991, Damg̊ard [7]
presented a simple variant of the El Gamal encryption scheme in G. In his
proposal, Alice publishes two public keys A1 = [a1]P and A2 = [a2]P and
keeps secret their discrete logarithms a1 and a2. When Bob wants to privately
send a message m ∈ {0, 1}k to Alice, he picks uniformly at random an integer
r ∈ [[1, q − 1]] and transmits the triple (Q1, Q2, C) where Q1 = [r]P , Q2 = [r]A1
and C = m⊕ ([r]A2). When she receives the ciphertext (Q1, Q2, C), Alice checks
whether the equalityQ2 = [a1]Q1 holds: if it is the case, she retrieves the message
m, as m = C ⊕ ([a2]Q1), otherwise she rejects the ciphertext. Damg̊ard proved
that if the decisional Diffie-Hellman problem is hard in G, then this scheme is se-
mantically secure against (non-adaptive) chosen ciphertext attacks, if we assume
the knowledge-of-exponent assumption [1].

Intuitively this assumption states that, without the knowledge of a1, the only
way to generate couples (Q1, Q2) ∈ G2, verifying Q2 = [a1]Q1, is to choose an
integer r ∈ [[1, q−1]] and to compute Q1 = [r]P and Q2 = [r]A1. There are many
ways in which the formulation of KEA can be varied to capture this intuition that
the only way to generate a Diffie-Hellman triple is to know the corresponding
exponent. Usually, this is done by saying that for any PPTM outputting such a
triple, there is an ”extractor” than can return this exponent.

In the following definition, we propose a new variant of KEA in the bilinear
setting (which reduces to the classical KEA, when Gen is a so-called symmet-
ric prime-order-BDH-parameter-generator). For our purposes, it is necessary to



New Extensions of Pairing-Based Signatures into UDVS 63

allow the adversary to be randomized (in that case, it is important that the
extractor gets the coins of the adversary as an additional input, since otherwise
the assumption is clearly false).

Definition 3. Let Gen be a prime-order-BDH-parameter-generator and let A
and A be two PPTM’s. We consider the following random experiments, where
k ∈ N \ {0} is a security parameter:

Experiment Expkea
Gen,A,A(k)

(q, G1, G2, G3, 〈·, ·〉, ψ)
R←− Gen(k) ; x

R←− [[1, q − 1]] ; P2
R←− G2 \ {OG2}

(R,S) ← A((q,G1, G2, G3, 〈·, ·〉, ψ), P2, [x]P2; �)

r ← A((q, G1, G2, G3, 〈·, ·〉, ψ), P2, [x]P2, �; �)
Return 1 if (R, S) ∈ G2

1, S = [x]R and R �= [r]ψ(P2), 0 otherwise

Let ε ∈ [0, 1]N. We define the advantage of A relative to A via

Advkea
Gen,A,A(k) = Pr

[
Expkea

Gen,A,A(k) = 1
]
.

1. A is a ε-kea-extractor for A if for all k ∈ N \ {0}, Advkea
Gen,A,A(k) ≤ ε(k)

2. We say that the knowledge-of-exponent assumption holds for Gen if for every
PPTM A, there exists a PPTM A and a negligible1 function ε such that A
is a ε-KEA-extractor for A.

3.2 Description of the Protocol UDVS-BB

Boneh-Boyen’s Signatures. In 2004, Boneh and Boyen [3] proposed a new appli-
cation of bilinear structures to construct efficient short signatures. Their idea is
to plug the message to be signed in the exponent and, in order to avoid trivial
“homomorphic” forgeries, to do so in a non-linear way.

Let Gen be a prime-order-BDH-parameter-generator. Let k ∈ N \ {0}, let
(q,G1,G2,G3, 〈·, ·〉, ψ) be some output of Gen(1k) and let P2 ∈ G2 \ {OG2} and
P1 = ψ(P2). Alice’s signing secret/public keys are pairs (ua, va) ∈ [[1, q−1]]2 and
(Ua, Va) = ([ua]P2, [va]P2) ∈ G2

2 (respectively) and the signatures on a message
m ∈ [[1, q − 1]] for these keys are pairs (r, [(u+m+ rv)−1]P1) in [[1, q − 1]]× G1.

The unforgeability of the scheme BB reduces to the �-CSDH problem in the
standard security model.

The Scheme UDVS-BB. The principle underlying the UDVS scheme UDVS-BB
is based on Damg̊ard’s idea. Let us suppose that Bob has published a public key
Ub = [ub]P2 and that the pair σ = (r, S) in [[1, q − 1]] × G1 is a BB signature
produced by Alice, on a message m. If Cindy wants to designate σ to Bob,
she picks uniformly at random an integer t ∈ [[1, q − 1]] and sets Q1 = [t]S,
Q2 = [t]ψ(Ub) and Q3 = [t]P1. The quadruple τ = (r,Q1, Q2, Q3) is the resulting
DVS on m. The protocol UDVS-BB is described with all the details in figure 1.

The following simple observations are intuitive arguments in favor of the se-
curity of the protocol.
1 i.e. ∀c ≥ 0, ∃Kc ∈ N, ∀k ∈ [[Kc, +∞[[, ε(k) ≤ k−c.
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1. Under KEA, the equality 〈Q3, Ub〉 = 〈Q2, P2〉 [1] insures Bob that Cindy
knows the value t such that Q2 = [t]ψ(Ub) and Q3 = [t]P1.

2. If [1] is satisfied, Bob is convinced that Cindy knows the group element
S = [t−1]Q1. The BB verification equality 〈S,Ua+[m]P2 +[r]Va〉 = 〈P1, P2〉,
holds if and only if the equality 〈Q1, Ua+[m]P2 +[r]Va〉 = 〈Q3, P2〉 [2] does.
Therefore, if the equalities [1] and [2] are true, the quadruple τ proves to
Bob that Alice has actually signed the message m.

3. However, this quadruple cannot convince anyone else, since it could have
been produced by Bob himself. Indeed, if Bob samples uniformly at ran-
dom (r, t̃) in [[1, q − 1]]2 and computes the group elements: Q1 = [t̃]P1,
Q3 = [t̃]ψ(Ua) + [t̃ · m]P1 + [t̃ · r]ψ(Va) and Q2 = [ub]Q3, he produces
quadruples which verify [1] and [2] and follow the same distribution as those
produced by Cindy (namely with t ≡q t̃(a1 +m+ a2r)).

Algorithm UDVS-BB.Setup
Input: k ∈ N
Output: cp

(q,G1, G2, G3, 〈·, ·〉, ψ)
R←− Gen(k)

P2
R←− G2 \ {OG2}

P1 ← ψ(P2), g = 〈P1, P2〉
DM ← “ [[1, q − 1]] ”
cp = ((q, G1, G2, G3, 〈·, ·〉, ψ), P1, P2, g,DM)

Algorithm UDVS-BB.Sign
Input: cp, m, sk = (u, v)
Output: σ = (r, S)

r
R←− [[1, q − 1]]

S ← [(u + m + vr)−1]P1

Algorithm UDVS-BB.VKeyGen
Input: cp
Output: (sk, pk)

u
R←− [[1, q − 1]]

sk ← u, pk ← [u]P2

Algorithm UDVS-BB.Fake
Input: cp, m, skv = ub, pks = (Ua, Va)
Output: τ = (r,Q1, Q2, Q3)

(r, t)
R←− [[1, q − 1]]2

R ← [t]ψ(Ua) + [t · m]P1 + [t · r]ψ(Va)
Q1 ← [t]P1, Q2 ← [ub]R, Q3 ← R

Algorithm UDVS-BB.SKeyGen
Input: cp
Output: (sk, pk)

(u, v)
R←− [[1, q − 1]]2

sk ← (u, v); pk ← ([u]P2, [v]P2)

Algorithm UDVS-BB.Verify
Input: cp, m, σ = (r, S), pk = (U,V )
Output: b ∈ {1, 0}
s ← 〈S, U + [m]P2 + [r]V 〉
If s = g then b ← 1 else b ← 0

Algorithm UDVS-BB.Designate
Input: cp, m, pks = (Ua, Va), pkv = Ub,

σ = (r, S)
Output: τ = (r, Q1, Q2, Q3)

t
R←− [[1, q − 1]]

Q1 ← [t]S, Q2 ← [t]ψ(Ub), Q3 ← [t]P1

Algorithm UDVS-BB.DVerify
Input: cp, m, skv = ub, pks = (Ua, Va),

τ = (r, Q1, Q2, Q3)
Output: b ∈ {1, 0}
α1 ← 〈Q1, Ua + [m]P2 + [r]Va〉
α2 ← 〈Q3, P2〉
β1 ← 〈Q3, [ub]P2〉, β2 ← 〈Q2, P2〉
If α1 = α2 and β1 = β2 then b ← 1

else b ← 0

Fig. 1. Description of the protocol UDVS-BB(Gen)
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Remark 1. Given a UDVS produced by UDVS-BB, it is easy, by random scalar
multiplication, to produce a new signature on the same message for the same
public keys. It is admitted that weak forgery is no real threat whatsoever.

Remark 2. The computational workload of UDVS-BB.DVerify for the designated
verifier can be reduced to only two pairing evaluations and one exponentiation
thanks to the knowledge of ub by checking that Q2 = [ub]Q3 instead of β1 = β2.

3.3 Description of the Protocol UDVS-BLS

Boneh-Lynn-Shacham’s Signatures. In [5], Boneh et al. presented the signature
scheme BLS that works in any bilinear cryptographic context. The scheme can be
seen as a variant of the FDH signature scheme [2]. The protocol BLS is efficient,
produces short signatures (for carefully chosen parameters), and is reducible in
the random oracle model to the co-CDH problem [5].

The Scheme UDVS-BLS. Let Gen be a prime-order-BDH-parameter-generator.
Let k ∈ N \ {0}, let (q,G1,G2,G3, 〈·, ·〉, ψ) be some output of Gen(1k) and let

Algorithm UDVS-BLS.Setup
Input: k ∈ N
Output: cp

(q,G1, G2, G3, 〈·, ·〉, ψ)
R←− Gen(k)

P2
R←− G2 \ {OG2}

DM ← “ {0, 1}∗ ”

H R←− (G1)
{0,1}∗

cp ← ((q, G1, G2, G3, 〈·, ·〉, ψ), P2, DM, H)

Algorithm UDVS-BLS.Verify
Input: cp, m, pk = U , σ = S
Output: b ∈ {1, 0}
H ← H(m)
s ← 〈H,U〉
If s = 〈S, P2〉 then b ← 1 else b ← 0

Algorithm UDVS-BLS.Fake
Input: cp, m, skv = ub, pks = Ua

Output: τ = (Q1, Q2)

t
R←− [[1, q − 1]]

Q1 ← [t−1]H(m)
Q2 ← [t · ub]Ua

Algorithms UDVS-BLS.SKeyGen
UDVS-BLS.VKeyGen

Input: cp
Output: (sk, pk)

sk = u
R←− [[1, q − 1]]

pk ← [u]P2

Algorithm UDVS-BLS.Sign
Input: cp, m ∈ {0, 1}∗, sk = u
Output: σ = S

H ← H(m), S ← [u]H

Algorithm UDVS-BLS.Designate
Input: cp, m, pkv = Ub, σ = S
Output: τ = (Q1, Q2)

t
R←− [[1, q − 1]]

Q1 ← [t]S Q2 ← [t−1]Ub

Algorithm UDVS-BLS.DVerify
Input: cp, m, skv = ub, pks = Ua,

τ = (Q1, Q2)
Output: b ∈ {0, 1}
H ← H(m)
s ← 〈[ub]H,Ua〉
If s = 〈Q1, Q2〉 then b ← 1 else b ← 0

Fig. 2. Description of the protocol UDVS-BLS(Gen)
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P2 ∈ G2 \ {OG2}. Let Ua = [ua]P2 (resp. Ub = [ub]P2) be Alice’s (resp. Bob’s)
public key. Alice’s signatures are elements S = [ua]H ∈ G1, where the group
element H is the hash value of the signed message m. The discrete logarithm
of H is unknown to all users, therefore, whence the signature S is randomized
as above: Q1 = [t]S for some t ∈ [[1, q − 1]], it suffices to reveal the element
Q2 = [t−1]Ub to prove, in a non-transferable way, to Bob that Alice actually
signed the message m. The quadruple (Ua, Ub, H, 〈Q1, Q2〉) is indeed a bilinear
Diffie-Hellman quadruple which could have been produced by using secret in-
formation from Alice or Bob, but not otherwise under the assumption that the
SCBDH problem is intractable. The protocol UDVS-BLS is described with all
the details in figure 2.

4 Security Results

In this section, we state that our schemes resist existential forgeries. The proofs
are more or less routine and, due to lack of space, they are only sketched.

4.1 Unforgeability of the Scheme UDVS-BB

The following lemma state that, under KEA, the scheme UDVS-BB(Gen) is
UDVS-EF-CMA-secure if and only if the scheme BB(Gen) is EF-CMA-secure.

Lemma 1. Let Gen be a prime-order-BDH-parameter-generator and let A be
a polynomial time UDVS-EF-CMA-adversary against UDVS-BB(Gen). Assuming
KEA, there exist a polynomial time EF-CMA-adversary B against BB(Gen) such
that the difference ∣∣∣Succefcma

BB(Gen),B − SuccUDVS-EF-CMA
UDVS-BB(Gen),A

∣∣∣
is a negligible function of the security parameter.

Proof. The algorithm B takes as inputs public parameters cp and a signing public
key pks. It computes a verifying pair of keys (ub, Ub) by running the algorithm
UDVS-BB.VKeyGen(cp) and then executes A on inputs cp, pks and Ub. It simply
forwards the A’s signature queries to its own signing oracle and the simulation of
the verifying oracle is trivial since the protocol UDVS-BB is publicly verifiable.

Let us denote C the algorithm whose execution is identical to the one of A,
except that it returns the couple (Q3, Q2), when A returns the quadruple τ� =
(r,Q1, Q2, Q3). If τ� is a valid forgery then the quadruple (P2, Ub, Q3, Q2) is
a valid Diffie-Hellman quadruple. Under KEA, there exists a PPTM C which,
given as inputs C’s random tape and C’s inputs (i.e. cp, pks and Ub), outputs
t ∈ [[1, q− 1]] such that Q3 = [t]P1 and Q2 = [t]ψ(Ub) with probability negligibly
close to SuccUDVS-EF-CMA

UDVS-BB(Gen),A.
B runs the algorithm C to get this value t ∈ [[1, q − 1]] and outputs the

pair σ� = (r, [t−1]Q1) which is valid forgery for the signature scheme BB if
τ� is a valid forgery and Q3 = [t]P2. B is therefore an EF-CMA-polynomial
time adversary whose success probability against BB(Gen) is negligible close to
SuccUDVS-EF-CMA

UDVS-BB(Gen),A. ��
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Combining this lemma with the unforgeability result of [3] we get:

Theorem 1. Let Gen be a prime-order-BDH-parameter-generator and let A be a
polynomial time UDVS-EF-CMA-adversary against UDVS-BB(Gen). Under KEA,
there exist a polynomial time CSDH-adversary B against Gen such that∣∣∣Succcsdh

Gen,B − SuccUDVS-EF-CMA
UDVS-BB(Gen),A

∣∣∣
is a negligible function of the security parameter. ��
Remark 3. Since KEA is a somewhat strange and impractical assumption, it
would be better if we could do without it, as it has been recently done by
Gjøsteen [8] for Damg̊ard’s encryption scheme. In [16], we reduce (without using
any non-black-box assumption, such as KEA) the unforgeability of UDVS-BB to
a well-defined (though ad hoc) computational problem:

Problem P(�): let (x, y) ∈ N2. Given � ∈ N, ([x]P2, [x2]P2, . . . , [x�]P2) ∈ G�2 and
([y]P2, [(xy)]P2, . . . , [(x�y)]P2) ∈ G�+1

2 , compute a quadruple (R1, R2, R3, h) in
G3

1 × [[1, q − 1]] such that [(x+ h)]R2 = R1 and R3 = [y]R1lem.

4.2 Unforgeability of the Scheme UDVS-BLS

The theorem below states that UDVS-BLS(Gen) is UDVS-EF-CMA-secure in the
random oracle model assuming the intractability of the SCBDH problem in Gen.
It is worth noting that this security result does not depend on KEA.

Theorem 2. Let Gen be a prime-order-BDH-parameter-generator and let A be a
(τ, qS , qV )-UDVS-EF-CMA-adversary against UDVS-BLS(Gen) in the qH-random
oracle model. There exist a τ ′-SCBDH-adversary B against Gen such that{

τ ′ = τ + (qH + 2qS)(EG1 +O(1)) + qV (EG3 +O(1))
SuccSCBDH

Gen,B ≥ SuccUDVS-EF-CMA
UDVS-BLS(Gen),A/qS(qV + 1).

Proof (Sketch). Thanks to the random oracle model assumption, the proof is
completely similar to the proof of security of the schemes proposed in [12, 17].
Our exact security reduction relies on two clever techniques from [6, 15]:

– Following a well-known technique due to Coron [6], a random coin decides
whether B introduces the challenge in the answer to the random oracle or
an element with a known preimage. This introduce the (small) loss factor qS
in the success probability.

– Using an approach due to Ogata, Kurosawa and Heng [15], introduced to
analyze the security of Chaum’s undeniable signatures, we do not need a
decisional oracle to simulate the verification queries. The idea is that, un-
less UDVS-BLS is not unforgeable, all verification queries necessarily involve
DVSs that were obtained from signing oracles (and can be readily checked)
or that are invalid. B’s strategy is to guess which verification query involves
a forged signature and reject signatures involved in all other queries. This is
done at the expense of losing the factor qV in B’s probability of success.

Due to space constraints, details are left to the reader. ��
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5 Efficiency Issues and Additional Properties

In the table 1, we compare the performance of all pairing-based UDVSs proposed
up to now. For concreteness, we assume that all schemes are instantiated with
the Tate pairing on a supersingular elliptic curve of MOV degree 6 on a ground
base field of size 171 bits and that computing this bilinear map is 10 times more
expensive than computing a scalar multiplication on the curve (whose compu-
tation time is arbitrarily set to 1). The new schemes compare very favorably in
performance with respect to systems proposed so far and they can be used over
a low bandwidth channel (UDVSs are longer than those produced by DVSBMH
[13], but this scheme is not well-suited for devices with constrained computation
capabilities since the designation procedure is much more costly).

Table 1. Efficiency comparison of pairing-based UDVSs

Protocol DVSBM DVSBMH UDVS-BLS ZFI UDVS-BB
[17] [13] § 3.3 [18] § 3.2

Signatures BLS Variant of BB BB
Model Random Oracle Model Standard Model

Sign 1 EG1 1 EG1 1 EG1

Verify 2 P 1 P + 2 EG2 1 P + 2 EG2

Designate 1 P 1 P 1 EG1 + 1 EG2 1 P + 2 EG2 1 EG1 + 2 EG2

(in practice) 10 10 2 12 3
DVerify 1 P 1 P 2 P + 1 EG1 2 P + 2 EG2 2 P + 3 EG2

(in practice) 10 10 31 22 23

Size �3(k) k �1(k) + �2(k) �1(k) + �2(k) + �3(k) 2�1(k) + �2(k)
(in bits) 1024 80 342 1366 513

Finally, it is worth mentioning that our schemes have additional properties,
for instance:

– UDVS-BB can be extended to give the first efficient construction of universal
multi-DVS [12, 14] in the standard security model. The multi-user scheme
inherits the efficiency properties of UDVS-BB with the same DVS size (which,
in particular, does not grow with the number of verifiers).

– In some cases [10, 13] it may be desirable that UDVSs provide a stronger
notion of privacy: the privacy of signer’s identity [13]. The scheme UDVS-BLS
provides this security requirement assuming the hardness of the so-called
xyz-decisional co-Diffie Hellman problem [11].

Details and additional extensions will be given in [16].
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Abstract. We analyze group key distribution protocols for broadcast
and multicast scenarios that make blackbox use of symmetric encryp-
tion and a pseudorandom generator (PRG) in deriving the group center’s
messages. We first show that for a large class of such protocols, in which
each transmitted ciphertext is of the form EK1(K2) (E being the encryp-
tion operation; K1, K2 being random or pseudorandom keys), security
in the presence of a single malicious receiver is equivalent to that in the
presence of collusions of corrupt receivers. On the flip side, we find that
for protocols that nest the encrytion function (use ciphertexts created
by enciphering ciphertexts themselves), such an equivalence fails to hold:
there exist protocols that use nested encryption, are secure against single
miscreants but are insecure against collusions.

Our equivalence and separation results are first proven in a symbolic,
Dolev-Yao style adversarial model and subsequently translated into the
computational model using a general theorem that establishes sound-
ness of the symbolic security notions. Both equivalence and separation
are shown to hold in the computational world under mild syntactic con-
ditions (like the absence of encryption cycles).

We apply our results to the security analysis of 11 existing key distri-
bution protocols. As part of our analysis, we uncover security weaknesses
in 7 of these protocols, and provide simple fixes that result in provably
secure protocols.

Keywords: Broadcast Encryption, Multicast Encryption, Group Key
Distribution, Collusion-resistance.

1 Introduction

Private communication in dynamic groups is a cryptographic task of significant
practical import. The problem, in a nutshell, is to enable an information provider
to broadcast data to a large, dynamic set of “priveleged” receivers, while ensuring
that at every instant, receivers outside this set are unable to procure the data.
Two different models have been used in the literature to study this problem—
one, known as broadcast encryption [8], assumes that all receivers are stateless
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and so, individual broadcasts are decipherable independently of other transmis-
sions; and the other, usually referred to as multicast encryption or multicast key
distribution [18], allows receivers to maintain state and, thus, decrypt the cur-
rent data based on all past transmissions. Applications (of both models) have a
wide spectrum, ranging from secure pay-per-view services over the Internet to
protection mechanisms for digital media.

From a security perspective, privacy over broadcast channels raises new and
challenging issues, not easily addressable using techniques for conventional point-
to-point privacy. The multi-receiver setting opens up a new avenue for attacks—
numerous malicious receivers can now potentially collude with each other and
combine their secret information to decrypt the transmissions of the sender (even
when they are not part of the priveleged set). Furthermore, miscreants can ex-
ploit past transmissions of the sender to recover current classified information
(or, possibly, use future transmissions to do so later on). Proving security of
protocols in the presence of such adversarial behavior is a difficult (and cum-
bersome) task, and so, protocol designers tend to rely more on intuition, rather
than mathematical rigor, in making security arguments. Protocols are typically
analyzed using a symbolic model of computation, one in which malicious behav-
iour is specified using fixed symbolic rules, often referred to as the Dolev-Yao
rules. While the Dolev-Yao model enables simple and tractable security proofs,
the question of whether such proofs imply security in the face of arbitrary com-
putational attacks, is quite often left unresolved.

The general tendency to ignore and “shortcut” security analysis of protocols
has the consequence that a bulk of multicast and broadcast encryption protocols
exist in the literature without any meaningful proofs for (or against) their secu-
rity claims—out of thirteen (symmetric-key) protocols that we surveyed from the
literature, we found only three to have been correctly proven secure using strong
computational definitions of security (one was claimed, though not proven, to
be secure). For most of the remaining protocols, the security proofs provided, if
any, involved only informal, Dolev-Yao style security arguments. Some protocols
were not even accompanied with any security argument.

Our Contribution. In this paper, we concern ourselves with the provable secu-
rity of broadcast and multicast encryption protocols that make use of symmetric-
key cryptography. Instead of studying broadcast/multicast “encryption” directly,
we focus on the related problem of group key distribution (GKD), where the goal
is to enable the sender to establish a shared secret key among a group of priv-
eleged receivers on a broadcast channel (while keeping it secret from the rest of
the receivers). A secure protocol for this task, coupled with a secure symmetric-
key encryption scheme, naturally yields a solution to the group privacy problem1.

We analyze GKD protocols that make blackbox use of a symmetric-key
encryption scheme and a pseudorandom generator (PRG), in generating the
center’s messages, invoking both these primitives in an arbitrary, intermingled

1 Indeed, all broadcast/multicast encryption protocols we know of involve group key
distribution.
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fashion. Our first finding is an equivalence relation between two security notions
for these protocols—we show that for a large class of such protocols, in which
encryption is not nested (that is, each ciphertext is of the form EK1(K2)) secu-
rity against multiple corrupt receivers is equivalent to security against a single
corrupt receiver. This equivalence holds both in the symbolic (Dolev-Yao) model
(that is, symbolic security against single corruptions implies symbolic security
against multiple corruptions), and, subject to some mild syntactic conditions
(e.g., absence of encryption cycles), also in the computational model. The equiv-
alence in the computational setting is, in fact, of a very strong flavor: if one can
prove a protocol (within the said class) computationally secure against single
corruptions for some implementation of the cryptographic primitives, then it
is collusion-resistant for every implementation of the primitives satisfying stan-
dard security properties (semantic security against chosen plaintext attacks for
the former and computational indistinguishability for the latter).

We exemplify the significance of this equivalence result by applying it to the
security analysis of various existing protocols. (See Table 1 in Sect. 4.) Most
protocols (11 out of 13) surveyed by us don’t make use of nested encryption
and, as such, a proof of security against single corruptions for such protocols
automatically implies collusion-resistance. As a part of our analysis, we uncover
security weaknesses in 7 of the surveyed protocols, and provide simple fixes that
result in protocols that are provably secure against arbitrary (polynomial-time)
computational attacks.

Our techniques to prove this equivalence result don’t generalize to capture
protocols that use nested encryption (that is, transmit ciphertexts created by
iterative encryption of a key using multiple other keys), and, in fact, they cannot
do so. We demonstrate this by constructing a protocol that uses nesting (in
fact, at most two iterations of E per ciphertext suffice), is secure against single
corruptions but is totally broken by malicious coalitions (of size as small as two).
As with the equivalence result, our separation holds both in the symbolic and
computational models of security.

Protocols like the one used in our separation result have already been known
to exist [5, 7]. (We remark that both these protocols require stateful receivers
while ours does not.) Such protocols have a significant advantage over collusion-
resistant protocols in terms of communication efficiency (constant versus loga-
rithmic) and, in fact, they beat known lower bounds on the communication cost
of GKD protocols [12]. Our results provide a precise explanation for this anom-
aly: although the bound of [12] applies to nested-encryption protocols, it holds
only when collusion-resistance is satisfied. In fact, from our equivalence theorem
(and the result of [12]), it follows that the efficiency of [5, 7] is unachievable using
single encryption alone; it is precisely the use of nesting (and relaxation of the
security requirements) that provide the efficiency gain.

Our Approach. Our equivalence and separation results for GKD protocols
are obtained using a modular two-stage approach. We first prove the results
in the Dolev-Yao model (Sect. 2), treating encryption and PRGs as abstract
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Fig. 1. Our results are proved first in the Dolev-Yao model (the solid arrow show im-
plication, crossed-out one shows separation) and then interpreted in the computational
model by proving soundness of the Dolev-Yao definitions (Thm. 8)

operators with perfect security properties. All proofs in this world are quite
simple and intuitive, owing to the symbolic treatment of the primitives. As a
second step (Sect. 3), we translate these results into the standard framework
of computational cryptography by proving that our symbolic security notions
are sound in a strong computational sense (provided some syntactic restrictions
are obeyed by the protocol). This is achieved via an extension of a compu-
tational soundness theorem proven by us in [13]. Our extension incorporates
the use of PRGs that can be applied in an arbitrary, nested manner (with
polynomially-many nestings per seed) and greatly increases the applicability
of the originally theorem. (9 out of 11 protocols we apply our results to make
use of PRGs.)

This “two-step” approach not only makes the proof of our equivalence theorem
simpler, but also alleviates much of the trouble in analyzing protocol security. A
similar approach had already been taken in the seminal work of Abadi and Rog-
away [1], and subsequent extentions of the same, with applications to multicast
key distribution [13] and security of XML data [2]. In these papers, computa-
tional soundness theorems were used to translate security definitions from the
symbolic to the computational setting. In this paper, we take the approach one
step further, using it to translate (from the symbolic to the computational set-
ting) not just security notions, but relations among these notions. The extension
is not completely trivial, as it involves both soundness [1] and completeness [14]
considerations, which are implicit in the protocol partitioning method underly-
ing our computational equivalence proof. The soundness theorem itself (given
in the full version) is of independent interest and could be applicable in other
settings where encryption and PRGs are the only used primitives.

In our discussions on the computational security of GKD protocols, we focus
on a scenario in which the dynamics of group membership are adversarially
chosen in an adaptive way, but the decision of whether a receiver is malicious or
not is made at the outset (non-adaptively). Dealing with adaptive corruptions
is an important problem by itself, but is largely out of the scope of this paper.
(See the full version for some partial results that address adaptive corruptions.)
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2 The Result in the Dolev-Yao Model

We begin by analyzing GKD protocols in the Dolev-Yao framework. Let [N ] :=
{1, · · · , N} denote a set of receivers having access to a broadcast channel. For
any subset S of [N ], let S denote [N ] \ S. At any instant t, a central author-
ity C sends a sequence of control messages to establish a key Kt among re-
ceivers in a set St (the “target” set), such that receivers in St cannot recover
Kt. We assume that all receivers and the center C have blackbox access to three
cryptographic operations: a pair of functions, (E,D), modelling symmetric en-
cryption, and a PRG G. The encryption pair satisfies the obvious correctness
criterion: for any key K and message M , DK(EK(M)) = M . G models a length-
doubling PRG2; it takes as input a key K and outputs two keys, G0(K) and
G1(K). All information stored/exchanged during protocol execution is mod-
eled using abstract expressions derived from the variable M in the following
grammar:

M → K |EK(M)
K → Rand |G0(K) |G1(K) (1)

Here K is a variable for keys, which can either be purely random (derived via
the symbol Rand → R1|R2|R3| · · · ) or pseudorandom (obtained by applying G0
or G1 on other keys). Some example expressions that can be obtained from
this grammar are R1, G0(G1(R2)) (keys) and ER1(R2), EG0(R2)(ER3(R4)) (ci-
phertexts). We say that a key K2 is derived from K1, denoted K1 ⇒g K2, if
K2 = Gb1(· · ·Gbl(K1) · · · ) for some bits b1, · · · , bl and l ≥ 0.

A GKD protocol has three components: Setup,Send and Decrypt. The first
one, Setup, initializes the states of all receivers and of the center. The center’s
initial state, Δ0, is an arbitrary set of keys, Keys, obtained from variable K above,
and that of the ith receiver, (for any i ∈ [N ]) is a set Keys[i], each such set being
derivable from Keys. We use Keys[S] to denote

⋃
i∈S Keys[i].

The other two algorithms Send and Decrypt are used for key updates. For
any t > 0, Send takes a set St ⊆ [N ], and the current state of the center, Δt−1
as input and outputs a set of messages Msgs(St) (to be sent to all receivers),
while also updating C’s state to Δt. Depending upon the manner in which mes-
sages are created, two protocol classes can be defined: Protocols in which every
message in Msgs(St) is an arbitrary expression derived from variable M above
are called nested-encryption GKD (N-GKD) protocols. A special case is one
where protocols don’t nest the encryption function for creating ciphertexts (this
corresponds to replacing the rule M → EK(M) with M → EK(K)); such proto-
cols are called single-encryption GKD (S-GKD) protocols. Most protocols in the
literature belong to this special case.

2 Note that a PRG with an arbitrary expantion factor—the ratio between output
length and input length—can be easily implemented using a length-doubling PRG.
We use the latter for simplicity of analysis.
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The target receivers decrypt messages using the following function:

Definition 1. (Key Recovery) For any set of keys, KSet, and any set of
ciphertexts, CSet, the set of keys that can be recovered from CSet given KSet,
denoted Rec(KSet,CSet), is the smallest set R satisfying:

1. KSet ⊆ R.
2. If K ∈ R, then G0(K), G1(K) ∈ R.
3. If K1, · · · ,Km ∈ R and EK1(EK2 · · ·EKm(K) · · · ) ∈ CSet, then K ∈ R

Roughly speaking, the Decrypt algorithm applies the above function per target
receiver, with KSet being equal to the keys available to that receiver and CSet the
set of transmitted ciphertexts. For any sequence of target sets, S̃t = (S1, · · · , St),
we let Msgs(S̃t) be the set of all messages output by Send when given this
sequence as input, i.e., Msgs(S̃t) =

⋃t
t′=1 Msgs(St′). Messages in Msgs(St) (resp.

Msgs(S̃t)) can be partitioned into keys MKeys(St) (resp. MKeys(S̃t)) sent in clear,
and ciphertexts Ciph(St) (resp. Ciph(S̃t)).

Definition 2. (Correctness) A GKD protocol is called stateless if for all t,
for all St ⊆ [N ], ∃K s.t. ∀i ∈ St, K ∈ Rec(Keys[i] ∪ MKeys(St),Ciph(St)). It
is called stateful if for all sequences, S̃t = (S1, S2, · · · , St) ⊆ (2[N ])∗, ∃K s.t.
∀i ∈ St, K ∈ Rec(Keys[i] ∪ MKeys(S̃t),Ciph(S̃t)).

Stateless GKD protocols (corresponding to the broadcast encryption model) are
a special case of stateful ones (which correspond to multicast encryption). Any
key satisfying the above criterion is called a group key at time t. We assume that
for every t there is a distinguished group key that is used in applications like
broadcast encryption at time t and denote it by Kt.

Security. Security of a GKD protocol Λ = (Setup,Send,Decrypt) in the
Dolev-Yao model refers to incapability of non-target receivers to recover group
keys using our symbolic recovery rules. This can be formalized in two ways:

Definition 3. A GKD protocol Λ is secure against single corruptions (in the
Dolev-Yao model) if for all t, for all sequences of target sets, S̃t = (S1, · · · , St),
for every t′ ≤ t and every i /∈ St′ , Kt′ /∈ Rec(Keys[i] ∪ MKeys(S̃t),Ciph(S̃t)).

Definition 4. A GKD protocol Λ is collusion-resistant(in the Dolev-Yao model)
if for all t, for all sequences of target sets, S̃t = (S1, · · · , St), for every t′ ≤ t,
Kt′ /∈ Rec(Keys[St′ ] ∪ MKeys(S̃t),Ciph(S̃t))3.

Note that we enforce that non-target receivers not be able to procure Kt′ even
after viewing future transmissions of the center (a requirement often called back-
ward secrecy). The definitions are common to both stateless and stateful proto-
cols. Our first result is the equivalence between these definitions for the case of
S-GKD protocols.
3 It is not hard to verify that our definition of collusion-resistance is equivalent to

one in which a Dolev-Yao adversary adaptively corrupts an arbitrary subset S
of receivers, and then computes the group key Kt, by evaluating Rec(Keys[S] ∪
MKeys(St), Ciph(St)), for some t such that St ∩ S = ∅.
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Theorem 5. An S-GKD protocol is secure against single corruptions (satisfies
Defn. 3) if and only if it is collusion-resistant (satisfies Defn. 4).
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Fig. 2. An illustration of the separation protocol for N = 6, St = {1, 3, 4, 6}

On the flip side, we show that it is possible to design an N-GKD protocol,
even for stateless receivers, that is secure against solitary malicious receivers
but not collusion-resistant. Our protocol involves the use of, what we call here,
fully-pseudorandom chains (FPCs) of keys, a notion similar to that of forward-
secure PRGs [3]. Let G be a length-doubgling PRG. Let b ∈ {0, 1}. An FPC of
length N , built from a random key K0 (the seed), is a sequence of N key pairs
((Ki,K ′i))i∈[N ] such that ∀i ∈ [N ],Ki = Gb(Ki−1) andK ′i = G1−b(Ki). TheK ′i’s
in this chain are “fully” pseudorandom in the sense that it is computationally
infeasible to distinguish between them and a sequence of N independent random
keys. In our protocol, Setup creates two FPCs of length N using two different
seeds K0 and K0 (one called the forward chain and the other backward chain)
and gives the keys (Ki,KN−i+1) to receiver i. Note that given this, receiver
i can derive the key pairs (Ki,K ′i), · · · , (KN ,K ′N) in the forward chain and
(KN−i+1,K

′
N−i+1), · · · , (KN ,K

′
N ) in the backward chain.

To transmit a keyKt secretly to a set St, Send divides the sequence (1, · · · , N)
into the smallest possible set of intervals such that every i ∈ St is contained
in exactly one interval and no i ∈ St is contained in any interval. For e.g.,
if N = 6 and the target set is {1, 3, 4, 6} (Fig. 2), these intervals would be
(1), (3, 4), (6). Let I1, · · · , Ir+1 denote these intervals with r being |St|. For each
interval Ij = (j1, · · · , jm), Send outputs a ciphertext EK′

N−j1+1
(EK′

jm
(Kt)).

This ciphertext can be decrypted only by the receivers who know both K ′jm and

K
′
N−j1+1, which is exactly the receivers in Ij . (In the figure, the black keys de-

note the keys used to encrypt Kt so as to transmit it to receivers (3, 4).) Receiver
i ∈ St determines which interval Ij it belongs to and decrypts the corresponding
ciphertext. It is not hard to verify that this protocol is secure against single
corruptions (satisfies Defn. 3) but is not collusion-resistant (fails Defn. 4).

3 Interpretation in the Computational Setting

A natural question to ask at this point is whether our results in the Dolev-Yao
model apply to practical implementations where the cryptographic operations
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are real programs satisfying computational security properties and the adversary
is an arbitrary (polynomially-bounded) entity. In this section, we provide suffi-
cient conditions under which this is true. We first define a class of GKD protocols,
called safe protocols, which satisfy certain syntactic conditions on the way keys
are used in the protocol. These safety conditions implement well-established and
commonly-accepted (computational) cryptography practices. Then, via a gen-
eralization of the computational soundness theorems of [1, 13], we show that
any safe GKD protocol secure in the Dolev-Yao model is also secure (under the
corresponding security notion) in the computational setting, provided the un-
derlying primitives satisfy standard security properties. Combining this result
with a case analysis, we show that for all safe GKD protocols, our equivalence
and separation results of Sect. 2 are also true in the computational setting.

Definition 6. (Safe Protocols) A GKD protocol Λ = (Setup,Send,
Decrypt) is called safe if for any input, S̃t = (S1, · · · , St), given to it, the
following conditions are satisfied:

1. Proper key usage: Any key K is used by at most one cryptographic primi-
tive. This is a well established cryptography/security practice, which, in our
case, means two things: (a) Encryption keys (i.e., keys K occurring in subex-
pressions of the form EK(M)) are never used as input to the PRG (i.e., in
subexpressions of the form Gb(K)); (b) a group key Kt (which can poten-
tially be used for keying another primitive in an application, e.g. broadcast
encryption), is used neither as an encryption key nor as an input to the
PRG.

2. No Encryption Cycles: Define a relation → over keys such that K1 → K2
if K1 encrypts K2 at any instant in the protocol. We require that the
composition of the relations → and ⇒g, be acyclic. For e.g., messages like
EG0(K1)(K1) or message pairs like (EK1(K2), EG1(K2)(K1)) are disallowed.

3. Key Deployment after Key Distribution: For any two (not necessarily dis-
tinct) keys, K1,K2, such that K1 ⇒g K2, if K1 is used as a message (either
in clear or encrypted under other keys) at time t1, and K2 is used as an en-
cryption key at time t2, then t2 ≥ t1. In other words, once a key K2 has been
deployed for encrypting messages, the protocol can no longer distribute it
(not even can it distribute a pseudorandom preimage K1 of K2, from which
K2 can, quite easily, be recovered).

These conditions are essential for the application of our computational sound-
ness theorem to GKD protocols. (In fact, condition 1 is necessary to guarantee
computational security of any GKD protocol in the sense we define below.) No-
tice that both our equivalence and separation results in the Dolev-Yao model
also hold when restricted to safe protocols: The former follows from the fact that
the definition of safety is independent of the Dolev-Yao adversarial model and
for the latter, observe that our separation protocol satisfies all safety conditions.

Let Λ = (Setup,Send,Decrypt) be an N -receiver GKD protocol in the
Dolev-Yao model. In the computational interpretation of Λ, ΛΠ,G , all messages
and keys are bitstrings corresponding to the “computational evaluation” of
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symbolic expressions used in Λ based on a (computational) encryption scheme
Π = (E ,D)4 and a (computational) length-doubling PRG G(·) = G0(·) ‖G1(·) ( ‖
denotes bitstring concatenation). The setup program, SetupΠ,G , takes a security
parameter η as input and sets the initial states of all parties. The initial state
of the center (resp. the ith receiver), denoted δC0 (resp. δi0), is the computational
evaluation of the set Keys (resp. Keys[i]). SendΠ,G , as before, receives a set St
and the current center state δCt−1 as input, and outputs a set of messages msgs(St)
(the evaluation of all expressions in Msgs(St)) and C’s updated state δCt . Finally,
DecryptΠ,G takes a receiver index i, the corresponding current state δit−1, the
current transmission msgs(St), and outputs the updated state δit and either a
key kit or fail. Correctness, now, means that for all sequences S̃t = (S1, · · · , St),
for every i, j ∈ St, the keys kit and kjt output after running DecryptΠ,G with
inputs msgs(S1), · · · ,msgs(St) are the same (equal to the bitstring group key
kt). In stateless protocols, δit equals δi0 for all i and t.

Security. Security of GKD protocols is defined using a game played between
an adversary A and a challenger B. Both are given a security parameter η as
input (and A must run in time polynomial in η). First, the challenger invokes
Setup(η) to generate the initial states, δC0 , δ10 , · · · , δN0 . It also generates a uni-
formly random challenge bit b and initializes a protocol counter t to 1. The
adversary first specifies a set of corrupt receivers C(A) (in return for which it
is given {δi0}i∈C(A)), and then makes several queries, each query being of one of
two types:

– send(St) (for some St ⊆ [N ]): B runs Send, returns msgs(St) to A, updates
states of all parties and sets t ← t+ 1; or

– challenge(t′) (for some t′ ≤ t such that St′ ∩C(A) = ∅): If b = 0, B returns
the group key at time t′, kt′ ; else, it generates a fresh random key rt′ and
returns it.

The advantage of A in the game, denoted AdvgkdΛΠ,G (A, η), is the absolute dif-
ference between the probability that A outputs 1 when b = 1 and the probability
of the same event when b = 0.

Definition 7. A GKD protocol Λ is secure against single (resp. multiple) cor-
ruptions (in the computational model) if for any adversary A satisfying |C(A)| =
1 (resp. |C(A)| ≥ 0), AdvgkdΛΠ,G (A, η) is a negligible function of η.

For the case of stateless GKD protocols, our definition parallels definitions of
broadcast encryption already existing in the literature [15] with the major dif-
ference that we focus on defining group key distribution rather than the problem
of group privacy. (More discussion on this issue appears in the full version.)

Theorem 8. (Security Theorem) Let Λ be any safe GKD protocol. Let
Π be any ind-cpa secure encryption scheme (i.e., satisfying semantic security
against chosen plaintext attacks) and G any secure pseudorandom generator. If
4 We consider encryption schemes where key generation involves picking a uniformly

random bitstring of length equal to the security parameter.



Corrupting One vs. Corrupting Many 79

Λ is secure without collusions (resp. collusion-resistant) in the Dolev-Yao model,
that is Λ satisfies Defn. 3 (resp. Defn. 4) then ΛΠ,G is secure against single (resp.
multiple) corruptions in the computational model.

Equivalence and Separation. We now use Theorem 8 to translate of our
equivalence result for S-GKD protocols from Sect. 2 into the computational
setting. Consider the class of safe S-GKD protocols implemented with an encryp-
tion scheme Π and a PRG G. We first partition this class into two sub-classes—
protocols in the first catagory are secure without collusions in the Dolev-Yao
model (satisfy Defn. 3) while those in the second class are not. Based on the
equivalence in the Dolev-Yao model (Thm. 5) and the computational sound-
ness of Dolev-Yao collusion-resistance (Thm. 8), we conclude that protocols in
the first catagory are secure against multiple corruptions for any secure in-
stantiations of Π and G. Second, observe that if a protocol (whether safe or
not) does not satisfy security without collusions in the Dolev-Yao setting (fails
Defn. 3), then it is trivially insecure: it can be broken for every implementation
of Π and G, by executing the Dolev-Yao attack in the computational setting.
Thus, we have:

Theorem 9. Let Λ be a safe S-GKD protocol. If ΛΠ,G is secure against single
corruptions for some encryption scheme Π and some PRG G, then ΛΠ,G is secure
against multiple corruptions for any ind-cpa secure encryption scheme Π and
any secure PRG G.

For protocols that use nested encryption, we have the following theorem:

Theorem 10. There exists an N-GKD protocol that is secure against single
corruptions for any (computationally secure) implementation of Π and G, but is
not collusion-resistant.

This separation is demonstrated by the protocol of Sect. 2. (The single-corruption
security of the protocol follows from its Dolev-Yao security and Thm. 8.)

4 Analysis of Known Protocols

In this section, we summarize our analysis of various existing GKD protocols
based on the results of Sect. 3. Out of 13 protocols for symmetric-key broad-
cast/multicast encryption that we surveyed from the literature, we found only
3 protocols to have been accompanied with proofs that establish computational
security of the protocol. The security analysis of the remaining protocols, if un-
dertaken at all, has hitherto been restricted to Dolev-Yao style arguments, and
without any computational justification of such analysis. Indeed, we find that 7
of these protocols have weaknesses in their design which make them vulnerable
to attacks by computational adversaries. For example, the broadcast encryption
protocols of [9, 17, 6] make use of “key chains” generated by applying a cryp-
tographic function f iteratively on a random key K to produce a sequence of
values f(K), f(f(K)), f(f(f(K))), · · · . The values in the chain are subsequently
used as keys to encrypt other keys during key distribution and it is claimed that
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an adversary can decrypt a ciphertext EK′(M) for some K ′ in the key chain
only if it knows K ′ or some other value preceding K ′ in the chain. [9, 17] suggest
implementing f with a one-way hash function and [6] proposes to do so with a
one-way permutation or a PRG. We note that none of these implementations
are sufficient to guarantee security of the respective protocols in a computational
sense. Technically, the deployment of key chains in all these protocols conflicts
with our first safety condition: keys are used for encryption, and as inputs to
another cryprographic primitive (that is, f), which, as already discussed, is bad
cryprographic practice. In principle, this could lead to complete recovery of all
values in such key chains (and, consequently, of all group keys) even by a passive
observer of the protocol.

In the same vein, various multicast encryption protocols [18, 4, 7, 16] are com-
putationally insecure. For a receiver “join” event (at time t), they either recom-
mend encrypting the new group key Kt+1 with Kt [18, 4], or deriving Kt+1 from
Kt via a PRG [16]. ([7] encrypts Kt+1 under Kt during both “leave” and “join”
events.) Such usage of group keys can, in principle, compromise their pseudo-
randomness and thus render the resulting encryption protocol totally insecure.

Table 1. Analysis of 11 GKD protocols surveyed by us. Comp-single and Comp-
multiple refer to security against single and multiple corruptions respectively in the
computational model. The last column shows which protocols use nested encryption.

Protocol Safe? Fixed Security from our results Nesting?
LKH [18] No Yes Comp-multiple No

LKH+ [4] No Yes Comp-multiple No

Subset Diff. (SD) [15] Yes — Comp-multiple No

ELK [16] No Yes Comp-multiple No

LSD [10] Yes — Comp-multiple No

Stratified SD (SSD) [9] No Yes Comp-multiple No

DDKC [17] No Yes Comp-multiple No

Skip. Chains (SC) [6] No Yes Comp-multiple No

Improved SSD/SC [11] Yes — Comp-multiple No

Boolean Func. Min. [5] Yes — Comp-single Yes

LOR [7] No Yes Comp-single Yes

Fortunately, these weaknesses are quite straightforward to fix in most cases.
For the protocols that make use of (insecure) key chains, the fix simply involves
replacing the chain with an FPC (Sect. 2). The protocols that use group keys
for keying primitives within the GKD protocol can be patched in the following
manner: if Kt is the group key distributed in the original protocol for time t,
then the patched protocol instead uses G0(Kt) as the group key and any encryp-
tion/pseudorandom generation that was previously done using Kt is now per-
formed using G1(Kt). (For e.g., the control message EKt(Kt+1) gets substituted
by EG1(Kt)(Kt+1).) These modifications make the protocols compatible with our
safety requirements and enable application of our security theorem (Thm. 8).
Table 1 presents the results from our analysis of 11 GKD protocols, including
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the protocols fixed in the above manner. 9 of the listed protocols don’t make
use of nested encryption and for these it suffices to verify Dolev-Yao security of
the protocol against single corruptions (defn. 3), and subsequently to invoke our
equivalence theorem (Thm. 9) in order to establish collusion-resistance. The 2
protocols that use nested encryption [5, 7] were already known to be collusion-
insecure, and for these a Dolev-Yao proof of security against single corruptions
implies the corresponding computational criterion.
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Abstract. We design a core language of principals running distributed programs
over a public network. Our language is a variant of the pi calculus, with secure
communications, mobile names, and high-level certificates, but without any ex-
plicit cryptography. Within this language, security properties can be conveniently
studied using trace properties and observational equivalences, even in the pres-
ence of an arbitrary (abstract) adversary.

With some care, these security properties can be achieved in a concrete set-
ting, relying on standard cryptographic primitives and computational assump-
tions, even in the presence of an adversary modeled as an arbitrary probabilis-
tic polynomial-time algorithm. To this end, we develop a cryptographic imple-
mentation that preserves all properties for all safe programs. We give a series
of soundness and completeness results that precisely relate the language to its
implementation.

1 Secure Implementations of Communications Abstractions

When designing and verifying security protocols, some level of idealization is needed
to provide manageable mathematical treatment. Accordingly, two views of cryptog-
raphy have been developed over the years. In the first view, cryptographic protocols
are expressed algebraically, within simple languages. This formal view is suitable for
automated computer tools, but is also arguably too abstract. In the second view, cryp-
tographic primitives are probabilistic algorithms that operate on bitstrings. This view
involves probabilities and limits in computing power; it is harder to handle formally,
especially when dealing with large protocols. Getting the best of both views is appeal-
ing, and is the subject of active research that aims at building security abstractions with
formal semantics and sound computational implementations.

In this work, we develop a first sound and complete implementation of a distributed
process calculus. Our calculus is a variant of the pi calculus; it provides name mobility,
reliable messaging and authentication primitives, but neither explicit cryptography nor
probabilistic behaviors. Taking advantage of concurrency theory, it supports simple rea-
soning, based on labeled transitions and observational equivalence. We precisely define
its concrete implementation in a computational setting. We establish general soundness
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and completeness results in the presence of active adversaries, for both trace properties
and observational equivalences, essentially showing that high level reasoning accounts
for all low-level adversaries. We illustrate our approach by coding security protocols
and establishing their computational correctness by simple formal reasoning.

We implement high-level functionalities using cryptography, not high-level views of
cryptographic primitives. Following recent related works, we could instead have pro-
ceeded in two steps, by first compiling high-level communications to an intermediate
calculus with ideal, explicit cryptography (in the spirit of [3, 2]), then establishing the
computational soundness of this calculus with regards to computational cryptography.
However, this second step is considerably more delicate than our present goal, inasmuch
as one must provide a sound implementation for an arbitrary usage of ideal cryptogra-
phy. In contrast, for instance, our language keeps all keys implicit, so no high-level
program may ever leak a key or create an encryption cycle. (We considered targeting
existing idealized cryptographic frameworks with soundness theorems, but their reuse
turned out to be more complex than a direct implementation.)

Our concrete implementation relies on standard cryptographic primitives, computa-
tional security definitions, and networking assumptions. It also combines typical
distributed implementation mechanisms (abstract machines, marshaling and unmarshal-
ing, multiplexing, and basic communications protocol.) This puts interesting design
constraints on our high-level semantics, as we need to faithfully reflect their proper-
ties and, at the same time, be as abstract as possible. In particular, our high-level en-
vironments should be given precisely the same capabilities as low-level probabilistic
polynomial-time (PPT) adversaries. For example, our language supports abstract reli-
able messaging: message senders and receivers are authenticated, message content is
protected, and messages are delivered at most once. On the other hand, under the con-
servative assumption that the adversary controls the network, we cannot guarantee mes-
sage delivery, nor implement private channels (such that some communications may be
undetected). Hence, the simple rule c〈M〉.P | c(x).Q → P |Q{M/x}, which models
silent communication “in the ether” for the pi calculus, is too abstract for our purposes.
(For instance, if P and Q are implemented on different machines connected by a public
network, and even if c is a restricted channel, the adversary can simply block all com-
munications.) Instead, we design high-level rules for communications between explicit
principals, mediated by an adversary, with abstract labels that enable the environment
to perform traffic analysis but not forge messages or observe their payload. Similarly,
process calculi feature non-deterministic infinite computations, and we need to curb
these features to meet our low-level complexity requirements.

Contents. This extended abstract is organized as follows. Section 2 defines our low-
level target model. Section 3 presents our high-level language and semantics. Section 4
defines and illustrates high-level equivalences. Section 5 outlines our concrete imple-
mentation. Section 6 states our soundness and correctness theorems. Section 7 con-
cludes.

A technical report [6] provides additional details and definitions, including the defi-
nition of our cryptographic implementation, examples and applications, and all proofs.

Related Work. Within formal cryptography, process calculi are widely used to model
security protocols. For example, the spi calculus of Abadi and Gordon [4] neatly models
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secret keys and fresh nonces using names and their dynamic scopes. Representing ac-
tive attackers as pi calculus contexts, one can state (and prove) trace properties and
observational equivalences that precisely capture the security goals for these protocols.
Automated provers (e.g. [10]) also help verify these goals.

Abadi, Fournet, and Gonthier develop distributed implementations for variants of
the join calculus, with high-level security but no cryptography, roughly comparable
to our high-level language. Their implementation is coded within a lower-level calcu-
lus with formal cryptography. They establish full abstraction for observational equiv-
alence [3, 2]. Our approach is similar, but our implementation is considerably more
concrete. Also, due to the larger distance between high-level processes and low-level
machines, our soundness results are more demanding. Abadi and Fournet also propose
a labeled semantics for traffic analysis, in the context of a pi calculus model of a fixed
protocol for private authentication [1].

The computational soundness of formal cryptography is an active area of research,
with many recent results for languages that include selected cryptographic primitives.
Abadi and Rogaway initially consider formal encryption against passive attackers [5]
and establish the soundness of indistinguishability. Backes, Pfitzmann and Waidner [8]
achieve a first soundness result with active attackers, initially for public-key encryption
and digital signatures. They extend their result to symmetric authentication [9] and
encryption [7]. Micciancio and Warinschi [16] also establish soundness in the presence
of active attacks, under different simpler assumptions.

Other works develop computationally sound implementations of more abstract secu-
rity functions on top of cryptography. For example, Canetti and Krawczyk build compu-
tational abstractions of secure channels in the context of key exchange protocols, with
modular implementations, and they establish sufficient conditions to realize these chan-
nels [11]. Targeting the idealized cryptographic model of Backes et al. [8], Laud [14]
implements a deterministic process calculus and establishes the computational sound-
ness of a type system for secrecy.

Another interesting approach is to supplement process calculi with concrete prob-
abilistic or polynomial-time semantics. Unavoidably, reasoning on processes becomes
more difficult. For example, Lincoln, Mitchell, Mitchell, and Scedrov [15] introduce a
probabilistic process algebra for analyzing security protocols, such that parallel contexts
coincide with probabilistic polynomial-time adversaries. In this framework, further ex-
tended by Mitchell, Ramanathan, Scedrov, and Teague [17], they develop an equational
theory and bisimulation-based proof techniques.

2 Low-Level Target Model

Before presenting our language design and implementation, we specify the target sys-
tems. We rely on standard notions of security for cryptographic primitives (CCA2 for
encryption [18], CMA for signing [13]) recalled in the technical report.

We consider systems that consist of a finite number of communicating principals
a, b, c, e, u, v, . . . ∈ Prin. Each principal runs its own program, written in our high-level
language and executed by the PPT machine outlined in Section 5. Each machine Ma has
two wires, ina and outa, representing a basic network interface. When activated, the
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machine reads a bitstring from ina, performs some local computation, then writes a bit-
string on outa and yields. The machine embeds probabilistic algorithms for encryption,
signing, and random-number generation—thus the machine outputs are random vari-
ables. The machine is also parameterized by a security parameter η ∈ N—intuitively,
the length for all keys—thus these outputs are ensembles of probabilities.

Some of these machines may be corrupted, under the control of the attacker; their
implementation is then unspecified and treated as part of the attacker. We let a, b ∈ H
with H ⊂ Prin range over principals that comply with our implementation, and let
M = (Ma)a∈H describe our whole system. Of course, when a interacts with u ∈ Prin,
its implementation Ma does not know whether u ∈ H or not.

The adversary, A, is a PPT algorithm that controls the network, the global scheduler,
and some compromised principals. At each moment, only one machine is active: when-
ever an adversary delivers a message to a principal, this principal is activated, runs until
completion, and yields an output to the adversary.

Definition 1 (Run). A run of A and M with security parameter η ∈ N goes as follows:

1. key materials are generated for every principal a ∈ Prin;
2. every Ma is activated with 1η, the keys for a, and the public keys for all u ∈ Prin;
3. A is activated with 1η, the keys for e ∈ Prin \ H, and the public keys for a ∈ H;
4. A performs a series of low-level exchanges:

– A writes a bitstring on wire ina and activates Ma for some a ∈ H;
– upon completion of Ma, A reads a bitstring on outa;

5. A returns a bitstring s, written s ←− A[M].

To study their security properties, we compare systems that consist of machines run-
ning on behalf of the same principals H ⊆ Prin, but with different internal programs
and states. Intuitively, two systems are equivalent when no adversary, starting with the
information normally given to the principals e ∈ Prin\H, can distinguish between their
two behaviors, except with negligible probability (written neg (η)). This is the notion
of computational indistinguishability introduced by Goldwasser and Micali [12]. Our
goal is to develop a simpler, higher-level semantics that entails indistinguishability.

Definition 2. Two systems M0 and M1 are indistinguishable, written M0 ≈ M1, when
for every PPT adversary A, we have |Pr[1 ←− A[M0]]−Pr[1 ←− A[M1]]| ≤ neg (η).

3 A Distributed Calculus with Principals and Authentication

We now present our high-level language. We successively define terms, patterns, pro-
cesses, configurations, and systems. We then give their operational semantics. Although
some aspects of the design are unusual, the resulting calculus is still reasonably abstract
and convenient for distributed programming.

Syntax and Informal Semantics. Let Name be a countable set of names disjoint from
Prin. Let f range over a finite number of function symbols, each with a fixed arity
k ≥ 0. Terms and patterns are defined by the following grammar:



Cryptographically Sound Implementations for Communicating Processes 87

V, W ::= Terms
x, y variable
m, n ∈ Name name
a, b, e, u, v ∈ Prin principal identity
f(V1, . . . , Vk) constructed term (when f has arity k)

T, U ::= Patterns
?x variable (binds x)
T as ?x alias (binds x to the term that matches T )
V constant pattern
f(T1, . . . , Tk) constructed pattern (when f has arity k)

Names and principals identities are atoms, or “pure names”, which may be compared
with one another but otherwise do not have any structure. Constructed terms represent
structured data, much like algebraic data types in ML or discriminated unions in C.
They can represent constants and tags (when k = 0), tuples, and formatted messages.
As usual, we write tag and (V1, V2) instead of tag() and pair(V1, V2). Patterns are
used for analyzing terms and binding selected subterms to variables. For instance, the
pattern (tag, ?x) matches any pair whose first component is tag and binds x to its
second component. We write for a variable pattern that binds a fresh variable.

Local processes represent the active state of principals, with the following grammar:

P, Q, R ::= Local processes
V asynchronous output
(T ).Q input (binds bv(T ) in Q)
∗(T ).Q replicated input (binds bv(T ) in Q)
match V with T in Q else Q′ matching (binds bv(T ) in Q)
νn.P name restriction (“new”, binds n in P )
P | P ′ parallel composition
0 inert process

The asynchronous output V is just a pending message; its data structure is explained
below. The input (T ).Q waits for an output that matches T then runs Q with the bound
variables of T substituted by the matching subterms of the output message. The repli-
cated input ∗(T ).Q behaves similarly but it can consume any number of outputs that
match T and fork a copy of Q for each of them. The match process runs Q if V
matches T , and runs Q′ otherwise. The name restriction creates a fresh name n then
runs P . Parallel composition represents processes that run in parallel, with the inert
process 0 as unit. Free and bound names and variables for terms, patterns, and processes
are defined as usual: x is bound in T if ?x occurs in T ; n is bound in νn.P ; x is free in
T if it occurs in T and is not bound in T . An expression is closed when it has no free
variables; it may have free names.

Our language features two forms of authentication, represented as constructors plus
well-formed conditions on their usage in processes. Due to space constraints, this ex-
tended abstract only describes message authentication—the technical report also de-
scribes high level certificates that provide transferable data authentication.

Authenticated messages between principals are represented as terms of the form
auth(V1, V2, V3), written V1:V2〈V3〉, where V1 is the sender, V2 the receiver, and V3
the content. We let M and N range over messages. The message M is from a (respec-
tively to a) if a is the sender (respectively the receiver) of M . Authenticated messages
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are delivered at most once, to their designated receiver. As an example, a:b〈Hello〉 is
an (authentic) message from a to b with content Hello, a constructor with arity 0.

Finally, configurations represent assemblies of communicating principals, with the
following grammar:

C ::= configurations
a[P ] principal a with local state P
M/i intercepted message M with index i
C | C′ distributed parallel composition
νn.C name restriction (“new”, binds n in C)

A configuration is an assembly of running principals, each with its own local state,
plus an abstract record of the messages intercepted by the environment and not for-
warded yet to their intended recipients. A system S is a top-level configuration (plus an
abstract record of the certificates available to the adversary, omitted here).

We rely on well-formed conditions. In local processes, P is well-formed for a ∈ Prin
when no pattern used for input in P matches any message from a. This condition pre-
vents that messages sent by P be read back by some local input. In configurations,
intercepted messages have distinct indices i and closed content M ; principals have dis-
tinct identities a and well-formed local processes Pa. In systems, let H be the set of
identities for all defined principals, called compliant principals; intercepted messages
are from a to b for some a, b ∈ H with a �= b.

Operational Semantics—Local Reductions. We define our high-level semantics in two
stages: local reductions between processes, then global labeled transitions between sys-
tems and their (adverse) environment. Processes, configurations, and systems are con-
sidered up to renaming of bound names and variables.

Structural equivalence, written P ≡ P ′, represents structural rearrangements for lo-
cal processes. As in the pi calculus, it is defined as the smallest congruence such that
P ≡ P | 0, P |Q ≡ Q |P , P |(Q |R) ≡ (P |Q) |R, (νn.P ) |Q ≡ νn.(P |Q) when
n /∈ fn(Q), νm.νn.P ≡ νn.νm.P , and νn.0 ≡ 0. Intuitively, structural rearrange-
ments are not observable (although this is quite hard to implement).

Local reduction step, written P → P ′, represents internal computation between local
processes. It is defined as the smallest relation such that

(LCOMM) (T ).Q | Tσ → Qσ
(LREPL) ∗(T ).Q | Tσ → Qσ | ∗(T ).Q
(LMATCH) match Tσ with T in P else Q → Pσ
(LNOMATCH) match V with T in P else Q → Q when V �= Tσ for any σ

(LPARCTX)
P → Q

P | R → Q | R

(LNEWCTX)
P → Q

νn.P → νn.Q

(LSTRUCT)
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

where σ ranges over substitutions of closed terms for the variables bound in T . The
local process P is stable when it has no local reduction step, written P �→. We write
P � Q when P →∗≡ Q and Q �→.

Operational Semantics—System Transitions. We define a labeled transition semantics
for systems. Each labeled transition, written S

γ−→ S′, represents a single interaction
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with the adversary. We let α and β range over input and output labels (respectively from
and to the adversary), let γ range over labels, and let ϕ range over series of labels. We
write S

ϕ−→ S′ for a series of transitions with labels ϕ. Labeled transitions are defined
by the following rules on configurations:

(CFGOUT)
u �= a

a[a:u〈V 〉 | Q]
a:u〈V 〉−−−−→ a[Q]

(CFGIN)
u:a〈V 〉 | P � Q u �= a

a[P ]
(u:a〈V 〉)−−−−−→ a[Q]

(CFGBLOCK)
C

b:a〈V 〉−−−−→ C′ i not in C

C | a[P ]
νi.b:a−−−→ C′ | b:a〈V 〉/i | a[P ]

(CFGFWD)
C

(M)−−→ C′

C | M/i
(i)−−→ C′

(CFGPRINCTX)
C

γ−→ C′ γ not from/to a

C | a[P ]
γ−→ C′ | a[P ]

(CFGMSGCTX)
C

γ−→ C′ i not in γ

C | M/i
γ−→ C′ | M/i

(CFGOPEN)
C

β−→ C′ n free in β

νn.C
νn.β−−−→ C′

(CFGNEWCTX)
C

γ−→ C′ n not in γ

νn.C
γ−→ νn.C′

(CFGSTR)
C ≡ D D

γ−→ D′ D′ ≡ C′

C
γ−→ C′

where structural equivalence on configurations, written C ≡ C′, is defined by the same
rules as for processes plus Rule νn.a[P ] ≡ a[νn.P ].

Rules (CFGOUT) and (CFGIN) represent “intended” interactions with the environ-
ment, as usual. They enable local processes to send messages to other principals, and to
receive their messages. The transition label conveys the complete message content.

Rules (CFGBLOCK) and (CFGFWD) reflect the actions of an active attacker that in-
tercepts, then selectively forwards, messages exchanged between compliant principals;
unlike the (COMM) rule of the pi calculus, they ensure that the environment mediates all
communications between principals. The label produced by (CFGBLOCK) signals the
message interception; the label conveys partial information on the message content that
can be observed from its wire format: the environment learns that an opaque message
is sent by b, with intended recipient a. In addition, the intercepted message content is
recorded within the configuration, using a fresh index i. Later on, when the environment
performs an input with label (i), Rule (CFGFWD) restores the original message content
and consumes M/i; this ensures that intercepted messages are delivered at most once.

The local-reduction hypothesis in Rules (CFGIN) makes local computations atomic,
as they must complete immediately upon receiving a message and lead to some updated
stable process Q. Intuitively, this enforces a transactional semantics for local steps, and
prevents any observation of their transient internal state. (Otherwise, the environment
may for instance observe the order of appearance of outgoing messages.) On the other
hand, any outgoing messages are kept within Q; the environment can obtain all of them
via rules (CFGOUT) and (CFGBLOCK) at any time, since those outputs commute with
any subsequent transitions.

The rest of the rules for configurations are standard closure rules with regards to
contexts and structural rearrangements: Rule (CFGOPEN) is the scope extrusion rule
of the pi calculus that opens the scope of a restricted name included in a message sent
to the environment. In contrast with intercepted messages, messages sent to a principal
not defined in the configuration are transmitted unchanged to the environment, after
applying the context rules. In Rule (CFGPRINCTX), condition γ not from a excludes
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inputs from the environment that forge a message from a, whereas condition γ not to a
excludes outputs that may be transformed by Rule (CFGBLOCK).

We define auxiliary notions of transitions, used to describe our implementation. We
say that S is stable when all local processes are stable and S has no output transition.
(Informally, S is waiting for any input from the environment.) We say that a series of
transitions S

ϕ−→ S′ is normal when every input is followed by a maximal series of
outputs leading to a stable system, that is, ϕ = ϕ1ϕ2 . . . ϕn, ϕi = αiβ̃i, and S =
S0

ϕ1−→ S1
ϕ2−→ S2 . . .

ϕn−−→ Sn = S′ for some stable systems S0, . . . , Sn.
By design, our semantics is compositional, as its rules are inductively defined on the

structure of configurations. For instance, we obtain that interactions with a principal
that is implicitly controlled by the environment are at least as expressive as those with
any principal explicited within the system.

4 High-Level Equivalences and Safety

Now that we have labeled transitions that capture our implementation constraints, we
can apply standard definitions and proof techniques from concurrency theory to rea-
son about systems. Our computational soundness results are useful (and non-trivial)
inasmuch as transitions are simpler and more abstract than low-level adversaries. In
addition to trace properties (used, for instance, to express authentication properties as
correspondences between transitions) , we consider equivalences between systems.

Intuitively, two systems are equivalent when their environment observes the same
transitions. Looking at immediate observations, we say that two systems S1 and S2
have the same labels when, if S1

γ−→ S′1 for some S′1 (and the name exported by γ are
not free in S2), then S2

γ−→ S′2 for some S′2, and vice versa. More generally, bisimilarity
demands that this remains the case after matching transitions:

Definition 3 (Bisimilarity). The relation R on systems is a labeled simulation when,
for all S1 R S2, if S1

γ−→ S′1 (and the names exported by γ are not free in S2) then
S2

γ−→ S′2 and S′1 R S′2. Labeled bisimilarity, written ≈, is the largest symmetric
labeled simulation.

In particular, if S ≈ S′, then S and S′ define the same principals and have the same
intercepted-message indices. We also easily verify some congruence properties: our
equivalence is preserved by name restrictions, definitions of additional principals, and
deletions of intercepted messages.

Lemma 1. 1. If C1 ≈ C2, then νn.C1 ≈ νn.C2.
2. If C1 ≈ C2, then C1 | a[P ] ≈ C2 | a[P ] if these systems are well-formed.
3. If νñ1.(C1 |M1/i) ≈ νñ2.(C2 |M2/i), then νñ1.C1 ≈ νñ2.C2.

As we quantify over all local processes, we must at least bound their computational
power. Indeed, our language is expressive enough to code Turing machines and, for
instance, one can easily write a local process that receives a high-level encoding of the
security parameter η (e.g. as a series of η messages) then delays a message output by 2η

reduction steps, or even implements an ‘oracle’ that performs some brute-force attacks
using high level implementations of cryptographic algorithms.
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Similarly, we must restrict non-deterministic behaviors. Process calculi often feature
non-determinism as a convenience when writing specifications, to express uncertainty
as regards the environment. Sources of non determinism include local scheduling, hid-
den in the associative-commutative laws for parallel composition, and internal choices.
Accordingly, abstract properties and equivalences typically only consider the existence
of transitions—not their probability. Observable non-determinism is problematic in a
computational cryptographic setting, as for instance a non-deterministic process may
be used as an oracle to guess every bit of a key in linear time.

We arrive at the following definitions. We let �· compute the (high level) size of
systems, labels, and transitions, with for instance �S γ−→ S′ = �S + �γ + �S′ + 1,
and let input(ϕ) be the input labels of ϕ.

Definition 4 (Safe Systems). A system S is polynomial when there exists a polyno-
mial p such that, for any ϕ, if S

ϕ−→ S′ then �S ϕ−→ S′ ≤ p(�input(ϕ) ).
A system S is safe when it is polynomial and, for any ϕ, if S

ϕ−→ S1 and S
ϕ−→ S2

then S1 and S2 have the same labels.

Hence, starting from a safe process, a series of labels fully determines any further obser-
vation. Safety is preserved by all transitions, and also uniformly bounds (for example)
the number of local reductions and new names.

These restrictions are serious, but they are also easily established when writing sim-
ple programs and protocols. (Still, it would be interesting to relax them, maybe us-
ing a probabilistic process calculus.) Accordingly, our language design prevents trivial
sources of non-determinism and divergence (e.g. with pattern matching on values, and
replicated inputs instead of full-fledged replication); further, most internal choices can
be coded as external choices driven by the inputs of our abstract environment.

We can adapt usual bisimulation proof techniques to establish both equivalences
and safety: instead of examining all series of labels ϕ, it suffices to examine single
transitions for the systems in the candidate relation.

Lemma 2 (Bisimulation Proof). Let R be a reflexive labeled bisimulation such that,
for all related systems S1 R S2, if S1

γ−→ S′1 and S2
γ−→ S′2, then S′1 R S′2.

Polynomial systems related by R are safe and bisimilar.

We illustrate our definitions using basic examples of secrecy and authentication stated
as equivalences between a protocol and its specification (adapted from [2]). Consider a
principal a that sends a single message. In isolation, we have the equivalence
a[a:b〈V 〉] ≈ a[a:b〈V ′〉] if and only if V = V ′, since the environment observes V
on the label of the transition a[a:b〈V 〉] a:b〈V 〉−−−−→ a[0].

Consider now the system S(V,W ) = a[a:b〈V,W 〉] | b[(a:〈?x, 〉).P ], with an ex-
plicit process for principal b that receives a’s message and, assuming the message is
a pair, runs P with the first element of the pair substituted for x. For any terms W1
and W2, we have S(V,W1) ≈ S(V,W2). This equivalence states the strong secrecy
of W , since its value cannot affect the environment. The system has two transitions
S(V,W ) νi.a:b−−−→ (i)−→ a[0] | b[P{V/x}].

Further, the equivalence S(V,W ) ≈ a[a:b〈〉] | b[(a:〈 〉).P{V/x}] captures both the
authentication of V and the absence of observable information on V and W in the
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communicated message, since the protocol S(V,W ) behaves just like another protocol
that sends a dummy message instead of V,W .

5 A Concrete Implementation (Outline)

We systematically map high-level systems S to the machines of Section 2, mapping
each principal a[Pa] of S to a PPT machine Ma that executes Pa. Due to space
constraints, we only give an outline of our implementation, defined in the technical
report. The implementation mechanisms are simple, but they need to be carefully spec-
ified and composed. (As a non-trivial example, when a machine outputs several mes-
sages, possibly to the same principals, we must sort the messages after encryption so
that their ordering on the wire leaks no information on the computation that produced
them.)

We use two concrete representations for terms: a wire format for (signed, encrypted)
messages between principals, and an internal representation for local terms. Various bit-
strings represent constructors, principal identities, names, and certificates. Marshaling
and unmarshaling functions convert between internal and wire representations. When
marshaling a locally restricted name n for the first time, we draw a bitstring s of length η
uniformly at random, associate it with n, and use it to represent n on the wire. When
unmarshaling a bitstring s into a name, if s is not associated with any local name, we
create a new internal identifier n for the name, and also associate s with n.

Local processes are represented in normal form for structural equivalence, using
internal terms and multisets of local inputs, local outputs, and outgoing messages. We
implement reductions using an abstract machine that matches inputs and outputs using
an arbitrary deterministic, polynomial-time scheduler.

To keep track of the runtime state for our machines, we supplement high-level sys-
tems S with shadow states D that record sufficient information so that each machine is
a function Ma(S,D). For instance, D records maps from names and intercepted mes-
sages to bitstrings, and from principals to their keys and the content of their anti-replay
caches. The shadow D also determines the information available to the attacker, coded
as a bitstring public(D). The structure of public(D) sets the interface between attack-
ers and low-level systems, called the shape of D. For instance, the shape fixes the free
names that may occur in S, and public(D) provides their associated bitstrings.

In general, a system S may contain restricted names shared between local processes
and intercepted messages, making it non-trivial to describe a concrete initialization
mechanism that produces M(S,D) and public(D). Instead of explicitly coding low-level
initialization, we define it as the run of a high-level initialization protocolS◦

ϕ◦
−−→ S that

lets the principals exchange names and yield intercepted messages to the environment.
In the initialization protocol, S◦ is a system with no intercepted messages and no free
names in local processes. For any system S, there are such transitions S◦

ϕ◦
−−→ S and,

applying a variant of Theorem 1, there is a PPT algorithm Aϕ◦ that simulates ϕ◦ and
produces public(D) from some public(D◦), where D◦ is the shadow produced by Defi-
nition 1(1–3). Thus, we define a run of M(S,D) with adversary A, written A[M(S,D)],
as a run of (Aϕ◦ ; A)[M(S◦,D◦)] where Aϕ◦ ; A first runs Aϕ◦ then starts A with input
public(D). We then say that D is a valid shadow for S.
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6 Soundness and Completeness Results

In this section we show that properties that hold with the high-level semantics can be
carried over to the low-level implementation, and the other way around. Due to space
constraints, most auxiliary results and all proofs appear in the technical report [6].

Our first theorem expresses the soundness of the high-level operational semantics:
every series of transitions can be executed (and checked) by a low-level attacker. Said
otherwise, the high-level semantics does not give too much power to the environment.

Theorem 1. For any shape of D and labels ϕ, there is a PPT algorithm Aϕ such that,
for any safe stable system S with valid shadow D where the new names of ϕ are not
free in D, one of the following holds with overwhelming probability:

– 1 ←− Aϕ[M(S,D)] and there exists S′ with normal transitions S
ϕ−→ S′; or

– 0 ←− Aϕ[M(S,D)] and there are no normal transitions S
ϕ−→ S′.

Since we can characterize any trace using an adversary, we also obtain completeness
for trace equivalence: low-level equivalence implies high-level trace equivalence.

Theorem 2. Let S1 and S2 be safe stable systems with valid shadow D such that
M(S1,D) ≈ M(S2,D). If there are normal transitions S1

ϕ−→ S′1 and the new names
of ϕ are not free in D, then there are normal transitions S2

ϕ−→ S′2.

Our next theorem expresses the completeness of our high-level transitions: every low-
level attack can be described in terms of high-level transitions. More precisely, the prob-
ability that an interaction with a PPT adversary yields a machine state unexplained by
any high-level transitions is negligible.

Theorem 3. Let S be a safe stable system with valid shadow D and A a PPT algorithm.
The probability that A[M(S,D)] completes and leaves the system in state M′ with

M′ �= M(S′,D′) for any normal transitions S
ϕ−→ S′ with valid shadow D′ is negligible.

Finally, our main result states the soundness of equivalence: to show that two stable
systems are indistinguishable, it suffices to show that they are safe and bisimilar.

Theorem 4. Let S1 and S2 be safe stable systems with valid shadow D. If S1 ≈ S2,
then M(S1,D) ≈ M(S2,D).

7 Conclusions and Future Work

We designed a simple, abstract language for secure distributed communications.
Our language provides uniform protection for all messages; it is expressive enough
to program a large class of protocols; it also enables simple reasoning about security
properties in the presence of active attackers, using labeled traces and equivalences. We
implemented this calculus as a collection of concrete PPT machines embedding stan-
dard cryptographic algorithms, and established that low-level PPT adversaries that con-
trol their scheduling and the network have essentially the same power as (much simpler)
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high-level environments. To the best of our knowledge, these are the first cryptographic
soundness and completeness results for a distributed process calculus.

We also identified and discussed difficulties that stem from the discrepancy between
the two models, and developed proofs that combine techniques from process calculi
and cryptography. It would be interesting (and hard) to extend the expressiveness of our
calculus, for instance with secrecy and probabilistic choices.

Acknowledgments. This paper benefited from discussions with Martı́n Abadi, Tuomas
Aura, Karthik Bhargavan, Andy Gordon, and David Pointcheval.
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Abstract. We propose a Dolev-Yao-based definition of abuse freeness
for optimistic contract-signing protocols which, unlike other definitions,
incorporates a rigorous notion of what it means for an outside party to
be convinced by a dishonest party that it has the ability to determine the
outcome of the protocol with an honest party, i.e., to determine whether
it will obtain a valid contract itself or whether it will prevent the honest
party from obtaining a valid contract. Our definition involves a new no-
tion of test (inspired by static equivalence) which the outside party can
perform. We show that an optimistic contract-signing protocol proposed
by Asokan, Shoup, and Waidner is abusive and that a protocol by Garay,
Jakobsson, and MacKenzie is abuse-free according to our definition. Our
analysis is based on a synchronous concurrent model in which parties can
receive several messages at the same time. This results in new vulnera-
bilities of the protocols depending on how a trusted third party reacts in
case it receives abort and resolve requests at the same time.

1 Introduction

Abuse freeness is a security property introduced in [9] for optimistic contract-
signing protocols: An optimistic (two-party) contract-signing protocol is a pro-
tocol run by A (Alice), B (Bob), and a trusted third party T (TTP) to exchange
signatures on a previously agreed upon contractual text with the additional
property that the TTP will only be involved in a run in case of problems. Such
a protocol is not abuse-free for (honest) Alice if at some point during a protocol
run (dishonest) Bob can “convince” an outside party, Charlie, that he is in an
unbalanced state, where, following the terminology of [4], unbalanced means that
Bob has both (i) a strategy to prevent Alice from getting a valid contract and
(ii) a strategy to obtain a valid contract. In other words, Alice can be misused
by Bob to get leverage for another contract (with Charlie). Obviously, abuse-free
contract-signing protocols are highly desirable.

The main goal of the present work is to present a formal definition of abuse
freeness which is as protocol-independent as possible. The crucial issue with such
a formal definition is that it needs to specify what it means for Bob to convince
Charlie. One of the first proposals for this was presented by Kremer and Raskin
[12]. Roughly, their proposal is the following: To convince Charlie a message is
presented to Charlie from which he can deduce that “a protocol run has been

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 95–106, 2006.
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started between Alice and Bob”. What that means is, however, not specified
in a general fashion in [12]. Instead, this is decided on a case by case basis.
The objective of this paper is to give a generic definition. The only part which
needs to be decided on a case by case basis in our definition is what it means for
Alice (or Bob) to have received a valid contract—something which can hardly be
described in a generic way—and what the assumptions are that Charlie makes.

Before we explain our approach and the contribution of our work we need to
explain the following crucial point: Whether or not Charlie is convinced should
be based on evidence provided by Bob. Following [9], we model this evidence
as a message that Bob presents to Charlie. (In [9], this is called an off-line
attack.) This, however, has an important implication. Since Bob can hold back
any message he wants to (he can himself decide which messages he shows to
Charlie) and since Charlie is assumed to be an outside party not involved in the
protocol, if Bob could convince Charlie to be in some state of the protocol at
some point, at any later point he would be able to convince Charlie that he was
in the same state, simply by providing the same evidence. Therefore, Bob can
only convince Charlie that he is or was and still might be in an unbalanced state.
We employ this notion of abuse freeness for our work. (Note that it is stronger
than the one described above as Charlie is more easily convinced.)

Contribution of this Work. We provide a formal definition of the version of abuse
freeness just explained, apply our definition to the optimistic contract-signing
protocols by Asokan, Shoup, and Waidner [3] (ASW protocol) and by Garay,
Jakobsson, and MacKenzie [9] (GJM protocol), and show that the ASW protocol
is abusive while the GJM protocol is abuse-free according to our definition.

The idea behind our definition of abuse freeness is that Bob presents a message
to Charlie and Charlie performs a certain test on this message. If the message
passes the test, then Charlie is convinced that Bob is or was and still might
be in an unbalanced state. The test is such that from the point of view of
Charlie, Bob can only generate messages passing the test in states where Bob
is or was in an unbalanced state and where at least one of these states is in
fact unbalanced. To describe the power Bob has, we adopt a Dolev-Yao style
approach [8] (see also [2, 1, 7]). Our definition of test is inspired by the notion of
static equivalence [2].

We use a synchronous concurrent communication model in which principals
and the (Dolev-Yao-style) intruder may send several messages to different parties
at the same time. This rather realistic model requires to specify the behavior
of protocol participants in case several messages are received at the same time
(or within one time slot). This leads to new effects that have not been observed
in previous works. In the ASW and GJM protocols, one needs to specify the
behavior of the TTP in case an abort and a resolve request are received at the
same time (from different parties). The question arises whether the TTP should
answer with an abort or a resolve acknowledgment. We show that if the TTP
does the former, then the ASW and the GJM protocol are unbalanced for the
responder, and if it does the latter, the two protocols are unbalanced for the
initiator.
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Related Work. As mentioned above, Kremer et al. [12] analyzed the ASW and
GJM protocol based on finite-state alternating transition systems, using an au-
tomatic analysis tool. They explicitly needed to specify the behavior of dishonest
principals and which states are the ones that are convincing to Charlie (they use
a propositional variable prove2C, which they set manually). This is what our
definition makes obsolete.

Chadha et al. [4] introduce a stronger notion than abuse freeness, namely
balance: For a protocol to be unbalanced one does not require Bob to convince
Charlie that he is in an unbalanced state. The fact that an unbalanced state
exists is sufficient for a protocol to be unbalanced. Hence, balance is a formally
stronger notion than abuse freeness. Unfortunately, this notion is too strong in
some cases. In fact, as shown by Chadha et al. [6] in an interleaving (rather than
real concurrent) model, if principals are optimistic, i.e., they are willing to wait
for messages of other parties, balance is impossible to achieve; in this paper,
Chadha et al. also sketch a definition of abuse freeness based on epistemic logic,
but without going into details. In [5], Chadha et al. study multi-party contract
signing protocols.

Shmatikov and Mitchell [13] employ the finite-state model checker Murϕ to
automatically analyze contract-signing protocols. They, too, approximate the
notion of abuse freeness by a notion similar to balance.

Structure of the Paper. The technical part of the paper starts with an informal
description of the ASW protocol in Sect. 2, which then serves as a running
example for the further definitions. In Sect. 3, we describe our communication
and protocol model, with the new definition of abuse freeness presented in Sect. 4.
We then treat the ASW and the GJM protocol in our framework in Sect. 5 and
Sect. 6. We conclude in Sect. 7. A full version of our paper is available, see [11].

2 The ASW Protocol

In this section, we recall the Asokan-Shoup-Waidner (ASW) protocol from [3],
which will serve as a running example; the Garay-Jakobsson-MacKenzie (GJM)
protocol from [9] will be explained in Section 6.

The ASW protocol assumes the following scenario: Alice and Bob want to sign
a contract and a TTP is present. Further, it is agreed upon that the following
two types of messages, the standard contract (SC) and the replacement contract
(RC), will be recognized as valid contracts between Alice and Bob with con-
tractual text text: SC = 〈me1, NA,me2, NB〉 and RC = sigT (〈me1,me2〉) where
me1 = sigA(〈A,B, text, hash(NA)〉) and me2 = sigB(〈me1, hash(NB)〉), and as
usual, NA and NB stand for nonces. In addition to SC and RC, the variants of
SC and RC which one obtains by exchanging the roles of A and B are regarded
as valid contracts.

There are three interdependent parts to the protocol: an exchange protocol,
an abort protocol, and a resolve protocol. The exchange protocol consists of
four steps, which, in Alice-Bob notation, are displayed in Fig. 1. The first two
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messages, me1 and me2, serve as respective promises of Alice and Bob to sign
the contract, and NA and NB serve as contract authenticators : After they have
been revealed, Alice and Bob can compose the standard contract, SC.

A → B : me1
B → A : me2
A → B : NA
B → A : NB

Fig. 1. ASW exchange protocol

The abort protocol is run between Alice
and the TTP and is used by Alice to abort
the contract signing process when she does
not receive Bob’s promise. Alice will ob-
tain (from the TTP) an abort receipt or, if
the protocol instance has already been re-
solved (see below), a replacement contract.
The first step is A → T : ma1 where ma1 =
sigA(〈aborted,me1〉) is Alice’s abort request ; the second step is the TTP’s reply,
which is either sigT (〈aborted,ma1〉), the abort receipt, if the protocol has not
been resolved, or the replacement contract, RC.

Similarly, the resolve protocol can be used by Alice and Bob to resolve the
protocol, which either results in a replacement contract or, if the protocol has
already been aborted, in an abort receipt. When Bob runs the protocol (be-
cause Alice has not sent her contract authenticator yet), the first step is B →
T : 〈me1,me2〉; the second step is the TTP’s reply, which is either the abort
receipt sigT (〈aborted,ma1〉), if the protocol has already been aborted, or the re-
placement contract, RC. The same protocol (with roles of A and B exchanged)
is also used by Alice.

It is assumed that the communication between Alice and the TTP and be-
tween Bob and the TTP goes through a channel that is not under the control
of the intruder (the dishonest party), i.e., the intruder cannot delay, modify, or
insert messages. We refer to such a channel as secure. Whether or not the in-
truder can read messages sent on this channel does not effect the results shown
in this paper.

3 The Concurrent Protocol and Intruder Model

In this section, we introduce our protocol and intruder model, which, unlike most
other Dolev-Yao-based models, captures real concurrent computation. Given sets
S, T, U with U ⊆ T , we denote by ST the set of functions from T to S and for
f ∈ ST we denote by f |U the restriction of f to U .

3.1 Concurrent System Model

A concurrent system in our framework is made up of several components, which
are automata provided with input and output ports for inter-component com-
munication. Each such port can either carry a message from a given set M of
messages or the special symbol ‘◦’ (no message). We use M◦ to denote M∪{◦}.
A run of such a system proceeds in rounds: In every round, every component
reads the input on all of its input ports, and then, depending on its current
state, writes output on its output ports (possibly ◦), and goes into a new state.



A Dolev-Yao-Based Definition of Abuse-Free Protocols 99

A message written on an output port is read in the next round by the compo-
nent with the corresponding input port. Note that all components perform their
“receive-send action” at the same time and that a component may receive and
send several messages at the same time.

Formally, a component of a concurrent system over a set M of messages is a
tuple A = (S, In,Out, I,Δ) where S is a (possibly infinite) set of local states, In
is the set of input ports, Out is the set of output ports, disjoint from In, I ⊆ S is
the set of initial states, and Δ ⊆ MIn

◦ ×S×S×MOut
◦ is the transition relation,

which, w.l.o.g., is required to be complete: for each (m, s) ∈ MIn
◦ ×S there exist

s′ and m′ with (m, s, s′,m′) ∈ Δ. A transition (m, s, s′,m′) is meant to model
that if A is in state s and reads the messages m on its input ports, then it writes
m′ on its output ports and goes into state s′.

A concurrent system over a set M of messages is a finite family {Ai}i∈P of
components over M of the form (Si, Ini,Outi, Ii, Δi) such that Ini ∩ Inj =
Outi ∩ Outj = ∅ for every i and j �= i. Note that an output port of one
component may coincide with the input port of another component, which allows
the former component to send messages to the latter component.

Given a concurrent system G = {Ai}i∈P as above, its set of input and output
ports is determined by In =

⋃
i∈P Ini and Out =

⋃
i∈P Outi, respectively,

while its state set and its initial state set are defined by S =
∏
i∈P Si and

I = {s ∈ S | s(i) ∈ Ii for i ∈ P} where s(i) denotes the entry with index i in s.
We set P = In ∪ Out.

A concurrent transition is a tuple of the form (m, s, s′,m′) satisfying (m|Ini
,

s(i), s′(i),m′|Outi
) ∈ Δi for every i ∈ P . Note that if p ∈ Outl ∩ Inr for l �= r,

then this means that by applying the transition, component Al sends message
m′(p) to component Ar. A global state of G is a pair (m, s) with m ∈ MP

◦ and
s ∈ S, i.e., it contains all current messages on ports and all local states.

An (m, s)-computation of G is an infinite sequence ρ = m0s0m1s1 . . . of global
states such that (mi, si, si+1,mi+1) is a concurrent transition for every i and
(m0, s0) = (m, s). Finite (m, s)-computations are defined in the same way. An
infinite (m, s)-computation is called a run of G if m(p) = ◦ for every p ∈ P and
s ∈ I. A finite prefix of a run is called a run segment.

A global state (m, s) is called reachable if there is a run segment
ρ = m0s0m1s1 . . .mk−1sk−1 such that (mk−1, sk−1) = (m, s). Let (m, s) and
(m′, s′) be global states. We call (m′, s′) a descendant of (m, s) if there is an
(m, s)-computation ρ = m0s0m1s1 . . . such that (m′, s′) = (mi, si) for some
i ≥ 0, in particular, (m, s) is a descendant of (m, s).

3.2 Dolev-Yao Systems

To model protocols and the execution of protocols in presence of an intruder,
we consider specific concurrent systems, called Dolev-Yao systems. We first in-
troduce messages and terms, along the lines of [1, 2, 7].

Given a signature Σ and a set of variables V , the set of terms T (Σ,V) and
the set of ground terms T (Σ) are defined as usual. Given a set S ⊆ T (Σ,V),
called a set of basic operations, we call a term t an S-term if t ∈ S or if it is
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obtained from a term in S by substituting S-terms for variables and renaming
variables. We also consider an equational theory H over Σ, which we assume
is convergent, implying that every term t has a unique normal form, which we
denote by t↓.

For example, to model the ASW protocol we consider the signatureΣASW con-
sisting of the following symbols: sig(·, ·), sigcheck(·, ·, ·), pk(·), sk(·), 〈·, ·〉, π1(·),
π2(·), hash(·), A, B, T , text, ok, initiator, responder, aborted, and an infinite num-
ber of constants. Further, we choose operations that model pairing, projections,
checking a signature, signing, and hashing, that is, SASW consists of the fol-
lowing basic operations: 〈x1, x2〉, π1(x1), π2(x1), sigcheck(x1, x2, x3), sig(x1, x2),
and hash(x1). The semantics of these operations is determined by the equational
theory HASW, which consists of the following three identities: π1(〈x, y〉) = x,
π2(〈x, y〉) = y, and sigcheck(x, sig(sk(y), x), pk(y)) = ok.

Using the set S of basic operations, an intruder can derive messages from a
given set K of messages by forming (S ∪ K)-terms. We define dS(K) = {m↓ |
m is an (S ∪ K)-term without variables} to be the set of messages (in normal
form) that can be derived from K using S. In the ASW example, with K =
{〈contract, sig(sk(A), contract)〉, sk(B)}, the following term is an (SASW ∪ K)-
term: m = sig(sk(B), π1(〈contract, sig(sk(A), contract)〉)). The normal formm↓ =
sig(sk(B), contract) of m belongs to dSASW(K).

To specify a Dolev-Yao system, we partition a given (finite) set ALL of all
principals into a set HON of honest principals and a set DIS = ALL \ HON
of dishonest principals. In the Dolev-Yao system, we have a component Aπ for
every honest principal (honest components) and one component AI , the intruder
component, subsuming all dishonest principals. Each honest component Aπ has
ports (i) netinππ′ and secππ′ for sending messages to π′ for every π′ through the
network and the secure channel, respectively, and (ii) ports netoutπ

′
π and secπ

′
π for

receiving messages coming from the network (supposedly from π′) and from the
secure channel (definitely from π′) for every π′. The input and output port sets of
the intruder component AI are InI = {netinππ′ | π ∈ HON, π′ ∈ ALL} ∪ {secππ′ |
π ∈ HON, π′ ∈ DIS} and OutI = {netoutππ′ | π′ ∈ HON, π ∈ ALL} ∪ {secππ′ |
π ∈ DIS, π′ ∈ HON}, respectively. Note that one end of a network port is always
connected to the intruder (since he controls the network), while secure channel
ports directly connect two honest principals or an honest principal and a dis-
honest principal (i.e., the intruder). Instead of connecting two honest principals
directly through a secure channel, one could plug between two honest principals
a secure channel component for more flexible scheduling. However, for simplicity
and since this does not change our results (if secure channel components between
honest principals are not controlled by the adversary), we choose direct secure
channel links.

The intruder component acts as a Dolev-Yao intruder in that it may derive
arbitrary messages from its initial knowledge and the messages received so far
using S-terms as described above. Note, however, that the intruder component
(as all other components) may receive and send several messages at the same
time.
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Given the set HON of honest and the set DIS of dishonest principals, a family
{Aπ}π∈HON of honest components (with ports as specified above), and a set K of
messages (the initial intruder knowledge), we denote by DY[{Aπ}π∈HON,HON,
DIS,K] the induced Dolev-Yao system where the set S of operations the intruder
may use to derive new messages is understood from the context. If (m, s) is a
global state of a run of such a system, we denote by K(m, s) the initial knowledge
of the intruder plus the messages he has seen so far on his input ports (including
the messages currently on his input ports). We say that the intruder can deduce
message m′ at state (m, s) if m′ ∈ dS(K(m, s)).

4 Balanced and Abuse-Free Protocols

In this section, we present our formal definition of abuse freeness, based on the
notion of balance, which, in turn, is based on the notion of strategy.

4.1 Balanced Protocols

Throughout this subsection, we assume a concurrent system G = {Ai}i∈P with
set of ports P and state set S to be given.

Strategies in the context of abuse freeness need to be defined with respect to
partial information, since Bob will not necessarily know the global state of the
entire protocol at any point of the protocol execution. In addition, strategies
can be carried out jointly by several components. This motivates the following
definitions.

A function with domain (MP
◦ × S)+ is called a view function for G. Given

a view function view and a run segment ρ, we say that view(ρ) is the view of ρ
w. r. t. view. Any subset of P is called a coalition. Given a coalition J , we write
OutJ for

⋃
j∈J Outj .

Given both, a coalition J and a view function view : (MP
◦ × S)+ → W , a

view-strategy for J is a function σ which determines how the components of
J act depending on their current view w ∈ W , which itself is determined by
view. More precisely, σ assigns to each w ∈ W successor states sj ∈ Sj (for
j ∈ J) and messages mp (for p ∈ OutJ) to be written to the output ports of the
components of the coalition. Clearly, these choices are required to be consistent
with the individual transition relations Δj . Given a strategy σ and a global state
(m, s), we denote by out((m, s), σ) the set of all infinite (m, s)-computations in
which the components of the coalition J follow the strategy σ.

In our formal definition of balance, path properties are used to define what
exactly it means to prevent Alice from getting a valid contract or to obtain one.
Formally, a set ϕ ⊆ (MP

◦ × S)ω is called a G-property.
The notion of balance will be defined w.r.t. what we call a balance specifier,

i.e., a tuple β of the form (I, view, ϕ1, ϕ2) where I is a coalition, view is a view
function, and ϕ1 and ϕ2 are path properties. For instance, assume we want to
describe balance for Alice in a concrete contract signing setting. Then we need to
check whether there exist certain strategies for Bob, so we may choose I = {B}.
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More precisely, we want to know whether Bob has a strategy for preventing
that Alice gets a valid contract and a strategy for making sure Bob gets a valid
contract. So we define ϕ1 as the set of all runs of the protocol where Alice does
not get a valid contract and ϕ2 as the set of all runs where Bob gets a valid
contract. Finally, we choose view in such a way that at any given point in a run,
view returns everything Bob has observed of the system thus far. Similarly to
[4], balance is now defined as follows:

Definition 1 (balance). Let G be a concurrent system with index set P , (m, s)
a reachable state of G, and β = (I, view, ϕ1, ϕ2) a balance specifier.

The state (m, s) is β-unbalanced if there are view-strategies σ1 and σ2 for I
such that ρ ∈ ϕi for every ρ ∈ out((m, s), σi) and i ∈ {1, 2}. The system G is
β-unbalanced if there is a reachable state (m, s) of G that is β-unbalanced.

4.2 Abuse-Free Protocols

As already explained earlier, when a protocol is considered abuse-free, then this
means that from Charlie’s point of view Bob has no way of convincing him
that he is in an unbalanced state. That is, the property of being abuse-free
is relative to the view that Charlie has of the protocol. Technically, such a
view is determined by a Dolev-Yao system and a balance specifier. This mo-
tivates the following definition. A pair (Ge, βe) consisting of a Dolev-Yao system
Ge and a balance specifier βe is called an external view (with respect to abuse
freeness).

We use a specific but natural notion of test that Charlie can make use of to
verify that Bob is in fact in the position he claims to be in. As a parameter it
uses a set X ⊆ M of messages, which should be thought of as Charlie’s a-priori
knowledge, such as his private key.

A pair (M,M ′) of (S ∪X )-terms (containing exactly one variable x) is called
an atomic X -test. A message m ∈ M passes the test (M,M ′), denoted m |=
(M,M ′), if M [m/x] ≡H M ′[m/x]. The message m fails the test (M,M ′) if m
does not pass it. This is extended to boolean and ω-tests in a straightforward fash-
ion, where in ω-tests conjunctions and disjunctions with a denumerable number
of arguments are allowed (our results hold for both boolean and ω-tests). For in-
stance, if Charlie wants to check whether a message has the form 〈c, sig(sk(A), c)〉,
then he can use the boolean test (π1(x), c) ∧ (sigcheck(c, π2(x), pk(A)), ok).

As explained above, in our definition Charlie uses a test to distinguish between
messages that give evidence for an unbalanced state and messages which don’t.
In other words, Charlie considers a state unbalanced when Bob could possibly
deduce a message in that state which passes the test. Therefore, we say that for
a given X -test θ, a state (m, s) of a Dolev-Yao system Ge is θ-possible if there
exists m′ ∈ dS(K(m, s)) such that m′ |= θ.

The next definition puts everything together. A protocol is not abuse-free if
there exists a convincing test which indicates unbalanced states as explained in
the introduction:
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Definition 2 (abuse freeness). Let X ⊆ M. An external view (Ge, βe) is X -
abusive if there exists an X -test θ such that the following two conditions are
satisfied:
1. There exists a θ-possible and β-unbalanced state in Ge.
2. Each θ-possible state (m, s) of Ge is a descendant of a θ-possible and β-

unbalanced state in Ge.
Such a test is called (Ge, βe)-convincing. The external view (Ge, βe) is called
X -abuse-free if (Ge, βe) is not X -abusive.

5 The ASW Protocol Analyzed

In this section, we present our results concerning the analysis of the ASW con-
tract signing protocol. For our formal analysis of the ASW protocol, we let
σ = σASW, S = SASW, and H = HASW, as explained in Sect. 3.

5.1 The ASW Protocol Is Not Balanced

First, we note that the ASW protocol (without an optimistic honest party) can
be shown to be balanced in an interleaving (as opposed to a real concurrent)
model; the proof is along the same lines as the one presented in [4] for the
GJM protocol. By contrast, if we consider a concurrent setting and make the
assumptions that Bob (the intruder) is (1) as fast as Alice in sending messages
and (2) the TTP handles a resolve request first when an abort request is received
at the same time (or in the same time slot), we can argue (informally) that the
protocol is unbalanced: Bob has (i) a strategy to prevent Alice from getting a
valid contract, namely by simply doing nothing, and (ii) a strategy to resolve the
contract signing process after Alice has sent the first message of the exchange
protocol, namely by sending a resolve request to the TTP. Even if Alice sends
an abort request to the TTP at the same time, because of assumption (1) her
request cannot reach the TTP before Bob’s resolve request, and with assumption
(2), we know that Bob’s resolve request takes priority over Alice’s abort request.

Assumption (2) from above shows that we need to be careful when implement-
ing the TTP, because of simultaneous requests. If the TTP receives a resolve
request and an abort request at the same time, it could first serve the resolve re-
quest and then the abort request or vice versa. As a consequence, we distinguish
two models of the TTP, denoted T and T ′, with corresponding components AT
and AT ′ , respectively, and we show that for both variants of the TTP, the ASW
protocol is unbalanced.

We consider two scenarios. In the first one, we have honest Alice, dishonest
Bob, and T , and in the second one, we have dishonest Alice, honest Bob, and
T ′. More precisely, we consider GASW = DY[{Ai}i∈{A,T}, {A, T }, {B},K] and
G′ASW = DY[{Ai}i∈{B,T ′}, {B, T ′}, {A},K′] where K = K0 ∪ {sk(B)}, K′ = K0 ∪
{sk(A)}, and K0 = {A,B, T, text, pk(A), pk(B), pk(T ), initiator, responder, ok},
which means that among other things the intruder’s initial knowledge comprises
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Bob’s and Alice’s private key, respectively. The components AA and AB are
easily obtained from the informal description in Sect. 2.

We define, in a straightforward fashion, path properties ϕ̄A, ϕ̄B, and ϕI to
describe that Alice does not get a valid contract, that Bob does not get a valid
contract, and that the intruder does get a valid contract, respectively.

We assume that the intruder’s view of the system is limited to his own history,
that is, we use an appropriate view function viewI , which removes anything the
intruder cannot observe.

Finally, we define the balance specifiers βASW = ({I}, viewI , ϕ̄A, ϕI) and
β′ASW = ({I}, viewI , ϕ̄B, ϕI), which are designed in such a way that they de-
scribe being unbalanced for Bob and for Alice, respectively.

Following the informal reasoning from above, we prove that the ASW protocol
is unbalanced for either Alice or Bob, depending on which version of the TTP
is used:

Theorem 1 (ASW is unbalanced). The Dolev-Yao system GASW is βASW-
unbalanced, and, similarly, G′ASW is β′ASW-unbalanced.

5.2 The ASW Protocol Is Not Abuse-Free

For abuse freeness, we imagine that Charlie assumes that there is only one in-
stance of the ASW protocol running, but that he does not know whether Alice is
the initiator or responder, which is a realistic assumption. Formally, we replace
AA by a variant of it, denoted AA′ , which in the beginning decides whether it
wants to play the role of the initiator or the responder and then sends a cor-
responding message to Bob. We set GeASW = DY[{Ai}i∈{A′,T}, {A′, T }, {B},K]
with K as above, βeASW=({Ie}, viewI , ϕ̄A, ϕI), and X={A,B,C, T, pk(A), pk(B),
pk(C), pk(T ), sk(C), text, ok}. Here, Ie denotes the intruder of Ge. We prove:

Theorem 2 (ASW not abuse-free). The external view (GeASW, β
e
ASW) is X -

abusive. This remains true when T is replaced by T ′.

In the proof we identify a test for checking whether a message is Alice’s promise
of signature in an instance initiated by her and show that this test is convincing.

6 The GJM Protocol Analyzed

We show that, in a concurrent setting, the GJM protocol is unbalanced but
abuse-free. The structure of the GJM protocol is exactly as for the ASW proto-
col. However, the actual messages exchanged are different. In particular, in the
version of the exchange protocol of the GJM protocol the first two messages are
so-called private contract signatures [9] and the last two messages are actual sig-
natures (obtained by converting the private contract signatures into universally
verifiable signatures).

For the GJM protocol we consider the signature ΣGJM which contains the fol-
lowing individual symbols: sig(·, ·, ·), sigcheck(·, ·, ·), pk(·), sk(·), 〈·, ·〉, π1(·), π2(·),
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fake(·, ·, ·, ·, ·), pcs(·, ·, ·, ·, ·), pcsver(·, ·, ·, ·, ·), sconvert(·, ·, ·), tpconvert(·, ·, ·),
sver(·, ·, ·, ·), tpver(·, ·, ·, ·), A, B, T , text, initiator, responder, ok, pcsok, sok, tpok,
and aborted. In addition, it includes infinite sets C and R of constants that stand
for nonces and random coins used by the parties.

The equational theory HGJM that we consider contains (among some obvious
identities) the following identities to model private contract signatures (PCS):

pcsver(w, pk(x),pk(y), pk(z), pcs(u, sk(x), w, pk(y),pk(z))) = pcsok, (1)

pcsver(w, pk(x), pk(y),pk(z), fake(u, sk(y), w, pk(x),pk(z))) = pcsok, (2)

sver(w, pk(x),pk(z), sconvert(u, sk(x),pcs(v, sk(x), w, pk(y),pk(z)))) = sok, (3)

tpver(w, pk(x), pk(z), tpconvert(u, sk(z), pcs(v, sk(x), w, pk(y),pk(z)))) = tpok. (4)

A term of the form pcs(u, sk(x), w, pk(y), pk(z)) stands for a PCS computed by x
(with sk(x)) involving the text w, the party y, and the TTP z while u models the
random coins used to compute the PCS. Everybody can verify the PCS with the
public keys involved (identity (1)), but cannot determine whether the PCS was
computed by x or y (identity (2)): instead of x computing the “real” PCS, y could
have computed a “fake” PCS which would also pass the verification with pcsver.
Using sconvert and tpconvert, see (3) and (4), a “real” PCS can be converted by
x and the TTP z, respectively, into a universally verifiable signature (verifiable
by everyone who possesses pk(x) and pk(z)).

With the Dolev-Yao systems GGJM, G′GJM and the balance specifiers βGJM and
β′GJM defined as in the case of the ASW protocol but with the messages adapted
to the GJM protocol, we obtain:

Theorem 3 (GJM is unbalanced). The Dolev-Yao systems GGJM and G′GJM
are βGJM- and β′GJM-unbalanced, respectively, i.e., GJM is unbalanced for the
initiator if in the TTP resolve takes priority over abort. Conversely, GJM is
unbalanced for the responder if in the TTP abort takes priority over resolve.

With the external view (GeGJM, β
e
GJM) defined analogously to the ASW protocol

(Alice may play the role of the initiator or responder and the TTP gives priority
to resolve), again with the messages adapted to the GJM protocol, and X defined
as above, we obtain:

Theorem 4 (GJM is abuse-free). The external view (GeGJM, β
e
GJM) is X -

abuse free. The same is true if the TTP gives priority over abort.

We prove for all tests Charlie can perform: If a message m that satisfies the
test can be derived at some unbalanced state, then another message m′ could
have been derived already in a previous state which is not a descendent of an
unbalanced state and which also satisfies the test; m′ is essentially obtained by
replacing every occurrence of a real PCS by a fake one. Interestingly, the proof
requires to model random coins. Without such coins, one could deduce that given
two different messages both passing the same test pcsver, one of the messages
must be the real PCS while the other one is the fake one.
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7 Conclusion

We have proposed a new definition of abuse freeness which involves as key fea-
tures (i) a specifically designed notion of test performed by the outside party
and (ii) a formalization of the assumptions of the outside party by the notion of
external view. We have applied our definition to the ASW and GJM protocol,
where for the latter protocol we have developed an equational theory to describe
the semantics of private contract signatures.

In view of the results in [1, 7, 10], we are currently investigating decidability of
abuse freeness as defined here. Also, we study whether balance can be achieved
in a real concurrent communication model, given that both the ASW and the
GJM protocol are unbalanced no matter what priority the TTP gives to abort
and resolve requests received at the same time.
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Abstract. We propose a general framework of secrecy and preserva-
tion of secrecy for labeled transition systems. Our definition of secrecy
is parameterized by the distinguishing power of the observer, the prop-
erties to be kept secret, and the executions of interest, and captures
a multitude of definitions in the literature. We define a notion of se-
crecy preserving refinement between systems by strengthening the clas-
sical trace-based refinement so that the implementation leaks a secret
only when the specification also leaks it. We show that secrecy is
in general not definable in μ-calculus, and thus not expressible in spec-
ification logics supported by standard model-checkers. However, we
develop a simulation-based proof technique for establishing secrecy pre-
serving refinement. This result shows how existing refinement checkers
can be used to show correctness of an implementation with respect to a
specification.

1 Introduction

Security and confidentiality are growing concerns in software and system devel-
opment [14]. The question of how to ascertain that an attacker cannot easily get
information about classified data is central in this domain. We investigate the
possibilities for using automated verification techniques (such as model check-
ing) to answer this question, and in particular, we focus on the notion of refine-
ments that preserve secrecy. Stepwise refinement is considered to be the correct
approach to system and software construction, since it enables developers to
find design errors in earlier stages of development. Refinements are useful for
synthesizing implementations from higher level specifications, for instance via
compilation or other code transformations. Such refinement based approach has
been advocated by, for example, Hoare [6] and Lamport [8]. Our goal is to de-
velop a formal and general framework for refinement that also takes into account
secrecy.

Our contributions are two fold. First, we introduce a general framework for
reasoning about secrecy requirements in a system. We use the standard verifica-
tion framework – labeled transition systems. Our notion of secrecy depends on
three parameters: (1) the equivalence relation on runs of the system that models
the distinctions the observer can make, (2) the properties that are to be kept
secret, and (3) the set of runs that are of interest. Intuitively, a property is secret
if, for every run of interest, there is an equivalent run such that only one of these
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two runs satisfies the property. We show that by varying these three parameters,
it is possible to capture possibilistic definitions of secrecy found in the literature
such as noninterference and perfect security property [13, 16]. We study whether
such a general notion of secrecy can be specified using temporal logics. The an-
swer is negative: we prove that secrecy is not expressible in μ-calculus. It has
been claimed (see [3]) that it is possible to specify secrecy in temporal logic
on self-composition (self-composition is a composition of a program with itself).
However, we demonstrate that this too is not possible for the general definition
of secrecy.

It is well-known that standard notions of refinement (e.g. trace inclusion) do
not preserve secrets, and the refined program may leak more secrets than the
original program [10]. Our second main contribution is that we define secrecy-
preserving refinement and present a simulation-based technique for proving that
one system is a refinement of another. In our definition, an implementation is a
refinement of the specification, if for every run r of the implementation, there
exists a run r′ of the specification such that the observer cannot distinguish r
from r′, and for every property that the observer can deduce from r in the imple-
mentation can also be deduced by observing r′ in the specification. Simulation
is a standard technique: in order to show that a program P refines a program Q
(in the classical sense), one can show that Q simulates P . This can also be part
of the simulation based proof of secrecy-preserving refinement, since we require
trace inclusion in the usual way. However, in order to show that P does not leak
more secrets than Q, one must also show that P simulates Q. The reason is that
using this simulation relation, one can prove that if P leaks a secret, then so
does Q. This implies that even though secrecy is not specifiable in μ-calculus,
and thus cannot be directly checked by existing model-checkers, showing that
implementation preserves secrets of the specification can be done using exist-
ing tools (such as Mocha [2], CadenceSMV [11], PVS [12]) by establishing a
simulation relation.

Related Work

We know of only two notions of secrecy preserving refinements that were defined
previously. Mantel [9] assumes that some fixed, strong information-flow proper-
ties of the system are enforced and his definition of refinement preserves those
properties. Our approach is more flexible because it permits the specification
of arbitrary secrecy requirements. This means that if the specification program
does not maintain secrecy of a certain property, the implementation program
does not need to either. Jürjens [7] considers a different (and weaker) defini-
tions of secrets. In his approach, a secret is leaked if the program (possibly when
interacting with an adversary) outputs the secret. This approach thus ignores
information-flow leaks, i.e. cases when the adversary can infer something about
the secret without explicitly seeing it.

There is a large body of literature in language-based security (see [13] for an
overview). Various definitions of secrecy have been considered, but all possibilis-
tic variations (those that ignore probabilistic information about the distribution
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of system behaviors) can be captured in our framework. More closely related is
the work on checking for secrecy using self-composition techniques—the work
by Barthe et al. mentioned above and [15, 4], where the authors consider only
deterministic programs. Halpern and O’Neill [5] define a notion of secrecy in the
context of multiagent systems that is similar to our definitions, but they do not
consider secrecy-preserving refinements. The preservation of secrecy has been
studied in the context of programming language translation by Abadi [1] using
techniques based on full abstraction.

2 Secrecy Requirements

In this section, we introduce a framework in which we can reason about prop-
erties of a system being secret, i.e. not inferable by an observer who sees the
behavior of the system. The framework we present is general enough to capture
all possibilistic definitions of secrecy defined in both programming language and
verification literature, to the best of our knowledge.

A labeled transition system (LTS) T is a tuple (Q,L, δ, I), where Q is a set of
states, L is a set of labels, δ ⊆ Q× L ×Q is a transition relation, and I ⊆ Q a
set of initial states.

A sequence r = q0l0q1 . . . of alternating states and labels is a run of the
labeled transition system T iff q0 ∈ I and ∀i : 0 ≤ i < |r| ⇒ (qi, li, qi+1) ∈ δ. Let
R(T ) be the set of all runs of the LTS T .

A property α is a subset of the set of runs, i.e. α ⊆ R(T ). A state-property
is a property that depends only on the last state of a run. Formally, α is a
state-property iff there is a set of states Qs ⊆ Q such that r ∈ α iff r =
q0l0q1l1 . . . ln−1qn and qn is in Qs.

Given this model of systems, we want to define what an observer can see
and what he or she can infer based on those observations. The observer cannot
see everything about the current run of the system, that is to say, in general,
several runs can correspond to the same observation. We model this using an
equivalence relation on runs, ≡ ⊆ R(T ) ×R(T ). For a property α, the observer
is able to conclude that α holds, if α holds for all the runs that correspond to
his or her observations. He or she is able to conclude that α does not hold, if
it does not hold for all the runs that correspond to the observations. The third
possibility is that the observer is not able to conclude whether α holds or not. We
will thus need to use a three-valued domain, {#,⊥,m} (true, false, maybe), and
a partial order that models the knowledge the observer has. $ is the following
partial order on {#,⊥,m}: m $ m,m $ #,m $ ⊥,⊥ $ ⊥,# $ #.

Function IP – inferable properties, is a function that, given a run r, a property
α and an equivalence relation ≡, represents the knowledge of the observer about
the property α after the run r. IP(r, α,≡) = # if ∀r′ : r′ ≡ r ⇒ r′ ∈ α,
IP(r, α,≡) = ⊥ if ∀r′ : r′ ≡ r ⇒ r′ /∈ α and IP(r, α,≡) = m otherwise. Our
notion of secrecy depends on one additional parameter: instead of requiring a
property α to be secret in every run of the system, we may want to focus only
on a subset β of runs that are of interest, e.g. the set of all terminating runs.
This leads to the following formalization of secrecy:
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Let T be a labeled transition system and α and β be two properties. The
property α is a secret in β for T w.r.t. ≡ if for all r ∈ β, IP(r, α,≡) = m.

We present the following examples in order to show that our definition is general
enough to capture several standard information-flow properties such as noninter-
ference or Perfect Security Property. We can capture these definitions by varying
the parameters ≡ and β.

Linear-Time Secrecy

Consider an observer who can see the actions of the system, i.e. the labels in L.
These labels, for example, might be the messages sent or received by the system.
Assume that L contains a symbol τ , which models internal actions of the system.

We define the strong (time-sensitive) equivalence relation (≈) as follows. Let
Tr be an erasing homomorphism defined on runs: Tr(q) = ε, Tr(l) = l, i.e.
Tr erases all states. Two runs r and r′ are strongly equivalent (r ≈ r′) iff
Tr(r) = Tr(r′). The equivalence class to which a run r belongs can be rep-
resented by Tr(r), which corresponds to what the observer sees when r is the
current execution of the system. Tr(r) is a sequence of labels, and such sequences
are called traces. Tr(T ) is the set of all traces of the LTS T .

We define the weak (time-insensitive) equivalence relation (≈w) as follows.
Let Trw be an erasing homomorphism defined on runs: Trw(q) = ε, Trw(l) = l
for l �= τ and Trw(τ) = ε, i.e. Trw erases all states and all internal actions.
Two runs r and r′ are weakly equivalent (r ≈w r′) iff Trw(r) = Trw(r′). The
equivalence class can be represented by Trw(r) and is called a weak trace. Let
Trw(T ) be the set of all weak traces of the LTS T .

Consider the following two programs.

A: x=?; y=0; z=x; send z;
B: x=?; y=0; z=y; send z;

It is easy to see how they can be modeled as transition systems in our framework.
The states are valuations of variables. The set L contains three labels s0, s1, τ .
s0 denotes the fact that 0 was sent, s1 that 1 was sent and τ denotes all the
internal (silent) actions. The input (x = ?) is intended not to be seen by an
observer and thus is modeled by a silent action. We want to analyze what an
observer might infer about whether or not x = 0 during the execution of the
program if he or she can observe what the program sends. We model this using
the strong observational equivalence ≈ and the state property x = 0. Suppose
that the input is 0. Note that the observer sees the same trace for both programs,
namely t = τττ0. For the program A, the observer, after having seen the trace
t was sent, can conclude that x = 0 holds. For the program B, the observer
does not know whether x = 0 holds or not after having seen the trace t. We can
conclude that for program A, the state property x = 0 is not a secret in the set
of all runs w.r.t. ≈ and it is a secret for program B.
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Noninterference

Consider the standard formulation of termination insensitive noninterference
[13]. It is defined using low and high variables, where low variables are visible to
the observer and high variables are not. Noninterference can be then formulated
informally as follows: “if two input states share the same values of low variables
then the behaviors of the program executed from these states are indistinguish-
able by the observer”.

We define functional equivalence ≈f as follows. Let ≈if and ≈of be two equiv-
alence relations on states. For all terminating runs r and r′ we have r ≈f r′

iff their initial states are related by ≈if and their final states by ≈of . We model
noninterference by functional equivalence defined above. Two states q and q′ are
related by ≈if (and ≈of) exactly when the valuation of the low variables is the
same in q and q′.

The purpose of using noninterference is to determine whether some property
α of high variables is inferable by an observer who sees only low variables. We
can capture this in our framework as follows. Let P be the set of all expressible
properties of high variables. For example, if every property of high variables
is considered to be expressible, P corresponds to the powerset of the set of
valuations of high variables. Consider a classic requirement such as “a secret key
should stay secret.” In our framework, this can be expressed as “a secret key
stays secret with respect to a set of predicates P”, i.e. none of the properties of
the secret key that are in P will be revealed.

Let βt be the set of all terminating runs. We can conclude that the system
satisfies the noninterference property w.r.t. P iff for all α ∈ P , α is secret in βt
w.r.t. ≈f .

Perfect Security Property

Let us consider the Perfect Security Property (PSP) [16]. It is an information-
flow property defined in a trace-based setting. In order to define it, we divide
the labels into low-security and high-security categories. The observer knows
the specification of the system - i.e. the set of all possible traces (sequences
of labels) and he or she can observe low-security labels. PSP ensures that
the observer cannot deduce any information about occurrences of high-security
events.

We can model the PSP in our framework by choosing an appropriate equiv-
alence relation on runs and a property on runs. Let Low ⊆ L be a set of low-
security labels and let High ⊆ L be a set of high-security labels such that Low
and High partition L. We use the following equivalence relation. Let Trpsp be
an erasing homomorphism defined on runs as follows: Trpsp(q) = ε, Trpsp(l) = l
for l ∈ Low and Trw(l) = ε for l ∈ High, i.e. Trpsp erases all states and
all high-security actions. Two runs r and r′ are psp-equivalent (r ≈psp r′) iff
Trpsp(r) = Trpsp(r′). For each label h ∈ High, we define the property αh: a run
r is in αh if h occurs in r. Now we can conclude that PSP holds iff αh is secret
in βall w.r.t. ≈psp for all h ∈ High.
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Specifying Secrecy in Temporal Logics

It is well-known that secrecy cannot be expressed as a predicate on a single trace
and hence cannot be specified in linear-time specification languages such as linear
temporal logic (see, for example, [10], for a proof). We prove that secrecy is not
a branching-time property either.

Let us consider finite trees over alphabet Σ. The vertices are labeled by ele-
ments of Σ (edges are not labeled). A tree T can be seen as an LTS T ′, where
states correspond to vertices of the tree, edges are the parent-child edges, and
all the edges are labeled by the same symbol. For each label α ∈ Σ, let α′ be a
state-property corresponding to the set of all vertices labeled by α.

Theorem 1. The set S of trees T over {α, β} such that α′ is secret in β′ w.r.t.
≈ for T ′ is not a regular tree-language.

Proof. For a proof by contradiction, suppose that S is regular. Then the following
special case, defined by a regular condition that β′ is false only for the root of the
tree, would also be regular. The fact that α′ is secret in β′ w.r.t. ≈ corresponds
to the fact that at each depth d (d > 0) of the tree, there is a node in α′ and a
node not in α′. It is well-known that this is not a regular property. ��

Corollary 1. The set of trees T over {α, β} such that α′ is secret in β′ w.r.t.
≈ for T ′ is not definable in μ-calculus.

Note that it is possible to devise algorithms based on standard model-checking
for special cases of our definition of secrecy. For example, Barthe et al. [3] claim
that it is possible to use CTL model-checking to check for noninterference in
finite-state systems. However, upon examination, this holds only for a specific
definition of noninterference, the one based on functional equivalence relation
(as opposed to, e.g., strong equivalence relation). Barthe et al. reduce checking
for noninterference to model-checking a CTL formula on self-composition. Self-
composition can be viewed as a (sequential or parallel) composition of a program
with itself (variables are renamed in the other copy of the program). It can be
shown, by a proof similar to the one above, that there is no μ-calculus formula
that characterizes the general definition of noninterference on self-composition.

3 Secrecy-Preserving Refinements

Let us suppose that we have two labeled transition systems Tspec and Timp . We
want to establish that Timp does not leak more secrets than Tspec.

First, consider the classical notion of refinement, where Timp refines Tspec iff
all behaviors of Timp are allowed by Tspec. This notion of refinement preserves all
properties expressible in linear temporal logic, but does not in general preserve
the secrecy of properties. Consider two of the systems in Figure 1, (a) as Tspec
and (b) as Timp . Using the classical notion, Timp is a refinement of Tspec, since
the behaviors of Timp are included in behaviors of Tspec. This holds for both
the functional (input-output) and observational (trace-based) view of behaviors.
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However, Timp leaks more secrets than Tspec does. If the observer of Timp sees a
trace s0, he or she can conclude that α does not hold. On the other hand, for
Tspec, the observer cannot determine whether α holds or not.

We proceed to introduce a new notion of refinement, one that preserves secrecy
of properties. Intuitively, we want to show that for each run r of Timp , there is
an equivalent run r′ of Tspec, such that the observer can deduce less about the
properties of interest when observing Timp executing r than when observing Tspec

executing r′. Hence, let us extend the equivalence relation ≡ to the runs of the
two systems, i.e. ≡ ⊆ (R(Tspec)∪R(Timp))× (R(Tspec)∪R(Timp)). Furthermore,
we need to relate properties of interest for the two systems. Analogously, a
property α now will be a subset of R(Tspec) ∪R(Timp).

Now we are ready to state when a refined transition system preserves at least
as many secrets as the original one:

Secrecy-preserving refinement
Let Tspec, Timp be two labeled transition system, let P be a set of
properties and let ≡ be an equivalence relation on R(Tspec) ∪ R(Timp).
Timp P-refines Tspec w.r.t. ≡ iff for all runs r ∈ R(Timp), there exists
a run r′ ∈ R(Tspec) such that r ≡ r′ and for all properties α ∈ P ,
IP(r, α,≡) $ IP(r′, α,≡).

We present the following observations and an example to illustrate the defini-
tion. First, note that secrecy-preserving refinement extends the classical notion:
consider the case when the set of properties P is empty. For strong (weak)
equivalence P-refinement corresponds to (weak) trace inclusion. For functional
equivalence, P-refinement corresponds to the requirement that the input-output
relation of Timp is included in the input-output relation of Tspec.

Consider the programs A and B from Section 2 again. As before, suppose
that the observer does not see the input, but this time, we fix the input to
be 0 in order to simplify the example. We consider the strong observational
equivalence and we are interested in the state-property α that is true iff x = 0.
There is only one run in each of the programs. Those runs are equivalent, since
the trace is simply τττs0 in both cases. Let rA denote the run of A and let rB
denote the run of B. As we have seen, IP (rA, α,≈) = # and IP (rB , α,≈) = m.
Thus we can conclude that A does not P-refine B w.r.t. ≈, but B P-refines A
w.r.t. ≈.

The following theorem states that the P-refinement preserves the secrets from
P , i.e. that if Tspec does not leak a secret α ∈ P and Timp is a P-refinement of
Tspec, then also Timp does not leak the secret α. Before stating the theorem, we
need to define one more condition on the set of runs that are of interest, β. A
property β is ≡-preserving iff for all r and for all r′, if r ∈ β and r ≡ r′, then
r′ ∈ β.

Theorem 2. Let Tspec and Timp be two transition systems such that Timp P-
refines Tspec w.r.t. ≡ and let β be a an ≡-preserving property. If α ∈ P is a
secret in β for Tspec w.r.t. ≡, then α is a secret in β for Timp w.r.t. ≡.
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4 Proving Secrecy Using a Simulation Relation

In this section we restrict our attention to the strong (time-sensitive) and weak
(time-insensitive) equivalence relations on runs and we consider only state-
properties. With appropriate modifications, simulation-based proof techniques
can be developed for other equivalences such as the ones used for noninterfer-
ence and perfect security.

Let Tspec = (Qspec, L, δspec, Ispec) and Timp = (Qimp , L, Timp, Iimp) be labeled
transition systems. As above, let P denote both a set of properties about Tspec
and a corresponding set of properties about Timp . Note that the two transition
systems have the same set of labels, thus the relation ≈ (the strong observational
equivalence) can be seen as a relation on R(Tspec) ∪R(Timp).

A binary relation � ⊆ Qspec ×Qimp is a simulation relation iff for all q1 � q′1
for all state properties α ∈ P , q1 ∈ α iff q′1 ∈ α and for every q2 ∈ Qspec and

l ∈ L such that q1
l→ q2 there exists q′2 ∈ Qimp such that q′1

l→ q′2 and q2 � q′2.
We say that Timp simulates Tspec (Tspec � Timp), if there exists a simulation

relation � such that for every q1 ∈ Ispec there exists q′1 ∈ Iimp such that q1 � q′1.
A binary relation �w ⊆ Qspec ×Qimp is a weak simulation relation iff for all

q1 �w q′1, for all state properties α ∈ P , q1 ∈ α iff q′1 ∈ α and we have:

– q′1
τ→ q′2 implies that there exists a q2 such that q1

τ→
∗
q2 and q2 �w q′2

– q′1
l→ q′2 implies that there exists a q2 such that q1

τ→
∗ l→ τ→

∗
q2 and q2 �w q′2.

Weak simulation between transition system is defined similarly to simulation
between transition systems.

Let us consider the case of strong (time-sensitive) equivalence relation on
runs. Firstly, we note that it follows from the definition of P-refinement that the
standard refinement condition (Tr(Timp) ⊆ Tr(Tspec)) is a necessary condition
for the P-refinement.

Secondly, note that unlike classical refinement, the condition that Tspec sim-
ulates Timp is not sufficient for P-refinement. To see this consider again two of
the systems in Figure 1, (a) as Tspec and (b) as Timp . Note that Tspec simulates
Timp , but Timp leaks information on α on the trace s0, whereas Tspec does not.

The property we are looking for is in fact the simulation in the other direction,
i.e. that Timp simulates Tspec. The reason is that using this simulation relation
one can prove that if Timp leaks a secret, then so does Tspec. Note also the
condition that Timp simulates Tspec is not a sufficient condition. Consider now
the system on Figure 1(a) as Tspec and the system on Figure 1(c) as Timp . Now
Timp refines Tspec, but for the trace s1, Timp leaks more secrets than Tspec.

The combination of the two conditions, Tr(Timp) ⊆ Tr(Tspec) and Timp sim-
ulates Tspec is sufficient to guarantee that P-refinement holds.

Theorem 3. If Tr(Timp) ⊆ Tr(Tspec) and Tspec � Timp, then Timp P-refines
Tspec w.r.t. ≈.

Proof. Let r be a run in R(Timp). We have to prove that there exists a run r′ in
Tspec such that r ≈ r′ and IP(r, α,≈) $ IP(r′, α,≈). We have that Tr(Timp) ⊆
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Tr(Tspec), therefore there exists a run r′ in Tspec such that r ≈ r′. It remains
to prove that IP(r, α,≈) $ IP(r′, α,≈). Let us suppose that IP(r, α,≈) = #.
We have to show that IP(r′, α,≈) = #. Let us suppose that IP(r′, α,≈) = ⊥ or
IP(r′, α,≈) = m. In any of the two cases, we know that there exists r′′ ∈ R(Tspec)
such that r′ ≈ r′′ and the last state of r′′ is not in α. Using the condition
Tspec � Timp we prove (by induction on the length of the Tr(r′′)) that there
exists an r′′′ ∈ R(Timp) such that r′′ ≈ r′′′ and the last state of r′′′ is not in
α. By transitivity of ≈, we have that r′′′ ≈ r. This is a contradiction with the
assumption IP(r, α,≈) = #. Thus we can conclude that if IP(r, α,≈) = #, then
IP(r′, α,≈) = #. The case of IP(r, α,≈) = ⊥ is similar. If IP(r, α,≈) = m, then
there is nothing to prove, since m $ IP(r′, α,≈). ��

For weak equivalence relation on runs, a similar theorem holds.

Theorem 4. If Trw(Timp) ⊆ Trw(Tspec) and Tspec �w Timp, then Timp P-
refines Tspec w.r.t ≈w.

Note that Theorem 3 implies that secrecy is preserved by bisimulation, since
for bisimilar systems, both conditions are met. Note also that we have shown in
Section 2 that secrecy is not a branching time property.

α

α ¬α

(a)

α

¬α

(b)

α

α ¬α ¬α
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Fig. 1. Refinement by simulation
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Fig. 2. Simulation is not a neces-
sary condition

The conjunction of the two conditions of Theorem 3 is not a necessary condi-
tion for P refinement. Consider the two systems in Figure 2 and suppose the set
P of properties is the singleton {α}. Note that Tr(Timp) ⊆ Tr(Tspec) and Timp
does not simulate Tspec. However, Timp does not leak any more secrets Tspec.

5 Example

We present an example in order to illustrate the definition of secrecy-preserving
refinement and to demonstrate the simulation-based proof method defined above.
We will present two implementations, Tspec and Timp , of a protocol (more pre-
cisely, of one round of a protocol). We will show that while functionally they are
equivalent (their input-output relation is the same) and Timp refines Tspec in the
classical sense (trace inclusion), the implementation Timp leaks some properties
that should be secret, whereas Tspec does not.
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Consider the game Battleship. We will analyze an implementation of one of the
players in one round of the protocol, so the following description is sufficient for
our purposes1. The input (for each round) consists of a grid, where each square
is either marked (meaning a ship is there) or unmarked, and of two integers i and
j. The output should be yes if the square with coordinates i and j is marked.

Let us consider two implementations of this protocol, Tspec and Timp . Tspec
uses the straightforward array representation, Timp uses a list representation.
In Timp , the board is represented by a list of rows and each row contains a list
of the marked cells. (A possible motivation for the (re-)implementation Timp is
that it might be more efficient in case of sparse boards.)

Board:

1 2 3

3

1

2

Tspec :

array board;
int i,j;

rcv i; rcv j;
r = A[i,j];
send r;

Timp :

list board, row;
int i,j;

rcv i;rcv j;
row=Board.getRow(i)
if (row.IsEmpty())

r=0; send r;
else

r=row.getElem(j); send r;

Fig. 3. The Battleship game

We briefly explain how can the programs such as Tspec and Timp be modeled in
our framework. We use the standard operational semantics approach. The states
are valuations of all variables (such as board, row and program counter pc). The
label s0 denotes the fact that 0 was sent, s1 that 1 was sent and τ denotes all
the internal (silent) actions. We model the fact that the board can in general
be in any state at the beginning of a round of the battleship protocol by having
multiple initial states. For the purposes of this example, we also model receives in
this way. Thus any valuation of the variables where program counter is equal to
0 is an initial state. An assignment is modeled as an internal action τ . We model
the methods (such as getRow()) by one internal action (thus a statement that
contains an assignment and a method call is modeled by two internal actions).
As an example consider the case shown in Figure 3 and the inputs i = 1 (column
numbered 1) and j = 2 (row numbered 2). The initial state is now determined.
The trace produced by Tspec is τs1. The trace produced by Timp is τττττs1 . For
each cell with coordinates (i, j) of the board, we define a property αij that is
true iff the cell is marked. Let P be the set of these properties.

We will now show that Tspec and Timp are equivalent w.r.t. ≈w, that is, Tspec

P-refines Timp and Timp P-refines Tspec w.r.t. ≈w and that it can be proven by
simulation. We will prove also that Timp does not P-refine Tspec w.r.t. ≈.

1 For a full description of the game, google “battleship”.



Preserving Secrecy Under Refinement 117

Let us start by proving that for weak refinement, Tspec and Timp are equiva-
lent. We show that Tr(Timp) ⊆ Tr(Tspec) and that Tspec �w Timp . To see that
Tr(Timp) ⊆ Tr(Tspec), note that both Tspec and Timp have the same set of weak
traces, namely {0, 1} (since all the other actions are internal). Now we will show
that Timp simulates Tspec. We will present a function f from the states of Tspec

to the states of Timp and show that it defines a simulation relation. Recall that
the states of Tspec and Timp characterize the current board position, and contain
valuations of variables for i, j and the program counter pc. In order to be able to
define f , we divide the states of Tspec into Q1

spec and Q2
spec, where Q1

spec contains
those states where the value of pc (program counter) indicates that the send
instruction has not been executed yet and Q2

spec all the other states. We divide
the states of Timp analogously. The function f will relate each state q of Tspec to
a state q′ of Timp that has the same board position, the same valuations of i and
j, and q ∈ Qispec iff q′ ∈ Qiimp . It is easy to check that f defines a weak simula-
tion such that Tspec simulates Timp . By Theorem 4, we can conclude that Timp

is a P-refinement of Tspec w.r.t. ≈. Note also that Tr(Timp) = Tr(Tspec) and
the simulation we just defined is a bisimulation. Thus we can similarly conclude
that Tspec is a P-refinement of Timp w.r.t. ≈.

We also show that Timp does not P-refine Tspec w.r.t. ≈ according to our
definition, because Timp leaks more secrets in certain situations. Again, con-
sider the case depicted in Figure 3, but this time we fix the inputs to be i = 1
(column numbered 1) and j = 1 (row numbered 1). We assume the observer
knows these inputs (but note that he or she does not see the board.) We ana-
lyze what he or she can infer from the execution of Tspec (and Timp) on these
inputs. As noted above, once the initial state is fixed (by the input values)
there is only one possible run of Timp (we denote it by r). The corresponding
trace is t1 = ττττs0 . However, after the observer observes the trace t1, he or
she can infer that the j-th row is empty. For example, he or she knows that
IP(r, α21,≈) = ⊥. This can be inferred because the number of internal actions
is 4 (whereas if the j-th row was not empty, 5 internal actions would be observed
before the final s0). The execution of Tspec is similar in that there is only one pos-
sible run r given the inputs. The corresponding trace is τs0. Given the program
Tspec, it is clear that it is not possible to infer information about a property
αij , i �= 1, j �= 1, i.e. IP(r′, αi′j′ ,≈) = m for i �= 1 and j �= 1. In particular,
IP(r′, α21,≈) = m. We can thus conclude that Timp is not a P-refinement of
Tspec w.r.t. ≈.

6 Conclusion

This paper presents a general framework for formal reasoning about secrecy
properties. The framework is based on labeled transition systems and is thus
suitable for presentation of algorithms for automated verification of secrecy. We
presented how different definitions of secrecy can be captured in our framework.
We showed also that secrecy is not definable by a μ-calculus formula. The main
focus of this work was on defining a notion of refinement that preserves secrecy of
properties and providing a method for proving that such a refinement holds. This
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method is based on simulation and thus can be used for automatic verification
using existing tools.

There are several directions for future research. One possibility is to extend
this work with static analysis for secrecy-preserving refinements of programs.
Second, it would be useful to define program transformations to help designers
to transform designs in a way that guarantees the preservation of secrecy. Third,
we plan to investigate a logic for secrecy of properties. Fourth, it would be
interesting to apply the framework presented here to resource-driven protocol
transformation for embedded systems, such as Java cards or smart cards.
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Abstract. We study two quantitative models of information leakage in the
pi-calculus. The first model presupposes an attacker with an essentially unlimited
computational power. The resulting notion of absolute leakage, measured in bits,
is in agreement with secrecy as defined by Abadi and Gordon: a process has an
absolute leakage of zero precisely when it satisfies secrecy. The second model
assumes a restricted observation scenario, inspired by the testing equivalence
framework, where the attacker can only conduct repeated success-or-failure
experiments on processes. Moreover, each experiment has a cost in terms of
communication actions. The resulting notion of leakage rate, measured in bits
per action, is in agreement with the first model: the maximum information that
can be extracted by repeated experiments coincides with the absolute leakage A
of the process. Moreover, the overall extraction cost is at least A/R, where R is
the rate of the process. Strategies to effectively estimate both absolute leakage
and rate are also discussed.

Keywords: process calculi, secrecy, information leakage, information
theory.

1 Introduction

Research in language-based security has traditionally focused on qualitative aspects.
Recently, a few models have been proposed that allow forms of quantitative reasoning
on security properties. For a sequential program, it is natural to quantify leakage by
measuring the information flow between secret ("high") and public ("low") variables
induced by the computed function. Along these lines, an elegant theory of quantitative
non-interference has been recently proposed by Clark et al. [12] (other proposals in the
literature are examined in the concluding section.)

In this paper, we study quantitative models of information leakage in process calculi.
Processes come with no natural notion of computed function. Rather, one is interested
in quantifying the leakage induced by their observable behaviour. The difference in
intent can be illustrated by the following concrete example. A smart-card implements a
function that takes documents as input and releases documents signed with a secret key
as output. However, typical attacks targeting the secret key do not focus on the function
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itself, but rather on the behaviour of the card, in terms e.g. of observed time variance of
basic operations [9], or observed power consumption [10].

Our starting point is the notion of secrecy as formalized by Abadi and Gordon, orig-
inally in the setting of the spi-calculus [1]. In the sequel, we will refer to this notion
as AG-secrecy. Informally, AG-secrecy holds for a process P and a parameter x repre-
senting a sensible information, if the the observable behaviour of P does not depend on
the actual values x takes on. In other words, an attacker cannot infer anything about x
by interacting with P. The notion of "observable behaviour" is formalized in terms of
behavioural equivalence, such as may testing [4, 2].

Although elegant and intuitive, AG-secrecy is in practice too rigid. The behaviour of a
typical security application depends nontrivially on the sensible information it protects.
Nevertheless, many such applications are considered secure, on the ground that the
amount of leaked information is, on the average, negligible. Consider a PIN-checking
process P(x) that receives a code from a user and checks it against a 5-digits secret code
x, in order to authorize or deny a certain operation. Clearly, an attacker may acquire
negative information about x by interacting with P(x). However, if P(x) is intended
to model, say, an off-line device like a card reader, such small leaks should be of no
concern. More generally, one would like to first measure the information leakage of a
given system and then decide if it is acceptable or not.

In the present paper, we propose two quantitative models of leakage for processes:
one for measuring absolute leakage, and one for measuring the rate at which informa-
tion is leaked. As explained below, the two models correspond to different assumptions
on the control an attacker may exercise over processes. The connections between these
two models will also be clarified.

After quickly reviewing a few notions from information theory that will be used
in the paper (Section 2), we introduce our reference language, a pi-calculus with data
values (Section 3). In the first model (absolute leakage, Section 4), we presuppose an
attacker with full control over the process. Using the language of unconditional security,
the model can be phrased as follows. A sensible information is modeled as a random
variable, say X . The a priori uncertainty of an adversary about X is measured by the
Shannon entropy H(X), expressed in bits. For full generality, it is assumed that some
"side-information" Y , possibly related to X , is publicly available: the conditional en-
tropy H(X |Y ) measures the uncertainty about X given that Y is known. The process P,
depending in general on both X and Y , induces a random variable Z = P(X ,Y ): follow-
ing the discussion above, it is reasonable to stipulate that Z takes as values "observable
behaviours", that is, equivalence classes of a fixed behavioral semantics. Now, the con-
ditional entropy H(X |Y,Z) quantifies the uncertainty on X left after observing both Y
and Z. Hence the difference I = H(X |Y )−H(X |Y,Z) is the amount of uncertainty about
X removed by P, that we take as its absolute leakage. We prove that this notion is in
full agreement with the qualitative notion of AG-secrecy. In the special case when there
is no side-information, this means that P(x) respects AG-secrecy if and only if P(X)
has an absolute leakage of 0 for every random variable X . We also offer two alternative
characterizations of zero-leakage, hopefully more amenable to automatic checking.

The second model we consider (rate of leakage, Section 5), refines the previous sce-
nario by introducing a notion of cost. Adapting the testing equivalence framework [4],
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we stipulate that an attacker can only conduct upon P repeated experiments E1, E2,...
each yielding a binary answer, success or failure. The attacker has "full control" – in the
sense of the first model – over the compound systems P||E , but not over P itself. The
security measure we are interested in is the overall number of communications required
to extract one bit of information in this scenario. Thus, we define the rate at which P
leaks information in terms of the maximal number of bits of information per visible
action conveyed by an experiment on P. We then give evidence that this is indeed a
reasonable notion. First, we establish a relationship with the first model, showing that
absolute leakage A coincides with the maximum information that can be extracted by
repeated experiments, and that this costs at least A/R, where R is the rate of P. Second,
we establish that, under certain conditions, process iteration (∗P) leaves the rate of P
unchanged, which is what one would expect from a good definition of rate. Finally, in
the vein of testing equivalence, we give an experiment-independent characterization of
rate in terms of execution traces.

Strategies to effectively estimate rate of leakage (Section 5) and absolute leakage
(Section 6) are also discussed. These strategies depend on the use of symbolic semantics
in the vein of [7, 3]. Some remarks on further and related work conclude the paper
(Section 7). Proofs have been omitted due to lack of space.

2 Preliminary Notions

We quickly recall a few concepts from elementary information theory; see e.g. [15] for
full definitions and underlying motivations. We shall consider discrete random variables
(r.v.) X ,Y, ... defined over a common probabilty space Ω. We say that a r.v. X is of type
U , and write X : U , if X(Ω) ⊆ U . We shall always assume U to be finite. Elements
u ∈ U are called samples of X , and |X | is |{u ∈ U |Pr[X = u] > 0}|. The concepts of
independent and uniformly distributed (u.d.) random variables, and of expectation of
X (E[X ], for X real-valued) are defined as usual. As a function, every random variable
induces a partition into events of its domain Ω, {X−1(u) |u ∈ X(Ω)}: we say that two
random variables X and Y are equivalent if they induce on Ω the same partition. A
vector of random variables X̃ = (X1, ...,Xn), with n ≥ 0 and Xi : Ui, is just a random
variable of type U1 ×·· ·×Un.

Given X : U , the entropy X of and conditional entropy of X given Y : V are defined
by:

H(X) def= −∑u∈U Pr[X = u] · log(Pr[X = u])

H(X |Y) def= ∑v∈V H(X |Y = v) ·Pr[Y = v]

where H(X |Y = v) =−∑u∈U Pr[X = u|Y = v] · log(Pr[X = u|Y = v]), all logarithms are
taken to the base of 2 and by convention 0 · log0 = 0. Two equivalent random variables
have the same entropy and conditional entropy. The following (in)equalities hold:

0 ≤ H(X) ≤ log |X | (1)

H(X ,Y ) = H(X |Y )+H(Y ) (chain rule) (2)

H(X1, ...,Xn) ≤ H(X1)+ · · ·+H(Xn) (3)

where: in (1), equality on the left holds iff X is a constant, and equality on the right holds
iff X is u.d.; in (3), equality holds iff the Xi’s are pairwise independent. Note that by (2)
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and (3), H(X |Y ) = H(X) iff X and Y are independent. If Y = F(X) for some function F
then H(Y |X) = 0. Information on X conveyed by Y (aka, mutual information) is defined
as:

I(X ;Y) def= H(X)−H(X |Y ) .

By the chain rule, I(X ;Y ) = I(Y ;X), and I(X ;Y ) = 0 iff X and Y are independent.

Mutual information can be generalized by conditioning on another r.v. Z: I(X ;Y |Z) def=
H(X |Z)− H(X |Z,Y ). Conditioning on Z may in general either increase or decrease
mutual information between X and Y . Note that entropy of a r.v. only depends on the
underlying probability distribution; thus any probability vector p̃ = (p1, ..., pn) (pi ≥ 0,
∑i pi = 1) determines a unique entropy value denoted H(p̃); we shall often abbreviate
H(p,1− p) as H(p).

3 The Model

We assume a countable set of variables V = {x,y, ...}, a family of non-empty, finite

value-sets U
def= {U,V, ...}, and a countable set of names N = {a,b, ...}, partitioned

into a family of sorts S ,S ′, .... We assume a function that maps each x to some T ∈
U∪{S ,S ′, ...}, written x : T , and say that x has type T . The inverse image of each T is
infinite. These notations are extended to tuples as expected, e.g. for x̃ = (x1, ...,xn) and
T̃ = (T1, ...,Tn), x̃ : T̃ means x1 : T1, ...,xn : Tn. We let u,v be generic elements of a finite
value-set. By slight abuse of notation, we sometimes denote by Ũ the cartesian product
U1 ×·· ·×Un.

An evaluation σ is a map from V to U∈U U ∪N that respects typing, that is, for
each x ∈ dom(σ), x : T implies σ(x) ∈ T . We denote by [d̃/x̃] the evaluation mapping
x̃ to d̃ component-wise. By tσ, where t is a term over an arbitrary signature with free
variables fv(t) ⊆ V , we denote the result of replacing each free variable x ∈ dom(σ)∩
fv(t) with σ(x).

We assume a language of logical formulae φ,ψ, .... We leave the language unspeci-
fied, but assume it includes a first order calculus with variables V , that function sym-
bols include all values in U and names as constants, and that the set of predicates
includes equality [x = y]. We write U,N |= φ, or simply |= φ, if for all evaluations
σ s.t. dom(σ) ⊇ fv(φ), φσ is valid (i.e. a tautology). We will often write φ(x̃) to indicate
that the free variables of φ are included in x̃, and in this case, abbreviate φ[ũ/x̃] as φ(ũ).

The process language is a standard pi-calculus with variables and data values. We
assume a countable set of identifiers A,B, ... and use e,e′... to range over an unspecified
set of expressions, that can be formed starting from variables, values and names. The
syntax of processes P,Q, ... is given below.

m ::= x
∣∣ a

P,Q ::= 0
∣∣ τ.P

∣∣ m(x̃).P
∣∣ mẽ.P

∣∣ φP
∣∣ P+ P

∣∣ (νb)P
∣∣ P|P

∣∣ A(ẽ) .

Each identifier A has an associated defining equation of the form A(x̃) def= P. Input prefix
m(x̃). and restriction (νb) are binders for x̃ and b, respectively, thus, notions of free
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variables (fv) and free names (fn) arise as expected. We identify processes up to alpha-
equivalence. We assume a few constraints on the syntax above: x̃ is a tuple of distinct

elements in input prefix and in A(x̃) def= P, and in the latter fv(P) ⊆ x̃; φ is quantifier-
free. We assume a fixed sorting system à la Milner. In particular, each sort S has an
associated sort object ob(S) = (T1, ...,Tk) (k ≥ 0). Here, each Ti is either a sort or a
value-set from the universe U. Informally, a process obeys this sorting system if in
every input and output prefix, a name/variable m of sort S carries a tuple of objects
of the sort specified by ob(S); we omit the details that are standard. We let Πo the set
of processes (possibly containing free variables) obeying these conditions and Πc the
subset of closed processes. Notationally, we shall often omit trailing 0’s, writing e.g.
a.b. instead of a.b.0, we shall write ∑n

i=1 Pi for nondeterministic choice P1 + · · ·+ Pn,

and let replication !P denote the process defined by the equation: !P
def= P|!P.

We assume over Πc the standard early operational semantics of pi-calculus – see
e.g. [14]. Let us just remind that in this form of semantics transitions are the form
P

μ−→ P′, where μ is one of τ (invisible action), ad̃ (input action) or (νc̃)ad̃ with c̃ ⊆ d̃
(output action) and d ::= a | u (name or value). A few standard notations will also
be used. In particular, for each visible (different from τ) action α, P

α=⇒ P′ means
P( τ−→)∗ α−→ ( τ−→)∗P′. This notation is extended to any sequence of visible actions s
(i.e. a trace), P

s=⇒ P′, as expected. Finally, P
s=⇒ means that there is P′ s.t. P

s=⇒ P′.
We let ∼ be a fixed equivalence relation over Πc. We denote by [Q] the equivalence

class of a process Q. We assume ∼ is included in trace equivalence [2], includes strong
bisimulation [14] and preserves all operators of the calculus, except possibly input pre-
fix and unguarded nondeterministic choice. We introduce now the main concept of this
section. An open process is a pair (P, x̃), written P(x̃), with x̃ a tuple of distinct vari-
ables of type Ũ ⊆ U and P ∈ Πo such that fv(P)⊆ x̃; when no confusion arises, we shall
abbreviate P[ũ/x̃] as P(ũ) and (P[ỹ/x̃])(ỹ) as P(ỹ) (ỹ a tuple of distinct variables.)

Definition 1 (open processes as random variables). Let P(x̃) be an open process and
X̃ a vector of random variables, with x̃ : Ũ and X̃ : Ũ , for one and the same Ũ. We
denote by P(X̃) the random variable F ◦ X̃ , where F = λũ ∈ Ũ .[P[ũ/x̃]].

Note that a sample of P(X̃) is an equivalence class of ∼.

Example 1. A PIN-checking process can be defined as follows. Here, x,z : 1..k for some
integer k and x represents the secret code. The situation is modeled where an observer
can freely interact with the checking process.

Check(x) def= a(z).([z = x]ok.Check(x) + [z �= x]no.Check(x)) . (4)

The range of the function F : u )→ [Check(u)] has k distinct elements, as u �= u′ implies
Check(u) �∼ Check(u′). As a consequence, if X : 1..k is a random variable, the distri-
bution of P(X) mirrors exactly that of X. E.g., if X is uniformly distributed, then so is
P(X), i.e. the probability of each sample is 1/k.

Note that, if P(ũ) ∼ Q(ũ) for each ũ, then, for any X̃ , P(X̃) and Q(X̃) are the same
random variable. Another concept we shall rely upon is that of most general boolean,
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borrowed from [7, 3], that is, the most general condition under which two given open
processes are equivalent.

Definition 2 (mgb). Let P(x̃) and Q(ỹ) be two open processes, with x̃ : Ũ and ỹ : Ṽ .
We denote by mgb(P(x̃), Q(ỹ)) a chosen formula φ(x̃, ỹ) s.t. for each ũ ∈ Ũ and ṽ ∈ Ṽ :
P(ũ) ∼ Q(ṽ) if and only if φ(ũ, ṽ) is true.

It is worthwhile to notice that in many cases mgb’s for pairs of open pi-processes can
be automatically computed relying on symbolic transition semantics. Let us recall from

[7, 3] that a symbolic transition also carries a logical formula: P
μ,φ−−→ P′. In [7], an

algorithm is described to compute mgb’s for pair of processes both having finite sym-
bolic transition systems. Here, we will just assume that the logical language guarantees
existence of mgb for any given pair of open processes.

4 Absolute Leakage

Throughout the section and unless otherwise stated, we let P(x̃, ỹ) be an arbitrary open
process, with x̃ : Ũ and ỹ : Ṽ , while X̃ : Ũ and Ỹ : Ṽ are two arbitrary vectors of random

variables, and Z
def= P(X̃ ,Ỹ ).

Definition 3 (absolute leakage). The (absolute) information leakage from X̃ to P given

Ỹ is A(P; X̃ | Ỹ ) def= I(X̃ ;Z|Ỹ ) = H(X̃ |Ỹ )−H(X̃|Ỹ ,Z).

When Ỹ is empty, we simply write leakage as A(P; X̃). A first useful fact says that
leakage is nothing but the uncertainty about Z after observing Ỹ . The proof is a simple
application of the chain rule (2).

Lemma 1. A(P; X̃ | Ỹ ) = H(Z|Ỹ ). In particular, if ỹ is empty, A(P; X̃) = H(Z).

Example 2. The process Check(x) defined in (4) leaks all information about x. For
example, if X is u.d on 1..k then Z = P(X) is u.d. over a set of k samples. Hence
A(Check;X) = H(Z) = logk = H(X).

Suppose now the adversary cannot interact freely with Check, but rather he observes
the result of a user interacting with Check:

OneTry(x,y) def= (νa)(Check(x)|ay) . (5)

Clearly, for any X ,Y : 1..k, the range of the random variable Z = OneTry(X ,Y ) has only
two elements, that is [τ.ok] and [τ.no], that have probabilities Pr[X = Y ] and Pr[X �= Y ],
respectively. In the case where X and Y are uniformly distributed and independent, these
probabilities are 1/k and 1−1/k, respectively. We are interested in A(OneTry; X |Y ).
Easy calculations show that Z and Y are in fact independent. For the sake of concrete-
ness, let us assume k = 10; then we can compute absolute leakage as

A(OneTry;X |Y ) = H(Z|Y) = H(Z) = H(
1

10
) ≈ 0.469 .

In this case, knowledge of Y brings no advantage to the adversary.
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The next result is about composing leakage. Let us say that a n-holes context C[·, ..., ·]
preserves ∼ if whenever Pi ∼ P′

i for 1 ≤ i ≤ n then C[P1, ...,Pn] ∼ C[P′
1, ...,P

′
n]. The

following proposition states that leakage of a compound system cannot be greater than
the sum of leakage of individual systems. The (simple) proof is based on inequality
(3) plus the so called "data processing" inequality, saying that for any r.v. W and any
function F of appropriate type, H(F(W )) ≤ H(W ).

Proposition 1 (compositionality). Let C[·, ..., ·] be a n-holes context that preserves ∼,
and let Qi(x̃, ỹ) be open processes, 1 ≤ i ≤ n. Let P(x̃, ỹ) =C[Q1(x̃, ỹ), ...,Qn(x̃, ỹ)]. Then

A(P; X̃ | Ỹ ) ≤
n

∑
i=1

A(Qi; X̃ | Ỹ ) . (6)

For example, in the case of parallel composition, inequality (6) specializes to
A(P|Q ; X̃ | Ỹ ) ≤ A(P ; X̃ | Ỹ ) + A(Q ; X̃ | Ỹ ). The inequality implies that leakage is
never increased by unary operators. In the case of replication !, this leads to the some-
what unexpected conclusion A(!P ; X̃ | Ỹ ) ≤ A(P ; X̃ | Ỹ ). Inequalities provided by (6)
may hold strict or not, as shown below.

Example 3. Consider P(x) = ([x = 0]a)|a, where x : {0,1}, and X u.d. on the same
set. Then 1 = A(P;X)> A(!P;X) = 0. The reason for the latter equality is that for v ∈
{0,1}, !P(v)∼!a, that is, the behaviour of !P(x) does not depend on x, so H(P(X)) = 0.

On the other hand, consider P1(x) = [x = 2]a + [x = 4]a and P2(x) = [x = 1]b +
[x = 2]b, where this time x : 1..4, and X is u.d. on the same set. Then A(P1|P2 ; X) =
A(P1 ; X)+ A(P2 ; X) = H( 1

2 )+ H( 1
2) = 2.

Our next task is to investigate the situation of zero leakage. We start from Abadi and
Gordon’ definition of Secrecy, originally formulated in the setting of the spi-calculus
[1]. According to the latter, a process P(x̃) keeps x̃ secret if the observable behaviour
of P(x̃) does not depend on the actual values x̃ may take on. Partly motivated by the
non-interference scenario [5, 16], where variables are partitioned into "low" and "high",
we find it natural to generalize the definition of [1] to the case where the behaviour of
P may also depend on further parameters ỹ known to the adversary.

Definition 4 (generalized secrecy). We say that P(x̃, ỹ) keeps x̃ secret given ỹ if, for
each ṽ ∈ Ṽ , and for each ũ ∈ Ũ and ũ′ ∈ Ũ, it holds P(ũ, ṽ) ∼ P(ũ′, ṽ).

The main result of the section states agreement of diverse notions of secrecy: functional
(described above), quantitative (zero leakage) and logical (independence of mgb’s from
x̃). The latter appears to be more amenable to automatic checking, at least in those cases
where the mgb can be computed. We also offer an "optimized" version of the quanti-
tative notion, by which it is sufficient to check zero-leakage relatively to uniformly
distributed and independent X̃ and Ỹ .

Theorem 1 (secrecy). Let P(x̃, ỹ) be an open process. The following assertions are
equivalent:

1. P(x̃, ỹ) keeps x̃ secret given ỹ.
2. A(P ; X̃∗ |Ỹ ∗) = 0, for some X̃∗ : Ũ and Ỹ ∗ : Ṽ uniformly distributed and

independent.
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3. maxX̃ :Ũ ,Ỹ :Ṽ A(P ; X̃ |Ỹ ) = 0.
4. φ ⇔ ∃x̃x̃′.φ, where φ = mgb

(
P(x̃, ỹ), P(x̃′, ỹ′)

)
, for x̃′ and ỹ′ tuples of distinct vari-

ables disjoint from x̃ and ỹ, but of the same type.

Example 4. Consider the following process, where x,y : 1..4:

Q(x,y) def= (νc)
(
c | [y = 1]c.a

)
+ [x = 2]τ.a .

It is immediate to see that Q does not keep x secret, given y. E.g., if the adversary knows
that y �= 1 and observes the behaviour [τ.a] then he can infer that x = 2. In fact, the
mgb given by the theorem above is φ =

(
[y = 1] → ([y′ = 1]∨ [x′ = 2])

)
∧
(
[y′ = 1] →

([y = 1]∨ [x = 2])
)
, and clearly, φ �⇔ ∃xx′.φ. As an example, for X ,Y independent and

u.d on 1..4, the leakage from X to Q given Y can be computed as H(Z|Y ) ≈ 0.608. The
process Q′(x,y) = Q(x,y)+ [y �= 1]τ.a keeps x secret given y.

5 Rate of Leakage

We assume now an attacker can only conduct upon P repeated experiments, each yield-
ing a binary1 answer, say success or failure. We are interested in the number of com-
munications that are necessary for the adversary to extract one bit of information about
X̃ in this way.

In the rest of the section, we fix ∼ to be weak trace equivalence (aka may testing
equivalence [4, 2]) written ,, and defined as: P , Q iff for each trace s, P

s=⇒ iff Q
s=⇒.

For the sake of simplicity, we shall only consider processes where channels transport
tuples of values, i.e. we ban name-passing. For the same reason, we shall assume that
no side-information is available to the attacker, i.e. ỹ is empty. We plan to present the
treatment of the most general case in a full version of the present paper. Throughout
the section and unless otherwise stated, P(x̃), where x̃ : Ũ , denotes an arbitrary open
pi-process, X̃ an arbitrary vector of random variables of type Ũ and Z is P(X̃). Recall
that A(P ; X̃) = H(Z).

Definitions and basic properties. Consistently with the testing equivalence framework
[4, 2], we view an experiment E as a processes that, when composed in parallel with P,
may succeed or not. Input on a distinct name ω, carrying no objects, is used to signal
success to the adversary. Here, it is convenient to adjust the notion of composition (‖
below) to ensure that, in case of success, exactly one success action is reported to the
adversary.

Definition 5 (experiments). An experiment E is a closed process formed without using
recursive definitions and possibly using the distinct success action ω.

We say that a nonempty trace of visible actions s is successful for E if ω does not
occur in s and E

s·ω=⇒ .
For each E and process Q, let us define Q‖E

def= (νc̃,ω′)(P|E[ω′
/ω]|ω′.ω), where

c̃ = fn(Q,E)\ {ω} and ω′ /∈ fn(P,Q,ω).

1 We expect no significant change in the theory if k-ary answers, with k > 2 fixed, were instead
considered.
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Note that for each Q it must be either Q‖E , 0 – meaning that E fails – or Q‖E , ω.0
– meaning that E succeeds. Hence, for each E , we can define a binary random variable
thus2

E∗ def= P(X̃)‖E .

Information on X̃ conveyed by E∗ is I(X̃ ; E∗) = H(E∗)− H(E∗|X̃) = H(E∗). This
information is at most one bit. The rate notion of rate we are after should involve a
ratio between this quantity of information and the cost of E . The following example
shows the role played by non-determinism in extracting information, and provides some
indications as to what we should intend by cost.

Example 5. Consider again Check(X), where this time X is u.d. over 1..k, for some fixed

even integer k ≥ 2. An experiment E that extracts one bit out of E
def= ∑k/2

d=1 ad.ok.ω.
An attacker can only observe the outcome of the interaction between Check and E, i.e.
a sample of the r.v. E∗ = Check(X)‖E. If action ω is observed, then it must be X ≤ k/2;
if action ω is not observed, then it must be X > k/2. Note that I(X ;E∗) = H(E∗) =
H( 1

2) = 1.

The above example suggests that different successful traces of an experiment should
be counted as different "trials" attempted by the attacker. The cost of each trial can be
assumed to be proportional to its length as a trace. These considerations motivate the
definition below.

Definition 6 (rate). For each experiment E, define its cost as |E| def= ∑{|s| :
s is succesful for E }. The rate of P relative to X̃ is

R (P ; X̃) def= sup
|E|>0

H
(
E∗)

|E| . (7)

Our first result is an experiment-independent characterization of rate. In accordance
with the may testing approach, this characterization is obtained in terms of observa-
tions of single traces. In what follows, given a trace of visible actions s, we consider
the r.v. P(X̃) s=⇒, which may yield true or f alse, and denote by ps the probability3

Pr[(P(X̃) s=⇒) = true]. Recall that for 0 ≤ p ≤ 1, we denote by H(p) the entropy of the
distribution (p,1− p).

Proposition 2. It holds that R (P ; X̃) = sup |s|>0
H(ps)
|s| .

Example 6. Consider the process CheckOnce(x) def= a(z).([z = x]ok +[z �= x]no), where
x,z : 1..10, and X u.d. on the same interval. It is immediate to verify that the ratio in the
proposition above is maximized by any of s = ad ·ok or s = ad ·no, for d ∈ 1..10. This
yields R (CheckOnce ; X) = H( 1

10)/2 ≈ 0.234.

2 We would write E∗(P) should any confusion about P arise.
3 It is important to note that this definition does not induce a probability distribution on the set

of traces; rather, it assigns each trace s a binary distribution (ps,1− ps).
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The proposition above allows one, at least in principle, to compute the rate of any
process having a finite symbolic transition system. In fact, relying on P’s symbolic tran-
sition system, it is possible to compute, for any given trace s, a logical formula φs(x̃)
expressing the exact condition on x̃ under which P(x̃) can perform s (see [7, 3]). From
these formulae it is easy to compute, or at least estimate with any degree of precision,
the rate of P – we omit the details.

The next result explains the relationship between the notion of rate and absolute
leakage. In particular, (a) establishes that H(Z) is the maximal information that can
be extracted by repeated binary experiments; and (b) provides a lower bound on the
cost necessary to extract this information, in terms of the rate of P – thus providing a
justification for the name "rate". For Ẽ = (E1,E2, ...,En) a vector of experiments, write
|Ẽ| = |E1|+ · · ·+ |En| for its cost, and Ẽ∗ for the vector of r.v. (E∗

1 ,E
∗
2 , ...,E

∗
n ).

Proposition 3. It holds that

(a) A(P; X̃) = H(Z) = max Ẽ I(X̃ ; Ẽ∗)
(b) for each Ẽ, I(X̃ ; Ẽ∗) ≤ |Ẽ| ·R (P; X̃) .

Note in particular, that the cost of extracting all the available information H(Z) cannot

be less than H(Z)
R (P;X̃) . It is important to remark that processes with the same absolute

leakage may well exhibit different rates. Here is a small example to illustrate this point.

Example 7. Let P(x) and Q(x), where x : 0..3, be defined as follows:

P(x) = [x = 0](a+b) + [x = 1](b+c) + [x = 2](c+d) + [x = 3](d +a)
Q(x) = [x = 0]a + [x = 1]b + [x = 2]c + [x = 3]d .

Assume X is u.d. over 0..3. Both P(X) and Q(X) are u.d. on a domain of four elements
(the four distinct equivalence classes [P(i)], resp. [Q(i)], for i ∈ 0..3). Hence leakage
is H(P(X)) = H(Q(X)) = H(X) = 2 bits. On the other hand, each nonempty trace of
P occurs with probability 1/2, while each nonempty trace of Q occurs with probabil-
ity 1/4. Thus, by Proposition 2, R (P;X) = H( 1

2) = 1 and R (Q;X) = H( 1
4 ) ≈ 0.811.

Proposition 3(b) implies that gaining all information about X costs the attacker no less
than 2 in the case of P, and no less than 3 in the case of Q. Indeed, a sequence of two
(resp. three) one-action experiments is sufficient (a.ω, b.ω for P and a.ω, b.ω, c.ω for
Q) to determine X.

Compositionality. It is possible to give upper bounds for the rate of a compound process
in terms of the component expressions, in the vein of Proposition 1. Some of these upper
bounds are rather crude (e.g. in the case of restriction), others are more sophisticated
(e.g. R (ae.P; X̃) ≤ max{H([e(X̃) = v])), R (P; X̃)}) – we leave the details for the full
version of the paper. Here, we concentrate on the rate of iterated processes. In order
to define iteration, we have to first define sequential composition. Output on a distinct
name stop, not carrying objects, is used to signal termination of a thread. Hence we

define sequential composition as P;Q
def= (ν stop′)(P[stop′

/stop] |stop′.Q) (with stop′

fresh). This is not sequential composition in the usual sense, but it is equivalent in the
context we are going to consider – see definition below. For any P, let iteration ∗P be the
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process recursively defined by ∗P
def= P;∗P. We show that, under suitable conditions, the

rate of ∗P is the same as P’s. The condition below requires essentially that termination
of a single thread in a process is equivalent to termination of the whole process.

Definition 7 (determinate processes). Let Q be a closed process. We say that a trace

s is terminating for Q if Q
s·stop
=⇒ . We say that Q is determinate if for every terminating

trace s, whenever Q
s=⇒Q′ then Q′ , stop. Finally, an open process P(x̃) is determinate

if ∑ũ∈Ũ P(ũ) is determinate.

We need another technical condition: let us say that Q is stable if whenever Q
ε=⇒ Q′

(ε = empty trace) then Q′ , Q.

Theorem 2 (iteration rate). Suppose that P(x̃) is determinate, and that for each ũ,
P(ũ) is stable. Then R (∗P ; X̃) = R (P ; X̃).

Example 8. It is easy to check that CheckOnceStop(x) def= a(z).([z = x]ok.stop + [z �=
x]no.stop) is determinate. (x : 1..10). Hence, being Check(d) , ∗CheckOnceStop(d),
for every d, by Theorem 2 and Example 6 we have: R (Check ; X) =
R (CheckOnceStop ; X) = H( 1

10) ≈ 0.234.

6 Computing Bounds on Absolute Leakage

In this section, we analyze the problem of bounding absolute leakage, from the position
of someone – e.g. a developer – who has access to the process’ code P, and for whom
it is inexpensive to draw independent samples of the data X̃ . For simplicity, we shall
limit our discussion to the case where the side-information Ỹ is empty, so that absolute
leakage reduces to H(Z), where Z = P(X̃). The problem is nontrivial, because even
for moderately complex P, the distribution of Z may be extremely difficult to compute
or approximate. Methods commonly employed to estimate entropy in absence of an
explicit description of distribution involve generation of sample sequences, long enough
to let the underlying source’s redundancy become appreciable. These methods are not
applicable to our case, as operating on samples of Z is extremely expensive. Generation
of even a single sample of Z – that is, an equivalence class, represented in some form
or another – generally takes exponential time and space in the size of P.

We suggest a strategy that may work in practice in a number of cases, but we will not
dwell on complexity-theoretical issues. For any discrete random variable W , its index
of coincidence IC(W ) is defined as the probability that two independent experiments
yield the same result, that is, denoting by U the type of W :

IC(W ) def= ∑
u∈U

(
Pr[X = u]

)2
.

Relationship of IC with Shannon entropy is seen by applying a well-known inequality
of convex functions (Jensen’s inequality, see e.g. [15]), which yields: − log IC(W ) ≤
H(W ) (the quantity on the LHS is known as Renyi’s entropy of order 2.) This inequality
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has been vastly generalized by Harremoës and Topsøe [8], who provide whole fam-
ilies of lower- and upper-bounds of Shannon entropy in terms of IC. These bounds
are, in a certain technical sense, the "best possible" and provide fairly good esti-
mates of H(W ) in many cases4. It remains to be seen how IC(W ) can be efficiently
estimated in our case (W = Z). We show that this can be achieved via mgb’s. Let

φ(x̃, x̃′) def= mgb
(
P(x̃),P(x̃′)

)
, where x̃′ is a tuple of distinct variables disjoint from x̃.

By interpreting the boolean values true and false as 1 and 0, φ(x̃, x̃′) can be interpreted
as a function Ũ × Ũ → {0,1}. We then have the following proposition, based on ele-
mentary reasoning on probabilities.

Proposition 4. Let X̃ ′ be independent from X̃, but with the same type and distribution
as X̃ . Then IC(Z) = E[φ(X̃ , X̃ ′)].

The expectation E[φ(X̃ , X̃ ′)] can be estimated with any desired precision via the law of
large numbers: in practice, one draws several independent samples of φ(X̃ , X̃ ′) and then
takes the resulting arithmetical mean. The efficiency of this procedure depends on the
distribution of X̃ and on the size of φ. Therefore, the problem of evaluating IC(Z) can
be reduced to the task of computing the formula φ, and possibly reducing its size by
means of logical simplifications. Dedicated algorithms exist for that (see [7]) which are
practical in many cases. Using this methodology, we have conducted some simple but
very encouraging experiments on timing-dependent leakage in modular exponentiation
algorithms (see e.g. [9]) that will be reported in the extended version of the paper.

7 Conclusions and Related Work

Results and proofs presented here carry over essentially unchanged to other calculi
equipped with behavioral equivalences, such as the spi-calculus – except for those that
depend on pi’s symbolic semantics, like effective computation of leakage. The exam-
ples considered in the paper are admittedly a bit artificial. More realistic case-studies,
possibly involving cryptography or probabilistic behaviour, are needed for assessing
the model’s scalability. In the leakage rate scenario, different notions of "cost" are also
worthwhile to be investigated.

Early works on quantitative information flow are [13, 17, 6]. Volpano and Smith have
later developed a quantified theory of non-interference for imperative programs, also
giving a notion of rate [16], albeit not based on information theory. These approaches,
like the one by Clark et al. [12], presuppose that computations produce some form or
another of "result" , possibly with an associated probability distribution, in the sense
already discussed in the introduction. A notable exception is represented by the recent
work of Lowe [11]. There, quantitative non-interference for timed CSP is defined as the
number of different "low" behaviours that a "high" user can induce on the process. This
definition is shown to be in agreement with a qualitative notion of lack of information
flow due to Focardi and Gorrieri [5]. A notion of rate is also introduced by taking time
explicitly into account. These notions are not easily comparable to ours, due to the
different goals and settings (secrecy vs. non-interference, untimed vs. timed.)

4 As an example, in the case of binary distributions (p,1− p), an upper bound U can be given
s.t. the ratio H/U lies between 1 and 0.9 for all distributions with p ∈ [0.03,0.97].
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Abstract. Security of a cryptographic protocol for a bounded number of sessions
is usually expressed as a symbolic trace reachability problem. We show that sym-
bolic trace reachability for well-defined protocols is decidable in presence of the
exclusive or theory in combination with the homomorphism axiom. These theo-
ries allow us to model basic properties of important cryptographic operators.

This trace reachability problem can be expressed as a system of symbolic de-
ducibility constraints for a certain inference system describing the capabilities of
the attacker. One main step of our proof consists in reducing deducibility con-
straints to constraints for deducibility in one step of the inference system. This
constraint system, in turn, can be expressed as a system of quadratic equations of
a particular form over Z/2Z[h], the ring of polynomials in one indeterminate over
the finite field Z/2Z. We show that satisfiability of such systems is decidable.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure communication
via a network that may be controlled by an attacker. They involve a high level of con-
currency and are difficult to analyze by hand. These programs are linear sequences of
receive and send instructions on a public network. A passive attacker may only listen
to messages, while an active attacker may also pretend to be a protocol participant and
forge messages according to a certain set of intruder capabilities.

The problem of deciding whether a protocol preserves the confidentiality of a mes-
sage under any active attack is known to be undecidable in general (e.g. [11]). Several
decidability results have been obtained under the assumption that the number of role
instances is bounded, among others NP-completeness due to Rusinowitch and Turu-
ani [17]. The idea of their algorithm is to guess a symbolic trace in which the mes-
sages are represented by terms containing variables. This symbolic trace corresponds
to a concrete execution trace if the variables can be instantiated in such a way that
at every moment a message received by an agent can in fact be deduced by the in-
truder from the messages seen before. Hence, verifying security of a protocol amounts
to a non-deterministic guessing of the symbolic trace plus the resolution of a system
of deducibility constraints. This result [17], as many others (e.g., [15]), relies on the
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so-called perfect cryptography assumption which states that the cryptographic primi-
tives (like encryption) are perfect and can be treated as black boxes. This assumption is
unrealistic since some attacks exploit in a clever way the interaction between protocol
rules and properties of cryptographic primitives. A more realistic approach is to take
into account properties of the cryptographic primitives (see [4] for a survey). For the
constraint based approach, this has been done for different equational theories [16, 8].

In this paper we study the equational theory ACUNh which is the combination of (h)
the homomorphism axiom h(x+ y) = h(x) + h(y) with the exclusive or (ACUN) the-
ory. These two equational theories model basic properties of important cryptographic
primitives. Some protocols relying on these algebraic properties are described in [4].
Exclusive or is a basic building block in many symmetric encryption methods like DES
or AES, or even used directly as an encryption method (Vernam encryption). Homo-
morphisms are ubiquitous in cryptography. For instance, the Wired Equivalent Privacy
(WEP) protocol uses a checksum function C which has the homomorphism property
over +, i.e. C(x + y) = C(x) + C(y). Moreover, the homomorphism property over
some binary operator appears in several encryption schemes (RSA, ElGamal ...) and
is crucial in the field of electronic voting protocols [5]. Note that the recent result by
Chevalier and Rusinowitch [2] for the combination of intruder theories can not be em-
ployed here to simply extend the known decidability result [1, 3] for ACUN since the
theories ACUN and h share the symbol +. Furthermore, their result relies on a model
which is different from ours in that it applies only to a restricted class of protocols.

Some results have already been obtained for the ACUNh theory [13, 6], but only
for the case of a passive attacker. This algorithm for passive attacks is an important
ingredient to the algorithm for active attacks developed in the present paper. Another
important ingredient is ACUNh unification which has been shown decidable in [12].
However, for our procedure, we need to establish that unification in ACUNh is finitary,
i.e. that every problem has a finite set of most general solutions. Our work is inspired
by Millen and Shmatikov’s approach [16] for the equational theory of Abelian groups.
However, there are fundamental differences in the technical development.

Outline of the paper. We present our attacker model in Section 2, and the classes of
constraint systems that we employ in our algorithm in Section 3. The proof of our main
result (Theorem 1) proceeds in two steps: First we reduce satisfiability of deducibil-
ity constraints to satisfiability of constraints for one-step deducibility by a particular
inference rule (Section 4). Second, we reduce satisfiability of these constraints to the
satisfiability of a particular form of quadratic equations over the ring Z/2Z[h], which
we finally show to be decidable in Section 5 (satisfiability of quadratic equations over
Z/2Z[h], or for that matter Z, is undecidable in general). Due to lack of space, proofs
are omitted and can be found in [9].

2 Attacker Model

2.1 Inference System

The deduction capabilities of the intruder are formalized by the Dolev-Yao model [10].
We extend the intruder capabilities by equational reasoning modulo a given set E of
equational axioms; we denote this intruder model by IDY+E. In this paper, we consider
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the equational theory E = ACUNh which consists of the well-known axioms of exclu-
sive or in combination with a homomorphism symbol. More formally, ACUNh contains
the following equations:

– Associativity, Commutativity (AC): x+ (y + z) = (x + y) + z, x+ y = y + x,
– Unit (U): x+ 0 = x,
– Nilpotence (N): x+ x = 0,
– homomorphism (h): h(x+ y) = h(x) + h(y).

We obtain the inference system described in Figure 1 where equational reasoning
is taken into account through the normalization function ↓ associated to E. In the
case of the ACUNh equational theory, the AC-convergent rewrite system is obtained
by orienting from left to right the equations (U), (N), (h) and by adding the conse-
quence h(0) → 0 (see [13] for details). We omit the equality rule for AC and just work
with equivalence classes modulo AC.

Unpairing (UL)
T � 〈u, v〉

T � u
Compose (C)

T � u1 . . . T � un

with f ∈ F � {+, h, 0}
T � f(u1, . . . , un)

Unpairing (UR)
T � 〈u, v〉

T � v
Context(ME)

T � u1 . . . T � un

with C an E-context
T � C[u1, . . . , un] ↓

Decryption (D)
T � {u}v T � v

T � u

Fig. 1. Dolev-Yao Model Extended with an Equational Theory: IDY+E

The intended meaning of a sequent T - u is that the intruder is able to deduce the
term u ∈ T (F ,X ) from the finite set of terms T ⊆ T (F ,X ). As in the standard
Dolev-Yao model, the intruder can compose new terms from known terms (C), he can
decompose pairs (UL, UR), and he can decrypt ciphertexts provided that he can deduce
the decryption key (D). Finally, the intruder may apply (ME) any E-context, i.e. term
of the form C[x1, . . . , xn] with C ∈ T ({0,+, h}, {x1, . . . , xn}), to terms he already
knows. Examples of instances of this rule are

T - a+ h(a) T - b
(ME)

T - a+ h(h(h(a))) + h(b)
(ME)

T - 0

obtained with C[x1, x2] = x1 + h(x1) + h(h(x1)) + h(x2), resp. C[] = 0.
The notation hn(t) represents the term t if n = 0 and h(hn−1(t)) otherwise. Along

this paper, we consider implicitly that terms are kept in normal form, i.e. we write u
(resp. uσ) instead of u ↓ (resp. uσ ↓).

This deductive system is equivalent in deductive power to a variant of the system in
which terms are not automatically normalized, but in which arbitrary equational proofs
are allowed at any moment of the deduction (see [6, 13]). The inference system de-
scribed in Figure 1 deals with symmetric encryption. However, it is not difficult to
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design a similar deduction system for asymmetric encryption and to extend the results
of this paper to this new inference system.

2.2 Factors, Subterms

A term t is standard if and only if it is not of the form f(t1, . . . , tn) for some term
t1, . . . , tn and some f ∈ {0, h,+}. In particular, every variable is a standard term.

Definition 1. Let t be a term in normal form. We have t = C[t1, . . . , tn] for some
standard terms t1, . . . , tn and an E-contextC. The set FactE(t) of factors of t is defined
by FactE(t) = {t1, . . . , tn}. The set StE(t) of subterms of t is the smallest set such that:

– 0, t ∈ StE(t),
– if f(t1, . . . , tn) ∈ StE(t) is standard then t1, . . . tn ∈ StE(t),
– if s ∈ StE(t) is not standard then FactE(s) ⊆ StE(t).

Note that the set of factors is uniquely defined since equality is taken to be modulo AC.
Note also that, by definition, 0 is not a standard term and the factors of any term are
necessarily standard. We extend the notations StE(·) and FactE(·) in a natural way to
sets of terms.

Example 1. Let t1 = h2(a)+b+x and t2 = h(〈a, b〉)+x, we get FactE(t1) = {a, b, x},
StE(t1) = {t1, a, b, x}, FactE(t2) = {〈a, b〉, x}, StE(t2) = {t2, 〈a, b〉, a, b, x}.

2.3 Proofs

Definition 2. A proof P of T - u is a finite tree such that

– the root of P is labeled with T - u,
– every leaf of P labeled with T - v is such that v ∈ T ,
– for every node of P labeled with T - v having n sons labeled with T - v1, . . . , T -
vn, there is an instance

T - v1 . . . T - vn
(R)

T - v
of an inference rule. If this node

labeled with T - v is the root of P , we say that P ends with an instance of (R).

Note that the terms in the proof are not necessarily ground. A proof P of T - u is
minimal if there is no proof P ′ of T - u with less nodes than P .

Definition 3. A term u is R-one-step deducible from a set of terms T in any of the
following cases:

– T - u is a proof of T - u (i.e, u ∈ T or u = 0),

– there exists u1, . . . , un such that
T - u1 . . . T - un

(R)
T - u

is a proof of T - u.

The term u is one-step deducible from T if u is R-one-step deducible from T for some
inference rule R.

The following lemma, due to [6], shows that if there exists a proof of a sequent then
there exists a “small” one.

Lemma 1. A minimal proof P of T - u contains only terms in StE(T ∪ {u}).
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3 Constraint Systems

3.1 Well-Defined Constraint Systems

It is well-known that the security problem of a protocol for a fixed number of parallel
sessions reduces to the satisfiability of a constraint system (see, e.g. [1, 15]):

Definition 4. A constraint (resp. one-step constraint, ME constraint) is a sequent of the
form T � u (resp. T �1 u, T �ME u) where T is a finite subset of T (F ,X ) and
u ∈ T (F ,X ). We call T the hypothesis set of the constraint. A system of constraints
is a sequence of constraints. A solution to a system C of constraints is a substitution σ
such that:

– for every T � u ∈ C there exists a proof of Tσ - uσ;
– for every T �1 u ∈ C the term uσ is one-step deducible from Tσ;
– for every T �ME u ∈ C the term uσ is ME-one-step deducible from Tσ.

A solution σ to C is non-collapsing if for all u, v ∈ StE(C) \ X such that uσ =E vσ
then u =E v. If F ′ is a sub-signature of F then a solution σ to a constraint system is
called a F ′-solution if xσ ∈ T (F ′,X ) for every x ∈ dom(σ).

Note that, if σ is solution to a constraint T � u (resp. one-step constraint, ME con-
straint), then σθ is also a solution to T � u for every substitution θ.

Definition 5. A constraint system C = {Ti � ui}1≤i≤k is well-defined if:

1. (monotonicity) for all i < k: Ti ⊆ Ti+1,
2. (origination) for all substitution θ: Cθ satisfies the following requirement:

∀i ≤ k, ∀x ∈ vars(Tiθ), ∃j < i such that x ∈ vars(ujθ).

This notion of well-definedness, due to Millen and Shmatikov, is defined in an analo-
gous way on systems of one-step (resp. ME) constraints. In [16] they show that “rea-
sonable” protocols, in which legitimate protocol participants only execute deterministic
steps (up to the generation of random nonces) always lead to a well-defined constraint
system. This notion is crucial for several steps of our algorithm.

Theorem 1. The problem of deciding whether a well-defined constraint system has a
solution in IDY+E, where E = ACUNh, is decidable.

The remainder of the paper is devoted to the proof of this result.

3.2 Conservative Solutions

Intuitively, a conservative solution to a constraint system is a solution which does not
introduce any new structure. Lemma 2 states that it is sufficient to search for conserv-
ative solutions of a constraint system. Moreover, conservative solutions allow us to lift
Lemma 1 to deducibility constraints (Lemma 3).

Definition 6. Let C be a constraint system and σ a substitution, σ is conservative w.r.t.
C if and only if for all x ∈ vars(C), FactE(xσ) ⊆ (StE(C) \ vars(C))σ.
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Lemma 2. Let C be a well-defined constraint system. If there exists a solution σ to C
then there exists a conservative one.

Example 2. Consider the following well-defined constraint system C which is made
up of two deducibility constraints: a, h(b) � h(x) and a, h(b), x � 〈a, b〉. One
solution is σ = {x )→ 〈a, a〉 + b}. This solution is not conservative w.r.t. C since
FactE(〈a, a〉+b) = {〈a, a〉, b}, and 〈a, a〉 does not belong to (StE(C)\{x})σ. However,
as it is said in Lemma 2, there is a conservative solution: {x )→ b}.

Lemma 3. Let σ be a conservative solution to C = {C1, . . . , Ck}. For each i ≤ k
there exists a proof of Ciσ that involves only terms in StE(C)σ.

4 From Constraints to ME Constraints

We proceed in two non-deterministic steps to reduce the satisfiability of a constraint
system to the satisfiability of a ME constraint system:

1. From constraints to one-step constraints (see Lemma 4 and Figure 2).
2. From one-step constraints to ME constraints (see Lemma 5).

Input: C = {T1 � u1, . . . , Tk � uk}
guess S ⊆ StE(C)
for all s ∈ S, guess j(s) ∈ {1, . . . , k}
C′:= ∅
for i = 1 to k do

let Si := {s | j(s) = i}
choose a total ordering on Si (Si = {s1

i , . . . , ski
i })

for j = 1 to ki do
T := Ti ∪ S1 . . . ∪ Si−1 ∪ {s1

i , . . . , sj−1
i }

C′:= C′ ∪ {T �1 sj
i}

end
C′:= C′ ∪ {T �1 ui}

end
return C′

Fig. 2. Step 1: from constraints to one-step constraints

The idea of the first step is to guess among the subterms of C those that are going to
be deduced by the intruder, and to insert each of them in some order into the constraint
system. The completeness of this reduction step is essentially due to the existence of a
conservative solution (Lemma 2) and to Lemma 3. In the resulting constraint system,
every constraint can be solved by application of a single inference rule:

Lemma 4. Let C be a well-defined system of constraints. Let C ′ be the set of constraint
systems obtained by applying on C the algorithm described in Figure 2.
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1. C ′ is a finite set of well-defined systems of one-step constraints.
2. If some C′ ∈ C ′ has a solution then C has a solution.
3. If C has a conservative solution then some C′ ∈ C ′ has a conservative solution.

Lemma 5 allows us to reduce the satisfiability of a system of one-step constraints to the
satisfiability of a system of ME constraints. We first guess a set R of equalities between
subterms. Then, we choose an E-unifier of R among the finite number of possibilities
given by Theorem 2.

Theorem 2. Unification in the theory ACUNh is finitary, and there exists an algorithm
to compute a complete finite set mguE(R) of unifiers of any unification problem R.

We write T -DY u if u is (R)-one step deducible from T where R is one of
(D,UL,UR,C). It is trivial to decide whether T -DY u or not. We can now eliminate
all constraints T �1 u for which T -DY u already holds.

Lemma 5. Let C be a well-defined system of one-step constraints. Let

P = {
∧

(s1,s2)∈S′ s1 = s2 | S′ ⊆ StE(C)2}.

Let R ∈ P and θ ∈ mguE(R). Let Cθ = {Tθ �ME uθ | T �1 u ∈ C and Tθ �-DY uθ}.
Let C be the set of constraint systems Cθ obtained this way.

1. C is a finite set of well-defined systems of ME constraints.
2. If some Cθ ∈ C has a solution then C has a solution.
3. If C has a conservative solution then some Cθ ∈ C has a non-collapsing solution.

Note that we can now restrict our attention to non-collapsing solutions, thanks to the
fact that we have guessed the subterms that are identified by the solution.

5 Solving ME Constraints

Now, we have to solve well-defined ME constraint systems, where it is sufficient to
look for non-collapsing solutions. In the remainder, we consider a ME constraint sys-
tem C = {T1 �ME u1, . . . , Ti �ME uk} and we assume w.l.o.g. that the set of terms Ti
is equal to {t1, . . . , tn+i−1}.

A constraint system is called factor-preserving if all its factors appear for the first
time in an hypotheses set of a constraint. More formally,

Definition 7. A ME constraint system is factor-preserving if for all i, 1 ≤ i ≤ k, we
have that FactE(ui) \ X ⊆

⋃j=n+i−1
j=1 FactE(tj).

Example 3. The systems, 〈a, b〉 �ME 〈x1, x2〉 and 〈〈a, b〉, a〉 �ME 〈a, b〉 are not factor-
preserving. Note that the first one has no non-collapsing solution whereas the second
one has no solution using the ME inference rule only.

This notion is important to ensure that well-definedness is maintained when we abstract
a constraint system by replacing factors by new constants (see Lemma 7). Fortunately,
requiring factor preservation is not a restriction, since:
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Lemma 6. If a well-defined ME-constraint system C has a non-collapsing solution then
it is factor-preserving.

Factor preservation is of course trivial to check. We can hence suppose that the con-
straint system under consideration is factor-preserving, since if it is not then we con-
clude immediately by Lemma 6 that it has no non-collapsing solution.

5.1 Reducing the Signature

We will show in Lemma 7 that we can reduce the satisfiability of ME constraint systems
to the satisfiability of ME constraint systems over a signature consisting only of 0, +,
h, and a set of constants.

If ρ : M → N is a replacement, that is a bijection between two finite sets of terms
M and N , then we denote for any term t by tρ the term obtained by replacing in t
any top-most occurrence of a subterm s ∈ M by sρ. This extends in a natural way to
constraint systems, and to substitutions.

Lemma 7. Let C be a well-defined factor-preserving ME constraint system and F =
FactE(C) \ X . Let F0 be a set of new constant symbols of the same cardinality as F
and ρ : F → F0 a bijection.

1. Cρ is well-defined.
2. vars(Cρ) = vars(C).
3. If C has a non-collapsing solution then Cρ has a F0 ∪ {0, h,+}-solution.
4. If Cρ has a F0 ∪ {0, h,+}-solution then C has a solution.

As shown by the example below, well-definedness is not necessarily preserved under
abstraction when the system is not factor-preserving.

Example 4. Abstraction of the system a �ME 〈x1, x2〉; a, x1, x2 �ME b, which is not
factor preserving, yields a �ME cnew; a, x1, x2 �ME b, which is not well-defined.

5.2 Another Characterization of Well-Definedness

Let
∑n
i=0 bih

i where bi ∈ Z/2Z be a polynomial of Z/2Z[h]. The product . of a
polynomial by a term is a term defined as follows:

(
n∑
i=0

bih
i) . t =

n∑
i=0 | bi �=0

hi(t)

For instance (h2+1).(x+a) = h2(x)+x+h2(a)+a. Every t ∈ T (F , {x1, . . . , xp})
can be written tx1 .x1 + . . . txp .xp+ t0 with txv in Z/2Z[h] and FactE(t0)∩X = ∅.
We will denote with t the vector (tx1 , . . . , txp).

Definition 8. Let V = {v1, . . . , vm} be a subset of Z/2Z[h]n. V is independent if
whenever there exist αi ∈ Z/2Z[h] such that α1v1 + . . .+ αmvm = 0 then αi = 0 for
all 1 ≤ i ≤ m. Otherwise V is dependent.
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Remember that we consider a constraint system C = {t1, . . . , tn+i−1 �ME ui}i=1,...,k.
The set L = Lk of indexes of the so-called defining constraints is defined as follow.
We set L0 = ∅, and we define Li+1 = Li ∪ {i + 1} if {ui+1} ∪ {uj | j ∈ Li}
is independent, and Li+1 = Li otherwise. We note Bi = {uj | j ∈ L, j ≤ i} and
B = Bk. Lemma 8 gives an algebraic characterization of well-definedness in the special
case of the signature F0∪{0, h,+}. Now, we have reduced the problem to this restricted
signature (Lemma 7), we are going to use the following characterization in Section 5.3
to solve systems of equations over Z/2Z[h].

Lemma 8. A factor-preserving ME constraint system {t1, . . . , tn+i−1 �ME ui}i=1,...,k
over the signature {0, h,+} ∪ F0 is well-defined if, and only if, for every i ≤ k, the set
of vectors {tn+i−1} ∪ {uj | j ∈ Li} is dependent.

Intuitively, this is related to the fact that matching modulo ACUNh is essentially linear
equation solving.

5.3 Solving ME Constraint Systems over {0, h, +} ∪ F0

We may by Lemma 6 assume that we have a factor-preserving ME constraint system.
By Lemma 7 satisfiability of such a system can be reduced to satisfiability of a ME

constraint system over a signature {0, h,+} ∪ F0 where F0 is a finite set of constants.
The characterization of Lemma 8 allows us to use the following well-known fact.

Fact 1. Let A be a matrix n ×m over Z/2Z[h] such that the n row vectors are inde-
pendent (n ≤ m) then there exists Q ∈ Z/2Z[h] such that

∀b ∈ Z/2Z[h]n, ∃X ∈ Z/2Z[h]m A ·X = Q · b (1)

Moreover, such a coefficientQ is computable as a determinant of a submatrix of A.

We denote Qmax the coefficient Q which satisfies the equation (1) for the matrix B.

Example 5. (running example) To illustrate our procedure, we consider the following
well-defined ME constraint system:

h(a) + a, b+ h2(a) �ME h(x1) + h2(x2)
h(a) + a, b+ h2(a), x1 + h(x2) �ME x1 + a
h(a) + a, b+ h2(a), x1 + h(x2), h(x1) + h(a) �ME h(x1) + h2(x2) + x1 + a

We have u1 = (h, h2), u2 = (1, 0) and u3 = (1 + h, h2). The algorithm returns
L = {1, 2} and we obtain Qmax = det(u1,u2) = h2.

Satisfiability of such an ME constraint system C is equivalent to the satisfiability of
the following system S of equations between terms. The variables z[i, j], called context
variables, take their value in Z/2Z[h]. Let Z = {z[i, j] | 1 ≤ i ≤ k, 1 ≤ j ≤ n+i−1}.

z[1, 1] . t1 + . . .+ z[1, n] . tn = u1
z[2, 1] . t1 + . . .+ z[2, n] . tn + z[2, n+ 1] . tn+1 = u2
...
z[p, 1] . t1 + . . .+ z[p, n] . tn + . . .+ z[p, n+ p− 1] . tn+k−1 = uk
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Example 6. (running example) Let t1 = h(a) + a and t2 = b+ h2(a).

z[1, 1] . t1 + z[1, 2] . t2 = h(x1) + h2(x2)
z[2, 1] . t1 + z[2, 2] . t2 + z[2, 3] . (x1 + h(x2)) = x1 + a
z[3, 1] . t1 + z[3, 2] . t2 + z[3, 3] . (x1 + h(x2)) + z[3, 4] . (h(x1) + h(a))

= h(x1) + h2(x2) + x1 + a

Definition 9. Let C be a well-defined ME constraint system over the signature
{0, h,+} ∪ F0 and S(C) be the system of equations obtained from C. A solution to
S(C) is a couple (ρ : Z )→ Z/2Z[h], θ : vars(C) )→ T ({0, h,+} ∪ F0)) such that all
the equations of S(C)ρθ are satisfied.

We split the context variables Z into two parts, those which stem fromL and the others.
More formally, ZL = {z[i, j] | i ∈ L and 1 ≤ j < n+ i}.

A polynomial P =
∑i=n
i=0 pih

i (pn �= 0) is smaller than Q =
∑i=m
i=0 qih

i (qm �= 0),
written P < Q, if either n < m, or P �= Q, n = m and pi < qi for the greatest i
with pi �= qi.

Fact 2. Given any polynomial P ∈ Z/2Z[h], there is only a finite number of polyno-
mials which are smaller (w.r.t. <) than P .

The following Lemma is the crucial point in the proof of Lemma 10.

Lemma 9. Let S(C) be a system of equations obtained from a well-defined ME con-
straint system C over the signature {0, h,+} ∪ F0. If S(C) has a solution then there
exists σ a solution to S(C) such that for all z ∈ ZL, 0 ≤ zσ < Qmax.

The proof of this lemma proceeds by induction on the number of variables in ZL.

Lemma 10. Given C a well-defined MEconstraint system. It is decidable whether S(C)
has a solution.

Example 7 (running example). Thanks to Lemma 9, we know that z[1, 1], z[1, 2],
z[2, 1], z[2, 2] and z[2, 3] are bounded by h2, the value of Qmax. We choose ρ1 =
{z[1, 1] )→ 0; z[1, 2] )→ h; z[2, 1] )→ h + 1; z[2, 2] )→ 1; z[2, 3] )→ 0}. We do the
replacement on the two first equations:

h. (b + h2(a)) = h(x1) + h2(x2)
(h+ 1) . (h(a) + a) + 1 . (b+ h2(a)) = x1 + a

This completely determines the value of x1 and x2: θ = {x1 )→ b, x2 )→ h(a)}. Lastly,
we can apply the substitution θ on the third equation to obtain:

z[3, 1] . (h(a) + a) + z[3, 2]. (b + h2(a)) + z[3, 3] . (b+ h2(a))+
z[3, 4] . (h(b) + h(a)) = h(b) + h3(a) + b + a

Since this system is linear it is easy to decide whether it has solution.
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Let ρ2 = {z[3, 1] )→ h+ 1; z[3, 2] )→ h+ 1; z[3, 3] )→ 0; z[3, 4] )→ 0}. The couple
(ρ1 ∪ ρ2, θ) is a solution to the system of equations described in Example 6.

Now, we are able to prove our main result as stated in Section 3.

Theorem 1. The problem of deciding whether a well-defined constraint system has a
solution in IDY+E, where E = ACUNh, is decidable.

Proof. The procedure described along the paper is sound and complete.

Soundness. Let C1 be some factor-preserving ME-constraint system obtained by apply-
ing the first part of our procedure on C, a well-defined constraint system. Thanks to
Lemma 4 and 5, C1 is well-defined since C is well-defined. Let C2 be the constraint sys-
tem obtained from C1 by replacing all factors by different constants. C2 is well-defined
thanks to Lemma 7. Assume that S(C2) (the system of equations associated to C2) has
a solution. We easily deduce that C2 has a solution, hence by Lemma 7 that C1 has a
solution, and by Lemma 4 and 5 that C has a solution.

Completeness. Assume that σ is a solution to C. Thanks to Lemma 2, we can assume
that σ is conservative w.r.t. C. Let C ′ be the finite set of well-defined one-step constraint
systems obtained by applying the algorithm described in Section 4 on C. By Lemma 4,
we know that there exists C′ ∈ C ′ such that σ is a conservative solution of C′. By
Lemma 5, we know that there exists Cθ a well-defined ME-constraint system which has
a non-collapsing solution. Hence, Cθ is factor-preserving due to Lemma 6. By Lemma 7,
Cρθ has solution over {0, h,+} ∪ F0. Then, Lemma 10 allows us to conclude. �

6 Conclusion

Our solution for solving deducibility constraints is general enough to hold in related
equational theories since it relies on general algebraic concepts. In particular, our tech-
nique generalizes previous results for the case of the exclusive or equational theory
ACUN [1, 3] (context variables take values in Z/2Z) and the theory of Abelian groups
AG [16] (contexts are in Z). However, our technique does not apply to the case AGh
of the extension of Abelian groups with a homomorphism since then the contexts are
in Z[h], and Fact 2 does not hold. In fact it has recently been shown that this case is
undecidable [7].

Despite a superficial similarity between our algorithm and the one of [16], our pro-
cedure to reduce ME-constraints (cf. Section 5) to a special class of quadratic equations
is different. In particular it makes use of our novel algebraic characterization of well-
defined constraint systems. Furthermore, our procedure to solve a particular form of
quadratic equations in polynomials over the finite field Z/2Z[h] is different from the
one proposed in [16].

An open question is the case of an encryption algorithm distributing over exclusive
or. Although the case of a passive intruder is decidable in this framework [14], the case
of an active intruder seems quite intricate since it amounts to having an infinite number
of distinct homomorphisms (one for each term used as a key).
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Abstract. In (Micciancio, FOCS 2002), it was proved that solving the
generalized compact knapsack problem on the average is as hard as solv-
ing certain worst-case problems for cyclic lattices. This result immedi-
ately yielded very efficient one-way functions whose security was based
on worst-case hardness assumptions. In this work, we show that, while
the function proposed by Micciancio is not collision resistant, it can be
easily modified to achieve collision resistance under essentially the same
complexity assumptions on cyclic lattices. Our modified function is ob-
tained as a special case of a more general result, which yields efficient
collision-resistant hash functions based on the worst-case hardness of var-
ious new problems. These include new problems from algebraic number
theory as well as classic lattice problems (e.g., the shortest vector prob-
lem) over ideal lattices, a class of lattices that includes cyclic lattices as
a special case.

1 Introduction

Ever since Ajtai’s discovery of a function whose average-case hardness can be
proved based on worst-case complexity assumptions about lattices [2], the possi-
bility of building cryptographic functions whose security is based on worst-case
problems has been very alluring. Ajtai’s initial discovery [2] and subsequent
developments [5, 15, 17] are very interesting from a theoretical point of view
because they are essentially the only problems for which such a worst-case /
average-case connection is known. Unfortunately, the cryptographic functions
proposed in these works are not efficient enough to be practical. The source of
impracticality is the use of lattices, which are described as n×n integer matrices.
This results in cryptographic functions with key size and computation time at
least quadratic in the security parameter n.

A step in the direction of creating efficient cryptographic functions based
on worst-case hardness was taken by Micciancio [14]. He showed how to create
a family of efficiently computable one-way functions, namely, the generalized
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compact knapsack functions, whose security is based on a certain problem for
a particular class of lattices, called cyclic lattices. These lattices admit a much
more compact representation than general ones, and the resulting functions can
be described and evaluated in time almost linear in n. However, one-wayness is
a rather weak security property, interesting mostly from a theoretical point of
view, because it is sufficient to prove the existence (via polynomial time, but
rather impractical, constructions) of other cryptographic primitives, like com-
mitment schemes, digital signatures, and private-key encryption. By contrast,
the (inefficient) functions based on general lattices considered in [2, 5, 15, 17] are
collision-resistant hash functions, a much more useful cryptographic primitive.

In this work, we take the next step in creating efficient cryptographic func-
tions based on worst-case assumptions. We show how to create efficient, collision-
resistant hash functions whose security is based on standard lattice problems for
ideal lattices (i.e., lattices that can be described as ideals of certain polynomial
rings). With current hash functions that are not based on any hardness assump-
tions, but used in practice, being broken [23, 24, 4], we believe that it may be
an appropriate time to consider using efficient hash functions which do have an
underlying hardness assumption, especially worst-case ones.

Our contributions and comparison with related work. The generalized knapsack
problem is the following: given m random elements a1, . . . , am in a ring R, and
a target t ∈ R, find z1, . . . , zm ∈ D such that

∑
aizi = t, where D is some

fixed subset of R. In [14], it was shown that for appropriate choices of R and D,
the generalized compact knapsack problem is a one-way function with security
based on the worst-case hardness of problems for lattices that can be represented
as ideals in the ring Z[x]/〈xn − 1〉 (i.e. cyclic lattices). In this work, we show
how to construct collision-resistant hash functions based on the hardness of
problems for lattices that can be represented as ideals in the ring Z[x]/〈f〉,
where f can be one of infinitely many polynomials, including xn − 1. Thus
our result has two desirable features: it weakens the complexity assumption
while strengthening the cryptographic primitive. As in [14], our functions are
an instance of the generalized compact knapsack problem, but with ring R and
subset D instantiated in a different way. The way we change ring R and subset D
is simple, but essential, as we can show that the generalized compact knapsack
instances considered in [14] are not collision resistant.

Concurrently with, and independently from our work, Peikert and Rosen [18]
have shown, using very similar techniques, that the one-way function in [14] is not
collision resistant and showed how to construct collision-resistant hash functions
based on the hardness of finding the shortest vector for lattices which correspond
to ideals in the ring Z[x]/〈xn − 1〉. While our more general result is interesting
from a purely theoretical standpoint, it turns out that choices of certain f other
than xn−1 result in somewhat better hash functions, making our generalization
also of practical use. Also, our hardness assumptions are formulated in a way
that leads to natural connections with algebraic number theory, and we are able
to relate our complexity assumptions to problems from that area. We believe
that this will further our understanding of ideal lattices.
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There have been many proposed cryptographic primitives whose hardness
relied on the knapsack problem (e.g., [13, 7, 6]), but attacks against them (e.g.,
[21, 11, 22]) rendered the primitives impractical. These attacks, however, were
applied to a group-based knapsack problem, and it is unclear how to apply them
to our ring-based one. Also, none of those primitives had a reduction to worst-
case instances of lattice problems, and, to the best of our knowledge, there are
no known efficient algorithms that are able to solve lattice problems in the worst
case (such as shortest vector) for lattices of dimension ≈ 100. Of course, the
hardness of our primitive is based on worst-case problems for ideal lattices, and
very little is known about these. Still, currently there appear to be no algorithms
able to take advantage of the ring structure that these lattices possess (see[14] for
a discussion of known algorithms for cyclic lattices). Determining the worst-case
hardness of lattice problems for ideal lattices is a very interesting open problem.

The ring-based cryptosystem NTRU [10] uses lattices that are similar to ours.
While that cryptosystem has no known security proofs (not even one based on
average-case assumptions), it has resisted attacks. This is perhaps due to the
inherent hardness of ring-based cryptographic constructions that are used in
[10] as well as in our work. While we only construct a hash function, our work
may be viewed as a strong justification for using such ring based constructions.
Our hope is that we have taken another step in the direction of constructing
provably secure and efficient cryptosystems based on worst case hardness of
lattice problems.

The hash function. We now give an informal description of the hash function
families that we will be proving collision resistant. Given a ring R = Zp[x]/〈f〉,
where f ∈ Z[x] is a monic, irreducible polynomial of degree n and p is an integer
of order roughly n2, generate m random elements a1, . . . , am ∈ R, where m is a
constant. The ordered m-tuple h = (a1, . . . , am) ∈ Rm is our hash function. It
will map elements in Dm, where D is a strategically chosen subset of R, to R.
For an element b = (b1, . . . , bm) ∈ Dm, the hash is h(b) =

∑m
i= 1 ai · bi. Notice

that the size of the key (the hash function) is O(mn log p) = O(n log n), and the
operation ai · bi can be done in time O(n logn log logn) by using the fast Fourier
transform, for appropriate choice of the polynomial f . Since m is a constant,
hashing requires time O(n logn log logn). To prove that our hash function family
is collision resistant, we will show that if there is a polynomial-time algorithm
that succeeds with non-negligible probability in finding b �= b′ ∈ Dm such that
h(b) = h(b′), for a randomly chosen hash function h ∈ Rm, then a certain
problem called the “shortest polynomial problem” is solvable in polynomial time
for every ideal of the ring Z[x]/〈f〉. We then show that the shortest polynomial
problem is equivalent to some lattice and algebraic number theory problems.

Paper outline. Our main result and techniques rely on a connection between
lattices and ideals of certain rings, which we describe in section 3. In section 4,
we define the worst case problems on which we will be basing the security of our
hash function. We formally define the hash function families in section 5.1 and
show the worst-case to average-case reduction in section 5.2.
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2 Preliminaries

2.1 Algebra

Let Z[x] and R[x] be the sets of polynomials with integer and real coefficients
respectively. We identify polynomials (of degree < n) with the corresponding
n-dimensional vectors having the coefficients of the polynomial as coordinates.
We define the �p norm ‖g(x)‖p of g(x) ∈ Z[x] as the norm of the corresponding
vector, and the product of two n-dimensional vectors x · y as the (2n − 1)-
dimensional vector associated to the product of the corresponding polynomials.

Let R be a ring. The smallest ideal of R containing a subset S ⊆ R is denoted
〈S〉. Much of our work deals with the rings Z[x]/〈f〉 where f is monic and
irreducible. When f is a monic polynomial of degree n, every equivalence class
(g + 〈f〉) ∈ (Z[x]/〈f〉) has a unique representative g′ ∈ (g + 〈f〉) of degree
less than n. This representative is denoted (g mod f) and can be efficiently
computed using the standard division algorithm. We endow the ring Z[x]/〈f〉
with the (infinity) norm ‖(g + 〈f〉)‖f = ‖g mod f‖∞. Notice that the function
‖ · ‖f is well defined (i.e., it does not depend on the choice of representative g)
and it is indeed a norm (i.e., it satisfies the positivity and triangle inequality
properties). As shorthand, we will sometimes write ‖g‖f instead of ‖g + 〈f〉‖f .
Also, whenever there is no confusion from context, instead of writing g+ 〈f〉 for
elements of Z[x]/〈f〉, we just write g.

2.2 Lattices

An n-dimensional integer lattice is a subgroup of Zn generated by linearly inde-
pendent vectors b1, . . . ,bn ∈ Zn. The set of vectors b1, . . . ,bn is called a basis for
the lattice, and can be compactly represented by the matrix B having the basis
vectors as columns. The lattice generated by B is denoted L(B). The dual of this
lattice, denoted L(B)∗, is the lattice generated by the matrix B−T , and consists
of all vectors that have integer scalar product with all lattice vectors. For any
basis B, we define the fundamental parallelepiped P(B) = {Bx : ∀i.0 ≤ xi < 1}.
Sampling random lattice points from the fundamental parallelepiped associated
to a given sublattice can be done in polynomial time [16, Proposition 8.2].

The minimum distance of a lattice L(B) is the minimum distance between
any two (distinct) lattice points and equals the length of the shortest nonzero
lattice vector. The minimum distance can be defined with respect to any norm.
For any p ≥ 1, the �p norm of a vector x is defined by ‖x‖p = p

√∑
i |xi|p and

the corresponding minimum distance is denoted

λp1(L(B)) = min{‖x − y‖p : x �= y ∈ L(B)} = min{‖x‖p : x ∈ L(B) \ {0}}.

Each norm gives rise to a corresponding computational problem SV P pγ (the γ-
approximate Shortest Vector Problem in the �p norm): given a lattice L(B), find
a nonzero vector v ∈ L(B) such that ‖v‖p ≤ γλp1(L(B)). We also consider the
restriction of SV P to specific classes of lattices. The restriction of SV P to a
class of lattices Λ is denoted Λ-SV P . (E.g, [14] considers Cyclic-SV P ).
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The notion of minimum distance can be generalized to define the ith successive
minimum (in the �p norm) λpi (L(B)) as the smallest radius r such that the closed
sphere B̄p(r) = {x : ‖x‖p ≤ r} contains i linearly independent lattice points:
λpi (L(B)) = min{r : dim(span(L(B) ∩ B̄p(r))) ≥ i}.

In this work, we focus on the infinity norm ‖x‖∞ = limp→∞ ‖x‖p = maxi |xi|
since it is the most natural and convenient norm when dealing with polynomials,
but most of our results are easily translated to other norms as well. The shortest
vector problem in the infinity norm SV P∞γ was shown to be NP -hard for factor
up to γ(n) = n1/ log logn by Dinur [8]. The asymptotically fastest algorithm
for computing the shortest vector exactly takes time 2O(n) [3] and the best
polynomial time algorithm approximates the shortest vector to within a factor
of 2O( n log log n

log n ) [3],[20],[12]. It is conjectured that approximating SV P to within
a polynomial factor is a hard problem, although it is shown that (under standard
complexity assumptions) for small polynomial factors it is not NP -hard [1], [9].

2.3 Gaussian Distribution

Let X and Y be random variables over a set A with probability density functions
δX and δY . We denote the statistical distance between X and Y by Δ(X,Y ).

For any vectors c,x and any s > 0, let ρs,c(x) = e−π‖(x−c)/s‖2 be a Gaussian
function centered in c scaled by a factor of s. The total measure associated to ρs,c
is
∫
x∈Rn ρs,c(x)dx = sn. So,

∫
x∈Rn(ρs,c(x)/sn)dx = 1 and ρs,c/sn is a probability

density function. The distribution ρs,c/sn can be efficiently approximated using
standard techniques (see [17]), so in the rest of the paper we make the simplifying
assumption that we can sample from ρs,c/s

n exactly and work with real numbers.
Functions are extended to sets in the usual way; e.g., ρs,c(A) =

∑
x∈A ρs,c(x)

for any countable set A. For any s, c and lattice Λ, define the discrete probability
distribution (over the lattice Λ) DΛ,s,c(x) = ρs,c(x)

ρs,c(Λ) , where x ∈ Λ. Intuitively,
DΛ,s,c is the conditional probability1 that (ρs,c/sn) = x given (ρs,c/sn) ∈ Λ.
For brevity, we sometimes omit s or c from the notation ρs,c and DΛ,s,c. When
c or s are not specified, we assume that they are the origin and 1 respectively.

In [17] Gaussian distributions are used to define a new lattice invariant (called
the smoothing parameter) defined below, and many important properties of this
parameter are established. The following properties will be used in this paper.

Definition 1. For an n-dimensional lattice Λ, and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest s such that ρ1/s(Λ∗ \ {0}) ≤ ε.

Lemma 1 ([17, Lemma 4.1]). Let ρs/s
n mod B be the distribution ob-

tained by sampling a point according to the probability density function ρs/s
n

and reducing the result modulo B. For any lattice L(B), the statistical dis-
tance between ρs/s

n mod B and the uniform distribution over P(B) is at
most 1

2ρ1/s(L(B)∗ \ {0}). In particular, if s ≥ ηε(L(B)), then the distance
Δ(ρs/sn mod B, U(P(B))) is at most ε/2.
1 We are conditioning on an event that has probability 0; this can be made rigorous

by standard techniques.
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Lemma 2 ([17, Lemma 3.3]). For any n-dimensional lattice Λ and positive
real ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))
π

· λ2
n(Λ) ≤

√
n ln(2n(1 + 1/ε))

π
· λ∞n (Λ).

3 Generalized Compact Knapsacks and Ideal Lattices

In [14], Micciancio introduced the following generalization of the compact knap-
sack problem. Let R be a ring,D ⊂ R a subset, andm ≥ 1 a positive integer. The
generalized knapsack function family H(R,D,m) is the collection of all functions
ha : Dm → R indexed by a ∈ Rm mapping b ∈ Dm to ha(b) =

∑m
i=1 bi · ai ∈ R.

For any function family H, define the problem ColH as follows: given a func-
tion h ∈ H, find a collision, i.e., a pair of inputs b, c ∈ Dm such that b �= c
and h(b) = h(c). If there is no polynomial time algorithm that can solve ColH
with non-negligible probability when given an h which is distributed uniformly at
random in H, then we say that H is a collision resistant family of hash functions.

Let f ∈ Z[x] be a monic polynomial of degree n, and consider the quotient
ring Z[x]/〈f〉. Using the standard set of representatives {(g mod f) : g ∈ Z[x]},
and our identification of polynomials with vectors, the quotient ring Z[x]/〈f〉
is isomorphic (as an additive group) to the integer lattice Zn, and any ideal
I ⊆ Z[x]/〈f〉 defines a corresponding integer sublattice L(I) ⊆ Zn. Notice that
not every integer lattice L(B) ⊆ Zn can be represented this way.2 We define
ideal lattices as lattices that admit such a representation.

Definition 2. An ideal lattice is an integer lattice L(B) ⊆ Zn such that
L(B) = {g mod f : g ∈ I} for some monic polynomial f of degree n and ideal
I ⊆ Z[x]/〈f〉.

It turns out that the relevant properties of f for the resulting function to be
collision resistant are:

– f should be irreducible.
– the ring norm ‖g‖f is not much bigger than ‖g‖∞ for any polynomial g, in

a quantitative sense to be explained later.

The first property implies that every ideal of the ring Z[x]/〈f〉 defines a full-
rank lattice in Zn and plays a fundamental role in our proofs.

Lemma 3. Every ideal I of Z[x]/〈f〉, where f is a monic, irreducible integer
polynomial of degree n, is isomorphic to a full-rank lattice in Zn.

The second property affects the strength of our security proofs: the smaller the
ratio ‖g‖f/‖g‖∞ is, the harder to break our functions seems to be. We elaborate

2 Take, for example, the 2-dimensional lattice generated by the vectors (2, 0) and (0, 1)
(or in terms of polynomials, by 2x and 1). This lattice cannot be represented by an
ideal, because any ideal containing 1 must also contain the polynomial 1 · x, but the
vector (1, 0) (corresponding to the polynomial x) does not belong to the lattice.
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on the second property by defining a quantitative parameter (the expansion
factor) that captures the relation between ‖ · ‖∞ and ‖ · ‖f .

3.1 The Expansion Factor

Notice that when we reduce a polynomial g modulo f , the maximum coefficient
of g can increase by quite a bit, and thus ||g||f could be a lot bigger than ||g||∞.
For example if f = xn − 2xn−1, then x2n ≡ 2n+1xn−1 modulo f . On the other
hand, if f = xn−1, we can never have such an exponential growth of coefficients.
We capture this property of f by defining the expansion factor of f as

EF (f, k) = max
g∈Z[x],deg(g)≤k(deg(f)−1)

||g||f/||g||∞

The below theorem gives tight bounds for the expansion factor of certain
polynomials that have small expansion factors.

Theorem 1. (1)EF (xn−1 + xn−2 + . . .+ 1, k) ≤ 2k. (2)EF (xn + 1, k) ≤ k.

In the full version of this work, we also provide some general formulas that upper
bound the expansion factors of arbitrary polynomials.

4 Worst Case Problems

In this section we define the worst case problems and provide reductions among
them. Because of the correspondence between ideals and integer lattices, we can
use the successive minima notation used for lattices for ideals as well. So for any
ideal I of Z[x]/〈f〉, where f is a monic integer polynomial, we’ll define λpi (I) to
be λpi (L(I)).

Definition 3. In the approximate Shortest Polynomial Problem (SPPγ(I)), we
are given an ideal I ⊆ Z[x]/〈f〉 where f is a monic polynomial of degree n, and
we are asked to find a g ∈ I such that g �= 0 and ||g||f ≤ γλ∞1 (I).

As for the shortest vector problem, we can consider the restriction of SPP to
specific classes of ideals. We will write f -SPP for SPP restricted to ideals of
the ring Z[x]/〈f〉. The f -SPP problem for any monic, irreducible f is the main
worst-case problem of this work, as it is the problem upon which the security of
our hash functions will be based. Since SPP is a new problem whose hardness
has not been explored, we show that other better-known problems can be reduced
to it. If we denote by I(f) the set of lattices that are isomorphic (as additive
groups) to ideals of Z[x]/〈f〉 where f is monic, then there’s a straightforward
reduction from I(f)-SV Pγ to f -SPPγ (and also the other way around).

Lattices in the class I(xn − 1) (cyclic lattices) do not fall into the category of
lattices that are isomorphic to ideals of Z[x]/〈f〉 for an irreducible f (since xn−1
is not irreducible). In the full version, we give a reduction from (xn − 1)-SPP2γ
to (xn−1 +xn−2 + . . .+1)-SPPγ, thus establishing the security of hash functions
based on the hardness of the shortest vector problem for cyclic lattices of prime
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dimension. Another problem that we reduce to SPP is the problem of finding
complex numbers with small conjugates in ideals of integers of certain number
fields. This problem and the reduction is described in detail in the full version.

Now we state a lemma which shows that if I is an ideal of Z[x]/〈f〉 where f
is monic and irreducible, then λ∞n (I) cannot be much bigger than λ∞1 (I).

Lemma 4. For all ideals I of Z[x]/〈f〉 where f is a monic, irreducible polyno-
mial of degree n, we have λ∞n (I) ≤ EF (f, 2)λ∞1 (I)

Proof. Let g be a polynomial in I of degree less than n such that ||g||∞ = λ∞1 (I).
Then consider the polynomials g, gx, . . . , gxn−1. By lemma 3, the polynomials
g, gx, . . . , gxn−1 are linearly independent. And since the maximum degree of any
of these polynomials is 2n − 2, ||gxi||f ≤ EF (f, 2)||gxi||∞ ≤ EF (f, 2)||g||∞ =
EF (f, 2)λ∞1 (I) for all 0 ≤ i ≤ n− 1.

We now define the incremental version of SPP . In this version, we are not looking
for the shortest polynomial, but for a polynomial that is smaller than the one
given to us. We will be reducing this problem to the average-case problem.

Definition 4. In the approximate Incremental Shortest Polynomial Problem
(IncSPPγ(I, g)), we are given I and a g ∈ I such that ||g||f > γλ∞1 (I) and
are asked to return an h ∈ I such that ||h||f �= 0 and ||h||f ≤ ||g||f/2.
We define the restricted version of IncSPP in the same was as the restricted
version for SPP .

Lemma 5. There is a polynomial time reduction from f -SPPγ to f -IncSPPγ.

5 Collision Resistant Hash Function Families

In this section, we define families of hash functions which are instances of general-
ized compact knapsacks and prove that finding collisions in these hash functions
is at least as hard as solving the approximate shortest polynomial problem.

5.1 The Hash Function Families

The hash function family H(R,D,m) we will be considering in this paper will
be instances of generalized knapsacks instantiated as follows. Let f ∈ Z[x] be an
irreducible, monic polynomial of degree n with expansion factor EF (f, 3) ≤ E .
Let the ring R be Zp[x]/〈f〉 for some integer p, and let D = {g ∈ R : ||g||f ≤ d}
for some positive integer d. The family of functions H is mapping elements from
Dm to R where |Dm| = (2d + 1)nm and |R| = pn. So if m > log p

log 2d , then H will
be a family of functions that have collisions. We will only be interested in such
families. We will now state the main theorem:

Theorem 2. Let H be a hash function family as above with m > log p
log 2d and

p > 2Edmn1.5 logn. Then, for γ = 8E2dmn log2 n, there is a polynomial time
reduction from f -SPPγ(I) for any I to ColH(h) where h is chosen uniformly at
random from H.
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The proof of the theorem is given in the next subsection. To achieve the best
approximation factor for f -SPPγ(I), we can set m = Θ(log n, log E) and d =
Θ(log n). This makes γ = Õ(n)E2. For purposes of being able to compute the
function faster, though, it is useful to have m be smaller than Θ(log n). It is
possible to make m constant at the expense of being able to approximate f -
SPP only to a factor of γ = Õ(n1+δ)E2. To be able to set m to a constant, we
can set d = nδ for some δ > 0. Then we can set m = log (E)

δ logn + 2+δ
δ + o(1).

In order to get the “tightest” reduction, we should pick an f such that the
bound E on f ’s expansion factor is small. In theorem 1, we show that we can set
E to be 3 and 6 for polynomials of the form xn + 1 and xn−1 + xn−2 + . . . + 1
respectively. The polynomial xn+1 is irreducible whenever n is a power of 2 and
xn−1 + xn−2 + . . . + 1 is irreducible for prime n, so those are good choices for
f . Among other possible f ’s with constant bounds for EF (f, 3) are polynomials
of the form xn ± x ± 1 (see [19, Chapter 2.3.2] for sufficient conditions for the
irreducibility of polynomials of this form).

Some sample instantiations of the hash function. If we let f = x126 + . . . +
x + 1, n = 126, d = 8,m = 8, and p ≈ 223, then our hash function is mapping
log (|2d|mn) = 4032 bits to log |Rp| = log (pn) ≈ 2900 bits. If we want to base
our hardness assumption on lattices of higher dimension, we can instantiate
f = x256 + . . .+x+1, n = 126, p ≈ 225, d = 8,m = 8, and our hash function will
be mapping 8192 bits to log (pn) ≈ 6400 bits. If we instead let f = x256 + 1, we
can let p be half as small (because the expansion factor for xn + 1 is half of the
expansion factor of xn + . . .+ x + 1) and thus we will be mapping 8192 bits to
around 6150 bits.

5.2 Finding Collisions Is Hard

In this section, we will provide the proof of theorem 2. Let H be the family of
hash functions described in the last subsection with p > 2Edmn1.5 logn. We will
show that if one can solve in polynomial time, with non-negligible probability,
the problem ColH(h) where h is chosen uniformly at random from H, then one
can also solve f -IncSPPγ(I, g) for any ideal I for γ = 8E2dmn log2 n. And
since by lemma 5, f -SPPγ(I) ≤ f -IncSPPγ(I, g), we will have a reduction
from f -SPPγ(I) for any I to ColH(h) for a random h. Let C be an oracle such
that when given a uniformly random h ∈ H, C(h) returns a solution to ColH(h)
with non-negligible probability in polynomial time. Now we proceed with giving
an algorithm for f -IncSPPγ when given access to oracle C.

Given: I, g ∈ I such that g �= 0 and ||g||f > 8E2dmn log2 nλ∞1 (I)
Find: h ∈ I, such that h �= 0 and ||h||f ≤ ||g||f/2.

Without loss of generality, assume that g has degree less than n and thus
||g||∞ = ||g||f . So we are looking for an h such that ||h||f ≤ ||g||∞/2. In this
section, it will be helpful to think of ideals I and 〈g〉 as subgroups of Zn (or
equivalently, as sublattices of Zn). Define a number s as
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s =
||g||∞

8E
√
n logndm

≥ E
√
n(logn)λ∞1 (I) ≥

√
n(logn)λ∞n (I) ≥ ηε(I)

for ε = (log n)−2 logn, where the last inequality follows by lemma 2, and the
inequality before that is due to lemma 4. By lemma 1, it follows that if y ∈ Rn

where y ∼ ρs/s
n, then Δ(y+ I, U(Rn/I)) ≤ (log n)−2 logn/2. (That is, y is in an

almost uniformly random coset of Rn/I). By our definition of s, we have that
||g||∞ = 8Edms

√
n logn. Now we will try to create an h ∈ I which is smaller

than g using the procedure below. In the procedure, it may not be obvious how
each step is performed, and the reader is referred to lemma 6 for a detailed
explanation of each step.
(1) for i = 1 to m

(2) generate a uniformly random coset of I/〈g〉 and let vi be a polynomial
in that coset

(3) generate yi ∈ Rn such that yi has distribution ρs/s
n and consider yi as

a polynomial in R[x]
(4) let wi be the unique polynomial in R[x] of degree less than n with

coefficients in the range [0, p) such that p(vi + yi) ≡ gwi in Rn/〈pg〉
(5) ai = [wi] mod p (where [wi] means round each coefficient of wi to the

nearest integer)
(6) call oracle C(a1, . . . , am), and using its output, find polynomials z1, . . . , zm

such that ||zi||f ≤ 2d and
∑
ziai ≡ 0 in the ring Zp[x]/〈f〉.

(7) output h =
(∑( g(wi−[wi])

p − yi

)
zi

)
mod f .

To complete the proof, we will have to show five things: first, we have to prove
that the above procedure runs in polynomial time, which is done in lemma 6.
Then, in lemma 7, we show that in step (6) we are feeding the oracle C with
an h ∈ H where the distribution of h is statistically close to uniform over H.
In lemma 8, we show that the resulting polynomial h is in the ideal I. We
then show that if C outputted a collision, then with non-negligible probability,
||h||f ≤ ||g||∞/2 and that h �= 0. This is done in lemmas 9 and 10 respectively.
These five things prove that with non-negligible probability, we will obtain a
solution to IncSPPγ . If we happen to fail, we repeat the procedure again. Since
each run of the procedure is independent, we will obtain a solution to IncSPPγ
in polynomial time.

Lemma 6. The above procedure runs in polynomial time.

Proof. We will show that each step in the algorithm takes polynomial time. In
step (2), we need to generate a random element of I/〈g〉. By lemma 3, the ideals
I and 〈g〉 can be thought of as Z-modules of dimension n. Since 〈g〉 ⊆ I, the
group I/〈g〉 is finite, and we can efficiently generate a random element of I/〈g〉.
Step (4) of the algorithm will be justified in lemma 7. In step (5), we are just
rounding each coefficient of wi to the nearest integer and then reducing modulo
p. Now each ai can be thought of as an element of Zp[x]/〈f〉, so in step (6)
we can feed (a1, . . . , am) to the algorithm that solves ColH(a1, . . . , am). The
algorithm will return (α1, . . . , αm), (β1, . . . , βm) where αi, βi ∈ Z[x]/〈f〉 such
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that ||αi||f , ||βi||f ≤ d and
∑
aiαi ≡

∑
aiβi in the ring Zp[x]/〈f〉. Thus if we

set zi = αi − βi, we will have ||zi||f ≤ 2d and
∑
ziai ≡ 0 in the ring Zp[x]/〈f〉.

Lemma 7. Consider the polynomials ai as elements in Znp . Then,

Δ((a1, . . . , am), U(Zn×mp )) ≤ mε/2.

Proof. We know that vi is in a uniformly random coset of I/〈g〉 and let’s assume
for now that yi is in a uniformly random coset of Rn/I. This means that vi + yi
is in a uniformly random coset of Rn/〈g〉 and thus the distribution of p(vi + yi)
is in a uniformly random coset of Rn/〈pg〉. A basis for the additive group 〈pg〉 is
pg, pgx, . . . , pgxn−1, thus every element of Rn/〈pg〉 has a unique representative of
the form α0pg+α1pgx+ . . .+ αn−1pgx

n−1 = g(pα0 + pα1x+ . . .+ pαn−1x
n−1)

for αi ∈ [0, 1). So step (4) of the algorithm is justified, and since p(vi + yi)
is in a uniformly random coset of Rn/〈pg〉, the coefficients of the polynomial
wi = pα0 +pα1x+ . . .+pαn−1x

n−1 are uniform over the interval [0, p), and thus
the coefficients of [wi] are uniform over the integers modulo p. The caveat is that
yi is not really in a uniformly random coset of Rn/I, but is very close to it. By our
choice of s, we have that Δ(ρs/sn+I, U(Rn/I)) ≤ ε/2, and since ai is a function
of yi, by a property of statistical distance, we have that Δ(ai, U(Znp )) ≤ ε/2. And
since all the ai’s are independent, we get thatΔ((a1, . . . , am), U(Zn×mp )) ≤ mε/2.

Due to space constraints, the proofs of the below lemmas are omitted, and we
refer the interested reader to the full version of this work.

Lemma 8. h ∈ I.

Lemma 9. With probability negligibly different from 1, ||h||f ≤ ||g||∞
2 .

Lemma 10. Pr[h = 0|(a1, . . . , am), (z1, . . . , zm)] = Ω(1).

6 Conclusions and Open Problems

We gave constructions of efficient collision-resistant hash functions that can be
proven secure based on the conjectured worst-case hardness of the shortest vec-
tor problem for ideal lattices, i.e., lattices that can be represented as ideals of
Z[x]/〈f〉 for some monic, irreducible polynomial f . Moreover, our results can be
extended to certain polynomials f that are not irreducible, e.g., the polynomial
f = xn − 1 corresponding to the class of cyclic lattices.

The central question raised by our work is the hardness of I(f)-SV P , or
equivalently, the hardness of f -SPP for different f ’s. It is known that SV P is
hard in the general case, and it was conjectured in [14] that I(xn − 1)-SV P is
hard as well. We show worst-case to average-case reductions that work for many
other f ’s, so, in essence, we are giving more “targets” that can be proved hard.

Almost nothing is currently known about the complexity of problems for ideal
lattices. We hope that our constructions of efficient collision-resistant hash func-
tions based on the worst-case hardness of these problems provides motivation
for their further study.
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Abstract. The HFE cryptosystem was the subject of several cryptana-
lytic studies, sometimes successful, but always heuristic. To contrast with
this trend, this work goes back to the beginnning and achieves in a prov-
able way a first step of cryptanalysis which consists in distinguishing HFE
public keys from random systems of quadratic equations. We provide two
distinguishers: the first one has polynomial complexity and subexponen-
tial advantage; the second has subexponential complexity and advantage
close to one. These distinguishers are built on the differential method-
ology introduced at Eurocrypt’05 by Fouque & al. Their rigorous study
makes extensive use of combinatorics in binary vector spaces. This com-
binatorial approach is novel in the context of multivariate schemes. We
believe that the alliance of both techniques provides a powerful frame-
work for the mathematical analysis of multivariate schemes.

Keywords: Multivariate cryptography, HFE, differential cryptanalysis.

1 Introduction

While quantum computers, if they are ever built, would threaten most popu-
lar public-key cryptosystems such as RSA [17], alternative families of systems
are currently designed and evaluated. One such family is based on multivariate
quadratic polynomials on finite fields, and demonstrated very fruitful. Initiated in
the early 80’s by Matsumoto-Imai and Fell-Diffie [19] [5], multivariate cryptogra-
phy received interest after the work of Shamir [3] and Patarin [10, 11]. Since then,
about four basic trapdoors along with a large number of non-exclusive additional
modifications have been invented [4]. These modifications, called variations, are
designed to prevent structural attacks against the trapdoor.

HFE, probably the most promising of these cryptosystems, was proposed by
Patarin [11] as a repair of the broken Matsumoto-Imai cryptosystem [20]. A little
later, Kipnis and Shamir found a structural attack reducing the recovery of the
private key to a MinRank problem [1]. Unfortunately, no known method to solve
MinRank problems is practical for usual parameter sizes; still, the attack reveals
weaknesses in the hiding of the trapdoor. Next, Courtois discovered that the
multivariate quadratic equations coming from an HFE public key satisfy many
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low degree polynomial implicit equations [15]. Finally, Faugère and Joux demon-
strated experimentally that systems of multivariate quadratic equations coming
from HFE keys have good elimination properties that allow much easier Gröb-
ner bases computations [6] — they broke the basic HFE for the first suggested
parameters. Nevertheless, the attack did not extend to some major variations,
requires a huge workload both in time and memory for the suggested parameter
sizes and its complexity is unclear. Also all mentioned cryptanalytic approaches
are heuristic and none provides a provable distinguisher.

Recently, Fouque-Granboulan-Stern proposed a new technique of analysis for
multivariate schemes [16]. The method consists in studying the rank of the dif-
ferential of the public key in order to extract information about the internal
structure. The differential methodology already proved useful by providing an
enhanced cryptanalysis of the Matsumoto-Imai cryptosystem and by breaking
its Internal Perturbation variation [16] proposed by Ding [7].

Our Results. In this paper, we present a further application of the differ-
ential approach. It provides a provable distinguisher of HFE public keys, with
polynomial complexity and subexponential advantage. This distinguisher can be
improved into an algorithm with subexponential complexity and proven advan-
tage close to one. This is the first cryptanalytic insight into the internal structure
of HFE which is both entirely proven and practical for standard parameters. Our
study requires combinatorics in finite fields of characteristic 2, which we believe
to provide a new powerful approach for the analysis of multivariate schemes.

Organization of the Paper. In Section 2 of this paper, we recall the basic
mathematical setting of multivariate cryptography and set up some combinato-
rial results related to the distribution of ranks of linear maps. In Section 3, we
recall the definitions of HFE and its differential, and using the previous combi-
natorial tools, we show how the HFE internal structure can be detected from a
public key with a precisely estimated complexity. A few proofs are sketched in
this paper; they appear in details in the appendices of the full paper.

2 Mathematical Setting

2.1 Univariate-Multivariate Correspondence

Finite Fields. [13] We note Fn2 the n-dimensional vector space over F2. All
fields with 2n elements are isomorphic, and can be considered as instantiations
of the same entity, called the degree n extension field of F2, denoted F2n . F2n is
an F2-vector space of dimension n and every choice of a basis of F2n defines a
linear isomorphism from F2n to Fn2 . Besides, the non-zero elements of F2n form
a multiplicative group of size 2n−1 and every element a of F2n satisfies a2n

= a.
Last, F2n has characteristic 2, that is for all x of F2n , x+ x = 0.

F2-Linear and F2-Quadratic Polynomials over F2n. Characteristic 2 im-
plies that for any a, b in F2n and any integer i, (a + b)2

i

= a2i

+ b2
i

. As a
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consequence, for any integer i, the polynomial X2i

defines an F2-linear map
from F2n to F2n . Besides, since for all a in F2n , a2n

= a, polynomials X2i

and
X2i+n

define the same function. Thus, we can focus on monomials X2i

for i
restricted to [0, n − 1]. Next, linear combinations over F2n of these monomials
again define F2-linear maps from F2n to F2n and we define the set

L =

{
n−1∑
i=0

aiX
2i

; ai ∈ F2n , ∀i ∈ [0, n− 1]

}
that we call the F2-linear polynomials over F2n . The same way, it is easy to
check that linear combinations over F2n of monomials in two variables of the
form X2i

Y 2j

for i, j in [0, n− 1] define F2-bilinear maps from F2n × F2n to F2n .
Taking Y = X defines a subset of F2n [X ]

Q =

⎧⎨⎩
n−1∑

i,j=0:i≤j
aijX

2i+2j

; aij ∈ F2n , ∀i, j ∈ [0, n− 1], i ≤ j

⎫⎬⎭
that we call the F2-quadratic polynomials over F2n .

Univariate-Multivariate Correspondence. Any function from F2n to F2n

is the evaluation of a polynomial over F2n , and this polynomial is unique in
the quotient ring F2n [X ]/(X2n −X). This allows to identify any function from
F2n to F2n to a univariate polynomial in F2n [X ]/(X2n −X). The same way, a
function from Fn2 to Fn2 is defined by n coordinate-functions, which are boolean
functions in n variables. Each coordinate-function is the evaluation of a polyno-
mial in F2[x1, . . . , xn], which is unique in the quotient-ring F2[x1, . . . , xn]/{x2

1 −
x1, . . . , x

2
n−xn}. This allows to define any function from Fn2 to Fn2 by its multivari-

ate representation in (F2[x1, . . . , xn]/{x2
1−x1, . . . , x

2
n−xn})n. Further, these two

sets are isomorphic, by an extension of the isomorphism between F2n and Fn2 . In
particular the set of linear maps from Fn2 to Fn2 , denoted Ln, is in bijection with L.
Also, the set of quadratic maps from Fn2 to Fn2 , denoted Qn, is in bijection with Q.

2.2 Combinatorics in Fn
2

Linearly Independent Sequences and Subspaces of Fn
2 . We denote by

S(n, d) the number of linearly independent sequences of length d of vectors of
Fn2 ; it is easily seen that S(n, d) =

∏n−1
i=0 (2n − 2i). Each such sequence gener-

ates a subspace of dimension d which is also generated by S(d, d) other linearly
independent sequences of length d. Therefore the number E(n, d) of subspaces
of dimension d in Fn2 is S(n, d)/S(d, d). Defining λ(n) =

∏n
i=1

(
1 − 1

2i

)
, we have

S(n, d) =
λ(n)

λ(n− d)
2nd and E(n, d) =

λ(n)
λ(n− d)λ(d)

2d(n−d)

S(n, d) is similar to the number of permutations of size d over n elements, and
E(n, d) is similar to the number of combinations of size d over n elements. These
quantities sparsely appear in the literature [9, 2, 18, 12], however we could not find
any enumerative results dealing with algebraic aspects of binary vector spaces.
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Number of Linear Maps of a Given Rank. We consider a fixed integer
r in [0, n] and we enumerate the number of linear maps of rank r. Let K be
the kernel of a map of rank r, and let B a basis of a complement of K. Any
linear map of kernel K is uniquely defined by the image of B, which is a linearly
independent sequence of length r. Therefore, the number of linear maps with
kernel K is S(n, r). This depends only on the dimension n − r of K, and there
are E(n, n− r) such subspaces. Finally, the number of linear maps of rank r is

E(n, n− r)S(n, r) =
λ(n)2

λ(n− r)2λ(r)
2r(n−r)2nr

Dividing by 2n
2

provides the proportion of linear maps of rank r. The collec-
tion of these proportions for all ranks defines the distribution of ranks of linear
maps.

Distribution of Ranks of F2-Linear Polynomials of Constrained
Degree. We close this section by explaining how to compute the distribution of
ranks of a random F2-linear polynomial of a given degree. While only the easy
part of our results will be used in the sequel, it gives an other application of
the combinatorial approach, which will later show interesting in the context of
HFE.

An F2-linear polynomial P has as many roots as the number of elements in its
kernel. Hence, if r is the rank of the F2-linear polynomial P considered as a linear
map, it is easily seen that P has 2n−r roots. Fixing an integer D in [0, n − 1],
we denote LD the subset of F2-linear polynomials of degree 2D. A polynomial
of degree 2D has at most 2D roots, or is the zero polynomial. Then, the rank of
a non-zero F2-linear polynomial P in LD is at least n −D. The distribution of
ranks of F2-linear polynomials of degree 2D is given by the following theorem.
Although, the theorem does not provide a closed form for these numbers, it
allows to compute them for any choice of the parameters.

Theorem 1. Let D an integer in the interval [0, n − 1]. A non-zero F2-linear
polynomial of degree 2D has rank at least n−D. The proportions pD(0),. . ., pD(D)
of elements of LD of ranks respectively n, . . . , n−D satisfy the following invertible
triangular system

d ∈ [0, D], E(n, d)2−nd =
D∑
m=d

E(m, d)pD(n− d)

Sketch of proof. The number of F2-linear polynomials of degree 2D is (2n−1)2nD.
Given a subspace of dimension d with d in [0, D], the vanishing of an F2-linear
polynomial of degree 2D results in d linear constraints over its D+1 coefficients.
It implies that for each subspace of dimension d, there are exactly (2n−1)2n(D−d)

F2-linear polynomials which vanish on it. In the product E(n, d)(2n−1)2n(D−d),
the F2-linear polynomials whose kernel has dimension m with m ≥ d are counted
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E(m, d) times. Therefore, the proportions pD(n− d) of F2-linear polynomials of
degree 2D which have rank n− d satisfy the above invertible triangular system.

3 Distinguishers for HFE

The distinguishers that we provide are built on the observation of the previous
section: a F2-linear polynomial of degree at most 2D has large rank at least n−D,
while there is a very small albeit non-zero probability that a random linear map
of any rank appears. Applying this observation to the differential yields a distin-
guisher. Even if the idea appears straightforward, the technicalities required to
turn it into a precise mathematical proof and to estimate the advantage of the
distinguisher are non-trivial and require the previously introduced combinator-
ial framework. This is especially true of the enhanced distinguisher, where the
advantage is made close to one by iteration: the difficulty here is that we have to
play with non pairwise independent random variables, whose precise relationship
can only be understood through this combinatorial framework.

3.1 Description of HFE

At the basis of multivariate cryptography is the problem of solving a set of
multivariate polynomial equations over a finite field. This problem is proven NP-
hard [14] and considered very hard in practice for systems of equations at least
quadratic with about the same number of equations and unknowns. For such
systems, the best algorithms use Gröbner bases theory, have at least exponential
complexity, and are impractical for even a few unknowns (or equations).

Informally, the general construction of multivariate cryptosystems consists in
hiding an easily solvable multivariate quadratic system into a random-looking
system by a secret transformation. More precisely, one considers a quadratic map
P from Fn2 to Fn2 defined by n polynomials of degree 2 in n unknowns of a specific
form, which allows to easily solve the system P (x1, . . . , xn) = (a1, . . . , an) for any
element (a1, . . . , an) of Fn2 . Then, one chooses two invertible affine maps S,T
from Fn2 to Fn2 , each defined by n multivariate equations of degree 1. Clearly,
the composition T ◦ P ◦ S is again a multivariate quadratic map P ′ of Fn2 ,
and any related system P ′(x1, . . . , xn) = (a1, . . . , an) where (a1, . . . , an) is an
element of Fn2 is impractical to solve by the dedicated algorithms for a prescribed
parameter n. To create an asymmetric cryptosystem, the user randomly picks P
of the specific form and two invertible affine maps S,T , and keeps them secret.
Then, he publishes P ′ = T ◦ P ◦ S. A message a encrypted into b = P ′(a) can
only be decrypted by the legitimate user since the multivariate quadratic system
P ′(x1, . . . , xm) = b can only be solved by inverting the secret process.

HFE is a way to generate easily solvable multivariate quadratic systems. As
seen in Section 2.1, the set of quadratic maps, called Qn, is isomorphic to a
specific subset of the univariate polynomials over F2n , namely Q. It implies that
solving a given multivariate quadratic system is equivalent to finding the roots of
the related univariate polynomial. In HFE, the latter is made easy by generating
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quadratic systems from low degree univariate polynomials of Q. Parameters for
the first challenge of HFE are n = 80 and degree 96.

3.2 Differential Analysis of Multivariate Quadratic Maps

The Differentials of a Multivariate Quadratic Map. Given a quadratic
map P , its differential at a point a of Fn2 is the linear map defined by

DPa(x) = P (a + x) + P (x) + P (a) + P (0)

It vanishes at a. If P is seen as a polynomial, DPa is an F2-linear polynomial.
For any element a, the rank of DPa can be evaluated. We call distribution

of ranks of the differentials of P the collection for all rank r in [0, n] of the
proportions of elements a at which the rank of DPa is r. The distribution of
ranks of the differentials is a major element of analysis of multivariate schemes
because it is invariant in the hiding process. Indeed, for P a quadratic map,
S,T two affine bijections of linear parts respectively S,T (bijective), and P ′

the quadratic map T ◦ P ◦ S, then it can be checked that for any point a

DP ′
a = T ◦ DPS(a) ◦ S

Consequently, the internal function P and the public key P ′ have the same
distribution of ranks of the differentials. Hence, whenever the distribution of
ranks of the differentials of P has some property, it can be seen from P ′.

Distribution of Ranks of the Differentials of a Random Quadratic
Map. We consider a random quadratic map P of Fn2 and we are interested in
the rank ra of its differential DPa at a.

Theorem 2. Given a non-zero element a of Fn2 , and a random quadratic map
P , the rank of DPa follows the distribution of ranks of linear maps vanishing
at a. Therefore, for any t in [1, n] the probability that DPa has rank n − t is
αt2−t(t−1) where αt is a constant in the interval [0.16, 3.58].

Proof. Let a = (a1, . . . , an) a non-zero element of Fn2 and L a linear map that
cancels at a:

∑n
i=1 liai = 0 (Note that li ∈ Fn2 and ai ∈ F2). A quadratic map

P (x1, . . . , xn) =
∑n
i=1
∑n
j=i+1 pijxixj has for differential at a

DPa(x1, . . . , xn) =
∑n
i=1

(∑i−1
j=1 pjiaj +

∑n
j=i+1 pijaj

)
xi

Therefore, DPa = L is equivalent to⎡⎢⎢⎢⎢⎢⎣
l1

...

ln

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 p12 p13 . . . p1n

p12 0 p23 . . . p2n
p13 p23 0 p3n
...

...
. . .

...
p1n p2n p3n . . . 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a1

...

an

⎤⎥⎥⎥⎥⎥⎦
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Up to a reordering of coordinates, one can assume an �= 0. Then any choice of
coefficients pij for i < j < n can be completed in a quadratic map such that
DPa = L. Indeed, we define for all i in [1, n− 1]

pin = li +
∑i−1
j=1 pjiaj +

∑n−1
j=i+1 pijaj

and we can check that the last row equation
∑n−1
i=1 pinai = ln is satisfied, using

the vanishing at a of both L and DPa. Hence the number of P in Qn such that
DPa = L is independent of a and L, and the first point of the theorem follows.

Next, for any t in [1, n], a linear map of rank n − t which vanishes at a is
a map whose kernel has dimension t and contains a. Since the number of such
subspaces is E(n−1, t−1), the number of linear maps of rank n− t vanishing at
a is E(n−1, t−1)S(n, n−t). Finally the overall number of linear maps vanishing
at a is 2n(n−1). Among them, those of rank n− t are in proportion

PrL∈Ln;L(a)=0 [ rkL = (n− t)] = αt2−t(t−1) with αt =
λ(n)λ(n − 1)

λ(t)λ(t − 1)λ(n− t)

Since the sequence λ decreases towards a value over 0.28 [18], αt lies in [0.16,
3.58].

3.3 A Fast Distinguisher for HFE

A Specific Property of HFE. We denote P the hidden internal function in
HFE and we letD = �log2 deg(P ) where deg(P ) is the degree of P considered as
a polynomial over F2n . For any element a of Fn2 , DPa is an F2-linear polynomial
of degree at most 2D. Unless it is the zero function, its rank is at least n −D.
In contrast, we saw in the previous paragraph that the differential of a random
quadratic system has rank n−D− 1 with probability of the order of 2−D(D+1).

A Fast Distinguisher for HFE. For any parameter D in [0, n], we define the
algorithm TD which takes as input a quadratic map P and a non-zero point
a, computes the differential of P at a and evaluates its rank, finally answers 1
when this rank is n−D− 1 and 0 otherwise. The running time of this algorithm
is polynomial, more precisely it is O(n3).

Using algorithm TD, we can devise a distinguisher for any non-zero arbitrary
value a, defined the following way

INPUT: a quadratic function P which is
- either a HFE function of degree ≤ 2D (probability 1/2)
- or a random quadratic function (probability 1/2)

DO: compute TD(P ,a)
if TD(P ,a) = 1 output random, else output HFE

The distinguisher always answers HFE on HFE functions, but it may answer HFE
on a random quadratic map which is not HFE. Following Theorem 2, the dis-
tinguisher answers random on a random quadratic maps with a probability of
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the order of 2−D(D+1). This probability is the advantage of the distinguisher and
does not depend on a. Since 2D is polynomial in the security parameter to allow
decryption of the HFE cryptosystem, 2D(D+1) is subexponential. Hence, any non-
zero element of Fn2 yields a distinguisher for HFE with proven subexponential
advantage, or more accurately with advantage the inverse of a subexponential
function. A test answering 1 when the rank is ≤ n−D−1 is a little more efficient
but its study is more complicated without changing the order of complexity.

3.4 Enhanced Distinguisher

For any parameter D in [0, n] and a fixed integer N , we define the algorithm
TND which takes as input a quadratic map P and N distinct non-zero points
a1, . . . ,aN of Fn2 , computes the values of TD(P ,ai) for all i, finally answers 1 if
TD(P ,ai) = 1 was found for at least one ai, and 0 otherwise. The running time
of this algorithm is O(Nn3).

The intention behind this algorithm is simple ; it aims at increasing the proba-
bility to detect a non-HFE quadratic map by testing for multiple points, yielding
a distinguisher with improved advantage. Using algorithm TND , we can devise as
before such an improved distinguisher from any arbitrary distinct non-zero values
a1, . . . ,aN .

Let fix N such points a1, . . . ,aN and define the random variable

SDN (P ) =
N∑
i=1

TD(P ,ai)

over the set Qn of quadratic maps. All TD(P ,ai) are {0, 1} valued random
variables over Qn and the advantage of the distinguisher is

PrP∈Qn [SDN (P ) ≥ 1]

From Theorem 2, we deduce that all TD(P ,ai) have the same law, of mean
value μD , 2−D(D+1). Hence, we could easily determine the advantage of the
distinguisher, if the random variables TD(P ,ai) were independent; unfortunately
these random variables are even not pairwise independent. In the sequel, we
give more details about this fact and show that this difficulty can be overcome:
using our combinatorial framework, the standard deviation of SDN can be actually
computed. Next, using Chebychev inequality, we prove that for N = 2D(D+2),
the advantage of the distinguisher is close to one.

Mean Value and Standard Deviation of SD
N

Theorem 3. The mean value and the standard deviation of SDN satisfy respec-
tively {

ADN = NμD
(σDN )2 = NμD −Nμ2

D(1 + εD) + εDN
2μ2
D

where εD is lower than 22D+2/(2n − 1) and μD is of the order of 2−D(D+1).
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Proof. For the reader’s convenience, we omit the D superscripts and write Xi in
place of TD(P ,ai).

The mean value comes from linearity. The standard deviation satisfies

(σN )2 = EP∈Qn [(SN )2] − (AN )2

where EP∈Qn denotes the expectation. Further, since the Xi are {0, 1} valued
and the expectation is linear,

EP∈Qn [(SN )2] = AN +
N∑
i=1

∑
j �=i

EP∈Qn [XiXj ]

where for each pair i �= j,

EP∈Qn [XiXj] = PrP∈Qn [rk DPai = n−D − 1 , rk DPaj = n−D − 1] (1)

As already mentioned, random variables Xi and Xj are not independent, for
any pair i �= j. Indeed, the differentials of P at ai and aj satisfy DPai(aj) =
DPaj (ai). Therefore, the vanishing (or not) of DPai at aj is correlated to the
vanishing (or not) of DPaj at ai. It follows that the ranks of DPai and DPaj are
not independent. Fortunately, the distribution of ranks of pairs (DPai ,DPaj)
can be fully understood: defining the set D(a, b) of pairs of linear maps (L,L′)
such that L(a) = 0,L′(b) = 0,L(b) = L′(a), we can prove the following lemma
whose proof is very similar to that of Theorem 2.

Lemma 1. Given two distinct non-zero elements a and b of Fn2 , and a random
quadratic map P , the rank of the pair (DPa,DPb) follows the distribution of
ranks of pairs of linear maps in D(a, b).

Lemma 1 implies that

PrP∈Qn

[
rkDPai = n−D − 1
rkDPaj = n−D − 1

]
= Pr(L,L′)∈D(ai,aj)

[
rkL = n−D − 1
rkL′ = n−D − 1

]
(2)

It remains to compute the probability on the right hand-side of the above. This
probability is part of the distribution of ranks of pairs of linear maps in D(a, b),
which can be computed by the same combinatorial methods.

As a preliminary, let Nk(r) denote the number of linear maps of rank r van-
ishing on a prescribed subspace of dimension k. The values N1(r) for all r were
computed in the proof of the Theorem 2. In the following, we will need in addition
the values N2(r) for all r, which can be computed the same way. This computa-
tion is systematic and can be done at no cost for a general k : for r in [0, n− k],
the number of subspaces of dimension n− r containing the prescribed subspace
is E(n − k, n − k − r), and the number of linear maps of rank r having one of
these subspaces as kernel is S(n, r). Therefore Nk(r) = E(n−k, n−k−r)S(n, r)
for r in [0, n− k], and 0 otherwise.

The distribution of ranks of pairs of linear maps in D(a, b) is given by the
following lemma.
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Lemma 2. Given two non-zero distinct points a, b in Fn2 , and for any integers
r and s in [0, n − 1], the proportion of pairs (L,L′) of linear maps in D(a, b)
which have rank (r, s) is

1
2n(2n−3) ×

(
N2(r)N2(s) +

1
2n − 1

(N1(r) −N2(r))(N1(s) −N2(s))
)

Proof. A pair (L,L′) in D(a, b) must satisfy L(a) = 0,L′(b) = 0,L(b) = L′(a),
which are three independent linear constraints over the 2n coefficients in Fn2
defining L and L′. Consequently D(a, b) has 2n(2n−3) elements.

We define Va as the set of linear maps which vanish at a and V[a,b] as the
set of linear maps which vanish on the subspace generated by a and b. Some
fraction of functions L ∈ Va also vanish at b, and when it happens, the functions
L′ such that (L,L′) ∈ D(a, b) are those in V[a,b]. Conversely, for each function
L ∈ Va \ V[a,b], functions L′ such that (L,L′) ∈ D(a, b) are those in Vb \ V[a,b]
with L′(a) = L(b) ; these functions represent a fraction 1/(2n−1) of all functions
in Vb \ V[a,b] since L(b) is one of the 2n − 1 equally possible non-zero values for
L′(a). ��
Applying Lemma 2 with r = s = (n−D−1) provides the probability of equation
(2). Using the relation

N1(n−D − 1) =
2n−1 − 1
2D − 1

N2(n−D − 1)

this probability is

N1(n−D − 1)2

2n(2n−3) ×
((

2D − 1
2n−1 − 1

)2

+
1

2n − 1

(
1 − 2D − 1

2n−1 − 1

)2
)

(3)

Besides, the proportion of linear maps of rank n−D−1 vanishing at a, denoted
μD, is N1(n−D−1)/2n(n−1). Therefore, the factor in (3) equals μ2

D2n and after
a few steps, we get for the above probability

μ2
D (1 + εD) with εD =

1
2n − 1

(
2n(2D − 1)
2n−1 − 1

− 1
)2

As a remark, since the proportion of pairs of linear maps in Va × Vb of rank
(n−D−1, n−D−1) is μ2

D, εD is a correcting term which measures the distance
between the distribution of ranks in D(a, b) and in Va × Vb at the pair of ranks
(n−D − 1, n−D − 1). From

εD =
1

2n − 1

(
2D+1 − 1 − 2

(
1 − 2D − 1

2n−1 − 1

))2

we see that the correcting term εD is less than 22(D+1)/(2n − 1).
We can now come back to equation (1)

EP∈Qn [XiXj] = μ2
D (1 + εD)

to finally obtain

(σN )2 = NμD −Nμ2
D(1 + εD) + εDN

2μ2
D
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Lower Bound on the Advantage. Using Chebychev inequality, we can upper-
bound PrP∈Q[SDN (P ) = 0]. Indeed, for all t in the interval (0, ADN/σ

D
N ]

PrP∈Q[SDN (P ) = 0] ≤ PrP∈Q[
∣∣SDN (P ) −ADN

∣∣ ≥ t σDN ] ≤ 1
t2

We take t = ADN/σ
D
N ; then

1
t2

=
(σDN )2

(ADN )2
=

1
NμD

− 1
N

(1 + εD) + εD <
1

NμD
+ εD

Now let fix NμD = 2a, for some integer a. Then

1
t2
<

1
2a

+ εD

and the advantage is

PrP∈Q[SDN (P ) ≥ 1] = 1 − PrP∈Q[SDN (P ) = 0] > 1 − 1
2a

− εD

For instance, for N = 2D/μD, our distinguisher has running time O(2D(D+2)n3)
and advantage at least of the order of

1 − 1
2D

− 4
2n−2D

For N = 2D
2
/μD, the complexity becomes O(2D(2D+1)n3) and the advantage is

made at least 1 − 2−D
2 − 4.2−(n−2D).

4 Conclusion

In this paper, we provide two distinguishers of HFE public keys: the first one has
polynomial complexity and subexponential advantage; the second has subexpo-
nential complexity and advantage close to one. Though the cryptanalytic impact
is smaller than the work of Faugere and Joux [6], our work is the first which
shows without heuristics how the internal structure of HFE yields some partic-
ularities. It aims in particular at initiating a process of mathematical analysis of
multivariate primitives, enlightened by the precedent heuristic approachs. The
methodology used in this paper is new and widely applicable in the context of
multivariate schemes. It should provide a solid framework of analysis for the
numerous variations, which mostly escape all previous heuristic approachs. In
particular, it is well suited to analyze the Internal Perturbation of HFE [21]
suggested by Ding [8].

This study used differential properties of quadratic maps over an F2-extension
F2n , and combinatorics in F2-linear spaces. We showed that HFE public keys
have very specific differential properties. This raises an interesting open problem:
is the set of public keys such that all differentials have rank at least n−D larger
than the set of public keys affinely equivalent to an F2-linear polynomial of
degree at most 2D ? Another open problem is the existence of a polynomial time
distinguisher for HFE public keys.
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Abstract. We prove a new upper bound on the advantage of any ad-
versary for distinguishing the encrypted CBC-MAC (EMAC) based on
random permutations from a random function. Our proof uses techniques
recently introduced in [BPR05], which again were inspired by [DGH+04].

The bound we prove is tight — in the sense that it matches the
advantage of known attacks up to a constant factor — for a wide range
of the parameters: let n denote the block-size, q the number of queries
the adversary is allowed to make and � an upper bound on the length
(i.e. number of blocks) of the messages, then for � ≤ 2n/8 and q ≥ �2 the
advantage is in the order of q2/2n (and in particular independent of �).
This improves on the previous bound of q2�Θ(1/ ln ln �)/2n from [BPR05]
and matches the trivial attack (which thus is basically optimal) where
one simply asks random queries until a collision is found.

1 Introduction

Cipher Block Chaining (CBC) is a popular mode of operation for block ciphers
which is used (in some variations) for encryption and message authentication,
i.e. as a Message Authentication Code (MAC).
Some Definitions. The CBC function with key π : {0, 1}n → {0, 1}n, denoted
CBCπ, takes as input a message (whose length must be a multiple of n) M =
M1 · · ·Mm ∈ ({0, 1}n)m and outputs Cm which is inductively computed as

CBCπ(M) = Cm where C0 = 0n and Ci = π(Ci−1 ⊕Mi) for i = 1, . . . ,m

The ECBC function (E for encrypted) is derived from the CBC function by
additionally encrypting the output with an independent permutation1

ECBCπ1,π2(M) def= π2(CBCπ1(M))

CBC based MACs. The CBC and ECBC function, with the π’s instantiated
by a block-cipher, are popular MACs called CBC-MAC and EMAC respectively.

As for the CBC-MAC, two parties sharing a secret key K ∈ K for a block-
cipher E : K × {0, 1}n → {0, 1}n can authenticate their communication by

� Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT.

1 The ECBC function must not be confused with the ECBC-MAC from [BR00].

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 168–179, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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sending, together with their message M , the authentication tag CBCE(K,.)(M).
On the Security of CBC based MACs. The CBC-MAC as just described
is well known to be completely insecure in general,2 but has been proven secure
(under the assumption that the underlying block-cipher is a secure pseudoran-
dom permutation) under the restriction that all messages have the same length
in [BKR00], which then has been relaxed to the condition that no message is the
prefix of another [PR00]. This means that the CBC-MAC can be safely used for
messages of different length, if some prefix free encoding is applied.

The EMAC is a popular variant of the CBC-MAC which was developed by the
RACE project [BP95], unlike the “plain” CBC-MAC it is secure without any
restriction on the message space [PR00]. The EMAC, along with the UMAC,
TTMAC and HMAC, is one of the message authentication codes recommended
by NESSIE [NES].

The Model. As nowadays usual, we analyse the security of the construction we
are interested in (which is ECBCπ1,π2) in a setting where the underlying primitive
(here π1, π2) are realized by their ideal functionality (here uniformly random
permutations), thus separating the analysis of the security of the construction
from the security of the underlying primitive.3 More precisely, we prove an upper
bound on AdvECBC(q, n, �), by which we denote probability of any adversary
making q queries of length at most � blocks, in (existentially) forging ECBCπ1,π2 .

Following [BR00, BPR05], we view the EMAC as a Carter-Wegman MAC
[CW79]. This reduces the task of bounding AdvECBC(q, n, �) to the task of
bounding the probability that there is a collision amongst the CBC-MACs of
q messages of length at most � blocks, we denote this probability by CPq,n,�
(see (5)). In practice one would instantiate the πi’s by a block-cipher (and not
with uniform random permutations). If this block-cipher is secure in the sense
of being a good pseudorandom permutation, then the security of the EMAC is
basically CPq,n,�, thus proving a good bound on this probability translates into
improved security guarantees for the EMAC.

Known Lower Bounds. There is a trivial lower bound CPq,n,� ∈ Ω(q2/2n)
for any q, n and � > 1 as by the birthday bound we can find a collision with
probabilityΩ(q2/2n) for any input shrinking function by asking random queries.4

For q = 2 [BPR05] show a lower bound of CP2,n,� ∈ Ω(d(�)/2n) where d(�) def=
maxt≤� |{x; 1 ≤ x ≤ 2n, x|t}| denotes the maximum number of divisors between
1 and 2n of any number ≤ �. It is known (Theorem 317 in [HW80]) that D(�) def=
maxt≤� |{x;x|t}| ∈ �Θ(1/ ln ln �), so the same bound applies for d(�) if � ≤ 2n as
then d(�) = D(�).

2 In particular, it is not existentially unforgeable as shown by the following simple
attack: for any X ∈ {0, 1}n, request the MAC C = CBCπ(X) = π(X), and output
a message X‖X ⊕C with tag C. This is a successful forgery as CBCπ(X‖X ⊕ C) =
π(π(X) ⊕ X ⊕ C) = π(X) = C.

3 See e.g. [Mau02] for more detailed discussion of this concept.
4 For � = 1 we have CPq,n,� = 0 as a permutation does not have collisions.
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Upper Bound, Range Other
Where O(.) of restriction restrictions

[PR00] �2q2/2n - -

[BPR05] d(�)q2/2n � ∈ O(2n/4) -

[DGH+04] q2/2n � ∈ O(2n/3) Equal length messages

Here q2/2n � ∈ O(2n/8), q ∈ Ω(�2) -

Lower Bound,
Where Ω(.) of

Folklore (birthday bound) q2/2n

[BPR05] d(�)q/2n

Fig. 1. Upper and lower bounds for CPq,n,� (which then imply basically the same
bounds for AdvECBC(q, n, �))

Known Upper Bounds. Until now the best known upper bound was a CPn,q,�
∈ O(d(�)q2/2n) (for � ≤ 2n/4) due to Bellare et al. [BPR05], this bound improved
on the O(�2q2/2n) bound of Petrank and Rackoff [PR00]).

Tight Bound for Equal Length. Dodis et al. [DGH+04] investigated a
restricted case where the messages have same length (which is uninteresting for
the EMAC construction, but this was not their goal), they state a tight collision
probability of CP2,n,� ∈ O(q2/2n) (for � ≤ 2n/3) for the CBC-MAC of two
messages, which immediately gives an optimal CPq,n,� ∈ Θ(q2/2n) bound for
the collision probability of q equal length messages.

Our Contribution. In this paper we prove the optimal bound CPq,n,� ∈
Θ(q2/2n) for q ≥ �2 and � ≤ 2n/8. So for this range the security of ECBC (and
thus the EMAC) matches the security of an ideal MAC (i.e. the birthday bound)
up to constant factors.

The technique from [BPR05]. Both, the “classical” O(q2�2/2n) [PR00] and
the O(d(�)q2/2n) upper bound [BPR05] are achieved by first proving an upper
bound on CP2,n,�, the collision probability of two messages, and then applying
the union bound

CPq,n,� ≤
q(q − 1)

2
· CP2,n,� (1)

to get a bound for CPq,n,�. In particular [BPR05] prove that

CP2,n,� ≤ 2d(�)/2n + 64�4/22n. (2)

This bound is tight up to the higher order term and a factor 2:

CP2,n,� ≥ d(�)/2n (3)

The proof of (2) uses ideas from [DGH+04, Dod05] and goes roughly as follows:
For any two messages M1,M2 and a permutation π one maps the computation
of CBCπ(M1) and CBCπ(M2) to a graph (called structure graph) consisting of
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two paths associated with the message M1 and M2 respectively. In this graph
the vertices correspond to the outputs of π during this computation.

Each such graph contains zero or more accidents, by which one denotes the
“unexpected” collisions in the graph. The main technical lemma (Lemma 2 in
this paper) now states that the probability (over the choice of π) that some
particular structure graph G will appear is exponentially small in the number
of accidents of G. From this lemma one gets that the probability that a random
structure graph has at least one accident is in O(�2/2n). We can now use that
CBCπ(M1) = CBCπ(M2) implies that there must be at least one accident to get a
O(�2/2n) upper bound on CP2,n,�, and further with (1) the “classical” CPq,n,� ∈
O(q2�2/2n) bound. But this bound is not tight as having an accident is only
necessary, but not sufficient to have CBCπ(M1) = CBCπ(M2). By more carefully
upper bounding the number of graphs for which CBCπ(M1) = CBCπ(M2) by
O(d(�)/2n+�4/22n) one gets the (2) bound. Here the O(d(�)/2n) term bounds the
graphs which have exactly one accident and CBCπ(M1) = CBCπ(M2), whereas
all graphs with two or more accidents are “generously” bounded by the “higher
order” term O(�4/22n), whech will be dominated by the leading d(�)/2n while �
is not too large, � ∈ O(2n/4) is small enough.

Unfortunately the bound (3) implies that bounding the collision probability
for two messages and then using (1) one cannot prove CPq,n,� ∈ o(d(�)q2/2n).

Proof Idea. The obvious idea to overcome this barrier is to upper bound the
number of structure graphs built by many (and not just two) messages. We prove
a lemma (Lemma 4) which states that the number of structure graphs built from
any k messages of length at most � blocks, having exactly one accident and a
collision on the output for some pair of messages, is at most k(k+ �2), this then
gives the claimed CPq,n,� ∈ O(q2/�2) bound. Unfortunately now the graph is so
big (i.e. q� vertices) that the higher order term which bounds the cases where we
have two or more accidents is in the order q4�4/22n (so unless we assume some
bound o(2n/2) on q, we only achieve a tight O(q2/2n) for constant �, but this is
already achieved by the classical q2�2/2n of [PR00]).

Fortunately one can get out of this apparent cul-de-sac using an approach
“between” the one just described and the one given by (1). The q messages are
divided into q/�2 sets of size r = �2. Now, if there’s a collision, then this collision
occurs in the union of two (or maybe just one) such sets. For such a union of two
sets (of size 2r) we can now upper bound the probability that there’s a collision
amongst any two of the 2r messages by O(r2/2n) as the sets are sufficiently large
(such that applying the before-mentioned Lemma 4 gives a 2r(2r + �2) = Θ(r2)
upper bound on the number of structure graphs), but still small enough for the
higher order term to be ignored for a reasonable range of �. Finally we get our
CPq,n,� ∈ O(q2/2n) bound (for � ≤ 2n/8) from the union bound applied over all
pairs of sets.

About the Range. The tight upper bound CPq,n,� ∈ O(q2/2n) we prove holds
for q ∈ Ω(�2) and � ∈ O(2n/8). In the next two paragraphs we’ll shortly discuss
those two bounds.
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Lower Bound on q. The CP2,n,� = Θ(d(�)/2n) bound implies (under a reason-
able assumption5) CPq,n,� = Ω(d(�)q/2n). Thus CPq,n,� ∈ O(q2/2n) can only
hold if we have a lower bound for q of at least Ω(d(�)), the bound we actually
require is q ∈ Ω(�2).6 But this lower bound on q is not really relevant as long
as there’s a upper bound 0 2n/2 on �, as it only means that we don’t match
the birthday bound O(q2/2n) for a range of parameters, where the collision
probability given by the classical q2�2/2n bound is extremely small anyway.
Upper Bound on �. Wlog. we can assume an upper bound � ≤ 2n! as consid-
ering longer messages makes no sense: note that every x, 1 ≤ x ≤ 2n divides 2n!
and thus CP2,n,2n! ≥ d(2n!)/2n = 1, i.e. we can find a collision with probability
one with only two queries.7 This (doubly exponential) bound is far from the
� ≤ 2n/8 we require, and can probably be relaxed already with the techniques
used in this paper. One possibility would be via a better counting argument,
which means improving on Lemma 4 from this paper (in particular, Claim 2
from the proof of this lemma seems quite loose). Lowering the O(q(q + �2))
bound on the number of graphs given by the lemma to q(q+o(�)) would already
allow a range of � ≤ 2n/(4+o(1)). Further, counting graphs with more than just
one (but still constantly many) accidents could have the potential to get the
bound to � ≤ 2n/(2+ε) for any ε > 0. Such a bound might still be far from the
necessary one, but would be sufficient for any practical application as a length
of 2n/2 is quite big already for small block lengths (say n = 128 which is the
smallest block-length provided by AES).

2 Definitions and the Main Technical Lemma

Notation. If x is a string then |x| denotes its length. We let Bn
def= {0, 1}n.

If X ⊆ {0, 1}∗ then X≤m denotes the set of all non-empty strings formed by
concatenating m or fewer strings from X . If S is a set equipped with some
probability distribution then s

$← S denotes the operation of picking s from S
according to this distribution. If no distribution is explicitly specified, it is un-
derstood to be uniform. We denote by Perm(n) the set of all permutations over
{0, 1}n and with Func(n) the set of all functions {0, 1}∗ → {0, 1}n.
Security. An adversary is a computationally unbounded, randomised oracle-
algorithm which finally outputs a bit. Aq,n,� denotes the class of adversaries that
make at most q oracle queries, each of length at most � n-bit blocks. For a family
of functions F : B∗n → {0, 1}n, the distinguishing advantage of Aq,n,� for F is

AdvF (q, n, �) = max
A∈Aq,n,�

{ AdvF (A) } where

5 We must assume that one can generate q/2 pairs of messages where each pair achieves
the “worst case” collision probability Ω(d(�)/2n), and moreover the events that any
pair of messages collides are sufficiently independent.

6 As both, the lower d(�) and the upper �2 bound follow by rather loose arguments,
the truth is probably strictly in-between, i.e. in ω(d(�)) and o(�2).

7 In fact, with � = 2n! we can forge a message in a no-query attack as for any X ∈ Bn

and π ∈ Perm(n) one has CBCπ(X2n!) = X.
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AdvF (A) = Pr[f $← F : Af ⇒ 1] − Pr[f $← Func(n) : Af ⇒ 1]

Cbc and Ecbc. Fix n ≥ 1. Recall that for M = M1 · · ·Mm ∈ Bmn and π: Bn →
Bn we defined in the introduction

CBCπ(M) = Cm where C0 = 0n and Ci = π(Ci−1 ⊕Mi) for i = 1, . . . ,m

Let CBC = {CBCπ: π ∈ Perm(n)}, this set of functions has the distribution
induced by picking π uniformly from Perm(n). The encrypted CBC MAC is

ECBCπ1,π2(M) def= π2(CBCπ1(M))

Let ECBC = {ECBCπ1,π2 : π1, π2 ∈ Perm(n)}, with the distribution induced by
picking π1, π2 independently and uniformly at random from Perm(n).
Collisions. For q distinct messages M1, . . . ,Mq ∈ B∗n we denote by

CPn(M1, . . . ,Mq) Pr
π

$← Perm(n)
[∃i, j,Mi �= Mj : CBCπ(Mi) = CBCπ(Mj)]

the probability that the CBC-MACs (based on a uniform random permutation)
of any two messages collide. The maximum collision probability for any q mes-
sages of length at most � n-bit blocks is denoted by

CPq,n,� = max
M1,...,Mq∈B≤�

n

CPn(M1, . . . ,Mq) (4)

Following [BR00], we view ECBC as an instance of the Carter-Wegman paradigm
[CW79]. This enables us to reduce the problem of bounding AdvECBC(q, n, �) to
bounding the collision probability CPq,n,� as

AdvECBC(q, n, �) ≤ CPq,n,� + q(q − 1)/2n+1 (5)

We prove the following bound on CPq,n,�.

Lemma 1. For any q ≥ �2: CPq,n,� ≤ 16 · q2/2n + 128 · q2�8/22n

From this lemma and (5) we get that AdvECBC(q, n, �) ∈ O(q2/2n) whenever
q ∈ Ω(�2) and � ∈ O(2n/8), for example

Corollary 1. For any q ≥ �2 and � ≤ 2n/8−1: AdvECBC(q, n, �) ≤ 18 · q2/2n.

3 A Graph-Based Representation of CBC

In this section we review the graph-based approach to bound collision probabili-
ties from (the full version of) [BPR05]. In this approach the collision probability
is related to the number of graphs satisfying some property.

We fix for the rest of this section a blocklength n ≥ 1, the number of messages
t ≥ 1 and t distinct messages M def= {M1, . . . ,Mt}, where for 1 ≤ i ≤ t we denote
with mi ≥ 1 the length (in blocks) of the i’th message Mi

def= M1
i · · ·Mmi

i ∈ Bmi
n .
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Fig. 2. Gcol(M) = {G1,3, G
′
1,3, G1,2, G2,3} are all structure graphs for M =

{AB, DEC, ABCC} which have exactly one accident and a collision on the outputs.
Further {G, G′, G′′} ∈ G(M) \ Gcol(M) are valid structure graphs but not in Gcol(M)
as: G has 0 and G′′ has 2 accidents. G′ has exactly one accident but no collision on the
outputs. H is not a structure graph as there’s a vertex which has two ingoing edges,
both labelled C but not being parallel.

For 1 ≤ j ≤ t let mj =
∑j
i=1mi be the length of the first j messages. It

is convenient to set m0 def= 0 and m
def= mt to be the total length. Let M def=

M1‖M2‖ · · · ‖Mt denote the concatenation of all messages and M i the i’th block
of M , i.e. M def= M1 · · ·Mm.

Structure graphs. To M and any π ∈ Perm(n) we associate the structure
graph GMπ , which is a directed graph (V,E) where V ⊆ [0, . . . ,m].

The structure graph GMπ = G = (V,E) is defined as follows: We set
C0 = 0n and for i = 1, . . . ,m we define

Ci =
{
π(Ci−1 ⊕M i) if i /∈ [m0 + 1, . . . ,mt−1 + 1]
π(M i) otherwise

From this Ci’s we define the mapping [.]G : [0, . . . ,m] → [0, . . . ,m] as
[i]G = min{j : Cj = Ci}. It is convenient to define a mapping [.]′G
as [i]′G = [i]G if i /∈ [m0, . . . ,mt−1] and [i]′G = 0 otherwise. Now the
structure graph GMπ = G = (V,E) is given by

V = {[i]G : 0 ≤ i ≤ m} E = {([i− 1]′G, [i]G) : 1 ≤ i ≤ m}
From this definition it is clear that the mapping [.]G defines G uniquely and vice
versa. Throughout the “i’th edge of G” refers to the edge ([i − 1]′G, [i]G) (note
that this not injective) and the “label” of the i’th edge is M i.

If the Ci’s are all distinct, then G is simply a star like tree with t paths leaving
the root 0, the i’th path being 0 → mi−1+1 → . . . → mi−1+mi = mi. In general
G is the graph one gets by starting with the tree just described and doing the
following while possible: if there are two vertices i, j where i �= j and Ci = Cj
then collapse i and j into one vertex and label it min{i, j}.

For a structure graph G we will denote the vertices on the path built by
the i’th message by V 0

i (G), V 1
i (G), . . . , V mi

i (G), we call this path the i-path, we
write V ji for V ji (G) if G is understood (cf. Figure 2).

Let G(M) = {Gπ : π ∈ Perm(n)} denote the set of all structure graphs
associated to messages M. This set has the probability distribution induced by
picking π at random from Perm(n).
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Collisions. Suppose a structure graph G = GMπ ∈ G(M) is exposed edge by
edge (i.e. in step i the value [i]G is shown to us). We say that G has a collision
in step i if the edge exposed in step i points to a vertex which is already in the
graph. With Col(G) we denote all collisions, i.e. all pairs (i, j) where in step i
there was a collision which hit the vertex computed in step j < i:

Col(G) = {(i, [i]G) : [i]G �= i}

We distinguish between induced collisions IndCol and accidents Acc where

Col(G) = Acc(G) ∪ IndCol(G) Acc(G) ∩ IndCol(G) = ∅

Informally, an induced collision in step i is a collision which is implied by the
collisions in the first i− 1 steps, whereas an accident is a “surprising” collision.

The following lemma is the heart of the whole approach, it states that the
probability that a randomly sampled structure graph will be some particular
graph H is exponentially small in Acc(H).

Lemma 2. Let n ≥ 1, t ≥ 1,M = {M1, . . . ,Mt} where Mi ∈ Bmi
n and m =

m1 + . . .+mt. Then for any structure graph H ∈ G(M):

Pr[G $← G(M) : G = H ] ≤ (2n −m)−|Acc(H)|

Form this lemma we get the following bound on the probability that a random
structure graph has two or more accidents:

Lemma 3. With M,m as in the previous lemma

Pr[G $←G(M) : |Acc(G)| ≥ 2] ≤ 4m4/22n

The proofs of Lemma 2 and 3 can be found in the full version of [BPR05].

Some Useful Facts. In [BPR05] accidents are formally defined to be exactly
those collisions which do not close a (even length) cycle with alternating edge
directions. It is shown that this are exactly those collisions which are “surprising”
in the sense that they are not induced by the already exposed edges. We will not
need to work with this formal definition of accidents here, it will be sufficient
to consider the more intuitive concept of true collisions, which are all collisions
except those where no edge is added, or equivalently, we have a true collision
in some step i if in this step we add a new edge, but no new vertex (from
this definition we see that in a structure graph G = (V,E) the number of true
collisions is |E|−|V |+1). Also, it’s not hard to see that if G has k accidents, then
it has at least k true collisions.8 Although the converse is not true in general,
there are implications in the other direction which will be sufficient for us. In
8 This follows from the definitions, recall that accidents are those collisions which do

not close a cycle with alternating edge directions, and true collisions are those which
do not close a cycle with alternating edge directions of length 2 (as such a cycle is
given by two parallel edges). So true collisions are just a subset of the accidents.
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particular, it’s not hard to see that the first true collision that occurs must always
be an accident. And if we only consider structure graphs built by at most two
paths, then also the second true collision is necessarily an accident (see Lemma
10 in the full version of [BPR05], fact (i) below follows from this).

For G ∈ G(M) and i, j, 1 ≤ i < j ≤ q let G[i,j] denote the subgraph of G
built by the i-path and the j-path. We will need the following facts:

(i) If G has at most one accident, then for any i, j the G[i,j] has at most one
true collision.

(ii) If G has exactly one accident, then G is uniquely determined by M and any
subgraph of G which contains a true collision.

Informally, fact (ii) holds as given the single accident, we know the only “sur-
prising” collision, and thus can deterministically extend the subgraph to G.

4 Bounding CPq,n,�

For i = 1, . . . , q, letMi ∈ B≤�n be such that the collision probability is maximised,
i.e. with M = {M1, . . . ,Mq} we have CPq,n,� = CP(M). To bound CP(M)
we now consider the random experiment where a permutation π is chosen at
random and CBCπ(Mi) is computed for i = 1, . . . , q. We can decide whether
there was a collision CBCπ(Mi) = CBCπ(Mj) given the structure graph GMπ of
this computation. Thus we see CPq,n,� as the probability that GMπ (for a random
π) contains such a collision on the outputs of two messages. Let Gcol(M) ⊂ G(M)
denote the subset of structure graphs where there’s a collision on the outputs:

Gcol(M) def= {G ∈ G(M) ; ∃i, j, 1 ≤ i < j ≤ q : Vmi

i (G) = V
mj

j (G)}

As just said, with this definition CPq,n,� = Pr
G

$←G(M)
[G ∈ Gcol(M)].

We split this probability into the “single accident” and the “two or more acci-
dents” case. For this let Gicol

def= {G ∈ Gcol(M) ; |Acc(G)| = i}, now

CPq,n,� = Pr
G

$←G(M)
[G ∈ G1

col(M)] + Pr
G

$←G(M)
[G ∈ Gicol(M) for some i ≥ 2]. (6)

To bound the second term on the rhs. of (6) we can use Lemma 3 and “gener-
ously” upper bound the probability that there are two or more accidents.

Pr
G

$←G(M)
[G ∈ Gicol(M) for some i ≥ 2] ≤ Pr

G
$←G(M)

[|Acc(G)| ≥ 2] ≤ 4q4�4

22n . (7)

To bound the first term on the rhs. of (6) we can’t be so generous any more and
simply upper bound the probability of |Acc(G)| = 1 as this would only give a
O(q2�2/2n) bound. We will more carefully upper bound |G1

col(M)| (by Lemma 4
below), and then apply Lemma 2 which in our case states that G ∈ G1

col(M)
appears with

Pr
G

$←G(M)
[G ∈ G1

col(M)] ≤ |G1
col(M)|

2n − �q
. (8)
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Lemma 4. Let n, q ≥ 1 and 1 ≤ m1, . . . ,mq ≤ � and M = {M1, . . . ,Mq} with
Mi ∈ Bmi

n be distinct messages, then

|G1
col(M)| ≤ q(q + �+ �2)/2

Now combining (6)-(8) and the above Lemma we get:

Lemma 5. CPq,n,� ≤ q(q+�+�2)
2(2n−�q) + 4q4�4

22n

This already gives CPq,n,� ∈ O(q2/2n) for q2�4 ∈ O(2n) and q ∈ Ω(�2). But
we can do better. The reason why this bound is not so great is that the term
which bounds the “two or more” accident case is of rather large order q4�4/2n

as we consider a graph (i.e. a total message length) of size q�. We achieve the
bound claimed by Lemma 1 by splitting the messages in chunks of size �2 (with
foresight) and then applying the following lemma which is a generalisation of (1).

Lemma 6. If r divides q then CPq,n,� ≤ CP2r,n,� · q(q−r)2·r2

Proof. Consider q messages M1, . . . ,Mq where CPq,n,� = CPn(M1, . . . ,Mq).
We split the q messages into q/r sets S1, . . . , Sq/r, each containing r messages.
If two messages collide, then there are two sets containing this two messages, so
using the union bound CPn(M1, . . . ,Mq) ≤

∑
i,j,1≤i<j≤q/r CPn(Si, Sj).

The lemma follows as by definition CPn(Si, Sj) ≤ CP2r,n,� and the sum has
q(q − r)/2r2 terms. �
We now have all ingredients to prove our main result

Proof (of Lemma 1). Let q̃ be minimal satisfying q̃ ≥ q and �2|q̃. Now using
Lemma 6 (with r = �2) in the second, and Lemma 5 in the third step

CPq,n,� ≤ CPq,n,� ≤ CP2�2,n,� ·
q̃2

2�4
≤
(
�2(3�2 + �)
2n − 2�3

+
4(2�2)4�4

22n

)
q̃2

2�4
(9)

We can assume that 2�3 ≤ 2n−1 and n > 1 as otherwise the above is ≥ 1
which is a trivial upper bound for CPq,n,�. We also have q̃ < 2q by the q ≥ �2

precondition an can further simplify (9) to CPq,n,� ≤ 16·q2
2n + 128·q2·�8

22n . �
Proof (of Lemma 4). Wlog. we assume that mj ≤ mj+1 for 1 ≤ j ≤ q − 1. Let

Gi,j = {G ∈ Gcol(M) ; V mi

i (G) = V
mj

j (G) ∧ |Acc(G) = 1|}

denote the structure graphs with exactly one accident, and where there’s a col-
lision on the outputs of the i’th and j’th message. Let Pj ⊆ [j − 1] denote the
indices of the messages which are prefixes of Mj after the common suffix has
been removed, more formally

Pj = {i ∈ [1, . . . , j − 1] ; ∃S,X ∈ B∗n : Mj = M ′
j‖S,Mi = M ′

i‖S,M ′
j = M ′

i‖X}

Let P = [1, . . . , j − 1] \ P . For example if M = {M1 = A,M2 = AB,M3 =
ABC,M4 = ACDB} then P4 = {1, 2} and P4 = {3}.

We will prove two claims, which then will imply the statement of the lemma.
The first claim — which is basically Lemma 19 from [BPR05] — states that if
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i ∈ Pj, then there’s at most one structure graph with exactly one accident where
Mi and Mj collide.

The second claim bounds the number of structure graphs having one accident
and a collision between Mj and any other message Mi where i ∈ Pj by �(�+1)/2
(note that this bound only depends on the length, but not on the number of
messages considered). To prove this claim we use the simple observation that if
there’s a collision between Mj and any Mi where i ∈ Pj , then it must be the case
that the j-path makes a loop. So we can upper bound the number of structure
graphs having such a collision by the number of structure graphs having where
the j-path loops.

SP

Fig. 3. Figure for proof of Claim 1

Claim 1. For each i ∈ Pj, |Gi,j | ≤ 1.

Proof (of Claim). Let P denote the common prefix and S the common suffix of
Mi and Mj . So Mi = P‖M ′

i‖S and Mj = P‖M ′
j‖S where the M ′

i and M ′
j are

nonempty as i ∈ Pj . Let p = |P |/n, s = |S|/n.
By definition G ∈ Gi,j means V mi

i = V
mj

j , this implies that also V mi−s
i =

V
mj−s
j (as for the last s steps the i and j path must go in parallel). Now as
Mmi−s−1
i �= M

mj−s−1
j (otherwise we could extend the suffix) we have Vmi−s−1

i �=
V
mj−s−1
j (because in a structure graph two edges with distinct labels cannot be

parallel). So there’s a true collision in G[i,j] which hits the vertex V mi−s
i .

As by fact (i)9 there can be only one true collision in G[i,j] this means that
the “suffix path” V mi−s

i = V
mj−s
j → . . . → V mi

i = V
mj

j has no loops. For the
same reason the “prefix path” V 1

i = V 1
j → . . . → V pi = V pj makes no loop and

also the prefix and suffix paths must be disjoint. So the subgraph of G[i,j] built
by the first p+1 and the last s+1 edges of the i and j path looks like shown on
the left in Figure 3. There’s only way to extend this subgraph to the full G[i,j]
without introducing more true collisions, this is the second graph in Figure 3.

So there’s only one possible G[i,j], and by fact (ii) it uniquely determines the
whole structure graph, thus there’s just one G ∈ Gi,j . 1

Claim 2.
∣∣∣⋃i∈P Gi,j

∣∣∣ ≤ �(�+ 1)/2.

Proof (of Claim). Consider any i ∈ P , and let S denote the common suffix of Mi
and Mj. Now, as i ∈ P , for some P we can write Mj = P‖M ′

j‖S and Mi = P‖S.
Let p = |P |/n and s = |S|/n.

9 We refer to the facts stated at the end of Section 3.
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Consider any G ∈ Gi,j , by definition V mi

i = V
mj

j , which implies V mi−s
i =

V
mj−s
j as the last s blocks are equal. And as the first p blocks are equal we

have V pi = V pj . Now V pi = V mi−s
i and thus also V pj = V

mj−s
j , as p < mj − s

there’s a true collision on the j-path (i.e. it contains a loop). As there are at
most mj(mj + 1)/2 possibilities for the j-path to make a loop10 and as by fact
(ii) the shape of the j path determines G completely, there can be at most
mj(mj + 1)/2 ≤ �(�+ 1)/2 different G’s in

⋃
i∈P Gi,j . 1

The lemma follows by the two claims as

|G1
col(M)| ≤

∑
1≤i<j≤q

|Gi,j | ≤
q∑
j=1

⎛⎝∣∣∣ ⋃
i∈P

Gi,j
∣∣∣+∑

i∈P

|Gi,j |

⎞⎠
≤

q∑
j=1

(
�(�+ 1)

2
+ j − 1

)
≤ q(q − 1 + �(�+ 1))

2
. �
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Abstract. The aim of this paper is to construct boolean functions
f : {0, 1}n −→ {0, 1}m, for which the graph gr(f) = {(x, f(x)), x ∈
{0, 1}n} ⊆ {0, 1}n+m has maximal algebraic immunity. This research
is motivated by the need for appropriate boolean functions serving as
building blocks of symmetric ciphers. Such functions should have large
algebraic immunity for preventing vulnerability of the cipher against
algebraic attacks. We completely solve the problem of constructing
explicitely defined single-output functions for which the graph has
maximal algebraic immunity. Concerning multi-output functions, we
present an efficient algorithm, based on matroid union, which computes
for given m, n, d the table of a function h : {0, 1}n −→ {0, 1}m for which
the algebraic immunity of the graph is greater than d. To the best of our
knowledge, this is the first systematic method for constructing multi-
output functions of high algebraic immunity.

Keywords: Cryptographic primitives, boolean functions, algebraic
attacks, matroid union algorithm.

1 Introduction

The degree, deg(p), of a single-output boolean function p : {0, 1}n −→ {0, 1} is
defined as the length of a longest monomial occurring in the ring-sum-expansion
of p =

⊕
α∈{0, 1}n pαmα of p, i.e. deg(p) = max{|α|, α ∈ {0, 1}n, pα �= 0}. (As

usual, |α| denotes the number of ones in α, and mα = Πi,αi=1xi.)
We say that a function p : {0, 1}n −→ {0, 1} annihilates a subset S ⊆ {0, 1}n

(or, equivalently, is an annihilator of S) if p(x) = 0 for all x ∈ S. The algebraic
immunity, AI(S), of S is defined to be the minimal d for which there is degree-d
annihilator p �≡ 0 of S.

Following Meier, Pasalic and Carlet (2004), the algebraic immunity AI(f) of
a single output function f : {0, 1}n −→ {0, 1} is defined to be the minimum of
AI(f−1(0)) and AI(f−1(1)). This definition can be easily generalized to multi-
output functions f : {0, 1}n −→ {0, 1}m, AI(f) is is defined to be the minimum
of AI(f−1(z)) over all z ∈ {0, 1}m.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 180–191, 2006.
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For boolean functions used as building blocks in cryptographic systems
(like, e.g., S-Boxes) it is important to know whether there exist nontrivial low
degree annihilating relations between input- and output bits. Corresponding to
this, the algebraic immunity AI(gr(f)) of the graph gr(f) = {(x, f(x)), x ∈
{0, 1}n} ⊆ {0, 1}n+m is a further important design parameter of cryptographic
boolean functions f : {0, 1}n −→ {0, 1}m. Note that for all boolean functions
f : {0, 1}n −→ {0, 1}m it holds that AI(f) ≤ AI(gr(f)) ≤ AI(f) + m (see
Lemma 1 below).

The aim of this paper is to construct boolean single- and multi-output
functions f for which AI(gr(f)) is maximal. This is motivated by the necessity
of making secret-key cryptosystems immun against algebraic attacks, which are
based on defining and solving systems of multivariate equations in the variables
corresponding to the bits of a secret key.

Algebraic attacks on secret-key cryptosystems consist in detecting nontrivial
low-degree annihilators of relations between secret input- and output bits for
building a system of low-degree equations in the keybits, and trying to solve it
efficiently.

Algebraic attacks on simple (memoryless) combiners, a special class of
keystream generators, have been firstly described by Courtois and Meier (2003),
using relations on known outputs and corresponding unknown internal bits.
Keystream generators are finite state machines which produce on the basis of a
secret key a secret bitstreams of arbitrary lengths. Armknecht and Krause (2003)
extended these attacks to the more general class of combiners with memory,
including the E0-generator used in the Bluetooth standard.

In general, solving a system of T degree-d equations over F2 is NP-hard even
for d = 2. However, if T is greater than the number of unknowns, there is a certain
chance (which is hard to evaluate theoretically) that nontrivial approaches like
Gröbner bases succeed (e.g., see Faugère and Ars (2003)). If T even exceeds the
number of occurring monomials, efficient strategies exist (Shamir et al. (2000)).
In both cases, the effort is heavily influenced by the degree of the relations. In
this context, the notion of the ”algebraic immunity of a single-output function f”
has been introduced by Meier, Pasalic and Carlet (2004), and further developed
by Armknecht (2005).

Since the (hypothetical) attack on the Advanced Encryption Standard (AES)
presented by Courtois and Pieprzyk (2002), the question of the existence of
efficient algebraic attacks on round-based block ciphers attracted a lot of public
interest. Contrary to the case of keystream generators, the system of equations
obtained here is generally not overdefined but may have a very low degree which
is defined by the algebraic immunity of the S-Boxes. For example, quadratic
equations exist in the case of AES, although the input/output format of the S-
Boxes AES (8/8) would allow an algebraic immunity of 3 for the graph of these
S-Boxes. Even though the feasibility of these attacks is still unknown, a huge
number of corresponding approaches and results (e.g., see Murphy, Robshaw
(2003), Ars et al. (2004) and Cid, Leurent (2005)) shows the interest on this
topic.
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We think that these developments are motivation enough to study the
concepts of the algebraic immunity of boolean functions and graphs of boolean
functions in more detail.

In section 2 we completely solve the problem of constructing single-output
functions f : {0, 1}n −→ {0, 1}, for which AI(f) and AI(gr(f)) are both
maximal. We will see that it is quite straightforward to solve this problem for
odd n , while it is more nontrivial to construct such functions for even n.

Up to now, for m > 1, one is not able to give the explicit definition of a
sequence of functions hn : {0, 1}n −→ {0, 1}m of maximal immunity. However,
in section 3 we derive a polynomial time algorithm based on matroid union which
outputs for given n,m, d the table of a function h : {0, 1}n −→ {0, 1}m, for which
AI(gr(h)) is at least d. This implies the first efficient method so far to construct
S-boxes of arbitrary input/output format having maximal algebraic immunity. In
section 4 we present first experimental results which imply interesting theoretical
problems for further research.

Note that so far, our constructions refer only to one out of several important
security parameters of boolean functions, the algebraic immunity. Very recently,
Carlet (2006) and Carlet, Dalai, Gupta, Maitra (2006) obtained results which
relate algebraic immunity of single-output functions to other relevant security
parameters like balancedness, nonlinearity and correlation immunity.

For all natural d ≤ n let W≤d
n (resp. W=d

n , W<d
n , W≥d

n , W>d
n ) denote the set

of all α ∈ {0, 1}n with |α| ≤ d (resp. |α| = d, |α| < d, |α| ≥ d, |α| > d). Further
let Φn(d) = |W≤d

n | =
∑d
i=0

(
n
i

)
, and Φ−1

n (D) = min{d, Φn(d) > D}.
For all positive integers n we denote by Mn the 2n×2n-matrix for which rows

and columns are labelled by all α ∈ {0, 1}n and x ∈ {0, 1}n, respectively, and for
which Mn

α,x = mα(x) (which is 1 iff {i, αi = 1} ⊆ {i, xi = 1}). For all d ≤ n and
S ⊆ {0, 1}n we denote by Mn

d,S the Φn(d)× |S|-submatrix of Mn corresponding
to the rows labelled by elements α ∈ W≤d

n and columns labelled by all x ∈ S.
We identify each degree d boolean function p =

∑
α∈W≤d

n
pαmα, with its

coefficient vector
→
p= (pα)α∈W≤d

n
. Note that p annihilating S is equivalent to

T
→
p ◦Mn

d,S =
→
0 where T

→
p is the transponent of the vector

→
p .

Consequently, for subsets S ⊂ {0, 1}n the set of all degree-d polynomials
annihilating S can be computed by solving a system of |S| linear equations in
Φn(d) unknowns, which implies that the immunity of S can be at most Φ−1

n (|S|).
It is quite straightforward to construct sets S ⊆ {0, 1}n of maximal possible

immunity Φ−1
n (|S|). Consider the linear ordering ω : {0, 1}n −→ {0, · · · , 2n − 1}

on {0, 1}n defined by ω(
→
0 ) = 0, and ω(x) < ω(x′) if |x| < |x′| or, if |x| = |x′|, x

is lexicographically less than x′.
For all natural D < 2n we define the set ADn ⊆ {0, 1}n to consist of the first

D elements of {0, 1}n ordered with respect to ω. As, if rows and columnes are
ordered with respect to w, the matrix Mn

d,AD
n

is a triangular matrix with 1’s on
the diagonal, the set ADn is Φ−1

n (D)-immun.
In the following we will deal with the more nontrivial problem to construct

boolean functions (i.e. special sets A ⊆ {0, 1}n+m which correspond to the graph
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of a boolean function f : {0, 1}n −→ {0, 1}m) with maximal immunity. We
conclude this Introduction with the following lemma stating a basic relation
between the immunity parameters AI(f) and AI(gr(f)).

Lemma 1. For all f : {0, 1}n −→ {0, 1}m it holds that AI(f) ≤ AI(gr(f)) ≤
AI(f) +m.

Proof. The upper bound follows from the fact that if p is a nonzero annihilator
of f−1(z) for some z ∈ {0, 1}m then p · Πi,zi=1zi · Πi,zi=0(zi ⊕ 1) is a nonzero
annihilator of gr(f). On the other hand, let q be an annihilator of gr(f) of
minimal degree, and fix some z ∈ {0, 1}m such that q(·, z) �≡ 0. Then q(·, z) is a
nontrivial annihilator of f−1(z) of degree at most deg(q).

2 Single Output Boolean Functions of Maximal Immunity

In this section we construct single-output functions f : {0, 1}n −→ {0, 1} for
which AI(f) and AI(gr(f)) are both maximal. Note that Φ−1

n (2n−1) is an upper
bound for AI(f) and that Φ−1

n+1(2
n) is an upper bound for AI(gr(f)).

For n odd it holds Φ−1
n (2n−1) = Φ−1

n+1(2
n) = �n/2 , and it is easy to construct

functions f with AI(f) = AI(gr(f)) = �n/2 . As the complement of A2n−1

n is the
affine translation of A2n−1

n by
→
1 , and as the algebraic immunity is invariant under

affine translations, the characteristic function of A2n−1

n (which equals negated
majority) has this property.

For even n the situation is more complicated as it holds Φ−1
n (2n−1) = n/2,

but Φ−1
n+1(2

n) = n/2 + 1. The question is how to construct functions f with
AI(gr(f)) = n/2 + 1, which by Lemma 1 implies that AI(f) = n/2.

An intuitive candidate is again the characteristic function of A2n−1

n . However,
it is quite straightforward to show that if f−1(0) is an affine translation of
f−1(1) then AI(f) = AI(gr(f)). Indeed, let f−1(0) = f−1(1)⊕ →

v and p be
an annihilator of f−1(1) of degree d. Then p(x⊕ →

v ) and zp ⊕ (z ⊕ 1)p(x⊕ →
v )

are degree-d annihilators of f−1(0) and gr(f), respectively. This implies that
the graph of the characteristic function of A2n−1

n has algebraic immunity of only
n/2.

The following approach is more successfull. For n even and subsets A ⊆ W
=n/2
n

let us consider functions of type fA defined as fA(x) := 0 iff x ∈ W
<n/2
n ∪A. We

will see that for certain subsets A ⊆ W
=n/2
n it holds that AI(gr(fA)) = n/2+1.

Theorem 1. For all even n ≥ 2 and all nonempty A ⊆ W
=n/2
n it holds that

AI(gr(fA)) = n/2 + 1 if and only if A = A⊕
→
1= {x⊕

→
1 ;x ∈ A}.

Proof. Let A ⊆ W
=n/2
n be arbitrarily fixed and denote B = W

=n/2
n \A.

For a set T ⊆ {0, 1}n let us call a boolean function p = p(x1, · · · , xn) to be a
T -polynomial, if p can be written as p =

⊕
α∈T cαmα.

Let P = P (x1, · · · , xn+1) be an nonzero annihilator of gr(fA) of minimal
degree. We write P = p ⊕ z · q, where p and q depend only on x1, · · · , xn, p
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annihilatesA∪W<n/2
n and p⊕q annihilatesB∪W>n/2

n . Note that if deg(P ) = n/2
then deg(p) ≤ n/2 and deg(q) < n/2.

Lemma 2. If deg(p) ≤ n/2 then p is a B-polynomial.

Proof. Let p =
∑
α∈W≤n/2

n
pαmα. We show that pα = 0 for all α ∈ W

<n/2
n ∪ A

by induction on |α|.
As

→
0∈ W

<n/2
n ∪A it follows that p→

0
= 0.

Now fix α ∈ W
<n/2
n ∪ A with |α| > 0. As, by induction, pβ = 0 for all β ⊂ α

it holds that 0 = p(α) = pαmα(α) = pα.

It follows from Lemma 2 that p ⊕ q is a (B ∪W
<n/2
n )-polynomial annihilating

B ∪W
>n/2
n and that r = p⊕ q(x⊕

→
1 ) is a B ∪W<n/2

n -polynomial annihilating
(B⊕

→
1 ) ∪W<n/2

n . The theorem follows from

Lemma 3. There exists a nontrivial (B ∪ W
<n/2
n )-polynomial annihilating

(B⊕
→
1 ) ∪W<n/2

n if and only if B �= B⊕
→
1 .

Proof. Let B = B⊕
→
1 . As the submatrix of Mn formed by all rows

corresponding to monomials mα, α ∈ B ∪W
<n/2
n and inputs α ∈ B ∪W

<n/2
n

is an upper triangle matrix, nontrivial (B ∪ W
<n/2
n )-polynomials annihilating

B ∪W<n/2
n do not exist.

Now let B �= B⊕
→
1 and denote C = B\(B⊕

→
1 ). As |C|+ |W<n/2

n | > |W<n/2
n |

there is a nontrivial (C ∪ W
<n/2
n )-polynomial s annihilating W

<n/2
n . As s

annihilates (B⊕
→
1 ), too, it annihilates (B⊕

→
1 ) ∪W<n/2

n .

We have shown that A = A⊕
→
1 implies that AI(gr(fA)) = n/2 + 1.

For showing that for A �= A⊕
→
1 it holds AI(gr(fA)) < n/2 + 1 let B,C, s

be defined as above. Then the polynomial t, defined by t(x) = s(x⊕
→
1 ), is a

nontrivial (B∪W<n/2
n )-polynomial annihilating B∪W>n/2

n . Now write t = p⊕q,
where p is a B-polynomial and deg(q) < n/2, and define P = p⊕ z · q. It is not
hard to check that P is a nontrivial degree-n2 -polynomial annihilating A∪W<n/2

n .

Note that A = A⊕
→
1 implies that |A| has to be even. As (10) = (01) ⊕ (11)

it is not possible to construct a function of type fA for n = 2 fulfilling that
AI(gr(fA)) = 2. However, there are functions f in two variables such that
AI(f)) = 2, take e.g. f = x1 ∧ x2. For n = 4 there are functions of type
fA fulfilling AI(gr(fA)) = 3, namely if A is one of the sets {0011, 1100},
{1001, 0110}, {1010, 0101} or the union of two such sets. As

(4
2

)
= 6, all balanced

functions of type fA do not fulfil AI(gr(fA)) = 3. By exhaustive search over all
12,870 balanced function, we could exclude the existence of balanced functions
f in four variables with AI(gr(f)) = 3 at all. For even n ≥ 6

(
n
2

)
is divisible by

4, i.e. there are balanced functions of type fA with AI(gr(fA)) = n/2 + 1 for
all even n ≥ 6.
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Note that very recently Carlet (2006) used functions of type fA for the
construction of balanced and easy computable functions f for which AI(f) is
maximal.

3 Constructing Multi-output Boolean Functions
of Maximal Algebraic Immunity

In this section we present an algorithm which computes for given n,m, d the
table of a function h : {0, 1}n −→ {0, 1}m fulfilling AI(gr(h)) > d, and runs
in polynomial time in the relevant output-size parameter 2n. The algorithm is
based on characterizing the existence of function h : {0, 1}n −→ {0, 1}m fulfilling
AI(gr(h)) > d by the existence of so-called (n,m, d)-kernels, and the observation
that (n,m, d)-kernels correspond to bases of the union of certain matroids.

In the following, we use at several places the relation Φn+m(d) =∑
z∈W≤d

m
Φn(d−|z|), which results from partitioning the set of all (α, β) ∈ W≤d

n+m
with respect to the β-component.

Definition 1. We call a collection U = (Uz)z∈W≤d
m

of pairwise disjoint subsets
of {0, 1}n to be an (n,m, d)-kernel if for all z ∈ W≤d

m it holds that |Uz| = Φn(d−
|z|) and Uz has maximal algebraic immunity, i.e. AI(Uz) = Φ−1

n (Φn(d− |z|)) =
d− |z| + 1.

Theorem 2. For all positive integers n,m, d it holds that there is a function
h : {0, 1}n −→ {0, 1}m fulfilling AI(gr(h)) > d if and only if there is an (n,m, d)-
kernel.

Proof. We show at first the only-if direction. Let us fix an (n,m, d)-kernel
U = (Uz)z∈W≤d

m
and denote by U ⊆ {0, 1}n+m the set

U =
⋃

z∈W≤d
m

{(u, z);u ∈ Uz}.

It is sufficient to show that AI(U) > d as then all functions h : {0, 1}n −→
{0, 1}m, which fulfill for all z ∈ W≤d

m and u ∈ Uz that h(u) = z, fulfil
AI(gr(h)) > d.

For showing that the rank of Mn+m
d,U equals Φn+m(d) we order rows and

columns of Mn+m
d,U in an appropriate way. The rows of Mn+m

d,U are labelled with
monomials mαmβ = Πi,αi=1xiΠj,βj=1zj for all (α, β) ∈ ({0, 1}n × {0, 1}m) ∩
W≤d
n+m. We divide the set of rows into β-groups, β ∈ {0, 1}m, containing all

rows labelled mαmβ for some α ∈ {0, 1}n, and the set of columns into z-groups,
z ∈ W≤d

m , containing all columns labelled (u, z), u ∈ Uz. Note that each β-
group consists of Φn(d− |β|) rows, and that each z-group consists of Φn(d− |z|)
columns. Place the β-groups and the z-groups from top to bottom and from
left to right, respectively, according to the ordering ω on β and z, respectively.
Denote by Mn+m

β,z the submatrix of Mn+m
d,U formed by all rows from the β-group
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and all columns from the z-group. Note that for all β, z with ω(β) < ω(z) it
holds that Mn+m

β,z ≡ 0, i.e. Mn+m
d,U becomes a stepwise triangle matrix. Further,

by definition 1, for all z ∈ W≤d
m it holds that Mn+m

z,z is quadratic and regular.
This implies that

Φn+m(d) ≥ rank(Mn+m
d,U ) ≥

∑
z∈W≤d

m

rank(Mn+m
z,z ) =

=
∑
z∈W≤d

m

Φn(d− |z|) = Φn+m(d).

For showing the if-direction fix a function h : {0, 1}n −→ {0, 1}m with
AI(gr(h)) > d. Then, the matrix Mn+m

d,gr(h) has rank Φn+m(d). Given a subset

S ⊆ {0, 1}n we define S̃ = {(s, h(s)), s ∈ S} ⊆ {0, 1}n+m. We fix a subset
S ⊆ {0, 1}n of cardinality Φn+m(d) such that Mn+m

d,S̃
is regular. We use the

following result from linear algebra.

Lemma 4. Let r,N be integers fulfilling 1 < r ≤ N and let A be a regular
N × N -matrix over an arbitrary field K of characteristic 2. Further let I =
{Is}rs=1 be an arbitrary partition of the rows of A into r pairwise disjoint
nonempty sets. Then there is a partition J = {Js}rs=1 of the columns of A into r
pairwise disjoint nonempty sets such that for all s = 1, · · · , r it holds |Is| = |Js|
and AIs,Js is regular. (Given subsets I of rows and J of columns of A then AI,J
denotes the |I| × |J |-submatrix of A formed by the I-rows and the J-columns.)

Before giving the proof we apply this lemma to the quadratic regular matrix
Mn+m
d,S̃

. Observe that this matrix is defined over the finite field GF (2) which

has characteristic 2. Consider the partition {Tβ}β∈W≤d
n+m

of the rows of Mn+m
d,S̃

into the above described β-blocks. By Lemma 4 there is a partition {S̃β}β∈W≤d
n+m

of the columns of Mn+m
d,S̃

such that for all β ∈ W≤d
n+m the submatrix of Mn+m

d,S̃

corresponding to the Tβ-rows and S̃β-columns is regular. It follows directly that
the set system U = {U

β∈W≤d
n+m

}, defined by Uβ = {u ∈ {0, 1}n; (u, h(u)) ∈ S̃β}
is an (n,m, d)-kernel.

Proof (Lemma 4). It is known that A is regular iff det(A) �= 0. The determinant
of A is defined as

det(A) =
∑
π∈SN

A(π)

where A(π) = sign(π)ΠNi=1Ai,π(i), and SN denotes the set of permutations of
{1, · · · , N}. As K has characteristic 2, it holds that −1 is equal to 1. Thus, the
expression for A(π) can be simplified to A(π) = ΠNi=1Ai,π(i)

For all equal size subsets I and J of {1, · · · , N} we denote by S(I, J) the
set of all bijective mappings from I to J . Furthermore, let J be the set of all
partitions J = {Js}rs=1 of {1, · · · , N} into r pairwise disjoint sets, which fulfil
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|Is| = |Js| for all s = 1, · · · , r. Further denote for all J ∈ J by SJN the set of all
permutations π ∈ SN for which π(Is) = Js for all s = 1, · · · , r. Thus, any π ∈ SJN
is equivalently described by (π1, . . . , πr) with πs ∈ S(Is, Js). For this case, we
introduce the identifier A(πS) =

∏
i∈Is Ai,πs(i). Observe that for s ∈ {1, . . . , r},

it holds that
∑
πs∈S(Is,Js)A(πs) = det(AIs,Js). It follows that

det(A) =
∑
J∈J

∑
π∈SJ

N

A(π) =
∑
J∈J

Πrs=1

∑
πs∈S(Is,Js)

A(πs)

=
∑
J∈J

Πrs=1 det(AIs,Js).

Hence, if det(A) �= 0 then there is some J = {Js}rs=1 ∈ J fulfilling det(AIs,Js) �=
0 for all s = 1, · · · , r.

We have reduced the problem of computing functions h : {0, 1}n −→ {0, 1}m
fulfilling AI(gr(h)) > d to the existence of (n,m, d)-kernels. We will see in the
following that the theory of matroids provides an efficient algorithm of computing
(n,m, d)-kernels.

We list at first those basics on matroids which are relevant for our
considerations. For deeper insight into the theory of matroids see e.g. Schrijver
(2003). A pair M = (S, I), where S is some finite ground set and I denotes a
system of subsets of S, is called a matroid if the following three conditions are
fulfilled.

(1) ∅ ∈ I,
(2) If I ∈ I and I ′ ⊆ I then I ′ ∈ I,
(3) If I1, I2 ∈ I and |I1| < |I2| then there is some e ∈ I2 \I1 such that I1+e ∈ I.

Elements I ∈ I of a matroid M = (S, I) are called M-independent sets.
An M-independent set I, which is maximal in the sense that I + s �∈ I for all
s ∈ S \ I, is called an M-basis. Conditions (1),(2), and (3) imply that all M-
bases in a matroid have the same cardinality, which is defined as the rank r(M)
of the matroid M. The standard example for matroids is that S is a finite set of
vectors of a K-vector space V , where K denotes some field, and I denotes the
set of all linearly independent subsets of S.

Now let Mh = (S, Ih), h = 1, · · · , H , be a family of matroids over the same
finite ground set S. Suppose that for all h = 1, · · · , H the decision if a given
subset J of S is Mh-independent can be efficiently computed in |J | and the
representation size of elements in S.

Edmonds (1968) showed that ∪I = {I1 ∪ · · · ∪ IH ; Ih ∈ Ih} forms the system
of independent sets of another matroid

M = M1 ∨ · · · ∨MH = (S,∪I),

called the union of the matroids M1, · · · ,MH . Clearly, it holds that the rank
of M is at most r(M1) + · · · + r(MH), where equality holds if and only if S
contains for all h = 1, · · · , H a Mh-basis Bh ⊆ S such that B1, · · · , BH are
pairwise disjoint.



188 F. Armknecht and M. Krause

Definition 2. The matroid M1 ∨ · · · ∨ MH is called to have full rank, if
r(M1 ∨ · · · ∨ MH) =

∑H
h=1 r(Mh).

The relation of (n,m, d)-kernels to matroids is as follows. For 1 ≤ d ≤ n and
x ∈ {0, 1}n let V (x, d) ∈ FΦn(d)

2 denote the vector (mα(x))α∈W≤d
n

. For a set
S ⊆ {0, 1}n, we extend this definition to V (S, d) := {V (x, d), x ∈ S}. Note
that for I ⊆ {0, 1}n the matrix Mn

d,I consists of the columns {V (x, d), x ∈ I}.
Thus, a set S of cardinality Φn(d) is d-immune if and only if V (S, d) is a linearly
independent subset of the F2-vector space FΦn(d)

2 . Let Idn consist all linearly
independent sets V (I, d). Then, U = (Uz)z∈W≤d

m
is a (n,m, d)-kernel if and only

if Uz ∈ Id−|z|n for all z ∈ W≤d
m .

On the other hand, the definition of Idn gives rise to the following matroid
Md
n = ({0, 1}n, Idn) over the ground set {0, 1}n. In particular, any (n,m, d)-

kernel gives a matroid
∨
z∈W≤d

m
Md−|z|
n of full rank and vice versa. Thus,

Theorem 2 directly implies

Theorem 3. For all positive integers n,m, d it holds that there is a function
h : {0, 1}n −→ {0, 1}m fulfilling AI(gr(h)) > d if and only if the matroid∨
z∈W≤d

m
Md−|z|
n has full rank. �

Now let as above Mh = (S, Ih), h = 1, · · · , H , be a family of matroids over the
same finite ground set S, where Ih ⊆ 2S denotes the set of all Mh-independent
sets. What we need is an efficient algorithm (in the representation size of elements
in S and H) for constructing a basis in the matroid M1 ∨ · · · ∨ MH . Such an
algorithm, known as Matroid Union Algorithm, is due to Edmonds (1968). In
the following, we describe this algorithm.

We call collections I = (I1, · · · , IH) of pairwise disjoint Mh-independent sets
Ih, 1 ≤ h ≤ H , a disjoint collections of independent sets (for short, DCIS), and
denote ∪I =

⋃H
h=1 Ih. Further, for subsets T ⊆ S and s, t ∈ S we write T + s

instead of T ∪ {s} and T − t instead of T \ {t}.
We have to compute a DCIS I∗ such that |∪I∗| is maximal. For this purpose it

is sufficient to have an efficient algorithm which decides for given DCIS I if there
is some s ∈ S \ (∪I) such that (∪I)∪{s} is again (M1 ∨· · ·∨MH)-independent,
and, if yes, computes a new DCIS I ′ such that ∪I ′ = (∪I) ∪ {s}. The matroid
properties guarantee that the greedy strategy based on this step yields a basis
in M1 ∨ · · · ∨ MH (see, e.g., Schrijver 2003).

Let us fix a DCIS I = (I1, · · · , IH) and some s ∈ S \ (∪I). For all h,
1 ≤ h ≤ H, we denote by F (Ih) the set of all x ∈ S \ Ih such that Ih + x ∈ Ih,
and by A(Ih) the set of all directed arcs (x, y) with x ∈ Ih, y ∈ S \ Ih,
Ih−x+y ∈ Ih. Let F = F (I1)∪· · ·∪F (IH), and let G denote the directed graph
G = (S,A(I1) ∪ · · · ∪ A(IH)). Note that F and G can be efficiently computed
from I1, · · · , IH and S.

How to find an s ∈ S\∪I such that ∪I+s is again M1∨· · ·∨MH -independent?
There are two easy cases and one nontrivial case.

Case 1: Ih is Mh-basis (i.e. F (Ih) = ∅) for all h = 1, · · · , H . In this case, I
is obviously a maximal independent set in M1 ∨ · · · ∨ MH .
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Case 2: It holds F �⊆ ∪I. Suppose w.l.o.g. that there is some s ∈ F (I1) \ ∪I.
Then s �∈ Ih for all 1 ≤ h ≤ H and I ′ = (I1 + s, I2, · · · , Ih) is an DCIS with
∪I ′ = ∪I + s.

Case 3: F �= ∅ but F ⊆ ∪I, i.e. for all s ∈ S \ ∪I and all 1 ≤ h ≤ H it holds
that Ih + s is Mh-dependent.

If a
∨H
h=1Mh-independent set I fulfils the condition of case 3 then let us I

call to be locally maximal. We use of the following Theorem 42.4 from Schrijver
(2003) that for all s ∈ S \∪I it holds that ∪I+s is M1∨· · ·∨MH - independent
iff there is a directed path from x to s in G for some x ∈ F .

If our greedy algorithm reaches a situation in which a locally maximal∨H
h=1Mh-independent set I is constructed then we have to do a more complex

step which in the following well be called a Case-3 step. A Case-3 step involves
first to test whether I is globally maximal by checking the condition of Theorem
42.4 in Edmonds (1968) for all s ∈ S \ I. If not then we fix some s ∈ S \ I,
x ∈ F and a shortest path p = (x = s0, s1, s2, · · · , sk = s) from x to s. Due to
the condition of Case 3 it holds x ∈ ∪I, let us suppose w.l.o.g. that x ∈ F (I1).
The proof of Theorem 42.4 from Schrijver (2003) yields the following efficient
algorithm for computing a new partition DCIS I ′ with ∪I + s = ∪I ′.

Note that due to the definition of A(I) and the condition of Case 3, it holds
for all 1 ≤ i ≤ k − 1 that si ∈ ∪I. Fix h1, · · · , hk−1 in such a way that si ∈ Ihi

for all 1 ≤ i ≤ k − 1. Note that, by the definition of A(I), hi �= hi+1 for all
1 ≤ i ≤ k − 2.

Moreover, p is acyclic, i.e., all si, 0 ≤ i ≤ k, are pairwise distinct. This implies
that for all 1 ≤ h ≤ H the p-edges starting from nodes in Ih form a matching in
G. For 1 ≤ h ≤ H , let Jh = p ∩ Ih and Kh = {si; 1 ≤ i ≤ k, si−1 ∈ Jh}.

The DCIS I ′ is obtained by shifting x into I1 and then, for i = 2, · · · , k, shifting
si into Ihi−1 . More formally, for 1 ≤ h ≤ H , let Jh = p ∩ Ih and Kh = {si; 1 ≤
i ≤ k, si−1 ∈ Jh}. Then I ′ = (I ′1, · · · , I ′H), where I ′1 = ((I1 + x) \ J1) ∪K1 and
I ′h = (Ih \ Jh) ∪ Kh for 2 ≤ h ≤ H . For all 1 ≤ h ≤ H the p-edges starting
from nodes in Ih form a matching in G. This implies (see Theorem 39.13 from
Schrijver (2003)) that Ih is Mh-independent for all 1 ≤ h ≤ H , i.e. I ′ is an
DCIS. Obviously, ∪I ′ = ∪I + s.

4 Experimental Results and Open Problems

We have seen that the decision of the existence and the computation of
an (n,m, d)-kernel U can be performed by the computation of a maximal
independent set ∪

z∈W≤d
m
Uz in the matroid union

∨
z∈W≤d

m
Mn
d−|z|, which can

be performed by the Matroid Union Algorithm. A trivial necessary condition is
that an (n,m, d)-kernel fits into {0, 1}n, i.e. |U| = Φn+m(d) ≤ 2n. We denote by
dn,m = Φ−1

n+m(2n) the corresponding theoretical upper bound for the immunity
of the graph of a function h : {0, 1}n −→ {0, 1}m.

With help of our algorithm, we checked the existence of (n,m, dn,m − 1)-
kernels for the cases 14 ≥ n ≥ m ≥ 2 and (n,m) = (15, 2). It turned out that
(n,m, dn,m − 1)-kernels could be found for all our test cases. This raises the
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interesting question whether (n,m, dn,m − 1)-kernels do exist in general. Note
that our results in Section 2 answer this question positively for all n and m = 1.

Even if the experiments indicate that functions for which the graph has
immunity dn,m may exist for all choices of n and m, one should not forget that
a cryptographic reasonable S-box should fulfill additional criteria as high non-
linearity or balancedness. Essentially, one hardly finds cryptographic S-boxes
in practice which attain maximal algebraic immunity. For example, the Data
Encryption Standard (DES) uses eight different S-boxes with n = 6 and m = 4.
The maximal value d6,4 = 3 is only achieved by five of them (see Shimoyama
and Kaneko (1998)). Another example is the S-box (n = m = 8) used in the
Advanced Encryption Standard (AES). It has been pointed out by Courtois and
Pieprzyk (2002) that unless (8, 8, 2)-kernels do exist, the immunity of the graph
is only 2. This leaves the open task to develop our method further to achieve a
tradeoff between algebraic immunity and other conditions.
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Abstract. The bounded storage model (BSM) bounds the storage
space of an adversary rather than its running time. It utilizes the pub-
lic transmission of a long random string R of length r, and relies on
the assumption that an eavesdropper cannot possibly store all of this
string. Encryption schemes in this model achieve the appealing property
of everlasting security. In short, this means that an encrypted message re-
mains secure even if the adversary eventually gains more storage or gains
knowledge of (original) secret keys that may have been used. However,
if the honest parties do not share any private information in advance,
then achieving everlasting security requires high storage capacity from
the honest parties (storage of Ω(

√
r), as shown in [9]).

We consider the idea of a hybrid bounded storage model were compu-
tational limitations on the eavesdropper are assumed up until the time
that the transmission of R has ended. For example, can the honest par-
ties run a computationally secure key agreement protocol in order to
agree on a shared private key for the BSM, and thus achieve everlast-
ing security with low memory requirements? We study the possibility
and impossibility of everlasting security in the hybrid bounded storage
model. We start by formally defining the model and everlasting security
for this model. We show the equivalence of two flavors of definitions:
indistinguishability of encryptions and semantic security.

On the negative side, we show that everlasting security with low stor-
age requirements cannot be achieved by black-box reductions in the hy-
brid BSM. This serves as a further indication to the hardness of achieving
low storage everlasting security, adding to previous results of this nature
[9, 15]. On the other hand, we show two augmentations of the model
that allow for low storage everlasting security. The first is by adding a
random oracle to the model, while the second bounds the accessibility of
the adversary to the broadcast string R. Finally, we show that in these
two modified models, there also exist bounded storage oblivious transfer
protocols with low storage requirements.

� Research supported in part by a grant from the Israel Science Foundation.
�� This work was conducted while at the Weizmann Institute.

��� Incumbent of the Judith Kleeman Professorial Chair.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 192–203, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On Everlasting Security in the Hybrid Bounded Storage Model 193

1 Introduction

1.1 The Bounded Storage Model

The bounded storage model, introduced by Maurer [17] postulates a bound on
the space (memory size) of dishonest players rather than their running time.
The model makes use of a long random string R of length r that is publicly
transmitted and accessible to all parties. One can imagine that R is broadcast
at a very high rate by a trusted party or by some natural source or phenomena.
Security in this model relies on the assumption that an adversary cannot possibly
store all of the string R in his memory. For instance, consider the case of honest
parties Alice and Bob that want to exchange secret messages in presence of
an eavesdropper Charlie. Let the honest parties Alice and Bob use storage of
respective size sA and sB while an eavesdropper Charlie has a bound of sC
on his storage capacity. Typically we ask that security of the encryption holds
in a setting where sA, sB << sC < r. That is, the adversary is allowed to have
storage space that is much larger than that of the honest players, but still smaller
than r. In addition there are no computational restrictions on Charlie.

This model has enjoyed much success for the task of private key encryption. It
has been shown that Alice and Bob who share a short private key can exchange
messages secretly using only very small storage (a key of length O(log r+ log 1

ε )
can be used with storage of size sA = sB = O(� + log r + log 1

ε ) for an � bit
message and ε probability of error). On the other hand an eavesdropper who
can store up to a constant fraction of R (e.g. 1

2r bits) cannot learn anything
about the messages (this was shown initially in [2] and improved in [1, 8, 10, 16]
and ultimately in [22]). These encryption schemes have the important property
called everlasting security (put forward in [1, 8]), where once the broadcast is
over and R is no longer accessible then the message remains secure even if the
private key is exposed and Charlie gains stronger storage capabilities.

In contrast, the situation is far from satisfiable when Alice and Bob do not
share any secret information in advance. Cachin and Maurer [4] suggest a method
for a key agreement protocol in the bounded storage model. However, this solu-
tion requires Alice and Bob to use storage of size at least Ω(

√
r) which is quite

high and renders this approach far less appealing (if not impractical). Dziem-
bowski and Maurer [9] subsequently proved that this is the best one can do.

1.2 Everlasting Security and the Hybrid Bounded Storage Model

The inability to achieve everlasting secure encryption in the bounded storage
model with memory requirements smaller than

√
r, has lead to the following

appealing suggestion that we call the hybrid BSM and is the focus of this paper.
Let Alice and Bob agree on their secret key using a computationally secure
key agreement protocol (e.g. Diffie-Hellman). The rationale being that while an
unbounded eavesdropper will eventually break the key, this is likely to happen
only after the broadcast had already occurred. In such a case, the knowledge of
the shared key would be useless by that time (this should be expected from the
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everlasting security property where getting the shared key after the broadcast
has ended is useless).

Somewhat surprisingly, Dziembowski and Maurer [9] showed that this ratio-
nale may fail. They introduce a specific computationally secure key agreement
protocol (containing a non-natural modification based on private information
retrieval (PIR) protocols). If this key agreement protocol is used in the hybrid
BSM setting with a specific private key scheme, then the eavesdropper can com-
pletely decrypt the encrypted message. However, their result does not rule out
the possibility that the hybrid idea will work with some other key agreement
protocol. For instance, using the plain Diffie Hellman key agreement may still
work.

This hybrid model is very natural as we try to achieve everlasting security
by adding limitations on the adversary that have a strict time limit (expira-
tion date). Assumptions of this sort are generally very reasonable. For instance,
in the key agreement example, all that we require is that the computational
protocol is not broken in the short time period between its execution and the
transmission of R. An assumption such as the Diffie Hellman key agreement can-
not be broken within half an hour, can be made with far greater degree of trust
than actually assuming the long term security of a computational key agreement
protocol.

1.3 This Paper’s Contributions

This paper studies the possibility and impossibility of everlasting security in the
hybrid bounded storage model. Our contributions are as follows:

– We formally define the model and everlasting security for this model.
– On the negative side we show that everlasting security with low storage

requirements cannot be achieved by black-box reductions in the hybrid BSM.
– On the other hand, we show two augmentations of the model that allow for

low storage everlasting security. The first is by adding a random oracle to
the model, while the second bounds the accessibility of the adversary to the
broadcast string R.

– Finally, we show that in these two modified models, there also exist oblivious
transfer protocols with low storage requirements.

We elaborate on each of these points:

Defining Everlasting Security in the Hybrid BSM: We give rigorous de-
finitions of the type of security we are pursuing. We first define what a hybrid
BSM encryption scheme is and then define everlasting security for such a scheme.
Following the common practice (stemming from [13]), we give security definitions
by indistinguishability of encryptions and by semantic security. We then prove
that these two definitions are equivalent.

Regarding the Impossibility of Hybrid schemes: We have more than one
indication that proving everlasting security in the hybrid bounded storage model
is hard. In fact, it seems quite plausible that everlasting security is not achievable
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in this model at all. We survey two results (of [9] and [15]) that contribute to
this point of view and provide additional evidence in the form of a black-box
impossibility result for the general hybrid schemes (this shows the impossibility
of semi-black-box constructions in the sense of [21]).

We show a setting (or “world”) in which (general) hybrid schemes with ever-
lasting security do not exist. However, if computational key agreement protocols
exist in the plain model, then they also exist in this world (this property holds
for any computationally secure protocol and not only for key agreement). Thus,
we deduce that there can be no black-box proof of everlasting security, basing
hybrid BSM schemes on the security of any computational primitive. In partic-
ular, this claim rules out the use of computational key agreement protocols via
a black-box proof.

Positive Results: We show two modifications of the model that allow for hybrid
everlasting security, with small memory requirements (much smaller than

√
r).

Everlasting Security in the presence of Random Oracles: Suppose that
the parties are given access to a random oracle. A random oracle is a different
type of public random string than the broadcast string R. It is exponentially long
and due to its length an efficient algorithm can only access a small fraction of it.
This is unlike the broadcast string R that can be fully accessed by an efficient
algorithm. On the other hand the random oracle alone cannot assure everlasting
security as it does not eventually disappear and may always be queried at a later
stage. We show that combining these two different types of public random strings
(the random oracle and R) is sufficient for achieving low storage everlasting
security. Everlasting security in this setting means, in particular, that encrypted
messages remain secure even if the adversary queries all of the random oracle
entries after the broadcast is over.

There are several interpretations to the above result. If one can assemble a
random oracle then this presents a methodology for low storage everlasting se-
curity. For example, such an oracle may be assembled using natural phenomena
(if the broadcast string R can be implemented this way then why not a random
oracle) or using a distributed protocol with partially (and temporarily) trusted
parties, e.g. [19]. The emphasis being that such a random oracle need only be
secure up until the time of the broadcast. One can also view this result, some-
what optimistically, as a suggested heuristic that achieves everlasting security
“for all practical purposes” (when plugging some hash function instead of the
random oracle). On the other hand, in light of the negative results for the general
hybrid BSM model, one can view the above statement as a testament against
relying (blindly) on random oracles to determine whether a task is feasible at all.
This is since it shows a task (everlasting security with low storage requirements)
that is achievable with a random oracle but might be impossible altogether (or at
least very hard to achieve) without it. This is a different statement than previous
results regarding random oracles (such as [5, 12, 18]) that show a specific protocol
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(rather than a task) that becomes insecure if the random oracle is replaced by
a function with a small representation.

Bounded Accessibility: The Bounded Accessability Model assumes that the
adversary cannot actually read the whole broadcast string R. Rather, the ad-
versary may choose (adaptively) γr locations of R that he would like to read
and access only these bits during the broadcast. This model was considered by
Maurer [17]. The bounded accessibility assumption can be justified, for example,
if the broadcast is at a very high rate, and all the adversary can do during a
broadcast is to read a bit and write it in his memory (that is of size γr). Another
example is if the source consists of a large number of simultaneous transmissions
and one can only record a limited number of sources.

We show that the basic hybrid scheme has everlasting security in this model
with memory requirements that are substantially smaller than

√
r. An impor-

tant observation is that this protocol would not have been successful in a plain
bounded access model (without introducing the computational limitations on
the adversary). This follows since the lower bound of

√
r [9] applies for this

model as well.

On Oblivious Transfer in the Hybrid BSM: We demonstrate that the
hybrid BSM in the two augmented models described above can also achieve
oblivious transfer (OT) protocols with everlasting security using only low stor-
age. This is in contrast to OT in the standard BSM (see for example [3, 6, 7])
that requires storage of at least Ω(

√
r) as the lower bound for key agreement [9]

applies also for OT. The hybrid scheme is based on the assumption that there
exist computationally secure OT protocols.

Paper Organization: We give an overview of the definitions of the hybrid BSM
and everlasting security in Section 2 (the rigorous treatment is omitted due to
space limitations). The positive results are given in Section 3, while the negative
results appear in Section 5. Section 4 discusses the results for OT. Due to the
limited space we omit several of the proofs and instead refer the reader to the
full version of this paper [14].

2 Hybrid BSM – Setting and Security Definitions

We consider the task of exchanging secret messages between two parties in the
presence of an eavesdropper. following is a general description of what a hybrid
BSM encryption scheme consists of. We consider the honest parties Alice and
Bob (A and B) and an eavesdropper Charlie (C) Charlie is limited to run in
polynomial time up to the end of the broadcast, at which point he must store
at most sC bits of information. After this point, Charlie is not limited in any
way. In the general hybrid scheme we do not restrict Alice and Bob to a specific
behavior, but rather allow them to communicate before and after the broadcast.
The first communication is not necessarily a key agreement, (as was suggested in
the introduction) but rather any protocol. The point is that this protocol should
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take advantage of the assumption that at this time Charlie is restricted to being
a polynomial time algorithm. After the broadcast the parties may communicate
again, though Charlie is no longer bounded.1

We then give two equivalent flavors of definitions for everlasting security of a
hybrid scheme (following the format in [13]). Roughly, the definitions are:

– Indistinguishability of encryptions: A hybrid scheme has everlasting
security if for every two messages m0 and m1, Charlie cannot tell apart
the encryptions of these two messages. That is, the view of Charlie has
essentially the same distribution (up to a negligible statistical difference)
when messagem0 is used or when messagem1 is used. Charlie’s view consists
of the encryption, the transcripts of all the interaction between Alice and
Bob and the sC bits that Charlie has efficiently stored from the broadcast
string R (as well as any prior information such as the messages m0 and m1).

– Semantic security: A hybrid scheme has everlasting security if an un-
bounded Charlie cannot compute from his view a boolean function of the
encrypted message m with a non-negligible advantage.

Due to space limitations, we give the formal definitions as well as the proof
of equivalence in the full version of this paper [14].

3 Positive Results

Due to the negative results of Section 5 it seems that proving everlasting security
with low storage requirements is out of our reach at this time (or not possible
altogether). We next try to modify the model itself in ways that will allow for
positive results. We provide two modifications of the standard hybrid model,
and prove that under this modifications we can achieve low storage everlasting
security.

3.1 Everlasting Security with a Random Oracle

We show a simple scheme that achieves hybrid everlasting security when given
access to a random oracle. We view a random oracle RO as an exponentially
long list of entries that is publicly available and allows random access. Each
entry in the list contains a (relatively short) string of bits. We start by showing
a feasibility result that produces just a one bit key and then describe how this
can be generalized to give an efficient scheme that outputs a longer key. Protocol

EncryptRO

1. Alice and Bob run any computational key agreement (KA) protocol and
agree on a key CK of length k.

1 We note that this is a description of the most general hybrid scheme we consider,
and is used for the impossibility results in order to rule out as many potential
solutions as possible. On the other hand, we would like actual protocols to be
much simpler and in particular, all of our positive results have schemes that have
interaction only before the broadcast.
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2. Alice and Bob access the random oracle at the location CK, the output
SK = RO(CK) consists of k · log r bits. We view these bits as a list of k
indices i1, . . . , ik where each ij ∈ [r].2

3. For each j ∈ [k] Alice and bob store the bit R(ij).
4. The output bit K =

⊕
j∈[k] R(ij).

5. The key K is the final key and the encryption of the message m is m⊕K.

Theorem 1. The protocol EncryptRO has (γ, neg(·))-everlasting security.

The above simple scheme demonstrates that everlasting security can be
achieved by when a random oracle is available. However, it is not efficient in
the sense that the number of bits read from the random oracle is far larger than
the actual key. This may be greatly improved by using one of the known schemes
for private key encryption in the regular (non-hybrid) bounded storage model,
such as the scheme in [16, 22]. In this hybrid scheme, the key SK = RO(CK)
serves as the private key of the regular BSM scheme. Such a regular BSM scheme
was shown in [22] with private key SK of length O(log r+log 1

ε ) that reads only
O(k+log 1

ε ) bits of broadcast string R. Thus we get a hybrid scheme with compa-
rable parameters (the storage requirement of Alice and Bob is only O(k+log 1

ε )).

3.2 Bounded Accessability and Hybrid Everlasting Security

The crux in the use of the random oracle is that the adversary does not read
some information. Thus making assumptions on the ability of the adversary to
read all of the bits (rather than store them) seems helpful and indeed we show
that it is. The Bounded Accessability Model (considered already in the original
paper of Maurer [17]) assumes that the adversary cannot actually read the whole
of the broadcast string R but rather just a chosen γ fraction of it. That is, the
adversary chooses γ · r bits that he wishes to read from the string R and may
then store all of these bits.3 Such an assumption can be justified, for example, if
the broadcast is at a very high rate, allowing the parties to read and store just
a small fraction that they prepare for in advance. The definitions of everlasting
security are the same as in Section 2 only that in the underlying model, the
efficient part of Charlie can only decide on γ · r locations in R and store these
actual bits from R.

We show that hybrid everlasting security is achievable in this model with
memory requirements that are much smaller than

√
r. An important note is

that the lower bound of Ω(
√
r) [9] applies for this model as well. Therefore the

hybrid with computational assumptions is essential.
We present a basic hybrid encryption scheme and prove its security. We note

that the following example is aimed at showing the feasibility of such a scheme
and does not try to optimize the parameters. The output of the scheme is a

2 We consider the random oracle RO(·) as an exponentially long array broken into
cells where each cell contains k · log r bits.

3 Note that we allow the choice of locations to store to be an adaptive choice (rely
on the answers of the first bits that where read to determine what to read next).
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one bit key, that should be pseudorandom. We discuss how to achieve better
parameters towards the end of this section.

Protocol EncryptBAM

1. Alice and Bob run a computational key agreement protocol KA with the
security parameter k. They agree on a key ī = (i1, . . . ik) where for each
j ∈ [k] the jth entry is an index ij ∈ {0, 1}log r (the transcript of KA is
denoted by TKA).

2. For each j ∈ [k] Alice and Bob store the bit R(ij).
3. The final key is K =

⊕
j∈[k] R(ij) and a message m is encrypted by m⊕K.

Theorem 2. The protocol EncryptBAM has (γ, neg(·))-everlasting security.

As in the case of the random oracle protocol, an efficient protocol can be achieved
by using the computational key agreement to agree on a key CK of O(log r +
log 1

ε ) bits, that will serve as the private key for a regular BSM scheme of [22].

4 On Hybrid Everlasting Security for Oblivious Transfer

Oblivious transfer (OT) (originally defined by Rabin [20] and presented here
using the definition of [11]) is a protocol between Alice holding two secrets s0 and
s1, and Bob holding a choice bit c. At the end of the protocol Bob should learn
the secret of his choice (i.e., sc) but learn nothing about the other secret. Alice,
on the other hand, should learn nothing about Bob’s choice c. Oblivious transfer
is an important building block for construction of secure computation.Cachin,
Crepeau and Marcil [3] showed an implementation of OT in the Bounded Storage
model with everlasting security in the sense that once the broadcast is over, no
party can learn additional information about the secrets, even if the party has
gained more power (or storage space) since. This protocol was subsequently
improved in [6] and ultimately in [7]. We refer the reader to [7] for rigorous
definitions of OT in the bounded storage model.

The main drawback of all bounded storage OT schemes is that the honest
parties are required to use storage of

√
r bits. This requirement is tight since the

lower bound of [9] holds also for OT (as OT implies key agreement). We next
show that the idea of the hybrid BSM may be useful for implementing OT with
low storage requirements. More precisely, we show such schemes under the two
modified models discussed for the case of encryption. That is, if random oracles
are allowed and in the bounded accessability model.

The idea, in both cases, is to run a computational string OT between Alice and
Bob. At the end of this protocol Bob will have learnt one of the two strings that
Alice holds. Alice then uses the two strings as secret keys in a classical BSM
private key encryption scheme (e.g., as seeds to a locally computable strong
extractor in the scheme of [16, 22]). Alice encrypts her two secrets using the two
respective keys. Bob can decrypt one (as he received one of the keys) but not
the other.
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It is interesting that this protocol does not follow the path of the oblivious
transfer in the bounded storage model. Oblivious transfer is inherently an asym-
metric protocol, and in the above protocol the asymmetry follows only from the
computational protocol. Thus not utilizing the mechanism designed for this task
in the bounded storage model.

5 Negative Results

We have more than one indication that proving everlasting security in the hybrid
bounded storage model is hard. In fact, it seems quite plausible that everlasting
security is not achievable in this model at all. In this section we survey two
results contributing to this point of view and provide additional evidence in the
form of a black-box impossibility result for the general hybrid schemes.

The [DM04] Example: Dziembowski and Maurer [9] show an example that
proves that basic hybrid schemes cannot be blindly trusted. The example takes
any combination of a computational key agreement protocol and a private key
BSM encryption scheme, and replaces the key agreement with a non-natural,
yet secure key agreement protocol, that renders the overall scheme insecure.
The new key agreement consists of the old one, and an additional “hint” as to
what an adversary should store from the string R. This hint is based on private
information retrieval (PIR) protocols, and does not give the computationally
bounded adversary any information on the underlying key. It does allow him to
store a function of R that contains the necessary information about what the
honest players stored. This information can be extracted at a later stage once
the adversary is no longer bounded.

This result can be viewed as saying such a basic hybrid scheme cannot work
in a black-box manner, taking any key agreement with any private key BSM
scheme. It falls short though of saying that hybrid schemes using specific pro-
tocols are insecure. Neither does it rule out a black-box general hybrid scheme
(we show such an impossibility result in Section 5.1).

On Compression of NP instances and Hybrid Schemes: In [15] we define
the following problem regarding the compression of NP instances: Consider NP
problems that have long instances but relatively short witnesses. The question is,
can one efficiently compress an instance and store a shorter representation that
maintains the information of whether the original input is in the language or not.
For example, the compression of the language SAT is formulated as follows: A
compression for SAT is an efficient algorithm and a polynomial p(·, ·) such that
the algorithm takes as input a CNF formula Φ with m clauses over n variables
(where m >> n). The output should be a formula Ψ of size p(n, logm) such that
Ψ is satisfiable if and only if Φ is satisfiable.

In [15], a family of NP languages is defined that includes, for example, the lan-
guages SAT and Clique. It is shown that if there exists a compression algorithm
for any language in this family, then the hybrid BSM is no more powerful (with
respect to everlasting security) than the standard BSM. Conversely, in order to
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prove everlasting security in the hybrid model with low storage requirements,
one must prove (or assume) that certain languages are incompressible.

5.1 Black-Box Impossibility

We next show that there exists no black-box proof of everlasting security of a
hybrid encryption scheme, based on the security of a computational primitive.
This forms a wider black-box impossibility than that of the [9] result, as it
captures any general hybrid scheme (rather than just a combination of a key
agreement and BSM encryption scheme).

We prove the result by introducing a setting (or “world”) containing a special-
ized oracle where any hybrid scheme with low storage requirements (that does
not use the oracle) may be broken, but otherwise computational primitives are
left unaffected. As a corollary we get that there can be no black-box proof of
everlasting security of a hybrid scheme based on a computational protocol (such
as key agreement, but also others, e.g., oblivious transfer). The reason is that
a security proof is a reduction showing that if the hybrid BSM can be broken
then so can the computational scheme. Such a black-box proof would also ap-
ply in a world as described above and would thus prove the insecurity of the
computational scheme. Therefore, if there existed such a black-box proof based
on key agreement (for example) then it would serve as a proof that there exists
no computational key agreement protocols altogether. In particular this means
that there is no fully black-box reduction (in the terminology of [21]).

To specify the world mentioned above we define an oracle Z. Loosely speak-
ing, the oracle Z takes as input an NP relation L and a (presumed) instance x
of L, and generates several random witnesses to the fact that x ∈ L (assuming
such witnesses exist). However, the oracle does not actually output these wit-
nesses. Instead it returns some form of encryption of them. The point is that
a polynomial time adversary essentially gains nothing from the presence of the
oracle Z. Thus any primitive that is secure against a polynomial time adversary
remains secure even when the adversary is given access to the oracle Z. But a
hybrid BSM encryption cannot have everlasting security since a polynomial time
adversary with access to Z can save encrypted information for future use.

The Oracle Z: For every � ∈ N let π� : {0, 1}� → {0, 1}� be a random permu-
tations. For every �, k ∈ N, let R�,k be a 2�× 2k matrix of entries in {0, 1}�. The
entries of the matrix R�,k are random strings subject to the sole restriction that⊕
i∈[2k]R�,k[y, i] = π−1

� (y) (where y ∈ {0, 1}� is also viewed as an index y ∈ [2�]
and the XOR is performed bit by bit).

1. The oracle takes an input (L, x, n, k) where L is the description of an NP
relation L(·, ·), x is a string (presumably in L), n is a parameter and k
is a limit on witness length. If there is witness w of size at most k such
that L(x,w) = 1, then the oracle computes n witnesses w1, ..., wn that are
randomly chosen under the restriction that L(x,wi) = 1 for all 1 ≤ i ≤ n
(suppose w.l.o.g. that each of the witnesses is of length exactly k). The
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output of the oracle is y = πnk(w1, . . . , wn). In case there is no witness of
size k for x, then the output is simply a random string y.

2. On input (y, i) where y ∈ {0, 1}nk and i ∈ [2k], the output is Rnk,k[y, i].

Thus the oracle Z is defined by the ensemble of permutations π� and matrices
R�,k as well as the randomness used to sample the witnesses.

Theorem 3. In a world containing the Oracle Z (and no other oracle) we have:

– Any cryptographic primitive that is computationally secure in the plain model
is secure in this world as well. More precisely, for any polynomial time ad-
versary A with access to Z, there exists a polynomial time adversary A′ in
the plain model (without access to Z) so that any polynomial time environ-
ment interacting with the adversary without access to Z, cannot distinguish
between A and A′.

– Any hybrid BSM encryption scheme in which (i) Alice and Bob require stor-
age of size at most o(

√
r), and (ii) Alice and Bob make no calls to Z, cannot

have everlasting security.

The proof idea: For a computationally bounded adversary, the oracle Z is indis-
tinguishable from a random oracle. This is because unless a whole row of R is
read, then all of the outputs of Z are truly random strings. Thus, the oracle is of
no use to a computationally bounded adversary as such an adversary can simu-
late the random oracle on his own, simply by tossing random coins whenever it
queries the oracle.

On the other hand, the oracle is very handy in breaking any hybrid scheme.
This is shown by designing a specific NP relation L and invoking a Lemma of
Dziembowski and Maurer [9], that essentially states that a large enough number
of random witnesses to L are sufficient to break a bounded storage scheme with
low memory requirements. The adversary Charlie in the hybrid model can query
for these witnesses from Z, but gets only an encrypted version via πnk which
is useless at the point. However, after the broadcast is over, Charlie may use
his unbounded powers to extract the required information from the oracle Z, by
decrypting πnk using Rnk,k, and break the scheme. The actual proof appears in
the full version of this paper ([14]).

6 Open Problems

The obvious open problem is to settle the possibility or impossibility of low stor-
age everlasting security in the general hybrid model. This would likely entail
resolving the existence or in-existence of relevant compression algorithms (fol-
lowing the formulation of [15]). Another problem is to come up with additional
(reasonable) models where the notion of everlasting security may be achieved.

Finally, our solution for oblivious transfer (OT) requires the use of computa-
tionally secure oblivious transfer protocols. An interesting question is can one
achieve low storage everlasting security OT protocols based on weaker assump-
tions than computational OT such as key agreement, for instance. It is tempting
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to think such a protocol exists since bounded storage OT may be achieved with
no computational assumption at all (albeit, with high storage requirements).
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Abstract. In this work we initiate the question of whether quantum computers
can provide us with an almost perfect source of classical randomness, and more
generally, suffice for classical cryptographic tasks, such as encryption. Indeed, it
was observed [SV86, MP91, DOPS04] that classical computers are insufficient
for either one of these tasks when all they have access to is a realistic imperfect
source of randomness, such as the Santha-Vazirani source.

We answer this question in the negative, even in the following very restrictive
model. We generously assume that quantum computation is error-free, and all the
errors come in the measurements. We further assume that all the measurement
errors are not only small but also detectable: namely, all that can happen is that
with a small probability p⊥ ≤ δ the (perfectly performed) measurement will
result in some distinguished symbol ⊥ (indicating an “erasure”). Specifically, we
assume that if an element x was supposed to be observed with probability px, in
reality it might be observed with probability p′

x ∈ [(1−δ)px, px], for some small
δ > 0 (so that p⊥ = 1 − x p′

x ≤ δ).

1 Introduction

Randomness is important in many areas of computer science, such as algorithms, cryp-
tography and distributed computing. A common abstraction typically used in these ap-
plications is that there exists some source of unbiased and independent random bits.
However, in practice this assumption seems to be problematic: although there seem
to be many ways to obtain somewhat random data, this data is almost never uniformly
random, its exact distribution is unknown, and, correspondingly, various algorithms and
protocols have to be based on imperfect sources of randomness.

Not surprisingly, a large body of work (see below) has attempted to bridge the gap
between this convenient theoretical abstraction and the actual reality. So far, however,
most of this work concentrated on studying if classical computers can effectively use
classical imperfect sources of randomness. In this work, we initiate the corresponding
study regarding quantum computation. To motivate our question, we start by surveying
the state of the art in using classical computers, which will demonstrate that such com-
puters are provably incapable of tolerating even “mildly” imperfect random sources.

CLASSICAL APPROACH TO IMPERFECT RANDOMNESS. The most straightforward
approach to dealing with an imperfect random source is to deterministically (and effi-
ciently) extract nearly-perfect randomness from it. Indeed, many such results were ob-

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 204–215, 2006.
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tained for several classes of imperfect random sources. They include various “streaming”
sources [Eli72, Blu86, LLS89], “bit-fixing” sources [CGH+85, AL93, DSS01, KZ03],
multiple independent imperfect sources [Vaz87b, CG88, DO03, DEOR04, BIW04] and
efficiently samplable sources [TV00]. While these results are interesting and non-trivial,
the above “deterministically extractable” sources assume a lot of structure or inde-
pendence in the way they generate randomness. A less restrictive, and arguably more
realistic, assumption on the random source would be to assume only that the source
contains some entropy. We call such sources entropy sources. Entropy sources were
first introduced by Santha and Vazirani [SV86], and later generalized by Chor and
Goldreich [CG88], and Zuckerman [Zuc96].

The entropy sources of Santha and Vazirani [SV86] are the least imperfect (which
means it is the hardest to show impossibility results for such sources) among the en-
tropy sources considered so far (e.g., as compared to [CG88, Zuc96]). SV sources, as
they are called, require every bit output by the source to have almost one bit of entropy,
even when conditioned on all the previous bits. Unfortunately, already the original work
of [SV86] (see also a simpler proof in [RVW04]) showed that deterministic random-
ness extraction of even a single bit is not possible from all SV sources. This can also
be considered as impossibility of pseudo-random generators with access to only an SV
source. Moreover, this result was later extended by McInnes and Pinkas [MP91], who
showed that in the classical setting of computationally unlimited adversaries, one cannot
have secure symmetric encryption if the shared key comes from an SV source. Finally
and most generally, Dodis et al. [DOPS04] showed that SV sources in fact cannot be
used essentially for any interesting classical cryptographic task involving privacy (such
as encryption, commitment, zero-knowledge, multiparty computation), even when re-
stricting to computationally bounded adversaries. Thus, even for the currently most re-
strictive entropy sources, classical computation does not seem to suffice for applications
inherently requiring randomness (such as extraction and cryptography).1

We also mention that the impossibility results no longer hold when the extracting
party has a small amount of true randomness (this is the study of so called probabilistic
randomness extractors [NZ96]), or if several independent entropy sources are available
[Vaz87b, CG88, DO03, DEOR04, BIW04].

QUANTUM COMPUTERS? Given the apparent inadequacy of classical computers to
deal with entropy sources — at least for certain important tasks such as cryptography
—, it is natural to ask if quantum computers can be of help. More specifically, given
that quantum computation is inherently probabilistic, can we use quantum computers
to generate nearly perfect randomness? (Or maybe just “good enough” randomness
for cryptographic tasks like encryption, which, as we know [DS02], do not require
perfect randomness?) For example, to generate a perfectly random bit from a fixed
qubit |0〉, one can simply apply the Hadamard transform, and then measure the result in
the standard basis. Unfortunately, what prevents this simple solution from working in

1 In contrast, a series of celebrated positive results [VV85, SV86, CG88, Zuc96] show that even
very weak entropy sources are enough for simulating probabilistic polynomial-time algorithms
— namely, the task which does not inherently need randomness. This result was extended to
interactive protocols by [DOPS04]. [DOPS04] also show that under certain strong, but reason-
able computational assumptions, secure signatures seem to be possible with entropy sources.
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practice is the fact that it is virtually impossible to perform the above transformation (in
particular, the measurement) precisely, so the resulting bit is likely to be slightly biased.
In other words, we must deal with the noise.

But, first, let us explain why there are good reasons to hope for quantum comput-
ers to be useful despite the noise. When dealing with classical imperfect sources, we
usually assume that the source comes from some family of distributions “outside of
our control” (e.g., “nature”), so we would like to make as few assumptions about these
distributions as we can. For example, this is why the study of imperfect randomness
quickly converged to entropy sources as being the most plausible sources one could get
from nature. In contrast, by using a quantum computer to generate our random source
for us, we are proactively designing a source of randomness which is convenient for
use, rather than passively hoping that nature will give us such a source. Indeed, if not
for the noise, it would be trivial to generate ideal randomness in our setting. Moreover,
even with noise we have a lot of freedom in adapting our quantum computer to generate
and measure quantum states of our choice, depending on the computation so far.

OUR MODEL. We first define a natural model for using a (realistically noisy) quantum
computer for the task of randomness extraction (or, more generally, any probabilistic
computation, such as the one needed in classical cryptography). As we will see shortly,
we will prove a negative result in our model, despite the optimism we expressed in the
previous paragraph. Because of this, we will make the noise as small and as restrictive
as we can, even if these restrictions are completely “generous” and unrealistic. Indeed,
we will assume that the actual quantum computation is error-free, and all the errors
come in the measurements (which are necessary to extract some classical result out of
the system). Of course, in reality the quantum computation will also be quite noisy,
but our assumption will not only allow us to get a stronger result, but also reduce our
“quantum” question to a natural “purely classical” question of independent interest.

Moreover, we will further assume that all the measurement errors are not only very
small, but also detectable: namely, all that can happen is that with a small probabil-
ity p⊥ ≤ δ the (perfectly performed) measurement will result in some distinguished
symbol ⊥ (indicating an “erasure”). Specifically, we assume that if an element x was
supposed to be observed with probability px, in reality it might be observed with prob-
ability p′x ∈ [(1−δ)px, px], for some small δ > 0 (so that p⊥ = 1−

∑
x p
′
x ≤ δ). Thus,

it is guaranteed that no events of small probability can be completely “removed”, and
the probability of no event can be increased. Moreover, as compared to the classical SV
model, in our model the state to be measured can be prepared arbitrarily, irrespective of
the computational complexity of preparing this state. Further, such quantum states can
even be generated adaptively and based on the measurements so far. For comparison,
in the SV model the “ideal” measurement would always correspond to an unbiased bit;
additionally, the SV model allows for “errors” while we only allow “erasures”.

OUR RESULT. Unfortunately, our main result will show that even in this extremely
restrictive noise model, one cannot extract even a single nearly uniform bit. In other
words, if the measurement errors could be correlated, quantum computers do not help to
extract classical randomness. More generally, we extend the technique of [DOPS04] to
our model and show that one cannot generate two (classical) computationally
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indistinguishable distributions which are not nearly identical to begin with. This can be
used to show the impossibility of classical encryption, commitment, zero-knowledge
and other tasks exactly as in [DOPS04]. We notice, however, that our result does not
exclude the possibility of generating perfect entanglement, which might be used to en-
crypt a message into a quantum state. Nevertheless, our result implies that, even with
the help of such perfect entanglement, the user will not be able to generate a (shared)
classical key that can be used for cryptographic tasks. To summarize, we only rule out
the possibility of classical cryptography with quantumly generated randomness, leav-
ing open the question of (even modeling!) quantum cryptography with noise.

Of independent interest, we reduce our “quantum” problem to the study of a new
classical source, which is considerably more restrictive than the SV source (and this
restriction can really be enforced in our model). We then show a classical impossibility
result for our new source, which gives a non-trivial generalization of the correspond-
ing impossibility result for the SV sources [DOPS04, SV86]. From another angle, it
also generalizes the impossibility of extraction from the so called “bias-control limited”
(BCL) sources of [Dod01]. As with our source, the most general BCL source consid-
ered in [Dod01] can adaptively generate samples from arbitrary distributions (and not
just random bits). However, the attacker is given significantly more freedom in bias-
ing the “real” distributions. First, all expected “real” distributions can be changed to
arbitrary statistically close ones (which gives more power than performing “detectable
erasures”), and, second, a small number of “real” distributions can be changed arbitrar-
ily (which we do not allow at all).

To summarize, our main results can be viewed in three areas:

1. A model of using noisy quantum computers for classical probabilistic computation.
2. A reduction from a “quantum” question to the classical question concerning a much

more restrictive variant of the SV (or general BCL) source(s).
3. A non-trivial impossibility result for the classical source we define.

RELATION TO QUANTUM ERROR-CORRECTION. What differentiates us from the
usual model of quantum computation with noise is the fact that our errors are not as-
sumed independent. In particular, conventional results on fault-tolerant quantum com-
putation (such as the threshold theorem; see [NC00] for more details) do not apply in
our model (as is apparent from our negative results). From another perspective, our im-
possibility result is not just a trivial application of the principle that one can always and
without loss of generality postpone all the measurements until the end (a useful obser-
vation true in the “perfect measurement” case). For example, if all the measurements
are postponed to the end, then we might observe a single “useless” ⊥ symbol with non-
trivial probability δ, while with many measurements we are bound to observe a lot of
“useful” non-⊥ symbols with probability exponentially close to one.

Nevertheless, in our model one can trivially simulate probabilistic algorithms com-
puting deterministic outputs, just as was the case for the classical computation. For
example, here we actually can postpone all the measurements until the end, and then
either obtain an error (with probability at most δ in which case the computation can be
repeated), or the desired result (with probability arbitrarily close to 1 − δ). Of course,
this “positive” result only holds because our noise model was made unrealistically re-
strictive (since we proved an impossibility result). Thus, it would be interesting to define
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a less restrictive (and more realistic!) error model — for example where the actual quan-
tum computation is not error-free — and see if this feasibility result would still hold.

2 Definition of the Source

A source with n outputs X1, X2, . . . , Xn is specified by a joint probability distribution
PX1···Xn . However, for most realistic sources, the actual distribution PX1···Xn can usu-
ally not be fully determined. Instead, only a few characteristics of the source are known,
e.g., that the conditional probability distributions2 PXi|Xi−1 have certain properties. A
well-known example for such a characterization are the Santha-Vazirani sources.

Definition 1 ([SV86]). A probability distribution PX1···Xn on {0, 1}n is an α-SV
source if3 for all i ∈ {1, . . . , n} and xi−1 ∈ {0, 1}i−1 we have

PXi|Xi−1=xi−1(0) ∈ [α, 1 − α]

We will define a more general class of sources which, in some sense, includes the SV
sources. The main motivation for our definition is to capture any kind of randomness
that can be generated using imperfect (quantum) physical devices. Indeed, we will show
in Section 3 that the randomness generated by any imperfect physical device cannot be
more useful than the randomness obtained from a source as defined below.

Intuitively, a source can be seen as a device which sequentially outputs symbols
X1, . . . , Xn from some alphabet X . Each output Xi is chosen according to some fixed
probability distribution which might depend on all previous outputsX1, . . . , Xi−1. The
“imperfectness” of the source is then modeled as follows. Each output Xi is “erased”
with some probability p⊥, i.e., it is replaced by some distinguished symbol ⊥. This
erasure probability might depend on the actual output Xi as well as on all previous
outputs X1, . . . , Xi−1, but is upper bounded by some fixed parameter δ.

Before stating the formal definition, let us introduce some notation to be used in the
sequel. For any set X , we denote by X̄ the set X̄ := X ∪ {⊥} which contains an extra
symbol ⊥. For a probability distribution PX on X and δ ≥ 0, let Pδ(PX) be the set of
probability distributions P̄X on X̄ such that

(1 − δ)PX(x) ≤ P̄X(x) ≤ PX(x) ,

for all x ∈ X . In particular, the probability of the symbol ⊥ is bounded by δ, that is,
P̄X(⊥) ≤ δ.

Definition 2. Let δ ≥ 0 and let, for any i ∈ {1, . . . , n}, QXi|Xi−1 be a channel4 from
X̄ i−1 to X . A probability distribution PX1···Xn on X̄n is a (δ, {QXi|Xi−1})-source if
for all i ∈ {1, . . . , n} and xi−1 = (x1, . . . , xi−1) ∈ X̄ i−1 we have

PXi|Xi−1=xi−1 ∈ Pδ(QXi|Xi−1=xi−1)

2 We write Xk to denote the k-tuple (X1, . . . , Xk).
3 PXi|Xi−1=xi−1 denotes the probability distribution of Xi conditioned on the event that the
(i − 1)-tuple Xi−1 = (X1, . . . , Xi−1) takes the value xi−1 = (x1, . . . , xi−1).

4 A channel QY |X from X to Y is a function on Y × X such that, for any x ∈ X , QY |X=x :=
QY |X(·, x) is a probability distribution on Y .
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In the full version we show that (δ, {QXi|Xi−1})-sources can be used to simulate α-SV
sources, for some appropriately chosen α. This means that (δ, {QXi|Xi−1})-sources
are at least as useful as SV sources. The other direction is, however, not true. That
is, (δ, {QXi|Xi−1})-sources have a strictly less“malicious” behavior than SV sources
(which makes our impossibility proofs stronger).

3 The Quantum Model

In this section, we propose a model that describes the extraction of classical informa-
tion from imperfect quantum physical devices. Clearly, our considerations also include
purely classical systems as a special case.

First, in Section 3.1, we review the situation where the quantum device is perfect. In
this case, the process of extracting randomness can most generally be seen as a sequence
of perfect quantum operations and perfect measurements. Then, in Section 3.2, we con-
sider the imperfect case where the quantum device is subject to (malicious) noise. As
we shall see, in order to get strong impossibility results, it is sufficient to extend the
standard notion of perfect measurements by the possibility of detectable failures in the
measurement process.

3.1 The Perfect Case

Let us briefly review some basic facts about quantum mechanics. The state of a quan-
tum system is specified by a projector P|ψ〉 onto a vector |ψ〉 in a Hilbert space H. More
generally, if a system is prepared by choosing a state from some family {|ψz〉}z∈Z ac-
cording to a probability distribution PZ on Z , then the behavior of the system is fully
described by the density operator ρ :=

∑
z∈Z PZ(z)P|ψz〉. The most general operation

that can be applied on a quantum system is specified by a family E = {Ex}x∈X of
operators on H such that

∑
x∈X E

†
xEx = idH (see, e.g., [NC00]). When E is applied to

a system which is in state ρ, then, with probability PX(x) := tr(ExρE†x), the classical
output x ∈ X is produced and the final state ρx of the system is ρx := 1

PX(x)ExρE
†
x.

Hence, when ignoring the classical output x, the state E(ρ) of the system after apply-
ing the operation E is the average of the states ρx, that is, E(ρ) :=

∑
x PX(x)ρx =∑

xExρE
†
x.

It is important to note that also the action of preparing a quantum system to be in a
certain state ρ0 can be described by a quantum operation E . To see this, let ρ0 be given
by ρ0 =

∑
z∈Z PZ(z)P|ψz〉, for some family of vectors {|ψz〉}z∈Z and a probability

distribution PZ on Z . Additionally, let {|i〉}i∈{1,...,d} be an orthonormal basis of H. It
is easy to verify that the quantum operation E = {Ez,i}z∈Z,i∈{1,...,d} defined by the
operators

Ez,i :=
√
PX(z)|ψz〉〈i|

maps any arbitrary state ρ to ρ0, that is, E(ρ) = ρ0.
We are now ready to describe the process of randomness extraction from a quantum

system. Consider a classical user with access to a quantum physical device. The most
general thing he can do is to subsequently apply quantum operations, where each of
these operations provides him with classical information which he might use to select
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the next operation. To describe this on a formal level, let H be a Hilbert space and let
X be a set. The strategy of the user in each step i is then defined by the quantum opera-
tion Exi−1

= {Exi−1

x }x∈X he applies depending on the classical outputs xi−1 ∈ X i−1

obtained in the previous steps. Note that, according to the above discussion, this de-
scription also includes the action of preparing (parts of) the quantum system in a certain
state. We can thus assume without loss of generality that the initial state of the system is
given by some fixed projector P|ψ0〉. The probability distribution PXi|Xi−1=xi−1 of the
classical outcomes in the ith step conditioned on the previous outputs xi−1 as well as
the quantum state ρxi after the ith step given the outputs xi is then recursively defined
by ρx0 := P|ψ0〉 and

PXi|Xi−1=xi−1(x) := tr(Ex
i−1

x ρxi−1Ex
i−1†
x ) (1)

ρxi = ρ(xi−1,x) :=
1

PXi|Xi−1=xi−1(x)
Ex

i−1

x ρxi−1Ex
i−1†
x . (2)

3.2 Quantum Measurements with Malicious Noise

We will now extend the model of the previous section to include situations where the
quantum operations are subject to noise. As we are interested in proving the impossi-
bility of certain tasks in the presence of noise, our results are stronger if we assume that
only parts of the quantum operation are noisy. In particular, we will restrict to systems
where only the classical measurements are subject to perturbations.5

Formally, we define an imperfect quantum device by its behavior when applying any
operation E . Let δ ≥ 0 and let E = {Ex,u}x∈X ,u∈U be a quantum operation which pro-
duces two classical outcomes x and u, where x is the part of the output that is observed
by the user. The operation E acts on the imperfect device as it would in the perfect case,
except that each output x is, with some probability λx ≤ δ, replaced by a symbol ⊥,
indicating that something went wrong. Additionally, we assume that, whenever such
an error occurs, the state of the system remains unchanged.6 The resulting probability
distribution PX of the outputs when applying E to an imperfect device in state ρ is thus
given by

PX(x) :=
∑
u

(1 − λx) tr(Ex,uρE†x,u).

In particular, the probability of the symbol ⊥ is PX(⊥) = 1 −
∑
x∈X PX(x) ≤ δ.

5 To see that our model leads to strong impossibility results, consider for example an adversary
who is allowed to transform the quantum state ρ of the device into a state ρ′ which has at most
trace distance δ to the original state ρ. Let M be a fixed measurement and let P be the distribu-
tion resulting from applying M to ρ. It is easy to see that, for any given probability distribution
P ′ which is δ-close to P , the adversary can set the device into a state ρ′ such that a measure-
ment M of ρ′ gives raise to the distribution P ′. Consequently, such an adversary is at least as
powerful as an adversary who can only modify the distribution of the measurement outcomes,
as proposed in our model. In particular, our impossibility results also apply to this case.

6 This means that, even if a measurement error occurs, the state of the quantum system is not
destroyed. (Recall that our impossibility results are stronger the closer our model is to a model
describing perfect systems.)
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Let us now consider the interaction of a user with such an imperfect quantum device.
In each step i, he either observes the correct outcome or he gets the output ⊥, indicating
that something went wrong. The user might want to use this information to choose the
subsequent operations. His strategy is thus defined by a family {Exi−1}xi−1∈X̄ i−1 of
quantum operations Exi−1

= {Exi−1

x,u }x∈X ,u∈U . The conditional probability distribu-
tions PXi|Xi−1=xi−1 of the observed outputs in the ith step, for xi−1 ∈ X̄ i−1, and the
states ρxi after the ith step are recursively defined, analogously to (1) and (2), by

PXi|Xi−1=xi−1(x) := (1 − λxi−1,x)QXi|Xi−1=xi−1(x) for x ∈ X

ρxi = ρ(xi−1,x) :=

{
1

QXi|Xi−1=xi−1(x)

∑
u∈U E

xi−1

x,u ρxi−1Ex
i−1†
x,u if x ∈ X

ρxi−1 if x =⊥.

for some λxi−1,x ∈ [0, δ], where QXi|Xi−1 is the channel from X̄ i−1 to X given by

QXi|Xi−1=xi−1(x) :=
∑
u∈U tr(Ex

i−1

x,u ρxi−1Ex
i−1†
x,u ).

Let PXn = PX1···Xn be the probability distribution of the observed outcomes after
n steps. It follows directly from the above formulas that PXn is a (δ, {QXi|Xi−1})-
source. On the other hand, if PXn is a (δ, {QXi|Xi−1)-source, then there exist weights
λxi−1,x ∈ [0, δ] such that the conditional probabilities are given by the above formu-
las. This reduces our “quantum” problem to a totally classical problem for an imperfect
source considerably more restrictive than an SV source. The corresponding impossi-
bility result is given in the next section.

4 Main Technical Lemma

Our main technical result can be seen as an extension of a result proved for SV sources
(cf. Lemma 3.5 of [DOPS04]). Roughly speaking, Lemma 1 below states that a task
g which requires perfect random bits can generally not be replaced by another task f
which only uses imperfect bits. Note that this impossibility is particularly interesting
for cryptography where many tasks do in fact use randomness.

More precisely, let g be an arbitrary strategy which uses imperfect randomness Xn

and, in addition, some perfect randomnessY (whose probability distribution might even
depend on the values of Xn). Let f be another strategy which only uses imperfect
randomness Xn. Furthermore, assume that, for any (δ, {QXi|Xi−1})-source PX1···Xn ,
the output distributions of the strategies g and f are (almost) identical. Then the strategy
g is (roughly) the same as f , that is, it (virtually) does not use the randomness Y .

Lemma 1. Let f be a function from X̄n to Z , g be a function from X̄n × Y to Z
and m = �log2(|Z|) . For any i ∈ {1, . . . , n}, let QXi|Xi−1 be a channel from X̄ i−1

to X , let QY |Xn be a channel from X̄n to Y , and let δ ≥ 0. Let Γ be the set of all
probability distributions PXnY on X̄n×Y such that PXn is a (δ, {QXi|Xi−1})-source7

7 Similarly to the argument in [DOPS04], the proof can easily be extended to a statement which
holds for an even stronger type of sources, where the conditional probability distributions of
each Xi given all other source outputs, and not only the previous ones Xi−1, is contained in a
certain set Pδ.
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and PY |Xn = QY |Xn . If, for all PXnY ∈ Γ ,

|Pf(Xn) − Pg(Xn,Y )|1 < ε,

then there exists PX̃nỸ ∈ Γ such that

Pr
(xn,y)←PX̃nỸ

[f(xn) �= g(xn, y)] < 5εmδ−1,

Proof. Assume first that the functions f and g are binary, i.e., Z = {0, 1}. The idea is to
define two probability distributionsPV nY , PWnY ∈ Γ such that the output distributions
of the function f , f(V n) and f(Wn), are “maximally different”. Then, by assumption,
the output distributions of g(V n, Y ) and g(Wn, Y ) must be different as well. This will
then be used to conclude that the outputs of f and g are actually equal for most inputs.

In order to define the distributions PV nY and PWnY , we first consider some “in-
termediate distribution” PX̃nỸ . It is defined as the unique probability distribution on
X̄n × Y such that PỸ |X̃n = QY |Xn and, for any i ∈ {1, . . . , n} and xi−1 ∈ X̄ i−1,

PX̃i|X̃i−1=xi−1(x) :=

{
(1 − δ

2 )QXi|Xi−1=xi−1(x) if x ∈ X
δ
2 if x =⊥.

Note that PX̃i|X̃i−1=xi−1 ∈ Pδ(QXi|Xi−1=xi−1), i.e., PX̃n is a (δ, {QXi|Xi−1})-
source, and thus PX̃nỸ ∈ Γ .

The distribution PV n is now defined from PX̃n by raising the probabilities of all val-
ues8 xn ∈ f−1(0) that f maps to 0 and lowering the probabilities of all xn ∈ f−1(1).
Similarly, PWn is defined by changing the probabilities of PX̃n in the other direction.
For the formal definition, we assume without loss of generality that Pf(X̃n)(0) ≤ 1

2 and
set α := Pf(X̃n)(0)/Pf(X̃n)(1), i.e., α ≤ 1. PV n and PWn are then given by

PV n(xn) :=

{
PX̃n(xn)(1 + τ) if xn ∈ f−1(0)
PX̃n(xn)(1 − ατ) if xn ∈ f−1(1)

PWn(xn) :=

{
PX̃n(xn)(1 − τ) if xn ∈ f−1(0)
PX̃n(xn)(1 + ατ) if xn ∈ f−1(1),

where τ := δ
4 . Because∑

xn∈X̄n

PV n(xn) =
∑

xn∈f−1(0)

PXn(xn)(1 + τ) +
∑

xn∈f−1(1)

PXn(xn)(1 − ατ)

= Pf(Xn)(0)(1 + τ) + Pf(Xn)(1)(1 − ατ) = 1,

PV n and, similarly, PWn , is indeed a probability distribution.

8 For z ∈ {0, 1}, f−1(z) := {x ∈ X̄ n : f(x) = z} denotes the preimage of z under the
mapping f .
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We claim that PV n and PWn are (δ, {QXi|Xi−1})-sources. To see this, note first
that, for any i ∈ {1, . . . n} and xi ∈ X̄ i, (1 − ατ)PX̃i (xi) ≤ PV i(xi) and PV i(xi) ≤
(1 + τ)PX̃i (xi). Hence, for any x ∈ X and xi−1 ∈ X̄ i−1,

PVi|V i−1=xi−1(x) =
PViV i−1(x, xi−1)
PV i−1(xi−1)

≥
(1 − ατ)PX̃iX̃i−1(x, xi−1)

(1 + τ)PX̃i−1(xi−1)

=
1 − ατ

1 + τ
PX̃i|X̃i−1=xi−1(x) =

1 − ατ

1 + τ
(1 − δ

2 )QXi|Xi−1=xi−1(x).

Because α ≤ 1, we have PVi|V i−1=xi−1(x) ≥ (1 − δ)QXi|Xi−1=xi−1(x). Similarly,

PVi|V i−1=xi−1(x) ≤ 1 + τ

1 − ατ
PX̃i|X̃i−1=xi−1(x) =

1 + τ

1 − ατ
(1 − δ

2 )QXi|Xi−1=xi−1(x)

which implies PVi|V i−1=xi−1(x) ≤ QXi|Xi−1=xi−1(x). Combining these inequalities,
we conclude PVi|V i−1=xi−1 ∈ Pδ(QXi|Xi−1=xi−1), i.e., PV n is a (δ, {QXi|Xi−1})-
source. A similar computation shows that also the distribution PWn is a
(δ, {QXi|Xi−1})-source. Consequently, the distributions PV nY and PWnY defined by
PY |V n = QY |Xn and PY |Wn = QY |Xn , respectively, are contained in the set Γ .

Next, we will analyze the behavior of the function g for inputs chosen accord-
ing to PV nY and PWnY , respectively, and compare it to f . For this, let qxn be the
probability that, given some fixed xn ∈ X̄n, the output of g is zero, i.e., qxn :=
Pry←QY |Xn=xn [g(xn, y) = 0]. Because PỸ |X̃n = PY |V n = PY |Wn = QY |Xn , we get

qxn = Pg(X̃n,Ỹ )|X̃n=xn(0) = Pg(V n,Y )|V n=xn(0) = Pg(Wn,Y )|Wn=xn(0) .

The probability that the output of f is zero for the distributions PV n and PWn can then,
obviously, be written as

Pf(V n)(0) =
∑

xn∈f−1(0)

PX̃n(xn)(1 + τ)

Pf(Wn)(0) =
∑

xn∈f−1(0)

PX̃n(xn)(1 − τ).

Similarly, for g, we have

Pg(V n,Y )(0) =
∑

xn∈f−1(0)

PX̃n(xn)(1 + τ)qxn +
∑

xn∈f−1(1)

PX̃n(xn)(1 − ατ)qxn

Pg(Wn,Y )(0) =
∑

xn∈f−1(0)

PX̃n(xn)(1 − τ)qxn +
∑

xn∈f−1(1)

PX̃n(xn)(1 + ατ)qxn .

By assumption of the lemma, because, PV nY and PWnY are contained in the set Γ ,
the output distributions of f and g must be close, that is, |Pf(V n)(0)− Pg(V n,Y )(0)| <
ε
2 and |Pf(Wn)(0) − Pg(Wn,Y )(0)| < ε

2 , and hence (Pf(V n)(0) − Pg(V n,Y )(0)) −
(Pf(Wn)(0) − Pg(Wn,Y )(0)) < ε. Replacing these probabilities by the above expres-
sions leads to∑

xn∈f−1(0)

PX̃n(xn)2τ(1 − qxn) +
∑

xn∈f−1(1)

PX̃n(xn)2ατqxn < ε . (3)
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Note that this imposes some restrictions on the possible values of qxn . Roughly speak-
ing, if f maps a certain input xn to 0, then the probability 1 − qxn that g maps xn to 1
must be small. In fact, as we shall see, (3) implies a bound on the probability that the
outputs of f and g are different.

With the definition pz,w := Pf(X̃n)g(X̃n,Y )(z, w), for (z, w) ∈ {0, 1}2 and using
again the assumption of the lemma,

|p0,1 − p1,0| = |(p0,0 + p0,1) − (p0,0 + p1,0)| = |Pf(X̃n)(0) − Pg(X̃n,Ỹ )(0)| < ε

2
,

hence,

Pr
(xn,y)←PX̃nY

[f(xn) �= g(xn, y)] ≤ p0,1 + p0,1 + |p1,0 − p0,1| < 2p0,1 +
ε

2
. (4)

Using (3) and the fact that the second sum is nonnegative, we get an upper bound for
p0,1, that is,

p0,1 =
∑
xn∈X̄n

PX̃n(xn)Pf(X̄n)|X̃n=xn(0)Pg(X̃n,Ỹ )|X̃n=xn(1)

=
∑

xn∈f−1(0)

PX̃n(xn)(1 − qxn) <
ε

2τ
=

2ε
δ
.

Combining this with (4), we conclude Pr(xn,y)←PX̃nY
[f(xn) �= g(xn, y)] < 4ε

δ + ε
2 ≤

5ε
δ , which proves the lemma for the binary case where Z = {0, 1}.

To deduce the statement for arbitrary sets Z , consider an (injective) encoding func-
tion c which maps each element z ∈ Z to an m-tuple (c1(z), . . . , cm(z)). Since the
L1-norm | · |1 can only decrease when applying a function, the assumption of the lemma
implies that, for all probability distributions PXnY ∈ Γ , |Pfk(Xn) − Pgk(Xn,Y )|1 < ε,
where fk := ck ◦f and gk := ck◦g, for any k ∈ {1, . . . ,m}. The assertion then follows
from the binary version of the lemma and the union bound.

As was shown in [DOPS04], Lemma 1 implies not only impossibility of extracting
nearly perfect randomness, but also impossibility of doing almost any classical task
involving privacy (such as encryption, commitment, etc.). For illustrative purposes, we
give such an argument for extraction, referring to [DOPS04] regarding the other tasks.

Corollary 1. Let f be a function from X̄n to {0, 1} and PU be the uniform distribution
on {0, 1}. For any i ∈ {1, . . . , n}, let QXi|Xi−1 be a channel from X̄ i−1 to X , and let
δ ≥ 0. Then there exists a (δ, {QXi|Xi−1})-source PXn such that

|Pf(Xn) − PU |1 ≥ δ

10
,

Proof. Assume by contradiction that, for any (δ, {QXi|Xi−1})-source PXn , |Pf(Xn) −
PU |1 < δ

10 . Let g be the function on Xn × {0, 1} defined by g(xn, u) := u. Then,
for any probability distribution PXnU = PXn × PU , where PXn is a (δ, {QXi|Xi−1})-
source, we have |Pf(Xn) − Pg(Xn,U)|1 < δ

10 . Lemma 1 thus implies that there exists a
(δ, {QXi|Xi−1})-source PX̃n with Pr(xn,u)←PX̃n×PU

[f(xn) �= g(xn, u)] < 1
2 , that is,

Pr(xn,u)←PX̃n×PU
[f(xn) �= u] < 1

2 . This is a contradiction because PU is the uniform
distribution on {0, 1}.
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Abstract. We present three new quantum hardcore functions for any
quantum one-way function. We also give a “quantum” solution to
Damg̊ard’s question (CRYPTO’88) on his pseudorandom generator by
proving the quantum hardcore property of his generator, which has been
unknown to have the classical hardcore property. Our technical tool is
quantum list-decoding of “classical” error-correcting codes (rather than
“quantum” error-correcting codes), which is defined on the platform of
computational complexity theory and cryptography (rather than infor-
mation theory). In particular, we give a simple but powerful criterion
that makes a polynomial-time computable code (seen as a function) a
quantum hardcore for any quantum one-way function. On their own in-
terest, we also give quantum list-decoding algorithms for codes whose
associated quantum states (called codeword states) are “nearly” orthog-
onal using the technique of pretty good measurement.

1 Introduction: From Hardcore to List-Decoding

Background: Modern cryptography heavily relies on computational hardness
and pseudorandomness. One of its key notions is a hardcore bit for a one-way
function—a bit that can be completely determined from all the information
available to the adversary but still looks random to any “feasible” adversary. A
hardcore function transforms the onewayness into pseudorandomness by gener-
ating such hardcore bits of a given one-way function. Such a hardcore function
is a crucial element of constructing a pseudorandom generator as well as a bit
commitment protocol from a one-way permutation. A typical example is the
inner product mod 2 function GLx(r) of Goldreich and Levin [12], computing
the bitwise inner product modulo two 〈x, r〉, which constitutes a hardcore bit for
any (strong) one-way function.1 Since GLx(r) equals the rth bit of the codeword

1 Literally speaking, this statement is slightly misleading. To be more accurate, such
a hard-core function concerns only the one-way function of the form f ′(x, r) =
(f(x), r) with |r| = poly(|x|) induced from an arbitrary strong one-way function f .
See, e.g., [11] for a detailed discussion.
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HAD(2)
x = (〈x, 0n〉, 〈x, 0n−11〉, · · · , 〈x, 1n〉) of message x of a binary Hadamard

code, Goldreich and Levin essentially gave a polynomial-time list-decoding al-
gorithm for this Hadamard code. In the recent literature, list-decoding has kept
playing a key role in a general construction of hardcores [2, 17].

Thirteen years later, the “quantum” hardcore property (i.e., a hardcore prop-
erty against a feasible quantum adversary) of GLx(·) was shown by Adcock and
Cleve [1], who implicitly gave a simple and efficient quantum algorithm that
recovers x from the binary Hadamard code by exploiting the robust nature of
a quantum algorithm of Bernstein and Vazirani [6]. The simplicity of the proof
of Adcock and Cleve can be best compared to the original proof of Goldreich
and Levin, who employed a rather complicated algorithm with powerful tech-
niques: self-correction property of the aforementioned Hadamard code and pair-
wise independent sampling. This highlights a significant role of robust quantum
computation in list-decoding (and thus hardcores); however, it has been vastly
unexplored until our work except for a quantum decoder of Barg and Zhou [5]
for simplex codes. No other quantum hardcore has been proven so far. The effi-
ciency of robust quantum algorithms with access to biased oracles has been also
discussed in a different context [3, 7, 18].

Our Major Contributions: As our main result, we present three new quantum
hardcore functions, HAD(q), SLSp , and PEQ (see Section 5 for their definition),
for any (strongly) quantum one-way function, the latter two of which are not yet
known to be hardcores in a classical setting (see, e.g., [13]). In particular, we
prove the quantum hardcore property of Damg̊ard’s pseudorandom generator
[8]. This gives a “quantum” solution to his question of whether his generator
has the classical hardcore property (this is also listed as an open problem in
[13]). Our proof technique exploits the quantum list-decodability of classical
error-correcting codes (rather than quantum error-correcting codes). For our
purpose, we formulate the notion of complexity-theoretical quantum list-decoding
to conduct message-recovery from a quantum-computational error rather than
an information-theoretical error which is usually associated with a transmission
error. This notion naturally expands the classical framework of list-decoding. Our
goal is to present fast quantum list-decoding algorithms for the aforementioned
codes.

Proving the quantum hardcore property of a given code C (seen as a func-
tion) corresponds to solving the quantum list-decoding problem (QLDP) for C
via direct access to a quantum-computationally (or quantumly) corrupted word,
which is given as a black-box oracle. The task of a quantum list-decoder is simply
to list all message candidates whose codewords match the quantumly-corrupted
word within a certain error rate bound.

The key notion of this paper is a specific quantum state, called a (k-shuffled)
codeword state, which embodies the full information on a given codeword. Note
that similar states have appeared in several quantum algorithms in the recent
literature [6, 9, 14, 20]. In our key lemmas, we show (i) how to generate such a
codeword state from any (even adversarial) quantumly corrupted word and (ii)
how to convert a codeword-state decoder (i.e., a quantum algorithm that recovers
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a message x from a codeword state which is given as an input) to a quantum
list-decoding algorithm working with a quantumly corrupted word. The robust
construction made in the course of our proofs also provides a useful means,
known as “hardness” reduction, which is often crucial in the security proof of a
quantum cryptosystem. Moreover, using pretty good measurement [10, 16], we
present a quantum list-decoding algorithm for any code whose codeword states
are “nearly” orthogonal.

Further Implications: Classical list-decodable codes have provided numerous ap-
plications in classical computational complexity theory, including proving hard-
cores for any one-way function, hardness amplification, and derandomization
(see, e.g., [19]). Because our formulation of quantum list-decoding naturally
extends classical one, many classical list-decoding algorithms work in our quan-
tum setting as well. This will make our quantum list-decoding a powerful tool
in quantum complexity theory and quantum computational cryptography.

2 Quantum Hardcore Functions

We begin with the notion of a quantum one-way function, which straightfor-
wardly expands the classical notion of a one-way function. This notion has been
studied in the recent literature.

Definition 1 (quantum one-way function). A function f from {0, 1}∗ to
{0, 1}∗ is called (strongly) quantum one-way if (i) there exists a polynomial-
time deterministic algorithm G computing f and (ii) for any polynomial-time
quantum algorithm A, for any positive polynomial p, and for any sufficiently
large n, Prx∈{0,1}n,A [f(A(f(x), 1n)) = f(x)] < 1/p(n), where x is uniformly
distributed over {0, 1}n and the subscript A is a random variable determined
by measuring the final state of A on the computational basis. We consider only
length-regular (i.e., |f(x)| = l(|x|) for length function l(n)) one-way functions.

For any quantum one-way function f , the notation f ′ denotes the function in-
duced from f by the scheme: f ′(x, r) = (f(x), r) for all x, r ∈ {0, 1}∗ with
|r| = poly(|x|). Note that f ′ is also a quantum one-way function. Throughout
this paper, we deal only with quantum one-way functions of this form, which is
in direct connection to quantum hardcores.

The standard definition of a hardcore function h from {0, 1}n to {0, 1}l(n)
is given in terms of the indistinguishability between h(x) and a truly random
variable over {0, 1}l(n) whereas a hardcore predicate (i.e., a hardcore function
of output length l(n) = 1) is usually defined using the notion of nonapprox-
imability instead of indistinguishability. It is, nevertheless, well-known that both
notions coincide for hardcore functions of output length O(log n) (see Excise 31
in [11]). In this paper, we conveniently define our quantum hardcores in terms
of nonapproximability.

Definition 2 (quantum hardcore function). Let f be any length-regular
function. A polynomial-time computable function h with length function l(n) is
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called a quantum hardcore of f if, for any polynomial-time quantum algorithm
A, for any polynomial p, and for any sufficiently large number n,∣∣∣∣ Pr

x∈{0,1}n,A
[A(f(x), 1n) = h(x)] − 1/2l(n)

∣∣∣∣ < 1/p(n),

where x is uniformly distributed over {0, 1}n and the subscript A is a random
variable determined by measuring the final state of A on the computational basis.

3 How to Prove Quantum Hardcores

We outline our argument of proving quantum hardcore functions for any quan-
tum one-way function. To prove new quantum hardcores, we exploit the notion
of quantum list-decoding as a technical tool. Our approach toward list-decoding
is, however, complexity-theoretical in nature rather than information-theoretical.
Our main objects of quantum list-decoding are “classical” codes and codewords,
which are manipulated in a quantum fashion. Generally speaking, a code is a set
of strings of the same length over a finite alphabet Σ. Each string is indexed
by a message and is called a codeword. A code family is specified by a series
(Γn, In, Σn) of message space Γn, index set In, and code alphabet Σn for each
length parameter n. For simplicity, let Γ ∗ =

⋃
n∈N

Γn.
Usually, a code (family) C consists of codewords Cx for each message x ∈ Γ ∗.

As standard now in computational complexity theory, we view the code C as
a function that, for each message length n (which serves as a basis parame-
ter in this paper), maps Γn × In to Σn. Let N(n) = |Γn| and q(n) = |Σn|.
It is convenient to assume that Γn ⊆ (Σn)n so that n actually represents the
length of a message. By abbreviating C(x, y) as Cx(y), we also treat Cx(·) as
a function mapping In to Σn. Denote by M(n) the block length |In| of code-
word Cx. We simply set In = {0, 1, . . . ,M(n) − 1}, each element of which
can be expressed in �log2M(n) bits. We freely identify Cx with the vector
(Cx(0), Cx(1), · · · , Cx(M(n) − 1)) in the ambient space (Σn)M(n) of dimension
M(n). We often work on a finite field and it is convenient to regard Σn as the
finite field Fq(n) of numbers 0, 1, . . . , q(n)−1. The (Hamming) distance d(Cx, Cy)
between two codewords Cx and Cy is the number of non-zero components in the
vector Cx−Cy. The minimal distance d(C) of a code C is the smallest distance
between any pair of distinct codewords in C. The above-described code is simply
called a (M(n), n)q(n)-code2 (or (M(n), n, d(n))-code if d(n) is emphasized). We
often drop a length parameter n from subscript and argument place whenever
we discuss a set of codewords with a “fixed” n (for instance, write Γ and M
respectively for Γn and M(n)).

Now, we wish to prove that a code C(x, r) (seen as a function) is indeed a
quantum hardcore for any quantum one-way function of the form f ′(x, r) =
(f(x), r) with |r| = poly(|x|). First, we assume to the contrary that there exists
a feasible quantum algorithm A that approximates Cx(r) from input (f(x), r)

2 In some literature, the notation (M(n), N(n))q(n) is used instead.
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with probability ≥ 1/q(n) + ε(n) (where ε(n) is a certain noticeable function).
To be more precise, the outcome of A on input (y, r), where r ∈ In and y = f(x)
for a certain x ∈ Γn, is of the form:

A(y, r) = αy,r,Cx(r)|r〉|Cx(r)〉|φy,r,Cx(r)〉 +
∑

s∈Σn−{Cx(r)}
αy,r,s|r〉|s〉|φy,r,s〉

for certain amplitudes αy,r,s and ancilla quantum states |φx,r,s〉, where the sec-
ond register corresponds to the output of the algorithm. For each fixed y, the
algorithm Ay(·) =def A(y, ·) gives rise to the oracle ÕAy (seen as a unitary
operator) defined by the map:

ÕAy |r〉|u〉|t〉 =
∑
s∈Σ

αy,r,s|r〉|u ⊕ s〉|t⊕ φy,r,s〉

for every triplet (r, u, t) of strings, where ⊕ is the bitwise XOR and the nota-
tion |t⊕φy,r,s〉 denotes the quantum state

∑
v:|v|=|t|〈v|φy,r,s〉|t⊕ v〉. This oracle

ÕAy describes computational error (not transmission error) occurring during the
computation of Cx. This type of erroneous quantum computation is similar to
the computational errors (e.g., [1, 3, 4, 18]) dealt with in quantum computational
cryptography and quantum algorithm designing.

Similar to the classical notion of a received word in coding theory, we in-
troduce our terminology concerning an oracle which represents a “quantum-
computationally” corrupted word.

Definition 3 (quantum-computationally corrupted word). Fix n ∈ N.
We say that an oracle Õ represents a quantum-computationally (or quantumly)
corrupted word if Õ satisfies Õ|r〉|u〉|t〉 =

∑
s∈Σ αr,s|r〉|u ⊕ s〉|t⊕ φr,s〉 for cer-

tain unit vectors |φr,s〉 depending only on (r, s). For convenience, we identify a
quantumly corrupted word with its representing oracle.

Remember that Õ may choose amplitudes {αr,s}r,s, adversely, not favorably.
To lead to the desired contradiction, we wish to invert f by extracting x from

the quantumly corrupted word Õ. Note that the entity (1/M(n))
∑
r∈In |αr,Cx(r)|2

yields the probability of A’s computing Cx(·) correctly on average. This entity
also indicates “closeness” between a codeword Cx and its quantumly corrupted
word Õ. In classical list-decoding, for any given oracle Õ that represents a re-
ceived word and for any error bound e, we need to output a list that include all
messages x such that the relative (Hamming) distance between codeword Cx and
its received word Õ is at most 1− e (i.e., Prr∈In [Õ(r) = Cx(r)] ≥ 1− e). By set-
ting pr,s = 1 if Õ(r) = s and 0 otherwise, the behavior of Õ can be viewed
in a unitary style as Õ|r〉|0〉 =

∑
r∈In pr,s|r〉|s〉. The aforementioned entity

(1/M(n))
∑
r∈In |αr,Cx(r)|2 equals the relative distance, Prr∈In [Õ(r) = Cx(r)],

in a classical setting. For our convenience, we name this entity the presence of Cx
in Õ and denote it by PreÕ(Cx). The requirement for the error rate of classical
list-decoding is rephrased as PreÕ(Cx) ≥ 1 − e.
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Here, we formulate a quantum version of a classical list-decoding problem us-
ing our notions of quantumly corrupted words and presence. Let C = {Cx}x∈Γ∗

be any (M(n), n, d(n))q(n)-code. Let ε(n) be any error bias and let δ(n) be any
confidence parameter (i.e., 0 ≤ ε(n), δ(n) ≤ 1 for all n ∈ N).

(ε, δ)-Quantum List Decoding Problem ((ε, δ)-QLDP) for Code C

Input: a message length n and the values 1/ε(n) and 1/δ(n).
Implicit Input: an oracle Õ representing a quantumly corrupted word.
Output: with success probability at least 1 − δ(n), a list of messages that
include all messages x ∈ Γn such that PreÕ(Cx) ≥ 1/q(n) + ε(n); in other
words, codewords Cx have “slightly” higher presence in Õ than the average.

For any given quantumly corrupted word Õ, how many messages x satisfy the
required inequality PreÕ(Cx) ≥ 1/q(n) + ε(n)? An upper bound on the number
of such messages directly follows from a nice argument of Guruswami and Sudan
[15], who gave a q-ary extension of the Johnson bound using a geometric method.

Lemma 1. Let n be any message length. Let ε(n), q(n), d(n), and M(n) satisfy
that ε(n) > �(n) =def (1 − 1/q(n))

√
1 − d(n)/M(n) (1 + 1/(q(n) − 1)). For any

(M(n), n, d(n))q(n)-code C and for any quantumly corrupted word Õ, there are
at most Jε,q,d,M (n) =def

min M(n)(q(n) − 1),
d(n) (1 − 1/q(n))

d(n) (1 − 1/q(n)) + M(n)ε2(n) − M(n) (1 − 1/q(n))2

messages x ∈ Γn such that PreÕ(Cx) ≥ 1/q(n) + ε(n). If ε(n) = �(n), then the
above bound is replaced by 2M(n)(q(n) − 1) − 1.

The proof of Lemma 1 is obtained by an adequate modification of the proof
in [15]. As a simple example, consider the (qn, n, qn − qn−1)q Hadamard code
HAD(q) = {HAD(q)

x }x∈Γn . Lemma 1 guarantees that, for any quantumly cor-
rupted word Õ, there are only at most (1 − 1/q)2 /ε2(n) messages x that satisfy
the inequality PreÕ(HAD(q)

x ) ≥ 1/q + ε(n).

Definition 4 (quantum list-decoding algorithm). Let C be any code, let
ε(n) be any error bias, and let δ(n) be any confidence parameter. Any quantum
algorithm (i.e., a unitary operator) A that solves the (ε, δ)-QLDP for C is called
a quantum list-decoding algorithm for C w.r.t. (ε, δ). If A further runs in time
polynomial in (n, 1/ε(n), 1/δ(n)), it is called a polynomial-time quantum list-
decoding algorithm for C w.r.t. (ε, δ).

To complete our argument (which we started at the beginning of this section),
assume that there exists a polynomial-time quantum list-decoding algorithm
that solves the (ε, 1/poly(n))-QLDP for Cx(·). Such a list-decoder can out-
put with high probability all possible candidates x′ of required presence. Since
we can check that x′ ∈ f−1(x) in polynomial time, this list-decoder gives rise
to a polynomial-time quantum algorithm that inverts f with high probability.
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Clearly, this contradicts the quantum one-wayness of f . Therefore, we obtain the
following key theorem that bridges between quantum hardcores and quantum
list-decoding.

Theorem 1. Let C = {Cx}x∈Γ∗ be any (M(n), n, d(n))q(n)-code, which is also
polynomial-time computable, where log2M(n) ∈ nO(1) and log2 q(n) ∈ nO(1).
If, for any two noticeable functions ε(n) and δ(n), there exists a polynomial-
time quantum list-decoding algorithm for C w.r.t. (ε, δ), then C(x, r) is a quan-
tum hardcore function for any quantum one-way function of the form f ′(x, r) =
(f(x), r) with |x| = �log2 |Γn| and |r| = �log2M(n) .

4 How to Construct Quantum List-Decoding Algorithms

Theorem 1 makes it suffice to solve the QLDP for any given candidate of a quan-
tum hardcore function. Our goal is now to find a “systematic” way to construct
a polynomial-time quantum list-decoder for a wide range of codes. Classically,
however, it seems hard to design such list-decoding algorithms in general. Nev-
ertheless, the robust nature of quantum computation enables us to prove that,
if we have a decoding algorithm A from a unique quantum state (called a code-
word state), then we can construct a list-decoding algorithm by calling A as a
black-box oracle. The notion of such codeword states plays our central role as a
technical tool in proving new quantum hardcores in Section 5.

Hereafter, we assume the arithmetic (multiplication, addition, subtraction,
etc.) on the finite field Fq (of numbers 0, 1, . . . , q−1), where q is a prime. Denote
by ωq the complex number e2πi/q.

Definition 5 (k-shuffled codeword state). Let C = {Cx}x∈Γn be any
(M(n), n)q(n)-code and let k be any number in Fq(n). A k-shuffled codeword
state for the codeword Cx that encodes a message x ∈ Γn is the quantum state

|C(k)
x 〉 =

1

M(n)
r∈In

ω
k·Cx(r)
q(n) |r〉.

In particular when k = 1, we write |Cx〉 instead of |C(1)
x 〉.

Remark: Codeword states for binary codes have appeared implicitly in several
important quantum algorithms. For instance, Grover’s search algorithm [14] pro-
duces such a codeword state after the first oracle call. In the quantum algorithms
of Bernstein and Vazirani [6], of Deutch and Jozsa [9], and of van Dam, Hallgren,
and Ip [20], such codeword states were generated to obtain their desired results.

We consider how to generate the k-shuffled codeword state |C(k)
x 〉 for each q-ary

codeword Cx with oracle accesses to a quantumly corrupted word Õ. Note that
it is easy to generate |Cx〉 from the oracle OCx that represents Cx without any
corruption (behaving as the “standard” oracle). Here, we claim that there exists
a generic quantum algorithm that generates codeword states for any q-ary code
C. For convenience, write F+

q = Fq − {0} in the rest of this paper.
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Lemma 2. There exists a quantum algorithm A that, for any quantumly cor-
rupted word Õ, for any message x ∈ Γn, and for any k ∈ F+

q , generates the
quantum state

|ψk〉 = κ(k)
x |k〉|C(k)

x 〉|τ〉 + |Λ(k)
x 〉

from the initial state |ψ(0)
k 〉 = |k〉|0�log2M(n)�〉|0〉|0l(n)〉 with only two queries to

Õ and Õ−1, where |τ〉 is a fixed basis vector in Hql(n)+1 , and κ
(k)
x is a complex

number, and |Λ(k)
x 〉 is a vector satisfying (〈k|〈C(k)

x |〈τ |)|Λ(k)
x 〉 = 0 with the follow-

ing condition: for every x ∈ Γn, there exists a number k ∈ F+
q with the inequality

|κ(k)
x | ≥ (q/(q − 1)) |PreÕ(Cx) − 1/q|.

Isolating simultaneously all individual messages x in Lemma 2 requires a certain
type of “orthogonality,” which we call phase-orthogonality.

Definition 6 (phase-orthogonal code). A code C = {Cx}x∈Γn is called k-
shuffledphase-orthogonal if, for any twodistinctmessagesx, y ∈ Γn, 〈C(k)

x |C(k)
y 〉 =

0. If 〈C(k)
x |C(k)

y 〉 = 0 holds for every number k ∈ F+
q , the code C is simply called

phase-orthogonal.

Note that phase-orthogonality for a binary code, in particular, is naturally in-
duced from the standard inner product of two codewords when we translate their
binary symbols {0, 1} into {+1,−1}. It is not difficult to prove that, for any pair
(Cx, Cy) in a given (M(n), n, d(n))q(n)-code C, we have |〈Cx|Cy〉| ≥ 1 − 2 ·
d(Cx, Cy)/M(n), where the equality holds for any binary code C. Such orthogo-
nality helps us generate |ψ′〉 = (1/

√
q − 1)

∑
k∈F

+
q

∑
x∈Γn

κ
(k)
x |k〉|C(k)

x 〉|τ〉+ |Λ′〉.
Now, we give the proof of our key lemma, Lemma 2. Notice that Lemma 2

is true for any q(n)-ary code. The binary case (q = 2) was implicit in [1]; how-
ever, our argument for the general q(n)-ary case is more involved because of the
introduction of “k-shuffledness.”

Proof Sketch of Lemma 2. First, we describe our codeword-state generation
algorithm A in detail. Fix x ∈ Γn and k ∈ F+

q and let m = �log2M(n) .

(1) Start with the initial state: |ψ(0)
k 〉 = |k〉|0m〉|0〉|0l〉.

(2) Apply the Fourier transformation (Fq)⊗m over Fq to the second register. We
then obtain the superposition |ψ(1)

k 〉 = (1/
√
M)
∑
r∈In |k〉|r〉|0〉|0l〉.

(3) Invoke Õ using the last three registers. The resulting state is |ψ(2)
k 〉 =

(1/
√
M)
∑
r∈In

∑
z∈Fq

αr,z|k〉|r〉|z〉|φr,z〉.
(4) Encode the information on the first and the third resisters into the “phase” so
that we obtain the state |ψ(3)

k 〉 = (1/
√
M)
∑
r∈In

∑
z∈Fq

ωk·zq αr,z|k〉|r〉|z〉|φr,z〉.
(5) Apply Õ−1 to the last three registers. Let |ψ(4)

k 〉 be the resulting state (I ⊗
Õ−1)|ψ(3)

k 〉. See, e.g., [1] for how to implement Õ−1 from Õ.
(6) The state |ψ(4)

k 〉 can be expressed in the form κ
(k)
x |k〉|C(k)

x 〉|τ〉+ |Λ(k)
x 〉, where

|τ〉 = |0〉|0l〉 and (〈k|〈C(k)
x |〈τ |)|Λ(k)

x 〉 = 0. The amplitude κ(k)
x equals PreÕ(Cx)+

(1/M)
∑
r∈In

∑
z:z �=Cx(r) ω

k(z−Cx(r))
q |αr,z|2.
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The non-trivial part of the lemma is to prove the lower-bound of |κ(k)
x |. For

each j ∈ Fq, let βj = (1/M)
∑
r∈In |αr,Cx(r)+j|2. By letting χ(k)

x =
∑
j∈F

+
q
ωk·jq βj ,

κx can be expressed as κ(k)
x = PreÕ(Cx)+Re(χ(k)

x )+Im(χ(k)
x ). To estimate |κ(k)

x |,
it thus suffices to prove that, for each x ∈ Γn, there exists a number k ∈ F+

q

such that Re(χ(k)
x ) ≥ −(1/(q − 1)) (1 − PreÕ(Cx)). Since |κ(k)

x |2 = (PreÕ(Cx) +
Re(χ(k)

x ))2 + (Im(χ(k)
x ))2, the lemma immediately follows.

To complete the proof, we employ an “adversary” argument. Now, assume that
our adversary has cleverly chosen Õ to make |κ(k)

x |2 the smallest for every k∈F+
q .

We argue that the adversary’s best choice is to setβj= β̂/(q−1) for all j∈F+
q , where

β̂=
∑
j∈F

+
q
βj . This follows directly from the claim below. Let χ̂x=

∑
k∈F

+
q
χ

(k)
x .

Claim 1
1. χ̂x = −β̂.
2. For his best strategy, the adversary can be assumed to have chosen {βj}j∈F

+
q

so that βj = βq−j for any j ∈ F+
q and Im(χ(k)

x ) = 0.

Since βj = β̂/(q − 1) for every j ∈ F+
q and β̂ = 1 − β0, it easily follows that

Re(χ(k)
x ) ≥ −(1/(q − 1)) (1 − PreÕ(Cx)), as required. �

The following theorem shows how to convert a codeword-state decoder (i.e., a
quantum algorithm that recovers x from |C(k)

x 〉 with high probability for any k
and x) into a quantum list-decoder. This complements Lemma 2.

Theorem 2. Let C = {Cx}x∈Γn be any (M(n), n, d(n))q(n)-code. Let A denote
the quantum algorithm in Lemma 2 and let U be any quantum algorithm that,
for each x ∈ Γn and k ∈ F+

q(n), outputs x with probability ≥ 1 − ν(n) from a

k-shuffled codeword state |C(k)
x 〉 ∈ HM(n) given as an input. For any two real

functions ε(n) and δ(n) with (1 − 1/q(n))
√

2ν(n) < ε(n) ≤ 1 and 0 ≤ δ(n) ≤ 1
for all n ∈ N, there exists a quantum list-decoding algorithm B for C with oracle
accesses to Õ such that B produces a list of size at most

�q(n)(η2
ε (n)/2 − ν(n))−1(log2 Jε,q,d,M (n) + log2(1/δ(n))) ,

where ηε(n) = (q(n)/(q(n)−1))ε(n) and Jε,q,d,M (n) is from Lemma 1. Moreover,
if U is polynomial-time computable and both q(n) and (η2

ε(n)/2 − ν(n))−1 are
polynomially-bounded functions in (n, 1/ε(n)), then B runs in polynomial time.

Proof Sketch. For any n ∈ N and any Õ as an implicit input, the following
algorithm B solves the (ε, δ)-QLDP for C. Initially, set k = 1.

(1) Run the algorithm A to obtain the quantum state |ψk〉 from |ψ(0)
k 〉.

(2) Apply the algorithm U to the second register of |ψk〉 using an appropriate
number of ancilla qubits, say m. We then obtain the state U|ψk〉|0m〉.
(3) Measure the obtained state and add this measured result to the list of message
candidates.
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(4) Repeat Steps (1)–(3) �(log2 Jε,q,d,M (n) + log2(1/δ(n)))/e times, where e =
1 − ν(n) −

√
1 − η2

ε(n) ≥ η2
ε(n)/2 − ν(n).

(5) By incrementing k by one until k = q(n), repeat Steps (1)–(4). Finally,
output the list.

We claim the following. Let B(k)
ε = {x ∈ Γn | PreÕ(C(k)

x ) ≥ 1/q(n) + ε(n)}.
Claim 2
1. With probability ≥ e, we can observe x for a certain k ∈ F+

q(n) when measur-
ing the quantum state at Step (3) on the computational basis.

2. If we perform Steps (1)–(3) �e−1(log2 |B
(k)
ε |+ log2(1/δ(n))) times for each

k ∈ F+
q(n), then we obtain a list that includes all messages in B

(k)
ε with

probability at least 1 − δ(n).

Since |B(k)
ε | ≤ Jε,q,d,M (n), we obtain the desired list of message candidates at

Step (5) with probability at least 1 − δ(n) by the above claim. �

What types of codes satisfy the premise of Theorem 2 and therefore have quan-
tum list-decoders? We show that “nearly” phase-orthogonal codes are indeed
quantumly list-decodable (if we ignore the running time of their list-decoders).
Our argument uses the notion of pretty-good measurement (known also as
square-root measurement or least-squared measurement) [10, 16].

Theorem 3. Let k ∈ Fq and let C be any (M(n), n, d(n))q code in which there
exists a constant ξ ∈ [0, 1/2] satisfying |〈C(k)

x |C(k)
y 〉| ≤ ξ for any distinct pair

x, y ∈ Γn. Let S be the matrix of the form (|C(k)
0 〉, |C(k)

1 〉, . . . , |C(k)
N−1〉). If ξ < 2ε2

and rank(S) = N , then there exists a quantum list-decoding algorithm for C.

Proof Sketch. From Theorem 2, it suffices to construct a unitary operator U
whose success probability |〈z|U |Cz〉|2 of obtaining z from |Cz〉 is at least 1 − ξ
whenever |〈Cx|Cy〉| ≤ ξ for any distinct x, y ∈ Γ and rank(S) = N .

We want to design U by following an argument of pretty good measurement
[10, 16]. Note that, since rank(S) = N , the matrices S†S and SS† share the
same eigenvalues, say λ0, . . . , λN−1. Perform the singular-value decomposition
and we obtain S = PTQ for M - and N -dimensional unitary operators P and Q,
respectively, and a diagonal matrix T = diag(

√
λ0,

√
λ1, . . . ,

√
λN−1, 0, . . . , 0).

We therefore have 〈z|MUS|z〉N = 〈z|MUPTQ|z〉N , where |z〉M and |z〉N are,
respectively, arbitrary vectors of dimension M and of dimension N .

The desired matrix U is defined as U = RP †, where R =
(

Q† 0
0 I

)
. It imme-

diately follows that 〈z|MUS|z〉N = 〈z|MRTQ|z〉N = 〈z|NQ†T ′Q|z〉N with the
diagonal matrix T ′ = diag(

√
λ0,

√
λ1, . . . ,

√
λN−1). The probability of decoding

|C(k)
z 〉 to z is therefore lower-bounded by |〈z|Q†T ′Q|z〉|2 ≥ |λmin|, where |λmin|

denotes min{|λ1|, |λ2|, . . . , |λN−1|}.
Now, the theorem follows from the claim below.

Claim 3 . |λmin| ≥ 1 − ξ.

This completes the proof. �
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5 New Quantum Hardcore Functions

Finally, as our main result, we present three new quantum hardcore functions,
two of which are unknown to be classically hardcores. We explain them as codes
and give polynomial-time list-decoding algorithms for them. From Theorem 2,
we need to build only their codeword-state decoders.

Proposition 1. There exist polynomial-time quantum list-decoding algorithms
for the following codes: letting p(n), q(n) be any functions from N to the primes,

1. The q(n)-ary Hadamard code HAD(q) with q(n) ∈ nO(1), whose codeword is
defined as HAD(q)

x (r) =
∑2n−1
i=0 xi · ri mod q(n).

2. The shifted Legendre symbol code SLSp , which is a (p(n), n)2-code with n =
�log p(n) , whose codeword is defined by the Legendre symbol3 as SLSp

x(r) = 1
if ( x+rp(n) ) = −1, and SLSp

x(r) = 0 otherwise.
3. The pairwise equality code PEQ for even n ∈ N, which is a (2n, n)2-code,

whose codeword is PEQx(r) = ⊕n/2i=0 EQ(x2ix2i+1, r2ir2i+1), where EQ de-
notes the equality predicate.

Combining Proposition 1 and Theorem 1, we obtain the quantum hardcore
property of all the aforementioned codes.

Theorem 4. The functions HAD(q), SLSp, and PEQ are all quantum hardcore
functions for any quantum one-way function of the form f ′(x, r) = (f(x), r) with
|r| = poly(|x|), where f is an arbitrary quantum one-way function.

Remark: Damg̊ard [8] introduced the so-called Legendre generator, which pro-
duces a bit sequence whose rth bit equals SLSp(r). He asked whether his gener-
ator possesses the classical hardcore property. (This is also listed as an open prob-
lem in [13].) Our result proves the “quantum” hardcore property of Damg̊ard’s
generator for any quantum one-way function.

Proof Sketch of Proposition 1. It suffices to provide a codeword-state decoder
for each of the given codewords because such a decoder satisfies the premise of
Theorem 2.

(1) To obtain x from the codeword state |HAD(q)〉, we simply apply the Fourier
transformation Fq(n) over Fq(n) and then extract x deterministically.

(2) Our codeword-state decoder is obtained by an appropriate modification
of a quantum algorithm of van Dam, Hallgren, and Ip [20].

(3) Consider the circulant Hadamard transformation HC :

HC =def

(−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

)
= F−1

4

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)
F4,

where F4 is the quantum Fourier transformation over F4. We can obtain x from
the codeword state |PEQx〉 by applying U = H

⊗n/2
C . �

3 For any odd prime p, let (x
p
) = 0 if p|x, (x

p
) = 1 if p� |x and x is a quadratic residue

modulo p, and (x
p
) = −1 otherwise.
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hard-core functions. In Proc. CRYPTO 2004, LNCS Vol.3152, Springer, pp.73–91,
2004.

18. P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs.
In Proc. ICALP 2003, LNCS Vol.2719, Springer, pp.291–299, 2003.

19. M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31(1):
16–27, 2000.

20. W. van Dam, S. Hallgren, and L. Ip. Quantum algorithms for some hidden shift
problems. In Proc. SODA 2003, pp.489–498, 2003.



Efficient Pseudorandom Generators from

Exponentially Hard One-Way Functions

Iftach Haitner1,�, Danny Harnik2,��, and Omer Reingold3,�,���

1 Dept. of Computer Science and Applied Math., Weizmann Institute of Science,
Rehovot, Israel

iftach.haitner@weizmann.ac.il
2 Dept. of Computer Science, Technion, Haifa, Israel

harnik@cs.technion.ac.il
3 Dept. of Computer Science and Applied Math., Weizmann Institute of Science,

Rehovot, Israel
omer.reingold@weizmann.ac.il

Abstract. In their seminal paper [HILL99], H̊astad, Impagliazzo, Levin
and Luby show that a pseudorandom generator can be constructed from
any one-way function. This plausibility result is one of the most funda-
mental theorems in cryptography and helps shape our understanding of
hardness and randomness in the field. Unfortunately, the reduction of
[HILL99] is not nearly as efficient nor as security preserving as one may
desire. The main reason for the security deterioration is the blowup to
the size of the input. In particular, given one-way functions on n bits one
obtains by [HILL99] pseudorandom generators with seed length O(n8).
Alternative constructions that are far more efficient exist when assuming
the one-way function is of a certain restricted structure (e.g. a permu-
tations or a regular function). Recently, Holenstein [Hol06] addressed a
different type of restriction. It is demonstrated in [Hol06] that the blowup
in the construction may be reduced when considering one-way functions
that have exponential hardness. This result generalizes the original con-
struction of [HILL99] and obtains a generator from any exponentially
hard one-way function with a blowup of O(n5), and even O(n4 log2 n) if
the security of the resulting pseudorandom generator is allowed to have
weaker (yet super-polynomial) security.

In this work we show a construction of a pseudorandom generator
from any exponentially hard one-way function with a blowup of only
O(n2) and respectively, only O(n log2 n) if the security of the resulting
pseudorandom generator is allowed to have only super-polynomial se-
curity. Our technique does not take the path of the original [HILL99]
methodology, but rather follows by using the tools recently presented
in [HHR05] (for the setting of regular one-way functions) and further
developing them.
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1 Introduction

Pseudorandom Generators, a notion first introduced by Blum and Micali [BM82]
and stated in its current, equivalent form by Yao [Yao82], are one of the corner-
stones of cryptography. Informally, a pseudorandom generator is a polynomial-
time computable function G that stretches a short random string x into a long
string G(x) that “looks” random to any efficient (i.e., polynomial-time) algo-
rithm. Hence, there is no efficient algorithm that can distinguish between G(x)
and a truly random string of length |G(x)| with more than a negligible proba-
bility. Originally introduced in order to convert a small amount of randomness
into a much larger number of effectively random bits, pseudorandom generators
have since proved to be valuable components for various cryptographic applica-
tions, such as bit commitments [Nao91], pseudorandom functions [GGM86] and
pseudorandom permutations [LR88], to name a few.

The seminal paper of H̊astad et al. [HILL99] introduced a construction of
a pseudorandom generator using any one-way function (called here the HILL
generator). This result is one of the most fundamental and influential theorems
in cryptography. While the HILL generator fully answers the question of the
plausibility of a generator based on any one-way function, the construction is
quite involved and very inefficient. This inefficiency also plays a crucial role in
the deterioration of the security within the construction.

The seed length and security of the construction: There are various fac-
tors involved in determining the security and efficiency of a reduction. In this
discussion, however, we focus only on one central parameter, which is the length
m of the generator’s seed compared to the length n of the input to the underlying
one-way function. The HILL construction produces a generator with seed length
on the order of m = O(n8) (a formal proof of this seed length does not actually
appear in [HILL99] and was given in [Hol06]). An alternative construction was
recently suggested in [HHR05] which improves the seed length to O(n7).

The length of the seed is of great importance to the security of the resulting
generator. While it is not the only parameter, it serves as a lower bound to how
good the security may be. For instance, the HILL generator onm bits has security
that is at best comparable to the security of the underlying one-way function,
but on only O( 8

√
m) bits. To illustrate the implications of this deterioration in

security, consider the following example: Suppose that we only trust a one-way
function when applied to inputs of at least 100 bits, then the HILL generator can
only be trusted on seed lengths of 1016 (ignoring constants) and up (or 1014 using
the construction of [HHR05]). Thus, trying to improve the seed length towards
a linear one is of great importance in making these constructions practical.

Pseudorandom generators from restricted one-way functions: On the
other hand, there are known constructions of pseudorandom generators from
one-way functions that are by far more efficient when restrictions are made on
the type of one-way functions at hand. Most notable is the so called BMY gen-
erator (of [BM82, Yao82]) based on any one-way permutation. This construction
gives a generator with seed length of O(n) bits. A generator based on any regular
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one-way function of seed length O(n logn) was presented in [HHR05] (improv-
ing the original such construction of seed length O(n3) from [GKL93]). Basing
generators on one-way functions with known preimage-size [ILL89] also yield
constructions that are significantly more efficient than the general case.

The common theme in all of the above mentioned restrictions is that they
deal with the structure of the one-way function. A different approach was taken
by Holenstein [Hol06], that builds a pseudorandom generator from any one-way
function with exponential hardness. This approach is different as it discusses raw
hardness as opposed to structure. The result in [Hol06] is essentially a general-
ization of the HILL generator that also takes into account the parameter stating
the hardness of the one-way function. In its extreme case where the hardness
is exponential (i.e. 2−Cn for some constant C), then the pseudorandom genera-
tor takes a seed length of O(n5). Alternatively, the seed length can be reduced
to as low as O(n4 log2 n) when the resulting generator is only required to have
super-polynomial security (i.e. security of nlogn).

This Work: We give a construction of a pseudorandom generator from any
exponentially hard one-way function with seed length O(n2). If the resulting
generator is allowed to have only super-polynomial security then the construction
gives seed length of only O(n log2 n).

Unlike Holenstein’s result, our constructions is specialized for one-way func-
tions with exponential hardness. If the security parameter is 2−φn then the result
holds only when φ > Ω( 1

logn ), and does not generalize for use of weaker one-way
functions. The core technique of our construction is the randomized iterate that
was introduced by Goldreich, Krawczyk and Luby [GKL93], and is the focal
point in [HHR05].

Paper Organization: Due to space limitations, we provide formal proofs only
for the core technique, namely the randomized iterate (in Section 3). In Section 2
we provide an overview of the construction and techniques. Section 4 presents
the multiple randomized iterate and its properties, while Section 5 presents the
actual construction of the generator. The proofs of the theorems in these sections
appear in the full version of the paper.

2 Overview of the Construction

As a motivating example we start by briefly describing the BMY generator. This
generator works by iteratively applying the one-way permutation on its own
output. More precisely, for a given function f and input x define the kth iterate
recursively as fk(x) = f(fk−1(x)) where f0(x) = f(x).1 To complete the con-
struction, one needs to take a hardcore-bit at each iteration. If we denote by
b(z) the hardcore-bit of z (take for instance the Goldreich-Levin [GL89] predi-
cate), then the BMY generator on seed x outputs the hardcore-bits b(f0(x)), . . . ,
b(f �(x)). The rationale behind this technique is that for all k, the kth iteration
1 We take f0(x) = f(x) rather than f0(x) = x for consistency with [HHR05] (see also

remark in Section 3).
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of f is hard to invert (it is hard to compute fk−1(x) given fk(x)). Indeed, Levin
[Lev87] showed that the same generator works with any function that is “one-
way on its iterates”. However, a general one-way function does not have this
guarantee, and in fact, may lose all of its hardness after just one iteration (since
there may be too little randomness in the output of f).

The randomized Iterate and regular one-way functions: With the above
problem in mind, Goldreich et al. [GKL93] suggested to add a randomizing step
between every two iterations. This idea is central in our work and we define it
next (following [HHR05]):

Definition (Informal): (The Randomized Iterate). For function f , input
x and random pairwise-independent hash functions h = (h1, . . . , h�), recursively
define the ith randomized iterate (for i ≤ �) by:

f i(x, h) = f(hi(f i−1(x, h)))

where f0(x) = f(x).
The rational is that hi(f i(x, h)) is now uniformly distributed, and the chal-

lenge is to show that f , when applied to hi(f i(x, h), is hard to invert even when
the randomizing hash functions h are made public. Indeed, in [HHR05] it was
shown that the last randomized iteration is hard to invert even when h is known,
when the underlying one-way function is regular2 (a regular function is a func-
tion such that every element in its image has the same preimage size). Once this
is shown, a generator from regular one-way function is similar in nature to the
BMY generator, replacing iterations with randomized iterations (the generator
outputs b(f0(x, h)), . . . , b(f �(x, h)), h).

The randomized iterate and general one-way functions: Unfortunately,
the last randomized iteration of a general one-way function is not necessarily
hard to invert. It may in fact be easy on a large fraction of the inputs. How-
ever, following the proof method presented in [HHR05], we manage to prove the
following statement regarding the kth randomized iteration (Lemma 1): There
exists a set Sk of inputs to fk such that the kth randomized iteration is hard to
invert over inputs taken from this set. Moreover, the density of Sk is at least 1

k
of the inputs.

So taking a hard core bit of the kth randomized iteration is beneficial, in the
sense that this bit will look random (to a computationally bounded observer)
just that this will happen only 1

k of the time.

The multiple randomized iterate: Our goal is to get a string of pseudoran-
dom bits, and the idea is to run m independent copies of the randomized iterate
(on m independent inputs). We call this the multiple randomized iterate. From
each of the m copies we output a hardcore bit of the kth iteration. This forms
a string of m bits, of which m

k are expected to be random looking. The next

2 Such a statement was originally proved in [GKL93] for n-wise independent hash
functions rather than pairwise independent hash.
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step is to run a randomness extractor on such a string (where the output of the
extractor is of length, say, m2k ). This ensures that with very high probability, the
output of the extractor is a pseudorandom string of bits.

The use of randomness extractors in a computational setting, was initiated
in [HILL99]. We give a general “uniform extraction lemma” for this purpose
that is proved using a uniform hardcore Lemma of Holenstein from [Hol05].
Note that similar proofs were given previously [Hol06, HHR05]. In the full paper
we give a new version since we require a more careful analysis of the security
parameters.

The pseudorandom generator – a first attempt: A first attempt for the
pseudorandom generator runs the multiple randomized iterate (on m indepen-
dent inputs) for � iterations. For each k ∈ [�] we extract m

2k bits at the kth

iteration. These bits are guaranteed to be pseudorandom (even when given all
of the values at the (k+ 1)st iterate and all of the randomizing hash functions).
Thus outputting the concatenation of the pseudorandom strings for the different
values of k forms a long pseudorandom output (by a standard hybrid argument).

However, this concatenation is still not long enough. It is required that the
output of the generator is longer than its input, which is not the case here. The
input contains m strings x1, . . . , xm and m ·� hash functions. The hash functions
are included in the output, so the rest of the output needs to make up for the
mn bits of x1, . . . , xm. At each iteration we output m

2k bits which adds up to∑�
k=1

m
2k bits. This is a harmonic progression that is bounded by m log �

2 and in
order to exceed the mn lost bits of the input, we need � > 2n which is far from
being efficient.

The pseudorandom generator and exponential hardness: The failed gen-
erator from above can be remedied when the exponential hardness comes into
play. It is known that if a function has hardness 2−Cn (for some constant C),
then it has a hardcore function of C′n bits (for another constant C′). Such a
general hardcore function appears in the original Goldreich-Levin paper [GL89].
Thus, if the original hardness was exponential, then in the kth iteration we can
actually extract C′n random looking strings, each of length m

2k . Altogether we
get that the output length is C′n

∑�
k=1

m
2k ≥ C′mn log �. Thus for a choice of �

such that log � > C′ we get that the overall output is a pseudorandom string of
length greater than the input.

The input length of the construction is O(nm), where m can be taken to be
approximately O(log �

ε(n) ) where ε(n) is the security of the resulting generator.
In particular, in order to get an exponentially strong generator, one needs to
take a seed of length O(n2).

To sum up, we describe the full construction in a slightly different manner:
One first creates a matrix of size m×�, where each row in the matrix is generated
by computing the first � randomized iterates of f (each row takes independent
inputs). Now from each entry in the matrix O(φn) hardcore bits are computed
(thus generating a matrix of hardcore bits). The final stage runs a randomness
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extractor on each of the columns of the hardcore bits matrix.3 Moreover, the
number of pseudorandom bits extracted from a column deteriorates from one
iteration to another (mk pseudorandom bits are taken at the columns associated
with the kth randomized iterate).

Some Notes

– Our method works for one-way functions with hardness 2−φn as long as
φ > Ω( 1

logn ). Loosely speaking, this is because for large values of �, the
value 1

� becomes too small to overcome with limited repetition (and thus
requires m to grow substantially).

– The paper focuses on length-preserving one-way functions, however, the
results may be generalized to use non-length preserving functions (see
[HHR05]).

Notations: We denote by Im(f) the image of a function f . Let y ∈ Im(f),
we denote the preimages of y under f by f−1(y). The degeneracy of f on y is
defined by Df (y)

def= �log
∣∣f−1(y)

∣∣ . Due to space limitations we omit standard
definitions (provided in the full version).

3 The Randomized Iterate of a One-Way Function

As mentioned in Section 2, the use of randomized iterations lies at the core of
our generator. We formally define this notion:

Definition 1 (The kth Randomized Iterate of f). Let f : {0, 1}n → {0, 1}n
and let H be an efficient family of pairwise-independent hash functions4 from
{0, 1}n to {0, 1}n. For input x ∈ {0, 1}n and h1, . . . , hk−1 ∈ H define the kth

Randomized Iterate fk : {0, 1}n × Hk → Im(f) recursively as:

fk(x, h1, . . . , hk) = f(hk(fk−1(x, h1, . . . , hk−1)))

where f0(x) = f(x). For convenience we denote h = (h1, . . . , hk).
Another handy notation is the kth explicit randomized iterate f̂k : {0, 1}n ×

Hk → Im(f) × Hk defined as:

f̂k(x, h) = (fk(x, h), h)

Remark: In the definition randomized iterate we define f0(x) = f(x). This was
chosen for ease of notation and consistency with the results for general OWFs
in [HHR05]. For the construction presented in this paper one can also define
f0(x) = x, thus saving a single application of the function f .

3 Note that each execution of the extractor runs on a column in which each entry
consists of a single bit (rather than O(φn) bits). This is a requirement of the proof
technique.

4 Pairwise independent hash functions where defined in, e.g. [CW77].
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3.1 The Last Randomized Iterate Is (sometimes) Hard to Invert

We now formally state and prove the key observation, that there exists a set
of inputs of significant weight for which it is hard to invert the kth randomized
iteration even if given access to all of the hash functions leading up to this point.

Lemma 1. Let f : {0, 1}n → {0, 1}n be a one-way function with security 2−φn,
and let fk and H be as defined in Definition 1.

Let

Sk
def=
{

(x, h) ∈ ({0, 1}n × Hk) | Df (fk(x, h) = max
j∈[k]

Df (f j(x, h))
}

Then,

1. The set Sk has density at least 1
k .

2. For every ppt A,

Pr
(x,h)← Sk

[A(fk(x, h), h) = fk−1(x, h)] ≤ 2−O(φn)

where the probability is also taken over the random coins of A.
More precisely, given a ppt A that runs in time TA and inverts the last
iteration over Sk with probability ε(n) one can construct an algorithm that
runs in time TA+poly(n) and inverts the OWF f with probability ε(n)3

32k(k+1)n .

Proof
Proving (1). By the pairwise independence of the randomizing hash functions
h = (h1, . . . , hk) we have that for each 0 ≤ i ≤ k, the value f i(x, h) is inde-
pendently and randomly chosen from the distribution f(Un). Thus, simply by
a symmetry argument, the kth (last) iteration is has the heaviest preimage size
with probability at least 1

k . Thus Pr(x,h) ← (Un,Hk)[(x, h) ∈ Sk] ≥ 1
k .

Proving (2). Suppose for sake of contradiction that there exists an efficient
algorithm A that given (fk(x, h), h) computes fk−1(x, h) with probability ε(n)
over Sk (for simplicity we simply write ε). In particular A inverts the last-
iteration of f̂k with probability at least ε, that is

Pr
(x,h) ← Sk

[f(h(A(f̂k(x, h)))) = fk(x, h)] ≥ ε

Our goal is to use this procedure A in order to break the one-way function f .
This goal s achieved by the following procedure:

MA on input z ∈ Im(f):

1. Choose a random h = (h1, . . . , hk) ∈ Hk.
2. Apply A(z, h) to get an output y.
3. If f(hk(y)) = z output hk(y), otherwise abort.
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We prove that MA succeeds in inverting f with sufficiently high probability.
We focus on the following set of outputs, on which A manages to invert their
last-iteration with reasonably high probability.

TA =
{
(y, h) ∈ Im(f̂k) | Pr[f(hk(A(y, h)) = y] > ε/2

}
A simple Markov argument shows that the set TA has reasonably large density

(the proof is omitted).

Claim 1
Pr

(x,h) ← (Un,Hk)
[f̂k(x, h) ∈ TA] ≥ ε

2
.

Moreover, since the density of Sk is at least 1
k , it follows that Pr(x,h) ← (Un,Hk)

[f̂1(x, h) ∈ TA
∧

(x, h) ∈ Sk] ≥ ε/2k. We now make use of the following Lemma,
that relates the density of a set with respect to pairs (fk(x, h), h) where the value
of fk(x, h) is actually generated using the given randomizing hash functions h
(i.e. the pair is an output of f̂k) as opposed to the density of the same set
with respect to pairs consisting of a random output of f concatenated with an
independently chosen hash functions.

Lemma 2. For every set T ⊆ Im(f̂k), if

Pr
(x,h) ← (Un,Hk)

[f̂k(x, h) ∈ T
∧

(x, h) ∈ Sk] ≥ δ

then
Pr

(z,h) ← (f(Un),Hk)
[(z, h) ∈ T ] ≥ δ2/2(k + 1)n

To conclude the proof of Lemma 1, take T = TA and δ = ε/2k, and Lemma 2
yields that Pr(z,h) ← (f(Un),Hk)[(z, h) ∈ TA] ≥ ε2

16k(k+1)n . On each of these inputs
A succeeds with probability ε/2, thus altogether MA manages to invert f with
probability ε3

32k(k+1)n .

Proof. (of Lemma 2) Divide the outputs of the function f into n slices according
to their preimage size. The set T is divided accordingly into n subsets. For every
i ∈ [n] define the ith slice Ti =

{
(z, h) ∈ T | Df (z) = i

}
. We divide Sk into corre-

sponding slices as well, define the ith slice as Ski =
{
(x, h)∈Sk |Df (fk(x, h))= i

}
(note that since Ski ⊆ Sk, for each (x, h) ∈ Ski and thus for each 0 ≤ j < k it
holds that Df (f j(x, h)) ≤ Df (fk(x, h)) = i). The proof of Lemma 2 follows the
methods from [HHR05], used to obtain a similar argument in the case of regular
functions. The method follows by studying the collision-probability of f̂k when
restricted to Ski (we work separately on each slice). Denote this as:

CP (f̂k(Un,Hk)
∧

Ski ) = Pr
(x0,h0),(x1,h1)

[f̂k(x0, h0) = f̂k(x1, h1)
∧

(x0, h0),

(x1, h1) ∈ Ski ]
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We first give an upper-bound on this collision-probability (we note that the
following upper-bound also holds when only one of the input pairs, e.g. (x0, h0),
is required to be in Ski ). Recall that f̂k(x, h) includes the hash functions h in
its output, thus, for every two inputs (x0, h0) and (x1, h1), in order to have
a collision we must first have that h0 = h1 which happens with probability
(1/ |H|)k. Now, given that h0 = h1 = h (with h ∈ Hk being uniform), we require
also that fk(x0, h) equals fk(x1, h).

If f(x0) = f(x1) then a collision is assured. Since it is required that (x0, h0) ∈
Ski it holds that Df(f(x0)) ≤ Df (fk(x1, h)) = i and therefore

∣∣f−1(f(x0))
∣∣ ≤ 2i.

Thus, the probability for that x1 ∈ f−1(f(x0)) (and thus of f(x0) = f(x1)) is
at most 2i−n. Otherwise, there must be an i ∈ [k] for which f i−1(x0, h) �=
f i−1(x1, h) but f i(x0, h) = f i(x1, h). Since f i−1(x0, h) �= f i−1(x1, h), then due
to the pairwise-independence of hi, the values hi(f i−1(x0, h)) and hi(f i−1(x1, h))
are uniformly random values in {0, 1}n, and thus f(hi(f i−1(x0, h))) =
f(hi(f i−1(x1, h))) also happens with probability at most 2i−n. Altogether:

CP (f̂k(Un,Hk)
∧

Ski ) ≤ 1

|H|k
k∑
i=0

2i−n ≤ k + 1

|H|k 2n−i
(1)

On the other hand, we give a lower-bound for the above collision-probability.
We seek the probability of getting a collision inside Ski and further restrict our
calculation to collisions whose output lies in the set Ti (this further restriction
may only reduce the collision probability and thus the lower bound holds also
without the restriction). For each slice, denote δi = Pr[f̂k(x, h) ∈ Ti

∧
(x, h) ∈

Ski ]. In order to have this kind of collision, we first request that both inputs are
in Ski and generate outputs in Ti, which happens with probability δ2i . Then once
inside Ti we require that both outputs collide, which happens with probability
at least 1

|Ti| . Altogether:

CP (f̂k(Un,Hk)
∧

Ski ) ≥ δ2i
1

|Ti|
(2)

Combining Equations (1) and (2) we get:

|Ti| 2i−n−1

|H|k
≥ δ2i

2(k + 1)
(3)

However, note that when taking a random output z and independent hash func-
tions h, the probability of hitting an element in Ti is at least 2i−n−1/ |H|k
(since each output in Ti has preimage at least 2i−1). But this means that
Pr[(z, h) ∈ Ti] ≥ |Ti| 2i−n−1/ |H| and by Equation (3) we deduce that Pr[(z, h) ∈
Ti] ≥ δ2i /2(k + 1). Finally, the probability of hitting T is Pr[(z, h) ∈ T ] =∑
i Pr[(z, h) ∈ Ti] ≥

∑
i δ

2
i /2(k + 1). Since

∑
i δ

2
i ≥ (

∑
i δi)

2/n and (by defini-
tion)

∑
i δi = δ, it holds that Pr[(z, h) ∈ T ] ≥ δ2/2(k + 1)n as claimed.

A Hardcore Function for the Randomized Iterate. A hardcore function
of the kth randomized iteration is simply taken as the GL hardcore function
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([GL89]). The number of bits taken in this construction depends on the hardness
of the function at hand (that is the last iteration of the randomized iterate). Thus
combining Lemma 1 regarding the hardness of inverting the last iteration, and
the Goldreich-Levin Theorem on hardcore functions we get the following lemma:

Lemma 3. Let f : {0, 1}n → {0, 1}n be a one-way function with security 2−φn,
and let fk and H be as defined in Definition 1. Let s = � φ20n and take hc = gls
to be the Goldreich-Levin hardcore function which outputs s hardcore bits.

Then, for every polynomial k, there exist a set Sk ⊆ {0, 1}n × Hk, of density
at least 1

k such that for any ppt A,

Pr[A(f̂k(x, h), r) = hc(fk−1(x, h, r) | (x, h) ∈ Sk] < 2−O(φn).

In other words, hc is a hardcore function for the kth randomized iterate over the
set Sk with μhc ≤ 2−φn/20 security.5

4 The Multiple Randomized Iterate

In this section we consider the function fk which consists of m independent
copies of the randomized iterate fk.

Construction 1 (The kth Multiple Randomized Iterate of f). Let m, k∈
N, and let fk and H be as in Construction 1. We define the kth Multiple Ran-
domized Iterate fk : {0, 1}mn × Hmk → Im(f)m as:

fk(x,H) = fk(x1, H1), . . . , fk(xm, Hm),

where x ∈ {0, 1}mn and H ∈ Hm×k. We define the kth explicit multi randomized

iterate f̂k as:

f̂k(x,H) = fk(x,H), H

For each of the m outputs of fk we look at its hardcore function hc. By Lemma
3 it holds that m/k of these m hardcore strings are expected to fall inside the

“hard-set” of f̂k (and thus are indeed pseudorandom given f̂k(x,H)). The next
step is to invoke a randomness extractor on a concatenation of one bit from
each of the different independent hardcore strings. The output of the extractor
is taken to be of length m

4k . The intuition being that with high probability,
the concatenation of single bits from the different outputs of hc contains at
least m/2k “pseudoentropy”. Thus, the output of the extractor should form a
pseudorandom string. Therefore, the output of the extractor serves as a hardcore

function of the multiple randomized iterate f̂k.

5 The constant 1/20 in the security is an arbitrary choice. It was chosen simply as a
constant of the form 1/a · b where a > 3 and b > 6 (which are the constants from
Lemma 1 and the GL Theorem.
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Construction 2 (Hardcore Function for the Multiple Randomized
Iterate). Let f be a one-way function with security μf and let m, k ∈ N. Let

s, f̂k and hc be as Construction 1 and Lemma 3 yield w.r.t. f,m and k. Let
εExtk : N → [0, 1] and let Extk : {0, 1}n×{0, 1}m → {0, 1}�m

4k � be a (2mk 3, εExtk)-
strong extractor. We define hck : Dom(fk) × {0, 1}2n → {0, 1}�m

4k � as

hck(x,H, r, y) = wk1 (x,H, r, y), . . . , wks (x,H, r, y),

where x ∈ {0, 1}mn, H ∈ Hm×k, r ∈ {0, 1}2n and y ∈ {0, 1}n, and for any i ∈ [s]

wki (x,H, r, y) = Extk((hc(fk(x1, H1), r)i, . . . , (hc(fk(xm, Hm), r)i, y).

The following lemma implies that, for the proper choice of m and k, it holds

that hck−1 is a hardcore function of f̂k. The proof of Lemma 4 appears in the
full version. At the heart of this proof lies the uniform extraction Lemma (see
discussion in Section 2).

Lemma 4. Let hc be a hardcore function of the randomized iterate fk over the
set Sk (as in Lemma 3), and denote its security by μhc. Let hck−1, ρk and εExtk
be as in Construction 2 and suppose that ρk and εExtk are such that 2s(ρk +
εExtk) < μhc. Then hck−1 is a hardcore function of the multiple randomized

iterate f̂k with security μ
hck−1 < poly(m,n)μαhc for some constant α > 0.

5 A Pseudorandom Generator from Exponentially Hard
One-Way Functions

We are now ready to present our pseudorandom generator. After deriving a hard-
core function for the multiple randomized iterate, the generator is similar to the
construction from regular one-way function. That is, run randomized iterations
and output hardcore bits. The major difference in our construction is that, for
starters, it uses hardcore functions rather than hardcore bits. More importantly,
the amount of hardcore bits extracted at each iteration is not constant and
deteriorates with every additional iteration.

Construction 3 (The Pseudorandom Generator). Let m, � ∈ N and let
f be a one-way function with security μf . Let s and hck be as Construction 2
yields w.r.t. f and m. We define G as

G(x,H, r, y) = hc1(x,H, r, y) . . . , hc�(x,H, r, y), H, r, y

where x ∈ {0, 1}mn, H ∈ Hm×s, r ∈ {0, 1}2n and y ∈ {0, 1}n.

Theorem 1. Let φ : N → [0, 1] and let f be a one-way function with security
μf = 2−φ(n)n. Let δ > 2−

φ(n)n
20 . Let � ∈ poly(n) be such that

∑�
j=1

1
j >

φ(n)
80 and

let m = 8� log(φ(n)nδ ). Then G presented in Construction 3 is a pseudorandom
generator with input length O(n�m) and security poly(n)δα, where α > 0 is a
constant.
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With the appropriate choice of parameters we get the statements mentioned in
the introduction, as summarized in the following Corollary:

Corollary 1. Let C > 0 be a constant, Theorem 1 yields the following pseudo-
random generators,

– For δ = 2−
C
20n and μf = 2−Cn - G is pseudorandom generator with security

2−C
′n (where C′ > 0 is a constant) and input length O(n2).

– For δ = 2−log
2(n) and μf = 2−Cn - G is pseudorandom generator with

security 2−Ω(log2(n)) and input length O(n log(n)2).
– For δ = 2−log

2(n) and μf = 2−Cn/log(n), G is pseudorandom generator with
security 2−Ω(log2(n)) and input length O(n1+ 160

C log(n)2).6
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Abstract. In this paper we introduce very simple deterministic ran-
domness extractors for Diffie-Hellman distributions. More specifically we
show that the k most significant bits or the k least significant bits of a
random element in a subgroup of Z�

p are indistinguishable from a ran-
dom bit-string of the same length. This allows us to show that under
the Decisional Diffie-Hellman assumption we can deterministically de-
rive a uniformly random bit-string from a Diffie-Hellman exchange in
the standard model. Then, we show that it can be used in key exchange
or encryption scheme to avoid the leftover hash lemma and universal
hash functions.

Keywords: Diffie-Hellman transform, randomness extraction, least sig-
nificant bits, exponential sums.

1 Introduction

Motivation. The Diffie-Hellman key exchange [15] is a classical tool allowing
two entities to agree on a common random element in a group G. It maps a pair
of group elements (gx, gy) to gxy. Since x and y are randomly chosen, the latter
value is uniformly distributed in G. However it is not secret from an information
theoretic point of view since x and y are uniquely determined modulo |G| and
so is gxy. That is why an additional computational assumption is needed to
guarantee that no computationally bounded attacker can find this element with
a significant probability. The Computational Diffie-Hellman assumption (CDH)
basically expresses this security notion. However, it does not rule out the ability
to guess some bits of gxy.

To obtain a cryptographic key from gxy we need that no information leaks
and further assumptions are required. Among those, the DDH is perhaps the
most popular assumption and allows cryptographers to construct secure pro-
tocols [4]. It states the intractability of distinguishing DH-triples (gx, gy, gxy)
from random triples (gx, gy, gz). Under the decisional Diffie-Hellman assump-
tion (DDH) one can securely agree on a random and private element. However,
a problem remains: this element is a random element in G but not a random
bit-string as is generally required in further symmetric use. The common se-
cret will indeed thereafter be used as a symmetric key to establish an authentic

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 240–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and private channel. Hence, one has to transform this random element into a
random-looking bit-string, i.e. extract the computational entropy injected by the
DDH assumption in the Diffie-Hellman element. To solve this problem, different
methods have been proposed.

Thanks to the Leftover Hash Lemma [23, 25], one can extract entropy hidden
within gz by means of a family of universal hash functions. This solution has
the advantage of being proven in the standard model and does not require any
cryptographic assumption. One can indeed easily construct such families [10],
and they are furthermore quite efficient to compute. However it requires extra
randomness which needs to be of good quality (unbiased) and independent of
the random secret gz. Consequently, in a key exchange protocol, this extra ran-
domness either needs to be authenticated or hard-coded in the protocol. This
solution is mostly theoretical and is not widely used in standard protocols for
the simple reason that families of universal hash functions are not present in
cryptographic softwares, while they would be quite efficient [16, 33].

In practice, designers prefer to apply hash functions, such as md5 or sha-1,
to the Diffie-Hellman element. This solution can be proven secure under the
CDH assumption in the random oracle model [2], under the assumption that
the compression function acts as a random oracle [13], but not in the standard
model (unless one makes additional non-standard assumptions [1, 16, 18]).

In this paper, we analyze a quite simple and efficient randomness extractor
for Diffie-Hellman distributions. The security relies on the DDH assumption in
the standard model.

Related Works. To extract randomness from a Diffie-Hellman secret, one ap-
proach is to focus on the distribution induced by the DDH assumption. In [9],
Canetti et al. show that given the k most significant bits of gx and gy, one can-
not distinguish, in the statistical sense, the k most significant bits of gxy from a
random k bit-string. As Boneh observes [4], this is quite interesting but cannot
be applied to practical protocols because an adversary always learns all of gx

and gy. Chevassut et al. [11, 12] review a quite simple and optimal randomness
extractor but which can be applied to Z�p, with a safe prime p only. This random-
ness extractor is very efficient but requires high computational effort to compute
gx, gy and gxy because of the requirement of a large group. They also presented
a new technique (TAU [12]) but which applies to specific elliptic curves only. In-
dependently, Gürel [22] proved that, under the DDH assumption over an elliptic
curve, the most significant bits of the Diffie-Hellman transform are statistically
close to a random bit-string, when the elliptic curve is defined over a quadratic
extension of a finite field. However, Z�p is one of the most interesting group and
in order to speed up the Diffie-Hellman key-exchange, the computations must be
performed in a small subgroup. To this end, Gennaro et al. [18] prove that a fam-
ily of universal hash functions can be used even in non-DDH groups, provided
that the group contains a large subgroup where the DDH assumption holds.
However, this result still requires the use of a family of universal hash functions.

A second line of research is to study usual cryptographic primitives in pro-
tocols and prove that they are good randomness extractors. Dodis et al. [16]
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therefore tried to analyze the security of IPsec. They showed that NMAC, the cas-
cade construction and CBC-MAC are probabilistic randomness extractors. This
is the first formal study of the randomness extraction phase of Diffie-Hellman
standards in the standard model. These extractors can be applied with several
distributions, not only the Diffie-Hellman distributions. However, these results
require the assumption that the compression functions of the hash-based con-
structions under review (the hash functions md5 or sha-1) are a family of almost
universal hash functions, which is not realistic.

In [5, 6], Boneh and Venkatesan show that the k most significant bits or least
significant bits of gxy are hard to compute. Namely, they prove that given an
oracle which takes as input (gx, gy) and returns the k most significant bits of
gxy, one can construct an algorithm to compute gab given (ga, gb). They can
take into account faulty oracle which can fail with probability at most 1/ log p.
In order to use these results to show that these bits are hardcore bits, the oracle
must correctly answer with probability better than 1/2k+ε. Indeed, in this case,
the oracle finds the k bits more frequently than by guessing them. However, the
techniques used cannot take into account such faulty oracles. Moreover their
proof is known to contain a gap which was fixed by Gonzales-Vasco and Shpar-
linski in [21]. The result of [5, 6] is improved in [21, 20] and in [3]. In the latter,
it is shown that under the DDH assumption the two most significant bits of the
Diffie-Hellman result are hard to compute. Our main result here tells that under
the DDH assumption, a good distinguisher for the two distributions (ga, gb, Uk)
and (ga, gb, lsbk(gab)) cannot exist.

Our Result. In this paper, we use the exponential sum techniques to analyze
cryptographic schemes. These techniques date back to the beginning of the last
century, but we borrowed them from [9, 8] where they are used for cryptographic
purposes. They allow us to study a very simple deterministic randomness extrac-
tor. Deterministic extractors have been recently introduced in complexity theory
by Trevisan and Vadhan [28]. We describe here a deterministic randomness ex-
tractor which is provably secure in the standard model, under classical assump-
tions. We focus on the distribution induced by the DDH in a prime subgroup G
of Z�p, where p is prime and |G| 4 √

p. We prove that the k least significant bits
of a random element of G are statistically close to a perfectly random bit-string.
In other words, we have a very simple deterministic randomness extractor which
consists in keeping the k least significant bits of the random element and discard-
ing the others. This extractor can be applied to Diffie-Hellman Key Exchange
and El Gamal-based encryption schemes, under the DDH assumption. It does
not need any family of universal hash functions neither any extra randomness.
We also show that if p is sufficiently close below of a power of 2 by a small
enough amount, the k most significant bits are also uniformly distributed.

Organization. In section 2, we present some definitions and results about
entropy and randomness extraction. In section 3, we present and analyze our
new randomness extractor. In section 4, we compare our extractor with other
randomness extractors. In section 5, we present some natural and immediate
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applications of our extractor. In section 6, we relax the DDH assumption into
the weaker CDH assumption and analyze the bit-string we can generate in that
case.

2 Entropy and Randomness Extractors

First of all we introduce the notions used in randomness extraction. In the fol-
lowing, a randomness source is viewed as a probability distribution.

2.1 Measures of Randomness

Definition 1 (Min Entropy). Let X be a random variable with values in a set
X of size N . The guessing probability of X, denoted by γ(X), is the probability
maxx∈X (Pr[X = x]). The min entropy of X is: H∞(X) = − log2(γ(X)).

For example, when X is drawn from the uniform distribution on a set of size
N , the min-entropy is log2(N). To compare two random variables we use the
classical statistical distance:

Definition 2 (Statistical Distance). Let X and Y be two random variables
with values in a set X of size N . The statistical distance between X and Y is
the value of the following expression:

SD(X,Y ) =
1
2

∑
x∈X

|Pr[X = x] − Pr[Y = x]| .

We denote by Uk a random variable uniformly distributed over {0, 1}k. We say
that a random variable X with values in {0, 1}k is δ-uniform if the statistical
distance between X and Uk is upper bounded by δ.

2.2 From Min Entropy to δ-Uniformity

The most common method to obtain a δ-uniform source is to extract randomness
from high-entropy bit-string sources. Presumably, the most famous randomness
extractor is provided by the Leftover Hash Lemma [23, 25], which requires to
introduce the notion of universal hash function families.

Definition 3 (Universal Hash Function Families). Let H = {hi}i be a
family of efficiently computable hash functions hi : {0, 1}n → {0, 1}k, for i ∈
{0, 1}d. We say that H is a universal hash function family if for every x �= y in
{0, 1}n,

Pr
i∈{0,1}d

[hi(x) = hi(y)] ≤ 1/2k.

Theorem 4 (Leftover Hash Lemma). Let H be a universal hash function
family from {0, 1}n into {0, 1}k, keyed by i ∈ {0, 1}d. Let i denote a random
variable with uniform distribution over {0, 1}d, let Uk denote a random variable
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uniformly distributed in {0, 1}k, and let A denote a random variable taking values
in {0, 1}n, with i and A mutually independent. Let γ = γ(A), then:

SD(〈i, hi(A)〉, 〈i, Uk〉) ≤
√

2kγ
2

.

Proof. See [32]. �

The Leftover Hash Lemma extracts nearly all of the entropy available whatever
the randomness sources are, but it needs to invest few additional truly random
bits. To overcome this problem, it was proposed to use deterministic functions.
They do not need extra random bits, but only exist for some specific randomness
sources.

Definition 5 (Deterministic Extractor). Let f be a function from {0, 1}n
into {0, 1}k. Let X be a set of random variables of min entropy m taking values
in {0, 1}n and let Uk denote a random variable uniformly distributed in {0, 1}k,
where Uk and X are independent for all X ∈ X . We say that f is an (m, ε)-
deterministic extractor for X if for all X ∈ X :

SD (f(X), Uk) < ε.

3 Randomness Extractor in a Subgroup of Z�
p

In this section, we propose and prove the security of a simple randomness ex-
tractor for the Diffie-Hellman exchange in sufficiently large subgroups of Z�p. The
main result of this section is theorem 7 which shows that least significant bits
of a random element in G are statistically close to truly random bits. To prove
this result, we apply the exponential sum techniques in order to find an upper
bound on the statistical distance. It is very similar to the results of [27] who
studies the distribution of fractional parts of agx/p in given intervals of [0, 1].

Our result does not require the DDH assumption. However, as it is precised
in section 5, to apply it in a cryptographic protocol, the DDH assumption is
needed to obtain a random element in the subgroup of Z�p.

3.1 Description of the Deterministic Extractor

Let p be an n-bit prime, that is 2n−1 < p < 2n, G a subgroup of Z�p of order q
with q 4 √

p, � the integer such that 2�−1 ≤ q < 2� and X a random variable
uniformly distributed in G. In the following, we denote by k an integer, by s a
k-long bit-string and the associated integer in �0, 2k − 1�, and by Uk a random
variable uniformly distributed in {0, 1}k. If x is an integer, we denote by lsbk(x)
the k least significant bits of x and by msbk(x) the k most significant bits of x.

In this section we show that the k least significant bits of a random element
g of G are statistically close to a truly random k-long bit-string provided that
G is large enough. A direct consequence of this result is that the function from
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Z�p to {0, 1}k which keeps only the k least significant bits of its input is a good
deterministic extractor for a G-group source (that is for variables uniformly
distributed in the group G ⊂ Z�p).

Definition 6. The function Extk : {0, 1}n → {0, 1}k : c )→ lsbk(c) is called an
(n, p, q, k)-extractor for a G-group source.

Theorem 7. With the above notations of an (n, p, q, k)-extractor for a group
source, we have:

SD(lsbk(X), Uk) <
2k

p
+

2k
√
p log2(p)
q

< 2k+n/2+log2(n)+1−�.

This inequality is non trivial only if k < �− n/2 − log2(n) − 1.

Proof. Let us define K = 2k, Hs =
⌊
p−1−s
K

⌋
for s ∈ �0, K−1�. Let denote by ep

the following character of Zp: for all y ∈ Zp, ep(y) = e
2iπy

p ∈ C∗. The character
ep is an homomorphism from (Zp,+) in (C∗, ·). Since

1
p
×
p−1∑
a=0

ep(a(gx − s−Ku)) = 1(x, s, u),

where 1(x, s, u) is the characteristic function which is equal to 1 if gx = s +
Ku mod p and 0 otherwise, we have:

Pr
X∈G

[lsbk(X) = s] =
1
q
×
∣∣∣{(x, u) ∈ �0, q − 1� × �0, Hs� | gx = s+Ku mod p}

∣∣∣
=

1
qp

×
q−1∑
x=0

Hs∑
u=0

p−1∑
a=0

ep(a(gx − s−Ku)).

Let us change the order of the sums, and split sum on the a’s in two terms:

1. the first one comes from the case a = 0, and is equal to (Hs + 1)/p, that is
approximately 1/2k,

2. the second one comes from the rest, and will be the principal term in the
statistical distance in which we can separate sums over x and u.

Twice the statistical distance, that is 2Δ, is equal to:∑
s∈{0,1}k

∣∣∣∣ Pr
X∈G

[lsbk(X) = s] − 1/2k
∣∣∣∣

≤
∑

s∈{0,1}k

∣∣∣∣Hs + 1
p

− 1
2k

∣∣∣∣+ ∑
s∈{0,1}k

1
qp

p−1∑
a=1

∣∣∣∣∣
(
q−1∑
x=0

ep(agx)

)(
Hs∑
u=0

ep(−aKu)

)∣∣∣∣∣ .
For the first term, we notice that

∣∣(Hs + 1)/p− 1/2k
∣∣ ≤ 1/p, since K = 2k,

Hs =
⌊
p−1−s
K

⌋
and:

−1
p

≤ −1 + s

Kp
≤
(

1 +
⌊
p− 1 − s

K

⌋)
1
p
− 1
K

≤ K − (1 + s)
Kp

≤ 1
p
.
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For the second term, we introduce M = maxa
(∣∣∣∑q−1

x=0 ep(ag
x)
∣∣∣), and show that:

p−1∑
a=1

∣∣∣∣∣
Hs∑
u=0

ep(−aKu)

∣∣∣∣∣ =
p−1∑
a=1

∣∣∣∣∣
Hs∑
u=0

ep(−au)

∣∣∣∣∣ =
p−1∑
a=1

∣∣∣∣1 − ep(−a(Hs + 1))
1 − ep(−a)

∣∣∣∣
=
p−1∑
a=1

∣∣∣∣∣ sin(πa(Hs+1)
p )

sin(πap )

∣∣∣∣∣ = 2

p−1
2∑
a=1

∣∣∣∣∣sin(πa(Hs+1)
p )

sin(πap )

∣∣∣∣∣
≤ 2

p−1
2∑
a=1

∣∣∣∣∣ 1
sin(πap )

∣∣∣∣∣ ≤
p−1
2∑
a=1

∣∣∣p
a

∣∣∣ ≤ p log2(p).

The first equality results from a change of variables. The second equality comes
from the fact that �0, Hs� is an interval, therefore the sum is a geometric sum.
We use the inequality sin(y) ≥ 2y/π if 0 ≤ y ≤ π/2 for the second inequality. In
summary we have:

2Δ ≤ 2k

p
+

2kM log2(p)
q

. (1)

Using the bound M ≤ √
p that can be found in [26], 2n−1 < p < 2n and

2�−1 ≤ q < 2�, we obtain the expected result.

Consequently, since the min entropy of X , as an element of Z�p but randomly
distributed in G, equals log2(|G|) = log2(q), the previous proposition leads to:

Corollary 8. Let e be a positive integer and let suppose that we have log2(q) >
m = n/2 + k + e + log2(n) + 1. Then the application Extk is an (m, 2−e)-
deterministic extractor for the G-group distribution.

3.2 Improvements

One drawback of the previous result is that we need a subgroup of order at least√
p. In order to have more efficient Diffie-Hellman key exchange, one prefers

to use smaller subgroups. Therefore to improve the results obtained on this
random extractor, one idea would be to find a better bound than

√
p on M =

maxa
(∣∣∣∑q−1

x=0 ep(ag
x)
∣∣∣). There are several results which decrease this bound,

as these from [7, 24]. Many of them are asymptotic, and do not explicit the
constants involved. However, by looking carefully at the proof in [24] or [26] we
can find them:

Theorem 9 ([26]). With the notations of the previous subsection, if q ≥ 256
then, for all x ∈ Z�p, we have:

M ≤

⎧⎨⎩
p1/2

(
interesting if p2/3 ≤ q

)
4p1/4q3/8

(
interesting if p1/2 ≤ q ≤ p2/3

)
4p1/8q5/8

(
interesting if 256 ≤ q ≤ p1/2

)
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The bound
√
p is always valid whatever p and q are. Yet, if

√
p < q < p2/3,

the second bound is better and similarly to the third bound. For example, with
n = 2048, � = 1176 and e = 80, theorem 7 says that we can extract 60 bits. Using
the second bound given in the theorem above with the equation 1 we obtain that
k ≤ 5�/8 − (e+ n/4 + log2(n) + 3). It means that we can actually extract 129
bits and obtain a bit-string of reasonable size. However, in most practical cases,
the classical bound

√
p is the most appropriate.

Moreover when G is the group of quadratic residues, Gauss has proven that∣∣∣∑p−1
x=0 ep(ax)

∣∣∣ =
√
p, for all a ∈ Z�p. Therefore,

∣∣∣∑q−1
x=0 ep(ag

x)
∣∣∣ ≥ (

√
p − 1)/2.

This means that in the case of safe primes and with this proof technique, our
result is nearly optimal.

3.3 Other Result

The theorem presented in the previous section considers least significant bits. A
similar result for most significant bits can be proved with the same techniques.
We have the following theorem, whose proof is omitted by lack of space:

Theorem 10. Let δ be (2n − p)/2n. If p, m, k and e are integers such that
3δ < 2−e−1 and log2(|G|) > m = n/2 + k + e + log2(n) + 1, then the function
msbk(·) is a (m, 2−e)-deterministic extractor for the G-group distribution.

The first assumption on p to be close by below to a power of 2 is easily justified
by the fact that the most significant bit is highly biased whenever p is just above
a power of 2. Indeed in this case, with high probability, the most significant bit
is equal to 0.

4 Comparisons

In the literature other randomness extractors proven secure in the standard
model are also available.

4.1 The Leftover Hash Lemma

A famous one is the leftover hash lemma which is presented in subsection 2.2. If
one uses a universal hash function family, we can extract up to log2(|G|)−2e+2
bits from a random element in G. With our extractor, the number of random
bits extracted is approximately log2(|G|)− (n/2+ log2(n)− e+1). However, the
leftover hash lemma needs the use of a universal hash function family and extra
truly random bits.

In practice we can derandomize it by fixing the key of the hash function.
Shoup [32] proved that in this case, there is a linear loss of security in the
number of calls of the hash function.

4.2 An Optimal Randomness Extractor for Safe Prime Groups

To extract randomness from a random element of a subgroup of Z�p, where p =
2q+1 is a safe prime (q is also a prime), there is another deterministic extractor
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reviewed in [11, 12]. Let G = 〈g〉 denote the subgroup of quadratic residues of
Z�p, and let gx be a random element in G. To extract the randomness of gx, the
extractor needs this function f :

f(gx) =
{
gx if gx ≤ (p− 1)/2
p− 1 − gx otherwise

This function is a bijection from G to Zq. To obtain a random bit-string, one
has to truncate the result of f . The composition of f and the truncation is a
good deterministic extractor. As f is a bijection, in some sense it is optimal :
all the randomness is extracted. However this simple extractor is very restrictive
because it can be applied only with a safe prime when our extractor can be used
with a significantly larger set of primes. Moreover our extractor is more efficient
than this simple one.

5 Applications

The DDH assumption allows to find to our extractor some natural applications
in cryptographic protocols. It can indeed be applied in every protocol which gen-
erates a random element in a subgroup of Z�p and where a randomness extractor
is needed.

5.1 Key Exchange Protocol

Our extractor is designed to extract entropy from a random element in a group
G. It is exactly what is obtained after a Diffie-Hellman key exchange performed
in a DDH group G, where G is a subgroup of Z�p.

This means that we have an efficient solution to the problem of agreeing on
a random bit-string which is based on the following simple scheme, provably
secure in the standard model under the DDH assumption: Alice sends gx, Bob
sends gy and they compute lsbk(gxy).

The multiplicative group Z�p is not a DDH group but if p = αq + 1 with q
a large prime and α small then the subgroup of Z�p with q elements may be
assumed a DDH group (in such a group, the DDH assumption is reasonable.)
Therefore in this case we can extract up to k = n/2−(e+ log2(n) + 2 + log2(α))
bits from an n− log2(α) min entropy source.

In practice, the security parameters are often n = 1024, e = 80. Hence we
can extract approximately 420− log2(α) bits at the cost of two exponentiations
modulo an integer of 1024 bits. It means that if we need a 128-long bit-string,
the subgroup should have approximately 2731 elements.

5.2 Encryption Schemes

El Gamal Encryption Scheme [17]. In the El Gamal encryption scheme,
the message must be an element of a cyclic group G of order q. Alice generates
a random element x in Zq and publishes y = gx where g is a generator of
G. To encrypt the message m, she generates a random element r of Zq and
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computes (gr,myr). This scheme is proven IND-CPA secure if m ∈ G. However
in practice messages are often bit-strings and not elements from G. One solution
to avoid this problem is to extract the randomness from yr and xor the generated
bit-string with the message. This way, the encryption scheme is still IND-CPA
secure. Our extractor can be used in this context to extract randomness.

Cramer-Shoup Encryption Scheme [14, 31]. The Cramer-Shoup encryption
scheme is an improvement of the El Gamal encryption scheme which is IND-CCA
secure. The principle is the same as in El Gamal, it hides m multiplying it with
a random element hr of G. The security proof requires that m is in G. In order
to use bit-string messages, we can use the same solution: extract randomness
from hr with our extractor and xor the result with m.

6 Other Assumptions

In this section, we apply our result under various assumptions, related to the
DDH one. First, we make a stronger assumption, the so-called Short Exponent
Discrete Logarithm, which allows quite efficient DH-like protocols. Then, we
relax the DDH assumption to the CDH one.

6.1 The s-DLSE Assumption

To speed up our randomness extractor, we can use a group in which the ad-
ditional Short Exponent Discrete Logarithm (DLSE) assumption holds. First
introduced in [34], it is formalized in [29] and [18] as follows:

Assumption 1 (s-DLSE [29]). Let s be an integer, G = {Gn}n be a family of
cyclic groups where each Gn has a generator gn and ord(Gn) = qn > 2n. We
say that the s-DLSE Assumption holds in G if for every probabilistic polynomial
time Turing machine I, for every polynomial P (·) and for all sufficiently large
n we have that Prx∈R�1, 2s� [I(gn, qn, s, gxn) = x] ≤ 1/P (n).

As explained in [18], current knowledge tends to admit that in a group of prime
order, for a 2−e security level, we can choose s ≥ 2e. The usual security parameter
of e = 80 leads to s ≥ 160, which is quite reasonable, from a computational cost.

Gennaro et al. prove in [18] that under the s-DLSE and the DDH assumption,
the two following distributions are computationally indistinguishable:{

(gx, gy, Z)
∣∣ x, y ∈R �1, 2s�, Z ∈R G

}
and

{
(gx, gy, gxy)

∣∣ x, y ∈R �1, 2s�
}
.

This result allows us to use our extractor with the latter distribution and in that
way be computationally more efficient.

6.2 The CDH Assumption

In practice, to apply our extractor, we need to work in a group where the DDH
assumption is true. It is more difficult to extract entropy in a group where only
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the CDH assumption is supposed to hold. As precised in the introduction, in
the random oracle model, it is possible to extract entropy using hash functions
such as md5 or sha-1. Yet, in the standard model under the CDH assumption,
we currently know how to extract only O(log log p) bits and not a fixed fraction
of log2(p) as we prove in this paper under the DDH assumption. This bound
of O(log log p) bits is an indirect application of the Goldreich-Levin hard-core
predicate [19], using the Shoup’s trick [30].
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22. N. Gürel. Extracting bits from coordinates of a point of an elliptic curve. Cryp-
tology ePrint Archive, Report 2005/324, 2005. http://eprint.iacr.org/.

23. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator
from any One-Way Function. SIAM Journal of Computing, 28(4):1364–1396, 1999.

24. D. R. Heath-Brown and S. Konyagin. New bounds for Gauss sums derived from kth

powers, and for Heilbronn’s exponential sum. Q. J. Math., 51(2):221–235, 2000.
25. R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. of the

30th FOCS, pages 248–253. IEEE, New York, 1989.
26. S. V. Konyagin and I. Shparlinski. Character Sums With Exponential Functions

and Their Applications. Cambridge University Press, Cambridge, 1999.
27. N. M. Korobov. The distribution of digits in periodic fractions. Mat. Sb. (N.S.),

89(131):654–670, 672, 1972.
28. L. Trevisan and S. Vadhan. Extracting Randomness from Samplable Distributions.

In Proc. of the 41st FOCS, pages 32–42. IEEE, New York, 2000.
29. S. Patel and G. Sundaram. An Efficient Discrete Log Pseudo Random Generator.

In Crypto ’98, LNCS 1462. Springer-Verlag, Berlin, 1998.
30. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In

Eurocrypt ’97, LNCS 1233, pages 256–266. Springer-Verlag, Berlin, 1997.
31. V. Shoup. Using Hash Functions as a Hedge against Chosen Ciphertext Attack.

In Eurocrypt ’00, LNCS 1807, pages 275–288. Springer-Verlag, Berlin, 2000.
32. V. Shoup. A Computational Introduction to Number Theory and Algebra.

Cambridge University Press, Cambridge, 2005.
33. V. Shoup and T. Schweinberger. ACE: The Advanced Cryptographic Engine.

Manuscript, March 2000. Revised, August 14, 2000.
34. P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with

Short Exponents. In Eurocrypt ’96, LNCS 1070, pages 332–343. Springer-Verlag,
Berlin, 1996.



A Probabilistic Hoare-style Logic

for Game-Based Cryptographic Proofs

Ricardo Corin and Jerry den Hartog

Department of Computer Science, University of Twente, The Netherlands
{ricardo.corin, jerry.denhartog}@cs.utwente.nl

Abstract. We extend a Probabilistic Hoare-style logic to formalize
game-based cryptographic proofs. Our approach provides a systematic
and rigorous framework, thus preventing errors from being introduced.
We illustrate our technique by proving semantic security of ElGamal.

1 Introduction

A typical proof to show that a cryptographic construction is secure uses a reduc-
tion from the desired security notion towards some underlying hardness assump-
tion. The security notion is usually represented as a game, in which one proves
that the attacker’s chance of winning the game is (arbitrarily) small. From a
programming language perspective, these games can be thought of as programs
whose behaviour is partially known, since the program typically contains invoca-
tions to an unknown function representing an arbitrary attacker. In this context,
the cryptographic reduction is a sequence of valid program transformations.

Even though cryptographic proofs based on game reductions are powerful, the
price one has to pay is high: these proofs are complex, and can easily become
involved and intricated. This makes the verification difficult, with subtle errors
difficult to spot. Some errors may remain uncovered long after publication, as
illustrated for example by Boneh and Franklin’s IBE encryption scheme [4],
whose cryptographic proof has been recently patched by Galindo [8].

Recently, several papers from the cryptographic community (e.g., the work of
Bellare and Rogaway [2], Halevi [9], and Shoup [16]) have recognized the need to
tame the complexity of cryptographic proofs. There, the need for (development
of) rigorous tools to organize cryptographic proofs in a systematic way is advo-
cated. These tools would prevent subtle easily overlooked mistakes from being
introduced in the proof. As another advantage, this precise proof development
framework would standardize the proof writing language so that proofs can be
checked easily, even perhaps using computer aided verification.

The proposed frameworks [2, 9, 16] provide ad hoc formalisms to reason about
the sequences of games, providing useful program transformation rules and illus-
trating the techniques with several cryptographic proofs from the literature. As
we mentioned earlier, the games may be thought of as computer programs, and
the reductions thought of as valid program transformations, i.e. transformations
that do not change (significantly at least) the “behaviour” of the program. If
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we represent program behaviour by predicates that establish which states are
satisfied by the program before and after its execution, we arrive to a well known
setting studied by computer scientists for the past thirty years: program correct-
ness established by a Hoare logic [12]. In Hoare logic, a programming language
statement (e.g., value assignment to a variable) is prefixed and postfixed with
assertions which state which conditions hold before and after the execution of
the statement, respectively. There exists a wealth of papers building on the basic
Hoare logic setting, making it one of the most studied subjects for establishing
(imperative) program correctness.

This paper’s contributions are twofold. First, we adapt and extend our earlier
work on Probabilistic Hoare-logic [10, 11] to cope with game-based cryptographic
proofs. In particular, we introduce the notion of arbitrary functions, that can
be used to model the invocation of an unknown computation (e.g., an arbitrary
attacker function). We also include procedures, which are subroutines that can
be used to “wrap” function invocations. We provide the associated deduction
rules within the logic.We also present a useful program transformation opera-
tion, called orthogonality, which we use to relate Hoare triples. Orthogonality
is our basic “game stepping” operation. Second, to illustrate our approach, we
elaborate in full detail a proof of security of ElGamal [6], by reducing the se-
mantic security of the cryptosystem to the hardness of solving the (well-known)
Decisional Diffie-Hellman problem.

To the best of our knowledge, ours is the first application of a well known
program correctness logic (i.e. Hoare logic) to analyze cryptographic proofs based
on transformation of probabilistic imperative programs.

A longer version of this paper [5] contains additional details and proofs.

Related Work. Differently from us, almost all formalisms we know of are directed
towards analysing security protocols, thus including concurrency as a main mod-
elling operation. One prime example is in the work of Ramanathan et al. [15],
where a probabilistic poly-time process algebraic language is presented. Much ef-
fort is paid to measure the computational power of (possibly parallel) processes,
so that an environmental context can be precisely regulated to run in proba-
bilistic polynomial time. On the other hand, our logic is fitted for proofs on a
simple probabilistic imperative language, without considering parallel systems,
nor communication or composition. This simplifies the reasoning and is closer
to the original cryptographic proofs which always consider imperative programs
(the “games”).

Tarento [17] develops machine checkable proofs of signature schemes, focusing
on formalizing the semantics of the generic and random oracle models. This
differs from the present work, which uses a Hoare-style logic to “derive” the
(syntactic) cryptographic algorithms, and then uses the soundness of the logic
to obtain the security proofs.

Recently, Blanchet [3] has developed an automated procedure to generate se-
curity proofs of protocols; the approach is similar to ours in that also sequences of
games are used, although our technique, based on Hoare-logic derivations, can be
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used to develop proofs manually (however proof checking could be automated);
still, it would be interesting to relate the approaches in the future.

2 The Probabilistic Hoare-style Logic pL

We shortly recall the probabilistic Hoare style logic pL (see [10, 11]). We in-
troduce probabilistic states, and programs which transform such states. Then
we introduce probabilistic predicates and a reasoning system to establish Hoare
triples which link a precondition and a postcondition to a program.

Probabilistic Programs. We define programs (or statements) s, integer ex-
pressions e and Boolean expressions (or conditions) c by:

s ::= skip | x := e | s ; s | if c then s else s fi | while c do s od | s ⊕ρ s

e ::= n | x | e + e | e − e | e · e | e div e | e mod e

c ::= true | false | b | e = e | e < e | c ∧ c | c ∨ c | ¬c | c → c

where x is a variable of type (or ‘has range’) integer, b is a variable of type
Boolean and n a number. We assume it is clear how this can be extended with
additional operators and to other types and mostly leave the type of variables
implicit, assuming that all variables and values are of the correct type.

The basic statements do nothing (skip) and assignment (x := e) can be com-
bined with sequential composition (;), conditional choice (if), iteration (while)
and probabilistic choice ⊕ρ. In the statement s ⊕ρ s′ a probabilistic decision
is made which results in executing s with probability ρ and statement s′ with
probability 1 − ρ.

A deterministic state, σ ∈ S, is a function that maps each program variable
to a value. A probabilistic state, θ ∈ Θ gives the probability of being in a given
deterministic state. Thus a probabilistic state θ can be seen as a (countable)
weighed set of deterministic states which we write as ρ1 ·σ1 + ρ2 ·σ2 + . . .. Here,
the probability of being in the (deterministic) state σi is ρi, i ≥ 0. For simplicity
and without loss of generality we assume that each state σ occurs at most once in
θ; multiple occurrences of a single state can be merged into one single occurrence
by adding the probabilities, e.g. 1 · σ rather than 3

4 · σ + 1
4 · σ.

The sum of all probabilities is at most 1 but may be less. A probability less
than 1 indicates that this execution point may not be always reached (e.g., be-
cause of non-termination or because it is part of an ‘if’ conditional branch).

To manipulate and combine states we have scaling (ρ · θ) which scales the
probability of each state in θ, addition (θ+θ′) which unites the two sets and adds
probabilities if the same state occurs in both θ and θ′, weighed sum (θ ⊕ρ θ′ =
ρ·θ+(1−ρ)·θ′) and conditional selection (c?θ) which selects the states satisfying
c (and removes the rest). For example,

1
2 · ( 1

2 · [x = 1] + 1
2 · [x = 2]) = 1

4 · [x = 1] + 1
4 · [x = 2]

( 1
4 · [x = 1] + 1

4 · [x = 2]) + 1
4 · [x = 2] = 1

4 · [x = 1] + 1
2 · [x = 2]

(x ≤ 2)?( 1
4 · [x = 1] + 1

2 · [x = 2] + 1
4 · [x = 3]) = 1

4 · [x = 1] + 1
2 · [x = 2]
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A program s is interpreted as a transformer of probabilistic states, i.e. its seman-
tics D(s) is a function that maps input states of s to output states. The program
transforms the probabilistic state element-wise, with the usual interpretation
of the deterministic operations. (See [10] for the fixed point construction used
for the semantics of while.) For probabilistic choice we use the weighed sum:
D(s ⊕ρ s′ )(θ) = D(s)(θ) ⊕ρ D(s′ )(θ).

Reasoning About Probabilistic Programs. To reason about deterministic
states we use deterministic predicates, dp ∈ DPred. These are first order logi-
cal formulas, i.e. Boolean expressions with the addition of logical variables i, j
and the quantification ∀i :, ∃i : over such variables. Similarly, to reason about
probabilistic states and programs we introduce probabilistic predicates, p ∈ Pred:

p ::= true | false | b | e = e | e < e | er = er | er < er | p → p | ¬p

| p ∧ p | p ∨ p | ∃j : p | ∀j : p | ρ · p | p + p | p ⊕ρ p | c?p

er ::= ρ | r | P(dp) | er + er | er − er | er ∗ er | er/er | . . .

where e is an expression using logical variables rather than program variables, ρ
is a real number and r a variable with range [0, 1]. A probabilistic expression er
is meant to express a probability in [0, 1].

Example 1. We have that (i < j) → (P(x = 5 ∧ y< x + i) > P(x = j) + 1
4 ) is a

probabilistic predicate but (x>i) is not as the use of program variable x outside
of the P(·) construction is not allowed.

The value of P(dp), in a given probabilistic state, is the sum of the probabilities
for deterministic states that satisfy dp, e.g. in 1

4 · [x = 1] + 1
4 · [x = 2] + 1

4 ·
[x = 3] + 1

4 · [x = 4] we have that P(x ≥ 2) = 3
4 . Establishing the value of a

probabilistic expression er and a (basic) predicate p from a probabilistic state θ
is standard; the latter is denoted (as usual) by the satisfaction relation θ |= p.
The ‘arithmetical’ operators +, ⊕ρ,ρ·, ? specific to our probabilistic logic are the
logical counterparts of the same operations on states. For example,

θ |= p + p′ when there exists θ1, θ2: θ = θ1 + θ2, θ1 |= p and θ2 |= p′ (1)

θ |= c?p when there exists θ′: θ = c?θ′, θ |= p (2)

The satisfaction relation also includes an interpretation function giving values
to the logical variables, which we omit from the notation when no confusion is
possible. We write |= p if p holds in any probabilistic state.

Hoare triples, also known as program correctness triples, give a precondition
and a postcondition for a program. A triple is called valid, denoted |= { p } s { q } ,
if the precondition guarantees the postcondition after execution of the program,
i.e. for all θ with θ |= p we have D(s)(θ) |= q.

Our derivation system for Hoare triples adapts and extends the existing Hoare
logic calculus. The standard rules for skip, assignment, sequential composition,
precondition strengthening and postcondition weakening remain the same. The
rule for conditional choice is adjusted and a new rule for probabilistic choice is
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added, along with some structural rules. We only present the main rules here
(see e.g. [10] for a complete overview), noting that the other rules come directly
from Hoare logic or from natural deduction.

{ p[x/e] } x := e { p } (Assign)
{ c?p } s { q } { ¬c?p } s′ { q′ }

{ p } if c then s else s′ fi { q + q′ }
(If)

{ p } s { p′ } { p′ } s′ { q }

{ p } s ; s′ { q }
(Seq)

{ p } s { q } { p } s′ { q′ }

{ p } s ⊕ρ s′ { q ⊕ρ q′ }
(Prob)

{ p } s { q } { p } s { q′ }

{ p } s { q ∧ q′ }
(And)

|= p′ → p { p } s { q } |= q → q′

{ p′ } s { q′ }
(Cons)

These rules are used in the proof of ElGamal in Section 4, but first we extend
the language and logic to cover the necessary elements for cryptographic proofs.

3 Extending pL

We consider two language extensions and one extension of the reasoning method:

– Functions are computations that are a priori unknown. These are useful to
reason about arbitrary attacker functions, for which we do not know what
behavior they will produce.

– Procedures allow the specification of subroutines. These are useful to specify
cryptographic assumptions that hold ‘for every procedure’ satisfying some
appropriate conditions. Procedures are programs for which its behavior (i.e.
the procedure’s body) is assumed to be partially known (since it may contain
an invocation to an arbitrary function).
We assume that both functions and procedures are deterministic. However
this poses no loss of generality as enough “randomness” can be sampled
before and then passed to the function or procedure as an extra parameter.
We explicitly distinguish functions and procedures for readability and con-
venience, rather than because there is a fundamental difference between the
two; it clarifies the different roles (i.e. procedures are specified routines and
functions are unknown attacker functions) directly in the syntax.

– Orthogonality allows to reason about independent statements. This is a pro-
gram transformation operation that is going to be useful when reasoning on
cryptographic proofs as sequences of games.

Functions. Functions, as opposed to procedures, are undefined (i.e. we do not
provide a body). We use these functions to represent arbitrary attackers, for
which we do not know a priori their behaviour.
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To include functions in the language we add function symbols to expressions
(as defined in the previous section): e ::= . . . | f(e, . . . , e). We assume that the
functions are used correctly, that is functions are always invoked with the right
number of arguments and correct types. Also, note that by considering functions
to be expressions we allow functions to be used in the (deterministic and prob-
abilistic) predicates. The fact that a function is deterministic is represented in
the logic by the following remark.

Remark 2. For any function f(·) (of arity n) and expressions e1, . . . , en, e′1, . . . ,
e′n we have |= (e1 = e′1 ∧ . . . ∧ en = e′n) → f(e1, . . . , en) = f(e′1, . . . , e

′
n).

To deal with functions in the semantics, we assume that any function sym-
bol f has some fixed (albeit unknown) deterministic, type correct interpreta-
tion f̂ . Thus, e.g. the semantics for an assignment using f becomes D(x :=

f(y))(ρ1 · σ1 + ρ2 · σ2 + . . .) = ρ1 · σ1[f̂(σ1(y)) / x] + ρ2 · σ2[f̂(σ2(y)) / x] + . . ..
The rules given above are also valid for the extended language; extending the
correctness proof [10] for the Assign rule is direct, while the proof for the other
rules remains the same as it only uses structural properties of the denotational
semantics.

Procedures. We now extend the language with procedures, which are used to
model (partially) known subprograms. Each procedure has a list of variables,
the formal parameters (divided in turn into value parameters and variable pa-
rameters) and a set of local variables. We assume that none of these variables
occur in the main program or in other procedures. The procedure also has a
body, Bproc, which is a program statement which uses only the formal parame-
ters and local variables, only assigns to variable parameters and local variables,
and assigns to a local variable before using its value. We also enforce the pro-
cedure to be deterministic by excluding any probabilistic choice statement from
Bproc. Finally, we require that the procedure is non-recursive (i.e. we can order
procedures such that any procedure only calls procedures of a lower order). We
use the notation procedure proc(value v1, . . . , vn;var w1, . . . , wm) : Bproc to list
the value and variable parameters and the body of a procedure (any variables
in Bproc that are not formal parameters are local variables).

We add procedures to the language by including procedure calls to the
statements, s ::= . . . | proc(e, . . . , e; x, . . . , x). Here we assume that there
is no aliasing of variables; i.e. a different variable is used for each variable
parameter.

The procedure call proc(e1, . . . , en, x1, . . . , xm) (in state σ) corresponds to
first assigning the value of the appropriate expression (ei or xj) to the formal
parameters, running the body of the program and finally assigning the resulting
value of the variable arguments w1, . . . , wm to x1, . . . , xm. Thus the semantics is:

D(proc(e1, . . . , en; x1, . . . , xm))(θ) = D(v1 := e1; . . . ; vn := en;

w1 := x1; . . . ; wm := xm;

Bproc; x1 := w1; . . . ; xn := wn)(θ)
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To enable reasoning about a procedure proc(value v1, . . . , vn;var w1, . . . , wm) :
Bproc, we add the following derivation rule:

{p} Bproc {q}
{p[e1,...,en,x1,...,xn /v1,...,vn,w1,...,wm ]} proc(e1, . . . , en; x1, . . . , xn) {q[x1,...,xn /w1,...,wm ]}

(3)

The extended logic including this rule is correct, i.e. any Hoare triple derived
from the proof system is valid. Extending the correctness proof for the added
rule is again a simple exercise using the definition of the semantics given above
and properties of the assignment statement.

Distributions and Independence. We now illustrate how to express the
(joint) distribution of variables (and more generally of expressions) in the logic.
Then we discuss the issue of independence of variables and expressions.

A commonly used component in (security) games is a variable chosen com-
pletely at random, which in other words is a variable with a uniform distri-
bution over its (finite) range. Suppose that variable x and i have the same
range S. Then the following predicate expresses that x is uniformly distributed
over S:

RS(x) = ∀i : P(x = i) = 1/|S|
where |S| denotes the size of the set S. The variable x can be given a uniform
distribution over S = {v1, . . . , vn} by running the program

x:= v1 ⊕1/n (x := v2 ⊕1/(n−1) (· · · ⊕1/2 x := vn))

As this is a commonly used construction we introduce a shorthand notation for
this statement: x ← S. Using our logic, it is straightforward to derive (using
repeatedly rule (Prob)) that after running this program x has a uniform distri-
bution over S: |= {P(true) = 1 } x ← S {RS(x) } .

More interestingly, after running the program x ← S; y ← S′ we not only know
that x has a uniform distribution over S and y has a uniform distribution over S′,
but we also know that y has a uniform distribution over S′ independently from
the value of x. In other words, the joint distribution of x and y is RS,S′(x, y) ::=
∀i, j : P(x = i ∧ y = j) = 1/|S| · 1/|S′| (with i ∈ S, j ∈ S′). This is a stronger
property than only the information that x and y are uniformly distributed. (The
difference is exactly the independence of the variables.) Below we introduce a
predicate expressing independence and generalize these results.

Definition 3 (Independent I(·) and Random R(·) expressions). The
predicate I(e1, . . . , en) states independence of expressions e1, . . . , en, and is de-
fined by (where ij is of the same type as ej, 1 ≤ j ≤ n.):

I(e1, . . . , en) = ∀i1, . . . , in : P(e1 = i1 ∧ . . . ∧ en = in) = P(e1 = i1) · . . . · P(en = in)

The predicate RS1,...,Sn(e1, . . . , en) states that e1, . . . , en are randomly and inde-
pendently distributed over S1, . . . , Sn respectively, is defined as follows:

RS1,...,Sn(e1, . . . , en) = ∀i1, . . . , in : P(e1 = i1 ∧ . . . ∧ en = in) = 1/|S1| · . . . · 1/|Sn|
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Lemma 4 (Relations between R(·) and I(·)).
1. An expression list has a joint uniform distribution when they are independent

and each has a uniform distribution, i.e. |= RS1,...,Sn(e1, . . . , en) ↔ RS1(e1)∧
. . . ∧RSn(en) ∧ I(e1, . . . , en).

2. Separate randomly assigned variables have a joint random distribution: |=
{P(true) = 1 } x1 ← S1; . . . ; xn ← Sn {RS1,...,Sn(x1, . . . , xn) } .

3. Independence is maintained by functions; if an expression e is independent
from the inputs e1, . . . , en of a function f , then e is also independent of
f(e1, . . . , en), i.e., |= I(e, e1, . . . , en) → I(e, f(e1, . . . , en)).

Both (1) and (3) express basic properties, shown easily to hold semantically for
any (probabilistic) state. The triple in (2) is shown valid by using the logic.

Example 5. The lemma above can be used in a derivation as follows:

{P(true) = 1}
b ← Bool ;

{RBool(b)}
x ← S;

{RBool,S(b, x)} → {I(b, x)} → {I(b, f(x))}
b′ := f(x) ;

{I(b, b′)}
The derivation above is represented as a so called proof outline, which is a com-
monly used way to represent proofs in Hoare logic. Briefly, rather than giving
a complete proof tree only the most relevant steps of the proof are given in an
intuitively clear format. The predicates in between the program statements give
properties that are valid at that point in the execution.

Orthogonality. A (terminating) program that does not change the value of
variables in a predicate (i.e. is ‘orthogonal to the predicate’) will not change
its truth value. In this section we make this intuitive property more precise. As
we show in the proof of ElGamal cryptosystem in Section 4, orthogonality is a
powerful method to reason about programs and Hoare triples yet is easy to use
as it only requires a simple syntactical check.

Let Var(p) denote the set of program variables occurring in the probabilistic
predicate p, Var(s) the variables occurring in the statement s and let Vara(s)
denote the set of program variables which are assigned to (i.e. subject to assign-
ment) in s (x is assigned to in s if x := e occurs in s for some e or when x is used as
a variable parameter in a procedure call). We write s ⊥ p if Vara(s)∩Var(p) = ∅
and s ⊥ s′ if Vara(s) ∩ Var(s′ ) = ∅. Thus we call a program orthogonal to a
predicate (or to another program) if the program does not change the variables
used in the predicate (or in the other program).

The following theorem states that we can add and remove orthogonal state-
ments without changing the validity of a Hoare triple. As we shall see in Section 4,
this is precisely what is needed to establish the security of ElGamal.

Theorem 6. If s′ ⊥ q and s′ ⊥ s′′ then { p } s ; s′ ; s′′ { q } is valid if and
only if { p } s ; s′′ { q } is valid.
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The notion of orthogonality ⊥ is a practical and purely syntactically defined
relation, and thus easy to check. On the other hand, ⊥ does not have commonly
used properties of relations such as reflexiveness, transitivity and congruence
properties. Therefore, care must be taken in reasoning with this relation outside
of its intended purpose, that is to add or remove non-relevant program sections
in a derivation, so one can transform a program into the exact required form.

4 Application: Security Analysis of ElGamal

We now apply our technique to derive semantic security for ElGamal [6].

ElGamal. Let G be a group of prime order q, and let γ ∈ G be a generator. (The
descriptions of G and γ, including q, represent arbitrary “system parameters”).
Let Z∗q = {1, . . . , q − 1} denote the usual multiplicative group. A key is created
by choosing a number uniformly from Z∗q , say x ∈ Z∗q . Then x is the private key
and γx the public key. To encrypt a message m ∈ Z∗q , a number y ∈ Z∗q is chosen
uniformly from Z∗q . Then (c, k) is the ciphertext, for c = m · γxy, and k = γy.
To decrypt using the private key x, compute c/kx, since c

kx = m·γxy

γyx = m.

Security Analysis. The security of ElGamal cryptosystem is shown w.r.t. the
Decisional Diffie-Hellman (DDH) assumption. Suppose we sample uniformly the
values x, y and z. Fix εddh small and RND large w.r.t. the system parameters.
Then the DDH assumption (for G) states that no effective procedure D(·) (with
randomness given by a uniform sample from {1, . . . ,RND}, encoding a finite
tape of uniformly distributed bits) can distinguish triples of the form 〈γx, γy, γxy〉
from triples of the form 〈γx, γy, γz〉 with a chance better than εddh.

In our formalism we do not precisely define the meanings of “small”, “large”,
“better” and “effective”, as they are not required in the actual proof transforma-
tions. However, one should keep in mind that these notions need to be defined
properly, where e.g. “effective” means time bounded by a polynomial in the se-
curity parameter. Moreover, our fixed values (e.g., εddh) implicitly depend on the
arbitrary system parameters, so asymptotic bounds can be expressed properly
(so in fact εddh is negligible when the security parameter tends to infinity).

Semantic Security. The semantic security game for ElGamal cryptosystem con-
sists of the following four steps: (1). Setup: x is sampled from Z∗q and r is sampled
from RND . (2). Attacker chooses m0,m1 using inputs γx, r. (3). y is sampled
from Z∗q , bit b is sampled uniformly, and let c = γxy ·mb. (4). Attacker chooses
b′ using inputs γx, γy, r, c.

Now, the attacker wins this game if it outputs b′ equating b, that is the
attacker can guess b with a non-negligible probability (in our case, better than
1/2+ εddh). A standard proof (e.g., the one given in [16]) reduces the security of
this notion (i.e. that the attacker cannot win the game) to the DDH assumption
described above. We now describe a similar proof within our formalism.
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ElGamal Security Analysis in pL. In our formalism, the DDH assump-
tion ensures that for any effective procedure D(v1, v2, v3, v4, v5; x1) with inputs
v1, v2, v3, v4, v5 and output boolean x1, the following is a valid Hoare triple.

{P(true) = 1}
x ← Z∗

q ; y ← Z∗
q ; r1 ← RND ; b1 ← Bool ; D(γx, γy, γxy, r1, b1; out1);

z ← Z∗
q ; r2 ← RND ; b2 ← Bool ; D(γx, γy, γz, r2, b2; out2)

{|P(out1) − P(out2)| ≤ εddh}
Here, the extra provided randomness b1 and b2 to procedure D(·) are given
solely to ease the exposition (as r1 and r2 already provide enough randomness).

ElGamal Semantic security. We assume three attacker functions A0(v1, v4),
A1(v1, v4) and A2(v1, v2, v3, v4). Functions A0(v1, v4) and A1(v1, v4) return
two numbers m0 and m1 from Z∗q . Similarly, function A2(v1, v2, v3, v4) re-
turns a boolean. From these attacker functions we define another procedure
S(v1, v2, v3, v4, v5; x1) : BS , where the body BS is defined as follows:

BS
	
= m0 :=A0(v1, v4); m1 :=A1(v1, v4);

if v5 =false then tmp := v3· m0 else tmp := v3· m1 fi;

b :=A2(v1, v2, tmp, v4);

if v5 = b then x1:=true else x1:=false fi;

Proving the semantic security of ElGamal amounts to establish:

Theorem 7. The following is a valid probabilistic Hoare Triple:

{P(true) = 1}
x ← Z∗

q ; y ← Z∗
q ; r1 ← RND ; b1 ← Bool ; S(γx, γy, γxy, r1, b1; out1)

{|P(out1) − 1/2| ≤ εddh}
To establish this result, we first show the following lemma.

Lemma 8. The following is a valid Probabilistic Hoare Triple:

{RZ∗
q
3,RND,Bool (γ

x, γy, γz, r2, b2)} S(γx, γy, γz, r2, b2; out2) {P(out2) = 1/2}

Proof. (Sketch) We use rule (3) from Section 3 on the definition of procedure
S(·), to establish the validity of the following triple (We derive this triple formally
in [5]):

{RZ∗
q
3,RND,Bool (v1, v2, v3, v4, v5)} BS {P(x1) = 1/2}

Now, to establish Theorem 7, we start by showing the validity of the following
Hoare triple:

{P(true) = 1}
x ← Z∗

q ; y ← Z∗
q ; z ← Z∗

q ; r2 ← RND ; b2 ← Bool ;

{RZ∗
q
3,RND,Bool (x, y, z, r2, b2)} → {RZ∗

q
3,RND,Bool (γ

x, γy, γz, r2, b2)}
S(γx, γy, γz, r2, b2; out2)

{P(out2) = 1/2}
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The lower part of the triple is given by Lemma 8. For the upper part, we use
Lemma 4(1) to obtain to obtain {RZ∗

q
3,RND,Bool(x, y, z, r2, b2)} from the random

samples. The implication follows from standard properties of the group Z∗q and
the generator γ, which is a permutation of Z∗q (In the long version [5] we derive
formally a similar property). Finally, we combine the two triples using rule (Seq).

The next step consists in adding the orthogonal statements (shown boxed
below) between the assignments of y and z of the above triple. Since the added
statements are orthogonal (they assign to r1,b1,out1 only, which do not occur
in the above triple), by Theorem 6 we get that the following triple is valid:

{P(true) = 1}
x ← Z∗

q ; y ← Z∗
q ; r1 ← RND ; b1 ← Bool ; S(γx, γy, γxy, r1, b1; out1);

z ← Z∗
q ; r2 ← RND ; b2 ← Bool ; S(γx, γy, γz, r2, b2; out2)

{P(out2) = 1/2}

This is the DDH assumption whenD(·) is instantiated by S(·). We use rule (And)
and join the postconditions {P(out2) = 1/2} and {|P(out1)−P(out2)}| ≤ εddh:

{P(true = 1)}
x ← Z∗

q ; y ← Z∗
q ; r1 ← RND ; b1 ← Bool ; S(γx, γy, γxy, r1, b1; out1);

z ← Z∗
q ; r2 ← RND ; b2 ← Bool ; S(γx, γy, γz, r2, b2, out2)

{P(out2) = 1/2 ∧ |P(out1) − P(out2)| ≤ εddh} → {|P(out1) − 1/2| ≤ εddh}

The last application of rule (Cons) follows from replacing P(out2) with 1/2.
Finally, we remove the last line of statements thanks to orthogonality (as the
assigned to variables do not occur elsewhere), and obtain the desired theorem:

{P(true) = 1}
x ← Z∗

q ; y ← Z∗
q ; r1 ← RND ; b1 ← Bool ; S(γx, γy, γxy, r1, b1, out1);

{|P(out1) − 1/2| ≤ εddh}

5 Conclusions and Future Work

Cryptographic proofs are complex constructions that use both cryptography
and programming languages concepts. In our opinion, both communities can
benefit from our approach: First, Hoare logic is well known in the programming
languages community, and has been used to prove algorithm correctness for
more than three decades. There are readily available computer aided verification
systems that can handle Hoare logic reasoning systems (e.g., HOL [14], PVS [13],
Coq [7]). Second, developing cryptographic proofs as games is well known in the
cryptographic community [2, 9, 16]. Our logic allows to derive correctness proofs
directly from these imperative programs, without code modifications.

Future Work. There are several possible directions for future work. A short term
goal is to cover more complex examples [2, 9, 16]. This would probably require
to refine the notion of equivalence between Hoare triples to equivalence up-to ε,
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to model transitions based on “bad events unlikely to happen” instead of the
standard equivalence that models transitions based on pure indistinguishability.

The price to pay for rigorousity is in proof length, as the detailed proofs can
quickly become lengthy. An axiomatization of the logic along with a library
of ready-to-use proofs for standard constructions would help into reducing the
complexity and proof length (this is a matter of ongoing work). Along the same
lines, a longer term goal is to develop an implementation on a theorem prover to
provide machine-checkable cryptographic proofs, following e.g. earlier work on
(standard) Hoare logic formalization [13, 7, 1]. Here axioms and pre-computed
proofs would also greatly increase efficiency and usability.

Acknowledgements. We thank Pieter Hartel, Sandro Etalle, Jeroen Doumen, and
the anonymous reviewers for helpful comments.
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Abstract. In Eurocrypt 2005, Chabanne, Phan and Pointcheval introduced an
interesting property for traitor tracing schemes called public traceability, which
makes tracing a black-box public operation. However, their proposed scheme
only worked for two users and an open question proposed by authors was to
provide this property for multi-user systems.

In this paper, we give a comprehensive solution to this problem by giving
a generic construction for a hybrid traitor tracing scheme that provides full-
public-traceability. We follow the Tag KEM/DEM paradigm of hybrid encryp-
tion systems and extend it to multi-receiver scenario. We define Tag-Broadcast
KEM/DEM and construct a secure Tag-BroadcastKEM from a CCA secure PKE
and target-collision resistant hash function. We will then use this Tag-Broadcast
KEM together with a semantically secure DEM to give a generic construction for
Hybrid Public Key Broadcast Encryption. The scheme has a black box tracing
algorithm that always correctly identifies a traitor. The hybrid structure makes
the system very efficient, both in terms of computation and communication cost.
Finally we show a method of reducing the communication cost by using codes
with identifiable parent property.

1 Introduction

Broadcast encryption and traitor tracing systems are the main cryptographic primitives
for secure distribution of copyrighted digital content. In broadcast encryption systems
the user group is dynamic and changes over time and access control is by distributing a
new session key to authorised users in each session. The session key is used to securely
encrypt (e.g. using AES) the content. The separation of content encryption and session
key encryption provides flexibility in choosing encryption algorithms that are suitable
for specific content (e.g. MPEG2 streams).

Traitor tracing systems however, aim at providing traceability against colluding users
who have constructed a pirate decoder that can illegally decrypt the content. Public key
traitor tracing schemes allow anyone to send content to members of an authorised group.
In the model of tracing proposed in [CFN94], tracing is performed by a trusted author-
ity who has access to the secret key of all users. The tracer is able to identify one of the
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c traitors who have colluded to construct a pirate decoder. The tracing algorithm may
always correctly identify a traitor, or it may have ε error in which the tracing algorithm
either fails to identify a colluder, or it outputs an innocent user as a traitor.

Full Public Traceability. In Eurocrypt 2005, Chabanne, Phan and Pointcheval
(CPP05) introduced the notion of public traceability where tracing is a black-box and
publicly computable procedure. This is an interesting property that strengthens the over-
all security of the system as it separates the two tasks of key generation and tracing and
allows all users to perform tracing on a pirate decoder. However their construction of
fully public traceability system only worked for two users (it also required a new strong
computational assumptions). The restriction to two user systems was due to a synthesis
method that was inspired by a construction in [KY02] that used c-secure codes. How-
ever in using this approach to multi-user case, public traceability will be lost because
tracing in c-secure codes is a private operation performed by a trusted centre. Authors
raised the construction of a multi-receiver traitor tracing scheme with full public trace-
ability as an interesting open problem.

Efficiency. Efficiency of broadcast encryption systems is often measured in terms of
(i) ciphertext rate that captures the extra bandwidth that is required for transmission of
the ciphertext, measured as the ratio of ciphertext length to plaintext length and, (ii)
computational efficiency of performing encryption and decryption operations. The two
most efficient systems from ciphertext rate view points are KY02 and CPP05 scheme,
both with constant ciphertext rate. However both schemes require exponentiation of
group elements followed by hashing for encryption and decryption of messages and so
compared to symmetric key encryption systems, are inefficient.

In two party systems, Hybrid Tag-KEM/DEM provides a secure, efficient, and flex-
ible method of encrypting messages using public key encryption systems for deliver-
ing the key information and using symmetric key systems for the encryption of the
actual data. In this approach, Key Encapsulation Mechanism (KEM) encrypts a short
random key in a header, and a Data Encapsulation Mechanism (DEM) uses this key
to encrypt the message into a ciphertext using a symmetric encryption scheme. It is
shown [AGKS05] that strong security for the ciphertext can be guaranteed with a se-
mantically secure DEM and CCA security of KEM.

Our contributions. In this paper, we answer the open question of CCP05 by construct-
ing a generic Hybrid Public Key Traitor Tracing that provides full public traceability
and very efficient.

Our approach can be summarised as follows. We first extend the Tag KEM/DEM par-
adigm of hybrid encryption systems to multi-receiver scenario and define Hybrid Tag-
BroadcastKEM/DEM (Hybrid-PKBE). In Hybrid-PKBE the random key that is used
for the encryption of a message is encrypted by TBKEM. This key is only extractable
by authorized receivers. We define security of Hybrid-PKBE and prove a result similar
to Hybrid Tag-KEM/DEM. We show that a Replayable CCA secure Hybrid-PKBE can
be obtained from a Replayable CCA secure TBKEM and a semantically secure DEM.
Replayable CCA (RCCA) security was introduced in [CKN03] to capture a security
notion that is strictly weaker than CCA but sufficient for many practical applications.



266 D.H. Phan, R. Safavi-Naini, and D. Tonien

Next we give a construction of a RCCA secure TBKEM (in above sense) from a CCA
secure public key encryption (PKE) system and a target collision free hash function.
Combining this TBKEM and a semantically secure DEM gives a secure Hybrid-PKBE.
Moreover, we will show that this construction of Hybrid-PKBE support a tracing algo-
rithm and hence it is a Hybrid Public Key Traitor Tracing (Hybrid-PKTT). The tracing
algorithm is black-box and only uses the public key of the system and so the system has
full public traceability. This provides an elegant solution to the open problem of CPP05.

The hybrid construction makes the system very efficient. The ciphertext rate for long
messages approaches one, and computational efficiency is obtained because of the de-
coupling of key encapsulation mechanism and data encryption module. The RCCA
security of the system makes it the first construction of traitor tracing systems with this
level of security (compared to previous constructions with constant ciphertext rate).

In the final section of the paper, we focus on increasing efficiency of the system. The
communication overhead in the above system is a linear function of the size of the re-
ceiver group . Although for long messages and fixed size groups this gives a ciphertext
rate of 1 (asymptotically), but it is desirable to reduce the size of the ciphertext over-
head to make it more applicable for large groups. We use an approach similar to KY02
and CPP05, replacing collusion-secure codes with IPP codes. This reduces the length
of the header and makes it logarithmic in the number of users. Interestingly, the com-
position preserves full public traceability as, unlike collusion-secure codes, IPP codes
have public tracing algorithm.

2 Preliminaries

2.1 Public-key Broadcast Encryption (PKBE)

A public-key broadcast encryption (without revocation, without traceability) consists of
the following algorithms:

– Key generation algorithm PKBE.Gen(1λ, n) → (pk, sk1, . . . , skn):
An algorithm that generates a public-key pk and n private-keys sk1, sk2, . . . , skn.

– Encryption algorithm PKBE.Encpk(m) → c:
An algorithm that encrypts a message m into c by a public key pk.

– Decryption algorithm PKBE.Decski(c) → m:
An algorithm that decrypts a ciphertext c to m by a secret key ski.

The security against replayable adaptive chosen ciphertext attack (RCCA) is defined
as follows. Let Apkbe be a polytime oracle machine that plays the following game.

[GAME.PKBE]
Step 1. (pk, sk1, . . . , skn) ← PKBE.Gen(1λ, n)
Step 2. (m0,m1) ← A

Opkbe

pkbe (pk)
Step 3. b ← {0, 1}, c∗ ← PKBE.Encpk(mb)
Step 4. b̂ ← A

Opkbe

pkbe (c∗)

Here Opkbe denotes the decryption oracle. A decryption query is of the form (i, c)
where i is an integer ∈ [1, n] and c is a ciphertext with a constraint that in Step 4 c must
be different from c∗. To answer this query, the oracle calculates PKBE.Decski(c) = m.
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In Step 2 the oracle outputs m. Moreover, in Step 4, it checks: if m = m0 or m = m1
then it outputs ⊥, otherwise it outputsm. We define εpkbe-rcca,Apkbe = |Pr[b̂ = b]− 1/2|,
and εpkbe-rcca = max(εpkbe-rcca,Apkbe), where the maximum is taken over all polytime
machines Apkbe. We say that a PKBE is RCCA secure if εpkbe-rcca is negligible in λ.

Public Key Traitor Tracing Scheme with Public Traceability. A public key traitor trac-
ing (PKTT) scheme is a public key broadcast encryption with an extra algorithm,
the tracing algorithm. This tracing algorithm takes as input the tracing information
trace-infor and a pirate decoder D. It outputs at least one of the users (called trai-
tors) who have collaborated in producing the pirate decoder D. In a c-traitor tracing
scheme, we assume that there are at most c traitors who created the pirate decoder D.
The other obvious assumption on D is that D can effectively reverse the encryption, i.e.
D(PKBE.Encpk(m)) = m, with high probability.

In general, tracing information trace-infor consists of some public information and
some system secret parameters (for example, users’ secret keys). Chabanne et. al intro-
duced [CPP05] an interesting property of public traceability for traitor tracing schemes
in which trace-infor consists of only public key of the system. Thus, it makes it possible
for anyone to execute the tracing algorithm.

2.2 Data Encapsulation Mechanism (DEM)

A data encapsulation mechanism consists of the following algorithms:

– Setup algorithm DEM.Setup(1λ) → KD:
An algorithm that specifies the symmetric key space KD.

– Encryption algorithm DEM.Encdk(m) → c:
An algorithm that encrypts m into c using a symmetric-key dk ∈ KD.

– Decryption algorithm DEM.Decdk(c) → m:
An algorithm that decrypts c to m using a symmetric-key dk ∈ KD .

The IND (indistinguishable against passive attack) security of DEM is defined as
follows. Let Adem be a poly-time oracle machine that plays the following game.

[GAME.DEM]
Step 1. KD ← DEM.Setup(1λ)
Step 2. (m0,m1) ← Adem

Step 3. b ← {0, 1}, dk ← KD , c ← DEM.Encdk(mb)
Step 4. b̂ ← Adem(c)

We define εdem,Adem = |Pr[b̂ = b] − 1/2|, and εdem = max(εdem,Adem), where the
maximum is taken over all polytime machines Adem. We say that a DEM is IND secure
if εdem is negligible in λ.

2.3 Target Collision Resistant Hash Functions

A family H = {Hk : A → B}k∈K of keyed hash functions is target collision resistant
if given a random τ ∈ A and a randomHk ∈ H, it is computationally infeasible to find
τ ′ ∈ A such that τ ′ �= τ and Hk(τ ′) = Hk(τ). A random function Hk of H is called
a target collision-free hash function. Associated with Hk, we define the quantity εtch as
εtch = maxPr[τ ′ ∈ A, τ ′ �= τ,Hk(τ ′) = Hk(τ) : τ ← A, τ ′ ← Atch(τ)] where the
maximum is taken over all poly-time machines Atch.
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3 Generic Construction of Hybrid PKBE

In this section, we generalize Abe et. al’s [AGKS05] Tag-KEM/DEM construction
of Hybrid-PKE. We show how to construct a hybrid public key broadcast encryp-
tion scheme (without revocation and traitor tracing) using two components: a Tag-
BroadcastKEM and a DEM, and with this construction, we prove the following compo-
sition theorem,
(relaxed) CCA Tag-BKEM + semantic secure DEM → (relaxed) CCA Hybrid-PKBE.

3.1 Tag-Broadcast Key Encapsulation Mechanism (TBKEM)

A tag-broadcast key encapsulation mechanism consists of the following algorithms:

– Key generation algorithm TBKEM.Gen(1λ, n) → (pk, sk1, . . . , skn):
An algorithm that generates a public-key pk and n private-keys sk1, sk2, . . . , skn.
It also specifies tag space T and encapsulated key space KD.

– Key derivation algorithm TBKEM.Key(pk) → (ω, dk):
An algorithm that generates a one-time key dk and internal state information ω.

– Encryption algorithm TBKEM.Enc(ω, τ) → ψ:
An algorithm that encrypts dk (embedded in ω) into ψ using a tag τ .

– Decryption algorithm TBKEM.Decski(ψ, τ) → dk:
An algorithm that recovers dk from ψ and τ using one of the private-key ski. It
may output a special symbol ⊥ �∈ KD.

The RCCA security of TBKEM is defined as follows. Let Atbkem be a poly-time
oracle machine that plays the following game.

[GAME.TBKEM]
Step 1. (pk, sk1, . . . , skn) ← TBKEM.Gen(1λ, n)
Step 2. (w, dk1) ← TBKEM.Key(pk), dk0 ← KD, δ ← {0, 1}
Step 3. τ∗ ← AOtbkem

tbkem (pk, dkδ)
Step 4. ψ∗ ← TBKEM.Enc(w, τ∗)
Step 5. δ̂ ← AOtbkem

tbkem (ψ∗)

Here Otbkem denotes the decryption oracle. A decryption query is of the form (i, ψ, τ)
where i is an integer ∈ [1, n], τ is a tag and ψ is a ciphertext with a constraint that in
Step 5 (ψ, τ) must be different from (ψ∗, τ∗). To answer this query, the oracle calculates
TBKEM.Decski(ψ, τ) = dk. In Step 3 the oracle outputs dk. However, in Step 5, for
a decryption query (i, ψ, τ), the oracle first checks if τ = τ∗ and if dk = dkδ , then
outputs the symbol ⊥ �∈ KD , otherwise outputs dk. In other words, the sole difference
between CCA security and RCCA security in the TBKEM model is that the adversary
in the RCCA security is forbidden to ask (ψ, τ) where τ = τ∗ and dk = dkδ . We
remark that in TBKEM game, the adversary only knows dkδ but not both dk0 and dk1.

We define εtbkem-rcca,Atbkem = |Pr[δ̂ = δ]− 1/2|, and εtbkem-rcca =max(εtbkem-rcca,Atbkem),
where the maximum is taken over all polytime machines Atbkem. We say that a TBKEM
is RCCA secure if εtbkem-rcca is negligible in λ. We will see later that TBKEM with
RCCA security and can be constructed from CCA-secure PKE and target collision-free
hash function.
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3.2 Hybrid Public Key Broadcast Encryption Scheme (Hybrid-PKBE)

The description of the hybrid public key broadcast encryption scheme is as follows.

– Algorithm Hybrid-PKBE.Gen(1λ, n) → (pk, sk1, . . . , skn):
Call TBKEM.Gen(1λ, n) → (pk, sk1, . . . , skn).

– Algorithm Hybrid-PKBE.Encpk(m) → c: call TBKEM.Key(pk) → (ω, dk),
DEM.Encdk(m) → τ , TBKEM.Enc(ω, τ) → ψ and set c = (ψ, τ).

– Algorithm Hybrid-PKBE.Decski
(c) → m: suppose c = (ψ, τ).

Call TBKEM.Decski(ψ, τ) → dk and DEM.Decdk(τ) → m.

Theorem 1. Hybrid-PKBE is RCCA secure under the assumptions that TBKEM is
RCCA secure and DEM is IND secure: εpkbe-rcca ≤ 2 εtbkem-rcca + εdem.

Proof. We prove the Hybrid-PKBE is RCCA secure using a sequence of games.

Game 0. LetApkbe be an adversary that plays the following attack game in the definition
of RCCA security (section 2.1).

[GAME.PKBE0]
Step 1. (pk, sk1, . . . , skn) ← TBKEM.Gen(1λ, n)
Step 2. (m0,m1) ← A

Opkbe

pkbe (pk)
Step 3. b ← {0, 1}, (ω, dk∗) ← TBKEM.Key(pk),

τ∗ ← DEM.Encdk∗(mb), ψ∗ ← TBKEM.Enc(ω, τ∗)
Step 4. b̂ ← A

Opkbe

pkbe (ψ∗, τ∗)

LetX0 be the event that b= b̂ in the above game then εpkbe-rcca,Apkbe = |Pr[X0]−1/2|.
In Step 4, a decryption query is of the form (i, ψ, τ) where (ψ, τ) �= (ψ∗, τ∗). To

answer this query, the oracle executes

Hybrid-PKBE.Decski
(ψ, τ):

1. TBKEM.Decski(ψ, τ) = dk;
2. DEM.Decdk(τ) = m.

If m = m0 or m = m1 then Opkbe outputs ⊥, otherwise, it outputs m.

Game 1. We modify Game 0 in Step 3, instead of encrypting mb using a key produced
by TBKEM.Key, we encrypt mb using a random key.

[GAME.PKBE1]
Step 1. (pk, sk1, . . . , skn) ← TBKEM.Gen(1λ, n)
Step 2. (m0,m1) ← A

Opkbe

pkbe (pk)
Step 3. b ← {0, 1}, (ω, dk1) ← TBKEM.Key(pk),

dk0 ← KD , τ∗ ← DEM.Encdk0(mb), ψ∗ ← TBKEM.Enc(ω, τ∗)
Step 4. b̂ ← A

Opkbe

pkbe (ψ∗, τ∗)

Let X1 be the event that b = b̂ in Game 1.
Claim 1. |Pr[X0] − Pr[X1]| ≤ 2εtbkem-rcca.
The proof of this claim can be found in the full version [PST06].
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Claim 2. |Pr[X1] − 1/2| ≤ εdem.
The proof of this claim can be found in the full version [PST06].
Finally, we have

εpkbe-rcca,Apkbe = |Pr[X0] − 1/2|
≤ |Pr[X0] − Pr[X1]| + |Pr[X1] − 1/2|
≤ 2 εtbkem-rcca + εdem,

thus, εpkbe-rcca ≤ 2 εtbkem-rcca + εdem, where εtbkem-rcca and εdem are assumed to be negli-
gible.

Remark. We can also prove that

CCA Tag-BKEM + semantic secure DEM → CCA Hybrid-PKBE.

This is a more natural generalization of the result of Abe et. al [AGKS05]. However,
we don’t know how to construct, in a simple manner, a CCA TBKEM from PKE only.
This is the reason we introduce the notion of RCCA TBKEM which will be constructed
from CCA PKE.

4 Construction of a Basic Hybrid-PKTT

4.1 How to Construct TBKEM from PKE

In this section, we show a generic construction of a TBKEM that is RCCA secure from
a CCA secure PKE and a target collision-free hash function H . The construction is as
follows.

– Algorithm TBKEM.Gen(1λ, n) → (pk, sk1, . . . , skn):
For each i = 1, . . . , n, call PKE.Gen(1λ) → (pki, ski). Set pk = (pk1, . . . , pkn).

– Algorithm TBKEM.Key(pk) → (ω, dk):
Choose a random dk and set ω = pk||dk.

– Algorithm TBKEM.Enc(ω, τ) → ψ (where ω = pk||dk):
Compute h = H(τ). Call PKE.Encpki(dk||h) → σi for i = 1, . . . , n. Output
ψ = (σ1, . . . , σn).

– Algorithm TBKEM.Decski(ψ, τ) → dk or ⊥ (where ψ = (σ1, . . . , σn)):
Call PKE.Decski(σi) → dk||h. If h = H(τ), return dk. Otherwise, return ⊥.

Theorem 2. TBKEM is RCCA secure under the assumptions that PKE is CCA secure
and H is target collision-free: εtbkem-rcca ≤ εtch + n εpke-cca.

We use the same technique as used for proof of Theorem 1, namely Game approach, to
prove this theorem. The proof can be found in the full version [PST06].

4.2 Basic Hybrid-PKTT

In section 3, we show how to construct a Hybrid-PKBE using a TBKEM and a DEM.
In section 4, we show how to construct a TBKEM using a PKE and a target collision-
free hash function. In this section, we combine the above two constructions. Thus, from
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a DEM, a PKE and a target collision-free hash function, we can construct a Hybrid-
PKBE. We show that this Hybrid-PKBE is very special: it is a Hybrid-PKTT with full-
public-traceability. Therefore, we have the following composition:

CCA PKE + semantic secure DEM + target collision-free hash function
→ RCCA Hybrid-PKTT with full-public-traceability.

The description of the Hybrid-PKTT is as follows.

Algorithm Hybrid-PKTT.Gen(1λ, n) → (pk, sk1, . . . , skn):
For each i = 1, . . . , n, call PKE.Gen(1λ) → (pki, ski). Set pk = (pk1, . . . , pkn).

Algorithm Hybrid-PKTT.Encpk(m) → c:
Choose a random dk and call DEM.Encdk(m) → τ . Compute h = H(τ) and for
each i = 1, . . . , n, call PKE.Encpki(dk||h) → σi. Output c = (σ1, . . . , σn, τ).

Algorithm Hybrid-PKTT.Decski
(c) → m or ⊥, where c = (σ1, . . . , σn, τ):

Call PKE.Decski(σi) → dk||h. If h �= H(τ), return ⊥. Otherwise, call
DEM.Decdk(τ) → m and output m.

Algorithm Hybrid-PKTT.Public-Trace(pk,D): A black-box traitor tracing algorithm
that can be executed by anyone using the public-key to find a traitor who had created
pirate decoder.

– Choose random dk, m, and call Hybrid-PKTT.Encpk(m) → (σ1, . . . , σn, τ).
– For each i = 1, . . . , n, choose random d′i �= dk||h so that d′i has the same length as
dk||h and call PKE.Encpki(d′i) → σ′i; modify the ciphertext and give them to D and

check if D(σ1, σ2, . . . , σn, τ)
?= m, D(σ′1, σ2, . . . , σn, τ)

?= m, D(σ′1, σ
′
2, . . . , σn, τ)

?= m, . . . ,D(σ′1, σ
′
2, . . . , σ

′
n, τ)

?= m.
– Calculate the following probabilities
p0 = Pr[D(σ1, σ2, . . . , σn, τ) = m], p1 = Pr[D(σ′1, σ2, . . . , σn, τ) = m],
p2 = Pr[D(σ′1, σ

′
2, . . . , σn, τ) = m], . . . , pn = Pr[D(σ′1, σ

′
2, . . . , σ

′
n, τ) = m].

We assume that D is a usable decoder so p0 is not negligible (indeed p0 ≈ 1), and
obviously, pn ≈ 0. So there must exist i such that |pi − pi−1| is not negligible, in
this case, output i as a traitor.

The above scheme, without tracing algorithm, is a Hybrid-PKBE. The security of
encryption of above scheme, denoted by εpktt-rcca, is evidently independent of the tracing
algorithm. Therefore, following theorem is a corollary of Theorem 1 and Theorem 2.

Theorem 3. Hybrid-PKTT is RCCA secure under the assumptions that PKE is CCA se-
cure,H is target collision-free, and DEM is IND secure: εpktt-rcca ≤ 2(εtch +n εpke-cca)+
εdem.

We obtain thus a generic construction of RCCA Hybrid-PKTT with public traceability.
One could doubt about the RCCA model. This is, theoretically, a weaker model than
the standard CCA. However, it seem to be sufficiently secure for most practical pur-
poses, as showed in [CKN03]. Moreover, in [CKN03], the authors distinguish two types
of RCCA: secretly detectable RCCA (sd-RCCA) and publicly detectable RCCA (pd-
RCCA). The former means that the detection of a ciphertext, whose underlying plaintext
is identical to the underlying plaintext of the challenge, requires secret information and
the latter, which is much less restricted, means that such a detection can be done from the
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public information only. The RCCA used in our proof is publicly detectable RCCA. In
fact, if c = (σ∗1 , . . . , σ

∗
n, τ

∗) is a valid ciphertext outputed by Hybrid-PKTT.Encpk(m),
then anyone can choose random σ1, . . . , σi−1, σi+1, . . . , σn to construct a new ci-
phertext c′ = (σ1, . . . , σi−1, σ

∗
i , σi+1, . . . , σn, τ

∗) so that the decryption of c′ under
the key ski gives back the original message m, i.e. Hybrid-PKTT.Encski

(c) = m.
We call the above scheme the basic Hybrid-PKTT scheme. In this scheme, a cipher-

text c consists of a ciphertext body τ and a ciphertext header (σ1, . . . , σn). The cipher-
text body τ has approximately the same size as the message m. We can say somewhat
that the transmission rate of the above scheme is asymptotically 1 because the length of
the message to be encrypted could be arbitrary.

The two practically inconveniences of the above scheme is that the size of the cipher-
text header is linear in the number of users and that the cost of reduction in the security
proof is linear on the number of user.

We can overcome both these problems by using the method in [KY02, CPP05] of
using a convenient code, namely the IPP codes. Remark that if we use the collusion secure
code [BS98], the scheme does not, unfortunately, support the public traceability anymore.
The reason is that, in collusion secure code, for tracing back a traitor from a codeword,
one has use the secret permutation in the construction of the code and therefore, only the
center can do it. Why we don’t use the IPP code with the schemes in [CPP05, KY02]?
The obstacle is that the basic scheme in [CPP05, KY02] supports only 2 users and there
does not exist binary IPP codes. Fortunately, we can combine our basic scheme above
with a q-ary IPP code for any q ≥ 3. As the tracing procedure in IPP code does not require
any secret information, the combined scheme supports full public traceability.

We will present the hybrid scheme HybridIPP-PKTT based on IPP codes in the next
section. We remark that in order to use q-ary code, the parameter n in the above basic
scheme must be set to n = q. Since we can choose q as small as q = 3, the number
of users in each basic scheme is small (n = q = 3), the ciphertext header in the new
scheme become small, the cost of reduction in the security proof become constant, and
this make the new scheme HybridIPP-PKTT become a very efficient scheme.

5 Hybrid-PKTT Based on IPP Codes

This is the most interesting section of our paper. We will show how to combine the basic
scheme in the previous section with a q-ary c-IPP code to construct an efficient hybrid
traitor tracing scheme with full-public-traceability.

5.1 IPP Codes

Let Q be an alphabet set containing q symbols. If C = {w1, w2, . . . , wN} ⊂ Q�, then
C is called a q-ary code of size N and length �. Each wi ∈ C is called a codeword and
we write wi = (wi,1, wi,2, . . . , wi,�) wherewi,j ∈ Q is called the jth component of the
codeword wi.

We define descendants of a subset of codewords as follows. Let X ⊂ C and u =
(u1, u2, . . . , u�) ∈ Q�. The word u is called a descendant of X if for any 1 ≤ j ≤ �,
the jth component uj of u is equal to a jth component of a codeword in X . In this
case, codewords in X are called parent codewords of u. For example, (3, 2, 1, 3) is
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a descendant of three codewords (3, 1, 1, 2), (1, 2, 1, 3) and (2, 2, 2, 2). We denote by
Desc(X) the set of all descendants of X . For a positive integer c, denote by Descc(C)
the set of all descendants of subsets of up to c codewords. Codes with identifiable parent
property (IPP codes) are defined as follows.

Definition 1. A code C is called c-IPP if, for any u ∈ Descc(C), there exists w ∈ C
such that for any X ⊂ C, if |X | ≤ c and u ∈ Desc(X) then w ∈ X .

In a c-IPP code, given a descendant u ∈ Descc(C), we can always identify at least
one of its parent codewords. Binary c-IPP codes (with more than two codewords) do
not exists, thus in any c-IPP code, the alphabet size q ≥ 3. There are many construc-
tions [SW98, SSW01, TM05, TS06] of c-IPP codes. We remark that even both c-IPP
codes and c-collusion secure codes can be constructed with large number of codewords
of similar length, there are three major differences between them:

– In collusion secure codes, there is an error parameter that specifies the probability
that the tracing algorithm fails to output the correct parent codeword, however, in
IPP code, there is not such error, thus the tracing is error-free and a correct traitor
is always identified.

– Collusion secure codes use secret permutation and thus the tracing algorithm cannot
be made public, whereas, in IPP codes, everything is public.

– Known collusion secure codes are binary codes, whereas, nontrivial IPP codes have
alphabet size at least 3. (Binary IPP code has at most two codewords).

5.2 Description of HybridIPP-PKTT

If a q-ary c-IPP code of size N and length � is used, then constructing � instances of
Hybrid-PKTT, in each instance of Hybrid-PKTT set the parameter n = q, we have a
new public key traitor tracing called HybridIPP-PKTT. In this new scheme, there are q�
public keys andN users, each user holds � secret keys. The formal construction follows:

Let C = {ω1, . . . , ωN} be a q-ary c-IPP code that allows collusion of up to c
users. The N -user HybridIPP-PKTT scheme is a combination of � basic Hybrid-PKTT
schemes S1, S2, . . . , S�, each scheme Si is for q users:

Setup: Given the security parameters λ and c:
For each j = 1, . . . , �, call the algorithm Hybrid-PKBE.Gen(1λ, q) to generate an
encryption key pkj and q decryption keys skj,1, . . . , skj,q for the q-user system Sj .

Public key: The tuple (pki)i=1,...,� and the code C.
Private key of each user: User i (for i = 1, . . . , N ) is associated to a codeword wi in

C and the corresponding �-tuple key sk1,wi,1 , sk2,wi,2 , . . . , sk�,wi,�
where wi,j ∈

Q = {1, 2, . . . , q} is the symbol at the jth position of the codeword wi.
Encryption algorithm: The plaintext space of the �-key system is M�. On input

(m1,m2, . . . ,m�), the encryption algorithm outputs the ciphertext (c1, c2, . . . , c�),
where cj = Hybrid-PKBE.Encpkj

(mj) = (σj,1, . . . , σj,q, τj).
Decryption Algorithm: On the ciphertext (c1, c2, . . . , c�), user i uses his secret key to

compute mj = Hybrid-PKBE.Decskj,wi,j
(cj).
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Public Tracing Algorithm: For each j = 1, . . . , �, fix � − 1 valid ciphertexts
c1, . . . , cj−1, cj+1, . . . , c� and use the tracing algorithm of the instance Sj to trace
a traitor uj ∈ Q = {1, 2, . . . , q} in this instance. From the descendant word
(u1, . . . , u�) ∈ Q�, identify one of its parent codewords. The user associated with
this codeword is a traitor.

Efficiency: The ciphertext contains two parts: ciphertext body (τ1, . . . , τ�) and cipher-
text header (σj,1, . . . , σj,q)j=1,...,�. The ciphertext body has approximately the
same size as the message and the ciphertext header is proportional to q�. We can
choose IPP code with small alphabet size such as q = 3 and the code length � is a
logarithmic function of the code size N . Thus, the ciphertext header has fixed size
and very small compared to the message size.

For the security analysis, one could use the following assumption, from [KY02]: the
threshold assumption says that a pirate-decoder that just returns correctly a fraction p of
a plaintext of length λwhere 1−p is a non-negligible function in λ, is useless. However,
as already mentioned in [KY02], by employing an all-or-nothing transform [Riv97,
CDHKS00], this assumption is not necessary.

Proposition 1. The leak of the secret keys in the (� − 1) q-user systems of � q-user
systems does not affect the security of the remained q-user system.

The proof of this proposition is quite similar to the corresponding ones in [KY02,
CPP05] and can be found in the full version [PST06].

This proposition combines with the fact that C is a c-IPP code, leads to following
corollary:

Corollary 1. The above scheme is a N -user, c-traitor tracing scheme with full-public
traceability.

We give an example of a concrete scheme in the full version [PST06]. This scheme is
inspired from the Cramer-Shoup scheme [CS03].

6 Conclusion

Motivated by an open problem proposed in CPP05, we extended Tag-KEM/DEM
paradigm of hybrid encryption to multi-receiver scenario and constructed a hybrid trai-
tor tracing scheme that has the following properties

– full public traceability, and thus is a comprehensive solution to the open problem
of CPP05;

– blackbox traitor tracing algorithm that is error-free and always can identify cor-
rectly at least one traitor. This is an important advantage of our scheme over [KY02,
CPP05], because these schemes use collusion secure code and the tracing algorithm
of collusion secure code has error;

– it is a generic construction and provides significant improvement in terms of secu-
rity and efficiency and this is without resorting to new computational assumptions.
In fact security is based on the assumptions underlying security of the public key
and symmetric key encryption systems used in KEM and DEM, respectively. In
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comparison the scheme in [CPP05] (which supports local public traceability against
passive attack only) is based on new assumptions which are all stronger than the
standard Bilinear DDH assumption;

– the generic construction provides the following powerful composition

IPP code + CCA PKE + semantic secure DEM + target collision-free hash function
→ (relaxed) CCA HybridIPP -PKTT with full-public-traceability.

Our security proofs are in replayable CCA model. Although all previous schemes with
constant transmission rate achieve only semantic security against passive attack and so
our scheme has much stronger security level, it is a quite interesting question if similar
results can be derived if CCA model is assumed. Finally, combining revocation and
public traceability to the Hybrid Traitor tracing scheme is an important open problem.
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Abstract. We construct the first mix-net that is secure against adap-
tive adversaries corrupting any minority of the mix-servers and any set of
senders. The mix-net is based on the Paillier cryptosystem and analyzed
in the universal composability model without erasures under the deci-
sional composite residuosity assumption, the strong RSA-assumption,
and the discrete logarithm assumption. We assume the existence of ideal
functionalities for a bulletin board, key generation, and coin-flipping.

1 Introduction

Suppose a set of senders S1, . . . , SN each have an input mi, and want to compute
the sorted list (mπ(1), . . . ,mπ(N)) of messages, but keep the identity of the sender
of any particular message mi secret. A trusted party can provide the service
required by the senders. First it collects all messages. Then it sorts the inputs
and outputs the result. A protocol, i.e., a list of machines M1, . . . ,Mk, that
emulates the service of the trusted party as described above is called a mix-
net, and the parties M1, . . . ,Mk are referred to as mix-servers. The notion of a
mix-net was introduced by Chaum [3].

Many mix-net constructions are proposed in the literature without security
proofs, and several of these constructions have in fact been broken. The first
rigorous definition of security of a mix-net was given by Abe and Imai [1], but
they did not provide any construction that satisfies their definition. Wikström
[16] gives the first definition of a universally composable (UC) mix-net, and also
the first construction with a complete security proof. He recently presented a
more efficient UC-secure scheme [17].

An important tool in the construction of a mix-net is a so called “proof of
a shuffle”. This allows a mix-server to prove that it behaved as expected with-
out leaking knowledge. The first efficient methods to achieve this were given
independently by Neff [12] and Furukawa and Sako [8]. Subsequently, other au-
thors improved and complemented these methods, e.g. [9, 7, 17]. Our results seem
largely independent of the method used, but for concreteness we use the method
presented in [17].
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1.1 Our Contribution

All previous works consider a static adversary that decides which parties to
corrupt before the protocol is executed. We provide the first efficient mix-net
that is secure against an adaptive adversary. The problem of constructing such a
scheme has been an open problem since the notion of mix-nets was proposed by
Chaum [3] two decades ago. The model we consider is the non-erasure model,
i.e., every state transition of a party is stored on a special history tape that is
handed to the adversary upon corruption. It is well known that it is hard to prove
the security of protocols in this model, even more so for efficient protocols. Our
analysis is novel in that we show that a mix-net can be proved UC-secure even
if the zero-knowledge proofs of knowledge of correct re-encryption-permutations
computed by the mix-servers are not zero-knowledge against adaptive adversaries
and not even straight-line extractable as is often believed to be necessary in the
UC-setting. We prove our claims in the full version of this paper.

1.2 Notation

We use S1, . . . , SN and M1, . . . ,Mk to denote the senders and the mix-servers.
All participants are modeled as interactive Turing machines with a history tape
where all state transitions are recorded. Upon corruption the entire execution
history is given to the adversary. We abuse notation and use Si andMj to denote
both the machines themselves and their identity. We denote by k′ = �(k+ 1)/2 
the number of mix-servers needed for majority. We denote the set of permu-
tations of N elements by ΣN . The main security parameter is κ. The zero-
knowledge proofs invoked as subprotocols use two additional security parame-
ters, κc and κr that determine the number of bits in challenges and the statistical
distance between a simulated proof and a real proof. We denote by Sort the al-
gorithm that given a list of strings as input outputs the same set of strings in
lexicographical order.

1.3 Cryptographic Model

We use the UC-framework [2], but our notation differs from [2] in that we intro-
duce an explicit “communication model” CI that acts as a router of messages
between the parties. We define M∗

l to be the set of adaptive adversaries that
corrupt less than l out of k parties of the mix-server type, and arbitrarily many
parties of the sender type. We assume an ideal authenticated bulletin board
functionality FBB. All parties can write to it, but no party can erase any mes-
sage from it. The adversary can prevent any party from reading or writing. We
also need an ideal coin-flipping functionality FCF at some points in the protocol.
It simply outputs random coins when asked to do so. We take the liberty of
interpreting random strings as elements in groups, e.g., in the subgroup QRN.

We use the discrete logarithm (DL) assumption for safe primes p = 2q + 1,
which says that it is infeasible to compute a discrete logarithm of a random
element y ∈ Gq, where Gq is the group of squares modulo p. We use the decision
composite residuosity assumption (DCR), which says that given a product n
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of two random safe primes of the same size, it is infeasible to distinguish the
uniform distribution on elements in Z∗n2 from the uniform distribution on nth
residues in Z∗n2 . We use the strong RSA-assumption (SRSA) which says that
given a product N of two random safe primes, and g ∈ Z∗N, it is infeasible to
compute (b, η) such that bη = g mod N and η �= ±1.

1.4 Distributed Paillier

We use a combination of two threshold versions of the Paillier [13] cryptosystem
introduced by Lysyanskaya and Peikert [10] and Damg̊ard et al. [5], and also
modify the scheme slightly. On input 1κ the key generator KGpai chooses two
κ/2-bit safe primes p and q randomly and defines the public key n = pq. We
define g = n + 1 and f = (p − 1)(q − 1)/4. Then it chooses a private key d
under the restriction d = 0 mod f and d = 1 mod n and outputs (n, d). Note
that gm = 1 + mn mod n2. We define L(u) = (u − 1)/n and have L(gm) = m.
To encrypt a message m ∈ Zn a random r ∈ Z∗n is chosen and the ciphertext is
defined by u = En(m, r) = gmr2n mod n2. The decryption algorithm is defined
Dd(u) = L(ud mod n2). Let gf ∈ Z∗n2 be an element of order f. Then there
exists a 2nth root rf of gf modulo n, and an alternative encryption algorithm is
Egf ,n(m, s) = gmgsf = gm(rsf )

2n mod n2, where s is chosen randomly in [0, 2κ+κr−
1]. Here κr is an additional security parameter that is large enough to make 2−κr

negligible. It should always be clear from the context what is meant.
The cryptosystem is homomorphic, i.e., En(m1)En(m2) = En(m1 +m2). As a

consequence it is possible to re-encrypt a ciphertext u using randomness s ∈ Z∗n
by computing uEn(0, s) = En(m, rs), or alternatively using randomness s ∈
[0, 2κ+κr −1] as uEgf ,n(0, s) = En(m, rrsf ). Furthermore, given a ciphertext K1 =
En(1, R1) = gR2n

1 mod n2 of 1 an alternative way to encrypt a message m is to
compute EK1,n(m, r) = Km1 r

2n mod n2.
The scheme is turned into a distributed cryptosystem with k parties of which

a majority k′ are needed for decryption as follows. Let g and h be two random
generators of a subgroup Gq of prime order q of Z∗2q+1 for a random prime 2q+1
such that log2 q > 2κ+ κr. Let v be a generator of the group of squares QRn2 .
Each partyMj is assigned a random element dj ∈ [0, 22κ+κr−1] under the restric-
tion that d =

∑k
j=1 dj mod nf, and define vj = vdj mod n2. We also compute a

Shamir-secret sharing [15] of each dj to allow reconstruction of this value. More
precisely we choose for each j a random (k′−1)-degree polynomial fj over Zq un-
der the restriction that fj(0) = dj , and define dj,l = fj(l) mod q. A Pedersen [14]
commitment Fj,l = gdj,lhtj,l of each dj,l is also computed, where tj,l ∈ Zq is ran-
domly chosen. The joint public key consists of (n, v, (vj)kj=1, (Fj,l)j,l∈{1,...,k}).
The private key of Mj consists of (dj , (dl,j , tl,j)kl=1).

To jointly decrypt a ciphertext u, the jth share-holder computes uj = udj mod
n2 and proves in zero-knowledge that logu uj = logv vj . If the proof fails, each
Ml publishes (dj,l, tj,l). Then each honest party finds a set of (dj,l, tj,l) such
that Fj,l = gdj,lhtj,l , recovers dj using Lagrange interpolation, and computes
uj = udj mod n2. Finally, the plaintext is given by L(

∏k
j=1 uj) = m.
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2 The Ideal Relaxed Mix-Net

We use a slightly relaxed definition of the ideal mix-net in that corrupt senders
may input messages with κ bits whereas honest senders may only input messages
with κm = κ− κr − 2 bits. In the final output all messages are truncated to κm
bits. The additional security parameter κr must be chosen such that 2−κr is
negligible. It decides the statistical hiding properties of some subprotocols. It is
hard to imagine a situation where the relaxation is a real disadvantage, but if it
is, it may be possible to eliminate this beauty flaw by an erasure-free proof of
membership in the correct interval in the submission phase of the protocol.

Functionality 1 (Relaxed Mix-Net). The relaxed ideal mix-net, FRMN, run-
ning with mix-servers M1, . . . ,Mk, senders S1, . . . , SN , and ideal adversary S
proceeds as follows

1. Initialize a list L = ∅, a database D, c = 0, and JS = ∅ and JM = ∅.
2. Repeatedly wait for new inputs and do

– Upon receipt of (Si, Send,mi) from CI do the following. If i �∈ JS and Si
is not corrupted and mi ∈ [−2κm + 1, 2κm − 1] or if Si is corrupted and
mi ∈ [−2κ + 1, 2κ − 1] then set c ← c + 1, store this tuple in D under
the index c, and hand (S, Si, Input, c) to CI . Ignore other inputs.

– Upon receipt of (Mj, Run) from CI , set c ← c+ 1, store (Mj , Run) in D
under the index c, and hand (S,Mj , Input, c) to CI .

– Upon receipt of (S, AcceptInput, c) such that something is stored under
the index c in D do
(a) If (Si, Send,mi) is stored under c and i �∈ JS , then append mi to the

list L, set JS ← JS ∪ {i}, and hand (S, Si, Send) to CI .
(b) If (Mj , Run) is stored under c, then set JM ← JM ∪ {j}. If |JM | >

k/2, then truncate all strings in L to κm bits and sort the result
lexicographically to form a list L′. Sort the list L to form a list
L′′. Then hand ((S,Mj , Output, L′′), {(Ml, Output, L′)}kl=1) to CI .
Otherwise, hand CI the list (S,Mj , Run).

3 The Adaptively Secure Mix-Net

In this section we first describe the basic structure of our mix-net. Then we ex-
plain how we modify this to accommodate adaptive adversaries. We also discuss
how and why our construction differs from previous constructions in the litera-
ture. This is followed by subsections introducing the subprotocols invoked in an
execution of the mix-net. Finally, we give a detailed description of the mix-net.

3.1 Key Generation

The mix-servers use a joint κ-bit Paillier public key n and a corresponding secret
shared secret key as described above. The public key n is the main public key
in the mix-net, but we do need additional keys. We denote by (n′, g′, d′) Paillier
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parameters generated as above but such that n′ > n. We also need an RSA
modulus N that is chosen exactly as the Paillier moduli n and n′. Finally, we
need two Paillier ciphertexts K0 = En(0, R0) and K1 = En(1, R1) of 0 and 1
respectively. Below we summarize key generation as an ideal functionality.

Functionality 2 (Key Generation). The ideal key generation functionality,
FPKG, running with mix-servers M1, . . . ,Mk, senders S1, . . . , SN , and ideal ad-
versary S proceeds as follows. It generates keys as described above and hands
((S, PublicKeys, (N, g, h, n′, n,K0,K1, v, (vl)kl=1, (Fl,l′ )l,l′∈{1,...,k})),
{(Mj, Keys, (N, g, h, n′, n,K0,K1, v, (vl)kl=1, (Fl,l′)l,l′∈{1,...,k}),
(dj , (dl,j , tl,j)kl=1))}kj=1) to CI .

3.2 The Overall Structure

Our mix-net is based on the re-encryption-permutation paradigm. Let L0 =
{u0,i}Ni=1 be the list of ciphertexts submitted by senders. For l = 1, . . . , k the lth
mix-server Ml re-encrypts each element in Ll−1 = {ul−1,i}Ni=1 as explained in
Section 1.4, sorts the resulting list and publishes the result as Ll. Then it proves,
in zero-knowledge, knowledge of a witness that Ll−1 and Ll are related in this
way. The mix-servers then jointly and verifiably re-encrypt the ciphertexts in
Lk. Note that no permutation takes place in this step. The result is denoted by
Lk+1. Finally, the mix-servers jointly and verifiably decrypt each ciphertext in
Lk+1 and sort the resulting list of plaintexts to form the output. Except for the
joint re-encryption step this is similar to several previous constructions.

3.3 Accommodating Adaptive Adversaries

To extract the inputs of corrupt senders, each sender forms two ciphertexts
u0,i and u′0,i and proves that the same plaintext is hidden in both. Naor and
Yung’s [11] double-ciphertext trick then allows extraction. Submissions of honest
senders must be simulated without knowing which message they actually hand to
FRMN. A new problem in the adaptive setting is that the adversary may corrupt
a simulated honest sender Si that has already computed fake ciphertexts u0,i and
u′0,i. The ideal adversary can of course corrupt the corresponding dummy party
S̃i and retrieve the true value mi it handed to FRMN. The problem is that it
must provide Si with a plausible history tape that convinces the adversary that
Si sent mi already from the beginning. To solve this problem we adapt an idea of
Damg̊ard and Nielsen [6]. We have two public keysK0 = En(0, R0) = R2n

0 mod n2

and K1 = En(1, R1) = gR2n
1 mod n2 and each sender is given a unique key

K ′i = En′(ai) for a randomly chosen ai ∈ Zn′ . The sender of a message mi
chooses bi ∈ Zn, ri ∈ Z∗n and r′i ∈ Z∗n′ randomly, and computes its two ciphertexts
as follows ui = EK1,n(mi, ri) and u′i = E(g′)biK′

i,n
′(mi, r′i). Then it submits

(bi, ui, u′i) and proves in zero-knowledge that the same message mi is encrypted
in both ciphertexts. Note that Dd(ui) = mi and Dd′(u′i) = (ai + bi)mi due to
the homomorphic property of the cryptosystem.
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During simulation we instead define K0 = En(1, R0) = gR2n
0 mod n2 and

K1 = En(0, R1) = R2n
1 mod n2. This means that ui becomes an encryption

of 0 for all senders. Furthermore, simulated senders choose bi = −ai mod n′

which implies that also u′i is an encryption of 0. The important property of
the simulation is that given mi and R1 we can define r̄i = ri/R

mi
1 such that

ui = EK1,n(mi, r̄i), i.e., we can open a simulated ciphertext as an encryption of
an arbitrary message mi. The ciphertext u′i can also be opened as an encryption
of mi in a similar way when bi + ai = 0 mod n′. Finally, the proof of equality
we use can also be “opened” in a convincing way. This allows the simulator to
simulate honest senders and produce plausible history tapes as required. Corrupt
senders on the other hand have negligible probability of guessing ai, so the
simulator can extract the message submitted by corrupt senders using only the
private key d′ by computing mi = Dd′(u′i)/(ai + bi) mod n′. Before the mix-
net simulated by the ideal adversary starts to process the input ciphertexts the
ideal mix-net FRMN has handed the ideal adversary the list of plaintexts that
should be output by the simulation. All plaintexts equal zero in the ciphertexts
of the input in the simulation and the correct messages are introduced in the
joint re-encryption phase. All mix-servers are simulated honestly during the re-
encryption-permutation phase and the decryption phase.

The joint re-encryption is defined as follows. Before the mixing each mix-server
is given a random ciphertext K̄ ′j using the public key n′. Each mix-server Mj
chooses random elements mj,i ∈ Zn and commits to these by choosing b̄j ∈ Zn′

and s′j,i ∈ Z∗n′ randomly and computing w′j,i = E(g′)b̄j K̄′
j ,n

′(mj,i, s′j,i). When all

mix-servers have published their commitments, it chooses sj,i ∈ Z∗n randomly
and computes wj,i = EK0,n(mj,i, sj,i). It also proves in zero-knowledge that
the same random element mj,i is encrypted in both ciphertexts. The jointly

re-encrypted elements uk+1,i are then formed as uk+1,i = uk,i
∏
l∈I w

l′ 	=l
l′

l′−l

l,i

where I is the first set of k′ indices j such that the proof of Mj is valid. In
the real execution this is an elaborate way to re-encrypt uk,i, since K0 is an
encryption of 0. In the simulation on the other hand the ideal adversary chooses
b̄j = −āj mod n′ and sets mj,i = 0 for simulated mix-servers and extracts the
mj,i values of corrupt mix-servers from their commitments. It then redefines the
mj,i values of simulated honest mix-servers such that fi(j) = mj,i for a (k′− 1)-
degree polynomial fi over Zn such that fi(0) equals mπ(i) for some random
permutation π ∈ ΣN . Since b̄j + āj = 0 mod n′ it can compute s̄′j,i such that
w′j,i = E(g′)b̄j K̄′

j ,n
′(mj,i, s̄′j,i). In the simulation K0 is an encryption of 1 and each

uk,i is an encryption of zero, which implies that uk+1,i becomes an encryption
of mπ(i) as required. The adversary can not tell the difference since it can only
get its hands on a minority of the mj,i values directly, and the semantic security
of the cryptosystem prevents it from knowing these values otherwise.

3.4 Some Intuition Behind Our Analysis

Intuitively, the soundness of the subprotocols ensure that each sender knows
the message it submits and that the output of the mix-net is correct. The zero-
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knowledge properties and the knowledge extraction properties of the subproto-
cols are not used by the ideal adversary sketched above, but they are essential
to prove that the ideal adversary produces an indistinguishable simulation.

The private key d corresponding to the Paillier modulus n is needed both in
the ideal model and in the real protocol. Thus, even if the environment can dis-
tinguish the ideal model from the real model, we can not use it directly to reach
a contradiction to the semantic security of the Paillier cryptosystem. To solve
this problem we use the single-honest-player proof strategy to sample each of the
two distributions, but without using the secret key d. The knowledge extractor
of the proof of a shuffle is needed to be able to simulate the joint decryption,
since although the set of plaintexts is known their order in the list of ciphertexts
that are jointly decrypted is not. Due to the statistical zero-knowledge property
of the proof of a shuffle and the fact that in the ideal model all plaintexts are
zero from the start we can use the same type of simulation also when sampling
the ideal model without changing its distribution more than negligibly. A hybrid
argument allows us to assume that the simulated honest senders use the correct
plaintexts already from the start. If there is a gap between the resulting distri-
butions this can be used to distinguish a ciphertext of a zero from a ciphertext
of a one, i.e., we can break the semantic security of the Paillier cryptosystem.

3.5 Differences with Previous Constructions

Most previous schemes are based on the ElGamal cryptosystem. We need the
Paillier cryptosystem to allow adaptive corruption of the senders in the way
explained above. The joint re-encryption step which no previous construction
has is needed to insert the correct messages in the simulation and still be able
to construct plausible history tapes of any adaptively corrupted mix-server.

In [16, 17] the mix-net is given in a hybrid model with access to ideal zero-
knowledge proof of knowledge functionalities. These functionalities are then se-
curely realized, and the composition theorem of the UC-framework invoked.
The modular approach simplifies the analysis, but the strong demands on sub-
protocols make them hard to securely realize efficiently. We avoid this problem
by showing that a zero-knowledge proof of knowledge of correct re-encryption-
permutation in the classical sense is sufficient, i.e., the protocol can not be sim-
ulated to an adaptive adversary and extraction is not straight-line.

3.6 Subprotocols Invoked by the Main Protocol

Some of our subprotocols satisfy a weaker notion of proof of knowledge called
“computationally convincing proof (of knowledge)” introduced by Damg̊ard and
Fujisaki [4]. Informally, this means that extraction is possible with overwhelming
probability over the randomness of a special input that is given to both parties.

Proof of Knowledge of Re-encryption-Permutation. Denote by πprp =
(Pprp, Vprp) the 5-move protocol for proving knowledge of a witness of a re-
encryption and permutation of a list of Paillier ciphertexts given by Wikström
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[17]. The parties accept as special parameters an RSA-modulus N and random
g,h ∈ QRN, and random g1, . . . , gN ∈ Gq. The re-encryption-permutation rela-
tion Rn,gf

RP and the security properties of πprp are stated below.

Definition 1 (Knowledge of Correct Re-encryption-Permutation).
Define for each N , n and gf a relation Rn,gf

RP ⊂ (QRNn2 × QRNn2) × [−2κ+κr +
1, 2κ+κr − 1]N , by (({ui}Ni=1, {u′i}Ni=1), (a, (xi)

N
i=1)) ∈ Rn,gf

RP precisely when a <√
n/4 equals one or is prime and (u′i)

a = g
xπ(i)

f uaπ(i) mod n2 for i = 1, . . . , N and
some permutation π ∈ ΣN such that the list {u′i}Ni=1 is sorted lexicographically.

Proposition 1 ([17]). The protocol πprp is an honest verifier statistical zero-
knowledge computationally convincing proof of knowledge for the relation Rn,gf

RP
with respect to the distribution of (N,g,h) and (g1, . . . , gN ), and it has over-
whelming completeness.

Proof of Equality of Plaintexts. When a sender submits its ciphertexts ui
and u′i it must prove that they are encryptions of the same (κ − 2)-bit integer
under two distinct public keys. The protocol πeq = (Peq, Veq) used to do this
is given below. The security parameters κc and κr decide the soundness and
statistical zero-knowledge property of the protocol.

Protocol 1 (Proof of Equal Plaintexts Using Distinct Moduli)
Common Input: n ∈ Z, K,u ∈ Z∗n2 , n′ ∈ Z, K ′, u′ ∈ Z∗(n′)2 , N ∈ N, generators
g and h of QRN.
Private Input: m ∈ [−2κm + 1, 2κm − 1], r ∈ Z∗n, and r′ ∈ Z∗n′ such that
u = EK,n(m, r) and u′ = EK′,n′(m, r′).

1. The prover chooses r′′ ∈ [0, 2κ+κr − 1], s0 ∈ Z∗n2 and s1 ∈ Z∗(n′)2 , and
t ∈ [0, 2κm+κc+κr − 1] and s2,∈ [0, 22κ+κc+2κr − 1] randomly. Then it com-
putes C = gmhr

′′
mod N and (α0, α1, α2) = (Kts2n

0 mod n2, (K ′)ts2n′
1 mod

(n′)2,gths2 mod N), and hands (C,α0, α1, α2) to the verifier.
2. The verifier chooses c ∈ [2κc−1, 2κc − 1] and hands c to the prover.
3. The prover computes (e0, e1) = (rcs0 mod n, (r′)cs1 mod n′), (e2, e3) =

(cr′′ + s2 mod 2κ+κc+2κr , cm + t mod 2κm+κc+κr ) and hands (e0, e1, e2, e3)
to the verifier.

4. The verifier checks (ucα0, (u′)cα1) = (Ke3e2n
0 mod n, (K ′)e3e2n′

1 mod n′) and
Ccα2 = ge3he2 mod N.

The protocol is statistical zero-knowledge, but this is not enough since we
must construct plausible history tapes for simulated senders.

Proposition 2 (“Zero-Knowledge”). Let K = R2n mod n2 and K ′ = R′
2n′

mod (n′)2 for some R ∈ Z∗n and R′ ∈ Z∗n′ . Let h be a generator of QRN and
g = hx. Let r, r′, and (r′′, s0, s1, t, s2) be randomly distributed in the domains
described in the protocol, and denote by I(m) = (n,K, u, n′,K ′, u′,N,g,h) the
common input corresponding to the private input (m, r, r′). Denote by c the ran-
dom challenge from the verifier and let T (m) = (α, c, e) be the proof transcript
induced by (m, r, r′), c, and (r′′, s0, s1, t, s2).
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There is a deterministic polynomial-time algorithm His such that for every
m ∈ {0, 1}κm with (r̄, r̄′, r̄′′, s̄0, s̄1, t̄, s̄2) = His(R,R′,x,m, r, r′, r′′, s0, s1, t, s2, c)
the distributions of [I(m), T (m), (m, r, r′), (r′′, s0, s1, t, s2)] and
[I(0), T (0), (m, r̄, r̄′), (r̄′′, s̄0, s̄1, t̄, s̄2))] are statistically close.

The proposition in itself does not imply statistical zero-knowledge, since it only
applies to inputs where K and K ′ are both encryptions of zero.

Proposition 3. The protocol is a computationally convincing proof with respect
to the distribution of (N,g,h), and has overwhelming completeness.

Multiple instances of the protocol can be run in parallel using the same RSA-
parameters and same challenge. Thus, we use the protocol also for common
inputs on the form (n,K, {ui}Ni=1, n

′,K ′, {u′i}Ni=1,N,g,h) and with correspond-
ing private input ({mi}Ni=1, {ri}Ni=1, {r′i}Ni=1). We extend the notation in the next
subsection similarly.

Proof of Equality of Exponents. During joint decryption of a ciphertext u
each mix-server computes udj mod n2 using its part dj of the private key, and
proves correctness relative vj = vdj mod n2, i.e., that it uses the same exponent
dj for both elements. We denote by πexp = (Pexp, Vexp) the 3-move protocol
proposed in [5]. It has the following properties.

Proposition 4. The protocol πexp is an honest verifier statistical zero-
knowledge proof with overwhelming completeness.

3.7 The Mix-Net

We are now ready to give a detailed description of the mix-net. Recall that
k′ = �(k + 1)/2 denotes the number of mix-servers needed for majority. Each
entry on the bulletin board is given a sequence number denoted by T below
(with different subscripts). To ensure that the ciphertexts in the common inputs
to the proofs of a shuffle belong to QRn2 the mix-servers square the ciphertexts
between each mix-server. The effect of the squaring is eliminated at the end.

Protocol 2 (Mix-Net). The mix-net πRMN = (S1, . . . , SN ,M1, . . . ,Mk) con-
sists of senders Si, and mix-servers Mj .

Sender Si. Each sender Si proceeds as follows.
1. Wait until (Ml, n,K1, n′, {K ′i}Ni=1,N,g,h) appears on FBB for k′ distinct

indices l.
2. Wait for an input (Send,mi), such that mi ∈ [−2κm +1, 2κm−1]. Choose ri ∈

Z∗n , bi ∈ Zn′ and r′i ∈ Z∗n′ randomly and compute ui = EK1,n(mi, ri), u′i =
E(g′)biK′

i,n
′(mi, r′i), and (αi, statei) = Peq((n,K1, ui, n′, (g′)biK ′i, u

′
i,N,g,h),

(mi, ri, r′i)). Then hand (Write, Submit, (bi, ui, u′i), Commit, αi) to FBB.
3. Wait until (Mj , Challenge, Si, ci) appears on FBB for k′ distinct j with

identical ci. Then compute ei = Peq(statei, ci) and hand (Write, Reply, ei)
to FBB.
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Mix-Server Mj. Each mix-server Mj proceeds as follows.

Preliminaries
1. Wait for a message on the form (Keys, (N, g, h, n′, n,K0,K1, v, (vl)kl=1,

(Fl,l′ )l,l′∈{1,...,k}), (dj , (dl,j , tl,j)kl=1)) from FPKG.
2. Hand (GenerateCoins, (N+k)(κ+κr)+(κ+κr)+2(κ+κr)+N(κ+κr)) to

FCF and wait until it returns (Coins, {K ′i}Ni=1, {K̄ ′j}kj=1, gf ,g,h, g1, . . . , gN).
Then hand (Write, n,K1, n′, {K ′i}Ni=1,N,g,h) to FBB.

Reception of Inputs
3. Initialize L0 = ∅, JS = ∅ and JM = ∅.
4. Repeat

(a) When given input (Run) hand (Write, Run) to FBB.
(b) When a new entry (T,Ml, Run) appears on FBB set JM ← JM ∪ {l} and

if |JM | ≥ k′ set Trun = T and go to Step 5.
(c) When a new entry (Si, Submit, (bi, ui, u′i), Commit, αi) appears on FBB

such that i �∈ JS , set JS ← JS ∪ {i} and hand (GenerateCoins, κc) to
FCF and wait until it returns (Coins, ci). Hand (Write, Challenge, Si, ci)
to FBB.

5. Request the contents on FBB with index less than Trun. Find for each i the
first occurrences of entries on the forms (Ti, Submit, (bi, ui, u′i), Commit, αi),
(T ′j,i,Mj , Challenge, Si, ci), and (T ′′i , Si, Reply, ei). Then form a list L0 of
all ciphertexts u2

i mod n2 such that Ti < T ′j,i < T ′′i < Trun for at least k′

distinct indices j and Veq(n,K1, ui, n′, (g′)biK ′i, u
′
i,N,g,h, αi, ci, ei) = 1.

Re-encryption and Permutation
6. Write L0 = {u0,i}N

′
i=1 for some N ′. Then for l = 1, . . . , k do

(a) If l = j, then do
i. Choose rj,i ∈ [0, 2κ+κr − 1] randomly, compute

Lj = {uj,i}N
′

i=1 = Sort({grj,i

f u2
j−1,i mod n2}N ′

i=1) , and

(αj , statej) = Pprp(n, gf , L
4
l−1, L

2
l ,N,g,h, g, g1, . . . , gN ′ , {2rj,i}N

′
i=1) ,

and hand (Write, List, Lj , Commit1, αj) to FBB. The exponentia-
tions L4

l−1 and L2
l should be interpreted term-wise.

ii. Hand (GenerateCoins, κ) to FCF and wait until it returns
(Coins, cj). Then compute (α′j , state′j) = Pprp(statej , cj) and hand
(Write, Commit2, α′j) to FBB.

iii. Hand (GenerateCoins, κc) to FCF and wait until it returns
(Coins, c′j). Then compute ej = Pprp(state′j , c

′
j) and hand

(Write, Reply, ej) to FBB.
(b) If l �= j, then do

i. Wait until an entry (Ml, List, Ll, Commit1, αl) appears on FBB.
ii. Hand (GenerateCoins, κ) to FCF and wait until it returns

(Coins, cl).
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iii. Wait for a new entry (Ml, Commit2, α′l) on FBB. Hand
(GenerateCoins, κc) to FCF and wait until it returns (Coins, c′l).

iv. Wait for a new entry (Ml, Reply, el) on FBB and compute bl =
Vprp(n, gf , L

4
l−1, L

2
l ,N,g,h, g, g1, . . . , gN ′ , αl, cl, α

′
l, c
′
l, el).

v. If bl = 0, then set Ll = L2
l−1.

Joint Re-encryption
7. Choose b̄j ∈ Zn′ , mj,i ∈ Zn′ and s′j,i ∈ Z∗n′ randomly and compute W ′

j =
{w′j,i}N

′
i=1 ={Eg′b̄j K̄′

j ,n
′(mj,i, s′j,i)}N

′
i=1. Hand (Write, RandExp, b̄j,W ′

j) to FBB.

8. Wait until (RandExp, b̄l,W ′
l ) appears on FBB for l = 1, . . . , k. Then choose

sj,i ∈ Z∗n randomly, compute Wj = {wj,i}N
′

i=1 = {EK0,n(mj,i, sj,i)}N
′

i=1, and

(αj , statej) = Peq((n,K0,Wj , n′,K ′,W ′
j ,N,g,h),

({mj,i}N
′

i=1, {sj,i}N
′

i=1, {s′j,i}N
′

i=1)) ,

and hand (Write, RandExp,Wj , Commit, αj) to FBB.
9. Wait until (RandExp,Wl, Commit, αl) appears on FBB for l = 1, . . . , k. Hand

(GenerateCoins, κc) to FCF and wait until it returns (Coins, c). Compute
ej = Peq(statej , c) and hand (Write, Reply, ej) to FBB.

10. Wait until (Reply, el) appears on FBB for l = 1, . . . , k. Let I be the first set
of k′ indices with Veq(n,K0,Wl, n′,K ′,W ′

l ,N,g,h, αl, c, el) = 1.

11. Compute Lk+1 = {uk+1,i}N
′

i=1 =
{
uk,i
∏
l∈I w

l′ 	=l
l′

l′−l

l,i

}N ′

i=1
.

Joint Decryption
12. Compute Γj = {vj,i}N

′
i=1 = {u2dj

k+1,i}Ni=1 using dj and a proof (αj , statej) =
Pexp((n, v, vj , L2

k+1, Γj), dj). Then hand (Write, Decrypt, Γj , Commit, αj) to
FBB, where exponentiation is interpreted element-wise.

13. Wait until (Ml, Decrypt, Γl, Commit, αl) appears on FBB for l = 1, . . . , k.
Then hand (GenerateCoins, κc) to FCF and wait until it returns (Coins, c).

14. Compute ej = Pexp(statej , c) and hand (Write, Reply, ej) to FBB.
15. Wait until (Reply, el) appears on FBB for l = 1, . . . , k. For l = 1, . . . , k do

the following. If Vexp(n, v, vl, L2
k+1, Γl, αl, c, el) = 0 do

(a) Hand (Write, Recover,Ml, dl,j , tl,j) to FBB.
(b) Wait until (Ml′ , Recover,Ml, dl,l′ , tl,l′) appears on FBB for l′ = 1, . . . , k.

Then find a subset I of k′ indices l′ such that Fl,l′ = gdl,l′htl,l′ and
Lagrange interpolate dl =

∑
l′∈I dl,l′

∏
l′′ �=l′

l′′
l′′−l′ mod q.

(c) Compute Γl = {vl,i}N
′

i=1 = {u2dl

k,i }Ni=1.
16. Interpret each element in {L(

∏k
l=1 vl,i)/2

k+2}N ′
i=1 as an integer in [−2κm+κr +

1, 2κm+κr − 1] (this can be done uniquely, since κm + κr < κ− 1), truncate
to κm bits, and let Lout be the result. Output (Output, Sort(Lout)).

Theorem 1. The protocol πRMN above securely realizes FRMN in the
(FBB,FPKG,FCF)-hybrid model for M∗

k/2-adversaries under the DCR- assump-
tion, the strong RSA-assumption, and the DL-assumption.
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Multipartite Secret Sharing by Bivariate

Interpolation

Tamir Tassa1 and Nira Dyn2

1 Division of Computer Science, The Open University, Ra’anana, Israel
2 Department of Applied Mathematics, Tel Aviv University, Tel Aviv, Israel

Abstract. Given a set of participants that is partitioned into distinct
compartments, a multipartite access structure is an access structure that
does not distinguish between participants that belong to the same com-
partment. We examine here three types of such access structures - com-
partmented access structures with lower bounds, compartmented access
structures with upper bounds, and hierarchical threshold access struc-
tures. We realize those access structures by ideal perfect secret sharing
schemes that are based on bivariate Lagrange interpolation. The main
novelty of this paper is the introduction of bivariate interpolation and
its potential power in designing schemes for multipartite settings, as dif-
ferent compartments may be associated with different lines in the plane.
In particular, we show that the introduction of a second dimension may
create the same hierarchical effect as polynomial derivatives and Birkhoff
interpolation were shown to do in [13].

Keywords: Secret sharing, multipartite access structures, compart-
mented access structures, hierarchical threshold access structures,
bivariate interpolation, monotone span programs.

1 Introduction

Let U be a set of participants and assume that it is partitioned into m disjoint
subsets,

U =
m⋃
i=1

Ci , (1)

to which we refer hereinafter as compartments. An m-partite access structure
on U is any access structure that does not distinguish between members of
the same compartment. More specifically, an access structure Γ ∈ 2U is m-
partite with respect to partition (1) if for all permutations π : U → U such
that π(Ci) = Ci, 1 ≤ i ≤ m, A ∈ Γ if and only if π(A) ∈ Γ . Weighted threshold
access structures [11, 1], multilevel access structures [12, 3], hierarchical threshold
access structures [13], compartmented access structures [3, 8], bipartite access
structure [10], and tripartite access structures [1, 5, 8] are typical examples of
such multipartite access structures. (Of-course, every access structure may be
viewed as a multipartite access structure with singleton compartments; however,

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 288–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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that term is reserved to non-degenerate cases where the number of compartments
is smaller than the number of participants.)

In this paper we show how to utilize bivariate interpolation in order to realize
some multipartite access structures. What makes bivariate interpolation suitable
for multipartite settings is the ability to associate each compartment with a
different line in the plane. Namely, participants from a given compartment are
associated with points that lie on the same line, where each compartment is
associated with a different line.

In Section 2 we deal with compartmented access structures. We distinguish
between two types of such structures: one that agrees with the type that was
presented and studied by Brickell in [3], and another that we present here for
the first time. We design for those access structures ideal secret sharing schemes
that are based on bivariate Lagrange interpolation with data on parallel lines.
In Section 3 we deal with hierarchical threshold access structures and we realize
them by bivariate Lagrange interpolation with data on lines in general position.
In [13], those access structures were realized by introducing polynomial deriva-
tives and Birkhoff interpolation in order to create the desired hierarchy between
the different compartments (that are called levels in that context). Here, we show
that we may achieve the same hierarchical effect by introducing a second dimen-
sion, in lieu of polynomial derivatives. All necessary background from bivariate
interpolation theory is provided herein. Finally, in Section 4, we contemplate on
the possible advantages of using more involved interpolation settings.

Hereinafter, F is a finite field of size q = |F|. The field size is large enough so
that the domain of all possible secrets may be embedded in F. The secret S ∈ F
will be encoded by the coefficients of an unknown polynomial P (x, y) ∈ F[x, y].
We also adopt the following notation convention: vectors are denoted by bold-
face letters while their components are denoted with the corresponding italic-
type indexed letter. In addition, N stands for the nonnegative integers.

Throughout this study we use the following basic lemma that provides an
upper bound for the number of zeros of a multivariate polynomial over a finite
field.

Lemma 1. Let G(z1, . . . , zk) be a nonzero polynomial of k variables over a finite
field F of size q. Assume that the highest degree of each of the variables zj in G
is no larger than d. Then the number of zeros of G in Fk is bounded from above
by kdqk−1.

All proofs are given in the full version of this paper.

2 Compartmented Access Structures

The original compartmented access structure that was presented in [3] is defined
as follows. Let ti ∈ N, 1 ≤ i ≤ m, and t ∈ N be thresholds such that t ≥

∑m
i=1 ti.

Then

Γ = {V ⊆ U : ∃W ⊆ V such that |W ∩ Ci| ≥ ti, 1 ≤ i ≤ m, and |W| = t} .
(2)
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Such access structures are suitable for situations in which the size of an autho-
rized subset must be at least some threshold t, but, in addition to that, we wish
to guarantee that every compartment is represented by at least some number of
participants in the authorized subset. In other situations, however, an opposite
demand may occur: while the size of an authorized subset must be at least t,
we would like to limit the number of participants that represent each of the
compartments; namely,

Δ = {V ⊆ U : ∃W ⊆ V such that |W ∩ Ci| ≤ si, 1 ≤ i ≤ m, and |W| = s} ,
(3)

where si, s ∈ N and s ≤
∑m
i=1 si. We refer to Γ as a compartmented access

structure with lower bounds, whileΔ is referred to hereinafter as a compartmented
access structure with upper bounds.

When m = 1 both types of compartmented access structures coincide with
the standard threshold access structures of Shamir [11]. When m = 2 the two
types of access structures agree: a compartmented access structure with lower
bounds t1, t2 and t is a compartmented access structure with upper bounds
s1 = t − t2, s2 = t − t1 and s = t; conversely, an access structure of type
(3) with bounds s1, s2 and s may be viewed as an access structure of type (2)
with bounds t1 = s − s2, t2 = s − s1 and t = s. However, when m ≥ 3, these
two types of compartmented access structures differ. As an example, consider
an access structure of type (2) where m = 3, t1 = 1, t2 = 1, t3 = 2, and
t = 5. Then the minimal subsets V are of types (1, 1, 3) (namely, |V ∩ C1| = 1,
|V ∩ C2| = 1, and |V ∩ C3| = 3), (1, 2, 2), or (2, 1, 2). This collection of minimal
subsets does not fall within the framework (3) for any choice of si and s. Indeed,
if that collection of subsets was to fall under framework (3) then we should have
s1 = s2 = 2, s3 = 3, and s = 5; but then that collection should have included
also subsets of type (0,2,3), which it doesn’t. Hence, there is no way of fitting
that compartmented access structure with lower bounds within the framework
with upper bounds.

Compartmented access structures with lower bounds, (2), are already known
to be ideal. We design here ideal linear schemes for these access structures, as
well as for the corresponding access structures with upper bounds, (3), that are
based on bivariate interpolation.

2.1 Ideal Secret Sharing for Compartmented Access Structures
with Upper Bounds

In this section we describe a linear secret sharing scheme for compartmented
access structures with upper bounds, (3). Let xi, 1 ≤ i ≤ m, be m distinct
points in F and let Pi(y) be a polynomial of degree si − 1 over F. Define

P (x, y) =
m∑
i=1

Pi(y)Li(x) =
m∑
i=1

si−1∑
j=0

ai,j · yjLi(x) , (4)
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where Li(x) is the Lagrange polynomial of degree m− 1 over {xi : 1 ≤ i ≤ m},
namely,

Li(x) =
∏

1≤j≤m

j �=i

x− xj
xi − xj

. (5)

These polynomials are orthogonal in the sense that Li(xj) = δi,j for all 1 ≤
i, j ≤ m. Then the secret sharing scheme is as follows:

Secret Sharing Scheme 1

1. The secret is S =
∑m
i=1
∑si−1
j=0 ai,j .

2. Each participant ui,j from compartment Ci will be identified by a unique
public point (xi, yi,j), where yi,j �= 1, and his private share will be the value
of P at that point.

3. In addition, we publish the value of P at k :=
∑m
i=1 si − s points (x′i, zi),

where x′i /∈ {x1, . . . , xm}, 1 ≤ i ≤ k.

Figure 1 illustrates that scheme for the case of m = 3 compartments and
k = s1 + s2 + s3 − s = 3. The k = 3 public point values are denoted by full
bullets. The point values that correspond to the participants are marked by
empty circles along the three random parallel lines, x = xi, 1 ≤ i ≤ 3.

F

F

x = x1 x = x2 x = x3

(x1’,z1)

(x2’,z2)

(x3’,z3)

Fig. 1. Secret Sharing Scheme 1

Clearly, this is an ideal scheme since the private shares of all users are taken
from the domain of secrets F. The number of unknowns in the polynomial P is∑m
i=1 si (the coefficients of each of the univariate polynomials Pi(y), 1 ≤ i ≤ m).

Since we are given for free k :=
∑m
i=1 si − s point values, we need additional s

points for full recovery. Moreover, we cannot use more than si points from the
line x = xi, 1 ≤ i ≤ m, because any si points from along that line already fully
recover Pi(y), but they do not contribute anything towards the recovery of Pj(y)
for j �= i. In view of the above, this scheme agrees with the constraints in (3).
We proceed to show that, with high probability, the resulting scheme is perfect.
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Theorem 1. With probability 1 − O(q−1), the ideal Secret Sharing Scheme 1
is a perfect scheme that realizes the compartmented access structure with upper
bounds (3).

We would like to stress that the probability here is with respect to the choices of
the points in the plane. Once such a choice was made, the dealer may check that
all authorized subsets may recover the secret while all non-authorized subsets
may not learn a thing about the secret. If all subsets pass that test then the
resulting scheme is perfectly secure. In the rare event (of probability O(q−1))
that one of the subsets did not pass the test, the dealer has only to try another
selection.

2.2 Ideal Secret Sharing for Compartmented Access Structures
with Lower Bounds

In this section we describe a linear secret sharing scheme for compartmented
access structures with lower bounds, (2). To that end, we construct a scheme for
the dual access structure Γ ∗. Let us begin with a brief overview of what are dual
access structures and recall the main result concerning duality that we need for
the design of our scheme.

Karchmer and Wigderson [9] introduced monotone span programs as a linear
algebraic model of computation for computing monotone functions. A monotone
span program (MSP hereinafter) is a quintuple M = (F,M,U , φ, e) where F is
a field, M is a matrix of dimensions a × b over F, U = {u1, . . . , un} is a finite
set, φ is a surjective function from {1, . . . , a} to U , and e is some target row
vector from Fb. The MSP M realizes the monotone access structure Γ ⊂ 2U

when V ∈ Γ if and only if e is spanned by the rows of the matrix M whose
labels belong to V . The size of M is a, the number of rows in M . Namely, in the
terminology of secret sharing, the size of the MSP is the total number of shares
that were distributed to all participants in U . An MSP is ideal if a = n.

If Γ is a monotone access structure over U , its dual is defined by Γ ∗ = {V :
Vc /∈ Γ}. It is easy to see that Γ ∗ is also monotone. In [7] it was shown that if
M = (F,M,U , φ, e) is an MSP that realizes a monotone access structure Γ , then
there exists an MSP M∗ = (F,M∗,U , φ, e∗) of the same size like M that realizes
the dual access structure Γ ∗. Hence, an access structure is ideal if and only if its
dual is. An efficient construction of the MSP for the dual access structure was
proposed in [6].

Realizing the Dual Access Structure. The dual access structure of (2) is
given by Γ ∗ = {V : Vc /∈ Γ}. Hence, V ∈ Γ ∗ if and only if |Vc| < t or |Vc∩Ci| < ti
for some 1 ≤ i ≤ m. Introducing the notations n = |U| and ni = |Ci|, 1 ≤ i ≤ m,
we infer that V ∈ Γ ∗ if and only if |V| ≥ n − t + 1 or |V ∩ Ci| ≥ ni − ti + 1 for
some 1 ≤ i ≤ m. Namely,

Γ ∗ = {V ⊆ U : |V| ≥ r or |V ∩ Ci| ≥ ri for some 1 ≤ i ≤ m} , (6)

where
r = n− t+ 1 and ri = ni − ti + 1 , 1 ≤ i ≤ m . (7)
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Since t ≥
∑m
i=1 ti and n =

∑m
i=1 ni, we see that

m∑
i=1

ri =
m∑
i=1

ni −
m∑
i=1

ti +m ≥ n− t+m = r +m− 1 .

Therefore, the thresholds in the dual access structure (6) satisfy

m∑
i=1

ri ≥ r +m− 1 . (8)

We proceed to describe a linear ideal secret sharing scheme for realizing such
access structures and then prove that, with high probability, it is perfect.

Let xi, 1 ≤ i ≤ m, be m distinct points in F and let Pi(y) be a polynomial of
degree ri − 1 over F, such that

P1(0) = · · · = Pm(0) . (9)

Define

P (x, y) =
m∑
i=1

Pi(y)Li(x) =
m∑
i=1

ri−1∑
j=0

ai,j · yjLi(x) , (10)

where Li(x), 1 ≤ i ≤ m, are, as before, the Lagrange polynomials of degree m−1
over {xi : 1 ≤ i ≤ m}, (5). Note that condition (9) implies that a1,0 = · · · = am,0
and, consequently, that the number of unknown coefficients in the representation
of P (x, y) with respect to the basis Li(x)yj , 1 ≤ i ≤ m, 0 ≤ j ≤ ri − 1, is
g =

∑m
i=1 ri − (m− 1). Note that by (8), g ≥ r.

Our secret sharing scheme for the realization of the dual access structure Γ ∗,
(6), is as follows:

Secret Sharing Scheme 2

1. The secret is S = a1,0 = · · · = am,0.
2. Each participant ui,j from compartment Ci will be identified by a unique

public point (xi, yi,j), where yi,j �= 0, and his private share will be the value
of P at that point.

3. In addition, we publish the value of P at k = g − r points (x′i, zi), where
x′i /∈ {x1, . . . , xm}, 1 ≤ i ≤ k.

Theorem 2. With probability 1−O(q−1), the ideal Secret Sharing Scheme 2 is
a perfect scheme that realizes the access structure (6).

A Scheme for Compartmented Access Structures with Lower Bounds.
Using the results of Section 2.2 we may now easily construct an ideal secret
sharing scheme for compartmented access structures with lower bounds, (2).
Given such an access structure, Γ , we construct the ideal linear secret sharing
scheme for its dual, (6)-(7). Then we translate that ideal scheme (equivalently,
MSP) into an ideal scheme (MSP) for Γ = (Γ ∗)∗, using the explicit construction
that is described in [6]. We omit further details.
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3 Hierarchical Threshold Access Structures

3.1 Lagrange Interpolation with Data on Lines in General Positions

Let

{Li}1≤i≤n , Li = {(x, y) ∈ F2 : Li(x, y) := aix+ biy + ci = 0} ,

be a collection of n lines in F2 in general position. Namely, for every pair 1 ≤ i <
j ≤ n, Li and Lj intersect in a point Ai,j = (xi,j , yi,j) and Ai,j �= Ak,� whenever
{i, j} �= {k, �} (Figure 2 illustrates the case n = 4). Let f(x, y) be a function on
F2. Then there exists a unique polynomial of degree n− 2,

P (x, y) =
∑

0≤i+j≤n−2

ai,jx
iyj ∈ F[x, y] , (11)

that satisfies
P (xi,j , yi,j) = f(xi,j , yi,j) 1 ≤ i < j ≤ n . (12)

That polynomial is given by

P (x, y) =
∑

1≤i<j≤n
f(xi,j , yi,j)Li,j(x, y) (13)

where

Li,j(x, y) =
∏

1≤k≤n

k �=i,j

Lk(x, y)
Lk(xi,j , yi,j)

. (14)

The bivariate Lagrange polynomials Li,j(x, y) are of degree n−2, and they form
an orthogonal set in the sense that Li,j(xi,j , yi,j) = 1 while Li,j(xk,�, yk,�) = 0
for all {k, �} �= {i, j} (because the point (xk,�, yk,�) lies on a line other than Li
or Lj , whence the numerator in (14) becomes zero). Note that the number of
independent terms (monoms) in (11) agrees with the number of constraints in
(12), i.e.,

(
n
2

)
.

This type of bivariate interpolation was studied first in [4]. We shall be us-
ing this bivariate interpolation in a slightly different manner hereinafter. As
described above, in order to recover a polynomial P (x, y) of degree k, we need
its values at the intersection points of k + 2 lines in general position. Assume,
however, that we have only k + 1 lines in general position, but we were able
to fully recover the restriction of P (x, y) to each of these lines (the restriction
of a bivariate polynomial of degree k to a line is the univariate polynomial of
degree k that is obtained by replacing x and y in P (x, y) with their linear pa-
rameterization along that line). Then that information is also sufficient for the
full recovery of P (x, y) since we may add a (k + 2)th line that intersects all of
the original k+ 1 lines and then, as we know the value of P along each of those
k + 1 lines, we know its value in all of the

(
k+2
2

)
intersection points of the k + 2

lines; this enables the full recovery of P (x, y) through (13)-(14). For example, in
order to recover a quadratic polynomial P (x, y) (k = 2), we need its values in



Multipartite Secret Sharing by Bivariate Interpolation 295

the 6 intersection points of k+2 = 4 lines in general position (L1, L2, L3 and L4
in Figure 2); alternatively, we may compute its restriction to only k + 1 = 3 of
those lines, say L1, L2, and L3, and that is sufficient for finding the value of P
in all 6 intersection points of L1, L2, L3 and L4. Hence, while in this section our
setting included n lines and a polynomial P (x, y) of degree n−2, in the following
sections our settings will include n lines and a polynomial P (x, y) of degree n−1.

L4 L3

L1

L2

A2, 4

A2, 3

A3, 4

A1, 4 A1, 2 A1, 3

Fig. 2. Four lines in general position and the corresponding interpolation points

3.2 Constructibility and Non-constructibility Results

Let:

– F be a finite field;
– {Li}1≤i≤n, Li = {(x, y) ∈ F2 : Li(x, y) := aix+ biy+ ci = 0}, be a collection

of n lines in F2 in general position;
– P (x, y) =

∑
0≤i+j≤n−1 ai,jx

iyj be a polynomial of degree (at most) n− 1 in
F[x, y]; and

– V ⊂
⋃n
i=1 Li be a set of points on the given lines, none of which is an

intersection point of two of those lines.

The question that we address here is the amount of information that D :=
P |V reveals on S := P (0, 0). Since the underlying model is that of a monotone
span program, it is clear that either the given data, D, uniquely determines the
unknown, S, or the former does not reveal any information about the latter.

In order to answer that question, we define the type of a set V (Definition 1)
and an order on such types (Definition 2).

Definition 1. Let {Li}1≤i≤n be n lines in general position in F2. A subset

V ⊂
(
n⋃
i=1

Li

)
\

⎛⎝ ⋃
1≤i<j≤n

Li ∩ Lj

⎞⎠ (15)
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is said to be of type v ∈ Nn, where v is a monotone vector in the sense that 0 ≤
v1 ≤ v2 ≤ · · · ≤ vn, if there exists a permutation π ∈ Sn such that |V∩Lπ(i)| = vi
for all 1 ≤ i ≤ n.

For example, the two subsets depicted in Figure 3 are of type v = (2, 2, 3).

L3

L1

L2 L2L3

L1

Fig. 3. Two point sets of the same type

Definition 2. A vector u ∈ Nn dominates the vector v ∈ Nn, denoted u 5 v,
if for all 1 ≤ i ≤ n,

∑i
j=1 uj ≥

∑i
j=1 vj.

For example, (1, 3, 3, 3) 5 (1, 2, 3, 4) while (1, 1, 4, 5) � (1, 2, 3, 4).

Definition 3. Let {Li}1≤i≤n be n lines in general position in F2, and let V be
a set of points on those lines, (15). The vector set that corresponds to V is the
set of vectors

RV = {r(x,y),n : (x, y) ∈ V} (16)

where
r(x,y),n := (1, x, y, x2, xy, y2, . . . , xn−1, xn−2y, . . . , xyn−2, yn−1) ∈ Fn(n+1)/2

(17)

Theorem 3. Let {Li}1≤i≤n be n lines in general position in F2, none of which
goes through the origin (0, 0). Let V be a randomly selected set of points on those
lines, (15), and let v be the type of that set. Then the following claim holds in
probability 1 −O(q−1):

1. If v 5 (1, 2, . . . , n) then e1 ∈ Span{RV}.
2. If v � (1, 2, . . . , n) then e1 /∈ Span{RV}.

This theorem actually characterizes the sets of data points that allow the con-
struction of a polynomial P (x, y) ∈ Fn−1[x, y]. Given the values of the polyno-
mial in the points of V , P |V , it is possible (with almost certainty) to reconstruct
the entire polynomial (and not just the free coefficient P (0, 0) that corresponds
to the vector e1) if the type of the data set, v, dominates the vector (1, 2, . . . , n).
If, on the other hand, v � (1, 2, . . . , n), then there is not enough data to recon-
struct the polynomial, and this implies (with almost certainty) that we cannot
learn any information about P (0, 0).
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3.3 Hierarchical Threshold Access Structures

Let U be a set of participants that is partitioned into m disjoint levels, (1),
and let k1 < k2 < · · · < km be a sequence of thresholds. The corresponding
hierarchical threshold access structure is defined by

Γ =
{
V ⊂ U :

∣∣V ∩
(
∪ij=1Cj

)∣∣ ≥ ki for all 1 ≤ i ≤ m
}
. (18)

Those access structures were presented and studied in [13]. They are realized
there by an ideal secret sharing scheme that is based on Birkhoff interpolation,
namely, interpolation in which the given values of the unknown polynomial,
P (x), include also derivative values. Specifically, participants from level Ci, 1 ≤
i ≤ m, receive the value of the (ki−1)th derivative of P at the point x that
identifies them (where hereinafter k0 := 0). As participants from higher levels
(namely, Ci for lower values of i) have shares that equal derivatives of P of lower
orders, those shares carry more information on the coefficients of P than shares
of participants from lower levels.

Here we show how to realize such hierarchical access structures using bivariate
Lagrange interpolation on lines in general position. The scheme that we present
here does not use derivatives, as the Birkhoff interpolation-based scheme of [13]
did, but instead it adds one more dimension in order to achieve the same hier-
archical effect.

Let {Lj}1≤j≤n be n := km lines in general position in F2, none of which goes
through the origin (0, 0). Let

P (x, y) =
∑

0≤i+j≤n−1

ai,jx
iyj

be a random polynomial in Fn−1[x, y].

Secret Sharing Scheme 3

1. The secret is S = P (0, 0).
2. Each participant from level Ci will be identified by a unique public point on

Lki \
(⋃

1≤j≤n

j �=ki

Lj

)
and his private share will be the value of P at that point.

3. In addition, we publish the value of P at:
– ki−1 additional points on Lki , 2 ≤ i ≤ m; and
– j points on Lj for all j ∈ {1, 2, . . . , n} \ {ki : 1 ≤ i ≤ m}.

Example. Assume that there are m = 3 levels with thresholds k1 = 2, k2 =
4 and k3 = 5 (namely, V ∈ Γ if and only if it has at least 2 participants
from the highest level C1, at least 4 participants from the two highest levels
C1 ∪ C2, and at least 5 participants altogether). Then we select 5 random lines
in general position: Li, 1 ≤ i ≤ 5. The allocation of private shares will be as
follows:
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1. Participants from C1 will be given polynomial shares on L2 (since k1 = 2).
2. Participants from C2 will be given polynomial shares on L4 (since k2 = 4).
3. Participants from C3 will be given polynomial shares on L5 (since k3 = 5).

The corresponding points are marked in Figure 4 by empty circles. The public
values will be:

1. 2 point values on L4, and 4 point values on L5 (those points are marked by
full bullets in Figure 4).

2. 1 point value on L1 and 3 point values on L3 (those points are marked by
full squares in Figure 4).

L4

L3

L1

L2

L5

Fig. 4. Secret Sharing Scheme 3

Theorem 4. With probability 1−O(q−1), the ideal Secret Sharing Scheme 3 is
a perfect scheme that realizes the hierarchical threshold access structure (18).

4 Epilogue

The advantage of bivariate interpolation over the standard univariate one in de-
signing linear secret sharing schemes for multipartite settings is in the ability
to associate different compartments with different lines in the plane. Bivari-
ate interpolation on lines was extended to multivariate interpolation on flats
in several dimensions in [2]. By going to higher dimensions and by adequately
choosing the flats that represent the compartments, it might be possible to de-
sign secret sharing schemes for a wide array of interesting access structures. (In
several dimensions we have more flexibility in choosing the dimensions of the
flats and their interrelation.) It would be also interesting to explore the possible
advantages of using non-linear manifolds instead of flats.
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Abstract. In this paper we introduce the notion of identity based en-
cryption with wildcards, or WIBE for short. This allows the encryption of
messages to multiple parties with common fields in their identity strings,
for example email groups in a corporate hierarchy. We propose a full se-
curity notion and give efficient implementations meeting this notion in
the standard model and in the random oracle model.

1 Introduction

The concept of identity based cryptography was introduced by Shamir as early
as in 1984 [12]. However, it took nearly twenty years for an efficient identity
based encryption (IBE) scheme to be proposed. In 2000 and 2001 respectively
Sakai, Ohgishi and Kasahara [11] and Boneh and Franklin [5] proposed IBE
schemes based on elliptic curve pairings. Also, in 2001 Cocks proposed a system
based on the quadratic residuosity problem [7].

One of the main application areas proposed for IBE is that of email encryption.
In this scenario, given an email address, one can encrypt a message to the owner
of the email address without needing to obtain an authentic copy of the owner’s
public key first. In order to decrypt the email the recipient must authenticate
itself to a trusted authority who generates a private key corresponding to the
email address used to encrypt the message.

Our work is motivated by the fact that many email addresses correspond
to groups of users rather than single individuals. Consider the scenario where
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there is some kind of organisational hierarchy. Take as an example an organi-
sation called ECRYPT which is divided into virtual labs, AZTEC and STVL
for example. In addition, these virtual labs are further subdivided into working
groups WG1, WG2 and WG3, and an administrative group ADMIN. Finally,
each working group may consist of many individual members. There are several
extensions of the IBE primitive to such a hierarchical setting (HIBE) [9, 8]. The
idea is that each level can issue keys to users on the level below. For example
the owner of the ECRYPT key can issue decryption keys for ECRYPT.AZTEC
and ECRYPT.STVL.

Suppose that we wish to send an email to all the members of the AZTEC.WG1
working group, which includes personal addresses ECRYPT.AZTEC.WG1.Nigel,
ECRYPT.AZTEC.WG1.Dario and ECRYPT.AZTEC.WG1.John. Given a stan-
dard HIBE one would have to encrypt the message to each user individually. To
address this limitation we introduce the concept of identity based encryption with
wildcards (WIBE). The way in which decryption keys are issued is exactly as in a
standard HIBE scheme; what differs is encryption. Our primitive allows the en-
crypter to replace any component of the recipient identity with a wildcard so that
any identity matching the pattern can decrypt. Denoting wildcards by *, in the
example above the encrypter would use the identity ECRYPT.AZTEC.WG1.*
to encrypt to all members of the AZTEC.WG1 group. To send a message to the
administrative members of all virtual labs, one can simply encrypt to identity
ECRYPT.*.ADMIN.*.

It is often suggested that identity strings should be appended with the date
so as to add timeliness to the message, and so try to mitigate the problems
associated with key revocation. Using our technique we can now encrypt to
a group of users, with a particular date, by encrypting to an identity of the
form ECRYPT.AZTEC.WG1.*.22Oct2006 for example. Thus any individual in
ECRYPT.AZTEC.WG1 in possession of a decryption key for 22nd October 2006
will be able to decrypt.

Our paper proceeds as follows. In the next section we give an overview of
existing material that we will build upon. We formally introduce our new prim-
itive and describe an appropriate security model in Section 3. In Section 4 we
describe a generic construction that realises a WIBE from any HIBE. The con-
struction is very simple, yet unsatisfactory as it requires secret keys whose size
is exponential in the number of levels of the underlying HIBE.

In Section 5 we turn to the problem of constructing a WIBE scheme with
polynomial-size (with respect to all relevant parameters) ciphertexts and keys.
We present an efficient WIBE scheme based on Waters’ HIBE scheme [13], and
prove its security by reducing to the security of Waters’ HIBE scheme. The proof,
just like that of Waters [13], is in the standard model. In the full version of this
paper [1] we give two more efficient constructions, based on the Boneh-Boyen [3]
and the Boneh-Boyen-Goh [4] HIBE schemes, and provide security proofs in
the random oracle model [2]. We compare the efficiency and security of all our
schemes in Section 6, and we also sketch how chosen-ciphertext security can be
achieved by adapting the technique of Canetti et al. [6].
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2 Basic Definitions

In this section we introduce some notation, computational problems and basic
primitives that we will use throughout the rest of the paper. Let N = {0, 1, . . .}
be the set of natural numbers. Let ε be the empty string. If n ∈ N, then {0, 1}n
denotes the set of n-bit strings, and {0, 1}∗ is the set of all bit strings. More
generally, if S is a set, then Sn is the set of n-tuples of elements of S. If S is
finite, then x $← S denotes the assignment to x of an element chosen uniformly at
random from S. If A is an algorithm, then y ← A(x) denotes the assignment to
y of the output of A on input x, and if A is randomised, then y

$← A(x) denotes
that the output of an execution of A(x) with fresh coins is assigned to y.

The decisional bilinear Diffie-Hellman assumption. Let G,GT be mul-
tiplicative groups of prime order p with an admissible map ê : G × G → GT.
By admissible we mean that the map is bilinear, non-degenerate and efficiently
computable. Bilinearity means that for all a, b ∈ Zp and all g ∈ G we have
ê(ga, gb) = ê(g, g)ab. By non-degenerate we mean that ê(g, g) = 1 if and only if
g = 1.

In such a setting we can define a number of computational problems. We
shall be interested in the following problem, called the bilinear decisional Diffie-
Hellman (BDDH) problem: For a generator g ∈ G, given

g , A = ga , B = gb , C = gc and Z = ê(g, g)z,

the problem is to determine whether Z = ê(g, g)abc for hidden values of a, b, c and
z. Formally, we define this via a game between an adversary A and a challenger
C. The challenger first generates random values a, b, c, z $← Zp and then it flips
a bit β. If β = 1 it passes A the tuple (g,A,B,C, ê(g, g)abc), if β = 0 it passes
the tuple (g,A,B,C, ê(g, g)z). The adversary A then must output its guess β′

for β. The adversary has advantage ε in solving the BDDH problem if∣∣Pr[A(g,A,B,C, ê(g, g)abc) = 1] − Pr[A(g,A,B,C, ê(g, g)z) = 1]
∣∣ ≥ 2ε,

where the probabilities are over the choice of a, b, c, z and over the random coins
consumed by A.

Definition 1. The (t, ε) BDDH assumption holds if no t-time adversary has at
least ε advantage in the above game.

We note that throughout this paper we will assume that the time t of an adver-
sary includes its code size, in order to exclude trivial “lookup” adversaries.

Identity-based encryption schemes. An identity-based encryption (IBE)
scheme is a tuple of algorithms IBE = (Setup,KeyDer,Enc,Dec) providing the
following functionality. The trusted authority runs Setup to generate a master
key pair (mpk ,msk). It publishes the master public key mpk and keeps the
master secret key msk private. When a user with identity ID wishes to become
part of the system, the trusted authority generates a user decryption key dID

$←
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KeyDer(msk , ID), and sends this key over a secure and authenticated channel
to the user. To send an encrypted message m to the user with identity ID , the
sender computes the ciphertext C $← Enc(mpk , ID ,m), which can be decrypted
by the user as m ← Dec(dID ,C ). We refer to [5] for details on the security
definitions for IBE schemes.

Hierarchical IBE schemes. In a hierarchical IBE (HIBE) scheme, users are
organised in a tree of depth L, with the root being the master trusted au-
thority. The identity of a user at level 0 ≤ � ≤ L in the tree is given by
a vector ID = (ID1, . . . , ID�) ∈ ({0, 1}∗)�. A HIBE scheme is a tuple of al-
gorithms HIBE = (Setup,KeyDer,Enc,Dec) providing the same functionality
as in an IBE scheme, except that a user ID = (ID1, . . . , ID�) at level � can
use its own secret key dID to generate a secret key for any of its children
ID ′ = (ID1, . . . , ID�, ID�+1) via dID ′

$← KeyDer(dID , ID�+1). Note that by iter-
atively applying the KeyDer algorithm, user ID can derive secret keys for any of
its descendants ID ′ = (ID1, . . . , ID�+δ), δ ≥ 0. We will occasionally use the over-
loaded notation dID ′

$← KeyDer(dID , (ID�+1, . . . , ID�+δ)) to denote this process.
The secret key of the root identity at level 0 is dε = msk . Encryption and decryp-
tion are the same as for IBE, but with vectors as identities instead of ordinary
bit strings. For 1 ≤ i ≤ � and I ⊆ {1, . . . , �}, we will occasionally use the nota-
tions ID |≤ i to denote the vector (ID1, . . . , ID i), ID |> i to denote (ID i+1, . . . , �),
and ID |I to denote (ID i1 , . . . , ID i|I|) where i1, . . . , i|I| are the elements of I in
increasing order. Also, if S ⊂ N, then we define S|≤ i = {j ∈ S : j ≤ i} and
S|> i = {j ∈ S : j > i}.

The security of a HIBE scheme is defined through the following game. In
a first phase, the adversary is given as input the master public key mpk of a
freshly generated key pair (mpk ,msk) $← Setup as input. In a chosen-plaintext
attack (IND-ID-CPA), the adversary is given access to a key derivation oracle
that on input of an identity ID = (ID1, . . . , ID�), returns the secret key dID

$←
KeyDer(msk , ID) corresponding to identity ID . In a chosen-ciphertext attack
(IND-ID-CCA), the adversary is additionally given access to a decryption oracle
that for a given identity ID = (ID1, . . . , ID�) and a given ciphertext C returns
the decryption m ← Dec(KeyDer(msk , ID),C ).

At the end of the first phase, the adversary outputs two equal-length chal-
lenge messages m∗0,m

∗
1 ∈ {0, 1}∗ and a challenge identity ID∗ = (ID∗1, . . . , ID

∗
�∗),

where 0 ≤ �∗ ≤ L. The game chooses a random bit b $← {0, 1}∗, generates a
challenge ciphertext C ∗ $← Enc(mpk , ID∗,m∗b) and gives C ∗ as input to the ad-
versary for the second phase, during which it gets access to the same oracles as
during the first phase. The adversary wins the game if it outputs a bit b′ = b
without ever having queried the key derivation oracle on any ancestor identity
ID = (ID∗1, . . . , ID

∗
� ) of ID∗, � ≤ �∗, and, additionally, in the IND-ID-CCA case,

without ever having queried (ID∗,C ∗) to the decryption oracle.

Definition 2. A HIBE scheme is (t, qK, ε) IND-ID-CPA-secure if all t-time ad-
versaries making at most qK queries to the key derivation oracle have at most
advantage ε in winning the IND-ID-CPA game described above.
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Definition 3. A HIBE scheme is (t, qK, qD, ε) IND-ID-CCA-secure if all t-time
adversaries making at most qK queries to the key derivation oracle and at most
qD queries to the decryption oracle have at most advantage ε in winning the
IND-ID-CCA game described above.

3 Identity-Based Encryption with Wildcards

Syntax. Identity-based encryption with wildcards (WIBE) schemes are essen-
tially a generalisation of HIBE schemes where at the time of encryption, the
sender can decide to make the ciphertext decryptable not just by a single target
identity ID , but by a whole group of users whose identities match a certain pat-
tern. Such a pattern is described by a vector P = (P1, . . . , P�) ∈ ({0, 1}∗∪{*})�,
where * is a special wildcard symbol. We say that identity ID = (ID1, . . . , ID�′)
matches P , denoted ID ∈* P , if and only if �′ ≤ � and ∀ i = 1 . . . �′: ID i = Pi
or Pi = *. Note that under this definition, any ancestor of a matching iden-
tity is also a matching identity. This is reasonable for our purposes because any
ancestor can derive the secret key of a matching descendant identity anyway.

More formally, a WIBE scheme is a tuple of algorithms WIBE = (Setup,
KeyDer,Enc,Dec) providing the following functionality. The root authority first
generates a master key pair (mpk ,msk) $← Setup. A user with identity ID =
(ID1, . . . , ID�) can use its own decryption key dID to derive a decryption key for
any user ID ′ = (ID1, . . . , ID�, ID�+1) on the level below by calling dID ′

$←
KeyDer(dID , ID�+1). We will again use the overloaded notation KeyDer(dID ,
(ID�+1, . . . , ID�+δ)) to denote iterative key derivation for descendants. The se-
cret key of the root identity is dε = msk .

To create a ciphertext of message m ∈ {0, 1}∗ intended for all identities match-
ing pattern P = (P1, . . . , P�), the sender computes C $← Enc(mpk , P,m). Any
of the intended recipients ID ∈* P can decrypt the ciphertext using its own
decryption key as m ← Dec(dID ,C ). Correctness requires that for all key pairs
(mpk ,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ � ≤ L, all pat-
terns P ∈ ({0, 1}∗ ∪ {*})�, and all identities ID ∈ ({0, 1}∗)�′ such that ID ∈* P ,
Dec( KeyDer(msk , ID) , Enc(mpk , P,m) ) = m with probability one.

Security. We define the security of WIBE schemes in a way that is very similar
to the case of HIBE schemes, but where the adversary chooses a challenge pattern
instead of an identity to which the challenge ciphertext will be encrypted. Of
course, the adversary is not able to query the key derivation oracle for any
identity that matches the challenge pattern, nor is it able to query the decryption
oracle with the challenge ciphertext and any identity that matches the challenge
pattern.

More specifically, security is defined through the following game with an ad-
versary. In the first phase, the adversary is run on input of the master public
key of a freshly generated key pair (mpk ,msk) $← Setup. In a chosen-plaintext
attack (IND-WID-CPA), the adversary is given access to a key derivation or-
acle that on input ID = (ID1, . . . , ID�) returns dID

$← KeyDer(msk , ID). In
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a chosen-ciphertext attack (IND-WID-CCA), the adversary additionally has
access to a decryption oracle that on input a ciphertext C and an identity
ID = (ID1, . . . , ID�) returns m ← Dec(KeyDer(msk , ID),C ).

At the end of the first phase, the adversary outputs two equal-length challenge
messages m∗0,m

∗
1 and a challenge pattern P ∗ = (P ∗1 , . . . , P

∗
�∗) where 0 ≤ �∗ ≤ L.

The adversary is given a challenge ciphertext C ∗ $← Enc(mpk , P ∗,m∗b) for a
randomly chosen bit b, and is given access to the same oracles as during the first
phase of the attack. The second phase ends when the adversary outputs a bit b′.
The adversary is said to win the IND-WID-CPA game if b′ = b and if it never
queried the key derivation oracle for the keys of any identity that matches the
target pattern (i.e., any ID such that ID ∈* P

∗). Also, in a chosen-ciphertext
attack (IND-WID-CCA), the adversary cannot query the decryption oracle on
C ∗ with any matching identity ID ∈* P

∗.

Definition 4. A WIBE scheme is (t, qK, ε) IND-WID-CPA-secure if all t-time
adversaries making at most qK queries to the key derivation oracle have at most
advantage ε in winning the IND-WID-CPA game described above.

Definition 5. A WIBE scheme is (t, qK, qD, ε) IND-WID-CCA-secure if all t-
time adversaries making at most qK queries to the key derivation oracle and at
most qD queries to the decryption oracle have at most advantage ε in winning
the IND-WID-CCA game described above.

4 A Generic Construction

We first point out that a WIBE scheme can be constructed from any HIBE
scheme, albeit with a secret key size that is exponential in the depth of the
hierarchy tree. Let “*” be a dedicated bitstring that is not allowed to occur
as a user identity. Then the secret key of a user with identity (ID1, . . . , ID�)
in the WIBE scheme contains the HIBE secret keys of all patterns matching
this identity, i.e. the secret keys of all 2� identities (ID ′1, . . . , ID

′
�) such that

ID ′i = ID i or ID ′i = “*” for all i = 1, . . . , �. To encrypt to a pattern (P1, . . . , P�),
one uses the HIBE scheme to encrypt to the identity obtained by replacing each
wildcard in the pattern with the “*” string, i.e. the identity (ID1, . . . , ID�) where
ID i = “*” if Pi = * and ID i = Pi otherwise. Decryption is done by selecting the
appropriate secret key from the list and using the decryption algorithm of the
HIBE scheme.

The efficiency of the WIBE scheme thus obtained is roughly the same as that
of the underlying HIBE scheme, except that the size of the secret key is 2� times
that of a secret key in the underlying HIBE scheme. This may be acceptable
for some applications, but may not be for others. Moreover, from a theoretical
point of view, it is interesting to investigate whether WIBE schemes exist with
overhead polynomial in all parameters. We answer this question in the affirmative
here by presenting direct schemes with secret key size (and, unfortunately, also
ciphertext size) linear in �.
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5 A Construction from Waters’ HIBE Scheme

5.1 Waters’ HIBE Scheme

In [13], Waters argued that his IBE scheme can easily be modified into a L-level
HIBE scheme as per [3]. Here we explicitly present this construction as it will
be useful in the understanding of our construction of a WIBE scheme.

Setup. The trusted authority chooses random generators g1 and g2 from G
and a random value α $← Zp. For i = 1, . . . ,L and j = 0, . . . , n, it chooses
group elements ui,j

$← G where L is the maximum hierarchy depth and n is
the length of an identity string. Next, it computes h1 ← gα1 and h2 ← gα2 .
The master public key is mpk = (g1, g2, h1, u1,0, . . . , uL,n), the corresponding
master secret key is msk = h2.

Key Derivation. A user’s identity is given by a vector ID = (ID1, . . . , ID�)
where each ID i is a n-bit string, applying a collision-resistant hash function
if necessary. Let “j ∈ ID i” denote a variable j iterating over all bit positions
1 ≤ j ≤ n such that the j-th bit of ID i is one. Using this notation, for
i = 1, . . . ,L, we define the function

Fi(ID i) = ui,0
∏
j∈ID ui,j

where the ui,j are the elements in the master public key. To compute the
decryption key for identity ID from the master secret key, first random values
r1, . . . , r�

$← Zp are chosen, then the private key dID is constructed as

(a0, a1, . . . , a�) =

(
h2

�∏
i=1

Fi(ID i)ri , gr11 , . . . , g
r�
1

)
.

A secret key for identity ID = (ID1, . . . , ID�) can be computed by its parent
with identity ID |≤ �−1 as follows. Let dID|≤ �−1 = (a0, a1, . . . , a�−1). The

parent chooses r�
$← Zp and outputs

dID = (a0 · Fi(ID i)r� , a1, . . . , a�−1 , g
r�
1 ) .

Encryption. To encrypt a message m ∈ GT for identity ID = (ID1, . . . , ID�),
the sender chooses t $← Zp; the ciphertext C = (C1,C2,C3) is computed as

C1 ← gt1 , C2 ←
(
C2,i = Fi(ID i)t

)
i=1,...,� , C3 ← m · ê(h1, g2)t .

Decryption. If the receiver is the root authority (i.e., the empty identity ID =
ε) holding the master key msk = h2, then he can recover the message by com-
puting C3/ê(C1, h2). Any other receiver with identity ID = (ID1, . . . , ID�)
and decryption key dID = (a0, a1, . . . , a�) decrypts a ciphertext C = (C1,

C2,C3) as C3 ·
∏�
i=1 ê (ai,C2,i) /ê (C1, a0).

Waters [13] informally states that the above HIBE scheme is IND-ID-CPA se-
cure in the sense that if there is an adversary with advantage ε against the HIBE
making qK private key extraction queries, then there is an algorithm solving the
BDDH problem with advantage ε′ = O((nqK)Lε).
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5.2 A Waters-Based WIBE Scheme

We first introduce some additional notation. If P = (P1, . . . , P�) is a pattern,
then let |P | = � be the length of P , let W(P ) be the set containing all wildcard
indices in P , i.e. the indices 1 ≤ i ≤ � such that Pi = *, and let W(P ) be the
complementary set containing all non-wildcard indices. Clearly W(P )∩W(P ) =
∅ and W(P )∪W(P ) = {1, . . . , �}. We also extend the notations P |≤ i, P |> i and
P |I that we introduced for identity vectors to patterns in the natural way.

Let Wa-HIBE = (Setup,KeyDer,Enc,Dec) be the HIBE scheme described
in Section 5.1. From Wa-HIBE , we can build a WIBE scheme Wa-WIBE =
(Setup′,KeyDer′,Enc′,Dec′), where Setup′ and KeyDer′ are equal to those of the
Wa-HIBE scheme (i.e., Setup′ = Setup and KeyDer′ = KeyDer), and Enc′ and
Dec′ are as follows.

Encryption. To create a ciphertext of message m ∈ GT intended for all iden-
tities matching pattern P = (P1, . . . , P�), the sender chooses t $← Zp and
outputs the ciphertext C = (P,C1,C2,C3,C4), where

C1 ← gt1 C2 ← (C2,i = Fi(Pi)t)i∈W(P )
C3 ← m · ê(h1, g2)t C4 ←

(
C4,i,j = uti,j

)
i∈W(P ), j=0,...,n

Decryption. If the receiver is the root authority (i.e., the empty identity ID =
ε) holding the master key msk = h2, then it can recover the message by com-
puting C3/ê(C1, h2). Any other receiver with identity ID = (ID1, . . . , ID�)
matching the pattern P to which the ciphertext was created (i.e., ID ∈* P )
can decrypt the ciphertext C = (P,C1,C2,C3,C4) by computing C ′2 =(
C ′2,i
)
i=1,...,�

as

C ′2,i = Fi(ID i)t ←
{

C2,i if i ∈ W(P )
C4,i,0 ·

∏
j∈IDi

C4,i,j if i ∈ W(P )

and by using his secret key to decrypt the ciphertext C ′ = (C1,C ′2,C3) via
the Dec algorithm of the Wa-HIBE scheme.

Theorem 6. Let Wa-HIBE be the HIBE scheme in Section 5.1 and let L be
the maximum hierarchy depth. Let Wa-WIBE be the WIBE scheme derived from
Wa-HIBE as described in Section 5.2. If Wa-HIBE is (t, qK, ε) IND-ID-CPA-
secure then Wa-WIBE is (t′, q′K, ε

′) IND-WID-CPA-secure where

t′ = t+ texpLn(1 + qK) , q′K = qK , ε′ ≥ ε/2L

and texp is the time it takes to perform an exponentiation in G.

Proof. The proof of Theorem 6 is by contradiction. That is, we first assume
that there exists an adversary A that breaks the IND-WID-CPA-security of the
Wa-WIBE scheme and then we show how to efficiently build another adversary
B which uses A to break the security of the Wa-HIBE scheme.
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Let mpkH = (g1, g2, h1, u1,0, . . . , uL,n) be the master public key of the
Wa-HIBE scheme that adversary B receives as input for its first phase. The
idea of the proof is that B will guess upfront where in the challenge pattern
P ∗ the wildcards are going to be, and “project” the non-wildcard levels of the
identity tree of the WIBE scheme onto the first levels of the HIBE scheme. In
particular, B will reuse values ui,j from mpkH for the non-wildcard levels, and
will embed new values u′i,j values of which B knows the discrete logarithms for
wildcard levels.

First, B guesses a random vector P̂ = (P̂1, . . . , P̂L) $← {ε, *}L. Define the
projection function π : {1, . . . ,L} → {0, . . . ,L} such that

π(i) = 0 if i ∈ W(P̂ ) and π(i) = i−
∣∣∣W(P̂ )|≤ i

∣∣∣ otherwise.

Intuitively, B will “project” identities at level i of the WIBE scheme onto level
π(i) of the HIBE scheme whenever π(i) �= 0. Next, the adversary B runs adver-
sary A providing it as input for its first phase a public-key mpkW = (g1, g2, h1,
u′1,0, . . . , u

′
L,n), where for all 1 ≤ i ≤ L and 0 ≤ j ≤ n, the elements u′i,j are

generated as u′i,j ← g
αi,j

1 where αi,j
$← Zp if i ∈ W(P̂ ), and u′i,j ← uπ(i),j

otherwise. Define functions F ′i (ID
′
i) = u′i,0

∏
j∈ID ′

i
u′i,j. Notice that mpkA is dis-

tributed exactly as it would be if produced by the setup algorithm described in
Section 5.2.

During the first phase, B has to answer all the key derivation queries ID ′ =
(ID ′1, . . . , ID

′
�) that A is allowed to ask. For that, B first computes the cor-

responding identity on the HIBE tree ID = ID ′|W(P̂ ), which is the identity

obtained by removing from ID ′ all components at levels where P̂ contains a
wildcard. That is, the identity ID is obtained from ID ′ by projecting the com-
ponent at level i of the WIBE onto level π(i) of the HIBE if π(i) �= 0. B then
queries its own key derivation oracle for the Wa-HIBE scheme on input ID to
get the key d = (a0, . . . , aπ(�)). From this, it computes the key d ′ = (a′0, . . . , a

′
�)

as

a′0 ← a0 ·
∏
i∈W(P̂ ) F

′
i (ID

′
i)ri , a′i ←

{
gri1 if i ∈ W(P̂ )
aπ(i) if i ∈ W(P̂ )

where ri
$← Zp for all i ∈ W(P̂ ). At the end of its first phase, A outputs

the challenge pattern P ∗ = (P ∗1 , . . . , P
∗
�∗) and challenge messages m∗0,m

∗
1. If

W(P ∗) �= W(P̂ ) then B aborts. Otherwise, B outputs the corresponding HIBE
identity ID∗ = P ∗|W(P∗) together with challenge messages m∗0,m

∗
1. Let C ∗ =

(C ∗1 ,C
∗
2 ,C

∗
3 ) be the challenge ciphertext that B receives in return from its chal-

lenger, meaning that C ∗ is an encryption of m∗b with respect to the identity ID∗,
where b is the secret bit chosen at random by the challenger. B sets C ′∗1 ← C ∗1 ,
C ′∗2 ← C ∗2 , C ′∗3 ← C ∗3 and C ′∗4 ← (C ∗1

αi,j )i∈W(P∗), j=0,...,n and sends to A the
ciphertext C ′∗ = (P ∗,C ′∗1 ,C ′∗2 ,C ′∗3 ,C ′∗4 ) as the input for its second phase. Dur-
ing the second phase, A is then allowed to issue more key derivation queries,
which are answered by B exactly as in the first phase. When A outputs a bit b′,
B outputs b′ and stops.
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In order to analyse the success probability of B, we first need to show that the
simulation it provides to A is correct. The secret key d ′ = (a′0, . . . , a

′
�) returned

for identity (ID ′1, . . . , ID
′
�) can be seen to be correctly distributed since if a′i = gri1

for 1 ≤ i ≤ � then

a′0 = h2 ·
∏
i∈W(P̂ ) Fπ(i)(ID

′
i)
ri ·
∏
i∈W(P̂ ) F

′
i (ID

′
i)
ri

= h2 ·
∏

i∈W(P̂ )

(
uπ(i),0

∏
j∈ID ′

i
uπ(i),j

)ri
·
∏

i∈W(P̂ )

F ′i (ID
′
i)
ri

= h2 ·
∏

i∈W(P̂ )

(
u′i,0
∏
j∈ID ′

i
u′i,j

)ri
·
∏

i∈W(P̂ )

F ′i (ID
′
i)
ri

= h2 ·
∏�
i=1 F

′
i (ID

′
i)
ri

Moreover, the challenge ciphertext C ′∗ = (P ∗,C ′∗1 ,C
′∗
2 ,C

′∗
3 ,C

′∗
4 ) sent to A can

be seen to be correctly formed when W(P ∗) = W(P̂ ) as follows. Consider the
ciphertext C ∗ = (C ∗1 ,C

∗
2 ,C

∗
3 ) that B receives back from the challenger after

outputting (ID∗,m∗0,m
∗
1) where ID∗ = P ∗|W(P∗). We know that, for unknown

values t ∈ Zp and b ∈ {0, 1}, C ∗1 = gt, C ∗3 = m∗b · ê(h1, g2)t and

C ∗2 =
(
C ∗2,i = Fi(ID∗i )

t
)
i=1,...,π(�∗)

=
(
C ′∗2,i = F ′i (P

∗
i )t
)
i∈W(P∗)

.

Since B sets C ′∗1 = C ∗1 , C ′∗2 = C ∗2 and C ′∗3 = C ∗3 , it follows that C ′∗1 , C ′∗2 and
C ′∗3 are of the correct form. To show that C ∗4 is correctly formed, notice that
u′i,j = g

αi,j

1 for indices i ∈ W(P ∗) and j = 0, . . . , n. Thus, C ′∗4,i,j = (C ∗1 )αi,j =
g1
t αi,j = (gαi,j

1 )t = u′i,j
t as required.

We also need to argue that B does not query its key derivation oracle on any
identities that are considered illegal in the IND-ID-CPA game when its guess for
W(P ∗) is correct. Illegal identities are the challenge identity ID∗ = P ∗|W(P∗)
or any ancestors of it, i.e. any ID∗|≤ � for � ≤ �∗. Adversary B only makes
such queries when A queries its key derivation oracle on an identity ID ′ =
(ID ′1, . . . , ID

′
�′) such that �′ ≤ �∗ and ID ′i = P ∗i for all i ∈ W(P ∗)|≤ �′ . By our

matching definition, this would mean that ID ′ ∈* P ∗, which is illegal in the
IND-WID-CPA game as well. Note that, whenever �′ > �∗, we always have that
|ID | > |ID∗| since W(P̂ )|> �∗ = ∅.

To conclude the proof, we notice that the success probability of B is at least
that of A when its guess for W(P ∗) is correct. Let ε be the probability that A wins
the IND-WID-CPA game. Thus, it follows that the overall success probability
of B winning the IND-ID-CPA game is at least ε′ ≥ ε/2L.

Remark 7. The factor of 2L in the security reduction is not a major drawback
given the state of the art in HIBE constructions, which also lose this factor. In
addition, we only lose a factor of L2 when encrypting to patterns with a single
sequence of consecutive wildcards, for example (ID1, *, *, *, ID5) or (ID1, *, *).
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6 Alternative Constructions and Extensions

In the full version of this paper [1], we present two alternative WIBE imple-
mentations, namely the BB-WIBE scheme based on the Boneh-Boyen HIBE
scheme [3] and the BBG -WIBE scheme based on the Boneh-Boyen-Goh HIBE
scheme [4], respectively. We omit them here due to space restrictions. Both of
these schemes have security proofs in the standard model under a weaker security
notion that can be seen as a variant of selective-ID security with wildcards. Se-
curity under the full notion presented in Section 3 can be achieved in the random
oracle model [2] at the cost of losing a factor qLH in the reduction, where qH is the
number of an adversary’s random oracle queries and L is the maximum depth of
the hierarchy. Both schemes have efficiency polynomial in all parameters, unlike
the generic construction of Section 4, and offer advantages over the Wa-WIBE
scheme in master public key length, ciphertext size and encryption/decryption
time. A comparison between all our schemes is provided in Fig. 1.

Scheme |mpk | |d | |C | Dec Assumption RO

Generic |mpkHIBE | 2L · |dHIBE | |CHIBE | DecHIBE
HIBE is

IND-ID-CPA
No

Wa-WIBE (n + 1)L + 3 L + 1 (n + 1)L + 2 L + 1 BDDH No

BB-WIBE 2L + 3 L + 1 2L + 2 L + 1 BDDH Yes

BBG -WIBE L + 4 L + 2 L + 3 2 L-BDHI Yes

Fig. 1. Efficiency and security comparison between the generic scheme of Section 4,
the Wa-WIBE scheme of Section 5.2, and the BB-WIBE and BBG -WIBE schemes
presented in the full version [1]. The schemes are compared in terms of master public
key size (|mpk |), user secret key size (|d |), ciphertext size (|C |), decryption time (Dec),
the security assumption under which the scheme is proved secure, and whether this
proof is in the random oracle model or not. (The generic construction does not introduce
any random oracles, but if the security proof of the HIBE scheme is in the random
oracle model, then the WIBE obviously inherits this property.) Values refer to the
underlying HIBE scheme for the generic scheme, and to the number of group elements
(|mpk |, |d |, |C |) or pairing computations (Dec) for the other schemes. L is the maximal
hierarchy depth and n is the bit length of an identity string. Figures are worst-case
values, usually occurring for identities at level L with all-wildcard ciphertexts. L-BDHI
refers to the decisional bilinear Diffie-Hellman inversion assumption [10, 3].

While the efficiency of our direct schemes is polynomial in all parameters, we
stress that their security degrades exponentially with the hierarchy depth L. So
just as is the case for the current state of the art in HIBE schemes, we have to
leave the construction of a WIBE scheme with polynomial efficiency and security
in all parameters as an open problem.

Also in the full version of the paper [1], we achieve chosen ciphertext secu-
rity by adapting the technique of Canetti, Halevi and Katz [6]. In particular, we
show that we may use a (2L+2)-level CPA-secure WIBE and a strongly unforge-
able signature scheme (SigGen, Sign,Verify) to construct an L-level CCA-secure
WIBE.
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Abstract. Inspired by the paper of de Alfaro, Henzinger and Majum-
dar [1] about discounted μ-calculus we show new surprising links between
parity games and different classes of discounted games.

1 Introduction

One of the major results in the theory of stochastic games states that the value of
mean-payoff games is the limit of the values of discounted games [2]. Recently de
Alfaro, Henzinger and Majumdar [1] presented results that seem to indicate that
it is possible to obtain parity games as an appropriate limit of multi-discounted
games. In fact, the authors of [1] use the language of the μ-calculus rather than
games, but as the links between μ-calculus and parity games are well-known
since the advent [3] it is natural to wonder how discounted μ-calculus from [1]
can be reflected in games.

Suppose that A is our arena with each vertex belonging to one of the two
players 0 and 1. If the current state s belongs to player P then he chooses an
outgoing edge (s, s′) and the system moves to the target state s′. Suppose that
the states are labeled by priorities from the finite set D = {1, . . . , k}. Inspecting
thoroughly the formulas of the discounted μ-calculus from [1] it is not too difficult
to discover that it corresponds to the following games. Let us associate with each
priority d ∈ D a discount factor λd from the interval (0; 1). Let d0d1d2 . . . be
an infinite sequence of priorities visited during the play. Then we calculate the
payoff obtained by player 0 from player 1 using the formula

∞∑
i=0

λd0 · · ·λdi−1(1 − λdi)ri (1)

where

ri =

{
0 if the priority di is odd,
1 if the priority di is even.
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The fact that such games have values and optimal strategies, and in the
case of perfect information stochastic games even positional optimal strategies,
is known since the seminal paper of Shapley [4]. The results of [1] indicate
that

lim
λ0↑1

. . . lim
λk−1↑1

valλ(s) = val(s) (2)

where valλ(s) is the value of the multi-discounted game with the payoff (1) for
the initial state s and val(s) is the value of the parity game for the initial state
s (more precisely we should take in this case the following version of the parity
games: player 0 wins 1 if the smallest priority visited infinitely often is even,
otherwise he wins 0).

The first point to note is that if we are in the realm of games rather than
μ-calculus then it is completely artificial to limit the numbers ri appearing in
(1) to 0 and 1, it would be much more natural to consider the games with any
real valued ri (and this is of course the point of view adopted by Shapley [4]).
Thus now we assume that states are labeled rather by pairs (d, r) ∈ D × R
composed of a priority d and a real number r. If during an infinite play we
visit the sequence (d0, r0), (d1, r1), . . . of labels then we can still calculate the
payment obtained by player 0 from player 1 using the formula (1). What about
the equation (2) in this case? Does there exists a game that replaces the parity
game and such that its value can be put on the right hand side of the equality
(2)? As one could expect, such games, priority mean-payoff games, exist. In
fact priority mean-payoff games were previously introduced in [5], where it was
proved that they admit optimal positional strategies. In this paper we show that
their values are related to the values of multi-discounted games, generalizing1

the result of [1].
The formula (2) has a rather limited interest, we would prefer to find a link

not only between the game values but also between their optimal strategies. To
this end in Section 4 we introduce a new family of discounted games: priority
discounted games. They have a considerable advantage over multi-discounted
games: their values depend on only one parameter, i.e. to find the limits of their
values we do need to use iterated limits. And, what is more important, it is
possible to carry out to this framework the concept of Blackwell optimality [6]:
for all values of the discount factor sufficiently close to 0, the optimal strategies in
priority-discounted games are also optimal for priority mean-payoff games. Note
that since the parity games are just a very special subclass of priority mean-payoff
games this result establishes a rather unexpected property of parity games. It
is an open problem if this be used in practice to calculate optimal strategies for
parity games.

1 This is not really exact, since [1] examines the μ-calculus corresponding to (concur-
rent) stochastic games while in our paper we limit ourselves to deterministic games.
The possibility of generalization of presented results to stochastic games is discussed
in Section 5.
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2 Games

An arena is a tuple A = (S0, S1, A,6), where S0 and S1 are the sets of states
controlled by player 0 and player 1 respectively, A is the set of actions and 6 is
the set of rewards.

By S = S0 ∪S1 we denote the set of all states. Then A ⊆ S ×6×S, i.e. each
action a = (s′, r, s′′) ∈ A is a triple composed of the source state source(a) = s′,
the target state target(a) = s′′ and a reward r = reward(a) ∈ 6.

An action a is available at state s if a ∈ As, where As denotes the set of
actions with source s.

We consider only arenas where the sets of states and actions are finite and
such that for each state s the set As of available actions is non-empty.

A path in arena A is a finite or infinite sequence p = a0a1a2 . . . of actions
such that ∀i, target(ai) = source(ai+1). The source of the first action a0 is the
source, source(p), of the path p. If p is finite then the target of the last action is
the target, target(p), of p.

It is convenient to assume that for each state s there is an empty path 1s
with the source and the target s.

Two players 0 and 1 play on A in the following way. If the current state s
is controlled by player P ∈ {0, 1}, i.e. s ∈ SP , then player P chooses an action
a ∈ As available at s, this action is executed and the system goes to the state
target(a).

Starting from an initial state s, the infinite sequence of consecutive moves of
both players yields an infinite sequence p = a0a1 . . . of executed actions such
that source(p) = s. Such sequences are called plays, thus plays in this game are
just infinite paths in the underlying arena A.

We shall also use the term “a finite play” as a synonym of “a finite path” but
“play” without any qualifier will always denote an infinite play.

An infinite sequence r0r1r2 . . . of rewards is finitely generated if there exists
a finite subset 6′ of 6 such that all elements of this sequence belong to 6′. The
set of all infinite finitely generated sequences of 6 is denoted 6ω.

By 6∗ we denote the set of all finite sequences of 6 and we set 6∞ = 6∗∪6ω .
Each path p = a0a1 . . . yields a sequence of rewards

reward(p) = reward(a0) reward(a1) . . . . (3)

Note that since our arenas are finite, if p is an infinite path then reward(p) is
finitely generated.

A utility mapping
u : 6ω → R (4)

maps each finitely generated infinite reward sequence x ∈ 6ω to a real number
u(x) ∈ R. The interpretation is that at the end of a play p player 0 receives from
player 1 the payoff u(reward(p)) (if u(reward(p)) < 0 then it is rather player 1
that receives from player 0 the amount |u(reward(p))|).

A game (A, u) is couple composed of an arena and a utility mapping.
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A strategy of a player P is his plan of action that tells him which action to
take when the game is at a state s ∈ SP . The choice of the action can depend
on the whole past sequence of moves. Thus a strategy for player 0 is a mapping

σ : {p | p a finite play with target(p) ∈ S0} −→ A (5)

such that for each finite play p with s = target(p) ∈ S0, σ(p) ∈ As.
Strategy σ of player 0 is said to be positional if for every state s ∈ S0 and every

finite play p such that target(p) = s, σ(p) = σ(1s). Thus the action chosen by a
positional strategy depends only on the current state, previously visited states
and executed actions are irrelevant. To simplify the notation it is convenient to
view a positional strategy as a mapping

σ : S0 → A (6)

such that σ(s) ∈ As.
A finite or infinite play p = a0a1 . . . is said to be consistent with a strategy

σ ∈ Σ if for each i ∈ N such that target(ai−1) = source(ai) ∈ S0, we have
ai = σ(a0 . . . ai−1). Moreover, if s = source(a0) ∈ S0 then we require that
a0 = σ(1s).

Strategies, positional strategies and consistent plays are defined in the analo-
gous way for player 1 with S1 replacing S0.

In the sequel Σ and T will stand for the set of strategies for player 0 and
player 1, Σp and Tp are the corresponding subsets of positional strategies and
finally σ and τ , possibly with subscripts or superscripts, will denote the elements
of Σ and T .

Given a pair of strategies σ ∈ Σ and τ ∈ T , there exists a unique infinite
play in arena A, denoted p(s, σ, τ), consistent with σ and τ and such that s =
source(p(s, σ, τ)). The corresponding sequence of rewards reward(p(s, σ, τ)) will
be denoted r(s, σ, τ).

Definition 1. Strategies σ� ∈ Σ and τ � ∈ T are optimal in the game (A, u) if

∀s ∈ S, ∀σ ∈ Σ, ∀τ ∈ T ,
u(r(s, σ, τ �)) ≤ u(r(s, σ�, τ �)) ≤ u(r(s, σ�, τ)) . (7)

We say that a utility mapping u admits optimal positional strategies if for all
games (A, u) over finite arenas there exist positional optimal strategies for both
players.

Thus if both strategies are optimal the players do not have any incentive to
change them unilaterally: player 0 cannot increase his gain by switching to an-
other strategy σ while player 1 cannot decrease his loses by switching to τ .

Note that zero-sum games, where the gain of one player is equal to the loss
of his adversary, satisfy the exchangeability property for optimal strategies: for
any two pairs of optimal strategies (σ�, τ �) and (σ�, τ�), the pairs (σ�, τ �) and
(σ�, τ�) are also optimal and, moreover, u(r(s, σ�, τ �)) = u(r(s, σ�, τ�)), i.e. the
value of the expression u(r(s, σ�, τ �)) is independent of the choice of the optimal
strategies — this is the value of the game (A, u) at state s.
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Lemma 2. Let u be a utility mapping admitting optimal positional strategies
for both players.

(A) Suppose that σ ∈ Σ is any strategy while τ � ∈ Tp is positional. Then there
exists a positional strategy σ� ∈ Σp such that

∀s ∈ S, u(r(s, σ, τ �)) ≤ u(r(s, σ�, τ �)) . (8)

(B) Similarly, if τ ∈ T is any strategy and σ� ∈ Σp a positional strategy then
there exists a positional strategy τ � ∈ Tp such that

∀s ∈ S, u(r(s, σ�, τ �)) ≤ u(r(s, σ�, τ)) .

Proof. We prove (A), the proof of (B) is similar. Take any strategies σ ∈ Σ and
τ � ∈ Tp. Let A′ be a subarena of A obtained by restricting the actions of player
1 to the actions given by the strategy τ �, i.e. in A′ the only possible strategy for
player 1 is the strategy τ �. The actions of player 0 are not restricted, i.e. in A′
player 0 has the same available actions as in A. Since τ � is positional A′ is a well-
defined finite arena and by the assumption concerning u there exists an optimal
positional strategy σ� for player 0 in A′; obviously τ � is the optimal positional
strategy for player 1 in A′. This implies that (8) holds in A′ and therefore also
in A. ��

Lemma 3. Suppose that the utility mapping u admits optimal positional strate-
gies. Suppose σ� ∈ Σp and τ � ∈ Tp are positional strategies such that

∀s ∈ S, ∀σ ∈ Σp, ∀τ ∈ Tp,
u(r(s, σ, τ �)) ≤ u(r(s, σ�, τ �) ≤ u(r(s, σ�, τ)) , (9)

i.e. σ� and τ � are optimal in the class of positional strategies. Then σ� and τ �

are optimal.

Proof. Suppose that

∃τ ∈ T , u(r(s, σ�, τ)) < u(r(s, σ�, τ �)) . (10)

By Lemma 2 there exists a positional strategy τ� ∈ Tp such that u(r(s, σ�, τ�)) ≤
u(r(s, σ�, τ)) < u(r(s, σ�, τ �)), contradicting (9). Thus ∀τ ∈ T , u(r(s, σ�, τ �)) ≤
u(r(s, σ�, τ)). The left hand side of (7) can be proved in the similar way. ��

3 Priority Mean-Payoff Games as the Limit of
Multi-discounted Games

In the sequel of this paper we fix the set of rewards to be

6 = D × R , (11)

where D = {d ∈ N | 1 ≤ d ≤ k} is fixed finite set of priorities. We shall note by
|D| = k the cardinality of D.
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3.1 Multi-discounted Games

A discount mapping
λ : D −→ [0, 1)

associates with each priority a real number from the interval [0, 1). The value of
λ for a priority d ∈ D, noted λd, is called the discount factor of d.

Given a discount mapping λ we define multi-discounted utility mapping uλ.
It is convenient to define uλ uniformly for infinite as well as for finite reward
sequences t = (d0, r0), (d1, r1), . . . ∈ 6∞:

uλ(t) = (1 − λd0)r0 + λd0(1 − λd1)r1 + λd0λd1(1 − λd2)r2 + . . .

=
∑

0≤i<|t|
λd0 . . . λdi−1(1 − λdi)ri , (12)

where |t| is the length of t if t is finite and ∞ otherwise.
By an obvious adaptation of the proof of Shapley [4] one can obtain the

following theorem which in fact holds even for a more general class of perfect
information stochastic games:

Theorem 4 (Shapley). For each discount mapping λ : D → [0; 1), the multi-
discounted utility mapping uλ admits optimal positional strategies for both play-
ers. In particular each game (A, uλ) has a value valλ(s) for every initial state s.

3.2 Priority Mean-Payoff Games

Definition 5. The priority of an infinite reward sequence t = (d0, r0), (d1, r1),
. . . ∈ 6ω is the minimal priority occurring infinitely often in t:

priority(t) = lim inf
i→∞

di . (13)

For any reward sequence t = (d0, r0), (d1, r1), . . . ∈ 6∞ and d ∈ N let

Πd(t) = {i ∈ N | 0 ≤ i < |t| and di = d}, (14)

be the sequence consisting of the indices for which the priority is equal d in t.

Definition 6. Let t = (d0, r0), (d1, r1), . . . ∈ 6ω be an infinite reward sequence
and let Πd(t) = i0, i1, . . . the sequence consisting of the indices i for which di =
priority(t). Then

μ(t) = lim inf
n→∞

1
n

n−1∑
j=0

rij

defines priority mean-payoff utility mapping μ : 6ω → R.

Thus, intuitively, to calculate μ(t) we first use the priorities to choose an appro-
priate subsequence t′ = (di0 , ri0), (di1 , ri1 ), (di1 , ri1 ), . . . of t consisting of rewards
such that priority(t) = di0 = di1 = di1 = . . . and next we apply the usual mean-
payoff to the corresponding subsequence ri0ri1ri2 . . . of rewards.
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The following result is proved in [5]:

Theorem 7. The priority mean-payoff utility μ admits optimal positional
strategies for both players.

The value of the priority mean-payoff game for an initial state s will be noted
val(s).

The following theorem connects multi-discount and priority mean-payoff
games:

Theorem 8. Let D = {1, . . . , k} be the set of priorities. Then for each initial
state s

lim
λ1↑1

lim
λ2↑1

. . . lim
λk↑1

valλ(s) = val(s) , (15)

i.e. the value of the priority mean-payoff game is the (iterated) limit of the value
of the multi-discounted game (λi ↑ 1 means that λi tends to 1 from below).

The order in which the limits are taken in (15) does matter and is related to
the fact that in (13) we have chosen the minimal priority appearing infinitely
often as the priority of an infinite sequence of rewards. Let us note that in the
particular case when there is only one priority, |D| = 1, Theorem 8 holds in the
much larger setting of stochastic games, this is a seminal result of Mertens and
Neyman [2]. We skip the proof of Theorem 8 since it is too long to be given
here. In fact Theorem 8 will not be used in the sequel and, in our opinion, the
subsequent Section 4 contains much more interesting results which are provided
with complete proofs.

Before going to the next section let us note however that in fact there exists
a whole spectrum of games spanning from multi-discounted to priority mean-
payoff games. For an infinite reward sequence t = (d0, r0), (d1, r1), . . . ∈ 6∞ we
can define an ith partially discounted utility mapping

uiλ(t) = lim sup
λi+1↑1

. . . lim sup
λk↑1

uλ(t) ,

where uλ(t) is defined by (12). Obviously for i = k this is just the multi-
discounted utility but it turns out that for each fixed i, i = 0, . . . , k, the games
with the utility uiλ have optimal positional strategies and for i = 0 the value
as well as the optimal strategies of such games are the same as for priority
mean-payoff games.

4 Priority-Discounted Games

In Section 3.2 we have established that the value of the priority mean-payoff
game is an iterated limit of the multi-discounted game. However, iterated limits
are cumbersome so a natural question is if we cannot replace them by a single
limit.

Another weakness of multi-discounted games is that they are related to prior-
ity mean-payoff games only by their values but not by their optimal strategies.
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In this section we introduce the class of priority-discounted games which be-
have much better in this respect.

Let us take β ∈ (0; 1] and, for d ∈ D, set

λd(β) = 1 − βd . (16)

A priority-discounted game is a multi-discounted game in which the discount
factor associated with the priority d ∈ D is λd(β).

Let t = (d0, r0), (d1, r1), . . . ∈ 6∞. Then, putting (16) into (12), we get the
definition of the priority-discounted utility mapping:

uβ(t) = βd0r0 + (1 − βd0)βd1r1 + (1 − βd0)(1 − βd1)βd2r2 + . . .

=
∑

0≤i<|t|
(1 − βd0)(1 − βd1) . . . (1 − βdi−1)βdiri . (17)

Let us note that λd(β) ↑ 1 iff β ↓ 0. The following theorem is analogous to
Theorem 8.

Theorem 9. Let A be a finite arena. Then

(i) For every finite arena A and for all β ∈ (0; 1] both players have optimal
positional strategies in the priority discounted game (A, uβ).

(ii) Let valβ(s) be the value of the priority discounted game (A, uβ) for an
initial state s. Then

lim
β↓0

valβ(s) = val(s) , (18)

where val(s) is the value of the priority mean-payoff game.

Proof. (i) obviously is just a special case of Theorem 4. The proof of (ii) will be
given at the end of Section 4.1. ��

4.1 Blackwell Optimality

The concept known as Blackwell optimality was introduced in [7]. A readable
modern presentation can be found in [6]. Roughly speaking, a policy of a Markov
decision process with the discounted reward criterion is Blackwell optimal if it
is optimal for all discount factors sufficiently close to 1. It turns out that such
policies are also automatically optimal for mean-payoff games, hence Blackwell
optimality is stronger than the classical concept of optimality in mean-payoff
games.

We adapt here the concept of Blackwell optimality to two-person priority-
discounted games. We show that corresponding Blackwell optimal strategies exist
and that they are optimal for priority mean-payoff games.

Let us fix a finite arena A. Strategies (σ�, τ �) ∈ Σ × T are β-optimal if they
are optimal in the priority-discounted game (A, uβ) with the discount factor β.

Definition 10. Strategies (σ�, τ �) ∈ Σ × T are Blackwell optimal if they are
β-optimal for all values β in an interval 0 < β < β0 for some constant β0 > 0.
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The following two lemmas will be useful for establishing the existence of Black-
well optimal strategies in priority-discounted games, stated in Theorem 13. In
those Lemmas, we consider the different discounted-priority games obtained
when β tends to 0. In Lemma 11 we fix some finite play and describe the as-
ymptotic behavior of the values of this play when β tends to 0. In Lemma 12 we
consider the case of ultimately periodic plays.

Lemma 11. Let y = (d0, r0) . . . (dn, rn) ∈ 6∗ be a finite sequence of rewards,
a = min{d0, . . . , dn} and I = {i | 0 ≤ i ≤ n and di = a}. Then

lim
β↓0

uβ(y)
1 − (1 − βd0) · · · (1 − βdn)

=
1
|I|
∑
i∈I

ri ,

where |I| denotes the cardinality of I.

Proof. This is just an elementary exercise: uβ(y) = βd0r0 +(1−βd0)βd1r1 +(1−
βd0)(1−βd1)βd2r2 + . . .+(1−βd0)(1−βd1) · · · (1−βdn−1)βdnrn = (

∑
i∈I ri)β

a+
p(β), where p(β) is a polynomial with all monomials having degree> a. Similarly,
g(β) = 1−(1−βd0) · · · (1−βdn) = |I|βa+q(β), where q(β) is a sum of monomials
of degree > a. Thus

uβ(β)/g(β) = ((
∑
i∈I

ri)+p(β)/βa)/(|I|+q(β)/βa)
β→0−−−→ (

∑
i∈I

ri)/|I| . ��

Lemma 12. Given an initial state s and positional strategies (σ, τ) ∈ Σp × Tp,
(i) the function β )→ uβ(r(s, σ, τ))), defined for 0 < β < 1, is a rational

function2 of β.
(ii) limβ→0 u

β(r(s, σ, τ))) = μ(r(s, σ, τ))), where μ is the priority mean-payoff
utility, see Definition 6.

Proof. (i) Since σ and τ are positional, the play p(s, σ, τ) and the resulting
sequence r(s, σ, τ) of rewards are ultimately periodic. Thus, for some x, y ∈ 6∗,
r(s, σ, τ) = xyyy . . . = xyω. Then (17) yields

uβ(xyω) =

uβ(x) + (1 − βd0) · · · (1 − βdl)uβ(y)
∞∑
i=0

[
(1 − βdl+1) · · · (1 − βdm)

]i
= uβ(x) +

(1 − βd0) · · · (1 − βdl)
1 − (1 − βdl+1) · · · (1 − βdm)

uβ(y), (19)

where d0, . . . , dl is the sequence of priorities of x and y = (rl+1, dl+1), . . . ,
(rm, dm).

Since x and y are finite uβ(x) and uβ(y) are just polynomials of β.
(ii) It suffices to note that in (19), if β → 0 then uβ(x) tends to 0 while (1 −
βd0) · · · (1 − βdl) tends to 1. Thus this result is an immediate consequence of
Lemma 11. ��
2 A quotient of two polynomials.
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We can now state our main result about Blackwell optimality in priority-
discounted games.

Theorem 13. For each finite arena A there exist Blackwell optimal positional
strategies for priority-discounted game (A, uβ).

Proof. The proof follows very closely the proof given in [6] for Markov decision
processes.

Since A is finite, the set Σp×Tp of pairs of positional strategies is finite. Thus
there exists a pair (σ�, τ �) ∈ Σp × Tp of positional β-optimal strategies for all
β = βn, where (βn) is some sequence such that βn ↓ 0. We claim that (σ�, τ �)
are Blackwell optimal.

Suppose the contrary. Then there exists a state s and a sequence γn tending
to 0 with n → ∞ such that

(i) either there exists a sequence σ�n of strategies such that uγn(r(s, σ�, τ �)) <
uγn(r(s, σ�n, τ �)),

(ii) or there exists a sequence τ�n of strategies such that uγn(r(s, σ�, τ�n)) <
uγn(r(s, σ�, τ �)).

Due to Lemma 2, the strategies σ�n and τ�n can be chosen positional and since
the number of positional strategies is finite, taking a subsequence if necessary,
we can fix one strategy σ� and one strategy τ� for all n.

Thus we have obtained that

(1) either there exist a state s, a positional strategy σ� ∈ Σp and a sequence
(γn), γn ↓ 0, such that for all n

uβ(r(s, σ�, τ �)) < uβ(r(s, σ�, τ �)) for all β = γ1, γ2, . . . , (20)

(2) or there exist a state s, a positional strategy τ� ∈ Tp and a sequence (γn),
γn ↓ 0, such that for all n

uβ(r(s, σ�, τ�)) < uβ(r(s, σ�, τ �)) for all β = γ1, γ2, . . . . (21)

Suppose that (20) holds.
The choice of (σ�, τ �) guarantees that

uβ(r(s, σ�, τ �)) ≤ uβ(r(s, σ�, τ �)) for all β = β1, β2, . . . . (22)

Consider the function

f(β) = uβ(r(s, σ�, τ �)) − uβ(r(s, σ�, τ �)) . (23)

By Lemma 12, f(β) coincides for 0 < β < 1 with a rational function of the
variable β. But from (20) and (22) we can deduce that when β ↓ 0 then f(β)
takes infinitely many times the value 0. This is possible for a rational function
only if it is identical to 0, contradicting (20). In a similar way we can prove
that (21) entails a contradiction. These contradictions show that σ� and τ � are
Blackwell optimal. ��
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Let us note that the proof of Theorem 13 yields in fact a stronger result:

Corollary 14. For each arena A there exists β0 > 0 such that all priority-
discounted games (A, uβ) with 0 < β < β0 have the same optimal positional
strategies.

Now that we know that Blackwell optimal positional strategies exist we are ready
to show that they are also optimal for priority mean-payoff games:

Theorem 15. If (σ�, τ �) are Blackwell optimal positional strategies then they
are also optimal for the priority mean-payoff game.

Proof. Suppose the contrary, i.e. that (σ�, τ �) is not a pair of optimal strategies
for the priority mean-payoff game. This means that there exists a state s such
that either

μ(r(s, σ�, τ �)) < μ(r(s, σ, τ �)) (24)

for some strategy σ or

μ(r(s, σ�, τ)) < μ(r(s, σ�, τ �)) (25)

for some strategy τ . Since priority mean-payoff games have optimal positional
strategies, by Lemma 2, we can assume without loss of generality that σ and τ
are positional. Suppose that (24) holds. By Lemma 12 (B)

lim
β↓0

uβ(r(s, σ�, τ �)) = μ(r(s, σ�, τ �)) < μ(r(s, σ, τ �)) = lim
β↓0

uβ(r(s, σ, τ �)) . (26)

However inequality (26) implies that there exists 0 < β0 such that

∀β < β0, uβ(r(s, σ�, τ �)) < uβ(r(s, σ, τ �)) ,

in contradiction with the Blackwell optimality of (σ�, τ �). Similar reasoning
shows that also (25) contradicts the Blackwell optimality of (σ�, τ �). ��

The proof of Theorem 9 (ii) is a direct consequence of Theorems 15 and 13 and
Lemma 12.

5 Final Remarks

An interesting open problem is if we can, given an arena A, find the constant
β0 from Corollary 14. If this were possible and β0 were not too small then we
could try to find optimal strategies for priority mean-payoff games (and therefore
also parity games) by solving priority-discounted games. And to this end we can
adapt the policy improvement algorithm for discounted games given in [8]. Note
however that the complexity is not discussed at all in [8] so it is difficult to say
if in this way we can outperform the algorithm of Vöge and Jurdziński [9]

Since for (concurrent) stochastic games Theorem 8 holds if there is just one
priority [2] as well as for parity games [1] it is reasonable to conjecture that it



Deterministic Priority Mean-Payoff Games as Limits of Discounted Games 323

holds in general. Blackwell optimality fails for stochastic games since stochastic
mean-payoff and stochastic parity games do not have optimal positional strate-
gies. For perfect information stochastic games we can preserve some of the results
of this paper, in particular concerning optimal positional strategies, this is an
ongoing work.

Let us note finally that, as the reviewers pointed out to us judiciously, there
is another known link between parity and discounted games: Jurdziński [10] has
shown how parity games can be reduced to mean-payoff games and it is well-
known that the value of mean-payoff games is a limit of the value of discounted
games, see [2] or [11] for the particular case of deterministic games. However,
the reduction of [10] does not seem to extend to priority mean-payoff games and,
more significantly, it fails also for perfect information stochastic games. Note also
that [11] concentrates only on value approximation and the issue of Blackwell
optimality in not touched at all.
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Abstract. We study Recursive Concurrent Stochastic Games (RCSGs),
extending our recent analysis of recursive simple stochastic games [14, 15]
to a concurrent setting where the two players choose moves simultane-
ously and independently at each state. For multi-exit games, our earlier
work already showed undecidability for basic questions like termination,
thus we focus on the important case of single-exit RCSGs (1-RCSGs).

We first characterize the value of a 1-RCSG termination game as the
least fixed point solution of a system of nonlinear minimax functional
equations, and use it to show PSPACE decidability for the quantita-
tive termination problem. We then give a strategy improvement tech-
nique, which we use to show that player 1 (maximizer) has ε-optimal
randomized Stackless & Memoryless (r-SM) strategies, while player 2
(minimizer) has optimal r-SM strategies. Thus, such games are r-SM-
determined. These results mirror and generalize in a strong sense the ran-
domized memoryless determinacy results for finite stochastic games, and
extend the classic Hoffman-Karp [19] strategy improvement approach
from the finite to an infinite state setting. The proofs in our infinite-
state setting are very different however.

We show that our upper bounds, even for qualitative termination,
can not be improved without a major breakthrough, by giving two re-
ductions: first a P-time reduction from the long-standing square-root
sum problem to the quantitative termination decision problem for finite
concurrent stochastic games, and then a P-time reduction from the latter
problem to the qualitative termination problem for 1-RCSGs.

1 Introduction

In recent work we have studied Recursive Markov Decision Processes (RMDPs)
and turn-based Recursive Simple Stochastic Games (RSSGs) ([14, 15]), provid-
ing a number of strong upper and lower bounds for their analysis. These de-
fine infinite-state (perfect information) stochastic games that extend Recursive
Markov Chains (RMCs) ([12, 13]) with nonprobabilistic actions controlled by
players. Here we extend our study to Recursive Concurrent Stochastic Games
(RCSGs), where the two players choose moves simultaneously and independently
at each state, unlike RSSGs where only one player can move at each state. RC-
SGs define a class of infinite-state zero-sum (imperfect information) stochastic
games that can naturally model probabilistic procedural programs and other
systems involving both recursive and probabilistic behavior, as well as concur-
rent interactions between the system and the environment. Informally, all such
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recursive models consist of a finite collection of finite state component models
(of the same type) that can call each other in a potentially recursive manner.
For multi-exit RMDPs and RSSGs, our earlier work already showed that basic
questions such as qualitative (i.e. almost sure) termination are already unde-
cidable, whereas we gave strong upper bounds for the important special case of
single-exit RMDPs and RSSGs (called 1-RMDPs and 1-RSSGs).

Our focus is thus on single-exit RCSGs (1-RCSGs). These models correspond
to a concurrent game version of multi-type Branching Processes and Stochastic
Context-Free Grammars, both of which are important and extensively studied
stochastic processes with many applications including in population genetics,
nuclear chain reactions, computational biology, and natural language processing
(see, e.g., [18, 20] and other references in [12, 14]). It is very natural to con-
sider game extensions to these stochastic models. Branching processes model
the growth of a population of entities of distinct types. In each generation each
entity of a given type gives rise, according to a probability distribution, to a
multi-set of entities of distinct types. A branching process can be mapped to a
1-RMC such that the probability of eventual extinction of a species is equal to
the probability of termination in the 1-RMC. Modeling the process in a context
where external agents can influence the evolution to bias it towards extinction or
towards survival leads naturally to a game. A 1-RCSG models the process where
the evolution of some types is affected by the concurrent actions of external
favorable and unfavorable agents (forces).

In [14], we showed that for the 1-RSSG termination game, where the goal of
player 1 (2) is to maximize (minimize) the probability of termination starting at
a given vertex (in the empty calling context), we can decide in PSPACE whether
the value of the game is ≥ p for a given probability p, and we can approximate
this value (which can be irrational) to within given precision with the same
complexity. We also showed that both players have optimal deterministic Stack-
less and Memoryless (SM) strategies in the 1-RSSG termination game; these are
strategies that depend neither on the history of the game nor on the call stack at
the current state. Thus from each vertex belonging to the player, such a strategy
deterministically picks one of the outgoing transitions.

Already for finite-state concurrent stochastic games (CSGs), even under the
simple termination objective, the situation is rather different. Memoryless strate-
gies do suffice for both players, but randomization of strategies is necessary,
meaning we can’t hope for deterministic ε-optimal strategies for either player.
Moreover, player 1 (the maximizer) can only attain ε-optimal strategies, for
ε > 0, whereas player 2 (the minimizer) does have optimal randomized mem-
oryless strategies (see, e.g., [16, 10]). Another important result for finite CSGs
is the classic Hoffman-Karp [19] strategy improvement method, which provides,
via simple local improvements, a sequence of randomized memoryless strategies
which yield payoffs that converge to the value of the game.

Here we generalize all these results to the infinite-state setting of 1-RCSG ter-
mination games. We first characterize values of the 1-RCSG termination game as
the least fixed point solution of a system of nonlinear minimax functional equa-
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tions. We use this to show PSPACE decidability for the quantitative termination
problem (is the value of the game ≥ r for given rational r), as well as PSPACE
algorithms for approximating the termination probabilities of 1-RCSGs to within
a given number of bits of precision, via results for the existential theory of reals.

We then proceed to our technically most involved result, a strategy improve-
ment technique for 1-RCSG termination games. We use this to show that in
these games player 1 (maximizer) has ε-optimal randomized-Stackless & Mem-
oryless (r-SM for short) strategies, whereas player 2 (minimizer) has optimal
r-SM strategies. Thus, such games are r-SM-determined. These results mirror
and generalize in a very strong sense the randomized memoryless determinacy
results known for finite stochastic games. Our technique extends Hoffman-Karp’s
strategy improvement method for finite CSGs to an infinite state setting. How-
ever, the proofs in our infinite-state setting are very different. We rely on subtle
analytic properties of certain power series that arise from studying 1-RCSGs.

Note that our PSPACE upper bounds for the quantitative termination prob-
lem for 1-RCSGs can not be improved to NP without a major breakthrough,
since already for 1-RMCs we showed in [12] that the quantitative termination
problem is at least as hard as the square-root sum problem (see [12]). In fact,
here we show that even the qualitative termination problem for 1-RCSGs, where
the problem is to decide whether the value of the game is exactly 1, is already
as hard as the square-root sum problem, and moreover, so is the quantitative
termination decision problem for finite CSGs. We do this via two reductions: we
give a P-time reduction from the square-root sum problem to the quantitative
termination decision problem for finite CSGs, and a P-time reduction from the
quantitative finite CSG termination problem to the qualitative 1-RCSG termi-
nation problem. Note that this is despite the fact that in recent work Chatterjee
et. al. ([6]) have shown that the approximate quantitative problems for finite
CSGs, including for termination and for more general parity winning conditions,
are in NP∩coNP. In other words, we show that quantitative decision problems
for finite CSGs will require surmounting significant new difficulties that don’t
arise for approximation of game values.

We note that, as is known already for finite concurrent games ([5]), probabilis-
tic nodes do not add any power to these games, because the stochastic nature
of all the games we consider can in fact be simulated by concurrency alone. The
same is true for 1-RCSGs. Specifically, given a finite CSG (or 1-RCSG), G, there
is a P-time reduction to a finite concurrent game (or 1-RCG, respectively) F (G),
without any probabilistic vertices, such that the value of the game G is exactly
the same as the value of the game F (G).

Related work. Stochastic games go back to Shapley [24], who considered finite
concurrent stochastic games with (discounted) rewards. See, e.g., [16] for a recent
book on stochastic games. Turn-based “simple” finite stochastic games were
studied by Condon [8]. As mentioned, we studied RMDPs and (turn-based)
RSSGs and their quantitative and qualitative termination problems in [14, 15].
In [15] we showed that the qualitative termination problem for finite 1-RMDPs is
in P, and for 1-RSSGs is in NP∩coNP. Our earlier work [12, 13] developed theory
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and algorithms for Recursive Markov Chains (RMCs), and [11, 3] have studied
probabilistic Pushdown Systems which are essentially equivalent to RMCs.

Finite-state concurrent stochastic games have been studied extensively in re-
cent CS literature (see, e.g., [6, 10, 9]). In particular, [6] have shown that for finite
CSGs the approximate reachability problem and approximate parity game prob-
lem are in NP∩coNP; however, their results do not resolve the decision problem,
which asks whether the value of the game is ≥ r. (Their approximation theorem
(Thm 3.3, part 1.) in its current form is slightly misstated in a way that would
actually imply that the decision problem is also in NP∩coNP, but this will be
corrected in a journal version of their paper ([5]).) Indeed, we show here that the
quantitative decision problem for finite CSGs, as well as the qualitative problem
for 1-RCSGs, are as hard as the square-root sum problem, for which containment
even in NP is a long standing open problem. Thus our upper bound here, even
for the qualitative termination problem for 1-RCSGs, can not be improved to NP
without a major breakthrough. Unlike for 1-RCSGs, the qualitative termination
problem for finite CSGs is known to be decidable in P-time ([9]). We note that
in recent work Allender et. al. [1] have shown that the square-root sum problem
is in (the 4th level of) the “Counting Hierarchy” CH, which is inside PSPACE,
but it remains a major open problem to bring this complexity down to NP.

2 Basics

Let Γ1 and Γ2 be finite sets constituting the move alphabet of players 1 and
2, respectively. A Recursive Concurrent Stochastic Game (RCSG) is a tuple
A = (A1, . . . , Ak), where each component Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi)
consists of:
1. A set Ni of nodes , with a distinguished subset Eni of entry nodes and a
(disjoint) subset Exi of exit nodes.
2. A set Bi of boxes , and a mapping Yi : Bi )→ {1, . . . , k} that assigns to every
box (the index of) a component. To each box b ∈ Bi, we associate a set of call
ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports, Returnb =
{(b, ex) | ex ∈ ExY (b)}. Let Calli = ∪b∈BiCallb, Returni = ∪b∈BiReturnb, and
let Qi = Ni∪Calli∪Returni be the set of all nodes, call ports and return ports;
we refer to these as the vertices of component Ai.
3. A mapping pli : Qi )→ {0, play} that assigns to every vertex u a type describing
how the next transition is chosen: if pli(u) = 0 it is chosen probabilistically
and if pli(u) = play it is determined by moves of the two players. Vertices
u ∈ (Exi ∪ Calli) have no outgoing transitions; for them we let pli(u) = 0.
4. A transition relation δi ⊆ (Qi × (R ∪ (Γ1 × Γ2)) × Qi), where for each tuple
(u, x, v) ∈ δi, the source u ∈ (Ni\Exi)∪Returni, the destination v ∈ (Ni\Eni)∪
Calli, where if pl(u) = 0 then x is a real number pu,v ∈ [0, 1] (the transition
probability), and if pl(u) = play then x = (γ1, γ2) ∈ Γ1 × Γ2. We assume that
each vertex u ∈ Qi has associated with it a set Γ u1 ⊆ Γ1 and a set Γ u2 ⊆ Γ2, which
constitute player 1 and 2’s legal moves at vertex u. Thus, if (u, x, v) ∈ δi and
x = (γ1, γ2) then (γ1, γ2) ∈ Γ u1 × Γ u2 . Additionally, for each vertex u and each
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x ∈ Γ u1 ×Γ u2 , we assume there is exactly 1 transition of the form (u, x, v) in δi. For
computational purposes we assume that the given probabilities pu,v are rational.
Furthermore they must satisfy the consistency property: for every u ∈ pl−1(0),∑
{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1, unless u is a call port or exit node, neither of which

have outgoing transitions, in which case by default
∑
v′ pu,v′ = 0.

We use the symbols (N,B,Q, δ, etc.) without a subscript, to denote the union
over all components. Thus, eg.N = ∪ki=1Ni is the set of all nodes ofA, δ = ∪ki=1δi
the set of all transitions, etc.

An RCSG A defines a global denumerable stochastic game MA = (V,Δ, pl) as
follows. The global states V ⊆ B∗×Q of MA are pairs of the form 〈β, u〉, where
β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. More
precisely, the states V ⊆ B∗ × Q and transitions Δ are defined inductively as
follows: 1. 〈ε, u〉 ∈ V , for u ∈ Q (ε denotes the empty string.); 2. if 〈β, u〉 ∈ V &

(u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉) ∈ Δ; 3. if 〈β, (b, en)〉 ∈ V , with
(b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ Δ; 4. if 〈βb, ex〉 ∈
V , & (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ Δ.
Item 1. corresponds to the possible initial states, item 2. corresponds to control
staying within a component, item 3. is when a new component is entered via a
box, item 4. is when control exits a box and returns to the calling component. The
mapping pl : V )→ {0, play} is given by pl(〈β, u〉) = pl(u). The set of vertices
V is partitioned into V0, Vplay, where V0 = pl−1(0) and Vplay = pl−1(play).

We consider MA with various initial states of the form 〈ε, u〉, denoting this by
Mu
A. Some states of MA are terminating states and have no outgoing transitions.

These are states 〈ε, ex〉, where ex is an exit node. If we wish to view MA as a
non-terminating CSG, we can consider the terminating states as absorbing states
of MA, with a self-loop of probability 1.

An RCSG where |Γ2| = 1 (i.e., where player 2 has only one action) is called a
maximizing Recursive Markov Decision Process (RMDP), likewise, when |Γ1| =
1 is a minimizing RMDP. An RSSG where |Γ1| = |Γ2| = 1 is essentially a
Recursive Markov Chain ([12, 13]).

Our goal is to answer termination questions for RCSGs of the form: “Does
player 1 have a strategy to force the game to terminate (i.e., reach node 〈ε, ex〉),
starting at 〈ε, u〉, with probability ≥ p, regardless of how player 2 plays?”.

First, some definitions: a strategy σ for player i, i ∈ {1, 2}, is a function
σ : V ∗Vplay )→ D(Γi), where D(Γi) denotes the set of probability distributions
on the finite set of moves Γi. In other words, given a history ws ∈ V ∗Vplay, and
a strategy σ for, say, player 1, σ(ws)(γ) defines the probability with which player
1 will play move γ. Moreover, we require that the function σ has the property
that for any global state s = 〈β, u〉, with pl(u) = play, σ(ws) ∈ D(Γ ui ). In other
words, the distribution has support only over eligible moves at vertex u.

Let Ψi denote the set of all strategies for player i. Given a history ws ∈
V ∗Vplay of play so far, and given a strategy σ ∈ Ψ1 for player 1, and a strategy
τ ∈ Ψ2 for player 2, the strategies determine a distribution on the next move
of play to a new global state, namely, the transition (s, (γ1, γ2), s′) ∈ Δ has
probability σ(ws)(γ1) ∗ τ(ws)(γ2). This way, given a start node u, a strategy
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σ ∈ Ψ1, and a strategy τ ∈ Ψ2, we define a new Markov chain (with initial state
u) Mu,σ,τ

A = (S, Δ′). The states S ⊆ 〈ε, u〉V ∗ of Mu,σ,τ
A are non-empty sequences

of states of MA, which must begin with 〈ε, u〉. Inductively, if ws ∈ S, then: (0)
if s ∈ V0 and (s, ps,s′ , s′) ∈ Δ then wss′ ∈ S and (ws, ps,s′ , wss′) ∈ Δ′; (1) if
s ∈ Vplay, where (s, (γ1, γ2), s′) ∈ Δ, then if σ(ws)(γ1) > 0 and τ(ws)(γ2) > 0
then wss′ ∈ S and (ws, p, wss′) ∈ Δ′, where p = σ(ws)(γ1) ∗ τ(ws)(γ2).

Given initial vertex u, and final exit ex in the same component, and given
strategies σ ∈ Ψ1 and τ ∈ Ψ2, for k ≥ 0, let qk,σ,τ(u,ex) be the probability that,
in Mu,σ,τ

A , starting at initial state 〈ε, u〉, we will reach a state w〈ε, ex〉 in at
most k “steps” (i.e., where |w| ≤ k). Let q∗,σ,τ(u,ex) = limk→∞ qk,σ,τ(u,ex) be the proba-
bility of ever terminating at ex, i.e., reaching 〈ε, ex〉. (Note, the limit exists:
it is a monotonically non-decreasing sequence bounded by 1). Let qk(u,ex) =

supσ∈Ψ1
infτ∈Ψ2 q

k,σ,τ
(u,ex) and let q∗(u,ex) = supσ∈Ψ1

infτ∈Ψ2 q
∗,σ,τ
(u,ex). For a strategy

σ ∈ Ψ1, let qk,σ(u,ex) = infτ∈Ψ2 q
k,σ,τ
(u,ex), and let q∗,σ(u,ex) = infτ∈Ψ2 q

∗,σ,τ
(u,ex). Lastly, given

a strategy τ ∈ Ψ2, let qk,·,τ(u,ex) = supσ∈Ψ1
qk,σ,τ(u,ex), and let q∗,·,τ(u,ex) = supσ∈Ψ1

q∗,σ,τ(u,ex).
From, general determinacy results (e.g., “Blackwell determinacy” [22] which

applies to all Borel two-player zero-sum stochastic games with countable state
spaces; see also [21]) it follows that the games MA are determined, meaning:
supσ∈Ψ1

infτ∈Ψ2 q
∗,σ,τ
(u,ex) = infτ∈Ψ2 supσ∈Ψ1

q∗,σ,τ(u,ex).
We call a strategy σ for either player a (randomized) Stackless and Memoryless

(r-SM) strategy if it neither depends on the history of the game, nor on the
current call stack. In other words, a r-SM strategy σ for player i is given by a
function σ : Q )→ D(Γi), which maps each vertex u of the RCSG to a probability
distribution σ(u) ∈ D(Γ ui ) on the moves available to player i at vertex u.

We are interested in the following computational problems.

(1) The qualitative termination problem: Is q∗(u,ex) = 1?
(2) The quantitative termination (decision) problem: given r ∈ [0, 1], is q∗(u,ex) ≥

r? The approximate version: approximate q∗(u,ex) to within desired precision.

As mentioned, for multi-exit RCSGs these are all undecidable. Thus we focus
on single-exit RCSGs (1-RCSGs), where every component has one exit. Since for
1-RCSGs it is always clear which exit we wish to terminate at starting at vertex
u (there is only one exit in u’s component), we abbreviate q∗(u,ex), q

∗,σ
(u,ex), etc., as

q∗u, q
∗,σ
u , etc., and we likewise abbreviate other subscripts.

3 Nonlinear Minimax Equations for 1-RCSGs

In ([14]) we defined a monotone system SA of nonlinear min-& -max equations
for 1-RSSGs, and showed that its least fixed point solution yields the desired
probabilities q∗u. Here we generalize these to nonlinear minimax systems for 1-
RCSGs. Let us use a variable xu for each unknown q∗u, and let x be the vector
of all xu , u ∈ Q. The system SA has one equation of the form xu = Pu(x) for
each vertex u. Suppose that u is in component Ai with (unique) exit ex. There
are 4 cases based on the “Type” of u.
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1. u ∈ Type1: u = ex. In this case: xu = 1.
2. u ∈ Typerand: pl(u) = 0 & u ∈ (Ni \ {ex})∪Returni: xu =

∑
{v|(u,pu,v ,v)∈δ}

pu,vxv. (If u has no outgoing transitions, this equation is by definition xu=0.)
3. u ∈ Typecall: u = (b, en) is a call port: x(b,en) = xen · x(b,ex′), where ex′ ∈

ExY (b) is the unique exit of AY (b).
4. u ∈ Typeplay: xu = Val(Au(x)).

We have to define this case. Given a value vector x, and a play vertex u,
consider the zero-sum matrix game given by matrix Au(x), whose rows are
indexed by player 1’s moves Γ u1 from node u, and whose columns are in-
dexed by player 2’s moves Γ u2 . The payoff to player 1 under the pair of
deterministic moves γ1 ∈ Γ u1 , and γ2 ∈ Γ u2 , is given by (Au(x))γ1,γ2 := xv,
where (u, (γ1, γ2), v) ∈ δ. Let Val(Au(x)) be the value of this zero-sum ma-
trix game. By von Neumann’s minmax theorem, the value and optimal mixed
strategies exist, and they can be obtained by solving a set of linear inequality
constraints with coefficients given by the xi’s.

In vector notation, we denote the system SA by x = P (x). Given 1-exit RCSG
A, we can easily construct this system. Note that the operator P : Rn≥0 )→ Rn≥0
is monotone: for x, y ∈ Rn≥0, if x ≤ y then P (x) ≤ P (y). This follows because for
two game matrices A and B of the same dimensions, if A ≤ B (i.e., Ai,j ≤ Bi,j
for all i and j), then Val(A) ≤ Val(B). Note that by definition of Au(x), for
x ≤ y, Au(x) ≤ Au(y). We now identify a particular solution to x = P (x), called
the Least Fixed Point (LFP) solution, which gives precisely the termination game
values. Define P 1(x) = P (x), and define P k(x) = P (P k−1(x)), for k > 1. Let
q∗ ∈ Rn denote the n-vector q∗u, u ∈ Q (using the same indexing as used for x).
For k ≥ 0, let qk denote, similarly, the n-vector qku, u ∈ Q.

Theorem 1. Let x = P (x) be the system SA associated with 1-RCSG A. Then
q∗ = P (q∗), and for all q′ ∈ Rn≥0, if q′ = P (q′), then q∗ ≤ q′ (i.e., q∗ is the Least
Fixed Point, of P : Rn≥0 )→ Rn≥0). Moreover, limk→∞ P k(0) ↑ q∗, i.e., the “value
iteration” sequence P k(0) converges monotonically to the LFP, q∗.

The proof is omitted due to space constraints. We will need an important fact
established in the proof: suppose for some q′ ∈ Rn≥0, q

′ = P (q′). Let τ ′ be
the r-SM strategy for player 2 that always picks, at any state 〈β, u〉, for vertex
u ∈ pl−1(play), the mixed 1-step strategy which is an optimal minimax strategy
in the matrix game Au(q′). Then q∗,·,τ

′ ≤ q′. In other words, τ ′ achieves a value
≤ q′u for the game starting from every vertex u (in the empty context).

Theorem 2. Given a 1-exit RCSG A and a rational probability p, there is a
PSPACE algorithm to decide whether q∗u ≤ p. The running time is O(|A|O(n))
where n is the number of variables in x = P (x). We can also approximate q∗ to
within a given number of bits i of precision (i given in unary), in PSPACE and
in time O(i|A|O(n)).

Proof. Using the system x = P (x), we can express facts such as q∗u ≤ c as

∃x1, . . . , xn

n∧
i=1

(xi = Pi(x1, . . . , xn)) ∧ xu ≤ c
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We only need to show how to express equations of the form xv = Val(Av(x))
in the existential theory of reals. We can then appeal to well known results for
deciding that theory ([4, 23]). But this is a standard fact in game theory (see,
e.g., [2, 16, 10] where it is used for finite CSGs). Namely, the minimax theorem
and its LP encoding allow the predicate “y = Val(Av(x))” to be expressed as
an existential formula ϕ(y, x) in the theory of reals with free variables y and
x1, . . . , xn, such that for every x ∈ Rn, there exists a unique y (the game value)
satisfying ϕ(y,x). To approximate the game values within given precision we
can do binary search using such queries. ��

4 Strategy Improvement and
Randomized-SM-Determinacy

The proof of Theorem 1 implies the following (see discussion after Thm 1):

Corollary 1. In every 1-RCSG termination game, player 2 (the minimizer) has
an optimal r-SM strategy.

Proof. Consider the strategy τ ′ in the discussion after Theorem 1, chosen not
for just any fixed point q′, but for q∗ itself. That strategy is r-SM. ��
Player 1 does not have optimal r-SM strategies, not even in finite concurrent
stochastic games (see, e.g., [16, 10]). We next establish that it does have finite
r-SM ε-optimal strategies, meaning that it has, for every ε > 0, a r-SM strategy
that guarantees a value of at least q∗u − ε, starting from every vertex u in the
termination game. We say that a game is r-SM-determined if, letting Ψ ′1 and
Ψ ′2 denote the set of r-SM strategies for players 1 and 2, respectively, we have
supσ∈Ψ ′

1
infτ∈Ψ ′

2
q∗,σ,τu = infτ∈Ψ ′

2
supσ∈Ψ ′

1
q∗,σ,τu .

Theorem 3
1. (Strategy Improvement) Starting at any r-SM strategy σ0 for player 1, via

local strategy improvement steps at individual vertices, we can derive a series
of r-SM strategies σ0, σ1, σ2, . . ., such that for all ε > 0, there exists i ≥ 0
such that for all j ≥ i, σj is an ε-optimal strategy for player 1 starting at
any vertex, i.e., q∗,σj

u ≥ q∗u − ε for all vertices u.
Each strategy improvement step involves solving the quantitative termi-

nation problem for a corresponding 1-RMDP. Thus, for classes where this
problem is known to be in P-time (such as linearly-recursive 1-RMDPs, [14]),
strategy improvement steps can be carried out in polynomial time.

2. Player 1 has ε-optimal r-SM strategies, for all ε > 0, in 1-RCSG termination
games.

3. 1-RCSG termination games are r-SM-determined.

Proof. Note that (2.) follows immediately from (1.), and (3.) follows because
by Corollary 1, player 2 has an optimal r-SM strategy and thus
supσ∈Ψ ′

1
infτ∈Ψ ′

2
q∗,σ,τu = infτ∈Ψ ′

2
supσ∈Ψ ′

1
q∗,σ,τu .

Let σ be any r-SM strategy for player 1. Consider q∗,σ. First, let us note that
if q∗,σ = P (q∗,σ) then q∗,σ = q∗. This is so because, by Theorem 1, q∗ ≤ q∗,σ,
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and on the other hand, σ is just one strategy for player 1, and for every vertex
u, q∗u = supσ′∈Ψ1

infτ∈Ψ2 q
∗,σ′,τ
u ≥ infτ∈Ψ2 q

∗,σ,τ
u = q∗,σu .

Next we claim that, for all vertices u �∈ Typeplay, q∗,σu satisfies its equation
in x = P (x). In other words, q∗,σu = Pu(q∗,σ). To see this, note that for vertices
u �∈ Typeplay, no choice of either player is involved, thus the equation holds
by definition of q∗,σ. Thus, the only equations that may fail are those for u ∈
Typeplay, of the form xu = Val(Au(x)). We need the following (proof omitted).

Lemma 1. For any r-SM strategy σ for player 1, and for any u ∈ Typeplay,
q∗,σu ≤ Val(Au(q∗,σ)).

Now, suppose that for some u ∈ Typeplay, q∗,σu �= V al(Au(q∗,σ)). Thus by the
lemma q∗,σu < V al(Au(q∗,σ)). Consider a revised r-SM strategy for player 1, σ′,
which is identical to σ, except that locally at vertex u the strategy is changed so
that σ′(u) = p∗,u,σ, where p∗,u,σ ∈ D(Γ u1 ) is an optimal mixed minimax strategy
for player 1 in the matrix game Au(q∗,σ). We will show that switching from σ
to σ′ will improve player 1’s payoff at vertex u, and will not reduce its payoff at
any other vertex.

Consider a parameterized 1-RCSG, A(t), which is identical to A, except that
u is a randomizing vertex, all edges out of vertex u are removed, and replaced by
a single edge labeled by probability variable t to the exit of the same component,
and an edge with remaining probability 1− t to a dead vertex. Fixing the value
t determines an 1-RCSG, A(t). Note that if we restrict the r-SM strategies σ or
σ′ to all vertices other than u, then they both define the same r-SM strategy for
the 1-RCSG A(t). For each vertex z and strategy τ of player 2, define q∗,σ,τ,tz to
be the probability of eventually terminating starting from 〈ε, z〉 in the Markov
chain Mz,σ,τ

A(t) . Let fz(t) = infτ∈Ψ2 q
∗,σ,τ,t
z . Recall that σ′(u) = p∗,u,σ ∈ D(Γ u1 )

defines a probability distribution on the actions available to player 1 at vertex
u. Thus p∗,u,σ(γ1) is the probability of action γ1 ∈ Γ1. Let γ2 ∈ Γ2 be any
action of player 2 for the 1-step zero-sum game with game matrix Au(q∗,σ). Let
w(γ1, γ2) denote the vertex such that (u, (γ1, γ), w(γ1, γ2)) ∈ δ. Let hγ2(t) =∑
γ1∈Γ1

p∗,u,σ(γ1)fw(γ1,γ2)(t).

Lemma 2. Fix the vertex u. Let ϕ : R )→ R be any function ϕ ∈ {fz | z ∈
Q} ∪ {hγ | γ ∈ Γ u2 }. The following properties hold:

1. If ϕ(t) > t at some point t ≥ 0, then ϕ(t′) > t′ for all 0 ≤ t′ < t.
2. If ϕ(t) < t at some point t ≥ 0, then ϕ(t′) < t′ for all 1 > t′ > t.

Proof. First, we prove this for ϕ = fz, for some vertex z.
Note that, once player 1 picks a r-SM strategy, a 1-RCSG becomes a 1-RMDP.

By a result of [14], player 2 has an optimal deterministic SM response strategy.
Furthermore, there is such a strategy that is optimal regardless of the starting
vertex. Thus, for any value of t, player 2 has an optimal deterministic SM strat-
egy τt, such that for any start vertex z, we have τt = arg minτ∈Ψ2 q

∗,σ,τ,t
z . Let

g(z,τ)(t) = q∗,σ,τ,tz , and let dΨ2 be the (finite) set of deterministic SM strategies
of player 2. Then fz(t) = minτ∈dΨ2 gz,τ (t). Now, note that the function gz,τ (t) is
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the probability of reaching an exit in an RMC starting from a particular vertex.
Thus, by [12], gz,τ (t) = (limk→∞Rk(0))z for a polynomial system x = R(x)
with non-negative coefficients, but with the additional feature that the vari-
able t appears as one of the coefficients. Since this limit can be described by a
power series in the variable t with non-negative coefficients, gz,τ (t) has the fol-
lowing properties: it is a continuous, differentiable, and nondecreasing function
of t ∈ [0, 1], with continuous and nondecreasing derivative, g′z,τ (t), and since the
limit defines probabilities we also know that for t ∈ [0, 1], gz,τ (t) ∈ [0, 1]. Thus
gz,τ (0) ≥ 0 and gz,τ (1) ≤ 1.

Hence, since g′z,τ (t) is non-decreasing, if for some t ∈ [0, 1], gz,τ (t) > t, then
for all t′ < t, gz,τ (t′) > t′. To see this, note that if gz,τ (t) > t and g′z,τ (t) ≥ 1,
then for all t′′ > t, gz,τ (t′′) > t′′, which contradicts the fact that gz,τ (1) = 1.
Thus g′z,τ (t

′) < 1 for all t′ ≤ t, and since gz,τ (t) > t, we also have gz,τ (t′) > t′ for
all t′ < t. Similarly, if gz,τ (t) < t for some t, then gz,τ (t′′) < t′′ for all t′′ ∈ [t, 1).
To see this, note that if for some t′′ > t, t′′ < 1, gz,τ (t′′) = t′′, then since g′z,τ is
non-decreasing and gz,τ (t) < t, it must be the case that g′z,τ (t′′) > 1. But then
gz,τ (1) > 1, which is a contradiction.

It follows that fz(t) has the same properties, namely: if fz(t) > t at some
point t ∈ [0, 1] then gz,τ (t) > t for all τ , and hence for all t′ < t and for all
τ ∈ dΨ2, gz,τ (t′) > t′, and thus fz(t′) > t′ for all t′ ∈ [0, t]. On the other hand, if
fz(t) < t at t ∈ [0, 1], then there must be some τ ′ ∈ dΨ2 such that gz,τ ′(t) < t.
Hence gz,τ ′(t′′) < t′′, for all t′′ ∈ [t, 1), and hence fz(t′′) < t′′ for all t′′ ∈ [t, 1).

Next we prove the lemma for every ϕ = hγ , where γ ∈ Γ u2 . For every value
of t, there is one SM strategy τt of player 2 (depending only on t) that min-
imizes simultaneously gz,τ (t) for all nodes z. So hγ(t) = minτ rγ,τ (t), where
rγ,τ (t) =

∑
γ1∈Γ1

p∗,u,σ(γ1)gw(γ1,γ),τ(t) is a convex combination (i.e., a “weighted
average”)of some g functions at the same point t. The function rγ,τ (for any
subscript ) inherits the same properties as the g’s: continuous, differentiable,
nondecreasing, with continuous nondecreasing derivatives, and rγ,τ takes value
between 0 and 1. As we argued for the g functions, in the same way it follows
that rγ,τ has properties 1 and 2. Also, as we argued for f ’s based on the g’s, it
follows that h’s also have the same properties, based on the r’s. ��

Let t1 = q∗,σu , and let t2 = Val(Au(q∗,σ)). By assumption t2 > t1. Observe that
fz(t1) = q∗,σz for every vertex z. Thus, hγ2(t1) =

∑
γ1∈Γ1

p∗,u,σ(γ1)fw(γ1,γ2)(t1) =∑
γ1
p∗,u,σ(γ1)q

∗,σ
w(γ1,γ2)

. But since, by definition, p∗,u,σ is an optimal strategy for
player 1 in the matrix game Au(q∗,σ), it must be the case that for every γ2 ∈ Γ u2 ,
hγ2(t1) ≥ t2, for otherwise player 2 could play a strategy against p∗,u,σ which
would force a payoff lower than the value of the game. Thus hγ2(t1) ≥ t2 > t1,
for all γ2. This implies that hγ2(t) > t for all t < t1 by Lemma 2, and for all
t1 ≤ t < t2, because hγ2 is nondecreasing. Thus, hγ2(t) > t for all t < t2.

Let t3 = q∗,σ
′

u . Let τ ′ be an optimal global strategy for player 2 against σ′;
by [14], we may assume τ ′ is a pure SM strategy. Let γ′ be player 2’s action in
τ ′ at node u. Then the value of any node z under the pair of strategies σ′ and
τ ′ is fz(t3), and thus since hγ′(t3) is a weighted average of fz(t3)’s for some set
of z’s, we have hγ′(t3) = t3. Thus, by the previous paragraph, it must be that
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t3 ≥ t2, and we know t2 > t1. Thus, t3 = q∗,σ
′

u ≥ Val(Au(q∗,σ)) > t1 = q∗,σu . We
have shown:

Lemma 3. q∗,σ
′

u ≥ Val(Au(q∗,σ)) > q∗,σu .

Note that since t3 > t1, and fz is non-decreasing, we have fz(t3) ≥ fz(t1) for all
vertices z. But then q∗,σ

′
z = fz(t3) ≥ fz(t1) = q∗,σz for all z. Thus, q∗,σ

′ ≥ q∗,σ,
with strict inequality at u, i.e., q∗,σ

′
u > q∗,σu . Thus, we have established that such

a “strategy improvement” step does yield a strictly better payoff for player 1.
Suppose we conduct this “strategy improvement” step repeatedly, starting

at an arbitrary initial r-SM strategy σ0, as long as we can. This leads to a
(possibly infinite) sequence of r-SM strategies σ0, σ1, σ2, . . .. Suppose moreover,
that during these improvement steps we always “prioritize” among vertices at
which to improve so that, among all those vertices u ∈ Typeplay which can be
improved, i.e., such that q∗,σi

u < Val(Au(q∗,σi)), we choose the vertex which has
not been improved for the longest number of steps (or one that has never been
improved yet). This insures that, infinitely often, at every vertex at which the
local strategy can be improved, it eventually is improved.

Under this strategy improvement regime, we show that limi→∞ q∗,σi = q∗,
and thus, for all ε > 0, there exists a sufficiently large i ≥ 0 such that σi
is an ε-optimal r-SM strategy for player 1. Note that after every strategy im-
provement step, i, which improves at a vertex u, by Lemma 3 we will have
q
∗,σi+1
u ≥ Val(Au(q∗,σi)). Since our prioritization assures that every vertex that

can be improved at any step i will be improved eventually, for all i ≥ 0 there
exists k ≥ 0 such that q∗,σi ≤ P (q∗,σi) ≤ q∗,σi+k . In fact, there is a uniform
bound on k, namely k ≤ |Q|, the number of vertices. This “sandwiching” prop-
erty allows us to conclude that, in the limit, this sequence reaches a fixed point
of x = P (x). Note that since q∗,σi ≤ q∗,σi+1 for all i, and since q∗,σi ≤ q∗, we
know that the limit limi→∞ q∗,σi exists. Letting this limit be q′, we have q′ ≤ q∗.
Finally, we have q′ = P (q′), because letting i go to infinity in all three parts
of the “sandwiching” inequalities above, we get q′ ≤ limi→∞ P (q∗,σi) ≤ q′. But
note that limi→∞ P (q∗,σi) = P (q′), because the mapping P (x) is continuous on
Rn≥0. Thus q′ is a fixed point of x = P (x), and q′ ≤ q∗. But since q∗ is the least
fixed point of x = P (x), we have q′ = q∗. ��
Finally, we give the following two reductions (proofs omitted due to space).
Recall that the square-root sum problem (see, e.g., [17, 12]) is the following: given
(d1, . . . , dn) ∈ Nn and k ∈ N, decide whether

∑n
i=1

√
di ≥ k.

Theorem 4. There is a P-time reduction from the square-root sum problem to
the quantitative termination (decision) problem for finite CSGs.

Theorem 5. There is a P-time reduction from the quantitative termination
(decision) problem for finite CSGs to the qualitative termination problem for
1-RCSGs.
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Half-Positional Determinacy of Infinite Games
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Abstract. We study infinite games where one of the players always
has a positional (memory-less) winning strategy, while the other player
may use a history-dependent strategy. We investigate winning conditions
which guarantee such a property for all arenas, or all finite arenas. We
establish some closure properties of such conditions, and discover some
common reasons behind several known and new positional determinacy
results. We exhibit several new classes of winning conditions having this
property: the class of concave conditions (for finite arenas) and the classes
of monotonic conditions and geometrical conditions (for all arenas).

1 Introduction

The theory of infinite games is relevant for computer science because of its
potential application to verification of interactive systems. In this approach, the
system and environment are modeled as players in an infinite game played on a
graph (called arena) whose vertices represent possible system states. The players
(conventionally called Eve and Adam) decide which edge (state transition, or
move) to choose; each edge has a specific color. The desired system’s behavior
is expressed as a winning condition of the game — the winner depends on the
sequence of colors which appear during an infinite play. If a winning strategy
exists in this game, the system which implements it will behave as expected.
Positional strategies (i.e. depending only on the position, not on the history of
play — also called memoryless) are of special interest here, because of their good
algorithmic properties which can lead to an efficient implementation.

Among the most often used winning conditions are the parity conditions,
which admit positional determinacy ([Mos91], [EJ91], [McN93]). However, not
always it is possible to express the desired behavior as a parity condition. An in-
teresting question is, what properties are enough for the winning condition to be
positionally determined, i.e. admit positional winning strategies independently
on the arena on which the game is played. Recently some interesting characteri-
zations of such positionally determined winning conditions have been found. In
[CN06] it has been proven that every (prefix independent) condition which ad-
mits positional determinacy for all finite and infinite arenas (with colored moves)
is a parity condition (up to renaming colors). There are more such conditions if
we only consider finite arenas. In [GZ05] it has been proven that a winning con-
dition is positionally determined for all finite arenas whenever it is so for finite
� Supported by KBN grant 4 T11C 042 25 and the EC RTN GAMES.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 336–347, 2006.
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arenas where only one player is active. Another interesting characterization can
be found in [GZ04]. For a survey of recent results on positional determinacy see
[Gra04].

Our work attempts to obtain similar characterizations and find interesting
properties (e.g. closure properties) of half-positionally determined winning con-
ditions, i.e. ones such that all games using such a winning condition are posi-
tionally determined for one of the players (us, say), but the other player (envi-
ronment) can have an arbitrary strategy. We give uniform arguments to prove
several known and several new half-positional determinacy results. As we will
see, some results on positional determinacy have natural generalizations to half-
positional determinacy, but some do not. This makes the theory of half-positional
conditions harder than the theory of positional conditions.

We also exhibit some large classes of half-positionally determined winning con-
ditions. One example is the class of concave winning conditions ; among examples
of such conditions are the parity conditions, Rabin conditions, and the geomet-
rical condition associated with convex subsets of [0, 1]n. Concavity is sufficient
for half-positional determinacy only in the case of games on finite arenas. We
investigate to what extent the results on geometrical conditions can be extended
to infinite arenas. Another example is the class of monotonic winning condi-
tions, which are defined using a deterministic finite automaton with a monotonic
transition function, and includes winning conditions such as Cω − C∗(anC∗)ω .
Monotonic winning conditions are half-positionally determined on all arenas.

Due to space limitations we had to omit most of proofs and algorithms. They
will be presented in the full version of this paper. Its draft can be found at
[Kop06].

2 Preliminaries

We consider perfect information antagonistic infinite games played by two play-
ers, called conventionally Adam and Eve. Let C be a set of colors (possibly
infinite).

An arena over C is a tuple G = (PosA,PosE ,Mov), where:

– Elements of Pos = PosE ∪ PosA are called positions; PosA and PosE are
disjoint sets of Adam’s positions and Eve’s positions, respectively.

– Elements of Mov ⊆ Pos×Pos×C are called moves; (v1, v2, c) is a move from
v1 to v2 colored by c. We denote source(v1, v2, c) = v1, target(v1, v2, c) = v2,
rank(v1, v2, c) = c.

A game is a pair (G,W ), where G is an arena, and W is a winning condition.
A winning condition W over C is a subset of Cω which is prefix independent,
i.e., u ∈ W ⇐⇒ cu ∈ W for each c ∈ C, u ∈ Cω. We name specific winning
conditions WA, WB , . . . . For example, the parity condition of rank n is the
winning condition over C = {0, 1, . . . , n} defined with

WPn = {w ∈ Cω : limsup
i→∞

wi is even}. (1)
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The game (G,W ) carries on in the following way. The play starts in some
position v1. The owner of v1 (e.g. Eve if v1 ∈ PosE) chooses one of the moves
leaving v1, say (v1, v2, c1). If the player cannot choose because there are no moves
leaving v1, he or she loses. The next move is chosen by the owner of v2; denote
it by (v2, v3, c2). And so on: in the n-th move the owner of vn chooses a move
(vn, vn+1, cn). If c1c2c3 . . . ∈ W , Eve wins the infinite play; otherwise Adam
wins.

A play in the arena G is any sequence of moves π such that source(πn+1) =
target(πn). By source(π) and target(π) we denote the initial and final position
of the play, respectively. The play can be finite (π ∈ Pos ∪ Mov+, where by
π ∈ Pos we represent the play which has just started in the position π) or
infinite (π ∈ Movω; infinite plays have no target).

A strategy for player X is a partial function s : Pos ∪ Mov+ → Mov. For
a finite play π such that target(π) ∈ PosX , s(π) says what X should do in the
next move. A strategy s is winning (for X) from the position v if s(π) is defined
for each finite play π starting in v, consistent with s, and ending in PosX , and
each infinite play starting in v consistent with s is winning for X .

A strategy s is positional if it depends only on target(π), i.e., for each finite
play π we have s(π) = s(target(π)).

A game is determined if for each starting position one of the players has a
winning strategy. This player may depend on the starting position in the given
play. Thus if the game is determined, the set Pos can be split into two sets
WinE and WinA and there exist strategies sE and sA such that each play π
with source(π) ∈ WinX and consistent with sX is winning for X . All games
with a Borel winning condition are determined [Mar75], but there exist (exotic)
games which are not determined. A winning condition W is determined if for
each arena G the game (G,W ) is determined.

We are interested in games and winning conditions for which one or both
of the players have positional winning strategies. Thus, we introduce the no-
tion of a determinacy type, given by three parameters: admissible strategies
for Eve (positional or arbitrary), admissible strategies for Adam (positional or
arbitrary), and admissible arenas (finite or infinite). We say that a winning con-
dition W is (α, β, γ)-determined if for every γ-arena G the game (G,W ) is
(α, β)-determined, i.e. for every starting position either Eve has a winning α-
strategy, or Adam has a winning β-strategy. Clearly, there are 8 determinacy
types in total. For short, we call (positional, positional, infinite)-determined
winning conditions positionally determined or just positional, (positional,
arbitrary, infinite)-determined winning conditions half-positional, (arbitrary,
positional, infinite)-determined winning conditions co-half-positional. If we
restrict ourselves to finite arenas, we add finitely, e.g. (positional, arbitrary,
finite)-determined conditions are called finitely half-positional. For a deter-
minacy type D = (α, β, γ), D-arenas mean γ-arenas, and D-strategies mean
α-strategies (if they are strategies for Eve) or β-strategies (for Adam).

Note that if a game (G,W ) is (α, β)-determined, then its dual game obtained
by using the complement winning condition and switching the roles of players is
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(β, α)-determined. Thus,W is (α, β, γ)-determined iff its complement is (β, α, γ)-
determined.

In the games defined above the moves are colored. In the literature one often
studies similar games where positions are colored instead — in this case instead
of Mov ⊆ Pos×Pos×C we have Mov ⊆ Pos×Pos and a function rank : Pos → C.
The winner of a play in such games is defined similarly.

A position-colored game can be easily transformed into a move-colored game
— we just have to color each move m with the color rank(target(m)). Trans-
formation in the other way in general would require splitting positions when
they are targets of moves of different colors, which may cause a previously
non-positional strategy to become positional. Hence, for position-colored games
there are more (half-)positionally determined winning conditions than for move-
colored games. The facts proven or cited here do not necessarily hold in the case
of position-colored games.

3 Closure Properties of Half-Positional Conditions

Now we will give some closure properties of half-positionally determined winning
conditions. We will start with a lemma which is used in many proofs of half-
positional determinacy of various winning conditions. This lemma can be proven
by transfinite induction.

Lemma 1. Let D be a determinacy type. Let W ⊆ Cω be a winning condition.
Suppose that, for each non-empty D-arena G over C, there exists a non-empty
subset M ⊆ G such that in game (G,W ) one of the players has a D-strategy
winning from M . Then W is D-determined.

Definition 1. For S ⊆ C, WBS is the set of infinite words where elements of
S occur infinitely often, i.e. (C∗S)ω. Winning conditions of this form are called
Büchi conditions. Complements of Büchi conditons, WB ′S = C∗(C − S)ω are
called co-Büchi conditions.

Theorem 1. Let D be a determinacy type. Let W ⊆ Cω be a winning condition,
and S ⊆ C. If W is D-determined, then so is W ∪ WBS .

Proof. We will show that the assumption of Lemma 1 holds. Let our arena be
G = (PosE ,PosA,Mov). S-moves are moves m such that rank(m) ∈ S.

Let G′ be G with a new position # added. The position # belongs to Adam
and has no outgoing moves, hence Adam loses here. For each S-move m we
change target(m) to #.

Since Adam immediately loses after doing an S-move in G′, the winning con-
ditions W and W ∪WBS are equivalent for G′, thus we can use D-determinacy
of W to find the winning sets Win′E ,Win′A and winning D-strategies s′E , s

′
A

in G′.
Suppose Win′A �= ∅. We can see that since Adam’s strategy wins in G′ from

a starting position in Win′A, he also wins in G from there by using the same
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strategy (the game G′ is ,,harder” for Adam than G). Thus the assumption of 1
holds (we take M = Win′A).

Now suppose that Win′A = ∅. We will show that Eve has a winning D-strategy
s in Pos everywhere, hence the assumption of Lemma 1 also holds (we take
M = Win′E).

The strategy is as follows. For a finite play π we take s(π) = sE(π′), where
π′ is the longest final segment without any S-moves. If sE tells Eve to make
an S-move, Eve makes its counterpart (or one of its counterparts) in G instead.
The strategy s is positional if sE is positional. It can be easily shown that s is
indeed a winning strategy. ��

Note that, by duality, Thm 1 implies that if W is D-determined, then so is W ∩
WB ′S . This yields an easy proof of positional determinacy of parity conditions.
It is enough to start with an empty winning condition (which is positionally
determined) and apply Thm 1 and its dual n times.

A union of co-Büchi and co-half-positional conditions does not need to be
co-half-positional (WB ′{a} ∪ WB ′{b} is not). What about a union of co-Büchi
and a half-positional condition, does it have to be half-positional? We have no
proof nor counterexample for this yet. This conjecture can be generalized to the
following:

Conjecture 1. Let W be a (finite, countable, . . . ) family of half-positionally (fi-
nitely) determined winning conditions. Then

⋃
W is a half-positionally

(finitely) determined winning condition.

Note that we assume prefix independence here. It is very easy to find two prefix
dependent winning conditions which are positionally determined, but their union
is not half-positionally determined.

This conjecture also fails for non-countable families and infinite arenas, even
for such simple conditions as Büchi and co-Büchi conditions:

Theorem 2. There exists a family of 2ω Büchi (co-Büchi) conditions such that
its union is not a half-positionally determined winning condition.

Proof. Let I = ωω. Our arena A consists of one Eve’s position E and infinitely
many Adam’s positions (An)n∈ω. In E Eve can choose n ∈ ω and go to An by
move (E,An, �). In each An Adam can choose r ∈ ω and return to E by move
(An, E, (n, r)).

For each y ∈ I, let Sy = {(n, yn) : n ∈ ω} ⊆ C, and S′y = C − Sy − {�}. Let
WA1 =

⋃
y∈I WBSy , WA2 =

⋃
y∈I WB ′S′

y
.

The games (A,WA1) and (A,WA2) are not half-positionally determined. Let
(nk) and (rk) be n and r chosen by Eve and Adam in the k-th round, respectively.
If Eve always plays nk = k, she will win both the conditions WBSy and WB ′S′

y
,

where yk = rk. However, if Eve plays with a positional strategy nk = n, Adam
can win by playing rk = k. ��

There is however a subclass of half-positional winning conditions for which we
can prove that it is closed under countable union.
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Definition 2. A suspendable winning strategy for X is a pair (s,Σ), where
s : Pos ∪ Mov+ → Mov is a strategy, and Σ ⊆ Mov∗, such that:

– s is defined for every finite play π such that target(π) ∈ PosX .
– every infinite play π that is consistent with s from some point t1 has a prefix

longer than t which is in Σ;
– Every infinite play π that has infinitely many prefixes in Σ is winning for X.

We say that X has a suspendable winning strategy in WinX when he has
a suspendable winning strategy in the arena (PosA∩WinX ,PosE ∩WinX ,Mov∩
WinX × WinX × C).

A winning condition W is positional/suspendable if for each arena G in
the game (G,W ) Eve has a positional winning strategy in WinE and Adam has
a suspendable winning strategy in WinA.

Intuitively, if at some moment X decides to play consistently with s, the play will
eventually reach Σ; Σ is the set of moments when X can temporarily suspend
using the strategy s and return to it later without a risk of ruining his or her
victory.

A suspendable winning strategy is a winning strategy, because the condi-
tions above imply that each play which is always consistent with s has infinitely
many prefixes in Σ, and thus is winning for X . The co-Büchi condition is posi-
tional/suspendable; more examples will be given in Theorems 5 and 6. However,
the parity condition WP2 is positional, but not positional/suspendable, because
a suspendable strategy cannot be winning for Adam — it is possible that the
play enters state 2 infinitely many times while it is suspended.

Theorem 3. A union of countably many positional/suspendable conditions is
also positional/suspendable.

If Adam has a suspendable winning strategy for each of given winning condi-
tions and each starting position, then he can use them all in a play — he just
has to activate and suspend each of them infinitely many times. Otherwise, we
use a lemma similar to Lemma 1 to remove all positions from where Eve can
win.

4 Concave Winning Conditions

We will now give some examples of half-positionally determined winning condi-
tions. We will start by giving a simple combinatorial property which guarantees
finite half-positional determinacy.

Definition 3. A word w ∈ Σ∗ ∪ Σω is a (proper) combination of words w1
and w2, iff for some sequence of words (un), un ∈ Σ∗

1 That is, for each prefix u of π which is longer than t and such that target(u) ∈ PosX ,
the next move is given by s(u).
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– w =
∏
k∈N

uk = u0u1u2u3u4u5u6u7u8 . . .,
– w1 =

∏
k∈N

u2k+1 = u1u3u5u7 . . .,
– w2 =

∏
k∈N

u2k = u0u2u4u6 . . ..

Definition 4. A winning condition W is convex if as a subset of Cω it is closed
under combinations, and concave if its complement is convex.

Example 1. Parity conditions (including Büchi and co-Büchi conditions) are
both convex and concave.

Example 2. Let C be an infinite set. The folowing winning conditions are both
convex and concave:

– Exploration condition: the set of all v in Cω such that {vn : n ∈ ω} is infinite.
– Unboundedness condition: the set of all v in Cω such that no color appears

infinitely often.

Decidability and positional determinacy of these conditions on (infinite) push-
down arenas where each position has a distinct color has been studied in [Gim04]
(exploration condition) and [BSW03], [CDT02] (unboundedness condition).

Example 3. Concave winning conditions are closed under union. Convex winning
conditions are closed under intersection.

Another example (which justifies the name) is given in Section 6 below.

Theorem 4. Concave winning conditions are half-positionally finitely deter-
mined.

The proof goes by induction over Mov, and is based on the following idea. Let v
be Eve’s position, with outgoing movesm1,m2, . . .. Suppose that Eve cannot win
by using only one of these moves. Then, since the winning condition is concave,
she also cannot win by using many of these moves — because it can be written
as a combination of subplays that appear after each move m1,m2, . . ., and Adam
wins all of these plays.

This theorem gives yet another proof of finite positional determinacy of par-
ity games, and also half-positional determinacy of unions of families of parity
conditions (where each parity condition may use a different rank for a given
color). Half-positional determinacy of Rabin conditions (finite unions of families
of parity conditions) over infinite arenas has been proven in [Kla92].

Note that concavity does not imply half-positional determinacy over infinite
arenas — for examples see Section 6 below, and also Example 2 and Thm 2. Also,
half-positional determinacy (even over infinite arenas) does not imply concavity
— examples can be found in Sections 6 and 7.

Concavity does not force any bound on the memory required by Adam. Con-
sider the game (G,W ), where G is the arena with one Adam’s position A and
two moves A → A colored 0 and 1 respectively, and W = WF ′([0, 1] − {x}),
where x ∈ [0, 1] is irrational. (WF ′ is defined in Section 6 below.) Adam requires
unbounded memory here.

The following proposition gives some algorithmic properties of concavity, as-
suming that our winning condition is an ω-regular language.
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Proposition 1. Suppose that a winning condition W is given by a deterministic
parity automaton on infinite words using s states and d ranks. Then there exists
a polynomial algorithm of determining whether W is concave (or convex). If W
is concave and G is an arena with n positions, then the winning sets and Eve’s
positional strategy can be found in time O(n(ns)d/2 log s).

5 Weakening the Concavity Condition

In [GZ04] a result similar to Thm 4 has been obtained in the case of full positional
determinacy. To present it, we need the following definition:

Definition 5. A winning condition W is weakly convex iff for each sequence
of words (un), un ∈ C∗, if

1. u1u3u5u7 . . . ∈ W ,
2. u2u4u6u8 . . . ∈ W ,
3. (�) ∀i (ui)ω ∈ W ,

then u1u2u3u4 . . . ∈ W .
A winning condition W is weakly concave iff its complement is weakly con-

vex.

In the case of normal convexity there is no (�).
[GZ04] defines fairly mixing payoff mappings; in the case of prefix independent

winning conditions fairly mixing resolves to the conjunction of weak concavity
and weak convexity. Theorem 1 from [GZ04] says that games on finite arenas
with fairly mixing payoff mappings are positionally determined.

Unfortunately, weak concavity is not enough for half-positional finite deter-
minacy.

Proposition 2. There exists a weakly concave winning condition WQ which is
not half-positionally finitely determined.

Proof. Let C = {0, 1}. For w ∈ Cω let Pn(w) be the number of 1’s among
the first n letters of w, divided by n. The winning condition WQ is a set of
w such that Pn(w) is convergent and its limit is rational. It can be easily seen
that for each u ∈ C+ we have uω ∈ WQ . Therefore (�) is never satisfied for the
complement of WQ , hence WQ is a weakly concave winning condition. However,
WQ is not half-positionally determined. Consider the arena with two positions
E ∈ PosE , A ∈ PosA, and moves (E,A, 0), (E,A, 1), (A,E, 0) and (A,E, 1). If
Eve always moves in the same way, Adam can choose the moves 0 and 1 in an
irrational proportion, ensuring his victory. However, Eve wins by always moving
with the color opposite to Adam’s last move — the limit of Pn(w) is then 1/2.

��

Note that the given WQ satisfies the even stronger condition obtained by re-
placing ∀i by ∃i in (�) in Definition 5.
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6 Geometrical Conditions

In this section we will show some half-positional determinacy results for geo-
metrical conditions, which are based on the ideas similar to that used by the
mean payoff game (also called Ehrenfeucht-Mycielski game). We will also show
the relations between geometrical conditions and concave winning conditions.

Let C = [0, 1]n (where [0, 1] is the real interval; we can also use any compact
and convex subset of a normed space). For a word w ∈ C+, let P (w) be the
average color of w, i.e., 1

|w|
∑|w|
k=1 wk. For a word w ∈ Cω , let Pn(w) = P (w|n)

(w|n — an n-letter prefix of w).
Let A ⊆ C. We want to construct a winning condition W such that w ∈ W

whenever the limit of Pn(w) belongs to A. Since not every sequence has a limit,
we have to define the winner for all other sequences.

Let WF (A) be a set of w such that each cluster point of Pn(w) is an element
of A. Let WF ′(A) be a set of w such that at least one cluster point of Pn(w) is
an element of A. Note that WF ′(A) = Cω − WF (C −A).

As we will see, for half-positional determinacy the important property of A
is whether the complement of A is convex — we will call such sets A co-convex
(as concave usually means “non-convex” in geometry).

Geometrical conditions have a connection with the mean payoff game, whose
finite positional determinacy has been proven in [EM79]. In the mean payoff
game, C is a segment in R and the payoff mapping is u(w) = limsupn→∞ Pn(w)
or u(w) = lim infn→∞ Pn(w). If A = {x : x ≥ x0} then u−1(A) (“Eve wants x0
or more”) is exactly the geometrical condition WF (A) or WF ′(A). Geometrical
conditions are a generalization of such winning conditions to a larger class of
sets A and C.

The following table summarizes what we know about concavity and half-
positional determinacy of geometrical conditions. In every point except No. 0
we assume that A is non-trivial, i.e. ∅ �= A � C. The first two columns specify
assumptions about A and whether we consider WF (A) or WF ′(A), and the
last two answer whether the considered condition is concave and whether it has
finite and/or infinite half-positional determinacy. Negative answer means that
the answer is negative for all sets A in the given class; the question mark means
that the given problem has not been solved yet (but we suppose that the answer
is positive).

No. A condition concavity finite infinite

0 trivial WF ′(A) or WF (A) yes yes yes
1 not co-convexWF ′(A) or WF (A) no no no
2 co-convex WF ′(A) yes yes no
3 co-convex, not open WF (A) weak only yes? no
4 co-convex, open WF (A) weak only yes? yes?

Note that, for any set A which is co-convex and non-trivial, WF ′(A) is fi-
nitely half-positionally determined, but not infinitely half-positionally determied.
This shows a big gap between half-positional determinacy on finite and infinite
arenas.
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The point 4 remains open in general, but we have a positive result for a special
A. Its proof is quite complicated; it uses a similar idea as the proof of Thm 6
below (instead of a state, we use here a real number meaning Eve’s ,,reserve”
before falling out of A).

Theorem 5. Let f be an affine function on C, and A = f−1({x ∈ R : x < 0}).
The condition WF (A) = {w : lim supPn(f(w)) < 0} is positional/suspendable.

Note that WF (A1) ∪ WF (A2) usually is not equal to WF (A1 ∪A2), so a union
of positional/suspendable conditions given above usually is not of form WF (A)
itself.

7 Monotonic Automata

In this section we will show yet another class of half-positionally determined
winning conditions. It is based on a different idea than that of concave conditions,
and guarantees half-positional determinacy even for infinite arenas. We will need
to introduce a special kind of deterministic finite automaton.

Definition 6. A monotonic automaton A = (n, σ) over an alphabet C is a
deterministic finite automaton where:

– the set of states is Q = {0, . . . , n};
– the initial state is 0, and the accepting state is n;
– the transition function σ : Q× C → Q is monotonic in the first component,

i.e., q ≤ q′ implies σ(q, c) ≤ σ(q′, c).

Actually, we need not require that the set of states is finite. All the results
presented here except for Thm 7 and the remark about finite memory of Adam
can be proven with a weaker assumption that Q has a minimum (initial state)
and its each non-empty subset has a maximum.

The function σ is extended to C∗ as usual: σ∗(q, ε) = q, σ∗(q, wc)= σ(σ∗(q, w),
c) (w ∈ C∗, c ∈ C). So defined σ∗ is still monotonic. By LA we denote the
language accepted (recognized) by A, i.e., the set of words w ∈ C∗ such that
σ(0, w) = n.

Example 4. Monotonic automata can recognize the following languages:C∗anC∗,
C∗an−1bC∗, C∗ban−1C∗. Monotonic automata cannot recognize the following
languages: C∗a2b2C∗, C∗babC∗, C∗bacC∗.

Definition 7. A monotonic condition is a winning condition of form WMA

= Cω − LωA for some monotonic automaton A.

Note that if w ∈ LA then uw ∈ LA for each u ∈ C∗. Hence LA = C∗LA.
Therefore LωA is equal to LA(C∗LA)ω = (LAC∗)ω. Hence without affecting WMA

we can assume that σ(n, c) = n for each c.
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Theorem 6. Any monotonic condition is positional/suspendable.

The proof is based on the folowing idea. We construct a new game (G′,W ′)
where Pos′ = Pos × Q, moves are natural and W ′ = Cω − LAC

ω. This game
is positionally determined (equivalent to WP1). From monotonicity we know
which position (g, q) for a given g is worst for Eve, and she can always play as
if she were in the worst possible state. If Eve can win nowhere, then Adam wins
everywhere in the original game; otherwise, Eve wins in some subset of G using
a positional strategy, which we can remove using Lemma 1. It is worth to remark
that although Adam’s strategy given in the proof is not positional, it uses only
finite memory (Q is the set of memory states).

From this theorem and the examples of languages recognized by monotonic
automata above one can see that e.g. WAn, the complement of the set of words
containing an infinitely many times, is monotonic and thus half-positionally de-
termined.

For n = 1 the set WAn is just a co-Büchi condition. However, for n > 1 it is
easily shown that WAn is not (fully) positionally determined, and also that it
is not concave. For example, for n = 2 the word (bababbabab)ω is a combination
of (bbbaa)ω and (aabbb)ω. However, all monotonic conditions are weakly concave
(if ∀iwωi ∈ WLωA for A = (n, σ), then w1w2w3 . . . ∈ WLωA).

Proposition 3. Monotonic conditions are closed under finite union.

A countable union of monotonic conditions is not necessarily defined by a single
monotonic automaton, but it is still positional/suspendable; however, a union
of cardinality 2ω of monotonic conditions does not have to be half-positionally
determined, since co-Büchi conditions are monotonic. Monotonic conditions are
not closed under other Boolean operations.

Theorem 7. Let W1 ⊆ Cω be a concave winning condition, and A be a mono-
tonic automaton. Then the union W = W1 ∪WMA is a half-positionally finitely
determined winning condition.

8 Conclusion and Future Work

We would like to know more closure properties of the class of half-positionally
determined winning conditions. Specifically we want to know whether it is closed
under finite and countable union (Conjecture 1). In this paper we have proven
that it is closed under union with Büchi conditions and intersection with co-
Büchi conditions (Thm 1). We have also proven (Theorem 3) that positional/
suspendable winning conditions are closed under countable union; and many
half-positional winning conditions fall into this category. It seems worthwhile to
extend Thm 3 to conditions obtained by using Thm 1 on positional/suspendable
winning conditions.

Additionally, some of our results give new proofs of known facts about posi-
tional determinacy. Many previous proofs can be simplified by using Lemma 1.
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In our opinion the proof of positional determinacy of parity conditions obtained
by using Thm 1 is simpler than the proofs previously known to us.

Another direction of further research is to find more examples of half-
positional conditions. Theorems 1 and 3 can be used to create new half-positional
conditions from old ones. They could be also obtained e.g. by generalizing the
results on geometrical conditions and monotonic automata. It would be also in-
teresting to see whether monotonic automata have applications in other areas of
automata theory.
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[CN06] T. Colcombet, D. Niwiński, On the positional determinacy of edge-labeled
games. Theor. Comput. Sci. 352 (2006), pages 190-196

[EJ91] E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and determi-
nacy. Proceedings 32th Annual IEEE Symp. on Foundations of Comput.
Sci., pages 368-377. IEEE Computer Society Press, 1991.

[EM79] A. Ehrenfeucht, J. Mycielski, Positional strategies for mean payoff games.
IJGT, 8:109-113, 1979.

[Gim04] H. Gimbert, Parity and Exploration Games on Infinite Graphs. Proc. of CSL
’04, volume 3210 de Lect. Notes Comp. Sci., pages 56-70.
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Abstract. We sketch a proof using a game-theoretic argument that the
higher-order matching problem is decidable.
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1 Introduction

Higher-order unification is given an equation t = u containing free variables,
is there a solution substitution θ such that tθ and uθ have the same normal
form? Terms t and u are from the simply typed λ-calculus and the same normal
form is βη-equality. Higher-order matching is the particular instance when the
term u is closed, can t be pattern matched to u? Although higher-order unifica-
tion is undecidable, higher-order matching was conjectured to be decidable by
Huet [4] (and, if so then it has non-elementary complexity [11, 13]). Decidability
has been proved for the general problem up to order 4 and for various special
cases [7, 8, 9, 10, 2]. Loader showed that matching is undecidable for the variant
definition when β-equality is the same normal form [5].

We propose a game-theoretic technique that leads to decidability of matching.
It starts with Padovani’s reduction to the dual interpolation problem [8]. We
then define a game on a closed λ-term t where play moves around it relative to
a dual interpolation problem. The game captures the dynamics of β-reduction
on t without changing it (using substitution). Small pieces of a solution term,
that we call “tiles”, can be classified according to their subplays and how they,
thereby, contribute to solving it. Two transformations that preserve solution
terms are introduced. With these, we show that 3rd-order matching is decidable
via the small model property: if there is a solution to a problem then there is a
small solution to it. For the general case, the key idea is “tile lowering”, copying
regions of a term down its branches. A systematic method for tile lowering
uses unfolding which is similar to unravelling a model in modal logic. Unfolding
requires a non-standard interpretation of game playing where regions of a term
are to be understood using suffix subplays. At this point, we step outside terms
of typed λ-calculus. Refolding returns us to such terms. The detailed proof of
decidability uses unfolding followed by refolding and from their combinatorial
properties the small model property follows. However, here we can only outline
the method with an example. For all the details and proofs, the reader is invited
to access “Decidability of higher-order matching” from the author’s web page.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 348–359, 2006.
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2 Matching and Dual Interpolation

Assume simply typed λ-calculus with base type 0 and the definitions of α-
equivalence, β and η-reduction. A type is 0, with order 1, or A1 → . . . →
An → 0, with order k + 1 where k is the maximum of the orders of the Ais.
Assume a countable set of typed variables x, y, . . . and typed constants, a, f, . . ..
The simply typed terms is the smallest set T such that if x (f) has type A then
x : A ∈ T (f : A ∈ T ); if t : B ∈ T and x : A ∈ T , then λx.t : A → B ∈ T ; if
t : A → B ∈ T and u : A ∈ T then tu : B ∈ T . The order of a term is the order
of its type and it is closed if it does not contain free variables.

A matching problem is v = u where v, u : 0 and u is closed. The order is
the maximum of the orders of the free variables x1, . . . , xn in v. A solution is
a sequence of terms t1, . . . , tn such that v{t1/x1, . . . , tn/xn} =β η u. Given a
matching problem the decision question is, does it have a solution?

We slightly change the syntax of types and terms. A1 → . . . → An → 0 is
rewritten (A1, . . . , An) → 0 and all terms in normal form are in η-long form: if
t : 0 then it is u : 0 where u is a constant or a variable, or u(t1, . . . , tk) where
u : (B1, . . . , Bk) → 0 is a constant or a variable and each ti : Bi is in η-long
form; if t : (A1, . . . , An) → 0 then t is λy1 . . . yn.t

′ where each yi : Ai and t′ : 0
is in η-long form. A term is well-named if each occurrence of a variable y within
a λ-abstraction is unique.

Definition 1. Assume u : 0 and vi : Ai, 1 ≤ i ≤ n, are closed terms in normal
form and x : (A1, . . . , An) → 0. x(v1, . . . , vn) = u ( �= u) is an interpolation
equation (disequation). A dual interpolation problem P is a finite family of
interpolation equations and disequations, i : 1 ≤ i ≤ m, x(vi1, . . . , v

i
n) ≈i ui, with

the same free variable x and each ≈i ∈ {=, �=}. The type and order of P are the
type and order of x. A solution of P of type A is a closed term t : A in normal
form, such that for each equation t(vi1, . . . , v

i
n) =β ui and for each disequation

t(vi1, . . . , v
i
n) �=β ui. We abbreviate t solves P to t |= P .

Padovani shows that a matching problem of order n reduces to a dual interpo-
lation problem of the same order [8]: given P , is there a solution t |= P? We
assume a fixed dual interpolation problem P of type A whose order is greater
than 1 (as an order 1 problem is easily decided) where the normal form terms
vij and ui are well-named and no pair share bound variables.

A right term u of a (dis)equation may contain bound variables. If X =
{x1, . . . , xk} are its bound variables then let C = {c1, . . . , ck} be a fresh set
of constants with corresponding types. The ground closure of w with bound vari-
ables in X , with respect to C, Cl(w,X,C), is: if w = a : 0, then Cl(w,X,C) =
{a}; if w = f(w1, . . . , wn), then Cl(w,X,C) = {w} ∪

⋃
Cl(wi, X,C); if w =

λxj1 . . . xjn .u then Cl(w,X,C) = Cl(u{cj1/xj1 , . . . , cjn/xjn}, X,C). For u =
f(λx1x2x3.x1(x2), a) with respect to {c1, c2, c3}, it is {u, c1(c2), c2, a}.

We also identify subterms of left terms vj of a (dis)equation relative to
a set C: however, these need not be of ground type and may also contain
free variables. The subterms of w relative to C, Sub(w,C), is defined using
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an auxiliary set Sub′(w,C): if w is a variable or a constant, then Sub(w,C)
= Sub′(w,C) = {w}; if w is x(w1, . . . , wn) then Sub(w,C) = Sub′(w,C) =
{w} ∪

⋃
Sub(wi, C); if w is f(w1, . . . , wn), then Sub(w,C) = Sub′(w,C) =

{w} ∪
⋃

Sub′(wi, C); if w is λy1 . . . yn.v, then Sub(w,C) = {w}∪ Sub(v, C) and⋃
{Sub(v{ci1/y1, . . . , cin/yn}, C) : cij ∈ C has the same type as yj} is the set

Sub′(w,C). If v = λz.f(λz1z2z3.z1(z2), z) and z2, z3 : 0 then Sub(v, {c1, c2, c3})
is {v, f(λz1z2z3.z1(z2), z), c1(c2), c1(c3), c2, c3, z}.

Given the problem P , let Xi be the (possibly empty) set of bound variables
in ui and let Ci be a corresponding set of new constants (that do not occur in
P ), the forbidden constants.

Definition 2. Assume P is the fixed problem of type A. T is the set of sub-
types of A including A and subterms of ui. For i, the right subterms are Ri =
Cl(ui, Xi, Ci) and R =

⋃
Ri. For i, the left subterms are Li =

⋃
Sub(vij , Ci)∪Ci

and L =
⋃

Li. The arity, α, of P is the largest k where (A1, . . . , Ak) → B ∈ T.
The right size δ(u) relative to C is: if u = a : 0 then δ(u) = 0; if u =
f(w1, . . . , wk) then δ(u) = 1 +

∑
δ(wi); if u = λxi1 . . . xik .w, then δ(u) =

δ(w{ci1/xi1 , . . . , cik/xik}). The right size for P , δ, is
∑
δ(ui) of its right terms.

So, δ(h(a)) = 1. If δ for P is 0, then each (dis)equation contains a right term
that is a constant ai : 0: Padovani proved decidability for this special case [7].

3 Tree-Checking Games

We present a game-theoretic characterization of interpolation inspired by model-
checking games (such as in [12]) where a model, a transition graph, is traversed
relative to a property. Similarly, in the following game the model is a putative
solution term t that is traversed relative to the dual interpolation problem.

A potential solution t for P has the right type, is in normal form, is well-
named (with variables that are disjoint from those in P ) and does not contain
forbidden constants. Term t is represented as a tree, tree(t). If t is y : 0 or
a : 0 then tree(t) is the single node labelled with t. For u(v1, . . . , vk) when u
is a variable or a constant, a dummy λ with the empty sequence of variables is
placed before any subterm vi : 0 in its tree representation. If t is u(v1, . . . , vn),
then tree(t) consists of the root node labelled u and n-successor nodes labelled
with tree(vi): u ↓i t′ represents that t′ is the ith successor of u. If t is λy.v, where
y could be empty, then tree(t) consists of the root node labelled λy and a single
successor node tree(v): λy ↓1 tree(v). Each node labelled with an occurrence of
a variable yj has a backward arrow ↑j to the λy that binds it: the index j tells
us which element is pointed at in y. We use t to be the λ-term t, or its λ-tree
or the label (a constant, variable or λy) at its root node. Dummy λs are central
to the analysis in later sections. We also assume that each node of a tree t is
uniquely identified.

Example 1. A solution term t from [1] for the problem x(v) = f(a) where
v = λy1y2.y1(y2) is λz.z(λx.f(z(λu.x, b)), z(λy.z((λs.s, y), a))). The tree for t
(without backward edges and indexed forward edges) is in Figure 1. ��
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Fig. 1. A term tree

Innocent game semantics following Ong in [6] provides a possible game-
theoretic foundation. Given t and a (dis)equation from P , there is the game
board t@(vi1, . . . , v

i
n) ui. Player Opponent chooses a branch of ui. There is a fi-

nite play that starts at the root of t and may repeatedly jump in and out of t and
the vij ’s. At a constant a : 0 play ends. At other constants f , player Proponent
tries to match Opponent’s choice of branch. Proponent wins, when the play fin-
ishes, if the sequence of constants encountered matches the chosen branch. Play
may reach y in t and then jump to λz in vij , as it is this subtree that is applied
to λy, and then when at z in vij play may return to t to a successor of y. Game
semantics models β-reduction on the fixed game board without changing it us-
ing substitution. This is the rationale for the tree-checking game. However, it
starts from the assumption that only t is the common structure for the problem
P . So, play will always be in t. Jumping in and out of the vij ’s is coded using
states. The game avoids justification pointers, using iteratively defined look-up
tables.

The game G(t, P ) is played by player ∀, the refuter, who attempts to show
that t is not a solution of P . It uses a finite set of states involving elements of
L and R from Definition 2. An argument state q[(l1, . . . , lk), r] where each lj ∈ L
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(and k can be 0) and r ∈ R occurs at a node labelled λz1 . . . zk in t where each
lj has the same type as zj : (l1, . . . , lk) are the subterms applied to λz1 . . . zk. A
value state q[l, r] where l ∈ L and r ∈ R is associated with a node labelled with
y in t where y and l share the same type: l is the subterm of some vij that play
at y would jump to in game semantics. A final state is q[ ∀ ] or q[ ∃ ].

A. tm = λy1 . . . yj and tm ↓1 u and qm = q[(l1, . . . , lj), r].

So, tm+1 = u, θm+1 = θm{l1ηm/y1, . . . , ljηm/yj} and qm+1, ηm+1 are defined by
cases on tm+1.

1. a : 0. So, ηm+1 = ηm. If r = a then qm+1 = q[ ∃ ] else qm+1 = q[ ∀ ].
2. f : (B1, . . . , Bk) → 0. So, ηm+1 = ηm. If r = f(s1, . . . , sk) then qm+1 = qm

else qm+1 = q[ ∀ ].
3. y : B. If θm+1(y) = lηi, then ηm+1 = ηi and qm+1 = q[l, r].

B. tm = f : (B1, . . . , Bk) → 0 and qm = q[(l1, . . . , lj), f(s1, . . . , sk)].

So, θm+1 = θm, ηm+1 = ηm and qm+1, tm+1 are decided as follows.
1. ∀ chooses a direction d : 1 ≤ d ≤ k and tm ↓d u. So, tm+1 = u.

If sd : 0, then qm+1 = q[( ), sd]. If sd is λxi1 . . . xin .s then qm+1 =
q[(ci1 , . . . , cin), s{ci1/xi1 , . . . , cin/xin}].

C. tm = y and qm = q[l, r].

If l = λz1 . . . zj .w and tm ↓i ui, for i : 1 ≤ i ≤ j, then ηm+1 =
ηm{u1θm/z1, . . . , ujθm/zj} else ηm+1 = ηm. Elements tm+1, qm+1 and θm+1 are
by cases on l.
1. a : 0 or λz.a. So, tm+1 = tm and θm+1 = θm. If r = a then qm+1 = q[ ∃ ] else

qm+1 = q[ ∀ ].
2. c : (B1, . . . , Bk) → 0. So, θm+1 = θm. If r �= c(s1, . . . , sk) then tm+1 = tm and

qm+1 = q[ ∀ ]. If r = c(s1, . . . , sk) then ∀ chooses a direction d : 1 ≤ d ≤ k and
tm ↓d u. So, tm+1 = u. If sd : 0, then qm+1 = q[( ), sd]. If sd is λxi1 . . . xin .s
then qm+1 = q[(ci1 , . . . , cin), s{ci1/xi1 , . . . , cin/xin}].

3. f(w1, . . . , wk) or λz.f(w1, . . . , wk). So, tm+1 = tm and θm+1 = θm. If r �=
f(s1, . . . , sk), then qm+1 = q[ ∀ ]. If r = f(s1, . . . , sk) then ∀ chooses a direction
d : 1 ≤ d ≤ k. If sd : 0 then qm+1 = q[wd, sd]. If wd = λy1 . . . yn.w and sd =
λxi1 . . . xin .s, then qm+1 = q[w{ci1/y1, . . . , cin/yn}, s{ci1/xi1 , . . . , cin/xin}].

4. x(l1, . . . , lk) or λz.x(l1, . . . , lk). If ηm+1(x) = tθi then θm+1 = θi and tm+1 = t
and qm+1 = q[(l1, . . . , lk), r].

Fig. 2. Game moves

There are two kinds of free variables, in t and in the left terms of states.
Free variables in t are associated with left terms and free variables in states are
associated with nodes of t. So, the game appeals to a sequence of supplementary
look-up tables θk and ηk, k ≥ 1: θk is a partial map from variables in t to pairs
lηj where l ∈ L and j < k, and ηk is a partial map from variables in elements of
L to pairs t′θj where t′ is a node of the tree t and j < k. Initially, θ1 and η1 are
both empty.

A play of G(t, P ) is t1q1θ1η1, . . . , tnqnθnηn where ti is (the label of) a node of
t, t1 = λy is the root node of t, qi is a state and qn is a final state. A node t′ of
t may repeatedly occur in a play. For the initial state, ∀ chooses a (dis)equation
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x(vi1, . . . , v
i
n) ≈i ui from P and q1 = q[(vi1, . . . , v

i
n), ui], similar to that in game

semantics except vij and ui are now part of the state (and the choice of branch
in ui happens as play proceeds). If the current position is tmqmθmηm and qm is
not final, then tm+1qm+1θm+1ηm+1 is determined by a unique move in Figure 2.
Moves are divided into groups depending on tm. Group A covers when it is a
λy, B when it is a constant f (whose type is not 0) and C when it is a variable
y. In B1, C2 and C3 the constants cij belong to the forbidden set Ci: these are
also the only rules where ∀ can exercise choice (by carving out a branch). The
look-up tables are used in A3 and C4 to interpret the two kinds of free variables.
If tm is a λ node, tm ↓1 tm+1 and tm+1 is the variable y, then ηm+1 and qm+1
are determined by the entry for y in θm+1. For C4, if tm = y, qm = q[l, r] and
l = x(l1, . . . , lk) or λz.x(l1, . . . , lk), then θm+1 and tm+1 are determined by the
entry for x in the table ηm+1: if the entry is the pair t′θi then tm+1 = t′ and
θm+1 = θi. It is this rule that allows play to jump elsewhere in the term tree
(always to a node labelled with a λ). In contrast, for A1-A3, B1 and C2 control
passes down the term tree while it remains stationary in the case of C1 and C3.

A play of G(t, P ) finishes with final state q[ ∀ ] or q[ ∃ ]. Player ∀ wins it if the
final state is q[ ∀ ] and she loses it if it is q[ ∃ ]. ∀ loses the game G(t, P ) if for
each equation she loses every play whose intial state is from it and if for each
disequation she wins at least one play whose initial state is from it.

Proposition 1. ∀ loses G(t, P ) if, and only if, t |= P .

Assume t0 |= P , so ∀ loses the game G(t0, P ). The single play for Example 1 is
in Figure 3. The number of different plays is at most the sum of the number of
branches in the right terms ui of P . Let d : 0 be a constant that is not forbidden
and does not occur in any right term of P . We can assume that t0 only contains
d and constants that occur in a right term.

We also allow π to range over subplays, consecutive subsequences of positions
of any play of G(t0, P ). The length of π, |π|, is its number of positions. The ith
position of π is π(i) and π(i, j), i ≤ j, is the interval π(i), . . . , π(j). We write
t ∈ π(i), q ∈ π(i), θ ∈ π(i) and η ∈ π(i) if π(i) = tqθη and t �∈ π(i) if π(i) = t′qθη
and t �= t′. If q = q[(l1, . . . , lk), r] or q[l, r] then its right term is r.

Definition 3. A subplay π is ri, right term invariant, if q ∈ π(1) and q′ ∈ π(|π|)
share the same right term r. It is nri if it is not ri and q′ ∈ π(|π|) is not final.

In Figure 3, π(1, 4) is ri whereas π(1, 6) is nri. Ri subplays are an important
ingredient in the decidability proof as they do not immediately contribute to the
solution of P .

Proposition 2. If tiqiθiηi, . . . , tnqnθnηn is ri, tn = λy and q{r′/r} is state q
with right term r′ instead of r, then tiqi{r′/r}θiηi, . . . , tnqn{r′/r}θnηn is an ri
play.

Definition 4. If π ∈ G(t0, P ) and π(i)’s look-up table is called when move A3 or
C4 produces π(j), j > i, then position π(j) is a child of position π(i). If π(i+1)
is the result of move B1 or C2, then π(i+ 1) is a child of π(i). A look-up table
β′ extends β if for all x ∈ dom(β), β′(x) = β(x).



354 C. Stirling

(1) q[(v), f(a)] θ1 η1

(2) q[v, f(a)] θ2η2 θ2 = θ1{(vη1/z} η2 = η1 A3
(3) q[(y2), f(a)] θ3η3 θ3 = θ2 η3 = η2{(3)θ2/y1, (11)θ2/y2} C4
(4) q[(y2), f(a)] θ4η4 θ4 = θ3{y2η3/x} η4 = η3 A2
(5) q[( ), a] θ5 η5 θ5 = θ4 η5 = η4 B1
(6) q[v, a] θ6 η6 θ6 = θ5 η6 = η1 A3
(7) q[(y2), a] θ7 η7 θ7 = θ6 η7 = η6{(7)θ6/y1, (9)θ6/y2} C4
(8) q[y2, a] θ8 η8 θ8 = θ7{y2η7/u} η8 = η3 A3
(11) q[( ), a] θ9 η9 θ9 = θ2 η9 = η8 C4
(12) q[v, a] θ10η10 θ10 = θ9 η10 = η1 A3
(13) q[(y2), a] θ11η11 θ11 = θ10 η11 = η10{(13)θ10/y1, (19)θ10/y2} C4
(14) q[v, a] θ12η12 θ12 = θ11{y2η11/y} η12 = η1 A3
(15) q[(y2), a] θ13 η13 θ13 = θ12 η13 = η12{(15)θ12/y1, (17)θ12/y2} C4
(16) q[y2, a] θ14 η14 θ14 = θ13{y2η13/s} η14 = η13 A3
(17) q[( ), a] θ15 η15 θ15 = θ12 η15 = η14 C4
(18) q[y2, a] θ16 η16 θ16 = θ15 η16 = η11 A3
(19) q[( ), a] θ17 η17 θ17 = θ10 η17 = η16 C4
(20) q[ ∃ ] θ18 η18 θ18 = θ17 η18 = η17 A1

Fig. 3. A play

Proposition 3. If π ∈ G(t0, P ), j > 1, π(j) is not a final position and λy or y
∈ π(j), then there is a unique π(i), i < j, such that π(j) is a child of π(i). If
π(j) is a child of π(i) then θj ∈ π(j) extends θi ∈ π(i) and ηj ∈ π(j) extends
ηi ∈ π(i).

4 Tiles and Subplays

Assume t0 |= P . The aim is to show there is a small t′ |= P . Although the
number of plays in G(t0, P ) is bounded, there is no bound in terms of P on the
length of a play. However, a long play contains ri subplays: across all plays, the
right term of a state can change at most δ times, Definition 2. To obtain a small
solution term t′, ri subplays will be manipulated. First, we need to relate the
static structure of t0 with the dynamics of play.

Definition 5. Assume B = (B1, . . . , Bk) → 0 ∈ T. λ is an atomic leaf of type
0. If xj : Bj, 1 ≤ j ≤ k, then λx1 . . . xk is an atomic leaf of type B. If u : 0 is a
constant or variable then u is a simple tile. If u : B is a constant or a variable
and tj : Bj, 1 ≤ j ≤ k, are atomic leaves then u(t1, . . . , tk) is a simple tile.

Term t0 without its very top λy consists of simple tile occurrences. Nodes (2),(3)
and (11) of Figure 1 form the simple tile z(λx, λ) and the leaf (16) is also a simple
tile: node (2) by itself and node (2) with (3), are not simple tiles. Tiles can be
composed to form composite tiles. If t(λx) is a tile with leaf λx and t′ is a simple
tile, then t(λx.t′) is a composite tile. A (composite) tile is basic if it contains one
occurrence of a free variable and no occurrences of constants, or one occurrence
of a constant and no occurrences of free variables. The free variable or constant
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in a basic tile is its head element. Contiguous regions of t0 are occurrences
of basic tiles. In Figure 1 the region z(λs.s, λ) is a basic tile rooted at (14).
Throughout, we assume our use of tile in t0 means “tile occurrence” in t0. We
write t(λx1, . . . , λxk) if t is a basic tile with atomic leaves λx1, . . . , λxk.

Definition 6. Assume t = t(λx1, . . . , λxk) is a tile in t0. t is a top tile in t0
if its free variable y is bound by the initial lambda λy of t0. t is j-end in t0, if
every free variable below λxj in t0 is bound above t. It is an end tile in t0 if it is
j-end for all j. t is a constant tile if its head is a constant or its free y is bound
by λy that is an atomic leaf of a simple constant tile. Two basic tiles t and t′ in
t0 are equivalent, t ≡ t′, if they have the same number and type of atomic leaves
and the same free variable y bound to the same λy in t0.

The tile z(λx, λ) in Figure 1 is a top tile which is also 2-end and z(λu, λ) is both
a top and an end tile: these tiles are equivalent.

We can also classify tiles in terms of their dynamic properties.

Definition 7. π is a play on the simple tile u(λx1, . . . , λxk) in t0 if u ∈ π(1),
λxi ∈ π(|π|) for some i and π(|π|) is a child of π(1). It is a j-play if λxj ∈ π(|π|).
A play on a simple constant tile u(λx1, . . . , λxk) is a pair of positions π(i, i+ 1)
with u ∈ π(i) and λxj ∈ π(i + 1) for some j (by moves B1 or C2 of Figure 2).
A play π on a simple non-constant tile y(λx1, . . . , λxk) in t0 can be of arbitrary
length. It starts at y and finishes at a leaf λxj . In between, flow of control can
be almost anywhere in t0. Crucially, the look-up tables of π(|π|) extend those of
π(1) by Fact 3: this means that the free variables in the subtree of t0 rooted at
y and the free variables in w when q[λz1 . . . zk.w, r] ∈ π(1) preserve their values.

If π ∈ G(t0, P ) and y ∈ π(i) then there can be zero or more plays π(i, j) on
y(λx1, . . . , λxk) in t0: simple tiles u : 0 have no plays. If π(i,m) is a j-play on
y(λx1, . . . , λxk) and π(i, n), n > m, is also a play on this tile, then there is a
position π(m′), m < m′ < n, that is a child of π(m). In the case of π in Figure 3
on the tree in Figure 1, π(2, 3) is a 1-play on z(λx, λ) and π(2, 9) is also a play
on this tile: it is π(8) that is the (only) child of π(3).

A play π on a basic tile consists of consecutive subplays on the simple tiles
that are on the branch between the top of the tile and a leaf λxi ∈ π(|π|).

Definition 8. Assume π is a j-play (play) on tile t in t0. It is a shortest j-
play (play) if no proper prefix of π is a j-play (play) on t and it is an ri j-play
(play) if π is also ri. It is an internal j-play (play) when for any i if t′ ∈ π(i)
then t′ is a node of t. Assume t = t(λx1, . . . , λxk) is in t0 and π is a subplay.
We inductively define when t is j-directed in π: if t �∈ π(i) for all i, then t is
j-directed in π; if π(i) is the first position with t ∈ π(i) and there is a shortest
j-play π(i,m) on t and π(i,m) is ri and t is j-directed in π(m+1, |π|), then t is
j-directed in π. Tile t is j-directed in t0 if it is j-directed in every π ∈ G(t0, P ).

π(2, 3) of Figure 3 is a shortest play on tile z(λx, λ) of Figure 1: this play is ri,
internal and a shortest 1-play. Although π(2, 9) is a shortest 2-play, it is neither
a shortest play nor an internal play. If t is j-directed in t0 then each π ∈ G(t0, P )
contains a (unique) sequence of ri intervals which are shortest j-plays on t.
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Assume t = t(λx1, . . . , λxk) is a top tile in t0 and π ∈ G(t0, P ). Consider two
positions t ∈ π(i) and t ∈ π(i′). The states q ∈ π(i) and q′ ∈ π(i′) have the form
q[v, r] and q[v, r′] where v is a closed left term (a vij from a (dis)equation of P ).
Therefore, a shortest play π(i, i+m) on t is internal (as a jump outside t requires
there to be a free variable in v via move C4 of Figure 2). If the play π(i, i+m)
is ri then there is a corresponding ri play π(i′, i′+m) on t consisting of the same
sequence of positions in t and states (except for their right terms r and r′). Tile
t is, therefore, j-directed in π when λxj ∈ π(i + m). If the play π(i, i + m) is
nri then there is a subplay π(i′, i′ +m′) where control is never outside t that is
either a shortest play on t and nri or |π| ≤ i′ +m′. If t is a j-end (end) tile and
t ∈ π(i) then there can be at most one j-play (play) π(i,m) on t.

Tile t′ is j-below t(λx1, . . . , λxk) in t0 if there is a branch in t0 from λxj to
t′. If two tiles t1 and t2 are equivalent, t1 ≡ t2 and t2 is j-below t1 in t0, then
t2 is an embedded tile. Shortest plays on the embedded tile t2 are constrained
by earlier shortest plays on t1 and in the case of embedded end tiles there is a
stronger property that is critical to the decidability proof.

Proposition 4. If t1 ≡ t2 are end tiles in t0 and t2 is j-below t1, then either t2 is
j-directed in t0, or there are π, π′ ∈ G(t0, P ), an nri j-play π(m1,m1 +n1) on t1
and a subplay π′(m2,m2+n2) where m2 > m1+n1, n2 ≤ n1 and π′(m2) = π(m2)
and either m2 = n1 and π′(m2,m2 +n2) is an nri j-play on t2 or m2 +n2 = |π′|.

5 Outline of the Decision Procedure

A transformation T converts a tree s into a tree t, written sT t. Let t′ be a
subtree of t0 whose root node is a variable y or a constant f : B �= 0. G(t0, P )
avoids t′ if t′ �∈ π(i) for all positions and plays π ∈ G(t0, P ). Let t0[t′′/t′] be the
result of replacing t′ in t0 with the tree (of tiles) t′′.

T1. If G(t0, P ) avoids t′ and d : 0 is a constant then transform t0 to t0[d/t′]
T2. Assume t(λx1, . . . , λxk) is a j-directed, j-end tile in t0 and t′ is the subtree
of t0 rooted at t. If tj is the subtree directly beneath λxj then transform t0 to
t0[tj/t′].

If no play enters a subtree of t0 then it can be replaced with the constant d : 0. If
a tile is both j-end and j-directed, Definition 6, then it is redundant and can be
removed from t0. Game-theoretically, the application of T2 amounts to omission
of inessential ri subplays that are structurally associated with regions of a term.

Example 2. Consider Example 1 and its single play in Figure 3. The tile z(λu, λ)
is 1-end and 1-directed because of π(6, 7). T2 allows us to remove it, so node (8)
is directly beneath node (5). The basic tile z(λs.s, λ) is 1-end and 1-directed: the
only play π(14, 17) is ri. A second application of T2 places node (18) directly
beneath node (13). Consequently, the basic tile z(λy.y, λ) is also 1-end and 1-
directed because of the play π(12, 19). The starting term is therefore reduced to
the smaller solution term λz.z(λx.f(x), a). ��
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Proposition 5. If i ∈ {1,2}, sTi t and s |= P then t |= P .

If P is 3rd-order and t0 |= P then t0 is a tree of simple tiles: each is a constant
tile or a top tile that is also an end tile. Assume that Π = {π1, . . . , πp} are the
plays of G(t0, P ) and with each such π we associate a unique colour c(π). We
define a partition of each π ∈ Π in stages. At stage 1, the initial simple tile t1 is
u(λx1, . . . , λxk) in t0, a constant or top tile (where k may be 0). The initial play
on t1, if there is one, is π(i1, j1) where i1 = 2. If there is no play then j1 = |π| as
q ∈ π(j1) is final, and for all i > 1, u ∈ π(i): t1 is final for π and we terminate
at this stage. Otherwise, play ends at an atomic leaf of t1, t2 is the simple tile
directly below it in t0, i2 = j1 + 1 and if π(i1, j1) is nri then t1 is coloured c(π).
At stage n and simple tile tn, π(in, jn) is the shortest play on tn, if there is
one. If there is not then jn = |π| and tn is final for π. If π(in, jn) is nri then tn
is coloured c(π). If it ends at an atomic leaf of tn then tn+1 is the simple tile
directly below it in t0 and in+1 = jn + 1. The partition of π descends a branch
of t0 until it reaches a final tile.

Consider partitioning with respect to all plays π ∈ Π . There is a tree of simple
tiles, as all plays share the initial tile. Tile t is coloured if it has at least one colour
and t is final if it is final for at least one play. Each play at stage 1 that ends at
the same atomic leaf of t1 shares t2 at stage 2 and so on. Therefore, branching
occurs at a (play) separator tm at stage m if there are plays that end at different
atomic leaves of tm. If a simple tile in t0 is coloured, final or a separator then it
is special. A simple tile in t0 with atomic leaves that is not special is superfluous.
Every play avoids it (so, T1 applies) or every subplay that passes through it is
ri and ends at the same atomic leaf (so, T2 applies). There can be at most δ,
the right size for P of Definition 2, coloured tiles, at most p final tiles and at
most p−1 separators: p is bounded by the number of branches in the right terms
of P . Decidability of 3rd-order matching, via the small model property, follows
directly from partitioning.

There is just one level of simple tile that is not a constant tile in a 3rd-order
tree: so, game playing is heavily constrained as control can only descend it. With
a 4th or 5th-order tree there are two levels of simple non-constant tiles: top tiles
t and end tiles t′ where the variable of t′ is bound in t. At 8th or 9th-order there
are four levels. When there is more than one level, game playing may jump
around the tree as Figure 3 illustrates. The mechanism for dealing with these
terms hinges on the idea of tile lowering, copying tiles down branches.

The mechanism for tile lowering is not a transformation like T2. Instead, it
uses an intermediate generalized tree, the unfolding, analogous to unravelling a
model in modal logic, which is then refolded into a small tree. Again, a partition
of (a subsequence of) π is defined in stages using tiles in t0. At each stage n, a
simple tile tn in t0 and a position π(in) whose control is at the head of tn are
examined. The play π(in, jn) is a suffix of a play of a constant or generalized tile
t′n that contains tn.

Stage 1 follows the 3rd-order case: t1 is the first simple tile in t0, t′1 = t1,
and relative to π, π(i1, j1) is defined. If t′1 is not final for π then t2 is the simple
tile directly below it in t0 and i2 = j1 + 1. After stage one, the unfolding of t0
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Fig. 4. Illustrating unfolding

can be depicted in linear form, [t′1 λxj ] if π(i1, j1) finishes at λxj . Consider the
unfolding after stage n for π where t′n is not final for π. There is the sequence
[t′1 λx1] . . . [t′n λxn] of (generalized) tiles where each tk+1 is directly below λxk in
t0 and there are subplays π(ik, jk) that start at tk in t′k and finish at λxk. If tn+1 is
a top or constant tile, then t′n+1 = tn+1 and π(in+1, jn+1) is either a shortest play
on t′n+1 or jn+1 = |π|. The other case is that tn+1 = y(λz1, . . . , λzl) is directly
below λxn in t0 and y is bound within an earlier tile t′k. The position π(in+1) is
a child of a position in the interpretation of t′k that is the effect of the suffix play
π(ik, jk). The tile t′n+1 is [ [t′k λxk] [t′m1

λxm1 ] . . . [t′ml
λxml

] tn+1 ] where the t′mi

are the minimal number of tiles in t′k+1, . . . , t
′
n that are captured in the sense that

they involve extra nri subplays or are final. The interpretation of t′n+1 at position
π(in+1) is [ [π1] . . . [πl+1]π(in+1)] where π1 is the interpretation of the tile t′k
and πi+1 is that of t′mi

. The play π(in+1, jn+1) is the continuation, assuming
(iterated) suffix playing, on t′n+1 that starts at tn+1 and finishes at an atomic
leaf of it or is final. The intention is that unfolding will be true by definition
assuming a non-standard interpretation of generalized tiles which includes that
their plays are suffix plays. As with the 3rd-order case, each play π descends a
branch of the unfolded tree. The remainder of the proof, the refolding, is how
to extract a small term from the tree of generalized tiles. Game-theoretically,
unfolding and refolding is justified by recursive permutations, repetitions and
omissions of ri subplays.
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Example 3. In Example 2, the term in Figure 1 is reduced to the left tree in
Figure 4. We examine its unfolding. Tile t′1 = z(λx, λ), π(i1, j1) = π(2, 3), t′2 =
f(λ) and π(i2, j2) = π(4, 5). Now, t3 = x, so t′3 = z(λx.x, λ) as t′1 is lowered (and
there is no capture) and π(i3, j3) is the suffix play π(8, 9) that starts at x and
finishes at atomic leaf λ. Tile t′4 = t4 = a is final for π and π(i4, j4) = π(20). To
make the unfolding into a term tree, the initial λ of t0 is added and the constant
b : 0 underneath any atomic leaf that does not have a successor, the tree on the
right of Figure 4. The issue is t′3 whose interpretation is a suffix play. We can
reinterpret it as a complete play on t′3 because (the prefix play) π(i1, j1) is ri:
the complete play has a different right term in its states, here we use Fact 2.
The top z(λx, λ) and basic tile z(λx.x, λ) are 1-end and 1-directed: so, by T2,
they are removed. The result is the small term λz.f(a). ��
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Abstract. This paper establishes a strong completeness property of composi-
tional program logics for pure and imperative higher-order functions introduced
in [18, 16, 17, 19, 3]. This property, called descriptive completeness, says that for
each program there is an assertion fully describing the program’s behaviour up to
the standard observational semantics. This formula is inductively calculable from
the program text alone. As a consequence we obtain the first relative completeness
result for compositional logics of pure and imperative call-by-value higher-order
functions in the full type hierarchy.

1 Introduction

Program logics such as Hoare logic are a means to describe abstract behaviours of pro-
grams as logical assertions; to verify that a given program satisfies a specified property;
and to define axiomatic semantics in the sense that the assertions assign meaning to a
program with respect to its observable properties. Because of this strong match with ob-
servable and operational semantics of programs in a simple and intuitive manner, many
engineering activities ranging from static analyses to program testing increasingly use
program logics as their theoretical foundation.

For describing properties of first-order imperative programs, Hoare logic uses a pair
of assertions in number theory. For example, in the partial correctness judgement {x =
i}x := x + 1{x = i + 1}, the pair of assertions x = i and x = i + 1 describes a property
of the program x := x + 1 by saying: whatever the initial content of x would be, if
this program terminates, then the final content of x is the increment of its initial one.
Here a property is a subset of programs taken modulo an observational congruence:
for example, in while programs, we consider programs up to partial functions on store
they represent. Since the collection of all properties is uncountable, no standard logical
language can represent all properties of any non-trivial programming language. Then
what classes of properties should a program logic represent and prove?

In this paper, we focus on descriptive completeness, a strong completeness property,
which is about representability of behaviour as a canonical formula: given a program P,
we can always find a unique assertion pair in Hoare logic which represents (pinpoints)
P’s behaviour. For partial correctness, the best assertion pair for P describes all partial
functions equal to or less defined than P. For example, the pair “x = i” and “x = i+ 1”
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are also satisfied by a diverging program. Dually for total correctness. A related concept
are the characteristic formulae of Hennessy-Milner logics, which precisely characterise
a CCS process up to bisimilarity [13, 31, 32]. We shift this notion from a process logic
to a program logic, establishing descriptive completeness of Hoare logics for pure and
imperative higher-order functions introduced in [18, 16, 19, 3].

In first-order Hoare logic, a program defines a partial function from states to states,
so that the existence of characteristic formulae is not hard to establish. When we move
to higher-order programs, a logic needs to describe how a program transforms behav-
iour. For example λxNat⇒(α⇒β).x1 is a function which receives a function and returns
another function. The logics for higher-order functions and their imperative extensions
[16, 19, 3, 18] involve direct description of such applicative behaviour. Due to complex-
ity of the underlying semantic universe, it is not immediately obvious if a single pair of
formulae can fully describe the behaviour of an arbitrary higher-order program. In the
present paper we construct a characteristic formula of a program compositionally and
algorithmically, following its syntactic structure, and inductively verify that the derived
formula has the required properties. The induced algorithm is implemented as a pro-
totype (1,250 LOC in Ocaml) [2]. The size of the resulting formula is asymptotically
almost linear to the size of a program under a certain condition.

The generated characteristic assertions clarify the relationship between total and par-
tial correctness for higher-order objects, following early observations [29, 28], but in the
context of concrete assertion methods and proof rules. We use the duality between total
and partial correctness [28] to derive descriptive completeness for partial correctness
from its total variant. A total correctness property denotes an upward closed set of se-
mantic points, representing liveness, while a partial correctness formula stands for a
downward closed set, representing safety [28, 26, 23]. This duality subsumes the cor-
responding notions in the original Hoare logic, and offers a key insight into the nature
of assertions for higher-order objects and their derivation. Finally, relative complete-
ness [6] of proof rules is an immediate consequence of descriptive completeness. To
our knowledge this work is the first to obtain descriptive and relative completeness in
Hoare logics for (imperative) higher-order functions in the full type hierarchy.

In the remainder, Section 2 establishes descriptive and relative completeness for the
logic of call-by-value PCF. Section 3 discusses the corresponding results for an imper-
ative extension. Section 4 gives comparisons with related work. Section 5 concludes
with further topics. All proofs are omitted, relegated to the long version [1].

2 Descriptive Completeness for PCFv

Call-by-value PCF. The syntax of PCFv is standard [27], and is briefly reviewed below
(we can easily treat, but omit, other standard types such as sums and products [18]).

α,β, ... ::= Bool | Nat | α⇒β V,W, ... ::= xα | c | λxα.M | μ f α⇒β.λxα.M
M,N, ... ::= V | op(M̃) | MN | if M then N1 else N2

We use numerals (0,1,2,..) and booleans (t and f) as constants (c above) and standard
first-order operations (op(M̃) where M̃ denotes a vector). V,V ′, . . . denote values. The
typing is standard; henceforth we only consider well-typed programs. A basis (Γ,Δ, . . .)
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is a finite map from variables to types. If M has type α with its free variables typed
following Γ, we write Γ- M : α. A program is closed if it has no free variables. The call-
by-value evaluation relation is written M ⇓V . If M diverges, we write M ⇑. M ⇓ means
that M ⇓ V for some V . We use the standard contextual precongruence and congruence
[27, 14], written � and ∼=, given as: for M and N of the same type, M � N iff, for each
typed closing context C[ · ], C[M] ⇓ implies C[N] ⇓. ∼= is the symmetric closure of �.

We list three simple programs. First, the standard recursive factorial program is writ-

ten Fact
def= μ f Nat⇒Nat.λxNat.if x = 0 then 1 else x× f (x− 1). Second, in each ar-

row type we find Ωα⇒β def= μ f α⇒β.λxα. f x, which diverges whenever invoked. Third,

ωα def= ΩNat⇒α0 gives an immediately diverging program (note Ωα⇒β ∼= λxα.ωβ).

Assertions and their Semantics. We use the following assertion language from
[18, 19, 3], common to both total correctness and partial correctness.

e ::= c | xα | op(ẽ) A ::= e1 = e2 | e1•e2=e3 | A∧B | A∨B | A ⊃ B | ¬A | ∀xα.A | ∃xα.A

The left definition is for terms, that on the right for formulae. c denotes a constant, ei-
ther numerals (0,1,2, ...) or booleans (t and f). Terms are typed as in PCFv. Henceforth
we only consider well-typed terms. eα indicates e has type α. Constants and first-order
operations are from PCFv. We assume the standard bound name convention for formu-
lae. If types of free variables in A follow Γ, we write Γ - A. We set T as 1 = 1 and F as
its negation. ≡ denotes logical equivalence. The assertion language is first-order, with a
ternary predicate e1 • e2 =e3, called evaluation formula. Intuitively e1 • e2 =e3 means:

If a function denoted by e1 is applied to an argument denoted by e2 then it
converges to a value denoted by e3.

Note e1 •e2 =e3 indicates termination. “=” in e1 •e2 =e3 is asymmetric and • is a non-
commutative operation like application in an applicative structure. For example, assume
f denotes a function which doubles the number n: then the assertion “ f •5=10” means
if we apply that function to 5, then the evaluation terminates and its result is 10.

Meaning of assertions is given by a simple term model. A model (ξ,ξ′, . . .) is a finite
map from typed variables to closed PCFv-values of the same types. Interpretation of
terms is standard, denoted ξ[[e]]. The satisfaction relation is written ξ |= A, and follows
the standard clauses [24, Section 2.2] except the equality is interpreted by the contextual
congruence ∼= (i.e. ξ |= e1 = e2 iff ξ[[e1]] ∼= ξ[[e2]]). Further we set:

ξ |= e1 • e2 =e3 if ∃V.(ξ[[e1]]ξ[[e2]] ⇓V ∧V ∼= ξ[[e3]]). (2.1)

We write Γ - ξ if dom(Γ) = dom(ξ) and the typing of ξ follows Γ. Mξ denotes the term
obtained from M by substituting ξ(x) for each free x in M.

Judgements. The judgement for total correctness is written [A]M :u [B], prefixed with
|= for validity, and - for provability. It is the standard Hoare triple augmented with an
anchor [16, 18, 19, 3]. An anchor is a fresh name denoting the result of evaluation. u
may only occur in B. The judgement [A]M :u [B] intuitively says:

If a model ξ satisfies A, then Mξ converges and ξ together with the result,
named u, satisfy B.

In [A]M :u [B], we always assume Γ - M : α, Γ - A and Γ ·u :α - B for some Γ and α.
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Provability - [A]M :u [B] is defined by the proof rules [18] listed in Appendix A,
which precisely follow the syntax of programs. Validity |= [A]M :u [B] is defined by the
following clause (let Γ be the minimum basis under which M, A and B are typable).

∀ξ.((Γ - ξ ∧ ξ |= A) ⊃ (Mξ ⇓V ∧ ξ ·u : V |= B)). (2.2)

The proof of soundness, - [A]M :u [B] implies |= [A]M :u [B], is mechanical. Later we
demonstrate the converse. Simple examples of judgements follow.

1. We have - [T]Fact :u [∀xNat.u•x = x!], saying Fact computes a factorial whenever
invoked. We also have - [T]Fact :u [∀xNat.(Even(x) ⊃ ∃i.(u • x = i ∧ Even(i))]
where Even(n) says n is even.

2. We have - [F]ω :u [F], which is the best formulae we can get for ω. Note this judge-
ment holds for arbitrary programs of the same type.

3. From 2 above, we derive - [T]λx.ω :u [T]. The judgement contains no information
for values, in the sense that all values satisfy it: as it should be, since we had to start
from the trivial judgement for ω. Similarly - [T]Ω :u [T] is the best we can get.

Characteristic Formulae. In the last examples of judgements, we have seen the no-
tion of total correctness and compositional verification demand that an assertion pair in
the present logic cannot directly describe divergence. For this reason the notion of an
assertion pair representing a given program pinpoints its behaviour as the least element
of the described property. We call such a formula a total characteristic assertion pair.

Definition 1. (TCAP) A pair (A,B) is a total characteristic assertion pair, or TCAP,
of M at u, if the following conditions hold (in each clause we assume well-typedness).

1. (soundness) |= [A]M :u [B].
2. (MTC, minimal terminating condition) Mξ ⇓ if and only if ξ |= A.
3. (closure) Suppose |= [E]N :u [B] such that E ⊃ A. Then ξ |= E implies Mξ � Nξ.

Proposition 2. 1. If (A,B) is a TCAP of M at u and if |= [A]N :u [B], then M � N.
2. (A,B) is a TCAP of M at u iff (soundness), (MTC) and the following condition hold:

(closure-2): if ξ |= A and ξ ·u :V |= B then Mξ � V .

By Proposition 2-1, a TCAP of M denotes a collection of behaviours whose minimum
element is M, and in that sense characterises that behaviour uniquely.

Descriptive Completeness. We now show all PCFv-terms have TCAPs. The idea is to
generate pre/post conditions inductively following the syntax of PCFv-terms. Figure 1
presents the generation rules. They are close to the proof rules in Appendix A, except
for having the shape in which once the premise is determined, its conclusion is unique.
In [app], the premise says A1 guarantees M1’s termination, A2 that of M2. Hence the
conclusion’s precondition ought to stipulate A1,2 and termination of their application
(described by B1 and B2). [rec] intuitively says the program now uses itself for the
environment f . The size of a formula does not change by applying this rule.

Example 3. 1. We have -� [T]λx.x :u [∀x.u • x= x] (simplified using logical axioms)
saying: whatever value the program receives, it always converges to the same value.
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[var] −
-� [T]x :u [u = x] [const] −

-� [T]c :u [u = c]

[op] -� [Ai]Mi :mi [Bi]
-� [

i
Ai]op(M1..Mn) :u [∃m̃.(u=op(m1..mn)∧ i

Bi)]

[abs] -� [A]M :m [B]
-� [T]λx.M :u [∀x.(A ⊃ ∃m.(u•x=m ∧ B))] [rec] -� [T]λx.M :u [A]

-� [T]μ f .λx.M :u [A[u/ f ]]

[app] -� [A1]M :m [B1] -� [A2]N :n [B2]
-� [A1 ∧A2 ∧∀mn.(B1 ∧B2 ⊃ ∃z.m•n=z)]MN :u [∃mn.(m•n=u∧B1 ∧B2)]

[if] -� [A]M :m [B] -� [Ai]Ni :u [Bi] b1 = t, b2 = f
-� [A ∧

i=1,2
(B[bi/m] ⊃ Ai)]if M then N1 else N2 :u [

i=1,2
(B[bi/m]∧Bi)]

Fig. 1. Derivation Rules for Total CAPs

2. For λx. f x, we get -� [T]λx. f x :u [∀xi.( f • x= i ⊃ u • x= i)] (simplification uses ax-
ioms for evaluation formulae [19]) which says: if the application of f to x converges
to some value, then the application of u to x converges to the same value.

3. From 1, we obtain -� [T]μ f .λx.x :u [∀x.u•x=x] via vacuous renaming, as expected.
4. From 2, we obtain a TCAP for Ω as -� [T]Ω :u [T] by ∀xi.(u•x= i ⊃ u•x= i)≡ T.

Since Ω is the least defined total behaviour, we cannot say anything better than T
for this agent (note T is indeed a TCA of Ω).

5. The factorial program Fact is given the following assertion.

-� [T]Fact :u [u • 0=1 ∧ ∀xi.(u • x= i ⊃ u • (x + 1)=x× i)] (2.3)

Note the assertion closely follows the recursive behaviour of the program. Through
mathematical induction we obtain -� [T]Fact :u [∀x.(u • x=x!)], as expected.

Theorem 4. (descriptive completeness for total correctness) Assume Γ - M : α. Then
-� [A]M :u [B] implies (A,B) is a TCAP of M at u.

Proposition 5. If -� [A]M :u [B] then the sum of the size of A and B is O(m×2n) where
m is the size of M and n is the number of applications/conditionals in M.

Definition 6. Let x be fresh in 2 and 3.

1. We define $ inductively as follows: (1) xα $ yα iff x = y for α ∈ {Bool,Nat}; and
(2) xα⇒β $ yα⇒β iff ∀zα,vβ.(x• z = v ⊃ ∃w.(y• z = w∧ v $ w)).

2. U(A,u)
def
= ∀x.(A[x/u] ⊃ x $ u) and ↑(A,u)

def
= ∃x.(A[x/u]∧ x $ u). Dually we set

L(A,u)
def
= ∀x.(A[x/u] ⊃ u $ x) and ↓(A,u)

def
= ∃x.(A[x/u]∧u $ x).

3. Write |= M :u {A} when Mξ ⇓V implies ξ ·u : V |= A for each ξ. We say A is a PCAP
of M at u when (1) |= M :u {A} and (2) whenever |= N :u {A} we have N � M.

Remark. The predicate $ internalises �. U(A,u) etc. are logical counterparts of the
standard order-theoretic operations [7]. A PCAP is the partial counterpart of a TCAP.
In partial correctness we do not need a precondition since {A}M :u {B} (a partial cor-
rectness judgement) is equivalent to {T}M :u {A ⊃ B}, due to statelessness of PCFv.
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Corollary 7. 1. (observational completeness) M ∼= N if and only if, for each A and B,
we have |= [A]M :u [B] iff |= [A]N :u [B].

2. (relative completeness) We say B is upward-closed at u when ↑ (B,u) ≡ B. Then
|= [A]M :u [B] such that B is upward-closed at u implies - [A]M :u [B].

3. (derivability of PCAP) If -� [A]M :u [B] then A∧L(B,u) is a PCAP of M at u.

For the non-trivial direction of (1), if M and N satisfy the same set of assertion pairs,
then each satisfies another’s TCAP, hence M ∼= N by Proposition 2-1. (2) uses Kley-
mann’s consequence rule (cf. Appendix A) to derive assertion pairs from TCAPs (the
restriction to upward-closed formulae is not unduly constraining since upward closure
corresponds to total correctness [29, 23]).

3 Descriptive Completeness for Imperative PCFv

The method for deriving TCAPs directly generalises to imperative extensions of the
logic [19, 3]. Below we illustrate the key idea, leaving the detailed technical develop-
ment to the full version [1]. We consider the logic without aliasing [19].

The programming language, imperative PCFv, adds assignment x := M and deref-
erence !x, with x of a reference type in both, and () of Unit type (reference types are
not carried inside other types to avoid aliasing [19]). Typing is of the form Γ;Δ - M :
α, where Δ is for free references and Γ for free variables of non-reference types. ∼=
(resp. �) is a typed congruence (resp. precongruence), relating two programs of a fixed
basis. Without loss of generality we restrict “sequentially flattened” forms generated as:

L ::= x | c | op(U1..Un) | λx.L | let x = UU ′ in L | μx.λy.L

| if U then L1 else L2 | x := V ;L | let x = !y in L

where U,U ′, . . . range over values in this grammar (i.e. variables, constants, abstrac-
tion and recursion). To the assertion language in Section 2 we add dereferencing !x
of a reference x. We also replace evaluation formulae with their imperative refinement
[C] e1 • e2 = x [C′] (x is binding in C′) which says:

In any state satisfying C, if e1 is applied to e2, it converges to a value named x
and the resulting state, together satisfying C′.

A sequent [C]M :u [C′] has a fixed basis, usually left implicit. A judgement for total
correctness is written |= [C]M :u [C′] (for validity) and - [C]M :u [C′] (for provability). It
is straightforward to define a translation [[·]] which converts all programs of imperative
PCFv to their flattened forms so that [[M]] ∼= M and - [C] [[M]] :u [C′] iff - [C]M :u [C′].
Thus it suffices to consider deriving CAPs for flattened programs.

Example 8. 1. The assertion [!x = i]M :u [u = i+ 1] says that M reads the content of
x and returns the successor of that content. It does not make any guarantee about
what is stored in memory after execution of M.

2. Under Δ with domain {x,y}, the assertion [!x = i∧!y = j]M :u [u = i + 1∧!x =
i∧!y = j] is like (1), but in addition ensures M does not modify any storage cells.
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[var] −
-�� [T]y :u [u = y] [const] −

-�� [T]c :u [u = c] [val] -�� [T]U :u [A] ĩ fresh
-� [!x̃ = ĩ]U :u [A ∧ !x̃ = ĩ]

[op-val] -�� [T]Ui :mi [Ai]
-� [T]op(U1, ..,Un) :u [∃m̃.(u=op(m1, ..,mn)∧ i

Ai)]

[abs]-
� [C]L :m [C′] ĩ = fv(C,C′)\(fv(L)∪{ux̃})

-�� [T]λy.L :u [∀yĩ.([C]u•y = m[C′])]
[rec] -�� [T]λx.L :u [A]

-�� [T]μ f .λx.L :u [A[u/ f ]]

[let-app] -�� [T]V1 :m [A] -�� [T]V2 :n [B] -� [C]L :u [C′] ĩ fresh
-�[!x̃= ĩ∧∀mn.((A∧B) ⊃ {!x̃= ĩ}m•n=y{C})]let y= V1V2 in L :u [C′]

[if] -�� [T]U :m [A] -� [Ci]Li :u [C′
i ] b1 = t, b2 = f

-� [
i=1,2

(A[bi/m] ⊃Ci)]if U then L1 else L2 :u [
i=1,2

(A[bi/m]∧C′
i)]

[assign] -�� [T]U :z [A] -� [C]L :u [C′]
-� [∀z.(A ⊃C[z/!y])]y := U ;L :u [C′]

[deref] -� [C]L :u [C′]
-� [C[!y/z]]let z = !y in L :u [C′]

Fig. 2. Derivation Rules for TCAPs for Imperative PCFv

3. Let A( f ) def= ∀yi.[!y = i] f • y = z [z =!y = i+ 1]. It characterises a procedure f that
increments a reference y and returns the increment.

4. The assertion [T]λa.(! f )a :u [∀ai.[A( f )∧!a = i] u•a = c [!a = i+1∧c = i+1]] is
a procedure that takes a reference, increments it and returns that increment.

5. Finally, just like in the pure functional case, [F]ω :u [F] is the strongest total speci-
fication we can derive about ω.

M is semi-closed if all its free names are references. A model is a pair (ξ,σ) where ξ
maps non-reference names to semi-closed values and σ is a store, mapping reference
names to semi-closed values. The satisfaction relation (ξ,σ) - C is defined as in the
logic for PCFv, except that the satisfaction for the evaluation formula is refined to in-
corporate state change, see [19]. Implicitly assuming a basis, we set |= [C]M :u [C′] iff
∀ξ,σ.(ξ,σ) |=C ⊃ ((Mξ,σ) ⇓ (V,σ′) ∧ (ξ ·u : V,σ′) |=C′. For σ1,2 of the same domain
and typing, σ1 � σ2 is defined by pointwise ordering.

Definition 9. (TCAP) A pair (C,C′) is a total characteristic assertion pair, or TCAP,
of Γ;Δ - M : α at u, if the following conditions hold.

1. (soundness) |= [C]M :u [C′].
2. (MTC, minimal terminating condition) (ξ ·u : Mξ,σ) ⇓ iff (ξ,σ) |= C.
3. (closure) Suppose |= [E]N :u [C′], E ⊃ C and (ξ,σ) |= E . Then (Mξ,σ) ⇓ (V,σ′)

implies (Nξ,σ) ⇓ (W,σ′′) such that V � W and σ′ � σ′′.

Figure 2 gives the generation rules for TCAPs. In all rules, we fix, but leave implicit,
a reference basis with domain x̃. [val] transforms a judgement for values (written with
turnstile -��) to that for general programs (written with turnstile -�).
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Theorem 10. (descriptive completeness for imperative PCFv, total correctness) If M is
typable, then -� [C]M :u [C′] implies (C,C′) is a TCAP of M at u.

In 2 and 3 below, we use the notions corresponding to those given in Definition 6 in
Section 2, including PCAPs, starting from $ as an intrinsic predicate, see [1].

Corollary 11. 1. (observational completeness) M ∼= N if and only if, for each C and
C′, we have |= [C]M :u [C′] iff |= [C]N :u [C′].

2. (relative completeness) We say C′ is upward closed at u when ↑ (C′,u) ≡ C′. Then
|= [C]M :u [C′] such that C′ is upward-closed at u implies - [C]M :u [C′].

3. (derivability of PCAP) If -�� [T]V :u [A] then L(A,u) is a PCAP of V at u.

In (3) above, any program can be made into a value by vacuous abstraction. We con-
clude this section with examples.

Example 12. 1. Let us fix a basis for programs and judgements, assuming two imper-
ative variables y and z storing natural numbers. Then we get the following TCAP
for λx.x (up to straightforward simplification):

-� [T] λx.x :u [∀xnm.([!y = n∧!z = m] u • x = i [i = x∧!y = n∧!z = m])]

Under the assumed basis, the lack of change of the contents of y and z (i.e. n and
m) signify that the program has no side effects. For λx. f x we get:

∀xnmn′m′ii′.([!y = n∧!z = m] f • x = i [i = i′∧!y = n′∧!z = m′]
⊃ [!y = n∧!z = m] u • x = i [i = i′∧!y = n′∧!z = m′])

Note how causality between the calls to f and λx. f x, named u, is described by
auxiliary variables n,m,n′ and m′. The TCAP for μ f .λx. f x is again T.

2. As final example, we consider an imperative factorial, that uses a stored procedure
to realise recursion.

CircFact
def= w := λx.if x = 0 then 1 else x×!w(x−1)

In [19], we have shown that a natural specification for CircFact is derivable in the
logic for imperative PCFv. For this program, -� leads to the following TCAP:

[T] CircFact :m [m = ()∧B′(u)∧ I′(u)]

where we set, assuming w constitutes the only store for brevity:

B′(u) def= ∀ f . [!w= f ] u • 0 = z [z = 1∧!w= f ]∧!w = u

I′(u) def= ∀ f f ′i.∀x � 0. [!w= f ∧ E ′(u)] u • x = z [z = x× i ∧ !w= f ′]

E ′(u) def= [!w= f ] u • (x−1) = z [z = i ∧ !w= f ′]

This is the full specification of CircFact: it does not directly say the program
computes a factorial since the procedure stored in w may change its behaviour de-
pending on what w stores at the time of invocation (note w is not hidden). However
through mathematical induction we can justify the following (strict) implication:

B′(u)∧ I′(u) ⊃ ∃ f .(∀i.[!w = f ](!w)• i=z[z = i! ∧ !w = f ] ∧ !w = f )



368 K. Honda, M. Berger, and N. Yoshida

arriving at the “natural” specification of CircFact given in [19], which says: after
executing CircFact, w stores a procedure f which would calculate a factorial if w
indeed stores that behaviour itself, and that w does store that behaviour.

4 Related Work

Apart from their usage in verification condition generation [11], weakest preconditions
and strongest postconditions [10] help with deriving relative completeness in Hoare
logic. Cook’s original proof [6] of relative completeness constructs the strongest post-
condition for partial correctness. Clarke [5] uses the weakest liberal pre-condition. In
both, the pre/post-conditions for loops use Gödel’s β-function [24, Section 3.3]. Soko-
łowski [30] may be the first to give a completeness result for total correctness for the
while language. De Bakker [8] extends these results to parameterless recursive proce-
dures and concretely constructs what we call MTC (cf. Def. 1). Gorelick [12] seems
the first to use most general formulae (MGFs, which correspond to our CAPs) for
completeness in Hoare logic. Kleymann [21] introduces a powerful consequence rule
and employs MGFs for proving completeness of Hoare logic with parameterless recur-
sive procedures. Halpern [15], Olderog [25] and others establish relative completeness
of Hoare logics for sublanguages of Algol (these logics do not include assertions on
higher-order behaviours, see [19, Section 8] for a survey). Von Oheimb’s recent work
[33] gives a mechanised proof of completeness for Hoare logic using MGFs.

Some authors use abstraction on predicates to generate concise verification condi-
tions in the setting of the Floyd-Hoare assertion methods for first-order imperative pro-
grams. Blass and Gurevich [4], guided by a detailed study of Cook’s completeness
result, use an existential fixpoint logic. Leivant [22] uses second-order abstraction (ab-
straction on first-order predicates), inductively deriving a formula directly representing
a partial function defined by a while program with recursive first-order procedure. Once
this is done, characteristic assertions for both total and partial correctness for a given
program are immediate. We suspect that the use of predicate abstraction in these works
may make calculation of validity hard in practice, even for first-order programs.

There are two basic differences between the present work and these preceding stud-
ies. First, in the preceding works, generated assertion pairs describe first-order state
transformation rather than the behaviour of higher-order programs. Philosophically, our
method may be notable in that it extends completeness and related results to assertions
which directly talk about (higher-order) behaviour. Second, the presented method for
constructing characteristic formulae is different from those employed so far, especially
in its treatment of recursion. We need neither the β-predicate, loop annotation, predi-
cate abstraction nor inductively defined formulae for generating TCAPs for recursion.
Concretely, this simple treatment for recursion is made possible by evaluation formu-
lae. A deeper reason however may lie in analytical, fine-grained nature of our assertion
language, reflecting that of call-by-value higher-order computation. As far as our expe-
rience goes, evaluation formulae do not make calculation of validity unduly harder than
in first-order Hoare logic: for example, (often implicit) simplifications of assertions in
Sections 2 and 3 only use simple syntactic axioms in [16, 19] combined with standard
logical axioms and mathematical induction (see Section 5 for further discussions).
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The order-theoretic nature of partial and total correctness is observed in early works
by Smyth, Plotkin and Stirling [29, 28]. The present work differs in that it substantiates
these ideas at the level of concrete assertion methods and compositional proof rules
(see for example a derivation example of λx.ω in Section 2). Finally our emphasis on
descriptive completeness, and the foundation of the logic itself, comes from Hennessy-
Milner logic [16], where Graf, Ingólfsdóttir, Sifakis, Steffen and others [13, 31, 32]
study characteristic formulae for first-order communicating processes.

5 Further Topics

The present work is an inquiry into the descriptive power of program logic for higher-
order functions. Through inductive derivation of characteristic formulae, we have shown
that the logic allows concise description of full behaviour of programs involving arbi-
trary higher-order types and recursion. Logics for more complex classes of imperative
higher-order functions are studied in [3]. Extensions of the presented results to these
logics are important for treating such languages as ML.

Practically speaking, the presented method for TCAP generation, along with its prop-
erties, opens a new perspective for program validation based on verification condition
generators (VCG) [11, 20]. In traditional VCG, we have a target specification {C}P{C′}
and an annotated version of the program. A VCG then automatically generates, usually
through backward chaining [20], one or more entailments whose validity entails P’s
satisfaction of the specification. The presented TCAP generation has the potential to
improve this existing scheme. Schematically, our TCAP generation suggests the fol-
lowing framework.

1. Assume given a program V (any program can be made into a value by vacuous
abstraction) and a desired specification [T]V :u [A].

2. We automatically generate the TCAP (T,A0).
3. By Theorem 4, if we can validate A0 ⊃ A, we know V conforms to A.

First, this framework dispenses with the need to annotate programs, which has been one
of the obstacles preventing wide-spread adoption of the VCG-based validation methods.
Second, at the level of specification, it allows direct treatment of higher-order idioms,
opening the use of higher-order languages such as ML and Haskell for program cer-
tification (arguably these languages offer a suitable basis for this task through their
well-studied semantic foundations). Third, the specification A above can contain as-
sumptions on the environment (say existing libraries, referred to by free variables in
V ) on which the functionality of V relies. As we discussed in [19, Section 2], this al-
lows specifying complex interplay among the program and library functions beyond the
separate treatment of assumptions on procedures in traditional methods. For these rea-
sons, inquiries into the practical potential of TCAP generation for program validation
would be worth pursuing. As the first experiment towards this goal, we have developed
a prototype implementation of the TCAP generation algorithm [2].

One of the foremost challenges towards practical use of TCAP generation is the de-
velopment of tractable methods for logical calculation of entailment in Step 3 above,
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which demands, in addition to first-order logic and mathematical induction, the treat-
ment of logical primitives for (imperative) higher-order functions. It would be espe-
cially interesting to extend verification tools like Simplify [9] in this direction, com-
bined with studies on axiom systems for e.g. evaluation formulae (see [16, 19, 3] for a
preliminary study). Detailed comparisons with standard VCGs, as well as potential for
a combined usage of these two methods, is another interesting further topic.

Finally, we believe that the upper bound in Prop. 5 can be improved upon consider-
ably, at least for large and practically relevant classes of programs.

References

1. A full version of this paper. Available at: http://www.dcs.qmul.ac.uk/˜kohei/logics.
2. A prototype implementation of an algorithm deriving characteristic formulae.

http://www.dcs.qmul.ac.uk/˜martinb/capg, October 2005.
3. M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing for higher-order imper-

ative functions. In ICFP’05, pages 280–293, 2005.
4. A. Blass and Y. Gurevich. The Underlying Logic of Hoare Logic. In Current Trends in

Theoretical Computer Science, pages 409–436. 2001.
5. E. M. Clarke. The characterization problem for Hoare logics. In Proc. Royal Society meeting

on Mathematical logic and programming languages, pages 89–106, 1985.
6. S. A. Cook. Soundness and completeness of an axiom system for program verification. SIAM

J. Comput., 7(1):70–90, 1978.
7. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. CUP, 1990.
8. J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1980.
9. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. J.

ACM, 52(3):365–473, 2005.
10. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
11. R. W. Floyd. Assigning meaning to programs. In Symp. in Applied Math., volume 19, 1967.
12. G. Gorelick. A complete axiomatic system for proving assertions about recursive and non-

recursive programs. Technical Report 75, Univ. of Toronto, 1975.
13. S. Graf and J. Sifakis. A Modal Characterization of Observational Congruence on Finite

Terms of CCS. In ICALP’84, pages 222–234, London, UK, 1984. Springer-Verlag.
14. C. A. Gunter. Semantics of Programming Languages. MIT Press, 1995.
15. J. Y. Halpern. A good Hoare axiom system for an ALGOL-like language. In 11th POPL,

pages 262–271. ACM Press, 1984.
16. K. Honda. From process logic to program logic. In ICFP’04, pages 163–174. ACM, 2004.
17. K. Honda. From process logic to program logic (full version of [16]). Available at:

www.dcs.qmul.ac.uk/˜kohei/logics, November 2004. Typescript, 52 pages.
18. K. Honda and N. Yoshida. A compositional logic for polymorphic higher-order functions.

In PPDP’04, pages 191–202. ACM, 2004.
19. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic for im-

perative higher-order functions. In LICS’05, pages 270–279, 2005.
20. J. C. King. A program verifier. In IFIP Congress (1), pages 234–249, 1971.
21. T. Kleymann. Hoare logic and auxiliary variables. Technical report, University of Edinburgh,

LFCS ECS-LFCS-98-399, October 1998.
22. D. Leivant. Logical and mathematical reasoning about imperative programs: preliminary

report. In Proc. POPL’85, pages 132–140, 1985.



Descriptive and Relative Completeness 371

23. D. Leivant. Partial correctness assertions provable in dynamic logics. In FoSSaCS, volume
2987 of LNCS, pages 304–317, 2004.

24. E. Mendelson. Introduction to Mathematical Logic. Wadsworth Inc., 1987.
25. E.-R. Olderog. Sound and Complete Hoare-like Calculi Based on Copy Rules. Acta Inf.,

16:161–197, 1981.
26. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Trans.

Program. Lang. Syst., 4(3):455–495, 1982.
27. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
28. G. D. Plotkin and C. Stirling. A framework for intuitionistic modal logics. In Theor. Aspects

of Reasoning about Knowledge, pages 399–406. Morgan Kaufmann, 1986.
29. M. Smyth. Power domains and predicate transformers: A topological view. In ICALP’83,

volume 154 of LNCS, pages 662–675, 1983.
30. S. Sokołowski. Axioms for total correctness. Acta Inf., 9:61–71, 1977.
31. B. Steffen. Characteristic formulae. In ICALP’89, pages 723–732. Springer-Verlag, 1989.
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A Proof Rules for PCFv and Imperative PCFv (Total Correctness)

The proof rules for PCFv follow. A-x denotes A in which x does not occur free. See
[18, 3, 19] for illustration. The consequence rule comes from Kleymann [21].

[Var] −
[C[x/u]]x :u [C] [Const] −

[C[c/u]]c :u [C] [Add]
[C]M :m [C0] [C0]N :n [C′[m+n/u]]

[C]M +N :u [C′]

[Abs] [A-x ∧C]M :m [C′]
[A]λx.M :u [∀x.(C ⊃ ∃m.(u•x=m ∧ C′))]

[App]

[C]M :m [C0]
[C0]N :n [∃u.(m•n=u ∧ C′)]

[C]MN :u [C′]
[If]

[C]M :m [C0]
[C0[t/m]]N1 :u [C′] [C0[f/m]]N2 :u [C′]

[C]if M then N1 else N2 :u [C′]

[Rec] [A
-xi ∧∀ j � i.B( j)[x/u]]λy.M :u [B(i)-x]

[A]μx.λy.M :u [∀i.B(i)] [Conseq] [A′]M :u [B′] A ⊃ ( A′ ∧ (B′ ⊃ B) )
[A]M :u [B]

For Imperative PCFv, the rules for expressions, first-order operators, recursion, and if-
then-else are identical with those for pure PCFv.

[Abs] [A-x ∧C]M :m [C′]
[A]λx.M :u [∀x.[C] u•x = m [C′]]

[App] [C]M :m [C0] [C0]N :n [C1 ∧ [C1] m•n = u [C′]]
[C]MN :u [C′]

[Deref ] −
[C[!x/u]] !x :u [C] [Assign] [C]M :m [C′[m/ !x][()/u]]

[C]x := M :u [C′]

[Conseq-Kleymann] [C0]M :u[C′
0] C ⊃ ∃ j̃.( C0[ j̃/ĩ]∧ (C′

0[ỹ j̃/x̃ĩ] ⊃C′[ỹ/x̃]) )
[C]M :u [C′]

In [Conseq-Kleymann], we assume a basis Γ (for non-reference) and Δ (for reference)
and set {x̃} = dom(Γ,Δ)∪{u}, {ĩ} = fv(C,C′,C0,C′

0)\{x̃}. In addition, we require the
j̃ (resp. ỹ) to be fresh and of the same length as ĩ (resp. x̃).
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Abstract. This paper shows how parametric PILLY (Polymorphic Intuitionis-
tic / Linear Lambda calculus with a fixed point combinator Y ) can be used as a
metalanguage for domain theory, as originally suggested by Plotkin more than a
decade ago. Using recent results about solutions to recursive domain equations in
parametric models of PILLY , we show how to interpret FPC in these. Of particu-
lar interest is a model based on “admissible” pers over a reflexive domain, the the-
ory of which can be seen as a domain theory for (impredicative) polymorphism.
We show how this model gives rise to a parametric and computationally adequate
model of PolyFPC, an extension of FPC with impredicative polymorphism. This
is the first model of a language with parametric polymorphism, recursive terms
and recursive types in a non-linear setting.

1 Introduction

Parametric polymorphism is an important reasoning principle for several reasons. One
is that it provides proofs of modularity principles [27] and other results based on “in-
formation hiding” such as security principles (see for example [28]). Another is that it
can be used to make simple type theories surprisingly expressive by encoding inductive
and coinductive types using polymorphism. If further parametric polymorphism is com-
bined with fixed points on the term level, inductive and coinductive types
coincide, and Freyd’s theory of algebraically compact categories provides solutions
to general type equations. However, when introducing fixed points the parametricity
principle must be weakened for the theory to be consistent. Plotkin [25, 23] suggested
using the calculus PILLY (Polymorphic Intuitionistic / Linear Lambda calculus with a
fixed point combinator Y ), which in combination with parametricity would have induc-
tive, coinductive and recursive types in the linear part of the calculus. This theory was
worked out in details, along with a category theoretic treatment by Birkedal, Møgelberg
and Petersen [8, 6, 7, 20], see also [10]. In loc. cit. a concrete model of PILLY is con-
structed using “admissible” partial equivalence relations (pers) over a reflexive domain.
The theory of admissible pers can be seen as a domain theory for (impredicative)
polymorphism.

Plotkin suggested using parametric PILLY as an axiomatic setup for domain theory.
However, as mentioned, the solutions to recursive type equations that PILLY provides
are in a linear calculus, whereas, as is well known, domain theory also provides mod-
els of non-linear lambda calculi with recursive types, such as FPC — a simply typed
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lambda calculus with recursive term definitions and general recursive types, equipped
with an operational call-by-value semantics. In this paper we test Plotkin’s thesis by
showing that the solutions to recursive type equations in the linear type theory PILLY
can be used to model FPC. The interpretation uses a category of coalgebras, and the
resulting translation is basically an extension of Girard’s interpretation of intuitionistic
logic into linear logic presented in [16] and developed on term level in [19]. The new
technical contribution in this part of the paper is the treatment of recursive types.

Of particular interest is the example of the model of admissible pers. When writ-
ing out the model of FPC in this case, it becomes clear that it also models parametric
polymorphism. We use this to show that PolyFPC, an extension of FPC with polymor-
phism defined below, can be modeled soundly in the per-model. In fact this model is
computationally adequate. The model is to the authors knowledge the first model of the
combination of parametric polymorphism, recursive terms and recursive types in a non-
linear setting. For many readers the construction of this model may be the main result
of the paper, but the earlier abstract analysis is needed to show that it models recursive
types.

The adequate model of PolyFPC may be used to derive consequences of parametric-
ity, such as modularity proofs, up to ground contextual equivalence along the lines of the
proofs of [21], but using denotational methods. The model is also interesting because
of the mix of parametricity and partiality, a combination which, as earlier research has
shown, requires an alternative formulation of parametricity, such as the one suggested
in [17]. This paper sketches the resulting parametricity principle derivable from the
model. In future work, the parametric reasoning in the model will be lifted to a logic
for parametricity for PolyFPC.

A related paper is [1], in which a model of polymorphism and recursion is con-
structed using admissible pers (as here) satisfying a uniformity property as well as var-
ious other properties ensuring that recursive types may be constructed as in domain
theory. The main differences between loc. cit.and this paper is that the present model is
parametric, and in our model the recursive types are constructed using parametricity.

The paper is organized as follows. Section 2 recalls the language PILLY and the
theory of models for it, in particular the per-model. The language PolyFPC is defined
in Section 3, and Section 4 shows how to model FPC in general models of PILLY . In
Section 5 the interpretation of PolyFPC in the per-model resulting from the general the-
ory is written out in detail and computational adequacy is formulated. Unfortunately the
proof of adequacy is omitted for reasons of space. Finally, Section 6 discusses reasoning
about parametric polymorphism for PolyFPC using the per-model.

2 Polymorphic Intuitionistic / Linear Lambda Calculus

The calculus PILLY is a Polymorphic dual Intuitionistic / Linear Lambda calculus with
a fixed point combinator denoted Y . In other words it is the calculus DILL of [2] ex-
tended with polymorphism and fixed points for terms. This section sketches the calcu-
lus, but the reader is referred to [9, 20] for full details.

Types of PILLY are given by the grammar

σ ::= α | I | σ ⊗ τ | σ � τ | !σ |
∏
α. σ,
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and we use the notation α1, . . . , αn - σ: Type to mean that σ is a well-formed type
with free type variables among α1, . . . , αn. The grammar for terms is

t ::= x | � | Y | λ◦x:σ.t | t t | t⊗ t |!t | Λα: Type. t | t(σ) |
let x:σ ⊗ y: τ be t in t | let !x:σ be t in t | let � be t in t.

Terms have two contexts of ordinary variables — a context of linear variables and a
context of intuitionistic variables. We refer the reader to loc. cit. for the term formation
rules of the calculus and the equality theory for terms. The term constructor λ◦x:σ.t
constructs terms of type σ � τ by abstracting linear term variables. Using the Girard
encodings one can define σ → τ to be !σ � τ , and there is a corresponding definable
λ-abstraction for intuitionistic term variables. Under this convention, the type of the
fixed point combinator is Y :

∏
α. (α → α) → α.

2.1 PILLY -Models

The most general formulation of models of PILLY uses fibred category theory, but
here we will just consider a large class of PILLY -models, which includes all important
models known by the author (except some constructed from syntax), since the theory
of the next sections is much simpler in this case.

Suppose C is a linear category, i.e., a symmetric monoidal closed category with
a symmetric monoidal comonad ! satisfying a few extra properties as described for
example in [18, 20]. We shall write σ � τ for morphisms in C. If further any functor
Cn+1

0 → C, where C0 denotes the objects of C considered as a discrete category, has
a right Kan extension along the projection Cn+1

0 → Cn0 , then one can form a model of
PILL, the subset of PILLY not including the fixed point combinator (for a full model
of PILLY , a term modeling the fixed point combinator must exist). Types with n free
type variables are modeled as functors Cn0 → C (or equivalently maps Cn0 → C0)
by modeling α - αi as the i’th projection, ⊗, I,� using the symmetric monoidal
structure, ! using the comonad and polymorphism using the Kan-extensions.

A category theoretic definition of what a parametric model of PILLY is, is given
in [20], but we shall not repeat that now. Instead we mention that the per-model de-
scribed below is parametric, and we sketch the model theoretic formulations of the
consequences of parametricity.

If C is a parametric model of PILLY , one can prove that it has, among other type
constructions, products and coproducts, and that one can solve a large class of recursive
type equations. Syntactically, a recursive type equation is usually given by a type σ with
a free variable α and a solution is a type τ such that σ[τ/α] ∼= τ . Usually, one is not just
interested in any solution, but rather a solution satisfying a universal condition, which
in the case of α ocurring only positively in σ (e.g. if σ = α+1) means an initial algebra
or final coalgebra for the functor induced by σ.

For the more general case of both positive and negative occurences of α in σ (such
as σ = (α → α) + 1), one can split the occurences of α in σ into positive and negative
and obtain a functor of mixed variance. This way any type α1, . . . αn - σ in PILLY
induces a functor (Cop × C)n → C, which is strong in the sense that there exists a
PILLY term of type∏

α,α′,β,β′: Type. (α′ � α) → (β � β′) → σ(α,β) � σ(α′,β′)
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inducing the functor. In general, a functor F : (Cop ×C)n → C is strong if there exists
a term in the model inducing it. For any strong functor F : (Cop × C)n+1 → C, there
exists a strong functor FixF : (Cop × C)n → C such that

F ◦ 〈id (Cop×C)n , ˘FixF 〉 ∼= FixF

where ˘FixF : (Cop ×C)n → Cop ×C is the functor that maps (A1, B1, . . . An, Bn) to
(FixF (B1, A1, . . . Bn, An), FixF (A1, B1, . . . An, Bn)). The functor FixF is encoded
in PILLY using encodings due to Plotkin. The proof of this proceeds by first showing
that any strong functor C → C has an initial algebra whose inverse is a final coalgebra.
This phenomena called algebraic compactness has been studied by Freyd [14, 13, 15],
who showed how to solve general recursive type equations in this setting. As a con-
sequence of Freyd’s theory, the functor FixF also satisfies a universal property called
the dinaturality condition generalizing at the same time the notion of initial algebra and
final coalgebra. See [9, 20] for full details.

2.2 A Per-model

We sketch a model of parametric PILLY . For details, see [9, 20]. The model is a variant
of the parametric per-model for second order lambda calculus, restricted to a notion of
admissible pers to encompass fixed points.

Suppose D is a reflexive domain, i.e., a pointed complete partial order such that
[D → D] is a retract ofD. ThenD has a combinatory algebra structure with application
x · y defined by applying the function corresponding to x by the reflection to y. An
admissible per is a partial equivalence relation R onD closed under chains and relating
⊥ to itself. A map of admissible pers from R to S is a map of equivalence classes
f :D/R → D/S such that there exists an element e ∈ D tracking f in the sense that
f([x]R) = [e · x]S . This defines a category AP of admissible pers on D. We also
define the subcategory AP⊥ of AP of morphisms with strict trackers, i.e., trackers
satisfying e · ⊥ = ⊥. The category AP⊥ has products and also a symmetric monoidal
closed structure with tensor product defined as a quotient of the product, and R � S
as {(d, e) | d · ⊥ = e · ⊥ = ⊥ ∧ ∀x, y ∈ D.xRy ⇒ S(d · x, e · y)}. Finally, there is
a symmetric monoidal comonad ! definable on AP⊥, the coKleisli category of which
is AP.

By an admissible proposition on a per R we shall mean a subset of the set of equiv-
alence classes for R which itself constitutes an admissible per. An admissible relation
between pers R and S is an admissible proposition on R × S. Since D/(R × S) ∼=
D/S ×D/R, we will often think of such a relation as a subset of the product of equiv-
alence classes. We write AdmRelAP⊥ for the category of admissible relations on
admissible pers, with as maps pairs of maps from AP⊥ mapping related elements to
related elements. There is a reflexive graph of categories

AdmRelAP⊥
��
�� AP⊥ (1)

where the two maps from left to right map a relation to its domain and codomain re-
spectively, and the last map maps a per to the identity relation on the per. The sym-
metric monoidal structure of AP⊥ can be extended to a symmetric monoidal structure
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on AdmRelAP⊥ commuting with the functors of (1) and likewise for the symmetric
monoidal comonad.

In the parametric variant of the per-model, a type is modeled as a pair (σr, σp),
where σp:APn0 → AP0 is a map as before and σr is a map taking an n-vector of
admissible relations (Ai: AdmRel(Ri, Si))i≤n and producing an admissible relation
σr(A): AdmRel(σp(R), σp(S)), satisfying σr(eqR1

, . . . , eqRn
) = eqσp(R). A term

in the model from (σr, σp) to (τr , τp) (assumed to be two types with the same number
of free variables) is a family of maps (fR:D/σp(R) → D/τp(R))R with a common
tracker, such that for all (Ai: AdmRel(Ri, Si))i≤n and all x, y, if ([x], [y]) ∈ σr(A),
then (fR([x]), fS([y])) ∈ τr(A). For further details, see [9, 20].

To see how the per-model is an example of the general models described in Sec-
tion 2.1, notice that (1) describes an internal linear category in a presheaf category over
the realizability topos for the combinatory algebraD. Interpreting the general construc-
tion in this presheaf category gives the per-model.

3 Polymorphic FPC

In this section we present the language PolyFPC, an extension of the language FPC,
first defined by Plotkin [24] (see also [12]), with recursive function definitions and full
impredicative polymorphism. This language can be considered a powerful intermediate
language to be used in compilers. In later sections we will show how to interpret FPC
into any PILLY -model of the form of Section 2.1 and how to interpret PolyFPC into the
per-model sketched in Section 2.2.

Since PolyFPC is a language with polymorphism and general (nested) recursive
types, types in the languages may have free type variables (as in PILLY ) and are formed
using the grammar

σ, τ ::= α | 1 | σ + τ | σ × τ | σ → τ | rec α. σ |
∏
α. σ

As usual, the constructions
∏
α. σ and rec α. σ binds the type variable α. The grammar

for terms is

t ::= x | � | inl t | inr t | case t of inl x. t′ of inr x. t′′ | 〈t, t′〉 | π1(t) | π2(t) |
λx:σ. t | t(t′) | intro t | elim t | let rec fx = t in f t′ | Λα. t | t(τ).

For reasons of space, we shall not repeat the well-known typing rules of FPC, but refer
the reader to [12] for them. However, since our version of FPC also includes an explicit
recursive term constructions, we mention the typing rule for that:

α | x: σ, f : τ → τ ′, x: τ - t: τ ′ α | x: σ - t′: τ
α | x: σ - let rec fx = t in f t′: τ ′

(bold letters denote sequents) and since PolyFPC also includes polymorphism, we men-
tion the two typing rules for that:

α, α′ | x: σ - t: τ
α - σ

α | x: σ - Λα′. t:
∏
α′. τ

α | x: σ - t:
∏
α′. τ α - τ ′

α | x: σ - t(τ ′): τ [τ ′/α′]
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The terms intro and elim introduce and eliminate terms of recursive types, e.g. if
t:σ[rec α. σ/α] then intro t: rec α. σ.

In the following we shall use the terminology programs, to mean closed typable
terms of closed type. The language PolyFPC is equipped with a call-by-value opera-
tional semantics. Formally, the operational semantics is a relation ⇓ relating programs
to values, by which we mean programs following the grammar

v ::= � | inl v | inr v | 〈v, v′〉 | λx:σ. t | Λα. t | intro v.

Again we refer to [12] for the definition of ⇓ on FPC (where it is denoted �), and just
mention the two new rules:

e′ ⇓ v′ e[λx:σ. let rec fx′ = e in f x/f, v′/x′] ⇓ v
let rec fx′ = e in f e′ ⇓ v

t ⇓ Λα. t′ t′[τ/α] ⇓ v
t(τ) ⇓ v

4 Modeling FPC in Categories of Coalgebras

In this section we address the problem of interpreting the intuitionistic calculus FPC
into parametric models of the linear calculus PILLY . The inspiration for the general
case will come from attempting to mimic the usual interpretation of FPC into domain
theory (see for example [12, 22]) in the per-model presented in Section 2.2.

In domain theory, types of FPC are interpreted as complete partial orders (cpos)
and terms as partial maps between them, i.e., in the Kleisli category for the lifting
monad on the category Cpo of cpos. Neither of the categories AP⊥ or AP have
the categorical properties needed for playing the role of Cpo in the adaption of the
interpretation of FPC to admissible pers. Instead, the category CCP of chain closed
pers on D and tracked maps between them is a good candidate. As in the category of
admissible pers, we will consider as admissible propositions on a chain complete per
R, subsets of D/R corresponding to chain complete pers, and an admissible relation is
an admissible subset of the product. Admissible relations on chain complete pers form
a category AdmRelCCP where maps are pairs of maps mapping related elements to
related elements. The next proposition shows how to recover CCP from AP⊥, and
AdmRelCCP from AdmRelAP⊥ .

Proposition 1. The co-Eilenberg-Moore category AP!
⊥ for the lifting comonad ! on

AP⊥ is equivalent to CCP, and the co-Eilenberg-Moore category for ! on
AdmRelAP⊥ is equivalent to AdmRelCCP.

Recall that the co-Eilenberg-Moore category for a comonad ! on a category C is the
category whose objects are coalgebras for the monad (maps ξ:σ �!σ satisfying ε ◦
ξ = id and (!ξ) ◦ ξ = δ ◦ ξ, for ε, δ are counit and comultiplication) and whose
morphisms are maps of coalgebras. Denoting by C! the co-Eilenberg-Moore category,
one may consider the Kleisli category for the induced monadL on C!, which we denote
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(C!)L. This category is isomorphic to the category having the same objects as C!, but
as morphisms from ξ:σ �!σ to χ: τ �!τ all morphisms of C from σ to τ .

For the remainder of this section C will denote a parametric PILLY -model. Since
(C!)L is a Kleisli category, it is reasonable to think of it as a category of partial maps
for C!. The next lemma shows how these two categories satisfy some of the properties
needed for interpreting FPC in categories of partial maps as in Fiore’s dissertation [12].

Lemma 1. The category C! is cartesian and has finite coproducts. The category C! is
partially cartesian closed in the sense that for any object ξ of C!, the composite of the
product functor and the inclusion

C!
ξ×(−) �� C! �� (C!)L

has a right adjoint ξ ⇀ (−): (C!)L → C!.

Proof. The first half is well known, the proof can be found in for example [3, Lemma 9].
For ξ:σ �!σ, the functor ξ ⇀ (−) maps χ: τ �!τ to the free coalgebra δ: !(σ �
τ) �!!(σ � τ).

FPC can be interpreted in (C!)L basically as in [12]. A type with n free variables is in-
terpreted as a map (C!

0)
n → C!

0, with αi interpreted as the i’th projection and ×,+ →
using respectively product, coproduct and partial cartesian structure. Recursive terms is
modeled using the fixed point combinator in C. What is different from Fiore’s interpre-
tation however, is that here recursive domain equations are solved using parametricity.
The next definition defines the class of domain equations which can be solved in C!.

Definition 1. A functor σcoalg: ((C!)op × C!)n → C! is induced by a type, if there
exists a strong functor σ: ((C)op × C)n → C making the diagram

((C!)op × C!)n
σcoalg ��

��

C!

��
(Cop × C)n σ �� C

commute, where the vertical functors are the obvious forgetful functors. We say that σ
induces σcoalg.

If σ induces σcoalg as in Definition 1 above, then σcoalg extends to a functor (((C!)L)op

× (C !)L)n → (C !)L, whose action on morphisms is given by σ.
We show that all recursive domain equations on (C!)L corresponding to functors

induced by types as in Definition 1 can be solved. The precise formulation of this result
is Theorem 1 below. The proof proceeds by first showing that (C !)L is algebraically
compact as in the next lemma, and then applying Freyd’s solution to recursive domain
equations in such categories.
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Lemma 2. If the functor σcoalg:C! → C! is induced by a type σ, then it has an initial

algebra. Including the initial algebra into (C!)L gives an initial algebra for the func-
tor (C!)L → (C!)L induced by (σ, σcoalg), and the inverse of the algebra is a final
coalgebra.

Proof. We just sketch the construction of the initial algebra. As a consequence of para-
metricity, σ has an initial algebra in:σ(μα. σ) � μα. σ whose inverse is a final coal-
gebra. The object μα. σ of C has a coalgebra structure for ! defined as the unique map
ξ making the diagram

σ(μα. σ)
∼= ◦

σ(ξ)

◦

μα. σ

ξ

◦
σ(!μα. σ)

σcoalg(δ)
◦!σ(!μα. σ)

!σ(ε)
◦!σ(μα. σ)

∼= ◦!μα. σ

commute.

Theorem 1. For any functor σcoalg: (C!op × C!)n+1 → C! induced by a type, say σ,

there exists a functor Fix σcoalg: ((C!)op × C!)n → C! induced by a type Fix σ such
that

σcoalg ◦ 〈id ((C!)op×C!)n , ˘Fix σcoalg〉 ∼= Fix σcoalg (2)

(where the notation ˘(−) is used as in Section 2.1). The corresponding functors on (C!)L
also satisfy (2) and the dinaturality condition. Finally, there exists a general construc-
tion of Fix σcoalg such that if τcoalg: (C!op × C!)m → (C!op × C!)n is any functor
induced by a type, then

Fix(σcoalg ◦ (τcoalg × id ((C!)op×C!))) = (Fix σcoalg) ◦ τcoalg

Proof (Sketch). The recursive types are constructed as in Freyd’s solution to recursive
type equations as

ω(α1, β1, . . . , αn, βn, α) = μβ. σ(α1, β1, . . . , αn, βn, α, β)
τ (α1, β1, . . . , αn, βn) = μα. σ(β1, α1, . . . , βn, αn, ω(α1, β1, . . . , αn, βn, α), α)

rec α. σ(α1, β1, . . . , αn, βn, α, α) = ω(α1, β1, . . . , αn, βn, τ (α1, β1, . . . , αn, βn)).

The dinaturality condition in (C!)L follows from the one in C since these have the
same maps, and the last statement is an easy consequence of the construction.

Of course, to be able to use Theorem 1 for modeling recursive types, one must show
that any FPC type α1, . . . , αn - σ induces a functor ((C!)op × C!)n → C! induced
by a type, by splitting occurrences of free type variables into positive and negative
occurrences. This is an easy induction on the structure of σ, and the case of recursive
types is simply that Fix σcoalg of Theorem 1 is induced by a type for all σcoalg.

Theorem 2. FPC can be modeled soundly in (C!)L.



380 R.E. Møgelberg

5 Polymorphic FPC in the Per-model

The abstract analysis of Section 4 shows that our main example — the per-model —
models recursive types. It also models polymorphism, and Figure 1 shows the inter-
pretation of PolyFPC in the per-model, except the interpretation of recursive types, for
which the categorical properties (dinaturality) are more useful than the concrete de-
scription as shown for instance in [22].

Types in the per-model of PolyFPC are modeled as pairs ([[α - σ]]p, [[α - σ]]r),
where [[α - σ]]p is a map CCPn → CCP and [[α - σ]]r is a map taking an n-vector
of admissible relations (Ai:AdmRel(Ri, Si)) (admissible in the sense of objects of
AdmRelCCP) on objects of CCP and produces an admissible relation

[[α - σ]]r(A):AdmRel([[α - σ]]p(R), [[α - σ]]p(S))

satisfying [[α - σ]]r(eqR) = eq[[α�σ]]p(R). In Figure 1 the symbols 1, 2 denote two
incomparable elements of D, and 〈·, ·〉 denotes the pairing function D × D → D
definable using the combinatory algebra structure on D. The monad induced by the
comonad on AP⊥ and AdmRelAP⊥ is denoted L. Explicitly, this monad maps a
chain complete per R to {(⊥,⊥)} ∪ {(〈ι, x〉, 〈ι, y〉) | R(x, y)} where ι denotes a code
for the identity function on D, and an admissible relation A on chain complete pers
R,S is mapped to the relation that on LR,LS that relates [⊥] to [⊥] and [〈ι, x〉] to
[〈ι, y〉] if A([x], [y]).

[[α � αi]]
p(R) = Ri

[[α � σ × τ ]]p(R) = {(〈x, y〉, 〈x′, y′〉 | [[α � σ]]p(R)(x, x′) ∧ [[α � τ ]]p(R)(y, y′)}
[[α � σ + τ ]]p(R) = {(〈1, x〉, 〈1, x′〉) | [[α � σ]]p(R)(x, x′)}∪

{(〈2, y〉, 〈2, y′〉) | [[α � τ ]]p(R)(y, y′)}
[[α � σ → τ ]]p(R) = {(e, f) | ∀x, y ∈ D. [[α � σ]]p(R)(x, y) ⇒ L[[α � τ ]]p(R)(e · x, f · y)}

[[α � 1]]p(R) = {(⊥, ⊥)}
[[α � α. σ]]p(R) = {(x, y) | ∀S:CCP0. L[[α, α � σ]]p(R, S)(x, y)∧

∀S,S′:CCP0. ∀A: AdmRel(S, S′). L[[α, α � σ]]r(eqR , A)([x], [y])}

[[α � αi]]
r(A) = Ai

[[α � σ × τ ]]r(A) = {([〈x, y〉], [〈x′, y′〉]) | [[α � σ]]r(A)([x], [x′]) ∧ [[α � τ ]]r(A)([y], [y′])}
[[α � σ + τ ]]r(A) = {([〈1, x〉], [〈1, x′〉]) | [[α � σ]]r(A)([x], [x′])}∪

{([〈2, y〉], [〈2, y′〉]) | [[α � τ ]]r(A)([y], [y′])}
[[α � σ → τ ]]r(A) = {([e], [f ]) | ∀([x], [y]) ∈ [[α � σ]]r(A). ([e · x], [f · y]) ∈ L[[α � τ ]]r(A)}

[[α � 1]]r(A) = {([⊥], [⊥])}
[[α � α. σ]]r(A) = {([x], [y]) | ∀S,S′:CCP0. ∀A: AdmRel(S,S′). L[[α, α � σ]]r(A, A)([x], [y])}

Fig. 1. Interpretation of PolyFPC in per-model

Terms of PolyFPC are modeled in the Kleisli category for L. To be more precise, a
term α | x: σ - t: τ is modeled as an indexed family of maps

([[t]]R:
∏
i[[α - σi]]p(R) → L[[α - τ ]]p(R))R
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where the product refers to the product in CCP. Such a family must have a common
tracker, and must preserve relations, which means that if A:AdmRel(R,S), and for
each i, ([xi], [yi]) ∈ [[α - σi]]r(A), then

([[t]]R([x1], . . . , [xm]), [[t]]S([y1], . . . , [ym])) ∈ L[[α - τ ]]r(A).

Theorem 3. The interpretation of PolyFPC types defined in Figure 1 extends to a sound
interpretation of PolyFPC.

5.1 Computational Adequacy

A τ - σ context of PolyFPC for types σ, τ , where τ is closed, is an expression C con-
taining a place holder −τ such that whenever an expression t of type τ is substituted
for the place holder such that the result C[t] is a closed term, it has type σ. Two terms
t, t′: τ of PolyFPC of the same type are called contextually equivalent (written t ≡ t′),
if for any type σ, and any τ - σ context C,

C[t] ⇓ iff C[t′] ⇓

where t ⇓ means: There exists a v such that t ⇓ v.

Theorem 4 (Adequacy). For any program t of PolyFPC, [[t]] �= [⊥] iff t ⇓.

From Theorem 4 the following corollary giving a tight connection between the opera-
tional and denotational semantics is easily provable.

Corollary 1. Suppose t, t′ are two PolyFPC terms of the same type. If [[t]] = [[t′]] then
t ≡ t′.

6 Reasoning Using the Model

The per-model of PolyFPC is parametric by construction, since the interpretations of
types have a build-in relational interpretation ([[α - σ]]r) satisfying identity extension.
This means that the model can be used to verify parametricity arguments about PolyFPC
programs. For example, for the usual data abstraction arguments as in [27, 21] proving
that two implementations of a data type gives the same final program, one can prove
using parametricity of the model, that the two programs denotations are equal, and then
use Corollary 1 to prove that the programs are ground contextually equivalent.

In future work, it will be interesting to lift the parametricity of the model to a logic
on PolyFPC. Corollary 1 should verify the logic in the sense that two terms that are
provably equal in the logic should be ground contextually equivalent. Since the logic
reasons about partial functions, it needs to include a termination proposition (−) ↓. The
mix of parametricity and partiality will have the following consequences on the logic.

– Only total functions will have graphs that can be used to instantiate the parametric-
ity principle.

– The relational interpretation of the → type constructor will relate f to g in R → S
for relations R and S iff f ↓ ⇐⇒ g ↓, and further for all (x, y) ∈ R, f(x) ↓ ⇐⇒
g(y) ↓ and f(x) ↓ implies S(f(x), g(y)).
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– The parametricity principle in the logic will say that two terms e, f of, say closed
type

∏
α. σ, are ground contextually equivalent iff e ↓ ⇐⇒ f ↓ and further, for

all pairs of types τ, τ ′ and any relation R between them e(τ) ↓ ⇐⇒ f(τ ′) ↓ and
e(τ) ↓ implies (e(τ), f(τ ′)) ∈ σ[R].

Related results can be found in [17], and the interpretation of → above is a symmetric
version of the one in loc. cit.

7 Conclusions

By showing that the solutions to recursive domain equations in the linear part of the
calculus PILLY can be used to interpret recursive types in languages with no linearity,
we have shown that parametric PILLY is a useful axiomatic setup for domain theory.
The parametric model of PolyFPC constructed by applying the general theory to the
case of admissible pers can be used to reason about parametricity for PolyFPC and for
example give proofs of modularity properties along the lines of [21], but this time using
the denotational semantics.

In recent work, Birkedal, Møgelberg, Petersen and Varming [11] have shown how the
programming language lily of Bierman, Pitts and Russo [4] gives rise to a parametric
model of PILLY . Using this result, the techniques developed here should show how
FPC can be translated into lily, but it would be interesting to see if full PolyFPC can be
translated into it.

Acknowledgments. The paper contains ideas and creative input from the following
people: Lars Birkedal, Eugenio Moggi, Rasmus Lerchedahl Petersen, Pino Rosolini
and Alex Simpson.
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Abstract. In a recent paper we introduced a typed version of Geometry
of Interaction, called the Multi-object Geometry of Interaction (MGoI).
Using this framework we gave an interpretation for the unit-free mul-
tiplicative fragment of linear logic. In this paper, we extend our work
to cover the exponentials. We introduce the notion of a GoI Category
that embodies the necessary ingredients for an MGoI interpretation for
unit-free multiplicative and exponential linear logic.

1 Introduction

Geometry of Interaction (GoI) was introduced by Girard in a series of influential
papers [6, 7, 8]. This interpretation aims at providing a mathematical model for
the cut-elimination process in linear logic. Girard, in [7], gave the first implemen-
tation of GoI for system F , through a translation into second order multiplicative
and exponential linear logic. For more on the history of the progress made after
the inception of the initial ideas see [10] Chapter 5, and [11], and for the most
recent advances see the excellent manuscript [9]. The categorical foundations
and formulation of GoI started in the unpublished work of M. Hyland, and the
work of S. Abramsky and R. Jagadeesan reported in [4]. This approach further
led to Abramsky’s Program which was completed in [10], see also [3]. It was in
this latter work that the notions of a GoI Situation and a reflexive object came
to be defined. In a recent paper, [12], we move away from “uni-object GoI” to a
typed version that we call multi-object GoI or MGoI for short. The Multi-object
GoI (MGoI) interpretation does not require the existence of a reflexive object
(i.e., an object with certain retractions, e.g. U ⊗ U � U , etc), and instead keeps
the types as they are suitably interpreted in the underlying category.

This permits a generalization of GoI and axiomatization of its essential fea-
tures. For example, by removing reflexive objects U , we also unlock the possibil-
ities of generalizing Girard-style GoI to more general tensor categories including
cases where the tensor is “product-like” in addition to “sum-like”. In particular,
in [12], we introduce an axiomatization for partially traced symmetric monoidal
categories and give an MGoI interpretation for the multiplicative fragment of
linear logic (MLL) without units.

The case of exponentials was not treated in that paper, and that is what
we undertake to do in this paper. The main contributions of this paper can be
summarized as follows:

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 384–395, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Typed GoI for Exponentials 385

– We introduce a compatibility notion for the abstract orthogonality relation
of [12] in the presence of exponential data, that is the endofunctor T .

– We give an MGoI interpretation for MELL without units, thus extending
the work in [12] beyond multiplicatives. This interpretation uses a structure
that we define and call a GoI category. A GoI category embodies the neces-
sary structure needed for the categorical multi-object GoI interpretation of
MELL. Moreover, we show that interpretations of MELL proofs are partial
symmetries in a GoI Category.

– We prove the soundness theorem for our MGoI interpretation.

It seems clear that a treatment of units and additives demands new ideas
beyond those that have emerged so far and been crystalized in a GoI category.
We shall pursue this direction in future work.

The rest of the paper is organized as follows. In Section 2 we recall the defini-
tion of a monoidal ∗-category from [2] with a slight change, we define the notions
of Hermitian and partial isometry morphisms in such categories. In Section 3 we
recall the notion of partially traced symmetric monoidal categories introduced
in [12] and discuss some examples that are new. In Section 4 we recall the defin-
ition of abstract orthogonality relation in a partially traced symmetric monoidal
category, first introduced in [12]. Furthermore, we introduce the compatibility
conditions for such a relation in the presence of exponential data. In Section 5,
we recall the MGoI semantics for MLL from [12], and extend it to MELL. We
also discuss the execution formula in this section. Section 6 discusses the sound-
ness theorem. Finally, Section 7 contains some thoughts about possible future
directions.

2 Monoidal ∗-Categories

In the following we shall recall the definition of monoidal ∗-categories from [2].
Note that we do not require a conjugation functor for the definition.

Definition 1. A monoidal ∗-category C is a monoidal category with a strict
symmetric monoidal functor ( )∗ : Cop → C which is strictly involutive and the
identity on objects and commutes with the monoidal product, that is, (f⊗g)∗ =
f∗ ⊗ g∗.

We say that a morphism f : A → A is Hermitian if f∗ = f . Also a morphism
f : A → B is called a partial isometry if f∗ff∗ = f∗ and ff∗f = f , and a partial
symmetry if in addition it is Hermitian. That is, if f∗ = f and f3 = f . Note
that there is no underlying Hilbert space structure on the homsets of C, the
terminology here is borrowed from operator algebras to account for the similar
properties of such morphisms, which can be expressed in a more general setting
of ∗-categories.

An obvious example is the category Hilb⊗ of Hilbert spaces and bounded
linear maps with tensor product of Hilbert spaces as the monoidal product.
Given f : H → K, f∗ : K → H is given by the adjoint of f , defined uniquely
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by 〈f(x), y〉 = 〈x, f∗(y)〉. It is easy to see that all the required properties are
satisfied. Note that the category Hilb⊕ of Hilbert spaces and bounded linear
maps but with direct sum as the monoidal product is a ∗-category too, with the
same definition for the ( )∗ functor.

Another example is the category Rel× of sets and relations with the cartesian
product of sets as the monoidal product. Given f : X → Y , f∗ = f where f is
the converse relation. Again, note that the category Rel⊕ of sets and relations
with monoidal product, the disjoint union (categorical biproduct) is a monoidal
∗-category too, with the same definition for the ( )∗ functor.

Yet another example that shows up frequently in the context of GoI is the
category PInj� of sets and partial injective maps, with disjoint union as the
monoidal product. Given f : X → Y , f∗ = f−1.

Other examples include Hilbfd of finite dimensional Hilbert spaces and
bounded linear maps, URep(G), finite representations of a compact group G,
etc. For more details, examples and the ways that such categories show up in
logic, see [2].

3 Trace Class

The notion of categorical trace was introduced by Joyal, Street and Verity in
an influential paper [14]. The motivation for their work arose in algebraic topol-
ogy and knot theory, although the authors were aware that such traces also
have many applications in Computer Science, where they include such notions
as feedback, fixedpoints, iteration theories, etc. For references and history, see
[1, 3, 11]. In [12], we introduced the notion of partial trace that we shall recall
in this section. For details on other approaches to partial trace, examples, and
comparison to our definition, see [12].

Recall, following Joyal, Street, and Verity [14], a trace in a symmetric monoidal
category (C,⊗, I, s) is a family of maps

TrUX,Y : C(X ⊗ U, Y ⊗ U) → C(X,Y ),

satisfying various well-known naturality equations. A partial trace requires in-
stead that each TrUX,Y be a partial map (with domain denoted TUX,Y ) and satisfy
various closure conditions.

Definition 2 (Trace Class). Let (C,⊗, I, s) be a symmetric monoidal cate-
gory. A trace class in C is a choice of a family of subsets, for each object U of
C, of the form

TUX,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X , Y of C

together with a family of functions, called a partial trace, of the form

TrUX,Y : TUX,Y → C(X,Y )

subject to the following axioms. A morphism f ∈ TUX,Y , by abuse of terminology,
is said to be trace class.
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– Naturality in X and Y : For any f ∈ TUX,Y and g : X ′ → X and h : Y → Y ′,

(h⊗ 1U )f(g ⊗ 1U ) ∈ TUX′,Y ′ ,

and TrUX′,Y ′((h⊗ 1U )f(g ⊗ 1U )) = hTrUX,Y (f) g.

– Dinaturality in U : For any f : X ⊗ U → Y ⊗ U ′, g : U ′ → U ,

(1Y ⊗ g)f ∈ TUX,Y iff f(1X ⊗ g) ∈ TU
′
X,Y ,

and TrUX,Y ((1Y ⊗ g)f) = TrU
′
X,Y (f(1X ⊗ g)).

– Vanishing I: TIX,Y = C(X ⊗ I, Y ⊗ I), and for f ∈ TIX,Y

TrIX,Y (f) = ρY fρ
−1
X .

Here ρA : A⊗I → A is the right unit isomorphism of the monoidal category.
– Vanishing II: For any g : X⊗U ⊗V → Y ⊗U ⊗V , if g ∈ TVX⊗U,Y⊗U , then

g ∈ TU⊗VX,Y iff TrVX⊗U,Y⊗U (g) ∈ TUX,Y ,

and TrU⊗VX,Y (g) = TrUX,Y (TrVX⊗U,Y⊗U (g)).

– Superposing: For any f ∈ TUX,Y and g : W → Z,

g ⊗ f ∈ TUW⊗X,Z⊗Y ,

and TrUW⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrUX,Y (f).

– Yanking: sUU ∈ TUU,U , and TrUU,U (sU,U ) = 1U .

A symmetric monoidal category (C,⊗, I, s) with such a trace class is called a
partially traced category, or a category with a trace class.

Clearly, all (totally-defined) traces in the usual definition of a traced monoidal
category yield a trace class. Here are some more examples of partially traced
categories. For more detail on some of these examples see [12].

Example 1. (a) Finite Dimensional Vector Spaces
The category Vecfd of finite dimensional vector spaces and linear transforma-
tions is a symmetric monoidal, indeed an additive, category (see [15]), with
monoidal product taken to be ⊕, the direct sum (biproduct). Hence, given
f : ⊕IXi → ⊕JYj with |I| = n and |J | = m, we can write f as an m × n
matrix f = [fij ] of its components, where fij : Xj → Yi (notice the switch in the
indices i and j). We give a trace class structure on the category (Vecfd,⊕,0)
as follows. We shall say an f : X ⊕ U → Y ⊕ U is trace class iff (Id − f22) is
invertible, where Id is the identity matrix, and Id and f22 have size dim(U). In
that case, we write

TrUX,Y (f) = f11 + f12(Id− f22)−1f21 (1)
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This definition is motivated by a generalization of the fact that for a matrix
A, (Id − A)−1 =

∑
iA
i, whenever the infinite sum converges. If the infinite

sum for (Id− f22)−1 exists, the above formula for TrUX,Y (f) becomes the usual
“particle-style” trace in [1, 3, 11].

One can also get the analogous result for the category (Hilbfd,⊕) of finite-
dimensional Hilbert spaces and bounded linear maps. Note also that neither
Vecfd nor Hilbfd admits nontrivial reflexive objects.

The following example is new and does not occur in [12]. It is the first infinite
dimensional partially traced example.

(b) Hilbert Spaces
It can be shown (details appear in the long version of this paper) that the

category (Hilb,⊕) of (not necessarily finite dimensional) Hilbert spaces and
bounded linear maps is also partially traced with the same definition for trace
class as above.

(c) Metric Spaces. The category CMet of complete metric spaces with
non-expansive maps has products. We define the trace class structure on CMet
(where ⊗ = × ) as follows. We say that a morphism f : X × U → Y × U is in
TUX,Y iff for every x ∈ X the induced map π2λu.f(x, u) : U → U has a unique
fixed point and in that case we define TrUX,Y (f) : X → Y by TrUX,Y (f)(x) = y,
where f(x, u) = (y, u), for the unique u. The category (Sets,×) of sets and
mappings is partially traced category with the same definition for trace class
morphisms as in CMet. However, this fails for the category (Rel,×) of sets and
relations.

4 Orthogonality Relations and GoI Categories

Girard originally introduced orthogonality relations into linear logic to model
formulas (or types) as sets equal to their biorthogonal (e.g. in the phase semantics
of the original paper [5] and in GoI 1 [6]). Recently M. Hyland and A. Schalk gave
an abstract approach to orthogonality relations in symmetric monoidal closed
categories [13]. They also point out that an orthogonality on a traced symmetric
monoidal category C can be obtained by first considering their axioms applied
to Int(C), the compact closure of C, and then translating them down to C.
In [12] we gave this translation (not explicitly calculated in [13]), using the so-
called “GoI construction” G(C) [1, 10] instead of Int(C). The categories G(C)
and Int(C) are both compact closures of C, and are shown to be isomorphic
in [10].

As we are dealing with partial traces we need to take extra care in stating
the axioms below; namely, an axiom involving a trace should be read with the
proviso: “whenever all traces exist”. Finally hereafter, without loss of generality
and for readability we consider strict monoidal categories. We recall the definition
of a strong orthogonality relation from [12] and define the necessary compatibility
conditions in the presence of a functor T : C → C with additional monoidal
retractions. For more details and discussion on abstract orthogonality relations
see [13, 12].
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Definition 3. Let C be a partially traced symmetric monoidal category. A
strong orthogonality relation on C is a family of relations ⊥UV between maps
u : V → U and x : U → V

V
u−→ U ⊥UV U

x−→ V

subject to the following axioms:

(i) Isomorphism : Let f : U ⊗ V ′ → V ⊗U ′ and f̂ : U ′ ⊗ V → V ′ ⊗U be such
that TrV

′
(TrU

′
((1 ⊗ 1 ⊗ sU ′,V ′)α−1(f ⊗ f̂)α)) = sU,V and TrV (TrU ((1 ⊗

1 ⊗ sU,V )α−1(f̂ ⊗ f)α)) = sU ′,V ′ . Here α = (1 ⊗ 1⊗ s)(1⊗ s⊗ 1) with s at
appropriate types. Note that this simply means that f : (U, V ) → (U ′, V ′)
and f̂ : (U ′, V ′) → (U, V ) are inverses of each other in G(C).
Then, for all u : V → U and x : U → V,

u ⊥UV x iff TrUV ′,U ′(sU,U ′ (u⊗ 1U ′)fsV ′,U ) ⊥U ′V ′ TrVU ′,V ′((1V ′ ⊗ x)f̂ );

that is, orthogonality is invariant under isomorphism.
(ii) Strong Tensor : For all u : V → U , v : V ′ → U ′ and h : U ⊗ U ′ → V ⊗ V ′,

v ⊥U ′V ′ TrUU ′,V ′(sU,V ′(u⊗ 1V ′)hsU ′,U ) iff (u⊗ v) ⊥U⊗U ′,V⊗V ′ h,

(iii) Identity : For all u : V → U and x : U → V ,

u ⊥UV x implies 1I ⊥II TrVI,I(xu).

(iv) Symmetry : For all u : V → U and x : U → V ,

u ⊥UV x iff x ⊥V U u.

Definition 4. A GoI category is a triple (C, T,⊥) where C is a partially traced
*-category as in Section 3, T = (T, ψ, ψI) : C → C is a traced symmetric
monoidal functor, that is if f ∈ TUX,Y , then ψ−1

Y,UT (f)ψX,U ∈ TTUTX,TY and
TrTUTX,TY (ψ−1

Y,UT (f)ψX,U ) = T (TrUX,Y (f)). And ⊥ is an orthogonality relation
on C as in the above. Furthermore, we require that,

• The following natural retractions exist:

– KI � T (w,w∗), KI denotes the constant I functor.
– Id� T (d, d∗)
– T 2 � T (e, e∗)
– T ⊗ T � T (c, c∗)

Above, T ⊗ T � T (c, c∗) means that there is a natural transformation c :
T ⊗ T → T such that c∗c = 1. Similarly for other cases.
• The orthogonality relation be GoI compatible, that is, it satisfy the following
additional axioms:

(c1) For all f : V → U , g : U → V ,

f ⊥U,V g implies dUfd
∗
V ⊥TU,TV Tg.
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(c2) For all f : U → U and g : I → I,

wUgw
∗
U ⊥TU,TU Tf.

(c3) For all f : TV ⊗ TV → TU ⊗ TU and g : U → V ,

f ⊥TU⊗TU,TV⊗TV Tg ⊗ Tg implies cUfc
∗
V ⊥TU,TV Tg.

• The functor T commute with ( )∗, that is (T (f))∗ = T (f∗). Moreover, ψ∗ =
ψ−1 and ψ∗I = ψ−1

I .

GoI categories are the main mathematical structures in our semantic interpre-
tation in the following section. Here are a few examples of GoI categories.

Example 2. (a) (PInj,=, T,⊥) where PInj is the category of sets and partial
injective functions, monoidal product is the disjoint union with unit the empty
set. T (X) = N×X , where N is the set of natural numbers, for natural retractions
see [10]. f ⊥ g iff gf is nilpotent.

(b) (Hilb,⊕, T,⊥), where Hilb is the category of Hilbert spaces and bounded
linear maps. The monoidal product is the direct sum of Hilbert spaces. T (H) =
�2⊗H where �2 is the space of square summable sequences, for natural retractions
see [10]. We define, f ⊥ g iff (1 − gf) is an invertible linear transformation.

(c) (Rel,⊕, T,⊥) using the same definitions for T and ⊥ as in the case of
PInj. Note that disjoint union, denoted ⊕ is in fact the categorical biproduct in
Rel.

In [12], we defined an orthogonality relation using the notion of trace class. We
recall this definition below and show that it is GoI compatible.

Example 3. Let (C,⊗, I, T r) be a partially traced category where ⊗ is the mo-
noidal product with unit I, and Tr is the partial trace operator as in Section 3.
Let A and B be objects of C. For f : A → B and g : B → A, we define, f ⊥BA g
iff gf ∈ TAI,I . It turns out that this is a variation of the notion of Focussed
orthogonality of Hyland and Schalk [13].

Proposition 1. Suppose C is a partially traced *-category that is in addition
equipped with an endofunctor T and monoidal retractions as in Definition 4. Then,
the orthogonality relation ⊥ defined as in Example 3 above is GoI compatible.

5 Multi-object GoI Interpretation

The Multi-object Geometry of Interaction (MGoI) was introduced in [12] and
was used to interpret MLL without units. The main idea was to keep the types
of the formulas that were defined by a denotational semantic map, during the
GoI interpretation. For the multiplicative case this also implied that, in con-
trast to the usual GoI, there was no need for a reflexive object and this made
the interpretation possible in categories like finite dimensional vector spaces. In
this section, we generalize MGoI interpretation to cover the exponentials. We will
soon observe that infinity forces itself into the framework, it is no longer possible
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to carry on MGoI interpretation in finite dimension. This transition to infinity
occurs, for example when we are forced to admit a retraction TTA � TA for
any object A in the relevant category. Note that, although in this way reflexive
objects reappear, they are not used to collapse types as in uni-object GoI.

Interpreting the formulas: The interpretation of MLL formulas already ap-
pears in [12], however we include them here for the sake of completeness. Given
a GoI category (C, T,⊥), let A be an object of C and let f, g ∈ End(A). We say
that f is orthogonal to g, denoted f ⊥ g, if (f, g) ∈⊥. Also given X ⊆ End(A)
we define

X⊥ = {f ∈ End(A) | ∀g ∈ X, f ⊥ g}.
We now define an operator on the objects of C as follows: Given an object
A, T (A) = {X ⊆ End(A) |X⊥⊥ = X}. We shall also need the notion of a
denotational interpretation of formulas. We define an interpretation map −
on the formulas of MELL as follows. Given the value of − on the atomic
propositions as objects of C, we extend it to all formulas by:

– A⊥ = A

– A
..................................................

............
................................. B = A⊗B = A ⊗ B .

– !A = ?A = T A .

The MGoI-interpretation for formulas is defined as follows.

– θ(α) ∈ T ( α ), where α is an atomic formula.
– θ(α⊥) = θ(α)⊥, where α is an atomic formula.
– θ(A⊗B) = {a⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥
– θ(A ..................................................

............
................................. B) = {a⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

– θ(!A) = {Ta | a ∈ θ(A)}⊥⊥
– θ(?A) = {Ta | a ∈ θ(A⊥)}⊥

Easy consequences of the definition are: (i) for any formula A, (θA)⊥ = θA⊥,
(ii) θ(A) ⊆ End( A ), and (iii) θ(A)⊥⊥ = θ(A).

Interpreting the proofs: We define the MGoI interpretation for proofs of
MELL without units. The MGoI interpretation for MLL proofs was given in
[12], and we refer the reader to that paper for details.

Every MELL sequent will be of the form - [Δ], Γ where Γ is a sequence
of formulas and Δ is a sequence of cut formulas that have already been made
in the proof of - Γ (see [7, 11]). This device is used to keep track of the cuts
in a proof of - Γ . A proof Π of - [Δ], Γ is represented by a morphism Π ∈
End(⊗ Γ ⊗ Δ ). With Γ = A1, · · · , An, ⊗ Γ stands for A1 ⊗· · ·⊗ An ,
similarly for Δ. We drop the double brackets wherever there is no danger of
confusion. We also define σ = s ⊗ · · · ⊗ s (m-copies) where s is the symmetry
map at different types (omitted for convenience), and |Δ| = 2m. The morphism
σ represents the cuts in the proof of - Γ , i.e. it models Δ. In the case where Δ
is empty (that is for a cut-free proof), we define σ : I → I to be 1I where I is
the unit of the monoidal product in C.
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Let Π be a proof of - [Δ], Γ . We define the MGoI interpretation ofΠ , denoted
by Π , by induction on the length of the proof as follows.

1. Π is obtained from Π ′ by an of course rule, that is Π has the form :
Π ′

...
- [Δ], ?Γ ′, A
- [Δ], ?Γ ′, !A

(ofcourse)

Then Π = (eΓ ′ ⊗ 1TA⊗ uΔ)φ−1T ( Π ′ )φ(e∗Γ ′ ⊗ 1TA⊗ vΔ), where TT �

T (e, e∗), with Γ ′ = A1, · · · , An, eΓ ′ = eA1 ⊗ · · · ⊗ eAn , similarly for e∗.
For any A, uA = d∗A and vA = dA. Finally, with Δ = B1, B

⊥
1 , · · · , Bm, B⊥m,

uΔ = uB1 ⊗· · ·⊗uB⊥
m

, and φ is the canonical isomorphism constructed using
ψX,Y : TX ⊗ TY → T (X ⊗ Y ).

2. Π is obtained from Π ′ by the dereliction rule, that is, Π is of the form :

Π ′

...
- [Δ], Γ ′, A
- [Δ], Γ ′, ?A

(dereliction)

Then Π = (1Γ ′ ⊗ dA ⊗ 1Δ) Π ′ (1Γ ′ ⊗ d∗A ⊗ 1Δ) where Id� T (d, d∗).

3. Π is obtained from Π ′ by the weakening rule, that is, Π is of the form:
Π ′

...
- [Δ], Γ ′

- [Δ], Γ ′, ?A
(weakening)

Then Π = (1Γ ′ ⊗wA⊗ 1Δ) Π ′ (1Γ ′ ⊗w∗A⊗ 1Δ), where KI �T (w,w∗).

4. Π is obtained from Π ′ by the contraction rule, that is, Π is of the form :

Π ′

...
- [Δ], Γ ′, ?A, ?A
- [Δ], Γ ′, ?A

(contraction)

Then Π = (1Γ ′ ⊗ cA⊗ 1Δ) Π ′ (1Γ ′ ⊗ c∗A ⊗ 1Δ), where T ⊗ T � T (c, c∗).

Example 4. (a) Let Π be the following proof:

- A,A⊥ - A,A⊥

- [A⊥, A], A,A⊥
cut

Then the MGoI semantics of this proof is given by Π = τ−1(s ⊗ s)τ =
sV⊗V,V⊗V where τ = (1 ⊗ 1 ⊗ s)(1 ⊗ s⊗ 1) and A = A⊥ = V .
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(b) Now consider the following proof

- A,A⊥

- A, ?A⊥

-!A, ?A⊥ - B,B⊥

-!A⊗B, ?A⊥ .................................................
............
.................................. B⊥

Given A = V and B =W , we have Π = (1 ⊗ s ⊗ 1)(1 ⊗ e ⊗ 1 ⊗ 1)
(φ−1T (h)φ⊗ s)(1 ⊗ e∗ ⊗ 1 ⊗ 1)(1 ⊗ s⊗ 1) where h = (1 ⊗ dV )s(1 ⊗ d∗V ).

Proposition 2. Let Π be an MELL proof of - [Δ], Γ . Then Π is a partial
symmetry.

Proof. By induction on the length of proofs. ��

5.1 Dynamics

The mathematical model of cut-elimination is given by the so called execution
formula defined as follows:

EX( Π ,σ) = Tr⊗Δ⊗Γ,⊗Γ ((1 ⊗ σ) Π )

where Π is a proof of the sequent - [Δ], Γ , and σ = s⊗m models Δ, where
|Δ| = 2m. Note that EX( Π ,σ) is a morphism from ⊗Γ → ⊗Γ , when it
exists. We shall prove below (see Theorem 1) that the execution formula always
exists for any MELL proof Π .

Example 5. Consider the proof Π in Example 4(a) above. Recall also that σ = s
in this case (m = 1). Then EX( Π ,σ) = Tr((1 ⊗ sV,V )sV⊗V,V⊗V ) = sV,V .

6 Soundness of the Interpretation

In this section we present one of the main results of this paper: the soundness
of the MGoI interpretation. We show that if a proof Π is reduced (via cut-
elimination) to another proof Π ′, then EX( Π ,σ) = EX( Π ′ , τ); that is,
EX( Π ,σ) is an invariant of reduction. In particular, if Π ′ is cut-free (i.e. a
normal form) we have EX( Π ,σ) = Π ′ . The soundness proof for MLL was
reported in [12] and we shall not duplicate that here, however we recall a few
definitions and lemmas from [12] that are crucial to a clear understanding of our
work here. The associativity of cut proven in [12] for MLL holds true for MELL
too. Essentially, it’s proof relies on properties of categorical trace.

Lemma 1 (Associativity of cut). Let Π be a proof of - [Γ,Δ], Λ and σ and
τ be the morphisms representing the cut-formulas in Γ and Δ respectively. Then

EX( Π ,σ ⊗ τ) = EX(EX( Π , τ), σ) = EX(EX((1 ⊗ s) Π (1 ⊗ s), σ), τ),

whenever all traces exist.
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Definition 5. Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗iVi → ⊗iVi such that for any
ai ∈ θ(A⊥i ), ⊗iai ⊥ M and

M .a1 := TrV1(s−1
⊗i	=1Vi,V1

(a1 ⊗ 1V2 ⊗ · · · ⊗ 1Vn)Ms⊗i	=1Vi,V1)

exists. (In Girard’s notation [7], M .a1 corresponds to ex(CUT (a1,M)) .)
• An algorithm of type θΓ is a morphism M : ⊗iVi ⊗ Δ → ⊗iVi ⊗ Δ

for some Δ = B1, B2, · · · , B2m with m a nonnegative integer and Bi+1 =
B⊥i for i = 1, 3, · · · , 2m − 1, such that if σ : ⊗2m

i=1 Bi → ⊗2m
i=1 Bi is

⊗2m−1
i=1 ,odd s Bi , Bi+1

, EX(M,σ) exists and is a datum of type θΓ .

Lemma 2. Let Γ̃ = A2, · · · , An and Γ = A1, Γ̃ . Let Vi = Ai , and M :
⊗iVi → ⊗iVi, for i = 1, · · · , n. Then, M is a datum of type θ(Γ ) iff for every
a1 ∈ θ(A⊥1 ), M .a1 (defined as above) exists and is in θ(Γ̃ ).

Theorem 1 (Proofs as algorithms). Let Π be an MELL proof of a sequent
- [Δ], Γ . Then Π is an algorithm of type θΓ .

Corollary 1 (Existence of Dynamics). Let Π be an MELL proof of a sequent
- [Δ], Γ . Then EX( Π ,σ) exists.

Theorem 2 (EX is an invariant). Let Π be an MELL proof of a sequent
- [Δ], Γ such that ?A does not occur in Γ for any formula A. Then,

– If Π reduces to Π ′ by any sequence of cut-eliminations, then EX( Π ,σ) =
EX( Π ′ , τ). So EX( Π ,σ) is an invariant of reduction.

– In particular, if Π ′ is any cut-free proof obtained from Π by cut-elimination,
then EX( Π ,σ) = Π ′ .

7 Conclusions and Future Work

In this paper we extend the scope of Multi-object GoI interpretation introduced
in [12] to cover the exponentials. We show that the framework can accommo-
date the exponentials, given we introduce appropriate compatibility conditions
for the orthogonality relation, and properly interpret the formulas involving ex-
ponentials. We have shown that the interpretations of MELL proofs are partial
symmetries, it is highly desirable to have a converse for this result, that is a
completeness theorem for MELL. We have proved the soundness theorem show-
ing that the execution formula is an invariant of cut-elimination reduction for
MELL without units. The necessary ingredients for an MGoI interpretation are
collected in a compact structure we call a GoI category. There remains the case
of units and additives. The work started in [11] and continued through [12] has
convinced us that the treatment of units and additives demands new ideas. This
is the main current work under progress. Although MGoI interpretation avoided
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infinity (reflexive object) successfully in the case of multiplicatives, we have seen
in this paper that infinity cannot be eliminated when one wishes to treat the
exponentials (the retractions TT � T and T ⊗ T � T ). However, at least the
notion of partial trace has brought more freedom in the choice of examples. We
should take advantage of this situation and look for examples that might bring
us closer to the mathematical structures at use in mathematical physics and
topology.
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Abstract. The paper presents a solution to the technical problem posed
by Girard after the introduction of Ludics of how to define proof nets
with quantifiers that commute with multiplicatives. According to the
principles of Ludics, the commuting quantifiers have a “locative” nature,
in particular, quantified formulas are not defined modulo variable re-
naming. The solution is given by defining a new correctness criterion for
first-order multiplicative proof structures that characterizes the system
obtained by adding a congruence implying ∀x(A � B) = ∀xA � ∀xB to
first-order multiplicative linear logic with locative quantifiers. In the con-
clusions we shall briefly discuss the interpretation of locative quantifiers
as storage operators.
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1 Introduction

Ludics is a logic based on locative principles introduced by Girard in 2001 [Gir01].
In Ludics, the forall quantifier commutes over every connective but the exists.
The extension of that general rule of commutativity would force to accept the
logical principle

∀x(A�B) - ∀xA� ∀xB
or equivalently ∀x(A∨B) - ∀xA∨∀xB that is not even valid in Classical Logic,
and the principle

∀x(A�B) - ∀xA� ∀xB (1)

that is not valid in Linear Logic, while the corresponding formula ∀x(A ∧ B) -
∀xA ∧ ∀xB is a valid classical principle.
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In this paper we shall analyze what happens if we add the distributivity of the
forall quantifier over the tensor in First-Order Multiplicative Linear Logic, MLL1

for short. We remark that all the other commutativity principles of forall are valid
in Linear Logic [Gir87]. In particular, we can derive ∀xA � ∀xB - ∀x(A � B).
As a consequence, forcing the distributivity rule 1 in MLL1 corresponds to add
the equivalence ∀x(A �B) = ∀xA� ∀xB.

Let MLL1
∼ be the logic obtained by adding to MLL1 a ∼-congruence on for-

mulas that contains ∀x(A�B) ∼ ∀xA�∀xB. A deductive system for MLL1
∼ can

be given by means of a subtype relation s.t. ∀x(A�B) � ∀xA� ∀xB. However,
the system obtained in this way does not have the subformula property and has
some problems with cuts, unless one restricts to locative quantifiers. In fact,
since the commutative equivalence may introduce pairs of distinct ∀-quantifiers
corresponding to the same variable, if the witness of the ∃-rule can be any term,
we would get that distinct ∀-quantifiers binding the same variable should be
instantiated by distinct terms, leading to a contradiction.

The problems previously mentioned are solved by moving from sequent calcu-
lus to multiplicative proof nets [Gir87, DR89] with first-order quantifiers [Gir91].
In particular, we shall define a subset of MLL1 proof structures that corresponds
to MLL1

∼ and for which cut-elimination holds. The proof nets defined in this way
are then one of the first syntax for locative principles inspired by Ludics. Any-
how, we remark that the approach followed here is quite different from those
presented in [FM05, CF05], in which the authors investigate proof nets with
a syntax matching the operators of ludics. In our approach, we stick to the
usual syntax of Linear Logic, incorporating into it some principles inspired by
locativity.

We also remark that the paper solves the technical problem of a system for
locative quantifiers, but does not give any semantic interpretation of them. In
the conclusions, section 5, we shall briefly discuss some possible interpretations
of locative quantifiers as storage operators that we are investigating.

The reformulation of the results in the paper for second order quantifiers is
straightforward.

In section 2 we shall recall the main definitions of the calculus and of the
proof nets for MLL1 (see [Gir91]). In section 3 we shall analyze the system MLL1

∼
obtained by forcing that the quantifiers commute over the multiplicatives and
we shall give a deductive system based on a notion of subtype. In section 4 we
shall extend the proof nets for MLL1 to MLL1

∼ and prove their cut-elimination.

2 First-Order Multiplicative Linear Logic

The formulas of the First-Order Multiplicative Linear Logic without unit MLL1

[Gir91] are built from atoms p by means of the connectives � and �, and the
quantifiers ∀ and ∃. For every atom p there is a dual atom p⊥. Duality extends
to every formula by (A � B)⊥ = A⊥�B⊥, (∀xA)⊥ = ∃xA⊥, and (A⊥)⊥ = A.
Because of the previous duality rules we can restrict to one-sided sequents - Γ ,
where Γ is a finite multiset of formulas.
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The rules of the sequent calculus MLL1 are

ax
- A,A⊥

- Γ,A - Δ,A⊥
cut

- Γ,Δ

- Γ,A - Δ,B
�

- Γ,Δ,A�B

- Γ,A,B
�

- Γ,A�B

- Γ,A ∀x x �∈ FV(Γ )
- Γ, ∀xA

- Γ,A[t/x]
∃t- Γ, ∃xA

Let us remark that we do not rename the variable x that we want to bind by
a ∀-quantifier. The usual property of variable renaming is obtained by assuming
that MLL1 formulas are equated modulo α-congruence.

The variable x in a ∀-rule is an eigenvariable. W.l.o.g., in the following, we
shall assume that the eigenvariables of the universal quantifiers in a proof are
distinct, that is, each ∀-rule in the proof uses a new eigenvariable. This corre-
sponds to the assumption that the eigenvariables in the proofs combined by a
�-rule or by a cut are distinct, that is, in some cases, in order to combine two
proofs with distinct eigenvariables we may have to replace the eigenvariables
that occur in both the proofs with new variables.

2.1 MLL1 Proof-Nets

A link between (occurrences of) formulas is a pair of (possibly empty) sequences
of formulas P − C: the formulas in P are the premises of the link, the formulas
in C are its conclusions. Every rule of the sequent calculus corresponds to a link
whose premises are the main premises of the rule, while the conclusions are the
main conclusions of the rule. In particular, the axiom link has two conclusions
and no premises, the cut link has no conclusions and two premises, the tensor
and par links have two premises and one conclusion, the forall and exists links
have one premise and one conclusion.

A proof structure is a set of formulas and links s.t. every formula is conclusion
of exactly one link and is premise of at most one link. The formulas that are not
premise of any link are the conclusions of the proof structure.

Graphically, we can represent axioms/cuts by drawing an edge labeled ax/cut
between the conclusions/premises of the link and the other links by drawing an
edge between every premise of the link and its conclusion, as explained in the
picture below.

A
�� ��

ax

A⊥

A�� �	
cut

A⊥ A

��
��

��
B






A�B

A

��
��

��
B

��
��
��

A�B

A

∀xA

A[t/x]

∃xA

In a forall link, the variable x is the eigenvariable of the link. In an MLL1 proof
structure, the eigenvariables of the ∀-links in the proof structure are distinct.
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We shall assume that the conclusions of the proof structures are closed. As
a consequence, every variable that occurs free in some formula of the proof
structure is the eigenvariable of one (and only one) ∀-link.

A switching of a proof-structure consists in: (i) the choice of a position L or R
for each par link; (ii) the choice of a formula B for each ∀-link, where B is any
formula of the proof structure in which the eigenvariable of the link occurs free
or the premise of the link if the eigenvariable does not occur free in any formula.

Given a proof structure S and a switching σ, the switch σ(S) is the graph
defined in the following way: (i) for each axiom or cut link between A and A⊥,
there is an edge between A and A⊥; (ii) for each tensor link with conclusion
A�B there is an edge between the premise A and A�B, and an edge between
the premise B and A�B; (iii) for each exists link there is an edge between its
premise and its conclusion; (iv) for each par link with conclusion A�B there
is an edge between the premise A and A�B if σ chooses L for that link, or an
edge between the premise B and A�B if σ chooses R; (v) for each forall with
conclusion ∀xA there is an edge between the conclusion ∀xA and the formula B
selected by σ.

Definition 1 (correctness criterion). An MLL1 proof structure N is correct
if the switch σ(N) is connected and acyclic, that is, it is a tree, for every switching
σ. A correct proof structure N is a proof net.

Theorem 1 (sequentialization). Given an MLL1 proof π of a sequent Γ , there
is a corresponding MLL1 proof net pn(π) with conclusions Γ and a link for every
rule in π. Conversely, for every MLL1 proof net N , there is a corresponding
MLL1 proof π s.t. pn(π) = N .

Proof. [Gir91].

2.2 Cut-Elimination

The proof nets of MLL1 have a terminating cut-elimination defined by the re-
duction rules

...
...

A
�� ��

ax

A⊥�� �	
cut

A � A

...
...

...
...

...
...

...
...

...
...

A

��
��

��
B

��
��

��
A⊥

��
��

��
B⊥

��
��

��
� A�� �	

cut

B
�� �	

cut

A⊥ B⊥

A�B�� �	
cut

A⊥�B⊥
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...
...

...
...

A A[t/x]⊥ � A[t/x]�� �	
cut

A[t/x]⊥

∀xA�� �	
cut

∃xA⊥

Let us remark that the reduction of a ∀/∃ cut implies the substitution of the
witness t of the ∃-rule in the cut for the free occurrences of the eigenvariable x
of the ∀-quantifier introduced by the ∀-rule in the cut.

Correctness is preserved by cut-elimination. Therefore, the normal form of
any proof net is a proof net too. The reduction rules for cut-elimination are
confluent. Hence, the normal form of any proof net is unique.

3 First-Order Commutative Quantifiers

Let ∼ be the least congruence over MLL1 formulas induced by

∀x(A �B) ∼ ∀xA� ∀xB ∀xA ∼ A if x �∈ FV(A)

The congruence ∼ naturally extends to sequents: Γ ∼ Γ ′ if there is a bijection
between the formulas in Γ and the formulas in Γ ′ s.t. every formula A ∈ Γ is
mapped to some formula A′ ∈ Γ ′ s.t. A ∼ A′.
Definition 2 (MLL1

∼). A sequent Γ is derivable in MLL1
∼ if there is an MLL1

proof π of some Γ ′ ∼ Γ s.t.

1. the α-congruence has not been used;
2. every ∃xA in π is introduced by an ∃t-rule with t = x;
3. π is cut-free.

The restriction on quantifiers and α-congruence are required by cut-
elimination. We remark that such a restriction makes the system much weaker,
for instance, we cannot prove - (∀yA[y/x])⊥, ∀xA, if y is a variable distinct
from x.

The study of cut-elimination will be pursued on proof nets in section 4.6.

3.1 A Deductive System for MLL1
∼

MLL1
∼ can be also defined as the deductive system obtained from MLL1 by elim-

inating the cut rule, by restricting the ∃-rule to the case in which the witness t
is the variable x bound by the rule

- Γ,A ∃x- Γ, ∃xA

and by equating formulas modulo the ∼-equivalence.
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Let us recall that the part of the ∼ that is missing in MLL1 is the distributivity
of ∀ over �. We can then define the subtyping relation � as the least partial
order closed by contexts and induced by

∀x(A �B) � ∀xA� ∀xB ∀xA � A if x �∈ FV(A)

Correspondingly, we have the subtyping rule

- Γ,A′
� with A′ � A- Γ,A

where � is the anti-reflexive restriction of �.
It is readily seen that the deductive system MLL1

� obtained by replacing the
condition that formulas are equated modulo ∼-equivalence with the previous
subtyping rule is equivalent to MLL1

∼. In fact, let us observe first that A � B
implies that - B⊥, A is derivable in MLL1 (without cuts and using the restricted
version of the ∃-rule only). Therefore, since for every A′ ∼ A there is B s.t.
A′ � B � A, the formula A is derivable in MLL1

∼ iff there is a cut-free MLL1

proof of some B with B � A that uses the restricted version of the ∃-rule only
and does not use the α-congruence.

4 MLL1
∼ Proof Nets

In order to define the proof structures for MLL1
∼, it is useful to observe that in

the deductive system MLL1
� we can restrict to the case in which the �-rules are

applied to a single variable at a time, restricting the �-rule to the case

- Γ, ∀xφ(A1, . . . , Am, B1, . . . , Bn) �φ x �∈ FV(B1, . . . , Bn)
- Γ, φ(∀xA1, . . . ,∀xAn, B1, . . . , Bn)

where φ is a �-tree, that is, a tree of �-connectives, whose leaves are the formulas
A1, . . . , Am, B1, . . . , Bn. Formally, �-trees are defined by: (i) every formula A is
a �-tree with leaf A; (ii) if φ1 and φ2 are �-trees with leaves L1 and L2, then
φ1 � φ2 is a �-tree with leaves L1, L2. It is readily seen that, under the proviso
of the rule, ∀x.φ(A1, . . . , Am, B1, . . . , Bn) � φ(∀x.A1, . . . ,∀xAn, B1, . . . , Bn).

If we restrict to atomic axioms, or at least to quantifier free axioms, every
∀-quantifier must be introduced by a corresponding ∀-rule and we can assume
that a �φ-rule that distributes a ∀x is applied immediately after the ∀x-rule that
introduces the quantifier. We can then merge the ∀x-rule and the �φ-rule into
a unique rule, getting the deductive system MLL1

∀� defined by

ax
- p, p⊥

- Γ,A - Δ,B
�

- Γ,Δ,A�B

- Γ,A,B
�

- Γ,A�B

- Γ,A ∃x- Γ, ∃xA

- Γ, φ(A1, . . . , Am, B1, . . . , Bn) ∀�
x x �∈ FV(Γ,B1, . . . , Bn)

- Γ, φ(∀xA1, . . . ,∀xAm, B1, . . . , Bn)
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4.1 Proof Structures

The links of the proof nets for MLL1
∼ are the same given for MLL1, with the

restriction that in the ∃-link t = x. However, in order to define MLL1
∼ proof

nets, we need to consider proof nets that correspond to MLL1
∀� proofs too. In

particular, we have to replace the ∀-link with the link corresponding to the ∀�-
rule. The ∀-link becomes then a particular case of the ∀�-link, the case in which
the �-tree φ has only one leaf, that is, φ(A) = A.

Let us recall that in the definition of MLL1 proof structures we have assumed
that the eigenvariables in a proof structure are distinct. Such a condition is too
strong in the case of MLL1

∼, where the α-congruence does not hold—in the case
with cut that we shall analyze in subsection 4.5, such a condition is unsatisfiable
as soon as we have a cut formula that contains quantifiers. Therefore, we have
to weaken the assumption on the eigenvariables in a proof, reformulating such
a condition in a way that allows to define the switching positions of foralll links
(i.e., the formulas that in a switch may be connected to the conclusion of the
forall) without forcing the renaming of distinct forall links that bind variables
with the same name.

4.2 Scope and Eigenvariables

Let us say that two formulas are connected if there is an edge between them
(e.g., if they are the two conclusions/premises of an axiom/cut link or one is the
premise and the other one is the conclusion of a link). An x-path between two
formulas A0 and An is a path from A0 to An in which the variable x occurs free
in all the inner formulas of the path; more precisely, an x-path is a sequence
of formulas A0A1 . . . An−1An s.t., for every 0 ≤ i < n, the formulas Ai, Ai+1
are connected and, for every 0 ≤ i ≤ n, x ∈ FV(Ai) or Ai = ∃xA or Ai is the
conclusion of a ∀�

x -link.
Let A be the conclusion of a ∀�

x -link. A formula B is x-bound to A, or x-
bound to the ∀-link with conclusion A, if there is an x-path between B and A.
The scope of A, or of the ∀x-link with conclusion A, is the set of the formulas B
bound to A s.t. x ∈ FV(B).

Let us take a ∀�
x -link with conclusion A and a ∀�

y -link with conclusion B. (We
remark that, since x and y range over the set of the variables, x and y might
also denote the same variable.) We shall say that the the two forall links have
the same (distinct) eigenvariable(s) when they have the same scope (their scopes
differ) and we shall write x ≡ y (x �≡ y). It is readily seen that x �≡ y iff x �= y
or, when x = y, the scopes of A and B are disjoint.

4.3 Folded and Unfolded Proof Structures

Let us say that an MLL1
∀� proof structure is unfolded when every ∀�-link in it

is a ∀-link. An unfolded MLL1
∀� proof structure is also an MLL1

∼ proof structure.
An MLL1

∀� proof structure is folded when the eigenvariables of all the ∀�-links
in the proof structure are distinct.
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4.4 Cut-Free Proof Nets

Any cut-free folded proof structure S is isomorphic to an MLL1 proof structure
S′ obtained by replacing the conclusion A = φ(∀xA0, . . . ,∀xAm, B1, . . . , Bn) of
every ∀-link with A′ = ∀xφ(A0, . . . , Am, B1, . . . , Bn) and consistently replacing
A′ for A in every formula that contains A as a subformula. In fact, the restriction
on the eigenvariables of S implies that we can find a renaming of the variables
in S′ s.t. the variables bound by the ∀-links in S′ are distinct. By construction,
if Γ and Γ ′ are the conclusions of S and S′, respectively, then Γ ′ � Γ . This
immediately implies that, if S′ is correct, then Γ is derivable in MLL1

∼.
Let us say that the cut-free folded MLL1

∀� proof structure S is correct when
S′ is correct.

The definition of correct cut-free folded MLL1
∀� proof structure can be also

given directly, it suffices to adapt the definition of switch, forcing that a ∀-
quantifier can jump to a formula in its scope only, or to the premise of its ∀-link.

Definition 3 (MLL1
∀� switching). An MLL1

∀� switching of a folded MLL1
∀�

proof structure is a map that assigns a position L or R for each par link and a
formula B to every ∀�-link with conclusion A, where B is a formula in the scope
of A or the premise of the ∀�-link.

Switches and correctness are defined as for MLL1 proof structures.

Proposition 1. Given an MLL1
∀� derivation π of a sequent Γ , there is a corre-

sponding MLL1
∀� correct cut-free MLL1

∀� proof structure pn(π) with conclusions Γ
and a link for every rule in π. Conversely, for every correct cut-free folded MLL1

∀�

proof structure S, there is a corresponding MLL1
∀� derivation π s.t. pn(π) = S.

Correctness of unfolded MLL1
∀� proof structures is defined in terms of correctness

for folded ones, in particular, an unfolded structure will be correct only if there
is an equivalent correct folded structure.

Let us define the following transformation on MLL1
∀� proof structures:

A

∀x

A

��
��

��
B

��
��

��

A′

��
��

��
B

��
��

��
		


x �∈ FV(B) ∪ EV(B)
A�B

∀x

A′ �B A′ �B

A

∀x

B

∀x′

A

��
��

��
� B

��
��
��
�

A′

��
��

��
� B′

��
��

��
�

		

x �∈ FV(A) ∩ FV(B)

or
x ≡ x′

A�B

∀x

A′ �B′ A′ �B′
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where x and x′ denote two occurrences of the same variable, and where EV(B)
denotes the set of the eigenvariables of the quantifier links associated to the
quantified subformulas in B (therefore, x �∈ FV(B) ∪ EV(B) means that x can-
not occur at all in B, neither free nor bound). Let us remark that the above
transformations are well-defined: they transform a proof structure into a proof
structure with the same conclusions.

Definition 4. A cut-free MLL1
∼ proof structure N is correct, it is a cut-free

MLL1
∼ proof net, if there is a correct cut-free folded MLL1

∀� proof structure S s.t.
N 		
∗ S.

By reversing the direction of the transformation defined above, we see that, given
a folded cut-free MLL1

∀� proof structure S, there is a (unique) cut-free unfolded
MLL1

∀� proof structure N s.t. N 		
∗ S. Therefore, we can state Proposition 1
for the folded case too.

Proposition 2. Given an MLL1
∀� derivation π of a sequent Γ , there is a cor-

responding cut-free MLL1
∼ proof net with conclusions Γ . Conversely, for every

cut-free MLL1
∼ proof net N , there is a corresponding MLL1

∀� derivation π s.t.
pn(π) = N .

4.5 MLL1
∼ Proof Nets with Cut

Unfortunately, the extension to the case with cut is not straightforward. In
fact, let P be the least set of MLL1

∼ proof structures (with cut) that contains
the cut-free MLL1

∼ proof nets and is closed by cut-composition. The reduction
rules defined in subsection 2.2 (with t = x in the case of the ∀/∃-cut) defines a
terminating and convergent cut-elimination procedure for P . But, P is not closed
by cut-elimination. E.g., by reducing the proof structure obtained by composing
the cut-free MLL1

∼ proof net N1 that proves - (∀x(A � B))⊥, ∀x.A � ∀xB and
the proof net N2 that proves - (∀xA� ∀xB)⊥, ∀xA�B (such a proof net is an
MLL1 proof net indeed), we get the incorrect proof structure

A⊥
�� ��

ax

���
���

B⊥

�� ��
ax

���
���

A

∀x

A⊥�B⊥

∃x

∀xA
��

��
��

B

��
��

�

∃x(A⊥�B⊥) ∀xA �B

that proves - (∀x(A �B))⊥, ∀xA�B, which is not derivable in MLL1
∼.

The main issue is that in N1 the ∀-links corresponding to the two subformulas
∀xA and ∀xB of the conclusion ∀xA� ∀xB have the same eigenvariable. There-
fore, if we want to cut that formula with the conclusion of another proof net N ,
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we have to ask that in N the variables bound by the ∃-links corresponding to
the subformulas ∃xA⊥ and ∃xB⊥ of the cut-formula (∀xA � ∀xB)⊥ are bound
to the same ∀-link, or at least, that the structure of N is consistent with the as-
sumption that the variables bound by ∃xA⊥ and ∃xB⊥ correspond to the same
eigenvariable, in particular, we cannot combine a formula in which the variable
x occurs free with a formula in which it occurs bound.

The example shows that, in the presence of cuts, the definition of x-path
(sequence of connected formulas in which the variable x occurs free) does not
suffice to characterize the dependencies between the occurrences of a variable x
in the proof structure. In particular, because of the restriction on quantifiers,
the renaming of an eigenvariable may induce the renaming of variables that are
not in its scope, creating in this way a connection between formulas in which
the variable x occurs and that are not connected by an x-path.

Let us say that two formulas A and B of an MLL1
∀� proof structure S in which

the variable x occurs are x-correlated if the renaming of some occurrence of x
in A induces a corresponding renaming of some occurrences of x in B.

Let us say that an occurrence α of a variable x in the formula A is correlated
to an occurrence β of x in the formula B, denoted by α .= β, if the renaming of
α induces the renaming of β. It is readily seen that .= is an equivalence relation.

Two quantifier links are correlated if the occurrence of the variable in the
binders in their conclusions are correlated. In particular, when two ∀-links are
correlated we shall say that their eigenvariables are correlated.

Two correlated ∃-links are siblings if they are leaves of a tree of �-links.

Definition 5 (correct folded MLL1
∀� proof structures). A folded MLL1

∀�

proof structure S is correct when every switch of S is connected and acyclic and
the following sibling condition holds:

if two ∃-links of S are siblings, then they are bound to the same ∀-link (e.g.,
to the same eigenvariable).

Since in a cut-free MLL1
∀� proof structure two ∃-links may be correlated iff they

are bound to the same ∀-link, the sibling condition trivially holds for cut-free
MLL1

∀� proof structures. Therefore, in the cut-free case, Definition 5 reduces to
the definition of correct folded cut-free proof structure given in subsection 4.4.

As in the cut-free case, correctness of unfolded proof structures is defined by
means of the transformation rules on page 403 with the addition that the bottom
rule can be applied also when x and x′ are correlated eigenvariables and not only
when they are the same eigenvariable. In any case, let us remark that .= contains
≡ and that, in the cut-free case x .= x′ iff x ≡ x′.

Definition 6 (MLL1
∼ proof nets). An MLL1

∼ proof structure N is correct, that
is to say it is an MLL1

∼ proof net, if there is a correct folded MLL1
∀� proof

structure S s.t. N 		
∗ S.

By the equivalence between .= and ≡ in the cut-free case and by the fact that
the sibling condition trivially holds in cut-free MLL1

∀� proof structures, in the
cut-free case, the previous definition reduces to Definition 4.
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4.6 Cut-Elimination

Cut-elimination is defined on MLL1
∼ proof nets, that is, on unfolded proof struc-

tures. Unfortunately, correctness is not preserved by one step of cut-elimination.
In fact, let us take the following proof net N .

p⊥

���
�

�� ��
ax

q⊥

			
	

�� ��
ax

p q p⊥
�� ��

ax

q⊥
�� ��

ax

p q

p⊥�q⊥ ∀x p
��

� ∀x q
��

�
∃x p⊥

��
� ∃x q⊥

��
�

∀x p
��

� ∀x q
��

�

∃x (p⊥�q⊥) ∀x p� ∀x q�� �	
cut

∃x p⊥�∃x q⊥ ∀x p� ∀x q

The two framed ∀-formulas in N have the same eigenvariable. In one step, N
reduces to a proof structure M in which the two framed quantifiers are cut
with the matching ∃-formulas. M is in normal form for 		
 but contains two
∀-quantifiers with the same eigenvariable. Therefore, M is not a proof net.

Even if correctness is not preserved by a single cut-elimination step, we can
define a big-step procedure that reduces an MLL1

∼ proof net to another proof
net.

Given an MLL1
∼ proof netN , let S be the correct folded MLL1

∀� proof structure
s.t. N 		
∗ S. Every conclusion of a ∀-link in S is the image of a corresponding
formula in N that we shall call a folding root of N . Every folding root of N is
a �-tree φ(∀xA1, . . . ,∀xAm, B1 . . . , Bn) with x �∈

⋃
1≤i≤n FV(Bi) ∪ EV(Bi). Let

us say that φ is the folding tree of the folding root A.
Let A be a cut formula of an MLL1

∼ proof net N . We shall say that N reduces
by a big-step that eliminates A, written N �b M , when:

1. A is not a folding root and N � M by the application of the cut-elimination
rule that reduces the cut of A;

2. A is a folding root and N �∗ M by a sequence of cut-elimination rules that
eliminate the �-links corresponding to the the folding tree of A, moving the
cut from the folding root A to the leaves of its folding tree.

Proposition 3 (big-step cut-elimination). Let N be an MLL1
∼ proof net. If

N �b M , then M is an MLL1
∼ proof net.

Big-step cut-elimination is a particular reduction strategy for �. Therefore,
by the uniqueness of the normal-form of �, Proposition 3 proves that cut-
elimination is sound and that every sequent derivable by an MLL1

∼ proof net
(with cut) is derivable in MLL1

∼.

Theorem 2 (cut-elimination). For every MLL1
∼ proof net N , there is a unique

MLL1
∼ cut-free MLL1

∼ proof net M s.t. N �∗ M .
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5 Conclusions and Further Work

The paper solves the problem of how to characterize the proof nets for a logical
system with locative quantifiers that commutes over the multiplicative connec-
tives. However, this is just a first step, because in the paper we have not addressed
at all any semantics for locative quantifiers. Our ongoing research suggests that
locative quantifiers can be interpreted as storage operators. In particular, ∃x
states a constraint on or assigns a value to a location x of the store, while ∀x
operates on all the values that may be stored in x.

We are also trying to relax the restrictions on the quantifier rules, reintro-
ducing generic terms as witnesses in the ∃-rule. A first possibility that we are
considering is to associate a store to every proof, assuming that an ∃x-rule with
witness t can be applied only if the term t is compatible with the value, if any,
in the location x. Another approach is to assume that the language of terms
contains an intersection operator s.t. A(t1) and A(t2) imply A(t1 ∩ t2). In this
way, we might get rid of the problem of how to instantiate with two distinct
terms two ∀-quantifiers with the same eigenvariable, as this would correspond
to replacing both with the intersection of the two terms.
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Abstract. We provide a complete description of the Wadge hierarchy for deter-
ministically recognizable sets of infinite trees. In particular we give an elementary
procedure to decide if one deterministic tree language is continuously reducible
to another. This extends Wagner’s results on the hierarchy of ω-regular languages
to the case of trees.

1 Introduction

Two measures of complexity of recognizable languages of infinite words or trees have
been considered in literature: the index hierarchy, which reflects the combinatorial com-
plexity of the recognizing automaton and is closely related to μ-calculus, and the Wadge
hierarchy, which is the refinement of the Borel/projective hierarchy that gives the deep-
est insight into the topological complexity of languages. Klaus Wagner was the first to
discover remarkable relations between the two hierarchies for finite-state recognizable
(ω-regular) sets of infinite words [14]. Subsequently, elementary decision procedures
determining an ω-regular language’s position in both hierarchies were given [4, 7, 15].

For tree automata the index problem is only solved in the deterministic case [9, 13].
As for topological complexity of recognizable tree languages, it goes much higher than
that of ω-regular languages, which are all Δ0

3. Indeed, co-Büchi automata over trees
may recognize Π1

1 -complete languages [8], and Skurczyński [12] proved that there are
even weakly recognizable tree languages in every finite level of the Borel hierarchy.
This may suggest that in the tree case the topological and combinatorial complexities
diverge. On the other hand, the investigations of the Borel/projective hierarchy of deter-
ministic languages [5, 8] reveal some interesting connections with the index hierarchy.

Wagner’s results [14, 15], giving rise to what is now called the Wagner hierarchy
(see [10]), inspire the search for a complete picture of the two hierarchies and the rela-
tions between them for recognizable tree languages. In this paper we solve the Wadge
hierarchy problem in the deterministic case. The obtained hierarchy has the height
(ωω)3 + 3, which should be compared with ωω for regular ω-languages [15], (ωω)ω

for deterministic context-free ω-languages [1], (ωCK1 )ω for ω-languages recognized by
deterministic Turing machines [11], or an unknown ordinal ξ > ε0 for nondeterministic
context-free ω-languages [2].

The key notion of our argument is an adaptation of the Wadge game to tree lan-
guages, redefined entirely in terms of automata. Using this tool we construct a col-
lection of canonical automata representing the Wadge degrees of all deterministic tree

� Supported by KBN Grant 4 T11C 042 25.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 408–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Wadge Hierarchy of Deterministic Tree Languages 409

languages. Finally, we give a procedure calculating the canonical form of a given de-
terministic automaton, which runs within the time of finding the productive states of
the automaton (the exact complexity of this problem is unknown, but not worse than
exponential).

In presence of space limitations we omit some of the proofs; they can be found in
the full version of the paper (see [6] for a draft).

2 Automata

A binary tree over Σ is a partial function t : {l, r}∗ �→ Σ with a prefix closed
domain. A tree t is full if dom t = {l, r}∗. Let TΣ denote the set of full binary trees
over Σ, and let T̃Σ be the set of all binary trees over Σ.

A partial deterministic automaton is a tuple A = 〈Σ,Q, qI , δ, rank〉 where Σ is
the input alphabet, Q is the set of states with a specified initial state qI , the func-
tion rank maps states to naturals, and the transition relation δ is a partial function
δ : Q × Σ × {l, r} �→ Q. A run of a partial automaton over t ∈ TΣ is a binary
tree ρt ∈ T̃Q such that ρt(ε) = qI and for v ∈ dom ρt, ρt(v) = p, d = l, r it holds that
δ(p, t(v), d) = q if and only if vd ∈ dom ρt and ρt(vd) = q. An infinite path q1, q2, . . .
in a run is accepting if limsupi rank(qi) is even. A run ρt is infinitely accepting if all
its maximal paths are infinite and accepting. A state q is productive if there exists an
infinitely accepting run starting in that state. A run is accepting if all its infinite paths
are accepting and all finite maximal paths end in productive states. The language recog-
nised byA, in symbolsL(A), is the set of trees that admit an accepting run ofA. Partial
deterministic automata over ω-words are defined analogously.

In classical deterministic automata the transition relation is a complete function.
Consequently, all the paths in a run are infinite, and a run is accepting if and only if
all the paths are accepting. Our definition is only a slight extension of the classical one.
Adding transitions to an all-accepting state # or an all-rejecting state ⊥ accordingly,
we may transform a partial deterministic automaton A into a classical deterministic
automaton Ã recognizing the same language.

A branching transition is a pair p
σ,l−→ pl, p

σ,r−→ pr. For branching transitions we
will sometimes write p

σ−→ pl, pr. Transitions with one branch undefined will be called
non-branching. We will also say that a partial deterministic automaton is non-branching
if it contains only non-branching transitions.

The head component of an automaton A is the root of the directed acyclic graph
(DAG) of strongly connected components (SCCs) of A. In the definitions of automata
we will often specify the tail components, always a subset of the leaf SCCs.

3 Reductions and Games

TΣ and the space of ω-words over Σ are equipped with the standard Cantor-like topol-
ogy. For trees it is induced by the metric

d(s, t) =
{

2−min{|x| : x∈{0,1}∗, s(x) �=t(x)} if s �= t ,
0 if s = t .
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L is Wadge reducible to M , in symbols L ≤W M , if there exists a continuous function
ϕ such that L = ϕ−1(M). M is C-hard if for all L ∈ C, L ≤W M . If M is C-hard and
M ∈ C, then M is C-complete.

Let us introduce a tree version of Wadge games (see [10]). For any pair of tree lan-
guages L,M the game GW (L,M) is played by Spoiler and Duplicator. Each player
builds a tree, tS and tD respectively. In every round, first Spoiler adds at least one level
to tS and then Duplicator can either add some levels to tD or skip a round (not forever).
Duplicator wins the game if tS ∈ L ⇐⇒ tD ∈ M . Just like for the classical Wadge
games, a winning strategy for Duplicator can be easily transformed into a continuous
reduction, and vice versa.

Lemma 1. Duplicator has a winning strategy in GW (L,M) if and only if L ≤W M .

For regular languages we find it useful to interpret the game in terms of automata. Let
A, B be partial deterministic tree automata. The automata game G(A,B) starts with
one token put in the initial state of each automaton. In every round players perform a
finite number of the following actions:

fire a transition – for a token placed in a state q choose a transition q
σ−→ ql, q2,

remove the old token from q and put new tokens in q1 and q2 (similarly for non-
branching transitions),

remove – remove a token placed in a productive state.

Spoiler plays on A and must perform one of these actions at least for the tokens pro-
duced in the previous round. Duplicator plays on B and is allowed to postpone per-
forming an action for a token, but not forever. During such a play the paths visited by
the tokens of each player define a run of the respective automaton. Removing a token is
interpreted as a declaration that this part of the run will be accepting: simply complete
the run in construction by any accepting run starting in this state. Duplicator wins the
game if both runs are accepting or both are rejecting.

Lemma 2. Duplicator has a winning strategy in G(A,B) iff L(A) ≤W L(B).

Proof. Let Acc(C) denote the language of accepting runs of an automaton C. For de-
terministic automata, Acc(C) ≡W L(C). It is enough to observe that G(A,B) is in
fact GW (Acc(A),Acc(B)). ��

We will write A ≤ B for L(A) ≤W L(B), A ≡ B for L(A) ≡W L(B), and
A < B for L(A) <W L(B). For q ∈ QA let Aq:=B denote the automaton obtained

by replacing each A’s transition of the form p
σ,d−→ q with p

σ,d−→ qBI . Recall that by
Aq we denote the automaton A with the initial state changed to q. Note that Aq:=Aq is
equivalent to A. The following fact, which will be used implicitly throughout the paper,
follows easily from Lemma 2.

Corollary 1. Let A, B, C be deterministic partial automata and p ∈ QC . If A ≤ B,
then Cp:=A ≤ Cp:=B .



The Wadge Hierarchy of Deterministic Tree Languages 411

4 Gadgets

A partial automaton A′ is a transformation of A if it was obtained from A by a finite
number of the following operations:

relabeling – replacing p
σ−→ q1, q2 with p

σ′
−→ q1, q2 for a fresh letter σ′ (analogously

for non-branching transitions),
swapping directions – replacing p

σ−→ q1, q2 with p
σ−→ q2, q1, or replacing a non-

branching transition p
σ,d−→ q with p

σ,d′
−→ q.

edge subdivision – replacing p
σ,d−→ q with p

σ,d−→ p′
σ,d−→ q, where p′ is a fresh state

and rank(p′) = rank(p),

moving entering points in SCC – replacing p
σ,d−→ q with p

σ,d−→ q′ for q, q′ ∈ X ,
p /∈ X , whereX is a SCC of A (or replacing qI with a different state from the head
component),

moving exit points in SCC – replacing p
σ−→ q1, q2 with p′

σ′
−→ q1, q2 for p, p′ ∈ X ,

q1, q2 /∈ X , and a fresh letter σ′ (analogously for non-branching transitions).

Partial automata A and B over Σ are called isomorphic if there exists a bijection η :
QA → QB , preserving the initial state, such that p

σ,d−→ q if and only if η(p)
σ,d−→ η(q),

and for each loop p1 → . . . → pn, maxi rankA(pi) and maxi rankB(η(pi)) have the
same parity. In particular, L(A) = L(B).

We say thatA andB are similar, in symbolsA ∼ B, if there exist transformationsA′

and B′ that are isomorphic. It can be checked easily that ∼ is an equivalence relation.
The equivalence class ofAwill be denoted by [A] and called a gadget represented byA.

An easy inductive argument shows that A ∼ B implies L(A) ≡W L(B) (the con-
verse need not hold). For a gadget Γ , we will denote by L(Γ ) the Wadge degree of
the language recognized by an automaton representing Γ . The meaning of the sym-
bols <,≤,≡ introduced for partial automata extends to gadgets in the natural way. By
abusing notation we will write L(Γ ) ≤W L(A), Γ ≤ A, etc.

Note that the transformations preserve the structure of the DAG of SCCs up to trivial
components (singletons with exactly one parent and one child). Therefore, the head
component of a gadget is well defined. Analogously, the tail components of a gadget are
the tail components of any of the representing automata. Note also that for a single SCC
the notion of similarity coincides with the classical notion of graph homeomorphism (up
to relabeling and swapping directions).

It follows from the above that non-branching gadgets are well-defined. A
non-branching gadget Γ can be represented by a (partial deterministic) ω-automaton
overΣ: take any representing tree automaton and ignore the second coordinate of the ar-
row labels. Obviously, the ω-language recognized by the obtained automaton is Wadge
equivalent to L(Γ ).
B is a subautomaton of A if QB ⊆ QA, δB ⊆ δA, rankB = (rankA)�QB (the ini-

tial states need not be equal). A partial automaton A contains a gadget Γ if A contains
a (productive) subautomaton B such that [B] = Γ . A admits Γ if it contains a pro-
ductive subautomaton B which can be obtained from an automaton representing Γ by
identifying some states. It follows easily that in both cases [A] ≥ Γ .
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5 Operations

The alternative [A1] ∨ [A2] is a gadget represented by an automaton consisting of dis-

joint copies of A1 and A2, and a fresh initial state qI with the transitions qI
σ1,d1−→ qA1

I

and qI
σ2,d2−→ qA2

I , with σ1 �= σ2. The tail components are inherited from [A1] and
[A2]. Note that L([A1] ∨ [A2]) is Wadge equivalent to the disjoint sum of L([A1])
and L([A2]). Consequently, ∨ is associative and commutative up to Wadge
equivalence.

The parallel composition [A1] ∧ [A2] is defined analogously, only now σ1 = σ2
and d1 �= d2. Note that, while in [A1] ∨ [A2] the computation must choose one of the
branches, here it continues in both. The language L([A1] ∧ [A2]) is Wadge equivalent
to {t : t.l ∈ L([A1]), t.r ∈ L([A2])} and ∧ is associative and commutative up to
Wadge equivalence. Multiple parallel compositions are performed from left to right:
[A1] ∧ [A2] ∧ [A3] ∧ [A4] = (([A1] ∧ [A2]) ∧ [A3]) ∧ [A4]. We will often write ([A])n

to denote [A] ∧ . . . ∧ [A]︸ ︷︷ ︸
n

.

A (ι, κ)-flower F(ι,κ) is a gadget represented by an automaton A(ι,κ) with states

p, qι, qι+1, . . . , qκ, rank(p) = ι, rank(qi) = i, and transitions p
σi,di−→ qi

σ′
i,d

′
i−→ p for

i = ι, ι + 1, . . . , κ such that σi �= σj for i �= j. The only SCC of the (ι, κ)-flower is
both the head component and the tail component.

The (ι, κ)-composition [A]
(ι,κ)−→ [Aι], . . . , [Aκ] is a gadget represented by an au-

tomaton obtained from the A(ι,κ) above by adding (a single copy of) A,Aι, . . . , Aκ

and transitions p
σ,d−→ qAI , p

σi,d̄i−→ qAi

I such that σ �= σi and d̄i �= di for i = ι, . . . , κ,
where di, σi and p are the ones from the definition of A(ι,κ). The head component
is simply the (ι, κ)-flower but for the tail components we choose only the tail com-
ponents of A. Again, using Corollary 1 it is easy to see that the Wadge degree of
the defined automaton depends only on (ι, κ) and the Wadge degrees of L(A), L(Aι),
. . . , L(Aκ), and so the (ι, κ)-composition also defines an operation on Wadge
degrees.

Let C1, . . . , Ck be the tail components of [A1]. The sequential composition [A1] ⊕
[A2] is represented by an automaton consisting of (a single copy of) A1 and A2 with

transitions pi
σi,di−→ qA2

I , i = 1, . . . , k, such that pi ∈ Ci and σ1, . . . , σk are fresh let-
ters. [A1] ⊕ [A2] inherits its head component from A1 and the tail components from
[A2]. The operation ⊕ is associative, but it need not be commutative even up to Wadge
equivalence. For any gadget Γ and n < ω let nΓ = Γ ⊕ . . .⊕ Γ︸ ︷︷ ︸

n

.

6 Canonical Gadgets

Let C1 = F(0,0), D1 = F(1,1). Note that in this case we simply get an accepting and
a rejecting loop. L(C1) is Wadge equivalent to the whole space and L(D1) ≡W ∅.
Let E1 = C1 ∨ D1. Let Cωω+k = F(1,k+2), Dωω+k = F(0,k+1), and Eωω+k =
Cωω+k ∨Dωω+k . The above gadgets are called simple non-branching gadgets.
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Let Γ → Γ ′ denoteΓ
(1,1)−→ Γ ′. LetEω = C1 → C3 andEωk+1 = C1 → (C1⊕Eωk)

for k ≥ 1. Let Eωω·2 = C1 → F(0,2) and Eωω·2+k+1 = C1 → (C1 ⊕ Eωω·2+k) for
k ≥ 1. These in turn are called simple branching gadgets.

For every non-zero ordinal α < ωω·3 we have a unique presentation

α = ωω·2+klk + . . .+ωω·2+0l0 + ωω·+kmk + . . .+ ωω·+0m0 +ωknk + . . .+ ω0n0 ,

where at least one of lk,mk, nk is non-zero (ω0 =1, by convention). Let us define

Eα=n0Eω0⊕. . .⊕nkEωk⊕m0Eωω·+0⊕. . .⊕mkEωω·+k⊕l0Eωω·2+0⊕. . .⊕lkEωω·2+k .

For α = ωω·2α2 + ωωα1 + n + 1, with α1, α2 < ωω, n < ω (at least one non-zero),
let

Cα = C1 ⊕ Eωω·2α2+ωωα1+n , Dα = D1 ⊕ Eωω·2α2+ωωα1+n

and for α = ωω·2α2 + ωω+k(α1 + 1), with α1, α2 < ωω (at least one non-zero) and
k < ω, let

Cα = Cωω+k ⊕ Eωω·2α2+ωω+kα1 , Dα = Dωω+k ⊕ Eωω·2α2+ωω+kα1 .

Let G denote the family of all the gadgets defined above.

By ∅ (ι,κ)−→ Γι, . . . , Γκ we understand a gadget obtained from C1
(ι,κ)−→ Γι, . . . , Γκ by

removing the tail loop and the path joining it with the head loop. Let Eωω·3 denote a

gadget consisting of an accepting loop λ0 and ∅ (1,1)−→ F(0,2), such that λ0 and the head

loop of ∅ (1,1)−→ F(0,2) form a (0, 1)-flower. Let Cωω·3+1 = ∅ (0,0)−→ F(0,1).
The gadgets defined in this section are called canonical. Observe that in a play in-

volving any of the canonical gadgets there is always at most one token which can reach
a tail component. Let us call such a token critical. Whenever a critical token splits in
two, exactly one of its children can reach a tail component. We shall identify it with its
parent and the other one will be treated as new.

7 Effective Hierarchies

The index of an automaton A is a pair (min rank,max rank). Scaling down the ranks
by an even integer, we may assume that min rank is 0 or 1. A is a (ι, κ)-automaton
if L(A) can be recognized by a deterministic automaton with index (ι, κ). The (ι, κ)-
automata form the deterministic index hierarchy. The following theorem shows that
the deterministic index hierarchy is effective for tree automata and ω-automata. Let
(0,m) = (1,m+ 1), (1,m) = (0,m− 1).

Theorem 1 (Niwiński & Walukiewicz [7]). A deterministic automaton over words or
trees is a (ι, κ)-automaton iff it does not admit a (ι, κ)-flower.

Let Σ0
n, Π

0
n denote the finite levels of the Borel hierarchy. As usually, Δ0

n = Σ0
n ∩Π0

n.
The class of co-analytical sets (which need not be Borel) is denoted byΠ1

1 . We showed
in [5] that the Borel hierarchy is effective for deterministic tree languages. The proof
relies on two facts, which will also be useful here. By a split we will understand a gad-

get Ω represented by p
σ,l−→ p0 −→ p, p

σ,r−→ p1 −→ p, with rank p = rank p0 = 0,
rank p1 = 1.
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Theorem 2 (Niwiński & Walukiewiecz [8]). Let A be a deterministic automaton. If
A admits a split, L(A) is Π1

1 -complete (and hence, non-Borel). If A does not admit a
split, L(A) ∈ Π0

3 .

Theorem 3 (Murlak [5]). For a deterministic automatonA, L(A) ∈ Π0
2 iffA does not

admit F(0,1), L(A) ∈ Σ0
2 iff A admits neither F(1,2) nor ∅ (0,0)−→ D2, and L(A) ∈ Σ0

3 iff
A does not admit Cωω·3+1.

In fact, L(F(1,2)) and L(∅ (0,0)−→ D2) are Π0
2 -complete, L(F(1,2)) is Σ0

2-complete, and
L(Cωω·3+1) is Π0

3 -complete.
Let G′ denote the set of all non-branching canonical gadgets {Cα, Dα, Eα : α =

ωωγ + m, γ < ωω,m < ω}. In [15] Wagner showed that the Wadge hierarchy for
regular ω-languages is constituted by the Wadge degrees of gadgets from G′ and that
the hierarchy is effective.

Theorem 4 (Wagner [15]). For an ω-automatonA and Cα, Dα, Eα ∈ G′ it holds that
L(A) ≤W L(Eα) iff A admits neither Cα+1 nor Dα+1, and L(A) ≤W L(Cα) iff A
does not admit Dα (and dually).

Let us state our main result. The remaining of the paper is devoted to the proof of it.

Theorem 5. The Wadge hierarchy of deterministic tree languages is as follows

C1 C2 · · · Cωω Cωω+1 · · ·
� 	 � 	

E1 Eω − Eω+1 · · · Eωω Eωω+ω − Eωω+ω+1 · · ·
	 � 	 �

D1 D2 · · · Dωω Dωω+1 · · ·

8 Closure Properties

The main result of this section is that the family G is closed by the basic operations.

Proposition 1. The family G is closed by the operations ∨, ∧, ⊕, → up to Wadge equiv-
alence, and the equivalent gadget may be found in polynomial time.

Instead of giving the whole proof, which is quite technical (see [6]), we present a hand-
ful of special cases in which the result of the operation can be given explicitly and which
will turn out useful later.

Lemma 3. Eγ ⊕ Cωωα≡Cωωα and Eγ ⊕Dωωα≡Dωωα for all 0<γ, α<ωω.

Proof. We shall only consider the case of Cα; the Dα case is dual. A strategy for Du-
plicator in G(Eγ ⊕ Cα, Cα) is as follows. While Spoiler keeps inside Eγ , stay in the
first flower of Cα. If one of Spoiler’s tokens is inside a rejecting loop, loop a rejecting
loop in your flower, otherwise loop an accepting one. When he enters Cα, simply copy
his actions moving from one flower to another. Only when one of his tokens in Eγ is
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in a rejecting loop, choose a rejecting loop in your current flower (instead of copying
Spoiler’s move in Cα). Since a path in Eγ can only be rejecting if one of the tokens
stays forever in a rejecting loop, this strategy is winning. ��

A pair (i, i′) ∈ ω×ω is called even if both i and i′ are even. Otherwise (i, i′) is odd.
Let [ι, κ] denote the set {ι, ι + 1, . . . , κ} ⊆ ω with the natural order. Consider the set
[ι, κ] × [ι′, κ′] with the product order: (x1, y1) ≤ (x2, y2) if x1 ≤ x2 and y1 ≤ y2 . A
(m,n)-alternating chain is a sequence (xm, ym) < (xm+1, ym+1) < . . . < (xn, yn),
such that (xi, yi) is even iff i is even. It is enough to consider (0, n) and (1, n) chains.
Suppose we have a (m,n)-alternating chain of maximal length in [ι, κ] × [ι′, κ′]. The
parity of n is equal to the parity of (κ, κ′), as defined above, for otherwise we could
extend the alternating chain with (κ, κ′) and get a (m,n+ 1)-alternating chain. Conse-
quently, the following operation is well-defined: (ι, κ)∧ (ι′, κ′) = (m,n) if the longest
alternating chain in [ι, κ] × [ι′, κ′] is of the type (m,n).

The following auxiliary gadgets will be called weak flowers:

WF(0,n) = C1 ⊕D1 ⊕ C1 ⊕D1 ⊕ . . .︸ ︷︷ ︸
n+1

, WF(1,n+1) = D1 ⊕ C1 ⊕D1 ⊕ C1 ⊕ . . .︸ ︷︷ ︸
n+1

.

In fact, WF(0,n)≡Cn+1, WF(1,n+1)≡Dn+1, but we find the notation convenient.

Lemma 4. For all i, j,m, n < ω it holds that F(i,m) ∧ F(j,n) ≡ F(i,m)∧(j,n) and
WF(i,m) ∧WF(j,n) ≡ WF(i,m)∧(j,n).

Proof. For ω-regular languages L,M , let AL×M be the canonical product automaton
recognizing L × M = {(v1, w1)(v2, w2) . . . : v1v2 . . . ∈ L, w1w2 . . . ∈ M}. Let
L = L(F(i,m)), M = Lω(F(j,n)). Since flowers are non-branching gadgets, we may
assume that L,M are ω-regular. It holds that AL×M ≡ F(i,m) ∧ F(j,n). It is easy to
see that alternating chains of loops in AL×M correspond directly to alternating chains
in [i,m] × [j, n]. Hence, AL×M admits a (i,m) ∧ (j, n)-flower, and does not admit a
(i,m) ∧ (j, n)-flower. From Thm. 4 it follows that AL×M ≡ F(i,m)∧(j,n). The proof
for weak flowers is analogous. ��

Lemma 5. For all 0 < k, l < ω and allm < ω it holds thatC1⊕Eωmk∧C1⊕Eωml =
C1 ⊕ Eωm(k+l) and C1 ⊕ Eωω·2+mk ∧ C1 ⊕ Eωω·2+ml = C1 ⊕ Eωω·2+m(k+l).

Proof. We will only give a proof of the first equivalence. Let us consider G(C1 ⊕
Eωmk ∧ C1 ⊕ Eωml, C1 ⊕ Eωmk ⊕ Eωnl). Duplicator has only one critical token
which can move along WF(0,2(k+l)) formed by the alternating head and tail loops of
consecutive copies of Eωm . Spoiler’s starting token splits in the first move into two
critical tokens which continue moving along WF(0,2k) and WF(0,2l). The strategy
for Duplicator is to loop his critical token inside an accepting loop as long as both
Spoiler’s critical tokens loop inside accepting loops; if at least one of them moves
to a rejecting loop, Spoiler should also move to a rejecting loop, and so on (c. f.
Lemma 4). This way, whenever Spoiler produces a new token x using one of the crit-
ical tokens, Duplicator can produce its doppelgänger y, and let it mimic x. Hence,
C1 ⊕ Eωmk ∧C1 ⊕ Eωml ≤ C1 ⊕ Eωm(k+l). The converse inequality is obvious. ��
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9 Wadge Ordering

In this section we will investigate the Wadge ordering of the canonical gadgets. First,
let us see what the use of the operation → is.

Lemma 6. For all gadgets Γ,Δ and all 0<k<ω, Γ → Δ≥(Γ → Δ)∧(Δ)k .

Proof. Consider G((Γ → Δ) ∧ (Δ)k, Γ → Δ). Spoiler’s initial moves produce a
token x in the head loop of Γ → Δ, and tokens x1, . . . , xk, each in the head com-
ponent of a different copy of Δ. Duplicator should loop his starting token y around
the head loop of Γ → Δ exactly k times producing tokens y1, . . . , yk and move
them to the head component of Δ. From now on y mimics x, and yi mimics xi for
i = 1, . . . , k. ��

Corollary 2. For all k, ι, κ < ω and all 0 < n < ω, Eω > WF(ι,κ), Eωk+1 ≥ Eωkn,
Eωω·2 > F(ι,κ), Eωω·2+k+1 ≥ Eωω·2+kn.

Proof. It is easy to see that (0, 2m)∧(0, 2n) = (0, 2m+2n). Consequently, by Lemma
6 and Lemma 4, Eωω ≥ (WF(0,2))m ≡ WF(0,2m) and by the strictness of the hier-
archy for ω-languages Γωω > WF(ι,κ). Similarly, using Lemma 6 and Lemma 5 we
get Eωk+1 ≥ (C1 ⊕ Eωk)n ≡ C1 ⊕ Eωkn ≥ Eωkn. The remaining inequalities are
analogous. ��

From the facts above we obtain the following lemma (see [6] for details).

Lemma 7. If 0 < α ≤ β ≤ ωω·3 thenEα ≤ Eβ and wheneverCα andDα are defined,
Cα ≤ Eβ , Dα ≤ Eβ . If α < β then Eα ≤ Cβ , Eα ≤ Dβ .

Now we can show that the hierarchy induced on the family of the canonical gadgets by
the Wadge ordering actually coincides with the one described in Sect. 7.

Theorem 6. Let 0 < α ≤ β ≤ ωω·3. Whenever the respective gadgets are defined, it
holds that Cα 
 Dα, Cα � Dα, Cα < Eβ , Dα < Eβ , and for α < β, Eα < Eβ ,
Eα < Cβ , Eα < Dβ .

Proof. By Lemma 7 it is enough to prove Eα < Eα+1, Cα < Eα, Dα < Eα,
Cα 
 Dα, Cα � Dα. We will only give a proof of the first inequality; the others can
be argued similarly. We will proceed by induction on α. If α < ω, the claim follows by
the ω-languages case.

Suppose α = ωk + α′, k ≥ 1. Let α′ ≥ 1 (the remaining case is similar). We
shall describe a winning strategy for Spoiler in G = G(Eωk+α′+1, Eωk+α′). Spoiler
should first follow the winning strategy for G(Eα′+1, Eα′), which exists by the induc-
tion hypothesis. When Duplicator enters the head loop of Eωk , Spoiler removes all his
non-critical tokens, moves his critical token to the (accepting) tail loop of Eα′+1 and
loops there until Duplicator leaves the head loop. If Duplicator stays forever in the head
loop of Eωk , he looses. After Duplicator has left the head loop, the play is equivalent
to G′ = G(C1 ⊕ Eωk , Γ ) for Γ = Γ1 ∧ . . . ∧ Γr, where Γj is the part of Eα acces-
sible for the Duplicator’s jth token. If k = 1, then Γj ≤ WF(0,2) for each j. Hence
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Γ ≤ WF(0,2r) and G′ is winning for Spoiler by Corollary 2. Let us suppose k > 1.
Then Γj ≤ C1 ⊕ Eωk−1 for j = 1, . . . , r. Again, by Corollary 2, Γ ≤ Eωω·2+k−1r+1.
Since ωk−1r + 1 < ωk−1r + 2 ≤ α, we may use the induction hypothesis to get a
winning strategy for Spoiler in G′. In either case Spoiler has a winning strategy in G as
well.

Now, assume ωω ≤ α < ωω·2. Let α = ωωα1 + α0 with α0 < ωω, 1 ≤ α1 < ωω.
Again, we describe a strategy for Spoiler in G = G(Eωωα1+α0+1, Eωωα1+α0) only for
α0 ≥ 1, leaving the remaining case to the reader. First follow the winning strategy from
G(Eα0+1, Eα0). If Duplicator does not leave the Eα0 component, he will lose. After
leaving Eα0 , Duplicator has to choose Cωωα1 or Dωωα1 . Suppose he chooses Cωωα1 .
By Lemma 3, Eα0 ⊕ Cωωα1 ≡ Cωωα1 , and Eωωα1 > Cωωα1 . Therefore, Spoiler has a
winning strategy in GC = G(Eωωα1 , Eα0 ⊕ Cωωα1). Imagine a play in GC in which
Duplicator ignores Spoiler’s move in the first round and copies the token pattern from
the stopped play we were considering above. Of course Spoiler’s strategy must work in
this case too. The strategy for Spoiler in G is to move the critical token to the first node
of the Eωωα1 component, take all the other tokens away, and then follow the strategy
from GC merging the first two moves into one.

For α = ωω·2+k + α′ argue like for α = ωk + α′. ��

10 Completeness

In this final section we show that the canonical gadgets represent Wadge degrees of all
deterministically recognizable tree languages. To this end we will need the following
technical lemma which follows from the closure properties [6].

Lemma 8. Let A be a deterministic automaton A whose SCCs contain no complete
transitions. If A admits neither Eωω·3 nor Cωω·3+1, one can find effectively a gadget
Γ ∈ G such that Γ ≡ A.

Theorem 7. For a deterministic tree automaton A admitting neither Eωω·3 nor
Cωω·3+1, one can find effectively an equivalent gadget Γ ∈ G.

Proof. We may assume thatA has a tree form, by which we mean that the DAG of SCCs
of A is a tree and that the only components containing unproductive states are leaves
containing only one all-rejecting state. We will proceed by induction on the structure of
this tree. LetX denote the head component ofA. Suppose first thatX contains a branch-
ing transition with one of its branches lying on an accepting loop. Should A admit
F(0,1), it would also admitCωω·3+1, which is excluded by the hypothesis. Consequently,

A is a (1, 2)-automaton. If A admits F(1,2) or ∅ (0,0)−→ D2, then A ≡ F(1,2). Otherwise,
X contains no rejecting loops and canonical forms of the subtrees rooted in the child
components of X are at most C2. If A contains D1, then A ≡ C2, otherwise A ≡ C1.

Suppose that the above does not happen, but there is a branching transition with one
of its branches lying on a rejecting loop and X contains an accepting loop. It follows
immediately thatX admitsF(0,1) andA does not admitF(0,2), which means it is a (1, 3)

automaton. If A admits neither F(1,2) nor ∅ (0,0)−→ D2, then A ≡ F(0,1). If A admits one
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of this two gadgets, it follows easily that F(1,3) ≤ A. Without loss of generality we
may assume that only states lying on (0, 1)-flowers may have rank 3. Let rank′(q) =
(rank(q))′, where 1′ = 1, 2′ = 2, 3′ = 1, and rank′′(q) = (rank(q))′′, where 1′′ = 0,
2′′ = 0, 3′′ = 1. Let A′ = 〈Σ,Q, qI , δ, rank′〉, A′′ = 〈Σ,Q, qI , δ, rank′′〉. It is ob-
vious that A ≤ A′ ∧ A′′: a winning strategy for Duplicator in G(A,A′ ∧ A′′) is to
copy Spoilers behaviour both in A′ and A′′. A′ is a (1, 2)-automaton, so by Theorem 3,

A′ ≤ F(1,2). Since A does not admit ∅ (0,0)−→ F(0,1), A′′ will not admit ∅ (0,0)−→ D2, and
hence A′′ ≤ F(0,1). It follows that A ≡ F(1,3).

If X contains a branching transition but contains no accepting loops proceed as fol-
lows. Let qi

σi−→ q′i, q
′′
i , i = 1, . . . , n be all the transitions such that qi ∈ X and q′i, q

′′
i /∈

X . Let pj
σi,d−→ p′j j = 1, . . . ,m be all the remaining transitions such that pj ∈ X and

p′j /∈ X . By the induction hypothesis we may assume that (A)q′
i
, (A)q′′

i
and (A)p′

j
are in

canonical forms. LetΔ = ((A)q′
1
∧(A)q′′

1
)∨. . .∨((A)q′

n
∧(A)q′′

n
)∨(A)p′

1
∨. . .∨(A)p′

m
.

It is not difficult to see that A is equivalent to C1 → Δ. By Proposition 1 we get a
canonical gadget equivalent to C1 → Δ.

Finally, let X contain no branching transitions. By induction hypothesis we may
assume that the subtrees rooted in the children of X are in the canonical form. Conse-
quently, no SCC of A contains a branching transition and we may use the lemma. ��
Theorem 8. L(Eωω·3) is Wadge complete for deterministic Δ0

3 tree languages.

Proof. Take a deterministic automaton A recognizing a Δ0
3-language. By Thm. 3, A

does not admit ∅ (0,0)−→ F(0,1). When a token splits in a branching transition, we will
imagine that it goes left, and bubbles a new token to the right. Thus, in every transition
only one token is produced. Let us divide the states of A into two categories: a state q

is blue if there exists a (productive) accepting loop p
σ,d−→ p′ → . . . → p and a (produc-

tive) path p
σ,d̄−→ p′′ → . . . → q, d �= d̄. The remaining states are red. The tokens get

the color of their birth state. The essential observation is that during an accepting run
the occurrences of red states may be covered by a finite number of infinite paths (see
[5], the proof of Thm. 4). Consequently, only finitely many red tokens may be produced
during an accepting run.

Let A′ be the automaton A with the ranks of red states set to 0, and let A′′ be A with
the ranks of the blue states set to 0. Like before, A ≤ A′ ∧A′′. Since A does not admit

∅ (0,0)−→ F(0,1), it follows that all (0, 1)-flowers in A are red. Consequently, A′ does not
admit F(0,1), and A′ ≤ F(1,2).

Let Λ denote a gadget produced out of Eωω·3 by replacing F(0,2) with F(ι,κ), where
(ι, κ) is the index of A. Consider the game G(A′′, Λ). In A′′ the blue tokens are always
in the states with rank 0, so they do not influence the result of the computation. When-
ever Spoiler produces a new red token (including the starting token), Duplicator should
loop once around the head 1-loop producing a new token in F(ι,κ), and keep looping
around the head 0-loop. The new token is to visit states with exactly the same ranks
as the token produced by Spoiler. Using the assertion on red tokens, one checks easily
that the strategy is winning. Hence A′′ ≤ Λ. By Lemma 6 and Lemma 4 it follows that
Λ ∧ F(1,2) ≤ Eωω·3 . ��

The following corollary sums up the results of this section and the whole paper.
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Corollary 3. For a deterministic tree automaton A the exact position of L(A) in the
Wadge hierarchy of deterministic tree languages (see Thm. 5) can be calculated within
the time of finding the productive states of the automaton.

Proof. From Thm. 2 it follows that if A admits Ω, A ≡ Ω. If A does not admit Ω, then
by Thm. 3 if A admits Cωω·3+1, A ≡ Cωω·3+1. Otherwise L(A) ∈ Δ3 and if A admits
Eωω·3 , then A ≡ Eωω·3 (Thm. 8). The remaining case is settled by Thm. 7.

If the productive states are given, checking if an automaton admits Ω, Cωω·3+1, or
Eωω·3 can be done in polynomial time. The algorithm sketched in the proof of Thm. 7
can be implemented polynomially as well, by realizing the described procedure bottom-
up on the original DAG of SCCs without constructing the tree form of A explicitly. ��
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Abstract. Timed Petri nets and timed automata are two standard models for the
analysis of real-time systems. In this paper, we prove that they are incompara-
ble for the timed language equivalence. Thus we propose an extension of timed
Petri nets with read-arcs (RA-TdPN), whose coverability problem is decidable.
We also show that this model unifies timed Petri nets and timed automata. Then,
we establish numerous expressiveness results and prove that Zeno behaviours
discriminate between several sub-classes of RA-TdPNs. This has surprising con-
sequences on timed automata, e.g. on the power of non-deterministic clock resets.

1 Introduction

Timed automata (TA) [3] are a well-accepted model for representing and analyzing
real-time systems: they extend finite automata with clock variables which give timing
constraints on the behaviour of the system. Another prominent formalism for the design
and analysis of discrete-event systems is the model of Petri nets (PN) [8]. Thus, in order
to model concurrent systems with constraints on time, several timed extensions of PNs
have been proposed as a possible alternative to TA.

Time Petri nets (TPN), introduced in the 70’s, associate with each transition a time
interval [4]. A transition can be fired if its enabling duration lies in its interval and time
can elapse only if it does not disable some transition: firing of an enabled transition
may depend on other enabled transitions even if they do not share any input or output
place, which restricts a lot applicability of partial order methods in this model. More-
over, with this “urgency” requirement, all significant problems become undecidable for
unbounded TPNs.

Timed Petri nets (TdPN), also called timed-arc Petri nets, associate with each arc an
interval (or bag of intervals) [12]. In TdPNs, each token has an age. This age is initially
set to a value belonging to the interval of the arc which has produced it or set to zero if
it belongs to the initial marking. Afterwards, ages of tokens evolve synchronously with
time. A transition may be fired if tokens with age belonging to the intervals of its input
arcs may be found in the current configuration. Note that “old” tokens may die (i.e. they
cannot be used anymore for firing a transition but they remain in the place), and that
conditions for firing transitions are thus local and do not depend on the global config-
uration of the system, like in PNs. This “lazy” behaviour has important consequences.
Whereas the reachability problem is undecidable for TdPNs [12], the coverability prob-
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lem [2] and some significant other ones are decidable [1]. Furthermore, TdPNs cannot
be transformed into equivalent TA (for the language equivalence), since the untimed lan-
guages of the latter model are regular. However the question whether (bounded) TdPNs
are more expressive than TA w.r.t. language equivalence was not known.

Our contributions. In this paper, we answer negatively this question, and propose an
extension of TdPNs with read-arcs1, yielding the model of read-arc timed Petri nets
(RA-TdPN). This feature has already been introduced in the untimed framework [10] in
order to define a more refined concurrent semantics for nets. However, in the untimed
framework, for the interleaving semantics, they do not add any expressive power as
they can be replaced by two arcs which check that a token is in the place and replace
it immediately. First, we investigate the decidability of the coverability problem for the
RA-TdPN model, and we prove that it remains decidable.

We then focus on the expressiveness of read-arcs, and prove quite surprising results.
Indeed, we show that read-arcs add expressiveness to the model of TdPNs when consid-
ering languages of (possibly Zeno) infinite timed words. On the contrary, we also prove
that when considering languages of finite or non-Zeno infinite timed words, read-arcs
can be simulated and thus don’t add any expressiveness to TdPNs.

Furthermore we investigate the relative expressiveness of several subclasses of RA-
TdPNs, depending on the following restrictions: boundedness of the nets, integrality of
constants appearing on the arcs, resets labelling post-arcs. We give a complete picture
of their relative expressive power, and distinguish between three timed language equiv-
alences (equivalence over finite words, or infinite words, or non-Zeno infinite words)
which, as before, lead to different results.

We finally establish that timed automata and bounded RA-TdPNs are language
equivalent. From this result and former ones, we deduce several worthwhile expres-
siveness results, for instance we prove that non-determinism in clock resets adds ex-
pressive power to timed automata with integral constants over (possibly Zeno) infinite
timed words, which contrasts with the finite or non-Zeno infinite timed words case [5].
If rational constants are allowed, this is no more the case: it should be emphasized that
this latter result implies that the granularity of the automaton has to be refined if we
want to remove non-deterministic updates while preserving expressiveness.

Due to lack of space, proofs are omitted, but can be found in [6].

2 Read-Arc Timed Petri Nets

Preliminaries. If A is a set, A∗ denotes the set of all finite words over A whereas
Aω denotes the set of infinite words over A. An interval I of R≥0 is a Q≥0-(resp. N-)
interval if its left endpoint belongs to Q≥0 (resp. N) and its right endpoint belongs to
Q≥0 ∪ {∞} (resp. N ∪ {∞}). We denote by I (resp. IN) the set of Q≥0-(resp. N-)
intervals of R≥0.

Bags. Given a set E , Bag(E) denotes the set of mappings f from E to N s.t. the set
dom(f) = {x ∈ E | f(x) �= 0} is finite. We note size(f) =

∑
x∈E f(x). Let x, y ∈

Bag(E), then y ≤ x iff ∀e ∈ E , y(e) ≤ x(e). If y ≤ x, then x− y ∈ Bag(E) is defined

1 A similar extension has been proposed independently by Srba in [11].
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by: ∀e ∈ E , (x − y)(e) = x(e) − y(e). For d ∈ R≥0 and x ∈ Bag(R≥0) x + d ∈
Bag(R≥0) is defined by ∀τ < d, (x + d)(τ) = 0 and ∀τ ≥ d, (x+ d)(τ) = x(τ − d).
Let x ∈ Bag(E1 × E2). The bags πi(x) ∈ Bag(Ei) for i = 1, 2 are defined by: for all
e1 ∈ E1, π1(x)(e1) =

∑
e2∈E2 x(e1, e2), and similarly for π2.

Timed words and timed languages. Let Σ be a finite alphabet s.t. ε �∈ Σ (ε is the silent
action), we noteΣε = Σ ∪{ε}. A timed word w over Σε (resp. Σ) is a finite or infinite
sequence w = (a0, τ0)(a1, τ1) . . . (an, τn) . . . s.t. for every i ≥ 0, ai ∈ Σε (resp.
ai ∈ Σ), τi ∈ R≥0 and τi+1 ≥ τi. The value τk gives the date at which action ak
occurs. We write Duration(w) = supk τk for the duration of the timed word w. Since ε
is a silent action, it can be removed in timed words overΣε, and it naturally gives timed
words over Σ. An infinite timed word w over Σ is said Zeno whenever Duration(w)
is finite. We denote by T W∗

Σ (resp. T Wω
Σ , T Wωnz

Σ ) the set of finite (resp. infinite,
non-Zeno infinite) timed words over Σ. A timed language over finite (resp. infinite,
non-Zeno infinite) words is a subset of T W∗

Σ (resp. T Wω
Σ , T Wωnz

Σ ).

The Model of RA-TdPNs. The qualitative component of a RA-TdPN is a Petri net
extended with read-arcs. A read-arc checks for the presence of tokens in a place with-
out consuming them. The quantitative part of a RA-TdPN is described by timing con-
straints on arcs. Roughly speaking, when firing a transition, tokens are consumed whose
ages satisfy the timing constraints specified on the input arcs, and it is checked whether
the constraints specified by the read-arcs are satisfied. Tokens are then produced ac-
cording to the constraints specified on the output arcs.

Definition 1. A timed Petri net with read-arcs (RA-TdPN for short) N is a tuple
(P,m0, T,Pre,Post,Read, λ,Acc) where:

– P is a finite set of places;
– m0 ∈ Bag(P ) denotes the initial marking of places;
– T is a finite set of transitions with P ∩ T = ∅;
– Pre, the backward incidence mapping, is a mapping from T to Bag(I)P ;
– Post, the forward incidence mapping, is a mapping from T to Bag(I)P ;
– Read, the read incidence mapping, is a mapping from T to Bag(I)P ;
– λ : P → Σε is a labelling function;
– Acc is an accepting condition given as a finite set of formulas generated by the

grammar Acc ::=
∑n
i=1 pi $% k | Acc∧Acc, with pi ∈ P , k ∈ N and $%∈ {≤,≥}.

Since Bag(I)P is isomorphic to Bag(P × I), Pre(t), Post(t) and Read(t) may be
also considered as bags. Given a place p and a transition t, if the bag Pre(t)(p) (resp.
Post(t)(p), Read(t)(p)) is non null then it defines a pre-arc (resp. post-arc, read-arc)
of t connected to p.

A configuration ν of a RA-TdPN is an item of Bag(R≥0)P (or equivalently
Bag(P × R≥0)). Intuitively, a configuration is a marking extended with age informa-
tion for the tokens. We will write (p, x) for a token which is in place p and whose age
is x. A configuration is then a finite sum of such pairs. Then a token (p, x) belongs
to configuration ν whenever (p, x) ≤ ν (in terms of bags). The initial configuration
ν0 ∈ Bag(RP≥0) is defined as ∀p ∈ P , ν0(p) = m0(p) · 0 (there are m0(p) tokens of
age 0 in place p).

We now describe the semantics of a RA-TdPN in terms of a transition system.
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Definition 2 (Semantics of a RA-TdPN). Let N = (P,m0, T,Pre,Post,Read, λ,
Acc) be an RA-TdPN. Its semantics is the transition system (Q,Σε,→) where Q =
Bag(R≥0)P , and → is defined by:

– For d ∈ R≥0, ν
d−→ ν + d where the configuration ν + d is defined by (ν + d)(p) =

ν(p) + d for every p ∈ P .
– A transition t is firable from ν if for all p ∈ P , there exist x(p), y(p) ∈ Bag(R≥0 ×

I) such that to 0pt

⎧⎨⎩π1(x(p)) + π1(y(p)) ≤ ν(p),
π2(x(p)) = Pre(t)(p) and π2(y(p)) = Read(t)(p),
∀(τ, I) ∈ dom(x(p)) ∪ dom(y(p)), τ ∈ I.

Let z(p) ∈ Bag(R≥0 × I) be such that to 0pt

{
π2(z(p)) = Post(t)(p),
∀(τ, I) ∈ dom(z(p)), τ ∈ I.

Define for every p ∈ P , ν′(p) = ν(p) − x(p) + z(p). Then ν
λ(t)−−→ ν′.

A path in the RA-TdPN N is a sequence ν0
d1−→ ν′1

t1−→ ν1
d2−→ ν′2

t2−→ ν2 . . . in the
above transition system. A timed transition sequence is a (finite or infinite) timed word
over alphabet T , the set of transitions of N . A firing sequence is a timed transition

sequence (t1, τ1)(t2, τ2) . . . such that ν0
τ1−→ ν′1

t1−→ ν1
τ2−τ1−−−−→ ν′2

t2−→ ν2 . . . is a path.
If (p, x) ≤ ν is a token of a configuration ν, it is a dead token whenever for every
interval I labelling a pre- or a read-arc of p, x is above I .

Petri nets can be considered as language acceptors. The timed word which is read

along a path ν0
d1−→ ν′1

t1−→ ν1
d2−→ ν′2

t2−→ ν2 . . . is the projection over Σ of the timed
word (λ(t1), d1)(λ(t2), d1 + d2) . . .

If ν is a configuration of N , ν satisfies the accepting condition
∑n
i=1 pi $% k when-

ever
∑n
i=1 size(ν(pi)) $% k, and the satisfaction relation for conjunctions of accepting

conditions is defined in a natural way. A finite path in N is accepting if it ends in a
configuration satisfying one of the formulas of Acc. An infinite path is accepting if
every formula of Acc is satisfied infinitely often along the path (Acc is then viewed
as a generalized Büchi condition). We note L∗(N ) (resp. Lω(N ), Lωnz(N )) the set of
finite (resp. infinite, non-Zeno infinite) timed words accepted by N .

Two RA-TdPNs N and N ′ are ∗-equivalent (resp. ω-equivalent, ωnz-equivalent)
whenever L∗(N ) = L∗(N ′) (resp. Lω(N ) = Lω(N ′), Lωnz(N ) = Lωnz(N ′)). These
equivalences naturally extend to subclasses of RA-TdPNs. In the following, we will
use notations like “{∗, ω, ωnz}-equivalence” to mean the three equivalences altogether.
Idem for “{∗, ωnz}-equivalence” and other combinations.

Notations. Read-arcs are represented by undirected arcs. We use shortcuts to represent
bags: for all I ∈ I, I holds for the bag 1 · I , [a] is for the interval [a, a]. We may write
intervals as constraints, eg “≤ a” is for the interval [0, a]. A bag n represents the bag
n · R≥0, and no bag on an arc means that this arc is labelled by the bag 1 · R≥0.

Example 1. An example of RA-TdPN is depicted on the next figure. This net models an
information provided by a server and asynchronously consulted by clients
(transition “read”). Since the information may be obsolete with validity duration “val”,
the server periodically refreshes the value, but the frequency of this refresh may vary
depending on the workload of the server (transition “refresh”). The admission con-
trol ensures that at least one time unit elapses between two client arrivals (transition
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“entry”). Note the interest of the read-arc between “cache” and “read”: when transition
“read” is fired the age of the token of place “cache” is not reinitialized.

• •
input

entry

client

read

cache

server

refresh

≥ 1[0]

[0]
[0] ≤ val

[0]

[0] [min,max]

Subclasses of RA-TdPNs. We define several natural subclasses of RA-TdPNs.

Definition 3. Let N = (P,m0, T,Pre,Post,Read, λ,Acc) be an RA-TdPN. It is

– a timed Petri net (TdPN for short)2if for all t ∈ T , size(Read(t)) = 0,
– integral if all intervals appearing in bags of N are in IN,
– 0-reset if for all t ∈ T , for all p ∈ P , I �= [0, 0] ⇒ I �∈ dom(Post(t)(p)),
– k-bounded if all configurations ν appearing along a firing sequence of N are such

that for every place p ∈ P , size(ν(p)) ≤ k,
– bounded if there exists k ∈ N such that N is k-bounded,
– safe if it is 1-bounded.

The Coverability Problem. Let N be an RA-TdPN with initial configuration ν0. Let
N be a finite set of configurations of N where all ages of tokens are rational. We note
N↑ the upward closure of N , i.e. the set {ν | ∃ν′ ∈ N, ν′ ≤ ν}.

The coverability problem for N and set of configurationsN asks whether there exists
a path in N from ν0 to some ν ∈ N↑. We obtain the following result.

Theorem 1. The coverability problem is decidable for RA-TdPNs.

The proof of this theorem is an extension of the proof done in [9] for TdPNs, based on
an extension of classical regions in timed automata [3].

3 Relative Expressiveness of Subclasses of RA-TdPNs

In this section, we thoroughly study the relative expressiveness of subclasses of RA-
TdPNs, by distinguishing whether they are bounded, integral, 0-reset, or whether they
can be expressed without read-arcs. Surprisingly the results depend on the language
equivalence we consider, and whereas finite timed words and non-Zeno infinite timed
words do not distinguish between (integral, bounded) 0-reset TdPNs and (integral,
bounded) RA-TdPNs, Zeno infinite timed words lead to a lattice of strict inclusions
that will be summarized in Subsection 3.5.

2 This is the standard model, as defined in [12].
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3.1 Two Discriminating Timed Languages

We design two timed languages which distinguish between several subclasses of RA-
TdPNs. Notice that these two languages are Zeno.

The timed language L1. The RA-TdPN N1 of Fig. 1(a) (with a single accepting Büchi
condition p ≥ 1) is a 0-reset, integral and bounded RA-TdPN which recognizes the
timed language L1 = {(a, τ1) . . . (a, τn) . . . | 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . ≤ 1}. Note
that this timed language is also recognized by the TA A1 of Fig. 1(b).

•p

a
[0, 1]

Acc = (p ≥ 1)

(a) A RA-TdPN N1 recognizing L1

x ≤ 1, a

(b) A TA A1 recognizing L1

Fig. 1. A language L1 not recognized by any TdPN

Lemma 1. The timed language L1 is recognized by no TdPN.

The timed language L2. The RA-TdPN N2 of Fig. 2(a) is an integral bounded RA-
TdPN which recognizes the timed language L2 = {(a, 0)(b, τ1) . . . (b, τn) . . . | ∃τ <
1 s.t. 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . < τ}. Note, and that will be used in Section 4,
that the timed language L2 is also recognized by the TA of Fig. 2(b) (which uses a
non-deterministic reset of clock x in the intervals ]0, 1[).

•
p q

a b
[0] ]0, 1[ ]0, 1[

Acc = (q ≥ 1)

(a) A RA-TdPN N2 recognizing L2

x = 0, a

x :∈]0, 1[

x < 1, b

(b) A TA A2 recognizing L2

Fig. 2. A language L2 not recognized by any 0-reset integral RA-TdPN

Lemma 2. The timed language L2 is recognized by no 0-reset integral RA-TdPN.

3.2 Normalization of RA-TdPNs

We present a transformation of RA-TdPNs which preserves both languages over finite
and (Zeno or non-Zeno) infinite words, as well as boundedness and integrality of the
nets. This construction transforms the net by imposing strong syntactical conditions on
places, which will simplify further studies of RA-TdPNs.

Proposition 1. For any RA-TdPN N , we can effectively construct a RA-TdPN N ′

which is {∗, ωnz, ω}-equivalent to N , and in which all places are configured as one of
the five patterns depicted in Fig. 3, which reads as: “there is an a such that the place is
connected to at most one post-arc, at most one pre-arc and possibly several read-arcs,
with bags as specified on the figure”. Moreover the construction preserves boundedness
and integrality properties.
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n · [0]

n′ · [0]

n′′ · [0]
p

t′

t t′′

(a) The pattern P1

[0]

n′·]0, a[

n′′·]0, a[
p

t′

t t′′

(b) The pattern P2

[0]

n′·]0, a[

[a]
p

t′

t t′′

(c) The pattern P3

n·]0, a[

n′·]0, a[

n′′·]0, a[
p

t′

t t′′

(d) The pattern P4

n·]0, a[

n′·]0, a[

[a]
p

t′

t t′′

(e) The pattern P5

Fig. 3. The five normalized patterns for an RA-TdPN

3.3 Removing the Read-Arcs

In thus subsection, we study the role of read-arcs in RA-TdPNs. Thanks to Lemma 1
(language L1), we already know that read-arcs add expressive power to TdPNs for the
ω-equivalence. We then prove that read-arcs do not add expressiveness to the model
of TdPNs when considering finite or infinite non-Zeno timed words. We present two
different constructions: the first one is correct only for finite timed words, whereas the
second one, which extends the first one, is correct for non-Zeno infinite timed words.
In both correction proofs, we need to assume that places connected to read-arcs do not
occur in the acceptance condition. This can be done without loss of generality.

Case of finite words. We state the following result.

Theorem 2. Let N be an RA-TdPN, then we can effectively build a TdPN N ′, which is
∗-equivalent to N . Note that the construction preserves the boundedness and integrality
properties of the nets.

Proof (Sketch). To prove this result, we first normalize the net. We then distinguish the
five possible patterns of Fig. 3 for a place p, and show that we can remove the read-arcs
connected to place p. The construction for pattern P4 is given on the next picture.

t′

t

t′′

p2

p1

t1, εn · [0]

n·]0, a[

n′
n′ · [0]

n′′

]0, a[

n′′·]0, a[
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The accepting condition is reinforced by the constraint p1 + p2 ≤ 0, thus imposing to
consume (by t′′ or t1) every token produced by t. The idea of this construction is to
check pre-arcs with tokens which are in place p1 and to check read-arcs with tokens
in place p2, but with no timing constraints (there is no sense to check the age of the
tokens in p2 since it is reset each time a read-arc checks the presence of a token in the
place). A posteriori, before tokens are dead (thus before their age reaches a), they will
be consumed by transition t′′ or t1, together with one token in place p1. ��

We illustrate the construction on the RA-TdPN N1 of Fig. 1(a). It is correct for finite
timed words only.

•
ε

p2

p1

a

[0]

[0]

[0]
[0, 1]p1 + p2 ≤ 0

Case of infinite non-Zeno words. The previous construction cannot be applied to lan-
guages of infinite words. Indeed, it relies on the following idea. The acceptance condi-
tion requires that one empties the places at the end of the sequence in the simulating net
in order to check whether the tokens has been appropriately checked.

In the case of infinite timed words, a similar Büchi condition would “eliminate”
words accepted by a sequence of the original net in which a place always contains
tokens that will be checked in the future. However in the divergent case, we will first
apply a transformation of the net that will not change the language, in such a way that
in the new net, every infinite non-Zeno timed word will be accepted by an appropriate
generalized Büchi condition.

Theorem 3. Let N be an RA-TdPN, then we can effectively build a TdPN N ′, which
is ωnz-equivalent to N . Note that the construction preserves the boundedness and the
integrality of the nets.

3.4 Removing General Resets

In this subsection, we study the role of general resets in RA-TdPNs. Thanks to Lemma 2
(languageL2), we know that the class of integral RA-TdPNs is strictly more expressive
than the class of 0-reset integral RA-TdPNs for the ω-equivalence. We then prove two
results, which show that this is the combination of the presence of read-arcs together
with the integrality property which explains the expressiveness gap between 0-reset nets
and nets with general resets. Indeed, we design a first construction which holds if there
is no read-arc, and which preserves integrality of the net. Then we design a second
construction, which holds even for nets with read-arcs, but which does not preserve the
integrality of the nets.

Theorem 4. For every TdPN N , we can effectively build a 0-reset TdPN N ′ which
is {∗, ω, ωnz}-equivalent to N . Moreover, this construction preserves the boundedness
and integrality properties of the net.



428 P. Bouyer, S. Haddad, and P.-A. Reynier

This result is not difficult and consists in shifting intervals of pre-arcs connected to a
place, depending on the intervals which label post-arcs connected to this place.

The second result is much more involved, and requires to refine the granularity of
the net we build. However, it is correct for the whole class of RA-TdPNs.

Theorem 5. For every RA-TdPN N , we can build a 0-reset RA-TdPN N ′ which is
{∗, ωnz, ω}-equivalent to N . The construction preserves the boundedness of the net,
but not its integrality.

Proof (Sketch). First, it it worth noticing that in the case of finite words, and non-Zeno
infinite words, this result is a corollary of previous results (Theorems 2, 3 and 4). This
proof, though correct for all finite and infinite timed words, is thus only necessary to
deal with Zeno infinite timed words.

Let N be a RA-TdPN which we assume satisfies Proposition 1. The only places of
N which are connected to non 0-reset post-arcs are those which satisfy pattern P4 or
pattern P5 (Fig. 3(d) and 3(e)). Here, we only present the construction for pattern P4, it
is depicted below.

n · [0] [0, a2 [ [0] (n′′ − n′′1) · [0, a2 [

n′′1 · [0, a2 [

n′1 · [0, a2 [ (n′ − n′1) · [0, a2 [

p1 p2

t′(n′1)

t t′′(n′′1 )

t1, ε

(∀n′′1 ≤ n′′)

(∀n′1 ≤ n′)

A token which enters place p in the original net (and which will not die) will either be
consumed by transition t′′ before a2 units of time has elapsed, or after a delay which is
greater than a

2 but strictly less than 1. In the first case, the token can stay in place p1
(place in which it can be used by a read-arc) and leave when it is consumed by transition
t′′. In the second case, the token will stay in place p1 for some amount of time, and then
go to place p2 where it can also be consumed by transition t′′. The read-arc can read
tokens in place p1 or in place p2 with the constraint that ages of the token are in the
interval [0, a2 [. ��

3.5 Summary of Our Expressiveness Results

Case of finite and infinite non-Zeno words. Applying the results of the two previous
subsections, we get equality of all subclasses of RA-TdPNs mentioned on the following
picture, for the {∗, ωnz}-equivalence. Note that this picture is correct for the general
classes, for the restriction to integral nets, and also for the restriction to bounded nets.

RA-TdPN = TdPN = 0-reset TdPN︸ ︷︷ ︸
Theo. 4

︸ ︷︷ ︸
Theo. 2,3

Case of infinite words. The picture in the case of infinite words is much different.
Indeed the hierarchy in the previous case collapses, whereas we get here the lattice
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below. Plain arcs represent strict inclusion, and dashed arcs indicate that the classes are
incomparable. Finally note that this picture holds for both bounded and general nets.

RA-TdPN = 0-reset RA-TdPN

integral RA-TdPN

0-reset integral RA-TdPN

TdPN = 0-reset TdPN

integral TdPN = 0-reset integral TdPN︸ ︷︷ ︸
Theo. 4

︷ ︸︸ ︷Theo. 5

︸ ︷︷ ︸
Theo. 4

�

integral

� lang. L2

�

lang. L1

�

lang. L1 �

integral

4 Application to Timed Automata

First defined in [3], the model of timed automata (TA) associates with a finite automaton
a finite set of non negative real-valued variables called clocks. We assume the reader
is familiar with TA, and refer to [5] for a formal definition (we allow, in addition to
classical resets to 0 of clocks, general resets of the form x :∈ I if I ∈ I which sets a
clock to a value non-deterministically chosen in I). Two examples of TA are given on
Fig. 1(b) and 2(b). The following theorem, close to a result by Srba [11], relates TA and
bounded RA-TdPNs.

Theorem 6. Bounded RA-TdPNs and TA are {∗, ωnz, ω}-equivalent.

Proof (Sketch). For transforming a bounded RA-TdPNs into an equivalent TA, we first
build a safe RA-TdPN, and then a TA, in which a clock is associated with a place and
records the age of the token in the place. We illustrate the transformation of a TA into a
bounded RA-TdPN on an example.

•

• •

�
�1 �2

�1 �2

x y

a
x < 2 ∧ y ≥ 3, a

x := 1
< 2

[1]

≥ 3

��
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Expressiveness Results for TA. Combining this result with the results of the previous
section on Petri nets, we get interesting side results on timed automata, and in particular
quite surprising results for languages of infinite timed words.

Corollary 1. For the {∗, ωnz}-equivalence,

1. bounded TdPNs and TA are equally expressive;
2. (integral) TA and 0-reset (integral) TA are equally expressive.

Corollary 2. For the ω-equivalence,

3. TdPNs and TA are incomparable;
4. TA are strictly more expressive than bounded TdPNs;
5. integral TA are strictly more expressive than integral 0-reset TA;
6. TA and 0-reset TA are equally expressive.

As a “folk” result, it was thought that TA and bounded TdPNs are equally expressive.
We have proved that this is indeed the case for finite and infinite non-Zeno timed words
(item 1.), but that it is wrong when considering also Zeno behaviours (item 4.). Indeed,
the result is even stronger: even though TdPNs can be somehow seen as timed sys-
tems with infinitely many clocks, we have proved that TA and TdPNs are in general
incomparable (item 3.).

The three other results complete the picture of known results about general resets in
TA [5]. Item 2. was already partially proved in the above-mentioned paper, and we pro-
vide here a new proof of this result. Items 5. and 6. are quite surprising, since they show
that refining the granularity of the guards is necessary for removing general resets in
TA (and for preserving the languages of infinite timed words). It is one of the first such
results in the framework of timed systems (up to our knowledge). Finally, the construc-
tion provided in the proof of Theorem 5 applied to TA provides an extension to infinite
words of the construction presented in [5] for removing general resets in TA (which
is indeed only correct for finite and infinite non-Zeno timed words). We illustrate this
construction by giving a 0-reset TA ω-equivalent to the timed automaton of Fig. 2(b).

x = 0, a
x := 0

x < 1
2 , b

x < 1
2 , ε

x < 1
2 , b

5 Conclusion

In this paper, we have thoroughly studied the relative expressiveness of TdPNs and
TA, and we have proved in particular that they are incomparable in general. This has
motivated the introduction of read-arcs in TdPNs, yielding the model of RA-TdPNs.
This model unifies TA and TdPNs, has a decidable coverability problem, and enjoys
pretty surprising expressiveness results.

We have studied the expressive power of read-arcs in RA-TdPNs, and we have
proved that, when restricting to finite or infinite non-Zeno behaviours, read-arcs do
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not add expressiveness. On the other hand, we show that Zeno behaviours discrimi-
nate between several subclasses of RA-TdPNs. For instance, RA-TdPNs are strictly
more expressive than TdPNs. Since we also prove that bounded RA-TdPNs and TA are
equally expressive, we get the surprising result that TA are strictly more expressive than
bounded TdPNs, which is quite counter-intuitive.

Classically, TdPNs use quite general resets, whereas TA use only resets to 0. We
have thus studied the expressive power of these general resets, compared with resets
to 0. We have shown that they don’t add any expressiveness to the above-mentioned
models, but that the granularity has to be refined for removing general resets in RA-
TdPN when considering Zeno behaviours. Up to our knowledge, this is one of the first
expressiveness results (at least in the domain of timed systems), which requires to refine
the granularity of the model. As side results, we complete the work in [5], and get that it
is necessary to refine the granularity of guards in TA for removing general resets, when
considering languages of infinite possibly Zeno timed words.

Our main further work will be to develop partial-order techniques for RA-TdPNs,
taking advantage of the locality of the firing rules (see [7]). Another research direction
is to study arcs which do not reset age of tokens.
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Abstract. Leftist grammars were introduced by Motwani et. al., who
established the relationship between the complexity of accessibility prob-
lem (or safety problem) for certain general protection system and the
membership problem of these grammars. The membership problem for
leftist grammars is decidable. This implies the decidability of the ac-
cessibility problem. It is shown that the membership problem for leftist
grammars is PSPACE-hard. Therefore, the accessibility problem in the
appropriate protection systems is PSPACE-hard as well. Furthermore,
the PSPACE-hardness result is adopted to very restricted class of leftist
grammars, if the grammar is a part of the input.

1 Introduction

Leftist grammars were introduced by Motwani et. al. [9]. They used them as a
tool to show decidability of the accessibility problem in certain general protection
systems. Those protection systems provide the formal basis for trust management.
A protection system is a set of policies that prescribes the ways in which objects
interact with each other. By objects we mean users, processes or other entities;
and interactions can include access rights, information sharing privileges, etc. The
accessibility problem (or the safety problem) for a protection system is formu-
lated in the form “Can object p gain (illegal) access to object q by a series of legal
moves (as prescribed by the policy)?”. A formal treatment of accessibility was first
presented by Harrison, Ruzzo, and Ullman [6] who showed that the accessibility
problem is undecidable for a general access-matrix model of object-resource in-
teraction. This result prompted extensive research on tradeoffs between express-
ibility and verifiability in protection systems (see, e.g., [9] for references).

The protection system related to leftist grammars was originally proposed in
[4, 10] in the context of Java virtual worlds. The model of this protection system
strictly generalizes grammatical protection systems [3] and the take-grant model
[8], and it is a special case of the general access-matrix model [6]. In contrast to
the general access-matrix model, the accessibility problem for models related to
leftist grammars is decidable [9].

We refer the reader to [9, 10] for a description of the protection system related
to leftist grammars. For our consideration, it is only important that the acces-
sibility problem of this protection system and the intersection problem of leftist
grammars are polynomial time equivalent. Note that the membership problem
is a special case of the intersection problem.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 432–443, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Leftist grammars can be characterized in terms of rules of the form a → ba
and cd → d where a, b, c, and d belong to an alphabet Σ. We define the final
symbol of a leftist grammar to be some fixed symbol x ∈ Σ. We say that a
word w ∈ Σ∗ belongs to the language defined by a grammar iff there exists a
derivation which starts at wx and ends at x.

Although the membership problem for leftist grammars is decidable [9], no
efficient algorithm for this problem is known. The only known lower bound states
that the class of languages defined by leftist grammars is not included in CFL [7].
However, quite natural restrictions yield context-freenes or even regularity [7, 1].
Motwani et al. designed a sophisticated algorithm for the membership problem
of general leftist grammars, which relies on Higman’s Lemma. No upper bound
for the complexity of this algorithm is known. On the other hand, simplicity of
leftist grammars led to the conjecture that there exist efficient algorithms for the
membership problem. (Motwani et. al. [9] posed even the question whether all
languages defined by leftist grammars were context-free.) We give the first com-
plexity theoretic lower bound for the membership problem by establishing that
it is PSPACE-hard. Furthermore, we consider the variable membership problem,
i.e., a variant of the membership problem in which not only the tested word but
also the grammar is a part of the input. We show that the variable membership
problem is PSPACE-hard even in the case of restricted leftist grammars (i.e., with
acyclic insert graphs or acyclic delete graphs). Moreover, we obtain EXPSPACE
upper bound for this case.

In Section 2 we provide some basic definitions. Section 3 describes the con-
struction which establishes PSPACE-hardness of the membership problem for
general leftist grammars. Finally, in Section 4 we analyze complexity of the vari-
able membership problem for restricted leftist grammars. Due to limited space,
we omit many details of the proofs.

2 Definitions

For a word x, let |x|, x[i] and x[i, j] denote the length of x, the ith symbol of x and
the factor x[i] . . . x[j] respectively, where 0 < i ≤ j ≤ |x|. Let [i, j] = {l ∈ N | i ≤
l ≤ j}, let i=1 − i for i ∈ [0, 1]. Moreover, let xR denote the reverse of a word x,
that is xR=x[n]x[n−1] . . . x[2]x[1], where |x|=n. Throughout the paper ε denotes
the empty word. By πi1,...,im(b) for b=〈b1, . . . , bn〉 ∈ B1 × . . .×Bn we denote the
projection of b onto the coordinates i1, . . . , im. That is, πi1,...,im(b)=〈bi1 , . . . , bim〉.

Definition 1. A leftist grammar H = (Σ,P, x) consists of the finite alphabet
Σ, the final symbol x ∈ Σ, and the set of production rules P of the following two
types, ab → b (Delete Rule), c → dc (Insert Rule) where a, b, c, d ∈ Σ. In order
to shorten notations, we will describe the above productions as b →D a (Delete
Rule), and c →I d (Insert Rule). We say that u ⇒H v (or shortly u ⇒ v) is a
derivation step, if u = u1yu2 and v = u1zu2 such that y → z is a production
rule in P . A sequence of derivation steps u1 ⇒ . . . ⇒ up is called a derivation.
A word ui for i ∈ [1, p] is called a sentential form in this derivation. Finally, the
language of H is defined to be L(H) = {w ∈ Σ∗ | wx ⇒∗ x}.
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Throughout the paper, we will implicitely treat symbols of sentential forms as
objects which can insert/delete other symbols and can be inserted/deleted. How-
ever, in order to simplify notations, we will usually identify the particular oc-
curence of the symbol a in a sentential form with its value a.

We say that the symbol b in the delete rule ab → b is active. Similarly, the
symbol c is active in the insert rule c → dc. Let u ⇒ v, where u = u1yu2 and
v = v1zv2 such that y → z is a production rule in P . We would like to say that
the symbol which is active in the production rule y → z (that is, the rightmost
symbol of the prefix u1y of u1yu2) is also active in the derivation step u ⇒ v.
However, it is possible that there are many factorizations u = u1yu2 such that
v = u1zu2 and y → z is the production in P , for fixed u, v. Fortunately, one
can avoid this ambiguity [7]. So, we will consider only leftist grammars which
satisfy the condition that one can determine uniquely which symbol is active in
each possible derivation step. The symbol u1[i] is active in u1 with respect to
the fixed derivation U = (u1 ⇒∗ up) if it is active in at least one of derivation
steps of the derivation U . Otherwise, this symbol is inactive in u1 with respect
to U . We say that u1[i] is alive in u1 with respect to U if u1[j] is active with
respect to U for some j ≤ i . If u1[i] is not alive, we say that it is done. (Note
that each active symbol is alive, but the opposite relation is not true. Similarly,
each done symbol is inactive.)

We introduce a notion which formally describes the way in which symbols
are inserted. Let U ≡ u1 ⇒ u2 ⇒ . . . ⇒ up be a derivation. Let b, d be symbols
which appear in some sentential forms of this derivation. Then, d is a descendant
of b in U if (b, d) belongs to the reflexive and transitive closure of the relation
{(e, f) | vew ⇒ vfew is the derivation step in U for v, w ∈ Σ∗ and e, f ∈ Σ}.
We say that a word u eliminates a word w ∈ Σ+ in the derivation z1wuz2 ⇒∗

z′, if all elements of w (from the sentential form z1wuz2) are inactive with
respect to this derivation, and all elements of w are deleted (during the derivation
z1wuz2 ⇒∗ z′) by the elements of u and their descendants.

A symbol a ∈ Σ is called an anihilator (generator, resp.) in the grammar
H = (Σ,P, x) if at least one production rule a →D b (a →I b, resp.) for some
b ∈ Σ belongs to P .

Definition 2 (Interface). Let W ≡ (w1 ⇒ w2 ⇒ . . . ⇒ wm) be a derivation of
a leftist grammar. Let ai = wi[1] if wi[1] is an anihilator and ai = ε otherwise,
for 1 ≤ i ≤ m. The string a1a2 . . . am is called the interface of the derivation W .

Note that the interface of the derivation W = (w1 ⇒∗ wm) indirectly describes
a set of words which could be eliminated “during” W if we put such a word to
the left of w1.

The derivation u1 ⇒ u2 ⇒ . . . ⇒ up is the leftmost derivation if the leftmost
active symbol with respect to ui ⇒∗ up is active in the step ui ⇒ ui+1 for i ∈
[1, p−1]. For each u, v ∈ Σ∗ such that u ⇒∗

H v, there exists a leftmost derivation
which starts at u and ends at v [7]. We say that the derivation U ≡ (w ⇒∗ x) is
greedy if:



On Complexity of Grammars Related to the Safety Problem 435

(a) U is the leftmost derivation;
(b) a symbol a can become done in U only if it is not able to apply any delete rule
(that is, it cannot become done in a sentential form ubav, where (a →D b) ∈ P );
(c) there are no derivation steps uav ⇒ ubav in U such that the inserted symbol
b does not eliminate any element of u during U (i.e., if b does not eliminate any
element of u, it should not be inserted at all).

Fact 3. Let w1abw2 ⇒∗ x be a greedy derivation such that all symbols from
the prefix w1a are done with respect to this derivation. Then, if b is not able to
eliminate a, it is done as well.

Using the following theorem, one can assume in analysis of languages defined by
leftist grammars that all derivations of leftist grammars are greedy.

Theorem 1. Let H be a leftist grammar. Then, for each w such that wx ⇒∗
H x,

there exists a greedy derivation wx ⇒∗
H x.

In order to express the influence of the activity of a particular symbol (and its
descendants) on the derivation, we define the notion of trace.

Definition 4 (Trace). Let U ≡ (w1aw2 ⇒∗ w′) be a subderivation of the
derivation W such that U starts at the first derivation step of W in which the
symbol a (following the prefix w1) is active and finishes at the last derivation
step of W in which a or a descendant of a is active. Then, a trace of a in W ,
TW (a) or shortly T (a), is equal to va, where v consists of all descendants of a in
w′, i.e., w′ = w′1vaw

′
2 for w′1, w

′
2 ∈ Σ∗. (Note that, if W is greedy, all symbols

in va are done wrt the remaining part of W .)
If the symbol a is not active in any step of the derivation W , then T (a) = a.

3 PSPACE Hardness for General Grammars

We design a leftist grammar HM which corresponds to a linear-bounded au-
tomaton (LBA) M , i.e., a one-tape Turing machine which does not leave the
part of the tape between two delimiters � and � which appear at the ends of
the input, and M does not rewrite the delimiters. LBAs recognize exactly the
set of context sensitive languages (CSL), and this class contains some PSPACE-
hard languages. Let M be an LBA which recognizes a PSPACE-hard language.
Let Γ be the tape alphabet of M (�,� ∈ Γ ) and let Q be the set of states
of M . W.l.o.g., assume that M accepts only in configurations in which all cells
between the delimiters are rewritten by a fixed symbol ♦ (where the symbol ♦
is not used at all in non-accepting computations) and the head is located on
the right delimiter, �. Let Accept be the shorthand for such configuration. We
encode configurations of M using the alphabet Λ = Γ ∪ (Γ × Q) ∪ {&}, where
& �∈ Γ is the fixed extra symbol. A configuration with tape content �a1 . . . an�
(ai ∈ Γ \ {�,�} for i ∈ [1, n]), the head located at ai and the state q is encoded
as & � a1 . . . ai−1〈ai, q〉ai+1 . . . an � &. As usual, C -M C′ denotes that the con-
figuration C′ is obtained from the configuration C in one step of M . Transitions
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δ(q, a) = (q′, a′, left) and δ(q, a) = (q′, a′, right) of M can be expressed by the sets
of the following rewrite rules applicable on the encodings of the configurations

{c〈q, a〉 → 〈q′, c〉a′ | c ∈ Γ} for δ(q, a) = (q′, a′, left)
{〈q, a〉c → a′〈q′, c〉 | c ∈ Γ} for δ(q, a) = (q′, a′, right)

where δ is the transition function of M . Due to limitations of leftist grammars,
we will encode configurations using much broader alphabet. Some symbols of
our alphabet are tuples, only one coordinate of each tuple corresponds to infor-
mation stored in configurations of M . Let Φ be a set of all rewrite rules defining
transitions of M , let

G = {〈G, i, j, a〉 | i, j ∈ [0, 1], a ∈ Λ}
K = {〈K, i, j, a〉 | i, j ∈ [0, 1], a ∈ Λ}
R = {〈R, i, a〉 | i ∈ [0, 1], a ∈ Λ},
GΦ = {〈Gα,i, j, l, a〉 | i ∈ [1, 2], j, l ∈ [0, 1], a ∈ Λ,α ∈ Φ},

where G,K,R are some fixed symbols. Finally, the alphabet ΣM of HM =
(ΣM , PM , x) is equal to G∪GΦ∪R∪K∪{H,x}, where HM is the leftist grammar
associated with M (H,x are new symbols). The set PM consists of the following
productions

(10) 〈G, i, j, b〉 →I 〈K, i, j, b〉 (100) H →I 〈G, j, 0, &〉
(20) 〈G, i, j, b〉 →I 〈G, i, j, b′〉 (110) 〈R, 0, &〉 →D H
(30) 〈K, i, j, b〉 →D 〈K, i, j, b′〉 (210) 〈G, i, j, b〉 →I 〈Gα,2, i, j, b2〉
(40) 〈K, i, j, b〉 →D 〈Y, i, j, b〉 (220) 〈Gα,2, i, j, b2〉 →I 〈K, i, j, a2〉
(50) 〈R, j, b〉 →D 〈R, j, c〉 (230) 〈Gα,2, i, j, b2〉 →I 〈Gα,1, i, j, b1〉
(60) 〈R, j, b〉 →D 〈Y, 1, j, b〉 (240) 〈Gα,1, i, j, b1〉 →I 〈K, i, j, a1〉
(70) x →D 〈R, i, &〉 (250) 〈Gα,1, i, j, b〉 →I 〈G, i, j, b′〉
(90) x →D 〈K, i, j, b〉

where i, j ∈ [0, 1], b, b′, c ∈ Λ, α = (a1a2 → b1b2), α ∈ Φ, and Y ∈ {G} ∪
{Gα,k |α ∈ Φ, k ∈ [1, 2]}.

We close this section with some additional notations. Let G̃ = G ∪ GΦ. Let
Xi = {a | a ∈ X , π2(a) = i}, and Xi,j = {a | a ∈ X , π2(a) = i, π3(a) = j} for
i, j ∈ [0, 1], X ∈ {G,K, G̃,R}. Moreover,

AX(i, j) = Xi,j(Xi,jXi,j)∗ ∪ (Xi,jXi,j)∗
AX(i) = Xi(XiXi)∗ ∪ (XiXi)∗

for i, j ∈ [0, 1], where (X = G ∧ X = G̃), or (X = K ∧ X = K). Finally,
AR(i) = (RiRī)∗Ri∪ (RiRī)∗. We say that a word w is alternating if it belongs
to the language defined by some of AX(i, j) or AX(i) defined above.

3.1 High-Level Description of the Reduction

We say that a word uwHv describes a configuration C of M if:

– v ∈ AR(0) (i.e., v is the alternating word over R) such that π3(v) is equal to
the reverse of the encoding of the accepting configuration of length m = |C|
(i.e., πR3 (v) = &� ♦m−4(�, qA)&, where qA is the accepting state of M);
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– w ∈ AG(i, 0) for i ∈ [0, 1], π4(w) = C (i.e., w is the alternating word over G̃i
which encodes C on its 4th coordinate);

– u ∈ AK(i).

In the following, we implicitly give the factorization of uwHv into u,w, v as
defined above, by saying that uwHv defines a configuration of M . In order to
distinguish the cases that w ∈ G̃0 or w ∈ G̃1, we will say that uwHv 0-describes
or 1-describes a configuration.

Let C0 be an (encoding of) initial configuration of M . We reduce the question
whether M can accept starting at C0 to the question whether the language
L(HM ) contains the word u0w0Hv which 0-describes C0, where u0 = ε, π1(w0) =
G|w0| (so, u0w0Hv is determined uniquely).

Our aim is to show that a greedy derivation of HM which starts at w0Hvx
can finish at x only in the following way, which corresponds to the accepting
computation of M (and, each accepting computation of M which starts at C0
determines the appropriate greedy derivation w0Hvx ⇒∗ x). Assume that a
sentential form uiwiHvx appears in this derivation for i ≥ 0, which j-describes
the configuration Ci of M , for j ∈ [0, 1]. Then,

(a) if Ci is not the accepting nor rejecting configuration and there exists a com-
putation Ci - Accept, the subderivation uiwiHvx ⇒∗ ui+1wi+1Hvx appears
in the derivation uiwiHvx ⇒∗ x, such that ui+1wi+1Hv j̄-describes the con-
figuration Ci+1 such that Ci -M Ci+1 -∗ Accept or Ci = Ci+1. During this
subderivation, wi (which encodes Ci) is replaced with the alternating word
wi+1 over G̃j̄ (which encodes Ci+1). We obtain this subderivation in such a
way that (first) H inserts the symbol a ∈ Gj , then wi is eliminated by the de-
scendants of a in a subderivation after which a leaves the trace T (a) = bwi+1
for b ∈ Kj . (See the productions (10)-(40), (100) and (210)-(250).) In the
next subsections we concentrate on the proof that this scenario is the only
possible in greedy derivations.

(b) if Ci is the accepting configuration and j = 1, there exists a subderivation
uiwiHvx ⇒∗ x in which wiH is eliminated by v and ui is deleted by x
(similarly, if Ci -∗ Accept, then there exists the appropriate subderivation).
This statement is guaranteed by the fact that the value of the second coor-
dinates in v allow (by the productions (50), (60)) to delete an alternating
word over G̃1 iff that word encodes the accepting configuration of M of the
length |v| at its 4th coordinate or a subsequence of the appropriate accepting
configuration. (See the productions (50)-(90) and (110).)

(c) if there is no accepting computation which starts at Ci, there is no derivation
uiwiHvx ⇒∗ x.

Now, we explain the “roles” of the groups of symbols from ΣM in the grammar.
The symbols from G̃ are used to store the configurations of M (the elements of
GΦ help to introduce changes which reflect the consecutive steps of M ; the com-
plication is in ensuring that all derivation steps simulating the changes induced
by the step of M are really executed). The anihilators from K are introduced in
order to delete the “previous” configuration and replace it with the new one in
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the appropriately synchronized way. Moreover, the word over R is needed in or-
der to verify whether the simulation finishes at the accepting configuration and
whether the final configuration has the correct length (note that the elements
of R are not generators). Finally, H is the special symbol which initiates the
consecutive stages of the derivation (see (a) above).

Let us point out here why we require that the words wi and v are alternat-
ing (over Gi mod 2, and R, resp.). This fact, combined with constraints of the
production rules, ensures that v should be at least as long as wi in order to
delete wi (item (b)). Similarly, the word wi+1 in the item (a) should (be alter-
nating and) have the length equal or larger than |wi| in order to eliminate wi,
as wi is the alternating word (see the productions 10-40). But, in order to finish
the derivation at x using the item (b), |wi+1| = |wi| = |v| for each i. On the
other hand, the equality |wi+1| = |wi| guarantees that π4(wi+1) in fact encodes
the configuration following π4(wi) (it ensures that no ,,artificial” symbols were
inserted into the configurations).

3.2 The Formal Proof of the Correctness of the Reduction

In this section, we prove the correctness of the above reduction. All statements
formulated below concern the conditions which have to be satisfied by greedy
derivations. As we extensively use (implicitly) Fact 3, we collect some properties
needed to apply it.

Fact 5. A symbol a ∈ ΣM is not able to eliminate a symbol b ∈ ΣM if
(a) a, b ∈ X where X ∈ {G̃i,Ki,j};
(b) a ∈ Ki,j, b ∈ G̃i,j;
(c) a ∈ Σ \ (Ki ∪ G̃i ∪ {x}), b ∈ Ki;
(d) a = x, b ∈ G̃;
(e) a ∈ R, b ∈ G̃0 ∪ K;
for i, j ∈ [0, 1].

Let us notice that the sets of generators (G̃ ∪{H}) and anihilators (K∪R∪ {x})
in the grammar HM are disjoint. The following lemma specifies conditions under
which the alternating word v ∈ R∗ can eliminate the alternating word w ∈ G̃∗i
of length ≥ |v|, where i ∈ [0, 1].

Lemma 1. Let uwHvx be a sentential form, where v ∈ AR(0), w ∈ AG(i, 0),
i ∈ [0, 1] and |w| ≥ |v|. Then,
(a) v is able to eliminate wH iff |w| = |v|, (π4(w))R = π3(v) and i = 1.
(b) If v does not eliminate the whole w in the derivation uwHvx ⇒∗ x, it cannot
eliminate any symbol of w in this derivation.

The item (a) of the above lemma follows from the constraints of the production
(60) and the fact that v and w are alternating words over R and G̃i, resp. (so,
each symbol in v is able to delete ≤ 1 element of w). The item (b) is based on
the observation that, if v does not eliminate whole w, then H or the anihilators
from K will appear between v and w for the whole derivation. Indeed, x cannot
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eliminate the elements of G̃ (see Fact 5(d)), so the remaining part of w (not
eliminated by v) should be eliminated by H (before v eliminates any element of
w); and it is possible only by inserting the elements of K which can be deleted
only by other elements of K and by x (not by the elements of v).

Below, we show that a greedy derivation uiwiHvx ⇒∗ x (where uiwiHv j-
describes Ci for j ∈ [0, 1]) has to contain a subderivation which corresponds to
Ci - Ci+1 such that Ci+1 -∗ Accept (and conversely, there exists a subderivation
which corresponds to each possible step Ci - Ci+1 of M).

Lemma 2. Let uiwiHvx be a sentential form, which j-describes the non-
accepting configuration Ci, where j ∈ [0, 1], let Ci -M Ci+1. Then,
(1) for each C′ ∈ {Ci, Ci+1}, there exists a derivation

U ≡ (uiwiHvx ⇒∗ ui+1wi+1Hvx)

such that the symbols from uiwi are not active in this derivation, ui+1wi+1Hv
is the word which j̄-describes C′ and ui+1 ∈ uiKj.
(2) if there exists the derivation U ≡ (uiwiHvx ⇒∗ x) such that the symbols
located to the left of H are done in U , it contains the subderivation uiwiHvx ⇒∗

ui+1wi+1Hvx, where ui+1 ∈ uiKj, ui+1wi+1Hv j̄-describes the configuration
Ci+1 such that Ci = Ci+1 or Ci -M Ci+1. Moreover, all elements of ui+1wi+1
are done with respect to each greedy derivation ui+1wi+1Hvx ⇒∗ x.

The derivation showing correctness of Lemma 2(1) goes as follows. First, H
inserts the symbol wi+1[n] (production (100)), where n = |wi|. Then, for l =
n, n− 1, . . . , 1: wi+1[l] inserts the anihilator b (by (10), (220), or (240)), then b
deletes the anihilator inserted by wi[l + 1] (if l < n) using (30), b deletes wi[l]
using (40); finally, for l > 1, wi+1[l] inserts wi+1[l − 1] (productions (20), (210),
(230), or (250)). The proof of Lemma 2(2) is presented in Section 3.3.

Theorem 2. Let u0w0Hv be a word which 0-describes C0, the initial configu-
ration of M on the input word z, let u0 = ε. Then, there exists a derivation
u0w0Hvx ⇒∗ x if and only if z ∈ L(M).

One can prove the direction ⇒ by applying Lemma 1 and the induction based
on Lemma 2(2). For the opposite direction, the result follows from Lemma 1 and
(the inductive application of) Lemma 2(1).

Corollary 1. The membership problem for leftist grammars is PSPACE-hard.

3.3 Proof of Lemma 2(2)

Our aim is to show that each greedy derivation should satisfy the scenario de-
scribed in the proof of Lemma 2(1). First, we will see that the behavior of a ∈ G̃i
(and its descendants) in greedy derivations has to be very regular, close to the
scenario from the proof of Lemma 2(1).

Proposition 1. Let a ∈ G̃i,j for i, j ∈ [0, 1] be a symbol which appears in the
sentential form y. Then, the following conditions are satisfied in each greedy
derivation U which starts at y:
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(a) if the symbol a inserts a generator in some derivation step (see (20), (210),
(230) or (250)), it becomes inactive directly after this step;

(b) the symbol a inserts at most one anihilator.
(c) TU (a) = uw for u ∈ Ki and w ∈ AG(i, j), such that (w[1] →I u) ∈ PM .
(d) Let TU (a) = uw for u, v as above, let n = |w|. Then, the set of inter-

faces of all possible (sub)derivations a ⇒∗ uw is equal to {znzn−1 . . . z1 ∈
K+ | (w[i] →I zi) ∈ PM or zi = ε for i ∈ [1, n]}.

The statements (a) and (b) of the above proposition follow from Fact 5(a,b)
combined with the restrictions of greedy derivations. The statements (c) and (d)
are obtained as a result of the ordering of the applications of the production
rules (during the subderivation in which a or its descendants are active) forced
by (a), (b) and greadiness. Now, we consider the situation that a symbol a ∈ G̃i
eliminates an alternating word w over G̃ī.

Proposition 2. Assume that a symbol a ∈ Gi,0 eliminates w ∈ AG(i, 0) for
i ∈ [0, 1]. Then, wa ⇒∗ u′w′ = T (a) such that u′ ∈ Ki, w′ ∈ AG(i, 0), (w′[1] →I

u′) ∈ PM , and:
(a) |w′| ≥ |w|;
(b) if π4(w) = C for a configuration C of M and |w| = |w′| then:

(i) if w′ does not contain any element of GΦ then π4(w′) = π4(w).
(ii) otherwise, π4(w′) = C′ for C′ such that C -M C′.

Proof. Proposition 1(c) implies that T (a) = u′w′ for u′ and w′ as above.
(a) Note that the elements of G̃i,0 and G̃i,1 alternate in w. And, the elements of
Ki,j cannot eliminate elements of Gi,j (see (40) and Fact 5(b)) for i, j ∈ [0, 1].
So, as all possible anihilators which are descendants of a belong to Ki, each such
anihilator is able to delete at most one element of w. On the other hand, each
element of w′ ∈ G̃∗i inserts at most one anihilator (see Proposition 1(b)). Thus,
in order to delete w, the condition |w′| ≥ |w| should be satisfied.
(b) Let |w| = |w′| = n. We see by the above discussion and the assumption
|w| = |w′| that each element of w′ has to insert exactly one anihilator and this
anihilator deletes one element of w. So, by Proposition 1(d), the interface of the
subderivation a ⇒∗ u′w′ is equal to z = zn . . . z1 such that zl is an anihilator
inserted by w′[l] for l ∈ [1, n]. And, zl deletes w[l] for l ∈ [1, n].
(i) If w′ does not contain elements of GΦ, then all elements of z are inserted by
the production (10), so zl = 〈K, i, j, cl〉 for w′[l] = 〈G, i, j, cl〉. Further, the only
elements of G̃i which can be deleted by zl are (see (40))

{〈X, i, j, cl〉 |X ∈ {G} ∪ {Gα |α ∈ Φ}}.

So, π4(w′) = (π4(z))R = π4(w), because zl deletes w[l] for l ∈ [1, n].
(ii) Intuitively, this statement is guaranteed by the constraints of (210)-(250)
which allow to insert symbols of type Gα,1 and Gα,2 in pairs and the pair
Gα,1Gα,2 can be inserted only if it reflects the change C - C′ (otherwise,
|w′| > |w|). One of the alternatives is that a symbol of type Gα,2 is inserted
as the leftmost symbol of w′. But then it cannot delete the leftmost symbol of
w which contains & at its 4th coordinate (as α = (a1a2 → b1b2) for a1, a2 �= &),
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so |w′| > |w|. This observation explains why & is added as the leftmost and the
rightmost symbol of each configuration. Details are presented below.

Let α ∈ Φ be a rewrite rule a1a2 → b1b2 such that w′ contains a symbol
〈Gα,p, i, j, bp〉 for some j ∈ [0, 1] and p ∈ [1, 2]. As 〈Gα,1, i, j, b1〉 can be inserted
only by 〈Gα,2, i, j, b2〉 (and the element of G̃i cannot eliminate another element
of G̃i by Fact 5(a)), w′ has to contain the symbol 〈Gα,2, i, j, b2〉.

First, we argue that 〈Gα,2, i, j, b2〉 has to insert 〈Gα,1, i, j, b1〉. Otherwise,
〈Gα,2, i, j, b2〉 would be the leftmost element in w′. Indeed, the only element
from G̃ (and the only generator) which can be inserted by 〈Gα,2, i, j, b2〉 is
〈Gα,1, i, j, b1〉. On the other hand, 〈Gα,2, i, j, b2〉 cannot be the leftmost sym-
bol of w′. In fact, the anihilator inserted by the leftmost element of w′ deletes
w[1] using (40), so the 4th coordinate of w′[1] and of w[1] should agree. The 4th
coordinate of w[1] is equal to & (because π4(w) = C for a configuration C) and
the 4th coordinate of an anihilator inserted by 〈Gα,2, i, j, b2〉 is equal to a2 �= &.
This follows from the fact that none of symbols a1, a2, b1, b2 in a rewrite rule
a1a2 → b1b2 from Φ is equal to &, because the head of M does not move outside
of the part of the tape between delimiters � and �.

We show that if w′ contains exactly one element b such that π1(b) = Gα,2
for α ∈ Φ then π4(w′) describes a configuration C′ such that C -M C′. Indeed,
by the above discussion, the only elements in w′ which do not belong to G form
a subword 〈Gα,1, i, j, b1〉〈Gα,2, i, j, b2〉 for some j ∈ [0, 1] and α ∈ Φ equal to
a1a2 → b1b2. Assume that this subword appears at positions p and p+ 1 of w′.
Then, zl = 〈K, i, (n− l) mod 2, cl〉 for l �∈ [p, p+1], zp = 〈K, i, (n−p) mod 2, a1〉,
and zp+1 = 〈K, i, (n−p−1) mod 2, a2〉, where z = znzn−1 . . . z1 is the interface of
a ⇒∗ u′w′ (see Proposition 1(d)). So, w′ is able to delete w if π4(w′) is obtained
from π4(w) by the application of the rewrite rule a1a2 → b1b2 (see (40)).

For the sake of contradiction assume that there are (at least) two symbols
〈Gα,2, i, j, b2〉 and 〈Gα′,2, i, j

′, b′2〉 in w′, where α = (a1a2 → b1b2) and α′ =
(a′1a

′
2 → b′1b

′
2) and α, α′ ∈ Φ. According to the above arguments, 〈Gα,2, i, j, b2〉 is

preceded by 〈Gα,1, i, j, b1〉 in w′ and〈Gα′,2, i, j′, b
′
2〉 is preceded by〈Gα′,1, i, j

′, b′1〉.
And, the anihilators inserted by them can delete the elements with a1, a2, a

′
1, a

′
2

on the 4th coordinate. However, exactly one of a1, a2 and exactly one of a′1, a
′
2

belongs to Γ ×Q. But π4(w) contains exactly one element from Γ ×Q, because
it describes a configuration of M . Thus, we obtain contradiction with the fact
that each anihilator inserted by a and its descendants deletes one element of w:
(at least) one of the inserted anihilators does not delete any element of w. ��

Below, we present the key technical argument which helps to see that (and why)
a subderivation simulating one step of M , if started, has to be finished. That
is, the derivation step uwHvx ⇒ uwaHvx (for u ∈ K∗, w ∈ G̃+

i , and v ∈ R∗)
forces the subderivation uwaHvx ⇒∗ u′w′Hvx, in which a eliminates w.

Proposition 3. Let z be a sentential form in a derivation uwHvx ⇒∗ x, where
u ∈ AK(j), w ∈ AG(j, 0), j ∈ [0, 1]. Then, z cannot contain a subword z′ ∈
G̃+
j Kj G̃

+
j
H, such that all symbols in z′ except H are done with respect to the

derivation z ⇒∗ x.
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Proof. For the sake of contradiction assume that z contains a subword z′ =
z1dz2bH , where z1 ∈ G̃+

j , d ∈ Kj , z2 ∈ G̃∗
j
, b ∈ G̃j , and all symbols of z1dz2b are

done. As no production rule can insert H , the symbol H in z′ is equal to the only
occurence of H in uiwiHvx. So, z = . . . z1dz2bHv

′x, where v′ is a subsequence
of v (because vx does not contain any generator). Note that H is active in z with
respect to the remaining part of the derivation, because the elements of v cannot
eliminate d ∈ K (Fact 5(e)) and x is not able to eliminate symbols from z1 ∈ G̃+

by Fact 5(d) (recall that z1dz2b is done). So, if H would not insert anything
(note that H is not the anihilator), the factor z1 ∈ G̃+

j has to be eliminated by
x what is impossible (Fact 5(e)).

As we consider greedy derivations, H should insert a symbol c ∈ G̃j (i.e.,
the symbol which is able to eliminate b). In order to eliminate b, the element
c′ ∈ Kj should be inserted as a descendant of c: z1dz2bH ⇒ z1dz2bcH ⇒∗

z1dz2bc
′ . . . cH. We claim that it makes impossible to delete z1 during this deriva-

tion. Note that c′ ∈ Kj can be deleted only by x or the elements of Kj (see the
productions). Thus, the leftmost descendant ofH during the subderivation which
starts at z1dz2bc′ . . . cH will belong to Kj . As the elements of Kj cannot delete
the elements of Kj̄ (Fact 5(c)), d ∈ Kj̄ remains undeleted, as long as any symbol
to the left of x is active. Finally, if only x is active, it can delete d but there is
no possibility to eliminate the elements of z1 (by Fact 5(d)). ��
Now, we apply the above propositions to the derivations that start at the senten-
tial forms which are “similar” to j-descriptions of configurations (for j ∈ [0, 1]).

Proposition 4. Let U ≡ (uwHvx ⇒∗ x) be a derivation for u ∈ AK(i), w ∈
AG(i, 0), v ∈ AR(0), (π3(v))R = Accept such that the symbols from uw are done
wrt U . Moreover, (i) |w| > |v| or (ii) |w| = |v| and π4(w) does not describe an
accepting configuration.

Then, H has to insert a ∈ Gi,0 which eliminates the factor w in the subderiva-
tion wa ⇒∗ u′w′ = TU (a) for u′ ∈ Ki, and w′ ∈ AG(i, 0) such that |w′| ≥ |w|.
Let us discuss shortly the proof of Proposition 4. By Lemma 1 and the above
condition (i) or (ii), v does not eliminate any symbol of w. So, by Fact 5(d,e), H
has to insert a ∈ G̃i,0 which eliminates the whole w. Indeed, if a eliminates only
the part of w, the concatenation of the remaining part of w and the trace of a will
form the sequence in G̃+

i KiG̃+
i

, by Proposition 2. And, this gives contradiction
to Proposition 3. (Note that a is able to eliminate w using the strategy from the
proof of Lemma 2(1).) The remaining part follows from Proposition 2.

Now, we are ready to prove Lemma 2(2). Proposition 4 guarantees that H
has to insert a ∈ Gj,0 which eliminates wi in the subderivation uiwiHvyx ⇒∗

ui+1wi+1Hvyx, such that wi+1 ∈ AG(j, 0), ui+1 ∈ uiKj, |wi+1| ≥ |wi| and
ui+1wi+1 is done. If |wi+1| = |wi| then the result holds by Proposition 2(b).
Assume by contradiction that |wi+1| > |wi|. Using the induction starting at
ui+1wi+1Hvx, we obtain an infinite sequence of subderivations ujwjHvx ⇒∗

uj+1wj+1Hvx of the derivation ui+1wi+1Hvx ⇒∗ x for j ≥ i + 1, by Propo-
sition 4 (as |wj | > |v| for each j). This implies that there is no derivation
uiwiHvx ⇒∗ x, contradiction.
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4 Variable Membership Problem

Let H = (Σ,P, x) be a leftist grammar, where Σ = {ai}pi=1. An Insert Graph
(Delete Graph, resp.) of H is G(V,E), where V = {vi}pi=1, E = {(vi, vj) | (ai →
ajai) ∈ P}, (E = {(vi, vj) | (ajai → ai) ∈ P}, resp.). In this section, we consider
the variable membership problem for leftist grammars with acyclic insert/delete
graphs. Languages defined by such grammars are context-free [7], so the “stan-
dard” membership problem is in P in this case.

Theorem 3. The variable membership problem for leftist grammars with acyclic
insert graphs or acyclic delete graphs is PSPACE-hard.

Proof. (Sketch) As before, we construct a leftist grammars which corresponds
to a linear-bounded automaton M . However, for computations on inputs of size
n, we design a separate grammar of linear size (with respect to n), HM (n). We
modify the previous construction in the following way. The values of the third
coordinate of each symbol from G̃,K and the second coordinate of each symbol
from R indicate the position of a symbol in a configuration. It contrasts to the
previous construction, where the third coordinate in the elements of G̃ and K and
the second coordinate in R indicated only the parity of the position. All rules in
which “odd” symbols insert/delete ”even” symbols (i.e., with odd/even values
of the third coordinate) are modified such that the jth symbol inserts/deletes
the (j+1)st or (j− 1)st symbol. In this way, we avoid cycles in the insert graph
(induced by the rule (20)) and in the delete graph (the rules (30), (50)). ��
The constructions from [7] give the upper bounds.

Theorem 4. Let H be a leftist grammar with acyclic insert graph or acyclic
delete graph. The variable membership problem for H is in EXPSPACE.
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7. T. Jurdziński, K. Loryś. Leftist Grammars and the Chomsky Hierarchy. Proc.

Fundamentals of Computation Theory (FCT 2005), LNCS 3623, 282-293.
8. R. Lipton, L. Snyder. A linear time algorithm for deciding subject security. Journal

of the ACM, 24(3):455–464, July 1977.
9. R. Motwani, R. Panigrahy, V.A. Saraswat, S. Venkatasubramanian. On the decid-

ability of accessibility problems (extended abstract). STOC 2000, 306–315.
10. V. Saraswat. The Matrix Design. Technical report, AT&T Laboratory, April 1997.



Jumbo λ-Calculus

Paul Blain Levy

University of Birmingham

Abstract. We make an argument that, for any study involving com-
putational effects such as divergence or continuations, the traditional
syntax of simply typed lambda-calculus cannot be regarded as canon-
ical, because standard arguments for canonicity rely on isomorphisms
that may not exist in an effectful setting. To remedy this, we define
a “jumbo lambda-calculus” that fuses the traditional connectives to-
gether into more general ones, so-called “jumbo connectives”. We pro-
vide two pieces of evidence for our thesis that the jumbo formulation is
advantageous.

Firstly, we show that the jumbo lambda-calculus provides a “com-
plete” range of connectives, in the sense of including every possible con-
nective that, within the beta-eta theory, possesses a reversible rule.

Secondly, in the presence of effects, we show that there is no decom-
position of jumbo connectives into non-jumbo ones that is valid in both
call-by-value and call-by-name.

1 Canonicity and Connectives

According to many authors [GLT88, LS86, Pit00], the “canonical” simply typed
λ-calculus possesses the following types:

A ::= 0 | A+A | 1 | A×A | A → A (1)

There are two variants of this calculus. In some texts [GLT88, LS86] the ×
connective (type constructor) is a projection product, with elimination rules

Γ - M : A×B

Γ - πM : A

Γ - M : A×B

Γ - π′M : B

In other texts [Pit00], × is a pattern-match product, with elimination rule

Γ - M : A× B Γ, x : A, y : B - N : C

Γ - pm M as 〈x, y〉. N : C

This choice of five connectives 0,+, 1,×,→ raises some questions.

1. Why not include a ternary sum type +(A,B,C)?
2. Why not include a type (A,B) → C of functions that take two arguments?
3. Why not include both a pattern-match product A × B and a projection

product A Π B?

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 444–455, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In the purely functional setting, these can be answered using Ockham’s razor:

1. unnecessary—it would be isomorphic to (A+ B) + C
2. unnecessary—it would be isomorphic to (A×B) → C, and to A → (B → C)
3. unnecessary—they would be isomorphic, so either one suffices.

But these answers are not valid in the presence of effectful constructs, such
as recursion or control operators. For example, in a call-by-name language with
recursion, +(A,B,C) �∼= (A+B)+C (a point made in [McC96b]), and A×B �∼=
A Π B. To see this, consider standard semantics that interprets each type by
a pointed cpo. Then + denotes lifted disjoint union, A Π B denotes cartesian
product, and A×B denotes lifted product.

This suggests that, to obtain a canonical formulation of simply typed λ-
calculus (suitable for subsequent extension with effects), we should—at least a
priori—replace Ockham’s minimalist philosophy with a maximalist one, treating
many combinations of the above connectives as primitive. These combinations
are called jumbo connectives. But how many connectives must we include to
obtain a “complete” range?

A first suggestion might be to include every possible combination of the orig-
inal five as primitive, e.g. a ternary connective γ mapping A,B,C to (A →
B) → C. But this seems unwieldy. We need some criterion of reasonableness
that excludes γ but includes all the connectives mentioned above.

We obtain this by noting that each of the above connectives possesses, within
the βη equational theory, a reversible rule. For example:

Γ, A - B
=========
Γ - A → B

Γ, A - C Γ, B - C
===============

Γ, A+B - C
The rule for A → B means that we can turn each inhabitant of Γ, A - B into
an inhabitant of Γ - A → B, and vice versa, and these two operations are
inverse (up to βη-equality). The rule for A + B is understood similarly. Note
also that, in these rules, every part of the conclusion other than the type being
introduced appears in each premise. Informally, we shall say that a connective is
“{0,+, 1,×,→}-like”, when, in the presence of βη, it possesses such a reversible
rule. In this paper, we introduce a calculus called “jumbo λ-calculus”, and show
that it contains every {0,+, 1,×,→}-like connective.

As stated above, our main argument for the necessity of jumbo connectives in
the effectful setting is that suggested decompositions are not a priori valid, but
in Sect. 4 we take this further by showing that, a posteriori, they do not have a
decomposition that is valid in both CBV and CBN.

Related work. Both our arguments for jumbo connectives (invalidity of de-
compositions, possession of a reversible rule) have arisen in ludics [Gir01].

1.1 Infinitary Variant

Frequently, in semantics, one wishes to study infinitary calculi with countable
sum types and countable product types. (The latter are necessarily projection
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products.) We therefore say that a connective is “{0,+,
∑
i∈N

, 1,×,
∏
i∈N

,→}-
like” when it possesses a reversible rule with countably many premises. By con-
trast, a {0,+, 1,×,→}-like connective is required to have a reversible rule with
finitely many premises.

We shall define an infinitary jumbo λ-calculus, as well as the finitary one, and
show that the former contains every {0,+,

∑
i∈N

, 1,×,
∏
i∈N

,→}-like connective.

2 Jumbo λ-Calculus

Jumbo λ-calculus is a calculus of tuples and functions.

2.1 Tuples

A tuple in jumbo λ-calculus has several components; the first component is a tag
and the rest are terms. (We often write tags with a # symbol to avoid confusion
with identifiers.) An example of a tuple type is∑

{
#a. int, bool
#b. bool, int, bool
#c. int

}

(2)

This contains tuples such as 〈#a, 17, false〉 and 〈#b, true, 5, true〉. The type
(3) can roughly be thought of as an indexed sum of finite products:∑

{
#a. (int× bool)
#b. (bool× int× bool)
#c. int

}

(3)

But whether (2) and (3) are actually isomorphic is a matter for investigation
below—not something we may assume a priori.

If M is a term of the above type, we can pattern-match it:

pm M as {
〈#a, x, y〉. N
〈#b, x, y, z〉. P
〈#c, w〉. Q

}

where N ,P and Q all have the same type.

2.2 Functions

A function in jumbo λ-calculus is applied to several arguments; the first argument
is a tag, and the rest are terms. An example of a function type is
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{

#a. int, int, int - bool
#b. int, bool - int
#c. bool, int - int

}

(4)

An example function of this type is

λ{
(#a, x, y, z). x > (y + z)
(#b, x, y). if y then x + 5 else x + 7
(#c, x, y). y + 1

}

(5)

Applying this to arguments (#a,M,N, P ) gives a boolean, whereas applying
it to arguments (#b, N,N ′) gives an integer. (Note the use of () for multiple
arguments, and 〈〉 for tuple formation.) The type (4) can roughly be thought of
as an indexed product of function types:∏

{
#a. (int → (int → (int → bool)))
#b. (int → (bool → int))
#c. (bool → (int → int))

}

(6)

But again, we cannot assume a priori that (4) and (6) are isomorphic.

2.3 Summary

The types and terms of jumbo λ-calculus are shown in Fig. 1. Here, I ranges over
all finite sets (for the finitary variant) or over all countable sets (for the infinitary
variant),

−→
A indicates a finite sequence of types, |−→A | is its length, and $n (for

n ∈ N) is the set {0, . . . , n− 1}. As in, e.g., [Win93], we include a construct let
to make a binding, although this can be desugared in various ways.

Types A ::=
P {−→

A i}i∈I | Q {−→
A i � Ai}i∈I

Terms

Γ, x : A, Γ′ � x : A

Γ � N : A Γ, x : A � M : B

Γ � let N be x. M : B

ı̂ ∈ I Γ � Nj : Aı̂j (∀j ∈ $|−→A ı̂|)
Γ � 〈̂ı, −→N 〉 :

P {−→
A i}i∈I

Γ � N :
P {−→

A i}i∈I Γ, −→x :
−→
A i � Mi : B (∀i ∈ I)

Γ � pm N as {〈i, −→x 〉.Mi}i∈I : B

Γ, −→x :
−→
A i � Mi : Bi (∀i ∈ I)

Γ � λ{(i, −→x ).Mi}i∈I :
Q {−→

A i � Bi}i∈I

Γ � M :
Q {−→

A i � Bi}i∈I ı̂ ∈ I Γ � Nj : Aı̂j (∀j ∈ $|−→A ı̂|)
Γ � M (̂ı,

−→
N ) : Bı̂

Fig. 1. Syntax Of Jumbo λ-calculus
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2.4 Jumbo-Arities

Many traditional connectives are special cases of the jumbo connectives:

type comments expressed as
A+B

∑
{#left.A,#right.B}∑

i∈IAi

∑
{Ai}i∈I

A×B pattern-match product
∑

{#sole.A,B}
×(

−→
A ) n-ary pattern-match product

∑
{#sole.

−→
A}

A Π B projection product
∏

{#left. - A,#right. - B}∏
i∈IAi I-ary projection product

∏
{- Ai}i∈I

A→ B type of functions with one argument
∏

{#sole.A - B}
(
−→
A )→ B type of functions with n arguments

∏
{#sole.

−→
A - B}

bool
∑

{#true.ε,#false.ε}
groundI ground type with I elements

∑
{ε}i∈I

TA studied in call-by-value setting [Mog89]
∏

{#sole. - A}
LA studied in call-by-name setting [McC96a]

∑
{#sole.A}

To make this more systematic, define a jumbo-arity to be a countable family of
natural numbers {ni}i∈I . Then both

∑
and

∏
provide a family of connectives,

indexed by jumbo-arities, as follows.

– Each jumbo-arity {ni}i∈I , determines a connective
∑
{ni}i∈I

of arity
∑

i∈Ini.

Given types {Aij}i∈I,j∈$ni
, it constructs the type

∑
{Ai0, . . . , Ai(ni−1)}i∈I .

– Each jumbo-arity {ni}i∈I , determines a connective
∏
{ni}i∈I

of arity
∑

i∈I(ni

+ 1). Given types {Aij}i∈I,j∈$ni
and types {Bi}i∈I , it constructs the type∏

{Ai0, . . . , Ai(ni−1) - Bi}i∈I .

Corresponding to the above instances, we have

connective arity expressed as
+ 2

∑
{#left.1,#right.1}∑

i∈I I
∑
{1}i∈I

× 2
∑
{#sole.2}

× n
∑
{#sole.n}

Π 2
∏
{#left.0,#right.0}∏

i∈I I
∏
{0}i∈I

→ 2
∏
{#sole.1}

→ n + 1
∏
{#sole.n}

bool 0
∑
{#true.0,#false.0}

groundI 0
∑
{0}i∈I

T 1
∏
{#sole.0}

L 1
∑
{#sole.1}
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3 The βη-Theory of Jumbo λ-Calculus

3.1 Laws and Isomorphisms

In the absence of computational effects, the most natural equational theory for
the jumbo λ-calculus is the βη-theory, displayed in Fig. 2.

β-laws

Γ � N : A Γ, x : A � M : B

Γ � let N be x. M = M [N/x] : B

ı̂ ∈ I Γ � Nj : Aı̂j (∀j ∈ $|−→A ı̂|) Γ, −→x :
−→
A i � Mi : B (∀i ∈ I)

Γ � pm 〈̂ı, −→N 〉 as {〈i, −→x 〉.Mi}i∈I = Mı̂[
−−→
N/x] : Bı̂

Γ, −→x :
−→
A i � M : Bi (∀i ∈ I) ı̂ ∈ I Γ � Nj : Aı̂j (∀j ∈ $|−→A ı̂|)

Γ � λ{(i, −→x ).Mi}i∈I (̂ı,
−→
N ) = Mı̂[

−−→
N/x] : Bı̂

η-laws

Γ � N : {−→
A i}i∈I Γ, z : {−→

A i}i∈I � M : B

Γ � M [N/z] = pm N as {〈i, −→x 〉.M [〈i, −→x 〉/z]}i∈I : B

−→x fresh for Γ

Γ � M : {−→
A i � Bi}i∈I

Γ � M = λ{(i, −→x ).M(i, −→x )}i∈I : {−→
A i � Bi}i∈I

−→x fresh for Γ

Fig. 2. The βη Equational Theory For Jumbo λ-calculus

A βη-isomorphism A
∼= �� B is a pair of terms y : A � α : B and z : B �

α−1 : A such that α−1[α/z] = y and α[α−1/y] = z is provable up to βη-equality.
We identify α and α′ when α = α′ is provable.

The βη-theory gives non-jumbo decompositions and other isomorphisms, e.g.∑
{Ai0, . . . , Ai(ni−1)}i∈I

∼=
∑

i∈I(Ai0 × · · · ×Ai(ni−1))∏
{Ai0, . . . , Ai(ni−1) � Bi}i∈I

∼=
∏

i∈I(Ai0 → · · ·Ai(ni−1) → Bi)

×(
−→
A ) ∼= Π(

−→
A )

TA ∼= A ∼= LA

So the βη-theory makes the jumbo λ-calculus equivalent to that of Sect. 1.

3.2 Reversible Rules

Our next task is to make precise the notion of reversible rule from Sect. 1.
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Definition 1. 1. For a sequent s = Γ � A (i.e. a pair of a context Γ and a type
A), we write inhab s for the set of terms (modulo βη-equality) inhabiting s.

2. For a countable family of sequents S = {si}i∈I , we write inhabS for
∏

i∈I si.
3. A rule from sequent family S to sequent family S′ is a function from inhabS

to inhabS′. �

The reversible rules for → and + shown in Sect. 1 are given for all Γ, and, in
the case of +, for all C. Furthermore, they are “natural”, as we now explain.

Definition 2. 1. [Lawvere] A substitution from a context Γ = A0, . . . , Am−1
to a context Γ′ is a sequence of terms M0, . . . ,Mm−1 where Γ′ �Mi : Ai for
each i ∈ $m. As usual, such a morphism induces a substitution function q∗

from terms Γ, Δ � B to terms Γ′, Δ � B.
2. Any term Γ, y : C � P : C′ gives rise to a function P † from terms inhabiting

Γ, Δ � C to terms inhabiting Γ, Δ � C ′, where P †N = P [N/y]. �
The → and + reversible rules are natural in Γ in the sense that they commute

with q∗, up to βη-equality, for any context morphism Γ′
q �� Γ . (Actually,

they commute up to syntactic equality, but that is not significant here.) The +
reversible rule is also natural in C in the sense that it commutes with P †, up to
βη-equality, for any term Γ, y : C � P : C′.

Definition 3. A reversible rule for a type B, in an equational theory, is a rule
r with a single conclusion, such that

– r is a bijection
– the conclusion contains a single occurrence of B (adjacent to �, let us say)
– the rest of the conclusion is arbitrary, appears in every premise, and the rule

is natural in it.

In detail, either

reversible left rule the conclusion is Γ, B � C, every premise contains Γ �
C—i.e. is of the form Γ, Δ � C—and r is natural in Γ and C, or

reversible right rule the conclusion is Γ � B, every premise contains Γ �—i.e.
is of the form Γ, Δ � B′—and r is natural in Γ. �

Definition 4. We associate to the type
∑
{−→A i}i∈I the reversible left rule

Γ,−→x :
−→
A i � C (∀i ∈ I)

==================
Γ, y :

∑
{−→A i}i∈I � C

{Mi}i∈I �→ pm y as {〈i,−→x 〉.Mi}i∈I

N �→ {N [〈i,−→x 〉/y]}i∈I

We associate to the type
∏
{−→A i � Bi}i∈I the reversible right rule

Γ,−→x :
−→
A i � Bi (∀i ∈ I)

===================
Γ �

∏
{−→A i � Bi}i∈I

{Mi}i∈I �→ λ{(i,−→x ).Mi}i∈I

N �→ N(i,−→x ) �

Definition 5. Given a reversible rule r for A, and an βη-isomorphism

A
∼= �� B comprised of y : A � α : B and z : B � α−1 : A, we define a

reversible rule rα for B.
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– If r is left, with conclusion Γ, y : A � C, then rα has conclusion Γ, z : B � C.
It maps a to r(a)[α−1/y], and its inverse maps N to r−1(N [α/z]).

– If r is right, with conclusion Γ � A, then rα has conclusion Γ � B. It maps
a to α[r(a)/y] and its inverse maps N to r−1(α−1[N/z]). �

We can now state the main technical property of jumbo λ-calculus:

Proposition 1. Let s be a reversible rule in the βη-theory of jumbo λ-calculus.
Then s is rα, where r is one of the rules in Def. 4 and α a βη-isomorphism; and
r and α are unique. �
Proof. Suppose s is left, with conclusion Γ, z : B � C. Call the set indexing its
premises I. For each i ∈ I, the ith premise must be of the form Γ,−→x :

−→
A i � C.

Set A to be the type
∑
{−→A i}i∈I , and r to be the reversible rule that Def. 4

associates to this type. That is clearly is the only possibility for r.
The rest is a syntactic version of the (indexed) Yoneda lemma. Define

– y : A � α : B to be rs−1(z : B � z : B)
– z : B � α−1 : A to be sr−1(y : A � y : A).

We claim that

sr−1(Γ, y : A �M : C) = M [α−1/y] (7)
rs−1(Γ, z : B � N : C) = N [α/z] (8)

For (7), we note that M = M †k∗Γ(y : A � y : A). (Here kΓ means the unique
substitution from the empty context to Γ.) Hence the LHS is sr−1(M †k∗Γ(y)). By
naturality of s and r, this is M †k∗Γ(sr−1(y)), which is M †k∗Γ(α−1), the RHS. (8) is
similar. Setting M to be α in (7) gives z = α[α−1/y], and similarly y = α−1[α/z].
Setting M to be r(a) in (7) gives s = rα. For uniqueness, s = rβ implies

α = rr−1
β (z : B � z : B) = rr−1(z[β/z]) = β

The argument in the case that s is right is similar but easier. �

Thus
∑

and
∏

are the most general {0, +,
∑

i∈I , 1,×,
∏

i∈I , →}-like connec-
tives, and the infinitary jumbo λ-calculus is greatest among calculi consisting of
such connectives. Similarly,

∑
and

∏
with finite tag set are the most gen-

eral {0, +, 1,×, →}-like connectives, and the finitary jumbo λ-calculus is greatest
among calculi consisting of such connectives.

4 λ-Calculus Plus Computational Effects

4.1 Operational Semantics

In Sect. 4.1–4.2, we adapt standard material from e.g. [Win93] to the setting
of jumbo λ-calculus. As a very simple example of a computational effect, let us
consider divergence. So we add to the jumbo λ-calculus the typing rule

Γ � diverge : B
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where B may be any type. The βη-theory is inconsistent in the presence of a
closed term of type 0, so we discard it. Our statement that each connective
is {0, +,

∑
i∈N

, 1,×,
∏

i∈N
, →}-like means that in the presence of βη it has a

reversible rule. Since we have now discarded βη, these rules are lost.
We consider two languages with this syntax: call-by-name and call-by-value.

As usual, each is defined by an operational semantics that maps closed terms
to a special class of closed terms called terminal terms. We define this by an
interpreter in Fig. 3. The metalanguage for the interpreter (written in italics) is
first-order and recursive, containing the following constructs:

rec f lambda for a recursive definition of a function f
P to D. Q to mean: first evaluate P , then, if that gives D, evaluate Q
−−−−→
P to D. Q to abbreviate P0 to D0. . . . Pn−1 to Dn−1. Q.

Terminal Terms

(
CBN Closed terms of the form 〈̂ı, −→M〉 or λ{(i, −→x ).Mi}i∈I

CBV Inductively defined by T ::= 〈̂ı, −→T 〉 | λ{(i, −→x ).Mi}i∈I

CBN interpreter rec cbn lambda{
let N be x. M . cbn M [N/x]

〈̂ı, −→N 〉 . return 〈̂ı, −→N 〉
pm N as {〈i, −→x 〉.Mi}i∈I . (cbn N) to 〈̂ı, −→N 〉. cbn Mı̂[

−−→
N/x]

λ{(i, −→x ).Mi}i∈I . return λ{(i, −→x ).Mi}i∈I

M (̂ı,
−→
N ) . (cbn M) to λ{(i, −→x ).Mi}i∈I . cbn Mı̂[

−−→
N/x]

diverge . diverge
}
CBV (left-to-right) interpeter rec cbv lambda{
let N be x. M . (cbv N) to T. cbv M [T/x]

〈̂ı, −→N 〉 .
−−−−−−−−−→
(cbv N) to T . return 〈̂ı, −→T 〉

pm N as {〈i, −→x 〉.Mi}i∈I . (cbv N) to 〈̂ı, −→T 〉. cbv Mı̂[
−−→
T/x]

λ{(i, −→x ).Mi}i∈I . return λ{(i, −→x ).Mi}i∈I

M (̂ı,
−→
N ) . (cbv M) to λ{(i, −→x ).Mi}i∈I .

−−−−−−−−−→
(cbv N) to T . cbv Mı̂[

−−→
T/x]

diverge . diverge
}

Fig. 3. CBN and (left-to-right) CBV interpreters

Remark 1. Notice the consequences of the call-by-value semantics for the two
binary products. A terminal term in A × B (the pattern-match product) is
〈T, T ′〉, where T and T ′ are terminal. But, because we do not evaluate under λ,
a terminal term in AΠB (the projection product) is λ{0.M, 1.N}, where M and
N need not be terminal. This differs from the formulation in [Win93]. �
We write M ⇓CBN T to mean that M evaluates to T in CBN, which can
be defined inductively in the usual way. Otherwise M diverges and we write
M ⇑CBN. Similarly for CBV.

For call-by-value, we inductively define values: V ::= x | 〈i,−→V 〉 | λ{(i,−→x ).
Mi}i∈I .
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4.2 Denotational Semantics

We extend the cpo semantics for CBN and CBV in [Win93] as follows.
In the call-by-name language, a type denotes a cpo with least element:

[[
∑
{Ai 0, . . . , Ai (ni−1)}i∈I ]] = (

∑
i∈I

([[Ai 0]]× · · · × [[Ai (ni−1)]]))⊥

[[
∏
{Ai 0, . . . , Ai ni−1 � Bi}i∈I ]] =

∏
i∈I

([[Ai 0]] → · · ·→ [[Ai (ni−1)]] → [[Bi]])

A context Γ = A0, . . . , An−1 denotes the cpo [[A0]] × · · · × [[An−1]], and a term

Γ �M : B denotes a continuous function [[Γ]]
[[M ]] �� [[B]] .

In the call-by-value language, a type denotes a cpo:

[[
∑
{Ai 0, . . . , Ai (ni−1)}i∈I ]] =

∑
i∈I

([[Ai 0]]× · · · × [[Ai (ni−1)]])

[[
∏
{Ai 0, . . . , Ai (ni−1) � Bi}i∈I ]] =

∏
i∈I

([[Ai 0]] → · · ·→ [[Ai (ni−1)]] → ([[Bi]]⊥))

A context Γ = A0, . . . , An−1 denotes [[A0]]× · · ·× [[An−1]], and a term Γ �M : B

denotes a continuous function [[Γ]]
[[M ]] �� [[B]]⊥ . Each value Γ � V : B has

another denotation [[Γ]]
[[V ]]val �� [[B]] such that [[V ]]ρ = up ([[V ]]valρ) for all ρ ∈ [[Γ]].

The detailed semantics of CBN terms and of CBV terms and values are obvi-
ous and omitted. For both languages, we prove a substitution lemma, then show
that M ⇓ T implies [[M ]] = [[T ]], and M ⇑ implies [[M ]] = ⊥, as in [Win93].

4.3 Invalidity of Decompositions

We say that types A and B are

– cpo-isomorphic in CBN when [[A]]CBN and [[B]]CBN are isomorphic cpos
– cpo-isomorphic in CBV when [[A]]CBV and [[B]]CBV are isomorphic cpos.

This is very liberal: e.g., 1Π and 0 are cpo-isomorphic in CBN, though not
isomorphic in other CBN models. But the purpose of this section is to establish
non-isomorphisms, so that is good enough.

We begin by investigating the most obvious decompositions.

Proposition 2. The following decompositions are cpo-isomorphisms in CBN
but not CBV:

Π(A0, . . . , An−1) ∼= A0 Π A1 · · · Π An−1∑
{−→A i}i∈I

∼=
∑

i∈I Π (
−→
A i)

(A0, . . . , An−1) → B ∼= A0 → A1 → · · ·→ An−1 → B

(A0, . . . , An−1) → B ∼= (A0 Π · · · Π An−1) → B∏
{−→A i � Bi}i∈I

∼=
∏

i∈I((
−→
A i) → Bi)
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The following decompositions are cpo-isomorphisms in CBV but not CBN:

+(A0, . . . , An−1) ∼= A0 + A1 · · ·+ An−1

×(A0, . . . , An−1) ∼= A0 ×A1 · · · ×An−1∑
{−→A i}i∈I

∼=
∑

i∈I × (
−→
A i)

(A0, . . . , An−1) → B ∼= (A0 × · · · ×An−1) → B∏
{−→A i � Bi}i∈$n

∼= ×i∈$n((
−→
A i) → Bi)∏

{−→A i � Bi}i∈I
∼=
∏
{×(
−→
A i) � Bi}i∈I

Some special cases:

CBV CBN
1× ∼= 1Π yes no
×−→A ∼= Π

−→
A no no

groundI
∼=
∑

i∈I1× yes no
groundI

∼=
∑

i∈I1Π yes yes
TA ∼= A no yes
LA ∼= A yes no

�
Proof. For non-isomorphisms: make all the types bool, and count elements. �
A stronger statement of non-decomposability is the following. (We omit its proof,
which analyzes finite elements.)

Proposition 3. Call the following types of jumbo λ-calculus non-jumbo.

A ::= groundI |
∑

i∈IAi | × (
−→
A ) |

∏
i∈I Ai | (

−→
A ) → B

1. There is no non-jumbo type A such that
∑
{#a.bool, bool; #b.bool} is

cpo-isomorphic to A in both CBV and CBN.
2. There is no non-jumbo type A such that

∏
{#a.bool � bool; #b. � bool}

is cpo-isomorphic to A in both CBV and CBN.
3. There is no non-jumbo type A such that

∏
{Tbool � ground$n}n∈N is cpo-

isomorphic to A in CBV. �
Thus, neither

∑
nor

∏
has a universally valid decomposition. And in the

infinitary CBV setting,
∏

cannot be decomposed at all.
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λ-RBAC: Programming with Role-Based Access Control
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Abstract. We study mechanisms that permit program components to express
role constraints on clients, focusing on programmatic security mechanisms,which
permit access controls to be expressed, in situ, as part of the code realizing basic
functionality. In this setting, two questions immediately arise:

– The user of a component faces the issue of safety: is a particular role suffi-
cient to use the component?

– The component designer faces the dual issue of protection: is a particular
role demanded in all execution paths of the component?

We provide a formal calculus and static analysis to answer both questions.

1 Introduction

This paper addresses programmatic security mechanisms as realized in systems such
as Java Authentication and Authorization Service (JAAS) and .NET. JAAS and .NET
enable two forms of access control mechanisms1. First, they permit declarative access
control to describe security specifications that are orthogonal and separate from de-
scriptions of functionality, e.g. in an interface I, a declarative access control mechanism
could require the caller to possess a minimum set of rights. Second, JAAS and .NET
also permit programmatic mechanisms that permit access control code to be intertwined
with functionality code, e.g. in the code of a component implementing interface I. Why
commingle conceptually separate concerns? To enable the programmer to enforce ac-
cess control that is sensitive to the control and dataflow of the code implementing the
functionality.

There is extensive literature on policy languages to specify and implement policies
(e.g. [14, 25, 13, 3, 26, 12] to name but a few). This research studies security policies as
separate and orthogonal additions to component code, and is thus focused on declarative
security in the parlance of JAAS/.NET.

In contrast, we study programmatic security mechanisms. Our motivation is to ex-
tract the security guarantees provided by access control code which has been written
inline with component code. We address this issue from two viewpoints:
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anisms that are also part of these infrastructures.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 456–467, 2006.
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– The user of a component faces the issue of safety: is a particular set of rights suffi-
cient to use the component? (ie. any greater set of rights will also be allowed to use
the component)

– The component designer faces the dual issue of protection: is a particular set of
rights demanded in all execution paths of the component? (ie. any lesser set of
rights will not be allowed to use the component)

The main contribution of this paper is separate static analyses to calculate approxima-
tions to these two questions. An approximate answer to the first question is a set of
rights, perhaps bigger than necessary, that is sufficient to use the component. On the
other hand, an approximate answer to the second question, is a set of rights, perhaps
smaller than what is actually enforced, that is necessary to use the component.

Related Work. There is extensive literature on Role-Based Access-Control (RBAC)
models including NIST standards for RBAC [22, 11]; see [10] for a textbook survey.

The main motivation for RBAC, in software architectures (e.g. [19, 18]) and frame-
works such as JAAS/.NET is that it enables the enforcement of security policies at
a granularity demanded by the application. In these examples, RBAC allows permis-
sions to be de-coupled from users: Roles are the unit of administration for users and
permissions are assigned to roles. Roles are often arranged in a hierarchy for succinct
representation of the mapping of permissions. Component programmers design code in
terms of a static collection of roles. When the application is deployed, administrators
map the roles defined in the application to users in the particular domain.

Unified frameworks encompassing RBAC and trust–management systems have also
been studied [23], in part by incorporating history-sensitive ideas into the RBAC
model [4]. Our work is close in spirit, if not in technical development, to edit au-
tomata [14], which use aspects to avoid the explicit intermingling of security and base-
line code.

The papers most closely related to our work are those of Braghin, Gorla and Sas-
sone [6] and Compagnoni, Garalda and Gunter [9]. [6] presents the first concurrent
calculus with a notion of RBAC, whereas [9]’s language enables privileges depending
upon location. This paper extends the lambda calculus with RBACand internalizes the
lattice structure of roles. We present a more detailed comparison at the end of the paper.

An Overview of Our Technical Contributions. We study a lambda calculus enriched
with primitives for access control, dubbed λ-RBAC. The underlying lambda calculus
serves as an abstraction of the ambient programming framework in a real system. We
draw inspiration from the programming idioms in JAASand .NET to determine the
expressiveness required for the access control mechanisms.

Roughly, the operation of λ-RBAC is as follows. Program execution takes place in
the context of a role, which can be viewed concretely as a set of permissions. Roles are
closed under union and intersection operations. The set of roles used in a program is
static: we do not allow the dynamic creation of roles. The only run-time operations on
roles are as follows. There are combinators to check that the role-context is at least some
minimum role: an exception is raised if the check fails. Rights modulation (c.f. “ses-
sions” in RBAC) is achieved by impersonation: this enables an application to operate
under the guise of different users at different times.
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We assume that roles form a lattice: abstracting the concrete union/intersection oper-
ations of the motivating examples. Some of our results assume that the lattice is boolean,
i.e. the lattice has a negation operation abstracting the concrete set complement of the
motivating examples. Our study is parametric on the underlying role lattice. Our calcu-
lus includes a single combinator for role checking and two combinators for imperson-
ation: one for rights weakening and the other for rights amplification. We internalize
the right to amplify rights by considering role lattices with an explicit role constructor,
amplify. This enables the reuse of the access control mechanisms of λ-RBAC to control
rights amplification.

We demonstrate the expressiveness of the calculus by building a range of useful
combinators and a variety of small illustrative examples. We discuss type systems to
perform the two analyses alluded to earlier: (a) an analysis to detect and remove unnec-
essary role-checks in a piece of code for a caller at a sufficiently high role, and (b) an
analysis to determine the (maximal) role that is guaranteed to be required by a piece of
code. For both we prove preservation and progress properties.

Rest of the Paper. We begin with a discussion of the dynamic semantics of λ-RBAC
in section 2, illustrating the expressiveness of the language with examples in section 3.
Section 4 describes the static analyses. The following section 5 provides types for the
examples of section 3. We conclude with a summary of related work in section 6.

2 Language and Operational Semantics

2.1 Roles

The language of roles is built up from role constructors. The choice of role construc-
tors is application dependent, but must include at least the six constructors discussed
below. We assume that each role constructor κ has an associated arity, arity(κ). Roles
P,Q,R,S,T have the form κ(R1, . . . ,Rn).

The semantics of roles is defined by the relation “� R  S” which states that R
dominates S. We do not define this relation, but rather assume that it has a suitable,
application-specific definition; we impose only the following requirements.

We require that all constructors be monotone with respect to .
Further we require that roles form a boolean lattice. So, the role lattice is distribu-

tive: we require that the set of constructors include the nullary constructors ⊥ and 
and binary constructors � and � (which we write infix).⊥ is the least element; is the
greatest element; � and � are idempotent, commutative, associative, and mutually dis-
tributive meet and join operations on the lattice of roles. For any R, S, we have � R ⊥
and �   R and � R� S  R and � R  R� S. In addition, there is a complement R�

for every role R, where R and S are complements if R�S =⊥ and R�S =.
Finally, in example 4 we require the unary constructor amplify, where amplify(R)

represents the right to store R in a piece of code; i.e. if P = amplify(R), then role P
stands for the right to provide the role R.

In summary, the syntax is as follows.

P,Q,R,S,T ::= κ(R1, . . . ,Rn) κ ::= · · · | ⊥ |  | � | � | � | amplify
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2.2 Terms

Our goal is to capture the essence of role-based systems, where roles are used to regulate
the interaction of components of the system. We have chosen to base our language on
the call-by-value lambda calculus2 because it is simple and well understood, yet rich
enough to capture the key concepts. (We expect that our ideas can be adapted to both
process and object calculi.) The “components” in a lambda term are abstractions and
their calling contexts. Thus it is function calls and returns that we seek to regulate, and,
therefore, the language has roles decorating abstractions and applications. Abstraction
is written “{Q}λx.M” where role Q is demanded to execute M. Application is written
“↓P U V” where the caller restricts its rights to P during the execution of function U .

We define evaluation using a small-step operational semantics; therefore, we include
explicit syntax for the frame “↓P[M]” which represents the execution of term M with
rights restricted to P. We use frames additionally for rights escalation, with the form
“↑P[M].” The two forms of frames together allows code to assume any role, which —
if entirely uncontrolled — allows code to circumvent an intended policy. We address
this issue in example 4, where we describe the use of the amplify constructor to control
rights escalation.

Let x,y,z, f,g range over variable names. The syntax of values and terms are as
follows.

U,V ::= · · · | x | {Q}λx.M

M,N,L ::= · · · | U | let x=M; N | ↓P U V | ↓P[M] | ↑P[M]

Evaluation is defined in terms of a role context. Formally, we define a judgment R �
M → N, which indicates R is authorized to compute a single step of the initial program
M, resulting in the new program N.

EVALUATION (R �M → N)

� R  Q

R � ↓P ({Q}λx.M) U → ↓P[M[U/x]]

R �M → M′

R � let x=M; N → let x=M′; N
R�P �M → M′

R � ↓P[M]→ ↓P[M′]
R�P �M → M′

R � ↑P[M]→ ↑P[M′]

R � let x=U; N → N[U/x] R � ↓P[U]→ U R � ↑P[U]→ U

The rules are straightforward, but for application; note only that a frame is discarded
when the guarded term is fully evaluated. Application involves two participants: the
caller (or calling context) and the callee (or abstraction). Each participant may wish
to protect itself from the other. When the caller ↓P V U transfers control to V , it may

2 We have chosen an explicitly sequenced variant (with let). Implicit sequencing can be recov-
ered as follows: ↓R M N

�= let x=M; let y=N; ↓R x y. When x does not appear free in N, we
abbreviate let x=M; N as M; N . To focus the presentation, we elide base types, indicating
them in the syntax using ellipses. In examples, we use base types with the usual operators and
semantics, including Int (with values 0, 1, etc), Bool (with values true, false) and Unit (with
value ()). We write M[U/x] for the capture-avoiding substitution of U for x in M.
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protect itself by restricting the role context to P while executing V . Symmetrically,
the callee ({Q}λx.M) may protect itself by demanding that the role context before
the call dominates Q. Significantly, the restricting frame created by the caller does not
take effect until after the guard is satisfied. In brief, the protocol is “call-test-restrict,”
with the callee controlling the middle step. This alternation explains why restriction is
syntactically fused into application.

A role is trivial if it has no effect on evaluation. Thus is trivial in restricting frames
and applications, whereas ⊥ is trivial in providing frames and abstractions. We often
elide trivial roles and trivial frames; thus, λx.M is read as {⊥}λx.M (the check always
succeeds), and U V is read as ↓U V (the role context is unaffected by the resulting
frame). In our semantics, these terms evaluate like ordinary lambda terms.

By stringing together a series of small steps, the final value for the program can
be determined. Successful termination is written R � M ⇓ U which indicates that R
is authorized to run the program M to completion, with result U . Evaluation can fail
because the term diverges or because an inadequate role is provided at some point in
the computation; we write the latter as R �M ⇓ fail3.

LEMMA 1. If S �M → M′ and � R  S then R �M → M′. �

3 Examples

EXAMPLE 2 (ACCESS CONTROL LISTS). Consider a web server that provides remote
access to files protected by Access Control Lists (ACLs) at the filesystem layer. A read-
only filesystem can be modeled as:

filesystem
def= λname.if name = "file1" then check ADMIN; "content1"

else if name = "file2" then check ALICE�BOB; "content2"
else "error: file not found"

Where check R
�= ({R}λ_.())(). Assuming incomparable roles ALICE, BOB, and

CHARLIE each strictly dominated by ADMIN, code running in the ADMIN role can
access both files:

ADMIN � filesystem "file1" →∗ check ADMIN; "content1" →∗ "content1"
ADMIN � filesystem "file2" →∗ check ALICE�BOB; "content2" →∗ "content2"

Code running as ALICE or BOB cannot access the first file but can access the second:

ALICE � filesystem "file1" →∗ check ADMIN; "content1" ⇓ fail
BOB � filesystem "file2" →∗ check ALICE�BOB; "content2" →∗ "content2"

Finally, assuming that CHARLIE �≥ ALICE�BOB, code running as CHARLIE cannot
access either file:

CHARLIE � filesystem "file1" →∗ check ADMIN; "content1" ⇓ fail
CHARLIE � filesystem "file2" →∗ check ALICE�BOB; "content2" ⇓ fail

3 Write “R�M0 →∗Mn” if there exist terms Mi such that R�Mi → Mi+1, for all i (0≤ i≤ n−1).
Write “R � M ⇓ U” if R � M →∗ U . Write “R � M ⇓” if R � M →∗ U for some U . Write
“R �M ⇓ fail” if R �M →∗ M′ where R �M′ �→ and M′ is not a value.
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Now the web server can use the role assigned to a caller to access the filesystem (unless
the web server’s caller withholds its role). To prevent an attacker determining the non-
existence of files via the web server, the web server fails when an attempt is made to
access an unknown file unless the DEBUG role is activated.

webserver
def= λname.if name = "file1" then filesystem name

else if name = "file2" then filesystem name
else check DEBUG; "error: file not found"

For example, code running as Alice can access "file2" via the web server:

ALICE � webserver "file2" →∗ filesystem "file2"
→∗ check ALICE�BOB; "content2" →∗ "content2" �

Example 3 illustrates how the Domain-Type Enforcement (DTE) security mecha-
nism [5, 27], as found in the NSA’s Security-Enhanced Linux (SELinux) [15], can be
implemented in λ-RBAC. Further discussion of the relationship between RBAC and
DTE can be found in [10, 12].

EXAMPLE 3 (DOMAIN-TYPE ENFORCEMENT / SELINUX). DTE grants or denies
access requests according to the domain of the requesting process and the type assigned
to the object, e.g., a file or port. The domain of a process only changes when another
image is executed. DTE facilitates least privilege by limiting domain transitions based
upon the source and target domains, and type assigned to the invoked executable file.

The DTE domain transition from role R to role S (each acting as domains) can be

modeled by the function R
E−→ S that allows code running at role R to apply a function

at role S: R
E−→ S

def= {R}λ( f ,x).↓⊥ f ({E}λg.↑S[g x]).
However, the domain transition is only performed when the function is associated

with role E , modeling assignment of DTE type E to an executable file. Association of
a function g with role E is achieved by accepting a continuation that is called back at
role E with the function g. The function assignTypeE allows code running at ADMIN to

assign DTE types to other code: assignTypeE
def= {ADMIN}λg.λh.↑E[↓⊥ h g]. For

example, for a function value U :

ADMIN � ↓⊥ assignTypeE U →∗ λh.↑E[↓⊥ h U]

Then given a value V such that S �U V →∗W , we have:

R � ↓⊥ (R E−→ S) (λh.↑E[↓⊥ h U],V ) →∗W

With the R
E−→ S and assignTypeE functions we can adapt the login example from [27]

to λ-RBAC. In this example, the DTE mechanism is used to force every invocation of
administrative code (running at ADMIN) from daemon code (running at DAEMON)
to occur via trusted login code (running at LOGIN). This is achieved by providing
domain transitions from DAEMON to LOGIN, and LOGIN to ADMIN, but no others.
Moreover, code permitted to run at LOGIN must be assigned DTE type LOGINEXE,
and similarly for ADMIN and ADMINEXE . Thus a full program running daemon code



462 R. Jagadeesan et al.

M has the following form, where neither M nor the code assigned to g variables contain
rights amplification:

let daemonToLogin=DAEMON
LOGINEXE−−−−−−−→ LOGIN;

let loginToAdmin=LOGIN
ADMINEXE−−−−−−−→ ADMIN;

let shell= let g= . . .; ↓⊥ assignTypeADMINEXE (g);
let login= let g= λ(password,cmd).

if password = "secret" then↓⊥ loginToAdmin (shell,cmd)
else . . .;

↓⊥ assignTypeLOGINEXE (g);

↓DAEMON[M]

In the above program, the daemon code M must provide the correct password in order
to execute the shell at ADMIN because the login provides the sole gateway to ADMIN.
In addition, removal of the domain transition daemonToLogin makes it impossible for
the daemon code to execute any code at ADMIN. �

EXAMPLE 4 (CONTROLLING RIGHTS AMPLIFICATION). The amplify constructor
provides a flexible dynamic way to control rights amplification. Suppose that M con-
tains no direct rights amplification (subterms of the form ↑P[ ·]). Then, in “let g=U;
↓R[M]” we may view U as a Trusted Computing Base (TCB) — a privileged function
which may escalate rights — and to N as restricted user code; g is then an entry point
to the TCB and R is the user role. User code is therefore executed at the restricted role
R, and rights amplification may only occur through invokation of g.

Non-trivial programs have larger TCBs with more entry points. As the size of the
TCB grows, it becomes too difficult to understand the security guarantees offered by
a system allowing arbitrary rights amplification in all TCB code. To manage this com-
plexity, one may enforce a coding convention that requires rights increases be justified
by earlier checks. As an example, consider the following.

let doP={amplify(P)}λ f.λx.↑P[ f x];

The privileged function doP that performs rights amplification (for P) is justified by the
check for amplify(P) on any caller of doP. One may also wish to explictly prohibit a
term N from direct amplification of some right Q; with such a convention in place, this
can be achieved using the frame ↓(amplify(Q)�)[N].

A formal and systematic general mechanism to enforce such a coding convention
— by requiring code to use definable higher order combinators in place of unchecked
frames — is omitted from this extended abstract for space reasons. �

4 Statics

We consider two kinds of static analysis: (i) a type system to enable removal of unnec-
essary role-checks in a piece of code for a caller at a sufficiently high role, and (ii) a
type system to determine the amount of protection that is enforced by the callee.
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To make the issues as clear as possible, we treat a simply-typed calculus with sub-
typing in the main text. In the rest of this section, we assume that all roles (and therefore
all types) are well-formed, in the sense that role constructors have the correct number
of arguments.

4.1 A Type System to Calculate Caller Roles

Our first type system attempts to calculate a caller role that guarantees that all execution
paths are successful. The judgment Γ �M : {R} τ asserts that R suffices to evaluate M,
i.e. if M is executed with a role that dominates R, then all access checks in M are
guaranteed to be successful. Values require no computation to evaluate, thus the value
judgment Γ �U : τ includes only the type τ. The syntax of types is as follows.

σ,τ ::= · · · | σ →{Q	R} τ Γ,Δ ::= x1:σ1, . . . ,xn:σn

The type language includes base types (which we elide in the formal presentation)
and function types. The function type σ →{Q	R} τ is decorated with two latent ef-
fects; roughly, these indicate that the role context must dominate Q in order to pass the
function’s guard, and that the caller must provide a role context of at least R for execu-
tion of the function body to succeed. The least role ⊥ is trivial in function types; thus
σ → τ abbreviates σ →{⊥	⊥} τ. We also write σ →{R} τ for σ →{⊥	R} τ. If all
roles occurring in a term are trivial, our typing rules degenerate to those of the standard
simply-typed lambda calculus. The typing judgments are as follows.

VALUE AND TERM TYPING (Γ �U : τ) (Γ �M : {R} τ)

(VAL-VAR)

Γ(x) = τ
Γ � x : τ

(VAL-ABS)

Γ,x:σ �M : {R} τ
Γ � {Q}λx.M : σ →{Q	R} τ

(TERM-VAL)

Γ �U : τ
Γ �U : {⊥} τ

(TERM-LET)

Γ �M : {R} σ
Γ,x:σ � N : {S} τ
Γ � let x=M; N : {R�S} τ

(TERM-APP)

Γ �U : σ →{Q	R�P} τ
Γ �V : σ
Γ � ↓P U V : {Q�R} τ

(TERM-RESTRICT)

Γ �M : {R�P} τ
Γ � ↓P[M] : {R} τ

(TERM-PROVIDE)

Γ �M : {R�P} τ
Γ � ↑P[M] : {R} τ

(TERM-SUBEFFECT)

Γ �M : {S} τ
� R  S
Γ �M : {R} τ

VAL-ABS simply records the effects that the abstraction will incur when run. By TERM-
VAL, a value can be treated as a term that evaluates without error in every role context.
TERM-LET indicates that two expressions must succeed sequentially if the current role
guarantees success of each individually. TERM-RESTRICT (resp. TERM-PROVIDE) cap-
tures the associated rights weakening (resp. amplification). TERM-APP incorporates the
role required to evaluate the function to an abstraction and the role required to evaluate
the body of the function (while allowing for rights weakening).

Subtyping. A natural notion of subtyping is induced from the role ordering. Formally,
subtyping is the least precongruence on types induced by SUBTYPING-BASE.

(SUBTYPING-BASE)

� σ′ <: σ � Q′  Q � S′  S � τ <: τ′

� (σ →{Q	S} τ) <: (σ′ →{Q′ 	S′} τ′)

(VAL-SUBTYPE)

Γ �U : σ � σ <: σ′

Γ �U : σ′

(TERM-SUBTYPE)

Γ �M : {R} τ � τ <: τ′

Γ �M : {R} τ′
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The following example of Church booleans, illustrates the use of subtyping. The Church
booleans, λt.λf.t and λt.λf.f can be given type (σ →{R} τ) → (σ →{S} τ) → (σ
→{R�S} τ).

The type system satisfies standard preservation and progress properties.

THEOREM 5. If Γ �M : {R} τ and S �M → M′, then Γ �M′ : {R} τ.
If Γ �M : {R} τ then either M is a value, or R �M → M′, for some M′.

4.2 A Type System to Determine Callee Protection

Our second type system (“�”) has aims “dual” to the previous type system. Rather
than attempting to calculate a caller role that guarantees that all execution paths are
successful, we deduce the minimum protection demanded by the callee on all execution
paths. View Γ � M : {S} τ as asserting that it is not possible for M to evaluate to a value
without using a role above S, i.e. the guaranteed protection for M is at least S.

The type system presented below has altered versions of TERM-APP, TERM-
RESTRICT, TERM-PROVIDE and inverted versions of TERM-SUBEFFECT and
SUBTYPING-BASE.

(TERM-SUBEFFECT)

Γ � M : {S} τ � S  R

Γ � M : {R} τ

(SUBTYPING-BASE)

� σ′ <: σ � Q  Q′ � S  S′ � τ <: τ′

� (σ →{Q	S} τ) <: (σ′ →{Q′ 	S′} τ′)

(TERM-APP)

Γ � U : σ →{Q	R} τ
Γ � V : σ′ � σ′ <: σ
Γ � ↓P U V : {Q�R} τ

(TERM-RESTRICT)

Γ � M : {R} τ
Γ � ↓P[M] : {R} τ

(TERM-PROVIDE)

Γ � M : {R} τ
Γ � ↑P[M] : {R�P�} τ

In TERM-SUBEFFECT above, it is sound to weaken the role since the asserted protection
is only reduced. ↑P[M] adds P to the role context in the operational semantics. So, in
TERM-PROVIDE, the guaranteed protection for ↑P[M] removes P from the guaranteed
protection for M.

As a consequence of the above rules, if M is a value, we can deduce that it must be
typed at role ⊥; values are already in normal form, so do not enforce any protection.
Furthermore, in this system, the Church booleans may be given type: (σ →{R} τ) → (σ
→{S} τ) → (σ →{R�S} τ). illustrating the “minimum over all paths” principle via
R� S (to be contrasted with R� S in the previous typing system.). More generally, the
following theorem enables us to understand the invariants established by typing in this
system 4.

THEOREM 6. If Γ � M : {S} τ, � R � S and R �M → M′, then Γ � M′ : {S} τ.

If we start execution in a role context (R in the theorem) that does not suffice to pass
the minimum protection guarantee (S in the theorem), then a single step of reduction
has only two possibilities: (i) a check, e.g., for S, that is not passed by R occurs and the
term gets stuck, or (ii) the check for S does not happen at this step but the invariant that
the minimum protection is S continues to get preserved.

4 The usual form of the type preservation result does not hold for this system. For example
� ({}λ_.()) () : {} Unit and  � ({}λ_.()) ()→ () but �� () : {} Unit.
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5 Typing Examples

EXAMPLE 7. Recall the filesystem and web server from example 2. The filesystem
code can be assigned the following type, meaning that a caller must possess a role from
each of the ACLs in order to guarantee that access checks will not fail:

� filesystem : String →{⊥	ADMIN � (ALICE�BOB)�⊥} String

In the above type, the final role ⊥ arises from the “unknown file” branch that does not
require an access check. The lack of an access check explains the weaker � type:

� filesystem : String →{⊥	ADMIN � (ALICE�BOB)�⊥} String

This type indicates that filesystem has the potential to expose some information to un-
privileged callers with role ADMIN � (ALICE �BOB)�⊥ = ⊥, perhaps causing the
code to be flagged for security review.

The access check in the web server does prevent the “unknown file” error message
leaking unless the DEBUG role is active, but, unfortunately, it is not possible to assign
a role strictly greater than ⊥ to the web server using the � type system because the
filesystem type does not record the different roles that must be checked depending upon
the filename argument, and hence:

�� webserver : String →{⊥	ADMIN � (ALICE�BOB)�DEBUG} String �

EXAMPLE 8. Recall the encoding of the DTE/SELinux domain transition mechanism
from example 3. Define types for functions running at role S (acting as a domain) and
functions that can prove their assigned DTE role is E by calling back with that role:

Func(σ,τ,S) def= σ →{S} τ
FuncDTEType(σ,τ,S,E) def= (Func(σ,τ,S) →{E 	⊥} τ) →{⊥} τ

A domain transition will certainly succeed if the caller possesses role R and the function
invoked after the domain transition requires at most role S:

� R
E−→ S : FuncDTEType(σ,τ,S,E)×σ →{R	⊥} τ

In contrast, the following type guarantees that role R will be demanded from the caller:

� R
E−→ S : FuncDTEType(σ,τ,S,E)×σ →{R	⊥} τ �

6 Conclusions

We have presented methods to aid the designer and use of components which include
access control code (as permitted in the programmatic RBAC of JAAS/.NET). Our first
analysis enables users of code to deduce the role at which code must be run. The other
analysis method enables code designers to deduce the protection guarantees of their
code by calculating the role that is verified on all execution paths.

In future work, we will explore extensions to role polymorphism and recursive roles
following the techniques of [7, 2].
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Our paper falls into the broad area of research enlarging the scope of foundational,
language-based security methods (see [24, 16, 1] for surveys). The papers that are most
directly relevant to the current paper are [6, 9]. Both these papers start off with a mobile
process-based computational model. Both calculi have primitives to activate and deac-
tivate roles: these roles are used to prevent undesired mobility and/or communication,
and are similar to the primitives for role restriction and amplification in this paper. We
expect that our ideas can be adapted to the process calculi framework. In future work,
we also hope to integrate the powerful bisimulation principles of these papers.

[6, 9] develop type systems to provide guarantees about the minimal role required
for execution to be successful — our first type system occupies the same conceptual
space as this static analysis. However, our second type system that calculates minimum
access controls does not seem to have an analogue in these papers. More globally, our
paper has been influenced by the desire to serve loosely as a metalanguage for program-
ming RBAC mechanisms in examples such as the JAAS/.NET frameworks. Thus, our
treatment internalizes rights amplification by program combinators and the amplify role
constructor in role lattices. In contrast, the above papers use external — i.e. not part of
the process language — mechanisms (namely, user policies in [9], and RBAC-schemes
in [6]) to enforce control on rights activation.

Our paper deals with access control, so the extensive work on information flow, e.g.,
see [20] for a survey, is not directly relevant. However, we note that rights amplification
plays the same role in λ-RBAC that declassification and delimited release [8, 21, 17]
plays in the context of information flow; namely that of permitting access that would not
have been possible otherwise. In addition, by internalizing the ability to amplify code
rights into the role lattice, our system permits access control code to actively participate
in managing rights amplification.
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Abstract. Rewriting systems working on words with a center marker
are considered. The derivation is done by erasing a prefix or a suffix
and then adding a prefix or a suffix. This can be naturally viewed as
two stacks communicating with each other according to a fixed protocol.
The paper systematically considers different cases of these systems and
determines their expressiveness. Several cases are identified where very
limited communication surprisingly yields universal computation power.

1 Introduction

The earliest evidence of computational power of simple rewriting systems seems
to be the following fascinating example of Post [10] dating to 1920’s. Given a
binary word w, apply to it iteratively the following rule: “omit the three-letter
prefix and, if its first symbol was 0 (resp., 1), append a suffix 00 (resp. 1101)”.
There are three possible outcomes: either the process terminates, or goes into a
periodic stage, or proceeds without repetitions. As noticed already by Post, it
is not easy to determine what is the case for a given w. In fact, even now no
algorithm to decide this is known. Based on the above example Post developed
his canonical systems, which have universal computing power.

In 1960’s Büchi [3] and Kratko [8] independently started to consider simpler
rewriting systems of a similar kind. They noticed that if Post’s rules are applied
locally, that is, a word w is rewritten to y(x−1w) for a rule x → y, then the
languages obtained are regular. On the other hand, the power of another simpler
variant of Post’s rewriting was determined only recently. Given an initial word w
and a regular set X , the rule “delete a prefix from X and append any word from
X to the end” is iteratively applied. The choice of the word being appended
is independent of the word removed, so this was called uncontrolled one-way
rewriting, and the regularity of the sets generated was established [7].

This process resembles another problem dealing with operations on two ends
of a word proposed by Conway [4]. He asked whether for every regular language
X the greatest language Z, such that XZ = ZX , is regular as well. This problem
was recently solved strongly negatively: by a sophisticated construction it was
proved that such Z need not be recursively enumerable [9]. This demonstrated
that Conway’s equation is deeper than it seemed, and motivated the study of its
approximate sequential variant, called uncontrolled two-way rewriting, defined
� Supported by the Academy of Finland under grants 206039 and 208414.
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Fig. 1. Modes of rewriting

by the rule “delete an element of X from either of the ends of the word, and
at the same time add any element of X to the opposite end”. It was found to
generate a nonregular language [7], but its exact power was left undetermined.

This paper is dedicated to a systematic study of such rewriting systems and
their variants. We assume that the words being rewritten contain a center marker
that is never touched: this does not reduce the power of the most general case
and leads to interesting special cases. Besides two-way rewriting, we consider
three augmented cases of one-way rewriting, which are illustrated by diagrams
in Figure 1, where # is the center marker. In these subcases also local Büchi
rewriting steps are allowed, i.e., steps where the deletion and adding is done at
the same end. If this is allowed on the right, we call the rewriting one-way R-
rewriting, where R stands for “receiving”. If the local rewriting is allowed only at
the left end, then it is called one-way S-rewriting, where S stands for “sending”.
Finally, if it is allowed at both ends, then we call it one-way RS-rewriting.

In all of the above cases the rewriting may be controlled or uncontrolled. In
the former case a connection between x’s and y’s is allowed, for example, the
pairs (x, y) may be defined by a recognizable or rational relation. In the latter
case the words to be deleted and added are chosen independently. Obviously,
the computational power of the former is much higher than that of the latter.

We have described our approach in terms of rewriting. However, our systems
can be equally interpreted in terms of communication between two (pushdown)
stacks. In one-way rewriting we pop from the left stack and simultaneously push
onto the right stack, that is, we send a message from left to right. When an
uncontrolled relation defines a communication, all messages sent through such a
channel are indistinguishable, that is, the fact of sending a message constitutes
the entire message. When we pop from and push onto the same stack, this models
local processing of data. This interpretation gives a further motivation for our
systematic study.

Our presentation is structured as follows. In Section 2 we formally define all
variants of our rewriting systems. Then in Section 3 we consider one-way R-
rewriting. Here, assuming that the set of initial words is regular, only regular
languages can be generated even in the general cases of controlled rewriting.
On the other hand, for a context-free initial set the rewriting becomes com-
putationally universal. In the case of one-way S-rewriting studied in Section 4
our essential result is that even quite restricted models generate all context-free
languages, but also their essential generalizations do not give anything more.
For one-way RS-rewriting, in Section 5 we obtain a greater variety or results:
if the one-way rewriting is uncontrolled, then only special cases of context-free
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languages are generated, while if it is controlled, all recursively enumerable lan-
guages can be obtained. Finally, in Section 6 we establish completely unexpected
computational universality of uncontrolled two-way rewriting.

2 Formal Definitions and Notation

Let Σ be a finite alphabet and let # /∈ Σ be the center marker. Let I ⊆ Σ∗#Σ∗

be a set of words from which the rewriting starts: the initial set. Let ��→,
rr→,

�r→,
r�→ ⊆ Σ∗ × Σ∗ be four relations that constitute the rewriting rules. Define the
corresponding relations of one-step rewriting as follows: for all w,w′ ∈ Σ∗,

xw#w′ ��=⇒ yw#w′
(
(x, y) ∈ ��→

)
w#w′x rr=⇒ w#w′y

(
(x, y) ∈ rr→

)
xw#w′ �r=⇒ w#w′y

(
(x, y) ∈ �r→

)
w#w′x r�=⇒ yw#w′

(
(x, y) ∈ r�→

)
The relation of one-step rewriting, =⇒, is the union of these four relations. Con-
sider the reflexive and transitive closure of =⇒, denoted by =⇒∗. The language
generated by the rewriting system is defined as {w | ∃w0 ∈ I : w0 =⇒∗ w}. The
modes of rewriting we consider can be formally defined as follows: if ��→ = r�→ = ∅,
this is one-way R-rewriting; if rr→ = r�→ = ∅, this is one-way S-rewriting; if r�→= ∅,
this is one-way RS-rewriting ; and if ��→ = rr→ = ∅, it is two-way rewriting (2W).

Let us now turn to the form of relations ��→, rr→, �r→ and r�→. A relation → is
uncontrolled using two families of languages L and M, denoted Unc(L,M), if
→ = L × M for some L ∈ L and M ∈ M. We consider classes of relations
Unc(Reg,Reg) and Unc(Fin,Fin), in which L and M must be regular or finite,
respectively. A further restricted form of these relations, where → = L × L for
a single language L ∈ L, is denoted by Unc(L).

Finite relations (Fin) are of the form → = {(x1, y1), . . . , (xn, yn)}; a simple
subcase is a copy relation, in which → = {(a, a) | a ∈ Σ′} for some Σ′ ⊆ Σ.
Recognizable relations (Rec) are those for which the language {u$v | (u, v) ∈→}
is regular. Rational relations (Rat) are recognized by finite transducers. The most
general family we consider are the regularity preserving relations (Reg.Pr), such
that for every regular L the language {y | ∃x ∈ L : (x, y) ∈→} is regular.

A class of rewriting systems is defined by a mode of rewriting (R, S, RS
or 2W), the families to which the relations belong and the family of languages
usable as the initial set. Each class of rewriting systems defines a family of formal
languages, and this family characterizes the power of communication modelled
by this kind of rewriting. For instance, S-rewriting with recognizable ��→, rational
�r→ and context-free I, as we shall see, yields exactly the context-free languages.

If either of ��→, rr→ can be any rational relation, then it is easy to produce
an r.e.-complete language from a one-element initial set by using a well-known
folklore fact that finite transducers can compute the next configuration of a
Turing machine. Therefore the most general relations we are going to consider are
regularity-preserving relations �r→ and r�→ and recognizable relations ��→ and rr→.
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3 Receiving

In this section we consider one-way R-rewriting, which uses relations �r→ and rr→.
We can show that the relation =⇒∗ of such rewriting systems preserves regularity
even in the most general case, and that their power is determined by the initial
set. Let us organize the study of R-rewriting on the basis of whether I is regular
or not. First we consider the case of a regular I.

Theorem 1. The language L generated by a rewriting system
consisting of a regularity-preserving relation �r→, recognizable
relation rr→ and a regular initial set I is always regular. If in
addition images of regular languages under �r→ can be algorith-
mically computed, then L is algorithmically computable too.

For a given alphabet Σ, take its disjoint copy Σ̃ = { ã | a ∈ Σ }, where the letter
ã will represent deletion of a. For any word w = a1 · · ·an ∈ Σ∗, where n  0
and a1, . . . , an ∈ Σ, denote w̃ = ãn · · · ã1, and extend this notation to languages
as L̃ = { w̃ | w ∈ L }. Define the set of reduction rules { aã → ε | a ∈ Σ }.

The proof consists of three parts. First, we consider computation histories of
our rewriting, in which, to the right from #, all letters which occurred there dur-
ing the rewriting are preserved and only symbolically deleted by appending the
corresponding “negative” symbols from Σ̃. The language of all such computation
histories is defined as follows:

L0 =
{
u#v0ρ0w1ρ1 . . . wnρn

∣∣ n  0, ρi ∈ {x̃y | (x, y) ∈ rr→}∗,

∃z1, . . . , zn : z1 . . . znu#v0 ∈ I, (zi,wi) ∈ �r→
}
,

Lemma 1. A word u#v ∈ Σ∗#Σ∗ is derivable in the R-rewriting system if and
only if there exists α ∈ L0 reducible to u#v.

Next, we show regularity of this language.

Lemma 2. The language L0 is regular and the corresponding DFA can be ef-
fectively constructed (provided that the images under �r→ are computable).

Finally, we apply a known property of such reductions dating back to Benois [2];
for details, see Sakarovitch [11, Ch. II, Sec. 6], Hofbauer and Waldmann [5], as
well as the authors [7]. It states that the image of any regular language under
such a reduction is regular. These three results yield a proof of Theorem 1.

If we consider non-regular sets of initial words, then, even for very simple
relations, R-rewriting system become computationally universal.

Theorem 2. For every recursively enumerable language L0
over an alphabet Σ there exist an alphabet Σ′ ⊃ Σ ∪ {#},
a language I over Σ′ that is a concatenation of two linear
context-free languages, a copy relation �r→ and a finite uncon-
trolled relation rr→, such that the language generated by the
rewriting system equals #L0 modulo intersection with #Σ∗.
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Take any two linear context-free languages K,M ⊆ Σ∗, such that L0 = MK−1;
it is easy to construct such languages using the method of Baker and Book [1].
Then define Σ′ = Σ ∪ Σ̃, where Σ̃ = {ã | a ∈ Σ}. Let �r→= {(ã, ã) | a ∈ Σ} be a
copy relation; consider the set N = { aã | a ∈ Σ } ∪ {ε} and define rr→ = N ×N .
Take the initial set I = K̃#M . Then the language L generated by this rewriting
system satisfies L ∩#Σ∗ = #MK−1.

4 Sending

This section is devoted to one-way S-rewriting systems, in which we are allowed
to delete and add words on the beginning of the word or delete a word on
the beginning and append some word to the end. This has a clear meaning in
terms of communication between stacks: the left stack processes information and
occasionally sends the results to the right stack as to the output.

Let us first suppose the sending relation �r→ is uncontrolled. Following is an
example of a weakest system of this kind, in which the processing relation ��→ is
also uncontrolled: however, a nonregular language can still be produced.

Example 1. Let Σ = {a, b} and let ��→,
�r→ = {a, aab}×{a, aab},

i.e., ��→,
�r→ ∈ Unc(Fin) and a single two-element set is used for

both relations. Let I = {ab#}. Then the set L of derivable
words satisfies L ∩ b∗#a∗ = {bn#an | n  1}.

Notice that every word in L has the same number of occurrences of a and of b,
since the initial word has this property and each step of rewriting preserves it.
On the other hand, every word abn#an−1, for n  1, can be inductively derived
from ab#, and bn#an is obtained from it.

Though the language generated in Example 1 is nonregular, it is linear
context-free. It turns out that even if the relation ��→ is controlled, the generated
languages are always linear context-free.

Proposition 1. Let ��→ be a recognizable relation, let
�r→ = X×Y be an uncontrolled relation in Unc(Reg,Reg)
and let I be regular. Then the language generated by the
system is linear context-free.

Later we shall prove a more general statement, Theorem 5. For now let us turn to
the second case of a controlled sending relation. Here even with an uncontrolled
��→ every context-free language can be generated.

Theorem 3. For every context-free language L ⊆ Σ∗ there
exist an alphabet Γ ⊃ Σ, relations ��→∈ Unc(Fin,Fin) and
�r→ ∈ Copy, and a singleton initial set I, such that the rewriting
system generates #L modulo intersection with #Σ∗. Given
a context-free grammar for L, this rewriting system can be
effectively constructed.
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Assume G = (Σ,N,P,S) in Chomsky normal form with possible empty rules.
Consider the alphabet Γ = Σ ∪ N ∪ N̂ ∪ Ñ , where N̂ = {Â | A ∈ N} and
Ñ = {Ã |A ∈ N}, and construct the following two finite sets:

X = N ∪ {ÃÂ | A ∈ N}
Y = {BB̂CĈÃ | A → BC ∈ P} ∪ {wÃ | A → w ∈ P} ∪ {ε}

Define I = {SŜ#}, ��→ = X × Y and let a �r→ a for all a ∈ Σ.
The nonterminals always come in pairs, like AÂ. An application of a rule

A → BC is simulated by erasing A ∈ X and then by writing down BB̂CĈÃ ∈ Y ,
which gives BB̂CĈÃÂ. Later the pair ÃÂ is removed, which verifies that the
rule applied here matches the nonterminal erased. It can be proved that if this
protocol is violated, then a word #w can no longer be derived.

Claim. If uA1 . . .An is a sentential form ofG, then ∃ θ1, . . . , θn ∈ {D̃D̂|D ∈ N}∗,
such that A1Â1θ1 . . .AnÂnθn#u is derivable in the rewriting system.

Denote by d(α) the word obtained from α ∈ (Γ ∪ {#})∗ by deleting all occur-
rences of elements of N̂ ∪ Ñ .

Claim. Every word α derivable in the rewriting system, from which a word be-
longing to #Γ ∗ can be derived, belongs to the language Σ∗{AÂ, ÃÂ | A ∈ N }∗
#Σ∗. In addition, if d(α) = θ#u, then uθ can be derived in G.

It follows that a word #w is generated by this rewriting system if and only if
w ∈ L(G), which proves Theorem 3. If the least controlled S-rewriting yields all
context-free languages, what could be its expressive power in a fully controlled
case? In fact, still nothing but the context-free languages can be generated.

Theorem 4. Let ��→ be a recognizable relation, let �r→ be a ra-
tional relation, let I be context-free. Then the language gen-
erated by this rewriting system is context-free. Given a finite
automaton for ��→, a finite transducer for �r→ and a context-
free grammar for I, a context-free grammar for the generated
language can be effectively constructed.

The proof is based upon two results, which are interesting on their own. One of
them is the closure of the context-free languages under the cyclic shift operation
(see, e.g., Hopcroft and Ullman [6, solution to Ex. 6.4c]).

Lemma 3. For every context-free language L, the language shift(L) = {uv |vu
∈ L} is context-free. Given a context-free grammar for L, a context-free grammar
for shift(L) can be effectively constructed.

Another key property is that pushdown automata with initial pushdown contents
defined by a context-free language still recognize only context-free languages.
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Fig. 2. The PDA in the proof of Theorem 4

Lemma 4. Let Σ and Γ be two alphabets, and let L0 be a context-free language
over Γ . Let A = (Q,Σ,Γ, q0, δ,F ) be a standard PDA without the initial push-
down symbol. Then the language of all words w, for which there exists x0 ∈ L0,
such that A accepts w given x0 as the initial pushdown contents, is context-free
and a standard PDA recognizing this language can be effectively constructed.

This can be regarded as a system of two cooperating pushdown automata, in
which one PDA supplies the initial contents of the pushdown for the other. We
prove such a superposition is no more powerful than a single PDA.

Another interpretation of this result is the following. Let us say that each
PDA A defines a relation R ⊆ Γ ∗ × Σ∗ between its pushdown and its input.
This relation is defined as R(α,w) if and only if (q0,α,w) � (qF , ε, ε) for some
qF ∈ F . Then our lemma states that any such relation preserves context-freeness.

One more interpretation is that the word given in the pushdown is a “certifi-
cate” of the membership of the input word, and we prove that an access to a
context-free certificate does not give a PDA any extra computational power.

Lemma 5. Consider a one-way S-rewriting system over an alphabet Σ as de-
fined in Theorem 4. Let ��→ =

⋃n
i=1 Xi × Yi, let a finite transducer for �r→ have a

transition function δ, and construct a PDA over a common input and pushdown
alphabet Σ ∪ {$}, where $ /∈ Σ is a new symbol, as shown in Figure 2. Then the
PDA can reach an accepting configuration from a configuration (q0, y$x, v$u),
where y$x is the pushdown and v$u is the input, if and only if x#y =⇒∗ u#v.

Combining Lemmata 3–5, we obtain a succinct proof of our statement on the
power of S-rewriting. Let $ /∈ Σ, let L be the language generated by the rewriting
system. Given the initial set I, define I ′ = shift(I$) · {#}−1 = {v0$u0 |u0#v0 ∈
I}. By Lemma 3 and by the well-known closure of the context-free languages
under quotient with regular languages, I ′ is context-free.

Construct a PDA A as in Lemma 5 and let I ′ be the language of its initial
pushdown words. Using Lemma 5, we can prove that L(A) = {v$u | u#v ∈ L}.
Next, by Lemma 4, the language L(A) is context-free. It remains to apply the
cyclic shift again to obtain shift(L(A)#) · {$}−1 = L, and this language is
context-free by the same closure properties as above.
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5 Receiving and Sending

We shall now consider one-way RS-rewriting, which is the strongest type of one-
way rewriting that uses the relations ��→, �r→ and rr→, As in the case of S-rewriting,
the expressive power is mainly determined by whether �r→ is controlled or not.
Let us first consider the case of an uncontrolled �r→.

Theorem 5. Let �r→ ∈ Unc(Reg,Reg) be uncontrol-
lable, let ��→ and rr→ be recognizable relations, let I be reg-
ular. Then the generated language can be recognized by a
one-turn counter automaton, and, given finite automata
for �r→, ��→, rr→ and I, this PDA can be constructed.

The proof generally follows the scheme used for Theorem 1: first we define the
language of computational histories, then use reductions to obtain the language
generated by the rewriting system. However, the use of counter one-turn au-
tomata instead of finite automata in this context is novel, so we can no longer
rely upon any well-known results.

Let Σ be the alphabet and define its two copies:
−→
Σ = {−→a | a ∈ Σ} and

←−
Σ =

{←−a |a ∈ Σ}. For every word w = a1 . . . a� ∈ Σ∗, with �  0, denote −→w = −→a� . . .
−→a1

and ←−w =←−a� . . .
←−a1. Extend this notation to languages as

−→
L = {−→w | w ∈ L} and

←−
L = {←−w | w ∈ L} for every L ⊆ Σ∗. Consider the alphabet Σ3 = Σ ∪ −→Σ ∪←−Σ .

Let L� = {y−→x | x → y ∈ ��→}, Lr = {←−x y | x → y ∈ rr→} and �r→ = Z ×W , and
define the language of computation histories L0 ⊆ Σ3 as follows:

L0 =
{
αn
−→zn . . . α1

−→z1α0u0#v0β0w1β1 . . . wnβn

∣∣
u0#v0 ∈ I,αi ∈ L�,βi ∈ Lr, zi ∈ Z,wi ∈ W

}
Consider the following reduction rules on Σ∗3 : −→a a → ε and a←−a → ε, for all

a ∈ Σ. A word α ∈ Σ∗3 is said to be reducible to β ∈ Σ∗3 if and only if it can be
transformed to β by zero or more such reductions.

Lemma 6. A word u#v ∈ Σ∗#Σ∗ is generated by the system if and only if
there exists α ∈ L0 reducible to u#v.

In contrast to Theorem 1, here the language of computation histories is, in
general, not regular. However, it can be recognized by a pushdown automaton
from a simple subclass. Let I =

⋃
i I�,i#Ir,i,

��→ =
⋃

iXi×Yi and rr→ =
⋃

i Ui×Vi.

Lemma 7. Consider a counter automaton A over the input alphabet Σ3 ∪ {#}
and with transitions defined according to Figure 3. Then L(A) = L0. Addition-
ally, A makes one reversal of the counter in each computation, and this reversal
takes place exactly over the center marker.

Note that arcs labelled with regular languages specify subautomata that simulate
DFAs for these languages without modifying the counter.

It turns out that the reductions we consider can be effectively implemented
for PDAs of this restricted form.
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Fig. 3. A one-turn counter automaton recognizing “computation histories”

Lemma 8. Let A be a one-turn counter automaton over Σ3, such that L(A) ⊆
(Σ ∪ −→Σ )∗#(Σ ∪ ←−Σ )∗, and for every computation of A on an input u#v, the
turn of the counter takes place over the center marker. Then the set of words in
Σ∗#Σ∗ that can be obtained by reduction of some words in L(A) is recognized by
a one-turn counter automaton B, which, given A, can be effectively constructed.

These three lemmata yield a proof of Theorem 5.
As we have seen, having an uncontrolled relation �r→ limits the expressive

power of RS-rewriting to a subset of the context-free languages. Now let �r→ be
a controlled finite relation. We shall see that even if ��→ and rr→ are uncontrolled,
the resulting class of systems is still computationally universal.

Theorem 6. For every recursively enumerable lan-
guage L ⊆ Σ∗ there exists a one-way RS-rewriting
system formed by relations �r→ ∈ Fin and ��→,

rr→ ∈
Unc(Fin,Fin) and a singleton initial set I, such that
the language generated by the system, intersected with
a regular language R, equals L#. Given a type 0 gram-
mar for L, such a system and a finite automaton for R
can be effectively constructed.

Let G = (Σ,N,P,S) be a Chomsky type 0 grammar for L, let V = Σ ∪ N .
Consider a new alphabet V ∪V , where V = {s|s ∈ V }, and define an RS-rewriting
system as follows: I = {S#}, ��→ = rr→ = X ×X , where X = {aa | a ∈ V } ∪ {ε},
and �r→ = {(a, a), (a, a) | a ∈ V } ∪ {(u, v) | u → v ∈ P}.

Though this is a one-way rewriting and r�→ = ∅, a reverse communication
channel can be implemented by the following three-step protocol:

u#va ��=⇒ aau#va �r=⇒ au#vaa rr=⇒ au#v

First a symbol a ∈ Σ is guessed at the left and a pair aa is created. Then one
of these symbols is transferred to the right and cancelled there with the existing
a. Thus a has effectively been moved from the right to the left.

Claim. If w ∈ V ∗ is generated by G from S, then w# is derivable in the con-
structed rewriting system.
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It can be formally proved that if a wrong symbol is guessed in the above sequence,
or the protocol is violated in any other way, then a word of the form w# can
no longer be derived. Denote by d(x) the word obtained from x ∈ (V ∪ V )∗ by
deleting all occurrences of factors of the form aa for a ∈ V .

Claim. For every word α = y#x derivable in the rewriting system, from which
any word in V ∗# can be derived, the word d(x)d(y) can be derived in G.

This shows that w# is derived in the rewriting system if and only if w ∈ L(G).

6 Two-Way Communication

We shall establish the computational universality of two-way rewriting in its
weakest, least controlled form.

Theorem 7. For every recursively enumerable language L ⊆
Σ∗ there exists an alphabet Γ ⊃ Σ, finite uncontrolled relations
�r→ and r�→ and a word w ∈ Γ ∗#Γ ∗, such that the language gen-
erated by the two-way rewriting system from w equals λ(L)#
modulo intersection with λ(Σ∗)#, for a suitable non-erasing
morphism λ.

The general idea behind our construction is clear. The two stacks contain a sen-
tential form of Chomsky type 0 grammar, which is redistributed between the
stacks before every rewriting step. The symbols and productions are communi-
cated between the stacks in unary notation: in order to send an object number
n, f(n) empty messages are sent. The set of uncontrolled rules is constructed in
such a way that both parties must faithfully follow a certain rigid protocol, and
if they ever divert from it, they will never be able to get back on the right track.

This sounds easy in theory, but if one recalls that the stacks do not even have
local states, the task of constructing such a rewriting system will appear impos-
sible. However, there exists quite a sophisticated solution. Let P ⊆ Σ+×Σ+ be
a set of productions generating L from the initial symbol S ∈ Σ. We consider the
following extended alphabet: Γ = Σ ∪{£, $, c, a, b, c, d, e, g, ḡ, g̃,h, }. Let us de-
note n = |Σ ∪ P |+3 and fix an arbitrary bijection ϕ : Σ∪P → {3, . . . , n− 1}. We
define morphisms λ, ρ : Σ∗ → Γ ∗ by setting λ(A) = hAcnc and ρ(A) = ccnAh,
for every A ∈ Σ. Let �r→ = L− ×R+ and r�→ = R− × L+, where

L− = {$, cnch, gḡ, g̃£,£2ab} ∪ { {ε,h}Acϕ(A) | A ∈ Σ }
∪ {ε,h}−1{λ(u)(cn−ϕ(u→v)c)−1 | u → v ∈ P } ,

R+ = {£, c, g,h, a£2g̃ḡ$,hb, ccnde$} ∪ { ccnA$ϕ(A) | A ∈ Σ }
∪ { (ρ(v)h−1)$ϕ(u→v) | u → v ∈ P } ,

R− = {$, hccn, ḡg,£g̃, ba£2, eh, c2d} ∪ { cϕ(A)A{ε, h} | A ∈ Σ } ,

L+ = {£, c, g,h, $ḡg̃£2a, bh, $2Scnc} ∪ { $ϕ(A)Acnc | A ∈ Σ } .
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The initial set is defined as I = {gḡg̃£2ab#h}. To prove the theorem, it
is sufficient to verify the following equivalence:

Main Claim. A word w ∈ Σ∗ can be generated in P if and only if the word
λ(w)# is derivable in our rewriting system.

To prove that every word λ(w)#, where w ∈ Σ∗ is generated by P , can be
derived, we simulate each step u

P=⇒ v of a derivation in P by shifting a fac-
tor λ(u) from the left to the right, modifying it to ρ(v) during this transfer, and
then copying it back to get λ(v). During each of these manipulations one pair
h is consumed on the left and one pair h is consumed on the right, so before
starting the actual simulation we have to generate a sufficient amount of these
pairs, which we call “fuel”.

Claim 1 (Fuel generation). For every m ∈ IN, the word λ(S)(h)m#(h)m can
be derived in the rewriting system.

The proof is by first deriving gḡg̃£2ab(h)m−1#(h)m for everym ∈ IN, which
can be done inductively on m. The required word is obtained from this.

Claim 2 (Copying a letter). Let x, y ∈Σ∗ and A ∈Σ. Then for every m∈IN
and k∈ IN0, the word (h)−1λ(x)(h)m#(h)kρ(yA) can be derived both from
λ(Ax)(h)m#(h)kρ(y) and from (h)−1λ(Ax)(h)m#(h)kρ(y). Dually, for ev-
ery m ∈ IN0 and k ∈ IN, the word λ(Ax)(h)m#(h)kρ(y)(h)−1 can be derived
both from λ(x)(h)m#(h)kρ(yA) and from λ(x)(h)m#(h)kρ(yA)(h)−1.

Claim 3 (Applying a production). For every x, y ∈ Σ∗, m, k ∈ IN and u → v ∈ P ,
the word (h)−1λ(y)(h)m#(h)kρ(xv) can be derived both from λ(uy)(h)m

#(h)kρ(x) and from (h)−1λ(uy)(h)m#(h)kρ(x).

Claim 4 (Simulating generation). For everym ∈ IN0 and every wordw generated
by P , the word λ(w)(h)m#(h)m can be derived in the rewriting system.

The proof is by induction on the length of the derivation of w. The basis (the
start symbol) is given by Claim 1. To prove Claim 4 for an n-step derivation and
m, we use the inductive hypothesis for the shorter (n − 1)-step derivation and
the number m+1. Then we continue simulating the derivation by using Claim 2
an appropriate number of times to move the tape to the desired location, then
Claim 3 once to apply the production, and then again redistribute the symbols
by Claim 2, consuming one unit of fuel from each side in the process.

Taking m = 0 in Claim 4, we obtain that the word λ(w)# can be derived as
long as w ∈ L, which proves the forward implication of the Main Claim.

To prove the converse, consider words derived by our rewriting system that
belong to one of the following languages:

L1 = λ(Σ∗)(h)∗#(h)∗ρ(Σ∗)(h)−1

L2 = (h)−1λ(Σ∗)(h)∗#(h)∗ρ(Σ∗)
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We shall show that if any mistake is made in a derivation, then it can never lead
to a word belonging to any of these languages.

Let us first establish that the information about a symbol being moved or a
production being applied is always correctly communicated to the other side.

Claim 5 (Soundness of data transfer). Let m, k ∈ IN and α ∈ Γ ∗#Γ ∗ be arbi-
trary, and let j ∈ Γ be a letter such that no word from R− ends with j (no
word from L− starts with j). Then some word from L1∪L2 can be derived from
the word cmcαj$k ($kjαccm) only if m+ k = n, and every derivation leading to
a word from L1 ∪ L2 starts by applying k-times the rule ($, c) ∈ r�→ (($, c) ∈ �r→,
respectively). Further, some word from L1 ∪ L2 can be derived from the word
£maαj$k ($kjαa£m) only if m = k = 1, and every derivation leading to a word
from L1 ∪ L2 starts by applying the rule ($,£) ∈ r�→ (($,£) ∈ �r→, respectively).

Claim 6 (Soundness of the simulation). Let x, y ∈ Σ∗. Then, if any word from
λ(y)(h)∗#(h)∗ρ(x)(h)−1∪(h)−1λ(y)(h)∗#(h)∗ρ(x) can be derived in the
rewriting system, this implies that xy can be generated in P .

Now we can verify the converse of the Main Claim: for every w ∈ Σ∗, if the word
λ(w)# can be derived in our rewriting system, then by Claim 6 the word w can
be generated by P . This completes the proof of computational universality of
uncontrolled two-way rewriting systems, which in turn concludes our study.
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Abstract. This paper studies the equational theory of bisimulation
equivalence over the process algebra BCCSP extended with the prior-
ity operator of Baeten, Bergstra and Klop. It is proven that, in the
presence of an infinite set of actions, bisimulation equivalence has no
finite, sound, ground-complete equational axiomatization over that lan-
guage. This negative result applies even if the syntax is extended with
an arbitrary collection of auxiliary operators, and motivates the study
of axiomatizations using conditional equations. In the presence of an
infinite set of actions, it is shown that, in general, bisimulation equiva-
lence has no finite, sound, ground-complete axiomatization consisting of
conditional equations over BCCSP. Sufficient conditions on the priority
structure over actions are identified that lead to a finite, ground-complete
axiomatization of bisimulation equivalence using conditional equations.

1 Introduction

Programming and specification languages often include constructs to specify
mode switches (see, e.g., [17, 19]). Indeed, some form of mode transfer in compu-
tation appears in operating systems in the guise of interrupts, in programming
languages as exceptions, and in the behaviour of control programs and embed-
ded systems as discrete “mode switches” triggered by changes in the state of
their environment. Such mode changes are often used to encode different levels
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of urgency amongst the actions that can be performed by a system as it com-
putes, and implement variations on the notion of pre-emption. Classic process
description languages include primitive operators to describe mode changes—for
example, LOTOS [9] offers the so-called disruption operator—or have been ex-
tended with variations on mode transfer operators. Examples of such operators
for the process algebra CCS are discussed by Milner in [18, pp. 192–193].

One of the most widely studied, and natural, notions used to implement dif-
ferent levels of urgency between system actions is priority. (A thorough and clear
discussion of the different approaches to the study of priority in process descrip-
tion languages may be found in [12].) In this paper, we consider the well-known
priority operator Θ studied by Baeten, Bergstra and Klop [5] in the context
of process algebra. (See [10, 11, 12, 13] for later accounts of this operator in the
setting of process description languages.) The priority operator Θ gives certain
actions priority over others based on an irreflexive partial ordering relation <
over the set of actions. Intuitively, a < b is interpreted as “b has priority over
a”. This means that, in the context of the priority operator Θ, action a is pre-
empted by action b. For example, if p is some process that can initially perform
both a and b, then Θ(p) will initially only be able to execute the action b.

In their classic paper [5], Baeten, Bergstra and Klop provided a sound and
ground-complete axiomatization for this operator modulo bisimulation equiv-
alence. Their axiomatization uses predicates on actions (to express priorities
between actions) and one extra auxiliary operator. Bergstra showed in the ear-
lier paper [6] that, in case of a finite alphabet of actions, there exists a finite
equational axiomatization for Θ, without action predicates and help operators.
So, if the set of actions is finite, neither conditional equations nor auxiliary op-
erators, as used in [5], are actually necessary to obtain a finite axiomatization of
bisimulation equivalence over basic process description languages enriched with
the priority operator. But, can Bergstra’s positive result be extended to a setting
with a countably infinite collection of actions? Or are conditional equations and
auxiliary operators necessary to obtain a finite axiomatization of bisimulation
equivalence in the presence of an infinite collection of actions? (Note that infi-
nite sets of actions are common in process calculi, and arise, for instance, in the
setting of value- or name-passing calculi.) The aim of this paper is to provide a
thorough answer to these questions in the setting of the process algebra BCCSP
enriched with the priority operator Θ. In case of an infinite alphabet, we permit
the occurrence of action variables in axioms.

The process algebra BCCSP contains only basic process algebraic operators
from CCS and CSP, but is sufficiently powerful to express all finite synchro-
nization trees. This paper considers the equational theory of BCCSP with the
priority operator Θ from [5] modulo bisimulation equivalence. Our first main
result is a theorem indicating that the use of conditional equations is indeed
inevitable in order to offer a finite axiomatization of bisimulation equivalence
over the basic process language we consider in this study. To this end, we prove
that, in case of an infinite alphabet and in the presence of at least one pri-
ority relation a < b between a pair of actions, there is no finite equational
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axiomatization for BCCSP enriched with the priority operator (Theorem 2).
This result even applies if one is allowed to add an arbitrary collection of help
operators to the syntax. Theorem 2 offers a very strong indication that the use
of conditional equations, where the conditions consist of action predicates, is
essential for axiomatizing Θ, and cannot be circumvented by introducing auxil-
iary operators. (This is in contrast to the classic positive and negative results on
the existence of finite equational axiomatizations for parallel composition offered
in [7, 20, 21].)

Having established that conditional equations are necessary in order to obtain
a finite, ground-complete equational axiomatization of bisimulation equivalence,
we then proceed to investigate whether, in the presence of an infinite set of
actions, this equivalence can be finitely axiomatized using conditional equations,
but without auxiliary operators like the unless operator used in [5]. We show that,
in general, the answer to this question is negative. This we do by exhibiting a
priority structure with respect to which bisimulation equivalence affords no finite,
sound and ground-complete axiomatization in terms of conditional equations
(Theorem 3). This shows that, in general, the use of auxiliary operators is indeed
necessary to axiomatize bisimulation equivalence finitely, even using conditional
equations and over the simple language considered in this study.

In contrast to the aforementioned negative results, we exhibit a countably infi-
nite, ground-complete axiomatization for bisimulation equivalence over BCCSP
with the priority operator in terms of conditional equations (Theorem 4). This
axiomatization suggests that infinite collections of pairwise incomparable ac-
tions with respect to the priority relation < are the source of our negative result
presented in Theorem 3.

Our results add the priority operator to the list of operators whose addition to
a process algebra spoils finite axiomatizability modulo bisimulation equivalence;
see, e.g., [2, 4, 20, 21, 22] for other examples of non-finite axiomatizability results
over process algebras.

Most of the proofs have been omitted from this extended abstract; they can
be found in the full version of the paper [1]. Only for the negative result in
Section 5.1 do we provide a proof sketch.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based.

2.1 The Language BCCSPΘ

Act denotes a non-empty alphabet of atomic actions, with typical elements
a, b, c, d, e. Over Act we assume an irreflexive, transitive partial ordering < to
express priorities between actions. Intuitively, a < b expresses that the action b
has priority over the action a. We say that actions a1, . . . , an are incomparable
if they are distinct and ai < aj does not hold for all 1 ≤ i, j ≤ n.
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The language of processes we shall consider in this paper, henceforth referred
to as BCCSPΘ, is obtained by adding the unary priority operator Θ from [5] to
the basic process algebra BCCSP [14, 15]. The language is given by the following
grammar:

t ::= 0 | a.t | t+ t | Θ(t) | x | α.t ,

where a ranges over Act , x is a process variable and α is an action variable.
Process and action variables range over given, disjoint countably infinite sets.
We use x, y, z to range over the collection of process variables, and α,β as typical
action variables. We use t,u, v to range over the collection of open process terms.
A process term is closed if it does not contain any variables, and p, q, r, range
over the set of closed terms T(BCCSPΘ). The size of a term is its length in
function symbols.

A substitution maps each process variable to a process term, and each action
variable to an action or action variable. A substitution is closed if it maps process
variables to closed process terms and action variables to actions. For every term
t and substitution σ, the term obtained by replacing occurrences of process
variables x and action variables α in t with σ(x) and σ(α) is written σ(t).

The semantics of the operators is captured by the transition rules below, which
give rise to Act-labelled transitions between closed terms:

a.x
a→ x

x1
a→ y

x1 + x2
a→ y

x2
a→ y

x1 + x2
a→ y

x
a→ y x

b
� for all b such that a < b

Θ(x) a→ Θ(y)

where a ranges over Act . Intuitively, closed terms in the language BCCSPΘ

represent finite process behaviours, where 0 does not exhibit any behaviour,
p+ q is the nondeterministic choice between the behaviours of p and q, and a.p
executes action a to transform into p. Furthermore, the process graph of Θ(p)
is obtained by eliminating all transitions q a→ q′ from the process graph of p for
which there is a transition q

b→ q′′ with a < b.
We consider the language BCCSPΘ modulo bisimulation equivalence.

Definition 1. A binary symmetric relation R over T(BCCSPΘ) is a bisimula-
tion if p R q together with p

a→ p′ imply q
a→ q′ for some q′ with p′ R q′. We

write p ↔ q if there is a bisimulation relating p and q. The relation ↔ will be
referred to as bisimulation equivalence or bisimilarity.

It is well-known that↔ is an equivalence relation. Moreover, the transition rules
are in the GSOS format of [8]. Hence, bisimulation equivalence is a congruence
with respect to all the operators in the signature of BCCSPΘ, meaning that
p↔ q implies C[p]↔ C[q] for each BCCSPΘ-context C[].

We can therefore consider the algebra of the closed terms in T(BCCSPΘ)
modulo ↔. In Section 4, we shall offer results that apply to any signature Σ
that extends the one of BCCSPΘ. To this end, we shall tacitly assume that
all of the new operators in Σ also preserve bisimulation equivalence, and are
semantically interpreted as operations over finite synchronization trees [18].
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2.2 Equational Logic

An axiom system is a collection of equations t ≈ u over the language BCCSPΘ.
An equation t ≈ u is derivable from an axiom system E, notation E � t ≈ u,
if it can be proven from the axioms in E using the rules of equational logic
(viz. reflexivity, symmetry, transitivity, substitution and closure under BCCSPΘ

contexts). Without loss of generality one may assume that substitutions happen
first in equational proofs, i.e., that the rule t≈u

σ(t)≈σ(u) may only be used when
t ≈ u ∈ E. Moreover, by postulating that for each axiom in E also its symmet-
ric counterpart is present in E, we can disregard applications of symmetry in
equational proofs. In the remainder of this paper, we shall tacitly assume that
our equational axiom systems are closed with respect to symmetry. Further-
more, it is well-known (cf., e.g., Section 2 in [16]) that if an equation relating
two closed terms can be proven from an axiom system E, then there is a closed
proof for it. (A proof is closed if it only mentions closed terms.) We shall only
consider questions related to the provability of closed equations from an axiom
system. Therefore, in light of the previous observation, we can restrict ourselves
to considering closed proofs.

An equation t ≈ u is sound with respect to ↔ if σ(t) ↔ σ(u) holds for each
closed substitution σ. An axiom system E is called sound over some language
modulo ↔ if E � t ≈ u implies t ↔ u, for all terms t,u in the language.
Conversely, E is called ground-complete if p↔ q implies E � p ≈ q, for all closed
terms p, q in the language.

Our order of business in the remainder of this paper will be to offer a thor-
ough study of the equational theory of the language BCCSPΘ modulo bisimu-
lation equivalence. We begin our investigation by considering the case in which
the set of actions Act is finite. We then move on to investigate the equational
properties of bisimulation equivalence over BCCSPΘ when the set of actions is
infinite.

3 |Act | < ∞

In this section, we assume that the action set is finite. The axiom system in
Table 1 was put forward by Jan Bergstra in [6]. Note that, in the case of a finite
action set, this axiom system is finite, since then the axiom schemas PR2–4 give
rise to finitely many equations.

Theorem 1 (Bergstra [6]). The axiom system (A1)–(A4) and (PR1)–(PR4)
is sound and ground-complete for BCCSPΘ modulo ↔.

In the remainder of this paper, process terms are considered modulo associativity
and commutativity of +. We use

∑n
i=1 ti to denote t1+ · · ·+tn, where the empty

sum represents 0. Modulo the axioms (A1) and (A2), every term t in the language
BCCSPΘ has the form

∑n
i=1 ti, where the terms ti do not have the form t′+ t′′.

The terms ti are called the summands of t.
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Table 1. Axiomatization in case of |Act | < ∞

A1 x + y ≈ y + x
A2 x + (y + z) ≈ (x + y) + z
A3 x + x ≈ x
A4 x + 0 ≈ x

PR1 Θ(0) ≈ 0
PR2 Θ(a.x + a.y + z) ≈ Θ(a.x + z) + Θ(a.y + z)
PR3 Θ(a.x + b.y + z) ≈ Θ(b.y + z) (a < b)
PR4 Θ(a1.x1 + · · · + an.xn) ≈ a1.Θ(x1) + · · · + an.Θ(xn)

(a1, . . . , an incomparable)

4 |Act | = ∞
In this section, we deal with the case that the action set is infinite. Our main
result is that bisimulation equivalence does not afford a finite equational axiom-
atization over the language BCCSPΘ, provided that Act contains at least two
actions a, b with a < b. (Otherwise, the equation Θ(x) ≈ x would be sound, and
the priority operator could be eliminated from all terms.) This negative result
even applies if BCCSPΘ is extended with an arbitrary collection of operators
(over finite synchronization trees) for which bisimulation is a congruence.

The idea behind the proof of our main result of this section is that a finite
axiom system E can mention only finitely many action names. So, since Act is
infinite, we can find a pair c, d of distinct actions that do not occur in E. If c
and d are incomparable, then the equation Θ(c.0 + d.0) ≈ c.0 + d.0 is sound;
if c < d, then Θ(c.0 + d.0) ≈ d.0 is sound. In the first case, we show that an
equational proof of Θ(c.0 + d.0) ≈ c.0 + d.0 from E would give rise to a proof
of the unsound equation Θ(a.0 + b.0) ≈ a.0 + b.0 from E. This follows by a
simple renaming argument, using that c and d do not occur in E. Likewise, in
the second case, a proof of Θ(c.0 + d.0) ≈ d.0 from E would give rise to a proof
of the unsound equation Θ(d.0 + c.0) ≈ c.0 from E.

Theorem 2. Let |Act | =∞, and a < b for some a, b ∈ Act. Let Σ be a signature
consisting of the operators in BCCSPΘ, together with auxiliary operators for
which bisimulation equivalence is a congruence. Then bisimulation equivalence
has no finite, sound and ground-complete axiomatization over T(Σ).

5 Axiomatizing Priority Conditionally

Theorem 2 offers very strong evidence that, in the presence of an infinite set
of actions, equational logic is inherently not sufficiently powerful to achieve a
finite axiomatization of bisimilarity over closed terms in the language BCCSPΘ.
Indeed, that result holds true even in the presence of an arbitrary number of
auxiliary operators.
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In the presence of action variables, it is natural to view our language as
consisting of two sorts: one for actions and the other for processes. This is all
the more true because the set of actions has the structure of a partial order, and
we should like to express axioms over processes that reflect the influence that
this poset structure on actions has on the behaviour of processes. In case our set
of actions is finite, this can be done by means of a finite number of equations
that are instances of (PR3) and (PR4) in Table 1.

In the presence of an infinite action set, however, the axiom schemas (PR3)
and (PR4), as well as (PR2), have infinitely many instances. One way to capture
their effects finitely is, in the presence of action variables, to phrase the equation
schemas (PR3) and (PR4) as conditional equations thus:

(CPR3) (α < β) ⇒ Θ(α.x + β.y + z) ≈ Θ(β.y + z)

(CPR4)n (
∧

1≤i,j≤n

¬(αi < αj)) ⇒

Θ(α1.x1 + · · ·+ αn.xn) ≈ α1.Θ(x1) + · · ·+ αn.Θ(xn) (n ≥ 0) .

In both of the above conditional equations, we use predicates over actions to
restrict the applicability of the equation on the right-hand side of the implication.
In general, henceforth in this study we shall consider conditional equations of the
form P ⇒ t ≈ u, where P is a predicate over actions, and t ≈ u is an equation
over the language BCCSPΘ. In what follows, we shall assume that predicates
over actions are expressed using formulae in first-order logic with equality and
the binary relation symbol <.

The semantics of a predicate P is given by the collection of closed substitutions
that satisfy it. If P is a tautology, then we simply write t ≈ u. For instance, a
version of of equation (PR2) with action variables will be written thus:

(CPR2) Θ(α.x + α.y + z) ≈ Θ(α.x + z) +Θ(α.y + z) .

Note that equation (PR1) in Table 1 is just (CPR4)0. Moreover, since < is
irreflexive, the conditional equation (CPR4)1 reduces to Θ(α.x) ≈ α.Θ(x).
(Note that this equation can be derived from each of the (CPR4)n with n ≥ 1
and (A3).)

A conditional equation P ⇒ t ≈ u is sound with respect to bisimilarity, if
σ(t)↔ σ(u) holds for each closed substitution σ that satisfies predicate P . It is
not hard to see that for each partial order of actions (Act ,<), the conditional
equations (CPR2), (CPR3) and (CPR4)n (n ≥ 0) are sound modulo bisimilarity
over the language BCCSPΘ.

A natural question to ask at this point, and one that we shall address in
the remainder of this study, is whether, unlike standard equational logic, con-
ditional equations suffice to obtain a finite, ground-complete axiomatization of
bisimulation equivalence over the language BCCSPΘ.

In their classic paper [5], Baeten, Bergstra and Klop offered a finite, condi-
tional, ground-complete axiomatization of bisimilarity over the language BPAδ

with the priority operator. Their axiomatization, however, relied upon the
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Table 2. Axioms for Θ in the presence of �

Θ(α.x) ≈ α.x
Θ(0) ≈ 0

Θ(x + y) ≈ (Θ(x) � y) + (Θ(y) � x)
¬(α < β) ⇒ (α.x) � (β.y) ≈ α.x
(α < β) ⇒ (α.x) � (β.y) ≈ 0

(α.x) � 0 ≈ α.x
0 � (α.x) ≈ 0

(x + y) � z ≈ (x � z) + (y � z)
x � (y + z) ≈ (x � y) � z

introduction of a binary auxiliary operator, the so-called unless operator �, whose
transition rules are:

x
a→ x′ y

b
� for all b such that a < b

x � y
a→ x′

, where a ∈ Act .

In the setting of BCCSPΘ, and using action variables in lieu of concrete ac-
tion names, the relation between the priority operator and the unless operator is
expressed by the conditional equations in Table 2. It is not too hard to see that
those conditional equations, together with (A1)–(A4) in Table 1, yield a ground-
complete, finite, conditional equational axiomatization of bisimulation equiva-
lence. Therefore, even in the presence of an infinite set of actions, bisimulation
equivalence affords a finite, ground-complete axiomatization using conditional
equations at the price of introducing a single auxiliary operator. But, if the set
of actions is infinite, is the use of an auxiliary operator like the unless operator
necessary to obtain a finite axiomatizability result for bisimulation equivalence
over BCCSPΘ using conditional equations?

5.1 A Negative Result

Our order of business will now be to prove that, in the presence of an infinite
set of actions, in general auxiliary operators are indeed necessary in order to
obtain a finite ground-complete axiomatization of bisimulation equivalence over
the language BCCSPΘ. In this section, Act = {ai, bi | i ≥ 1} ∪ {c}, where
ai < bi < c for each i ≥ 1, and these are the only inequalities. For convenience,
we consider terms not only modulo associativity and commutativity of +, but
also modulo the sound equations x+ 0 ≈ x and Θ(Θ(x) + y) ≈ Θ(x+ y).

The following lemma is the crux in the proof of Theorem 3. It states a property
of closed terms that holds for all of the closed instantiations of axioms in any
sound collection of conditional equations. In [3, Section 2.3] this is referred to as a
proof-theoretic technique to prove that there is no finite basis for the equational
theory. We use Φn to abbreviate

∑n
i=1 bi.0.

Lemma 1. Let P ⇒ t ≈ u be a conditional equation that is sound modulo ↔.
Let σ be a closed substitution with σ(P ) = true. Assume that:
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– n is larger than the size of t, where n ≥ 2; and
– the summands of σ(t) are all bisimilar to either Φn or 0.

Then the summands of σ(u) are all bisimilar to either Φn or 0.

Proof. The claim is easily seen to hold if σ(t)↔ 0. Assume therefore that some
summand of σ(t) is bisimilar to Φn. Then σ(t)↔ σ(u)↔ Φn.

Write t =
∑

i∈I ti and u =
∑

j∈J uj for some non-empty, finite index sets I
and J , where the terms ti and uj are of the form x, a.v, α.v or Θ(v). By the
proviso of the lemma, for each i ∈ I, the summands of σ(ti) are all bisimilar
to Φn or 0. Since n ≥ 2, for each i ∈ I, the term ti is not of the form a.v or
α.v. Hence either it is a process variable x, or it is of the form Θ(

∑
�∈Li

di�.t
′
i� +∑

m∈Mi
αm.t

′′
im +

∑
k∈Ki

zik) (modulo x+ 0 ≈ x and Θ(Θ(x) + y) ≈ Θ(x+ y)).
Let I ′ ⊆ I be the set of indices of summands of t that have the above form.
Observe that Ki �= ∅ for each i ∈ I ′ such that σ(ti) is bisimilar to Φn (because
n is larger than the size of t). Note moreover that summands ti of t having the
above form such that σ(ti)↔ 0 must have Li = Mi = ∅, and for such summands
σ(zik)↔ 0 for each k ∈ Ki.

Let us assume, towards a contradiction, that there is an index j ∈ J such that
σ(uj) has a summand that is bisimilar neither to Φn nor to 0. We proceed by a
case analysis on the form of uj . The cases where uj is of the form x, a.u′j or α.u′j
are easy and are omitted here. We focus on the case where uj = Θ(u′). Then uj

consists of a single summand, so by assumption, σ(uj) ↔/ Φn and σ(uj) ↔/ 0.
Since σ(u) ↔ Φn, u′ is of the form

∑
�∈L e�.u

′
� +
∑

m∈M βm.u
′′
m +

∑
k∈K yk.

We distinguish two cases.

1. For each i ∈ I ′ with σ(ti) ↔/ 0 there is a ki ∈ Ki such that ziki is not a
summand of u′.
Define the substitution σ′ as σ′(y) = c.0 if either y = ziki for some i ∈ I ′

with σ(ti)↔/ 0 or if y is a summand of t with σ(y)↔/ 0, and let σ′ agree with
σ on other process variables and on action variables. It is not hard to see that
σ′(t) bi� for i = 1, . . . , n (because c > bi and t has no summand of the form
a.v or α.v). On the other hand, since σ(uj)↔/ 0 and σ(u)↔ Φn, there is an

h with 1 ≤ h ≤ n such that σ(u′) bh→. Furthermore, σ(u′) c
�. By assumption,

ziki is not a summand of u′ for each i ∈ I ′ with σ(ti)↔/ 0. Moreover, for any
variable summand y of t with σ(y) ↔/ 0, y is not a summand of u′, because
by assumption σ(y) ↔ Φn while σ(u′) ↔/ Φn. So σ(u′) bh→ and σ(u′) c

�

imply σ′(u′) bh→ and σ′(u′) c
�. It follows that σ′(uj)

bh→, and so σ′(u) bh→.
Hence σ′(t) ↔/ σ′(u). Since σ′(P ) = σ(P ) = true, this contradicts the fact
that P ⇒ t ≈ u is sound modulo ↔.

2. {zi0k | k ∈ Ki0} ⊆ {yk | k ∈ K}, for some i0 ∈ I ′ with σ(ti0 ) ↔/ 0. In this
case, K is non-empty since, as previously observed, Ki0 is non-empty. By
the proviso of the lemma, σ(ti0 ) ↔ Φn, so (since n is larger than the size
of ti0) there is a k0 ∈ Ki0 with σ(zi0k0) ↔/ 0. Furthermore, by assumption,
σ(uj) ↔/ 0 and σ(uj) ↔/ Φn. Therefore, there is an h with 1 ≤ h ≤ n such

that σ(Θ(u′)) bh�. Define the substitution σ′ as σ′(y) = ah.0 if y = zi0k0 , and
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let σ′ agree with σ on other process variables and on action variables. We
argue that σ′(t) ah�. To this end, observe, first of all, that, since σ(Θ(u′)) bh�,
we have σ(

∑
k∈K yk) bh�, and so σ(zi0k0)

bh�. We are now ready to show that
no summand of σ′(t) affords an ah-labelled transition. We consider three
exhaustive possibilities:
(a) Let i ∈ I ′ with zi0k0 �∈ {zik | k ∈ Ki}. Then clearly σ′(ti)

ah�.
(b) Let i ∈ I ′ with zi0k0 ∈ {zik | k ∈ Ki}. Then σ(ti) ↔/ 0 because

σ(zi0k0) ↔/ 0, so by assumption σ(ti) ↔ Φn. This implies σ(ti)
bh→, so

since σ(zi0k0)
bh�, it follows that σ′(ti)

bh→. Since the outermost function
symbol of ti is Θ, we can conclude that σ′(ti)

ah�.

(c) Finally, since σ(zi0k0) ↔/ 0 and σ(zi0k0)
bh�, the proviso of the lemma

yields that zi0k0 cannot be a summand of t.
From the three cases above we can conclude that σ′(t) ah�. On the other

hand, σ′(Θ(u′)) ah→, because σ(Θ(u′)) bh� and zi0k0 ∈ {yk | k ∈ K}. Hence
σ′(u) ah→, and so σ′(t) ↔/ σ′(u). Since σ′(P ) = σ(P ) = true, this contradicts
the fact that P ⇒ t ≈ u is sound modulo ↔.

In summary, the assumption that some σ(uj) has a summand that is bisimilar
neither to Φn nor to 0, leads to a contradiction. This completes the proof. ��

The following proposition states that the property of closed instantiations of
sound conditional equations mentioned in the above lemma is preserved under
equational derivations from a finite collection of sound equations.

Proposition 1. Let E be a finite collection of conditional equations that is
sound modulo ↔. Let n ≥ 2 be larger than the size of any term in the equa-
tions of E. Assume, furthermore, that

– E � p ≈ q; and
– the summands of p are all bisimilar to Φn or 0.

Then the summands of q are all bisimilar to Φn or 0.

Proof. By induction on the depth of the closed proof of the equation p ≈ q from
E, using Lemma 1. ��

Theorem 3. Let Act = {ai, bi | i ≥ 1} ∪ {c}, where ai < bi < c for each
i ≥ 1, and these are the only inequalities. Then bisimulation equivalence has no
ground-complete axiomatization over BCCSPΘ consisting of a finite set of sound
conditional equations.

Proof. Let E be a finite collection of conditional equations that is sound modulo
↔. Let n ≥ 2 be larger than the size of any term in the equations of E. According
to Proposition 1, from E we cannot derive Θ(Φn) ≈ Φn. This equation is sound
modulo ↔, and therefore E is not ground-complete. ��
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5.2 A Positive Result

In the previous section, we offered an example of a priority structure (Act ,<)
with respect to which it is impossible to give a finite, ground-complete axioma-
tization of bisimulation equivalence over BCCSPΘ in terms of conditional equa-
tions without auxiliary operators. That result, however, does not imply that
auxiliary operators are always necessary to achieve a finite basis of conditional
equations for bisimulation equivalence. Our aim in this section is to substanti-
ate this claim by providing some general conditions over the priority structure
(Act ,<) that are sufficient to guarantee the existence of a finite, ground-complete
conditional axiomatization of bisimulation equivalence over BCCSPΘ.

Definition 2. An anti-chain in a poset (Act ,<) is a subset of Act consisting of
pairwise incomparable actions. The width of a poset (Act ,<) is the least upper
bound of the cardinalities of its anti-chains.

We now offer a countably infinite, ground-complete, conditional axiomatization
of bisimulation equivalence over BCCSPΘ. Such an axiomatization reduces to a
finite one if the poset of actions has finite width.

Theorem 4. Let (Act ,<) be an infinite poset of actions.

1. The axiom system consisting of (CPR2), (CPR3), (CPR4)n (n ≥ 0) and
(A1)–(A4) is ground-complete for bisimilarity over BCCSPΘ.

2. Assume that the width of (Act ,<) is k. Then the axiom system consisting of
(CPR2), (CPR3), (CPR4)k, (A1)–(A4) and (PR1) is ground-complete for
bisimilarity over BCCSPΘ.

The sufficient condition over (Act ,<) stated in the above theorem applies, for
instance, to any poset that has infinitely many finite anti-chains of bounded size.
For example, it can be used to show that bisimilarity affords a finite, ground-
complete axiomatization consisting of conditional equations over BCCSPΘ if,
for some k, the poset (Act ,<) has elements aij (i ≥ 1, 1 ≤ j ≤ k) ordered thus:
ahk < aij if, and only if, h < k. That poset has countably many finite, maximal
anti-chains of size k.

A more general sufficient condition over (Act ,<) that applies to some posets
containing infinite anti-chains, and still guarantees the existence of a finite con-
ditional basis of equations for bisimilarity over BCCSPΘ may be found in the
full version of the paper [1, Section 5.2]. That condition applies, for instance,
to the flat priority structure ({⊥, a0, a1, . . .},<), where the only ordering rela-
tions are given by ⊥ < ai for each i ≥ 0. Membership of the countably infi-
nite anti-chain {a0, a1, . . .} can be characterized syntactically by the predicate
P (α) = ∀β. ¬(α < β). We can therefore write the following, sound conditional
equation that allows us to reduce the number of summands within the scope of
a Θ operator:

P (α) ∧ P (β)⇒ Θ(α.x + β.y + z) ≈ Θ(α.x + z) +Θ(β.y + z) .

The generalization of Theorem 4(2) in the full version of this paper relies on the
isolation of conditions on the priority structure that ensure the soundness of the
above conditional equation over infinite, maximal anti-chains.
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Abstract. Using the left merge and communication merge from ACP,
we present an equational base (i.e., a ground-complete and ω-complete
set of valid equations) for the fragment of CCS without restriction and
relabelling. Our equational base is finite if the set of actions is finite.

1 Introduction

One of the first detailed studies of the equational theory of a process algebra was
performed by Hennessy and Milner [9]. They considered the equational theory of
the process algebra that arises from the recursion-free fragment of CCS (see [11]),
and presented a set of equational axioms that is complete in the sense that all
valid closed equations (i.e., equations in which no variables occur) are derivable
from it in equational logic [15]. For the elimination of parallel composition from
closed terms, Hennessy and Milner proposed the well-known Expansion Law, an
axiom schema that generates infinitely many axioms. Thus, the question arose
whether a finite complete set of axioms exists. With their axiom system ACP,
Bergstra and Klop demonstrated in [3] that it does exist if two auxiliary operators
are used: the left merge and the communication merge. It was later proved by
Moller [13] that without using at least one auxiliary operator a finite complete
set of axioms does not exist.

The aforementioned results pertain to the closed fragments of the equational
theories discussed, i.e., to the subsets consisting of the closed valid equations
only. Many valid equations, such as the equation (x ‖ y) ‖ z ≈ x ‖ (y ‖ z) ex-
pressing that parallel composition is associative, are not derivable (by means
of equational logic) from the axioms in [3] or [9]. In this paper we shall not
neglect the variables and contribute to the study of full equational theories of
process algebras. We take the fragment of CCS without recursion, restriction and
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relabelling, and consider the full equational theory of the process algebra that
is obtained by taking the syntax modulo bisimilarity [14]. Our goal is then to
present an equational base (i.e., a set of valid equations from which every other
valid equation can be derived) for it, which is finite if the set of actions is finite.
Obviously, Moller’s result about the unavoidability of the use of auxiliary opera-
tions in a finite complete axiomatisation of the closed fragment of the equational
theory of CCS a fortiori implies that auxiliary operations are needed to achieve
our goal. So we add left merge and communication merge from the start.

Moller [12] considers the equational theory of the same fragment of CCS,
except that his parallel operator implements pure interleaving instead of CCS-
communication and the communication merge is omitted. He presents a set of
valid axiom schemata and proves that it generates an equational base if the set
of actions is infinite. Groote [6] does consider the fragment including communi-
cation merge, but, instead of the CCS-communication mechanism, he assumes
an uninterpreted communication function. His axiom schemata also generate an
equational base provided that the set of actions is infinite. We improve on these
results by considering the communication mechanism present in CCS, and by
proving that our axiom schemata generate an equational base also if the set of
actions is finite. Moreover, our axiom schemata generate a finite equational base
if the set of actions is finite.

Our equational base consists of axioms that are mostly well-known. For par-
allel composition (‖), left merge (‖ ) and communication merge (|) we adapt the
axioms of ACP, adding from Bergstra and Tucker [4] a selection of the axioms
for standard concurrency and the axiom (x | y) | z ≈ 0, which expresses that the
communication mechanism is a form of handshaking communication.

Our proof follows the classic two-step approach: first we identify a set of
normal forms such that every process term has a provably equal normal form,
and then we demonstrate that for distinct normal forms there is a distinguishing
valuation that proves that they should not be equated. (We refer to the survey [2]
for a discussion of proof techniques and an overview of results and open problems
in the area. We remark in passing that one of our main results in this paper,
viz. Corollary 31, solves the open problem mentioned in [2, p. 362].) Since both
associating a normal form with a process term and determining a distinguishing
valuation for two distinct normal forms are easily seen to be computable, as a
corollary to our proof we get the decidability of the equational theory. Another
consequence of our result is that our equational base is complete for the set of
valid closed equations as well as ω-complete [7].

The positive result that we obtain in Corollary 31 of this paper stands in
contrast with the negative result that we have obtained in [1]. In that article we
proved that there does not exist a finite equational base for CCS if the auxiliary
operation |/ of Hennessy [8] is added instead of Bergstra and Klop’s left merge
and communication merge. Furthermore, we conjecture that a finite equational
base fails to exist if the unary action prefixes are replaced by binary sequential
composition. (We refer to [2] for an infinite family of valid equations that we
believe cannot all be derivable from a single finite set of valid equations.)
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The paper is organised as follows. In Sect. 2 we introduce a class of algebras
of processes arising from a process calculus à la CCS, present a set of equations
that is valid in all of them, and establish a few general properties needed in
the remainder of the paper. Our class of process algebras is parametrised by a
communication function. It is beneficial to proceed in this generality, because it
allows us to first consider the simpler case of a process algebra with pure inter-
leaving (i.e., no communication at all) instead of CCS-like parallel composition.
In Sect. 3 we prove that an equational base for the process algebra with pure
interleaving is obtained by simply adding the axiom x | y ≈ 0 to the set of equa-
tions introduced in Sect. 2. The proof in Sect. 3 extends nicely to a proof that,
for the more complicated case of CCS-communication, it is enough to replace
x | y ≈ 0 by x | (y | z) ≈ 0; this is discussed in Sect. 4.

2 Algebras of Processes

We fix a set A of actions, and declare a special action τ that we assume is not
in A. We denote by Aτ the set A∪ {τ}. Generally, we let a and b range over A
and α over Aτ . We also fix a countably infinite set V of variables. The set P of
process terms is generated by the following grammar:

P ::= x | 0 | α.P | P + P | P ‖ P | P | P | P ‖ P ,

with x ∈ V , and α ∈ Aτ . We shall often simply write α instead of α.0. Fur-
thermore, to be able to omit some parentheses when writing terms, we adopt
the convention that α. binds stronger, and + binds weaker, than all the other
operations.

Table 1. The operational semantics

α.P
α−−→ P

P
α−−→ P ′

P + Q
α−−→ P ′

Q
α−−→ Q′

P + Q
α−−→ Q′

P
α−−→ P ′

P ‖ Q
α−−→ P ′ ‖ Q

P
α−−→ P ′

P ‖ Q
α−−→ P ′ ‖ Q

Q
α−−→ Q′

P ‖ Q
α−−→ P ‖ Q′

P
a−−→ P ′, Q

b−−→ Q′, γ(a, b)↓
P | Q

γ(a,b)−−−−→ P ′ ‖ Q′

P
a−−→ P ′, Q

b−−→ Q′, γ(a, b)↓
P ‖ Q

γ(a,b)−−−−→ P ′ ‖ Q′

A process term is closed if it does not contain variables; we denote the set of
all closed process terms by P0. We define on P0 binary relations α−−→ (α ∈ Aτ )
by means of the transition system specification in Table 1. The last two rules in
Table 1 refer to a communication function γ, i.e., a commutative and associative
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partial binary function γ : A × A ⇀ Aτ . We shall abbreviate the statement
‘γ(a, b) is defined’ by γ(a, b)↓ and the statement ‘γ(a, b) is undefined’ by γ(a, b)↑.
We shall in particular consider the following communication functions:

1. The trivial communication function is the partial function f : A ×A⇀ Aτ

such that f(a, b)↑ for all a, b ∈ A.
2. The CCS communication function h : A×A ⇀ Aτ presupposes a bijection

.̄ on A such that a = a and a �= a for all a ∈ A, and is then defined by
h(a, b) = τ if a = b and undefined otherwise.

Definition 1. A bisimulation is a symmetric binary relation R on P0 such that
P R Q implies

if P α−−→ P ′, then there exists Q′ ∈ P0 such that Q α−−→Q′ and P ′ R Q′.

Closed process terms P,Q ∈ P0 are said to be bisimilar (notation: P ↔γ Q) if
there exists a bisimulation R such that P R Q.

The relation ↔γ is an equivalence relation on P0; we denote the equivalence
class containing P by [P ], i.e.,

[P ] = {Q ∈ P0 : P ↔γ Q} .

The rules in Table 1 are all in de Simone’s format [5] if P , P ′, Q and Q′ are
treated as variables ranging over closed process terms and the last two rules are
treated as rule schemata generating a rule for every a, b such that γ(a, b)↓. Hence,
↔γ has the substitution property for the syntactic constructs of our language of
closed process terms, and therefore the constructs induce an algebraic structure
on P0/↔γ , with a constant 0, unary operations α. (α ∈ Aτ ) and four binary
operations +, ‖ , | and ‖ defined by 0 = [0], α.[P ] = [α.P ], and [P ]�[Q] = [P �Q]
for � ∈ {+, ‖ , |, ‖}.

Henceforth, we denote by Pγ (for γ an arbitrary communication function)
the algebra obtained by dividing out ↔γ on P0 with constant 0 and operations
α. (α ∈ Aτ ), +, ‖ , |, and ‖ as defined above. The elements of Pγ are called
processes, and will be ranged over by p, q and r.

2.1 Equational Reasoning

We can use the full language of process expressions to reason about the elements
of Pγ . A valuation is a mapping ν : V → Pγ ; it induces an evaluation mapping

[[ ]]ν : P → Pγ

inductively defined by [[x]]ν = ν(x), [[0]]ν = 0, [[α.P ]]ν = α.[[P ]]ν and [[P � Q]]ν =
[[P ]]ν � [[Q]]ν for � ∈ {+, ‖ , |, ‖}. A process equation is a formula P ≈ Q with
P and Q process terms; it is said to be valid (in Pγ) if [[P ]]ν = [[Q]]ν for all
ν : V → Pγ . If P ≈ Q is valid in Pγ , then we shall also write P ↔γ Q. The
equational theory of the algebra Pγ is the set of all valid process equations, i.e.,

EqTh(Pγ) = {P ≈ Q : [[P ]]ν = [[Q]]ν for all ν : V → Pγ} .
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The precise contents of the set EqTh(Pγ) depend to some extent on the choice
of γ. For instance, the process equation x | y ≈ 0 is only valid in Pγ if γ is
the trivial communication function f ; if γ is the CCS communication function
h, then Pγ satisfies the weaker equation x | (y | z) ≈ 0.

Table 2. Process equations valid in every Pγ

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

L1 0 ‖ x ≈ 0
L2 α.x ‖ y ≈ α.(x ‖ y)
L3 (x + y) ‖ z ≈ x ‖ z + y ‖ z
L4 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
L5 x ‖ 0 ≈ x

C1 0 | x ≈ 0
C2 a.x | b.y ≈ γ(a, b).(x ‖ y) if γ(a, b)↓
C3 a.x | b.y ≈ 0 if γ(a, b)↑
C4 (x + y) | z ≈ x | z + y | z
C5 x | y ≈ y | x
C6 (x | y) | z ≈ x | (y | z)
C7 (x ‖ y) | z ≈ (x | z) ‖ y

P1 x ‖ y ≈ (x ‖ y + y ‖ x) + x | y

Table 2 lists process equations that are valid in Pγ independently of the choice
of γ. (The equations L2, C2 and C3 are actually axiom schemata; they generate
an axiom for all α ∈ Aτ and a, b ∈ A. Note that if A is finite, then these
axiom schemata generate finitely many axioms.) Henceforth whenever we write
an equation P ≈ Q, we shall mean that it is derivable from the axioms in Table 2
by means of equational logic. It is well-known that the rules of equational logic
preserve validity. We therefore obtain the following result.

Proposition 2. For all process terms P and Q, if P ≈ Q, then P ↔γ Q.

A set of valid process equations is an equational base for Pγ if all other valid
process equations are derivable from it by means of equational logic. The purpose
of this paper is to prove that if we add to the equations in Table 2 the equation
x|y ≈ 0 we obtain an equational base for Pf , and if, instead, we add x| (y |z) ≈ 0
we obtain an equational base for Ph. Both these equational bases are finite, if
the set of actions A is finite.

Definition 3. Let P be a process term. We define the height of a process term
P , denoted h(P ), inductively as follows:

h(0) = 0 ,
h(x) = 1 ,
h(α.P ) = h(P ) + 1 ,

h(P +Q) = max(h(P ),h(Q)) ,
h(P � Q) = h(P ) + h(Q) for � ∈ {‖ , |, ‖}.

Definition 4. We call a process term simple if it is not 0 and not an alternative
composition.
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Lemma 5. For every process term P there exists a collection of simple process
terms S1, . . . ,Sn (n ≥ 0) such that h(P ) ≥ h(Si) for all i = 1, . . . , n and

P ≈
n∑

i=1

Si (by A1, A2 and A4).

We postulate that the summation of an empty collection of terms denotes 0.
The terms Si will be called syntactic summands of P .

2.2 General Properties of Pγ

We collect some general properties of the algebras Pγ that we shall need in the
remainder of the paper.

The binary transition relations α−−→ (α ∈ Aτ ) on P0, which were used to asso-
ciate an operational semantics with closed process terms, will play an important
rôle in the remainder of the paper. They induce binary relations on Pγ , also
denoted by α−−→, and defined as the least relations such that P α−−→ P ′ implies
[P ] α−−→ [P ′]. Note that we then get, directly from the definition of bisimulation,
that for all P,P ′ ∈ P0:

[P ] α−−→ [P ′] iff for all Q ∈ [P ] there exists Q′ ∈ [P ′] such that Q α−−→Q′.

Proposition 6. For all p, q, r ∈ Pγ :

(a) p = 0 iff there do not exist p′ ∈ Pγ and α ∈ Aτ such that p α−−→ p′;
(b) α.p

β−−→ r iff α = β and r = p;
(c) p+ q α−−→ r iff p α−−→ r or q α−−→ r;
(d) p ‖ q

α−−→ r iff there exists p′ ∈ Pγ such that p α−−→ p′ and r = p′ ‖ q; and
(e) p | q α−−→ r iff there exist actions a, b ∈ A and processes p′, q′ ∈ Pγ such that

α = γ(a, b), p a−−→ p′, q b−−→ q′, and r = p′ ‖ q′; and
(f) p ‖ q α−−→ r iff p ‖ q α−−→ r or q ‖ p α−−→ r or p | q α−−→ r.

Let p, p′ ∈ Pγ ; we write p→ p′ if p α−−→ p′ for some α ∈ Aτ and call p′ a residual
of p.

It is easy to see from Table 1 that if P α−−→P ′, then P ′ has fewer symbols than
P . Consequently, the length of a transition sequence starting with a process [P ]
is bounded from above by the number of symbols in P .

Definition 7. The depth |p| of an element p ∈ Pγ is defined as

|p| = max{n ≥ 0 : ∃pn, . . . , p0 ∈ Pγ s.t. p = pn → · · ·→ p0}.

The branching degree bdeg(p) of an element p ∈ Pγ is defined as

bdeg(p) = |{(α, p′) : p α−−→ p′}| .

We establish some useful properties of parallel composition on Pγ .
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Lemma 8. For all p, q ∈ Pγ , |p ‖ q| = |p|+ |q|.

According to the following lemma and Proposition 2, Pγ is a commutative
monoid with respect to ‖, with 0 as the identity element.

Lemma 9. The following equations are derivable from the axioms in Table 2:

P2 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
P3 x ‖ y ≈ y ‖ x
P4 x ‖ 0 ≈ x .

An element p ∈ Pγ is parallel prime if p �= 0, and p = q ‖ r implies q = 0 or
r = 0. Suppose that p is an arbitrary element of Pγ ; a parallel decomposition of p
is a finite multiset [p1, . . . , pn] of parallel primes such that p = p1 ‖ · · · ‖ pn. (The
process 0 has as decomposition the empty multiset, and a parallel prime process
p has as decomposition the singleton multiset [p].) The following theorem is a
straightforward consequence of the main result in [10].

Theorem 10. Every element of Pγ has a unique parallel decomposition.

The following corollary follows easily from the above unique decomposition
result.

Corollary 11 (Cancellation). Let p, q, r ∈ Pγ . If p ‖ q = p ‖ r, then q = r.

Lemma 12. For all p, q ∈ Pγ , bdeg(p ‖ q) ≥ bdeg(p), bdeg(q).

We define a sequence of parallel prime processes with special properties that
make them very suitable as tools in our proofs in the remainder of the paper:

ϕi = τ.0 + · · ·+ τ i.0 (i ≥ 1). (1)

Lemma 13. (i) For all i ≥ 1, the processes ϕi are parallel prime.
(ii) The processes ϕi are all distinct, i.e., ϕk = ϕl implies that k = l.
(iii) For all i ≥ 1, the process ϕi has branching degree i.

3 An Equational Base for Pf

In this section, we prove that an equational base for Pf is obtained if the axiom

F x | y ≈ 0

is added to the set of axioms generated by the axiom schemata in Table 2. The
resulting equational base is finite if A is finite.

Henceforth, whenever we write P ≈F Q, we shall mean that the equation
P ≈ Q is derivable from the axioms in Table 2 and the axiom F.

Proposition 14. For all process terms P and Q, if P ≈F Q, then P ↔f Q.
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To prove that adding F to the axioms in Table 2 suffices to obtain an equational
base for Pf , we need to establish that P ↔f Q implies P ≈F Q for all process
terms P and Q. First, we identify a set of normal forms NF such that every
process term P can be rewritten to a normal form by means of the axioms.

Definition 15. The set NF of F-normal forms is generated by:

N ::= 0 | N +N | α.N | x ‖ N (x ∈ V , α ∈ Aτ ).

Lemma 16. For all P ∈ P there is an N ∈ NF s.t. P ≈F N and h(P ) ≥ h(N).

It remains to prove that for every two F-normal forms N1 and N2 there exists
a distinguishing valuation, i.e., a valuation ∗ such that if N1 and N2 are not
provably equal, then the ∗-interpretations of N1 and N2 are distinct. Stating it
contrapositively, for every two F-normal forms N1 and N2, it suffices to establish
the existence of a valuation ∗ : V → Pf such that

if [[N1]]∗ = [[N2]]∗, then N1 ≈F N2. (2)

The idea is to use a valuation ∗ that assigns processes to variables in such a
way that much of the original syntactic structure of N1 and N2 can be recovered
by analysing the behaviour of [[N1]]∗ and [[N2]]∗. To recognize variables, we shall
use the special processes ϕi (i ≥ 1) defined in Eqn. (1) on p. 498. Recall that the
processes ϕi have branching degree i. We are going to assign to every variable a
distinct process ϕi. By choosing i larger than the maximal ‘branching degrees’
occurring in N1 and N2, the behaviour contributed by an instantiated variable is
distinguished from behaviour already present in the F-normal forms themselves.

Definition 17. We define the width w(N) of an F-normal form N as follows:

(i) if N = 0, then w(N) = 0;
(ii) if N = N1 +N2, then w(N) = w(N1) + w(N2);
(iii) if N = α.N ′, then w(N) = max(w(N ′), 1);
(iv) if N = x ‖ N ′, then w(N) = max(w(N ′), 1).

The valuation ∗ that we now proceed to define is parametrised with a natural
number W ; in Theorem 21 we shall prove that it serves as a distinguishing
valuation (i.e., satisfies Eqn. (2)) for all F-normal forms N1 and N2 such that
w(N1),w(N2) ≤W . Let �� denote an injective function

�� : V → {n ∈ ω : n > W}

that associates with every variable a unique natural number greater than W .
We define the valuation ∗ : V → Pf for all x ∈ V by

∗(x) = τ.ϕ�x� .

The τ -prefix is to ensure the following property.

Lemma 18. For every F-normal form N , bdeg([[N ]]∗) ≤ w(N).
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Lemma 19. Let S be a simple F-normal form, let α ∈ Aτ , and let p be a process
such that [[S]]∗

α−−→ p. Then the following statements hold:

(i) if S = β.N , then α = β and p = [[N ]]∗;
(ii) if S = x ‖ N , then α = τ and p = ϕ�x� ‖ [[N ]]∗.

An important property of ∗ is that it allows us to distinguish the different types
of simple F-normal forms by classifying their residuals according to the number
of parallel components with a branching degree that exceeds W . Let us say that
a process p is of type n (n ≥ 0) if its unique parallel decomposition contains
precisely n parallel prime components with a branching degree > W .

Corollary 20. Let S be a simple F-normal form such that w(S) ≤W .

(i) If S = α.N , then the unique residual [[N ]]∗ of [[S]]∗ is of type 0.
(ii) If S = x ‖ N , then the unique residual ϕ�x� ‖ [[N ]]∗ of [[S]]∗ is of type 1.

Theorem 21. For every two F-normal forms N1, N2 such that w(N1),w(N2) ≤
W it holds that [[N1]]∗ = [[N2]]∗ only if N1 ≈ N2 modulo A1–A4.

Proof. By Lemma 5 we may assume that N1 and N2 are summations of collec-
tions of simple F-normal forms. We assume [[N1]]∗ = [[N2]]∗ and prove that then
N1 ≈ N2 modulo A1–A4, by induction on the sum of the heights of N1 and N2.

We first prove that for every syntactic summand S1 of N1 there is a syntactic
summand S2 of N2 such that S1 ≈ S2 modulo A1–A4. To this end, let S1 be
an arbitrary syntactic summand of N1; we distinguish cases according to the
syntactic form of S1.

1. Suppose S1 = α.N ′1; then [[S1]]∗
α−−→ [[N ′1]]∗. Hence, since [[N1]]∗ = [[N2]]∗,

there exists a syntactic summand S2 of N2 such that [[S2]]∗
α−−→ [[N ′1]]∗. By

Lemma 18 the branching degree of [[N ′1]]∗ does not exceed W , so [[S2]]∗ has
a residual of type 0, and therefore, by Corollary 20, there exist β ∈ Aτ and
a normal form N ′2 such that S2 = β.N ′2. Moreover, since [[S2]]∗

α−−→ [[N ′1]]∗,
it follows by Lemma 19(i) that α = β and [[N ′1]]∗ = [[N ′2]]∗. Hence, by the
induction hypothesis, we conclude that N ′1 ≈ N ′2 modulo A1–A4, so S1 =
α.N ′1 ≈ β.N ′2 = S2.

2. Suppose S1 = x‖ N ′1; then [[S1]]∗
τ−−→ϕ�x�‖[[N ′1]]∗. Hence, since [[N1]]∗ = [[N2]]∗,

there exists a summand S2 of N2 such that [[S2]]∗
τ−−→ ϕ�x� ‖ [[N ′1]]∗. Since S2

has a residual of type 1, by Corollary 20 there exist a variable y and a normal
form N ′2 such that S2 = y ‖ N ′2. Now, since [[S2]]∗

τ−−→ϕ�x� ‖ [[N ′1]]∗, it follows
by Lemma 19(ii) that

ϕ�x� ‖ [[N ′1]]∗ = ϕ�y� ‖ [[N ′2]]∗ . (3)

Since [[N ′1]]∗ and [[N ′2]]∗ are of type 0, we have that the unique decomposition
of [[N ′1]]∗ (see Theorem 10) does not contain ϕ�y� and the unique decomposi-
tion of [[N ′2]]∗ does not contain ϕ�x�. Hence, from (3) it follows that ϕ�x� = ϕ�y�
and [[N ′1]]∗ = [[N ′2]]∗. From the former we conclude, by Lemma 13(ii) and the
injectivity of �.�, that x = y and from the latter we conclude by the induction
hypothesis that N ′1 ≈ N ′2 modulo A1–A4. So S1 = x ‖ N ′1 ≈ y ‖ N ′2 = S2.
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We have established that every syntactic summand of N1 is provably equal to
a syntactic summand of N2. Similarly, it follows that every syntactic summand
of N2 is provably equal to a syntactic summand of N2. Hence, modulo A1–A4,
N1 ≈ N1 +N2 ≈ N2, so the proof of the theorem is complete. ��

Note that, by instantiating the parameter W with a sufficiently large value, it
follows from the preceding theorem that there exists a distinguishing valuation
for every pair of F-normal forms N1 and N2. Thus, we get the following corollary.

Corollary 22. For all process terms P and Q, P ≈F Q if, and only if, P ↔f Q.

4 An Equational Base for Ph

We now consider the algebra Ph. Note that if A happens to be the empty set,
then Ph satisfies the axiom F, and it is clear from the proof in the previous
section that the axioms generated by the axiom schemata in Table 2 together
with F in fact constitute a finite equational base for Ph. We therefore proceed
with the assumption that A is nonempty, and prove that an equational base for
Ph is then obtained if we add the axiom

H x | (y | z) ≈ 0

to the set of axioms generated by the axiom schemata in Table 2. Again, the
resulting equational base is finite if the set A is finite.

Henceforth, whenever we write P ≈H Q, we shall mean that the equation
P ≈ Q is derivable from the axioms in Table 2 and the axiom H.

Proposition 23. For all process terms P and Q, if P ≈H Q, then P ↔h Q.

We proceed to adapt the proof presented in the previous section to establish the
converse of Proposition 23. Naturally, with H instead of F not every occurrence
of | can be eliminated from process terms; we therefore need to adapt the notion
of normal form.

Definition 24. The set NH of H-normal forms is generated by:

N ::= 0 | N +N | α.N | x ‖ N | (x | a) ‖ N | (x | y) ‖ N ,

with x, y ∈ V , α ∈ Aτ and a ∈ A.

Lemma 25. For every process term P there exists an H-normal form N such
that P ≈H N and h(P ) ≥ h(N).

We proceed to establish that for every two H-normal forms N1 and N2 there
exists a valuation ∗ : V → Ph such that

if [[N1]]∗ = [[N2]]∗, then N1 ≈H N2. (4)
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The distinguishing valuations ∗ will have a slightly more complicated definition
than before, because of the more complicated notion of normal form.

As in the previous section, the definition of ∗ is parametrised with a natural
number W . Since | may occur in H-normal forms, we now also need to make sure
that whatever process ∗ assigns to variables has sufficient communication abili-
ties. To achieve this, we also parametrise ∗ with a finite subset A′ = {a1, . . . , an}
of A that is closed under the bijection .̄ on A. (Note that every finite subset of
A has a finite superset with the aforementioned property.) Based on W and A′
we define the valuation ∗ : V → Ph by

∗(x) = a1.ϕ(1·�x�) + · · ·+ an.ϕ(n·�x�) .

We shall prove that ∗ satisfies Eqn. (4) provided that the actions occurring in
N1 and N2 are in A′ ∪{τ} and the width of N1 and N2, defined below, does not
exceed W . We must also be careful to define the injection �� in such a way that
the extra factors 1, . . . , n in the definition of ∗ do not interfere with the numbers
assigned to variables; we let �� denote an injection

�� : V → {m : m a prime number such that m > n and m > W}

that associates with every variable a prime number greater than the cardinality
of A′ and greater than W .

The definition of width also needs to take into account the cardinality of A′
to maintain that the maximal branching degree in [[N ]]∗ does not exceed w(N).

Definition 26. We define the width w(N) of an H-normal form N as follows:

(i)–(iii) see Definition 17(i–iii).
(iv) if N = x ‖ N ′, then w(N) = max(w(N ′), n);
(v) if N = (x | α) ‖ N ′, then w(N) = max(w(N ′), 1); and
(vi) if N = (x | y) ‖ N ′, then w(N) = max(w(N ′), n).

Lemma 27. For every H-normal form N , bdeg([[N ]]∗) ≤ w(N).

Lemma 28. Let S be a simple H-normal form, let α ∈ Aτ , and let p be a
process such that [[S]]∗

α−−→ p. Then the following statements hold:

(i) if S = β.N , then α = β and p = [[N ]]∗;
(ii) if S = x ‖ N , then α = ai and p = ϕi·�x� ‖ [[N ]]∗ for some i ∈ {1, . . . , n};
(iii) if S = (x | a) ‖ N , then α = τ and p = ϕi·�x� ‖ [[N ]]∗ for the unique

i ∈ {1, . . . , n} such that a = ai; and
(iv) if S = (x | y) ‖ N , then α = τ and p = ϕi·�x� ‖ ϕj·�y� ‖ [[N ]]∗ for some

i, j ∈ {1, . . . , n} such that ai = aj .

As in the previous section, we distinguish H-normal forms by classifying their
residuals according to the number of parallel components with a branching de-
gree that exceeds W .

Corollary 29. Let S be a simple H-normal form such that w(S) ≤W and such
that the actions occurring in S are included in A′ ∪ {τ}.
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(i) If S = α.N , then the unique residual of [[S]]∗ is of type 0.
(ii) If S = x ‖ N , then all residuals of [[S]]∗ are of type 1.
(iii) If S = (x | a) ‖ N , then the unique residual of [[S]]∗ is of type 1.
(iv) If S = (x | y) ‖ N , then all residuals of [[S]]∗ are of type 2.

Theorem 30. For every two H-normal forms N1, N2 such that w(N1),w(N2) ≤
W and such that the actions occurring in N1 and N2 are included in A′ ∪ {τ} it
holds that [[N1]]∗ = [[N2]]∗ only if N1 ≈ N2 modulo A1–A4, C5.

Proof. The proof of this theorem is very similar to the proof of Theorem 21, only
there are two more cases to consider and the reasoning is slightly more complex
due to the more complex definition of ∗. ��

Corollary 31. For all process terms P and Q, P ≈H Q if, and only if, P ↔h Q.
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Abstract. It is shown that the existential theory of G with rational constraints,
over an HNN-extension G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 is decidable, pro-
vided that the same problem is decidable in the base group H and that A is a finite
group. The positive theory of G is decidable, provided that the existential positive
theory of G is decidable and that A and ϕ(A) are proper subgroups of the base
group H with A ∩ ϕ(A) finite. Analogous results are also shown for amalga-
mated products. As a corollary, the positive theory and the existential theory with
rational constraints of any finitely generated virtually-free group is decidable.

1 Introduction

Theories of equations over groups are a classical research topic at the borderline be-
tween algebra, mathematical logic, and theoretical computer science. This line of re-
search was initiated by the work of Lyndon, Tarski, and others in the first half of the
20th century. A major driving force for the development of this field was a question that
was posed by Tarski around 1945: Is the first-order theory of a free group F of rank
two, i.e, the set of all statements of first-order logic with equations as atomic proposi-
tions that are true in F , decidable. Decidability results for fragments of this theory were
obtained by Makanin (for the existential theory of a free group) [15] and Merzlyakov
and Makanin (for the positive theory of a free group) [16, 17]. A complete (positive) so-
lution of Tarski’s problem was finally announced in [9]; the complete solution is spread
over a series of papers. The complexity of Makanin’s algorithm for deciding the exis-
tential theory of a free group was shown to be not primitive recursive in [10]. Based
on [19], a new PSPACE algorithm for the existential theory of a free group, which also
allows to include rational constraints for variables, was presented in [2].

Beside these results for free groups, also extensions to larger classes of groups were
obtained in the past: [4, 5, 8, 20]. In [3], a general transfer theorem for existential and
positive theories was shown: the decidability of the existential theory is preserved by
graph products over groups — a construction that generalizes both free and direct prod-
ucts, see e.g. [7]. Moreover, it is shown in [3] that for a large class of graph products,
the positive theory can be reduced to the existential theory. The aim of this paper is to
prove similar transfer theorems for HNN-extensions and amalgamated free products.
These two operations are of fundamental importance in combinatorial group theory
[14]; they are recalled in Section 2 by equations (1) and (3).
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One of the first important applications of HNN-extensions was a more transparent
proof of the celebrated result of Novikov and Boone on the existence of a finitely pre-
sented group with an undecidable word problem, see e.g. [14]. Such a group can be
constructed by a series of HNN-extensions starting from a free group. This shows that
there is no hope to prove a transfer theorem for HNN-extensions, similar to the one for
graph products from [3]. Therefore we mainly consider HNN-extensions and amalga-
mated free products, where the subgroup A in (1) and (3), respectively, is finite. Those
groups which can be built up from finite groups using the operations of amalgamated
free products and HNN-extensions, both subject to the finiteness restrictions above, are
precisely the virtually-free groups [1] (i.e., those groups with a free subgroup of finite
index). Virtually-free groups have strong connections to formal language theory and
infinite graph theory [18].

In Section 3, we consider existential theories. For an HNN-extension G of the form
(1) where the subgroup A is finite, we prove that the existential theory of G with rational
constraints is decidable if the existential theory of H with rational constraints is decidable
(Thm. 1). In Section 4, we consider positive theories. For an HNN-extension G where the
two isomorphic subgroups A and ϕ(A) have finite intersection, we prove that the posi-
tive theory of G is decidable if the positive existential theory of G is decidable (Thm. 2).
From Thm. 1 and 2 and their analogues for amalgamated free products we deduce that
every finitely generated virtually-free group has a decidable existential theory with ra-
tional constraints as well as a decidable positive theory (Thm. 4). Our exposition will
put emphasis on the case of HNN-extensions and just mention the adaptations to amal-
gamated free products. Full proofs can be found in the three manuscripts [11, 12, 13].

2 Preliminaries

The powerset of a set A is denoted by P(A). With RAT(M) (resp. B(RAT(M))) we
denote the class of all rational (resp. boolean combinations of rational) subsets of a
monoid M. The free product of two monoids M1 and M2 is denoted by M1 ∗M2. For
a monoid M, a bijection h : M → M is an anti-automorphism if h(1M) = 1M and
h(a ·b) = h(b) ·h(a) for all a, b ∈ M. It is called involutive, if h2(a) = a for all a ∈ M.
For two groups A and B, PGI(A, B) denotes the set of all partial isomorphisms from
A to B, i.e., isomorphisms from some subgroupC ≤ A to some subgroupD ≤ B. Let
PGI{A, B} = PGI(A, B) ∪ PGI(B, A) ∪ PGI(A, A) ∪ PGI(B, B).

HNN-extensions and amalgamated free products. See [14] for background in com-
binatorial group theory. Let Γ be an alphabet and let Γ−1 = {a−1 | a ∈ Γ} be a
disjoint copy of Γ . A pair (Γ,R) with R ⊆ (Γ ∪ Γ−1)∗ is called a group presenta-
tion. Elements in R are also called relations. The group presented by (Γ,R) is usually
denoted by 〈Γ ;R〉, and is defined as the quotient monoid (Γ ∪ Γ−1)∗/ρ, where ρ is
the smallest congruence relation on the free monoid (Γ ∪ Γ−1)∗, which contains all
pairs in {(aa−1, ε), (a−1a, ε) | a ∈ Γ} ∪ {(r, ε) | r ∈ R}; note that this quotient is
indeed a group. Instead of 〈Γ ; {ri | i ∈ I}〉, we also write 〈Γ ; ri(i ∈ I)〉. Clearly, every
group is isomorphic to a group of the form 〈Γ ;R〉 (we do not assume Γ to be finite).
For a group G $ 〈Γ ;R〉, an alphabet Σ with Σ ∩ Γ = ∅ and a new set of relations
P ⊆ (Γ ∪Σ ∪ Γ−1 ∪Σ−1)∗ we denote with 〈G,Σ;P 〉 the group 〈Σ ∪ Γ ; P ∪R〉.
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Let H be a group (the base group), together with two proper subgroups A ≤ H, B ≤
H and an isomorphism ϕ : A → B. Let t �∈ H be a new generator. Then, the group

G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 (1)

is called an HNN-extension of H by the stable letter t, where A and B are associated.
It is well known that H is a subgroup of G. Clearly, there is a natural projection πG :
H ∗ {t, t−1}∗ → G. An element s from the free product H ∗ {t, t−1}∗ can be written as

s = h0t
α1h1 · · · tαnhn, (2)

where n ∈ IN,αi ∈ {1,−1}, and hi ∈ H. It is called a reduced sequence iff it has
neither a factor of the form t−1at with a ∈ A nor tbt−1 with b ∈ B. We denote by
Red(H, t) the set of all reduced t-sequences; one has G = πG(Red(H, t)). Reduced t-
sequences turned out to be the right representations for elements from G for the purpose
of deciding Th∃(G, RAT(G)). Let ∼ be the smallest congruence over H ∗ {t, t−1}∗
generated by the rules at ∼ tϕ(a) for all a ∈ A and bt−1 ∼ t−1ϕ−1(b) for all b ∈ B.
The congruence ≈ is the kernel of πG : H ∗ {t, t−1}∗ → G. Note that u ∼ v implies
u ≈ v. Moreover, if u, v ∈ Red(H, t), then u ≈ v iff u ∼ v. The fact u ∼ v for u, v ∈
Red(H, t) can be visualized by a Van Kampen diagram (see [14]) in the group G of the
following form, where u = h0t

α1h1t
α2h2t

α3h3t
α4h4, v = k0t

α1k1t
α2k2t

α3k3t
α4k4

with h0, k0, . . . ,h4, k4 ∈ H and c1, . . . , c8 ∈ A ∪B. Light-shaded (resp. dark-shaded)
areas represent relation in H (resp. group identities of the form at = tϕ(a) (a ∈ A) and
bt−1 = t−1ϕ−1(b) (b ∈ B)).

(†)
h0

tα1 h1 tα2 h2 tα3 h3 tα4

h4

k0
tα1

k1 tα2 k2 tα3 k3
tα4

k4

c1 c2 c3 c4 c5 c6 c7 c8

Now assume that H and J are groups with proper subgroups A < H and B < J and let
ϕ : A → B be an isomorphism. Then

G = 〈H ∗ J, a = ϕ(a)(a ∈ A)〉 (3)

is called an amalgamated free product of H and J, where A and B are associated.

Logical theories. Let us fix a countable group G, let C ⊆ P(G) be a set of constraints,
and let Ω be an infinite set of variables ranging over G. Formulas of first-order logic
over G with constraints from C are built up from atomic formulas of the form x ∈ L
(L ∈ C, x ∈ Ω) and equations u = v (u, v ∈ (Ω ∪ {x−1 | x ∈ Ω} ∪ G)∗) using
boolean connectives and quantifications over variables. A formula θ is called positive if
there are no negations in ϕ, i.e., conjunction and disjunction are the only boolean oper-
ators in θ. A formula is called existential (resp. existential positive) if it is of the form
∃x1 · · · ∃xn : ψ(x1, . . . ,xn), where ψ is a boolean (resp. a positive boolean) combi-
nation of atomic formulas. We denote with Th+(G, C) (resp. Th∃(G, C), Th∃+(G, C))
the set of all positive (resp. existential, existential positive) sentences that are true in G.
We briefly write ThX(G) for ThX(G, ∅) (X ∈ {∃, +, ∃+}).
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3 Existential Theories

The following theorem is our main result concerning existential theories:

Theorem 1. Th∃(G, RAT(G)) is decidable in the following two cases:

(1) G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 is an HNN-extension, where A and ϕ(A) are
proper subgroups of H with A finite, and Th∃(H, RAT(H)) is decidable.

(2) G = 〈H ∗ J, a = ϕ(a)(a ∈ A)〉 is an amalgamated free product, where A is finite,
and Th∃(H, RAT(H)) and Th∃(J, RAT(J)) are decidable.

The statements (1) and (2) in Thm. 1 are orthogonal to the corresponding result for
graph products from [3]: none of the three operations (HNN-extensions, amalgamated
free products, and graph products) is a special case of another one. At the end of Sec-
tion 3, we will mention several variants of Thm. 1, which can be obtained by similar
techniques. In the following we will sketch a proof of (1) from Thm. 1. Before we
go into the details, we will first present some material concerning rational subsets of
HNN-extensions, which is of independent interest.

3.1 Rational Subsets of HNN-Extensions

Let us fix throughout this section an HNN-extension G of a base group H as described
by (1), where A is finite. We now define a notion of finite automata which will be well-
suited for deciding Th∃(G, RAT(G)).

A finite t-automaton over H ∗ {t, t−1}∗ with labeling set F ⊆ P(H) is a 5-tuple

A = 〈L, Q,Δ, I, T〉, (4)

where: (i) L is a finite subset ofF∪P(A)∪P(B)∪{{t}, {t−1}}, (ii) Q is a finite set of
states, (iii) I ⊆ Q is the set of initial states, (iv) T ⊆ Q is the set of terminal states, and
(v)Δ ⊆ Q×L×Q is the set of transitions. Such an automaton induces a representation
map μA : H ∗ {t, t−1}∗ → P(Q×Q) defined as follows, where x ∈ H∪{t, t−1} \ {1}
and s ∈ H ∗ {t, t−1}∗ is of the form (2):

μA,0(1) = {(q, q) | q ∈ Q} ∪ {(q, r) ∈ Q×Q | ∃(q, L, r) ∈ Δ : 1 ∈ L}
μA,0(x) = {(q, r) ∈ Q×Q | ∃(q, L, r) ∈ Δ : x ∈ L}
μA(s) = μA,0(h0) ◦ μA,0(tα1) ◦ μA,0(h1) · · ·μA,0(tαn) ◦ μA,0(hn).

A recognizes the set L(A) = {s ∈ H ∗ {t, t−1}∗ | (I × T) ∩ μA(s) �= ∅}. Let
G6 = (T6, E6) andR6 = (T6, E ′6) be the following two graphs:

(1,H)

(B, T )

(A, T )

(A,H)

(B,H)

(1, 1)H

H

H

t−1

H

H

t

H

H
HH

1

B A

1

A B

(1,H)

(B, T )

(A, T )

(A,H)

(B,H)

(1, 1)H

H

H

t−1

H

H

t

H

H
H \BH \A

1

B A

1

A B
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Let Ê6 = {(p, �, q) | ∃(p, L, q) ∈ E6, � ∈ L}. One can check that G6 (resp. R6)
endowed with the unique initial state (1,H) and the unique final state (1, 1) is a finite
t-automaton recognizing H ∗ {t, t−1}∗ (resp. Red(H, t)). Nodes of G6, i.e., elements
of T6, are called vertex-types. We define a finite partial semigroup 〈T , ·〉, where T =
T6 × B× T6 and B = 〈{0, 1},∨〉 is the monoid of booleans. The partial product on T
is defined by:

∀(p, b, q), (p′, b′, q′) ∈ T6×B×T6 : (p, b, q) · (p′, b′, q′) =

{
(p, b ∨ b′, q′) if q = p′

undefined otherwise

The structure 〈P(T ), ·〉 is thus a (total) monoid. Elements of T are also called path-
types. We define an involution IR : T6 → T6 by (A, T )↔ (A,H), (B, T )↔ (B,H),
and (1,H) ↔ (1, 1). It induces an involution IT : T → T defined by: IT (p, b, q) =
(IR(q), b, IR(p)). This map IT is an anti-automorphism of T and also induces an in-
volutive anti-automorphism of 〈P(T ), ·〉 that will be denoted by IT too. We associate
with every element (p, b, q) ∈ T its initial group Gi(p, b, q) = p1(p) ∈ {1, A, B} and
its end group Ge(p, b, q) = p1(q) ∈ {1, A, B}. Here p1 is the projection onto the first
component. For s ∈ H ∗ {t, t−1}∗ let b(s) = 1 if s contains at least one occurrence of
t or t−1, otherwise b(s) = 0. Define

γt(s) = {(p, b(s), q) ∈ T6 × B× T6 | (p, q) ∈ μR6(s)} ∈ P(T ). (5)

Let TA = {(θ, b(x), θ′) ∈ T | (θ,x, θ′) ∈ Ê6} be the set of atomic path types. A normal
finite t-automaton over F is a 6-tuple A = 〈L, Q, τ,Δ, I, T〉, where 〈L, Q,Δ, I, T〉 is
as in (4) and τ : Q → T6 maps each state to a vertex-type such that

τ(I) = {(1,H)}, τ(T) = {(1, 1)}, ∀(q, L, r) ∈ Δ : {τ(q)} × L× {τ(r)} ⊆ Ê6,
[L(A)]≈ = [L(A) ∩ Red(H, t)]≈, (6)

∀s, s′ ∈ H ∗ {t, t−1}∗ : s ∼ s′ ⇒ μA(s) = μA(s′), (7)

∀θ̃ ∈ γt(s), θ̃′ ∈ γt(s′) : θ̃ · θ̃′ defined in T ⇒
μA,1(θ̃ · θ̃′, s · s′) = μA,1(θ̃, s) · μA,1(θ̃′, s′),

∀θ ∈ T6 : μA,1((θ, 0, θ), 1) = idτ−1(θ).

Here, μA,1((θ, b, θ′), s) = μA(s)∩τ−1(θ)×τ−1(θ′); it does not depend on b ∈ {0, 1}.
A is said to be strict if, instead of (6), it fulfills the condition L(A) ⊆ Red(H, t).

Lemma 1. We have:

– R ∈ RAT(G) iff R = πG(L(A)) for some normal finite t-automaton A with
labeling set RAT(H).

– If R ∈ B(RAT(G)) then R = πG(L(A)) for some strict normal finite t-automaton
A with labeling set B(RAT(H)).

3.2 Deciding Th∃(G, RAT(G))

AB-Algebras and AB-Homomorphisms. In this section, we introduce an algebraic
structure which is devised for handling equations with rational constraints in an HNN-
extension. Let A, B be two groups (later, these will be the two subgroups A and
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B = ϕ(A) from (1)) and Q be some finite set (it will be the state set of a t-automaton).
Let B(Q) = (P(Q× Q), ·) be the monoid of binary relations over Q and let B2(Q) be
the direct product B(Q) × B(Q). For m ∈ B(Q) let m−1 = {(p, q) ∈ Q× Q | (q, p) ∈
m} ∈ B(Q). Let IQ : B2(Q) → B2(Q) be the involutive anti-automorphism defined by
IQ(m,m′) = (m′−1,m−1). An AB-algebra is a structure 〈M, ·, 1M, I, ιA, ιB, γ,μ, δ〉,
where 〈M, ·, 1M〉 is a monoid, ιA : A → M, ιB : B → M are injective monoid ho-
momorphisms, I : M → M is an involutive anti-automorphism, and γ : M → P(T ),
μ : T ×M → B2(Q), and δ : T ×M → PGI{A, B} are total mappings fulfilling the
axioms (8)–(13) below.

For all m,m′ ∈M and all θ̃ ∈ γ(m), θ̃′ ∈ γ(m′):

γ(m) · γ(m′) ⊆ γ(m ·m′) (8)

θ̃ · θ̃′ defined ⇒ μ(θ̃ · θ̃′,m ·m′) = μ(θ̃,m) · μ(θ̃′,m′) (9)

dom(δ(θ̃,m)) ⊆ Gi(θ̃), im(δ(θ̃,m)) ⊆ Ge(θ̃) (10)

θ̃ · θ̃′ defined ⇒ δ(θ̃ · θ̃′,m ·m′) = δ(θ̃,m) ◦ δ(θ̃′,m′) (11)

For all a ∈ A, b ∈ B, m ∈ M, and θ̃ ∈ γ(m):

I(ιA(a)) = ιA(a−1), I(ιB(b)) = ιB(b−1), (12)

γ(I(m)) = IT (γ(m)), μ(IT (θ̃), I(m)) = IQ(μ(θ̃,m)), δ(IT (θ̃), I(m)) = δ(θ̃,m)−1

(13)

LetMi = 〈Mi, ·, 1Mi , ιA,i, ιB,i, Ii, γi,μi, δi〉 (i ∈ {1, 2}) be two AB-algebras with the
same underlying groups A, B and set Q. An AB-homomorphism fromM1 toM2 is a
monoid homomorphism ψ : M1 → M2 fulfilling the five properties (14)–(18) below:

∀a ∈ A∀b ∈ B : ψ(ιA,1(a)) = ιA,2(a) ∧ ψ(ιB,1(b)) = ιB,2(b) (14)

∀m ∈ M1 : I2(ψ(m)) = ψ(I1(m)) (15)

∀m ∈ M1 : γ2(ψ(m)) ⊇ γ1(m) (16)

∀m ∈M1 ∀θ̃ ∈ γ1(m) : μ2(θ̃,ψ(m)) = μ1(θ̃,m) (17)

∀m ∈M1 ∀θ̃ ∈ γ1(m) : δ2(θ̃,ψ(m)) = δ1(θ̃,m) (18)

In the following we will introduce two particular AB-algebras.

The AB-Algebra Ht. From now on, we fix an HNN-extension (1) with A and B =
ϕ(A) finite and a strict normal finite t-automaton A = 〈L, Q, τ,Δ, I, T〉 with labeling
set B(RAT(H)). We define an AB-algebra

〈H ∗ {t, t−1}∗, ·, 1H, ιA, ιB, It, γt,μt, δt〉

with underlying monoid H ∗ {t, t−1}∗ and set of states Q as follows: ιA (resp. ιB) is
the natural injection from A (resp. B) into H ∗ {t, t−1}∗, and It is the unique involutive
anti-automorphism H ∗ {t, t−1}∗ → H ∗ {t, t−1}∗ such that It(h) = h−1 for h ∈ H,
It(t) = t−1, and It(t−1) = t. The map γt was already defined in (5). The maps μt :
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T ×H ∗ {t, t−1}∗ → B2(Q) and δt : T ×H ∗ {t, t−1}∗ → PGI{A, B} are defined as
follows, where s ∈ H ∗ {t, t−1}∗ and θ̃ ∈ T :

μt(θ̃, s) = (μA,1(θ̃, s), (μA,1(IT (θ̃), It(s)))−1)

δt(θ̃, s) = {(c, d) ∈ Gi(θ̃)×Ge(θ̃) | cs ∼ sd}.

s
s

c d (‡)Note that (c, d) ∈ δ(θ̃, s) implies that in the group G there
is a Van Kampen diagram as shown on the right, which
(for s ∈ Red(H, t)) is a diagram of the form (†); note that c, d ∈ A ∪ B. E.g., if
α2 = α3 = 1 and h2 = k2 in (†), then (c3, c6) ∈ δt(((A, T ), 1, (B,H)), th2t).

One can check that the monoid congruence ∼ is compatible with It, ιA, ιB , γt, μt,
and δt (here, (7) is important) so that the quotient Ht = H ∗ {t, t−1}∗/ ∼ is naturally
endowed with the structure of an AB-algebra (which we denote again with Ht)

Ht = 〈Ht, ·, 1H, ιA, ιB, I∼, γ∼,μ∼, δ∼〉. (19)

Intuitively, the values γ∼(s), μ∼(θ̃, s), and δ∼(θ̃, s) (for θ̃ ∈ γ∼(s)) store all informa-
tion about a sequence s that is relevant when s appears in a solution of a system of
equations. Since A, B, and Q are finite, this is only a finite amount of information.

Normal Systems of Equations. A normal system of (dis)equations with constraints
from B(RAT(G)) is a tuple

SG = ((ui = u′i)1≤i≤n, (ui �= u′i)n<i≤2n,μA,μU ), (20)

where ui,u
′
i are words over an alphabet of unknowns U , |ui| = 1, |u′i| = 2 for 1 ≤

i ≤ n, |ui| = 1 = |u′i| for n < i ≤ 2n, μA is the representation map associated with
the strict normal t-automatonA from the previous paragraph, and μU : U → B(Q). A
solution of the system (20) is any monoid homomorphism σG : U∗ → G such that for
all 1 ≤ i ≤ n, n < j ≤ 2n, and U ∈ U :

σG(ui) = σG(u′i), σG(uj) �= σG(u′j), μA,1(((1,H), b, (1, 1)),σG(U)) = μU (U),

where b ∈ {0, 1} (μA,1 does not depend on the concrete value of b). Since A is strict
normal, μA,1(θ̃, g) for g ∈ G can be defined as μA,1(θ̃, s) for any s ∈ Red(H, t) with
πG(s) = g. Using Lemma 1, one can reduce Th∃(G, RAT(G)) to the question whether
a system of the form (20) has a solution. Thus, we may assume to have a system of the
form (20) and we aim to decide whether it has a solution.

The AB-Algebra Wt. Whereas our first AB-algebra Ht from (19) depends on the
“concrete” base group H, we now introduce a second “generic” AB-algebra Wt, which
depends on our input system (20), but it depends only superficially on H. The idea is
to factorize the G-values of a concrete solution of our given system (20) into “generic”
symbols, which generate our new AB-algebra Wt. Every generic symbol can be instan-
tiated in G so that the original solution in G is recovered.

In order to carry out the above factorization, we introduce for every atomic type
θ̃ ∈ TA, every α ∈ B2(Q), and every β ∈ PGI(Gi(θ̃), Ge(θ̃)), 54 · n (n is from
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(20)) many different new “generic” symbols W1, . . . ,W54n and define: γ(Wi) = {θ̃},
μ(θ̃,Wi) = α, and δ(θ̃,Wi) = β. Let W be the new alphabet obtained in this way.
By adding for every W ∈ W a new copy to W , we can define on W an involution I
without fixpoints (i.e., I(W ) �= W ) such that (13) holds for every m = W ∈ W . Let
us now consider the free productW∗ ∗ A ∗ B. We denote by ιA : A → W∗ ∗ A ∗ B
(resp. ιB : B → W∗ ∗A ∗B) the natural embedding of A (resp. B) intoW∗ ∗A ∗ B.
We define the AB-algebra

〈W∗ ∗A ∗B, ·, 1, ιA, ιB , I,μ, γ, δ〉

with underlying monoid W∗ ∗ A ∗ B and set of states Q as follows: I is extended
as the unique involutive anti-automorphism W∗ ∗ A ∗ B → W∗ ∗ A ∗ B such that
I(ιA(a)) = ιA(a−1) for a ∈ A and I(ιB(b)) = ιB(b−1) for b ∈ B. The mapping
γ :W → P(TA) is extended to ιA(A) ∪ ιB(B) by

∀a ∈ A \ {1} : γ(ιA(a)) = {((A, T ), 0, (A, T )), ((A,H), 0, (A,H))},
∀b ∈ B \ {1} : γ(ιB(b)) = {((B, T ), 0, (B, T )), ((B,H), 0, (B,H))},

γ(1) = {(θ, 0, θ) | θ ∈ T6},

and finally to the full free productW∗ ∗A ∗B by

∀g1, . . . , gk ∈ W ∪ ιA(A) ∪ ιB(B) : γ(g1 · · · gk) = γ(g1) · · · γ(gk).

The mappings μ : T × W → B2(Q) and δ : T ×W → PGI{A, B} are extended as
follows:

∀a ∈ A ∀θ̃ ∈ γ(ιA(a)) : δ(θ̃, ιA(a)) = δt(θ̃, a),μ(θ̃, ιA(a)) = μt(θ̃, a)

∀b ∈ B ∀θ̃ ∈ γ(ιB(b)) : δ(θ̃, ιB(b)) = δt(θ̃, b), μ(θ̃, ιB(b)) = μt(θ̃, b)

Finally, the maps μ and δ are extended toW∗ ∗A ∗B in the only way such that for all
m ∈ ιA(A) ∪ ιB(B) ∪W, θ̃ ∈ T \ γ(m): μ(θ̃,m) = ∅, δ(θ̃,m) = {(1, 1)} (the trivial
partial isomorphism), and axioms (9) and (11) are respected. Let ≡ be the smallest
monoid congruence onW∗ ∗ A ∗ B which contains all pairs (cW,Wd) with W ∈ W
and (c, d) ∈ δ(θ̃,W ) for the unique θ̃ ∈ γ(W ). Let W :=W∗∗A∗B/ ≡ be the quotient
monoid, i.e., we enforce for every W ∈ W diagrams of the form (‡) (with s = W ).
One can check that ≡ is compatible with I, ιA, ιB , γ, μ, and δ, so that W inherits from
W∗ ∗ A ∗ B the structure of an AB-algebra. Let Wt be the set of all W ∈ W such
that for some s ∈ H ∗ {t, t−1}∗: (i) γ(W ) ⊆ γt(s) and (ii) the unique θ̃ ∈ γ(W )
fulfills μ(θ̃,W ) = μt(θ̃, s) and δ(θ̃,W ) = δt(θ̃, s). Thus,Wt is the set of all generic
symbols that can be realized by a concrete sequence s ∈ H∗{t, t−1}∗. WithWH ⊆ Wt

we denote the set of those W ∈ Wt such that moreover γ(W ) = {(θ, 0, θ′)}, where
(θ,H, θ′) ∈ E6. Let Wt (resp. WH) be the substructure of W generated by the subset of
monoid generators ιA(A)∪ ιB(B)∪Wt (resp. ιA(A)∪ ιB(B)∪WH). It is easy to see
that ψ(WH) ⊆ H for every AB-homomorphism ψ : Wt → Ht.

The Algorithm. Recall that we have to check, whether the normal system of (dis)equa-
tions (20) has a solution.
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Step 1. Consider an equation ui = u′i from (20), where w.l.o.g.ui = U1 and u′i = U2U3
for U1,U2,U3 ∈ U ; disequations can be treated similarly. Let σG be a solution for (20).
We can choose reduced t-sequences s1, s2, and s3 such that σG(Uj) = πG(sj). Then
there exists factorizations sj = sj,1 · · · sj,9 and elements e1,2, e2,3, e3,1 ∈ A ∪ B such
that the Van-Kampen diagram describing the group relation πG(s1) = πG(s2s3) (i.e.,
s1 ≈ s2s3) decomposes into four pieces, represented by the four relations

s1,1 s1,2 s1,3 s1,4 e1,2 ∼ s2,1 s2,2 s2,3 s2,4 (21)

s2,6 s2,7 s2,8 s2,9 ∼ e2,3 It(s3,4) It(s3,3) It(s3,2) It(s3,1) (22)

e3,1 s1,6 s1,7 s1,8 s1,9 ∼ s3,6 s3,7 s3,8 s3,9 (23)

s1,5 = e1,2 s2,5 e2,3 s3,5 e3,1 in the base group H, (24)

s1

s1,5

e3,1

s3,5e2,3s2,5

e1,2

s1,1 · · · s1,4 s1,6 · · · s1,9

s2,1 · · ·
s2,4 s3,6 · · · s3,9

s 2
,6
· ·
·

s 2
,9

s
3
,1
· · ·

s
3
,4

s2 s3

see the diagram on the right, where the
light-shaded area represents a relation in
the group H. Dark-shaded areas are di-
agrams of the form (†) from Section 2.
The sj,k (k �= 5) belong to H∗{t, t−1}∗,
while the sj,5 ∈ H. Decomposing e.g.
the sequence s1,1s1,2s1,3s1,4 into 4 parts
allows us to choose all the s1,k (1 ≤
k ≤ 4) either trivial or of some (guessed)
atomic type in TA. We now replace every
sj,k by a new generic symbol Wi,j,k ∈
Wt (or possibly 1); the additional index i refers to the equation ui = u′i, where Wi,j,k

comes from. Note that for every i we need 27 symbols Wi,j,k , this explains the factor
54 = 2 · 27 in the definition of the alphabet W . The values of the mappings I, γ, μ,
and δ on Wi,j,k have to be chosen such that the generic symbol Wi,j,k captures all the
relevant data about the concrete sequence sj,k. For instance, γ(Wi,j,k) only contains
the guessed type for sj,k. In this way, we can translate system (20) into a new system of
equations over Wt (corresponding essentially to (21)–(23)) and another system over H
(corresponding to (24)). Thus, we reduce the problem, whether (20) has a solution, to a
finite disjunction of problems of the following form:

INPUT: Finitely many pairs (vj , v
′
j) ∈ Wt ×Wt (j ∈ J), with γ(vj) = γ(v′j) �= ∅,

and a (ordinary) system SH of equations and disequations in the base group H and with
constraints from RAT(H); the set of unknowns of SH is included inWH.
QUESTION: Does there exist an AB-homomorphism σt : Wt → Ht such that

∀j ∈ J : σt(vj) = σt(v′j) and simultaneously (25)

σt solves the system SH? (26)

Step 2. We reduce the question, whether (25) and (26) holds for some σt to the problem,
where the input is the same as above, but the question is:
QUESTION: Do there exist AB-homomorphismsσW : Wt → Wt, ψt : Wt → Ht with

∀j ∈ J : σW(vj) = σW(v′j) and simultaneously (27)

σW ◦ ψt solves the system SH? (28)
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This reduction is a direct corollary of a factorization property for the solutions σt

of (25): σt is a solution iff it can be factorized as σW ◦ ψt for AB-homomorphisms
σW : Wt → Wt and ψt : Wt → Ht. The proof consists in decomposing σt into a
sort of elementary AB-homomorphisms of the form W �→ cW1dW2eW3f (c, d, e, f ∈
A ∪ B,Wi ∈ Wt), followed by some ψt : Wt → Ht: we start with the trivial de-
composition σW = idW,ψt = σt and then reason by induction over the multiset
{{d(σW(vj),σW(v′j)) | j ∈ J}}, where d is a kind of distance on W.

Step 3. We introduce the group U = 〈W; W · I(W ) = 1 (W ∈ W)〉. This group
turns out to be obtained from a base group K, which is a semi-direct product of the
finite group A by a free group of finite rank, by a finite number of HNN-extensions with
associated subgroups strictly smaller than A. Using the main result of [2], one can show
that Th∃(K, RAT(K)) is decidable. Moreover, by induction on the cardinality of A,
also Th∃(U, RAT(U)) is decidable. One can show that for every AB-homomorphism
σW : Wt → Wt and every generatorW ∈ WH one has σW(W ) ∈ (A∪B)WH(A∪B).
This implies that for the restriction σH = σW�WH

of σW in (27) there are only finitely
many possibilities. By enumerating all these mappings σH and substituting them into
(27) and (28), we reduce the simultaneous satisfiability of (27) and (28) to: (i) on one
hand solving finitely many specialized instances of (27), which reduce to the theory
Th∃(U, RAT(U)), and (ii) on the other hand, for every specialized instance from the
previous point, solving a corresponding system of the form σH(SH), which reduces to
Th∃(H, RAT(H)). Following this strategy we prove Thm. 1.

Using the embedding of an amalgamated free product (3) into the HNN-extension
〈H ∗ J′, t; t−1at = ϕ(a)(a ∈ A)〉 by the map defined by h ∈ H �→ t−1ht, j ∈ J �→ j′

(where J′ = {j′ | j ∈ J} is a copy of J, disjoint from H, and ϕ maps every element of
A to its copy in J′, see [14, Thm. 2.6. p. 187]), we obtain statement (2) of Thm. 1. Let
us finally discuss some variations of Thm. 1.

Remark 1. Thm. 1(1) remains true when Th∃(X, RAT(X)) (X ∈ {H, G}) is replaced
by: Th∃+(X) (variant 1), Th∃(X) (variant 2), or Th∃+(X, RAT(X)) (variant 3). If
Th∃+(H, {A1, . . . , An}) is decidable, where every Ai is a finitely generated subgroup
of H containing A, then also Th∃+(G, {Ai, 〈Ai, t〉 | 1 ≤ i ≤ n}) is decidable (variant
4), where 〈Ai, t〉 is the subgroup of G generated by Ai ∪ {t}. These variants can be
also shown if H is a cancellative monoid instead of a group (only A and B have to be
groups). Finally, variant 2 still holds for amalgamated products of cancellative monoids.

4 Positive Theories

The following two theorems are our main results concerning positive theories:

Theorem 2. Th+(G) is decidable in the following two cases:

(1) G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 is an HNN-extension, where A and ϕ(A) are
proper subgroups of H with A ∩ ϕ(A) finite, and Th∃+(G) is decidable.

(2) G = 〈H ∗ J, a = ϕ(a)(a ∈ A)〉 is an amalgamated free product with A finite and
Th∃+(G) is decidable.
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In Thm. 2 we cannot allow a cancellative monoid for H, because the positive theory of
{a, b}∗ $ N ∗ N is undecidable [6]. For the same reason, we cannot include rational
constraints: {a, b}∗ is a rational subset of the free group of rank 2.

Let us sketch a proof of (1) from Thm. 2. Our strategy for reducing Th+(G) to
Th∃+(G) is similar to [16, 17]: From a positive sentence ψ, which is interpreted over
G, we construct an existential positive sentence ψ′ with subgroup constraints of a very
special form, which is interpreted over a multiple HNN-extension G′ of G, where only
finite subgroups of G are associated. Roughly speaking, ψ′ results from ψ by replacing
the universally quantified variables by the stable letters of the HNN-extension G′. Let G
be an HNN-extension as in Thm. 2. LetX ≤ A∩ϕ(A) be a (necessarily finite) subgroup
of H. With In(X) we denote the group of all automorphisms f of X such that for some
g ∈ G we have: f(c) = g−1cg for all c ∈ X . For new constants k1, . . . , km �∈ G and
f1, . . . , fm ∈ In(X) we define the multiple HNN-extension

Gf1,...,fm

k1,...,km
= 〈G, k1, . . . , km; k−1

i cki = fi(c) (c ∈ X, 1 ≤ i ≤ m)〉. (29)

The following theorem yields the reduction from Th+(G) to Th∃+(G).

Theorem 3. There is a subgroup X ≤ A ∩ B ≤ H ≤ G such that for every formula
ψ(z1, . . . , zm) ≡ ∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . ,xn, y1, . . . , yn, z1, . . . , zm), where φ
is a positive boolean combination of equations (with constants) over the group G, and
for all u1, . . . ,um ∈ G we have: ψ(u1, . . . ,um) in G iff

∧
f1∈In(X)

∃y1 · · ·
∧

fn∈In(X)

∃yn

⎧⎪⎨⎪⎩
∧

1≤i≤n

yi ∈ Gf1,...,fi

k1,...,ki
∧

φ(k1, . . . , kn, y1, . . . , yn,u1, . . . ,um) in Gf1,...,fn

k1,...,kn

⎫⎪⎬⎪⎭ (30)

In [3], a result analogous to Theorem 3 for the case that G is a free product was shown.
In this case, the new generators k1, . . . , kn do not interact with the group G, i.e., the
HNN-extension Gf1,...,fn

k1,...,kn
is replaced by the free product G ∗ Fn, where Fn is the free

group generated by k1, . . . , kn. For the more general case that G is an HNN-extension,
we cannot avoid some nontrivial interaction between ki and Gi. This interaction is ex-
pressed by the identities k−1

i cki = fi(c) (c ∈ X) in the HNN-extension Gf1,...,fn

k1,...,kn
. Note

that the sentence in (30) is not interpreted in a single HNN-extension of G. But it is not
difficult to construct an HNN-extension G′ of G such that each of the groups Gf1,...,fn

k1,...,kn

can be embedded into G′. Moreover, each single HNN-extension that leads from G to
G′ associates X with itself as in (29). In this way, we can construct from (30) an ex-
istential positive sentence Ψ = (∃yσ ∈ Gσ)σ∈J χ((kσ)σ∈J , (yσ)σ∈J ,u1, . . . ,um) (for
some index set J larger than n in (30)) such that (30) iff Ψ is true in G′. Moreover,
all constraint-groups Gσ in Ψ are generated by G and some of the stable letters kσ . To
complete the proof of (1) in Thm. 2, notice that an iterated application of variant 4 from
Remark 1 (recall that X is finite) enables us to reduce Th∃+(G′, {Gσ | σ ∈ J}) to
Th∃+(G). A proof of (2) in Thm. 2 follows a similar strategy.

We conclude this paper with an application to virtually-free groups. A finitely gen-
erated group G is virtually-free, if it has a free subgroup of finite index. Since these
groups have finite decompositions over finite groups by means of the operations (1) and
(3) with A finite [1], we obtain from Thm. 1 and 2:
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Theorem 4. If G is virtually-free, then Th∃(G, RAT(G)) and Th+(G) are decidable.

Thm. 4 immediately leads to the question, whether also the full first-order theory of a
virtually-free group is decidable. This is certainly a difficult question. The full proof of
Kharlampovich and Myasnikov for the decidability of the theory of a free group (see [9]
for an overview) takes several hundred pages. Moreover, there seems to be no obvious
reduction from the theory of a virtually-free group to the theory of a free group.
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Abstract. Some classes of sets of vectors of natural numbers are intro-
duced as generalizations of the semi-linear sets, among them the ‘simple
semi-polynomial sets.’ Motivated by verification problems that involve
arithmetical constraints, we show results on the intersection of such gen-
eralized sets with semi-linear sets, singling out cases where the non-
emptiness of intersection is decidable. Starting from these initial results,
we list some problems on solvability of arithmetical constraints beyond
the semi-linear ones.

1 Introduction

The study of arithmetical constraints, in particular regarding their effective solv-
ability, is of central interest in several branches of theoretical computer science.
One of these fields, which serves as motivation for the present work, is the veri-
fication of infinite-state systems where the aspect of infinity arises by including
the domain of the natural numbers in the model under consideration.

In the context of infinite-state verification, conditions on vectors of natural
numbers usually occur in two roles. First, the considered transition systems A
are assumed to have some mechanism of ‘counting’ and thus generate, by each
run, some vector of Nn; the set of all such vectors is the set AA ⊆ Nn generated
by A. An example is the computation of the Parikh mapping by an automaton
on words over an alphabet with letters a1, . . . , an: the occurrences of the letters
ai are counted by updating a vector from Nn in each step, incrementing the
i-th component by one for an ai-labeled transition. Taking finite automata or
pushdown automata A, the corresponding sets AA are known to coincide with
the semi-linear sets (Parikh’s Theorem [12]).

The second role of arithmetical conditions enters when the vectors arising
from the runs of the transition systems under consideration are also subject to
an ‘acceptance condition’ ϕ. In the context of automata, acceptance of an input
word w then means that a corresponding run reaches a ‘final state’ and generates
a vector that satisfies ϕ or, in other words, belongs to the set Aϕ defined by ϕ. As
a recent model of this kind, Klaedtke and Rueß [9] proposed ‘Parikh automata,’
which use more general transitions than those mentioned above: in the update
operation an arbitrary vector of Nn is added (rather than just 1 in a single
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component), and for the constraints ϕ formulas of Presburger arithmetic are
used (which precisely define the semi-linear sets).

A fundamental property of Parikh automata is the decidability of the non-
emptiness problem. This is established easily by observing that the nonemptiness
of the language recognized by a Parikh automaton A with acceptance condition
ϕ is equivalent to the nonemptiness of the intersection AA ∩ Aϕ. Since AA is
semi-linear, and since the semi-linear sets are effectively closed under intersec-
tion (and their nonemptiness is trivially decidable), one obtains an algorithm for
solving the nonemptiness problem.

Many other papers on model-checking infinite-state systems follow similar
ideas; see, for example, [1, 3, 7]. Another application area is the study of XML-
document specifications. As observed by several authors [2, 10, 13, 14], the au-
tomata on unranked trees which capture document type definitions can be ex-
tended by counting conditions (on the occurrences of certain data as sons of an
XML-tree node). If these arithmetical conditions are restricted to semi-linear
sets, then the desired decidability results on type checking can be shown.

The purpose of the present paper is to explore possibilities of extending the
framework of semi-linear sets (or, equivalently, Presburger arithmetic or systems
of linear equations), while still keeping the fundamental property that nonemp-
tiness of intersection is decidable. As noted above, the two sets of such an in-
tersection may arise differently (e.g., as generated by a system and as specified
by an acceptance condition), so it is reasonable to consider intersections A ∩ B
where A and B are possibly from different classes.

We basically consider two classes extending the semi-linear sets. Firstly, we
introduce ‘simple semi-polynomial sets’ and show initial results on closure prop-
erties with respect to intersection (with implications for deciding nonemptiness).
Secondly, some variants of ‘quadratic’ sets are introduced, where a recent result
of Grunewald and Segal [5] helps to show the decidability of certain nonemp-
tiness problems. As a conclusion, we suggest some questions motivated by our
observations.

In the present paper we do not address applications in detail, for example in
concrete verification problems. Instead, we focus on the arithmetical aspects and
only remark here that in the scenario above (regarding the sets AA and Aϕ) we
obtain cases which are substantially more general (or, at least, different) than
the existing framework of semi-linear sets and still allow an algorithmic solution.

2 Preliminaries

Recall that a subset A of Nn, n ≥ 1, is called linear if there are vectors
ū0, ū1, . . . , ūm ∈ Nn, m ≥ 0, such that

A = {ū0 + k1ū1 + · · ·+ kmūm | k1, . . . , km ∈ N} . (1)

The vector ū0 is called the constant vector, the vectors ū1, . . . , ūm the periods,
and all of them the generators of A. Alternatively, we may replace (1) with

A = {(L1(k1, . . . , km), . . . , Ln(k1, . . . , km)) | k1, . . . , km ∈ N} , (2)
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where Li(k1, . . . , km) := (ū0)i+k1(ū1)i+· · ·+km(ūm)i for i = 1, . . . , n.1 In other
words, L1, . . . , Ln ∈ N[X1, . . . ,Xm] are linear forms with nonnegative integer
coefficients. A finite union of linear sets is called semi-linear.

In [4] Ginsburg and Spanier showed that the solutions of a linear equation
c0 +

∑n
i=1 cixi = c′0 +

∑n
i=1 c

′
ixi, where ci, c

′
i ∈ N, for i = 0, . . . , n, form a

semi-linear set. Further, if we close the sets defined by linear equations under
Boolean operations and projection, the Presburger-definable sets (i.e., the first-
order-definable sets over (N, +)) are generated. Ginsburg and Spanier [4] also
showed that the semi-linear sets coincide with the Presburger-definable ones.
Moreover, all the logical closure operations are effective. For instance, given the
generators of A and B, generators of A∩B can be computed. This implies that
the nonemptiness of this intersection is decidable.

For a finite, nonempty alphabet Σ = {a1, . . . , an}, the Parikh mapping
Φ : Σ∗ → Nn is defined by Φ(w) := (|w|a1 , . . . , |w|an), for each w ∈ Σ∗. Parikh’s
Theorem [12] asserts that the Parikh image Φ(L) := {Φ(w) | w ∈ L} of a
context-free language L over Σ is semi-linear. Conversely, every semi-linear set
is the Parikh image of a context-free language (even of a regular language).

3 Simple Semi-polynomial Sets

A natural generalization of semi-linear sets involves general polynomials rather
than just linear ones in (2): A subset A of Nn, n ≥ 1, is a polynomial set if there
are polynomials P1, . . . ,Pn ∈ N[X1, . . . ,Xm] such that

A = {(P1(k1, . . . , km), . . . ,Pn(k1, . . . , km)) | k1, . . . , km ∈ N} . (3)

A finite union of polynomial sets is called semi-polynomial.
Since the polynomials in (3) may have mixed terms, i.e., terms in which more

than one variable occur, we get a class which is not manageable. In fact, the
nonemptiness of intersection is undecidable even for the case of a two-dimensional
polynomial set and a semi-linear one. This is clear by a simple reformulation of
Hilbert’s Tenth Problem (note that the identity relation idN := {(k, k) | k ∈ N}
is a linear set):

∃k1 . . . km P (k1, . . . , km) = 0 , where P ∈ Z[X1, . . . ,Xm]
iff ∃k1 . . . km Q(k1, . . . , km) = R(k1, . . . , km) , where Q,R ∈ N[X1, . . . ,Xm]

iff
{(

Q(k1, . . . , km)
R(k1, . . . , km)

)
| k1, . . . , km ∈ N

}
∩ idN �= ∅ .

Therefore, we restrict the polynomials in (3) by disallowing mixed terms and
obtain sets of the form⎧⎪⎨⎪⎩

⎛⎜⎝ c1 + P11(k1) + · · ·+ P1m(km)
...

cn + Pn1(k1) + · · ·+ Pnm(km)

⎞⎟⎠ | k1, . . . , km ∈ N

⎫⎪⎬⎪⎭ , (4)

1 For a vector x̄ ∈ Nn, we write (x̄)i for the i-th component of x̄.
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where c1, . . . , cn ∈ N, and Pij ∈ N[X ] is a (univariate) polynomial without
constants, for each i = 1, . . . , n and j = 1, . . . ,m. A set defined in this way is
called a simple polynomial set, and simple semi-polynomial sets are finite unions
of simple polynomial sets.

In analogy to (1) for linear sets, a simple polynomial set as in (4) can be
represented in terms of its generators as follows:

{ū0 + k1ū1,1 + k2
1ū1,2 + · · ·+ kd−1

1 ū1,d−1 + kd
1 ū1,d

+ · · ·+ kmūm,1 + k2
mūm,2 + · · ·+ kd−1

m ūm,d−1 + kd
mūm,d

| k1, . . . , km ∈ N} ,

(5)

where ū0 and ūi,j (1 ≤ i ≤ m, 1 ≤ j ≤ d) are vectors from Nn. In this case, the
simple polynomial set is said to be of degree d. Note that from a representation
(4) one easily obtains (5), and vice versa.

Clearly, each (semi-)linear set is a simple (semi-)polynomial set. An interesting
special case is given by the simple quadratic sets

{ū0 + k1ū1,1 + k2
1ū1,2 + · · ·+ kmūm,1 + k2

mūm,2 | k1, . . . , km ∈ N}

and finite unions of such sets, the simple semi-quadratic sets.
Given the generators of a (simple) polynomial set as in (3) or (5), one can

decide whether a given vector v̄ = (v1, . . . , vn) belongs to this set; it suffices to
check the ki-values up to max{v1, . . . , vn}. Hence, a (simple) semi-polynomial
set is decidable.

Example 1. The set A1 := {(u1,u2) ∈ N2 | u2 = u2
1} is a simple quadratic set

since A1 = {(0, 0) + k(1, 0) + k2(0, 1) | k ∈ N}.
Let us verify that A1 is not semi-linear. Towards a contradiction, suppose that

A1 is a finite union of linear sets, say A1 =
⋃r

i=1 Bi, for some r ≥ 1. Since A1 is
infinite, there is some linear set Bi that contains at least two elements. Let ū0 be
the constant vector and ū1, . . . , ūm be the periods of Bi. Ifm = 0, or if all periods
of Bi are 0̄,2 then Bi has only one element, namely ū0, a contradiction. So we
can assume that ū1 is not 0̄. By definition of linear sets, ū0 + kū1 ∈ Bi ⊆ A1,
for all k ∈ N. Let ū0 = (u01,u02) and ū1 = (u11,u12). Then, by definition of A1,
we have for all k ∈ N

(u01 + ku11)2 = u02 + ku12 . (6)

Since ū1 �= 0̄, at least one of u11 and u12 is not zero. Hence, (6) is a poly-
nomial equation of degree one or two in k, which has at most two solutions.
Contradiction.

A copy of this argument shows that {(u1,u2) ∈ N2 | u2 = ud+1
1 } is not a simple

semi-polynomial set of degree d, for any d ≥ 1, and that {(u1,u2) ∈ N2 | u2 =
2u1} is not a simple semi-polynomial set.

2 0̄ denotes a vector consisting only of zeroes.
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Example 2. The product relation Aprod := {(u, v,uv) | u, v ∈ N} ⊆ N3, which
is clearly polynomial, is not a simple semi-polynomial set. To verify this, the
simple comparison of growth rates does not suffice, and some structural analysis
is needed.

Towards a contradiction, assume that Aprod is a finite union of simple poly-
nomial sets, each of them of the form

A′ =

⎧⎨⎩
⎛⎝a+ P1(k1) + · · ·+ Pm(km)
b+Q1(k1) + · · ·+Qm(km)
c+R1(k1) + · · ·+Rm(km)

⎞⎠ | k1, . . . , km ∈ N

⎫⎬⎭ ,

where Pi,Qi,Ri ∈ N[X ] are polynomials without constants, and where not all
of Pi,Qi,Ri are zero polynomials, for each i = 1, . . . ,m. Since Pi(0) = Qi(0) =
Ri(0) = 0 for i = 1, . . . ,m, we have, for each j ≥ 2,⎛⎝ab

c

⎞⎠ ,

⎛⎝a+ P1(1)
b+Q1(1)
c+R1(1)

⎞⎠ ,

⎛⎝a+ Pj(1)
b+Qj(1)
c+Rj(1)

⎞⎠ ,

⎛⎝a+ P1(1) + Pj(1)
b+Q1(1) +Qj(1)
c+R1(1) +Rj(1)

⎞⎠ ∈ Aprod .

Since Aprod is the product relation, we have

c = ab

c+R1(1) = (a+ P1(1))(b +Q1(1))
c+Rj(1) = (a+ Pj(1))(b +Qj(1))
c+R1(1) +Rj(1) = (a+ P1(1) + Pj(1))(b +Q1(1) +Qj(1))

It follows that P1(1)Qj(1)+Pj(1)Q1(1) = 0. Since (Pi(1),Qi(1)) �= (0, 0), for all
i = 1, . . . ,m, we have

P1(1) = Pj(1) = 0 and hence P1 = Pj ≡ 0 , or
Q1(1) = Qj(1) = 0 and hence Q1 = Qj ≡ 0 .

Since j ≥ 2 was arbitrarily chosen, all Pi or all Qi are zero polynomials, for
i = 1, . . . ,m, and thus, we have

A′ ⊆ {(a, y, ay) | y ∈ N} ⊆ Aprod , or A′ ⊆ {(x, b, bx) | x ∈ N} ⊆ Aprod .

Hence, there are s, t and a1, . . . , as, b1, . . . , bt such that

Aprod =
s⋃

i=1

{(ai, yi, aiyi) | yi ∈ N} ∪
t⋃

j=1

{(xj , bj,xjbj) | xj ∈ N} .

Projection to the first two components should yield N2. However, we obtain the
union of the sets {(ai, yi) | yi ∈ N} and {(xj , bj) | xj ∈ N}, which is a proper
subset of N2, a contradiction.

As the semi-linear sets can be characterized as the Parikh images of the regular
and the context-free languages, one may ask for such a characterization of the
simple semi-polynomial sets. In [8] it is shown that all simple semi-polynomial
sets (and more sets, e.g., Aprod of Example 2) can be obtained as the Parikh
images of indexed languages, i.e., those languages which are recognized by level-
two pushdown automata (pushdown automata with a stack of stacks).
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4 Intersection Problems

We show two results: Simple semi-polynomial sets are not closed under intersec-
tion whereas the intersection of a simple semi-polynomial set with a semi-linear
set of a ‘special kind’ is again a simple semi-polynomial set.

Theorem 3. There exist two simple quadratic sets the intersection of which is
not simple semi-polynomial.

Proof. Consider the simple quadratic sets

A =
{(

(k1 + 1)2 + (k2 + 1)2

k3

)
| k1, k2, k3 ∈ N

}
and B =

{(
k2

k

)
| k ∈ N

}
.

The intersection A∩B consists of the pairs (k2, k) where k2 = (k1+1)2+(k2+1)2,
for certain k1, k2, is a solution of the Pythagoras equation in positive integers. It
is known from elementary number theory (see, e.g., [6]) that these pairs coincide
with the pairs (w2(u2 + v2)2,w(u2 + v2)) where u, v,w are positive integers. By
the Two-Square Theorem (see, e.g., [6]), the latter pairs coincide with the pairs
(n2, n) of natural numbers where n ≥ 2 is even or divisible by some prime p ≡ 1
(mod 4).

Suppose that A ∩B is simple semi-polynomial, i.e. a union of sets

Ai =
{(

α+ P1(k1) + · · ·+ Pm(km)
β +Q1(k1) + · · ·+Qm(km)

)
| k1, . . . km ∈ N

}
(i = 1, . . . , s)

where α,β ∈ N and P1, . . . ,Pm,Q1, . . . ,Qm ∈ N[X ] are nonzero polynomials
without constants. Setting k1 = · · · = km = 0, we obtain α = β2. Fixing some
j ∈ {1, . . . ,m} and setting kr = 0, for all 1 ≤ r ≤ s with r �= j, we obtain
Pj(kj) + β2 = (Qj(kj) + β)2 and thus Pj(kj) = (Qj(kj))2 + 2βQj(kj), for each
kj ∈ N. If m ≥ 2, we would have for 1 < j ≤ m

P1(k1) + Pj(kj) + β2 = (Q1(k1) +Qj(kj) + β)2 ,

and hence, Q1(k1)Qj(kj) = 0, for all k1, kj ∈ N, which would imply that one of
Q1 and Qj is zero, a contradiction. Hence, we have m = 1 and can assume

Ai =
{(

(Ri(ki))2

Ri(ki)

)
| ki ∈ N

}
for some polynomial Ri ∈ N[X ].

Let N := 4K, where K is the least common multiple of the coefficients of
R1, . . . ,Rs. Among these polynomials let R1, . . . ,Rt be the ones of degree 1,
say, Ri = ai + bi(X), which yields, for i = 1, . . . , t,

Ri(N) = ai + biN =
m⋃

j=0

aij +NN (7)
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as a disjoint union, for some 0 ≤ m < N . By Dirichlet’s Prime-Number Theorem,
each arithmetic progression c+NN, where c ≡ 3 (mod 4) and where c and N are
relatively prime, contains infinitely many primes q ≡ 3 (mod 4). Thus, c+NN
does not occur in the union (7). Now, let p be a prime with p ≡ 1 (mod N).
Then, for any n ∈ pc + pNN, the pair (n2, n) belongs to A ∩ B, which means
that

pc+ pNN ⊆
s⋃

i=t+1

Ri(N) , (8)

where, for each i = t + 1, . . . , s, Ri is either a constant or of degree ≥ 2. In the
latter case we have, Ri(ki + 1)−Ri(ki) ≥ 2ki, for each ki ∈ N. In other words,
these differences tend to infinity, which contradicts (8). ��

We now exhibit a case of an intersection operation which does not lead out
of the simple semi-polynomial sets, respectively the semi-polynomial sets. We
consider the intersection with a special form of semi-linear set: A set A ⊆ Nn

is called componentwise linear if there are linear sets A1, . . . , An ⊆ N such that
A = A1 × · · · × An . The set A is called componentwise semi-linear if it is a
finite union of componentwise linear sets.

To simplify notation, in the sequel we do not distinguish between an ordinary
natural number and a one-dimensional vector of natural numbers.

Theorem 4. Let n ≥ 1. If A ⊆ Nn is componentwise semi-linear and B ⊆
Nn is simple semi-polynomial (respectively semi-polynomial) of degree d ≥ 1,
then A∩B is simple semi-polynomial (respectively semi-polynomial) of degree d.
Moreover, if A and B are given by their generators, generators of A ∩B can be
computed and hence nonemptiness of A ∩B be checked effectively.

Proof. We only consider simple semi-polynomial sets; the proof works in the
same way for semi-polynomial sets. Furthermore, it suffices to consider the case
that A is componentwise linear and B is a simple polynomial set. We construct
a simple semi-polynomial representation of A∩B by a refinement process which
successively covers more and more of the n components. For the intersection
of the projections of A and B to the first component we obtain a simple semi-
polynomial representation, which is then made thinner by taking into account
the other components, one by one. To simplify matters, let us first treat the case
that B is a simple quadratic set.

Case 1. Let n = 1, i.e. A, B ⊆ N. Suppose A, B ⊆ N are given by

A = {u0 + k1u1 + . . .+ kmum | k1, . . . , km ∈ N} ,

B = {v0 + k1v1 + k2
1w1 + · · ·+ krvr + k2

rwr | k1, . . . , kr ∈ N} ,

where the ui, vi,wi are natural numbers and vi + wi ≥ 1 for all i = 1, . . . , r. In
order to avoid trivial cases, assume ui ≥ 1 for all i = 1, . . . ,m.
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Let g be the greatest common divisor of u1, . . . ,um. Clearly, A ⊆ {u0 + kg |
k ∈ N}, and for sufficiently large c0 (we may take c0 := u0 + u1 · · ·um) the set

C := {c0 + kg | k ∈ N}

contains precisely the A-elements from c0 onwards.
The set A \ C is finite; so by decidability of B one computes the set F :=

(A \ C) ∩B.
The intersection A∩B is the union of F with C ∩B. Elements in C ∩B have

to be solutions of the congruence

v0 + k1v1 + k2
1w1 + . . .+ krvr + k2

rwr ≡ c0 (mod g) . (9)

It suffices to check the congruence for values ki < g. If no solution exists, we
have C ∩ B = ∅ and A ∩ B = F . If a solution exists, say s̄ = (s1, . . . , sr) ∈
{0, . . . , g − 1}r, it produces the B-elements

x = v0 +m1v1 +m2
1w1 + . . .+mrvr +m2

rwr , (10)

where mi = si + nig, ni ∈ N.
In order to ensure x ≥ c0 (i.e. to obtain C∩B) it suffices to require

∑r
i=1 ni >

)c0/g*. Only finitely many C-elements are missed by this requirement; we collect
them in the finite set Es̄. The case

∑r
i=1 ni > )c0/g* is split into finitely many

subcases n1 ≥ l1j , . . . , nr ≥ lrj (where j ranges over a finite set J). If we write
lij + ni (ni ≥ 0) instead of ni ≥ lij and substitute mi = si + nig in (10) by
si + (lij + ni)g, we obtain the following simple quadratic set in the ni:

Cs̄,j = {v′0 + n1v
′
1 + n2

1w
′
1 + . . .+ nrv

′
r + n2

rw
′
r | n1, . . . , nr ∈ N} . (11)

The intersection C ∩ B is the union of the finite sets Es̄ and the finitely
many simple quadratic sets Cs̄,j. Hence, A ∩ B is a simple semi-quadratic set.
Furthermore, the set is empty iff the finite set F mentioned above is empty and
the congruence (9) has no solution.

Case 2. Let n > 1. Consider a componentwise linear set A ⊆ Nn and a simple
quadratic set B ⊆ Nn:

A = A1 × · · · ×An ,

B = {v̄0 + k1v̄1 + k2
1w̄1 + · · ·+ kr v̄r + k2

r w̄r | k1, . . . , kr ∈ N} ,

where v̄i, w̄i ∈ Nn.
We analyze the intersection A ∩ B for the first component as above. If this

intersection is empty, this is also true for A ∩B and we are done. Otherwise we
invoke Case 1 for the first components of A and B, which shows that (A)1 ∩
(B)1 is a simple semi-quadratic set.3 If this intersection is finite (which means
3 For a set X ⊆ Nn, the set (X)i denotes {(x̄)i | x̄ ∈ X}. Further, note that (A)i = Ai

since A is componentwise linear.
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that (11) above is empty), it suffices to decide for each of the corresponding n-
tuples (k1, . . . , kr) whether the second component of the A-element generated by
k1, . . . , kr belongs to the simple quadratic set given by the second components
of the B-elements.

If (A)1 ∩ (B)1 is infinite, consider a set Cs̄,j as constructed above. We have
to find the (B)2-elements of the form

(v̄′0)2 + n1(v̄′1)2 + n2
1(w̄

′
1)2 + · · ·+ nr(v̄′r)2 + n2

r(w̄
′
r)2 .

This is a simple quadratic set in the ni, and the procedure of Case 1 can be
invoked to find those vectors (n1, . . . , nr) which describe the second component of
an A-element. We obtain a simple semi-quadratic representation of (A)1,2∩(B)1,2
(the intersection of A and B restricted to the first two components), which
moreover is testable for nonemptiness. After n−1 steps of this kind the procedure
terminates with a simple semi-quadratic representation of A∩B, giving also the
information whether A ∩B = ∅.

The same argument is applicable to (simple) polynomial sets B instead of
simple quadratic ones. The simple quadratic expressions in (9), (10), (11) change
to (simple) polynomial ones, but the form of the solutions (m1, . . . ,mr) still is
of the form mi = si + nig since the component sets (A)j are (componentwise)
linear. So the proof carries over in the obvious way. ��

We have shown that for a (simple) semi-polynomial set B the intersection with
a componentwise semi-linear set A yields again a (simple) semi-polynomial set
whereas this fails in general for a simple semi-polynomial set A. The interme-
diate case of a semi-linear set A remains open, even for the weaker statement
that nonemptiness of A∩B is decidable. Let us note that this decision problem
is as hard as for the intersection of semi-polynomial sets in general. In fact, a
decidability proof for semi-linear A and (simple) semi-polynomial B would im-
mediately yield decidability of nonemptiness for intersections of two arbitrary
(simple) semi-polynomial sets. The argument resembles the remark at the begin-
ning of Sect. 3. Consider C = {(P1(k1, . . . , kr), . . . ,Pn(k1, . . . , kr)) | k1, . . . , kr ∈
N} and D = {(Q1(l1, . . . , ls), . . . ,Qn(l1, . . . , ls)) | l1, . . . , ls ∈ N}. We have
C ∩ D �= ∅ iff there are i1, . . . , in with P1(k1, . . . , kr) = i1 = Q1(l1, . . . , ls),
. . . , Pn(k1, . . . , kr) = in = Qn(l1, . . . , ls). This means that the polynomial set
(of dimension 2n)

B = {(P1(k̄),Q1(l̄), . . . ,Pn(k̄),Qn(l̄)) | k1, . . . , kr, l1, . . . , ls ∈ N}

has a nonempty intersection with the linear set

A = {(i1(1, 1, 0, . . . 0) + · · ·+ in(0, . . . , 0, 1, 1) | i1, . . . , in ∈ N} .

5 Quadratic Forms

It is known that the undecidability of Hilbert’s Tenth Problem holds for polyno-
mial equations of degree four and for systems of polynomial equations of degree
two (see [11]).
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In this context, Xie, Dang, and Ibarra [16] solved a restricted case regarding
pairs of quadratic equations which are generated by products of linear forms.

If only a single quadratic form

Q(x1, . . . ,xn) :=
∑

1≤i,j≤n

aijxixj +
∑

1≤i≤n

bixi + c

is considered, where aij , bi, c ∈ Z, for 1 ≤ i, j ≤ n, then the solvability of the
equation Q(x1, . . . ,xn) = 0 has also been shown decidable, both in integers and
in natural numbers. The solvability in integers follows from Siegel’s work [15].
Regarding the solvability in natural numbers, a standard approach is to apply
Lagrange’s Theorem which characterizes the natural numbers as the sums of
four squares (of integers). However, adding this requirement for each variable to
a quadratic equation results in a system of quadratic equations, where Siegel’s
analysis does not apply. In a recent paper, Grunewald and Segal [5] show that
the solvability of quadratic equations in integers stays decidable even under
constraints given by linear inequalities:

Theorem 5 ([5]). Given a quadratic form Q ∈ Z[X1, . . . ,Xn] and linear forms
L1, . . . , Lk ∈ Z[X1, . . . ,Xn], it is decidable whether a system

Q(x1, . . . ,xn) = 0 , (12a)
Lj(x1, . . . ,xn) # cj ,where cj ∈ Z and # ∈ {<,≤}, for j = 1, . . . , k , (12b)
(x1, . . . ,xn) ≡ (h1, . . . ,hn) (mod m),where h1, . . . ,hn ∈ Z, m ∈ N , (12c)

has a solution in Zn.

A decision procedure for solvability of quadratic equations in natural numbers
can be obtained from Thm. 5 by imposing linear constraints of the form −xi ≤ 0
for (12b).

The proof of the theorem requires deep number-theoretic constructions and
does not come (as yet) with a complexity analysis. Rather than studying the
general case it seems more tractable trying to isolate cases where reasonable
complexity bounds can be provided.

In the sequel, we demonstrate how the decidability of the solvability of
quadratic equations, in particular Thm. 5, can be applied to obtain two kinds
of generalizations of semi-linear sets which are yet so modest that decidability
results on the intersection problem are retained. The first result is concerned
with sets defined via solutions of quadratic equations, and the second one refers
to sets which are enumerated by quadratic and linear forms.

As a corollary of Thm. 5, the nonemptiness problem for the intersection of
a semi-linear set with the solution set of a quadratic equation is decidable. For
this, it suffices to recall that a semi-linear set is the solution set of a linear
(in)equation system [4].

Corollary 6. Nonemptiness of the intersection of a semi-linear set A ⊆ Nn

with the solution set S of a quadratic equation Q(x1, . . . ,xn) = 0 is decidable.
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This can be applied, for example, to the following scenario indicated in Sect. 1:
Given a system that produces a semi-linear set A ⊆ Nn (for instance, a finite
automaton or a pushdown system) and an acceptance constraint given by a
quadratic equation Q(x̄) = 0 for Q ∈ Z[X1, . . . ,Xn] then it can be decided
whether some run of the automaton exists that satisfies the acceptance condition.

Next we introduce sets which refer to the value sets of quadratic forms Q(x̄)
rather than solutions of the equation Q(x̄) = 0. We call a set A ⊆ Nn one-
quadratic if A is a polynomial set such that the first component is given by a
quadratic form Q ∈ N[X1, . . . ,Xm] and the other components by linear forms
L2, . . . , Ln ∈ N[X1, . . . ,Xm]:

A = {(Q(k1, . . . , km), L2(k1, . . . , km), . . . , Ln(k1, . . . , km)) | k1, . . . , km ∈ N} .

A semi-one-quadratic set is a finite union of one-quadratic sets. The semi-one-
quadratic sets encompass the semi-linear ones.

Deciding the nonemptiness of the intersection of one-quadratic sets leads to
solving an equation system of the form (12): Given one-quadratic subsets A
and B that are defined by Q, L2, . . . , Ln ∈ N[X1, . . . ,Xm] and Q′, L′2, . . . , L

′
n ∈

N[X1, . . . ,Xr], respectively, we have that A∩B �= ∅ iff there are k1, . . . , km and
k′1, . . . , k

′
r ∈ N such that Q(k1, . . . , km) = Q′(k′1, . . . , k

′
r) and Lj(k1, . . . , km) =

L′j(k
′
1, . . . , k

′
r), for j = 2, . . . , n. Now, we write the equations as Q−Q′ = 0 and

Lj − L′j = 0, and then replace Lj − L′j = 0 by Lj − L′j ≤ 0 and L′j − Lj ≤ 0.
Hence, Thm. 5 can be applied. For the step from one-quadratic sets to semi-one-
quadratic sets, we just use the distributivity of union over intersection.

Corollary 7. Nonemptiness of the intersection of two semi-one-quadratic sets
(and hence of a semi-one-quadratic with a semi-linear set) is decidable.

6 Conclusion

The results of this paper are a small step into a field which is not well explored
so far. We have suggested some classes of arithmetical constraints beyond the
framework of semi-linear sets where effective solutions are possible. The main
purpose of this note is to indicate some perspectives. Let us list some open
problems:

1. Study the closure properties of simple semi-polynomial and simple semi-
quadratic sets. In particular, does the intersection of a simple semi-polyno-
mial set with a semi-linear set yield again a simple semi-polynomial set?
What about the case of a semi-quadratic set?

2. The product relation of Example 2 shows a weakness of the simple semi-
polynomial sets. One observes, however, that 2mn = (m+n)2−m2−n2, for
any m, n ∈ N, and thus the product function is (up to a factor) the difference
of functions the graphs of which are simple quadratic. This suggests the study
of the closure of simple (semi-)quadratic sets under additive operations.

3. Better upper bounds for deciding the membership in a simple semi-polyno-
mial set should be found.
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4. A way of extending the simple semi-polynomial sets is to consider the Parikh
images of indexed languages. This would cover not only the product relation
but also exponential relations like {(n, 2n) | n ∈ N} (see [8]).

5. Start an algorithmic analysis of [5], and find forms of quadratic equations
where reasonable upper bounds for deciding solvability can be established.

6. Study the case of quadratic inequations rather than equations.
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Abstract. The method of “Invisible Invariants” has been applied successfully
to protocols that assume a “symmetric” underlying topology, be it cliques, stars,
or rings. In this paper we show how the method can be applied to proving safety
properties of distributed protocols running under arbitrary topologies. Many
safety properties of such protocols have reachability predicates, which, at first
glance, are beyond the scope of the Invisible Invariants method. To overcome
this difficulty, we present a technique, called “coloring,” that allows, in many
instances, to replace the second order reachability predicates by first order predi-
cates, resulting in properties that are amenable to Invisible Invariants. We demon-
strate our techniques on several distributed protocols, including a variant on
Luby’s Maximal Independent Set protocol, the Leader Election protocol used in
the IEEE 1394 (Firewire) distributed bus protocol, and various distributed span-
ning tree algorithms. All examples have been tested using the symbolic model
checker TLV.

1 Introduction

Uniform verification of parameterized systems is one of the most challenging problems
in verification today. Given a parameterized system S(N) : P [1]‖ · · · ‖P [N ] and a
property p, uniform verification attempts to verify S(N) |= p for every N > 1. One
of the most powerful approaches to verification which is not restricted to finite-state
systems is deductive verification. This approach is based on a set of proof rules in
which the user has to establish the validity of a list of premises in order to validate a
given property of the system. The two tasks that the user has to perform are:

1. Identify some auxiliary constructs which appear in the premises of the rule;
2. Use the auxiliary constructs to establish the logical validity of the premises.

When performing manual deductive verification, the first task is usually the more dif-
ficult, requiring ingenuity, expertise, and a good understanding of the behavior of the
program and the techniques for formalizing these insights. The second task is often per-
formed using theorem provers such as PVS[1] or STeP [2], which require user guidance
and interaction, placing additional burden on the user. The difficulties in the execution
of these two tasks are the main reason why deductive verification is not used more
widely.
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I1. Θ → ϕ
I2. ϕ ∧ ρ → ϕ′

I3. ϕ → p

p

Fig. 1. The Proof Rule INV

A representative case is the verification of invariance properties using the invariance
rule of [3], which is described in Fig. 1. In order to prove that assertion p is an invariant
of programP , the rule calls for an auxiliary assertion ϕ that is inductive and strengthens
(implies) p. Premise I1 requiresϕ to hold at any initial states, which are characterized by
the assertion Θ. Premise I2 requires that every ρ-successor of a ϕ-state is also ϕ-state,
where ρ is the transition relation, and premise I3 specifies that ϕ strengthens p. The
main challenge in applying INV is identifying a good ϕ when p itself is not inductive.

In [4, 5] we introduced the method of Invisible Invariants, which proposes a method
for automatic generation of the auxiliary assertion ϕ for parameterized systems, as well
as an efficient algorithm for checking the validity of the premises of the invariance rule.
See [6] for a tool that implements the idea. The generation of invisible auxiliary con-
structs is based on the observation that frequently an auxiliary assertion ϕ for a parame-
terized system has one of the forms q(i), ∀i.q(i) or, more generally, ∀i �= j.q(i, j). We
construct an instance of the parameterized system taking a fixed value N0 for the para-
meter N . For the finite-state instantiation S(N0), we compute, using BDD-techniques,
some assertion ψ, which we wish to generalize to an assertion in the required form.
Let r1 be the projection of ψ on process index 1, obtained by discarding references
to all variables that are local to all processes other than P [1]. We take q(i) to be the
generalization of r1 obtained by replacing each reference to a local variable P [1].x by
a reference to P [i].x. The obtained q(i) is our candidate for the body of the inductive
assertion ϕ : ∀i.q(i). We refer to this part of the process as proj-gen. For example, when
generating invariants, ψ is the set of reachable states of S(N0). The process can easily
be generalized to generate assertions of the type ∀i1, . . . , ik.p("i).

Having obtained a candidate for the assertion ϕ, we still have to check validity of the
premises of the proof rule we wish to employ. Under the assumption that our assertional
language is restricted to the predicates of equality and inequality between bounded
range integer variables (which is adequate for many of the parameterized systems we
considered), we proved a small model theorem, according to which, for a certain type of
assertion, there exists a (small) bound N0 such that such an assertion is valid for every
N iff it is valid for all N ≤ N0. This enables using BDD-techniques to check validity of
such an assertion. The assertions covered by the theorem are those that can be written
in the form ∀"i∃"j.ψ("i,"j), where ψ("i,"j) is a quantifier-free assertion that refers only to
the global variables and the local variables of P [i] and P [j], where the variables are
restricted to be stratified. Thus, for example, if we have a finite domain and an index
domain (that ranges over the process id’s [1..N ]), stratification requires that every array
maps from the index domain into the finite domain.

Being able to validate the premises on S[N0] has the additional important advantage
that the user never sees the automatically generated auxiliary assertion ϕ. This assertion
is produced as part of the procedure and is immediately consumed in order to validate
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the premises of the rule. Being generated by symbolic BDD techniques, the representa-
tion of the auxiliary assertions is often extremely unreadable and non-intuitive, and will
usually not contribute to a better understanding of the program or its proof. Because the
user never gets to see it, we refer to this method as the “method of Invisible Invariants.”

As shown in [4, 5], many concurrent systems are stratified, and the result of embed-
ding a ∀"i.q("i) candidate inductive invariant in the main proof rule used for their safety
properties results in premises that fall under the small model theorem. In the past we did
not study protocols for general topologies, because many of these require reachability
analysis, which is not a first order predicate, and therefore was beyond our methods.
Thus, all the systems we applied the Invisible Invariants method (or its successors that
handle liveness), have a “trivial” topology, be it a star, a clique, or a ring.

In this paper we study applications of the method of invisible invariants to arbitrary
fixed topologies. We first present a small-model theorem that applies to such systems.
We then study protocols whose specifications include reachability predicates. To handle
reachability with an invisible-invariant-like strategy, we augment a given protocol with
a coloring scheme that starts at one node (the initial node), and propagates colors to ad-
jacent non-colored nodes. At each point in the coloring, only nodes that are reachable
from the initial node are colored, and when the coloring terminates, all nodes reach-
able from the initial node are colored. The coloring allows to replace the second-order
reachability predicate with a first order colored predicate.

The paper is organized as follows: Section 2 demonstrates how we model the leader
election protocol. Section 3 presents the formal model of programs over arbitrary
topologies, as well as a small model result. Section 4 formalizes and demonstrates use
of the coloring augmentation, Section 5 summarizes runtime and verification results,
and Section 6 discusses future work and concludes.

Related Work. We are not aware of any work that deals specifically with automatic
verification of distributed algorithms. Most related to the work here is the work on au-
tomatic verification of parameterized systems. Our work extends the work surveyed
in [7]. The PAX project (e.g., [8]) models parameterized systems in WS1S on which
abstractions are computed and checked in MONA. The index predicates (e.g., [9]) com-
bine predicate abstraction with a heuristic, similar to that used here, for constructing
quantified invariants.

There have been numerous verification efforts specifically targeted at various aspects
of the IEEE 1394 tree identification protocol, among them are [10, 11]. However, none
of these works attempt at full automation. The work in [12] deals with the probabilistic
aspect of the protocol, which we ignore in the work reported here. (We should, however,
state that we have automatically verified the probabilistic aspects of the protocol using
methods that are outside the scope of this paper.) For an in depth survey of previous
verification efforts of the protocol see [10].

The work in [13] uses a coloring scheme, somewhat different than ours, to ob-
tain over-approximations of reachability predicates for the purpose of shape-analysis.
Since we deal with a fixed topology, our coloring scheme is precise with respect to
reachability.
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2 Leader Election

To demonstrate our techniques, we present the Leader Election protocol [14] (which
also serves as the tree identification protocol used in the IEEE 1394 bus specification
[12]) and its safety properties.

In all of our examples, we assume a network of N processes whose id’s are [1..N ].
The interconnection among the processes is described by the boolean matrix Q, where
Q[i, j] denotes a direct link from i to j, and ¬Q[i, j] denotes the absence of such a
link. We assume that the communication between neighbors is bi-directional, therefore
Q[i, j] = Q[j, i] for all i and j.

The Protocol. IEEE 1394 specifies a network allowing dynamic connection and dis-
connection of devices. At each point in time, the network is arranged as a tree, with
devices as leaves. The leader election sub-protocol is invoked during a connection
or disconnection event when, based on the new topology, a leader needs to be de-
termined anew. Dynamic aspects of the network need not be modeled here since the
leader election sub-protocol itself assumes a static network (i.e., following a connec-
tion/disconnection event).

As before, we model communication between nodes by shared variables. We let
Q denote the adjacency matrix, and for each process i, we assign a boolean variable
done[i] denoting whether i still participates in the protocol or has determined its par-
ent, a boolean leader [i] which is set when i becomes the leader, and a boolean matrix
parent [1..N, 1..N ] such that parent [i, j] is set when j becomes the parent of i.

In our modeling of the protocol, we assume that each node i, in a single indivis-
ible atomic step, can check all the parent [1..N, i] variables and set parent [i, j] and
leader [i] accordingly. This is different from the common synchronous modeling of the
protocol that proceeds in send/receive phases, where at a send phase nodes can send “be
my parent” requests and at receive phases nodes respond to such requests. There, con-
tention may occur when two nodes send one another be my parent requests at the same
phase. The atomicity assumption here bypasses root contention. As discussed later, the
methods proposed here are applicable to less atomic versions that allow for contention.

Q : array [1..N ] of array [1..N ] of bool where ∀i, j.Q[i, j] ↔ Q[j, i]
parent : array [1..N ] of array [1..N ] of bool init ∀i, j.¬parent [i, j]
leader : array [1..N ] of bool init ∀i.¬leader [i]
done : : array [1..N ] of bool init ∀i.¬done [i]

i�=j

P [i, j] ::

while ¬done[i] do
if ∀k �= i.Q[i, k] → parent [k, i] then (leader [i], done [i]) := (1, 1)
elsif (¬parent [j, i] ∧ Q[i, j] ∧ ∀k /∈ {i, j}.Q[i, k] → parent [k, i])

then (parent [i, j], done [i]) := (1, 1)

Fig. 2. Program LEADER-ELECT

The leader election protocol is shown in Fig. 2. For each node, the parent matrix
identifies which node is the parent of another node. There are N(N − 1) processes in
the system, each corresponding to a pair (i, j) ∈ [1..N ]2 with i �= j. Each such process,
P [i, j], repeatedly performs the following two steps while done[i] �= 1:
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1. The first if-statement executes if all nodes directly connected to i have i as their
parent. In this case, i becomes the leader and sets leader [i] to 1.

2. The second if-statement executes if (1) i and j are connected, (2) j has no parent,
and (3) all other neighbors of i have i as parent. In this case, j becomes parent of i.

The protocol works as follows: Assume the underlying graph is a tree. Initially, all leaf
nodes (and no internal node) can execute the second step. Then, the algorithm climbs
up the tree, each node executing the second step, until the root, which executes the first
step, is reached.

If the original graph consists of a forest of trees, then a leader will be elected in each
tree. If the original graph has non-tree connected components, then no leader will be
elected in these components. The safety property of the protocol therefore states that
each component contains at most one leader, formally stated by the following property:

Unique : ∀i �= j : reachable(i, j) → ¬(leader [i] ∧ leader [j])

where for every i, j ∈ [1..N ], reachable(i, j) holds if there is Q-path leading from i
to j, i.e., if there are nodes i1, . . . , ik ∈ [1..N ] such that i1 = i, ik = j, and for every
� = 1, . . . , k − 1, Q[i�, i�+1].

As discussed in the introduction, none of our old methods can be used to automat-
ically verify this property. The method described in [15] fails since it depends on the
reachable predicate being based on a relation where each node has at most one succes-
sor, and Q, on which our current reachable is based, does not satisfy this requirement.

3 Formal Model and Verifying Invariance

In this section we present our computational model, as well as the small model property
that forms the basis of the verification method. Both model and property are derived
from [5] and only differ in that the version here allows for matrix types (e.g., the Q and
parent variables in Fig. 2).

Discrete Systems. As our computational model, we take a discrete system S =
〈V,Θ, ρ〉, where

• V — A set of system variables. A state of S provides a type-consistent interpreta-
tion of the variables V . For a state s and a system variable v ∈ V , we denote by
s[v] the value assigned to v by the state s. Let Σ denote the set of all states over V .
• Θ — The initial condition: An assertion (state formula) characterizing the initial

states.
• ρ(V,V ′) — The transition relation: An assertion, relating the values V of the vari-

ables in state s ∈ Σ to the values V ′ in an S-successor state s′ ∈ Σ.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ.
A computation of a system S is an infinite sequence of states σ : s0, s1, s2, ...,

satisfying the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each � = 0, 1, ..., the state s�+1 is an S-successor of s�. That

is, 〈s�, s�+1〉 |= ρ(V,V ′) where, for each v ∈ V , we interpret v as s�[v] and v′ as
s�+1[v].
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Finite Network Systems. To allow the automatic decision of validity of assertions,
we place further restrictions on the systems we study, leading to what is essentially the
model of bounded discrete systems of [5] extended with an additional matrix type. For
brevity, we describe here a simplified two-type model; the extension for the general
multi-type case is straightforward. We allow the following data types parameterized by
the positive integer N , intended to specify the size of the topology:

1. bool: boolean and finite-range scalars; With no loss of generality, we assume that
all finite domain values are encoded as booleans.

2. index: [1..N ]
3. Arrays of the types index �→ bool (bool array) and index �→ index �→ bool (bool

matrix)

Constants are introduced as variables with reserved names. Thus, we admit the boolean
constants 0 and 1, and index constants such as 1 and N . We often refer to an element
of type index as a node. Atomic formulas are defined as follows:

• If x is a boolean variable, B is a bool array, and y is an index variable, then x and
B[y] are atomic formulas.
• If y1 and y2 are index variables and Q is a bool matrix, then Q[y1, y2] is an atomic

formula.
• If t1 and t2 are index terms, then t1 = t2 is an atomic formula.

A restricted A-assertion (resp. restricted E-assertion) is a formula of the form ∀"y.ψ
("x, "y) (resp. ∃"y.ψ("x, "y)) where "x and "y are lists of index variables, and ψ("x, "y) is
a boolean combination of atomic formulae. A restricted EA-assertion is an assertion
∃"x.∀"y.ψ("x, "y, "u) where "u is a list of index variables and ∀"y.ψ("x, "y, "u) is a restricted
A-assertion. Restricted AE-assertions are similarly defined. As the initial condition Θ
and the transition relation ρ we only allow restricted EA-assertions.

Let V be a vocabulary of typed variables, whose types are taken from the restricted
type system allowed in a system. A model M for V consists of the following elements:

• A positive integer N > 0.
• For each boolean variable b ∈ V , a boolean value M [b] ∈ {0, 1}. It is required that
M [0] = 0 and M [1] = 1.
• For each index variable x ∈ V , a natural value M [x] ∈ [1..N ].
• For each boolean array B ∈ V , a boolean function M [B] : [1..N ] �→ {0, 1}.
• For each boolean matrix Q ∈ V , a function M [Q] : [1..N ] �→ [1..N ] �→ {0, 1}

We define the size of model M to be N .
The following theorem states that a restricted AE-assertion is valid iff it is valid over

all models of a bounded size. It follows from a similar theorem of [5] (which does not
deal with the boolean matrix data-type).

Theorem 1 (Small Model Property). Let ϕ : ∀"y ∃"x.ψ("y, "x) be a closed restricted
AE-assertion. Then ϕ is valid iff it is valid over all models of size not exceeding |"y|.
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Checking Invariance. Consider the INV proof rule of Fig. 1. When validating the
premises of INV for assertions p and ϕ, I3 is a boolean combination of A- and E-
assertions, while I1 and I2 are AE-assertions. We now compute the cut-off bounds de-
termined by the small model theorem to validate Premises I1 and I2. Assume that the
assertions appearing in INV are of the form:

p : (∀u1, . . . ,uc.p1("u)) ⊗ ∃"x.p2("x) Θ : ∃y1, . . . , ya.∀"x.t("y, "x)
ϕ : (∀u1, . . . ,unϕ .ϕ1("u)) ⊗ ∃x1, . . . ,xmϕ .ϕ2("x) ρ : ∃y1, . . . , yb.∀"x.R("y, "x)

where ⊗ ∈ {∨,∧}. I.e, p and ϕ are assertions that are disjunctions or conjunctions
of a restricted A-assertion and a restricted E-assertion, and Θ and ρ are restricted EA-
assertions. If p has free variables, then let ĉ be c plus the number of free variables in p.
Define n̂ϕ, m̂ϕ, â, and b̂ similarly. Theorem 1 now implies:

Corollary 1. The premises of rule INV are valid over S(N) for all N > 1 iff they are
valid over S(N) for all N ≤ max{â+ n̂ϕ, b̂+ n̂ϕ + m̂ϕ, m̂ϕ + ĉ}.
In the full version of the paper [16] we describe an automatic verification of the safety
properties of Luby’s Maximal Independent Set protocol [17].

4 Reachability Avoidance

It is very often the case that safety properties of distributed systems include reachability
predicates that are captured neither by Theorem 1 nor by the proj-gen heuristic. In this
section we define reachability properties we are interested in, and show a methodology
that overcomes the challenges they pose to the Invisible Invariants method.

4.1 Safety Properties with Reachability

Let S be a distributed system with an underlying topology described by the adjacency
matrix Q. Recall the reachable(y1, y2) predicate denoting that y2 is Q-reachable from
y1. We show how to prove invariant properties of the type (α ⊗ β), where α is
a restricted A-assertion that allows for reachable predicates, ⊗ ∈ {∨,∧}, and β is a
restricted E-assertion (without reachability predicates). For simplicity of exposition, we
further restrict α to have a single occurrence of a reachable predicate, both arguments of
which are bound by the universal quantifier. Our results can be easily extended to cases
where α has several occurrences of reachable , and to cases where some arguments of
reachable are free. An example of such a property is Unique of program LEADER-
ELECT in Section 2. There, β is trivial and α has a single reachable predicate, both of
whose arguments are under the scope of the universal quantification.

For the remaining part of this section we fix a safety property φ we wish to verify
over S, where φ : α ⊗ β of the form above. Let t be some index variable that does not
appear free in either φ or the transition relation. Without loss of generality, assume that
α : ∀i1, . . . , ik.p(i1, . . . , ik), where ik is the first parameter of the (single) reachability
predicate in α. Let α[t] be the formula ∀i1, . . . , ik−1.p(i1, . . . , ik−1, t), and φ[t] be the
formulaα[t]⊗β. From the choice of t it follows that S |= φ[t] implies that S |= φ.

For example, for property Unique and t = 1, we obtain:

Unique[1] : ∀j.j �= 1 ∧ reachable(1, j) → ¬(leader [1] ∧ leader [j])
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4.2 Replacing Reachability with a First Order Predicate

The property φ[t] still contains a reachability predicate and its invariance cannot be
handled by the method of Invisible Invariants. We next augment S with a “coloring
protocol” and replace φ with a new property, φt, such that φt is of the form described
in Section 3, such that when the augmented system satisfies φt we can conclude that
S |= φ[t], and therefore S |= φ.

The system and coloring protocol alternate once between “protocol” and “coloring”
phases. While in the “protocol” phase, the system behaves like S, and the coloring
scheme is inactive. Similarly, while in the “coloring” phase, the system is inactive, and
the coloring scheme behaves according to its protocol, colort. An additional compo-
nent, the “phase changer,” determines which phase is first, and switches (once) between
them. We shall return to the phase changer and first describe the coloring protocol.

The coloring protocol colort, described in Fig. 3, propagates a marking starting at the
node t. We assume a boolean arrayCt that does not appear in S, all of whose entries are
initially 0, denoting that all nodes are uncolored. Once activated, the coloring protocol
first sets Ct[t], thus marking node t. Thereafter, when an uncolored node i has a colored
neighbor j, Ct[i] is set. The correctness of colort is expressed in the following theorem,
whose proof is by induction on the topology of the network:

colort ::
local Ct : array [1..N ] of bool init ∀i.Ct[i] = 0

i�=j

if ((i = t) ∨ (Q[i, j] ∧ Ct[j] ∧ ¬Ct[i])) then Ct[i] := 1

Fig. 3. System colort

PHASE(Ψ) ::
local phase , init phase : {protocol , color} init phase = init phase

if (Ψ ∧ phase = init phase) then phase := ¬phase

Fig. 4. System PHASE(Ψ )

Theorem 2. Let S[t] = S‖colort. Then, for every node i, the following all hold:

1. reachable(t, i) is S-valid iff it is S[t]-valid, i.e., both S and S[t] have the same
reachability relations;

2. S[t] |= (Ct[i] → reachable(t, i)), i.e., every colored node is reachable from t;

Assume phase and init phase are variables not in S that can take on the values
{color , protocol}. The phase changer is a module which is composed with S and
colort that is allowed to change the phase once, when a condition Ψ , which is an
input to PHASE, is met. The module, labeled PHASE, is described in Fig. 4. There,
“phase := ¬phase” has the obvious meaning. In Subsection 4.3 we discuss how
init phase and Ψ are initialized.

Let S′ be the system S where each instruction is guarded by (phase = protocol ),
i.e., if S is described by 〈V,Θ, ρ〉 then S′ is defined by 〈V ∪ {phase},Θ, ρ′〉 where
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ρ′ = (phase = protocol ∧ ρ) ∨ (phase �= protocol ∧
∧

v∈V v = v′). Similarly,
let colort

′ be the system colort where each instruction is guarded by (phase = color ).
Then system Saug is defined by the composition S′‖colort

′‖PHASE. The following
claim follows immediately from the definition of Saug:

Claim. Let ψ be a safety property over V . Then S |= ψ iff Saug |= ψ.

We next construct, from φ[t], a property φt such that St |= φt implies that Saug |=
φ[t] (which, according to the previous claim, implies that S |= φ[t]). Recall that

φ[t] is of the form ∀α[t] ⊗ ∃β where the single reachability in φ[t] appears in α in the
form reachable(t, j). We first replace the reachable(t, j) assertion in α by Ct[j]. If
reachable(t, j) appears in α[t] under positive polarity, we add to the resulting formula
the disjunct

∃j �= k.Q[j, k] ∧ Ct[j] ∧ ¬Ct[k]

that captures the situation in which the coloring algorithm has not terminated yet. We
take φt to be the resulting formula.

For example, under this transformation, Unique[1] becomes:

Unique1 : ∀j.j �= 1 ∧ C1[j] → ¬(leader [1] ∧ leader [j]) (1)

The following theorem, the proof of which is available in the full version of the paper
[16], establishes the soundness of the transformation.

Theorem 3
St |= φt =⇒ Saug |= φ[t]

Note that φt is now of the form covered by Corollary 1. For example, to verify
Unique1, we have a = 0 (since the initial condition has no existential quantifiers),
b = 3 since the transition relation of the augmented St has i and j under existential
quantification, and t appears free in it, and c = 2, having j universally quantified and t
free. Thus, for an auxiliary invariant ϕ, we would obtain a cutoff value of max{nϕ, 3+
nϕ +mϕ,mϕ + 2} = 3 + nϕ +mϕ. We generated a ϕ with nϕ = 2 and mϕ = 0, and
thus verified the premises of INV for every N0 ≤ 5.

4.3 Determining the Phase Alternation

There are two main choices to be made, namely, whether init phase is protocol or
color , and whether Ψ is trivially 1 or some non-trivial predicate. In our experiments,
we used the trivial Ψ = 1 with init phase being both protocol or color . As to non-
trivial Ψ , we had to use it only once, in the verification of LEADER-ELECT, and then
init phase was set to protocol and Ψ was defined as leader [t]. We recommend first
trying to use a trivial Ψ = 1, and only if it fails under both choices of init phase , to
attempt some obvious Ψ ’s, e.g., predicates that occur in the property.

5 Evaluation

We have evaluated our method on a set of algorithms which, with the exception of
Luby’s maximal independent set algorithm, are based on versions found in [14]. The
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Algorithm Runtime (seconds)

Leader Election 5
Leader Election (alternate) 54
Spanning Tree 36
MIS 30

Fig. 5. Runtime Results

test cases consist of the leader election protocol used as the running example, a version
of leader election that does not assume atomic parent request/acknowledge steps, as
well as a distributed spanning tree algorithm. All experiments were evaluated using the
TLV symbolic model-checker [18] on a Pentium 3 1GHz PC with 512Mb memory, and
can be found at http://www.cs.nyu.edu/acsys/dist-protocols/index.html. A summary of
runtime results is shown in Fig. 5. The rest of this section summarizes each test case.

The alternate version of leader election allows for contention between nodes. While
like the running example it treats the check over all of a node’s neighbors as atomic,
the assignment of parents is done in 2 phases, a request phase and an acknowledgement
phase. Concretely, the matrix parent is now of type
array [1..N ] of array [1..N ] of {no, req, ack}. Node j is considered the parent of i if
parent [i, j] = ack.

For both versions of the leader election protocol, we verified the property Unique
defined in Section 2. For the alternate version we proved the additional property of lim-
ited contention, specifying that if neighboring nodes have requested parenthood from
some neighbor, then the request is mutual:

∀i �= j, k, l : Q[i, j] ∧ parent [i, k] = req ∧ parent [j, l] = req → k = l

Since this invariant effectively localizes contention in the protocol to two adjacent
nodes, it serves as the basis for a liveness proof showing that any contention eventu-
ally converges with probability 1.

The spanning tree algorithm is similar to the coloring protocol colort in that an arbi-
trary node is designated as the root, and nodes are added to the tree in a top-down, dis-
tributed fashion, starting at the root. For this algorithm we sought to verify the property
that any node reachable from the root participates in the tree, unless tree propagation
has not yet terminated, expressed as:

p : (∀i, t : reachable(t, i)→ in tree[i]) ∨ (∃j �= k : Q[j][k] ∧ in tree[j] ∧ ¬in tree[k])

where the boolean array in tree denotes participation of nodes in the tree. However,
we failed to generate an inductive auxiliary assertion that also implies this property.
Instead, we did successfully verify that ϕ ∧ p is an inductive invariant, where ϕ is the
generated auxiliary assertion.

6 Conclusion and Discussion

We have described the application of the method of Invisible Invariants to distributed
protocols with an arbitrary fixed topology. Contrary to common belief, we found that the
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extension of the method to arbitrary, as opposed to trivial, topologies is rather straight-
forward (as demonstrated by the verification of Luby’s MIS protocol). Yet, the correct-
ness of many such protocols is specified by means of reachability predicates, which
cannot be captured by the Invisible Invariants method. We present a simple coloring
augmentation that allows, in many cases, to replace reachability predicates by first or-
der predicates that can be dealt with by the Invisible Invariants method.
There are several weaknesses to our scheme:

– Many distributed systems are modeled as synchronous, i.e., their transition relation
is an AEA-assertion. This is beyond the power of our small model theorem, hence
we “de-synchronize” them. We would like to identify the types of synchronous
systems our method applies to.

– Our scheme depends on running the “system” and the “coloring,” one after the
other, switching once from one to the other at some point. Often, this point is non-
deterministic and the only choice is which protocol to run first. Yet, it is sometimes
the case that the switch can happen only when some condition is attained. Here
the method is not fully automatic since the user has to guess the condition, which
requires some familiarity with the protocol.

– Our scheme is dependent on the Invisible Invariants method, and is restricted by
its power. Being a BDD-based method, the size of the instantiation of the system
required may be too large to handle. In addition, proj-gen can only generate invari-
ants of certain syntactic type, and it may be the case that the invariants needed are
beyond its power (For example, proj-gen can generate restricted EA-invariants, but
is extremely limited in the AE-invariants it generates).

Yet, in spite of the restrictions, we succeeded to automatically verify, for the first
time, some classical examples that have been thoroughly studied in the literature. We
are hopeful that our coloring augmentation can be used in verification of other systems
too, for example, pointer systems. We are currently working on extending the system to
handle mobile networks.

Acknowledgement. We would like to thank Shuvendu Lahiri who brought the Leader
Election protocol to our attention, and to Yi Fang who pointed out that our existing
small model theorem can be applied to adjacency matrices.
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Abstract. The fully enriched μ-calculus is the extension of the propositional
μ-calculus with inverse programs, graded modalities, and nominals. While satis-
fiability in several expressive fragments of the fully enriched μ-calculus is known
to be decidable and EXPTIME-complete, it has recently been proved that the full
calculus is undecidable. In this paper, we study the fragments of the fully enriched
μ-calculus that are obtained by dropping at least one of the additional constructs.
We show that, in all fragments obtained in this way, satisfiability is decidable
and EXPTIME-complete. Thus, we identify a family of decidable logics that are
maximal (and incomparable) in expressive power. Our results are obtained by
introducing two new automata models, showing that their emptiness problems
are EXPTIME-complete, and then reducing satisfiability in the relevant logics to
this problem. The automata models we introduce are two-way graded alternating
parity automata over infinite trees (2GAPT) and fully enriched automata (FEA)
over infinite forests. The former are a common generalization of two incompara-
ble automata models from the literature. The latter extend alternating automata in
a similar way as the fully enriched μ-calculus extends the standard μ-calculus.

1 Introduction

The μ-calculus is a propositional modal logic augmented with least and greatest fixpoint
operators [Koz83]. It is often used as a target formalism for embedding temporal and
modal logics with the goal of transferring computational and model theoretic properties
such as the EXPTIME upper complexity bound. Description logics (DLs) are a family of
knowledge representation languages that originated in artificial intelligence [BM+03].
DLs currently receive considerable attention, which is mainly due to their use as an
ontology language in prominent applications such as the semantic web [BHS02]. No-
tably, DLs have recently been standardized as the ontology language OWL by the W3C
committee. It has been pointed out by several authors that, by embedding DLs into the
μ-calculus, we can identify DLs that are of very high expressive power, but compu-
tationally well-behaved [CGL01, SV01, KSV02]. When putting this idea to work, we
face the problem that modern DLs such as the ones underlying OWL include several
constructs that cannot easily be translated into the μ-calculus. Most importantly, these
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Inverse progr. Graded mod. Nominals Complexity
fully enriched μ-calculus x x x undecidable
full graded μ-calculus x x EXPTIME (1ary/2ary)
full hybrid μ-calculus x x EXPTIME

hybrid graded μ-calculus x x EXPTIME (1ary/2ary)
graded μ-calculus x EXPTIME (1ary/2ary)

Fig. 1. Enriched μ-calculi and previous results

constructs are inverse programs, graded modalities, and nominals. Intuitively, inverse
programs allow to travel backwards along accessibility relations [Var98], nominals are
propositional variables interpreted as singleton sets [SV01], and graded modalities en-
able statements about the number of successors and predecessors of a state [KSV02].
All of the mentioned constructs are available in the DLs underlying OWL.

The extension of the μ-calculus with these constructs induces a family of enriched
μ-calculi. These calculi may or may not enjoy the attractive computational properties of
the originalμ-calculus: on the one hand, it has been shown that satisfiability in a number
of the enriched calculi is decidable and EXPTIME-complete [CGL01, SV01, KSV02].
On the other hand, it has recently been proved by Bonatti and Peron that satisfiability
is undecidable in the fully enriched μ-calculus, i.e., the logic obtained by extending the
μ-calculus with all of the above constructs simultaneously [BP04]. In computer science
logic, it has always been a major research goal to identify decidable logics that are as
expressive as possible. Thus, the above results raise the question of maximal decidable
fragments of the fully enriched μ-calculus. In this paper, we study this question in a
systematic way by considering all fragments of the fully enriched μ-calculus that are
obtained by dropping at least one of inverse programs, graded modalities, and nominals.
We show that, in all these fragments, satisfiability is decidable and EXPTIME-complete.
Thus, we identify a whole family of decidable logics that have maximum (incompara-
ble) expressivity.

The relevant fragments of the fully enriched μ-calculus are shown in Fig. 1 together
with the complexity of their satisfiability problem. The results shown in gray are already
known from the literature: EXPTIME-completeness of satisfiability in the full hybrid
μ-calculus has been shown in [SV01]; under the assumption that the numbers inside
graded modalities are coded in unary, the same result was proved for the full graded
μ-calculus in [CGL01]; finally, the same was also shown for the (non-full) graded μ-
calculus in [KSV02] under the assumption of binary coding. In this paper, we prove
EXPTIME-completeness of the full graded μ-calculus and the hybrid graded μ-calculus.
In both cases, we allow numbers to be coded in binary (techniques such as those of
[CGL01] involve an exponential blow-up when numbers are coded in binary).

Our results are based on the automata-theoretic approach. We introduce fully en-
riched automata (FEAs), which run on infinite forests and use a parity acceptance con-
dition. Intuitively, these automata generalize alternating automata on infinite trees in a
similar way as the fully enriched μ-calculus extends the standard μ-calculus: FEAs can
move up to a node’s predecessor (by analogy with inverse programs), move down to at
least n or all but n successors (by analogy with graded modalities), and jump directly
to the roots of the input forest (which are the analogues of nominals). We prove that
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the emptiness problem is decidable for fully enriched automata and then show how to
reduce to this problem satisfiability in the hybrid graded and the full graded μ-calculi,
exploiting the forest model property enjoyed by these logics. Observe that decidability
of the emptiness problem for FEAs does not contradict the undecidability of the fully
enriched μ-calculus: the latter does not enjoy a forest model property [BP04], and hence
satisfiability cannot be decided using forest-based FEAs.

To show that the emptiness problem for FEAs is in EXPTIME, we introduce an ad-
ditional automata model: two-way graded parity tree automata (2GAPTs). These au-
tomata are interesting in their own right because they generalize in a natural way two
existing, but incomparable automata models: two-way alternating tree automata (2APT)
[Var98] and graded parity tree automata (GAPT) [KSV02]. We give a polynomial re-
duction of the emptiness problem for FEAs to that for 2GAPTs, and then show contain-
ment in EXPTIME for the 2GAPT emptiness problem by a reduction to the emptiness
of graded nondeterministic parity tree automata (GNPT) as introduced in [KSV02].

Due to space limitations, most of the proofs are omitted. The interested reader can
find them in the accompanying technical report [BL+06].

2 Preliminaries

Let AP , Var , Prog , and Nom be finite and pairwise disjoint sets of atomic proposi-
tions, propositional variables, atomic programs, and nominals. A program is an atomic
program a or its converse a−. The set of formulas of the fully enriched μ-calculus is the
smallest set such that (i) true and false are formulas; (ii) p and ¬p, for p ∈ AP ∪Nom ,
are formulas; (iii) x ∈ Var is a formula; (iv) if ϕ1 and ϕ2 are formulas, α is a program,
n is a non-negative integer, and y is a propositional variable, then the following are also
formulas: ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, 〈n,α〉ϕ1, [n,α]ϕ1, μy.ϕ1(y), and νy.ϕ1(y). Observe
that we use positive normal form, i.e., negation is applied only to atomic propositions.

We call μ and ν fixpoint operators and use λ to denote a fixpoint operator μ or ν. A
propositional variable y occurs free in a formula if it is not in the scope of a fixpoint op-
erator, and bounded otherwise. A sentence is a formula that contains no free variables.
For a formula λy.ϕ(y), we write ϕ(λy.ϕ(y)) to denote the formula that is obtained
by one-step unfolding, i.e. replacing each free occurrence of y in ϕ with λy.ϕ(y). We
refer often to the graded modalities 〈n,α〉ϕ1 and [n,α]ϕ1 as atleast formulas and all-
but formulas and assume that the integers in these operators are given in binary cod-
ing: the contribution of n to the length of the formulas 〈n,α〉ϕ and [n,α]ϕ is ,log n-
rather than n. We refer to fragments of the fully enriched μ-calculus using the names
from Fig. 1.

The semantics of the fully enriched μ-calculus is defined with respect to a Kripke
structure, i.e., a tuple K = 〈W,R, L〉 where W is a non-empty set of states, R :
Prog → 2W×W assigns to each atomic program a transition relation over W , and
L : AP ∪ Nom → 2W assigns to each atomic proposition and nominal a set of states
such that the sets assigned to nominals are singletons. To deal with inverse programs,
we extend R as follows: for each a ∈ Prog , set R(a−) = {(v,u) : (u, v) ∈ R(a)}. If
(w,w′) ∈ R(α), we say that w′ is an α successor of w. Informally, an atleast formula
〈n,α〉ϕ holds at a statew of a Kripke structureK if ϕ holds at least in n+1 α successors
of w. Dually, the allbut formula [n,α]ϕ holds in a state w of a Kripke structure K
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if ϕ holds in all but at most n α successors of w. Note that ¬〈n,α〉ϕ is equivalent
to [n,α]¬ϕ, and that the modalities 〈α〉ϕ and [α]ϕ of the standard μ-calculus can be
expressed as 〈0,α〉ϕ and [0,α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure K =
〈W,R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V : {y1, . . . , yn} →
2W is an assignment of subsets of W to the variables y1, . . . , yn. For a valuation V , a
variable y, and a set W ′ ⊆W , we denote by V [y ←W ′] the valuation obtained from V
by assigning W ′ to y. A formula ϕ with free variables among y1, . . . , yn is interpreted
over the structure K as a mapping ϕK from valuations to 2W , i.e., ϕK(V) denotes the
set of points that satisfy ϕ under valuation V . The mapping ϕK is defined inductively
as follows:

– trueK(V) = W and falseK(V) = ∅;
– for p ∈ AP ∪ Nom , we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
– for y ∈ Var , we have yK(V) = V(y);
– (ϕ1 ∧ ϕ2)K(V) = ϕK

1 (V) ∩ ϕK
2 (V) and (ϕ1 ∨ ϕ2)K(V) = ϕK

1 (V) ∪ ϕK
2 (V);

– (〈n,α〉ϕ)K (V) = {w : |{w′ ∈W : (w,w′) ∈ R(α) and w′ ∈ ϕK(V)}| ≥ n+1};
– ([n,α]ϕ)K(V) = {w : |{w′ ∈ W : (w,w′) ∈ R(α) and w′ �∈ ϕK(V)}| ≤ n};
– (μy.ϕ(y))k(V) =

⋂
{W ′ ⊆W : ϕK([y ←W ′]) ⊆W ′};

– (νy.ϕ(y))k(V) =
⋃
{W ′ ⊆W : W ′ ⊆ ϕK([y ←W ′])}.

Let K = 〈W,R, L〉 be a Kripke structure and ϕ a sentence. For a state w ∈W , we say
that ϕ holds at w in K , denoted K,w |= ϕ, if w ∈ ϕK . K is a model of ϕ if there is a
w ∈W such that K,w |= ϕ. Finally, ϕ is satisfiable if it has a model.

In the remainder of this section, we show that the full graded μ-calculus has a tree
model property, and that the hybrid graded μ-calculus has a forest model property. A
forest is a set F ⊆ IN+ such that if x·c ∈ F where x ∈ IN+ and c ∈ IN, then also x ∈ F .
The elements of F are called nodes, and the strings consisting of a single natural number
are the roots of F . For each root r ∈ F , the set T = {r · x | x ∈ IN∗ and r ·x ∈ F} is a
tree of F (the tree rooted in r). For every x ∈ F , the nodes x · c ∈ F where c ∈ IN are
the successors of x, and x is their predecessor. The number of successors of x is called
the degree of x, and is denoted by deg(x). The degree of a forest is the maximum of
the degrees of a node in the forest and the number of roots.

We call a Kripke structure K = 〈W,R, L〉 a forest structure if (i) W is a forest,
(ii) (w, v) ∈

⋃
a∈Prog R(a) iff (w, v) ∈W 2 andw is either a predecessor or a successor

of v, and (iii) R(α)∩R(β) = ∅ for all α,β ∈ Prog ∪ {a− | a ∈ Prog} with α �= β. K
is directed if (w, v) ∈

⋃
a∈Prog R(a) implies that v is a successor of w. If W consists

of a single tree then we call K a tree structure.
We call K = 〈W,R, L〉 a quasi forest structure if 〈W,R′, L〉 is a forest structure,

where R′(a) = R(a) \ (W × IN) for all a ∈ Prog (i.e., K becomes a forest structure
after deleting all the edges entering a root of W ). K is directed if 〈W,R′, L〉 is. The
degree of K is the degree of W . Note that forest and tree structures are quasi forest
structures. A forest model (resp. tree model, quasi forest model) of ϕ is a forest (resp.
tree, quasi forest) structure K = 〈W,R, L〉 such that ϕ and the nominals in ϕ hold at
some (not necessarily different) roots of W . In what follows, a formula ϕ counts up to
b if the maximal integer in atleast and allbut restrictions used in ϕ is b− 1.
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Theorem 1. Let ϕ be a sentence of the full graded μ-calculus such that ϕ has � atleast
subsentences and counts up to b. If ϕ is satisfiable, then ϕ has a tree model whose
degree is at most �(b+ 1).

In contrast to the full graded μ-calculus, the hybrid graded μ-calculus does not enjoy
the tree model property. This is for example witnessed by the formula

o ∧ 〈0, a〉(p1 ∧ 〈0, a〉(p2 ∧ · · · 〈0, a〉(pn−1 ∧ 〈0, a〉o) · · · ))

which generates a cycle of length at most n if the atomic propositions are enforced
to be mutually disjoint. However, we can follow [SV01] to show that every satisfiable
formula of the hybrid graded μ-calculus has a quasi forest model.

Theorem 2. Let ϕ be a sentence of the hybrid graded μ-calculus such that ϕ has k
nominals, � atleast subsentences and counts up to b. If ϕ is satisfiable, then ϕ has a
directed quasi forest model K whose degree is at most max{k + 1, �(b+ 1)}.

3 Enriched Automata
Nondeterministic automata on infinite trees are a variation of nondeterministic automata
on finite and infinite words, see [Tho90] for an introduction. Alternating automata, as
first introduced in [MS87], are a generalization of nondeterministic automata. Intu-
itively, while a nondeterministic automaton that visits a node x of the input tree sends
one copy of itself to each of the successors of x, an alternating automaton can send
several copies of itself to the same successor. In the two-way paradigm [Var98], an au-
tomaton can send a copy of itself to its predecessor, too. In graded automata [KSV02],
the automaton can specify a number n of successors to which copies of itself are sent,
without specifying which successors these exactly are. The fully enriched automata
that we are introducing in the next subsection work on infinite forests, include all of
the above features, and additionally have the ability to send a copy of themselves to the
roots of the forest.

3.1 Fully Enriched Automata

We start with some preliminaries. Let F ⊆ IN+ be a forest and x a node in F . As a
convention, we take x · ε = x, (x · c) ·−1 = x, and ε ·−1 as undefined. We call x a leaf
if it has no successors. A path π in F is a minimal set π ⊆ F such that some root r of
F is contained in π and for every x ∈ π, either x is a leaf or there exists a unique c ∈ F
such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled forest is a pair 〈F,V 〉, where F
is a forest and V : F → Σ maps each node of F to a letter in Σ.

For a given set Y , let B+(Y ) be the set of positive Boolean formulas over Y (i.e.,
Boolean formulas built from elements in Y using ∧ and ∨), where we also allow the
formulas true and false and ∧ has precedence over ∨. For a set X ⊆ Y and a formula
θ ∈ B+(Y ), we say that X satisfies θ iff assigning true to elements in X and assigning
false to elements in Y \ X makes θ true. For b > 0, let 〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉},
[[b]] = {[0], [1], . . . , [b]}, and Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε, 〈root〉, [root ]}.

A fully enriched automaton is an automaton in which the transition function δ maps
a state q and a letter σ to a formula in B+(Db ×Q). Intuitively, an atom (〈n〉, q) (resp.
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([n], q)) means that the automaton sends copies in state q to n + 1 (resp. all but n)
different successors of the current node, (ε, q) means that the automaton sends a copy
(in state q) to the current node, (−1, q) means that the automaton sends a copy to the
predecessor of the current node, and (〈root〉, q) and ([root ], q) mean that the automaton
sends a copy to some, respectively all of the roots of the forest. When, for instance, the
automaton is in state q, reads a node x, and

δ(q,V (x)) = (−1, q1) ∧ ((〈root〉, q2) ∨ ([root ], q3)),

it sends a copy in state q1 to the predecessor and either sends a copy in state q2 to one
of the roots or a copy in state q3 to all roots.

Formally, a fully enriched automaton (FEA, for short) is a tuple A = 〈Σ, b, Q, δ, q0,
F〉, where Σ is the input alphabet, b > 0 is a counting bound, Q is a finite set of states,
δ : Q × Σ → B+(Db × Q) is a transition function, q0 ∈ Q is an initial state, and F
is the acceptance condition. A run of A on an input Σ-labeled forest 〈F,V 〉 is a tree
〈Tr, r〉 in which each node is labeled by an element of F ×Q. Intuitively, a node in Tr

labeled by (x, q) describes a copy of the automaton in state q that reads the node x of
F . Runs start in the initial state and satisfy the transition relation. Thus, a run 〈Tr, r〉
with root z has to satisfy the following: (i) r(z) = (c, q0) for some root c of F and (ii)
for all y ∈ Tr with r(y) = (x, q) and δ(q,V (x)) = θ, there is a (possibly empty) set
S ⊆ Db ×Q, such that S satisfies θ, and for all (d, s) ∈ S, the following hold:

– If d ∈ {−1, ε}, then x · d is defined and there is j ∈ IN such that y · j ∈ Tr and
r(y · j) = (x · d, s);

– If d = 〈n〉, then there are distinct i1, . . . , in+1 ∈ IN such that for all 1 ≤ j ≤ n+1,
there is j′ ∈ IN such that y · j′ ∈ Tr, x · ij ∈ F , and r(y · j′) = (x · ij, s);

– If d = [n], then there are distinct i1 . . . , ideg(x)−n ∈ IN such that for all 1 ≤ j ≤
deg(x)−n, there is j′ ∈ IN such that y ·j′ ∈ Tr, x·ij ∈ F , and r(y ·j′) = (x·ij , s);

– If d = 〈root〉, then for some root c ∈ F and some j ∈ IN such that y · j ∈ Tr, it
holds that r(y · j) = (c, s);

– If d = [root ], then for all roots c ∈ F there exists j ∈ IN such that y · j ∈ Tr and
r(y · j) = (c, s).

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. We
consider here the parity acceptance condition, where F = {F1,F2, . . . ,Fk} is such
that F1 ⊆ F2 ⊆ . . . ⊆ Fk = Q. The number k of sets in F is called the index of the
automaton. Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let Inf (π) ⊆ Q be such
that q ∈ Inf (π) iff there are infinitely many y ∈ π for which r(y) ∈ F ×{q}. A path π
satisfies a parity acceptance condition F = {F1,F2, . . . ,Fk} iff there is an even i for
which Inf (π)∩Fi �= ∅ and Inf (π)∩Fi−1 = ∅. An automaton accepts a forest iff there
exists an accepting run of the automaton on the forest. We denote by L(A) the set of all
Σ-labeled forests that A accepts.

The emptiness problem for FEAs is to decide, given a FEA A, whether L(A) = ∅.
To decide this problem, we first reduce it to the emptiness problem of a more restricted
automata model: a two-way graded alternating parity tree automaton (2GAPT) is a
FEA that accepts trees (instead of forests) and cannot jump to the root of the input tree,
i.e., it does not support directions 〈root〉 and [root ] in the transition relation. For each
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FEA A, there exists a 2GAPT A′ that accepts a tree encoding of A’s language. A Σ-
labeled forest 〈F,V 〉 is encoded by a Σ ∪ {root}-labeled tree 〈T,V ′〉 with root z /∈ F
iff root �∈ Σ, T = {z} ∪ {z · c | c ∈ F}, and V ′ satisfies:

– V ′(z) = {root},
– V ′(z · x) = V (x) for all x ∈ F .

Then, we can prove the following.

Theorem 3. Let A be a FEA running on Σ-labeled forests with n states, index k and
counting bound b. There exists a 2GAPT A′ running onΣ∪{root}-labeled trees (root �∈
Σ) with 3n + 1 states, index k, and counting bound b such that A′ accepts a labeled
tree 〈T,V 〉 iff A accepts the forest encoded by 〈T,V 〉.

3.2 Graded Nondeterministic Parity Tree Automata

To decide the emptiness problem of 2GAPTs, we use a reduction to the emptiness prob-
lem of graded nondeterministic parity tree automata as introduced in [KSV02]. In the
following, we define these automata and state some results concerning them.

For an integer b, a b-bound is a pair in Bb = {(>, 0), (≤, 0), (>, 1), (≤, 1), . . . ,
(>, b), (≤, b)}. For a set Y , we use B(Y ) to denote the set of all Boolean formulas over
atoms in Y . Each formula θ ∈ B(Y ) induces a set sat(θ) ⊆ 2Y such that x ∈ sat(θ)
iff x satisfies θ. For an integer b ≥ 0, a b-counting constraint for 2Y is a relation
C ⊆ B(Y )×Bb. A tuple t = 〈x1, . . . ,xm〉 ∈ (2Y )m satisfies the b-counting constraint
C if for all 〈θ, ξ〉 ∈ C, the tuple t satisfies ξ with respect to sat(θ), that is, when θ is
paired with (>, n), at least n + 1 elements of t should satisfy θ, and when θ is paired
with (≤, n), at most n elements in the tuple satisfy θ. We use C(Y, b) to denote the set
of all b-counting constraints for 2Y .

A graded nondeterministic parity tree automaton (GNPT, for short) is a tuple A =
〈Σ, b, Q, δ, q0, F〉 where Σ, b, q0, and F are as in 2GAPT, Q ⊆ 2Y is the set of
states (i.e., Q is encoded by a finite set of variables), and δ : Q × Σ → C(Y, b) maps
a state and a letter to a b-counting constraint for 2Y . Given a GNPT A, a run of A on
a Σ-labeled tree 〈T,V 〉 rooted in z is a Q-labeled tree 〈T, r〉 such that r(z) = q0 and
for every x ∈ T , the tuple 〈r(x · 1), . . . , r(x · deg(x))〉 satisfies δ(r(x),V (x)). The run
〈T, r〉 is accepting if all its infinite paths satisfy the parity acceptance condition.

We need two special cases of GNPT: FORALL automata and SAFETY automata. In
FORALL automata, for each q ∈ Q and σ ∈ Σ there is s ∈ Q such that δ(q,σ) =
{〈(¬θs), (≤, 0)〉}, where θs ∈ B(Y ) is such that sat(θs) = {s}. Thus, a FORALL au-
tomaton is a notational variant of a deterministic tree automaton, where the transition
function maps q and σ to 〈s, . . . , s〉. In SAFETY automata, there is no acceptance con-
dition, and all runs are accepting. Note that this does not mean that SAFETY automata
accept all trees, as it may be that on some trees the automaton does not have a run. We
will need the following results concerning GNPTs.

Lemma 1. [KSV02] Given a FORALL GNPT A1 with n1 states and index k, and a
SAFETY GNPT A2 with n2 states and counting bound b, we can define a GNPT A with
n1n2 states, index k, and counting bound b, such that L(A) = L(A1) ∩ L(A2).
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Theorem 4. [KSV02] Given a GNPT A = 〈Σ, b,Q, δ, q0,F〉 with n states, index k,
counting bound b, and |Σ| = �, the nonemptiness problem for A can be solved in time
nk�(b+ 2)O(n(n+2+k log nk)).

4 The Emptiness Problem for 2GAPT

We show that emptiness of the language accepted by a 2GAPT can be decided in
EXPTIME. A corresponding lower bound is inherited from alternating tree automata
[KVW00].

Let A = 〈Σ, b,Q, δ, q0,F〉 be a 2GAPT. Recall that Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε}
and δ : Q × Σ → B+(Db × Q). A strategy tree for A is a 2Q×Db×Q-labeled tree
〈T, str〉. Intuitively, the function str (from now on called strategy) maps each node of
the tree to a set of transitions. For each label w = str(x), we define head(w) = {q :
(q, c, q′) ∈ w} as the set of sources of w. A strategy tree 〈T, str〉 is on a Σ-labeled
tree 〈T,V 〉, if q0 ∈ head(str(root(T ))) and for each node x ∈ T and state q, the set
{(c, q′) : (q, c, q′) ∈ str(x)} satisfies δ(q,V (x)) (where root(T ) denotes the root of
T ). Intuitively, by choosing the atoms that are going to be satisfied for a node x, str(x)
removes the nondeterminism in δ.

A promise tree for the automaton A on a Σ-labeled tree 〈T,V 〉 is a 2Q×Q-labeled
tree 〈T, pro〉. Intuitively, in a run that proceeds according to pro (in the following called
promise), if a node x·i has (q, q′) ∈ pro(x·i) and the run visits its parent x in state q and
proceeds by choosing an atom (〈n〉, q′) or ([n], q′), then x·i is among the successors of x
that inherit q′. For each label w = pro(x), we also define head(w) = {q : (q, q′) ∈ w}
as the set of sources of w.

Consider a 2GAPT A, a Σ-labeled tree 〈T,V 〉, a strategy tree 〈T, str〉 and a promise
tree 〈T, pro〉 for A on 〈T,V 〉. A (T ×Q)-labeled tree 〈Tr, r〉 is consistent with str and
pro if 〈Tr, r〉 suggests a possible run of A on 〈T,V 〉 such that whenever the run 〈Tr, r〉
is in state q as it reads a node x ∈ T , the strategy str(x) is defined, the run proceeds
according to the elements of str(x) having q as source, and it delivers requirements to
each successor x · j according to the elements in pro(x · j) also having q as source.
Formally, 〈Tr, r〉 is consistent with str and pro iff the following hold:

– r(root(Tr)) = (root(T ), q0);
– for each node y in Tr with r(y) = (x, q), str(x) is defined and for all (q, c, q′) ∈

str(x), the following hold:
• If c = −1 or c = ε, then x · c is defined and there is j ∈ IN such that y · j ∈ Tr

and r(y · j) = (x · c, q′);
• If c = 〈n〉 or c = [n], then for each j ∈ IN with (q, q′) ∈ pro(x · j), there is
j′ ∈ IN such that y · j′ ∈ Tr and r(y · j′) = (x · j, q′).

Note that since the counting constraints in str(x) may not be satisfied, 〈Tr, r〉 may not
be a legal run.

Consider a strategy tree 〈T, str〉 and a promise tree 〈T, pro〉 on a Σ-labeled tree
〈T,V 〉. We say that pro fulfills str for V if the states promised to be visited by pro
satisfy the obligations induced by str as it runs on V . Formally, pro fulfills str for V if
for every node x ∈ T , the following hold:



548 P.A. Bonatti et al.

– For every (q, 〈n〉, q′) ∈ str(x), at least n + 1 successors x · j of x have (q, q′) ∈
pro(x · j);

– for every (q, [n], q′) ∈ str(x), at least deg(x)−n successors x·j of x have (q, q′) ∈
pro(x · j).

Consider a 2GAPT A, a strategy tree 〈T, str〉 and promise tree 〈T, pro〉 on a Σ-
labeled tree 〈T,V 〉. A sequence (x0, q0), (x1, q1) . . . is a trace induced by str and pro
if x0 is the root of T (notice that q0 is the initial state of A) and, for each i ≥ 0, one of
the following holds:

– qi �∈ head(str(xi)) and (xi, qi) is the last pair in the trace;
– there is (qi, c, qi+1) ∈ str(xi) with c = −1 or c = ε, xi ·c defined, and xi+1 = xi ·c;
– str(xi) contains (qi, 〈n〉, qi+1) or (qi, [n], qi+1), there exists j ∈ IN with xi+i =
xi · j, xi+i ∈ T , and (q, q′) ∈ pro(xi+1).

It is not difficult to see that a sequence of pairs of nodes of T and states of A starting
with (root(T ), q0) is a trace induced by a strategy and a promise for A on a Σ-labeled
tree 〈T,V 〉 if a run 〈Tr, r〉 on 〈T,V 〉, which is consistent with both the strategy and
the promise, has a path π labeled with the trace. We say that a strategy tree 〈T, str〉 and
a promise 〈T, pro〉 are good for 〈T,V 〉 if all the infinite traces induced by str and pro
satisfy the acceptance condition F . In [KSV02] it has been shown that a necessary and
sufficient condition for a tree to be accepted by a one-way GAPT is to have a strategy
tree and a promise tree good for the input tree, with the promise fulfilling the strategy.
We establish the same result with respect to the notions of strategy tree and promise
tree as introduced above for 2GAPTs.

Theorem 5. A 2GAPT A accepts 〈T,V 〉 iff there exist a strategy tree 〈T, str〉 and a
promise tree 〈T, pro〉 good for 〈T,V 〉 such that pro fulfills str for V .

Strategy and promise trees allow us to define a notion of a run for alternating automata
that has the same tree structure as the underlying input tree, unlike the run 〈Tr, r〉. Since
we want to translate 2GAPT into GNPT, we still have the problem that paths in a run can
go both up and down. To restrict our attention to unidirectional paths, we extend to our
setting the notion of annotation as defined in [Var98]. Annotations allow decomposing
a path of a run into a downward path and several finite paths (detour) that come back to
their origin (possibly in a loop).

Let A = 〈Σ, b,Q, δ, q0,F〉 be a 2GAPT with F = {F1, . . . ,Fk}. Recall that Db =
〈[b]〉 ∪ [[b]] ∪ {−1, ε}. For each state q ∈ Q, let index(q) be the minimal i such that
q ∈ Fi. Consider a strategy tree 〈T, str〉 and a promise tree 〈T, pro〉 for A on a Σ-
labeled tree 〈T,V 〉, an annotation tree for A on 〈T, str〉 and 〈T, pro〉 is 〈T, ann〉 where
the annotation ann is a mapping ann : T → 2Q×{1,...,k}×Q such that for every node
x ∈ T the following conditions hold:

– If (q, ε, q′) ∈ str(x) then (q, index(q′), q′) ∈ ann(x);
– if (q, j′, q′) ∈ ann(x) and (q′, j′′, q′′) ∈ ann(x), then (q,min(j′, j′′), q′′) ∈

ann(x);
– if x = y · i, (q,−1, q′) ∈ str(x), (q′, j, q′′) ∈ ann(y), str(y) contains (q′′, 〈n〉, q′′′)

or (q′′, [n], q′′′), and (q′′, q′′′) ∈ pro(x), then (q,min(index(q′), j, index(q′′′)),
q′′′) ∈ ann(x);
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– if y = x · i, str(x) contains (q, 〈n〉, q′) or (q, [n], q′), (q, q′) ∈ pro(y), (q′, j, q′′) ∈
ann(y), and (q′′,−1, q′′′) ∈ str(y), then (q,min(index(q′), j, index(q′′′)), q′′′) ∈
ann(x).

Given an annotation tree 〈T, ann〉 for A on 〈T, str〉 and 〈T, pro〉, a downward path π
induced by str, pro, and ann is a sequence (x0, q0, t0), (x1, q1, t1), . . . of triples, where
x0 = root(T ), q0 is the initial state of A, and for each i, xi is in T , qi is in Q, and ti is
either an element of str(xi) or ann(xi), such that: (i) either ti is (qi, c, qi+1) for some
c ∈ [[b]] ∪ [〈b〉], (qi, qi+1) ∈ pro(xi · d) for some d ∈ IN, and xi+1 = xi · d; or (ii) ti is
(qi, d, qi+1), for d ∈ {1, . . . , k}, and xi+1 = xi. In the first case, we consider index(ti)
as the minimal j such that qi+1 ∈ Fj and, in the second case, index(ti) = d. Moreover,
for a downward path π, we consider index(π) as the minimal index index(ti) for all ti
occurring infinitely often in π. We say that a downward path π violates F if index(π)
is odd. Given an annotation tree 〈T, ann〉 for A on 〈T, str〉 and 〈T, pro〉, we say that ann
is accepting if there is no downward path induced by str, pro, and ann that violates F .
Notice that a downward path π can also end in a loop where the last ti is given by ann
and π is accepting if index(ti) is even.

Theorem 6. A 2GAPT A accepts 〈T,V 〉 iff there exist a strategy tree 〈T, str〉 and
a promise tree 〈T, pro〉 on 〈T,V 〉, and an annotation tree 〈T, ann〉 on 〈T, str〉 and
〈T, pro〉 such that pro fulfills str for V and ann is accepting.

In the following, we combine the input tree, the strategy, the promise, and the annotation
into one tree 〈T, (V, str, pro, ann)〉. Given a signatureΣ for the input tree, let Σ′ denote
the extended signature for the combined trees, i.e., Σ′ = Σ × 2Q×Db×Q × 2Q×Q ×
2Q×{1,...k}×Q.

Theorem 7. Let A be a 2GAPT running on Σ-labeled trees with n states, index k and
counting bound b. There exists a GNPT A′ running on Σ′-labeled trees with
2n(2+k log nk) states, index nk, and b-counting constraints such that A′ accepts a tree
iff A accepts its projection on Σ.

5 EXPTIME Upper Bounds for Enriched μ-Calculi

We establish EXPTIME upper bounds for satisfiability in the full graded μ-calculus and
the hybrid graded μ-calculus. p For the full graded μ-calculus, we give a polynomial
translation of formulas ϕ into a 2GAPT Aϕ that, roughly speaking, accepts the tree
models of ϕ. By Theorem 1, we can thus decide satisfiability of ϕ by checking non-
emptiness of L(L(Aϕ). There is a minor technical difficulty to be overcome: Kripke
structures have labeled edges, while the trees accepted by 2GAPTs do not. This prob-
lem can be dealt with by moving the label from each edge to the target node of the edge.
For this purpose, we introduce a new propositional symbol pα for each program α. Let
the tree encoding of a tree structure K = 〈W,R, L〉 be the labeled tree 〈W, L∗〉 such
that L∗(w) = L(w) ∪ {pα | ∃(v,w) ∈ R(α) with w successor of v in W}.

Theorem 8. Given a sentence ϕ of the full graded μ-calculus that has � atleast sub-
sentences and counts up to b, we can construct a 2GAPT Aϕ such that Aϕ
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– accepts exactly the tree encodings of tree models of ϕ with degree at most �(b+ 1),
– has |ϕ| states, index |ϕ|, and counting bound b.

In the case of the hybrid graded μ-calculus, two additional difficulties have to be ad-
dressed. First, FEAs accept forests while the hybrid μ-calculus has only a quasi forest
model property. This problem can be solved by introducing in node labels new propo-
sitional symbols ↑αo (not occurring in the input formula) that represent an α-labeled
edge from the current node to the (unique) root node labeled by nominal o. Second, we
have to take care of the interaction between graded modalities and the implicit edges
encoded via propositions ↑ao. To this end, we need to know the following information
before constructing the FEA: which “relevant” formulas are satisfied by each nominal
and which nominals are equivalent. This information is provided by a guess, which we
define as follows. The closure cl(ϕ) of a sentence ϕ of the full graded μ-calculus is the
smallest set of sentences satisfying the following:

– ϕ ∈ cl(ϕ);
– if ψ1 ∧ ψ2 ∈ cl(ϕ) or ψ1 ∨ ψ2 ∈ cl(ϕ), then {ψ1,ψ2} ⊆ cl(ϕ);
– if 〈n,α〉ψ ∈ cl(ϕ) or [n,α]ψ ∈ cl(ϕ), then ψ,ψ ∧ pα ∈ cl(ϕ);
– if λx.ψ(x) ∈ cl(ϕ), then ψ(λx.ψ(x)) ∈ cl(ϕ).
– if ψ ∈ cl(ϕ), then ¬ψ ∈ cl(ϕ), where ¬ψ denotes the formula obtained from ψ

by dualizing all operators and replacing every literal (i.e., atomic proposition or
negation thereof) with its negation.

For a sentence ϕ, we use |ϕ| to denote the length of ϕ with numbers inside graded
modalities coded in binary. Formally, |ϕ| is defined by induction on the structure of ϕ
in a standard way, with |〈n,α〉ψ| = ,log n- + 1 + |ψ|, and similarly for |[n,α]ψ|. As
proved in [Koz83], for every sentence ϕ, the number of elements in cl(ϕ) is linear in
the length ϕ.

A guess for ϕ is a pair (t,∼) where t assigns a subset t(o) ⊆ cl(ϕ) to each o ∈
Nom, and ∼ is an equivalence relation on the set of nominals occurring in ϕ such that
the following conditions are satisfied, for all formulas ψ ∈ cl(ϕ) and nominals o, o′

occurring in ϕ: (i) ψ ∈ t(o) or ¬ψ ∈ t(o), (ii) o ∈ t(o), and (iii) o ∼ o′ implies
t(o) = t(o′). We construct a separate FEA Aϕ,G for each guess G for ϕ. Since the
number of guesses is exponential in the length of ϕ, we get an EXPTIME decision
procedure by constructing all of the FEAs and checking whether some of them accept
a nonempty language. Forest encodings of forest models are defined similar to tree
encodings of tree models with the additional property that ↑αo∈ L∗(w) iff there exists
(w, v) ∈ R(α) such that v is a root of W and o ∈ L∗(v).

Theorem 9. Given a sentence ϕ of the hybrid graded μ-calculus that has � atleast
subsentences, counts up to b, contains k nominals, and a guess G = (t,∼) for ϕ, we
can construct a FEA Aϕ,G such that Aϕ,G

– accepts exactly the forest encodings of the quasi forest models of ϕ having degree
at most max{k + 1, �(b+ 1)}, and

– hasO(|ϕ|2) states, index |ϕ|, and counting bound b.

Given a sentence of the full graded μ-calculus with � at-least subformulas, we get by
Theorems 7 and 8 a GNPT Aϕ with the number of states n and index k bounded by |ϕ|,
and |Σ| and the counting bound b bounded by 2|ϕ|. While the latter are exponential in
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|ϕ|, only n and k appear in the exponents in the expression in Theorem 4. This yields the
desired EXPTIME upper bound. The lower bound is due to the fact that the μ-calculus is
EXPTIME-hard [FL79]. For the hybrid graded μ-calculus, we can argue similarly using
Theorems 3, 7, and 9.

Theorem 10. The satisfiability problems of the full graded μ-calculus and the hybrid
graded μ-calculus are EXPTIME-complete even if the numbers in the graded modalities
are coded in binary.
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Abstract. We establish correspondences between top-down tree build-
ing query languages and predicate logics. We consider the expressive
power of the query language XQ, a clean core of the practitioner’s lan-
guage XQuery. We show that all queries in XQ with only atomic equality
are equivalent to “first-order interpretations”, an analog to first-order
logic (FO) in the setting of transformations of tree-structured data.
When XQ is considered with deep equality, we find that queries can
be translated into FO with counting (FO(Cnt)). We establish partial
converses to this, characterizing the subset of the FO resp. FO(Cnt)
interpretations that correspond to XQ. Finally, we study the expressive
power of fragments of XQ and obtain partial characterizations in terms
of existential FO and a fragment of FO that is two-variable if the tree
node labeling alphabet is assumed fixed.

1 Introduction

The formal foundation for relational query languages is well-established. Much of
relational querying can be done in the relational calculus, which is equivalent in
expressiveness to first-order logic. What about tree-structured data, as exempli-
fied by XML data trees? For Boolean and nodeset queries on pure node-labeled
trees, the querying model is fairly well understood. The predominant practitioner
language is XPath, whose core corresponds in expressiveness to the two-variable
fragment of first-order logic [8]. However, when we turn to queries that produce
trees from trees, utilizing not just a fixed labeled structure but also data values
that may lie within an unbounded set, the situation becomes less clear. Logics
by themselves do not define mappings from structures to structures, and modal
and automata based languages do not deal with the data value structure.

The predominant paradigm for practitioners is top-down non-recursive tree
building, as exemplified in the standard language XQuery. The key feature of
such languages is that the output tree is built top-down in parallel, with threads
of control at every leaf of the partially-constructed output. Rather than using a
general structural recursion mechanism, these languages use explicit nesting of
subqueries to build the output up to some fixed depth. In our paper we formalize
this model by the query language XQ, an abstraction of XQuery that captures
the main tree-formation constructs. We wish to compare the expressiveness of
XQ and its fragments to some external benchmark.

We choose here to use logics as a benchmark. We rely on the well-known
notion of first-order interpretation [1], which associates a collection of first-order
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formulas with a mapping from structures to structures. Informally, a tree-to-
tree transformation T is given by a first-order interpretation if there are a set
of relational calculus expressions that produce, from a relational coding of an
input data treeD, the relational coding of T (D). Thus queries given by first-order
interpretations can be thought of as those that can be implemented relationally
using relational algebra or relational calculus.

Contributions. We start by showing that XQ queries using only atomic equal-
ity can be transformed into equivalent FO interpretations: this is an analog for
tree query languages of the simulations for complex object languages in relational
algebra [9]. We then trace how the correspondence filters down to fragments of
XQ. Although the transformation for general XQ requires exponential time,
it can be made polynomial by restricting to XQ queries in a natural class (the
“composition-free”XQ queries). We examine queries that do not use node equal-
ity comparisons; for queries in this fragment that use only downward navigation,
as well as those that are composition-free, one can map to a restricted fragment
of FO, one that is “almost” within two-variable logic. We show that the pos-
itive fragment of XQ maps to the existential fragment of first-order logic. We
establish lower bounds on the complexity of these transformations.

We turn to the question of mapping back from relational logics to XQ. We
observe that XQ is not FO-complete, since its ability to construct deep trees
is very limited. However, we show that for every tree-to-tree query given by a
first-order interpretation, there is a corresponding XQ query that agrees with
Q on data trees of fixed depth. We give two different varieties of mappings, one
transforming into a composition-free query, but using node equality; another
mapping into XQ without node-equality, but relying on composition. We show
similar mappings from the existential fragment of first order logic to positiveXQ,
and the two-variable fragment and composition-free XQ without node equality.
We show that the transformations in this direction for Boolean queries can be
made in polynomial time, as well as the mappings for interpretations within a
certain normal form.

We also study the variant of XQ where queries can compare trees for struc-
tural equality (we refer to this as “deep equality”, in analogy with the corre-
sponding construct in complex value languages). Not every such query can be
transformed into a corresponding first-order interpretation. We hence compare
the expressiveness of deep equality queries with interpretations given using first-
order logic with counting FO(Cnt), which corresponds to a restricted form of
relational calculus with aggregation. Queries given by these interpretations can
still be implemented relationally in a fragment of SQL. We give a transformation
producing from each XQ query with deep equality a corresponding FO(Cnt)
interpretation, and extend the complexity bounds on this transformation from
the first-order case.

We derive a variety of consequences of the above results. It follows from our
results that the expressiveness of XQ with atomic equality for Boolean queries is
exactly the same as that of relational calculus on a relational coding of the input.
A similar result holds for relational queries – those that take a tree coding of a
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relation to another tree coding of a relation. We can also derive a characterization
of the Boolean expressiveness of XQ fragments: in the case of XQ without node
equality, we find a correspondence with two-variable logic. The mappings in both
directions give a clean way to show normal forms forXQ fragments: they allow us
to show, for example, that every XQ query can be converted to its composition-
free fragment. Our correspondences are also used to show that node equality is
essential for removing composition once both upward and downward navigation
in trees is allowed. Finally, our results are applied to the complexity ofXQ. Using
our translations, we give new upper bounds on the data complexity of fragments
of XQ, as well as simpler proofs of prior bounds.

Taken together our results make precise the connection between fragments of
XQ and classical logical languages on relations, like FO, FO2, and FO(Cnt).

Note: Due to space considerations this extended abstract omits boths proofs
and an explanation of the (considerable) related work. The reader is encouraged
to consult the full paper, to be made availability shortly, for these.

2 Background and Notations

2.1 Data and Query Model

An unranked ordered tree is a tree in which nodes may have a variable number
of children, with an order among them. A data tree is a two-sorted structure of
signature

σnav = (Node, Lab, lab(),Rchild,Rnext-sibling,Rdescendant,Rfollowing-sibling, =atomic).

This represents an unranked ordered tree whose nodes are the elements of sort
Node and whose labels are the elements of sort Lab (that is, we do not assume
the labeling alphabet to be fixed); the function lab(): Node → Lab takes a node
to its label; Rchild is the binary parent-child relation among nodes, Rnext-sibling

is the binary immediate right-sibling relation among nodes, Rdescendant denotes
the descendant relation, Rfollowing-sibling is the transitive closure of the Rnext-sibling

relation, and =atomic denotes equality of labels.
A data forest is a relational structure of the same signature σnav, but with

the underlying node structure being an ordered forest; i.e. we allow multiple
root nodes. Given a node n in a data forest F , the subtree of n refers to the
σnav-substructure of F whose domain consists of the nodes that are descendants
of n and the values associated with those nodes by the function lab() in F .

Equality relativized to nodes will be denoted by =node. Isomorphism between
data forests will be denoted by =deep. For a data tree or forest we can also
consider the extended structure with signature σnav+deep = σnav ∪ {=deep}.

By a query we mean any function from data trees to data trees, and by a
Boolean query any function from data trees to {true, false}. Two queries Q, Q′

are said to be equivalent if ∀t Q(t) =deep Q
′(t).
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Our tree query language XQ has abstract syntax
query ::= () | query query | var | var/axis :: ν | 〈lab(var)〉 query 〈lab(var)〉
| 〈a〉query〈/a〉 | for var in query return query | if cond then query
where cond ::= var =node var | var =atomic var | var =deep var | query

In this, a denotes a label, axis the tree-structure relations child, descendant, . . .,
var a set of variables $x, $x1, $x2, . . . , $y, $z, . . . , and ν a label test (either a label
or “*”). Thus, our XQ fragment extends that of [5] by a node equality primitive
(which returns true on a pair of nodes iff they are the same node), the power to
construct new nodes taking labels from arbitrary input nodes, and the fragment
used in the expressiveness results of [6] by all tree structure relations (“axes”)
of XQuery. ([6] only considers “child” and “descendant”.) Our semantics is the
usual one for XQuery, as currently undergoing standardization [11], restricted to
the subset we present here. The reader can also consult [5] for the semantics of
our fragment.

The general semantics for XQ queries is as a function mapping a data forest to a
data forest. Since we want to talk about the data tree-to-data tree queries defined
by an XQ expression, we will consider the tree query defined by an expression Q
with a single variable $inp which is free (i.e. never bound in a for or let) in Q, to
be the function which, given a data tree, returns the tree formed by applying Q
to the forest consisting of that tree with $inp bound to the root of the tree. We
also consider an XQ query Q with free variable $inp to define a Boolean query
QBool: this is the query that returns true iff the output of Q is a non-empty list. It
is easy to show that alternative definitions of Boolean queries (e.g. by restricting
to conditions) yield the same set of queries. We consider an arbitrary XQ query
to define a “parameterized Boolean query” – one that gives a Boolean value for
every assignment of variables to nodes.

Sublanguages of XQ. By AtomXQ we denote XQ where we restrict general
deep equality comparisons between variables, and instead allow only conditions
var =deep 〈a/〉 for labels a. By PosXQ, we refer to the subset where deep
equality is not permitted at all. By AtomXQ− we denote the sublanguage of
AtomXQ where comparisons var =node var are forbidden, and by PosXQ− the
corresponding sublanguage of PosXQ.

In our definition of the syntax of XQ, we have been economical with operators
introduced. For example, we use only simple axis expressions from XPath (i.e.
the tree navigation structure): the results of this paper imply that we could have
as easily included all of Core XPath [3] as a sublanguage without affecting the
expressiveness. The constructs not φ,φ or ψ,φ and ψ, some $x in α satisfies φ
can easily be derived from these, a fact which we will use freely in the remainder
of this section.

Recalling that an XQ expression Q defines a Boolean query QBool holding iff
Q is nonempty, we can see that the Boolean query corresponding to φ and ψ
evaluates to true for a given binding of the free variables iff the Boolean queries
corresponding to φ and of ψ evaluate to true; similarly, the other derived opera-
tors give Boolean queries with the semantics corresponding to their usual meaning
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in logic. Let us just note that the restricted form of deep equality of AtomXQ is
sufficient to define negation, but this power is missing from PosXQ (thus the
name, suggesting “positive” XQ).

2.2 Tree Structures and First-Order Interpretations

We use the usual notation and semantics of first-order logic FO (e.g. [1]). Given
a first-order formula ψ with k free variables over signature σ and a σ-structureA,
we abbreviate the relation {(x1, . . . ,xk) | A � ψ[x1, . . . ,xk]} as ψ(A).

A first-order interpretation of signature σ = (Node, Lab, lab(),R1, . . . ,Rm)
(where R1, . . . ,Rm are binary, e.g. σ = σnav) consists of a set C of constants of
either Lab or Node sort, and a sequence of formulas

I = 〈φNode(x1, . . . ,xk),φLab(z),φlab()(x1, . . . ,xk, z),
φR1(x1, . . . ,xk, y1, . . . , yk), . . . ,φRm(x1, . . . ,xk, y1, . . . , yk)〉,

where each formula φ is over σ ∪ C. The variable z above is of sort Lab while
the xi and yi are of sort Node. The integer k is the arity of the interpretation.
The x1, . . . ,xk, y1, . . . , yk of the formulas φRi are implicitly relativized to φNode
and φLab.

An interpretation I is associated with the query [I] that maps a σ-structure A
to the σ-structure

(
φNode(A ∪ C),φLab(A ∪ C),φlab()(A ∪ C),φRchild(A ∪ C),. . .

)
.

Let σ′ be a signature extending σ with new sorts for value constants and node
constants, where there are no relations or functions on this sort. If C = Cn ∪ Cv is
a set of node and value constants, respectively, by A ∪ C we mean the extension
of A to a σ′-structure whose σ-structure is that of A. Above, the set of k-tuples
φNode(A ∪ C) is identified as the domain of the Node sort of the output structure,
the set φLab(A ∪ C) constitutes the domain of the Lab sort, φlab() restricted to
φNode is interpreted as the graph of the lab() function, and the remaining collec-
tions of 2k-tuples are converted to pairs of k-tuples; that is, to binary relations on
the elements satisfying φNode , in the obvious way.

Note that we have restricted our interpretations so that the labels of the output
can only come from the input labels or the fixed set of constants.

For a vocabularyσ, the logicFO(Cnt)(σ) (orFO(Cnt), when σ is understood)
is defined over variables of two sorts Dom and N . Atomic formulas include all
atomic formulas of σ, restricted to variables of Dom sort, while there are no atomic
predicates or functions on variables of sortN (other than equality). Formulas are
closed under Boolean operations and quantifiers ∃x, ∀x, ∃i, ∀i for x of domain sort
and i of number sort. We also have the counting quantifiers ∃=ix, ∀=ix where i is
of N sort and x is a tuple of variables. A formula of the form ∃=ix φ(x, y, j) has
i and y free.

The semantics of FO(Cnt) formulas is given with respect to a σ structure S
and an interpretation mapping variables of Dom sort to elements of the domain
of S and variables of N sort to non-negative integers. A formula ∃=ixφ(x, y, j)
holds in structure S in an interpretation assigning x to c, i to integer i0 and j to
integers j0 iff |{d ∈ S | (S, d, c, j0) |= φ}| is exactly i0.
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An FO(Cnt) interpretation over one of our data tree signatures (σnav etc.) is
defined as with FO. The evaluation complexity of FO and FO(Cnt) interpre-
tations can be read off from classical results on the logics. Given the standard
encoding of a σnav structure as a string [4],

Proposition 1 (cf. [4]). Every FO (resp., FO(Cnt)) interpretation over
σnav can be evaluated in AC0 (resp., TC0) data complexity and PSpace combined
complexity.

3 From XQ with Atomic Equality to FO

Our first result is the following.

Theorem 1. There is an ExpTime function that maps every AtomXQ query to
an equivalent FO σnav interpretation.

The rather involved proof is omitted — it relies on a composition theorem for in-
terpretations and an inductive construction translating XQ expressions with free
variables to FO interpretations with parameters.

Our XQ language allows very limited means of controlling the ordering of the
output. Since our concern in this work is not with the ordering capabilities of tree
structured query languages (e.g. the “order clause” within an XQuery FLWOR ex-
pression [11]), we remain within these limitations. The interpretations resulting
from XQ will thus be of special form, which we describe below. For a data tree T
and linear ordering<C on the node constants C,<T ,C is the ordering on Node(T )∪
C formed by placing the elements of C above all elements of Node(T ), ordering
Node(T ) using “document order”, and ordering C using<C. An interpretation I =
〈φNode(x1 . . . xk) . . .〉 of arity k is document-ordered if there is some ordering <C
on the node constants C such that: for every data tree T , for any two sibling nodes
n1 . . .nk n′1 . . .n

′
k in φNode(T ), n1 . . .nk comes before n′1 . . .n

′
k in in the sibling or-

der iff n1 . . .nk comes before n′1 . . .n
′
k in the lexicographic ordering based on<T ,C .

An analysis of the proof of Theorem 1 shows the following: for every AtomXQ
expression Q, there is a document-ordered FO interpretation that can be found in
ExpTime. In document-ordered interpretations, theRnext-sibling andRfollowing-sibling

relations can be inferred from the ordering on constants and the other relations.
From now on, when dealing with a document-ordered interpretation we will as-
sume that its logical representation omits the description of the sibling axes.

Fragments of AtomXQ. We now consider sublanguages of AtomXQ, with the
goal of seeing what subset of FO they map to.

We first consider the case of PosXQ. Let ∃FO be the fragment of FO built
up from the atomic formulas of σnav using positive Boolean operators and exis-
tential quantification. The translation that witnesses Theorem 1 only introduces
negation in two places: comparisons with =deep and the construction of the sibling
axis of the output, which is computed using relativized document order For an
interpretation in PosXQ we can thus translate into a positive FO query.
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Proposition 2. For every PosXQ expressionQ that does not use the sibling axes,
one can find (in ExpTime) an equivalent document-ordered interpretation I for
which all formulas are in ∃FO.

Complexity of translation and composition-free queries. Theorem 1 gives
an ExpTime translation, due to the need to “inline” the same expression multiple
times when translating the let clause. It is thus not surprising that XQ queries
can be exponentially more succinct than first-order queries. For the translation
from PosXQ, we can show a stronger result:

Theorem 2. There is no polynomial time function translating AtomXQ queries
to FO interpretations. For a PosXQ− query, there is no PT ime translation to
∃FO, even for Boolean queries.

We can avoid the blow-up by restricting queries in the source of the translation to
be in a special form. The language composition-free XQ is formed by making the
following subtractions and additions to XQ :

– removing let from the grammar of XQ , and restricting for $v inQ return Q′

constructs so that Q must be of the form $v/axis :: ν.
– expanding deep equality comparisons so that they may be of the form
Q1 =deep Q2, not just $v1 =deep $v2, and adding the construct not Q with
semantics given via (let $v = 〈A〉Q〈/A〉) $v =deep 〈A/〉.

The idea is that we do not have the ability to assign a variable to a query result
(or to iterate over a query result) — the ability to do this is what allows XQ to
reuse subquery results several times, leading to the exponential blow-up. The lan-
guage composition-free AtomXQ is the language formed fromAtomXQ by remov-
ing let, restricting for, adding not as above, and also adding $v =atomic 〈a〉 for
a a label. By going more carefully through the proof of Theorem 1, one can show:

Theorem 3. There is a polynomial time function producing for every
composition-free AtomXQ query an equivalent first-order interpretation. For Q
a composition-free query in PosXQ, one can find in PTime an interpretation that
is equivalent to Q, in which all formulas are expressible in ∃FO.

We shall see later on that composition-free AtomXQ queries have the same
expressiveness as general AtomXQ queries, and composition-free XQ queries
have the same expressiveness as general XQ queries. However composition-free
AtomXQ− and full AtomXQ− have different expressiveness in the presence of up-
ward and sideways axes (if only downward axes are supported, the two languages
again coincide [6]).

Node equality and FO2. We turn now to queries that are both composition-
free and without =node. We can show that composition-free AtomXQ− maps
into a small fragment of FO. The logic NFO2, navigationally two-variable
FO, is built up from only =atomic (not ordinary = on the domain), using
Boolean operations and the limited quantifiers ∃x axis-pred(x, y) φ(x, y) and
∀x axis-pred(x, y) φ(x, y) where axis-pred is one of Rchild,Rdescendant, . . .. We now
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justify the name “two-variable” for this. For a finite set of labels Σ, an FO2(Σ)
formula φ,φ(x) is a formula in at most one free variable of first-order logic over
the signature including the axis predicates, =atomic comparisons with constants,
and unary predicates Pa on the Node sort for each a ∈ Σ, which hold of a node n
iff lab(n) = a. By an FO2(Σ) formula φ(x1 . . . xn) in many variables, we mean a
formula that is a Boolean combination of formulas φ(xi), each of which is in FO2

above. We say that an FO formula φ is almost two-variable if for every finite al-
phabet Σ, the restriction of φ to data trees with labels in Σ is in FO2(Σ). It is
then easy to see that every navigationally two-variable formula is an almost two-
variable formula. That is, navigationally two-variable formulas have two-variable
expressive power over any fixed set of labels.

The following result shows that composition-free AtomXQ− queries translate
to navigationally two-variable interpretations:

Theorem 4. For every composition-free AtomXQ− query, there is an equivalent
FO interpretation where every formula is navigationally two-variable, which can be
found in PTime. For every AtomXQ− query that uses only downward axes, there
is an equivalent navigationally two-variable query, that can be found in PTime.
For every PosXQ− composition-free Boolean query there is an equivalent inter-
pretation in which all formulas are ∃FO and navigationally two-variable.

Applications to Expressiveness and Complexity. The following results on
the expressiveness of Boolean queries are an immediate consequence of the results
above (in the case of AtomXQ− below, we also use the equivalence of Core XPath
and FO2 shown in [7]).

Corollary 1. Let Q be an AtomXQ expression, and QBool be the Boolean query
defined by Q. Then, (1) QBool is expressible in the relational calculus; (2) If
Q ∈ PosXQ and Q does not use the sibling axes, QBool is expressible by a union
of conjunctive queries (over all atomic formulas); (3) If Q ∈ AtomXQ− and Q
is composition-free then for every finite set of labels Σ, there is a Core XPath
query equivalent to QBool on data trees with labels in Σ. In particular (by [7, 2]),
there are FO queries that are not expressible in composition-free AtomXQ−.

The first two results could be generalized to “relational queries” — queries on tree
encodings of relational tables. The results on translation to FO immediately give
alternative proofs of the following upper bounds:

Corollary 2. – All AtomXQ queries can be evaluated in data complexity AC0

on a relational representation of the data, and in ExpSpace combined com-
plexity.

– PosXQ queries can be evaluated in combined complexity NExpTime.
– Composition-free AtomXQ is in PSpace w.r.t. combined complexity.

Note that in all the above complexity bounds, the input is a σnav structure repre-
senting the data tree T ; this is not the default assumption of [5]. However, these
results also follow immediately from [5] and the fact that there are LogSpace
translations back and forth between XML trees and σnav-structures.
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4 Back from FO to XQ

What about the converse of the above results? It is not hard to see that not every
tree-to-tree query given by an FO interpretation is expressible in AtomXQ.
Consider, for example, the query QReverse taking data trees consisting of a single
chain (i.e., each node has at most one child) and producing a chain in the opposite
order (the root of the input becoming the sole leaf of the output, and so forth).
On data trees that are not a single chain QReverse returns some fixed data tree
D0. It is easy to create a first-order interpretation IReverse that captures QReverse

up to isomorphism. The fact that QReverse is not expressible in XQ is fairly clear
(and will be proved below). The intuition is that XQ can only build trees up to
fixed depth and deeper than that can only copy from the input. Let us formalize
this intuition.

Definition 1. An FO interpretation I = (φNode ,φLab,φRchild . . .) is k-shallow,
for integer k > 0, if for every node N of depth k in the output, if N is repre-
sented as (n1, . . . , nk) in the interpretation, then for some i <= k the subtree
of N is {(n1, . . . , ni−1,m, ni+1, . . . , nk) | m descendant of ni} and the mapping
m → (n1, . . . , ni−1,m, ni+1, . . . , nk) is an isomorphism of the subtree of ni onto
the subtree of N .

The translation given in the proof of Theorem 1 shows:

Proposition 3. For every AtomXQ query Q, there is some integer k and a first-
order interpretation equivalent to Q that is k-shallow (and document-
ordered).

No I ′Reverse capturingQReverse up to isomorphism can be k-shallow for any k, hence
there can be no XQ query Q′Reverse equivalent to IReverse.

A second obstacle is the issue of orderings – clearly, we can only mimic
document-ordered interpretations. The first result of this subsection is that order-
ing and shallowness are the only barriers to capturing first-order interpretations
in XQ.

Theorem 5. For every k-shallow first-order interpretation I, there is an
AtomXQ query Q equivalent to I modulo ordering. For every k-shallow
document-ordered FO interpretation I over σnav there is an AtomXQ query Q
equivalent to I. Furthermore, Q can be calculated from I in PTime.

The idea of the proof is to show that for every FO formula there is an AtomXQ
query that “verifies” membership of a tuple of nodes from the input data tree
in the formula. This is shown by induction on the formula. Given this result, one
can mimic the behavior of an FO interpretation up to a given level k by
proceeding down from the root, level-by-level, checking whether a given tuple
should be placed at that point in the tree.

The PTime translation above does make use of the “let” construct of
AtomXQ. We can put the result in composition-free AtomXQ as well. We do
not know how to do this in PTime in general. In inductively mapping an in-
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terpretation with free variables x1 . . . xn to a composition-free AtomXQ query
that produces the subtree underneath a node corresponding to x1 . . . xn , our al-
gorithm requires a separate query for every substitution of a subset of x1 . . . xn

for node constants: since there may be exponentially possibilities for variable-to-
node-constant mappings, this leads to an ExpTime algorithm. We do know how
to obtain a composition-free result in PTime if we deal with interpretations of a
more restricted syntactic form. An FO interpretation is unwound if with every
subformula φ(w1 . . . wj) of a formula of I, we can associate a typing that asserts
whether a variable is equal to some node constant, and if so which constant.
Equivalently, we can require our formulas to be built up with node quantifica-
tions ∃x = c φ(x, y) for each node constant c and ∃x

∧
c∈C x �= c φ(x, y), for C

the set of all node constants. Then we have:

Theorem 6. For every AtomXQ query, an unwound k-shallow document-
ordered FO interpretation can be found in ExpTime, and for every composition-
free AtomXQ query, such an interpretation can be found in PTime. In the other
direction, for every k-shallow document-ordered FO interpretation I, there is a
composition-free AtomXQ query QI equivalent to [I], which can be found in
PTime if I is unwound.

From fragments of FO to fragments of AtomXQ. The following result shows
that shallow ∃FO interpretations likewise correspond to AtomXQ queries.

Theorem 7. For every k-shallow document-ordered interpretation I with all for-
mulas in ∃FO, there is an equivalent query QI in PosXQ that can be found in
PTime. Furthermore, QI does not use =node. QI can be found to be composition-
free; and if I is unwound, a composition-free QI can be found in PTime.

We now turn to AtomXQ−. We do not know if every FO interpretation can be
transformed into an AtomXQ− query. However, we can show that AtomXQ−

queries are complete for FO queries with fixed tags. From previous results, this
will suffices to separate AtomXQ− from its composition-free subset.

Theorem 8. For every fixed label alphabetΣ, for every FO boolean queryQ, there
is an AtomXQ− query Q′ that is equivalent to Q over Σ-labeled tree structures.

The proof (left for the full paper) proceeds by using let abstraction to group the
elements of the tree, rather than using =node as in Theorem 5. From the results of
the previous section, we know that the resulting query cannot in general be taken
composition-free, since all composition-free queries map to almost two-variable
interpretations.

We now consider the question of FO-completeness of composition-free
AtomXQ−. From Theorem 4 we know that this language cannot capture all
Boolean queries on the navigational structure, since it is restricted to two-
variable expressiveness. The following converse shows that composition-free
AtomXQ− can capture all “relational” Boolean queries.
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Theorem 9. For every navigationally two-variable sentence φ one can find
in PTime a composition-free AtomXQ− query Q with QBool equivalent to φ.
The corresponding result holds for unwound, shallow, document-ordered interpre-
tations. In particular, the Boolean queries expressible in composition-free
AtomXQ− over a fixed alphabet are exactly those expressible in Core XPath.

Applications to Expressiveness and Complexity. Combining the corollary
above with the results of Section 3 we now have:

Corollary 3. Every AtomXQ query can be converted to an equivalent
composition-free query, and every PosXQ query can be converted to an equivalent
composition-free PosXQ query.

We also note the following “conservativity” result, which follows immediately from
the results of this section:

Corollary 4. Every Boolean FO query can be expressed in AtomXQ, and the
same for every FO interpretation which outputs only trees of fixed depth k.

In particular, this implies that the “relational queries” expressible in AtomXQ—
that is, AtomXQ queries restricted to trees that are encodings of flat relations (us-
ing one of the standard generic data tree encodings) are exactly those expressible
in the relational calculus. Due to space limitations, we do not
give this result formally. Note that the corollary above combined with Theorem 4,
implies that i) Node equality =node cannot be eliminated from composition-free
AtomXQ (since otherwise every FO Boolean query could be converted, over a
fixed alphabet, to an FO2 query, and this is known [2] to be false), ii)
AtomXQ can express Boolean queries not expressible in Core XPath. Because
FO is known to be PSpace-complete and ∃FO is known to be NP-complete, we
have the following consequences for complexity:

Corollary 5. The combined complexity of evaluation for composition-free
AtomXQ is complete for PSpace, and the combined complexity of evaluation for
composition-free PosXQ is NP-complete.

This is of course true because the translations for sentences in this section are all
PTime reductions.

5 XQ with Deep Equality vs. FO(Cnt)

When we turn to deep equality, first-order logic no longer suffices, even when we
restrict to fixed-depth trees. Consider the query (i.e. condition) Q1 defined by:

let $v1 := (for $x in $inp/child :: A return 〈b/〉)
let $v2 := (for $x in $inp/child :: C return 〈b/〉) $v2 =deep $v1

Q1
Bool holds iff the number of A’s is equal to the number of C’s. It is easy to

show that there is no first-order interpretation equivalent to Q .
We will see that the absence of the ability to count is, however, the only

obstacle.
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Theorem 10. For every XQ query Q, there is an FO(Cnt) σnav interpretation
equivalent to Q, which can be found from Q in ExpTime. For every composition-
free XQ query, an equivalent FO(Cnt) query Q can be found in PTime.

The proof is left for the full paper. It extends the algorithm in Theorem 1, using
counting quantifiers to check deep equality of variables.

As in the case of AtomXQ and FO, we can go back from FO(Cnt) to XQ :

Theorem 11. For every k-shallow document-ordered FO(Cnt) interpretation
I over σnav, there is an XQ query Q equivalent to I, which can be constructed
in polynomial time. Furthermore, the resulting query can be taken to be in
Composition-free XQ (in PTime if I is unwound).

The proof is an extension of the algorithm in Theorem 5. The counting quanti-
fiers are mimicked in XQ by forming trees representing the satisfiers of formulas
and using =deep comparisons of these sets to do a cardinality comparison of the
corresponding sets.

Applications to Expressiveness and Complexity. As in the case of
AtomXQ, we have an exact characterization for Boolean queries : FO(Cnt)
captures XQ for Boolean queries over σnav. A similar result could be stated
for relational queries: the relational queries expressible in XQ over the data tree
coding of relations (i.e. as flat trees whose attributes match the attributes of the
relations) are exactly those that are expressible as FO(Cnt) interpretations. By
combining Theorem 10 and Theorem 11, we also get the result about removal
of composition:

Corollary 6. Composition-free XQ captures XQ.

Note that in this case, node equality is easy to eliminate:

Proposition 4. Every XQ query can be rewritten to one that does not use =node.

The proof idea is as follows: for nodes x and y in the same tree, node equality can
be mimicked using counting – one requires that for each node x′ above x there
is a node y′ above y with the same distance from the root and the same sibling
number. But from above we see that we can translate general XQ queries into
composition-free queries, and for composition-free queries all nodes can be taken
to be in the input tree.

From Theorem 10, Theorem 11, and known results about the complexity of
FO(Cnt) (see [10]), we also get that the data complexity of XQ is in TC0, the
combined complexity of XQ is in ExpSpace, while the combined complexity of
Composition-free XQ is PSpace-complete.
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Abstract. The well-known algorithm of Zielonka describes how to
transform automatically a sequential automaton into a deterministic
asynchronous trace automaton. In this paper, we improve the construc-
tion of deterministic asynchronous automata from finite state automaton.
Our construction improves the well-known construction in that the size
of the asynchronous automaton is simply exponential in both the size
of the sequential automaton and the number of processes. In contrast,
Zielonka’s algorithm gives an asynchronous automaton that is doubly
exponential in the number of processes (and simply exponential in the
size of the automaton).

1 Introduction

A challenging problem concerning concurrent systems is to design distributed
algorithms or, even simpler, distributed finite state devices. The problem is that
it is easier to think in a sequential rather than a concurrent way, and easier to
model the global behavior of a system. In general it is much harder to synthesize
local devices, since they only have a local view of the global behavior. Local
control of a single process has to deal with partial information, consisting of
local behaviors plus information exchanged with other processes.

In this paper we reconsider the problem of synthesizing deterministic asyn-
chronous (trace) automata. These are basically (deterministic) local automata
that exchange information using shared (state) variables. The underlying math-
ematical theory is the theory of Mazurkiewicz traces [10], which has brought a
large number of beautiful results in the theory of automata and logics (see [5]
for a survey). The basic idea of trace theory is to model actions in a concurrent
system by explicitly providing an independence relation between actions that do
not share any resource.

A fundamental and difficult result for Mazurkiewicz traces is Zielonka’s the-
orem [16], which states that (diamond) finite state automata can be effectively
transformed into deterministic asynchronous automata. This result is all the
more fundamental since it has been used for several other closely related prob-
lems, as synthesis of communicating automata, with bounded communication
channels [13, 7, 8], or existentially-bounded channels [6] or causal memory [1].

The main drawback of Zielonka’s theorem is that it yields an asynchronous
automaton of doubly exponential size in the size of the alphabet [16, 4]. The
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paper [14] gives a more direct proof of Zielonka’s theorem, with a complexity
which is doubly exponential in the number of processes (instead of the size of
the alphabet). Similarly, [7] synthesizes bounded communicating automata, and
their construction is of size doubly exponential in the number of processes.

We propose here a simple improvement of Zielonka’s algorithm in order to
lower the complexity by one exponent. We obtain a deterministic asynchronous
automaton of size exponential in the size of the input, that is both in the size of
the finite state automaton and the number of processes. For applications e.g. in
verification it is worth to note that the size of the automaton is exponential
only because the memory needed by each process is of polynomial size. The time
needed to compute any transition of the automaton is also only polynomial,
which can be used in practice whenever we need only to simulate the automa-
ton on-the-fly. Moreover, this construction is tight, since the determinization of
sequential automata requires exponential size.

Related work. There were several attempts to simplify Zielonka’s construction
as described in [16, 12]. In some special cases the construction can be indeed sim-
plified (see e.g . [5] Ch. 8), but the complexity is still exponential (the starting
point there is a monoid homomorphism in place of an automaton). Our construc-
tion also reduces the complexity of other works [12, 15] using Zielonka’s theorem
or its variant for communicating processes [1, 13, 7] to produce a distributed au-
tomaton with local final states or without deadlock. Very recently, [2] proposed
a construction of non-deterministic asynchronous automata of size |A|2|Σ|

while
we produce a deterministic one. Their complexity is thus polynomial in |A| but
still doubly exponential in Σ, while our construction is of simply exponential
complexity in both |A| and |Σ|.

Overview of the paper. We first recall some basics of Mazurkiewicz traces
in Section 2. Then we recall the main ingredients of Zielonka’s construction in
Section 3. In Section 4 we present the new idea of decomposing into zones,
and in Section 5 we present the new construction of deterministic asynchronous
automata.

2 Preliminaries

We assume that there is a set P of processes and an alphabet Σ which are fixed.
Each letter a ∈ Σ is an action associated with the set of processes dom(a) ⊆ P in-
volved in a. A pair (Σ, dom) is called distributed alphabet. A (non-deterministic)
automaton over the alphabet Σ is a tuple A = (V,Σ, →, v0,F ) with a finite set
of states V , a set of final states F , an initial state v0 and a non-deterministic
transition function →: V ×Σ → 2V . The size of an automaton is the number of
states.

Concurrent systems with shared actions given by a distributed alphabet
(Σ, dom), are readily modeled by Mazurkiewicz traces. The idea is that the
distribution of the alphabet defines an independence relation among actions
I ⊆ Σ × Σ, by setting (a, b) ∈ I if and only if dom(a) ∩ dom(b) = ∅. We call
(Σ, I) an independence alphabet. The complementary relation D = Σ ×Σ \ I is



Constructing Exponential-Size Deterministic Zielonka Automata 567

called a dependence relation. The independence relation induces a congruence ∼
on Σ∗ by setting u ∼ v if there exist words u1, . . . ,un ∈ Σ∗ with u1 = u, un = v
and such that for every i < n we have ui = xaby, ui+1 = xbay for some x, y ∈ Σ∗
and (a, b) ∈ I. An ∼-equivalence class is simply called a (Mazurkiewicz) trace
[10]. We denote by [u] the trace associated with the word u ∈ Σ∗ (for simplicity
we do not refer to I, neither in ∼ nor in [u], simply because the independence
alphabet is fixed). Trace prefixes and trace factors are defined as usual, with [p]
a trace prefix (trace factor, resp.) of [u] if p is a word prefix (word factor, resp.)
of some v ∼ u.

A (non-deterministic) automaton A is called I-diamond if for all (a, b) ∈ I,
and all states r, s, t of A with r

a−→ s and s
b−→ t, there also exists a state s′

with t
b−→ s′ and s′

a−→ t. Note that the I-diamond property implies that the
language L(A) of A is I-closed : that is, u ∈ L(A) if and only if v ∈ L(A) for
every u ∼ v.

We use asynchronous automata as distributed models with finite control. Our
definition is slightly different from the usual definitions for asynchronous and
asynchronous cellular automata [5], see the remark below.

Definition 1. A deterministic asynchronous automaton over the distributed al-
phabet (Σ, dom) is a tuple B = ((Kp, δp, k

0
p)p∈P ,Acc) such that for any p ∈ P:

– Kp is the finite set of local states of process p.
– δp : (Σ ×

∏
q∈P Kq) → Kp is the local transition function of process p,

satisfying the following conditions for all actions a ∈ Σ and local states
sq ∈ Kp, q ∈ P:
• for p /∈ dom(a), we have δp(a, s1, . . . , sn) = sp.
• for p ∈ dom(a), the state δp(a, s1, . . . , sn) depends only on (sq)q∈dom(a),

that is δp(a, s1, . . . , sn) = δp(a, s1, . . . , s′q, . . . , sn) for q /∈ dom(a).
– k0

p ∈ Kp is the local initial state of process p.
– Acc ⊆

∏
p∈P Kp is a set of (global) accepting states.

An asynchronous automaton accepts a regular language with the following global
semantics:

Definition 2. The language of an asynchronous automaton B =
((Kp, δp, k

0
p)p∈P ,Acc) is defined as L(B) = L(A), where A = (K, δ, k0,Acc) is

the following automaton, called the global automaton of B:

– The global state space is K =
∏

p∈P Kp.
– The initial state is k0 = (k0

p)p∈P .
– The global transition function δ : Σ×K → K is defined for all a ∈ Σ, k ∈ K

by δ(a, k) = (k′p)p∈P with k′p = δp(a, k) for all p.

Remark 1. Our definition of asynchronous automaton differs from the usual one
in that we define transitions on processes instead of letters. Moreover, the transi-
tions corresponding to processes are like transitions in a cellular automaton, that
is, only the local state associated with the process executing a transition changes.



568 B. Genest and A. Muscholl

The definition thus corresponds to a shared-read, owner-write mode (the transi-
tion function reads the states of all other processes involved in the current action
and writes its local state). However, the difference wrt asynchronous automata is
merely syntactical, since in the global behavior of the automaton we synchronize
all processes from dom(a) when executing an action a.

For several purposes it is convenient to represent traces by (labeled) pomsets.
Formally, a trace T = [a1 · · · an] (ai ∈ Σ for all i) corresponds to a labeled pomset
(E,λ,≤) defined as follows: E = {e1, . . . , en} is a set of events (or nodes), one
for each position in T . Event ei is labeled by λ(ei) = ai, for each i. The relation
≤ is the least partial order on E with ei ≤ ej whenever (ai, aj) ∈ D and i ≤ j.
In terms of graphs it is convenient to identify a trace T with its dependence
graph, by defining an edge from ei to ej iff (ai, aj) ∈ D and i ≤ j. A total order
e1 · · · en that is compatible with ≤ is called a linearization of T . Since all these
formalisms are equivalent, we will refer to graph nodes as events for convenience.
Moreover, we will use for convenience set operations on traces, interpreting them
on the associated graphs. For instance, assume that T1, T2 are both prefixes of
some trace T . In other words, each Ti is a downward closed subgraph of T . Then
we write T1 ∩ T2 (T1 ∪ T2, resp.) for the least (greatest, resp.) common prefix of
T1, T2. Also, we write ei ∈ T for denoting that ei is a vertex of (the graph of) T .

For any trace factor T ′ of T , we denote by alph(T ′) =
⋃

e∈T ′ λ(e) the letters
occurring in T ′, resp. by dom(T ′) =

⋃
e∈T ′ dom(λ(e)) the processes occurring in

T ′. For a ∈ Σ we call any event e with λ(e) = a an a-event.
We have in Figure 1 a trace T with (a, b), (a, c) ∈ D and (a, d) ∈ I. Hence,

cbadcbadb ∼ cbdacbdab are two representing words of T . Process p can read the
state of q when executing action a, but not when executing action c.

p

q

r

c c

d d

a a

b b b

Fig. 1. The pomset associated with the trace T = [c b a d c b a d b], with dom(a) = {p, q},
dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}

3 Zielonka’s Theorem

We recall the main ingredients in Zielonka’s construction of deterministic asyn-
chronous automata. Our presentation is based on [5, 14, 4]. Let T be a trace and
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p ∈ P a process, then we denote by prefp(T ) the minimal trace prefix of T which
contains all events of T on process p. Hence, prefp(T ) has a unique maximal
event which is the last event of T on process p. That is, prefp(T ) corresponds to
the history of process p after executing T , that we also refer to as p-view. For
instance, in Figure 1 we have prefp(T ) = [cbadcba]. For a set of processes P ⊆ P ,
let prefP (T ) = ∪p∈P prefp(T ) be the P -view of T .

Zielonka’s construction starts with a regular, I-closed language, that is pre-
sented either through a monoid homomorphism or an automaton satisfying the
I-diamond property, [4]. In most applications we are interested in the second
case, where we start with a (non-deterministic) I-diamond automaton.

Theorem 1. [16] Let A be an I-diamond automaton over the independence
alphabet (Σ, I). An equivalent deterministic asynchronous automaton B with
2O(|A|2(2|Σ|)) states can be obtained applying the construction from [4]. An equiv-
alent deterministic asynchronous automaton with 2O(|A|2(2|P|)) states can be ob-
tained applying [14].

3.1 General Idea and Timestamping

We first describe informally how Zielonka’s construction works. Let A=(V,Σ, →,
v0,F ) be an I-diamond automaton. When an action a ∈ Σ is executed after T
by the processes in dom(a), each process of dom(a) reads the states of the other
processes in dom(a) and changes its own state accordingly. At this step, each
process p ∈ dom(a) computes the events of dom(a) that were not in its p-view,
that is prefp(Ta)\prefp(T ), or equivalently,

⋃
q∈dom(a) prefq(T )\prefp(T ) plus the

last a. First, events are labeled by timestamps in order to recover which events are
in prefq(T )∩prefp(T ) and which events are in prefq(T )\prefp(T ), by simply com-
paring the timestamps. For instance, in Figure 1, when the last b is executed, then
process q reads the state of process r and vice-versa. They find that the second
b is the only maximal event in their common past, q discovers that action d was
executed in prefr(T )\prefq(T ), and r that ca was executed in prefq(T )\prefr(T ).

The problem is that the number of events that have to be stored is arbitrarily
large. Zielonka’s construction explains that only a bounded set S1 of events
needs to be timestamped. Finally a finite representation of the behavior of the
given sequential automaton A on prefq(T )\prefP (T ) is needed. To this purpose,
transition relations ΔX are used for X ∈ Σ, where ΔX(R) = {s ∈ V | ∃r ∈
R, r

X−→ s} for any subset R of states of A. That is, ΔX(R) is the set of states of
A reached after reading the word X from any state in R. Zielonka’s construction
explains how process q remembers relations ΔX only for an exponential number
of sequences X . A global state of the asynchronous automaton is then accepting
if and only if the Δ relation associated with it satisfies ΔT (v0) ∩ F �= ∅.

In order to explain the construction in more detail, we define now the sets
of events S1,S2 used by Zielonka’s timestamping and the set of factors X for
which we remember the function ΔX . We will not provide the definition of the
timestamping, which is the usual one (the reader is referred to [4, 5, 14] instead).
First, the set S1 simply consists of the last event on process p, for every p ∈ P :
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Definition 3. Let T = (E,λ,≤) be a trace. The primary information of T is
S1(T ) = {e ∈ E | ∃p ∈ dom(e), ∀f ∈ E, p ∈ dom(f) =⇒ f ≤ e}.

The following crucial property of S1 can be found in [14] (Lemma 1, page 9) and
can be quickly obtained from [5] (Proposition 8.3.5, page 259).

Lemma 1. Let T be a trace and P,Q ⊆ P two subsets of processes. Then
max(prefP (T ) ∩ prefQ(T )) ⊆ S1(prefP (T )) ∩ S1(prefQ(T )).

That is, the maximal events of the intersection of the views of the sets P,Q ⊆ P
belong to the primary information of each of these two views.. However, know-
ing the events in S1(prefP (T )) and S1(prefQ(T )) is not enough for computing
max(prefP (T ) ∩ prefQ(T )).

Notice that during the execution of an asynchronous automaton, every event
is created as an event of S1 and can eventually be removed from S1. Note also
that {e} ⊆ S1(T e) ⊆ S1(T ) ∪ {e} for every event e ∈ E.

After the trace T ′ = [cbadcbad] is executed, S1(prefr(T ′)) = S1([cbadbd])
contains the first a (for process p), the second b (for q) and the second d (for r),
as shown in Figure 2. The common past of the views of q, r has the second b as
unique maximal event. If an event b is then executed (as in Figure 1), we have
that S1(T ′b) contains the second a (for p) and the third b (for q and r).

The timestamping function TS in Zielonka’s construction [16, 5, 14] labels
every event in S1(prefp(T )). It allows to compute S1(prefp(T )) ∩ S1(prefq(T ))
for every p, q ∈ P . For this, the timestamping labels events wrt. the so-called
secondary information, that contains the last event on process q before the last
event on p for every p, q ∈ P (these two events can be equal).

Definition 4. Let T = (E,λ,≤). The secondary information of T is the set
S2(T ) = {e ∈ E | ∃g ∈ S1(T ), q ∈ dom(e), ∀f ≤ g, q ∈ dom(f) =⇒ f ≤ e}.

In particular, S1(T ) ⊆ S2(T ). The primary information S1 is of size |P|, the
secondary information has at most |P|2 events, and the timestamping is of size
2|P|3 log(|P|) [14]. In Figure 2, the secondary information S2(prefr(T ′)) contains
the first two b, the first a and the second d. The first c is not in S2(prefr(T ′)).

Let T = (E,λ,≤) be a trace. For every subset W ⊆ S1(prefp(T )), we define
the suffix XW (T ) = {e ∈ E | ∀s ∈ W : e �≤ s} of T . In particular, X∅(T ) = T .

p

q

r

c c

d d

a a

b b

Fig. 2. Trace T ′, where the distinguished events are those in S1(prefr(T
′))
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For instance, in Figure 2 with prefr(T ) = [cbadbd], if we fix W to be the first
a, then XW (prefr(T )) consists of the first and second d and of the second b.
For every set P ⊆ P and every subset W ⊆ S1(prefP (T )) of primary events
of the P -view, we remember the transition relation ΔW which associates with
every state r of A the set of states ΔW (r) = {s ∈ V | r XW−→ s} that can be
reached from r by the trace XW (T ). Process p thus remembers an exponential
number (wrt. the number of processes |P|) of relations in V × V . Note that we
can compute on-the-fly ΔW (R) =

⋃
r∈RΔW (r) for any subset R of states of A.

3.2 The Asynchronous Automaton

We describe now how a deterministic asynchronous automaton updates the state
information wrt. the I-diamond automaton, as done e.g. in [16, 5, 14]. A transi-
tion of process p in the asynchronous automaton B consists of reading the states
of other processes, and adding a new event e. For instance, if λ(e) = a and
dom(a) = {p, q, r}, then we can decompose the a-transition of process p as first
reading the local state of process q and updating its local state, then doing it
again with process r, and finally adding the event e.

The state reached on a trace prefP (T ), P ⊆ P , is a tuple (S1, TS, (ΔW )W⊆S1),
containing the primary information S1 of the P -view prefP (T ), the timestamping
TS, and the transition relations (ΔW )W⊆S1 .

We do not describe here the update of S1 and TS, since we use the same
timestamping algorithm as in [16, 5, 4, 14].

Assume that the current state reached on prefdom(a)(T ) is (S1, TS,
(ΔW ) W⊆S1) and we add the event e with λ(e) = a. The new state will be
(S′1, TS′, (Δ′W )W⊆S′

1
). For every W ⊆ S′1 we have two cases, depending on

whether or not e ∈ W :

– Either W ⊆ S1, and then Δ′W = a−→ ◦ΔW .
– Else we have e ∈ W , hence XW = ∅ and ΔW = Id.

We now look at the local state modifications. Assume that q ∈ dom(a) and
that the local state of process q, say (Sq

1 , TSq, (Δq
W )W∈Sq

1
), is added to the

state (S1, TS, (ΔW )W⊆S1) reached on prefP (T ), P ⊆ dom(a), q /∈ P . The state
reached on prefP∪{q}(T ), say (S′1, TS′, (Δ′W )W⊆S′

1
) is computed as follows. For

every W ′ ⊆ S′1 we set:

– Let W = W ′ ∩ S1 and W q = (W ′ ∪ S1) ∩ Sq
1 .

– Set Δ′W ′ = Δq
W q ◦ΔW . Thus, the XW ′ -suffix of prefP∪{q}(T ) is the union of

two suffixes (over disjoint sets of processes), namely the XW -suffix consisting
of events of the P -view that are not below some event in W ′; and the XW q -
suffix consisting of events from prefq(T ) \ prefP (T ) that are not below some
event in W ′.

A global state(S1, TS, (ΔW )W⊆S1) is accepting if and only if Δ∅(v0)∩F �= ∅.
Let us comment on the complexity of the construction. At each event e ∈ E,

updating the primary and secondary information takes polynomial time. Updat-
ing the relations Δ may take an exponential time in the number of processes
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|P|. Hence, Zielonka’s construction gives a transition function which needs ex-
ponential time (and space) to compute the next state. Overall there are doubly
exponentially many different memory configurations, which is why the automa-
ton is doubly exponential.

The exponential memory comes only from the straightforward use of Δ. In
the rest of the paper we explain how we can achieve a better complexity by
using new transition relations Δ, still keeping the primary information and the
timestamping.

4 Zone Decomposition

The idea of this paper is to define transition relations Δ on zones of the p-views
prefp(T ). When the transition relation on some factor of T is needed, we compose
the transition relations of the zones included in the factor. Zones are defined as
equivalence classes of the following relation:

Definition 5. Let T = (E,≤,λ) be a trace. For an event e ∈ E we define the set
of events S(e) = {f ∈ S1(T ) | e ≤ f}. We say that two events e, f are equivalent
(denoted as e ≡ f) if and only if S(e) = S(f). The equivalence classes of ≡ are
called zones.

Let Z be a zone and define S(Z) = S(e) for some event e ∈ Z. Let also Z,Z ′ be
two zones of some trace T . We write Z < Z ′ if Z �= Z ′ and if e < e′ for some
events e ∈ Z, e′ ∈ Z ′. By dom(Z) we denote the set of processes occurring in
the zone Z, i.e., dom(Z) = ∪e∈Zdom(e). The following lemma is easy to show:

Lemma 2. 1. A zone of T is a factor of T and contains at most one event
from the secondary information S1(T ).

2. The set of zones partitions the set of events of T .
3. The relation < on zones is acyclic. It induces the least partial order such

that S(Z) � S(Z ′) and dom(Z) ∩ dom(Z ′) �= ∅ implies Z < Z ′.

Proof of 3). Assume that Z1 ≤ Z2 ≤ · · · ≤ Zk = Z1, say with ei ∈ Zi and
fj ∈ Zj+1 (1 ≤ i, j < k) such that ei < fi for all i. Hence, S(Z1) ⊇ S(Z2) ⊇
· · · ⊇ S(Zk) = S(Z1), thus S(Zi) = S(Zj) and Zi = Zj for all i, j.

Figure 3 depicts the same trace T = [cbadcbad] as Figure 2. Recall that
S1(prefr(T )) consists of the first a, the second b and the second d. There are
three zones in prefr(T ): Z1 is the first a, b and c, Z2 is the first d and the second
b, and Z3 is the second d (see also Figure 3). We have Z1 < Z2 < Z3. Also,
S(Z2) consists of the second b and the second d.

Zones enjoy some crucial properties, that are stated in the following.

Proposition 1. Let T be a trace, P,Q ⊆ P sets of processes, and Z a zone of
prefP (T ). Then either Z ⊆ prefP (T )∩prefQ(T ), or Z∩(prefP (T )∩prefQ(T )) = ∅.

Proof. Assume by contradiction that Z is a zone that violates the statement of
the proposition. Consider the factor Z1 = Z∩prefP (T )∩prefQ(T ). By assumption
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we can write the trace factor Z as Z ∼ Z1Z2 with Z1,Z2 both non-empty. Let
e ∈ Z1 and f ∈ Z2. Since e ∈ prefP (T )∩ prefQ(T ), there exists a maximal event
g of prefP (T )∩prefQ(T ) such that e ≤ g. By Lemma 1, g ∈ S1(prefP (T )). Since
e, f ∈ Z, we have e ≡ f and thus f ≤ g. This implies f ∈ prefP (T ) ∩ prefQ(T ),
a contradiction. �

Proposition 2. Let T be a trace. There are at most |P|2 + |P| zones in T .

Proof. Assume by contradiction that there are more than |P|(|S1(T )|+1) zones.
Hence we can find a process p involved in at least k = |S1(T )|+ 2 zones. Since
these zones have intersecting domains, they are strictly ordered, let us say Z1 <
· · · < Zk. Hence S(Z1) � · · · � S(Zk). This implies |S(Z1)| ≥ k−1 = |S1(T )|+1.
This is a contradiction since there are at most |S1(T )| events in S(Zi) for all i.

�

The last property is crucial when the zone partition is updated.

Proposition 3. Let T be a trace, P ⊆ P a set of processes, q /∈ P a process and
e, f two events of prefP (T ). Let us write S for the function of Def. 5 on prefP (T )
and S′ for the function on prefP∪q(T ). If S(e) = S(f), then S′(e) = S′(f).

Proof. Assume that S(e) = S(f). Let g ∈ S′(e). The first case is where g ∈
S1(prefP (T )), hence g ∈ S(e) = S(f) and f ≤ g by definition of S(f).

Else, g /∈ S1(prefP (T )), hence g ∈ S1(prefq(T )) and g /∈ prefP (T ). Let h
be a maximal event in prefP (T ) with e ≤ h ≤ g. There exists h′ in prefq(T )
with h � h′ ≤ g. That is dom(h) ∩ dom(h′) �= ∅, and let r be a process in this
intersection. By maximality of h, we have h′ /∈ prefP (T ). That is, h is the last
event on process r of prefP (T ). By definition of S, we have h ∈ S(e) = S(f),
hence f ≤ h ≤ g. We conclude by symmetry between e and f . �

For each zone Z, the function ΔZ requires space ≤ |A|2, and there are at most
|P|2 + |P| zones. The transition function constructed in the next section gives:

Theorem 2. Let A be a (non-deterministic) I-diamond automaton over the in-
dependence alphabet (Σ, I). We can construct an equivalent deterministic asyn-
chronous automaton B with less than 2|A|

2×(|P|2+|P|)+2|P|4 states. Each process
has a memory of size O(|A|2 × |P|2 + |P|4), and computes its next state in time
O(|A|2 × |P|2 + |P|4).

p

q

r

c c

d d

a a

b b

Fig. 3. The three zones of prefr(T ). The distinguished nodes are those in S1(prefr(T )).
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5 The New Construction

0ur construction follows Zielonka’s construction, up to the Δ relations which are
remembered only for the zones of prefp(T ), p ∈ P . Of course, we have to adapt
the transition function of the asynchronous automaton accordingly.

Let A = (V,Σ, →, v0,F ) be a non-deterministic I-diamond automaton. We
explain in the following how to build a deterministic asynchronous automaton
B with the same language. The local p-state of B reached on a prefix prefp(T )
is the tuple (S1, TS, 〈dom(Zi),S(Zi),Δ(Zi)〉i=0,...m), where:

– {Z1 . . . ,Zm} is the set of zones of prefp(T ).
– S1 is the primary information of prefp(T ).
– The timestamping TS associates every event of S1 with its timestamp.
– For a zone Z, dom(Z) denotes the set of processes occurring in Z.
– For a zone Z, S(Z) ⊆ P corresponds to Definition 5. That is, q ∈ S(Z)

means that the last event on q in prefp(T ) is above an event of Z.
– The transition relation ΔZ gives for each state v of A the set of states
ΔZ(v) that can be reached in A from v by reading some linearization of Z
(remember that since A is I-diamond, this corresponds to the set of states
reached by any linearization of Z).

We define now the local transition function δp of the asynchronous automa-
ton B. We do not recall how to update the primary information S1 and the
timestamping TS, though the update of S-values includes the update of the sec-
ondary information S2. Recall that the order on zones Zi < Zj can be computed
from the knowledge of S(Zi) and of dom(Zi), for all zones Zi (see Lemma 2).

Assume that the action a with p ∈ dom(a) is added to the current p-state
(S1, TS, 〈dom(Zi),S(Zi),Δ(Zi)〉i=0,...,m).

The new p-state is (S′1, TS′, 〈dom(Z ′i),S(Z ′i),Δ(Z ′i)〉i=0,...,m+1), with:

1. Let dom(Z ′m+1) = dom(a), ΔZ′
m+1

= a−→, and S(Z ′m+1) = dom(a) (actually
S(Z ′m+1) consists of the unique maximal a event).

2. Let 〈dom(Z ′j),S(Z ′j),ΔZ′
j
〉j=1,...,m = 〈dom(Zj),S(Zj),ΔZj 〉j=1,...,m.

3. For all Z ′i, let S(Z ′i)← S(Z ′i) ∪ {dom(a)}.
4. If S(Z ′i) = S(Z ′j) with Zj �< Zi then we merge Z ′i,Z

′
j and let ΔZ′

i
= ΔZ′

j
◦ΔZ′

i

and dom(Z ′i) = dom(Z ′j) ∪ dom(Z ′i) and we delete Z ′j .

That is, a new zone Z ′m+1 is created representing the new event a (line 1) and
the other zones are copied (line 2). We then update the S-values in line 3 and
merge zones with equal S-value in line 4.

Assume that the process q is in local state (Sq
1 , TSq, 〈dom(Zq

i ),S(Zq
i ),

ΔZq
i
〉i=1,...,n) with history prefq(T ). Moreover, process p in current state

(S1, TS, 〈dom(Zi),S(Zi),ΔZi〉i=1,...,m〉 and history prefP (T ) reads the state of
q (as usual, p, q ∈ dom(a) where a is the new action). The updated state of p is
(S′1, TS′, 〈dom(Z ′i),S(Z ′i),ΔZ′

i
〉i=1,...,k), with prefP∪q(T ) as history, where:
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1. Let J = {i | 1 ≤ i ≤ n, TSq(S(Zq
i )) ∩ TS(S1) = ∅} and k = m+ |J |,

2. Let 〈dom(Z ′j),S(Z ′j),ΔZ′
j
〉j=1,...,m = (dom(Zj),S(Zj),ΔZj 〉j=1,...,m,

3. 〈dom(Z ′m+j),S(Z ′m+j),ΔZ′
m+j
〉j=1,...,|J| = 〈dom(Zq

i ),S(Zq
i ),ΔZq

i
〉i∈J ,

4. The partial order <′ on the new zones is given by the transitive closure of
the relation < ∪ <q ∪{(Z ′i,Z ′j) | i ≤ m < j, dom(Z ′i) ∩ dom(Z ′j) �= ∅},

5. For all Z ′i <
′ Z ′j , S(Z ′i)← S′(Z ′i) ∪ S′(Z ′j),

6. If S(Z ′i) = S(Z ′j) and Zj �< Zi, then we merge Z ′i and Z ′j and set dom(Z ′i) =
dom(Z ′j) ∪ dom(Z ′i) and ΔZ′

i
= ΔZ′

j
◦ΔZ′

i
, and we delete Z ′j.

The update operations consists in copying the zones that form a partition
of prefP (T ) (line 2) and adding in line 3 the zones (Zq

i )i∈J that partition
prefq(T ) \ prefP (T ). We then update the S-values in line 5. The last line merges
zones with equal S-value. We say that a global state with local p-component
Sp

1 , TSp, 〈dom(Zp
i ),S(Zp

i ),ΔZp
i
)i=1,...,np) is accepting if we have

ΔZn ◦ · · · ◦ΔZ1(v
0) ∩ F �= ∅ for Z1 · · ·Zn a linearization of (Zi,<)i=1,...,n.

Example: Consider the same trace T = [cbadcbad] as in Figure 3. Then
prefq(T ) = [cbadcba] has two zones (see also Figure 4): zone Zq

1 consisting of
the first c, a, d, and the first two b, and zone Zq

2 consisting of the second c and
a. Assume that the letter b is now executed, which means that process r can
read the state of process q. For instance, we have S(Zq

2)) = {p, q} and with
Figure 3, S(Z2) = {q, r}, that is Z2 is not before the last event on p. Also,
S(Z1) \ S(Z2) = {p}.

p

q

r

c c

d d

a a

b b

Fig. 4. Zones of prefq(T ). The distinguished nodes are the primary events of prefq(T ).

First, with the timestamping, process r computes the maximal event of
prefq(T ) ∩ prefr(T ), which is the second b. Thus J = {2}, and the new set of
zones is {Z ′1,Z ′2,Z ′3,Z ′4} with Z ′4 = Zq

2 . Process r then computes Z ′1 < Z ′2 < Z ′4
and that Z ′3 and Z ′4 are incomparable. Thus Z ′2 < Z ′4, then p is added to S′(Z ′2).
It means that S′(Z ′1) = S′(Z ′2), and hence it merges Z ′2 with Z ′1. The new set
of zones is then {Z ′1,Z ′3,Z ′4}. Then the letter b is added as a new zone Z ′′5 , and
we get S′′(Z ′′1 ) = {p, q, r},S′′(Z ′′3 ) = {q, r},S′′(Z ′′4 ) = {p, q, r},S′′(Z ′′5 ) = {q, r},
thus we merge zones and we keep two zones Z ′′1 = Z ′′1 ∪ Z ′′4 and Z ′′3 = Z ′′3 ∪ Z ′′5 .

Acknowledgement. We would like to thank Dietrich Kuske for simplifying the
definition of zones.
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Abstract. In this paper we study the reachability problem for parametric flat
counter automata, in relation with the satisfiability problem of three fragments
of integer arithmetic. The equivalence between non-parametric flat counter au-
tomata and Presburger arithmetic has been established previously by Comon and
Jurski [5]. We simplify their proof by introducing finite state automata defined
over alphabets of a special kind of graphs (zigzags). This framework allows one
to express also the reachability problem for parametric automata with one control
loop as the existence of solutions of a 1-parametric linear Diophantine systems.
The latter problem is shown to be decidable, using a number-theoretic argument.
Finally, the general reachability problem for parametric flat counter automata
with more than one loops is shown to be undecidable, by reduction from Hilbert’s
Tenth Problem [9].

1 Introduction

Flat counter automata [5, 6, 3, 4] have been extensively studied, as an important class
of infinite-state systems, for which the reachability problem is decidable. The results
obtained so far have been used in a number of successful verification tools, like FAST
[2], LASH [18] or TREX [1].

Comon and Jurski show in [5] that the reachability problem for a flat counter automa-
ton can be expressed in Presburger arithmetic, given that the automata have transition
guards that are conjunctions of relations of the form x− y ≤ c, where x and y denote
either the current or the future (primed) values of the counters, and c is an integer con-
stant. To our knowledge, their result concerns the most general class of flat counter
automata, considered so far.

The contributions of the present paper are many fold. First, we give an alternative,
easier, proof of the result of [5], using finite state automata defined over alphabets of
graphs (zigzags). Second, we consider a more general class of flat counter automata,
in which, besides integer constants, parameters are also allowed to occur in transitions.
This class is useful in modeling open programs, whose behavior is parameterized by
some input values, e.g. procedures in a larger program. The reachability problem in the
latter class of automata amounts to checking satisfiability of Diophantine systems [12].

Third, we give an effective decision procedure for the following problem: given a
linear system with unknowns x1, . . . ,xn, the coefficients being polynomials of any de-
gree in m, is there a constant c ∈ N, such that the system resulting from substituting m
with c has a positive solution? This result gives an effective algorithm to decide reach-
ability for parametric counter automata with one control loop, whereas in the case of
more than one control loop, the reachability problem for such systems is undecidable.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 577–588, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.1 Related Work

Work on the decidability of reachability problems for counter automata starts with the
negative result of Minsky [14] regarding two counter machines. The two most studied
restrictions of this model are the reversal bounded 2-way counter machines [10] and
the flat counter automata [5, 6, 3]. The class of flat counter automata that is closest to
the one considered in this paper is the one studied by Comon and Jurski [5], where the
transition relations are conjunctions of inequalities of the form x− y ≤ c, with c ∈ Z.
Their result is that the set of reachable configurations for such automata is definable in
Presburger arithmetic. Our result considers parametric transition relations of the form
x− y ≤ f (z), and defines the set of reachable configurations as solutions of a linear
Diophantine system with one parameter. Decision procedures for this class of systems
have been independently found by O. Ibarra and Z. Dang in [11], using a result from
the theory of reversal-bounded counter automata, and by Y. Matiyasevich [13]. The
latter result uses a similar number theoretic argument, but the proof is based on a more
involved case analysis.

2 Preliminaries

Let x = {x1, . . . ,xk} be a finite set of variables (counters) ranging over Z, and x′ =
{y′ | y ∈ x} be the corresponding set of primed variables. For any counter y, we denote
by y′ its value at the next computational step. In what follows we will abusively use
the name of a variable to denote its value also. The (compulsory) occurrence of a set of
variables x in a logical formula ϕ is denoted as ϕ(x). By 〈Z[x],+, ·〉 we denote the ring
of polynomials, and by 〈linZ[x],+〉 the monoid of linear polynomials, with variables x
and integer coefficients. For a closed formula ϕ, we write |= ϕ meaning that it is valid,
i.e. equivalent to true.

Let z = {z1, . . . ,zl} be a set of parameter variables, disjoint from x. A relation
ϕ(x,x′,z) that can be written as a finite conjunction of the form:

xi− x j ≤ αi j ∧ x′m− xn ≤ βmn∧ xp− x′q ≤ γpq∧ x′r− x′s ≤ δrs

with 1 ≤ i, j,m,n, p,q,r,s ≤ k, and αi j,βmn,γpq,δrs ∈ linZ[z], is said to be an affine
relation. Note the formal difference between variables (x) and parameters (z) in ϕ:
variables are bound to occur both unprimed and primed, whereas parameters can only
occur unprimed in formulae.

A parametric counter automaton is a tuple A = 〈x,z,Q,δ,q0〉, where x is the set of
working counters, z is the set of parameters, Q is the set of control states, q0 ∈ Q is

the initial state, and δ is the set of transitions of the form: q
ϕ(x,x′,z)−−−−−→ q′, where ϕ is an

affine relation. A configuration of A is a tuple c = 〈q,xz〉 consisting of a control state,
and a set of integer values for the counters and parameters. A run of the automaton is
a sequence of configurations, c0,c1,c2, . . . ,cn, ci = 〈qi,xiz〉, such that x0 = 0, i.e. the

counters are initially set to zero, and qi
ϕ(xi,xi+1,z)−−−−−−→ qi+1, for all 0≤ i < n. Note that the

values of the parameters are not modified throughout the run. A control state q is said
to be reachable in A if and only if A has a run ending in a configuration 〈q,xz〉.
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A control state r is said to be the successor of a state q if and only if there exists
configurations 〈q,xz〉−→ 〈r,x′z〉, for some x,x′ ∈Zk, z∈Zl . A control path is a sequence

of control states q1,q2, . . . ,qn such that, for all 0≤ i < n, qi+1 is a successor of qi. The
path is said to be non-trivial if n > 0. A cycle is a non-trivial control path starting and
ending with the same state. A counter automaton is said to be flat (FCA) if and only
if each control state belongs to at most one cycle. A control state with two or more
successors (in the sense mentioned above) is said to be a branching state. A branching
state with exactly two successors is said to be a 2-branching state. A FCA is said to be
linear (LFCA) if and only if the only branching states are 2-branching, and every cycle
contains at most one such state. Notice that every FCA can be effectively turned into a
finite union of LFCA, the only branching state that is not 2-branching, being the initial
state.

It is well-known that the class of affine relations is closed under composition, de-
fined as (ϕ1 ◦ ϕ2)(x,x′,z) = ∃y ϕ1(x,y,z) ∧ ϕ2(y,x′,z). In other words, the exis-
tential quantifiers can be eliminated1, the result being written as another affine rela-
tion. As a consequence, we can assume without losing generality, that each control

path q1
ϕ1−→ q2 . . .qn−1

ϕn−1−−−→ qn, with no incoming edges, is equivalent to a transition

q1
ϕ1◦...◦ϕn−1−−−−−−→ qn. By applying this transformation to the whole counter automaton, we

obtain a counter automaton in normal form.
Given a counter automaton A = 〈x,z,Q,δ,q0〉 and a control state q ∈ Q, the reach-

ability problem asks whether q is reachable in A. As we show in the following, this
problem can be defined in various subfragments of the arithmetic of integer numbers.
Moreover, we can show equivalence of these logical theories with different subclasses
of flat counter automata. The latter are obtained by restricting the number of parameters
and loops on a control path. We denote by FCA(p,n) the class of flat counter automata
with at most p parameters that occur in the transition relations, and with at most n cycles
on each linear component.

3 The Arithmetic of Integers

The undecidability of first-order arithmetic of integers 〈Z,+, ·,0,1〉 occurs as a conse-
quence of Gödel’s Incompleteness Theorem [8]. Moreover, the existential fragment, i.e.
Hilbert’s Tenth Problem [9] was proved undecidable by Y. Matiyasevich [12]. On the
positive side, the decidability of the arithmetic of integer numbers with addition and
successor function 〈Z,≥,+,0,1〉 has been shown by M. Presburger [17].

Let us first introduce the theories of Presburger arithmetic [17] and parametric linear
Diophantine systems. Presburger arithmetic 〈Z,≥,+,0,1〉 is the theory of first-order
logic of addition and successor function (S(x) = x + 1). The interpretation of logical
variables is the set of integers Z, and the meaning of the function symbols 0,1,+ is the
natural one.

A Diophantine equation is a formula of the form P(x) = 0, where P ∈ Z[x] is a
polynomial of the form P(x) = ∑m

i=1 aiti(x)+ a0, and ti are multiplicative terms of the

1 By e.g. the Fourrier-Motzkin procedure.
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form Πk
l=1xil

l , with i1, . . . , il ∈ N. The equation is said to be linear with parameter x j,

1 ≤ j ≤ k, if for every multiplicative term of the form above, we have ∑l �= j
l∈{1...k} il ≤ 1.

In other words, the only variable that can occur at a power greater than one is x j, and
moreover, all multiplicative terms contain at most one variable, other than x j. Note that
any Diophantine linear equation with parameter m can be equivalently written as:

n

∑
i=1

pi(m)xi + p0(m) = 0 (1)

where pi ∈ Z[m], 0 ≤ i ≤ n are polynomials of arbitrary degree in m. In the follow-
ing, we denote by D[m] the set of positive boolean combinations of linear Diophantine
equations with one parameter, namely m.

In this paper we show that the following problems are inter-reducible:

– the reachability for the class FCA(0,n) (flat counter automata without parameters
with any number of loops) and satisfiability of Presburger arithmetic, and

– the reachability for the class FCA(p,1) (flat counter automata with any number of
parameters and one loop) and satisfiability of D[m].

Notice that the notion of parameter changes its meaning, depending on whether we are
referring to counter automata, or Diophantine systems.

For the first point, it is already known that, given an arbitrary open Presburger for-
mula ϕ(x), one can build a flat counter automaton that generates exactly the values
x ∈ Z satisfying ϕ. This is a direct consequence of the fact that the set of such values is
semilinear [7].

To complete the picture, we show the undecidability of the reachability problem
for the class FCA(p,n) with unrestricted number of parameters (p) and loops (n), by
reduction from Hilbert’s Tenth Problem [9].

4 From FCA to Integer Arithmetic

In this section we develop the framework used to define the reachability problem of a
FCA as a formula of either Presburger arithmetic, or D[m]. Given a FCA A = 〈x,z,Q,δ,
q0〉, and a state q ∈ Q, the idea is to build an arithmetic formula νA,q(x,x′,z) such that,
for every x,x′ ∈ Zk, z ∈ Zl , there is a run in A from 〈q0,xz〉 to 〈q,x′z〉 if and only
if |= νA,q(x,x′,z). The reachability problem for A and q reduces then to checking the
validity of the formula ∃x∃z . νA,q(0,x,z).

In order to define νA,q, we first observe that each A∈ FCA(p,n) is a union of disjoint
linear flat counter automata, each being composed of a sequence of cycles, connected by
non-trivial control paths. Without loss of generality, we will assume that A is in normal
form, i.e. each control path with no incoming edges and no branching has been reduced
to one transition, by composing the transition relations along the way. It follows that
νA,q(x,x′,z) is of the following form:

∃y1...n∃y′1...n
i

ηi1(x,y1,z)∧
1≤ j<mi

[
ξi j(yj,y′j,z)∧ηi j(y′j,yj+1,z)

]
∧x′ = ymi
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where mi ≤ n, ηi j are the affine relations corresponding to the transitions between cy-
cles, and ξi j represent the transitive closures of the cycle relations, in the following

sense: if q
ϕ(x,x′,z)−−−−−→ q is a cycle, then the transitive closure of ϕ is the relation between

the input and output values of the counters, after any number of iterations through the
cycle. Since ηi j are affine relations, it follows that νA,q is a formula in the language of
〈Z,≥,+,0,1〉, if ξi j belong to the same language. Moreover, for mi = 1, νA,q is a for-
mula of D[m] if ξi j are. It is therefore sufficient to analyze the definability of νA,q when

A has only one transition of the form q
ϕ(x,x′,z)−−−−−→ q. In the following developments, we

will silently assume that this is indeed the case.

4.1 Constraint Graph Execution Model

In general, an affine relation ϕ(x,x′,z) can be represented as a directed weighted graph
whose set of vertices is the set of variables x∪ x′, and there is an edge with weight α
from x to y if and only if there is an explicit constraint x−y≤α in ϕ, where α∈ linZ[z].

An n-step execution of q
ϕ(x,x′,z)−−−−−→ q is represented by a constraint graph Gn

ϕ, defined as

the minimal graph whose set of vertices is n
i=0 xi, where xi = {yi |y ∈ x} and, for all

0≤ i < n, there is an edge labeled α:

– from xi to yi, if there is a constraint x− y≤ α in ϕ.
– from xi+1 to yi+1, if there is a constraint x′ − y′ ≤ α in ϕ.
– from xi to yi+1, if there is a constraint x− y′ ≤ α in ϕ.
– from xi+1 to yi, if there is a constraint x′ − y≤ α in ϕ.

For example, Figure 1 shows the constraint graph for the transition relation ϕ : x1−x′2≤
z1∧ x′2− x3 ≤ z2∧ x3− x′1 ≤ z3∧ x1− x′3 ≤ z4. Intuitively, the nodes xi in the execution
graph represent the possible values of the counters after i steps of execution. Define
G∞

ϕ = n>0 Gn
ϕ. We say that a path in G∞

ϕ stretches between n and m, for some n≤m, if
the path contains at least one node from xi, for each n≤ i≤ m.

xn
1

xn
2

z1

z2

x1
1

x1
2

z1

z2

. . .

z1

z2

x2
2

x2
3

x0
1

x0
2

x0
3

x2
1

z3z3 z3z4 z4 z4

xn
3x1

3

xn−1
1

xn−1
2

xn−1
3

Fig. 1. Constraint Graph for x1−x′2 ≤ z1∧ x′2−x3 ≤ z2∧ x3−x′1 ≤ z3∧ x1−x′3 ≤ z4

If π : xi α1−→ . . .
αm−→ y j, 0 ≤ i, j,≤ n is a path in Gn

ϕ, let ω(π) denote the sum of all

labels along the path, i.e. ω(π) = ∑m
k=1 αk. Notice that ω(π) ∈ linZ[z], for any constant

m ∈ N. Clearly, we have xi− y j ≤ ω(π). We define min{xi −→ y j} = min{ω(π) | π :

xi α1−→ . . .
αm−→ y j}. By convention, if there are no paths in Gn

ϕ, between xi and y j, we take
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min{xi −→ y j}= ∞. On the other hand, if the set of paths between xi and x j doesn’t have

a minimal element, we take min{xi −→ y j}= −∞. Notice that this can only be the case

if Gn
ϕ has a cycle labeled only with constants, whose sum is less than zero. With the

latter notation, we have xi− y j ≤min{xi −→ y j}. Moreover, this is the strongest relation

involving the values of x and y at the execution times i and j, respectively. Notice that
the satisfiability of any constraint between xi and y j entails the absence of negative
cycles from Gn

ϕ. The relation between the input and output values of the counters, after
n steps is:

x,y∈x

x− y≤min{x0 −→ y0} ∧ x′ − y′ ≤min{xn −→ yn} ∧

x− y′ ≤min{x0 −→ yn} ∧ x′ − y≤min{xn −→ y0} (2)

The next step is to define the functions min{xi −→ y j}, i, j ∈ {0,n} using the arithmetic

of integers. These functions are definable in 〈Z,≥,+,0,1〉, if ϕ has no parameters, and
in D[m], otherwise. The reduction method, based on weighted finite automata, is the
same in both cases, and will be presented in the rest of this section.

4.2 The Even and Odd Automata

In the following, we work with a simplified (yet equivalent) form of the transition re-
lation ϕ(x,x′,z). Namely, all constraints of the form x− y≤ α are replaced by x− t ′ ≤
α ∧ t ′ − y ≤ 0, and all constraints of the form x′ − y′ ≤ α are replaced by x′ − t ≤
α ∧ t − y′ ≤ 0, by introducing fresh variables t �∈ x. In other words, we can assume
without loss of generality that the constraint graph corresponding to ϕ is bipartite, i.e.
it does only contain edges from x and x′ and viceversa.

As previously mentioned, the presence of any cycle of negative weight within Gn
ϕ

indicates that the constraints represented by Gn
ϕ are not satisfiable, i.e. the automaton

has no run of length n or greater. On the other hand, a path that has a cycle of positive
weight is not minimal, as one can obtain a path of smaller weight by eliminating the
cycle. So, in principle, we need one tool for recognizing cycles of negative weight,
and another one for recognizing acyclic paths within G∞

ϕ . Both tools will be finite state
automata with weighted transitions, defined on two different alphabets.

Intuitively, a word w of length n represents a path π between, say, x0 and xn, with
x,y ∈ x, as follows: the wi symbol represents simultaneously all edges of π that involve
only nodes from xi ∪ xi+1, 0 ≤ i < m. Note that, for a path from x0 to yn, coded by a
word w, the number of times the wi symbol is traversed by the path is odd, whereas for
a path from x0 to y0, or from xn to yn, this number is even. Hence the names of even and
odd automata.

Given an affine relation ϕ(x,x′,z), the even alphabet of ϕ, denoted as Σe
ϕ, is the set

of all graphs satisfying the following conditions, for each G ∈ Σe
ϕ:

1. the set of nodes of G is x∪x′,
2. for any x,y ∈ x∪x′, there is an edge with label α from x to y, only if the constraint

x− y≤ α occurs in ϕ.
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3. the in-degree and out-degree of each node are at most one.
4. the number of edges from x to x′ equals the number of edges from x′ to x.

The odd alphabet of ϕ, denoted by Σo
ϕ, is defined in the same way, with the exception

of the last condition:

4. the difference between the number of edges from x to x′ and the number of edges
from x′ to x is either 1 or −1.

Let Σe,o
ϕ = Σe

ϕ∪Σo
ϕ. Since, by the previous assumption, no G∈ Σe,o

ϕ contains edges of

the form x
α−→ y or x′

α−→ y′, the number of edges in all symbols of Σe
ϕ is even, while the

number of edges in all symbols of Σo
ϕ is odd. The label of G, is the sum of the weights

that occur on its edges. Clearly the weight of a path through G∞
ϕ is the weight of the

word it is represented by. We denote by ω(w) the weight of a word w ∈ Σe,o
ϕ
∗. Notice

that ω(w) ∈ linZ[z], for any given w ∈ Σe,o
ϕ
∗, where z is the set of parameters of ϕ.

Given the set of counters x = {x1, . . . ,xk}, the even and odd automata share the same
transition table, except for the alphabet, which is Σe

ϕ for the former, and Σo
ϕ for the latter.

Precisely, we have Ae,o
ϕ = 〈Q,δ〉, where Q = {l,r, lr,rl,⊥}k, and q G−→ q′ if the following

conditions hold, for all 1≤ i≤ k:

– qi = l iff G has one edge whose destination is xi, and no other edge involving xi.
– q′i = l iff G has one edge whose source is x′i, and no other edge involving xi.
– qi = r iff G has one edge whose source is xi, and no other edge involving xi.
– q′i = r iff G has one edge whose destination is x′i, and no other edge involving xi.
– qi = lr iff G has exactly two edges involving xi, one having xi as source, and another

as destination.
– q′i = rl iff G has exactly two edges involving x′i, one having x′i as source, and another

as destination.
– q′i ∈ {lr,⊥} iff G has no edge involving x′i.
– qi ∈ {rl,⊥} iff G has no edge involving xi.
– G has at least one edge between x and x′.

The odd automaton for ϕ = x1−x′2≤ z1∧x′2−x3≤ z2∧x3−x′1≤ z3∧x1−x′3 ≤ z4 is
depicted in Figure 2 (a). An example of a run of this automaton is given in Figure 2 (b).
Intuitively, qi j = l means that the node xi

j of G∞
ϕ is traversed from right to left by a

path, and no other path comes across this node. Also, qi j = lr means that there is a
path coming into xi

j from xi+1 (left), and leaving also towards xi+1 (right), while no
other path comes across this node. The transitions of Ae,o

ϕ capture the necessary (yet not
sufficient) conditions for a word in Σe,o

ϕ
∗ to represent a path in G∞

ϕ . Suppose that Ae,o
ϕ

has a run π : q1
G1−→ q2

G2−→ . . .qn−1
Gn−1−−−→ qn. By G(π) we shall denote, in the following,

the graph associated with the run, i.e. the graph whose nodes are qi j, and there is an

edge from qi j to qi+1h if and only if qi
Gi−→ qi+1 and Gi has an edge from x j to x′h, for

all 1≤ i≤ n, 1≤ j,h ≤ k. The edges from qi+1h to qi j are defined symmetrically. Each
node in G(π) is labeled by a symbol from {l,r, lr,rl,⊥}, and we write, e.g. qi j = l,
meaning that qi j is labeled with l. We denote by ω(π) the weight of the run π, defined
as ω(π) = ω(G(π)).
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Fig. 2. The Odd Automaton for x1−x′2 ≤ z1∧ x′2−x3 ≤ z2∧ x3−x′1 ≤ z3∧ x1−x′3 ≤ z4

Lemma 1. Let π : q1
G1−→ q2

G2−→ . . .qn−1
Gn−1−−−→ qn be a run of Ae,o

ϕ . Then each node qi j,

1≤ i≤ n, 1≤ j≤ k, from G(π), has at most one predecessor and at most one successor.

For some 1≤ i, j≤ k, let Ae
i j = 〈Ae,o

ϕ ,Q0,F〉 be the (non-deterministic) even automaton,
defined over Σe

ϕ, where:

Q0 =
{
{q | qi = r, q j = l and qh ∈ {lr,⊥}, 1≤ h≤ k, h �∈ {i, j}} if i �= j
{q | qi = q j = lr and qh ∈ {lr,⊥}, 1≤ h≤ k, h �= i} otherwise

is the set of initial states, and F = {rl,⊥}k. In the case when i = j, we denote Ae
i j by Ae

i .

Lemma 2. For any 1 ≤ i, j ≤ k, i �= j, Ae
i j has an accepting run of length at most m if

and only if there exists a path in G∞
ϕ , from x0

i to x0
j , that stretches between 0 and some

n ≤ m. Moreover, if G∞
ϕ does not have cycles of negative weight, the minimal weight

among all paths from x0
i to x0

j , stretching from 0 to some n ≤ m, equals the minimal
weight among all accepting runs of length at most m.

Lemma 3. For any 1≤ i≤ k, Ae
i has an accepting run of negative weight if and only if

there exists a cycle of negative weight in G∞
ϕ .

For some 1≤ i, j ≤ k, let Ao
i j = 〈Ae,o

ϕ ,Q0,F〉 be the (non-deterministic) odd automaton,
defined over Σo

ϕ, where:

Q0 = {q | qi = r and qh ∈ {lr,⊥}, 1≤ h≤ k, h �= i}
F = {q | q j = r and qh ∈ {rl,⊥}, 1≤ h≤ k, h �= j}

An example of an odd automaton is given in Figure 2 (a). For i = 1 the initial states are
〈r,⊥, lr〉 and 〈r,⊥,⊥〉. For j = 3 the final state is 〈⊥,⊥,r〉. An accepting run of Ao

13 is
shown in Figure 2 (b).
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Lemma 4. For any 1≤ i, j≤ k, Ao
i j has an accepting run of length m if and only if there

exists a path in G∞
ϕ , from x0

i to xm
j . Moreover, if G∞

ϕ does not have cycles of negative

weight, then the minimal weight among all paths from x0
i to xm

j equals the minimal
weight among all accepting runs of length m.

4.3 Defining Minimal Accepting Runs

Given a finite automaton with linear weights on transitions, we consider the problem of
defining the set of accepting runs of a given length and of minimal weight. This solves
the previous problem of defining the functions min{xi −→ y j}, in order to compute the

input-output relation for an FCA.
Let A = 〈Q,q0,δ,F〉 be a given finite automaton, and ω : Q×Q −→ linZ[z] be a

weight function associating each transition q −→ r a linear expression ω(q,r) ∈ linZ[z].

If δ has no transition q−→ r, we take ω(q,r) = 0. Now associate with any pair of states

q,r ∈ Q a variable xqr and take x to be the set {xqr | q,r ∈ Q}. Intuitively, xqr is the
number of times the transition q−→ r occurs within a run. Hence we take as an implicit

condition the fact that all such xqr range over positive integers. The formula character-
izing an accepting run of length l and weight w is:

φA(l,w) Δ= ∃x
q f∈F

ϕq f (x) ∧ ∑
q,r∈Q

xqr = l ∧ ∑
q,r∈Q

xqrω(q,r) = w (3)

where ϕq f (x) expresses the necessary and sufficient conditions in order for x to corre-
spond to a valid run of A ending with q f . The definition of ϕq f in Presburger arithmetic
follows a method described in [5], which is based on the fact that the set of states Q of
A is finite.

Notice that, if A does not have parameters, φA is already a formula in the language
of 〈Z,≥,+,0,1〉, hence we can already define the minimal weight m among all runs
of length n by the following formula: φA(n,m) ∧ ∀z [z ≤ m → ¬φA(n,z)]. However,
this is not the case when A has parameters, due to the multiplicative terms of the form
xqrω(q,r) that occur within φA. However, it is possible to build from φA, a formula of
D[m] defining minimal runs.

Lemma 5. Given a finite automaton A = 〈Q,q0,δ,F〉, and a weight function ω : Q×
Q −→ linZ[z] associating each transition a linear expression, it is possible build a
formula ψA(l,w,z) ∈D[m] such that, for any values l ∈ N and w,z ∈ Z, |= ψA if and
only if w is the weight of the minimal among all accepting runs of length l.

Intuitively, the parameter m occurring in the formula ψA ∈D[m] above, represents the
number of iterations of one control loop in the original parametric FCA. It is thus pos-
sible to define the reachability problem for single loop automata in D[m]. As we show
in Section 5, the problem concerning the existence of solutions for such systems is
decidable, hence the decidability of the reachability problem for the class of FCA(p,1).

However, for an arbitrary number of loops, one can reduce Hilbert’s Tenth Problem
to the reachability problem. In the light of [12] The following Lemma entails unde-
cidability of the reachability problem for parametric FCA with unrestricted number of
loops.
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Lemma 6. Given a Diophantine system S(x), it is possible to build a parametric FCA
A = 〈y,z,Q,δ,q0〉 such that x ⊆ z, such that, for some control state q ∈ Q, and for all
x ∈ Z, we have |= S(x) if and only if there exists a run of A 〈q0,0z〉 −→ . . .−→ 〈q,yz〉.

5 Solving Parametric Linear Diophantine Systems

In this section we give a proof for the decidability of the class of formulae D[m]. For a
given system, let D denote the maximum degree of all equations, and V is the number
of variables in the system. It is known that Diophantine systems become undecidable
for (D≥ 4∧V ≥ 2)∨ (D≥ 2∧V ≥ 9) [15]. For either D = 1 or V = 1 the systems are
decidable. We are unaware of any previously published decidability results for the case
2≤D< 4∧2≤V < 9. The problem considered here has been independently solved by
O. Ibarra and Z. Dang in [11], using a property of reversal bounded counter machines.
Another proof has been suggested to us by Y. Matiyasevich [13], using a more involved
case analysis. Our proof is more concise, due to a result of L. Pottier [16].

Let us fix a linear Diophantine system with parameter m, i.e. a system of the form
{∑n

j=1 pi j(m)x j + qi(m) = 0}r
i=1, with pi j,qi ∈ Z[m]. We are interested in the existence

of a solution m,x1, . . . ,xn in natural numbers, although this is not a restriction.2 We
denote by A(m) the matrix [pi j(m)].

Let us consider first that the system is homogeneous, i.e. qi(m) is the zero polyno-
mial, for all 1≤ i≤ n. The general case will be dealt with in the following, by adding a
new variable xn+1, replacing each occurrence of qi(m) by qi(m)xn+1, and looking only
after solutions in which xn+1 = 1. Let P(m) be the greatest common divisor of all pi j(m)
with respect to (symbolic) polynomial division, i.e. obtained by applying Euclid’s al-
gorithm in Z[m]. Since P(m) is a polynomial in one variable, its set of roots is finite
and effectively computable. If P(m0) = 0 for some m0 ∈ Z, then 〈m0,x1, . . . ,xn〉 is a
solution of the system A(m)x = 0, for any choice of x1, . . . ,xn ∈ Z. Thus, we assume
in the following that P(m) �= 0, for all m ∈ N, in other words that, for no value of m,
pi j(m) will all become zero at the same time.

Next, we are interested in the minimal solutions of the system. For a given m ∈
N, a solution (x1, . . . ,xn) is said to be minimal if it is a least solution with respect to
the pointwise ordering on Nn: (u1, . . . ,un) / (v1, . . . ,vn) ⇐⇒ ui ≤ vi, 1 ≤ i ≤ n. The
following Theorem has been proved in [16]:

Theorem 1. For a fixed m0 ∈ N, let x1, . . . ,xn be any minimal solution of A(m0)x = 0.

Then, for all 1 ≤ i ≤ n, we have: xi ≤ (n− r0)
(

∑i, j ai j(m0)
r0

)r0
, where r0 is the rank

of A(m0).

Let C > 0 be the maximal absolute value of all coefficients of ai j(m), 1≤ i≤ r, 1≤ j≤
n, and K ≥ 0 be the maximum degree of these polynomials. The following is a direct
consequence of Theorem 1:

Corollary 1. For a fixed m0 ≥ max(C,n,r), let x1, . . . ,xn be any minimal solution of

A(m0)x = 0. Then, for all 1≤ i≤ n, we have xi ≤ m(K+3)r+1
0 .

2 The satisfiability problem for integers can be reduced to 2n+1 instances of the same problem
on natural numbers, by performing a case split on the signs of m,x1, . . . ,xn.
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Hence, one can enumerate all 0 ≤ m < max(C,n,r), and stop as soon as a solution
of the linear Diophantine system A(m)x = 0 has been found. Otherwise, for any m ≥
max(C,n,r) the solution x1, . . . ,xn can be represented in base m using at most M = (K +
3)r+1 digits. Let (xi)m = ∑M

j=0 χi jm j, with 0≤ χi j <m be the polynomial representing
xi in base m. The entire system A(m)x = 0 can be now represented in base m, as will be
explained in the following.

First, we write the system as a set of equations of the form P(m,x1, . . . ,xn) =
Q(m,x1, . . . ,xn), with all coefficients of P and Q being positive. Since m was assumed
to be greater that C, the maximal value of all coefficients c of the system, we have
(c)m = c. The operations of addition, multiplication by a constant 0 < c < m, and
multiplication by m, respectively, can be defined now using Presburger arithmetic. Let
(d)m = ∑M

i=0 δimi, (e)m = ∑M
i=0 εimi and ( f )m = ∑M

i=0 φimi, with 0 ≤ δi,εi,φi < m. We
have:

( f )m = (d)m +(e)m ⇐⇒
r∈{0}×{0,1}k−1×{0}

M

i=0

δi + εi + ri = φi + mri+1

(e)m = c(d)m ⇐⇒
r∈{0}×{0,...,c−1}k−1×{0}

M

i=0

cδi + ri = εi + mri+1

(e)m = m(d)m ⇐⇒ δM = φ0 = 0∧
M−1

i=0

δi = φi+1

The result of applying this transformation to the system A(m)x = 0 is a formula
ΨA(m,χ) in Presburger arithmetic, defining all minimal solutions of the original sys-
tem (xi)m = ∑M

j=0 χi jm j, for m ≥ max(C,n,r), with χ = {χi j | 1 ≤ i ≤ n, 1 ≤ j ≤ r}.
The original system has a solution (m,x1, . . . ,xn) if and only if, for some m ∈ N, it has
a minimal solution (xm

1 , . . . ,xm
n ). Hence ΨA(m,χ) is satisfiable. Dually, if ΨA(m,χ) is

satisfiable, we can construct a solution (not necessarily minimal) of A(m)x = 0.
The non-homogeneous case is handled in the proof of the following:

Theorem 2. The satisfiability problem for linear parametric Diophantine systems D[m]
is decidable.

Theorem 2, together with the results of the previous section entail the main result:

Corollary 2. The reachability problem for single loop parametric flat counter
automata FCA(p,1) is decidable.

The strength of this result is highlighted by Lemma 6, which entails the undecidability
of the reachability problem for FCA(p,n) with p> 0 parameters, and sufficiently many
control loops.

6 Conclusions

We have studied a generalization of the flat counter automata considered by Comon
and Jurski in [5], obtained by adding parameters to the transition relations. We reduce
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the reachability problem for these automata to either Presburger arithmetic, in the non-
parametric case, and to linear Diophantine systems with one parameter, for single-loop
automata with multiple parameters. The existence of solutions for the latter class of
systems is shown to be decidable. This entails the decidability of the reachability prob-
lem for counter automata with parameters and one control loop, while in general, this
problem is undecidable for flat automata with more than one control loop.

Acknowledgements. The authors wish to thank Yuri Matiyasevich and Oscar Ibarra for
their enlightening suggestions leading to the proof of Theorem 2.
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Abstract. In this paper, we first introduce a new lower bound technique
for the state complexity of transformations of automata. Namely we sug-
gest considering the class of full automata in lower bound analysis. Then
we apply such technique to the complementation of nondeterministic ω-
automata and obtain several lower bound results. Particularly, we prove
an Ω((0.76n)n) lower bound for Büchi complementation, which also holds
for almost every complementation and determinization transformation
of nondeterministic ω-automata, and prove an optimal (Ω(nk))n lower
bound for the complementation of generalized Büchi automata, which
holds for Streett automata as well.

1 Introduction

The complementation problem of nondeterministic ω-automata, i.e. nondeter-
ministic automata over infinite words, has various applications in formal veri-
fication. For example in automata-theoretic model checking, in order to check
whether a system represented by automaton A1 satisfies a property represented
by automaton A2, one checks that the intersection of A1 with an automaton that
complements A2 is an automaton accepting the empty language [Kur94, VW94].
In such process, several types of nondeterministic ω-automata are concerned, in-
cluding Büchi, generalized Büchi, Rabin, Streett etc., and the complexity of
complementing these automata has caught great attention.

The complementation of Büchi automata has been investigated for over forty
years [Var05]. The first effective construction was given in [Büc62] and the first
exponential construction was given in [SVW85] with a 2O(n2) state blow-up (n
is the number of states of the input automaton). Even better constructions with
2O(n log n) state blow-up were given in [Saf88, Kla91, KV01], which matches with
Michel’s n! = 2Ω(n log n) lower bound [Mic88], and were thus considered optimal.
However, a closer look reveals that the blow-up of the construction in [KV01]
is (6n)n while Michel’s lower bound is only roughly (n/e)n = (0.36n)n, leaving
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a big exponential gap hiding in the asymptotic notation1. Motivated by this
complexity gap, the construction in [KV01] was further refined in [FKV04] to
(0.97n)n. On the other hand, Michel’s lower bound was never improved.

For generalized Büchi, Rabin and Streett automata, the best known construc-
tions are in [KV05b, KV05a], which are 2O(n log nk), 2O(nk log n) and 2O(nk log nk)

respectively. Here state blow-ups are measured in terms of both n and k, where
k is the index of the input automaton. Optimality problems of these construc-
tions have been vastly open, because only 2Ω(n log n) lower bounds were known
by variants of Michel’s proof [Löd99], even without k as a factor.

What remains missing are stronger lower bound results. Tighter lower bounds
might lead us into better understanding of the intricacy of the complementation
of nondeterministic ω-automata, and are the main concern of this paper. Such
understanding might suggest ways to further optimize the constructions, or sug-
gest methods to circumvent those difficult cases in practice.

At the core of almost every known lower bound is Michel’s result, which was
obtained in the traditional way. That is, one first constructs a particular class
of automata {An}, and then proves that complementing {An} requires a large
state blow-up. Identifying such automata class is usually difficult, and is the
main obstacle towards lower bound results. In this paper, we propose a new
technique to circumvent such difficulty. Namely, we introduce the notion of full
automata, and suggest considering such automata in lower bound analysis.

With the help of full automata, we tighten the state complexity of Büchi com-
plementation from [(0.36n)n, (0.97n)n] to [(0.76n)n, (0.97n)n]. Surprisingly, this
(0.76n)n lower bound also holds for every complementation or determinization
transformation concerning Büchi, generalized Büchi, Rabin, Streett, Muller, and
parity automata. As to the complementation of generalized Büchi automata, we
prove an (Ω(nk))n lower bound, matching with the (O(nk))n bound in [KV05b].
This lower bound also holds for the complementation of Streett automata and
the determinization of generalized Büchi automata into Rabin automata. A sum-
mary of our lower bounds is given in Section 6.

2 Basic Definitions

A (nondeterministic) automaton is a tuple A = (Σ,S, I,Δ, ∗) with alphabet Σ,
finite state set S, initial state set I ⊆ S, transition relation Δ ⊆ S ×Σ × S and
∗ some extra components. Particularly A is deterministic if |I| = 1 and for all
p ∈ S, a ∈ Σ, |{q ∈ S | 〈p, a, q〉 ∈ Δ}| ≤ 1.

For a word w = a(0)a(1) . . . a(l−1) ∈ Σ∗ with length(w) = l ≥ 0, a finite run
of A from state p to q over w is a finite state sequence ρ = ρ(0)ρ(1) . . . ρ(l) ∈ S∗
such that ρ(0) = p, ρ(l) = q and 〈ρ(i), a(i), ρ(i + 1)〉 ∈ Δ for all 0 ≤ i < l. We
say ρ visits a state set T if ρ(i) ∈ T for some 0 ≤ i ≤ l. We write p w−→ q if a
finite run from p to q over w exists and p

w−→
T

q if in addition it visits T .

1 In contrast, for the complementation of nondeterministic finite automata over finite
words, the 2n blow-up of the subset construction [RS59] was justified by a tight
lower bound [SS78], which works even if the alphabet concerned is binary [Jir05].
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A (Nondeterministic) Finite Automaton (NFA for short) is an automaton
A = (Σ,S, I,Δ,F ) with final state set F ⊆ S. A finite word w is accepted by
A if there is a finite run over w from an initial state to a final state. L(A), the
language accepted by A, is the set of words accepted by A, and its complement
Σ∗\L(A) is denoted by LC(A).

For an ω-word α = α(0)α(1) · · · ∈ Σω, i.e., an infinite sequence of letters in
Σ, a (infinite) run of A over α is an infinite state sequence ρ = ρ(0)ρ(1) · · · ∈ Sω

such that ρ(0) ∈ I and 〈ρ(i),α(i), ρ(i + 1)〉 ∈ Δ for all i ≥ 0. Define Occ(ρ) =
{q ∈ S | ρ(i) = q for some i ∈ N} and Inf(ρ) = {q ∈ S | ρ(i) = q for infinitely
many i ∈ N}. We write ρ[l1, l2] to denote the infix ρ(l1)ρ(l1 + 1) . . . ρ(l2) of ρ.

A (Nondeterministic) Büchi (Word) automaton (NBW for short) is an au-
tomaton A = (Σ,S, I,Δ,F ) with F ⊆ S the final state set. A run ρ of A is
successful if Inf(ρ)∩F �= ∅. An ω-word α is accepted by A if it has a successful
run. L(A), the ω-language accepted by A, is the set of ω-words accepted by A,
and its complement Σω\L(A) is denoted by LC(A).

The readers are referred to [Tho97] for definitions of other common types of
nondeterministic ω-automata, like generalized Büchi, Rabin, Streett, Muller, and
parity, which have acronyms NGBW, NRW, NSW etc. We also use acronyms
like DRW for the deterministic types.

To visualize the behavior of automata over input words, we introduce Δ-
graphs. If A = (Σ,S, I,Δ, ∗) is an automaton, then for a finite word w =
a(0)a(1) . . . a(l − 1) ∈ Σ∗ of length l or for an ω-word w = a(0)a(1) · · · ∈ Σω of
length l =∞, the Δ-graph of w under A is the directed graph GAw = (V Aw ,EAw )
with vertex set V Aw = {〈p, i〉 | p ∈ S, 0 ≤ i ≤ l, i ∈ N} and edge set EAw defined
as: for all p, q ∈ S and 0 ≤ i < l, 〈〈p, i〉, 〈q, i+1〉〉 ∈ EAw iff 〈p, a(i), q〉 ∈ Δ. For T

a subset of S, we say a vertex 〈p, i〉 is a T -vertex if p ∈ T . By definition p
w−→ q

iff there is a path (in the directed sense) in GAw from 〈p, 0〉 to 〈q, length(w)〉 and
p

w−→
T

q if in addition the path visits some T -vertex.

Finally we define the state complexity2 functions. Assume T is a type of au-
tomata, like NFA or NBW. For a T automaton A, CT (A) is defined as the
minimum number of states of a T automaton that accepts LC(A). For n ≥ 1,
CT (n) is the maximum of CT (A) over all T automata with n states.

3 The Full Automata Technique

In the recently emerging area of state complexity (see [Yu04] for a survey) or in
the theory of ω-automata, we often concern proving theorems of such flavor:

Theorem 1. [Jir05] For each n ≥ 1, there exists an NFA An with n states over
{a, b} such that CNFA(An) ≥ 2n.
2 In some literature, instead of merely counting the number of states, sizes of transition

relations etc. are also taken into account to better measure the sizes of automata.
Here we prefer state complexity because it is a measure easier to study, and its lower
bound results usually imply lower bounds on the “size” complexity, if the automata
witnessing the lower bound are over a not too large alphabet.



592 Q. Yan

That is, we want to prove a lower bound for the state complexity of a trans-
formation (NFA complementation in this case, might be determinization etc.),
and further, we hope that the automata witnessing the lower bound (An in this
case) are over a fixed small alphabet. Such claims are usually difficult to prove.
The apparently easy Theorem 1 was not proved until 2005 by a very technical
proof in [Jir05]3, after the efforts in [SS78, Bir93, HK02]. Why is it hard? Let us
first review the traditional approach people attempt at such results:

Step I: Identify a class of automata {An} with each An having n states.
Step II: Prove that to transform {An} needs a large state blow-up.

Almost every known lower bound was obtained this way, including Theorem 1
and the aforementioned Michel’s lower bound. In such an approach, Step I is
well-known to be difficult. Identifying the suitable {An} requires both ingenuity
and luck. What is worse, most automata classes that people try are natural ones
with simple structures, while the ones witnessing the desired lower bound could
be highly unnatural and complex. Finding the right {An} seems to be a major
obstacle towards lower bound results.

Now let us consider a new kind of automata.

Definition 1. A full automaton A = (Σ,S, I,Δ, ∗) is an automaton with Σ =
P(S × S) and Δ defined as: for all p, q ∈ S, a ∈ Σ, 〈p, a, q〉 ∈ Δ iff 〈p, q〉 ∈ a.

By definition, a full automaton has a rich alphabet of size 2|S|
2
. With such a rich

alphabet, every automaton has some embedding in a full automaton with the
same number of states. Let A1 = (Σ1,S1, I1,Δ1,F1) be an NFA for example.
It can be embedded into the full NFA A2 = (Σ2,S1, I1,Δ2,F1) (so Σ2 and
Δ2 are determined by S1) with the same state sets by mapping each letter
a1 in Σ1 to the letter Δ1(a1) in Σ2 defined as: for all p1, q1 ∈ S1, 〈p1, q1〉 ∈
Δ1(a1) iff 〈p1, a1, q1〉 ∈ Δ1. It is then not difficult to see that transforming an
automaton can be reduced to transforming a full automaton and so full automata
are the automata most difficult to transform. To be specific, if we consider NFA
complementation, then:

Theorem 2. For all n ≥ 1, CNFA(n) = CNFA(A) for some full NFA A with n
states.

In other words, to prove a lower bound for NFA complementation without re-
straint on alphabet use, we can simply set {An} to be full NFAs in Step I. Similar
theorems hold for NBWs etc., and can be verified for determinization and some
other kinds of transformations of nondeterministic automata, or even alternating
automata. Note that depending on the sizes of the sets I,F, I ∩F , there are only
O(n3) essentially different full NFAs of size n (considering symmetry), most of
which are likely to be “complex” enough.

3 The result is actually slightly stronger in that his An has only one initial state. (In
some literature NFAs are not allowed to have multiple initial states.)
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Remark 1. Sipser’s languages Cn and Bn [SS78] are similar to full automata in
spirit, which are complete with respect to the transformations 2NFA to 2DFA
and NFA to 2DFA respectively (2 means two-way). To our knowledge, such
languages were never applied to areas other than 2-way automata like we shall
do, probably because of the “weird” alphabet. Compared to Sipser’s languages,
the notion of full automata is slightly more straightforward and extensible.

Now we illustrate how to prove Theorem 1 using full automata.

Proof (of Theorem 1). We first prove a 2n lower bound for CNFA(n). For each
n ≥ 1, let FAn = (Σn,Sn, In,Δn,Fn) be the full NFA with Sn = In = Fn =
{s0, . . . , sn−1}. It suffices to prove that CNFA(FAn) ≥ 2n. For each subset T ⊆

s3 s3

s2 s2

s1 s1

s0 s0

uT vT

(a) T = {s0, s2}

s3 s3

s2 s2

s1 s1

s0 s0

c1 c3

(b) c1c3 ∼ Id(T )

s3 s3

s2 s2

s1 s1

s0 s0

a b a a a

(c) abaaa ∼ c1

s0 s1

s2s3

a

a

aa

b

bb

(d) A4

Fig. 1. Examples

Sn, let Id(T ) be the letter {〈q, q〉 | q ∈ T } and let uT = Id(T ), vT = Id(Sn\T ).
Figure 1(a) depicts one example of uT vT in the language of Δ-graph. Note
that, as all states in FAn are both initial and final, a word w of length l is
accepted by FAn iff there is a path from an 〈si, 0〉 vertex to an 〈sj , l〉 vertex
in the Δ-graph of w under FAn. So uT vT is not accepted by FAn. Suppose
some NFA CA complements FAn. So for each T ⊆ Sn, there is a state q̂T

of CA such that q̂I
uT−→ q̂T and q̂T

vT−→ q̂F for some initial state q̂I and final
state q̂F of CA. If we prove that q̂T1 �= q̂T2 whenever T1 �= T2, then CA has at
least 2n states as required. Suppose for contradiction that q̂T1 = q̂T2 for some
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T1 �= T2. W.l.o.g. there is a state s of FAn in T1\T2. Then s
uT1−→ s

vT2−→ s and so
uT1vT2 ∈ L(FAn). On the other hand, for some initial state q̂I and final state
q̂F of CA, q̂I

uT1−→ q̂T1 = q̂T2

vT2−→ q̂F . Thus uT1vT2 ∈ L(CA), contradiction.
The above proof is unpleasant in that the automata witnessing the lower

bound are over an exponentially growing alphabet. To fixate the alphabet and
prove Theorem 1, we introduce a Step III in which we do “alphabet substitution”,
as we now illustrate.

We first refine the above proof of CNFA(FAn) ≥ 2n by limiting the number of
different letters involved. For two words u, v ∈ Σ∗n, we say that u is equivalent to
v with respect to FAn or simply u ∼ v if for all p, q ∈ Sn, p u→ q iff p v→ q. A little
thought shows that if we substitute each Id(T ) letter used in the above proof
by some equivalent words, the proof still works. First we consider the alphabet
{ci}0≤i<n with ci = Id(Sn\{si}). Then for each T ⊆ Sn, Id(T ) ∼ Πsi /∈T ci (the
concatenation of all ci’s with si /∈ T in arbitrary fixed order), as is clear from
Figure 1(b). Further consider the alphabet {a, b} with a = {〈si+1, si〉 | 0 ≤ i <
n−1}∪{〈s0, sn−1〉} and b = Id(Sn\{s0}), then for each 0 ≤ i < n, ci ∼ aiban−i,
as is clear from Figure 1(c). So if we substitute each letter Id(T ) in the above
proof by the equivalent word Πsi /∈T a

iban−i, the proof still works.
After the above refinement of the proof, the part of FAn related to letters

other than {a, b} is in fact irrelevant to the proof. So An = FAn � {a, b},
the restriction of FAn to {a, b}, or formally the NFA An = ({a, b}, Sn, In,
Δn∩ (Sn×{a, b}×Sn), Fn), also satisfies that CNFA(An) ≥ 2n, as required. (A4
is depicted in 1(d).) ��

We call the above technique of setting {An} to be full automata and adding the
step for alphabet substitution the “full automata technique”. Setting {An} to be
full automata is crucial here, which in essence delays the trouble of identifying
{An} to the later analysis of transforming full automata. This makes our life
easier because the latter is usually playing with words, which is clearly easier
than identifying automata, especially with the rich alphabet of full automata. As
to the step of alphabet substitution, our experience is that it could be technical
some time, but rarely difficult.

4 Büchi Complementation

4.1 Kupferman and Vardi’s Construction

We first briefly introduce the state-of-the-art construction by Kupferman and
Vardi in [FKV04], the idea of which is useful for our lower bound. Different from
[FKV04], we will continue to work with our Δ-graphs rather than introducing
the run graphs. For x ∈ N, let [x] denote the set {0, 1, . . . ,x} and let [x]odd and
[x]even denote the sets of odd and even numbers in [x], respectively.

Definition 2. Given an NBW A = (Σ,S, I,Δ,F ) of n states, and an ω-word
α, a co-Büchi ranking (C-Ranking for short) for GAα (i.e. the Δ-graph of α under
A) is a partial function f from V Aα to the rank set [2n− 2] such that:
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(i) For all vertices 〈q, l〉 ∈ V Aα , f(〈q, l〉) is undefined iff there is no path (in
the directed sense) from some 〈qI , 0〉 with qI ∈ I to 〈q, l〉 .

(ii) For all vertices 〈q, l〉 ∈ V Aα , if f(〈q, l〉) is odd, then q /∈ F .
(iii) For all edges 〈〈q, l〉, 〈q′, l+1〉〉 ∈ EAα , if f(〈q, l〉) is defined, then f(〈q, l〉) ≥

f(〈q′, l + 1〉).

We say that f is odd if for every path in GAα , there are only finitely many
vertices that are assigned even ranks by f .

Lemma 1. [KV01] α is not accepted by A iff there is an odd C-ranking for GAα .

Proof. We prove the if direction here to give a sense of the idea of C-ranking.
For every infinite path from a 〈qI , 0〉 vertex for some qI ∈ I, the ranks along the
path do not increase by (iii) and so will get trapped in some fixed rank from some
point on. Since f is odd, this fixed rank is odd, and thus by (ii), F -vertices are
never visited since then. In other words, every run of A over α visits F finitely
often and thus α is not accepted by A. ��

A level ranking4 for A is a partial function g : S −→ [2n− 2] such that if g(q)
is odd, then q /∈ F . Each C-ranking can be “sliced” into such level rankings. It
was shown in [KV01] that existence of an odd C-ranking for GAα can be decided
by an NBW CA which guesses an odd C-ranking level by level, and checks the
validity in a local manner. By Lemma 1, CA complements A. In the construction
of CA, distinct sets of states are used to handle different level rankings, and the
number of such level rankings is the major factor of the (6n)n blow-up.

We say that a level ranking g for A is tight if (i): the maximum rank in the
range of g is some 2m − 1 in [2n − 2]odd, and (ii): for every j ∈ [2m]odd, there
is a state q with g(q) = j. In such case, g is also called a TL(m)-ranking. (So
1 ≤ m < n.) It was further showed in [FKV04] that we can restrict attention
to tight level rankings and thus use less states in CA. By a careful numerical
analysis [FKV04], a (0.97)n upper bound was proved for the number of states of
CA and thus for Büchi complementation.

4.2 Lower Bound

We turn now to lower bound. It suffices to consider full NBWs. So we define FBn

for n > 1 to be the full NBW (Σn,Sn, In,Δn,Fn) with In = {s0, . . . , sn−2},
Fn = {sf} and Sn = In ∪ {sf}. We also let S′n = In denote the “main” states.

We first produce a hard case for Kupferman and Vardi’s construction. Since
the number of tight level rankings is the major factor of the state blow-up, we
try to construct an ω-word αn /∈ L(FBn) such that a great number of tight
level rankings would have to be present in every C-ranking for GFBn

αn
. For such

purpose, we introduce Q-rankings for FBn. We say a tight level ranking g for
FBn is a Q-ranking if g (q) is defined for each q ∈ S′n and is undefined for q = sf .
If g is a TL(m)-ranking, then g is also called a Q(m)-ranking.
4 Note that our definitions of level ranking and tight level ranking here are slightly

different from [FKV04].
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Definition 3. A word w ∈ Σ∗n is compatible with an ordered pair of Q(m)-
rankings 〈f, g〉 for FBn if:

(i) For all p, q ∈ S′n, p w−→ q iff (f(p) > g(q) or f(p) = g(q) ∈ [2m]odd).
(ii) For all p, q ∈ S′n, p w−→

Fn

q iff f(p) > g(q).

(iii) For all p, q ∈ Sn, if p w−→ q then p, q /∈ Fn.

Lemma 2. For every two Q(m)-rankings f, g for FBn, there is a word wf,g

compatible with 〈f, g〉.

Such words are not difficult to construct, see Figure 2 for one construction.
Another useful fact is that:

Lemma 3. Let f, g,h be Q(m)-rankings for FBn. If u and v are compatible with
〈f, g〉 and 〈g,h〉 respectively, then uv is compatible with 〈f,h〉.

f(s)

−
3

2

3

1

s

sf

s0

s1

s2

s3

g(s)

−
2

1

3

0

s

sf

s0

s1

s2

s3

Fig. 2. Δ-graph of wf,g

Now we can define our “hard” ω-word αn. Let L(n,m) be the number of different
Q(m)-rankings and let L(n) be max

1≤m<n
L(n,m). From now on we fix m such that

L(n) = L(n,m) and we may simply write L for L(n). Clearly there exists an
infinite looping enumeration f0, f1, . . . of Q(m)-rankings such that fi �= fj for
all i �= j, 0 ≤ i, j < L and fi = fjL+i for all i, j ≥ 0. Define αn to be the ω-word
w0w1 . . . such that wi = wfi,fi+1 for all i ≥ 0.

Lemma 4. The ω-word αn is not in L(FBn).

Proof. If there is a successful run ρ of FBn over αn, then there is an infinite
state sequence q0q1 · · · ∈ Sω

n such that qi
wi−→ qi+1 for all i ≥ 0 and qi

wi−→
Fn

qi+1

for infinitely many i ∈ N. As wi is compatible with 〈fi, fi+1〉 for i ≥ 0, fi(qi) ≥
fi+1(qi+1) for all i ≥ 0 and fi(qi) > fi+1(qi+1) for infinitely many i ∈ N. This is
impossible since f0(q0) is finite. ��

Recall that Kupferman and Vardi’s construction uses distinct state sets to handle
different TL(m)-rankings. It turns out that if a complement automaton of FBn

does not have as many states as Q(m)-rankings, it would be “confused” by the
complex ω-word αn. We now show this in a slightly broader sense.
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Lemma 5. For each n > 1 and each ω-automaton CA with less than L(n)
states, if ρ is a run of CA over αn /∈ L(FBn), then there is a run ρ′ of CA over
some ω-word α′ ∈ L(FBn) with Occ(ρ′) = Occ(ρ) and Inf(ρ′) = Inf(ρ).

Proof. Suppose CA = (Σn, Ŝ, Î, Δ̂, Acc) is an ω-automaton with less than L
states and ρ = ρ(0)ρ(1) · · · ∈ Ŝω is a run of CA over αn, then there is a sequence
k0, k1, . . . such that k0 = 0, ki+1 − ki = length(wi) for all i ≥ 0, and ρ(ki)

wi−→
ρ(ki+1) for all i ≥ 0. Define for each 0 ≤ i < L a nonempty set Q̂i = {q̂ ∈ Ŝ |
ρ(kjL+i) = q̂ for infinitely many j ∈ N}. As CA has less than L states, there
exist some i �= j, 0 ≤ i, j < L such that Q̂i ∩ Q̂j �= ∅.

Let q̂ ∈ Q̂i ∩ Q̂j for some i �= j, 0 ≤ i, j < L. So fi �= fj . W.l.o.g. there
is a q ∈ S′n with fi(q) > fj(q). By the definitions of Q̂i and Occ(ρ), there
is a t1 ∈ N sufficiently large such that ρ(kt1L+i) = q̂, every state in Occ(ρ)
occurs in ρ[0, kt1L+i], and ρ(t′) ∈ Inf(ρ) for all t′ > kt1L+i. By the definitions
of Inf(ρ) and Q̂j, there is a sufficiently large t2 > t1 such that ρ(kt2L+j) = q̂
and every state in Inf(ρ) occurs in ρ[kt1L+i, kt2L+j]. Let u = w0 . . . wt1L+i−1
and v = wt1L+i . . . wt2L+j−1. By Lemma 3, u is compatible with 〈f0, ft1L+i〉, i.e.
〈f0, fi〉, and v is compatible with 〈ft1L+i, ft2L+j〉, i.e. 〈fi, fj〉. Let α′ be uvω.

Let qI ∈ S′n be such that f0(qI) = 2m − 1 ≥ fi(q). So qI
u−→ q as u is

compatible with 〈f0, fi〉. Also, q v−→
Fn

q since fi(q) > fj(q) and v is compatible

with 〈fi, fj〉. Thus qI
u−→ q

v−→
Fn

q
v−→

Fn

q . . . and α′ is accepted by FBn.

Note that ρ′ = ρ[0, kt1L+i] · (ρ[kt1L+i + 1, kt2L+j])ω is a run over α′, and we
have guaranteed that Occ(ρ′) = Occ(ρ) and Inf(ρ′) = Inf(ρ), as required. ��

Theorem 3. For each n > 1, L(n) ≤ CNBW(FBn) ≤ CNBW(n) ≤ U(n), where
L(n) ≈ (cln)n, U(n) ≈ (chn)n with cl ≈ 0.7645, ch ≈ 0.9624. Here U(n)
denotes the state blow-up of Kupferman and Vardi’s construction.

Proof. By Lemma 5, every NBW that complements FBn must have at least
L(n) states. The estimate for L(n) is from a numerical analysis which is almost
the same as the one for the tight (n) function in [FKV04].

Thus we have tightened Büchi complementation. By using alphabet substitutions
like in the proof of Theorem 1, the NBWs witnessing the lower bound can also
be over a fixed alphabet.

Theorem 4. For each n > 1, there exists an NBW Bn of n states over a fixed
alphabet such that L(n) ≤ CNBW(Bn).

4.3 Other Transformations

Surprisingly, our lower bound on Büchi complementation actually holds for al-
most every complementation or determinization transformation of nondetermin-
istic ω-automata, via a reduction making use of Lemma 5.
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Theorem 5. For each n > 1 and each common type (including nondeterministic
Büchi, generalized Büchi, Rabin, Streett, Muller and parity) T1, there exists a
T1 automaton An with n states over a fixed alphabet such that:

(i) For each common type T2, every T2 automaton that accepts the complement
of L(An) has at least L(n) states.

(ii) For each common type T2 that is not Büchi or generalized Büchi5, every
deterministic T2 automaton that accepts L(An) has at least L(n) states.

Proof. For each common type T1, it is easy by definitions that there is a T1
automaton An equivalent to the NBW FBn with also n states [Löd99]. (i) Sup-
pose an automaton CA of a common type accepts LC(An) = LC(FBn). Since
acceptance of ω-automata of a common type only depends on the Occ set and
the Inf set of a run, the claim can be obtained by applying Lemma 5. (ii) If
some deterministic T2 automaton with less than L(n) states accepts L(An) and
T2 is not Büchi or generalized Büchi, then it is simple by definitions that there is
a deterministic ω-automaton of a common type (not necessarily T2) that accepts
the complement of L(An) with also less than L(n) states [Löd99], contrary to
(i). Finally, the alphabet of An can be fixated like in the proof of Theorem 4. ��

For the transformations involved in this theorem, less than half already had
nontrivial lower bounds like n! by Michel’s proof or the bunch of proofs by
Löding [Löd99], while the others only have trivial or weak 2Ω(n) lower bounds.

5 Complementation of Generalized Büchi Automata

Now we turn to NGBW complementation. For NGBWs, state complexity is
preferably measured in terms of both the number of states n and index k, where
index measures the size of the acceptance condition. By applying full automata,
doing a hard case analysis for the construction in [KV05b] based on GC-ranking,
and using a generalization of Michel’s technique, we have:

Theorem 6. For n > 1 and 1 < k ≤
(

n−1
"(n−1)/2#

)
, CNGBW(n, k) = (Ω(nk))n.

This matches neatly6 with the (O(nk))n construction in [KV05b], and thus set-
tles the state complexity of NGBW complementation. Like Michel’s result, this
lower bound can be extended to NSW complementation and the determinization
of NGBW into DRW (state complexity denoted by DNGBW→DRW(n, k)):

Theorem 7. For n > 1 and 1 < k ≤
(

n−1
"(n−1)/2#

)
, CNSW(n, k) = (Ω(nk))n and

DNGBW→DRW(n, k) = (Ω(nk))n.

5 Deterministic Büchi or generalized Büchi automata are strictly weaker in expressive
power than the other common types of ω-automata.

6 The gap hidden in the notation (Θ(nk))n can be at most cn for some c, while the
gap hidden in the more widely used notation 2Θ(n log nk) can be as large as (nk)n.
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Remark 2. For the above lower bounds, the alphabet involved in the proof is of
a size polynomial in n. It seems not difficult to fixate the alphabet if we aim at
a looser bound in the form 2Ω(n log nk). But we shall not get into this technical
and uninteresting issue.

6 Summary of Lower Bounds

In the following table, we briefly summarize our lower bounds. Here “Any”
means any common type of nondeterministic ω-automata (and the two Any’s
can be different). “co.” means complementation and “det.” means determiniza-
tion. “L.B.”/“U.B.” stands for lower/upper bound. Weak 2Ω(n) lower bounds
are considered trivial.

# Transformation Previous L.B. Our L.B. Known U.B.
1 NBW co.−→ NBW Ω((0.36n)n) [Mic88] Ω((0.76n)n) O((0.97n)n) [FKV04]

2 Anyco. or det.−→ Any trivial or n! [Löd99] 2Ω(n log n) -

3 NBW det.−→ DMW trivial7 2Ω(n log n) 2O(n log n) [Saf89]
4 NRW co.−→ NRW trivial8 2Ω(n log n) 2O(nk log n) [KV05a]
5 NGBW co.−→ NGBW Ω((n/e)n) [Mic88] (Ω(nk))n (O(nk))n [KV05b]
6 NSW co.−→ NSW Ω((n/e)n) [Löd99] (Ω(nk))n 2O(nk log(nk)) [KV05a]

7 NGBW det.−→ DRW Ω((n/e)n) [Löd99] (Ω(nk))n 2O(nk log(nk)) [Saf89]

Remark 3. Lower bound #2 implies that the 2Ω(n log n) blow-up is inherent in
the complementation and determinization of nondeterministic ω-automata, cor-
responding to the 2n blow-up of finite automata. The special case #3 justifies
that Safra’s construction is optimal in state complexity for the determinization
of Büchi automata into Muller automata. We single out this result because this
determinization construction is touched in almost every introductory material
on ω-automata, and its optimality problem was explicitly left open in [Löd99].

It is hard to believe that the above lower bounds could be obtained in the tradi-
tional way. We hope that the full automata technique will stimulate the discovery
of new results in automata theory.

Acknowledgment. I thank Orna Kupferman and Moshe Vardi for the insightful
discussion and the extremely valuable suggestions. I thank Enshao Shen for his
kind support and guidance. I also thank anonymous reviewers for the useful
comments.

7 But if size complexity is concerned, rather than state complexity, then Safra proved
that the transformation is inherently doubly exponential [Saf89].

8 As pointed to us by Moshe Vardi, if size complexity is concerned, then an 2Ω(n log n)

lower bound follows from Michel’s lower bound.
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tighter. In ATVA, volume 3299 of LNCS, pages 64–78, 2004. refer to
http://www.cs.rice.edu/∼vardi/papers/index.html.

[HK02] M. Holzer and M. Kutrib. State complexity of basic operations on non-
deterministic finite automata. In 7th CIAA, volume 2608 of LNCS, pages
148–157, 2002.
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Černý, Pavol II-107
Chakrabarty, Deeparnab I-477
Chaudhuri, Kamalika I-191
Chen, Taolue II-480
Chen, Xi I-489
Choudhary, Vinay I-703
Codenotti, Bruno I-584
Coja-Oghlan, Amin I-15, I-691
Cole, Richard I-358
Cominetti, Roberto I-525
Corin, Ricardo II-252
Correa, José R. I-525
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