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Preface

ICALP 2006, the 33rd edition of the International Colloquium on Automata,
Languages and Programming, was held in Venice, Italy, July 10-14,2006. ICALP
is a series of annual conferences of the European Association for Theoretical
Computer Science (EATCS) which first took place in 1972. This year, the ICALP
program consisted of the established track A (focusing on algorithms, automata,
complexity and games) and track B (focusing on logic, semantics and theory of
programming), and of the recently introduced track C (focusing on security and
cryptography foundation).

In response to the call for papers, the Program Committee received 407 sub-
missions, 230 for track A, 96 for track B and 81 for track C. Out of these, 109
papers were selected for inclusion in the scientific program: 61 papers for Track
A, 24 for Track B and 24 for Track C. The selection was made by the Program
Committee based on originality, quality, and relevance to theoretical computer
science. The quality of the manuscripts was very high indeed, and several de-
serving papers had to be rejected.

ICALP 2006 consisted of four invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers presented at the
conference in Track A, together with the paper by the invited speaker Noga
Alon (Tel Aviv University, Israel). A companion volume contains all contributed
papers presented in Track B and Track C together with the papers by the invited
speakers Cynthia Dwork (Microsoft Research, USA) and Prakash Panangaden
(Mc Gill University, Canada). The program had an additional invited lecture by
Simon Peyton Jones (Microsoft Research, UK), which does not appear in the
proceedings.

ICALP 2006 was held in conjunction with the Annual ACM International
Symposium on Principles and Practice of Declarative Programming (PPDP
2006) and with the Annual Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR 2006). Additionally, the following workshops were
held as satellite events of ICALP 2006: ALGOSENSORS 2006 - International
Workshop on Algorithmic Aspects of Wireless Sensor Networks; CHR, 2006 -
Third Workshop on Constraint Handling Rules; CL&C 2006 - Classical Logic
and Computation; DCM 2006 - 2nd International Workshop on Developments in
Computational Models; FCC 2006 - Formal and Computational Cryptography;
iETA 2006 - Improving Exponential-Time Algorithms: Strategies and Limita-
tions; MeCBIC 2006 - Membrane Computing and Biologically Inspired Process
Calculi; SecReT 2006 - 1st Int. Workshop on Security and Rewriting Techniques;
WCAN 2006 - 2nd Workshop on Cryptography for Ad Hoc Networks.

We wish to thank all authors who submitted extended abstracts for consid-
eration, the Program Committee for their scholarly effort, and all referees who
assisted the Program Committees in the evaluation process.



VI Preface

Thanks to the sponsors for their support, to the Venice International Uni-
versity and to the Province of Venice for hosting ICALP 2006 in beautiful S.
Servolo. We are also grateful to all members of the Organizing Committee in
the Department of Computer Science and to the Center for Technical Support
Services and Telecommunications (CSITA) of the University of Venice. Thanks
to Andrei Voronkov for his support with the conference management software
EasyChair. It was great in handling the submissions and the electronic PC meet-
ing, as well as in assisting in the assembly of the proceedings.

April 2006 Michele Bugliesi
Bart Preneel

Vladimiro Sassone

Ingo Wegener
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Differential Privacy

Cynthia Dwork

Microsoft Research
dwork@microsoft.com

Abstract. In 1977 Dalenius articulated a desideratum for statistical
databases: nothing about an individual should be learnable from the
database that cannot be learned without access to the database. We give
a general impossibility result showing that a formalization of Dalenius’
goal along the lines of semantic security cannot be achieved. Contrary to
intuition, a variant of the result threatens the privacy even of someone
not in the database. This state of affairs suggests a new measure, dif-
ferential privacy, which, intuitively, captures the increased risk to one’s
privacy incurred by participating in a database. The techniques devel-
oped in a sequence of papers [8, 13, 3|, culminating in those described
in [12], can achieve any desired level of privacy under this measure. In
many cases, extremely accurate information about the database can be
provided while simultaneously ensuring very high levels of privacy.

1 Introduction

A statistic is a quantity computed from a sample. If a database is a repre-
sentative sample of an underlying population, the goal of a privacy-preserving
statistical database is to enable the user to learn properties of the population
as a whole, while protecting the privacy of the individuals in the sample. The
work discussed herein was originally motivated by exactly this problem: how
to reveal useful information about the underlying population, as represented
by the database, while preserving the privacy of individuals. Fortuitously, the
techniques developed in [8, 13, 3] and particularly in [12] are so powerful as to
broaden the scope of private data analysis beyond this orignal “representatitive”
motivation, permitting privacy-preserving analysis of an object that is itself of
intrinsic interest. For instance, the database may describe a concrete intercon-
nection network — not a sample subnetwork — and we wish to reveal certain
properties of the network without releasing information about individual edges
or nodes. We therefore treat the more general problem of privacy-preserving
analysis of data.

A rigorous treatment of privacy requires definitions: What constitutes a fail-
ure to preserve privacy? What is the power of the adversary whose goal it is to
compromise privacy? What auxiliary information is available to the adversary
(newspapers, medical studies, labor statistics) even without access to the data-
base in question? Of course, utility also requires formal treatment, as releasing
no information or only random noise clearly does not compromise privacy; we
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will return to this point later. However, in this work privacy is paramount: we
will first define our privacy goals and then explore what utility can be achieved
given that the privacy goals will be satisified!.

A 1977 paper of Dalenius [6] articulated a desideratum that foreshadows for
databases the notion of semantic security defined five years later by Goldwasser
and Micali for cryptosystems [15]: access to a statistical database should not
enable one to learn anything about an individual that could not be learned
without access?. We show this type of privacy cannot be achieved. The obstacle
is in auxiliary information, that is, information available to the adversary other
than from access to the statistical database, and the intuition behind the proof
of impossibility is captured by the following example. Suppose one’s exact height
were considered a highly sensitive piece of information, and that revealing the
exact height of an individual were a privacy breach. Assume that the database
yields the average heights of women of different nationalities. An adversary who
has access to the statistical database and the auxiliary information “Terry Gross
is two inches shorter than the average Lithuanian woman” learns Terry Gross’
height, while anyone learning only the auxiliary information, without access to
the average heights, learns relatively little.

There are two remarkable aspects to the impossibility result: (1) it applies
regardless of whether or not Terry Gross is in the database and (2) Dalenius’
goal, formalized as a relaxed version of semantic security, cannot be achieved,
while semantic security for cryptosystems can be achieved. The first of these
leads naturally to a new approach to formulating privacy goals: the risk to one’s
privacy, or in general, any type of risk, such as the risk of being denied automobile
insurance, should not substantially increase as a result of participating in a
statistical database. This is captured by differential privacy.

The discrepancy between the possibility of achieving (something like) seman-
tic security in our setting and in the cryptographic one arises from the utility
requirement. Qur adversary is analagous to the eavesdropper, while our user is
analagous to the message recipient, and yet there is no decryption key to set
them apart, they are one and the same. Very roughly, the database is designed
to convey certain information. An auxiliary information generator knowing the
data therefore knows much about what the user will learn from the database.
This can be used to establish a shared secret with the adversary/user that is
unavailable to anyone not having access to the database. In contrast, consider
a cryptosystem and a pair of candidate messages, say, {0,1}. Knowing which
message is to be encrypted gives one no information about the ciphertext; in-
tuitively, the auxiliary information generator has “no idea” what ciphertext the
eavesdropper will see. This is because by definition the ciphertext must have no
utility to the eavesdropper.

! In this respect the work on privacy diverges from the literature on secure function
evaluation, where privacy is ensured only modulo the function to be computed: if
the function is inherently disclosive then privacy is abandoned.

2 Semantic security against an eavesdropper says that nothing can be learned about a
plaintext from the ciphertext that could not be learned without seeing the ciphertext.
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In this paper we prove the impossibility result, define differential privacy, and
observe that the interactive techniques developed in a sequence of papers [8,
13, 3, 12] can achieve any desired level of privacy under this measure. In many
cases very high levels of privacy can be ensured while simultaneously providing
extremely accurate information about the database.

Related Work. There is an enormous literature on privacy in databases; we
briefly mention a few fields in which the work has been carried out. See [1] for a
survey of many techniques developed prior to 1989.

By far the most extensive treatment of disclosure limitation is in the statistics
community; for example, in 1998 the Journal of Official Statistics devoted an
entire issue to this question. This literature contains a wealth of privacy sup-
portive techniques and investigations of their impact on the statistics of the data
set. However, to our knowledge, rigorous definitions of privacy and modeling of
the adversary are not features of this portion of the literature.

Research in the theoretical computer science community in the late 1970’s
had very specific definitions of privacy compromise, or what the adversary must
achieve to be considered successful (see, eg, [9]). The consequent privacy guaran-
tees would today be deemed insufficiently general, as modern cryptography has
shaped our understanding of the dangers of the leakage of partial information.
Privacy in databases was also studied in the security community. Although the
effort seems to have been abandoned for over two decades, the work of Den-
ning [7] is closest in spirit to the line of research recently pursued in [13, 3, 12].

The work of Agrawal and Srikant [2] and the spectacular privacy compromises
achieved by Sweeney [18] rekindled interest in the problem among computer
scientists, particularly within the database community. Our own interest in the
subject arose from conversations with the philosopher Helen Nissenbaum.

2 Private Data Analysis: The Setting

There are two natural models for privacy mechanisms: interactive and non-
interactive. In the non-interactive setting the data collector, a trusted entity,
publishes a “sanitized” version of the collected data; the literature uses terms
such as “anonymization” and “de-identification”. Traditionally, sanitization
employs techniques such as data perturbation and sub-sampling, as well as re-
moving well-known identifiers such as names, birthdates, and social security
numbers. It may also include releasing various types of synopses and statistics.
In the interactive setting the data collector, again trusted, provides an interface
through which users may pose queries about the data, and get (possibly noisy)
answers.

Very powerful results for the interactive approach have been obtained ([13,
3, 12] and the present paper), while the non-interactive case has proven to be
more difficult, (see [14, 4, 5]), possibly due to the difficulty of supplying utility
that has not yet been specified at the time the sanitization is carried out. This
intuition is given some teeth in [12], which shows concrete separation results.
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3 Impossibility of Absolute Disclosure Prevention

The impossibility result requires some notion of utility — after all, a mechanism
that always outputs the empty string, or a purely random string, clearly preserves
privacy®. Thinking first about deterministic mechanisms, such as histograms or
k-anonymizations [19], it is clear that for the mechanism to be useful its output
should not be predictable by the user; in the case of randomized mechanisms the
same is true, but the unpredictability must not stem only from random choices
made by the mechanism. Intuitively, there should be a vector of questions (most
of) whose answers should be learnable by a user, but whose answers are not in
general known in advance. We will therefore posit a utility vector, denoted w.
This is a binary vector of some fixed length & (there is nothing special about the
use of binary values). We can think of the utility vector as answers to questions
about the data.

A privacy breach for a database is described by a Turing machine C that takes
as input a description of a distribution D on databases, a database DB drawn
according to this distribution, and a string — the purported privacy breach— and
outputs a single bit*. We will require that C always halt. We say the adversary
wins, with respect to C and for a given (D, DB) pair, if it produces a string s
such that C(D, DB, s) accepts. Henceforth “with respect to C” will be implicit.

An auxiliary information generator is a Turing machine that takes as input
a description of the distribution D from which the database is drawn as well as
the database DB itself, and outputs a string, z, of auxiliary information. This
string is given both to the adversary and to a simulator. The simulator has no
access of any kind to the database; the adversary has access to the database via
the privacy mechanism.

We model the adversary by a communicating Turing machine. The theorem
below says that for any privacy mechanism San() and any distribution D sat-
isfying certain technical conditions with respect to San(), there is always some
particular piece of auxiliary information, z, so that z alone is useless to someone
trying to win, while z in combination with access to the data through the pri-
vacy mechanism permits the adversary to win with probability arbitrarily close
to 1. In addition to formalizing the entropy requirements on the utility vectors
as discussed above, the technical conditions on the distribution say that learning
the length of a privacy breach does not help one to guess a privacy breach.

Theorem 1. Fiz any privacy mechanism San() and privacy breach decider C.
There is an auziliary information generator X and an adversary A such that for
all distributions D satisfying Assumption 3 and for all adversary simulators A*,

Pr[A(D,San(D, DB), X (D, DB)) wins| — Pr[A*(D, X(D, DB)) wins] > A

where A is a suitably chosen (large) constant. The probability spaces are over
choice of DB €r D and the coin flips of San, X, A, and A*.

3 Indeed the height example fails in these trivial cases, since it is only through the
sanitization that the adversary learns the average height.
4 We are agnostic as to how a distribution D is given as input to a machine.
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The distribution D completely captures any information that the adversary (and
the simulator) has about the database, prior to seeing the output of the auxiliary
information generator. For example, it may capture the fact that the rows in
the database correspond to people owning at least two pets. Note that in the
statement of the theorem all parties have access to D and may have a description
of C hard-wired in; however, the adversary’s strategy does not use either of these.

Strategy for X and A when all of w is learned from San(DB): To develop
intuition we first describe, slightly informally, the strategy for the special case in
which the adversary always learns all of the utility vector, w, from the privacy
mechanism®. This is realistic, for example, when the sanitization produces a
histogram, such as a table of the number of people in the database with given
illnesses in each age decile, or a when the sanitizer chooses a random subsample
of the rows in the database and reveals the average ages of patients in the
subsample exhibiting various types of symptoms. This simpler case allows us to
use a weaker version of Assumption 3:

Assumption 2. 1. VO <~y <1 3ny Prppeyp[|DB| > n,] < ; moreover n.
is computable by a machine given D as input.

2. There exists an £ such that both the following conditions hold:
(a) Conditioned on any privacy breach of length ¢, the min-entropy of the

utility vector is at least £.

(b) Every DB € D has a privacy breach of length €.

3. Pr[B(D, San(DB)) wins] < p for all interactive Turing machines B, where
W is a suitably small constant. The probability is taken over the coin flips of
B and the privacy mechanism San(), as well as the choice of DB € D.

Intuitively, Part (2a) implies that we can extract ¢ bits of randomness from the
utility vector, which can be used as a one-time pad to hide any privacy breach of
the same length. (For the full proof, ie, when not necessarily all of w is learned by
the adversary/user, we will need to strengthen Part (2a).) Let ¢y denote the least
¢ satisfying (both clauses of) Part 2. We cannot assume that £y can be found in
finite time; however, for any tolerance « let n, be as in Part 1, so all but a «
fraction of the support of D is strings of length at most n,. For any fixed « it is
possible to find an ¢, < ¢y such that (., satisfies both clauses of Assumption 2(2)
on all databases of length at most n,. We can assume that + is hard-wired into
all our machines, and that they all follow the same procedure for computing
ny and £~. Thus, Part 1 allows the more powerful order of quantifiersd in the
statement of the theorem; without it we would have to let A and A* depend on
D (by having ¢ hard-wired in). Finally, Part 3 is a nontriviality condition.

The strategy for X and A is as follows. On input DB €r D, X randomly
chooses a privacy breach y for DB of length ¢ = £, if one exists, which occurs
with probability at least 1 — . It also computes the utility vector, w. Finally,
it chooses a seed s and uses a strong randomness extractor to obtain from w

5 Although this case is covered by the more general case, in which not all of w need
be learned, it permits a simpler proof that exactly captures the height example.
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an (-bit almost-uniformly distributed string r [16, 17]; that is, » = Ext(s, w),
and the distribution on 7 is within statistical distance e from Uy, the uniform
distribution on strings of length ¢, even given s and y. The auxiliary information
will be z = (s,y D).

Since the adversary learns all of w, from s it can obtain r = Ext(s,w) and
hence y. We next argue that A4* wins with probability (almost) bounded by u,
yielding a gap of at least 1 — (v + p + €).

Assumption 2(3) implies that Pr[A*(D) wins] < u. Let d; denote the maxi-
mum, over all y € {0, 1}*, of the probability, over choice of DB €p D, that y is a
privacy breach for DB. Since ¢ = (., does not depend on DB, Assumption 2(3)
also implies that dy < .

By Assumption 2(2a), even conditioned on y, the extracted r is (almost)
uniformly chosen, independent of y, and hence so is y @ r. Consequently, the
probability that X produces z is essentially independent of y. Thus, the simula-
tor’s probability of producing a privacy breach of length ¢ for the given database
is bounded by dy+€ < p+e, as it can generate simulated “auxiliary information”
with a distribution within distance € of the correct one.

The more interesting case is when the sanitization does not necessarily reveal
all of w; rather, the guarantee is only that it always reveal a vector w’ within
Hamming distance r/c of w for constant ¢ to be determined®. The difficulty with
the previous approach is that if the privacy mechanism is randomized then the
auxiliary information generator may not know which w’ is seen by the adversary.
Thus, even given the seed s, the adversary may not be able to extract the same
random pad from w’ that the auxiliary information generator extracted from w.
This problem is solved using fuzzy extractors [10].

Definition 1. An (M ,m,{,t,e) fuzzy extractor is given by procedures
(Gen,Rec).

1. Gen is a randomized generation procedure. On input w € M outputs an
“extracted” string r € {0,1}¢ and a public string p. For any distribution W
on M of min-entropy m, if (R, P) «— Gen(W) then the distributions (R, P)
and (Ug, P) are within statistical distance e.

2. Rec is a deterministic reconstruction procedure allowing recovery of r =
R(w) from the corresponding public string p = P(w) together with any vector
w' of distance at most t from w. That is, if (r,p) — Gen(w) and ||lw—w'||; <
t then Rec(w’,p) = r.

In other words, r = R(w) looks uniform, even given p = P(w), and r = R(w)
can be reconstructed from p = P(w) and any w’ sufficiently close to w.

We now strenthen Assumption 2(2a) to say that the entropy of the source
San(W) (vectors obtained by interacting with the sanitization mechanism, all of

5 One could also consider privacy mechanisms that produce good approximations to
the utility vector with a certain probability for the distribution D, where the proba-
bility is taken over the choice of DB €r D and the coins of the privacy mechanism.
The theorem and proof hold mutatis mutandis.
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distance at most k/c from the true utility vector) is high even conditioned on
any privacy breach y of length £ and P = Gen(W).

Assumption 3. For some { satisfying Assumption 2(2b), for any privacy breach
y € {0,1}*, the min-entropy of (San(W)|y) is at least k+£, where k is the length
of the public strings p produced by the fuzzy extractor .

Strategy when w need not be fully learned: For a given database DB, let w be
the utility vector. This can be computed by X, who has access to the database.
X simulates interaction with the privacy mechanism to determine a “valid” w’
close to w (within Hamming distance k/c). The auxiliary information generator
runs Gen(w'), obtaining (r = R(w'),p = P(w’)). It computes n, and £ = ¢, (as
above, only now satisfying Assumptions 3 and 2(2b) for all DB € D of length
at most n.), and uniformly chooses a privacy breach y of length ¢,, assuming
one exists. It then sets z = (p,r @ y).

Let w” be the version of w seen by the adversary. Clearly, assuming 2x/c < ¢
in Definition 1, the adversary can reconstruct r. This is because since w’ and w”
are both within k/c of w they are within distance 2x/c of each other, and so w”
is within the “reconstruction radius” for any r « Gen(w’). Once the adversary
has reconstructed r, obtaining y is immediate. Thus the adversary is able to
produce a privacy breach with probability at least 1 — «y. It remains to analyze
the probability with which the simulator, having access only to z but not to the
privacy mechanism (and hence, not to any w’ close to w), produces a privacy
breach.

In the sequel, we let B denote the best machine, among all those with access
to the given information, at producing producing a privacy breach (“winning”).

By Assumption 2(3), Pr[B(D,San(DB)) wins] < u, where the probability is
taken over the coin tosses of the privacy mechanism and the machine B, and
the choice of DB € D. Since p = P(w') is computed from w’, which in turn is
computable from San(DB), we have

p1 = Pr[B(D, p) wins|] < u

where the probability space is now also over the choices made by Gen(), that is,
the choice of p = P(w'). Now, let Uy denote the uniform distribution on ¢-bit
strings. Concatenating a random string u €g Uy to p cannot help B to win, so

p2 = Pr[B(D, p,u) wins| = p1 < p

where the probability space is now also over choice of u. For any fixed string
y € {0,1}* we have Uy = U, @ y, so for all y € {0,1}*, and in particular, for all
privacy breaches y of DB,

ps = Pr[B(D,p,u @ y) wins] = pa < p.

" A good fuzzy extractor “wastes” little of the entropy on the public string. Better
fuzzy extractors are better for the adversary, since the attack requires ¢ bits of
residual min-entropy after the public string has been generated.
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Let W denote the distribution on utility vectors and let San(W') denote the
distribution on the versions of the utility vectors learned by accessing the data-
base through the privacy mechanism. Since the distributions (P, R) = Gen(W"),
and (P, U,) have distance at most e, it follows that for any y € {0, 1}*

pa =Pr[B(D,p,r & y) wins] <pz +e< p+e

Now, p4 is an upper bound on the probability that the simulator wins, given D
and the auxiliary information z = (p,r @ y), so

Pr[A*(D, z) wins] < ps < pu+e.

An (M,m, ¢, t,e) fuzzy extractor, where M is the distribution San(W) on
utility vectors obtained from the privacy mechanism, m satisfies: for all ¢-bit
strings y which are privacy breaches for some database D € DB, Hoo (W'|y) > m;
and t < k/3, yields a gap of at least

(I-v)—-(u+te)=1-(y+pte)

between the winning probabilities of the adversary and the simulator. Setting
A=1—(v+ p—+¢) proves Theorem 1.

We remark that, unlike in the case of most applications of fuzzy extractors
(see, in particular, [10, 11]), in this proof we are not interested in hiding partial
information about the source, in our case the approximate utility vectors W', so
we don’t care how much min-entropy is used up in generating p. We only require
sufficient residual min-entropy for the generation of the random pad r. This is
because an approximation to the utility vector revealed by the privacy mecha-
nism is not itself disclosive; indeed it is by definition safe to release. Similarly, we
don’t necessarily need to maximize the tolerance ¢, although if we have a richer
class of fuzzy extractors the impossibility result applies to more relaxed privacy
mechanisms (those that reveal worse approximations to the true utility vector).

4 Differential Privacy

As noted in the example of Terry Gross’ height, an auxiliary information gen-
erator with information about someone not even in the database can cause a
privacy breach to this person. In order to sidestep this issue we change from ab-
solute guarantees about disclosures to relative ones: any given disclosure will be,
within a small multiplicative factor, just as likely whether or not the individual
participates in the database. As a consequence, there is a nominally increased
risk to the individual in participating, and only nominal gain to be had by con-
cealing or misrepresenting one’s data. Note that a bad disclosure can still occur,
but our guarantee assures the individual that it will not be the presence of her
data that causes it, nor could the disclosure be avoided through any action or
inaction on the part of the user.
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Definition 2. A randomized function K gives e-differential privacy if for all
data sets Dy and Dy differing on at most one element, and all S C Range(K),

Pr[K(D,) € S] < exp(e) x Pr[K(D3) € 5] (1)

A mechanism K satisfying this definition addresses concerns that any participant
might have about the leakage of her personal information x: even if the partic-
ipant removed her data from the data set, no outputs (and thus consequences
of outputs) would become significantly more or less likely. For example, if the
database were to be consulted by an insurance provider before deciding whether
or not to insure Terry Gross, then the presence or absence of Terry Gross in the
database will not significantly affect her chance of receiving coverage.

This definition extends to group privacy as well. A collection of ¢ participants
might be concerned that their collective data might leak information, even when
a single participant’s does not. Using this definition, we can bound the dilation
of any probability by at most exp(ec), which may be tolerable for small ¢. Note
that we specifically aim to disclose aggregate information about large groups, so
we should expect privacy bounds to disintegrate with increasing group size.

5 Achieving Differential Privacy

We now describe a concrete interactive privacy mechanism achieving
e-differential privacy®. The mechanism works by adding appropriately chosen
random noise to the answer a = f(X), where f is the query function and X is
the database; thus the query functions may operate on the entire database at
once. It can be simple — eg, “Count the number of rows in the database satisfy-
ing a given predicate” — or complex — eg, “Compute the median value for each
column; if the Column 1 median exceeds the Column 2 median, then output
a histogram of the numbers of points in the set S of orthants, else provide a
histogram of the numbers of points in a different set 1" of orthants.”

Note that the complex query above (1) outputs a vector of values and (2) is
an adaptively chosen sequence of two vector-valued queries, where the choice of
second query depends on the true answer to the first query. Although complex,
it is soley a function of the database. We handle such queries in Theorem 4. The
case of an adaptively chosen series of questions, in which subsequent queries
depend on the reported answers to previous queries, is handled in Theorem 5.
For example, suppose the adversary first poses the query “Compute the median
of each column,” and receives in response noisy versions of the medians. Let M
be the reported median for Column 1 (so M is the true median plus noise). The
adversary may then pose the query: “If M exceeds the true median for Column 1
(ie, if the added noise was positive), then ... else ...” This second query is a
function not only of the database but also of the noise added by the privacy
mechanism in responding to the first query; hence, it is adaptive to the behavior
of the mechanism.

8 This mechanism was introduced in [12], where analagous results were obtained for
the related notion of e-indistinguishability. The proofs are essentially the same.
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5.1 Exponential Noise and the L1-Sensitivity

We will achieve e-differential privacy by the addition of random noise whose
magnitude is chosen as a function of the largest change a single participant
could have on the output to the query function; we refer to this quantity as the

sensitivity of the function®.

Definition 3. For f : D — R?, the L1-sensitivity of f is

Af = pax 1£(D1) = f(D2)lx (2)

for all D1, Dy differing in at most one element.

For many types of queries A f will be quite small. In particular, the simple count-
ing queries (“How many rows have property P?”) have Af < 1. Our techniques
work best — ie, introduce the least noise — when Af is small. Note that sensitivity
is a property of the function alone, and is independent of the database.

The privacy mechanism, denoted ICy for a query function f, computes f(X)
and adds noise with a scaled symmetric exponential distribution with variance
o2 (to be determined in Theorem 4) in each component, described by the density
function

Pr{C;(X) = a] oc exp(—[|f(X) — all1/0) 3)

This distribution has independent coordinates, each of which is an exponentially
distributed random variable. The implementation of this mechanism thus simply
adds symmetric exponential noise to each coordinate of f(X).

Theorem 4. For f : D — R, the mechanism K; gives (Af/o)-differential
privacy.

Proof. Starting from (3), we apply the triangle inequality within the exponent,
yielding for all possible responses r

PrKs(D1) = r] < Pr[Ks(D2) = r] x exp([|f(D1) — f(D2)l1/0) . (4)

The second term in this product is bounded by exp(Af /o), by the definition of
Af. Thus (1) holds for singleton sets S = {a}, and the theorem follows by a
union bound.

Theorem 4 describes a relationship between Af, o, and the privacy differential.
To achieve e-differential privacy, one must choose o > ¢/Af.

The importance of choosing the noise as a function of the sensitivity of the
entire complex query is made clear by the important case of histogram queries, in
which the domain of data elements is partitioned into some number & of classes,
such as the cells of a contingency table of gross shoe sales versus geographic

9 It is unfortunate that the term sensitivity is overloaded in the context of privacy.
We chose it in concurrence with sensitivity analysis.
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regions, and the true answer to the query is the k-tuple of the exact number of
database points in each class. Viewed naively, this is a set of k queries, each of
sensitivity 1, so to ensure e-differential privacy it follows from k applications of
Theorem 4 (each with d = 1) that it suffices to use noise distributed according to
a symmetric exponential with variance k/e in each component. However, for any
two databases Dy and Dy differing in only one element, ||f(D1) — f(D2)|1 =1,
since only one cell of the histogram changes, and that cell only by 1. Thus, we
may apply the theorem once, with d = k and Af = 1, and find that it suffices
to add noise with variance 1/€ rather than d/e.

Adaptive Adversaries. We begin with deterministic query strategies F' spec-
ified by a set of query functions f,, where f,(X); is the function describing
the ith query given that the first ¢ — 1 (possibly vector-valued) responses have
been p1, p2,. .., pi—1. We require that f,(X); = f,(X); if the first ¢ — 1 re-
sponses in p and p’ are equal. We define the sensitivity of a query strategy
F ={f,:D— (R")%} to be the largest sensitivity of any of its possible func-
tions, ie: AF =sup, Af,.

Theorem 5. For query strategy F' = {f, : D — R}, the mechanism Kr gives
(AF/o)-differential privacy.

Proof. For each p € (R*)%, the law of conditional probability says

Pr[Krp(X HPT Kr(X)i = pilp1, p2;s - - - pi-1] (5)
i<d

With p1,p2,...,pi—1 fixed, f,(X); is fixed, and the distribution of Cr(X); is

simply the random variable with mean f,(X); and exponential noise with vari-

ance o in each component. Consequently,

Pr{Cr(X o [T exp(=11£,(X)i = pill /o) (6)
i<d
= exp(=[f,(X) = pl1/0) (7)

As in Theorem 4, the triangle inequality yields (AF/o)-differential privacy.

The case of randomized adversaries is handled as usual, by fixing a “successful”
coin sequence of a winning randomized strategy.
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privacy mechanisms. The impossibility result is joint work with Moni Naor, and
differential privacy was motivated by this result. The definition, the differential
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The related notion of e-indistinguishable privacy mechanisms was investigated
by Kobbi Nissim and Adam Smith, who were the first to note that histograms of
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me of the viability of our shared approach.
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Abstract. Measurement-based quantum computation has emerged
from the physics community as a new approach to quantum compu-
tation where measurements rather than unitary transformations are the
main driving force of computation. Among measurement-based quan-
tum computation methods the recently introduced one-way quantum
computer [RB01] stands out as basic and fundamental.

In this work we a concrete syntax and an algebra of these patterns
derived from a formal semantics. We developed a rewrite theory and
proved a general standardization theorem which allows all patterns to
be put in a semantically equivalent standard form.

1 Introduction

The emergence of quantum computation has changed our perspective on many
fundamental aspects of computing: the nature of information and how it flows,
new algorithmic design strategies and complexity classes and the very structure
of computational models [NC00]. New challenges have been raised in the physical
implementation of quantum computers. This paper is a contribution to a nascent
discipline: quantum programming languages.

This is more than a search for convenient notation, it is an investigation into
the structure, scope and limits of quantum computation. The main issues are
questions about how quantum processes are defined, how quantum algorithms
compose, how quantum resources are used and how classical and quantum in-
formation interact.

In the mid 1980s Deutsch [Deu87] showed how to use superposition — the
ability to produce linear combinations of quantum states — to obtain compu-
tational speedup. The most dramatic results were Shor’s celebrated polytime
factorization algorithm [Sho94] and Grover’s sublinear search algorithm [Gro98].
Remarkably one of the problematic aspects of quantum theory, the presence of
non-local correlation — an example of which is called “entanglement” — turned
out to be crucial for these algorithmic developments.

Only recently has there been significant interest in quantum programming
languages; i.e. the development of formal syntax and semantics and the use of

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 13-21, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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standard machinery for reasoning about quantum information processing. The
first definitive treatment of a quantum programming language was the flowchart
language of Selinger [Sel04]. It was based on combining classical control, as
traditionally seen in flowcharts, with quantum data.

So far the main framework to explore quantum computation has been the cir-
cuit model [NC00], based on unitary evolution. This is very useful for algorithmic
development and complexity analysis. Recently physicists have introduced novel
ideas based on the use of measurement and entanglement to perform computa-
tion [GC99, RB0O1, RBB03]. This is very different from the circuit model where
measurement is done only at the end to extract classical output. In measurement-
based computation the main operation to manipulate information and control
computation is measurement. This is surprising because measurement creates
indeterminacy yet it is used to express deterministic computation defined by a
unitary evolution.

A computation consists of a phase in which a collection of qubits are set
up in a standard entangled state. Then measurements are applied to individual
qubits and the outcomes of the measurements may be used to determine further
measurements. Finally — again depending on measurement outcomes — local
unitary operators, called corrections, are applied to some qubits; this allows
the elimination of the indeterminacy introduced by measurements. The phrase
“one-way” is used to emphasize that the computation is driven by irreversible
measurements.

Our approach to understanding the structural features of measurement-based
computation is to develop a formal calculus. One can think of this as an “as-
sembly language” for measurement-based computation. Ours is the first pro-
gramming framework specifically based on the one-way model. We first develop
a notation for such classically correlated sequences of entanglements, measure-
ments, and local corrections. Computations are organized in patterns', and we
give a careful treatment of the composition and tensor product (parallel com-
position) of patterns. We show next that such pattern combinations reflect the
corresponding combinations of unitary operators. An easy proof of universality
follows.

The idea of computing based on measurements emerged from the teleporta-
tion protocol [BBCT93]. The goal of this protocol is for an agent to transmit an
unknown qubit to a remote agent without actually sending the qubit. This pro-
tocol works by having the two parties share a maximally entangled state called
a Bell pair. The parties perform local operations — measurements and unitaries
— and communicate only classical bits. Remarkably, from this classical informa-
tion the second party can reconstruct the unknown quantum state. In fact one
can actually use this to compute via teleportation by choosing an appropriate
measurement [GC99]. This is the key idea of measurement-based computation.

It turns out that the above method of computing is actually universal.
This was first shown by Gottesman and Chuang [GC99] who used two-qubit

! We use the word “pattern” rather than “program”, which is what they are, because
this corresponds to the commonly used terminology in the physics literature.
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measurements and given Bell pairs. In the one-way computer, invented by
Raussendorf and Briegel [RB01], one uses only single-qubit measurements with
a particular multi-party entangled state, the cluster state.

There are at least two reasons to take measurement-based models seriously:
one conceptual and one pragmatic. The main pragmatic reason is that the one-
way model is believed by physicists to lend itself to easier implementations,
see, for example [Nie04]. Conceptually the measurement-based model highlights
the role of entanglement and separates the quantum and classical aspects of
computation; thus it clarifies in particular the interplay between classical control
and the quantum evolution process.

The main point of this paper is to introduce alongside our notation, a calculus
of local equations over patterns that exploits some special algebraic properties
of the entanglement, measurement and correction operators. More precisely, we
use the fact that that 1-qubit XY measurements are closed under conjugation
by Pauli operators and the entanglement command belongs to the normalizer
of the Pauli group. We show that this calculus is sound in that it preserves
the interpretation of patterns. Most importantly, we derive from it a simple
algorithm by which any general pattern can be put into a standard form where
entanglement is done first, then measurements, then corrections. We call this
standardization.

The consequences of the existence of such a procedure are far-reaching. Since
entangling comes first, one can prepare the entire entangled state needed dur-
ing the computation right at the start: one never has to do “on the fly” en-
tanglements. Furthermore, the rewriting of a pattern to standard form reveals
parallelism in the pattern computation. In a general pattern, one is forced to
compute sequentially and obey strictly the command sequence, whereas after
standardization, the dependency structure is relaxed, resulting in lower depth
complexity.

The full paper develops the one-way model ab initio but there may be cer-
tain concepts with which the reader might not be familiar: qubits, unitaries,
measurements, Pauli operators and the Clifford group; these are all readily ac-
cessible through the excellent book of Nielsen and Chuang [NCO00].

2 Measurement Patterns

We first develop a notation for 1-qubit measurement based computations. The
basic commands one can use in a pattern are:

— 1-qubit auxiliary preparation N;

— 2-qubit entanglement operators F;

— 1-qubit measurements M

— and 1-qubit Pauli operators corrections X, and Z;

The indices ¢, j represent the qubits on which each of these operations ap-
ply, and « is a parameter in [0, 27]. Expressions involving angles are always
evaluated modulo 27. These types of command will be referred to as N, E, M
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and C. Sequences of such commands, together with two distinguished — possibly
overlapping — sets of qubits corresponding to inputs and outputs, will be called
measurement patterns, or simply patterns. These patterns can be combined by
composition and tensor product.

Importantly, corrections and measurements are allowed to depend on previous
measurement outcomes. We prove in the full paper that patterns without those
classical dependencies can only realize unitaries that are in the Clifford group.
Thus dependencies are crucial if one wants to define a universal computing model
and it is also crucial to develop a notation that will handle these dependencies.

Commands. Preparation N; prepares qubit ¢ in state |+);. The entanglement
commands are defined as E;; := AZ;; (controlled-Z), while the correction com-
mands are the Pauli operators X, and Z,.

Measurement M/ is defined by orthogonal projections on

o) =, (10) +€™[1))
=) =, (10) —e™[1))

followed by a trace out operator. The parameter o € [0,27] is called the an-
gle of the measurement. For o = 0, a = 7, one obtains the X and Y Pauli
measurements. Operationally, measurements will be understood as destructive
measurements, consuming their qubit. The outcome of a measurement done at
qubit ¢ will be denoted by s; € Zs. Since one only deals here with patterns where
qubits are measured at most once (see condition (D1) below), this is unambigu-
ous. We take the specific convention that s; = 0 if under the corresponding
measurement the state collapses to |+4), and s; = 1 if to |—4).

Outcomes can be summed together resulting in expressions of the form s =
> ics 8 which we call signals, and where the summation is understood as being
done in Zy. We define the domain of a signal as the set of qubits on which it
depends.

Dependent corrections will be written X7, Z and Z;"° and dependent mea-
surements will be written *[M]*, where s,t € Zs and «, 3 € [0, 27]. The meaning
of dependencies for corrections is straightforward: X? = Z9 = Z?* 0= I (no cor-
rection is applied), while X} = X, Z}! = Z, and Z?’l = Z. In the case of
dependent measurements, the measurement angle will depend on s, ¢t and « as
follows:

(M = e (1)

K2

so that, depending on the parities of s and ¢, one may have to modify the a to
one of —a, a + 7 and —a + 7. These modifications correspond to conjugations
of measurements under X and Z:

XiM&X; = M7 (2)
ZiMXZ; = M{“’T (3)
and so we will refer to them as the X and Z-actions. Note that these two actions

are commuting, since —a + 7 = —a — 7 up to 27, and hence the order in which
one applies them doesn’t matter.
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As we will see later, relations (2) and (3) are key to the propagation of de-
pendent corrections, and to obtaining patterns in the standard entanglement,
measurement and correction form. Since the measurements considered here are
destructive ones, the above equations actually simplify to

MX; = M;® (4)
M Z; = M~ (5)

Patterns

Definition 1. Patterns consists of three finite sets V', I, O, and a finite sequence
of commands A, ... A1, read from right to left, applying to qubits in V in that
order, i.e. Ay first and A, last, such that:

(DO0) no command depends on an outcome not yet measured;

(D1) no command acts on a qubit already measured;

(D2) no command acts on a qubit not yet prepared, unless it is an input qubit;
(D3) a qubit i is measured if and only if i is not an output.

The set V is called the pattern computation space, and we write $y for the as-
sociated quantum state space ®;cyC2. The sets I, O will be called respectively
the pattern inputs and outputs, and we will write $;, and $Ho for the associ-
ated quantum state spaces. The sequence A, ... A; will be called the pattern
command sequence, while the triple (V, I, O) will be called the pattern type.

To run a pattern, one prepares the input qubits in some input state 1) € $y,
while the non-input qubits are all set in the |+) state, then the commands are
executed in sequence, and finally the result of the pattern computation is read
back from outputs as some ¢ € $Ho. Clearly, for this procedure to succeed, we had
to impose the (D0), (D1), (D2) and (D3) conditions. Indeed if (DO0) fails, then
at some point of the computation, one will want to execute a command which
depends on outcomes that are not known yet. Likewise, if (D1) fails, one will
try to apply a command on a qubit that has been consumed by a measurement
(recall that we use destructive measurements). Similarly, if (D2) fails, one will
try to apply a command on a non-existent qubit. Condition (D3) is there to
make sure that the final state belongs to the output space 9o, i.e., that all
non-output qubits, and only them, will have been consumed by a measurement
when the computation ends.

We will write (D) for the conjunction of our definiteness conditions (DO0),
(D1), (D2) and (D3). Whether a given pattern verifies (D) or not is statically
verifiable on the pattern command sequence. Here is a concrete example:

H:= ({L 2}7 {1}v {2}>X§1M?E12N2)

with computation space {1, 2}, inputs {1}, and outputs {2}. To run H, one first
prepares the first qubit in some input state 1, and the second qubit in state |+),
then these are entangled to obtain AZj12(11 ® |4+)2). Once this is done, the first
qubit is measured in the |+), |—) basis. Finally an X correction is applied on
the output qubit, if the measurement outcome was s; = 1.
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A last thing to note, is that one does not require inputs and outputs to be
disjoint subsets of V. This seemingly innocuous additional flexibility is actually
quite useful to give parsimonious implementations of unitaries [DKP05].

Pattern combination. We are interested now in how one can combine patterns
into bigger ones.

The first way to combine patterns is by composing them. Two patterns P;
and Py may be composed if V3 NV, = O1 = I>. Provided that P; has as many
outputs as Ps has inputs, by renaming the pattern qubits, one can always make
them composable.

Definition 2. The composite pattern PoPy is defined as:
7V::V‘1UV‘2;I:I1;02027
— commands are concatenated.

The other way of combining patterns is to tensor them. Two patterns P; and
P2 may be tensored if V3 NV, = &. Again one can always meet this condition
by renaming qubits in a way that these sets are made disjoint.

Definition 3. The tensor pattern P1 ® Py is defined as:
—V=ViuW, I=1Ul, and O = O1 U O,
— commands are concatenated.

In contrast to the composition case, all unions involved here are disjoint. There-
fore commands from distinct patterns freely commute, since they apply to dis-
joint qubits, and when we say that commands have to be concatenated, this is
only for definiteness.

It is routine to verify that the definiteness conditions (D) are preserved under
composition and tensor product. These details as well as the operational seman-
tics and denotational semantics and the proof of universality are described in
the full paper [DKP]

3 The Measurement Calculus

We turn to the next important matter of the paper, namely standardization. The
idea is quite simple. It is enough to provide local pattern rewrite rules pushing
FE's to the beginning of the pattern, and C's to the end.

The equations. A first set of equations give means to propagate local Pauli
corrections through the entangling operator F;;. Because E;; = Ej;, there are
only two cases to consider:

Ei; X; = XfZJS»Eij (6)
EZ]Zf = Z;Eij (7)

These equations are easy to verify and are natural since I;; belongs to the
Clifford group, and therefore maps under conjugation the Pauli group to itself.
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A second set of equations give means to push corrections through measure-
ments acting on the same qubit. Again there are two cases:

(MEPEXT = M (5)
(M7 = M 9)

These equations follow easily from equations (4) and (5). They express the fact
that the measurements M;* are closed under conjugation by the Pauli group,
very much like equations (6) and (7) express the fact that the Pauli group is
closed under conjugation by the entanglements £;;.

Define the following convenient abbreviations:

[MP]* = O (MR, M) = H[MP)°, M o= (M0,
Mz = MO, MY := M}

The rewrite rules. We now define a set of rewrite rules, obtained by orienting
the equations above:

(MPPXT = (MR MX

(M z = MR MZ

to which we need to add the free commutation rules, obtained when commands
operate on disjoint sets of qubits:

EijAx = ApE;;  where A is not an entanglement
A X? = XA,  where A is not a correction
ApZ? = Z?Ar  where A is not a correction

where k represent the qubits acted upon by command A, and are supposed to
be distinct from 7 and j. Clearly these rules could be reversed since they hold as
equations but we are orienting them this way in order to obtain termination.

Condition (D) is easily seen to be preserved under rewriting.

Under rewriting, the computation space, inputs and outputs remain the same,
and so do the entanglement commands. Measurements might be modified, but
there is still the same number of them, and they still act on the same qubits. The
only induced modifications concern local corrections and dependencies. If there
was no dependency at the start, none will be created in the rewriting process.

In this conference version of the paper we omit all proofs.

Standardization. Write P = P’, respectively P =* P’ if both patterns have
the same type, and one obtains the command sequence of P’ from the command
sequence of P by applying one, respectively any number, of the rewrite rules of
the previous section. We say that P is standard if for no P’, P = P’ and the
procedure of writing a pattern to standard form is called standardization?.

2 . . . . . .
We use the word “standardization” instead of the more usual “normalization” in
order not to cause terminological confusion with the physicists’ notion of normaliza-
tion.
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One of the most important results about the rewrite system is that it has the
desirable properties of determinacy (confluence) and termination (standardiza-
tion). In other words, we will show that for all P, there exists a unique standard
P’, such that P =* P’. It is, of course, crucial that the standardization process
leaves the semantics of patterns invariant. This is the subject of the next simple,
but important, proposition,

Proposition 4. Whenever P =* P', [P] = [P'].
We now state the main results. First, we state termination.

Proposition 5 (Termination). For all P, there exists finitely many P’ such
that P =* P’.

The next theorem establishes the important determinacy property and further-
more shows that the standard patterns have a certain canonical form which we
call the NEMC form. The precise definition is:

Definition 6. A pattern has a NEMC form if its commands occur in the order
of Ns first, Es , M s, and then C's.

We will usually just say “EMC” form since we can assume that all the auxiliary
qubits are prepared in the |+) state we usually just elide these N commands.

Theorem 1 (Confluence). For all P, there exists a unique standard P’, such
that P =* P’, and P’ is in EMC form.

We conclude this subsection by emphasizing the importance of the EMC form.
Since the entanglement can always be done first we can always derive the entan-
glement resource needed for the whole computation right at the beginning. After
that only local operations will be performed. This will separate the analysis of
entanglement resource requirements from the classical control.

4 Conclusion

We have presented a calculus for the one-way quantum computer. We have
developed a syntax of patterns and, much more important, an algebra of pattern
composition. We have seen that pattern composition allows for a structured
proof of universality, which also results in parsimonious implementations. We
develop an operational and denotational semantics for this model; in this simple
first-order setting their equivalence is clear.

We have developed a rewrite system for patterns which preserves the
semantics. We have shown further that our calculus defines a quadratic-time
standardization algorithm transforming any pattern to a standard form where
entanglement is done first, then measurements, then local corrections.

We feel that our measurement calculus has shown the power of the formalisms
developed by the programming languages and logics community to analyze quan-
tum computations. The ideas that we use: rewriting theory, (primitive) type
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theory and above all, the importance of reasoning compositionally, locally and
modularly, are standard for the analysis of traditional programming languages.
However, for quantum computation these ideas are in their infancy. It is not
merely a question of adapting syntax to the quantum setting; there are funda-
mental new ideas that need to be confronted. What we have done here is to
develop such a theory in a new, physically-motivated setting.
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Abstract. The notion of concurrent zero knowledge has been intro-
duced by Dwork et al. [STOC 1998] motivated by the growing use of
asynchronous networks as the Internet.

In this paper we show a transformation that, for any language L ad-
mitting a Y-protocol, produces a 4-round concurrent zero-knowledge ar-
gument system with concurrent soundness in the bare public-key (BPK,
for short) model. The transformation only adds O(1) modular exponenti-
ations, and uses standard number-theoretic assumptions and polynomial-
time simulation.

A tool that we construct and use for our main result is that of efficient
concurrent equivocal commitments. We give an efficient construction of
this gadget in the BPK model that can be of independent interest.

1 Introduction

In several settings the original notion of zero knowledge [1] (which only consid-
ers one prover and one verifier that run the proof in isolation) was insufficient.
The notion of concurrent zero knowledge [2] formalizes security in a scenario
in which several verifiers interact concurrently with the same prover and mali-
ciously coordinate their actions so to extract information from the proofs. This
notion is being studied in the plain model where there is no additional set-up
infrastructure or network assumption. In [3] it has been showed that in the
plain model constant-round black-box concurrent zero knowledge is impossible
for non-trivial languages. In the plain model, the most efficient concurrent zero-
knowledge proof systems has been presented in [4] on top of a more general
result [5]. In [4], any language L that admits an efficient X-protocol® is trans-
formed in a concurrent zero knowledge proof system. Unfortunately both the
round complexity and the number of modular exponentiations required by the
resulting protocol are w(logn). Other models are being studied to achieve effi-
cient, and, in particular, constant-round concurrent zero-knowledge protocols.
Specifically, the timing model [2] makes other assumptions on the network asyn-
chronousity; the preprocessing model [6] requires an interactive preprocessing

! The transformation can be applied to a more general class of protocols but in this
paper we focus on X-protocols.
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stage involving all parties; the common random/reference string models [7, 8],
require a trusted third party or a physical assumption; the single-prover model [9]
assumes the existence of only one stateful prover.

The model that seems to have the minimal set-up or network assumptions
is the bare public-key (BPK) model [10], where verifiers register their pub-
lic keys in a public file during a set-up stage. There is no interactive pre-
processing stage, no trusted third party, no physical assumption, no assumption
on the asynchronousity of the network. In this model concurrent soundness is
harder to achieve than sequential soundness, as noted in [11], who discussed
four distinct and increasingly stronger soundness notions. Indeed, the constant-
round concurrent zero-knowledge (in fact, resettable zero-knowledge, a stronger
notion from [10]) protocols in the BPK model presented in [10,11] only en-
joy sequential soundness. In [12] a constant-round concurrently sound concur-
rent zero-knowledge argument system in the BPK model is presented under
non-standard assumptions on the hardness of computational problems against
sub-exponential-time adversaries. The use of such non-standard assumptions is
referred to as “complexity leveraging” and is very related to the notion of super-
polynomial-time simulation used in [13] and both correspond to relaxed notions
of security.

Equivocal commitment schemes. A commitment scheme is a two-phase protocol
between two polynomial-time Turing machines sen and rec. The security of
this primitive is based on the following properties: 1) hiding, i.e., a cheating rec
can not guess with probability significantly better than 1/2 which message has
been committed over any possible pair of different messages; 2) binding, i.e., a
cheating sen should be able to open a commitment (i.e., to decommit) with both
m and m’ # m only with very small (i.e., negligible) probability.

An equivocal commitment scheme is a special commitment scheme. It al-
lows an efficient algorithm, referred to as equivocator, to violate at its wish
the binding property and at the same time, no efficient malicious receiver rec*
detects this cheating behavior with respect to commitments and decommit-
ments of honest senders. Obviously any equivocator needs a special feature
that is not available to any malicious sender sen*, otherwise the existence
of the equivocator contradicts the binding property. Several special features
for the equivocator have been proposed in the past as knowledge of an aux-
iliary information [14] (i.e., so called “trapdoor commitments”), knowledge of
the description of the adversarial receiver [15], rewinding capabilities [6]. A
constant-round equivocal commitment scheme in the BPK model was presented
n [16]. As for the case of the notion of soundness, the notion of binding of
an equivocal commitment scheme in the BPK is subtle. The authors of [16]
showed that a concurrent malicious sender could succeed in a protocol that in-
stead is secure with respect to sequential adversarial senders. The construction
given in [16] is a concurrent equivocal commitment scheme in the BPK model
and thus is secure with respect to concurrent malicious senders. In the pro-
posed scheme, the commitment phase needs 3-round while the decommitment
phase is non-interactive. Unfortunately the construction is not practical since the
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number of modular exponentiations it needs is linear in the length of the security
parameter.

Concurrent zero knowledge from concurrent equivocal commitments. In [8] effi-
cient concurrent equivocal commitments are used to achieve efficient concurrent
zero-knowledge argument systems in both the common reference string and the
shared random string models. More concretely, given a language L with an ef-
ficient X-protocol and an efficient concurrent equivocal commitment scheme,
the results of [8] produce an efficient 3-round concurrent zero-knowledge argu-
ment system. The transformation only adds a few modular exponentiations to
the computations required by the X-protocol. Proof (in contrast to argument)
systems with similar properties have been recently showed in [17]. However the
common reference string and the shared random string models need the existence
of a trusted third party or a physical assumption.

Another efficient transformation was presented in [6]. It adds only O(1) rounds
and O(1) modular exponentiations to the computations of the X-protocol but
unfortunately they require a strong set-up assumption. [6] needs an interactive
preprocessing for each proof that has to be run later (this seems to be very
problematic in practice).

A very challenging open question is therefore the possibility of constructing a
transformation as efficient as the ones of [6,8] but that works with a seemingly
better set-up assumption.

In [16], the constructions given in [8,6] are implemented in the BPK model
under standard number-theoretic assumptions and polynomial-time simulation
using concurrent equivocal commitment schemes in the BPK model. Unfortu-
nately, in contrast with the efficient transformations of [8, 6], the transformation
of [16] adds a number of modular exponentiations that is linear in the size of the
challenge of the X-protocol. This overhead is added by their implementation of
the concurrent equivocal commitment scheme in the BPK model.

1.1 Owur Results

In this paper we show a more efficient transformation that only adds O(1) rounds
and O(1) modular exponentiations to the ones required by the X-protocol and
that works in the BPK model.

More precisely, we show a transformation that, for any language L admitting
a X-protocol, produces a 4-round (i.e., the round complexity is optimal [11])
concurrent zero-knowledge argument of knowledge with concurrent soundness in
the BPK model that only adds O(1) modular exponentiations and uses standard
number-theoretic assumptions and polynomial-time simulation. This improves
all previous results since they either were in models with stronger set-up or net-
work assumptions, or they were not efficient, or they were not fully concurrently
secure, or they were using non-standard intractability assumptions.

Following the previous approaches, a tool that we construct and use is that
of efficient concurrent equivocal commitments in the BPK model. We give an
efficient construction of this gadget in the BPK model (it needs only O(1) mod-
ular exponentiations) and that can be of independent interest.
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2 The BPK Model and Its Players

In the BPK model verifiers have to announce their public keys and provers have
to download the file with all public keys before any protocol starts. No public key
is certified and the directory containing the registered users can even be com-
pletely controlled by the adversary. Therefore the BPK model is a relaxed version
of known set-up assumptions in cryptography as the public-key infrastructure,
and the interactive preprocessing. The BPK model does not assume the existence
of any trusted third party neither of any physical assumption. It is therefore more
practical than the common reference and shared random string models (see [8]
for efficient concurrent zero knowledge in these models). Since the BPK model
does not need interaction during the preprocessing, it is more practical then
the interactive preprocessing used in [6] (see Section 5.2 of [6]). Moreover, when
protocols start there is no assumption on the asynchronousity of the network
in contrast to the timing model [2]. When the first stage is completed, only a
bounded number of verifiers can play in the second stage, this is more attractive
than the single-prover requirement of [9].

The BPK model for commitment schemes. The definitions for argument systems
in the BPK model can be found in [11,16]. Here we give the definitions of
commitment schemes in the BPK model. In particular we consider the notion of
a concurrent equivocal commitment scheme. This definition was implicit in [16].
In our notation we use “for all £” meaning for all values x depending on the
security parameter n and of length polynomial in n. Formally, there exists a
public file F' that is a collection of records, each containing a public key.

An (honest) sender sen is an interactive deterministic polynomial-time Turing
machine that takes as input a security parameter 1", a file F, a string m (i.e.,
the message to be committed), a reference pk to an entry of F' and a random
tape. sen after running an interactive protocol with a receiver rec outputs aux
or the special symbol L; later sen uses aux to compute dec and sends the pair
(dec,m) to rec in order to open the committed message m.

An (honest) receiver rec is an interactive deterministic polynomial-time Tur-
ing machine that works along with sen in the following two stages: 1) on input a
security parameter 1™ and a random tape, rec generates a key pair (pk, sk) and
stores the public key pk in one entry of the file F'; this stage is executed only
once by each receiver; 2) rec takes as input the secret key sk, and a random
string, and outputs a message com or the special symbol L after performing an
interactive protocol with a sender sen; later rec receives the pair (dec, m) from
sen and verifies that the pair (com,dec) corresponds to a message m. The in-
teraction between senders and receivers start after all receivers have completed
their first stage.

Malicious senders in the BPK model. We say that sen* is an s-concurrent ma-
licious sender if it is a probabilistic polynomial-time Turing Machine that, on
input 1" and PK, can perform the s(n) interactive protocols with a receiver rec
as follows: 1) if sen* is already running ¢ protocols 0 < ¢ < s(n) he can start
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a new protocol with rec; 2) he can send a message for any running protocol,
receive immediately the response from rec and continue.

Given an s-concurrent malicious sender sen* and a honest receiver rec, an
s-concurrent attack of sen* is performed as follows: 1) the first stage of rec is
run on input 1™ and a random string to obtain a pair (pk, sk); 2) sen* is run on
input 1™ and pk to start a new protocol; 3) whenever sen* starts a new protocol,
rec uses a new random string r and sk, and interacts with sen*.

Malicious receivers in the BPK model. We say that rec* is an s-concurrent
malicious receiver if it is a probabilistic polynomial-time Turing Machine that,
on input 1™ and pk, can perform the following s(n) interactive protocols with a
sender sen: 1) if rec* is already running ¢ protocols 0 < i < s(n) he can decide
the i-th protocol to be started with sen; 2) he can output a message for any
running protocol, receive immediately the next message from sen and continue?.

Given an s-concurrent malicious receiver rec* and a honest sender sen, an
s-concurrent attack of rec* is performed as follows: 1) in its first stage, rec*, on
input 1™ and a random string, generates a public file F'; 2) rec* is run on input
1™ and F so to start the first protocol with sen; 3) whenever rec* starts a new
protocol, sen uses a new random string, and interacts with rec*.

We now define concurrent equivocal commitments in the BPK model. We
stress that we give a definition that works with an interactive commitment phase
and a non-interactive decommitment phase since these are the properties of the
commitment scheme that we will construct. We assume that parties use n as
security parameter.

Definition 1. (sen,rec,Ver) is a concurrent equivocal commitment scheme
(CS, for short) in the BPK model if:

- correctness: for all m, let sen be a honest sender that receives m as input
in the game described above, then: 1) rec outputs com 2) sen outputs dec
and 3) Ver is an efficient algorithm such that Ver(com,dec,m) = 1.

- binding: for all sufficiently large n, for any s-concurrent malicious sender
sen* that runs the game described above with a honest receiver rec, there is
a negligible function v such that for all com given in output by rec the prob-
ability that sen* outputs a pair (deco,decy) such that Ver(com,decy, my) =
1 AVer(com,decy,m1) =1 Amg # my A|mg| = |my| is less than v(k).

- hiding: for all sufficiently large n, for any pair of same-length vectors my,
m1 of POLY(n)-bit messages, and for any s-concurrent malicious receiver
rec* that runs the game described above with a honest sender sen, the view
of rec* when interacting with sen on input mg is computationally indistin-
guishable from the one when interacting with sen on input my, where sen in
the i-th session commits to the i-th element of the vector received as input.

- equivocality: there exists an efficient equivocator M such that for any s-
concurrent malicious receiver rec* it holds that:

N

The message that follows the last message of the commitment phase is the decom-
mitment dec sent by sen.
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o M and rec* output respectively aux; and com; after the commitment
phase of the i-th session; then M on input aux; and any message m,
outputs dec; such that Ver(com, dec;,m) = 1.

o the distribution of the view of rec* when interacting with M is compu-
tationally indistinguishable from the one when interacting with a honest
sender sen.

3 Equivocal Commitments in the BPK Model

In this section we show an efficient construction for concurrent equivocal com-
mitments in the BPK model that only needs a few modular exponentiations.
For the sake of simplifying the notation, sometimes we omit the modulus from
modular operations.

SimC, simulatable commitment of a message. Consider (p,q,h) such that p,q
are primes, p = 2q + 1, h is a generator of the only subgroup G, of Z; that
has order ¢. In [4] Micciancio and Petrank presented the following perfectly
binding commitment scheme. In order to commit to z € Z;, the sender chooses
a random generator g of G, and computes § = ¢g" mod p, h = ™% mod p where

r €gr Zy. sen sends g and com = ([],fL). The corresponding decommitment is
the pair (r,z) and it can be verified that com = (g", h""%). As discussed in [4],
this commitment scheme that we refer to as SimC, is perfectly binding since
g and h uniquely determine r and r 4+ z. Computational hiding follows from
the DDH assumption. Moreover, in [4] the authors show that such a computed
commitment com is simulatable, in the sense that it admits an efficient 3-round
public-coin honest-verifier zero-knowledge proof system for proving that com is
a commitment of z. Their proof system enjoys optimal soundness as there exists
at most one challenge that allows an adversarial prover to succeed in proving a
false statement. Moreover the simulator perfectly simulates true statements.

SimDlogC, simulatable commitment of a discrete logarithm. A variation of the
proof system for SimC can be used to prove that com is the commitment of the
discrete logarithm in base h of an element 2’ of G, (actually, com is an El Gamal
encryption of A’ and thus it uniquely determines its discrete logarithm in base
h). We refer to this scheme as SimDlogC. The proof system works as follows.
First the prover computes the pair (g, h) = (g%, h*) for a randomly chosen s in
Z4 and sends this pair to the verifier. The verifier answers sending a random
challenge ¢ in Z,;. The prover computes a = cr 4 s and sends it to the verifier.
Finally the verifier accepts the proof if and only if §°g = ¢* and (B/h’)cﬁ = ho.
The only variation with respect to the proof system given in [4] is that here
the verifier checks that (h/h')h = h* while in [4], the verifier has to check that
(h/h#)°h = h*. The simulator on input (§,h) randomly chooses a and ¢ and
sets § = g°/§°, h = h®/(h/h')°. Again, the only update with the simulator of [4]
is that h’ is used instead of h*. All properties enjoyed by SimC are obviously
enjoyed by SimDlogC.
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The proof system of SimDlogC' is not a proof of knowledge. Note that in order to
compute a commitment com of the discrete logarithm of i’ in base h, knowledge
of this discrete logarithm is not necessary since it is possible to compute com =
(g, iL) = (¢",h"h) with r €r Z;. It is possible to honestly run the public-coin
honest-verifier zero-knowledge proof system discussed above on such a computed
commitment. Indeed, notice that the discrete logarithm z of A’ in base h is never
used in the proof. Since we have that h=h"h = h"TZ the prover only needs to

know 7.

OR-composition of SimDlogC. Given pk, = (p,q, h, hy) for b = 0, 1, the public-
coin honest-verifier zero-knowledge proof system of SimDlogC can be used to
prove that a commitment com, is the commitment of the discrete logarithm of
hy in base h, where hy, is an element of Gy.

Let com be a commitment of a message z computed using SimDlogC. If z is
either the discrete logarithm of hg in base h or of h; in base h, it is possible
to OR~compose [18,19] the public-coin honest-verifier zero-knowledge proof sys-
tem of SimDlogC thus proving that com is either a commitment of the discrete
logarithm of hg in base h or the commitment of the discrete logarithm of hy in
base h.

X -protocols. A X-protocol is a 3-round interactive protocol between a PPT
honest prover P and a PPT honest verifier V. P and V receive as common input
a statement “x € L”. P has as auxiliary input a witness y for z € L (L is an
N'P-language). At the end of the protocol V decides whether the transcript is
accepting with respect to the statement or not. X-protocols have the following
properties: 1) completeness, means that V' always accepts when interacting with
P; 2) public coin, means that V sends random bits only; 3) special soundness,
means that given two accepting transcripts (a, ¢, z) and (a, ¢, 2’) for a statement
“r e L7, if ¢ # ¢ then z € L (i.e., the statement is true) and there exists an
efficient extractor, that on input (z, a, ¢, z, ¢/, 2’) outputs a witness y for = € L; 4)
special honest-verifier zero knowledge, means that there is an efficient algorithm
S, referred to as simulator, that on input a true statement “x € L” outputs
for any ¢ a pair (a, z) such that the triple (a,c, z) is indistinguishable from the
transcript of a conversation between P and V.

, AND-composition of the X-protocol on ([],ﬁ). When the discrete loga-
rithm z of A’ is known and the commitment com = (§,h) = (¢",h" =) of z is
computed using the regular procedure, it is possible to use the X-protocol of
Schnorr [20] composed by means of [18,19] for proving knowledge of either the
discrete logarithm of ¢ in base g and the discrete logarithm of h in base h. In
the example described above one can therefore prove knowledge of both r and
r + z. We refer to X°°® as this AND-composed X-protocol.

Ecom

Efficient equivocal commitments from any efficient X -protocol. In [21,22] trans-
formations that output equivocal commitments from X-protocols were presented.
The message space for the resulting equivocal commitment scheme is exactly
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the challenge space of the considered X-protocol. The resulting scheme is non-
interactive and works in the common reference string model. We will use it as
an ingredient in our construction in the BPK model. The commitment scheme
is based on the fact that given a X-protocol for proving “x € L”, the simulator
of the special honest-verifier zero-knowledge property, can output for any m a
triple (a,m, z) that is indistinguishable from a real transcript. The sender can
thus use this simulator to commit to m. More precisely, the sender sends a to the
receiver and then opens the commitment sending the pair (m, z). The receiver
outputs m if and only if (a,m, z) is an accepting transcript and L otherwise.
Knowledge of a witness y for “x € L” allows an equivocator to first send a
and then for any m, to compute z such that (a,m, z) is accepting. The binding
property crucially needs that the prover does not know y. The hiding property
is perfect if the output of the simulator is perfectly indistinguishable from a real
conversation.

For the case of , using this transformation we obtain an efficient equiv-
ocal commitment scheme Comy,com since a few modular exponentiations achieve
the commitment and decommitment of an element of Z,.

Zcom

3.1 Achieving Concurrent Equivocality

We now show our construction of efficient concurrent equivocal commitments in
the BPK model. Our protocol uses SimDlogC and combines it with Comy,com.

The basic idea is that the receiver rec during the preprocessing stage generates
the public key PK = (pk, = (p,q,h, ho),pk; = (p,q,h,h1)) and keeps secret
one of the two discrete logarithms of hy and h; in base h. Then during the
protocols he first uses the efficient and special 3-round witness-indistinguishable
proof of knowledge (WI-PoK, for short) for proving knowledge of one of the two
secret keys. This can be obtained by composing the protocol of Schnorr [20]
with the techniques of [18,19]). This is special since knowledge of the witness
(i.e., the discrete logarithm) is only needed for computing the third message.
Let PoKy,PoKs and PoK3 be the messages played in these 3 rounds. PoK; is the
only message played in the first round of the resulting concurrent equivocal
commitment scheme in the BPK model.

The sender sen on input m and PK uses SimDlogC for computing the com-
mitment com = (g, iL) that is the commitment of the discrete logarithm of hg in
base h (we stress that knowledge of this discrete logarithm is not required for
computing this commitment and for running the corresponding proof). Then he
uses the sender algorithm of Comy.com on input m and com obtaining a pair (a, z)
such that (a,m, z) is an accepting transcript for this X-protocol. Then sen uses
the OR~composition of SimDlogC on input com to compute the first message a
for proving that com is either a commitment of the discrete logarithm of hg in
base h or a commitment of the discrete logarithm of h; in base h (we stress that
this can be done without knowing the discrete logarithm). The message sent by
sen in the second round is thus (g, com, a, a,PoKs) and its output includes the
decommitment information (m, z,aux,). In the third round the receiver sends
PoK3 and a challenge ¢.
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sen uses (aux,, ¢) to compute £ and opens the commitment sending (£, m, z).
The receiver verifies the correctness of the opening by checking that (a,m, z)
and (a, ¢, 2) are accepting for their corresponding statements.

The key idea of this new commitment scheme is that once the sender has
played the second round, in order to decommit, com must be a commitment of
either the first secret key or the second secret key (this follows from the optimal
soundness of the OR-composition of SimDlogC ). Moreover since com is perfectly
binding, the witness (that therefore corresponds to either sk or sk;) extracted
from two different openings of Comy.com is fixed and therefore can not be changed
by exploiting concurrent man-in-the-middle attacks®. This is a crucial property
for proving the binding property with respect to s-concurrent malicious senders.
Finally we stress that an equivocator can extract the secret key of the receiver
running the extractor of the witness-indistinguishable proof of knowledge. Then
he can freely equivocate in a straight-line fashion since knowledge of this secret
key allows it to run the equivocator of Comy,com and the honest prover algorithm
of the OR-~composed honest-verifier zero-knowledge proof of SimDlogC. Notice
that the number of extraction procedures that the equivocator has to run is
bounded by the size of the public file.

Theorem 1. Assuming the intractability of the DDH assumption modulo inte-
gers of the form p = 2¢ + 1, for p, ¢ primes, the previously described protocol is
an efficient concurrent equivocal commitment scheme in the BPK model.

Proof. Completeness can be verified by inspection. The hiding property follows
by the perfect honest-verifier zero-knowledge property of the X-protocols and
the proof system of SimDlogC.

Assume by contradiction that an s-concurrent malicious sender sen* succeeds
in computing two decommitments to different messages of the same commitment.
This means that sen* outputs two different messages m, m’ and two string z, 2’
such that for the same message a sent during the second round of the protocol,
both transcripts (a,m, z) and (a, m’, z’) are accepting. By the special-soundness
property of X¢°® and the optimal soundness of SimDlogC either skq or sk; is
extracted. This can be used by an algorithm A4 to break the discrete logarithm
assumption as follows. A receives a discrete logarithm challenge pk and then
generates the entry of the public file as PK = (pk,, pk,) where either pk, or pk,
is equal to pk (the choice is random) while for the other entry .4 knows the secret
key. A runs the protocol with sen* and as discussed above A extracts one of
two secret keys. If the extracted secret key corresponds to pk then A breaks the
challenge. Assume therefore that A always extracts the already known secret key.
This means that in case A knows sk, he uses it in the concurrent protocols and
always extracts skg from the output of sen*. The opposite case happens when

3 The capability of an s-concurrent malicious sender sen* that runs many concurrent
interactions with the same receiver allows him to mount a man-in-the-middle attack
between the proof of knowledge he receives in a session j and a commitment that
he computes and open in a different session j'. This attack could allow the man-in-
the-middle to equivocate using the same secret key used in the WI-PoK.
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A always uses sk; and extracts sk;. We can apply the same hybrid arguments
of [16] and thus an efficient algorithm A’ obtains from the output of sen* two
different openings of the commitment of the i-th session. Moreover, from these
openings A’ extracts the same secret key he uses in a given session j. We now
distinguish two cases. 1) The WI-PoK given by A’ is session j is completed before
the second round of session 4 is played. This case can not happen otherwise A’ by
relaying the messages can break the witness indistinguishability of the WI-PoK.
2) The WI-PoK given by A’ in session j is completed after the second round of
session 7 is played. In this case, since A’ has not decided yet which witness has
to be used (note that the WI-PoK is special), the probability that the secret key
extracted is the equal to the used one is only 1/2. This contradicts the previous
assumption that A always extract the same witness used in session j.

The equivocality property can be proved as follows. The equivocator runs
the extractor of the WI-PoK given by the receiver and obtains a secret sk.
Then the equivocator uses SimDlogC for computing a commitment of sk. Now
the equivocator can run the honest prover algorithm of X°°™® obtaining a and
computes ¢ using the OR-composed proof system of SimDlogC. Later for any
message m he can compute z such that (a,m,z) is accepting for Y™, The
same can be done for computing G and then Z such that (a,¢, 2) is accepting
for proving that com is a commitment of one of two secret keys. Note that the
equivocator crucially uses knowledge of the secret key and therefore knowledge of
the discrete logarithms of the pair computed by means of SimDlogC to commit
to the secret key. The running time of the equivocator is polynomial, this is the
major benefit of the BPK model. Indeed the equivocator is required to run only
one extraction procedure for each entry of the public file. The remaining part of
the work is straight-line. Since the size of the public file is polynomial, so is the
running time of the equivocator.

The indistinguishability of the equivocator with respect to a real sender can
be proved using the following standard hybrid arguments. The game played by
the prover is modified by letting it to commit to the same secret key used by
the simulator. This change is not noticeable, otherwise the hiding property of
SimDlogC is broken?. The game of this modified prover differs from the simu-
lation only because the prover uses the simulator of ¥<°® while the simulator
uses the honest prover of X°°®. However, the two distributions are perfectly
indistinguishable.

4 Efficient Concurrent Zero Knowledge

We now briefly show how to obtain a 4-round concurrently sound concurrent
zero-knowledge argument of knowledge in the BPK model for any language L
that admits a X-protocol. We show an efficient transformation that only adds
one round and O(1) modular exponentiations. For the definition of concurrent
zero-knowledge with concurrent soundness in the BPK model, please see [16, 11].

4 Note that this step actually requires additional hybrid arguments since the prover
(potentially) commits to a different secret key in a polynomial number of sessions.
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Let X1 be a X-protocol for the language L. The basic idea is that first the
prover computes the first message ay, of X, then he uses the concurrent equiv-
ocal commitment scheme constructed in Section 3.1 to compute a commitment
com, of ay, that is sent to the verifier. Note this commitment is executed running
the 3-round protocol discussed in Section 3.1. The verifier appends to the third
round of this interactive commitment scheme a challenge ¢, of X'z. In the fourth
message the prover simply opens the commitment com, of ar and computes
and sends the third message z;, of Y. The verifier accepts if and only if both
the commitment has been correctly opened and (ar,cr, z1) is accepted by the
verifier of X'y,.

Completeness is straightforward. Concurrent zero knowledge is obtained as
in the previous works of [6,8]. The simulator uses the equivocator of the com-
mitment scheme in order to compute commitments that can be equivocated.
Consider session ¢, let com,, be the commitment computed by the simulator and
let ¢; be the challenge of X7, sent by V*. The simulator runs the simulator of the
special honest-verifier zero-knowledge property of Xy, for obtaining an accepting
transcript (a;, ¢;, 2;). Then still working as the equivocator it opens com,, as
a; and completes the proof. Since the equivocator can compute any polynomial
number of equivocal commitments in polynomial time, and since the additional
work of S is straight-line, the resulting running time of S is still polynomial in
the security parameter. Witness extraction and concurrent soundness follow from
the special soundness of X, and the (concurrent) binding of the commitment
scheme.

Alternative construction. The previously discussed construction is modular on
top of a concurrent equivocal commitment scheme. It is also possible to give a
direct construction in which Comy,com is not used. Indeed, after using SimDlogC
for computing com = (g, ﬁ), the standard technique proposed by [18,19] can be
used directly. Here the prover has to 1) prove that “com is the commitment of
the discrete logarithm of either hg or hy” using SimDlogC, 2) prove knowledge of
a) a witness for € L or b) the discrete logarithms of § in base g and either the
one of h in bases hq or the one of & in bases h;. The honest prover obviously can
complete the protocol using the witness y for “x € L”. Instead, the simulator will
use the secret key committed in com to indistinguishability complete the proof.
Concurrent soundness still holds since the commitment com can correspond to
at most one secret key.
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Abstract. We define and construct Independent Zero-Knowledge Sets
(ZKS) protocols. In a ZKS protocols, a Prover commits to a set S, and
for any x, proves non-interactively to a Verifier if z € S or z ¢ S without
revealing any other information about S. In the independent ZKS proto-
cols we introduce, the adversary is prevented from successfully correlate
her set to the one of a honest prover. Our notion of independence in
particular implies that the resulting ZKS protocol is non-malleable.

On the way to this result we define the notion of independence for com-
mitment schemes. It is shown that this notion implies non-malleability,
and we argue that this new notion has the potential to simplify the design
and security proof of non-malleable commitment schemes.

Efficient implementations of ZKS protocols are based on the notion
of mercurial commitments. Our efficient constructions of independent
ZKS protocols requires the design of new commitment schemes that are
simultaneously independent (and thus non-malleable) and mercurial.

1 Introduction

The notion of Zero Knowledge Sets (ZKS) was introduced by Micali, Rabin and
Kilian in [17]. In these protocols, one party (Alice) holds a secret database Db
which can be accessed by another party (Bob) via queries. When Bob queries the
database on a key x, Alice wants to make sure that nothing apart from Db(x) is
revealed to Bob, who at the same time wants some guarantee that Alice is really
revealing the correct value.

Micali et al. presented a very ingenious solution to this problem, based on a
new form of commitment scheme (later termed mercurial commitments in [14]).
In a nutshell, Alice first commits to the entire database in a very succinct way,
and then when Bob queries a given key z, Alice answers with a “proof” 7, that
Db(z) = y according to the original commitment. Their solution is efficient and
based on the discrete logarithm assumption.

A construction based on general assumptions, and allowing more general
queries on the database, was presented in [19]. However their construction re-
quired generic ZK proofs, based on Cook-Levin reductions and thus was less
efficient than [17]. The original construction in [17] has been generalized to hold
under various assumptions in [14] and [5].

* Extended Abstract. An extended version, which contains all formal definitions
and proofs, is available at the TACR Eprint Archive: http://eprint.iacr.org/
2006/155
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MALLEABILITY. ZKS protocols guarantee simply that when Bob queries x, only
the value of D(z) is disclosed. However, this is only one of possible attacks
that can be carried on a cryptographic protocol. It is well known that proving
confidentiality may not be sufficient, in an open network like the Internet, where
an Adversary can play the role of “man-in-the-middle” between honest parties.

First formalized in [10], the notion of malleability for cryptographic protocols
describes a class of attacks in which the adversary is able to correlate her values
to secret values held by honest players. In a ZKS protocol, for example, this
would take the form of the adversary committing to a set somewhat related to
the one of a honest player and then using this to her advantage.

The confidentiality property of ZKS protocols does not prevent such an attack
from potentially taking place. Indeed such an attack could be devised against the
protocol from [17]. What we need is an enhanced definition of security, to make
sure that databases committed by one party are independent from databases
committed to by a different party.

NON-MALLEABLE COMMITMENTS. The first non-malleable commitment scheme
was presented in [10], but it required several rounds of communication. A break-
trough result came with a paper by Di Crescenzo, Ishai and Ostrovsky (DIO)
[8] which constructed a non-interactive and non-malleable commitment scheme.
Following the DIO approach several other commitment schemes were presented
with improved efficiency or security properties (e.g. [9,7,15,12]).

The DIO approach has a very interesting feature: non-malleability is proven by
showing that the commitment satisfies a basic “independence” property (though
this property is not formally defined as such), and then it is shown that this
property implies non-malleability. All the commitment schemes that followed the
DIO approach have a proof of security structured in a similar way. However the
only “original” part of the proof in each scheme is the proof that the commitment
satisfies this “independence” property. The second part of the proof is basically
identical in all the proofs.

OUR CONTRIBUTION

— We define the notion of Independent Zero Knowledge Sets which enforces the
independence of databases committed by various parties. We also define the
notion of independence for commitment schemes. This definition captures
the crucial notion of security in a DIO-like commitment.

Once this notion of independence is formalized we restate the second part
of the DIO proof as a formal theorem that shows once and for all that
independent commitments are non-malleable.

We believe that isolating the notion of independence has the potential to
simplify the design and security proof of non-malleable commitments in the
future.

— We present efficient independent ZKS protocols. These protocols are enabled
by the efficient constructions of new commitment schemes that are simulta-
neously independent (and thus non-malleable) and mercurial.

— Finally we define various notions of non-malleability for ZKS protocols. We
then ask if the DIO theorem (that independence implies non-malleability for
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commitments) holds for ZKS protocols as well. Surprisingly the answer is not
that simple. We show under which conditions independent ZKS protocols are
also non-malleable.

2 Zero-Knowledge Sets

ZKS DEFINITION. An elementary database Db is a subset of {0,1}* x {0,1}*
such that if (z,v) € Db and (z,v") € Db then v = v'. With [Db] we denote the
support of Db, i.e. the set of x € {0,1}* for which Jv such that (z,v) € Db. We
denote such unique v as Db(x); if ¢ [Db] then we also write Db(x) = L. Thus
Db can be thought of as a partial function from {0, 1}* into {0,1}*.

In a ZKS protocol we have a Prover and Verifier: the Prover has as input a
secret database Db. The Prover runs in time polynomial in |[Db]| (the cardinal-
ity of the support) and the number of queries, while the Verifier runs in time
polynomial in the maximal length of x € [Db], which we assume to be publicly
known. They also have a common input string o, which can be a random string
(in which case we say that we are in the common random string model) or a
string with some pre-specified structure (in which case we say we are in the
common parameters model).

The Prover first commits in some way to the database Db. This commitment
string is then given as input to the Verifier. Then the Verifier asks a query x
and the Prover replies with a string 7, which is a proof about the status of = in
Db. The Verifier after receiving m, outputs a value y (which could be L) which
represents his belief that Db(z) = y, or bad which represents his belief that the
Prover is cheating.

A ZK Set protocol must satisfy completeness, soundness and zero-knowledge.
Informally completeness means that if Db(x) = y the Prover should always
be able to convince the verifier of this fact. Soundness means that no efficient
Prover should be able to produce a commitment to Db, a value x and two proofs
7z, T that convince the Verifier of two distinct values for Db(z). Finally zero-
knowledge means that an efficient verifier learns only the values Db(z) from his
interaction with the Prover, and nothing else. In particular the Verifier does not
learn the values Db(z") for an z’ not queried to the Prover (following [13] this
is stated using a simulation condition).

2.1 Mercurial Commitments
A mercurial commitment scheme [14] is a commitment with two extra properties:

1. On input a message m, the sender can create two kinds of commitments: a
hard and a soft commitment.

2. There are two kinds of openings: a regular opening and a partial opening or
teasing.

The crucial properties of a mercurial commitment are: (i) both hard and soft
commitments preserve the secrecy of the committed message (semantic security);
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(ii) hard commitments are indistinguishable from soft ones; (iii) soft commit-
ments cannot be opened, but can be teased to any value (even without knowing
any trapdoor information); (iv) hard commitments can be opened or teased only
to a single value (unless a trapdoor is known).

A construction of mercurial commitments was implicitly presented in [17]
based on discrete log. More constructions were presented in [14,5], including
one based on general assumptions. Let us recall the discrete log construction
and a new one based on RSA!.

MERCURIAL COMMITMENTS BASED ON DISCRETE LOG. This commitment is
based on [1,18]; the mercurial property was introduced in [17]. The public in-
formation is a cyclic group G of prime order ¢, where multiplication is easy and
the discrete log is assumed to be hard. Also two generators g, h for G.

To hard commit to M, choose p, R €, Z;: let h, = g*h and commit using Ped-
Com with bases g, h, i.e. compute C' = thf. The hard commitment is h,,C.
The opening is M, R, p and the verification of a hard commitment is to check
the above equations. To soft commit, choose p, R €, Z;: let h, = g” and commit
to 0 using Ped-Com with bases g, h, i.e. compute C = hﬁ. The soft commitment
is h,, C Notice that in a soft commitment, one actually knows the discrete log
of h, with respect to g, while in a hard-commitment computing such discrete
log is equivalent to computing log, h. Thus to tease the above soft commitment
to M’, one produces R’ with R’ = R — M’p~! mod ¢. The verification of such a
teasing consists in checking that gM/h/If/ =C.

MERCURIAL COMMITMENTS BASED ON RSA. This commitment is based on
[6]; the mercurial property is an original contribution of this paper. The public
information is an RSA modulus N, a prime e, such that GCD(e, ¢(N)) = 1;
and s €r Z5. To hard commit to M, choose p, R €gr Z}: let s, = sp° mod N
and commit using RSA-Com with base s, i.e. compute C' = s]pre. The hard
commitment is s,, C. The opening is M, R, p and the verification of a hard
commitment is to check the above equations. To soft commit, choose p, R €,
Z%: let s, = p® and commit to 0 using RSA-Com with base s, i.e. compute
C = R°. The soft commitment is s,,C’ Notice that in a soft commitment, one
actually knows e-root of s,, while in a hard-commitment computing such root is
equivalent to computing the e-root of s. Thus to tease the above soft commitment
to M’, one produces R’ with R" = Rp~™ mod N. The verification of such a
teasing consists in checking that sf\f[,(R’)e = C mod N.

2.2 Constructing ZK Sets

Using any mercurial commitment it is possible to construct a ZKS protocol as
shown in [17].

Let [ to denote the maximal length of an input x € [Db]. As we said above
we assume this to be a publicly known value. The Prover uses a variation of a

! This construction of mercurial commitments based on RSA was independently dis-
covered in [14].
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Merkle tree [16]. The Prover builds a tree of height ! and stores a commitment
to Db(z) in the z-leaf (notice that if = ¢ [Db] then Db(x) = L). Then the Prover
stores in each internal node a commitment to the contents of its two children:
this is done by hashing the values of the two children using a collision-resistant
hash function and then committing to the resulting value. The final commitment
to Db is the value stored at the root. To prove the value of Db(z) the Prover just
decommits all the nodes in the path from the root to x (in particular this means
that he reveals the values stored at their siblings, but without decommitting
them), thus providing a Merkle-authentication path from the leaf to the root.
The Verifier checks this path by checking the all the decommitments are correct.

Unfortunately the above algorithm runs in time 2!, no matter what the size
of the database is. In order to have the Prover run in time polynomial in |[Db]],
a pruning step is implemented as follows. First of all, we use mercurial com-
mitments, to compute the commitments. In the above tree, we consider all the
maximal subtrees whose leaves are not in [Db]. We store a soft-commitment in
the roots of those trees. The rest of the tree is computed as above, using the
hard commitments. Now the running time of the Prover is at most 2I|[Db]| since
it is only computing full authentication paths for the leaves inside Db.

The question is now how do you prove the value of Db(x). If x € [Db] then
you just decommit (open) the whole authentication path from its leaf to the
root, as before.

Let x be the a query such that « ¢ [Db], i.e. Db(z) = L. Let y be the last
node on the path from the root to x that has a commitment stored in it. We
associate soft-commitments to the nodes on the path from y to x and their
siblings, including . Then we compute an authentication path from the root to
x, except that we tease (rather than open) each commitment to the hash of the
commitment of the children. Notice that we can seamlessly do this from the root
to x. Indeed from the root to y these are either hard or soft commitments, and
we only tease the hard ones to their real opening. From y to the leaf those are
soft commitments that can be teased to anything.

3 Independent Zero-Knowledge Sets

INDEPENDENT COMMITMENTS. As we said in the introduction, our starting point
was the DIO approach [8] to build non-malleable commitments. In order to prove
the non-malleability of their commitment scheme they first proved the following
property.

Consider the following scenario: £ honest parties? commit to some messages
and the adversary, after seeing their commitment strings, will also produce a
commitment value. We require that this string must be different from the com-
mitments of the honest parties (otherwise the adversary can always copy the

2 To be precise in [8] only the case £ = 1 is considered, and suggested how to easily
extend it to constant £. The case of arbitrary ¢ (polynomial in the security parame-
ter) is presented by Damgard and Groth in [7] to construct reusable non-malleable
commitments.
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behavior of a honest party and output an identical committed value). At this
point the value committed by the adversary is fized, i.e. no matter how the hon-
est parties open their commitments the adversary will always open in a unique
way.

In [8] this property is not formally defined but it is used in a crucial way in
the proof of non-malleability. We put forward a formal definition for it (see full
version) and we say that such a commitment scheme is £-independent. If it is
l-independent for any ¢ (polynomial in the security parameter) we say that is
simply independent.

As mentioned in the Introduction, following the DIO approach, several other
non-malleable commitments were presented (e.g. [9,7,15,12]). All these schemes
are independent according to our definition. Moreover their non-malleability
proofs all share the same basic structure: an “original” part which proves that
they are independent (once one formalizes the notion, as we did) — and a second
part (common to all proofs and which basically goes back to DIO [8]) that the
independence property implies non-malleability.

By formalizing the notion of independence we can then rephrase this second
part of the DIO proof as a separate theorem:

Theorem 1 (DIO [8]). If an equivocable commitment scheme is £-independent
then it is (¢, €)-non-malleable with respect to opening, for any e. As a conse-
quence, if an equivocable commitment scheme is independent then it is e-non-
malleable with respect to opening, for any e.

3.1 Defining Independence for ZK Sets

Let us consider a man-in-the-middle attack for a ZK Sets protocol. In such an
attack, the Adversary would interact with the Verifier but while on the back-
ground is acting as a verifier himself with a real Prover. Of course we can’t
prevent the Adversary from relaying messages unchanged from the Prover to
the Verifier and vice versa. But we would like to prevent an adversary to commit
to a related database to the one committed by the real Prover and then manage
to convince the Verifier that Db(x) is a value different than the real one. When
we define independence for ZKS our goal will be to prevent this type of attacks.

A WEAK DEFINITION. A first approach is to treat ZKS protocols in a similar way
as commitments. Then the definition of independence would go as follows. The
adversary commits to a set after seeing the commitment of the honest prover,
but before making any queries about the set committed by the honest prover.
What we would like at this point is that the set committed by the adversary is
fized, i.e. it will not depend on the answers that the honest prover will provide
on queries on his own committed set.

We call the above weak independence. This property is easily achieved by
combining any ZKS protocol with any independent commitment.

A STRONGER DEFINITION. It may not be reasonable to assume that the ad-
versary does not query the honest provers before committing. Thus a stronger
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definition of independence allows such queries. However once the adversary has
seen the value Db(z) of x in the database Db held by the honest prover, it can
always commit to a set which is related to Db by the mere fact that the adver-
sary knows something about Db (for example the adversary could committ to
Db where DV (z) = Db(x)).

The idea is to make sure that the set committed by the adversary is indepen-
dent from the part of the honest prover’s set that the adversary has not yet seen.
Here is how we are going to formalize this.

Consider an adversary A = (A1, Az) which tries to correlate its database to
the one of a honest prover. 4; sees the commitments of the honest provers,
queries them (concurrently) on some values, and then outputs a commitment
of its own. Ay is given concurrent access to the provers to whom he can ask
several database queries while answering queries related to A;’s commitment.
We would like these answers to be independent from the answers of the honest
provers except the ones provided to Ay before committing.

In other words A1, after seeing the commitments Comy, ..., Comy of £ honest
provers, does the following: (i) queries Com; on some set @Q); of indices, which are
answered according to some database Db;, and then (ii) outputs a commitment
Com of its own.

We now run two copies of As, in the first we give him access to provers
that “open” the C'om; according to the databases Db;; in the second instead
we use some different databases Db}. However the restriction is that Db must
agree with Db; on the set of indices QQ;. At the end Ay outputs a value x and
the corresponding proof 7, with respect to Com. We require that the database
value associated to x in the two different copies of A must be the same, which
implies that it is “fixed” at the end of the committing stage.

Of course we must rule out the adversary that simply copies the honest
provers, as in that case achieving independence is not possible (or meaning-
ful). Thus we require that A; output a commitment Com different from the
honest provers’ Com;. A formal definition follows.

Given two databases Db, Db’ and a set of indices ) we define the operator -
as follows: Db g Db is the database that agrees with Db’ on all the indices
except the ones in ) where it agrees with Db.

We say that a ZKS protocol is f-independent if the following property holds
(where Q); is the list of queries that A; makes to the oracle Sim2Pb: () (wi, Comy)):

ZKS (-independence. For any adversary (A, .42) and for any pair of ¢-tuple

of databases Dby, ..., Db, and DU, ..., Db, the following probability

(0,wp) « SimO(1%) 5 (Comy,w;) « Siml(wo) Vi=1,...,¢;

im2P% () (. Com; . .

(Com,w) «— A?'mz O e ‘)(U,w) with Com # Com,; Vi ;

im2DPbi (- ) )
Pr (z,70z) — A;'mz ()(w"’com‘)(a,w) :
s o PbiAq, Db () s -
(z, 7)) «— A;'mz ¢ (ws,Cor L’)(a,w) :

bad # V(o,Com, x, ) # V(o,Com, z,},) # bad

is negligible in k.
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The above notion guarantees independence only if the adversary interacts with
a bounded (¢) number of honest provers. We say that a ZKS protocol is inde-
pendent if it is f-independent for any ¢ (polynomial in the security parameter).
In this case independence is guaranteed in a fully concurrent scenario where the
adversary can interact with as many honest parties as she wants.

THE STRONGEST POSSIBLE DEFINITION. A stronger definition allows A; to
copy one of the honest provers’ commitments, but then restricts As somehow.
Namely, we say that either Com # Com; for all i, or if Com = Com,; for some
i, the answer of A5 must be “fixed” on all the values & which she does not ask
to the i*" prover. We call this strong independence.

We say that a ZKS protocol is strongly £-independent if the following property
holds, where Q; (resp. @}) is the list of queries that A; (resp. Az) makes to the
oracle Sim2P% () (wi, Com;):

ZKS strong (-independence. For any adversary (A;,.43) and for any pair of
¢-tuple of databases Dby, ..., Db, and Db}, . .., Db the following probability

[(0,wp) « SimO(1%) ; (Comy,w;) «— Siml(wo)Vi=1,...,¢;

Sim2P% ) (w. . Com.;
(Com,w) «— A" (s, Om")(cr,w) ;
Sim2P% () (w,;,Com,)

PT‘ (x7 7796) — AZ ,
) e ASm2PHO (s Coma)

(oyw) ;

(@, 7} o,w) :
bad # V(o,Com, x,m;) # V(o,Com, z, 7)) # bad AND
| ((Com # Com; Vi) OR (Fi : Com = Com; AND z ¢ Q7)) |

is negligible in k.

Again we say that a ZKS protocol is (strongly) independent if it is (strongly)
(-independent for any ¢ (polynomial in the security parameter).?

3.2 Constructing Independent ZKS

In this section we show how to modify the original protocol presented in [17]
(recalled in Section 2.2) using a different type of commitment which will yield

3 Note that since we need to open the same database commitment according to

two different databases, the definition is stated in terms of the simulated provers.
But simulated executions are indistinguishable from real ones, so that independence
property holds in real life too.

This is the reason why we restrict the database Db, to agree with Db; on the
queries that were asked by the adversary before committing. In our proofs of security
this requirement does not matter (i.e. the adversary would not be able to output
(@, 7, T ) such that V outputs different values for Db(z) depending on which proof,
75 or T, is provided, even if Db’ does not agree with Db; on the set Q;). But the
simulated execution is indistinguishable from the real one only if the answers are
consistent. Thus after A; has seen a given value for Db;(z), we need to make sure
that in both copies of A2 the same value appears for Db;(z), in order to make the
simulated run indistinguishable from a real one.
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strong independence. This new commitment schemes that we introduce are si-
multaneously independent and mercurial.

STRONG 1-INDEPENDENCE BASED ON DISCRETE LOG. The starting point of
this protocol is Pedersen’s commitment, modified as in [17] to make it mercurial.
In order to achieve independence we modify the commitment further, using
techniques inspired by the non-malleable scheme in [9]. We are going to describe
the protocol that achieves strong independence and later show how to modify it
if one is interested in just independence.

DLSI-ZKS

— CRS Generation. On input 1* selects a cyclic group G of order ¢, a k-
bit prime, where the discrete logarithm is assumed to be intractable and
multiplication is easy. It also chooses three elements g1, g2, h €g G. Finally
it selects a collision-resistant function H with output in Z,. The CRS is
o= (G,q,gl,QQ,h,H)

— Prover’s Committing Step. On input Db and the CRS o. Choose a key pair
sk,vk for a signature scheme. Let o = H(vk) and g, = ¢g¥g2. Run the prover’s
committing step from [17] on Db and the mercurial commitment defined by
0o = (G, q, ga, h) to obtain Com, Dec. Output Com, vk.

— Prover’s Proving Step. On input  compute 7, with respect to o, Com, Dec
using the prover’s proving step from [17]. Then output Com, 7, and sig, a
signature on (Com, ) using sk.

— Verifier. Check that sig, is a valid signature of (Com, x) under vk; if yes, com-
pute o = H(vk) and g, = g{ g2 and run the [17] Verifier on (o4, Com, z, 1),
otherwise output bad.

Theorem 2. Under the discrete logarithm assumption, DLSI-ZKS is a strong
1-independent zero-knowledge set protocol.

STRONG INDEPENDENCE UNDER THE STRONG RSA ASSUMPTION. We are going
to use the mercurial RSA commitment described in Section 2.1. In order to
achieve independence we are going to modify it further using techniques inspired
by [7,12], which require the Strong RSA assumption [2, 20]. Here is a description
of the protocol.

SRSA-ZKS

— CRS Generation. The key generation algorithm chooses a k-bit modulus, N
as the product of two large primes p, ¢ and a random element s €r Z3;. Also
selects a collision-resistant hash function H which outputs prime numbers
> 2F/2_ Notice that such primes are relatively prime to ¢(N). The CRS is
o= (N,s, H).*

4 We can use the techniques from [12] to implement H efficiently. Also if we choose N
as product of two safe primes, then it is sufficient for H to outputs primes smaller
than 2’“/271, speeding up all computations.
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— Prover’s Committing Step. On input Db and the CRS o. Choose a key pair
sk,vk for a signature scheme. Let e = H(vk). Run the Prover’s committing
step from [17] on Db and the mercurial commitment defined by o. = (I, s, €)
to obtain Com, Dec. Output Com, vk.

— Prover’s Proving Step. On input x compute m, with respect to o., Com, Dec
using the Prover’s proving step from [17]. Then output Com,w, and sig, a
signature on (Com, ) using sk.

— Verifier. Check that sig, is a valid signature of (Com,x) under vk; if yes,
compute e = H(vk) and run the [17] Verifier on (0., Com,x, 7, ), otherwise
output bad.

Theorem 3. Under the Strong RSA Assumption, SRSA-ZKS is a strong inde-
pendent zero-knowledge set protocol.

If one is interested in simple independence (rather than strong independence)
both of the above protocols can be simplified by using more efficient one-time
signature schemes for vk and just sign Com. Even more efficiently, to obtain
independence, one can use a message authentication code in place of a signature
scheme (the original idea in [9]). Informally, the basic idea is to commit to a
random MAC key a using a basic trapdoor commitment: call this commitment
A. Set a« = H(A) (resp. e = H(A)) and now use it the same way we used « (resp.
e) in DLSI-ZKS (resp. SRSA-ZKS). To answer a query x, open A as a, produce
and a MAC of Com under a. However note that both these variations (one-time
signatures or MAC) cannot be used for strong independence as we need to sign
several messages (C, z;) with the same key.

It is possible to obtain strong independence under the newly introduced Strong
DDH assumption over Gap-DDH groups [3]. This approach uses the multi-
trapdoor commitment from [12] based on this assumption, modified it to make
it both mercurial and independent. Details appear in the final version.

4 Independence Versus Non-malleability for ZKS

In the previous section we showed that independence implies non-malleability
for commitments. Does this implication extend to the case of ZKS protocols as
well? The answer, surprisingly, is not that simple.

The first thing to clarify, of course, is a definition of non-malleability for ZKS
protocols. Informally in the commitment case [10], a non-malleable commitment
satisfies the following property. An adversary A is fed with a commitment to a
message m, and she outputs another commitment to a message m’. If A manages
to commit to a message m’ related to m then there is another machine A’ that
outputs a commitment to m’ without ever seeing a commitment to m. So in other
words the commitment is not helping A in committing to related messages.

Our definition of non-malleability for ZKS follows the same paradigm. Except
that, as in the case of independence, we have to deal with the fact that a ZKS
commitment is a commitment to a large string and that the adversary may
receive partial openings before creating her own commitment. For this reason
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we present three separate definitions, each stronger than the previous one and
investigate their relationship with our notion of ZKS independence.

ZKS WEAK NON-MALLEABILITY. A first attempt would be to consider ZKS
protocols simply as commitments to large strings. In other words, as in the case
of weak ZKS independence, the adversary commits before querying the honest
provers. In this case the definition of ZKS non-malleability would be basically
identical to non-malleability for commitment schemes.

Corollary 1. If a ZKS protocol is weakly ¢-independent then it is weakly (£, €)-
non-malleable with respect to opening.

ZKS NON-MALLEABILITY. We can strengthen the above definition by allow-
ing the adversary to query the committed databases before producing its own
commitment, which must be different from the ones of the honest provers.

However now we are faced with a “selective decommitment problem” [11].
A ZKS commitment is a commitment to a large set of strings: by allowing the
adversary to query some keys in the database we are basically allowing a selective
decommitment of a subset of those strings (some points in the database).

Thus to obtain this form of ZKS non-malleability we need a commitment
scheme which is secure against the selective decommitment problem. We do not
know if independent or non-malleable commitments are secure in this sense.
Universally composable (UC) commitments [4], on the other hand, are secure in
the selective decommitment scenario.

However to obtain an efficient ZKS protocol, such UC commitments would
have to be used inside the [17] construction, and thus would have to be mercurial
as well. Unfortunately we do not know any commitment that is simultaneously
mercurial and UC (not to mention also non-interactive).

Another approach is to restrict the distribution of the committed databases.
Under this assumption we can prove that independence will suffice.

Let ZDB be the family of distributions over databases where each distribu-
tion can be efficiently sampled conditioned on the value of some points in the
database. In other words a distribution DB € ZDB if after sampling Db € DB
and a set of points z; it is possible to efficiently sample Db’ € DB such that
Db, Db agree on z;. An example of such a class of distributions is the one in
which the value of each element in the database is independent from the others.

Theorem 4. If a ZKS protocol is {-independent then it is (£, €)-non-malleable
with respect to opening, with respect to the distribution class TDB.

ZKS STRONG NON-MALLEABILITY. In this definition we allow the adversary
to copy one of the commitments, of the honest provers. Now recall that when
she is queried on her committed database, she can query the honest provers
in the background on their databases. Since she copied the (say) i*" committed
database, a distinguisher can always detect a correlation between the adversary’s
and P;’s answer to the same query x. But we require that this must be all that the
distinguisher can see. In other words, the distinguisher cannot see any correlation



Independent Zero-Knowledge Sets 45

between the answers of A and the answers of all the other P;’s; and cannot see
any correlation between the answers of A and the answers of P; unless it queries
them on the same value.

Theorem 5. If a ZKS protocol is strongly £-independent then it is strongly (£, €)-
non-malleable with respect to opening, with respect to the distribution class TDB.
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Abstract. Pass showed a 2-move deniable zero-knowledge argument
scheme for any NP language in the random oracle model at Crypto
2003. However, this scheme is very inefficient because it relies on the cut
and choose paradigm (via straight-line witness extractable technique).
In this paper, we propose a very efficient compiler that transforms any
Y)-protocol to a 2-move deniable zero-knowledge argument scheme in
the random oracle model, which is also a resettable zero-knowledge and
resettably-sound argument of knowledge. Since there is no essential loss
of efficiency in our transform, we can obtain a very efficient undeniable
signature scheme and a very efficient deniable authentication scheme.

Keywords: deniable, efficient, constant-round, resettable zero-knowl-
edge, the random oracle model, resettably-sound argument of knowledge,
X -protocol.

1 Introduction

Zero-knowledge interactive proof systems, first proposed by Goldwasser, Micali
and Rackoff [19], have the significant property that they leak no knowledge other
than the validity of the proven assertion. It has been shown in [22] that every NP-
statement can be proved in zero-knowledge if one-way functions exist. Because
of these properties, these proof systems have been found to be very important
tools in many cryptographic applications.

The original definition of zero-knowledge considered the setting in which a
single prover and a verifier execute only one instance of a protocol. However,
in more realistic settings, where many computers are connected through the
Internet and protocols may be concurrently executed, many verifiers may interact
with the same prover simultaneously. Proof systems that are zero-knowledge even
in such a setting are called concurrent zero-knowledge (cZK).

The term “concurrent zero-knowledge” was coined by Dwork, Naor, and Sahai
in [13], and they observed that the zero-knowledge property does not necessarily
carry over to the concurrent setting. Indeed, Goldreich and Krawczyk showed
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in [21] the existence of protocols that are ordinary zero-knowledge and yet fail
dramatically to be zero-knowledge in the concurrent scenario. Moreover, Kilian,
Petrank, and Rackoff showed a negative result in [26] such that any language
that has a 4-move black-box ¢ZK proof argument is in BPP. Canetti, Kilian,
Petrank, and Rosen proved in [7] that black-box ¢ZK proof systems for any
non-trivial language require a non-constant number (2(logk)) of rounds.

Despite these negative results, many protocols that achieve round efficiency
and adequate security in concurrent settings have been presented under some
additional assumptions. These include ¢ZK under the timing assumption [13], re-
settable zero-knowledges (rZK) in the public-key model [6] and the weak public-
key model [29], cZK in the auxiliary string model [11], universally composable
zero-knowledge in the common reference string (CRS) model [5], etc.

Now even though the notions of ¢ZK in the CRS model and the auxiliary
string model achieve a kind of zero-knowledgeness, they lose some of the spirit
of the original definition. In particular, as is mentioned in [13], these models
are not sufficient to yield the property of deniability. An interactive protocol is
called deniable zero-knowledge if the transcript of its interaction does not leak
any evidence of interaction. For example the simulators in the CRS model and
the auxiliary string model are powerful enough to control their strings, while the
verifiers in these models are never able to control them. As a result, a verifier
interacting with a prover in these models are able to output a transcript that
cannot be generated by the verifier alone. Hence, the verifier’s possession of such
a transcript is an evidence of its interaction with the prover.

The question of whether or not there exists a constant-round deniable ¢ZK
argument under additional assumptions was studied by Pass [34]. He showed
that no black-box constant-round deniable ¢ZK argument for non-trivial lan-
guage exists in the CRS model. It is also shown there that a 2-move constant-
round straight-line witness extractable deniable ¢ZK argument exists for any
NP-language in the random oracle (RO) model. However, this argument sys-
tem is inefficient since it relies on the cut and choose technique. Fischlin also
proposed in [18] a communication efficient straight-line witness extractable zero-
knowledge proof that can be applied to deniable cZK argument. However, this
argument still requires rather large computational complexity.

Besides proving the existence of a certain kind of zero-knowledge protocol
for every language in NP, it is also important for practical applications to con-
struct a compiler which transforms Y/-protocols to certain kind of zero-knowledge
proof systems or arguments. X-protocols are 3-move special honest verifier zero-
knowledge protocols with special soundness property. We call such a compiler, a
X -compiler. X-compilers are useful in practical point of view since many efficient
J)-protocols for many relations are proposed until now. X-compilers for ¢ZK ar-
gument and that for rZK and concurrently sound protocol with small overhead
are proposed by [11] and [37], respectively. The results of Pass [34] and Fischlin
[18] mentioned above are indeed proposal of Y-compiler for 2-move straight-
line witness extractable deniable zero-knowledge argument in the random oracle
model. However, their X-compiler have large overheads.
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Our Contribution

In this paper, we propose a more efficient >’-compiler for deniable zero-knowledge
argument with very small overhead in the random oracle model. We also prove
that our X-compiler simultaneously provides the following properties:

— The resulting protocol is deniable resettable zero-knowledge (rZK).

— The resulting protocol is 2-move (constant-round).

— The computational and communication overhead of compilation is very small.
— The resulting protocol is resettably-sound argument of knowledge (RSAK).

We assume here the existence of an efficient invulnerable generator for some NP
language.

We note that the result of Pass also provides resettable soundness and can,
with slight modification, provide rZK property. (These facts have not been shown
before.) In this sense, the essential improvement in our scheme is with respect
to efficiency.

The overhead of our compiler is computation, verification, and transmission
of Fiat-Shamir transformations of any X-protocol, i.e., NIZK-argument. This 3-
protocol is chosen independently to the proven statement and we choose the most
efficient one within an allowed assumptions. On the other hand, the compiler in
[34] requires the verifier to generate the corresponding NIZK argument by Cut
& Choose method instead of Fiat-Shamir transformation. Thus, its overhead
will be larger than that of ours in the proportion of the security parameter
to one. Fischlin [18] improved efficiency of communication complexity but its
computational overhead is till large.

Although our protocol itself is efficient, it does not provide a straight-line
simulator. It only provides a rather complicated but still polynomially bounded
simulator. This can be compared to cZK protocols under the timing assumption
[13] and rZK protocols in the public-key models [6,29]. All types of protocols
achieve deniability with efficient non straight-line simulator in different models.
Our protocol is the first that provides an efficient non straight-line simulator in
the random oracle model for what ?

Here, rZK and RSAK [2] are, respectively, stronger notions of ¢ZK and ar-
gument of knowledge. The requirement for rZK is more restricting than that of
¢ZK in the sense that proof systems or arguments must be cZK even if verifiers
in these protocols are able to reset provers. Meanwhile, protocols which are still
argument of knowledge against provers who can reset verifiers are called RSAK.

The notion of RSAK was proposed by Barak et al. in [2]. As is pointed
out in [6], rZK arguments of knowledge are impossible to achieve for non-
trivial languages as long as the ability of knowledge extractor is limited to
black-box oracle access to the prover. By exchanging the roles of provers and
verifiers, and those of simulators and knowledge extractors, this impossibility
holds for zero-knowledge RSAK. However, the negative result are only with re-
spect to the standard definition and may not hold in the random oracle model
where simulators and knowledge extractors are more powerful than, respectively,
the provers and verifiers in the sense that they are able to control random
oracles.
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Applications

The security of Chaum’s undeniable signature scheme was recently formally
proved in the random oracle model [33], where the confirmation protocol and
the disavowal protocol are both 4-move.

Now by directly applying our X-compiler, we can obtain a very efficient 2-
move confirmation protocol and a very efficient 2-move disavowal protocol which
are concurrent deniable zero-knowledge as well. It means that our variant of
Chaum'’s undeniable signature scheme is not only more efficient but also secure
even against concurrent attacks.

Further, our protocols are resettably-sound argument of knowledge. Hence,
our protocols remain secure in a setting where parties in protocols are imple-
mented by devices, which cannot reliably keep state (e.g., smart card), being
maliciously reset to prior state. And, the resulting protocols are available in
the setting when it is impossible or too costly to generate fresh randomness on
the fly.

Another application is deniable identification. In Schnorr’s identification
scheme, a cheating verifier (Bob) will compute his challenge as a hashed value
of the first message of the prover (Alice). Then the transcript of the protocol
is an evidence of the fact that Alice executed the protocol with Bob. So the
privacy of Alice is not protected. In this sense, Schnorr’s identification scheme
is not deniable. Now by applying our X-compiler, we can obtain a very efficient
2-move deniable identification scheme.

Organization

Our paper is organized as follows. Section 2 describes the basic concepts involved
in constructing the proposed compiler in the random oracle model. Section 3 de-
scribes our approach and then proposes our X-compiler for 2-move deniable rZK
that is also RSAK with no essential loss of efficiency in the random oracle model.
Section 4 describes the main idea of the reason why the result of our proposed
compilation is deniable. Section 5 discusses the efficiency of our compiler.

2 Preliminaries

2.1 Notation

For a random oracle RO, RO(x) denotes its output on input x.

Definition 1. A function f(n) is negligible if Ves 03N Y0 > N, f(n)< L.

Definition 2. Let R C {0,1}*x{0,1}* be a relation. We say that (x,w) satisfies
R if (x,w) € R, where x is called an common input and w is called a witness.
Define Lr = {x| Fw s.t., (x,w) € R}. Also let R, = RN ({0,1}" x {0,1}").

Definition 3. A generator for a relation R is a deterministic polynomial time
Turing machine Gr which outputs (x,w) € R, on input a random string rg €
{0,190 where Q(-) is some polynomial.
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Gpr is called an invulnerable generator for R if for any polynomial time
nonuniform algorithm A, Pr[(z, A(x)) € R] is negligible in n, where (z,w) «— Gg
and the probability is taken over rq.

For example, let R = {((p,9,y = g mod p),w), where p is a prime, g € Z;
has a prime orderq which is close to p and w € Z;. Then G is an invulner-
able generator for R under the discrete log assumption if it outputs a random

((p, g,y =g* mod p),w) € R.

2.2 Deniable ZK in the Random Oracle Model

We consider the random oracle model, where a prover P and a (malicious) ver-
ifier V* have access to a random oracle O. In the definition of zero-knowledge,
however, a distinguisher D does not have access to O. Hence S has only to gen-
erate a view of V* by providing V* with a fake random oracle O’ which S can
manipulate arbitrarily.

Therefore, V* cannot necessarily generate his view by himself in the real world,
where D has access to O. This means that V* can use the view as an evidence
of the fact that P executed the protocol, and P cannot deny it. Indeed, V* can
show the view as an evidence to the third party who has access to O.

On the other hand, in the definition of deniable zero-knowledge, D has access
to the random oracle O. So S must be able to generate a view of V* which
cannot be distinguished from the real one by D who has access to O. Therefore,
in a deniable zero-knowledge protocol, there is no evidence of the fact that P
executed the protocol because V* can generate his view. Hence P can deny that
fact.

2.3 Concurrent ZK and Resettable ZK

A concurrent zero-knowledge (cZK) protocol is a zero-knowledge proof system
that withstand malicious verifiers who can interact for polynomial times with
the prover in an ”interleaved way” about the same theorem. In a resettable
zero-knowledge (rZK) protocol, a malicious verifier may not only interact for
polynomial times with the prover in an ”interleaved way”, but also enforce that,
in each such interaction, the prover has the same initial configuration (and thus
use the same random tape) [6].

Here, we introduce a deniable variant of rZK in the random oracle model.
Without loss of generality, we assume that each message of the verifier contains
the entire communication history up to that point. Furthermore, we assume that
the prover is memoryless: it responds to each message based solely on the input,
the random input and the received message.

Definition 4. An interactive protocol (P,V) for a relation R is said to be
(black-box) deniable rZK in the random oracle model if, there exists a proba-
bilistic polynomial time simulator S such that, for every probabilistic polynomial
time adversary V*, the following two distribution ensembles are computational
indistinguishable by every probabilistic polynomial time distinguisher who can
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access a random oracle RO: Let each distribution be indexed by a sequence of
common inpuls T = (T;)i—1,... poiy(n) and the corresponding sequence of prover’s
auziliary-inputs 0 = (W;)i=1,... poly(n) Such that (z;,w;) € Ry, for all i.

Distribution 1: This is defined by the following random process which depends
on P and V*.

1. Randomly select and fiz RO and t = poly(n) random-tapes, {r;}i=1... 1,
for P, resulting in deterministic strategies P(3) = Py, w; r; defined by
Py wir; (@) = P(xi,wi,rj, ), fori,j € {1,...,t}. Each P3) s called
an incarnation of P. P is allowed to access the random oracle RO.

2. Machine V* is allowed to arbitrarily interact with all the incarnations of
P (i.e., V* sends arbitrary messages to each of the P(%J) and obtains the
responses of P9 to such messages) and the random oracle RO. Once
V* decides it is done interacting with the P7) s, it (i.e., V*) produces
an output based on its view of these interactions.

Distribution 2: The output of S(Z). RO is randomly selected and fized at first.
S has black-box access to the random oracle RO and V** and is able to
control a random oracle RO*. V** is the same as V* except that the random
oracle that V** accesses is RO* rather than RO.

It is important to notice that the simulator is able to control the random oracle,
i.e., choose the outputs of the random oracle, that the verifier accesses but is
unable to control the one that the distinguisher accesses. The latter property is
the key feature of deniability. The former property comes from the fact that the
simulator can black-box access the verifier and is not essential for deniability.
Our simulator leverages this property for simulation while the simulator of Pass
only uses the property that it can catch random oracle queries of the verifier
but does not fully leverage the former property. To leverage this property, our
simulator rewinds the verifier for polynomial times.

Barak et al. defined the notion of RSAK in [2]. Since it is easy to know its
random oracle variant by analogy, we omit to present it here.

2.4 X-Protocols and ¥-Compilers

XY-protocols were introduced by Cramer, Damgard and Schoenmakers in [9].

Informally, a Y-protocol is a 3-round public-coin special honest verifier zero-

knowledge protocol which satisfies special soundness in the knowledge-extraction

sense. They are widely used in numerous important cryptographic applications

including digital signatures by using the famous Fiat-Shamir methodology [17].
For a relation R, let Lr = {z | (x,w) € R}.

Definition 5. A X-protocol for relation R, denoted by (Agr,Cgr, Zr,Vr), is a
3-round protocol (P, V') as follows, where P is a prover and V is a verifier. Let
x be a common input and w be the private input to P, where (x,w) € R. Let
rp € {0,1}" denote the random input of P.

In the first round, P sends a to V, where a is generated by computing a
function Ag on input x,w,rp. In the second round, V sends e to P, where e is
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randomly chosen from a set Cg. (Cg is implicitly indexed by n.) In the third
round, P sends z to V, where z is generated by computing a function Zr on
input x,w, e, rp. Finally, V computes Vg(a,e,z) = 1/0, where 1 means accept
and 0 means reject.

We require that the following three conditions are satisfied.

— Completeness. If P and V follow the protocol, V' always accepts.

— Special soundness. From any common input z and any pair of accepting
conversations (a, e, z) and (a, €', z’) with e # €', one can efficiently compute
w such that (z,w) € R.

— Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic
polynomial-time Turing machine Sg, called a simulator, as follows. For any
x € Ly, on input x and a random challenge string e, S outputs an accepting
conversation (a, e, z) which follows the same probability distribution as the
real conversation between the honest P and V.

A X -compiler is a transformation which transforms a X-protocol for a relation
R to a zero-knowledge proof system or argument for the same R which satisfies
a certain property.

3 Proposed Y-Compiler in the Random Oracle Model

3.1 Owur Approach

In the model of deniable zero-knowledge protocols, a prover P, a (malicious)
verifier V*, and a distinguisher D have access to the same random oracle O as
shown below.

(O—P)— (V" O)and D < O. (1)

In this model, P cannot see the queries of V* to O nor control the answers of O.
In the simulation of S, however, the simulator S can provide V* with a fake
random oracle O’ as follows.

O« S« (V"—0)and D < O. (2)

In the simulated world, S can see the queries of V* to O’ and control the answers
of O'.

In the methods of Pass and Fischlin, S sees the queries of V* to O’, but does
not control the answers of O’. On the other hand, we construct S which both
sees the queries of V* and controls the answers of O’. This is a critical part of
our approach. We use a similar technique for knowledge extractor as well.

3.2 Proposed Compiler

Now we present our X-compilers which output 2-move deniable rZK and RSAK
protocols in the random oracle model. respectively. Suppose that there exists a
XY-protocol for a relation R. Let P and V be a prover and a verifier, respectively,
and let « be a common input and w be the private input to P, where (z,w) € R.
Then our 2-move protocol proceeds as follows.
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1. V chooses a random (Z,w) € R and sends Z to P. V then proves that he
knows w non-interactively.
2. P proves that she knows w or w non-interactively.

We use Fiat-Shamir transformation [17] to construct non-interactive arguments,
and use the technique of [9] to construct the P’s message (OR protocol).

Although our protocol is very simple, it has not been known that it is de-
niable zero-knowledge. This is probably because many people believed that the
straight-line extractability of the witness of the verifier is necessary. Our main
contribution is then to proof that the above simple construction is indeed deni-
able zero-knowledge.

We first present Construction 1 which is deniable zero-knowledge only, but
not rZK. We next show Construction 2 which is rZK, where Construction 2 is
obtained by applying a known technique to Construction 1.

Suppose that there exists a X-protocol (Ag,Cr, Zr,Sg) for a relation R,
and a Y-protocol (Ag,Cg, Zg,Sg) for a relation R which has an invulnerable
generator G, where R can be the same as R. We assume that Cr = C and
| Clal = Clﬁ| is negligible in the security parameter n.

Let x be a common input and w be the private input to P, where (z,w) € R. P
has random tapes rg,rg,rp € {0,1}", and V has random tapes ry,rg € {0,1}".
They are allowed to have access to a random oracle RO whose output is uniformly
distributed over Cr = Cp.

Construction 1. 1. V sends (Z,a, Z) to P which are generated as follows.
(a) V generates (Z,w) € R by running G on input rg.
(b) V computes a = Ar(Z,w,rv).
(¢) V queries (Z,a) to RO, and RO returns € to V.
(d) V computes z = Zr(Z,w, e, ry).
2. P sends ((a,e, 2),(@,&,z')) to V which are computed as follows.
(a) P computes € = RO(Z,a), and verifies that Vr(Z,a,¢€,z) = 1.
(b) P generates a random & € C; by using . P then generates a simulated
view (z,a’,e’,z’) by running Sz on input (z,é’,rg).
(¢) P computes a = Ar(x,w,rp).
d) P queries (z,a,Z,a’) to RO, and RO returns d.
(e) P computes e =d @ é
(f) P computes z = Zg(z,w,e,rp).
3. V accepts iff

RO(z,a,z,d)=e®d e, Vi(z,a',e',Z') =1 and Vg(z,a,e,2) = 1.

Theorem 1. The above protocol is RSAK for relation R in the random oracle
model.

The proof is given in the full paper [1].

Theorem 2. The above protocol is deniable cZK in the random oracle model.



54 J. Furukawa, K. Kurosawa, and H. Imai

The idea of simulation is given in Section 4 and the proof is given in the full
paper [1].

Construction 2. The construction is the same as Construction 1 except the
following changes.

1. P has a pseudorandom function f : ({0,1}")* — ({0,1}")3, where the index
k is randomly chosen by P.
2. P generates its random tapes as (rg,rs,rp) = f(x, T, a, Z).

Theorem 3. Construction 2 is rZK as well as RSAK and cZK.

Proof. Construction 1 is admissible and hybrid deniable zero-knowledge, which
implies that Construction 2 is deniable rZK from [6]. See [6] or the full paper [1]
for the definitions of admissible protocols and hybrid deniable zero-knowledge
and the validity of the transformation from Construction 1 to Construction 2.

]

4 Idea of Simulation

This section shows an idea of the proof of Theorem 2. To prove deniable concur-
rent zero-knowledgeness, we need to construct a simulator S for any adversary
V* who creates verifiers Vi, Vs, - -+, where Vi, V5, --- run our protocol concur-
rently with a single prover P, and all of P, V* S and distinguishers D have access
to the same random oracle O.

In our protocol, V* sends a to P at step 1 and P sends 3 to V* at step 2,
where « and 8 are described in Construction 1. We say that C' = (a, e, z) and
C' = (a, €, z') are a matching pair on T € L if they are accepting conversations
of the X-protocol on input Z and € # €’. Then the basic idea is that:

1. S can compute w such that (7,w) € R if S somehow obtains a matching
pair (C,C") on Z. This is due to the special soundness.

2. S can complete the simulation in polynomial time if S uses a fake random
oracle O'. S uses this type of simulation for obtaining (C, C").

3. P proves that she knows w or w. Hence S can simulate, with respect to the
real random oracle O, the role of P if S knows w.

For simplicity, suppose that if V; queries (Z1, a1) to O, then V; always sends some
a; = (Z1,d’,Z’) to P (and never aborts), where @’ may not be the same as a;.
Then S behaves as follows. Fix the random oracle O, and the random tapes of
P and A. Suppose that V; queries (Z;,a;) to O at time ¢;, where t; <ty < ---.

1. S runs V* by using O, and finds that Vi queries (Z1,a1) to O at time ¢;.

2. S repeats the following until S gets a matching pair on Z;: By using a fake
random oracle O’, S runs V* from ¢; until V; sends some oy to P.

3. S computes w; from the matching pair. S can, from now on, (as P) computes
(1 for any oy (sent by V4) which includes Z; because she has w;.
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4. S runs V* by using O from the beginning, and finds that V2 queries (Z2, a2)
to O at time to.

5. S repeats the following until S gets a matching pair on Zy: By using a fake
random oracle O’, S runs V* from ¢, until V5 sends some a»s to P.

6. S computes wy from the matching pair. S can now (as P) computes (5 for
any ao (sent by V1) which includes Zo because she has ws,

7. and so on.

If S succeeds in the above simulation, then S can output a transcript which
is the same as the original one. In particular, all the participants use the same
random oracle O. Hence our protocol is deniable cZK.

In the general case where some V; may abort without outputting z, the sim-
ulation gets to be much complicated. In this case, S repeats simulation with
chosen output values of random oracles for many times to obtains two z for
each (Z,a) but gives up if its number of repetitions exceeds a certain number
of times (2n2Q(n)). Such a multiple trial is required since there may be (with
some probability) a case when some V; aborts without outputting z when S is
simulating with chosen output values of random oracles but outputs z when S
is simulating with the output values of real random oracle. The number of times
the S tries to obtain z is 2n2Q(n). Here, Q(n) is the running time of P*.

It turns out that such a simulation can be successful with the probability
larger than 1/2. Hence, repeating it for polynomial times enable the successful
simulation with overwhelming probability. The number of time S repeats this
simulation is n. The total running time of the simulator is n®Q(n)?.

The above simulator is not black-box simulator since it needs to know the run-
ning time of verifier. However, it is easy to construct a black-box simulator from
the proposed simulator. The black-box simulator executes the proposed simula-
tor repeatedly until it complete simulation, by, in each execution, it increase the
order of time that it assumes as the running time of verifier.

5 Efficiency

Our protocol (which is illustrated at the beginning of Sec.3) is almost as effi-
cient as the underlying X-protocol because Fiat-Shamir transformation and OR-
protocol have very small overhead. Moreover, efficient X-protocols are known for
many useful relations. Hence our construction will find a lot of applications.

On the other hand, the compiler of Pass [34] requires a Cut & Choose method
which is very inefficient. Indeed, its overhead is proportion to the security para-
meter n while ours is only a small constant. Fischlin [18] proposed a straight-line
witness extractable proof that has smaller communication complexity than the
method of Pass. However, its overhead still depends on the security parameter
n. Hence, its communication/computation complexity is still larger than that of
ours.

As an example, let us consider the case when our compiler is applied to
Schnorr’s identification protocol illustrated in the following.
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Let p,q be primes such that ¢|p — 1 and g be a generator of the order ¢

subgroup of (Z/pZ)*. The secret key for the prover P is w €r Z/qZ and the
public key is x = ¢g* mod p. Let V' denote the verifier.

1
2
3
4

. P chooses r € Z/qZ randomly and sends a = ¢” mod p to V.
. V sends a random ¢ € Z/qZ to P.

. Psends z=7r+cwmodq to V.

. V accepts iff g* = ax® mod p.

The communication cost and computational cost are roughly 1/50 and 1/32,

respectively, of those of Pass’ scheme and are roughly 1/3 and 1/36 !, respec-
tively, of those of Fischlin’s scheme.
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Abstract. The concept of universal designated verifier signatures was
introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003.
We propose two new efficient constructions for pairing-based short sig-
natures. The first scheme is based on Boneh-Boyen signatures and, its
security can be analyzed in the standard security model. We reduce its
resistance to forgery to the hardness of the strong Diffie-Hellman prob-
lem, under the knowledge-of-exponent assumption. The second scheme
is compatible with the Boneh-Lynn-Shacham signatures and is proven
unforgeable, in the random oracle model, under the assumption that
the computational bilinear Diffie-Hellman problem is untractable. Both
schemes are designed for devices with constrained computation capabil-
ities since the signing and the designation procedure are pairing-free.

1 Introduction

Recently many universal designated verifier signature protocols have been pro-
posed (e.g. [13,17,18]). The present paper focuses on the proposal of two new
efficient constructions for pairing-based short signatures [3, 5]. The resistance to
forgery of the first scheme relies on the hardness of the strong Diffie-Hellman
problem, under the knowledge-of-exponent assumption, in the standard security
model, and the one of the second scheme relies, in the random oracle model, on
the hardness of a new computational problem (not easier than the widely used
computational bilinear Diffie-Hellman problem).

Related Work. The concept of designated verifier signatures (DVS, for short)
was introduced by Jakobsson, Sako and Impagliazzo in 1996 [10]. These signa-
tures are intended to a specific and unique designated verifier, who is the only
one able to check their validity. Motivated by privacy issues associated with
dissemination of signed digital certificates, Steinfeld, Bull, Wang and Pieprzyk
[17] defined, in 2003, a new kind of signatures called universal designated-verifier
signatures (UDVS, for short). This primitive can function as a standard publicly-
verifiable digital signature scheme but has an additional functionality which al-
lows any holder of a signature to designate the signature to any verifier. Again,
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© Springer-Verlag Berlin Heidelberg 2006
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the designated-verifier can check that the message was signed by the signer,
but is unable to convince anyone else of this fact. Steinfeld et al. proposed an
efficient UDVS scheme constructed using any bilinear group-pair and Laguil-
laumie and the author suggested in [13] a variant which significantly improves
this protocol. Both schemes are compatible with the key-generation, signing and
verifying algorithms of the Boneh-Lynn-Shacham [5] signature scheme (BLS).
In [3], Boneh and Boyen proposed efficient pairing-based short signatures (BB)
whose security can be analyzed in the standard security model. A UDVS scheme
compatible with a variant of Boneh and Boyen’s scheme has been proposed by
Zhang, Furukawa and Imai [18].

Contributions of the Paper. The main contribution of the paper is to pro-
vide a new efficient UDVS protocol compatible with the original Boneh-Boyen
scheme. The idea underlying our design relies on the homomorphic properties
of BB signatures. The new scheme, called UDVS-BB, is unforgeable in the stan-
dard security model assuming the hardness of the strong Diffie-Hellman prob-
lem [3], under the knowledge-of-exponent assumption (KEA) [1,7]. The proto-
col proposed by Zhang et al. is proven unforgeable assuming the hardness of
the same algorithmic problem, but under a stronger assumption. The compu-
tational workload of UDVS-BB amounts to three exponentiations over bilinear
groups for designating a signature and four pairing evaluations to verify it, and
moreover, the size of the signatures is much smaller than the one of Zhang et
al.’s signatures.

Using the same design principle, we found a new UDVS protocol compatible
with the BLS signatures which is well-suited for devices with constrained compu-
tation capabilities and low bandwidth. Indeed the designation procedure of the
signatures is pairing-free and the resulting size is comparable to the length of
DSA signatures. The security analysis for this scheme, called UDVS-BLS, takes
place in the random oracle model [2]: we show that this scheme is unforgeable
with respect to a new computational assumption weaker than the widely used
computational bilinear Diffie-Hellman assumption.

2 Definitions

2.1 Notations

The set of n-bit strings is denoted by {0,1}™ and the set of all finite binary
strings is denoted by {0,1}*. Let A be a probabilistic Turing machine running
in polynomial time (a PPTM, for short), and let z be an input for A. The
probability space that assigns to a string o the probability that A, on input x,
outputs o is denoted by A(x). The support of A(z) is denoted by Alz].

Given a probability space S, a PPTM that samples a random element accord-

ing to S is denoted by z £ S. For a finite set X, x & X denotes a PPTM that
samples a random element uniformly at random from X.
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2.2 Universal Designated Verifier Signatures
In this subsection, we recall the definition of UDVS schemes [12,17].

Definition 1. A universal designated verifier signature scheme X' is an 8-tuple
Y = (Setup, SKeyGen, VKeyGen, Sign, Verify, Designate, Fake, DVerify) such that

— (Setup, SKeyGen, Sign, Verify) is a signature scheme:

e X.Setup is a PPTM which takes an integer 1% as input. The output
are the public parameters cp which contain a description Daq of a set
M C {0,1}* called the message space. k is called the security parameter
and an element of M s called a message.

o Y.SKeyGen is a PPTM which takes the public parameters as input. The
output is a pair (sks, pks) where sks is called a signing secret key and pks
a signing public key.

o X.Sign is a PPTM which takes the public parameters, a message, and a
signing secret key as inputs and outputs a bit string.

o Y Verify is a PPTM which takes the public parameters, a message m,
a bit string o and a signing public key pks. It outputs a bit. If the bit
output is 1 then the bit string o is said to be a signature on m for pks.

— XY.VKeyGen is a PPTM which takes the public parameters as input. The
output s a pair (skv, pkv) where skv is called a verifying secret key and pkv
a verifying public key.

— XY.Designate is a PPTM which takes the public parameters, a message m, a
signing public key pks, a signature o on m for pks and a verifying public key
as inputs and outputs a bit string.

— XY.Fake is a PPTM which takes the public parameters, a message, a signing
public key and a verifying secret key as inputs and outputs a bit string.

— X.DVerify is a deterministic PTM which takes the public parameters, a mes-
sage m, a bit string T, a signing public key pks, a verifying public key pkv
the matching verifying secret key skv as inputs. It outputs a bit. If the bit
output is 1 then the bit string T is said to be a designated verifier signature
on m from pks to pkv.

X must satisfies the following properties, for all k € N\{0}, all cp € X.Setup[1*],
all (pks,sks) € X.SKeyGen|cp|, all (pkv,skv) € X.VKeyGen[cp| and all mes-
sages m:

— CORRECTNESS OF SIGNATURE:
Vo € X.Sign[cp, m,sks|], X.Verifylcp, m, o, pks| = {1}.
— CORRECTNESS OF DESIGNATION:

Vo € X.Sign[ep, m,sks], V7 € X.Designate[cp, m, pks, o, pkv],
X.DVerify[cp, m, T, pks, pkv, skv] = {1}.

— SOURCE HIDING:

XY .Designate(cp, m, pks, X.Sign(cp, m, sks), pkv]) = X.Fake(cp, m, pks, skv).
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The correctness properties insure that a properly formed (designated verifier)
signature is always accepted by the (designated) verifying algorithm. The source
hiding property states that given a message m, a signing public key pks, a ver-
ifying public key pkv and a DVS 7 on m from pks to pkv it is unconditionally
infeasible to determine if 7 was produced by X.Designate or X .Fake.

For digital signatures, the de facto standard notion of security was defined in
[9], as unforgeability against chosen message attacks (EF-CMA). UDVS scheme
must satisfy a similar property which was formally defined in [12,13,17]:

Unforgeability (UDVS-EF-CMA): given a signing public key pks and a verifying
public key pkv, it should be computationally infeasible for an adversary which
engages in polynomially many runs of the protocol with the signer, interleaved
at its own choosing, to produce a DVS from pks to pkv on a new message.

This definition does not capture that the adversary cannot generate a new
signature on a previously signed message (the so-called strong unforgeability).

2.3 Bilinear Maps and Computational Assumptions

The security of asymmetric cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. Bilinear maps such as Weil or Tate
pairing on elliptic curves and hyperelliptic curves have found various applica-
tions in cryptography (e.g. [4,3,5]). In the following, we briefly review the basic
definitions about bilinear maps and in order to highlight that our schemes apply
to any secure instanciation of BLS and BB signatures, we do not pin down any
particular generator, but instead parameterize definitions and security results
by a choice of generator.

Definition 2. A prime-order-BDH-parameter-generator is a PPTM that takes
as input k € N\ {0} and outputs a tuple (q,G1,Ga,Gs, (-,-),%) satisfying the
following conditions:

q is a prime with 2F~1 < q < 2F;

(G1,+), (G2,+) and (Gs, x) are groups of order q;

¥ : Gy — Gy is an isomorphism s.t. there exists a PPTM to compute ¥;
() : G1 x Go — Gg satisfies the following properties:

(a) {[a]Q,[D]R) = (Q, R)*® for all (Q,R) € G1 x Ga and all (a,b) € Z?;
(b) (-,+) is non degenerate (i.e. (¢Y(P),P) # lg, for some P € G3);

(c) there exists a PPTM to compute (-,-).

1.
2.
3.
4.

Notations: In the following, we denote by Eg (resp. T) the time complexity
for evaluating exponentiation in a group G (resp. a pairing) and by ¢;(k) the
bit-length of the representation of elements of a group G; of k-bit order q.

Let (¢,G1,G2,Gs, (-, ), %) be as above, P, € G2 and let Py = ¢(P,). In mar-
gin to the classical Diffie-Hellman problems in the groups Gi, Gy and Gg, the
introduction of bilinear maps in cryptography gives rise to new algorithmic prob-
lems. The unforgeability of UDVS-BLS is based on a new algorithmic problem,
that we call the strong computational bilinear Diffie-Hellman problem:
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Strong Computational Bilinear Diffie-Hellman (SCBDH): let (z,y, 2) € N3. Given
([x] Pz, [y]) P2, [2]P1), compute (Q, R) € Gy x Gz such that (Q, R) = (P, P3)*Y=.

This problem is not easier than the computational bilinear Diffie Hellman
problem which has already been widely used (e.g. [4,13,17]). In particular, the
unforgeability of UDVS-BLS reduces to a weaker assumption than all UDVS
schemes compatible with BLS proposed up to now [13,17].

To analyze the security of their signatures, Boneh and Boyen [3] introduced
a new computational problem, on which relies also the unforgeability of our
scheme UDVS-BB:

¢-Computational Strong Diffie-Hellman (¢-CSDH): let x € N. Given ¢ € N and
([#] Py, ..., [z"]P2) € GY, compute a pair ([(z +h)"']P,h) in Gy x [1,¢q— 1].

3 Description of the New Schemes

In this section, we describe our new UDVS schemes. We give in details the ideas
underlying their design, since we are convinced that they may be of independent
interest. The general principle is based on an elegant technique proposed by
Damgéard [7] and aimed at making public-key encryption scheme secure against
chosen ciphertext attacks.

3.1 Damgard’s Encryption Scheme and KEA

Let (G,+) be a group of prime order ¢, let k be the bit size of the represen-
tation of elements of G and let P be a generator of G. In 1991, Damgéard [7]
presented a simple variant of the El Gamal encryption scheme in G. In his
proposal, Alice publishes two public keys Ay = [a1]P and Ay = [az]P and
keeps secret their discrete logarithms a; and as. When Bob wants to privately
send a message m € {0,1}* to Alice, he picks uniformly at random an integer
r € [1,q — 1] and transmits the triple (Q1, Q2, C) where Q1 = [r]P, Q2 = [r]A1
and C' = m@® ([r]A2). When she receives the ciphertext (Q1, Q2, C), Alice checks
whether the equality Q2 = [a1]@1 holds: if it is the case, she retrieves the message
m, as m = C @ ([az]@Q1), otherwise she rejects the ciphertext. Damgard proved
that if the decisional Diffie-Hellman problem is hard in G, then this scheme is se-
mantically secure against (non-adaptive) chosen ciphertext attacks, if we assume
the knowledge-of-exponent assumption [1].

Intuitively this assumption states that, without the knowledge of a;, the only
way to generate couples (Q1,Q2) € G?, verifying Qa2 = [a1]Q1, is to choose an
integer r € [1,¢—1] and to compute Q1 = [r]P and Q2 = [r]A;. There are many
ways in which the formulation of KEA can be varied to capture this intuition that
the only way to generate a Diffie-Hellman triple is to know the corresponding
exponent. Usually, this is done by saying that for any PPTM outputting such a
triple, there is an ”extractor” than can return this exponent.

In the following definition, we propose a new variant of KEA in the bilinear
setting (which reduces to the classical KEA, when Gen is a so-called symmet-
ric prime-order-BDH-parameter-generator). For our purposes, it is necessary to
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allow the adversary to be randomized (in that case, it is important that the
extractor gets the coins of the adversary as an additional input, since otherwise
the assumption is clearly false).

Definition 3. Let Gen be a prime-order-BDH-parameter-generator and let A
and A be two PPTM’s. We consider the following random experiments, where
k € N\ {0} is a security parameter:

Experiment Exp(kf:n aak)

(d,G1,G2,Gs, (-,),¥) <= Gen(k) ; <= [1,q = 1] ; Po <= G2\ {Og,}
(R,S) - A((anlaGQvGi’H <" ’>7w)’P2’ [m]PQ;w)

r «— A((q,G1, G2, Gs, <'7 '>>¢):P27 [Z‘]Pg,w;w)
Return 1 if (R, S) € G3, S = [z]R and R # [r])(Pz2), 0 otherwise

Let € € [0,1]N. We define the advantage of A relative to A via

AV, (k) = Pr [Exp, , (k) =1] .

1. A is a e-kea-extractor for A if for all k € N\ {0}, Advé(;'f:’:1 Aalk) <e(k)
2. We say that the knowledge-of-exponent assumption holds for Gen if for every
PPTM A, there exists a PPTM A and a negligible' function e such that A

is a e-KEA-extractor for A.

3.2 Description of the Protocol UDVS-BB

Boneh-Boyen’s Signatures. In 2004, Boneh and Boyen [3] proposed a new appli-
cation of bilinear structures to construct efficient short signatures. Their idea is
to plug the message to be signed in the exponent and, in order to avoid trivial
“homomorphic” forgeries, to do so in a non-linear way.

Let Gen be a prime-order-BDH-parameter-generator. Let & € N\ {0}, let
(q,G1,Ga,Gs, (+,-),%) be some output of Gen(1*) and let P, € G \ {Og,} and
Py = 9(Py). Alice’s signing secret /public keys are pairs (uq,v,) € [1,q—1]? and
(Ua, Vo) = ([ua) Pay [va] P2) € G3 (respectively) and the signatures on a message
m € [1,q — 1] for these keys are pairs (r, [(u +m +7v) " P) in [1,q — 1] x Gy.

The unforgeability of the scheme BB reduces to the ¢-CSDH problem in the
standard security model.

The Scheme UDVS-BB. The principle underlying the UDVS scheme UDVS-BB
is based on Damgard’s idea. Let us suppose that Bob has published a public key
Uy = [up] P2 and that the pair o = (r,5) in [1,¢ — 1] x Gy is a BB signature
produced by Alice, on a message m. If Cindy wants to designate o to Bob,
she picks uniformly at random an integer ¢ € [1,q — 1] and sets Q1 = [¢]S,
Q2 = [t]Y(Up) and Q3 = [t]P1. The quadruple 7 = (r, @1, Q2, Q3) is the resulting
DVS on m. The protocol UDVS-BB is described with all the details in figure 1.

The following simple observations are intuitive arguments in favor of the se-
curity of the protocol.

e Ve>0,3K. € N,Vk € [K., +oo[,e(k) < k™.
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1. Under KEA, the equality (Qs,Us) = (Q2, P2) [1] insures Bob that Cindy
knows the value ¢ such that Q2 = [t]¢(Up) and Q3 = [t]P;.

2. If [1] is satisfied, Bob is convinced that Cindy knows the group element
S = [t71]Q1. The BB verification equality (S, U, + [m] Py + [r]Va) = (P, P2),
holds if and only if the equality (Q1, U, +[m]Pe +[r]V,) = (Q3, P2) [2] does.
Therefore, if the equalities [1] and [2] are true, the quadruple 7 proves to
Bob that Alice has actually signed the message m.

3. However, this quadruple cannot convince anyone else, since it could have
been produced by Bob himself. Indeed, if Bob samples uniformly at ran-
dom (r,t) in [1,q — 1]? and computes the group elements: Q; = [t] P,
Qs = [[6(Ua) + [+ m]Py + [f - 1](Va) and Qa = []Qs, he produces
quadruples which verify [1] and [2] and follow the same distribution as those
produced by Cindy (namely with t =, (a3 +m + aar)).

Algorithm UDVS-BB.Setup Algorithm UDVS-BB.SKeyGen

Input: £ € N Input: cp

Output: cp Output: (sk, pk)

(4,G1,Goa, G, (-,), 1) < Gen(k) (u,v) <= [1,¢ — 1]

Py G\ {0c,) oo (ke (. )

P1 <—w(P2),g: <P1,P2> 3 .

Dm— “ [1,g—1] ” Algorithm UDVS-BB.Verify

cp = ((qulaG%G3v (’»'>,?/1),P1,P2,9»DM) IHPUt: cp, m, o = (T7S)7 pk - (U,V)

Output: b € {1,0}

Algorithm UDVS-BB.Sign s — (S,U + [m]P2 + [r]V)

Input: cp, m, sk = (u,v)

If s=gthenb«— 1lelseb«— 0

Output: o = (r, S)

v [,q—1] Algorithm UDVS-BB.Designate
g [(zz(i m + or)~1P, Input: cp, m, pks = (Ua, Va), pkv = Uy,
o= (r,>9)
Output: 7 =
Algorithm UDVS-BB.VKeyGen s (r, @1, @2, Qs)
Input: t —[lg—1]
put: cp
Output: (sk, pk) Q1 — [t]S, Q2 — [t]p(Up), Qs [t]P

sk — u, pk— [u]P;

Algorithm UDVS-BB.Fake

Algorithm UDVS-BB.DVerify

Input: cp, m, skv = up, pks = (Ua, Vo),
T = (T, Qh Q2> Q3)

Output: b € {1,0}

Input: cp, m, skv = uy, pks = (Uq, Vo) - (O, x

Output: 7 = (r, Q1, Q2, Qs) o 283: g;>+ [m] P2 + [r]Va)
(r,t) <& [1,q — 1]? B (Q3, [up] P2), B2 + (Q2, P2)
R — [t]p(Ua) + [t - m]Py + [t - 7] (Va) If oy = az and B = B2 then b — 1
Q1 — [t]P1, Q2 — [w]R, Q3 — R else b0

Fig. 1. Description of the protocol UDVS-BB(Gen)



New Extensions of Pairing-Based Signatures into UDVS 65

Remark 1. Given a UDVS produced by UDVS-BB, it is easy, by random scalar
multiplication, to produce a new signature on the same message for the same
public keys. It is admitted that weak forgery is no real threat whatsoever.

Remark 2. The computational workload of UDVS-BB.DVerify for the designated
verifier can be reduced to only two pairing evaluations and one exponentiation
thanks to the knowledge of u;, by checking that Q2 = [us|Qs instead of 51 = Sa.

3.3 Description of the Protocol UDVS-BLS

Boneh-Lynn-Shacham’s Signatures. In [5], Boneh et al. presented the signature
scheme BLS that works in any bilinear cryptographic context. The scheme can be
seen as a variant of the FDH signature scheme [2]. The protocol BLS is efficient,
produces short signatures (for carefully chosen parameters), and is reducible in
the random oracle model to the co-CDH problem [5].

The Scheme UDVS-BLS. Let Gen be a prime-order-BDH-parameter-generator.
Let k € N\ {0}, let (¢,G1,Gz2,Gs, (-,-),%) be some output of Gen(1*) and let

Algorithm UDVS-BLS.Setup

Input: k € N

Output: cp

(¢,G1,G2,Gs, (-, ), ) <= Gen(k)

Py <& G2\ {Og,}

Dat < {0,1)° 7

H (GO0

Cp — ((Q7Gl7GQ,G37 <'7 '>7¢)7P2:DM7H)

Algorithm UDVS-BLS.Verify

Input: cp, m, pk=U, 0 =85
Output: b € {1, 0}

H — H(m)

s« (H,U)

If s = (S, P2) then b« lelse b — 0

Algorithm UDVS-BLS.Fake
Input: cp, m, skv = usp, pks = U,
Output: 7 = (Q1, @2)

t &L, q—1]

Q1 — [t™']H (m)

Q2 — [t - up)Ua

Algorithms UDVS-BLS.SKeyGen
UDVS-BLS.VKeyGen

Input: cp

Output: (sk, pk)

sk = u < [1,q—1]

pk — [u]P»

Algorithm UDVS-BLS.Sign
Input: cp, m € {0,1}*, sk =u
Output: o = S

H — H(m), S — [u|H

Algorithm UDVS-BLS.Designate
Input: cp, m, pkv =Up, 0 = S
Output: 7 = (Q1,Q2)

t & [1,9 —1]

Q1 [t]S Q2 [t7']Us

Algorithm UDVS-BLS.DVerify

Input: cp, m, skv = uyp, pks = U,,
7= (Q1,Q2)

Output: b € {0,1}

H — H(m)

S <[ub]H> Ua>

If s =(Q1,Q2) then b« lelse b «— 0

Fig. 2. Description of the protocol UDVS-BLS(Gen)
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P, € G2\ {Og,}. Let U, = [ug] P2 (resp. Uy = [up]P2) be Alice’s (resp. Bob’s)
public key. Alice’s signatures are elements S = [ugs]H € Gy, where the group
element H is the hash value of the signed message m. The discrete logarithm
of H is unknown to all users, therefore, whence the signature S is randomized
as above: @1 = [t]S for some ¢ € [1,q — 1], it suffices to reveal the element
Q2 = [t71)Usy to prove, in a non-transferable way, to Bob that Alice actually
signed the message m. The quadruple (U,, Up, H, {(Q1,Q2)) is indeed a bilinear
Diffie-Hellman quadruple which could have been produced by using secret in-
formation from Alice or Bob, but not otherwise under the assumption that the
SCBDH problem is intractable. The protocol UDVS-BLS is described with all
the details in figure 2.

4 Security Results

In this section, we state that our schemes resist existential forgeries. The proofs
are more or less routine and, due to lack of space, they are only sketched.

4.1 TUnforgeability of the Scheme UDVS-BB

The following lemma state that, under KEA, the scheme UDVS-BB(Gen) is
UDVS-EF-CMA-secure if and only if the scheme BB(Gen) is EF-CMA-secure.

Lemma 1. Let Gen be a prime-order-BDH-parameter-generator and let A be
a polynomial time UDVS-EF-CMA-adversary against UDVS-BB(Gen). Assuming
KFEA, there exist a polynomial time EF-CMA-adversary B against BB(Gen) such
that the difference

efcma UDVS-EF-CMA
SUCCBB(Gen),B - SuccUDVS—BB(Gen),A

s a negligible function of the security parameter.

Proof. The algorithm 5 takes as inputs public parameters cp and a signing public
key pks. It computes a verifying pair of keys (up, Up) by running the algorithm
UDVS-BB.VKeyGen(cp) and then executes A on inputs cp, pks and Uy. It simply
forwards the A’s signature queries to its own signing oracle and the simulation of
the verifying oracle is trivial since the protocol UDVS-BB is publicly verifiable.

Let us denote C the algorithm whose execution is identical to the one of A,
except that it returns the couple (@3, Q2), when A returns the quadruple 7% =
(r,Q1,Q2,Q3). If 7 is a valid forgery then the quadruple (Ps, Uy, Qs,@2) is
a valid Diffie-Hellman quadruple. Under KEA, there exists a PPTM C which,
given as inputs C’s random tape and C’s inputs (i.e. cp, pks and Up), outputs
t € [1,q— 1] such that Q3 = [t]|P1 and Q2 = [t]y)(Us) with probability negligibly

UDVS-EF-CMA
close to Succypy3 gg(Gen),A-

B runs the algorithm C to get this value ¢t € [1,¢ — 1] and outputs the
pair o* = (r,[t7']Q1) which is valid forgery for the signature scheme BB if

7 is a valid forgery and Qs = [t|P. B is therefore an EF-CMA-polynomial

time adversary whose success probability against BB(Gen) is negligible close to

SuccUDVS-EF-CMA 0
UCCypvs-BB(Gen), A
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Combining this lemma with the unforgeability result of [3] we get:

Theorem 1. Let Gen be a prime-order-BDH-parameter-generator and let A be a
polynomial time UDVS-EF-CMA-adversary against UDVS-BB(Gen). Under KEA,
there exist a polynomial time CSDH-adversary B against Gen such that

csdh UDVS-EF-CMA
Succganp — SuCCUDVS—BB(Gen),A

s a negligible function of the security parameter. O

Remark 3. Since KEA is a somewhat strange and impractical assumption, it
would be better if we could do without it, as it has been recently done by
Gjgsteen [8] for Damgard’s encryption scheme. In [16], we reduce (without using
any non-black-box assumption, such as KEA) the unforgeability of UDVS-BB to
a well-defined (though ad hoc) computational problem:

Problem P(¢): let (z,y) € N2. Given £ € N, ([z] P2, [#?]Ps, ..., [2] P,) € G and
([Y] P, [(zy)] Pas - - -, [(x*) ]| P2) € Gg'H, compute a quadruple (R, Ro, R3,h) in
G3$ x [1,q — 1] such that [(z + h)]Rs = Ry and R3 = [y]R1lem.

4.2 TUnforgeability of the Scheme UDVS-BLS

The theorem below states that UDVS-BLS(Gen) is UDVS-EF-CMA-secure in the
random oracle model assuming the intractability of the SCBDH problem in Gen.
It is worth noting that this security result does not depend on KEA.

Theorem 2. Let Gen be a prime-order-BDH-parameter-generator and let A be a
(1,4s, qv )-UDVS-EF-CMA-adversary against UDVS-BLS(Gen) in the gy -random
oracle model. There exist a T'-SCBDH-adversary B against Gen such that

' =7+ (qu + 2qs5)(Ee, + O(1)) + qv (Eg, + O(1))

SuccZey 3’ > Succypyg s (cen./ds(av +1).
Proof (Sketch). Thanks to the random oracle model assumption, the proof is
completely similar to the proof of security of the schemes proposed in [12,17].
Our exact security reduction relies on two clever techniques from [6, 15]:

— Following a well-known technique due to Coron [6], a random coin decides
whether B introduces the challenge in the answer to the random oracle or
an element with a known preimage. This introduce the (small) loss factor ¢g
in the success probability.

— Using an approach due to Ogata, Kurosawa and Heng [15], introduced to
analyze the security of Chaum’s undeniable signatures, we do not need a
decisional oracle to simulate the verification queries. The idea is that, un-
less UDVS-BLS is not unforgeable, all verification queries necessarily involve
DVSs that were obtained from signing oracles (and can be readily checked)
or that are invalid. B’s strategy is to guess which verification query involves
a forged signature and reject signatures involved in all other queries. This is
done at the expense of losing the factor ¢y in B’s probability of success.

Due to space constraints, details are left to the reader. a
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5 Efficiency Issues and Additional Properties

In the table 1, we compare the performance of all pairing-based UDVSs proposed
up to now. For concreteness, we assume that all schemes are instantiated with
the Tate pairing on a supersingular elliptic curve of MOV degree 6 on a ground
base field of size 171 bits and that computing this bilinear map is 10 times more
expensive than computing a scalar multiplication on the curve (whose compu-
tation time is arbitrarily set to 1). The new schemes compare very favorably in
performance with respect to systems proposed so far and they can be used over
a low bandwidth channel (UDVSs are longer than those produced by DVSBMH
[13], but this scheme is not well-suited for devices with constrained computation
capabilities since the designation procedure is much more costly).

Table 1. Efficiency comparison of pairing-based UDVSs

Protocol DVSBM DVSBMH UDVS-BLS ZFI| UDVS-BB
[17] [13] §3.3 [18] §3.2
Signatures BLS Variant of BB BB
Model Random Oracle Model Standard Model
Sign 1 E([;,1 1 E([;,1 1 E([;,1
Verify 2 P 1P+2Eg, 1P+2Eg,
Designate 1P 1P 1Eg, +1Eg, 1P+2Eg, 1 Eg, +2 Eg,
(in practice) 10 10 2 12 3
DVerify 1P 1P 2P+1Eg, 2 P+2 Eg, 2 P+3 Eg,
(in practice) 10 10 31 22 23
Size 63(k}) k é1(k’) + éz(k') 61(k}) + EQ(k) + 63(k}) 2[1(k}) + EQ(k)
(in bits) 1024 80 342 1366 513

Finally, it is worth mentioning that our schemes have additional properties,
for instance:

— UDVS-BB can be extended to give the first efficient construction of universal
multi-DVS [12,14] in the standard security model. The multi-user scheme
inherits the efficiency properties of UDVS-BB with the same DVS size (which,
in particular, does not grow with the number of verifiers).

— In some cases [10,13] it may be desirable that UDVSs provide a stronger
notion of privacy: the privacy of signer’s identity [13]. The scheme UDVS-BLS
provides this security requirement assuming the hardness of the so-called
xyz-decisional co-Diffie Hellman problem [11].

Details and additional extensions will be given in [16].

Acknowledgements. It is a pleasure to acknowledge Fabien Laguillaumie and
Benoit Libert for their great comments and simplifying suggestions on a prelim-
inary version of this paper. The author is grateful to Willy Susilo and Rui Zhang
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Abstract. We analyze group key distribution protocols for broadcast
and multicast scenarios that make blackbox use of symmetric encryp-
tion and a pseudorandom generator (PRG) in deriving the group center’s
messages. We first show that for a large class of such protocols, in which
each transmitted ciphertext is of the form Fk, (K2) (E being the encryp-
tion operation; K1, K2 being random or pseudorandom keys), security
in the presence of a single malicious receiver is equivalent to that in the
presence of collusions of corrupt receivers. On the flip side, we find that
for protocols that nest the encrytion function (use ciphertexts created
by enciphering ciphertexts themselves), such an equivalence fails to hold:
there exist protocols that use nested encryption, are secure against single
miscreants but are insecure against collusions.

Our equivalence and separation results are first proven in a symbolic,
Dolev-Yao style adversarial model and subsequently translated into the
computational model using a general theorem that establishes sound-
ness of the symbolic security notions. Both equivalence and separation
are shown to hold in the computational world under mild syntactic con-
ditions (like the absence of encryption cycles).

We apply our results to the security analysis of 11 existing key distri-
bution protocols. As part of our analysis, we uncover security weaknesses
in 7 of these protocols, and provide simple fixes that result in provably
secure protocols.

Keywords: Broadcast Encryption, Multicast Encryption, Group Key
Distribution, Collusion-resistance.

1 Introduction

Private communication in dynamic groups is a cryptographic task of significant
practical import. The problem, in a nutshell, is to enable an information provider
to broadcast data to a large, dynamic set of “priveleged” receivers, while ensuring
that at every instant, receivers outside this set are unable to procure the data.
Two different models have been used in the literature to study this problem—
one, known as broadcast encryption [8], assumes that all receivers are stateless

* This material is based upon work supported by the National Science Foundation
under ITR Grant CCR-0313241 and Cyberturst Grant CCR-0430595. A full version
of the paper can be downloaded from the second author’s webpage.
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and so, individual broadcasts are decipherable independently of other transmis-
sions; and the other, usually referred to as multicast encryption or multicast key
distribution [18], allows receivers to maintain state and, thus, decrypt the cur-
rent data based on all past transmissions. Applications (of both models) have a
wide spectrum, ranging from secure pay-per-view services over the Internet to
protection mechanisms for digital media.

From a security perspective, privacy over broadcast channels raises new and
challenging issues, not easily addressable using techniques for conventional point-
to-point privacy. The multi-receiver setting opens up a new avenue for attacks—
numerous malicious receivers can now potentially collude with each other and
combine their secret information to decrypt the transmissions of the sender (even
when they are not part of the priveleged set). Furthermore, miscreants can ex-
ploit past transmissions of the sender to recover current classified information
(or, possibly, use future transmissions to do so later on). Proving security of
protocols in the presence of such adversarial behavior is a difficult (and cum-
bersome) task, and so, protocol designers tend to rely more on intuition, rather
than mathematical rigor, in making security arguments. Protocols are typically
analyzed using a symbolic model of computation, one in which malicious behav-
iour is specified using fixed symbolic rules, often referred to as the Dolev-Yao
rules. While the Dolev-Yao model enables simple and tractable security proofs,
the question of whether such proofs imply security in the face of arbitrary com-
putational attacks, is quite often left unresolved.

The general tendency to ignore and “shortcut” security analysis of protocols
has the consequence that a bulk of multicast and broadcast encryption protocols
exist in the literature without any meaningful proofs for (or against) their secu-
rity claims—out of thirteen (symmetric-key) protocols that we surveyed from the
literature, we found only three to have been correctly proven secure using strong
computational definitions of security (one was claimed, though not proven, to
be secure). For most of the remaining protocols, the security proofs provided, if
any, involved only informal, Dolev-Yao style security arguments. Some protocols
were not even accompanied with any security argument.

OUR CONTRIBUTION. In this paper, we concern ourselves with the provable secu-
rity of broadcast and multicast encryption protocols that make use of symmetric-
key cryptography. Instead of studying broadcast/multicast “encryption” directly,
we focus on the related problem of group key distribution (GKD), where the goal
is to enable the sender to establish a shared secret key among a group of priv-
eleged receivers on a broadcast channel (while keeping it secret from the rest of
the receivers). A secure protocol for this task, coupled with a secure symmetric-
key encryption scheme, naturally yields a solution to the group privacy problem?.

We analyze GKD protocols that make blackbox use of a symmetric-key
encryption scheme and a pseudorandom generator (PRG), in generating the
center’s messages, invoking both these primitives in an arbitrary, intermingled

! Indeed, all broadcast /multicast encryption protocols we know of involve group key
distribution.
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fashion. Our first finding is an equivalence relation between two security notions
for these protocols—we show that for a large class of such protocols, in which
encryption is not nested (that is, each ciphertext is of the form Ej, (K2)) secu-
rity against multiple corrupt receivers is equivalent to security against a single
corrupt receiver. This equivalence holds both in the symbolic (Dolev-Yao) model
(that is, symbolic security against single corruptions implies symbolic security
against multiple corruptions), and, subject to some mild syntactic conditions
(e.g., absence of encryption cycles), also in the computational model. The equiv-
alence in the computational setting is, in fact, of a very strong flavor: if one can
prove a protocol (within the said class) computationally secure against single
corruptions for some implementation of the cryptographic primitives, then it
is collusion-resistant for every implementation of the primitives satisfying stan-
dard security properties (semantic security against chosen plaintext attacks for
the former and computational indistinguishability for the latter).

We exemplify the significance of this equivalence result by applying it to the
security analysis of various existing protocols. (See Table 1 in Sect. 4.) Most
protocols (11 out of 13) surveyed by us don’t make use of nested encryption
and, as such, a proof of security against single corruptions for such protocols
automatically implies collusion-resistance. As a part of our analysis, we uncover
security weaknesses in 7 of the surveyed protocols, and provide simple fixes that
result in protocols that are provably secure against arbitrary (polynomial-time)
computational attacks.

Our techniques to prove this equivalence result don’t generalize to capture
protocols that use nested encryption (that is, transmit ciphertexts created by
iterative encryption of a key using multiple other keys), and, in fact, they cannot
do so. We demonstrate this by constructing a protocol that uses nesting (in
fact, at most two iterations of E per ciphertext suffice), is secure against single
corruptions but is totally broken by malicious coalitions (of size as small as two).
As with the equivalence result, our separation holds both in the symbolic and
computational models of security.

Protocols like the one used in our separation result have already been known
to exist [5,7]. (We remark that both these protocols require stateful receivers
while ours does not.) Such protocols have a significant advantage over collusion-
resistant protocols in terms of communication efficiency (constant versus loga-
rithmic) and, in fact, they beat known lower bounds on the communication cost
of GKD protocols [12]. Our results provide a precise explanation for this anom-
aly: although the bound of [12] applies to nested-encryption protocols, it holds
only when collusion-resistance is satisfied. In fact, from our equivalence theorem
(and the result of [12]), it follows that the efficiency of [5, 7] is unachievable using
single encryption alone; it is precisely the use of nesting (and relaxation of the
security requirements) that provide the efficiency gain.

OUR APPROACH. Our equivalence and separation results for GKD protocols
are obtained using a modular two-stage approach. We first prove the results
in the Dolev-Yao model (Sect. 2), treating encryption and PRGs as abstract
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Dolev-Yao single Thm. 5 multiple single _X_ > multiple
World corruption corruftion corrurtion corrurtion
A
1 1 1
Easy | Theorem 8 |
| | |
_ \/ \/ \/
Computational single multiple single multiple
World corruption corruption corruption corruption
Single Encryption Nested Encryption

Fig. 1. Our results are proved first in the Dolev-Yao model (the solid arrow show im-
plication, crossed-out one shows separation) and then interpreted in the computational
model by proving soundness of the Dolev-Yao definitions (Thm. 8)

operators with perfect security properties. All proofs in this world are quite
simple and intuitive, owing to the symbolic treatment of the primitives. As a
second step (Sect. 3), we translate these results into the standard framework
of computational cryptography by proving that our symbolic security notions
are sound in a strong computational sense (provided some syntactic restrictions
are obeyed by the protocol). This is achieved via an extension of a compu-
tational soundness theorem proven by us in [13]. Our extension incorporates
the use of PRGs that can be applied in an arbitrary, nested manner (with
polynomially-many nestings per seed) and greatly increases the applicability
of the originally theorem. (9 out of 11 protocols we apply our results to make
use of PRGs.)

This “two-step” approach not only makes the proof of our equivalence theorem
simpler, but also alleviates much of the trouble in analyzing protocol security. A
similar approach had already been taken in the seminal work of Abadi and Rog-
away [1], and subsequent extentions of the same, with applications to multicast
key distribution [13] and security of XML data [2]. In these papers, computa-
tional soundness theorems were used to translate security definitions from the
symbolic to the computational setting. In this paper, we take the approach one
step further, using it to translate (from the symbolic to the computational set-
ting) not just security notions, but relations among these notions. The extension
is not completely trivial, as it involves both soundness [1] and completeness [14]
considerations, which are implicit in the protocol partitioning method underly-
ing our computational equivalence proof. The soundness theorem itself (given
in the full version) is of independent interest and could be applicable in other
settings where encryption and PRGs are the only used primitives.

In our discussions on the computational security of GKD protocols, we focus
on a scenario in which the dynamics of group membership are adversarially
chosen in an adaptive way, but the decision of whether a receiver is malicious or
not is made at the outset (non-adaptively). Dealing with adaptive corruptions
is an important problem by itself, but is largely out of the scope of this paper.
(See the full version for some partial results that address adaptive corruptions.)
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2 The Result in the Dolev-Yao Model

We begin by analyzing GKD protocols in the Dolev-Yao framework. Let [N] :=
{1,---, N} denote a set of receivers having access to a broadcast channel. For
any subset S of [N], let S denote [N]\ S. At any instant ¢, a central author-
ity C sends a sequence of control messages to establish a key K; among re-
ceivers in a set S; (the “target” set), such that receivers in S; cannot recover
K;. We assume that all receivers and the center C have blackbox access to three
cryptographic operations: a pair of functions, (F, D), modelling symmetric en-
cryption, and a PRG G. The encryption pair satisfies the obvious correctness
criterion: for any key K and message M, D (Ex(M)) = M. G models a length-
doubling PRG?; it takes as input a key K and outputs two keys, Go(K) and
G1(K). All information stored/exchanged during protocol execution is mod-
eled using abstract expressions derived from the variable M in the following
grammar:

M — K| Ex(M)
K — Rand | Go(K) | G1(K) (1)

Here K is a variable for keys, which can either be purely random (derived via
the symbol Rand — R1|R2|Rs|---) or pseudorandom (obtained by applying Gy
or G; on other keys). Some example expressions that can be obtained from
this grammar are Ry, Go(G1(R2)) (keys) and Eg, (R2), Eg,(r,)(ERrs(Ra4)) (ci-
phertexts). We say that a key K5 is derived from K, denoted K; =, Ko, if
Ky = Gy, (-+- Gy, (Ky) - - - ) for some bits by,---,b and [ > 0.

A GKD protocol has three components: SETUP, SEND and DECRYPT. The first
one, SETUP, initializes the states of all receivers and of the center. The center’s
initial state, Ay, is an arbitrary set of keys, Keys, obtained from variable K above,
and that of the ith receiver, (for any i € [N]) is a set Keys][i], each such set being
derivable from Keys. We use Keys[S] to denote | J, g Keys]i].

The other two algorithms SEND and DECRYPT are used for key updates. For
any t > 0, SEND takes a set S; C [N], and the current state of the center, A;_;
as input and outputs a set of messages Msgs(S:) (to be sent to all receivers),
while also updating C’s state to A;. Depending upon the manner in which mes-
sages are created, two protocol classes can be defined: Protocols in which every
message in Msgs(S;) is an arbitrary expression derived from variable M above
are called nested-encryption GKD (N-GKD) protocols. A special case is one
where protocols don’t nest the encryption function for creating ciphertexts (this
corresponds to replacing the rule M — Ex (M) with M — Ex(K)); such proto-
cols are called single-encryption GKD (S-GKD ) protocols. Most protocols in the
literature belong to this special case.

2 Note that a PRG with an arbitrary expantion factor—the ratio between output
length and input length—can be easily implemented using a length-doubling PRG.
We use the latter for simplicity of analysis.
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The target receivers decrypt messages using the following function:

Definition 1. (Key Recovery) For any set of keys, KSet, and any set of
ciphertexts, CSet, the set of keys that can be recovered from CSet given KSet,
denoted Rec(KSet, CSet), is the smallest set R satisfying:

1. KSet CR.
2. If K € R, then Go(K), G1(K) € R.
3. U Ky, , K, € Rand Ek, (Ek, -+ Fk,, (K)---) € CSet, then K € R

Roughly speaking, the DECRYPT algorithm applies the above function per target
receiver, with KSet being equal to the keys available to that receiver and CSet the
set of transmitted ciphertexts. For any sequence of target sets, S; = (S1,- -, St),
we let Msgs(gt) be the set of all messages output by SEND when given this
sequence as input, i.e., Msgs(gt) = Ui/:l Msgs(Sy ). Messages in Msgs(S;) (resp.
Msgs(S;)) can be partitioned into keys MKeys(S;) (resp. MKeys(S;)) sent in clear,
and ciphertexts Ciph(S;) (resp. Ciph(S;)).

Definition 2. (Correctness) A GKD protocol is called stateless if for all t,
for all S; C [N], 3K s.t. Vi € S;, K € Rec(Keys[i] U MKeys(S;), Ciph(Sy)). It
is called stateful if for all sequences, gt = (51,52,--+,8:) C (Q[N])*, JK s.t.
Vi € Sy, K € Rec(Keys[i] U MKeys(S,), Ciph(S,)).

Stateless GKD protocols (corresponding to the broadcast encryption model) are
a special case of stateful ones (which correspond to multicast encryption). Any
key satisfying the above criterion is called a group key at time t. We assume that
for every t there is a distinguished group key that is used in applications like
broadcast encryption at time ¢ and denote it by K.

Security. Security of a GKD protocol A = (SETUP, SEND, DECRYPT) in the
Dolev-Yao model refers to incapability of non-target receivers to recover group
keys using our symbolic recovery rules. This can be formalized in two ways:

Definition 3. A GKD protocol A is secure against single corruptions (in the
Dolev-Yao model) if for all ¢, for all sequences of target sets, S, = (S, ,St),
for every ' <t and every i ¢ Sy, Ky ¢ Rec(Keys[i] UMKeys(S;), Ciph(S;)).

Definition 4. A GKD protocol A is collusion-resistant(in the Dolev-Yao model)

if for all ¢, for all sequences of target sets, S; = (S1,---,S), for every ¢/ < ¢,
K ¢ Rec(Keys[Sy/] UMKeys(S;), Ciph(S;))3.

Note that we enforce that non-target receivers not be able to procure Ky even
after viewing future transmissions of the center (a requirement often called back-
ward secrecy). The definitions are common to both stateless and stateful proto-
cols. Our first result is the equivalence between these definitions for the case of
S-GKD protocols.

3 Tt is not hard to verify that our definition of collusion-resistance is equivalent to
one in which a Dolev-Yao adversary adaptively corrupts an arbitrary subset S
of receivers, and then computes the group key K, by evaluating Rec(Keys[S] U
MKeys(S;), Ciph(S:)), for some t such that S; NS = 0.
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Theorem 5. An S-GKD protocol is secure against single corruptions (satisfies
Defn. 3) if and only if it is collusion-resistant (satisfies Defn. 4).

K

Fig. 2. An illustration of the separation protocol for N = 6,5, = {1, 3,4,6}

On the flip side, we show that it is possible to design an N-GKD protocol,
even for stateless receivers, that is secure against solitary malicious receivers
but not collusion-resistant. Our protocol involves the use of, what we call here,
fully-pseudorandom chains (FPCs) of keys, a notion similar to that of forward-
secure PRGs [3]. Let G be a length-doubgling PRG. Let b € {0,1}. An FPC of
length N, built from a random key Ky (the seed), is a sequence of N key pairs
((Ki7 K{))zG[N] such that Vi € [N], K, = Gb(Ki—l) and KZ/ = Gl—b(Ki)~ The KZDS
in this chain are “fully” pseudorandom in the sense that it is computationally
infeasible to distinguish between them and a sequence of N independent random
keys. In our protocol, SETUP creates two FPCs of length N using two different
seeds Ky and K (one called the forward chain and the other backward chain)
and gives the keys (K;, K ny_;+1) to receiver i. Note that given this, receiver
i can derive the key pairs (K, K}),---,(Kn,K}) in the forward chain and
(Kn—is1, Kn_si1)s-+ (K, K) in the backward chain.

To transmit a key K; secretly to a set St, SEND divides the sequence (1,--- , N)
into the smallest possible set of intervals such that every i € S; is contained
in exactly one interval and no i € S; is contained in any interval. For e.g.,
if N = 6 and the target set is {1,3,4,6} (Fig. 2), these intervals would be
(1),(3,4),(6). Let I, -+, I,+1 denote these intervals with r being |S|. For each
interval I; = (j1,---,Jjm), SEND outputs a ciphertext EK;V— (EK/ (K3)).

Jm
This ciphertext can be decrypted only by the receivers who know both K J’ and
K ;V_ j1+1, Which is exactly the receivers in I;. (In the figure, the black keys de-
note the keys used to encrypt K; so as to transmit it to receivers (3,4).) Receiver
i € S¢ determines which interval I; it belongs to and decrypts the corresponding
ciphertext. It is not hard to verify that this protocol is secure against single
corruptions (satisfies Defn. 3) but is not collusion-resistant (fails Defn. 4).

3 Interpretation in the Computational Setting

A natural question to ask at this point is whether our results in the Dolev-Yao
model apply to practical implementations where the cryptographic operations
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are real programs satisfying computational security properties and the adversary
is an arbitrary (polynomially-bounded) entity. In this section, we provide suffi-
cient conditions under which this is true. We first define a class of GKD protocols,
called safe protocols, which satisfy certain syntactic conditions on the way keys
are used in the protocol. These safety conditions implement well-established and
commonly-accepted (computational) cryptography practices. Then, via a gen-
eralization of the computational soundness theorems of [1,13], we show that
any safe GKD protocol secure in the Dolev-Yao model is also secure (under the
corresponding security notion) in the computational setting, provided the un-
derlying primitives satisfy standard security properties. Combining this result
with a case analysis, we show that for all safe GKD protocols, our equivalence
and separation results of Sect. 2 are also true in the computational setting.

Definition 6. (Safe Protocols) A GKD protocol A = (SETUP,SEND,
DECRYPT) is called safe if for any input, S; = (S1,---,S:), given to it, the
following conditions are satisfied:

1. Proper key usage: Any key K is used by at most one cryptographic primi-
tive. This is a well established cryptography/security practice, which, in our
case, means two things: (a) Encryption keys (i.e., keys K occurring in subex-
pressions of the form Ex(M)) are never used as input to the PRG (i.e., in
subexpressions of the form G,(K)); (b) a group key K; (which can poten-
tially be used for keying another primitive in an application, e.g. broadcast
encryption), is used neither as an encryption key nor as an input to the
PRG.

2. No Encryption Cycles: Define a relation — over keys such that K; — Ky
if K7 encrypts K, at any instant in the protocol. We require that the
composition of the relations — and =4, be acyclic. For e.g., messages like
Egy(k,)(K1) or message pairs like (Er, (K2), Eq, (k,)(K1)) are disallowed.

3. Key Deployment after Key Distribution: For any two (not necessarily dis-
tinct) keys, K1, Ko, such that Ky =, K>, if K is used as a message (either
in clear or encrypted under other keys) at time ¢1, and K5 is used as an en-
cryption key at time to, then to > ¢1. In other words, once a key K5 has been
deployed for encrypting messages, the protocol can no longer distribute it
(not even can it distribute a pseudorandom preimage K; of Ko, from which
K5 can, quite easily, be recovered).

These conditions are essential for the application of our computational sound-
ness theorem to GKD protocols. (In fact, condition 1 is necessary to guarantee
computational security of any GKD protocol in the sense we define below.) No-
tice that both our equivalence and separation results in the Dolev-Yao model
also hold when restricted to safe protocols: The former follows from the fact that
the definition of safety is independent of the Dolev-Yao adversarial model and
for the latter, observe that our separation protocol satisfies all safety conditions.

Let A = (SETUP, SEND, DECRYPT) be an N-receiver GKD protocol in the
Dolev-Yao model. In the computational interpretation of A, A9 all messages
and keys are bitstrings corresponding to the “computational evaluation” of
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symbolic expressions used in A based on a (computational) encryption scheme
II = (£,D)* and a (computational) length-doubling PRG G(-) = Go(-) || G1(+) (||
denotes bitstring concatenation). The setup program, SETUP ¥, takes a security
parameter n as input and sets the initial states of all parties. The initial state
of the center (resp. the ith receiver), denoted &5 (resp. &3), is the computational
evaluation of the set Keys (resp. Keys[i]). SEND'™Y  as before, receives a set S;
and the current center state 6 ; as input, and outputs a set of messages msgs(.S;)
(the evaluation of all expressions in Msgs(S;)) and C’s updated state §¢. Finally,
DECRYPT!Y takes a receiver index i, the corresponding current state &§;_;, the
current transmission msgs(S;), and outputs the updated state &/ and either a
key ki or fail. Correctness, now, means that for all sequences gt =(S1, - ,S5%),
for every i,j € Sy, the keys ki and ki output after running DECRYPT'MY with
inputs msgs(S7),- -, msgs(S;) are the same (equal to the bitstring group key
k:). In stateless protocols, & equals &} for all 4 and ¢.

Security. Security of GKD protocols is defined using a game played between
an adversary A and a challenger . Both are given a security parameter 7 as
input (and A must run in time polynomial in 7). First, the challenger invokes
SETUP(n) to generate the initial states, 65,04, -- , ). It also generates a uni-
formly random challenge bit b and initializes a protocol counter ¢ to 1. The
adversary first specifies a set of corrupt receivers C(A) (in return for which it
is given {66}160( A)), and then makes several queries, each query being of one of
two types:

— send(S;) (for some S; C [N]): B runs SEND, returns msgs(.S;) to A, updates
states of all parties and sets t « ¢t + 1; or

— challenge(t’) (for some ¢’ < t such that Sy NC(A) = 0): If b = 0, B returns
the group key at time ¢', k;; else, it generates a fresh random key ry and
returns it.

The advantage of A in the game, denoted Advf\kndyg (A, n), is the absolute dif-

ference between the probability that A outputs 1 when b = 1 and the probability
of the same event when b = 0.

Definition 7. A GKD protocol A is secure against single (resp. multiple) cor-
ruptions (in the computational model) if for any adversary A satisfying |C(A)| =
1 (resp. |C(A)| > 0), Advi]ffg (A, n) is a negligible function of 7.

For the case of stateless GKD protocols, our definition parallels definitions of
broadcast encryption already existing in the literature [15] with the major dif-
ference that we focus on defining group key distribution rather than the problem
of group privacy. (More discussion on this issue appears in the full version.)

Theorem 8. (Security Theorem) Let A be any safe GKD protocol. Let
IT be any ind-cpa secure encryption scheme (i.e., satisfying semantic security
against chosen plaintext attacks) and G any secure pseudorandom generator. If

4 We consider encryption schemes where key generation involves picking a uniformly
random bitstring of length equal to the security parameter.
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A is secure without collusions (resp. collusion-resistant) in the Dolev-Yao model,
that is A satisfies Defn. 3 (resp. Defn. 4) then A™9 is secure against single (resp.
multiple) corruptions in the computational model.

Equivalence and Separation. We now use Theorem 8 to translate of our
equivalence result for S-GKD protocols from Sect. 2 into the computational
setting. Consider the class of safe S-GKD protocols implemented with an encryp-
tion scheme II and a PRG G. We first partition this class into two sub-classes—
protocols in the first catagory are secure without collusions in the Dolev-Yao
model (satisfy Defn. 3) while those in the second class are not. Based on the
equivalence in the Dolev-Yao model (Thm. 5) and the computational sound-
ness of Dolev-Yao collusion-resistance (Thm. 8), we conclude that protocols in
the first catagory are secure against multiple corruptions for any secure in-
stantiations of II and G. Second, observe that if a protocol (whether safe or
not) does not satisfy security without collusions in the Dolev-Yao setting (fails
Defn. 3), then it is trivially insecure: it can be broken for every implementation
of I and G, by executing the Dolev-Yao attack in the computational setting.
Thus, we have:

Theorem 9. Let A be a safe S-GKD protocol. If AT9 is secure against single
corruptions for some encryption scheme IT and some PRG G, then A™9 is secure
against multiple corruptions for any ind-cpa secure encryption scheme II and
any secure PRG G.

For protocols that use nested encryption, we have the following theorem:

Theorem 10. There exists an N-GKD protocol that is secure against single
corruptions for any (computationally secure) implementation of IT and G, but is
not collusion-resistant.

This separation is demonstrated by the protocol of Sect. 2. (The single-corruption
security of the protocol follows from its Dolev-Yao security and Thm. 8.)

4 Analysis of Known Protocols

In this section, we summarize our analysis of various existing GKD protocols
based on the results of Sect. 3. Out of 13 protocols for symmetric-key broad-
cast/multicast encryption that we surveyed from the literature, we found only
3 protocols to have been accompanied with proofs that establish computational
security of the protocol. The security analysis of the remaining protocols, if un-
dertaken at all, has hitherto been restricted to Dolev-Yao style arguments, and
without any computational justification of such analysis. Indeed, we find that 7
of these protocols have weaknesses in their design which make them vulnerable
to attacks by computational adversaries. For example, the broadcast encryption
protocols of [9,17,6] make use of “key chains” generated by applying a cryp-
tographic function f iteratively on a random key K to produce a sequence of
values f(K), f(f(K)), f(f(f(K))),---. The values in the chain are subsequently
used as keys to encrypt other keys during key distribution and it is claimed that
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an adversary can decrypt a ciphertext Fx/ (M) for some K’ in the key chain
only if it knows K’ or some other value preceding K’ in the chain. [9, 17] suggest
implementing f with a one-way hash function and [6] proposes to do so with a
one-way permutation or a PRG. We note that none of these implementations
are sufficient to guarantee security of the respective protocols in a computational
sense. Technically, the deployment of key chains in all these protocols conflicts
with our first safety condition: keys are used for encryption, and as inputs to
another cryprographic primitive (that is, f), which, as already discussed, is bad
cryprographic practice. In principle, this could lead to complete recovery of all
values in such key chains (and, consequently, of all group keys) even by a passive
observer of the protocol.

In the same vein, various multicast encryption protocols [18, 4,7, 16] are com-
putationally insecure. For a receiver “join” event (at time t), they either recom-
mend encrypting the new group key K;y; with K; [18,4], or deriving K41 from
K, via a PRG [16]. ([7] encrypts K;y1 under K; during both “leave” and “join”
events.) Such usage of group keys can, in principle, compromise their pseudo-
randomness and thus render the resulting encryption protocol totally insecure.

Table 1. Analysis of 11 GKD protocols surveyed by us. Comp-single and Comp-
multiple refer to security against single and multiple corruptions respectively in the
computational model. The last column shows which protocols use nested encryption.

Protocol Safe? Fized Security from our results Nesting?
LKH [18] No  Yes Comp-multiple No
LKH+ [4] No  Yes Comp-multiple No
Subset Diff. (SD) [15] Yes — Comp-multiple No
ELK [16] No  Yes Comp-multiple No
LSD [10] Yes — Comp-multiple No
Stratified SD (SSD) [9] No  Yes Comp-multiple No
DDKC [17] No  Yes Comp-multiple No
Skip. Chains (SC) [6] No  Yes Comp-multiple No
Improved SSD/SC [11] Yes — Comp-multiple No
Boolean Func. Min. [5] Yes — Comp-single Yes
LOR (7] No  Yes Comp-single Yes

Fortunately, these weaknesses are quite straightforward to fix in most cases.
For the protocols that make use of (insecure) key chains, the fix simply involves
replacing the chain with an FPC (Sect. 2). The protocols that use group keys
for keying primitives within the GKD protocol can be patched in the following
manner: if K; is the group key distributed in the original protocol for time ¢,
then the patched protocol instead uses G (K;) as the group key and any encryp-
tion/pseudorandom generation that was previously done using K; is now per-
formed using G1(Ky). (For e.g., the control message E, (Kty1) gets substituted
by Eq, (k,)(K¢11).) These modifications make the protocols compatible with our
safety requirements and enable application of our security theorem (Thm. 8).
Table 1 presents the results from our analysis of 11 GKD protocols, including
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the protocols fixed in the above manner. 9 of the listed protocols don’t make
use of nested encryption and for these it suffices to verify Dolev-Yao security of
the protocol against single corruptions (defn. 3), and subsequently to invoke our
equivalence theorem (Thm. 9) in order to establish collusion-resistance. The 2
protocols that use nested encryption [5,7] were already known to be collusion-
insecure, and for these a Dolev-Yao proof of security against single corruptions
implies the corresponding computational criterion.
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Abstract. We design a core language of principals running distributed programs
over a public network. Our language is a variant of the pi calculus, with secure
communications, mobile names, and high-level certificates, but without any ex-
plicit cryptography. Within this language, security properties can be conveniently
studied using trace properties and observational equivalences, even in the pres-
ence of an arbitrary (abstract) adversary.

With some care, these security properties can be achieved in a concrete set-
ting, relying on standard cryptographic primitives and computational assump-
tions, even in the presence of an adversary modeled as an arbitrary probabilis-
tic polynomial-time algorithm. To this end, we develop a cryptographic imple-
mentation that preserves all properties for all safe programs. We give a series
of soundness and completeness results that precisely relate the language to its
implementation.

1 Secure Implementations of Communications Abstractions

When designing and verifying security protocols, some level of idealization is needed
to provide manageable mathematical treatment. Accordingly, two views of cryptog-
raphy have been developed over the years. In the first view, cryptographic protocols
are expressed algebraically, within simple languages. This formal view is suitable for
automated computer tools, but is also arguably too abstract. In the second view, cryp-
tographic primitives are probabilistic algorithms that operate on bitstrings. This view
involves probabilities and limits in computing power; it is harder to handle formally,
especially when dealing with large protocols. Getting the best of both views is appeal-
ing, and is the subject of active research that aims at building security abstractions with
formal semantics and sound computational implementations.

In this work, we develop a first sound and complete implementation of a distributed
process calculus. Our calculus is a variant of the pi calculus; it provides name mobility,
reliable messaging and authentication primitives, but neither explicit cryptography nor
probabilistic behaviors. Taking advantage of concurrency theory, it supports simple rea-
soning, based on labeled transitions and observational equivalence. We precisely define
its concrete implementation in a computational setting. We establish general soundness
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and completeness results in the presence of active adversaries, for both trace properties
and observational equivalences, essentially showing that high level reasoning accounts
for all low-level adversaries. We illustrate our approach by coding security protocols
and establishing their computational correctness by simple formal reasoning.

We implement high-level functionalities using cryptography, not high-level views of
cryptographic primitives. Following recent related works, we could instead have pro-
ceeded in two steps, by first compiling high-level communications to an intermediate
calculus with ideal, explicit cryptography (in the spirit of [3, 2]), then establishing the
computational soundness of this calculus with regards to computational cryptography.
However, this second step is considerably more delicate than our present goal, inasmuch
as one must provide a sound implementation for an arbitrary usage of ideal cryptogra-
phy. In contrast, for instance, our language keeps all keys implicit, so no high-level
program may ever leak a key or create an encryption cycle. (We considered targeting
existing idealized cryptographic frameworks with soundness theorems, but their reuse
turned out to be more complex than a direct implementation.)

Our concrete implementation relies on standard cryptographic primitives, computa-
tional security definitions, and networking assumptions. It also combines typical
distributed implementation mechanisms (abstract machines, marshaling and unmarshal-
ing, multiplexing, and basic communications protocol.) This puts interesting design
constraints on our high-level semantics, as we need to faithfully reflect their proper-
ties and, at the same time, be as abstract as possible. In particular, our high-level en-
vironments should be given precisely the same capabilities as low-level probabilistic
polynomial-time (PPT) adversaries. For example, our language supports abstract reli-
able messaging: message senders and receivers are authenticated, message content is
protected, and messages are delivered at most once. On the other hand, under the con-
servative assumption that the adversary controls the network, we cannot guarantee mes-
sage delivery, nor implement private channels (such that some communications may be
undetected). Hence, the simple rule ¢(M).P |c(z).Q — P|Q{M/xz}, which models
silent communication “in the ether” for the pi calculus, is too abstract for our purposes.
(For instance, if P and () are implemented on different machines connected by a public
network, and even if c is a restricted channel, the adversary can simply block all com-
munications.) Instead, we design high-level rules for communications between explicit
principals, mediated by an adversary, with abstract labels that enable the environment
to perform traffic analysis but not forge messages or observe their payload. Similarly,
process calculi feature non-deterministic infinite computations, and we need to curb
these features to meet our low-level complexity requirements.

Contents. This extended abstract is organized as follows. Section 2 defines our low-
level target model. Section 3 presents our high-level language and semantics. Section 4
defines and illustrates high-level equivalences. Section 5 outlines our concrete imple-
mentation. Section 6 states our soundness and correctness theorems. Section 7 con-
cludes.

A technical report [6] provides additional details and definitions, including the defi-
nition of our cryptographic implementation, examples and applications, and all proofs.

Related Work. Within formal cryptography, process calculi are widely used to model
security protocols. For example, the spi calculus of Abadi and Gordon [4] neatly models
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secret keys and fresh nonces using names and their dynamic scopes. Representing ac-
tive attackers as pi calculus contexts, one can state (and prove) trace properties and
observational equivalences that precisely capture the security goals for these protocols.
Automated provers (e.g. [10]) also help verify these goals.

Abadi, Fournet, and Gonthier develop distributed implementations for variants of
the join calculus, with high-level security but no cryptography, roughly comparable
to our high-level language. Their implementation is coded within a lower-level calcu-
lus with formal cryptography. They establish full abstraction for observational equiv-
alence [3,2]. Our approach is similar, but our implementation is considerably more
concrete. Also, due to the larger distance between high-level processes and low-level
machines, our soundness results are more demanding. Abadi and Fournet also propose
a labeled semantics for traffic analysis, in the context of a pi calculus model of a fixed
protocol for private authentication [1].

The computational soundness of formal cryptography is an active area of research,
with many recent results for languages that include selected cryptographic primitives.
Abadi and Rogaway initially consider formal encryption against passive attackers [5]
and establish the soundness of indistinguishability. Backes, Pfitzmann and Waidner [8]
achieve a first soundness result with active attackers, initially for public-key encryption
and digital signatures. They extend their result to symmetric authentication [9] and
encryption [7]. Micciancio and Warinschi [16] also establish soundness in the presence
of active attacks, under different simpler assumptions.

Other works develop computationally sound implementations of more abstract secu-
rity functions on top of cryptography. For example, Canetti and Krawczyk build compu-
tational abstractions of secure channels in the context of key exchange protocols, with
modular implementations, and they establish sufficient conditions to realize these chan-
nels [11]. Targeting the idealized cryptographic model of Backes et al. [8], Laud [14]
implements a deterministic process calculus and establishes the computational sound-
ness of a type system for secrecy.

Another interesting approach is to supplement process calculi with concrete prob-
abilistic or polynomial-time semantics. Unavoidably, reasoning on processes becomes
more difficult. For example, Lincoln, Mitchell, Mitchell, and Scedrov [15] introduce a
probabilistic process algebra for analyzing security protocols, such that parallel contexts
coincide with probabilistic polynomial-time adversaries. In this framework, further ex-
tended by Mitchell, Ramanathan, Scedrov, and Teague [17], they develop an equational
theory and bisimulation-based proof techniques.

2 Low-Level Target Model

Before presenting our language design and implementation, we specify the target sys-
tems. We rely on standard notions of security for cryptographic primitives (CCA2 for
encryption [18], CMA for signing [13]) recalled in the technical report.

We consider systems that consist of a finite number of communicating principals
a,b,c,e,u,v,... € Prin. Each principal runs its own program, written in our high-level
language and executed by the PPT machine outlined in Section 5. Each machine M, has
two wires, in, and out,, representing a basic network interface. When activated, the
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machine reads a bitstring from in,, performs some local computation, then writes a bit-
string on out,, and yields. The machine embeds probabilistic algorithms for encryption,
signing, and random-number generation—thus the machine outputs are random vari-
ables. The machine is also parameterized by a security parameter € N—intuitively,
the length for all keys—thus these outputs are ensembles of probabilities.

Some of these machines may be corrupted, under the control of the attacker; their
implementation is then unspecified and treated as part of the attacker. We let a,b € 'H
with H C Prin range over principals that comply with our implementation, and let
M = (M, )qen describe our whole system. Of course, when « interacts with u € Prin,
its implementation M, does not know whether u € H or not.

The adversary, A, is a PPT algorithm that controls the network, the global scheduler,
and some compromised principals. At each moment, only one machine is active: when-
ever an adversary delivers a message to a principal, this principal is activated, runs until
completion, and yields an output to the adversary.

Definition 1 (Run). A run of A and M with security parameter 1 € N goes as follows:

1. key materials are generated for every principal a € Prin;
2. every My, is activated with 1", the keys for a, and the public keys for all u € Prin;
3. Ais activated with 1", the keys for e € Prin \ 'H, and the public keys for a € H;
4. A performs a series of low-level exchanges:

— A writes a bitstring on wire in, and activates M, for some a € H;

— upon completion of M, A reads a bitstring on out,;
5. A returns a bitstring s, written s —— A[M].

To study their security properties, we compare systems that consist of machines run-
ning on behalf of the same principals H C Prin, but with different internal programs
and states. Intuitively, two systems are equivalent when no adversary, starting with the
information normally given to the principals e € Prin\ H, can distinguish between their
two behaviors, except with negligible probability (written neg (7)). This is the notion
of computational indistinguishability introduced by Goldwasser and Micali [12]. Our
goal is to develop a simpler, higher-level semantics that entails indistinguishability.

Definition 2. Two systems MO and M* are indistinguishable, written MO =~ ML, when
for every PPT adversary A, we have | Pr[1 «— A[M°]] — Pr[1 «— A[M1']]| < neg (n).

3 A Distributed Calculus with Principals and Authentication

We now present our high-level language. We successively define terms, patterns, pro-
cesses, configurations, and systems. We then give their operational semantics. Although
some aspects of the design are unusual, the resulting calculus is still reasonably abstract
and convenient for distributed programming.

Syntax and Informal Semantics. Let Name be a countable set of names disjoint from
Prin. Let £ range over a finite number of function symbols, each with a fixed arity
k > 0. Terms and patterns are defined by the following grammar:
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VW = Terms

T,y variable

m,n € Name name

a,b,e,u,v € Prin principal identity

f(Vi,..., Vi) constructed term (when f has arity k)
T,U = Patterns

Tx variable (binds x)

T as 7x alias (binds x to the term that matches 7T7)

V constant pattern

£f(Tu,...,Tk) constructed pattern (when f has arity k)

Names and principals identities are atoms, or “pure names”, which may be compared
with one another but otherwise do not have any structure. Constructed terms represent
structured data, much like algebraic data types in ML or discriminated unions in C.
They can represent constants and tags (when k£ = 0), tuples, and formatted messages.
As usual, we write tag and (V7, V2) instead of tag() and pair(Vi, V2). Patterns are
used for analyzing terms and binding selected subterms to variables. For instance, the
pattern (tag, 7z) matches any pair whose first component is tag and binds x to its
second component. We write for a variable pattern that binds a fresh variable.

Local processes represent the active state of principals, with the following grammar:

P.Q,R::= Local processes
|4 asynchronous output
(7).Q input (binds bv(T) in Q)
*(T).Q replicated input (binds bv(7T') in Q)
match V with T in Q else Q'  matching (binds bv(T) in Q)
vn.P name restriction (“new”, binds n in P)
PP parallel composition
0 inert process

The asynchronous output V' is just a pending message; its data structure is explained
below. The input (7°).Q) waits for an output that matches 7" then runs @) with the bound
variables of 7" substituted by the matching subterms of the output message. The repli-
cated input %(7").Q) behaves similarly but it can consume any number of outputs that
match 7' and fork a copy of @ for each of them. The match process runs @ if V'
matches T, and runs Q' otherwise. The name restriction creates a fresh name n then
runs P. Parallel composition represents processes that run in parallel, with the inert
process 0 as unit. Free and bound names and variables for terms, patterns, and processes
are defined as usual: x is bound in T if 7z occurs in T'; n is bound in vn.P; x is free in
T if it occurs in T" and is not bound in 7'. An expression is closed when it has no free
variables; it may have free names.

Our language features two forms of authentication, represented as constructors plus
well-formed conditions on their usage in processes. Due to space constraints, this ex-
tended abstract only describes message authentication—the technical report also de-
scribes high level certificates that provide transferable data authentication.

Authenticated messages between principals are represented as terms of the form
auth(V7, Vo, Vi), written V;:V2(V3), where V4 is the sender, V5 the receiver, and V3
the content. We let M and N range over messages. The message M is from a (respec-
tively to a) if a is the sender (respectively the receiver) of M. Authenticated messages
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are delivered at most once, to their designated receiver. As an example, a:b(Hello) is
an (authentic) message from a to b with content Hello, a constructor with arity 0.

Finally, configurations represent assemblies of communicating principals, with the
following grammar:

C = configurations
alP] principal a with local state P
M/i intercepted message M with index ¢
c|c’ distributed parallel composition
vn.C name restriction (“new”, binds n in C)

A configuration is an assembly of running principals, each with its own local state,
plus an abstract record of the messages intercepted by the environment and not for-
warded yet to their intended recipients. A system S is a top-level configuration (plus an
abstract record of the certificates available to the adversary, omitted here).

We rely on well-formed conditions. In local processes, P is well-formed for a € Prin
when no pattern used for input in P matches any message from a. This condition pre-
vents that messages sent by P be read back by some local input. In configurations,
intercepted messages have distinct indices ¢ and closed content M ; principals have dis-
tinct identities a and well-formed local processes P,. In systems, let H be the set of
identities for all defined principals, called compliant principals; intercepted messages
are from a to b for some a, b € H with a # b.

Operational Semantics—Local Reductions. We define our high-level semantics in two
stages: local reductions between processes, then global labeled transitions between sys-
tems and their (adverse) environment. Processes, configurations, and systems are con-
sidered up to renaming of bound names and variables.

Structural equivalence, written P = P’, represents structural rearrangements for lo-
cal processes. As in the pi calculus, it is defined as the smallest congruence such that
P=P|0,P|Q=Q|P,P|(Q|R) = (P|Q)|R, (wn.P)|Q = vn.(P|Q) when
n ¢ m(Q), vmwn.P = vn.vm.P, and vn.0 = 0. Intuitively, structural rearrange-
ments are not observable (although this is quite hard to implement).

Local reduction step, written P — P’, represents internal computation between local
processes. It is defined as the smallest relation such that

(LCoMMm) (T.Q|To — Qo

(LREPL) *(T).Q|To — Qo |x(T).Q

(LMATCH) match 7o withT in P else Q — Po

(LNOMATCH) match V with T in P else Q — @ when V # To for any o

(LPARCTX) (LNEWCTX) (LSTRUCT)
P—Q P—Q P=P P —Q Q=Q
PIR—Q|R vn.P — vn.Q P—-Q

where o ranges over substitutions of closed terms for the variables bound in 7'. The
local process P is stable when it has no local reduction step, written P 4. We write
P — @Q when P —*= @ and Q) /.

Operational Semantics—System Transitions. We define a labeled transition semantics
for systems. Each labeled transition, written .S L9, represents a single interaction
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with the adversary. We let o and (3 range over input and output labels (respectively from
and to the adversary), let ¥ range over labels, and let ¢ range over series of labels. We
write S 2 S’ for a series of transitions with labels . Labeled transitions are defined
by the following rules on configurations:

:a{V)| P —»
(CEGOUT) “ #fu<v> Croim ) I(uﬂvg ua
ala:u(V) Q] — a[Q)] a[P] —— a[Q)]
b, o' inotinC o0, o
(CFGBLOCK) ibe (CFGFWD) )
C|a[P] 2% C' | b:a(V) /i | a|P] cim/)i e
C L C" ~not from/to a C L C inotin~y
(CFGPRINCTX) ~ (CFGMSGCTX) -
C|a[P] = C'|alP] C|M/i—C"|M[i
L ¢ nfreeinp C L C" nnotinny
(CFGOPEN) (CFGNEWCTX) -
vn.C 222, o vn.C 5 vn.C’
c=D DLD D=
(CFGSTR)
cLc

where structural equivalence on configurations, written C' = C”, is defined by the same
rules as for processes plus Rule vn.a[P| = a[vn.P).

Rules (CFGOUT) and (CFGIN) represent “intended” interactions with the environ-
ment, as usual. They enable local processes to send messages to other principals, and to
receive their messages. The transition label conveys the complete message content.

Rules (CFGBLOCK) and (CFGFWD) reflect the actions of an active attacker that in-
tercepts, then selectively forwards, messages exchanged between compliant principals;
unlike the (COMM) rule of the pi calculus, they ensure that the environment mediates all
communications between principals. The label produced by (CFGBLOCK) signals the
message interception; the label conveys partial information on the message content that
can be observed from its wire format: the environment learns that an opaque message
is sent by b, with intended recipient a. In addition, the intercepted message content is
recorded within the configuration, using a fresh index ¢. Later on, when the environment
performs an input with label (¢), Rule (CFGFWD) restores the original message content
and consumes M /i; this ensures that intercepted messages are delivered at most once.

The local-reduction hypothesis in Rules (CFGIN) makes local computations atomic,
as they must complete immediately upon receiving a message and lead to some updated
stable process (). Intuitively, this enforces a transactional semantics for local steps, and
prevents any observation of their transient internal state. (Otherwise, the environment
may for instance observe the order of appearance of outgoing messages.) On the other
hand, any outgoing messages are kept within ); the environment can obtain all of them
via rules (CFGOUT) and (CFGBLOCK) at any time, since those outputs commute with
any subsequent transitions.

The rest of the rules for configurations are standard closure rules with regards to
contexts and structural rearrangements: Rule (CFGOPEN) is the scope extrusion rule
of the pi calculus that opens the scope of a restricted name included in a message sent
to the environment. In contrast with intercepted messages, messages sent to a principal
not defined in the configuration are transmitted unchanged to the environment, after
applying the context rules. In Rule (CFGPRINCTX), condition  not from a excludes



90 P. Addo and C. Fournet

inputs from the environment that forge a message from a, whereas condition  not to a
excludes outputs that may be transformed by Rule (CFGBLOCK).

We define auxiliary notions of transitions, used to describe our implementation. We
say that S is stable when all local processes are stable and S has no output transition.
(Informally, S is waiting for any input from the environment.) We say that a series of
transitions S 2> S’ is normal when every input is followed by a maximal series of
outputs leading to a stable system, that is, ¢ = Y1p2...¢n, i = ;F;, and S =
So 25 S 22 8, 22 S, = S for some stable systems S, . .., Sy.

By design, our semantics is compositional, as its rules are inductively defined on the
structure of configurations. For instance, we obtain that interactions with a principal
that is implicitly controlled by the environment are ar least as expressive as those with
any principal explicited within the system.

4 High-Level Equivalences and Safety

Now that we have labeled transitions that capture our implementation constraints, we
can apply standard definitions and proof techniques from concurrency theory to rea-
son about systems. Our computational soundness results are useful (and non-trivial)
inasmuch as transitions are simpler and more abstract than low-level adversaries. In
addition to trace properties (used, for instance, to express authentication properties as
correspondences between transitions) , we consider equivalences between systems.

Intuitively, two systems are equivalent when their environment observes the same
transitions. Looking at immediate observations, we say that two systems S; and So
have the same labels when, if S; - S/ for some S} (and the name exported by ~ are
not free in S5), then Sp - S% for some S, and vice versa. More generally, bisimilarity
demands that this remains the case after matching transitions:

Definition 3 (Bisimilarity). The relation R on systems is a labeled simulation when,
forall S; R S, if S; S (and the names exported by ~y are not free in Ss) then
Sy L Shoand S, R S). Labeled bisimilarity, written =, is the largest symmetric
labeled simulation.

In particular, if S &~ S’, then S and S’ define the same principals and have the same
intercepted-message indices. We also easily verify some congruence properties: our
equivalence is preserved by name restrictions, definitions of additional principals, and
deletions of intercepted messages.

Lemma 1. /. IfCi = Cs, then vn.C7 = vn.Ch.
2. If C1 = Cy, then Cy | a]|P] = Cy | a[P] if these systems are well-formed.
3. IfVﬁl.(C1 M1/Z) ~ Vﬁg.(CQ ‘ Mg/i), then Vﬁl.C1 ~ VﬁQ.CQ.

As we quantify over all local processes, we must at least bound their computational
power. Indeed, our language is expressive enough to code Turing machines and, for
instance, one can easily write a local process that receives a high-level encoding of the
security parameter 7 (e.g. as a series of 77 messages) then delays a message output by 2"
reduction steps, or even implements an ‘oracle’ that performs some brute-force attacks
using high level implementations of cryptographic algorithms.
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Similarly, we must restrict non-deterministic behaviors. Process calculi often feature
non-determinism as a convenience when writing specifications, to express uncertainty
as regards the environment. Sources of non determinism include local scheduling, hid-
den in the associative-commutative laws for parallel composition, and internal choices.
Accordingly, abstract properties and equivalences typically only consider the existence
of transitions—not their probability. Observable non-determinism is problematic in a
computational cryptographic setting, as for instance a non-deterministic process may
be used as an oracle to guess every bit of a key in linear time.

We arrive at the following definitions. We let [-] compute the (high level) size of
systems, labels, and transitions, with for instance [S 5 '] = [S] + [v] + [S'] + 1,
and let input(p) be the input labels of .

Definition 4 (Safe Systems). A system S is polynomial when there exists a polyno-
mial p such that, for any @, if S %> S' then [S %> S'] < p([input(p)]).

A system S is safe when it is polynomial and, for any @, if S 2. S and S 5 S,
then S1 and S5 have the same labels.

Hence, starting from a safe process, a series of labels fully determines any further obser-
vation. Safety is preserved by all transitions, and also uniformly bounds (for example)
the number of local reductions and new names.

These restrictions are serious, but they are also easily established when writing sim-
ple programs and protocols. (Still, it would be interesting to relax them, maybe us-
ing a probabilistic process calculus.) Accordingly, our language design prevents trivial
sources of non-determinism and divergence (e.g. with pattern matching on values, and
replicated inputs instead of full-fledged replication); further, most internal choices can
be coded as external choices driven by the inputs of our abstract environment.

We can adapt usual bisimulation proof techniques to establish both equivalences
and safety: instead of examining all series of labels ¢, it suffices to examine single
transitions for the systems in the candidate relation.

Lemma 2 (Bisimulation Proof). Let R be a reflexive labeled bisimulation such that,
for all related systems S1 R So, if S N St and So N SY, then ST R S5,
Polynomial systems related by R are safe and bisimilar.

We illustrate our definitions using basic examples of secrecy and authentication stated
as equivalences between a protocol and its specification (adapted from [2]). Consider a
principal a that sends a single message. In isolation, we have the equivalence
ala:b(V)] =~ ala:b{(V")] if and only ifa%W:) V', since the environment observes V'
on the label of the transition a[a:b{V)] — a][0].

Consider now the system S(V, W) = a[a:b(V, W)]|b[(a:(?x, )).P], with an ex-
plicit process for principal b that receives a’s message and, assuming the message is
a pair, runs P with the first element of the pair substituted for x. For any terms W3
and Wa, we have S(V,W;) ~ S(V,W>). This equivalence states the strong secrecy
of W, since its vajlue cannot affect the environment. The system has two transitions
SV, w) 240 1, 0] | b[P{V/a}).

Further, the equivalence S(V, W) =~ a[a:b()] | b[(a:( )).P{V/x}] captures both the
authentication of V' and the absence of observable information on V and W in the
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communicated message, since the protocol S(V, W) behaves just like another protocol
that sends a dummy message instead of V, W.

5 A Concrete Implementation (Outline)

We systematically map high-level systems S to the machines of Section 2, mapping
each principal a[P,] of S to a PPT machine M, that executes P,. Due to space
constraints, we only give an outline of our implementation, defined in the technical
report. The implementation mechanisms are simple, but they need to be carefully spec-
ified and composed. (As a non-trivial example, when a machine outputs several mes-
sages, possibly to the same principals, we must sort the messages after encryption so
that their ordering on the wire leaks no information on the computation that produced
them.)

We use two concrete representations for terms: a wire format for (signed, encrypted)
messages between principals, and an internal representation for local terms. Various bit-
strings represent constructors, principal identities, names, and certificates. Marshaling
and unmarshaling functions convert between internal and wire representations. When
marshaling a locally restricted name n for the first time, we draw a bitstring s of length )
uniformly at random, associate it with n, and use it to represent n on the wire. When
unmarshaling a bitstring s into a name, if s is not associated with any local name, we
create a new internal identifier n for the name, and also associate s with n.

Local processes are represented in normal form for structural equivalence, using
internal terms and multisets of local inputs, local outputs, and outgoing messages. We
implement reductions using an abstract machine that matches inputs and outputs using
an arbitrary deterministic, polynomial-time scheduler.

To keep track of the runtime state for our machines, we supplement high-level sys-
tems S with shadow states D that record sufficient information so that each machine is
a function M, (S, D). For instance, D records maps from names and intercepted mes-
sages to bitstrings, and from principals to their keys and the content of their anti-replay
caches. The shadow D also determines the information available to the attacker, coded
as a bitstring public(D). The structure of public(D) sets the interface between attack-
ers and low-level systems, called the shape of D. For instance, the shape fixes the free
names that may occur in S, and public(D) provides their associated bitstrings.

In general, a system .S may contain restricted names shared between local processes
and intercepted messages, making it non-trivial to describe a concrete initialization
mechanism that produces M (.S, D) and public(D). Instead of explicitly coding low-level
initialization, we define it as the run of a high-level initialization protocol S° “— S that
lets the principals exchange names and yield intercepted messages to the environment.
In the initialization protocol, S° is a system with no intercepted messages and no free
names in local processes. For any system .S, there are such transitions S° £ S and,
applying a variant of Theorem 1, there is a PPT algorithm A e that simulates ¢° and
produces public(D) from some public(D®), where D® is the shadow produced by Defi-
nition 1(1-3). Thus, we define a run of M(S, D) with adversary A, written A[M(.S, D)],
as a run of (Age; A)[M(S°,D°)] where Aye; A first runs Age then starts A with input
public(D). We then say that D is a valid shadow for S.
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6 Soundness and Completeness Results

In this section we show that properties that hold with the high-level semantics can be
carried over to the low-level implementation, and the other way around. Due to space
constraints, most auxiliary results and all proofs appear in the technical report [6].

Our first theorem expresses the soundness of the high-level operational semantics:
every series of transitions can be executed (and checked) by a low-level attacker. Said
otherwise, the high-level semantics does not give too much power to the environment.

Theorem 1. For any shape of D and labels ¢, there is a PPT algorithm A, such that,
for any safe stable system S with valid shadow D where the new names of p are not
free in D, one of the following holds with overwhelming probability:

- 1 +— A,[M(S,D)] and there exists S’ with normal transitions S ~> S'; or
- 0 «— A,[M(S, D)] and there are no normal transitions S % 5.

Since we can characterize any trace using an adversary, we also obtain completeness
for trace equivalence: low-level equivalence implies high-level trace equivalence.

Theorem 2. Let Si and Sy be safe stable systems with valid shadow D such that
M(S1,D) ~ M(Sy, D). If there are normal transitions S, 2> S and the new names
of p are not free in D, then there are normal transitions Sy LN S4.

Our next theorem expresses the completeness of our high-level transitions: every low-
level attack can be described in terms of high-level transitions. More precisely, the prob-
ability that an interaction with a PPT adversary yields a machine state unexplained by
any high-level transitions is negligible.

Theorem 3. Let S be a safe stable system with valid shadow D and A a PPT algorithm.
The probability that A[M(S, D)] completes and leaves the system in state M’ with
M’ # M(S’, D’) for any normal transitions S <> S’ with valid shadow D' is negligible.

Finally, our main result states the soundness of equivalence: to show that two stable
systems are indistinguishable, it suffices to show that they are safe and bisimilar.

Theorem 4. Let S1 and So be safe stable systems with valid shadow D. If S =~ Ss,
then M(S1,D) =~ M(S3, D).

7 Conclusions and Future Work

We designed a simple, abstract language for secure distributed communications.
Our language provides uniform protection for all messages; it is expressive enough
to program a large class of protocols; it also enables simple reasoning about security
properties in the presence of active attackers, using labeled traces and equivalences. We
implemented this calculus as a collection of concrete PPT machines embedding stan-
dard cryptographic algorithms, and established that low-level PPT adversaries that con-
trol their scheduling and the network have essentially the same power as (much simpler)
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high-level environments. To the best of our knowledge, these are the first cryptographic
soundness and completeness results for a distributed process calculus.

We also identified and discussed difficulties that stem from the discrepancy between

the two models, and developed proofs that combine techniques from process calculi
and cryptography. It would be interesting (and hard) to extend the expressiveness of our
calculus, for instance with secrecy and probabilistic choices.

Acknowledgments. This paper benefited from discussions with Martin Abadi, Tuomas
Aura, Karthik Bhargavan, Andy Gordon, and David Pointcheval.
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Abstract. We propose a Dolev-Yao-based definition of abuse freeness
for optimistic contract-signing protocols which, unlike other definitions,
incorporates a rigorous notion of what it means for an outside party to
be convinced by a dishonest party that it has the ability to determine the
outcome of the protocol with an honest party, i.e., to determine whether
it will obtain a valid contract itself or whether it will prevent the honest
party from obtaining a valid contract. Our definition involves a new no-
tion of test (inspired by static equivalence) which the outside party can
perform. We show that an optimistic contract-signing protocol proposed
by Asokan, Shoup, and Waidner is abusive and that a protocol by Garay,
Jakobsson, and MacKenzie is abuse-free according to our definition. Our
analysis is based on a synchronous concurrent model in which parties can
receive several messages at the same time. This results in new vulnera-
bilities of the protocols depending on how a trusted third party reacts in
case it receives abort and resolve requests at the same time.

1 Introduction

Abuse freeness is a security property introduced in [9] for optimistic contract-
signing protocols: An optimistic (two-party) contract-signing protocol is a pro-
tocol run by A (Alice), B (Bob), and a trusted third party T (TTP) to exchange
signatures on a previously agreed upon contractual text with the additional
property that the TTP will only be involved in a run in case of problems. Such
a protocol is not abuse-free for (honest) Alice if at some point during a protocol
run (dishonest) Bob can “convince” an outside party, Charlie, that he is in an
unbalanced state, where, following the terminology of [4], unbalanced means that
Bob has both (i) a strategy to prevent Alice from getting a valid contract and
(ii) a strategy to obtain a valid contract. In other words, Alice can be misused
by Bob to get leverage for another contract (with Charlie). Obviously, abuse-free
contract-signing protocols are highly desirable.

The main goal of the present work is to present a formal definition of abuse
freeness which is as protocol-independent as possible. The crucial issue with such
a formal definition is that it needs to specify what it means for Bob to convince
Charlie. One of the first proposals for this was presented by Kremer and Raskin
[12]. Roughly, their proposal is the following: To convince Charlie a message is
presented to Charlie from which he can deduce that “a protocol run has been
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started between Alice and Bob”. What that means is, however, not specified
in a general fashion in [12]. Instead, this is decided on a case by case basis.
The objective of this paper is to give a generic definition. The only part which
needs to be decided on a case by case basis in our definition is what it means for
Alice (or Bob) to have received a valid contract—something which can hardly be
described in a generic way—and what the assumptions are that Charlie makes.

Before we explain our approach and the contribution of our work we need to
explain the following crucial point: Whether or not Charlie is convinced should
be based on evidence provided by Bob. Following [9], we model this evidence
as a message that Bob presents to Charlie. (In [9], this is called an off-line
attack.) This, however, has an important implication. Since Bob can hold back
any message he wants to (he can himself decide which messages he shows to
Charlie) and since Charlie is assumed to be an outside party not involved in the
protocol, if Bob could convince Charlie to be in some state of the protocol at
some point, at any later point he would be able to convince Charlie that he was
in the same state, simply by providing the same evidence. Therefore, Bob can
only convince Charlie that he is or was and still might be in an unbalanced state.
We employ this notion of abuse freeness for our work. (Note that it is stronger
than the one described above as Charlie is more easily convinced.)

Contribution of this Work. We provide a formal definition of the version of abuse
freeness just explained, apply our definition to the optimistic contract-signing
protocols by Asokan, Shoup, and Waidner [3] (ASW protocol) and by Garay,
Jakobsson, and MacKenzie [9] (GJM protocol), and show that the ASW protocol
is abusive while the GJM protocol is abuse-free according to our definition.

The idea behind our definition of abuse freeness is that Bob presents a message
to Charlie and Charlie performs a certain test on this message. If the message
passes the test, then Charlie is convinced that Bob is or was and still might
be in an unbalanced state. The test is such that from the point of view of
Charlie, Bob can only generate messages passing the test in states where Bob
is or was in an unbalanced state and where at least one of these states is in
fact unbalanced. To describe the power Bob has, we adopt a Dolev-Yao style
approach [8] (see also [2,1,7]). Our definition of test is inspired by the notion of
static equivalence [2].

We use a synchronous concurrent communication model in which principals
and the (Dolev-Yao-style) intruder may send several messages to different parties
at the same time. This rather realistic model requires to specify the behavior
of protocol participants in case several messages are received at the same time
(or within one time slot). This leads to new effects that have not been observed
in previous works. In the ASW and GJM protocols, one needs to specify the
behavior of the TTP in case an abort and a resolve request are received at the
same time (from different parties). The question arises whether the TTP should
answer with an abort or a resolve acknowledgment. We show that if the TTP
does the former, then the ASW and the GJM protocol are unbalanced for the
responder, and if it does the latter, the two protocols are unbalanced for the
initiator.
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Related Work. As mentioned above, Kremer et al. [12] analyzed the ASW and
GJM protocol based on finite-state alternating transition systems, using an au-
tomatic analysis tool. They explicitly needed to specify the behavior of dishonest
principals and which states are the ones that are convincing to Charlie (they use
a propositional variable prove2C, which they set manually). This is what our
definition makes obsolete.

Chadha et al. [4] introduce a stronger notion than abuse freeness, namely
balance: For a protocol to be unbalanced one does not require Bob to convince
Charlie that he is in an unbalanced state. The fact that an unbalanced state
exists is sufficient for a protocol to be unbalanced. Hence, balance is a formally
stronger notion than abuse freeness. Unfortunately, this notion is too strong in
some cases. In fact, as shown by Chadha et al. [6] in an interleaving (rather than
real concurrent) model, if principals are optimistic, i.e., they are willing to wait
for messages of other parties, balance is impossible to achieve; in this paper,
Chadha et al. also sketch a definition of abuse freeness based on epistemic logic,
but without going into details. In [5], Chadha et al. study multi-party contract
signing protocols.

Shmatikov and Mitchell [13] employ the finite-state model checker Mury to
automatically analyze contract-signing protocols. They, too, approximate the
notion of abuse freeness by a notion similar to balance.

Structure of the Paper. The technical part of the paper starts with an informal
description of the ASW protocol in Sect. 2, which then serves as a running
example for the further definitions. In Sect. 3, we describe our communication
and protocol model, with the new definition of abuse freeness presented in Sect. 4.
We then treat the ASW and the GJM protocol in our framework in Sect. 5 and
Sect. 6. We conclude in Sect. 7. A full version of our paper is available, see [11].

2 The ASW Protocol

In this section, we recall the Asokan-Shoup-Waidner (ASW) protocol from [3],
which will serve as a running example; the Garay-Jakobsson-MacKenzie (GJM)
protocol from [9] will be explained in Section 6.

The ASW protocol assumes the following scenario: Alice and Bob want to sign
a contract and a TTP is present. Further, it is agreed upon that the following
two types of messages, the standard contract (SC') and the replacement contract
(RC'), will be recognized as valid contracts between Alice and Bob with con-
tractual text text: SC' = (mey, Ng, mea, Np) and RC = sigy({mey, mez)) where
me; = sig4((A, B, text, hash(N4))) and mes = sigg({me1, hash(Np))), and as
usual, N4 and Np stand for nonces. In addition to SC' and RC, the variants of
SC and RC which one obtains by exchanging the roles of A and B are regarded
as valid contracts.

There are three interdependent parts to the protocol: an exchange protocol,
an abort protocol, and a resolve protocol. The exchange protocol consists of
four steps, which, in Alice-Bob notation, are displayed in Fig. 1. The first two
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messages, me; and mes, serve as respective promises of Alice and Bob to sign
the contract, and N4 and Np serve as contract authenticators: After they have
been revealed, Alice and Bob can compose the standard contract, SC.

The abort protocol is run between Alice

and the TTP and is used by Alice to abort A— B :me;

the contract signing process when she does B — A :mey

not receive Bob’s promise. Alice will ob- A— B :Nu

tain (from the TTP) an abort receipt or, if B— A:Ng

the protocol instance has already been re-

solved (see below), a replacement contract.  Fig.1. ASW exchange protocol

The first step is A — T': ma; where ma; =

sig 4 ((aborted, me;)) is Alice’s abort request; the second step is the TTP’s reply,
which is either sigy((aborted, ma,)), the abort receipt, if the protocol has not
been resolved, or the replacement contract, RC.

Similarly, the resolve protocol can be used by Alice and Bob to resolve the
protocol, which either results in a replacement contract or, if the protocol has
already been aborted, in an abort receipt. When Bob runs the protocol (be-
cause Alice has not sent her contract authenticator yet), the first step is B —
T: (me1,mea); the second step is the TTP’s reply, which is either the abort
receipt sigp({aborted, maq)), if the protocol has already been aborted, or the re-
placement contract, RC. The same protocol (with roles of A and B exchanged)
is also used by Alice.

It is assumed that the communication between Alice and the TTP and be-
tween Bob and the TTP goes through a channel that is not under the control
of the intruder (the dishonest party), i.e., the intruder cannot delay, modify, or
insert messages. We refer to such a channel as secure. Whether or not the in-
truder can read messages sent on this channel does not effect the results shown
in this paper.

3 The Concurrent Protocol and Intruder Model

In this section, we introduce our protocol and intruder model, which, unlike most
other Dolev-Yao-based models, captures real concurrent computation. Given sets
S,T,U with U C T, we denote by ST the set of functions from T to S and for
f € ST we denote by f|i the restriction of f to U.

3.1 Concurrent System Model

A concurrent system in our framework is made up of several components, which
are automata provided with input and output ports for inter-component com-
munication. Each such port can either carry a message from a given set M of
messages or the special symbol ‘o’ (no message). We use M, to denote M U{oc}.
A run of such a system proceeds in rounds: In every round, every component
reads the input on all of its input ports, and then, depending on its current
state, writes output on its output ports (possibly o), and goes into a new state.
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A message written on an output port is read in the next round by the compo-
nent with the corresponding input port. Note that all components perform their
“receive-send action” at the same time and that a component may receive and
send several messages at the same time.

Formally, a component of a concurrent system over a set M of messages is a
tuple A = (S, In, Out, I, A) where S is a (possibly infinite) set of local states, In
is the set of input ports, Out is the set of output ports, disjoint from In, I C S is
the set of initial states, and A C MI? x § x 8 x MOUt is the transition relation,
which, w.l.o.g., is required to be complete: for each (m, s) € MM x S there exist
s’ and m’ with (m,s,s’,m’) € A. A transition (m, s, s’,m’) is meant to model
that if A is in state s and reads the messages m on its input ports, then it writes
m’ on its output ports and goes into state s’.

A concurrent system over a set M of messages is a finite family {A;};cp of
components over M of the form (S;,In;, Out;, I;, A;) such that In; N In; =
Out; N Out; = () for every ¢ and j # i. Note that an output port of one
component may coincide with the input port of another component, which allows
the former component to send messages to the latter component.

Given a concurrent system G = {A; };cp as above, its set of input and output
ports is determined by In = |J;cpIn; and Out = (J,.p Out;, respectively,
while its state set and its initial state set are defined by S = [[,cp Si and
I={seS|s(i) €l fori € P} where s(i) denotes the entry with index 7 in s.
We set P = In U Out.

A concurrent transition is a tuple of the form (m, s, s’,m’) satisfying (m|n,,
s(2), 8'(i), m'|out,) € A; for every i € P. Note that if p € Out; N In, for | # r,
then this means that by applying the transition, component A; sends message
m/(p) to component A,. A global state of G is a pair (m, s) with m € ME and
s €5, i.e., it contains all current messages on ports and all local states.

An (m, s)-computation of G is an infinite sequence p = mgsgm1s; ... of global
states such that (mg,s;, Si+1,mit1) is a concurrent transition for every ¢ and
(mo, s0) = (m,s). Finite (m, s)-computations are defined in the same way. An
infinite (m, s)-computation is called a run of G if m(p) = o for every p € P and
s € I. A finite prefix of a run is called a run segment.

A global state (m,s) is called reachable if there is a run segment
p = MmoSom18i ... Mk—18k—1 such that (my_1,8,-1) = (m,s). Let (m,s) and
(m/,s") be global states. We call (m/,s") a descendant of (m,s) if there is an
(m, s)-computation p = mgsomisi ... such that (m’,s’) = (m;,s;) for some
i > 0, in particular, (m,s) is a descendant of (m, s).

3.2 Dolev-Yao Systems

To model protocols and the execution of protocols in presence of an intruder,
we consider specific concurrent systems, called Dolev-Yao systems. We first in-
troduce messages and terms, along the lines of [1,2,7].

Given a signature X and a set of variables V, the set of terms 7 (X, V) and
the set of ground terms T(X) are defined as usual. Given a set S C 7(X,V),
called a set of basic operations, we call a term ¢t an S-term if t € S or if it is
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obtained from a term in S by substituting S-terms for variables and renaming
variables. We also consider an equational theory H over Y, which we assume
is convergent, implying that every term ¢ has a unique normal form, which we
denote by t].

For example, to model the ASW protocol we consider the signature X4 gw con-
sisting of the following symbols: sig(-, -), sigcheck(:, -, ), pk(-), sk(-), {-,-), m1(-),
ma(+), hash(:), A, B, T, text, ok, initiator, responder, aborted, and an infinite num-
ber of constants. Further, we choose operations that model pairing, projections,
checking a signature, signing, and hashing, that is, Sagw consists of the fol-
lowing basic operations: (x1,z2), m1(z1), m2(x1), sigcheck(z1, z2, x3), sig(z1, z2),
and hash(z). The semantics of these operations is determined by the equational
theory Hasw, which consists of the following three identities: 71 ((z,y)) = =,
7o ({z,y)) =y, and sigcheck(x, sig(sk(y), z), pk(y)) = ok.

Using the set S of basic operations, an intruder can derive messages from a
given set K of messages by forming (S U K)-terms. We define ds(K) = {m/] |
m is an (S U K)-term without variables} to be the set of messages (in normal
form) that can be derived from K using S. In the ASW example, with =
{(contract, sig(sk(A), contract)),sk(B)}, the following term is an (Sasw U K)-
term: m = sig(sk(B), w1 ({contract, sig(sk(A), contract)))). The normal form m| =
sig(sk(B), contract) of m belongs to ds,, (K).

To specify a Dolev-Yao system, we partition a given (finite) set ALL of all
principals into a set HON of honest principals and a set DIS = ALL \ HON
of dishonest principals. In the Dolev-Yao system, we have a component A, for
every honest principal (honest components) and one component Az, the intruder
component, subsuming all dishonest principals. Each honest component A, has
ports (i) netin?, and secl, for sending messages to 7’ for every 7’ through the
network and the secure channel, respectively, and (ii) ports netoutf and secf for
receiving messages coming from the network (supposedly from 7’) and from the
secure channel (definitely from 7’) for every n’. The input and output port sets of
the intruder component Az are Ing = {netin?, | 7 € HON, 7’ € ALL} U {sec7, |
m € HON,n" € DIS} and Outz = {netout?, | 7’ € HON,m € ALL} U {sec, |
m € DIS, " € HON}, respectively. Note that one end of a network port is always
connected to the intruder (since he controls the network), while secure channel
ports directly connect two honest principals or an honest principal and a dis-
honest principal (i.e., the intruder). Instead of connecting two honest principals
directly through a secure channel, one could plug between two honest principals
a secure channel component for more flexible scheduling. However, for simplicity
and since this does not change our results (if secure channel components between
honest principals are not controlled by the adversary), we choose direct secure
channel links.

The intruder component acts as a Dolev-Yao intruder in that it may derive
arbitrary messages from its initial knowledge and the messages received so far
using S-terms as described above. Note, however, that the intruder component
(as all other components) may receive and send several messages at the same
time.
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Given the set HON of honest and the set DIS of dishonest principals, a family
{Ax}renon of honest components (with ports as specified above), and a set K of
messages (the initial intruder knowledge), we denote by DY[{ A, } renon, HON,
DIS, K] the induced Dolev-Yao system where the set S of operations the intruder
may use to derive new messages is understood from the context. If (m,s) is a
global state of a run of such a system, we denote by IC(m, s) the initial knowledge
of the intruder plus the messages he has seen so far on his input ports (including
the messages currently on his input ports). We say that the intruder can deduce
message m’ at state (m,s) if m’ € ds(KC(m, s)).

4 Balanced and Abuse-Free Protocols

In this section, we present our formal definition of abuse freeness, based on the
notion of balance, which, in turn, is based on the notion of strategy.

4.1 Balanced Protocols

Throughout this subsection, we assume a concurrent system G = {A;};cp with
set of ports P and state set S to be given.

Strategies in the context of abuse freeness need to be defined with respect to
partial information, since Bob will not necessarily know the global state of the
entire protocol at any point of the protocol execution. In addition, strategies
can be carried out jointly by several components. This motivates the following
definitions.

A function with domain (MF x S)* is called a view function for G. Given
a view function view and a run segment p, we say that view(p) is the view of p
w. r. t. view. Any subset of P is called a coalition. Given a coalition J, we write
Out, for J;c; Out;.

Given both, a coalition J and a view function view: (MF x S)* — W, a
view-strategy for J is a function o which determines how the components of
J act depending on their current view w € W, which itself is determined by
view. More precisely, o assigns to each w € W successor states s; € S; (for
j € J) and messages m,, (for p € Out) to be written to the output ports of the
components of the coalition. Clearly, these choices are required to be consistent
with the individual transition relations A;. Given a strategy o and a global state
(m, s), we denote by out((m, s), o) the set of all infinite (m, s)-computations in
which the components of the coalition J follow the strategy o.

In our formal definition of balance, path properties are used to define what
exactly it means to prevent Alice from getting a valid contract or to obtain one.
Formally, a set ¢ C (MF x 9)¢ is called a G-property.

The notion of balance will be defined w.r.t. what we call a balance specifier,
i.e., a tuple § of the form (I,view, 1, p2) where I is a coalition, view is a view
function, and ¢; and @y are path properties. For instance, assume we want to
describe balance for Alice in a concrete contract signing setting. Then we need to
check whether there exist certain strategies for Bob, so we may choose I = {B}.



102 D. Kahler, R. Kiisters, and T. Wilke

More precisely, we want to know whether Bob has a strategy for preventing
that Alice gets a valid contract and a strategy for making sure Bob gets a valid
contract. So we define ¢; as the set of all runs of the protocol where Alice does
not get a valid contract and ¢s as the set of all runs where Bob gets a valid
contract. Finally, we choose view in such a way that at any given point in a run,
view returns everything Bob has observed of the system thus far. Similarly to
[4], balance is now defined as follows:

Definition 1 (balance). Let G be a concurrent system with index set P, (m, s)
a reachable state of G, and = (I, view, @1, 2) a balance specifier.

The state (m,s) is S-unbalanced if there are view-strategies o1 and oo for I
such that p € ¢; for every p € out((m,s),0;) and i € {1,2}. The system G is
(G-unbalanced if there is a reachable state (m,s) of G that is S-unbalanced.

4.2 Abuse-Free Protocols

As already explained earlier, when a protocol is considered abuse-free, then this
means that from Charlie’s point of view Bob has no way of convincing him
that he is in an unbalanced state. That is, the property of being abuse-free
is relative to the view that Charlie has of the protocol. Technically, such a
view is determined by a Dolev-Yao system and a balance specifier. This mo-
tivates the following definition. A pair (G¢, 3°) consisting of a Dolev-Yao system
G¢ and a balance specifier (¢ is called an external view (with respect to abuse
freeness).

We use a specific but natural notion of test that Charlie can make use of to
verify that Bob is in fact in the position he claims to be in. As a parameter it
uses a set X C M of messages, which should be thought of as Charlie’s a-priori
knowledge, such as his private key.

A pair (M, M") of (SU X)-terms (containing exactly one variable x) is called
an atomic X-test. A message m € M passes the test (M, M'), denoted m |=
(M, M), it M[m/x] =x M'[m/z]. The message m fails the test (M, M') if m
does not pass it. This is extended to boolean and w-tests in a straightforward fash-
ion, where in w-tests conjunctions and disjunctions with a denumerable number
of arguments are allowed (our results hold for both boolean and w-tests). For in-
stance, if Charlie wants to check whether a message has the form (c, sig(sk(A), ¢)),
then he can use the boolean test (71(x),c) A (sigcheck(c, m2(x), pk(A)), ok).

As explained above, in our definition Charlie uses a test to distinguish between
messages that give evidence for an unbalanced state and messages which don’t.
In other words, Charlie considers a state unbalanced when Bob could possibly
deduce a message in that state which passes the test. Therefore, we say that for
a given X-test 0, a state (m, s) of a Dolev-Yao system G€¢ is 6-possible if there
exists m’ € ds(K(m,s)) such that m’ |= 0.

The next definition puts everything together. A protocol is not abuse-free if
there exists a convincing test which indicates unbalanced states as explained in
the introduction:
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Definition 2 (abuse freeness). Let X C M. An external view (G, 3°) is X-

abusive if there exists an X-test 0 such that the following two conditions are

satisfied:

1. There exists a 0-possible and (B-unbalanced state in G€.

2. Each 0-possible state (m,s) of G¢ is a descendant of a 0-possible and [3-
unbalanced state in G°.

Such a test is called (G¢, 5¢)-convincing. The external view (G¢,[5°) is called

X-abuse-free if (G¢, 5¢) is not X -abusive.

5 The ASW Protocol Analyzed

In this section, we present our results concerning the analysis of the ASW con-
tract signing protocol. For our formal analysis of the ASW protocol, we let
0 =0asw, S = Sasw, and H = Hasw, as explained in Sect. 3.

5.1 The ASW Protocol Is Not Balanced

First, we note that the ASW protocol (without an optimistic honest party) can
be shown to be balanced in an interleaving (as opposed to a real concurrent)
model; the proof is along the same lines as the one presented in [4] for the
GJM protocol. By contrast, if we consider a concurrent setting and make the
assumptions that Bob (the intruder) is (1) as fast as Alice in sending messages
and (2) the TTP handles a resolve request first when an abort request is received
at the same time (or in the same time slot), we can argue (informally) that the
protocol is unbalanced: Bob has (i) a strategy to prevent Alice from getting a
valid contract, namely by simply doing nothing, and (ii) a strategy to resolve the
contract signing process after Alice has sent the first message of the exchange
protocol, namely by sending a resolve request to the TTP. Even if Alice sends
an abort request to the TTP at the same time, because of assumption (1) her
request cannot reach the TTP before Bob’s resolve request, and with assumption
(2), we know that Bob’s resolve request takes priority over Alice’s abort request.

Assumption (2) from above shows that we need to be careful when implement-
ing the TTP, because of simultaneous requests. If the TTP receives a resolve
request and an abort request at the same time, it could first serve the resolve re-
quest and then the abort request or vice versa. As a consequence, we distinguish
two models of the TTP, denoted T and T, with corresponding components A
and Agv, respectively, and we show that for both variants of the TTP, the ASW
protocol is unbalanced.

We consider two scenarios. In the first one, we have honest Alice, dishonest
Bob, and T, and in the second one, we have dishonest Alice, honest Bob, and
T'. More precisely, we consider Gasw = DY[{A;}icqa,ry, {4, T}, {B},K] and
ngSW = DY[{Ai}iG{B,T/}7 {B, T/}, {A}, IC/] where K = KoU {Sk(B)}, K =KoU
{sk(A)}, and Ko = {A, B, T, text,pk(A), pk(B), pk(T), initiator, responder, ok},
which means that among other things the intruder’s initial knowledge comprises
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Bob’s and Alice’s private key, respectively. The components A4 and Ap are
easily obtained from the informal description in Sect. 2.

We define, in a straightforward fashion, path properties ¢4, ¢p, and @7 to
describe that Alice does not get a valid contract, that Bob does not get a valid
contract, and that the intruder does get a valid contract, respectively.

We assume that the intruder’s view of the system is limited to his own history,
that is, we use an appropriate view function viewz, which removes anything the
intruder cannot observe.

Finally, we define the balance specifiers Sasw = ({Z},viewz,@a,z) and
Bhasw = ({Z},viewr, @5, ¢7), which are designed in such a way that they de-
scribe being unbalanced for Bob and for Alice, respectively.

Following the informal reasoning from above, we prove that the ASW protocol
is unbalanced for either Alice or Bob, depending on which version of the TTP
is used:

Theorem 1 (ASW is unbalanced). The Dolev-Yao system Gasw is Basw-
unbalanced, and, similarly, Gy gy is B gw-unbalanced.

5.2 The ASW Protocol Is Not Abuse-Free

For abuse freeness, we imagine that Charlie assumes that there is only one in-
stance of the ASW protocol running, but that he does not know whether Alice is
the initiator or responder, which is a realistic assumption. Formally, we replace
A4 by a variant of it, denoted A4/, which in the beginning decides whether it
wants to play the role of the initiator or the responder and then sends a cor-
responding message to Bob. We set G4y = DY[{Ai}icqar 1y, {A, T}, {B},K]
with IC as above, 8¢w=({Z°}, viewr, 4, ¢1), and XY={A, B, C, T, pk(A), pk(B),
pk(C), pk(T'),sk(C), text,ok}. Here, Z¢ denotes the intruder of G¢. We prove:

Theorem 2 (ASW not abuse-free). The external view (GSgw Bisw) 5 X-
abusive. This remains true when T is replaced by T'.

In the proof we identify a test for checking whether a message is Alice’s promise
of signature in an instance initiated by her and show that this test is convincing.

6 The GJM Protocol Analyzed

We show that, in a concurrent setting, the GJM protocol is unbalanced but
abuse-free. The structure of the GJM protocol is exactly as for the ASW proto-
col. However, the actual messages exchanged are different. In particular, in the
version of the exchange protocol of the GJM protocol the first two messages are
so-called private contract signatures [9] and the last two messages are actual sig-
natures (obtained by converting the private contract signatures into universally
verifiable signatures).

For the GJM protocol we consider the signature Xy which contains the fol-
lowing individual symbols: sig(-, -, -), sigcheck(-, -, -), pk(-), sk(-), (-, ), m1(+), m2(-),
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fake(:,+, ), pes(s,« -y -), pesver(s,-, -+, ), sconvert(-,-,-), tpconvert(:,-,-),
sver(-, -, -, ), tpver(-, -, -, -), A, B, T, text, initiator, responder, ok, pcsok, sok, tpok,
and aborted. In addition, it includes infinite sets C and R of constants that stand
for nonces and random coins used by the parties.

The equational theory Hagyym that we consider contains (among some obvious
identities) the following identities to model private contract signatures (PCS):

pesver(w, pk(z), pk( ), pk(2), pes(u, sk(z), w, pk(y), pk(z))) = pesok, (1)

pesver(w, pk(z), pk(y), pk(z), fake(u, sk(y), w, pk(z), pk(z))) = pcsok, (2)

sver(w, pk(z), pk(z), sconvert(u, sk(x), pcs(v, sk(z), w, pk(y), pk(z)))) = sok,  (3)
tpver(w, pk(x), pk(z), tpconvert(u, sk(z), pes(v, sk(x), w, pk(y), pk(z)))) = tpok. (4)

A term of the form pcs(u, sk(z), w, pk(y), pk(z)) stands for a PCS computed by =
(with sk(x)) involving the text w, the party y, and the TTP z while v models the
random coins used to compute the PCS. Everybody can verify the PCS with the
public keys involved (identity (1)), but cannot determine whether the PCS was
computed by z or y (identity (2)): instead of  computing the “real” PCS, y could
have computed a “fake” PCS which would also pass the verification with pcsver.
Using sconvert and tpconvert, see (3) and (4), a “real” PCS can be converted by
x and the TTP z, respectively, into a universally verifiable signature (verifiable
by everyone who possesses pk(x) and pk(z)).

With the Dolev-Yao systems Gaim, Gy and the balance specifiers S and
By defined as in the case of the ASW protocol but with the messages adapted
to the GJM protocol, we obtain:

Theorem 3 (GJM is unbalanced). The Dolev-Yao systems Gagm and Ggy
are Bam- and Brg-unbalanced, respectively, i.e., GIM is unbalanced for the
initiator if in the TTP resolve takes priority over abort. Conversely, GJM is
unbalanced for the responder if in the TTP abort takes priority over resolve.

With the external view (G& g, B& ) defined analogously to the ASW protocol
(Alice may play the role of the initiator or responder and the TTP gives priority
to resolve), again with the messages adapted to the GJM protocol, and X defined
as above, we obtain:

Theorem 4 (GJM is abuse-free). The external view (G&jp, Ben) s X-
abuse free. The same is true if the TTP gives priority over abort.

We prove for all tests Charlie can perform: If a message m that satisfies the
test can be derived at some unbalanced state, then another message m’ could
have been derived already in a previous state which is not a descendent of an
unbalanced state and which also satisfies the test; m’ is essentially obtained by
replacing every occurrence of a real PCS by a fake one. Interestingly, the proof
requires to model random coins. Without such coins, one could deduce that given
two different messages both passing the same test pcsver, one of the messages
must be the real PCS while the other one is the fake one.
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7 Conclusion

We have proposed a new definition of abuse freeness which involves as key fea-
tures (i) a specifically designed notion of test performed by the outside party
and (ii) a formalization of the assumptions of the outside party by the notion of
external view. We have applied our definition to the ASW and GJM protocol,
where for the latter protocol we have developed an equational theory to describe
the semantics of private contract signatures.

In view of the results in [1, 7, 10], we are currently investigating decidability of
abuse freeness as defined here. Also, we study whether balance can be achieved
in a real concurrent communication model, given that both the ASW and the
GJM protocol are unbalanced no matter what priority the TTP gives to abort
and resolve requests received at the same time.
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Preserving Secrecy Under Refinement*
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Abstract. We propose a general framework of secrecy and preserva-
tion of secrecy for labeled transition systems. Our definition of secrecy
is parameterized by the distinguishing power of the observer, the prop-
erties to be kept secret, and the executions of interest, and captures
a multitude of definitions in the literature. We define a notion of se-
crecy preserving refinement between systems by strengthening the clas-
sical trace-based refinement so that the implementation leaks a secret
only when the specification also leaks it. We show that secrecy is
in general not definable in p-calculus, and thus not expressible in spec-
ification logics supported by standard model-checkers. However, we
develop a simulation-based proof technique for establishing secrecy pre-
serving refinement. This result shows how existing refinement checkers
can be used to show correctness of an implementation with respect to a
specification.

1 Introduction

Security and confidentiality are growing concerns in software and system devel-
opment [14]. The question of how to ascertain that an attacker cannot easily get
information about classified data is central in this domain. We investigate the
possibilities for using automated verification techniques (such as model check-
ing) to answer this question, and in particular, we focus on the notion of refine-
ments that preserve secrecy. Stepwise refinement is considered to be the correct
approach to system and software construction, since it enables developers to
find design errors in earlier stages of development. Refinements are useful for
synthesizing implementations from higher level specifications, for instance via
compilation or other code transformations. Such refinement based approach has
been advocated by, for example, Hoare [6] and Lamport [8]. Our goal is to de-
velop a formal and general framework for refinement that also takes into account
secrecy.

Our contributions are two fold. First, we introduce a general framework for
reasoning about secrecy requirements in a system. We use the standard verifica-
tion framework — labeled transition systems. Our notion of secrecy depends on
three parameters: (1) the equivalence relation on runs of the system that models
the distinctions the observer can make, (2) the properties that are to be kept
secret, and (3) the set of runs that are of interest. Intuitively, a property is secret
if, for every run of interest, there is an equivalent run such that only one of these
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two runs satisfies the property. We show that by varying these three parameters,
it is possible to capture possibilistic definitions of secrecy found in the literature
such as noninterference and perfect security property [13, 16]. We study whether
such a general notion of secrecy can be specified using temporal logics. The an-
swer is negative: we prove that secrecy is not expressible in p-calculus. It has
been claimed (see [3]) that it is possible to specify secrecy in temporal logic
on self-composition (self-composition is a composition of a program with itself).
However, we demonstrate that this too is not possible for the general definition
of secrecy.

It is well-known that standard notions of refinement (e.g. trace inclusion) do
not preserve secrets, and the refined program may leak more secrets than the
original program [10]. Our second main contribution is that we define secrecy-
preserving refinement and present a simulation-based technique for proving that
one system is a refinement of another. In our definition, an implementation is a
refinement of the specification, if for every run r of the implementation, there
exists a run 7’ of the specification such that the observer cannot distinguish r
from 7/, and for every property that the observer can deduce from r in the imple-
mentation can also be deduced by observing 7’ in the specification. Simulation
is a standard technique: in order to show that a program P refines a program @
(in the classical sense), one can show that @) simulates P. This can also be part
of the simulation based proof of secrecy-preserving refinement, since we require
trace inclusion in the usual way. However, in order to show that P does not leak
more secrets than @, one must also show that P simulates (). The reason is that
using this simulation relation, one can prove that if P leaks a secret, then so
does @. This implies that even though secrecy is not specifiable in p-calculus,
and thus cannot be directly checked by existing model-checkers, showing that
implementation preserves secrets of the specification can be done using exist-
ing tools (such as Mocha [2], CadenceSMV [11], PVS [12]) by establishing a
simulation relation.

Related Work

We know of only two notions of secrecy preserving refinements that were defined
previously. Mantel [9] assumes that some fixed, strong information-flow proper-
ties of the system are enforced and his definition of refinement preserves those
properties. Our approach is more flexible because it permits the specification
of arbitrary secrecy requirements. This means that if the specification program
does not maintain secrecy of a certain property, the implementation program
does not need to either. Jirjens [7] considers a different (and weaker) defini-
tions of secrets. In his approach, a secret is leaked if the program (possibly when
interacting with an adversary) outputs the secret. This approach thus ignores
information-flow leaks, i.e. cases when the adversary can infer something about
the secret without explicitly seeing it.

There is a large body of literature in language-based security (see [13] for an
overview). Various definitions of secrecy have been considered, but all possibilis-
tic variations (those that ignore probabilistic information about the distribution
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of system behaviors) can be captured in our framework. More closely related is
the work on checking for secrecy using self-composition techniques—the work
by Barthe et al. mentioned above and [15, 4], where the authors consider only
deterministic programs. Halpern and O’Neill [5] define a notion of secrecy in the
context of multiagent systems that is similar to our definitions, but they do not
consider secrecy-preserving refinements. The preservation of secrecy has been
studied in the context of programming language translation by Abadi [1] using
techniques based on full abstraction.

2 Secrecy Requirements

In this section, we introduce a framework in which we can reason about prop-
erties of a system being secret, i.e. not inferable by an observer who sees the
behavior of the system. The framework we present is general enough to capture
all possibilistic definitions of secrecy defined in both programming language and
verification literature, to the best of our knowledge.

A labeled transition system (LTS) T is a tuple (@, L, 8, I), where @ is a set of
states, L is a set of labels, 6 C Q) x L x @ is a transition relation, and I C Q) a
set of initial states.

A sequence 7 = qploqy ... of alternating states and labels is a run of the
labeled transition system T iff ¢qg € T and Vi : 0 < i < |r| = (i, li, ¢it1) € 6. Let
R(T) be the set of all runs of the LTS 7.

A property « is a subset of the set of runs, i.e. @« C R(T). A state-property
is a property that depends only on the last state of a run. Formally, « is a
state-property iff there is a set of states Qs C @ such that r € « iff r =
qoloqily - . ln—1qn and gy is in Q.

Given this model of systems, we want to define what an observer can see
and what he or she can infer based on those observations. The observer cannot
see everything about the current run of the system, that is to say, in general,
several runs can correspond to the same observation. We model this using an
equivalence relation on runs, = C R(T') x R(T'). For a property «, the observer
is able to conclude that « holds, if a holds for all the runs that correspond to
his or her observations. He or she is able to conclude that « does not hold, if
it does not hold for all the runs that correspond to the observations. The third
possibility is that the observer is not able to conclude whether « holds or not. We
will thus need to use a three-valued domain, {T, L, m} (true, false, maybe), and
a partial order that models the knowledge the observer has. C is the following
partial order on {T, L, m}: mCmmC T,mC L, L C 1 TCT.

Function IP — inferable properties, is a function that, given a run r, a property
« and an equivalence relation =, represents the knowledge of the observer about
the property « after the run r. IP(r,a,=) = TV : ¢ =r =1 € q,
IP(rya,=) = LtV : ' =r =+ ¢ a and IP(r,a,=) = m otherwise. Our
notion of secrecy depends on one additional parameter: instead of requiring a
property « to be secret in every run of the system, we may want to focus only
on a subset B of runs that are of interest, e.g. the set of all terminating runs.
This leads to the following formalization of secrecy:
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Let T be a labeled transition system and « and 3 be two properties. The
property « is a secret in 8 for T w.r.t. = if for all r € 8, IP(r,a, =) = m.

We present the following examples in order to show that our definition is general
enough to capture several standard information-flow properties such as noninter-
ference or Perfect Security Property. We can capture these definitions by varying
the parameters = and f3.

Linear-Time Secrecy

Consider an observer who can see the actions of the system, i.e. the labels in L.
These labels, for example, might be the messages sent or received by the system.
Assume that L contains a symbol 7, which models internal actions of the system.

We define the strong (time-sensitive) equivalence relation (=) as follows. Let
Tr be an erasing homomorphism defined on runs: Tr(q) = €, Tr(l) = [, i.e.
Tr erases all states. Two runs r and 7’ are strongly equivalent (r =~ r’) iff
Tr(r) = Tr(r’). The equivalence class to which a run r belongs can be rep-
resented by Tr(r), which corresponds to what the observer sees when r is the
current execution of the system. Tr(r) is a sequence of labels, and such sequences
are called traces. Tr(T) is the set of all traces of the LTS T.

We define the weak (time-insensitive) equivalence relation (=2,,) as follows.
Let Tr, be an erasing homomorphism defined on runs: Tr,(q) =€, Try() =1
for I # 7 and Tr,(7) = ¢, i.e. Tr, erases all states and all internal actions.
Two runs r and 1’ are weakly equivalent (r =, r') iff Tr,(r) = Tr,(r'). The
equivalence class can be represented by Tr,(r) and is called a weak trace. Let
Try(T') be the set of all weak traces of the LTS T.

Consider the following two programs.

A: x=7; y=0; z=x; send z;
B: x=7; y=0; z=y; send z;

It is easy to see how they can be modeled as transition systems in our framework.
The states are valuations of variables. The set L contains three labels sg, s1, 7.
so denotes the fact that 0 was sent, s; that 1 was sent and 7 denotes all the
internal (silent) actions. The input (z = ?) is intended not to be seen by an
observer and thus is modeled by a silent action. We want to analyze what an
observer might infer about whether or not * = 0 during the execution of the
program if he or she can observe what the program sends. We model this using
the strong observational equivalence =~ and the state property x = 0. Suppose
that the input is 0. Note that the observer sees the same trace for both programs,
namely ¢ = 7770. For the program A, the observer, after having seen the trace
t was sent, can conclude that £ = 0 holds. For the program B, the observer
does not know whether x = 0 holds or not after having seen the trace ¢t. We can
conclude that for program A, the state property x = 0 is not a secret in the set
of all runs w.r.t. = and it is a secret for program B.
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Noninterference

Consider the standard formulation of termination insensitive noninterference
[13]. It is defined using low and high variables, where low variables are visible to
the observer and high variables are not. Noninterference can be then formulated
informally as follows: “if two input states share the same values of low variables
then the behaviors of the program executed from these states are indistinguish-
able by the observer”.

We define functional equivalence ~2f as follows. Let %’f and ~% be two equiv-
alence relations on states. For all terminating runs r and r’ we have r ~; 1/
iff their initial states are related by z} and their final states by ~%. We model
noninterference by functional equivalence defined above. Two states ¢ and ¢’ are
related by %? (and ~%) exactly when the valuation of the low variables is the
same in ¢ and ¢'.

The purpose of using noninterference is to determine whether some property
« of high variables is inferable by an observer who sees only low variables. We
can capture this in our framework as follows. Let P be the set of all expressible
properties of high variables. For example, if every property of high variables
is considered to be expressible, P corresponds to the powerset of the set of
valuations of high variables. Consider a classic requirement such as “a secret key
should stay secret.” In our framework, this can be expressed as “a secret key
stays secret with respect to a set of predicates P”, i.e. none of the properties of
the secret key that are in P will be revealed.

Let 3; be the set of all terminating runs. We can conclude that the system
satisfies the noninterference property w.r.t. P iff for all a« € P, « is secret in (;
w.r.t. /.

Perfect Security Property

Let us consider the Perfect Security Property (PSP) [16]. It is an information-
flow property defined in a trace-based setting. In order to define it, we divide
the labels into low-security and high-security categories. The observer knows
the specification of the system - i.e. the set of all possible traces (sequences
of labels) and he or she can observe low-security labels. PSP ensures that
the observer cannot deduce any information about occurrences of high-security
events.

We can model the PSP in our framework by choosing an appropriate equiv-
alence relation on runs and a property on runs. Let Low C L be a set of low-
security labels and let High C L be a set of high-security labels such that Low
and High partition L. We use the following equivalence relation. Let Trys, be
an erasing homomorphism defined on runs as follows: Tr,s,(q) =€, Trpsp(l) =1
for | € Low and Tr,(I) = € for | € High, i.e. Tr,s, erases all states and
all high-security actions. Two runs r and ' are psp-equivalent (r ~p,sp ') iff
Trpsp(r) = Trpsp(r'). For each label h € High, we define the property aj: a run
r is in «ay, if h occurs in r. Now we can conclude that PSP holds iff ay, is secret
in Bau w.r.t. &,y for all h € High.
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Specifying Secrecy in Temporal Logics

It is well-known that secrecy cannot be expressed as a predicate on a single trace
and hence cannot be specified in linear-time specification languages such as linear
temporal logic (see, for example, [10], for a proof). We prove that secrecy is not
a branching-time property either.

Let us consider finite trees over alphabet Y. The vertices are labeled by ele-
ments of X' (edges are not labeled). A tree T can be seen as an LTS T", where
states correspond to vertices of the tree, edges are the parent-child edges, and
all the edges are labeled by the same symbol. For each label o € X, let o/ be a
state-property corresponding to the set of all vertices labeled by «.

Theorem 1. The set S of trees T over {«, 8} such that &/ is secret in 3" w.r.t.
~ for T’ is not a reqular tree-language.

Proof. For a proof by contradiction, suppose that S is regular. Then the following
special case, defined by a regular condition that 3’ is false only for the root of the
tree, would also be regular. The fact that o’ is secret in 3’ w.r.t. & corresponds
to the fact that at each depth d (d > 0) of the tree, there is a node in o and a
node not in «'. It is well-known that this is not a regular property. O

Corollary 1. The set of trees T over {a, B} such that o' is secret in 3 w.r.t.
~ for T is not definable in p-calculus.

Note that it is possible to devise algorithms based on standard model-checking
for special cases of our definition of secrecy. For example, Barthe et al. [3] claim
that it is possible to use CTL model-checking to check for noninterference in
finite-state systems. However, upon examination, this holds only for a specific
definition of noninterference, the one based on functional equivalence relation
(as opposed to, e.g., strong equivalence relation). Barthe et al. reduce checking
for noninterference to model-checking a CTL formula on self-composition. Self-
composition can be viewed as a (sequential or parallel) composition of a program
with itself (variables are renamed in the other copy of the program). It can be
shown, by a proof similar to the one above, that there is no u-calculus formula
that characterizes the general definition of noninterference on self-composition.

3 Secrecy-Preserving Refinements

Let us suppose that we have two labeled transition systems T’spcc and Tiy,,. We
want to establish that T}, does not leak more secrets than Tspe..

First, consider the classical notion of refinement, where T}, refines Tspe. iff
all behaviors of T}, are allowed by Tspe.. This notion of refinement preserves all
properties expressible in linear temporal logic, but does not in general preserve
the secrecy of properties. Consider two of the systems in Figure 1, (a) as Tspec
and (b) as Tymp. Using the classical notion, Tip, is a refinement of Tgpee, since
the behaviors of T, are included in behaviors of T,... This holds for both
the functional (input-output) and observational (trace-based) view of behaviors.
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However, Ty, leaks more secrets than T,.. does. If the observer of T}, sees a
trace sg, he or she can conclude that a does not hold. On the other hand, for
T'spec, the observer cannot determine whether o holds or not.

We proceed to introduce a new notion of refinement, one that preserves secrecy
of properties. Intuitively, we want to show that for each run r of Tj,,,, there is
an equivalent run 7’ of Type., such that the observer can deduce less about the
properties of interest when observing T, executing r than when observing Tp..
executing 7. Hence, let us extend the equivalence relation = to the runs of the
two systems, i.e. = C (R(Tspec) UR(Timp)) X (R(Tspec) U R(Timp)). Furthermore,
we need to relate properties of interest for the two systems. Analogously, a
property o now will be a subset of R(Tspec) U R(Timp)-

Now we are ready to state when a refined transition system preserves at least
as many secrets as the original one:

Secrecy-preserving refinement

Let Tspec, Timp be two labeled transition system, let P be a set of
properties and let = be an equivalence relation on R(Tspec) U R(Timp)-
Timp P-refines Topee w.r.t. = iff for all runs r € R(Ty,), there exists
a run r’ € R(Tspec) such that » = ' and for all properties a € P,
IP(r,a,=) C IP(1', o, =).

We present the following observations and an example to illustrate the defini-
tion. First, note that secrecy-preserving refinement extends the classical notion:
consider the case when the set of properties P is empty. For strong (weak)
equivalence P-refinement corresponds to (weak) trace inclusion. For functional
equivalence, P-refinement corresponds to the requirement that the input-output
relation of T}, is included in the input-output relation of Type..

Consider the programs A and B from Section 2 again. As before, suppose
that the observer does not see the input, but this time, we fix the input to
be 0 in order to simplify the example. We consider the strong observational
equivalence and we are interested in the state-property a that is true iff z = 0.
There is only one run in each of the programs. Those runs are equivalent, since
the trace is simply 777s¢ in both cases. Let r4 denote the run of A and let rp
denote the run of B. As we have seen, IP(ra,a,~) =T and I P(rp, a,~) = m.
Thus we can conclude that A does not P-refine B w.r.t. =, but B P-refines A
w.r.t. ~.

The following theorem states that the P-refinement preserves the secrets from
P, i.e. that if Type. does not leak a secret a € P and Ty, is a P-refinement of
Tspec, then also T}, does not leak the secret o. Before stating the theorem, we
need to define one more condition on the set of runs that are of interest, 5. A
property (3 is =-preserving iff for all » and for all 7/, if » € § and r = 1/, then
r’ e p.

Theorem 2. Let Typee and Ty, be two transition systems such that Tip, P-
refines Tspee w.r.t. = and let B be a an =-preserving property. If o € P is a
secret in 3 for Tspee w.r.t. =, then « is a secret in B for Timpy w.r.t. =.
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4 Proving Secrecy Using a Simulation Relation

In this section we restrict our attention to the strong (time-sensitive) and weak
(time-insensitive) equivalence relations on runs and we consider only state-
properties. With appropriate modifications, simulation-based proof techniques
can be developed for other equivalences such as the ones used for noninterfer-
ence and perfect security.

Let Tspee = (Qspew L, 65;0607 Ispec) and Timp = (Qim;m L, Timp, Iimp) be labeled
transition systems. As above, let P denote both a set of properties about Ty,
and a corresponding set of properties about T;,,,. Note that the two transition
systems have the same set of labels, thus the relation ~ (the strong observational
equivalence) can be seen as a relation on R(Tspec) U R(Timp)-

A binary relation < C Qspec X Qimyp is a simulation relation iff for all ¢1 < ¢}
for all state properties a € P, ¢1 € a iff ¢ € a and for every g2 € Qspec and

l € L such that ¢; 4 g2 there exists ¢4 € Qimp such that ¢} 4 g5 and ¢2 S .
We say that Tymp simulates Tspee (Tspee S Timp), if there exists a simulation
relation < such that for every ¢1 € Ipe. there exists ¢ € Iimyp such that g1 < q.
A binary relation Sy C Qspec X Qimp 1s @ weak simulation relation iff for all
1 Sw ¢, for all state properties a € P, ¢1 € « iff ¢} € @ and we have:

— ¢} 5 ¢ implies that there exists a g such that ¢ 7 go and g2 Sy ¢

- q LR ¢4 implies that there exists a g2 such that ¢; RN, g2 and g2 Sy ¢5-

Weak simulation between transition system is defined similarly to simulation
between transition systems.

Let us consider the case of strong (time-sensitive) equivalence relation on
runs. Firstly, we note that it follows from the definition of P-refinement that the
standard refinement condition (Ir(Timp) C Tr(Tspec)) is a necessary condition
for the P-refinement.

Secondly, note that unlike classical refinement, the condition that Tspe. sim-
ulates T, is not sufficient for P-refinement. To see this consider again two of
the systems in Figure 1, (a) as Tspec and (b) as Tip,. Note that Tspee simulates
Timp, but Ty leaks information on « on the trace sg, whereas Tspe. does not.

The property we are looking for is in fact the simulation in the other direction,
i.e. that Ty, simulates Tspe.. The reason is that using this simulation relation
one can prove that if Tj,, leaks a secret, then so does Tp... Note also the
condition that T, simulates Ty,e. is not a sufficient condition. Consider now
the system on Figure 1(a) as Tspec and the system on Figure 1(c) as Tip,. Now
Timp refines Typee, but for the trace s1, Tim, leaks more secrets than Tpe..

The combination of the two conditions, Tr(Timp) C Tr(Tspec) and Tip, sim-
ulates T’ is sufficient to guarantee that P-refinement holds.

Theorem 3. If Tr(Timp) C Tr(Tspec) and Tspee S Timp, then Timy P-refines
Tspec w.r.t. =.

Proof. Let r be a run in R(Tim,). We have to prove that there exists a run r/ in
Tspec such that r = ' and IP(r,a, =) C IP(r', o, ~). We have that Tr(Tym,) C
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Tr(Tspec), therefore there exists a run 7’ in Type. such that r &~ 7/. It remains
to prove that IP(r,a,~) C IP(r',a,=). Let us suppose that IP(r,a,~) = T.
We have to show that IP(r’,a,~) = T. Let us suppose that IP(r',a,~) = L or
IP(r', a, =) = m. In any of the two cases, we know that there exists 7’ € R(Tspec)
such that " ~ r” and the last state of r” is not in a. Using the condition
Topec S Timp we prove (by induction on the length of the 7r(r”)) that there
exists an """ € R(Tymp) such that " ~ r"” and the last state of " is not in
a. By transitivity of a2, we have that " ~ r. This is a contradiction with the
assumption IP(r,a, ) = T. Thus we can conclude that if IP(r,a,~) = T, then
IP(r',a, ) = T. The case of IP(r,a,~) = L is similar. If IP(r, a, &) = m, then
there is nothing to prove, since m C IP(r', a, =2). O

For weak equivalence relation on runs, a similar theorem holds.

Theorem 4. If Try(Timp) C Trw(Tspec) and Tspee Sw Timp, then Timp P-
refines Tspee W.T.T Ry

Note that Theorem 3 implies that secrecy is preserved by bisimulation, since
for bisimilar systems, both conditions are met. Note also that we have shown in
Section 2 that secrecy is not a branching time property.

Timp

Fig. 1. Refinement by simulation Fig. 2. Simulation is not a neces-
sary condition

The conjunction of the two conditions of Theorem 3 is not a necessary condi-
tion for P refinement. Consider the two systems in Figure 2 and suppose the set
P of properties is the singleton {a}. Note that Tr(Timp) C Tr(Tspec) and Timyp
does not simulate Tspe.. However, T}, does not leak any more secrets Tspec.

5 Example

We present an example in order to illustrate the definition of secrecy-preserving
refinement and to demonstrate the simulation-based proof method defined above.
We will present two implementations, Tspec and Tiy,p, of a protocol (more pre-
cisely, of one round of a protocol). We will show that while functionally they are
equivalent (their input-output relation is the same) and Ty, refines Ty in the
classical sense (trace inclusion), the implementation T, leaks some properties
that should be secret, whereas Ty, does not.
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Consider the game Battleship. We will analyze an implementation of one of the
players in one round of the protocol, so the following description is sufficient for
our purposes’. The input (for each round) consists of a grid, where each square
is either marked (meaning a ship is there) or unmarked, and of two integers ¢ and
j. The output should be yes if the square with coordinates ¢ and j is marked.

Let us consider two implementations of this protocol, Tspec and Tymp. Topec
uses the straightforward array representation, T3y, uses a list representation.
In Ty, the board is represented by a list of rows and each row contains a list
of the marked cells. (A possible motivation for the (re-)implementation Ty, is
that it might be more efficient in case of sparse boards.)

Timp:
Board: Topec: list board, row;
int 1i,j;
12 3 array board;

1 int 1,j; rcv i;rcv j;
row=Board.getRow (i)

2 rcv i; rev j; if (row.IsEmpty())

5 r = Ali,jl; r=0; send r;

send r; else

r=row.getElem(j); send r;

Fig. 3. The Battleship game

We briefly explain how can the programs such as Tspe. and T, be modeled in
our framework. We use the standard operational semantics approach. The states
are valuations of all variables (such as board, row and program counter pc). The
label sg denotes the fact that 0 was sent, s; that 1 was sent and 7 denotes all
the internal (silent) actions. We model the fact that the board can in general
be in any state at the beginning of a round of the battleship protocol by having
multiple initial states. For the purposes of this example, we also model receives in
this way. Thus any valuation of the variables where program counter is equal to
0 is an initial state. An assignment is modeled as an internal action 7. We model
the methods (such as getRow()) by one internal action (thus a statement that
contains an assignment and a method call is modeled by two internal actions).
As an example consider the case shown in Figure 3 and the inputs ¢ = 1 (column
numbered 1) and j = 2 (row numbered 2). The initial state is now determined.
The trace produced by Tspec is 7s1. The trace produced by Ty, is 7777751 . For
each cell with coordinates (4, j) of the board, we define a property «;; that is
true iff the cell is marked. Let P be the set of these properties.

We will now show that T,e. and Tjp,, are equivalent w.r.t. ~,,, that is, Tpec
P-refines T, and Ty, P-refines Tspee w.r.t. &2, and that it can be proven by
simulation. We will prove also that T, does not P-refine Tpe. w.r.t. ~.

! For a full description of the game, google “battleship”.
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Let us start by proving that for weak refinement, Tspe. and Ty, are equiva-
lent. We show that Tr(Timp) C Tr(Tspec) and that Tepee Sw Timp. To see that
Tr(Timp) € Tr(Tspec), note that both Type. and Ty, have the same set of weak
traces, namely {0, 1} (since all the other actions are internal). Now we will show
that T, simulates Tspee. We will present a function f from the states of Tipec
to the states of T}, and show that it defines a simulation relation. Recall that
the states of Tipe. and T, characterize the current board position, and contain
valuations of variables for i, j and the program counter pc. In order to be able to
define f, we divide the states of Ty into Q1. and Q2%,.., where @}, contains
those states where the value of pc (program counter) indicates that the send
instruction has not been executed yet and Qipec all the other states. We divide
the states of T}, analogously. The function f will relate each state ¢ of Tpe. to
a state ¢’ of T}y, that has the same board position, the same valuations of i and
j, and g € Q.. iff ¢ € Q},,,. It is easy to check that f defines a weak simula-
tion such that Tpe. simulates T}y,,. By Theorem 4, we can conclude that Ty,
is a P-refinement of Tpee w.r.t. ~. Note also that Tr(Timp) = Tr(Tspec) and
the simulation we just defined is a bisimulation. Thus we can similarly conclude
that Tspec is a P-refinement of Ty, w.r.t. ~.

We also show that T}, does not P-refine Tsp.. W.r.t. &~ according to our
definition, because T}, leaks more secrets in certain situations. Again, con-
sider the case depicted in Figure 3, but this time we fix the inputs to be i = 1
(column numbered 1) and j = 1 (row numbered 1). We assume the observer
knows these inputs (but note that he or she does not see the board.) We ana-
lyze what he or she can infer from the execution of Tspee (and Typmp) on these
inputs. As noted above, once the initial state is fixed (by the input values)
there is only one possible run of Tjn, (we denote it by 7). The corresponding
trace is t1 = 7777s9. However, after the observer observes the trace t1, he or
she can infer that the j-th row is empty. For example, he or she knows that
IP(r,a1,~) = L. This can be inferred because the number of internal actions
is 4 (whereas if the j-th row was not empty, 5 internal actions would be observed
before the final s¢). The execution of Tipe. is similar in that there is only one pos-
sible run r given the inputs. The corresponding trace is 7s9. Given the program
Tspec, it is clear that it is not possible to infer information about a property
a,t # 1,5 # 1, ie. IP(r',apjr,~) = m for i # 1 and j # 1. In particular,
IP(r', ag1,~) = m. We can thus conclude that T}, is not a P-refinement of
Tspec wr.t. ~.

6 Conclusion

This paper presents a general framework for formal reasoning about secrecy
properties. The framework is based on labeled transition systems and is thus
suitable for presentation of algorithms for automated verification of secrecy. We
presented how different definitions of secrecy can be captured in our framework.
We showed also that secrecy is not definable by a p-calculus formula. The main
focus of this work was on defining a notion of refinement that preserves secrecy of
properties and providing a method for proving that such a refinement holds. This
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method is based on simulation and thus can be used for automatic verification
using existing tools.

There are several directions for future research. One possibility is to extend
this work with static analysis for secrecy-preserving refinements of programs.
Second, it would be useful to define program transformations to help designers
to transform designs in a way that guarantees the preservation of secrecy. Third,
we plan to investigate a logic for secrecy of properties. Fourth, it would be
interesting to apply the framework presented here to resource-driven protocol
transformation for embedded systems, such as Java cards or smart cards.
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Abstract. We study two quantitative models of information leakage in the
pi-calculus. The first model presupposes an attacker with an essentially unlimited
computational power. The resulting notion of absolute leakage, measured in bits,
is in agreement with secrecy as defined by Abadi and Gordon: a process has an
absolute leakage of zero precisely when it satisfies secrecy. The second model
assumes a restricted observation scenario, inspired by the testing equivalence
framework, where the attacker can only conduct repeated success-or-failure
experiments on processes. Moreover, each experiment has a cost in terms of
communication actions. The resulting notion of leakage rate, measured in bits
per action, is in agreement with the first model: the maximum information that
can be extracted by repeated experiments coincides with the absolute leakage A
of the process. Moreover, the overall extraction cost is at least A/R, where R is
the rate of the process. Strategies to effectively estimate both absolute leakage
and rate are also discussed.

Keywords: process calculi, secrecy, information leakage, information
theory.

1 Introduction

Research in language-based security has traditionally focused on qualitative aspects.
Recently, a few models have been proposed that allow forms of quantitative reasoning
on security properties. For a sequential program, it is natural to quantify leakage by
measuring the information flow between secret ("high") and public ("low") variables
induced by the computed function. Along these lines, an elegant theory of quantitative
non-interference has been recently proposed by Clark et al. [12] (other proposals in the
literature are examined in the concluding section.)

In this paper, we study quantitative models of information leakage in process calculi.
Processes come with no natural notion of computed function. Rather, one is interested
in quantifying the leakage induced by their observable behaviour. The difference in
intent can be illustrated by the following concrete example. A smart-card implements a
function that takes documents as input and releases documents signed with a secret key
as output. However, typical attacks targeting the secret key do not focus on the function
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itself, but rather on the behaviour of the card, in terms e.g. of observed time variance of
basic operations [9], or observed power consumption [10].

Our starting point is the notion of secrecy as formalized by Abadi and Gordon, orig-
inally in the setting of the spi-calculus [1]. In the sequel, we will refer to this notion
as AG-secrecy. Informally, AG-secrecy holds for a process P and a parameter x repre-
senting a sensible information, if the the observable behaviour of P does not depend on
the actual values x takes on. In other words, an attacker cannot infer anything about x
by interacting with P. The notion of "observable behaviour" is formalized in terms of
behavioural equivalence, such as may testing [4, 2].

Although elegant and intuitive, AG-secrecy is in practice too rigid. The behaviour of a
typical security application depends nontrivially on the sensible information it protects.
Nevertheless, many such applications are considered secure, on the ground that the
amount of leaked information is, on the average, negligible. Consider a PIN-checking
process P(x) that receives a code from a user and checks it against a 5-digits secret code
X, in order to authorize or deny a certain operation. Clearly, an attacker may acquire
negative information about x by interacting with P(x). However, if P(x) is intended
to model, say, an off-line device like a card reader, such small leaks should be of no
concern. More generally, one would like to first measure the information leakage of a
given system and then decide if it is acceptable or not.

In the present paper, we propose two quantitative models of leakage for processes:
one for measuring absolute leakage, and one for measuring the rate at which informa-
tion is leaked. As explained below, the two models correspond to different assumptions
on the control an attacker may exercise over processes. The connections between these
two models will also be clarified.

After quickly reviewing a few notions from information theory that will be used
in the paper (Section 2), we introduce our reference language, a pi-calculus with data
values (Section 3). In the first model (absolute leakage, Section 4), we presuppose an
attacker with full control over the process. Using the language of unconditional security,
the model can be phrased as follows. A sensible information is modeled as a random
variable, say X. The a priori uncertainty of an adversary about X is measured by the
Shannon entropy H(X), expressed in bits. For full generality, it is assumed that some
"side-information" Y, possibly related to X, is publicly available: the conditional en-
tropy H(X|Y) measures the uncertainty about X given that ¥ is known. The process P,
depending in general on both X and Y, induces a random variable Z = P(X,Y): follow-
ing the discussion above, it is reasonable to stipulate that Z takes as values "observable
behaviours", that is, equivalence classes of a fixed behavioral semantics. Now, the con-
ditional entropy H(X|Y,Z) quantifies the uncertainty on X left after observing both Y
and Z. Hence the difference I = H(X|Y) — H(X|Y,Z) is the amount of uncertainty about
X removed by P, that we take as its absolute leakage. We prove that this notion is in
full agreement with the qualitative notion of AG-secrecy. In the special case when there
is no side-information, this means that P(x) respects AG-secrecy if and only if P(X)
has an absolute leakage of 0 for every random variable X. We also offer two alternative
characterizations of zero-leakage, hopefully more amenable to automatic checking.

The second model we consider (rate of leakage, Section 5), refines the previous sce-
nario by introducing a notion of cost. Adapting the testing equivalence framework [4],
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we stipulate that an attacker can only conduct upon P repeated experiments E1, E»,...
each yielding a binary answer, success or failure. The attacker has "full control" —in the
sense of the first model — over the compound systems P||E, but not over P itself. The
security measure we are interested in is the overall number of communications required
to extract one bit of information in this scenario. Thus, we define the rate at which P
leaks information in terms of the maximal number of bits of information per visible
action conveyed by an experiment on P. We then give evidence that this is indeed a
reasonable notion. First, we establish a relationship with the first model, showing that
absolute leakage A coincides with the maximum information that can be extracted by
repeated experiments, and that this costs at least A/R, where R is the rate of P. Second,
we establish that, under certain conditions, process iteration (x P) leaves the rate of P
unchanged, which is what one would expect from a good definition of rate. Finally, in
the vein of testing equivalence, we give an experiment-independent characterization of
rate in terms of execution traces.

Strategies to effectively estimate rate of leakage (Section 5) and absolute leakage
(Section 6) are also discussed. These strategies depend on the use of symbolic semantics
in the vein of [7,3]. Some remarks on further and related work conclude the paper
(Section 7). Proofs have been omitted due to lack of space.

2 Preliminary Notions

We quickly recall a few concepts from elementary information theory; see e.g. [15] for
full definitions and underlying motivations. We shall consider discrete random variables
(r.v.) X, Y, ... defined over a common probabilty space €. We say that a r.v. X is of type
U, and write X : U, if X(Q) C U. We shall always assume U to be finite. Elements
u € U are called samples of X, and |X| is |{u € U|Pr[X = u] > 0}|. The concepts of
independent and uniformly distributed (u.d.) random variables, and of expectation of
X (E[X], for X real-valued) are defined as usual. As a function, every random variable
induces a partition into events of its domain Q, {X ~'(u)|u € X(Q)}: we say that two
random variables X and Y are equivalent if they induce on Q the same partition. A
vector of random variables X = (Xj,...,X,), with n > 0 and X; : U;, is just a random
variable of type Uy X --- X U,,.

Given X : U, the entropy X of and conditional entropy of X given Y : V are defined
by:

H(X) £ ~%,eq PrlX = u]-log(Pr(X = u)
H(X|Y) € Sy HX[Y =v)-PrY =]

where H(X|Y =v)=—3,cy Pr[X =u|Y =v]-log(Pr[X = u|Y =v]), all logarithms are
taken to the base of 2 and by convention 0 -log(0 = 0. Two equivalent random variables
have the same entropy and conditional entropy. The following (in)equalities hold:

0<H(X)<log|X| (1)
H(X,Y)=H(X|Y)+H(Y) (chainrule) 2)
H(Xy,...Xy) <HX|)+---+H(X) 3)

where: in (1), equality on the left holds iff X is a constant, and equality on the right holds
iff X is u.d.; in (3), equality holds iff the X;’s are pairwise independent. Note that by (2)
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and (3), H(X|Y) = H(X) iff X and Y are independent. If ¥ = F(X) for some function F
then H(Y|X) = 0. Information on X conveyed by Y (aka, mutual information) is defined
as:
16 Y HX) —HEXY).
By the chain rule, I/(X;Y) = I(Y;X), and I(X;Y) = 0 iff X and Y are independent.

Mutual information can be generalized by conditioning on another r.v. Z: I(X;Y|Z) &ef

H(X|Z) — H(X|Z,Y). Conditioning on Z may in general either increase or decrease
mutual information between X and Y. Note that entropy of a r.v. only depends on the
underlying probability distribution; thus any probability vector p = (p1,...,pn) (pi >0,
> pi = 1) determines a unique entropy value denoted H(j); we shall often abbreviate

H(p,1—p)asH(p).

3 The Model

We assume a countable set of variables V = {x,y, ...}, a family of non-empty, finite

value-sets $1 % {U,V,...}, and a countable set of names N = {a,b, ...}, partitioned
into a family of sorts S,5’,.... We assume a function that maps each x to some T €
UU{S,S’,...}, written x : T, and say that x has type T. The inverse image of each T is
infinite. These notations are extended to tuples as expected, e.g. for ¥ = (xi,...,x,) and
7= (Th,...,T,), X : T means x1 : Ty, ...,xn : T;,. We let u,v be generic elements of a finite
value-set. By slight abuse of notation, we sometimes denote by U the cartesian product
Uy x---xU,.

An evaluation 6 is a map from ¥ to Uy U U N that respects typing, that is, for
each x € dom(c), x : T implies 6(x) € T. We denote by [¢/i] the evaluation mapping
# to d component-wise. By 76, where 7 is a term over an arbitrary signature with free
variables fv(¢t) C 1/, we denote the result of replacing each free variable x € dom(c) N
fv(r) with o(x).

We assume a language of logical formulae ¢,V,.... We leave the language unspeci-
fied, but assume it includes a first order calculus with variables ¥V, that function sym-
bols include all values in L and names as constants, and that the set of predicates
includes equality [x = y]. We write 4, AL = ¢, or simply = ¢, if for all evaluations
o s.t. dom(c) D fv(9), 0o is valid (i.e. a tautology). We will often write ¢(%) to indicate
that the free variables of ¢ are included in £, and in this case, abbreviate 0[#/x] as ¢(i).

The process language is a standard pi-calculus with variables and data values. We
assume a countable set of identifiers A, B, ... and use e, €’ ... to range over an unspecified
set of expressions, that can be formed starting from variables, values and names. The
syntax of processes P, Q, ... is given below.

mi=Xx | a

PQ:=0| 1P| m(%).P | meP | P | P+P | (vb)P | P|P | A(e).

Each identifier A has an associated defining equation of the form A (%) &ip, Input prefix
m(%). and restriction (vb) are binders for £ and b, respectively, thus, notions of free
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variables (fv) and free names (fn) arise as expected. We identify processes up to alpha-
equivalence. We assume a few constraints on the syntax above: ¥ is a tuple of distinct

elements in input prefix and in A(%) &' p, and in the latter fv(P) C %; ¢ is quantifier-
free. We assume a fixed sorting system a la Milner. In particular, each sort S has an
associated sort object ob(S) = (T1,...,Tx) (k > 0). Here, each T; is either a sort or a
value-set from the universe 4. Informally, a process obeys this sorting system if in
every input and output prefix, a name/variable m of sort § carries a tuple of objects
of the sort specified by 0b(S); we omit the details that are standard. We let I1° the set
of processes (possibly containing free variables) obeying these conditions and IT¢ the
subset of closed processes. Notationally, we shall often omit trailing 0’s, writing e.g.
a.b. instead of a.b.0, we shall write Y | P; for nondeterministic choice Pj +---+ P,

and let replication !P denote the process defined by the equation: !P &ef P|!P.

We assume over I1° the standard early operational semantics of pi-calculus — see
e.g. [14]. Let us just remind that in this form of semantics transitions are the form
P - P, where u is one of 7T (invisible action), ad (input action) or (vé)ad with ¢ C d
(output action) and d ::= a | u (name or value). A few standard notations will also

be used. In particular, for each visible (different from t) action o, P =% P’ means
P(—5)* % (55)*P. This notation is extended to any sequence of visible actions s
(i.e. a trace), P == P', as expected. Finally, P == means that there is P’ s.t. P == P'.
We let ~ be a fixed equivalence relation over IT°. We denote by [Q] the equivalence
class of a process Q. We assume ~ is included in trace equivalence [2], includes strong
bisimulation [14] and preserves all operators of the calculus, except possibly input pre-
fix and unguarded nondeterministic choice. We introduce now the main concept of this
section. An open process is a pair (P,X), written P(¥), with ¥ a tuple of distinct vari-
ables of type U C L and P € TI° such that fv(P) C x; when no confusion arises, we shall
abbreviate P[#/7] as P(ii) and (P[Y/%])(¥) as P(¥) (¥ a tuple of distinct variables.)

Definition 1 (open processes as random variables). Let P(X) be an open process and
X a vector of random variables, with X : Uand X : U, for one and the same U. We
denote by P(X) the random variable F o X, where F = \ii € U .[P[#/])].

Note that a sample of P(X) is an equivalence class of ~.

Example 1. A PIN-checking process can be defined as follows. Here, x,z : 1..k for some
integer k and x represents the secret code. The situation is modeled where an observer
can freely interact with the checking process.

Check(x) &f a(z).([z = x]ok.Check(x) + [z # x]no.Check(x)) . 4)

The range of the function F : u+ [Check(u)] has k distinct elements, as u # u' implies
Check(u) # Check(u'). As a consequence, if X : 1.k is a random variable, the distri-

bution of P(X) mirrors exactly that of X. E.g., if X is uniformly distributed, then so is
P(X), i.e. the probability of each sample is 1/k.

Note that, if P(ii) ~ Q(ii) for each i, then, for any X, P(X) and Q(X) are the same
random variable. Another concept we shall rely upon is that of most general boolean,
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borrowed from [7, 3], that is, the most general condition under which two given open
processes are equivalent.

Definition 2 (mgb). Let P(%) and Q(F) be two open processes, with ¥ : U and 5 : V.
We denote by mgb(P(%), Q()) a chosen formula ¢(%,¥) s.t. for each i € U and v € V :
P(ii) ~ Q(V) if and only if (i, V) is true.

It is worthwhile to notice that in many cases mgb’s for pairs of open pi-processes can

be automatically computed relying on symbolic transition semantics. Let us recall from

[7,3] that a symbolic transition also carries a logical formula: P & P'.In [7], an

algorithm is described to compute mgb’s for pair of processes both having finite sym-
bolic transition systems. Here, we will just assume that the logical language guarantees
existence of mgb for any given pair of open processes.

4 Absolute Leakage

Throughout the section and unless otherwise stated, we let P(,¥) be an arbitrary open
process, with ¥ : U and y: V,while X : U and ¥ : V are two arbitrary vectors of random

variables, and Z def P(X,Y).

Definition 3 (absolute leakage). The (absolute) information leakage from X to P given
def

YisA(P;X|Y)=1(X;Z]Y) =H(X|Y)-H(X|Y,Z).

When ¥ is empty, we simply write leakage as A(P;X). A first useful fact says that
leakage is nothing but the uncertainty about Z after observing ¥. The proof is a simple
application of the chain rule (2).

Lemma 1. A(P;X |Y)=H(Z|Y). In particular, if § is empty, A(P;X) = H(Z).

Example 2. The process Check(x) defined in (4) leaks all information about x. For
example, if X is u.d on 1.k then Z = P(X) is u.d. over a set of k samples. Hence
A(Check;X) = H(Z) =logk = H(X).

Suppose now the adversary cannot interact freely with Check, but rather he observes
the result of a user interacting with Check:

OneTry(x,y) def (va)(Check(x)|ay) . (5)

Clearly, for any XY : 1..k, the range of the random variable Z = OneTry(X,Y) has only
two elements, that is [T.0k] and [t.no), that have probabilities Pr[X =Y]| and Pr[X #Y],
respectively. In the case where X and Y are uniformly distributed and independent, these
probabilities are 1 /k and 1 — 1/k, respectively. We are interested in A(OneTry; X |Y).
Easy calculations show that Z and Y are in fact independent. For the sake of concrete-
ness, let us assume k = 10; then we can compute absolute leakage as

1
A(OneTry:X|Y) = H(Z|Y) =H(2) = H( ) ~0.469.

In this case, knowledge of Y brings no advantage to the adversary.
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The next result is about composing leakage. Let us say that a n-holes context C[-, ..., "]
preserves ~ if whenever P; ~ P/ for 1 <i < n then C[Py,...,P,] ~ C[P],...,P,)]. The
following proposition states that leakage of a compound system cannot be greater than
the sum of leakage of individual systems. The (simple) proof is based on inequality
(3) plus the so called "data processing" inequality, saying that for any r.v. W and any
function F' of appropriate type, H(F (W)) < H(W).

Proposition 1 (compositionality). Les C[-, ...,-] be a n-holes context that preserves ~,
and let Q;(X,¥) be open processes, 1 <i<n. Let P(X,7) =C[Q1(%,¥), ..., On(%,)]. Then

=

APX|7V)<Y 405X | V). (6)
i=1

For example, in the case of parallel composition, inequality (6) specializes to
AP|Q;X |¥) < A(P; X |Y)+ A4(Q; X | V). The inequality implies that leakage is
never increased by unary operators. In the case of replication !, this leads to the some-
what unexpected conclusion A(!1P; X |¥) < 4(P; X | ). Inequalities provided by (6)
may hold strict or not, as shown below.

Example 3. Consider P(x) = ([x = Ola)|a, where x : {0,1}, and X u.d. on the same
set. Then 1 = A(P;X) > A(IP;X) = 0. The reason for the latter equality is that for v €
{0,1}, IP(v) ~!a, that is, the behaviour of |P(x) does not depend on x, so H(P(X)) =0.

On the other hand, consider Pi(x) = [x =2]a + [x = 4]a and P,(x) = [x = 1]b +
[x = 2]b, where this time x : 1.4, and X is u.d. on the same set. Then A(P\|Py; X) =
AP X)+ AP X)=H())+H()) =2

Our next task is to investigate the situation of zero leakage. We start from Abadi and
Gordon’ definition of Secrecy, originally formulated in the setting of the spi-calculus
[1]. According to the latter, a process P(¥) keeps ¥ secret if the observable behaviour
of P(%) does not depend on the actual values ¥ may take on. Partly motivated by the
non-interference scenario [5, 16], where variables are partitioned into "low" and "high",
we find it natural to generalize the definition of [1] to the case where the behaviour of
P may also depend on further parameters § known to the adversary.

Definition 4 (generalized secrecy). We say that P(%,7) keeps X secret given ¥ if, for
eachv €V, and for eachii € U and ii' € U, it holds P(ii, V) ~ P(i, V).

The main result of the section states agreement of diverse notions of secrecy: functional
(described above), quantitative (zero leakage) and logical (independence of mgb’s from
X). The latter appears to be more amenable to automatic checking, at least in those cases
where the mgb can be computed. We also offer an "optimized" version of the quanti-
tative notion, by which it is sufficient to check zero-leakage relatively to uniformly
distributed and independent X and Y.

Theorem 1 (secrecy). Let P(%,7) be an open process. The following assertions are
equivalent:
1. P(%,5) keeps % secret given y. y o
2. A(P; X*|Y*) = 0, for some X* : U and Y* : V uniformly distributed and
independent.
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3. maxg.py y.y a/p;X|Y) =0.
4. ¢ & 3580, where 0 = mgb(P(%,5), P(¥.,5)), for & and §' tuples of distinct vari-
ables disjoint from X and ¥, but of the same type.

Example 4. Consider the following process, where x,y : 1..4:

O(x,y) def (ve)(c|ly=1]c.a) + [x=2]ta.

It is immediate to see that Q does not keep x secret, given y. E.g., if the adversary knows
that y # 1 and observes the behaviour [t.a] then he can infer that x = 2. In fact, the
mgb given by the theorem above is o = ([y=1] — (Y = 1]V¥ =2])) A ([ =1] —
(y=1]V[x=2])), and clearly, ¢ ¥ Ixx'.¢9. As an example, for XY independent and
u.don 1.4, the leakage from X to Q given Y can be computed as H(Z|Y) = 0.608. The
process Q' (x,y) = Q(x,y) + [y # 1]t.a keeps x secret given y.

5 Rate of Leakage

We assume now an attacker can only conduct upon P repeated experiments, each yield-
ing a binary' answer, say success or failure. We are interested in the number of com-
munications that are necessary for the adversary to extract one bit of information about
X in this way.

In the rest of the section, we fix ~ to be weak trace equivalence (aka may testing
equivalence [4, 2]) written ~, and defined as: P ~ Q iff for each trace s, P = iff (0] =
For the sake of simplicity, we shall only consider processes where channels transport
tuples of values, i.e. we ban name-passing. For the same reason, we shall assume that
no side-information is available to the attacker, i.e. § is empty. We plan to present the
treatment of the most general case in a full version of the present paper. Throughout
the section and unless otherwise stated, P(X), where ¥ : U, denotes an arbitrary open
pi-process, X an arbitrary vector of random variables of type U and Z is P(X). Recall
that A(P; X) = H(Z).

Definitions and basic properties. Consistently with the testing equivalence framework
[4, 2], we view an experiment E as a processes that, when composed in parallel with P,
may succeed or not. Input on a distinct name , carrying no objects, is used to signal
success to the adversary. Here, it is convenient to adjust the notion of composition (||
below) to ensure that, in case of success, exactly one success action is reported to the
adversary.

Definition 5 (experiments). An experiment E is a closed process formed without using
recursive definitions and possibly using the distinct success action .

We say that a nonempty trace of visible actions s is successful for E if ® does not
occurinsand E =2

For each E and process Q, let us define Q||E &f
¢=t(Q,E)\ {0} and & ¢ fu(P,Q, ).

(vé, ) (P|E[® o] |oY.@), where

! We expect no significant change in the theory if k-ary answers, with k > 2 fixed, were instead
considered.
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Note that for each Q it must be either Q||E ~ 0 — meaning that E fails — or Q||E ~ ©.0
— meaning that E succeeds. Hence, for each E, we can define a binary random variable
thus?

E* Y pR)|E.

Information on X conveyed by E* is I(X; E*) = H(E*) — H(E*|X) = H(E™). This
information is at most one bit. The rate notion of rate we are after should involve a
ratio between this quantity of information and the cost of E. The following example
shows the role played by non-determinism in extracting information, and provides some
indications as to what we should intend by cost.

Example 5. Consider again Check(X ), where this time X is u.d. over 1..k, for some fixed

. . . def 2
even integer k > 2. An experiment E that extracts one bit out of E = ZZ/Z | ad.ok..

An attacker can only observe the outcome of the interaction between Check and E, i.e.
a sample of the rv. E* = Check(X)||E. If action ® is observed, then it must be X < k/2;
if action ® is not observed, then it must be X > k/2. Note that [(X;E*) = H(E*) =
(=1

The above example suggests that different successful traces of an experiment should
be counted as different "trials" attempted by the attacker. The cost of each trial can be
assumed to be proportional to its length as a trace. These considerations motivate the
definition below.

Definition 6 (rate). For each experiment E, define its cost as |E| def >qIs| :

s is succesful for E }. The rate of P relative to X is

. H(E*
QQ(P;X)déf sup ( )
>0 |E]

(N
Our first result is an experiment-independent characterization of rate. In accordance
with the may testing approach, this characterization is obtained in terms of observa-
tions of single traces. In what follows, given a trace of visible actions s, we consider
the r.v. P(X) ==, which may yield true or false, and denote by p; the probability’
Pr[(P(X) ==) = true]. Recall that for 0 < p < 1, we denote by H(p) the entropy of the
distribution (p, 1 — p).

Proposition 2. I holds that R (P; X) = sup g Hl(sl"")

Example 6. Consider the process CheckOnce(x) défa(z).([z = x|ok + [z # x]no), where
x,7:1..10, and X u.d. on the same interval. It is immediate to verify that the ratio in the
proposition above is maximized by any of s = ad - ok or s = ad - no, for d € 1..10. This
yields R (CheckOnce; X) = H( ) /2 ~ 0.234.

2 We would write E*(P) should any confusion about P arise.
3 It is important to note that this definition does not induce a probability distribution on the set
of traces; rather, it assigns each trace s a binary distribution (ps, 1 — py).
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The proposition above allows one, at least in principle, to compute the rate of any
process having a finite symbolic transition system. In fact, relying on P’s symbolic tran-
sition system, it is possible to compute, for any given trace s, a logical formula ¢ (%)
expressing the exact condition on £ under which P(¥) can perform s (see [7, 3]). From
these formulae it is easy to compute, or at least estimate with any degree of precision,
the rate of P — we omit the details.

The next result explains the relationship between the notion of rate and absolute
leakage. In particular, (a) establishes that H(Z) is the maximal information that can
be extracted by repeated binary experiments; and (b) provides a lower bound on the
cost necessary to extract this information, in terms of the rate of P — thus providing a
justification for the name "rate". For E = (E|,E, ..., E,) a vector of experiments, write
|E| = |E\|+ -+ |E,| for its cost, and E* for the vector of r.v. (E,E;,....E}).

Proposition 3. It holds that

(@  APX) = HZ) =m
(b) foreach E, I(X;E*) <|E|-

Note in particular, that the cost of extracting all the available information H(Z) cannot

H(Z)
R(PX)
leakage may well exhibit different rates. Here is a small example to illustrate this point.

be less than It is important to remark that processes with the same absolute

Example 7. Let P(x) and Q(x), where x : 0..3, be defined as follows:

P(x) =[x=0](a+b) + x=1](b+c) + [x=2](c+d) + [x=3](d+a)
0(x) = [x=0]a + [x=1]b + [x=2]c + [x=3]d.

Assume X is u.d. over 0..3. Both P(X) and Q(X) are u.d. on a domain of four elements
(the four distinct equivalence classes [P(i)], resp. [Q(i)], for i € 0..3). Hence leakage
is HP(X)) = H(Q(X)) = H(X) = 2 bits. On the other hand, each nonempty trace of
P occurs with probability 1/2, while each nonempty trace of Q occurs with probabil-
ity 1/4. Thus, by Proposition 2, R (P;X) = H(;) = 1 and R(0;X) = H(}) ~ 0.811L.
Proposition 3(b) implies that gaining all information about X costs the attacker no less
than 2 in the case of P, and no less than 3 in the case of Q. Indeed, a sequence of two
(resp. three) one-action experiments is sufficient (a.0, b.® for P and a.0, b.®, c.o for
Q) to determine X.

Compositionality. Itis possible to give upper bounds for the rate of a compound process
in terms of the component expressions, in the vein of Proposition 1. Some of these upper
bounds are rather crude (e.g. in the case of restriction), others are more sophisticated
(e.g. R(ae.P;X) <max{H([e(X)=1])), R(P;X)}) — we leave the details for the full
version of the paper. Here, we concentrate on the rate of iterated processes. In order
to define iteration, we have to first define sequential composition. Output on a distinct
name stop, not carrying objects, is used to signal termination of a thread. Hence we

define sequential composition as P; Q (V stop' ) (P[stoP' [stop) | stop’.Q) (with stop’
fresh). This is not sequential composition in the usual sense, but it is equivalent in the
context we are going to consider — see definition below. For any P, let iteration * P be the



Quantifying Information Leakage in Process Calculi 129

. f . ..
process recursively defined by * P def P; *x P. We show that, under suitable conditions, the
rate of * P is the same as P’s. The condition below requires essentially that termination
of a single thread in a process is equivalent to termination of the whole process.

Definition 7 (determinate processes). Let Q be a closed process. We say that a trace

s is terminating for Q if QO =L We say that Q is determinate if for every terminating
trace s, whenever Q == Q' then Q' ~ stop. Finally, an open process P(%) is determinate
if X acp Pit) is determinate.

We need another technical condition: let us say that Q is stable if whenever Q = o
(g = empty trace) then Q' ~ Q.

Theorem 2 (iteration rate). Suppose that P(X) is determinate, and that for each i,
P(ii) is stable. Then R (xP;X) = R (P; X).

Example 8. It is easy to check that CheckOnceStop(x) &f a(z).([z = x]ok.stop + [z #
x|no.stop) is determinate. (x : 1..10). Hence, being Check(d) ~ % CheckOnceStop(d),
for every d, by Theorem 2 and Example 6 we have: R (Check;X) =
R (CheckOnceStop; X) = H( ;) ~ 0.234.

6 Computing Bounds on Absolute Leakage

In this section, we analyze the problem of bounding absolute leakage, from the position
of someone — e.g. a developer — who has access to the process’ code P, and for whom
it is inexpensive to draw independent samples of the data X. For simplicity, we shall
limit our discussion to the case where the side-information ¥ is empty, so that absolute
leakage reduces to H(Z), where Z = P(X). The problem is nontrivial, because even
for moderately complex P, the distribution of Z may be extremely difficult to compute
or approximate. Methods commonly employed to estimate entropy in absence of an
explicit description of distribution involve generation of sample sequences, long enough
to let the underlying source’s redundancy become appreciable. These methods are not
applicable to our case, as operating on samples of Z is extremely expensive. Generation
of even a single sample of Z — that is, an equivalence class, represented in some form
or another — generally takes exponential time and space in the size of P.

We suggest a strategy that may work in practice in a number of cases, but we will not
dwell on complexity-theoretical issues. For any discrete random variable W, its index
of coincidence IC(W) is defined as the probability that two independent experiments
yield the same result, that is, denoting by U the type of W:

cw) €Y (Prlx =u])’.

uclU

Relationship of /C with Shannon entropy is seen by applying a well-known inequality
of convex functions (Jensen’s inequality, see e.g. [15]), which yields: —log IC(W) <
H(W) (the quantity on the LHS is known as Renyi’s entropy of order 2.) This inequality
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has been vastly generalized by Harremoé&s and Topsge [8], who provide whole fam-
ilies of lower- and upper-bounds of Shannon entropy in terms of /C. These bounds
are, in a certain technical sense, the "best possible" and provide fairly good esti-
mates of H(W) in many cases*. It remains to be seen how IC(W) can be efficiently
estimated in our case (W = Z). We show that this can be achieved via mgb’s. Let
(%, %) &f mgb(P(%),P(¥')), where ¥ is a tuple of distinct variables disjoint from £.
By interpreting the boolean values true and false as 1 and 0, ¢(%, %) can be interpreted
as a function U x U — {0,1}. We then have the following proposition, based on ele-
mentary reasoning on probabilities.

Proposition 4. Let X' be independent from X, but with the same type and distribution
as X. Then IC(Z) = E[6(X,X)].

The expectation E[0(X,X’)] can be estimated with any desired precision via the law of
large numbers: in practice, one draws several independent samples of ¢(X,X’) and then
takes the resulting arithmetical mean. The efficiency of this procedure depends on the
distribution of X and on the size of ¢. Therefore, the problem of evaluating IC(Z) can
be reduced to the task of computing the formula ¢, and possibly reducing its size by
means of logical simplifications. Dedicated algorithms exist for that (see [7]) which are
practical in many cases. Using this methodology, we have conducted some simple but
very encouraging experiments on timing-dependent leakage in modular exponentiation
algorithms (see e.g. [9]) that will be reported in the extended version of the paper.

7 Conclusions and Related Work

Results and proofs presented here carry over essentially unchanged to other calculi
equipped with behavioral equivalences, such as the spi-calculus — except for those that
depend on pi’s symbolic semantics, like effective computation of leakage. The exam-
ples considered in the paper are admittedly a bit artificial. More realistic case-studies,
possibly involving cryptography or probabilistic behaviour, are needed for assessing
the model’s scalability. In the leakage rate scenario, different notions of "cost" are also
worthwhile to be investigated.

Early works on quantitative information flow are [13, 17, 6]. Volpano and Smith have
later developed a quantified theory of non-interference for imperative programs, also
giving a notion of rate [16], albeit not based on information theory. These approaches,
like the one by Clark et al. [12], presuppose that computations produce some form or
another of "result" , possibly with an associated probability distribution, in the sense
already discussed in the introduction. A notable exception is represented by the recent
work of Lowe [11]. There, quantitative non-interference for timed CSP is defined as the
number of different "low" behaviours that a "high" user can induce on the process. This
definition is shown to be in agreement with a qualitative notion of lack of information
flow due to Focardi and Gorrieri [5]. A notion of rate is also introduced by taking time
explicitly into account. These notions are not easily comparable to ours, due to the
different goals and settings (secrecy vs. non-interference, untimed vs. timed.)

4 As an example, in the case of binary distributions (p,1 — p), an upper bound U can be given
s.t. the ratio H /U lies between 1 and 0.9 for all distributions with p € [0.03,0.97].
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Abstract. Security of a cryptographic protocol for a bounded number of sessions
is usually expressed as a symbolic trace reachability problem. We show that sym-
bolic trace reachability for well-defined protocols is decidable in presence of the
exclusive or theory in combination with the homomorphism axiom. These theo-
ries allow us to model basic properties of important cryptographic operators.
This trace reachability problem can be expressed as a system of symbolic de-
ducibility constraints for a certain inference system describing the capabilities of
the attacker. One main step of our proof consists in reducing deducibility con-
straints to constraints for deducibility in one step of the inference system. This
constraint system, in turn, can be expressed as a system of quadratic equations of
a particular form over Z/2Z[h], the ring of polynomials in one indeterminate over
the finite field Z/27Z. We show that satisfiability of such systems is decidable.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure communication
via a network that may be controlled by an attacker. They involve a high level of con-
currency and are difficult to analyze by hand. These programs are linear sequences of
receive and send instructions on a public network. A passive attacker may only listen
to messages, while an active attacker may also pretend to be a protocol participant and
forge messages according to a certain set of intruder capabilities.

The problem of deciding whether a protocol preserves the confidentiality of a mes-
sage under any active attack is known to be undecidable in general (e.g. [11]). Several
decidability results have been obtained under the assumption that the number of role
instances is bounded, among others NP-completeness due to Rusinowitch and Turu-
ani [17]. The idea of their algorithm is to guess a symbolic trace in which the mes-
sages are represented by terms containing variables. This symbolic trace corresponds
to a concrete execution trace if the variables can be instantiated in such a way that
at every moment a message received by an agent can in fact be deduced by the in-
truder from the messages seen before. Hence, verifying security of a protocol amounts
to a non-deterministic guessing of the symbolic trace plus the resolution of a system
of deducibility constraints. This result [17], as many others (e.g., [15]), relies on the
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so-called perfect cryptography assumption which states that the cryptographic primi-
tives (like encryption) are perfect and can be treated as black boxes. This assumption is
unrealistic since some attacks exploit in a clever way the interaction between protocol
rules and properties of cryptographic primitives. A more realistic approach is to take
into account properties of the cryptographic primitives (see [4] for a survey). For the
constraint based approach, this has been done for different equational theories [16, §].

In this paper we study the equational theory ACUNh which is the combination of (h)
the homomorphism axiom h(x + y) = h(z) + h(y) with the exclusive or (ACUN) the-
ory. These two equational theories model basic properties of important cryptographic
primitives. Some protocols relying on these algebraic properties are described in [4].
Exclusive or is a basic building block in many symmetric encryption methods like DES
or AES, or even used directly as an encryption method (Vernam encryption). Homo-
morphisms are ubiquitous in cryptography. For instance, the Wired Equivalent Privacy
(WEP) protocol uses a checksum function C' which has the homomorphism property
over +, i.e. C(x +y) = C(z) + C(y). Moreover, the homomorphism property over
some binary operator appears in several encryption schemes (RSA, ElGamal ...) and
is crucial in the field of electronic voting protocols [5]. Note that the recent result by
Chevalier and Rusinowitch [2] for the combination of intruder theories can not be em-
ployed here to simply extend the known decidability result [1,3] for ACUN since the
theories ACUN and h share the symbol +. Furthermore, their result relies on a model
which is different from ours in that it applies only to a restricted class of protocols.

Some results have already been obtained for the ACUNh theory [13, 6], but only
for the case of a passive attacker. This algorithm for passive attacks is an important
ingredient to the algorithm for active attacks developed in the present paper. Another
important ingredient is ACUNh unification which has been shown decidable in [12].
However, for our procedure, we need to establish that unification in ACUNh is finitary,
i.e. that every problem has a finite set of most general solutions. Our work is inspired
by Millen and Shmatikov’s approach [16] for the equational theory of Abelian groups.
However, there are fundamental differences in the technical development.

Outline of the paper. We present our attacker model in Section 2, and the classes of
constraint systems that we employ in our algorithm in Section 3. The proof of our main
result (Theorem 1) proceeds in two steps: First we reduce satisfiability of deducibil-
ity constraints to satisfiability of constraints for one-step deducibility by a particular
inference rule (Section 4). Second, we reduce satisfiability of these constraints to the
satisfiability of a particular form of quadratic equations over the ring Z/2Z[h], which
we finally show to be decidable in Section 5 (satisfiability of quadratic equations over
Z/2Z[h)], or for that matter Z, is undecidable in general). Due to lack of space, proofs
are omitted and can be found in [9].

2 Attacker Model

2.1 Inference System

The deduction capabilities of the intruder are formalized by the Dolev-Yao model [10].
We extend the intruder capabilities by equational reasoning modulo a given set E of
equational axioms; we denote this intruder model by Zpyg. In this paper, we consider
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the equational theory E = ACUNh which consists of the well-known axioms of exclu-
sive or in combination with a homomorphism symbol. More formally, ACUNh contains
the following equations:

Associativity, Commutativity (AC): z + (y + 2) = (z +y) + z, 2 +y =y + x,
Unit (U): z + 0 =z,

Nilpotence (N): x + x = 0,

homomorphism (h): h(x + y) = h(x) + h(y).

We obtain the inference system described in Figure 1 where equational reasoning
is taken into account through the normalization function | associated to E. In the
case of the ACUNh equational theory, the AC-convergent rewrite system is obtained
by orienting from left to right the equations (U), (N), (h) and by adding the conse-
quence h(0) — 0 (see [13] for details). We omit the equality rule for AC and just work
with equivalence classes modulo AC.

o T|_<’LL,’U> TrFu ... THuy .
Unpairing (UL) Compose (C) with f € F ~ {+,h,0}
THu T'_f(u177un)
T"(U,’U) Trur ... THFuy, )
Unpairing (UR) Context(Mg) with C' an E-context
THuv T'_C[ul»wwun]l

. TH{u}y Trw
Decryption (D)
TFu

Fig. 1. Dolev-Yao Model Extended with an Equational Theory: Zpy e

The intended meaning of a sequent T' = w is that the intruder is able to deduce the
term v € 7 (F,X) from the finite set of terms 77 C 7 (F, X). As in the standard
Dolev-Yao model, the intruder can compose new terms from known terms (C), he can
decompose pairs (UL, UR), and he can decrypt ciphertexts provided that he can deduce
the decryption key (D). Finally, the intruder may apply (Mg) any E-context, i.e. term
of the form C[zy,...,x,] with C € T({0,4,h},{z1,...,2,}), to terms he already
knows. Examples of instances of this rule are

TFa+h(a) THD
T+ a+ h(h(h(a))) + h(b) e) THO

obtained with C[z1, x2] = z1 + h(z1) + h(h(z1)) + h(z2), resp. C[] = 0.

The notation k" (t) represents the term ¢ if n = 0 and h(h"~1(t)) otherwise. Along
this paper, we consider implicitly that terms are kept in normal form, i.e. we write u
(resp. uo) instead of u | (resp. uo |).

This deductive system is equivalent in deductive power to a variant of the system in
which terms are not automatically normalized, but in which arbitrary equational proofs
are allowed at any moment of the deduction (see [6, 13]). The inference system de-
scribed in Figure 1 deals with symmetric encryption. However, it is not difficult to

(Mg)
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design a similar deduction system for asymmetric encryption and to extend the results
of this paper to this new inference system.

2.2 Factors, Subterms

A term t is standard if and only if it is not of the form f(¢1,...,t,) for some term
t1,...,t, and some f € {0, h, +}. In particular, every variable is a standard term.

Definition 1. Let ¢ be a term in normal form. We have t = Clt1,...,t,] for some
standard terms t1, . . ., t, and an E-context C. The set Factg(t) of factors of t is defined
by Facte(t) = {t1,...,tn}. The set Ste(t) of subterms of t is the smallest set such that:

- 0,t € Ste(t),
= if f(t1,...,tn) € Ste(t) is standard then ty, . . . t,, € Ste(t),
— if s € Ste(t) is not standard then Facte(s) C Ste(t).

Note that the set of factors is uniquely defined since equality is taken to be modulo AC.
Note also that, by definition, 0 is not a standard term and the factors of any term are
necessarily standard. We extend the notations Stg(-) and Factg(-) in a natural way to
sets of terms.

Example 1. Lett; = h%(a)+b+x and ty = h({a,b))+z, we get Factg(t1) = {a, b, x},
Ste(t1) = {t1,a,b, 2}, Facte(ta) = {{a,b), x}, Ste(t2) = {t2, (a,b),a,b, z}.

2.3 Proofs
Definition 2. A proof P of T' - w is a finite tree such that

— the root of P is labeled with T + u,
— every leaf of P labeled with T - v is such thatv € T,

— forevery node of P labeled with T \= v having n sons labeled with T & vy,...,T

i i TFv, ... Tkuo, ) )
Un, there is an instance (R) of an inference rule. If this node

ThHwv
labeled with T = v is the root of P, we say that P ends with an instance of (R).

Note that the terms in the proof are not necessarily ground. A proof P of T' F wu is
minimal if there is no proof P’ of T F u with less nodes than P.

Definition 3. A term u is R-one-step deducible from a set of terms T in any of the
following cases:

- Truisaproofof T u(ie,u €T oru=0),

. Fu ... TFu, .
— there exists u1, . . ., uy such that (R) is a proof of T' = u.
THu

The term u is one-step deducible from T if u is R-one-step deducible from T' for some
inference rule R.

The following lemma, due to [6], shows that if there exists a proof of a sequent then
there exists a “small” one.

Lemma 1. A minimal proof P of T & u contains only terms in Stg(T U {u}).
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3 Constraint Systems

3.1 Well-Defined Constraint Systems

It is well-known that the security problem of a protocol for a fixed number of parallel
sessions reduces to the satisfiability of a constraint system (see, e.g. [1, 15]):

Definition 4. A constraint (resp. one-step constraint, Mg constraint) is a sequent of the
form T I w (resp. T by u, T kv w) where T is a finite subset of T(F,X) and
u € T(F,X). We call T the hypothesis set of the constraint. A system of constraints
is a sequence of constraints. A solution to a system C of constraints is a substitution o
such that:

— for every T I u € C there exists a proof of To - uo;
— forevery T |1 u € C the term uo is one-step deducible from To;
— forevery T Ik, u € C the term uo is Mg-one-step deducible from T'o.

A solution o to C is non-collapsing if for all u,v € Stg(C) \ X such that uoc =g vo
then v =g v. If 7’ is a sub-signature of F then a solution ¢ to a constraint system is
called a F’-solution if zo € T (F’, X) for every x € dom/(0).

Note that, if o is solution to a constraint 7" IF u (resp. one-step constraint, Mg con-
straint), then ¢# is also a solution to 7" I~ u for every substitution 6.

Definition 5. A constraint system C = {T; IF w; }1<i<k is well-defined if:

1. (monotonicity) for all v < k: T; C T;41,
2. (origination) for all substitution 0: CO satisfies the following requirement:
Vi < k, Vo € vars(T;0), 3j < i such that x € vars(u;0).

This notion of well-definedness, due to Millen and Shmatikov, is defined in an analo-
gous way on systems of one-step (resp. Mg) constraints. In [16] they show that “rea-
sonable” protocols, in which legitimate protocol participants only execute deterministic
steps (up to the generation of random nonces) always lead to a well-defined constraint
system. This notion is crucial for several steps of our algorithm.

Theorem 1. The problem of deciding whether a well-defined constraint system has a
solution in Ipy g, where E = ACUNM, is decidable.

The remainder of the paper is devoted to the proof of this result.

3.2 Conservative Solutions

Intuitively, a conservative solution to a constraint system is a solution which does not
introduce any new structure. Lemma 2 states that it is sufficient to search for conserv-
ative solutions of a constraint system. Moreover, conservative solutions allow us to lift
Lemma 1 to deducibility constraints (Lemma 3).

Definition 6. Let C be a constraint system and o a substitution, o is conservative w.r.t.
C if and only if for all x € vars(C), Factg(xo) C (Ste(C) \ vars(C))o.
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Lemma 2. Let C be a well-defined constraint system. If there exists a solution o to C
then there exists a conservative one.

Example 2. Consider the following well-defined constraint system C which is made
up of two deducibility constraints: a, h(b) I h(x) and a,h(b),z IF {(a,b). One
solution is ¢ = {z +— (a,a) + b}. This solution is not conservative w.r.t. C since
Facte({a,a)+b) = {{(a,a),b}, and (a, a) does not belong to (Ste(C)\{z})o. However,
as it is said in Lemma 2, there is a conservative solution: {z — b}.

Lemma 3. Let o be a conservative solution to C = {C4,...,Cy}. Foreachi < k
there exists a proof of C;o that involves only terms in Stg(C)o.

4 From Constraints to Mg Constraints

We proceed in two non-deterministic steps to reduce the satisfiability of a constraint
system to the satisfiability of a Mg constraint system:

1. From constraints to one-step constraints (see Lemma 4 and Figure 2).
2. From one-step constraints to Mg constraints (see Lemma 5).

Input: C = {T1 Fui, ..., Tk H—uk}
guess S C Ste(C)
for all s € S, guess j(s) € {1, ..., k}
C':= 0

for i = 1 to k do
let S; := {s | j(s) = i}

choose a total ordering on S; (S; = {s!, ..., s}
for j = 1 to ki do
T :=T; U S ... U S;_1 U {S},...7 Sg_l}
C':=C U {T IFi s}
end
C':=(C U {T 1 'LLZ‘}
end

return C’

Fig. 2. Step 1: from constraints to one-step constraints

The idea of the first step is to guess among the subterms of C those that are going to
be deduced by the intruder, and to insert each of them in some order into the constraint
system. The completeness of this reduction step is essentially due to the existence of a
conservative solution (Lemma 2) and to Lemma 3. In the resulting constraint system,
every constraint can be solved by application of a single inference rule:

Lemma 4. Let C be a well-defined system of constraints. Let €' be the set of constraint
systems obtained by applying on C the algorithm described in Figure 2.
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1. €' is a finite set of well-defined systems of one-step constraints.
2. If some C' € €' has a solution then C has a solution.
3. If C has a conservative solution then some C' € €' has a conservative solution.

Lemma 5 allows us to reduce the satisfiability of a system of one-step constraints to the
satisfiability of a system of Mg constraints. We first guess a set R of equalities between
subterms. Then, we choose an E-unifier of R among the finite number of possibilities
given by Theorem 2.

Theorem 2. Unification in the theory ACUNN is finitary, and there exists an algorithm
to compute a complete finite set mgug(R) of unifiers of any unification problem R.

We write T Fpy wu if u is (R)-one step deducible from 7" where R is one of
(D, UL, UR, C). It is trivial to decide whether T’ F-py wu or not. We can now eliminate
all constraints 7" I u for which T' Fpy v already holds.

Lemma 5. Let C be a well-defined system of one-step constraints. Let
P = {/\(31732)65, s1=s2]5" C Ste(C)?}.

Let R € P and § € mgug(R). Let Cg = {T0 lFm, b | T Iy u € C and T t/py ub}.
Let € be the set of constraint systems Cy obtained this way.

1. € is a finite set of well-defined systems of Mg constraints.
2. If some Cy € € has a solution then C has a solution.
3. IfC has a conservative solution then some Co € € has a non-collapsing solution.

Note that we can now restrict our attention to non-collapsing solutions, thanks to the
fact that we have guessed the subterms that are identified by the solution.

5 Solving Mg Constraints

Now, we have to solve well-defined Mg constraint systems, where it is sufficient to
look for non-collapsing solutions. In the remainder, we consider a Mg constraint sys-
tem C = {1} IFm; w1, ..., T; IFme uk} and we assume w.l.o.g. that the set of terms 75
isequal to {t1,...,tnt+i-1}-

A constraint system is called factor-preserving if all its factors appear for the first
time in an hypotheses set of a constraint. More formally,

Definition 7. A Mg constraint system is factor-preserving if for all i, 1 < i < k, we

have that Factg(u;) \ X C U?Zﬁi_l Factg(t;).

Example 3. The systems, {(a, b) IFm. (z1, 22) and {((a, b}, a) IFpm, {(a, b) are not factor-
preserving. Note that the first one has no non-collapsing solution whereas the second
one has no solution using the Mg inference rule only.

This notion is important to ensure that well-definedness is maintained when we abstract
a constraint system by replacing factors by new constants (see Lemma 7). Fortunately,
requiring factor preservation is not a restriction, since:
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Lemma 6. Ifa well-defined Mg-constraint system C has a non-collapsing solution then
it is factor-preserving.

Factor preservation is of course trivial to check. We can hence suppose that the con-
straint system under consideration is factor-preserving, since if it is not then we con-
clude immediately by Lemma 6 that it has no non-collapsing solution.

5.1 Reducing the Signature

We will show in Lemma 7 that we can reduce the satisfiability of Mg constraint systems
to the satisfiability of Mg constraint systems over a signature consisting only of 0, +,
h, and a set of constants.

If p: M — N is areplacement, that is a bijection between two finite sets of terms
M and N, then we denote for any term ¢ by t¢” the term obtained by replacing in ¢
any top-most occurrence of a subterm s € M by sp. This extends in a natural way to
constraint systems, and to substitutions.

Lemma 7. Let C be a well-defined factor-preserving Mg constraint system and F =
Factg(C) \ X. Let Fy be a set of new constant symbols of the same cardinality as F
and p : F' — Fy a bijection.

1. C? is well-defined.

2. wvars(CP) = vars(C).

3. If C has a non-collapsing solution then C* has a Fo U {0, h, 4 }-solution.
4. IfCP has a Fo U {0, h, +}-solution then C has a solution.

As shown by the example below, well-definedness is not necessarily preserved under
abstraction when the system is not factor-preserving.

Example 4. Abstraction of the system a kg, (z1, 22); a, 21,22 IFme b, which is not
factor preserving, yields a IFmg Cnew; @, 1, 2 IFme b, which is not well-defined.

5.2 Another Characterization of Well-Definedness

Let .1 ,b;h" where b; € Z/2Z be a polynomial of Z/2Z[h]. The product ® of a
polynomial by a term is a term defined as follows:

(Zn:bih")Gt: zn: Ri(t)
=0

i=0 | b;#0

For instance (h*+1)® (z+a) = h*(z)+x+h*(a)+a. Every t € T(F,{z1,...,2p})
can be written t*1 ® x1 + . . . t*» ® z,, +t° with t** in Z/27Z[h] and Facte(t°)NX = ().
We will denote with ¢ the vector (¢%1, ... t%).

Definition 8. Let V = {vy,...,vn} be a subset of Z/27Z[h]™. V is independent if
whenever there exist «; € Z/2Z[h| such that cqvy + ... + @y, = 0 then o; = 0 for
all 1 <i < m. Otherwise V is dependent.
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Remember that we consider a constraint system C = {t1,...,tn4i—1 IFme ui}izlp_wk.
The set L = Ly, of indexes of the so-called defining constraints is defined as follow.
We set Lo = (), and we define L,y = L; U {i + 1} if {wip1} U{u; | j € L;}
is independent, and L;;1 = L; otherwise. We note B; = {u; | j € L,j < i} and
B = Bj. Lemma 8 gives an algebraic characterization of well-definedness in the special
case of the signature F,U{0, h, +}. Now, we have reduced the problem to this restricted
signature (Lemma 7), we are going to use the following characterization in Section 5.3
to solve systems of equations over Z/2Z[h].

Lemma 8. A factor-preserving Mg constraint system {t1, ..., tn+i—1 lFMme W ti=1,. &
over the signature {0, h, +} U Fy is well-defined if, and only if, for every i < k, the set
of vectors {tnyi—1} U{u; | j € L;} is dependent.

Intuitively, this is related to the fact that matching modulo ACUNh is essentially linear
equation solving.

5.3 Solving Mg Constraint Systems over {0, h, +} U Fo

We may by Lemma 6 assume that we have a factor-preserving Mg constraint system.
By Lemma 7 satisfiability of such a system can be reduced to satisfiability of a Mg
constraint system over a signature {0, h, +} U Fo where Fy is a finite set of constants.
The characterization of Lemma 8 allows us to use the following well-known fact.

Fact 1. Let A be a matrix n X m over Z/2Z]h| such that the n row vectors are inde-
pendent (n < m) then there exists Q € 7./27[h] such that

Vb e Z/2Z[h|",3X € Z/2Zh)™ A- X =Q b (1)
Moreover, such a coefficient Q) is computable as a determinant of a submatrix of A.
We denote Q4. the coefficient (Q which satisfies the equation (1) for the matrix B.

Example 5. (running example) To illustrate our procedure, we consider the following
well-defined Mg constraint system:

h(a) + a,b+ h%(a) lFme h(z1) + h2(22)
h(a)+ a,b+ h%(a), z1 + h(xs) IFve 1 + a
h(a) 4+ a,b+ h%(a), z1 + h(z2), h(x1) + h(a) IFm. h(z1) + k2 (z2) + 21 +a

We have w1 = (h,h?), uz = (1,0) and ug = (1 + h, h?). The algorithm returns
L = {1,2} and we obtain Q4. = det(uy, us) = h2.

Satisfiability of such an Mg constraint system C is equivalent to the satisfiability of
the following system S of equations between terms. The variables z[i, j], called context
variables, take their value in Z/2Z[h]. Let Z = {z[i,j] | 1 < i < k,1 < j < n+i—1}.

Z[L1]Oti+...+2[L,n] O t, = u;
z[2,1]Ot1 + ...+ z[2,n] Oty + 2[2,n + 1] © tpy1 = u2

zp, 1] ©t1 + ...+ z[p,n] Ot + ...+ 2z[p,n+p— 1] Otpyr—1 = uk
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Example 6. (running example) Let t; = h(a) + a and t2 = b + h?(a).

Z[l, 1] Ot + 2[1,2} Oty = h(l‘l) + hQ(l‘Q)
z[2,1] @ t1 + 2[2,2] O ta + 2[2,3] © (1 + h(z2)) =21 + @
z[3,1] @ t1 + 2[3,2] © ta + 2[3,3] © (z1 + h(z2)) + 2[3,4] © (h(z1) + h(a))
= h(z1) + h%(z2) + 21 +a

Definition 9. Let C be a well-defined Mg constraint system over the signature
{0,h,+} U Fo and S(C) be the system of equations obtained from C. A solution to
S(C)is acouple (p : Z v+ ZJ2Z[h],0 : vars(C) — T ({0, h,+} U Fy)) such that all
the equations of S(C)pf are satisfied.

We split the context variables Z into two parts, those which stem from L and the others.
More formally, Z, = {z[i,j]|i € Land 1 < j <n+i}.

A polynomial P = ZZ o pih' (py, # 0) is smaller than Q = Zz o Gl (qm # 0),
written P < @, if either n < m, or P # @, n = m and p; < ¢; for the greatest 4
with p; # g;.

Fact 2. Given any polynomial P € 7./27][h), there is only a finite number of polyno-
mials which are smaller (w.r.t. <) than P.

The following Lemma is the crucial point in the proof of Lemma 10.

Lemma 9. Let S(C) be a system of equations obtained from a well-defined Mg con-
straint system C over the signature {0, h,+} U Fo. If S(C) has a solution then there
exists o a solution to S(C) such that for all z € Z1, 0 < 20 < Qmaz-

The proof of this lemma proceeds by induction on the number of variables in Z,.

Lemma 10. Given C a well-defined Mgconstraint system. It is decidable whether S(C)
has a solution.

Example 7 (running example). Thanks to Lemma 9, we know that z[1,1], z[1, 2],
2[2,1], 2[2,2] and z[2, 3] are bounded by h?, the value of Q4. We choose p; =
{z[1,1] +— 0;2[1,2] — h;z[2,1] — h + 1;2[2,2] — 1;2[2,3] — 0}. We do the
replacement on the two first equations:

h® (b+ h?(a)) = h(x1) + h?(x2)
(h+1)® (h(a) +a) +1® (b+ h%*(a)) =x1 +a

This completely determines the value of 1 and xo: 6 = {21 +— b,z +— h(a)}. Lastly,
we can apply the substitution # on the third equation to obtain:

31© (b+h*(a)+

2[3,1] ® (h(a) +a) + 2[3,2] ® (b + h?(a)) + 2[3
)) = h(b) + h3(a) + b+ a

(5,41 & ((8) + h(a))  h

Since this system is linear it is easy to decide whether it has solution.
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Let po = {z[3,1] — h+1;2[3,2] — h + 1; 2[3,3] — 0; 2[3,4] — 0}. The couple
(p1 U pa, 0) is a solution to the system of equations described in Example 6.

Now, we are able to prove our main result as stated in Section 3.

Theorem 1. The problem of deciding whether a well-defined constraint system has a
solution in Ipy g, where E = ACUNN, is decidable.

Proof. The procedure described along the paper is sound and complete.

Soundness. Let C; be some factor-preserving Mg-constraint system obtained by apply-
ing the first part of our procedure on C, a well-defined constraint system. Thanks to
Lemma 4 and 5, C; is well-defined since C is well-defined. Let Cs be the constraint sys-
tem obtained from C; by replacing all factors by different constants. Cs is well-defined
thanks to Lemma 7. Assume that S(C3) (the system of equations associated to Cz) has
a solution. We easily deduce that C5 has a solution, hence by Lemma 7 that C; has a
solution, and by Lemma 4 and 5 that C has a solution.

Completeness. Assume that ¢ is a solution to C. Thanks to Lemma 2, we can assume
that o is conservative w.r.t. C. Let %" be the finite set of well-defined one-step constraint
systems obtained by applying the algorithm described in Section 4 on C. By Lemma 4,
we know that there exists C' € %" such that o is a conservative solution of C’. By
Lemma 5, we know that there exists Cy a well-defined Mg-constraint system which has
anon-collapsing solution. Hence, Cy is factor-preserving due to Lemma 6. By Lemma 7,
Cj has solution over {0, i, +} U Fo. Then, Lemma 10 allows us to conclude. (]

6 Conclusion

Our solution for solving deducibility constraints is general enough to hold in related
equational theories since it relies on general algebraic concepts. In particular, our tech-
nique generalizes previous results for the case of the exclusive or equational theory
ACUN [1, 3] (context variables take values in Z/2Z) and the theory of Abelian groups
AG [16] (contexts are in Z). However, our technique does not apply to the case AGh
of the extension of Abelian groups with a homomorphism since then the contexts are
in Z[h], and Fact 2 does not hold. In fact it has recently been shown that this case is
undecidable [7].

Despite a superficial similarity between our algorithm and the one of [16], our pro-
cedure to reduce Mg-constraints (cf. Section 5) to a special class of quadratic equations
is different. In particular it makes use of our novel algebraic characterization of well-
defined constraint systems. Furthermore, our procedure to solve a particular form of
quadratic equations in polynomials over the finite field Z/27Z[h] is different from the
one proposed in [16].

An open question is the case of an encryption algorithm distributing over exclusive
or. Although the case of a passive intruder is decidable in this framework [14], the case
of an active intruder seems quite intricate since it amounts to having an infinite number
of distinct homomorphisms (one for each term used as a key).
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Abstract. In (Micciancio, FOCS 2002), it was proved that solving the
generalized compact knapsack problem on the average is as hard as solv-
ing certain worst-case problems for cyclic lattices. This result immedi-
ately yielded very efficient one-way functions whose security was based
on worst-case hardness assumptions. In this work, we show that, while
the function proposed by Micciancio is not collision resistant, it can be
easily modified to achieve collision resistance under essentially the same
complexity assumptions on cyclic lattices. Our modified function is ob-
tained as a special case of a more general result, which yields efficient
collision-resistant hash functions based on the worst-case hardness of var-
ious new problems. These include new problems from algebraic number
theory as well as classic lattice problems (e.g., the shortest vector prob-
lem) over ideal lattices, a class of lattices that includes cyclic lattices as
a special case.

1 Introduction

Ever since Ajtai’s discovery of a function whose average-case hardness can be
proved based on worst-case complexity assumptions about lattices [2], the possi-
bility of building cryptographic functions whose security is based on worst-case
problems has been very alluring. Ajtai’s initial discovery [2] and subsequent
developments [5,15,17] are very interesting from a theoretical point of view
because they are essentially the only problems for which such a worst-case /
average-case connection is known. Unfortunately, the cryptographic functions
proposed in these works are not efficient enough to be practical. The source of
impracticality is the use of lattices, which are described as n X n integer matrices.
This results in cryptographic functions with key size and computation time at
least quadratic in the security parameter n.

A step in the direction of creating efficient cryptographic functions based
on worst-case hardness was taken by Micciancio [14]. He showed how to create
a family of efficiently computable one-way functions, namely, the generalized

* The full version of this extended abstract appears in ECCC TR05-142. Research
supported by NSF CAREER 0093029 and NSF ITR 0313241.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 144-155, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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compact knapsack functions, whose security is based on a certain problem for
a particular class of lattices, called cyclic lattices. These lattices admit a much
more compact representation than general ones, and the resulting functions can
be described and evaluated in time almost linear in n. However, one-wayness is
a rather weak security property, interesting mostly from a theoretical point of
view, because it is sufficient to prove the existence (via polynomial time, but
rather impractical, constructions) of other cryptographic primitives, like com-
mitment schemes, digital signatures, and private-key encryption. By contrast,
the (inefficient) functions based on general lattices considered in [2,5,15,17] are
collision-resistant hash functions, a much more useful cryptographic primitive.

In this work, we take the next step in creating efficient cryptographic func-
tions based on worst-case assumptions. We show how to create efficient, collision-
resistant hash functions whose security is based on standard lattice problems for
ideal lattices (i.e., lattices that can be described as ideals of certain polynomial
rings). With current hash functions that are not based on any hardness assump-
tions, but used in practice, being broken [23,24,4], we believe that it may be
an appropriate time to consider using efficient hash functions which do have an
underlying hardness assumption, especially worst-case ones.

Our contributions and comparison with related work. The generalized knapsack
problem is the following: given m random elements a1, ..., a,, in a ring R, and
a target t € R, find 21,...,2, € D such that > a;z; = ¢, where D is some
fixed subset of R. In [14], it was shown that for appropriate choices of R and D,
the generalized compact knapsack problem is a one-way function with security
based on the worst-case hardness of problems for lattices that can be represented
as ideals in the ring Z[z]/(z™ — 1) (i.e. cyclic lattices). In this work, we show
how to construct collision-resistant hash functions based on the hardness of
problems for lattices that can be represented as ideals in the ring Z[z]/(f),
where f can be one of infinitely many polynomials, including ™ — 1. Thus
our result has two desirable features: it weakens the complexity assumption
while strengthening the cryptographic primitive. As in [14], our functions are
an instance of the generalized compact knapsack problem, but with ring R and
subset D instantiated in a different way. The way we change ring R and subset D
is simple, but essential, as we can show that the generalized compact knapsack
instances considered in [14] are not collision resistant.

Concurrently with, and independently from our work, Peikert and Rosen [18]
have shown, using very similar techniques, that the one-way function in [14] is not
collision resistant and showed how to construct collision-resistant hash functions
based on the hardness of finding the shortest vector for lattices which correspond
to ideals in the ring Z[z]/{z™ — 1). While our more general result is interesting
from a purely theoretical standpoint, it turns out that choices of certain f other
than 2™ — 1 result in somewhat better hash functions, making our generalization
also of practical use. Also, our hardness assumptions are formulated in a way
that leads to natural connections with algebraic number theory, and we are able
to relate our complexity assumptions to problems from that area. We believe
that this will further our understanding of ideal lattices.
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There have been many proposed cryptographic primitives whose hardness
relied on the knapsack problem (e.g., [13,7,6]), but attacks against them (e.g.,
[21,11,22]) rendered the primitives impractical. These attacks, however, were
applied to a group-based knapsack problem, and it is unclear how to apply them
to our ring-based one. Also, none of those primitives had a reduction to worst-
case instances of lattice problems, and, to the best of our knowledge, there are
no known efficient algorithms that are able to solve lattice problems in the worst
case (such as shortest vector) for lattices of dimension =~ 100. Of course, the
hardness of our primitive is based on worst-case problems for ideal lattices, and
very little is known about these. Still, currently there appear to be no algorithms
able to take advantage of the ring structure that these lattices possess (see[14] for
a discussion of known algorithms for cyclic lattices). Determining the worst-case
hardness of lattice problems for ideal lattices is a very interesting open problem.

The ring-based cryptosystem NTRU [10] uses lattices that are similar to ours.
While that cryptosystem has no known security proofs (not even one based on
average-case assumptions), it has resisted attacks. This is perhaps due to the
inherent hardness of ring-based cryptographic constructions that are used in
[10] as well as in our work. While we only construct a hash function, our work
may be viewed as a strong justification for using such ring based constructions.
Our hope is that we have taken another step in the direction of constructing
provably secure and efficient cryptosystems based on worst case hardness of
lattice problems.

The hash function. We now give an informal description of the hash function
families that we will be proving collision resistant. Given a ring R = Z,[z]/{f),
where f € Z[x] is a monic, irreducible polynomial of degree n and p is an integer
of order roughly n?, generate m random elements a1, ..., d, € R, where m is a
constant. The ordered m-tuple h = (a1,...,amn) € R™ is our hash function. It
will map elements in D™, where D is a strategically chosen subset of R, to R.
For an element b = (by,...,b,,) € D™, the hash is h(b) = Y" | a; - b;. Notice
that the size of the key (the hash function) is O(mnlogp) = O(nlogn), and the
operation a; - b; can be done in time O(nlognloglogn) by using the fast Fourier
transform, for appropriate choice of the polynomial f. Since m is a constant,
hashing requires time O(n lognloglogn). To prove that our hash function family
is collision resistant, we will show that if there is a polynomial-time algorithm
that succeeds with non-negligible probability in finding b £ & € D™ such that
h(b) = h(V'), for a randomly chosen hash function A € R™, then a certain
problem called the “shortest polynomial problem” is solvable in polynomial time
for every ideal of the ring Z[z]/(f). We then show that the shortest polynomial
problem is equivalent to some lattice and algebraic number theory problems.

Paper outline. Our main result and techniques rely on a connection between
lattices and ideals of certain rings, which we describe in section 3. In section 4,
we define the worst case problems on which we will be basing the security of our
hash function. We formally define the hash function families in section 5.1 and
show the worst-case to average-case reduction in section 5.2.
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2 Preliminaries

2.1 Algebra

Let Z[z] and R[z]| be the sets of polynomials with integer and real coefficients
respectively. We identify polynomials (of degree < n) with the corresponding
n-dimensional vectors having the coefficients of the polynomial as coordinates.
We define the ¢, norm ||g(x)||, of g(x) € Z[z] as the norm of the corresponding
vector, and the product of two n-dimensional vectors x -y as the (2n — 1)-
dimensional vector associated to the product of the corresponding polynomials.

Let R be a ring. The smallest ideal of R containing a subset S C R is denoted
(S). Much of our work deals with the rings Z[x]/(f) where f is monic and
irreducible. When f is a monic polynomial of degree n, every equivalence class
(g + (f)) € (Z]z]/{f)) has a unique representative ¢’ € (g + (f)) of degree
less than n. This representative is denoted (g mod f) and can be efficiently
computed using the standard division algorithm. We endow the ring Z[z]/(f)
with the (infinity) norm [|(g + (f))||; = |l¢g mod f|| . Notice that the function
Il - |l is well defined (i.e., it does not depend on the choice of representative g)
and it is indeed a norm (i.e., it satisfies the positivity and triangle inequality
properties). As shorthand, we will sometimes write ||g|| s instead of ||g + (f)|ls-
Also, whenever there is no confusion from context, instead of writing g + (f) for
elements of Z[z]/(f), we just write g.

2.2 Lattices

An n-dimensional integer lattice is a subgroup of Z™ generated by linearly inde-
pendent vectors by, ..., b, € Z". The set of vectors by, ..., b, is called a basis for
the lattice, and can be compactly represented by the matrix B having the basis
vectors as columns. The lattice generated by B is denoted £(B). The dual of this
lattice, denoted £(B)*, is the lattice generated by the matrix B=7, and consists
of all vectors that have integer scalar product with all lattice vectors. For any
basis B, we define the fundamental parallelepiped P(B) = {Bx: Vi.0 < z; < 1}.
Sampling random lattice points from the fundamental parallelepiped associated
to a given sublattice can be done in polynomial time [16, Proposition 8.2].

The minimum distance of a lattice £(B) is the minimum distance between
any two (distinct) lattice points and equals the length of the shortest nonzero
lattice vector. The minimum distance can be defined with respect to any norm.
For any p > 1, the £, norm of a vector x is defined by |x|l, = ¢/>; |%:|? and
the corresponding minimum distance is denoted

M (£(B)) = min{|lx — yll, : x #y € L(B)} = min{[[x[|, : x € L(B) \ {0}}.

Each norm gives rise to a corresponding computational problem SV PP (the ~-
approximate Shortest Vector Problem in the ¢, norm): given a lattice £(B), find
a nonzero vector v € £(B) such that ||v], < yAJ(L£(B)). We also consider the
restriction of SV P to specific classes of lattices. The restriction of SV P to a
class of lattices A is denoted A-SV P. (E.g, [14] considers Cyclic-SV P).
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The notion of minimum distance can be generalized to define the ith successive
minimum (in the £, norm) A\?(£(B)) as the smallest radius r such that the closed
sphere B,(r) = {x: ||x||, < r} contains i linearly independent lattice points:
M(£(B)) = min{r : dim(span(L(B) N By(r))) > i}.

In this work, we focus on the infinity norm ||x||ec = limpy_, ||X[|, = max; |z;|
since it is the most natural and convenient norm when dealing with polynomials,
but most of our results are easily translated to other norms as well. The shortest
vector problem in the infinity norm SV P2° was shown to be N P-hard for factor
up to y(n) = n'/1°&len by Dinur [8]. The asymptotically fastest algorithm
for computing the shortest vector exactly takes time 20" [3] and the best
polynomial time algorithm approximates the shortest vector to within a factor

nloglog n

of 200" 16" [3],20],[12]. It is conjectured that approximating SV P to within
a polynomial factor is a hard problem, although it is shown that (under standard
complexity assumptions) for small polynomial factors it is not N P-hard [1], [9].

2.3 Gaussian Distribution

Let X and Y be random variables over a set A with probability density functions
6x and 8y. We denote the statistical distance between X and Y by A(X,Y).
For any vectors ¢, x and any s > 0, let ps ¢(x) = e~mllx=0)/sl* be a Gaussian
function centered in c scaled by a factor of s. The total measure associated to p; ¢
15 [ern ps.c(x)dx = s". So, fxeR” (ps,c(x)/s™)dx = 1 and ps.c/s" is a probability
density function. The distribution ps c/s™ can be efficiently approximated using
standard techniques (see [17]), so in the rest of the paper we make the simplifying
assumption that we can sample from p; ¢/s™ exactly and work with real numbers.
Functions are extended to sets in the usual way; e.g., ps.c(A) = Y c 4 Ps,e(X)
for any countable set A. For any s, c and lattice A, define the discrete probability
distribution (over the lattice A) D s c(x) = 5283, where x € A. Intuitively,
Dy s.c is the conditional probability’ that (ps.c/s") = x given (ps.c/s") € A.
For brevity, we sometimes omit s or ¢ from the notation ps ¢ and Dy 5. When
c or s are not specified, we assume that they are the origin and 1 respectively.
In [17] Gaussian distributions are used to define a new lattice invariant (called
the smoothing parameter) defined below, and many important properties of this
parameter are established. The following properties will be used in this paper.

Definition 1. For an n-dimensional lattice A, and positive real € > 0, the
smoothing parameter 1c(A) is the smallest s such that py,s(A*\ {0}) <e.

Lemma 1 ([17, Lemma 4.1]). Let ps/s™ mod B be the distribution ob-
tained by sampling a point according to the probability density function ps/s"
and reducing the result modulo B. For any lattice L(B), the statistical dis-
tance between ps/s™ mod B and the uniform distribution over P(B) is at
most 3p1s(L(B)* \ {0}). In particular, if s > n(L(B)), then the distance
A(ps/s™ mod B,U(P(B))) is at most €/2.

! We are conditioning on an event that has probability 0; this can be made rigorous
by standard techniques.
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Lemma 2 ([17, Lemma 3.3]). For any n-dimensional lattice A and positive
real € > 0,

ne() < \/1n(2n(1+1/e)) ) < \/nln(?n(lJrl/e)) ().

™ ™

3 Generalized Compact Knapsacks and Ideal Lattices

In [14], Micciancio introduced the following generalization of the compact knap-
sack problem. Let R be aring, D C R a subset, and m > 1 a positive integer. The
generalized knapsack function family H(R, D, m) is the collection of all functions
ha : D™ — R indexed by a € R™ mapping b € D™ to ha(b) =Y~ b;-a; € R.

For any function family H, define the problem Coly; as follows: given a func-
tion h € H, find a collision, i.e., a pair of inputs b,c € D™ such that b # ¢
and h(b) = h(c). If there is no polynomial time algorithm that can solve Coly
with non-negligible probability when given an h which is distributed uniformly at
random in H, then we say that H is a collision resistant family of hash functions.

Let f € Z[x] be a monic polynomial of degree n, and consider the quotient
ring Z[z]/(f). Using the standard set of representatives {(g mod f): g € Z[z]},
and our identification of polynomials with vectors, the quotient ring Z[x]/{f)
is isomorphic (as an additive group) to the integer lattice Z", and any ideal
I C Z[z]/{f) defines a corresponding integer sublattice £(I) C Z". Notice that
not every integer lattice £(B) C Z" can be represented this way.? We define
ideal lattices as lattices that admit such a representation.

Definition 2. An ideal lattice is an integer lattice L(B) C Z" such that
L(B) = {gmod f: g € I} for some monic polynomial | of degree n and ideal
I C Zlx]/(f)-

It turns out that the relevant properties of f for the resulting function to be
collision resistant are:

— f should be irreducible.
— the ring norm ||g| ¢ is not much bigger than ||g|| for any polynomial g, in
a quantitative sense to be explained later.

The first property implies that every ideal of the ring Z[z]/(f) defines a full-
rank lattice in Z™ and plays a fundamental role in our proofs.

Lemma 3. FEvery ideal I of Z[x]/(f), where f is a monic, irreducible integer
polynomial of degree n, is isomorphic to a full-rank lattice in Z™.

The second property affects the strength of our security proofs: the smaller the
ratio ||g||7/]1g]lo is, the harder to break our functions seems to be. We elaborate

2 Take, for example, the 2-dimensional lattice generated by the vectors (2, 0) and (0, 1)
(or in terms of polynomials, by 2z and 1). This lattice cannot be represented by an
ideal, because any ideal containing 1 must also contain the polynomial 1 -z, but the
vector (1,0) (corresponding to the polynomial =) does not belong to the lattice.
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on the second property by defining a quantitative parameter (the expansion
factor) that captures the relation between || - || and || - || .

3.1 The Expansion Factor

Notice that when we reduce a polynomial g modulo f, the maximum coefficient
of g can increase by quite a bit, and thus ||g||; could be a lot bigger than ||g||sc-
For example if f = 2™ — 22"~ !, then 22" = 2”12~ modulo f. On the other
hand, if f = 2™ —1, we can never have such an exponential growth of coefficients.
We capture this property of f by defining the expansion factor of f as

EF(f,k) =

= max
szt deaZ @eqts 9111/ 19110

The below theorem gives tight bounds for the expansion factor of certain
polynomials that have small expansion factors.

Theorem 1. (1)EF(z" '+ 2" 2+ ...+ 1,k) <2k. (2)EF(z" + 1,k) <k.

In the full version of this work, we also provide some general formulas that upper
bound the expansion factors of arbitrary polynomials.

4 Worst Case Problems

In this section we define the worst case problems and provide reductions among
them. Because of the correspondence between ideals and integer lattices, we can
use the successive minima notation used for lattices for ideals as well. So for any
ideal I of Z[z]/(f), where f is a monic integer polynomial, we’ll define A7 (I) to
be N (L(T)).

Definition 3. In the approzimate Shortest Polynomial Problem (SPPy(I)), we
are given an ideal I C Z[z]/{f) where f is a monic polynomial of degree n, and
we are asked to find a g € I such that g # 0 and ||g||; < v A (I).

As for the shortest vector problem, we can consider the restriction of SPP to
specific classes of ideals. We will write f-SPP for SPP restricted to ideals of
the ring Z[z]/(f). The f-SPP problem for any monic, irreducible f is the main
worst-case problem of this work, as it is the problem upon which the security of
our hash functions will be based. Since SPP is a new problem whose hardness
has not been explored, we show that other better-known problems can be reduced
to it. If we denote by Z(f) the set of lattices that are isomorphic (as additive
groups) to ideals of Z[z]/(f) where f is monic, then there’s a straightforward
reduction from Z(f)-SV P, to f-SPP, (and also the other way around).
Lattices in the class Z(z™ — 1) (cyclic lattices) do not fall into the category of
lattices that are isomorphic to ideals of Z[z]/{f) for an irreducible f (since ™ —1
is not irreducible). In the full version, we give a reduction from (2" — 1)-SPPa,
to (2" 1224+ 1)-SPP,, thus establishing the security of hash functions
based on the hardness of the shortest vector problem for cyclic lattices of prime
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dimension. Another problem that we reduce to SPP is the problem of finding
complex numbers with small conjugates in ideals of integers of certain number
fields. This problem and the reduction is described in detail in the full version.

Now we state a lemma which shows that if I is an ideal of Z[z]|/(f) where f
is monic and irreducible, then A>°(I) cannot be much bigger than A°(I).

Lemma 4. For all ideals I of Z[x]/{f) where f is a monic, irreducible polyno-
mial of degree n, we have \°(I) < EF(f,2)\°(I)

Proof. Let g be a polynomial in I of degree less than n such that ||g||ec = A*(1).
Then consider the polynomials g, gz, ...,gz" . By lemma 3, the polynomials
g, 9%, . ..,gx" ! are linearly independent. And since the maximum degree of any
of these polynomials is 2n — 2, [|gz'||; < EF(f,2)||92"|cc < EF(f,2)|lg]lcc =

EF(f,2)\°(I) forall 0 < i <n—1.

We now define the incremental version of SPP. In this version, we are not looking
for the shortest polynomial, but for a polynomial that is smaller than the one
given to us. We will be reducing this problem to the average-case problem.

Definition 4. In the approzimate Incremental Shortest Polynomial Problem
(IncSPP,(1,g)), we are given I and a g € I such that ||g||f > YA(I) and
are asked to return an h € I such that ||h||f # 0 and ||h||f < |lgl|f/2.

We define the restricted version of IncSPP in the same was as the restricted
version for SPP.

Lemma 5. There is a polynomial time reduction from f-SPP, to f-IncSPP,.

5 Collision Resistant Hash Function Families

In this section, we define families of hash functions which are instances of general-
ized compact knapsacks and prove that finding collisions in these hash functions
is at least as hard as solving the approximate shortest polynomial problem.

5.1 The Hash Function Families

The hash function family H(R, D, m) we will be considering in this paper will
be instances of generalized knapsacks instantiated as follows. Let f € Z[z] be an
irreducible, monic polynomial of degree n with expansion factor EF(f,3) < £.
Let the ring R be Zy[z]/{f) for some integer p, and let D = {g € R: ||g||f < d}
for some positive integer d. The family of functions H is mapping elements from
D™ to R where |D™| = (2d +1)"™ and |R| = p". So if m > "), then H will
be a family of functions that have collisions. We will only be interested in such
families. We will now state the main theorem:

Theorem 2. Let H be a hash function family as above with m > 1100ggzpd and

p > 2&dmn'Plogn. Then, for v = 8&2dmnlog® n, there is a polynomial time
reduction from f-SPP,(I) for any I to Coly(h) where by is chosen uniformly at
random from H.
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The proof of the theorem is given in the next subsection. To achieve the best
approximation factor for f-SPP,(I), we can set m = O(logn,logf) and d =
O(logn). This makes v = O(n)E2. For purposes of being able to compute the
function faster, though, it is useful to have m be smaller than O(logn). It is
possible to make m constant at the expense of being able to approximate f-
SPP only to a factor of v = O(n'*t9)£2. To be able to set m to a constant, we
can set d = n® for some 6 > 0. Then we can set m = 160{50;572 + 20 4 o(1).

In order to get the “tightest” reduction, we should pick an f such that the
bound £ on f’s expansion factor is small. In theorem 1, we show that we can set
£ to be 3 and 6 for polynomials of the form 2™ 4+ 1 and 2"~ ! + 2" 2+ ... +1
respectively. The polynomial ™ + 1 is irreducible whenever n is a power of 2 and
2" ! 42" 2 4+ ...+ 1 is irreducible for prime n, so those are good choices for
f. Among other possible f’s with constant bounds for EF(f,3) are polynomials
of the form 2" £z £1 (see [19, Chapter 2.3.2] for sufficient conditions for the
irreducibility of polynomials of this form).

Some sample instantiations of the hash function. If we let f = 2'26 4 .. +
z+1,n=126,d =8,m =8, and p ~ 223, then our hash function is mapping
log (|2d|™™) = 4032 bits to log |R,| = log (p™) =~ 2900 bits. If we want to base
our hardness assumption on lattices of higher dimension, we can instantiate
f=a?04+. .  +24+1,n=126,p~2%,d=8,m =8, and our hash function will
be mapping 8192 bits to log (p") ~ 6400 bits. If we instead let f = 226 + 1, we
can let p be half as small (because the expansion factor for ™ + 1 is half of the
expansion factor of 2™ + ...+ z + 1) and thus we will be mapping 8192 bits to
around 6150 bits.

5.2 Finding Collisions Is Hard

In this section, we will provide the proof of theorem 2. Let H be the family of
hash functions described in the last subsection with p > 2€dmn!-> logn. We will
show that if one can solve in polynomial time, with non-negligible probability,
the problem Coly(h) where b is chosen uniformly at random from H, then one
can also solve f-IncSPP,(I,g) for any ideal I for v = 8&%dmn log®n. And
since by lemma 5, f-SPP,(I) < f-IncSPP,(I,g), we will have a reduction
from f-SPP,(I) for any I to Coly(h) for a random h. Let C be an oracle such
that when given a uniformly random § € H, C(h) returns a solution to Coly(h)
with non-negligible probability in polynomial time. Now we proceed with giving
an algorithm for f-IncSPP, when given access to oracle C.

Given: I, g € I such that g # 0 and ||g||; > 8£2dmn log® nA(I)
Find: h € I, such that h # 0 and ||h||f < ||g]|f/2.

Without loss of generality, assume that g has degree less than n and thus
ll9llsc = |lglls. So we are looking for an h such that ||h||f < ||g]loc/2. In this
section, it will be helpful to think of ideals I and (g) as subgroups of Z™ (or
equivalently, as sublattices of Z"). Define a number s as
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S e EVallog M (1) 2 Vi(logmAT (1) (D)
for ¢ = (logn)~21°8" where the last inequality follows by lemma 2, and the
inequality before that is due to lemma 4. By lemma 1, it follows that if y € R
where y ~ ps/s", then A(y+1I,U(R"/I)) < (logn)~21°8" /2. (That is, y is in an
almost uniformly random coset of R™/I). By our definition of s, we have that
[l9]lcc = 8Edms+/nlogn. Now we will try to create an h € I which is smaller
than g using the procedure below. In the procedure, it may not be obvious how
each step is performed, and the reader is referred to lemma 6 for a detailed
explanation of each step.
(1) fori=1tom
(2) generate a uniformly random coset of I/{g) and let v; be a polynomial
in that coset
(3) generate y; € R™ such that y; has distribution p/s™ and consider y; as
a polynomial in R[z]
(4) let w; be the unique polynomial in R[z] of degree less than n with
coefficients in the range [0, p) such that p(v; + ;) = gw; in R™/(pg)

(5) a; = [w;] mod p (where [w;] means round each coefficient of w; to the
nearest integer)
(6) call oracle C(aq,...,an), and using its output, find polynomials z1, ..., zm

such that ||z||f <2d and Y za; = 0 in the ring Zy[z]/(f).
(7) output h = (Z (g(wi;[wi]) - yi) z,-) mod f.

To complete the proof, we will have to show five things: first, we have to prove
that the above procedure runs in polynomial time, which is done in lemma 6.
Then, in lemma 7, we show that in step (6) we are feeding the oracle C with
an h € H where the distribution of § is statistically close to uniform over H.
In lemma 8, we show that the resulting polynomial h is in the ideal I. We
then show that if C outputted a collision, then with non-negligible probability,
[|7]lf < |lglloo/2 and that h # 0. This is done in lemmas 9 and 10 respectively.
These five things prove that with non-negligible probability, we will obtain a
solution to IncSPP,. If we happen to fail, we repeat the procedure again. Since
each run of the procedure is independent, we will obtain a solution to IncSPP,
in polynomial time.

Lemma 6. The above procedure runs in polynomial time.

Proof. We will show that each step in the algorithm takes polynomial time. In
step (2), we need to generate a random element of I/{g). By lemma 3, the ideals
I and (g) can be thought of as Z-modules of dimension n. Since (g) C I, the
group I/(g) is finite, and we can efficiently generate a random element of 1/{g).
Step (4) of the algorithm will be justified in lemma 7. In step (5), we are just
rounding each coefficient of w; to the nearest integer and then reducing modulo
p. Now each a; can be thought of as an element of Z,[x]/(f), so in step (6)
we can feed (a1,...,a;) to the algorithm that solves Coly(ai,...,an). The
algorithm will return (a1,...,m), (B1,...,Bm) where «;,3; € Z[z]/(f) such
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that |aull s, [|Gillf < d and Y a;a; = > a;0; in the ring Z,[x]/(f). Thus if we
set z; = o — B, we will have ||z;]|; < 2d and Y #z;a; = 0 in the ring Z,[z]/(f).

Lemma 7. Consider the polynomials a; as elements in Zy. Then,
A((ar, - -y am), U(Zy"™)) < me/2.

Proof. We know that v; is in a uniformly random coset of I/(g) and let’s assume
for now that y; is in a uniformly random coset of R™/I. This means that v; + y;
is in a uniformly random coset of R™/(g) and thus the distribution of p(v; + y;)
is in a uniformly random coset of R™/(pg). A basis for the additive group (pg) is
Pg, pg, . . ., pgr™ L, thus every element of R™/{pg) has a unique representative of
the form agpg + a1pgx + ... + an_1pgr™~t = g(pag +parz + . .. + pay, 12" 1)
for a; € [0,1). So step (4) of the algorithm is justified, and since p(v; + y;)
is in a uniformly random coset of R™/(pg), the coefficients of the polynomial
w; = pag+parx+ ...+ pa, 12" are uniform over the interval [0, p), and thus
the coefficients of [w;] are uniform over the integers modulo p. The caveat is that
y; is not really in a uniformly random coset of R™ /T, but is very close to it. By our
choice of s, we have that A(ps/s"+1,U(R™/I)) < ¢/2, and since q; is a function
of y;, by a property of statistical distance, we have that A(a;, U(Zy)) < €/2. And
since all the a;’s are independent, we get that A((a1, ..., an), U(Zy*™)) < me/2.

Due to space constraints, the proofs of the below lemmas are omitted, and we
refer the interested reader to the full version of this work.

Lemma 8. h € [.
Lemma 9. With probability negligibly different from 1, ||h||; < ”g|2|°°.
Lemma 10. Pr[h =0|(a1,...,am), (21,...,2m)] = 2(1).

6 Conclusions and Open Problems

We gave constructions of efficient collision-resistant hash functions that can be
proven secure based on the conjectured worst-case hardness of the shortest vec-
tor problem for ideal lattices, i.e., lattices that can be represented as ideals of
Z[z]/{f) for some monic, irreducible polynomial f. Moreover, our results can be
extended to certain polynomials f that are not irreducible, e.g., the polynomial
f =a™ — 1 corresponding to the class of cyclic lattices.

The central question raised by our work is the hardness of Z(f)-SV P, or
equivalently, the hardness of f-SPP for different f’s. It is known that SV P is
hard in the general case, and it was conjectured in [14] that Z(2™ — 1)-SV P is
hard as well. We show worst-case to average-case reductions that work for many
other f’s, so, in essence, we are giving more “targets” that can be proved hard.

Almost nothing is currently known about the complexity of problems for ideal
lattices. We hope that our constructions of efficient collision-resistant hash func-
tions based on the worst-case hardness of these problems provides motivation
for their further study.
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Abstract. The HFE cryptosystem was the subject of several cryptana-
lytic studies, sometimes successful, but always heuristic. To contrast with
this trend, this work goes back to the beginnning and achieves in a prov-
able way a first step of cryptanalysis which consists in distinguishing HFE
public keys from random systems of quadratic equations. We provide two
distinguishers: the first one has polynomial complexity and subexponen-
tial advantage; the second has subexponential complexity and advantage
close to one. These distinguishers are built on the differential method-
ology introduced at Eurocrypt’05 by Fouque & al. Their rigorous study
makes extensive use of combinatorics in binary vector spaces. This com-
binatorial approach is novel in the context of multivariate schemes. We
believe that the alliance of both techniques provides a powerful frame-
work for the mathematical analysis of multivariate schemes.

Keywords: Multivariate cryptography, HFE, differential cryptanalysis.

1 Introduction

While quantum computers, if they are ever built, would threaten most popu-
lar public-key cryptosystems such as RSA [17], alternative families of systems
are currently designed and evaluated. One such family is based on multivariate
quadratic polynomials on finite fields, and demonstrated very fruitful. Initiated in
the early 80’s by Matsumoto-Imai and Fell-Diffie [19] [5], multivariate cryptogra-
phy received interest after the work of Shamir [3] and Patarin [10, 11]. Since then,
about four basic trapdoors along with a large number of non-exclusive additional
modifications have been invented [4]. These modifications, called variations, are
designed to prevent structural attacks against the trapdoor.

HFE, probably the most promising of these cryptosystems, was proposed by
Patarin [11] as a repair of the broken Matsumoto-Imai cryptosystem [20]. A little
later, Kipnis and Shamir found a structural attack reducing the recovery of the
private key to a MinRank problem [1]. Unfortunately, no known method to solve
MinRank problems is practical for usual parameter sizes; still, the attack reveals
weaknesses in the hiding of the trapdoor. Next, Courtois discovered that the
multivariate quadratic equations coming from an HFE public key satisfy many

* This work is supported in part by the French government through X-Crypt, in part
by the European Commission through ECRYPT.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 156-167, 2006.
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low degree polynomial implicit equations [15]. Finally, Faugére and Joux demon-
strated experimentally that systems of multivariate quadratic equations coming
from HFE keys have good elimination properties that allow much easier Grob-
ner bases computations [6] — they broke the basic HFE for the first suggested
parameters. Nevertheless, the attack did not extend to some major variations,
requires a huge workload both in time and memory for the suggested parameter
sizes and its complexity is unclear. Also all mentioned cryptanalytic approaches
are heuristic and none provides a provable distinguisher.

Recently, Fouque-Granboulan-Stern proposed a new technique of analysis for
multivariate schemes [16]. The method consists in studying the rank of the dif-
ferential of the public key in order to extract information about the internal
structure. The differential methodology already proved useful by providing an
enhanced cryptanalysis of the Matsumoto-Imai cryptosystem and by breaking
its Internal Perturbation variation [16] proposed by Ding [7].

Our Results. In this paper, we present a further application of the differ-
ential approach. It provides a provable distinguisher of HFE public keys, with
polynomial complexity and subexponential advantage. This distinguisher can be
improved into an algorithm with subexponential complexity and proven advan-
tage close to one. This is the first cryptanalytic insight into the internal structure
of HFE which is both entirely proven and practical for standard parameters. Our
study requires combinatorics in finite fields of characteristic 2, which we believe
to provide a new powerful approach for the analysis of multivariate schemes.

Organization of the Paper. In Section 2 of this paper, we recall the basic
mathematical setting of multivariate cryptography and set up some combinato-
rial results related to the distribution of ranks of linear maps. In Section 3, we
recall the definitions of HFE and its differential, and using the previous combi-
natorial tools, we show how the HFE internal structure can be detected from a
public key with a precisely estimated complexity. A few proofs are sketched in
this paper; they appear in details in the appendices of the full paper.

2 Mathematical Setting

2.1 Univariate-Multivariate Correspondence

Finite Fields. [13] We note F} the n-dimensional vector space over Fa. All
fields with 2™ elements are isomorphic, and can be considered as instantiations
of the same entity, called the degree n extension field of Fy, denoted Fan. Fan is
an Fa-vector space of dimension n and every choice of a basis of Fan defines a
linear isomorphism from Fan to F%. Besides, the non-zero elements of Fan form
a multiplicative group of size 2 — 1 and every element a of Fon satisfies a®” = a.
Last, Fy» has characteristic 2, that is for all x of Fon, z + 2 = 0.

F2-Linear and Fz-Quadratic Polynomials over Fan. Characteristic 2 im-
plies that for any a,b in Fon and any integer 4, (a + b)?> = a® + b*. As a
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consequence, for any integer i, the polynomial X?' defines an Fo-linear map
from Fan to Fon. Besides, since for all @ in Fan, a®” = a, polynomials X2' and
X2"" define the same function. Thus, we can focus on monomials X2 for i
restricted to [0,n — 1]. Next, linear combinations over Fan of these monomials
again define Fay-linear maps from Fo» to Fon and we define the set

n—1
L= {Z a;iX?'; a; € Fon, Vi € [0,n — 1]}
1=0

that we call the Fy-linear polynomials over Fan. The same way, it is easy to
check that linear combinations over F2» of monomials in two variables of the
form X2'Y? for i,j in [0,n — 1] define Fa-bilinear maps from Fan X Fon to Fan.
Taking Y = X defines a subset of Fan [X]

n—1
Q= Z aij X* ¥ a;; € Fon Vi, j € [0,n —1],0 < j
i,j=0:i<j

that we call the Fy-quadratic polynomials over Fan.

Univariate-Multivariate Correspondence. Any function from Far to Fon
is the evaluation of a polynomial over Fa», and this polynomial is unique in
the quotient ring Fan [X]/(X?" — X). This allows to identify any function from
Fyn to Fan to a univariate polynomial in Fan[X]/(X?" — X). The same way, a
function from FY to FZ is defined by n coordinate-functions, which are boolean
functions in n variables. Each coordinate-function is the evaluation of a polyno-
mial in Fa[z1, ..., 2,], which is unique in the quotient-ring Fa[z1, ..., 2,]/{z? —
T1,...,22—xy,}. This allows to define any function from F} to F} by its multivari-
ate representation in (Fa[x1, ..., 2,]/{2? —21,...,22 —x,})". Further, these two
sets are isomorphic, by an extension of the isomorphism between Fa» and F5. In
particular the set of linear maps from % to %, denoted L£,,, is in bijection with L.
Also, the set of quadratic maps from Fy to F5, denoted Q,,, is in bijection with Q.

2.2 Combinatorics in F}

Linearly Independent Sequences and Subspaces of F7. We denote by
S(n,d) the number of linearly independent sequences of length d of vectors of

7 it is easily seen that S(n,d) = HZL:_Ol(Q" — 2%). Each such sequence gener-
ates a subspace of dimension d which is also generated by S(d, d) other linearly
independent sequences of length d. Therefore the number E(n,d) of subspaces
of dimension d in FY is S(n,d)/S(d, d). Defining A(n) =[]/, (1 — ), we have

S(”v d) = )\(i\l(n)d) 2nd and E(n’ d) = )\(n )\(Z'))A(d) 2d(n—d)

S(n,d) is similar to the number of permutations of size d over n elements, and
E(n,d) is similar to the number of combinations of size d over n elements. These
quantities sparsely appear in the literature [9, 2, 18, 12], however we could not find
any enumerative results dealing with algebraic aspects of binary vector spaces.



An Efficient Provable Distinguisher for HFE 159

Number of Linear Maps of a Given Rank. We consider a fixed integer
r in [0,n] and we enumerate the number of linear maps of rank r. Let K be
the kernel of a map of rank r, and let B a basis of a complement of . Any
linear map of kernel K is uniquely defined by the image of B, which is a linearly
independent sequence of length r. Therefore, the number of linear maps with
kernel K is S(n,r). This depends only on the dimension n — r of IC, and there
are F(n,n — r) such subspaces. Finally, the number of linear maps of rank r is

A(n)?

2r(n7r) gnr
A(n —7)2A(r)

E(n,n—r)S(n,r) =

Dividing by on’ provides the proportion of linear maps of rank r. The collec-
tion of these proportions for all ranks defines the distribution of ranks of linear
maps.

Distribution of Ranks of Fp-Linear Polynomials of Constrained
Degree. We close this section by explaining how to compute the distribution of
ranks of a random Fs-linear polynomial of a given degree. While only the easy
part of our results will be used in the sequel, it gives an other application of
the combinatorial approach, which will later show interesting in the context of
HFE.

An Fa-linear polynomial P has as many roots as the number of elements in its
kernel. Hence, if r is the rank of the Fa-linear polynomial P considered as a linear
map, it is easily seen that P has 2"~" roots. Fixing an integer D in [0,n — 1],
we denote £ the subset of Fo-linear polynomials of degree 2°. A polynomial
of degree 2P has at most 2P roots, or is the zero polynomial. Then, the rank of
a non-zero Fy-linear polynomial P in £P is at least n — D. The distribution of
ranks of Fa-linear polynomials of degree 2P is given by the following theorem.
Although, the theorem does not provide a closed form for these numbers, it
allows to compute them for any choice of the parameters.

Theorem 1. Let D an integer in the interval [0,n — 1]. A non-zero Fy-linear
polynomial of degree 2P has rank at least n—D. The proportions pp(0),. .., pp(D)
of elements of LP of ranks respectively n, . .., n—D satisfy the following invertible
triangular system

de[0,D], E(n,d)2 "= Z E(m,d)pp(n —d)

m=d

Sketch of proof. The number of Fo-linear polynomials of degree 27 is (2" —1)2"P.
Given a subspace of dimension d with d in [0, D], the vanishing of an Fy-linear
polynomial of degree 2 results in d linear constraints over its D + 1 coefficients.
Tt implies that for each subspace of dimension d, there are exactly (2" — 1)2"(D —d)
Fy-linear polynomials which vanish on it. In the product E(n,d)(2" —1)2"P~9),
the Fo-linear polynomials whose kernel has dimension m with m > d are counted
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E(m,d) times. Therefore, the proportions pp(n — d) of Fa-linear polynomials of
degree 2P which have rank n — d satisfy the above invertible triangular system.

3 Distinguishers for HFE

The distinguishers that we provide are built on the observation of the previous
section: a Fa-linear polynomial of degree at most 2 has large rank at least n— D,
while there is a very small albeit non-zero probability that a random linear map
of any rank appears. Applying this observation to the differential yields a distin-
guisher. Even if the idea appears straightforward, the technicalities required to
turn it into a precise mathematical proof and to estimate the advantage of the
distinguisher are non-trivial and require the previously introduced combinator-
ial framework. This is especially true of the enhanced distinguisher, where the
advantage is made close to one by iteration: the difficulty here is that we have to
play with non pairwise independent random variables, whose precise relationship
can only be understood through this combinatorial framework.

3.1 Description of HFE

At the basis of multivariate cryptography is the problem of solving a set of
multivariate polynomial equations over a finite field. This problem is proven NP-
hard [14] and considered very hard in practice for systems of equations at least
quadratic with about the same number of equations and unknowns. For such
systems, the best algorithms use Grobner bases theory, have at least exponential
complexity, and are impractical for even a few unknowns (or equations).

Informally, the general construction of multivariate cryptosystems consists in
hiding an easily solvable multivariate quadratic system into a random-looking
system by a secret transformation. More precisely, one considers a quadratic map
P from F73 to F% defined by n polynomials of degree 2 in n unknowns of a specific
form, which allows to easily solve the system P(x1,...,2,) = (a1,...,ay,) for any
element (ai,...,a,) of Fy. Then, one chooses two invertible affine maps S, T
from F5 to F%, each defined by n multivariate equations of degree 1. Clearly,
the composition T' o P o S is again a multivariate quadratic map P’ of FY,
and any related system P’(z1,...,z,) = (a1,...,a,) where (a1,...,a,) is an
element of F3 is impractical to solve by the dedicated algorithms for a prescribed
parameter n. To create an asymmetric cryptosystem, the user randomly picks P
of the specific form and two invertible affine maps S, T, and keeps them secret.
Then, he publishes P =T o P o S. A message a encrypted into b = P’(a) can
only be decrypted by the legitimate user since the multivariate quadratic system
P’ (x1,...,2,m) = b can only be solved by inverting the secret process.

HFE is a way to generate easily solvable multivariate quadratic systems. As
seen in Section 2.1, the set of quadratic maps, called Q,,, is isomorphic to a
specific subset of the univariate polynomials over Far, namely Q. It implies that
solving a given multivariate quadratic system is equivalent to finding the roots of
the related univariate polynomial. In HFE, the latter is made easy by generating
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quadratic systems from low degree univariate polynomials of Q. Parameters for
the first challenge of HFE are n = 80 and degree 96.

3.2 Differential Analysis of Multivariate Quadratic Maps

The Differentials of a Multivariate Quadratic Map. Given a quadratic
map P, its differential at a point a of FY is the linear map defined by

DPFy(z) = P(a + ) + P(x) + P(a) + P(0)

It vanishes at a. If P is seen as a polynomial, D P, is an Fy-linear polynomial.

For any element a, the rank of DP, can be evaluated. We call distribution
of ranks of the differentials of P the collection for all rank r in [0,n] of the
proportions of elements a at which the rank of D P, is r. The distribution of
ranks of the differentials is a major element of analysis of multivariate schemes
because it is invariant in the hiding process. Indeed, for P a quadratic map,
S, T two affine bijections of linear parts respectively S, T (bijective), and P’
the quadratic map T o P o S, then it can be checked that for any point a

DPc: :TODPS(G)OS

Consequently, the internal function P and the public key P’ have the same
distribution of ranks of the differentials. Hence, whenever the distribution of
ranks of the differentials of P has some property, it can be seen from P’.

Distribution of Ranks of the Differentials of a Random Quadratic
Map. We consider a random quadratic map P of Fy and we are interested in
the rank r, of its differential DP, at a.

Theorem 2. Given a non-zero element a of Fy, and a random quadratic map
P, the rank of DP, follows the distribution of ranks of linear maps vanishing
at a. Therefore, for any t in [1,n] the probability that DP, has rank n —t is
@271 where oy is a constant in the interval [0.16,3.58].

Proof. Let a = (a1, ...,a,) a non-zero element of F} and L a linear map that
cancels at a: Z?:l l;a; = 0 (Note that I; € F§ and a; € F3). A quadratic map
P(z1,...,m0) = Y01, D5 ;1 Pijwix; has for differential at a

i—1
DP,(w1,...,%0) = 30, (22:1 Pjit; + 25 i pijaj) x;
Therefore, D P, = L is equivalent to
31 0 pi2piz-. . Pn| |1
P12 0 P23 ...p2m

— | P13 p23 O P3n

I, Pin P2n P3n --- 0O Gnp
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Up to a reordering of coordinates, one can assume a,, # 0. Then any choice of
coefficients p;; for i < j < n can be completed in a quadratic map such that
DP, = L. Indeed, we define for all 7 in [1,n — 1]

i—1 —1
Pin =i+ 302 pjiaj + 35700 Pijay

and we can check that the last row equation Z?:_ll Pina; =1, is satisfied, using
the vanishing at a of both L and D P,. Hence the number of P in Q,, such that
DP, = L is independent of @ and L, and the first point of the theorem follows.

Next, for any ¢ in [1,n], a linear map of rank n — ¢t which vanishes at a is
a map whose kernel has dimension ¢ and contains a. Since the number of such
subspaces is E(n—1,t— 1), the number of linear maps of rank n — ¢ vanishing at
ais E(n—1,t—1)S(n,n—t). Finally the overall number of linear maps vanishing
at a is 2("~Y_ Among them, those of rank n — ¢ are in proportion

A(n)A(n —1)
AOAE — 1A (n — 1)

Since the sequence A decreases towards a value over 0.28 [18], oy lies in [0.16,
3.58].

t(t—1)

Prres,.p(a=o 7k L = (n—t)] = a;2" with o =

3.3 A Fast Distinguisher for HFE

A Specific Property of HFE. We denote P the hidden internal function in
HFE and we let D = [log, deg(P)| where deg(P) is the degree of P considered as
a polynomial over Fan. For any element a of Fy, D P, is an Fo-linear polynomial
of degree at most 2”. Unless it is the zero function, its rank is at least n — D.
In contrast, we saw in the previous paragraph that the differential of a random
quadratic system has rank n — D — 1 with probability of the order of 2~ P(P+1)

A Fast Distinguisher for HFE. For any parameter D in [0, n], we define the
algorithm Tp which takes as input a quadratic map P and a non-zero point
a, computes the differential of P at a and evaluates its rank, finally answers 1
when this rank is n — D — 1 and 0 otherwise. The running time of this algorithm
is polynomial, more precisely it is O(n?).

Using algorithm T, we can devise a distinguisher for any non-zero arbitrary
value a, defined the following way

INPUT: a quadratic function P which is
- either a HFE function of degree < 2P (probability 1/2)
- or a random quadratic function (probability 1/2)

DO: compute T (P, a)
if Tp(P,a) =1 output random, else output HFE

The distinguisher always answers HFE on HFE functions, but it may answer HFE
on a random quadratic map which is not HFE. Following Theorem 2, the dis-
tinguisher answers random on a random quadratic maps with a probability of



An Efficient Provable Distinguisher for HFE 163

the order of 2=P(P+1)_ This probability is the advantage of the distinguisher and
does not depend on a. Since 2P is polynomial in the security parameter to allow
decryption of the HFE cryptosystem, 2°(P+1 is subexponential. Hence, any non-
zero element of 'y yields a distinguisher for HFE with proven subexponential
advantage, or more accurately with advantage the inverse of a subexponential
function. A test answering 1 when the rank is < n— D —1 is a little more efficient
but its study is more complicated without changing the order of complexity.

3.4 Enhanced Distinguisher

For any parameter D in [0,n] and a fixed integer N, we define the algorithm
Th which takes as input a quadratic map P and N distinct non-zero points
ai,...,ay of F§, computes the values of Tp(P, a;) for all 4, finally answers 1 if
Tp(P,a;) =1 was found for at least one a;, and 0 otherwise. The running time
of this algorithm is O(Nn?).

The intention behind this algorithm is simple ; it aims at increasing the proba-
bility to detect a non-HFE quadratic map by testing for multiple points, yielding
a distinguisher with improved advantage. Using algorithm 7%, we can devise as
before such an improved distinguisher from any arbitrary distinct non-zero values
ai,...,an.

Let fix N such points a1, ...,ay and define the random variable

N
SR(P) = Tn(P.a))

over the set Q, of quadratic maps. All Tp(P,a;) are {0,1} valued random
variables over Q,, and the advantage of the distinguisher is

Prpco, [SN(P) > 1]

From Theorem 2, we deduce that all Tp(P,a;) have the same law, of mean
value pp ~ 2-P(P+D_ Hence, we could easily determine the advantage of the
distinguisher, if the random variables T (P, a;) were independent; unfortunately
these random variables are even not pairwise independent. In the sequel, we
give more details about this fact and show that this difficulty can be overcome:
using our combinatorial framework, the standard deviation of S can be actually
computed. Next, using Chebychev inequality, we prove that for N = 2P(P+2),
the advantage of the distinguisher is close to one.

Mean Value and Standard Deviation of Sf]

Theorem 3. The mean value and the standard deviation of SY satisfy respec-
tively
Ag = N,uD
{(01’3)2 = Nup — Nup(1 +ep) + epN?uf,

where ep is lower than 22P+2/(2" — 1) and up is of the order of 2~ PP+1),
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Proof. For the reader’s convenience, we omit the D superscripts and write X; in
place of Tp (P, a;).
The mean value comes from linearity. The standard deviation satisfies

(on)? =Epeco, [(Sn)*] — (An)?

where Epcg, denotes the expectation. Further, since the X; are {0,1} valued
and the expectation is linear,

N
Epeo,[(Sn)*] = An + ZZEPGQ" (X X;]
i=1 j#i

where for each pair i # j,
Epco,[XiX;| =Prpeco,[rkDPy; =n—D —1,rkDPs; =n—D —1] (1)

As already mentioned, random variables X; and X; are not independent, for
any pair ¢ # j. Indeed, the differentials of P at a; and a; satisfy D Py, (a;) =
DP,,(a;). Therefore, the vanishing (or not) of DP,, at a; is correlated to the
vanishing (or not) of DP,; at a;. It follows that the ranks of DP,; and D P, are
not independent. Fortunately, the distribution of ranks of pairs (DPg,, DPy))
can be fully understood: defining the set D(a, b) of pairs of linear maps (L, L’)
such that L(a) = 0, L’(b) = 0, L(b) = L’(a), we can prove the following lemma
whose proof is very similar to that of Theorem 2.

Lemma 1. Given two distinct non-zero elements a and b of %, and a random
quadratic map P, the rank of the pair (DP,, DPy) follows the distribution of
ranks of pairs of linear maps in D(a,b).

Lemma 1 implies that

Pr rkDP,, =n—D—1 Py rkL=n—-D-1
PeQu |k, DP,,=n—-D-1 (L.LY)eD(aia;) | pp [/ =n— D —1
(2)
It remains to compute the probability on the right hand-side of the above. This
probability is part of the distribution of ranks of pairs of linear maps in D(a,b),
which can be computed by the same combinatorial methods.

As a preliminary, let Ni(r) denote the number of linear maps of rank r van-
ishing on a prescribed subspace of dimension k. The values Ny (r) for all r were
computed in the proof of the Theorem 2. In the following, we will need in addition
the values Na(r) for all r; which can be computed the same way. This computa-
tion is systematic and can be done at no cost for a general k : for r in [0,n — k],
the number of subspaces of dimension n — r containing the prescribed subspace
is E(n — k,n —k —r), and the number of linear maps of rank r having one of
these subspaces as kernel is S(n, r). Therefore Ni(r) = E(n—k,n—k—7)S(n,r)
for r in [0,n — k], and 0 otherwise.

The distribution of ranks of pairs of linear maps in D(a,b) is given by the
following lemma.
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Lemma 2. Given two non-zero distinct points a,b in Fy, and for any integers
r and s in [0,n — 1], the proportion of pairs (L,L’) of linear maps in D(a,b)
which have rank (r,s) is

o) % (Ng(r)Nz(s) ot () = Na(r) (Wi s) Ng(S)))

Proof. A pair (L, L") in D(a, b) must satisfy L(a) =0, L’(b) = 0, L(b) = L (a),
which are three independent linear constraints over the 2n coefficients in FJ
defining L and L’. Consequently D(a,b) has 2"(>"=3) elements.

We define V,, as the set of linear maps which vanish at a and V43 as the
set of linear maps which vanish on the subspace generated by a and b. Some
fraction of functions L € V, also vanish at b, and when it happens, the functions
L’ such that (L, L’) € D(a,b) are those in V|4 3. Conversely, for each function
L € Vo \ Vigp), functions L’ such that (L, L’) € D(a,b) are those in V3 \ Vigp)
with L’(a) = L(b) ; these functions represent a fraction 1/(2™—1) of all functions
in V \ Vjq,p) since L(b) is one of the 2" — 1 equally possible non-zero values for
L'(a). O
Applying Lemma 2 with »r = s = (n— D —1) provides the probability of equation
(2). Using the relation

2n—1 -1

Nl(’I’L—D—l): 2D71

NQ(’I’L—D—l)

this probability is

Ni(n—D—1)? 2D —1\* 1 2D _1\?
i(n ¥ + 1- (3)
on(2n—3) on—1 _ 1 n 1 on—1 _ ]
Besides, the proportion of linear maps of rank n — D — 1 vanishing at a, denoted

pp, is Ni(n— D —1)/2""=1_ Therefore, the factor in (3) equals 22" and after
a few steps, we get for the above probability

2
. 1 [27(2P —1)
uh (1+ep) with D=, 4 ( on—1_ 1 -1

As a remark, since the proportion of pairs of linear maps in V, x V4 of rank
(n—D—1,n—D—1)is p2,, ep is a correcting term which measures the distance
between the distribution of ranks in D(a,b) and in V, x V4 at the pair of ranks
(n—D—1,n—D —1). From

2
1 D+1 2P —1
eD—2"_1<2 —l-2(1-

we see that the correcting term ep is less than 22(P+1) /(27 — 1),
We can now come back to equation (1)

Epeco, [XiX;] = uh (1 +¢p)
to finally obtain
(on)? = Npp — Npuh(1+ep) + epN2pi
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Lower Bound on the Advantage. Using Chebychev inequality, we can upper-
bound Prpcg[SK(P) = 0]. Indeed, for all ¢ in the interval (0, AR /o]

1
Prpeg[Sy(P) = 0] < Prpeo[|Sy(P) — AN| > toy] < 2

We take t = AR /ol ; then

1 (oR)? 1 1 1
2= (AD)2 T Nup N( +ep)+ep Nip +ep
Now let fix Nup = 2%, for some integer a. Then

11
25 g0 TP

and the advantage is

1
PrpealSH(P) 2 1= 1 - ProcalSR(P) = 0> 1 ), —c»
For instance, for N = 2P /pup, our distinguisher has running time O(2P(P+2)p3)
and advantage at least of the order of

1 4

1= 9D = 9n—2D

For N = 2P /up, the complexity becomes O(2P2P+1n3) and the advantage is
made at least 1 — 2-0° — 4.2-(n=2D),

4 Conclusion

In this paper, we provide two distinguishers of HFE public keys: the first one has
polynomial complexity and subexponential advantage; the second has subexpo-
nential complexity and advantage close to one. Though the cryptanalytic impact
is smaller than the work of Faugere and Joux [6], our work is the first which
shows without heuristics how the internal structure of HFE yields some partic-
ularities. It aims in particular at initiating a process of mathematical analysis of
multivariate primitives, enlightened by the precedent heuristic approachs. The
methodology used in this paper is new and widely applicable in the context of
multivariate schemes. It should provide a solid framework of analysis for the
numerous variations, which mostly escape all previous heuristic approachs. In
particular, it is well suited to analyze the Internal Perturbation of HFE [21]
suggested by Ding [8].

This study used differential properties of quadratic maps over an Fs-extension
Fan, and combinatorics in Fa-linear spaces. We showed that HFE public keys
have very specific differential properties. This raises an interesting open problem:
is the set of public keys such that all differentials have rank at least n — D larger
than the set of public keys affinely equivalent to an Fs-linear polynomial of
degree at most 2P 7 Another open problem is the existence of a polynomial time
distinguisher for HFE public keys.
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Abstract. We prove a new upper bound on the advantage of any ad-
versary for distinguishing the encrypted CBC-MAC (EMAC) based on
random permutations from a random function. Our proof uses techniques
recently introduced in [BPRO5], which again were inspired by [DGH™04].

The bound we prove is tight — in the sense that it matches the
advantage of known attacks up to a constant factor — for a wide range
of the parameters: let n denote the block-size, ¢ the number of queries
the adversary is allowed to make and ¢ an upper bound on the length
(i.e. number of blocks) of the messages, then for £ < 2"/% and ¢ > £2 the
advantage is in the order of ¢?/2™ (and in particular independent of £).
This improves on the previous bound of ¢%¢€ (/10129 /o from [BPRO5]
and matches the trivial attack (which thus is basically optimal) where
one simply asks random queries until a collision is found.

1 Introduction

Cipher Block Chaining (CBC) is a popular mode of operation for block ciphers
which is used (in some variations) for encryption and message authentication,
i.e. as a Message Authentication Code (MAC).

SoME DEFINITIONS. The CBC function with key 7 : {0,1}" — {0,1}", denoted
CBC,, takes as input a message (whose length must be a multiple of n) M =
M-+ M, € ({0,1}")™ and outputs Cy, which is inductively computed as

CBC,(M) = C,, where Cp = 0" and C; = n(Ci—1 @ M;) for i =1,...,m

The ECBC function (E for encrypted) is derived from the CBC function by
additionally encrypting the output with an independent permutation®

ECBCy, 7y (M) = 7mo(CBC,r, (M)

CBC BASED MACs. The CBC and ECBC function, with the n’s instantiated
by a block-cipher, are popular MACs called CBC-MAC and EMAC respectively.

As for the CBC-MAC, two parties sharing a secret key K € K for a block-
cipher £ : K x {0,1}™ — {0,1}"™ can authenticate their communication by

* Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT.
! The ECBC function must not be confused with the ECBC-MAC from [BROO].

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 168-179, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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sending, together with their message M, the authentication tag CBCgx,.\(M).
ON THE SECURITY OF CBC BASED MACs. The CBC-MAC as just described
is well known to be completely insecure in general,? but has been proven secure
(under the assumption that the underlying block-cipher is a secure pseudoran-
dom permutation) under the restriction that all messages have the same length
in [BKROO], which then has been relaxed to the condition that no message is the
prefix of another [PR00]. This means that the CBC-MAC can be safely used for
messages of different length, if some prefix free encoding is applied.

The EMAC is a popular variant of the CBC-MAC which was developed by the
RACE project [BP95], unlike the “plain” CBC-MAC it is secure without any
restriction on the message space [PR00]. The EMAC, along with the UMAC,
TTMAC and HMAC, is one of the message authentication codes recommended
by NESSIE [NES].

THE MODEL. As nowadays usual, we analyse the security of the construction we
are interested in (which is ECBC, r,) in a setting where the underlying primitive
(here 1, mg) are realized by their ideal functionality (here uniformly random
permutations), thus separating the analysis of the security of the construction
from the security of the underlying primitive.? More precisely, we prove an upper
bound on Advecgc(g,n,£), by which we denote probability of any adversary
making ¢ queries of length at most ¢ blocks, in (existentially) forging ECBCy, r,.

Following [BR00, BPR05], we view the EMAC as a Carter-Wegman MAC
[CWT79]. This reduces the task of bounding Advecgc(g,n,f) to the task of
bounding the probability that there is a collision amongst the CBC-MACs of
g messages of length at most ¢ blocks, we denote this probability by CPy ,, ¢
(see (5)). In practice one would instantiate the 7;’s by a block-cipher (and not
with uniform random permutations). If this block-cipher is secure in the sense
of being a good pseudorandom permutation, then the security of the EMAC is
basically CP, ,, ¢, thus proving a good bound on this probability translates into
improved security guarantees for the EMAC.

KNOWN LOWER BOUNDS. There is a trivial lower bound CP,,,, € £2(¢*/2")
for any ¢,n and ¢ > 1 as by the birthday bound we can find a collision with
probability £2(¢?/2") for any input shrinking function by asking random queries.*

def

For ¢ = 2 [BPRO5] show a lower bound of CPs ,, , € £2(d(¢)/2"™) where d(£) =

mazi<e |[{z;1 < x <27, z|t}| denotes the maximum number of divisors between
def

1 and 2™ of any number < ¢. It is known (Theorem 317 in [HW80]) that D(¢) =
maxi<g |{x; 2|t} € £20/MmIn8) 5o the same bound applies for d(¢) if £ < 2" as
then d(¢) = D(¥).

2 In particular, it is not existentially unforgeable as shown by the following simple
attack: for any X € {0,1}", request the MAC C = CBC»(X) = n(X), and output
a message X || X @ C with tag C. This is a successful forgery as CBC(X|| X & C) =
r(r(X)eXeC)=7(X)=C.

3 See e.g. [Mau02] for more detailed discussion of this concept.

* For £ =1 we have CP, ¢ = 0 as a permutation does not have collisions.
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Upper Bound, Range Other
Where O(.) of restriction restrictions
[PROO] g /2" - -
[BPRO5]  d(£)¢*/2" e o2 -
[DGH™04] /2" e 0(2"3) Equal length messages
Here q/2" Le0@2"®),q e Q3 -
Lower Bound,
Where £02(.) of
Folklore (birthday bound) q>/2"
[BPRO5] d(l)q/2"

Fig. 1. Upper and lower bounds for CP, ¢ (which then imply basically the same
bounds for Advecgc(g,n,¥))

KNowN UPPER BOUNDS. Until now the best known upper bound was a CP,, 4 ¢
€ O(d(£)q*/2™) (for £ < 2™/*) due to Bellare et al. [BPRO5], this bound improved
on the O(¢?q?/2™) bound of Petrank and Rackoff [PRO0]).

TIGHT BOUND FOR EQUAL LENGTH. Dodis et al. [DGHT04] investigated a
restricted case where the messages have same length (which is uninteresting for
the EMAC construction, but this was not their goal), they state a tight collision
probability of CPs,, € O(¢?/2") (for ¢ < 27/3) for the CBC-MAC of two
messages, which immediately gives an optimal CP,,, € ©(¢*/2") bound for
the collision probability of ¢ equal length messages.

OuR CONTRIBUTION. In this paper we prove the optimal bound CPy,, €
O(q?/2") for ¢ > % and ¢ < 27/8_So for this range the security of ECBC (and
thus the EMAC) matches the security of an ideal MAC (i.e. the birthday bound)
up to constant factors.

THE TECHNIQUE FROM [BPRO5]. Both, the “classical” O(¢?¢2/2™) [PR00] and
the O(d(¢)q?/2") upper bound [BPRO05] are achieved by first proving an upper
bound on CP5, ¢, the collision probability of two messages, and then applying
the union bound
q(g—1)
2

CPyne < - CP2n (1)
to get a bound for CPy . In particular [BPRO5] prove that
CPy,, ¢ < 2d(0)/2" 4 640*/2°™. (2)
This bound is tight up to the higher order term and a factor 2:
CPsy, ¢ > d(l)/2" (3)

The proof of (2) uses ideas from [DGH*04, Dod05] and goes roughly as follows:
For any two messages My, My and a permutation m one maps the computation
of CBC;(M;) and CBC,(Mz) to a graph (called structure graph) consisting of
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two paths associated with the message M; and Ms respectively. In this graph
the vertices correspond to the outputs of © during this computation.

Each such graph contains zero or more accidents, by which one denotes the
“unexpected” collisions in the graph. The main technical lemma (Lemma 2 in
this paper) now states that the probability (over the choice of 7) that some
particular structure graph G will appear is exponentially small in the number
of accidents of G. From this lemma one gets that the probability that a random
structure graph has at least one accident is in O(¢£2/2"). We can now use that
CBC,(M;) = CBC,(My) implies that there must be at least one accident to get a
O(¢£?/2™) upper bound on CPs , ¢, and further with (1) the “classical” CP,, ¢ €
O(q?¢%/2™) bound. But this bound is not tight as having an accident is only
necessary, but not sufficient to have CBC, (M;) = CBC,(Mz). By more carefully
upper bounding the number of graphs for which CBC,(M;) = CBC,(Mz) by
O(d(€)/2"+£*/22™) one gets the (2) bound. Here the O(d(¢)/2") term bounds the
graphs which have ezactly one accident and CBC;(M;) = CBC,(Mz), whereas
all graphs with two or more accidents are “generously” bounded by the “higher
order” term O(¢*/2%"), whech will be dominated by the leading d(¢)/2" while ¢
is not too large, £ € O(2"/*) is small enough.

Unfortunately the bound (3) implies that bounding the collision probability
for two messages and then using (1) one cannot prove CP,,, ¢ € o(d(¢)g*/2").

PROOF IDEA. The obvious idea to overcome this barrier is to upper bound the
number of structure graphs built by many (and not just two) messages. We prove
a lemma (Lemma 4) which states that the number of structure graphs built from
any k messages of length at most ¢ blocks, having exactly one accident and a
collision on the output for some pair of messages, is at most k(k + £?), this then
gives the claimed CP, ,, » € O(¢?/¢?) bound. Unfortunately now the graph is so
big (i.e. ¢f vertices) that the higher order term which bounds the cases where we
have two or more accidents is in the order ¢*¢*/22" (so unless we assume some
bound 0(2"/2) on ¢, we only achieve a tight O(g?/2") for constant ¢, but this is
already achieved by the classical ¢2¢2/2" of [PRO0]).

Fortunately one can get out of this apparent cul-de-sac using an approach
“between” the one just described and the one given by (1). The ¢ messages are
divided into q/¢? sets of size 7 = 2. Now, if there’s a collision, then this collision
occurs in the union of two (or maybe just one) such sets. For such a union of two
sets (of size 2r) we can now upper bound the probability that there’s a collision
amongst any two of the 2r messages by O(r?/2") as the sets are sufficiently large
(such that applying the before-mentioned Lemma 4 gives a 2r(2r + £2) = O(r?)
upper bound on the number of structure graphs), but still small enough for the
higher order term to be ignored for a reasonable range of ¢. Finally we get our
CP,... € O(¢?/2") bound (for £ < 2"/%) from the union bound applied over all
pairs of sets.

ABOUT THE RANGE. The tight upper bound CP,,, , € O(q?/2") we prove holds
for ¢ € £2(£?) and £ € O(2™/%). In the next two paragraphs we’ll shortly discuss
those two bounds.
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LOWER BOUND ON g. The CP5 ,, , = ©(d(£)/2™) bound implies (under a reason-
able assumption®) CP, ,, = 2(d(¢)q/2"). Thus CP, ,, € O(¢*/2") can only
hold if we have a lower bound for ¢ of at least §2(d(¢)), the bound we actually
require is ¢ € £2(¢?).° But this lower bound on ¢ is not really relevant as long
as there’s a upper bound < 2™/2 on ¢, as it only means that we don’t match
the birthday bound O(q?/2") for a range of parameters, where the collision
probability given by the classical ¢2¢%/2" bound is extremely small anyway.
UPPER BOUND ON /. Wlog. we can assume an upper bound ¢ < 2"! as consid-
ering longer messages makes no sense: note that every z,1 < x < 2™ divides 2"!
and thus CPyg ,, 9ny > d(271)/2" = 1, i.e. we can find a collision with probability
one with only two queries.” This (doubly exponential) bound is far from the
¢ < 2"/% we require, and can probably be relaxed already with the techniques
used in this paper. One possibility would be via a better counting argument,
which means improving on Lemma 4 from this paper (in particular, Claim 2
from the proof of this lemma seems quite loose). Lowering the O(q(q + £2))
bound on the number of graphs given by the lemma to ¢(g+ o(¢)) would already
allow a range of ¢ < 27/(4+°(1)) Further, counting graphs with more than just
one (but still constantly many) accidents could have the potential to get the
bound to £ < 27/(2+€) for any € > 0. Such a bound might still be far from the
necessary one, but would be sufficient for any practical application as a length
of 2"/2 is quite big already for small block lengths (say n = 128 which is the
smallest block-length provided by AES).

2 Definitions and the Main Technical Lemma

NOTATION. If z is a string then |z| denotes its length. We let B,, = {0,1}".
If X C {0,1}" then X=™ denotes the set of all non-empty strings formed by
concatenating m or fewer strings from X. If S is a set equipped with some
probability distribution then s &£ S denotes the operation of picking s from S
according to this distribution. If no distribution is explicitly specified, it is un-
derstood to be uniform. We denote by Perm(n) the set of all permutations over
{0,1}" and with Func(n) the set of all functions {0,1}* — {0,1}".

SECURITY. An adversary is a computationally unbounded, randomised oracle-
algorithm which finally outputs a bit. A4, ¢ denotes the class of adversaries that
make at most ¢ oracle queries, each of length at most ¢ n-bit blocks. For a family
of functions F: B — {0,1}", the distinguishing advantage of A, for F is

Advg(g,n,t) = JJuax {Advy(A4)} where

q,n,L

® We must assume that one can generate ¢ /2 pairs of messages where each pair achieves
the “worst case” collision probability £2(d(£)/2"), and moreover the events that any
pair of messages collides are sufficiently independent.

5 As both, the lower d(¢) and the upper £* bound follow by rather loose arguments,
the truth is probably strictly in-between, i.e. in w(d(¢)) and o(£?).

" In fact, with £ = 2"! we can forge a message in a no-query attack as for any X € B,
and 7 € Perm(n) one has CBC,(X?"") = X.
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Advp(A) =Pr[f £ F: Af = 1] — Pr[f & Func(n) : Af = 1]

CBc AND EcBe. Fix n > 1. Recall that for M = M'--. M™ € B™ and 7: B,, —
B,, we defined in the introduction

CBC, (M) = Cyy, where Cp = 0" and C; = 7(Ci—1 @ M;) fori=1,...,m

Let CBC = {CBC,: m € Perm(n)}, this set of functions has the distribution
induced by picking 7 uniformly from Perm(n). The encrypted CBC MAC is

ECBCy, 7y (M) = mo(CBC,r, (M)

Let ECBC = {ECBCy, ,: 1,72 € Perm(n)}, with the distribution induced by
picking 71, w9 independently and uniformly at random from Perm(n).
CoLLISIONS. For ¢ distinct messages My, ..., M, € B} we denote by

CPn(Ml,...7Mq) Pr [HZ,], MZ 7& Mj : CBC.,T(MZ) = CBC.,T(MJ)]

Pl Perm(n)

the probability that the CBC-MACs (based on a uniform random permutation)
of any two messages collide. The maximum collision probability for any ¢ mes-
sages of length at most £ n-bit blocks is denoted by

CPyn = max CP,(My,..., M) (4)
Mi,..,Mq€BR*

Following [BR00], we view ECBC as an instance of the Carter-Wegman paradigm
[CWT79]. This enables us to reduce the problem of bounding Advgcgc(g,n,£) to
bounding the collision probability CP . ¢ as

Advecge(q,n,0) < CPy o +q(qg—1)/2" ! (5)

We prove the following bound on CPy ,, ».
Lemma 1. For any q > (?: CP, 0 <16-q?/2" + 128 - g2¢8 /22"

From this lemma and (5) we get that Advgcgc(q,n,¢) € O(¢?/2") whenever
q € (%) and £ € O(2"/?), for example

Corollary 1. For any q > (% and £ < 2"/371: Advgcge(q,n, f) < 18- ¢2/2".

3 A Graph-Based Representation of CBC

In this section we review the graph-based approach to bound collision probabili-
ties from (the full version of) [BPRO5]. In this approach the collision probability
is related to the number of graphs satisfying some property.

We fix for the rest of this section a blocklength n > 1, the number of messages
t > 1 and t distinct messages M = {M,..., M}, where for 1 <i <t we denote

with m; > 1 the length (in blocks) of the i’th message M; = M} --- M™ € B™:.



174 K. Pietrzak

D D
D \
c C ok
vE = v C \C
B B .Y/
1 = [l =
vy B Q ;
A A A
V0 = D D
el lelld H

Fig.2. Gea(M) = {Gi13,G13,G1,2,G23} are all structure graphs for M =
{AB,DEC, ABCC} which have exactly one accident and a collision on the outputs.
Further {G,G',G"} € G(M) \ Geor(M) are valid structure graphs but not in Geoi (M)
as: G has 0 and G” has 2 accidents. G’ has exactly one accident but no collision on the
outputs. H is not a structure graph as there’s a vertex which has two ingoing edges,
both labelled C' but not being parallel.

For 1 < j < tletm! = Zgzl m; be the length of the first j messages. It

is convenient to set m® = 0 and m = m’ to be the total length. Let M =

My ||Ms|| - - - || My denote the concatenation of all messages and M the i’th block
of M, ie M M ... M™.

STRUCTURE GRAPHS. To M and any m € Perm(n) we associate the structure
graph GM, which is a directed graph (V, E) where V C [0, ...,m].

The structure graph G = G = (V, E) is defined as follows: We set

Co=0"and for i = 1,...,m we define
D (e &MY ifig¢g[mo+1,...,me_1+1]
T (M) otherwise
From this C;’s we define the mapping [.]J¢ : [0,...,m] — [0,...,m] as
lil¢ = min{j : C; = C;}. It is convenient to define a mapping [.]
as [i|p = [ilg if i ¢ [mY ...,m'1] and [i]; = 0 otherwise. Now the

structure graph GM = G = (V, E) is given by
V={llc:0<i<m} E={(i-1lle):1<i<m}

From this definition it is clear that the mapping [.]¢ defines G uniquely and vice
versa. Throughout the “i’th edge of G” refers to the edge ([i — 1], [i]¢) (note
that this not injective) and the “label” of the i’th edge is M®.

If the C;’s are all distinct, then G is simply a star like tree with ¢ paths leaving
the root 0, the 7’th path being 0 — m*~14+1 — ... = m*~'4m; = m’. In general
G is the graph one gets by starting with the tree just described and doing the
following while possible: if there are two vertices %, j where ¢ # j and C; = C}
then collapse ¢ and j into one vertex and label it min{s, j}.

For a structure graph G we will denote the vertices on the path built by
the i’th message by V2(G), V.1(G), ..., V™ (G), we call this path the i-path, we
write V7 for V7 (@) if G is understood (cf. Figure 2).

Let G(M) = {G, : m € Perm(n)} denote the set of all structure graphs
associated to messages M. This set has the probability distribution induced by
picking 7 at random from Perm(n).
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COLLISIONS. Suppose a structure graph G' = GM € G(M) is exposed edge by
edge (i.e. in step 7 the value [i]g is shown to us). We say that G has a collision
in step 7 if the edge exposed in step ¢ points to a vertex which is already in the
graph. With Col(G) we denote all collisions, i.e. all pairs (i, j) where in step i
there was a collision which hit the vertex computed in step j < ¢:

Col(@) = {(i, [ile) : lile # i}
We distinguish between induced collisions IndCol and accidents Acc where
Col(G) = Acc(G) U IndCol(G) Acc(G) N IndCol(G) =0

Informally, an induced collision in step 7 is a collision which is implied by the
collisions in the first i — 1 steps, whereas an accident is a “surprising” collision.

The following lemma is the heart of the whole approach, it states that the
probability that a randomly sampled structure graph will be some particular
graph H is exponentially small in Acc(H).

Lemma 2. Let n > 1,t > 1,M = {My,..., M} where M; € B and m =
my + ...+ mg. Then for any structure graph H € G(M):

Pr[G < GM): G = H] < (2" — m)~ At

Form this lemma we get the following bound on the probability that a random
structure graph has two or more accidents:

Lemma 3. With M, m as in the previous lemma
Pr[G < G(M): |Acc(@)| > 2] < 4m*/2%"

The proofs of Lemma 2 and 3 can be found in the full version of [BPRO5].

SoME USEFUL FAcTS. In [BPRO5] accidents are formally defined to be exactly
those collisions which do not close a (even length) cycle with alternating edge
directions. It is shown that this are exactly those collisions which are “surprising”
in the sense that they are not induced by the already exposed edges. We will not
need to work with this formal definition of accidents here, it will be sufficient
to consider the more intuitive concept of true collisions, which are all collisions
except those where no edge is added, or equivalently, we have a true collision
in some step ¢ if in this step we add a new edge, but no new vertex (from
this definition we see that in a structure graph G = (V, E) the number of true
collisions is |E|—|V'|+1). Also, it’s not hard to see that if G has k accidents, then
it has at least k true collisions.® Although the converse is not true in general,
there are implications in the other direction which will be sufficient for us. In

8 This follows from the definitions, recall that accidents are those collisions which do
not close a cycle with alternating edge directions, and true collisions are those which
do not close a cycle with alternating edge directions of length 2 (as such a cycle is
given by two parallel edges). So true collisions are just a subset of the accidents.
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particular, it’s not hard to see that the first true collision that occurs must always
be an accident. And if we only consider structure graphs built by at most two
paths, then also the second true collision is necessarily an accident (see Lemma
10 in the full version of [BPRO5], fact (i) below follows from this).

For G € G(M) and 4,5, 1 < i < j < q let G|; 5 denote the subgraph of G
built by the i-path and the j-path. We will need the following facts:

(i) If G has at most one accident, then for any 7,j the G; ;) has at most one
true collision.

(ii) If G has exactly one accident, then G is uniquely determined by M and any
subgraph of G which contains a true collision.

Informally, fact (ii) holds as given the single accident, we know the only “sur-
prising” collision, and thus can deterministically extend the subgraph to G.

4 Bounding CP,, ¢

Fori=1,...,q,let M; € B=*be such that the collision probability is maximised,
ie. with M = {M,...,M,} we have CP,,, , = CP(M). To bound CP(M)
we now consider the random experiment where a permutation 7 is chosen at
random and CBC,(M;) is computed for i = 1,...,q. We can decide whether
there was a collision CBC,(M;) = CBC,(M;) given the structure graph G2 of
this computation. Thus we see CP 5, ¢ as the probability that G{TV‘ (for a random
) contains such a collision on the outputs of two messages. Let G0 (M) C G(M)
denote the subset of structure graphs where there’s a collision on the outputs:

Geol(M) Z{G € GM) ;5 Fi,j,1 <i<j<q:V™(G)=V"(G)}

j
As just said, with this definition CP,,, , = Pr. s g(M)[G € Geat(M)].

We split this probability into the “single accident” and the “two or more acci-
dents” case. For this let G/, & {G € Geot(M) ; |Acc(G)| = i}, now

col —

CPy = $Pr G e Gl ,(M)]+ $Pr [G € G (M) for some i >2]. (6)
G < G(M) G —gGM)

To bound the second term on the rhs. of (6) we can use Lemma 3 and “gener-
ously” upper bound the probability that there are two or more accidents.
) 4q4£4
Pr [G € G.y(M) for somei>2] <  Pr [[Acc(G)|>2]< . (7)
aEgwm aEgm 2

To bound the first term on the rhs. of (6) we can’t be so generous any more and
simply upper bound the probability of |Acc(G)| = 1 as this would only give a
O(g*¢%/2™) bound. We will more carefully upper bound |G} ,(M)]| (by Lemma 4
below), and then apply Lemma 2 which in our case states that G € GL (M)
appears with

_ 1GL(M)

1
Pr [G € gcol(M)] = on _ gq .

¢ Egm

(8)
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Lemma 4. Let n,g > 1 and 1 <my,...,mqg <€ and M = {M,..., M,} with
M; € B be distinct messages, then

Gl (M)| < qlg+ €+ 02))2

Now combining (6)-(8) and the above Lemma we get:

< ala+e+0%) | dgtet

= 2(2n—tq) 22n

This already gives CPy ¢ € O(¢g*/2") for ¢*¢* € O(2") and ¢ € 2(£?). But
we can do better. The reason why this bound is not so great is that the term
which bounds the “two or more” accident case is of rather large order ¢*¢*/2"
as we consider a graph (i.e. a total message length) of size gf. We achieve the
bound claimed by Lemma 1 by splitting the messages in chunks of size £ (with
foresight) and then applying the following lemma which is a generalisation of (1).

Lemma 5. CPgy e

Lemma 6. If r divides q then CP 0 < CPypy- a(g—r)

2.r2
Proof. Consider ¢ messages Mj,..., M, where CP,, ¢ = CP,(M,..., M,).
We split the ¢ messages into q/r sets Si,..., S5/, each containing r messages.

If two messages collide, then there are two sets containing this two messages, so
using the union bound CPy, (My, ..., My) <37, 1 <icj<q/r CPnlSi, S5)-

The lemma follows as by definition CP,(S;,S;) < CPa, ¢ and the sum has
q(q —r)/2r? terms. O

We now have all ingredients to prove our main result

Proof (of Lemma 1). Let ¢ be minimal satisfying ¢ > ¢ and ¢?|¢. Now using
Lemma 6 (with r = £?) in the second, and Lemma 5 in the third step
q? < 32 +0) 40N @ )
204 — on — 203 22n 204

We can assume that 203 < 271 and n > 1 as otherwise the above is > 1
which is a trivial upper bound for CP, . We also have ¢ < 2¢ by the q > (2

2 2
precondition an can further simplify (9) to CPy ¢ < 13;‘? + 1282'§n'£8. O

CPypne <CPgne < CPyp -

Proof (of Lemma 4). Wlog. we assume that m; < mj;yq for 1 <j <g—1. Let
Gij ={G € Geat(M) ; V/™(G) = V" (G) N |Acc(G) = 1]}

J

denote the structure graphs with exactly one accident, and where there’s a col-
lision on the outputs of the i’th and j’th message. Let P; C [j — 1] denote the
indices of the messages which are prefixes of M; after the common suffix has
been removed, more formally

P,={iel,...,j—1],;35,X € B, : M; :M;||S,Mi:M{||S,MJ{:M{HX}

Let P = [1,...,5 — 1] \ P. For example if M = {M; = A, My = AB, M3 =
ABC, My = ACDB} then Py = {1,2} and P4 = {3}.

We will prove two claims, which then will imply the statement of the lemma.
The first claim — which is basically Lemma 19 from [BPRO05] — states that if
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i € P, then there’s at most one structure graph with exactly one accident where
M; and Mj collide.

The second claim bounds the number of structure graphs having one accident
and a collision between M; and any other message M; where ¢ € P; by £(¢+1)/2
(note that this bound only depends on the length, but not on the number of
messages considered). To prove this claim we use the simple observation that if
there’s a collision between M; and any M; where ¢ € P;, then it must be the case
that the j-path makes a loop. So we can upper bound the number of structure
graphs having such a collision by the number of structure graphs having where
the j-path loops.

TN
P 8
Fig. 3. Figure for proof of Claim 1

Claim 1. For each i € P, |G; ;| <1.

Proof (of Claim). Let P denote the common prefix and S the common suffix of
M; and M;. So M; = P||M]||S and M; = P||M;|S where the M and M; are
nonempty as i € P;. Let p = |P|/n,s =|S|/n.

By definition G € G; ; means V;™ = V;"7, this implies that also V™ ™* =

ijj ~7 (as for the last s steps the i and j path must go in parallel). Now as

M A M;nj_s_l (otherwise we could extend the suffix) we have V; %71 £

ijj —et (because in a structure graph two edges with distinct labels cannot be

parallel). So there’s a true collision in GT; ;; which hits the vertex V;™*.

As by fact (i)? there can be only one true collision in Gli,;) this means that
the “suffix path” V;"™° = V;.mrs — L V= V;.mj has no loops. For the
same reason the “prefix path” V! = le — ... .= VP= Vjp makes no loop and
also the prefix and suffix paths must be disjoint. So the subgraph of G|; ;; built
by the first p+ 1 and the last s+ 1 edges of the i and j path looks like shown on
the left in Figure 3. There’s only way to extend this subgraph to the full G|; ;
without introducing more true collisions, this is the second graph in Figure 3.

So there’s only one possible G|; ;;, and by fact (ii) it uniquely determines the
whole structure graph, thus there’s just one G € G, ;. A

Claim 2. ’ User gm‘ <Ul+1))2.

Proof (of Claim). Consider any ¢ € P, and let S denote the common suffix of M;
and M;. Now, as i € P, for some P we can write M; = P||M}[|S and M; = P||S.
Let p = |P|/n and s = |S|/n.

9 We refer to the facts stated at the end of Section 3.
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Consider any G € G; j, by definition V;™ = V;.mj, which implies V;""7° =

ijj % as the last s blocks are equal. And as the first p blocks are equal we

have V= V. Now V7 = V™% and thus also V' = V""" as p < m; — s
there’s a true collision on the j-path (i.e. it contains a loop). As there are at
most m;(m; + 1)/2 possibilities for the j-path to make a loop!® and as by fact
(ii) the shape of the j path determines G completely, there can be at most
m;(m; +1)/2 < £(€ 4 1)/2 different G’s in (J,;.p Gi - JAN

The lemma follows by the two claims as

q
G < 301G <D0 ([ U G| + D16

1<i<j<q j=1 i€P i€P
q
e+1) qlg —1+L(L+1))
< 1)< .
= Z ( 9 T 1) = D H
j=1
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Abstract. The aim of this paper is to construct boolean functions
f:{0,1}" — {0,1}™, for which the graph gr(f) = {(z, f(z)),z €
{0,1}"} C {0,1}""™ has maximal algebraic immunity. This research
is motivated by the need for appropriate boolean functions serving as
building blocks of symmetric ciphers. Such functions should have large
algebraic immunity for preventing vulnerability of the cipher against
algebraic attacks. We completely solve the problem of constructing
explicitely defined single-output functions for which the graph has
maximal algebraic immunity. Concerning multi-output functions, we
present an efficient algorithm, based on matroid union, which computes
for given m,n, d the table of a function h : {0,1}" — {0, 1} for which
the algebraic immunity of the graph is greater than d. To the best of our
knowledge, this is the first systematic method for constructing multi-
output functions of high algebraic immunity.

Keywords: Cryptographic primitives, boolean functions, algebraic
attacks, matroid union algorithm.

1 Introduction

The degree, deg(p), of a single-output boolean function p : {0,1}" — {0,1} is
defined as the length of a longest monomial occurring in the ring-sum-expansion
of p= Gaae{(), 1}7 Palla of p, i.e. deg(p) = max{|a|,a € {0,1}",po # 0}. (As
usual, |a| denotes the number of ones in «, and mq = II; o;=12;.)

We say that a function p : {0,1}"™ — {0, 1} annihilates a subset S C {0,1}"
(or, equivalently, is an annihilator of S) if p(z) = 0 for all x € S. The algebraic
immunity, AI(S), of S is defined to be the minimal d for which there is degree-d
annihilator p # 0 of S.

Following Meier, Pasalic and Carlet (2004), the algebraic immunity AI(f) of
a single output function f : {0,1}" — {0, 1} is defined to be the minimum of
AI(f~1(0)) and AI(f~'(1)). This definition can be easily generalized to multi-
output functions f : {0,1}" — {0,1}", AI(f) is is defined to be the minimum
of AI(f~%(2)) over all z € {0,1}"™.
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For boolean functions used as building blocks in cryptographic systems
(like, e.g., S-Boxes) it is important to know whether there exist nontrivial low
degree annihilating relations between input- and output bits. Corresponding to
this, the algebraic immunity AI(gr(f)) of the graph gr(f) = {(z, f(x)),z €
{0,1}"} C {0, 1}n+m is a further important design parameter of cryptographic
boolean functions f : {0,1}" — {0,1}". Note that for all boolean functions
f:{0,1}" — {0,1}™ it holds that AI(f) < AlI(gr(f)) < AI(f) +m (see
Lemma 1 below).

The aim of this paper is to construct boolean single- and multi-output
functions f for which AI(gr(f)) is maximal. This is motivated by the necessity
of making secret-key cryptosystems immun against algebraic attacks, which are
based on defining and solving systems of multivariate equations in the variables
corresponding to the bits of a secret key.

Algebraic attacks on secret-key cryptosystems consist in detecting nontrivial
low-degree annihilators of relations between secret input- and output bits for
building a system of low-degree equations in the keybits, and trying to solve it
efficiently.

Algebraic attacks on simple (memoryless) combiners, a special class of
keystream generators, have been firstly described by Courtois and Meier (2003),
using relations on known outputs and corresponding unknown internal bits.
Keystream generators are finite state machines which produce on the basis of a
secret key a secret bitstreams of arbitrary lengths. Armknecht and Krause (2003)
extended these attacks to the more general class of combiners with memory,
including the Fy-generator used in the Bluetooth standard.

In general, solving a system of T' degree-d equations over Fg is NP-hard even
for d = 2. However, if T' is greater than the number of unknowns, there is a certain
chance (which is hard to evaluate theoretically) that nontrivial approaches like
Grobner bases succeed (e.g., see Faugere and Ars (2003)). If T even exceeds the
number of occurring monomials, efficient strategies exist (Shamir et al. (2000)).
In both cases, the effort is heavily influenced by the degree of the relations. In
this context, the notion of the ”algebraic immunity of a single-output function f”
has been introduced by Meier, Pasalic and Carlet (2004), and further developed
by Armknecht (2005).

Since the (hypothetical) attack on the Advanced Encryption Standard (AES)
presented by Courtois and Pieprzyk (2002), the question of the existence of
efficient algebraic attacks on round-based block ciphers attracted a lot of public
interest. Contrary to the case of keystream generators, the system of equations
obtained here is generally not overdefined but may have a very low degree which
is defined by the algebraic immunity of the S-Boxes. For example, quadratic
equations exist in the case of AES, although the input/output format of the S-
Boxes AES (8/8) would allow an algebraic immunity of 3 for the graph of these
S-Boxes. Even though the feasibility of these attacks is still unknown, a huge
number of corresponding approaches and results (e.g., see Murphy, Robshaw
(2003), Ars et al. (2004) and Cid, Leurent (2005)) shows the interest on this
topic.
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We think that these developments are motivation enough to study the
concepts of the algebraic immunity of boolean functions and graphs of boolean
functions in more detail.

In section 2 we completely solve the problem of constructing single-output
functions f : {0,1}" — {0,1}, for which AI(f) and AI(gr(f)) are both
maximal. We will see that it is quite straightforward to solve this problem for
odd n , while it is more nontrivial to construct such functions for even n.

Up to now, for m > 1, one is not able to give the explicit definition of a
sequence of functions h,, : {0,1}" — {0,1}" of maximal immunity. However,
in section 3 we derive a polynomial time algorithm based on matroid union which
outputs for given n, m, d the table of a function h : {0,1}" — {0,1}", for which
AI(gr(h)) is at least d. This implies the first efficient method so far to construct
S-boxes of arbitrary input/output format having maximal algebraic immunity. In
section 4 we present first experimental results which imply interesting theoretical
problems for further research.

Note that so far, our constructions refer only to one out of several important
security parameters of boolean functions, the algebraic immunity. Very recently,
Carlet (2006) and Carlet, Dalai, Gupta, Maitra (2006) obtained results which
relate algebraic immunity of single-output functions to other relevant security
parameters like balancedness, nonlinearity and correlation immunity.

For all natural d < n let W=2 (resp. W74, W4, W24, W,>9) denote the set
of all @ € {0,1}™ with |a] < d (resp. |a| =d, |a| < d, |a| > d, |a| > d). Further
let &, (d) = W= =% (%), and &, (D) = min{d, ,(d) > D}.

For all positive integers n we denote by M™ the 2™ x 2"-matrix for which rows
and columns are labelled by all « € {0,1}" and « € {0, 1}", respectively, and for
which Mg, = mq(x) (which is 1iff {i,a; = 1} C {4, 2; = 1}). For all d < n and
S C{0,1}" we denote by My g the ®,,(d) x [S|-submatrix of M" corresponding
to the rows labelled by elements a € W,=¢ and columns labelled by all € S.

We identify each degree d boolean function p = Za cwsd PaMas with its

coefficient vector p= (Pa) Note that p annihilating S is equivalent to

aeWst
T F oMy :6 where T 5 is the transponent of the vector F

Consequently, for subsets S C {0,1}" the set of all degree-d polynomials
annihilating S can be computed by solving a system of |S| linear equations in
@, (d) unknowns, which implies that the immunity of S can be at most @;,*(]5]).

It is quite straightforward to construct sets S C {0,1}" of maximal possible
immunity @, 1(]S]). Consider the linear ordering w : {0,1}" — {0,---,2" — 1}
on {0,1}" defined by w(a) =0, and w(x) < w(z’) if |z| < |2’| or, if |x| = |2'|, =
is lexicographically less than z’.

For all natural D < 2" we define the set AP C {0,1}" to consist of the first
D elements of {0,1}" ordered with respect to w. As, if rows and columnes are
ordered with respect to w, the matrix Mc’f AD is a triangular matrix with 1’s on
the diagonal, the set AD is &, 1(D)-immun.

In the following we will deal with the more nontrivial problem to construct
boolean functions (i.e. special sets A C {0,1}""™ which correspond to the graph
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of a boolean function f : {0,1}" — {0,1}") with maximal immunity. We
conclude this Introduction with the following lemma stating a basic relation
between the immunity parameters AI(f) and AI(gr(f)).

Lemma 1. For all f: {0,1}" — {0,1}™ it holds that AI(f) < AI(gr(f)) <
AI(f) +m.

Proof. The upper bound follows from the fact that if p is a nonzero annihilator
of f71(2) for some 2 € {0,1}" then p - II; ,,—12; - I; .,—o(2; ® 1) is a nonzero
annihilator of gr(f). On the other hand, let ¢ be an annihilator of gr(f) of
minimal degree, and fix some z € {0,1}" such that ¢(-, z) # 0. Then q(-, 2) is a
nontrivial annihilator of f~1(z2) of degree at most deg(q).

2 Single Output Boolean Functions of Maximal Immunity

In this section we construct single-output functions f : {0,1}" — {0,1} for
which AI(f) and AI(gr(f)) are both maximal. Note that &, 1(2"~!) is an upper
bound for AI(f) and that &1, (2") is an upper bound for AI(gr(f)).

For n odd it holds @, 1(2"1) = @, 1, (2") = [n/2], and it is easy to construct
functions f with AI(f) = AI(gr(f)) = [n/2]. As the complement of A%Wl is the

—

affine translation of A,%n_l by 1, and as the algebraic immunity is invariant under
affine translations, the characteristic function of A?Ln_l (which equals negated
majority) has this property.

For even n the situation is more complicated as it holds @, 1(2"71) = n/2,
but &, },(2") = n/2 + 1. The question is how to construct functions f with
Al(gr(f)) =n/2+ 1, which by Lemma 1 implies that AI(f) = n/2.

An intuitive candidate is again the characteristic function of A%n_l. However,
it is quite straightforward to show that if f=1(0) is an affine translation of
Y1) then AI(f) = AlI(gr(f)). Indeed, let f~1(0) = f~*(1)@ v and p be
an annihilator of f~1(1) of degree d. Then p(z® v) and zp & (z ® 1)p(x® v)
are degree-d annihilators of f~1(0) and gr(f), respectively. This implies that
the graph of the characteristic function of A?LWI has algebraic immunity of only
n/2.

The following approach is more successfull. For n even and subsets A C Wn:n/ 2
let us consider functions of type fa defined as f4(z) := 0iff z € W2 U A We
will see that for certain subsets A C Wy "% it holds that Al(gr(f*)) =n/2+1.

Theorem 1. For all even n > 2 and all nonempty A C ann/Q it holds that
Al(gr(f*) =n/2+ 1 if and only if A = A® 1= {z® 1;z € A}.

Proof. Let A C VVn:n/2 be arbitrarily fixed and denote B = I/V":n/2 \ A.

For a set T' C {0,1}™ let us call a boolean function p = p(x1,---,2,) to be a
T-polynomial, if p can be written as p = @, cp CaMa-
Let P = P(xy,---,Tn41) be an nonzero annihilator of gr(f4) of minimal

degree. We write P = p @ z - q, where p and g depend only on =y, -+, z,, p
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annihilates AUVVn<n/2 and p®q annihilates BUWTT”/Z. Note that if deg(P) = n/2
then deg(p) < n/2 and deg(q) < n/2.

Lemma 2. If deg(p) < n/2 then p is a B-polynomial.

Proof. Let p = Zaewgn/'z PaMea. We show that p, = 0 for all a € VVn<n/2 UA
by induction on |«|.
As 66 VVn<n/2 U A it follows that ps = 0.

Now fix o € VVn<n/2 U A with |a| > 0. As, by induction, pg = 0 for all 5 C «
it holds that 0 = p(a) = pama(®) = pa-

It follows from Lemma 2 that p @ ¢ is a (B U Wy n/ 2)—polynomial annihilating
BU I/Vn>"/2 and that r = p ® q(z® T) isa BU ern/z—polynomial annihilating
(B T) UW,s™2. The theorem follows from

Lemma 3. There exists a nontrivial (B U an/Z)-polynomial annshilating
(B® 1)UVVn<n/2 if and only if B # B® 1.

Proof. Let B = B® 1. As the submatrix of M"™ formed by all rows
corresponding to monomials m,, o € B U VVn<n/2 and inputs a« € B U VVn<n/2
is an upper triangle matrix, nontrivial (B U Wy n/ 2)—polyn0mials annihilating
BU W,fn/z do not exist.

Now let B # B® 1 and denote C' = B\ (B® T) As \C\+\Wn<n/2| > |Wn<"/2\
there is a nontrivial (C U Wy n/ ®)-polynomial s annihilating W,"/?. As s
annihilates (B® T), too, it annihilates (B® T) U2,

We have shown that A = A® 1 implies that AI(gr(f*)) =n/2+ 1.

For showing that for A # A& 1 it holds AI(gr(f4)) < n/2+1 let B,C,s
be defined as above. Then the polynomial ¢, defined by t(z) = s(z® T), is a
nontrivial (BUWTfn/Z)—polynomial annihilating BUW;"™?. Now write t = pDq,
where p is a B-polynomial and deg(q) < n/2, and define P =p @ z - q. It is not
hard to check that P is a nontrivial degree-5-polynomial annihilating AUW, n/2,

Note that A = A& 1 implies that |A] has to be even. As (10) = (01) @ (11)
it is not possible to construct a function of type f4 for n = 2 fulfilling that
Al(gr(f#)) = 2. However, there are functions f in two variables such that
AI(f)) = 2, take e.g. f = 1 A za. For n = 4 there are functions of type
A fulfilling AI(gr(f4)) = 3, namely if A is one of the sets {0011,1100},
{1001, 0110}, {1010,0101} or the union of two such sets. As (3) = 6, all balanced
functions of type f4 do not fulfil AI(gr(f#)) = 3. By exhaustive search over all
12,870 balanced function, we could exclude the existence of balanced functions
f in four vari