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Abstract. In this paper we address the open problem of bounding the
price of stability for network design with fair cost allocation for undi-
rected graphs posed in [1]. We consider the case where there is an agent
in every vertex. We show that the price of stability is O(log log n). We
prove this by defining a particular improving dynamics in a related graph.
This proof technique may have other applications and is of independent
interest.

1 Introduction

The price of stability [1] of a noncooperative game is the ratio between the cost
of the least expensive Nash equilibria and the cost of the social optimum. The
price of stability for network design games is motivated by the scenario where
one may have some centralized control for a limited time when the network is
set-up. But, once the network is up and running, it should be stable without
central control. Of course, the price of stability is not larger than the price of
anarchy [6] which is the ratio of the cost of the most expensive Nash Equilibrium
and the cost of the social optimum.

We consider the game of network design with fair cost allocation introduced
in [1]. In this game, agent i has to choose a path (strategy) from source node
si to destination node ti. The cost of an edge e, c(e), is shared equally by all
agents i whose chosen path pi = si, ..., ti includes e.

It follows from the potential function arguments of [7,8] that pure strategy
Nash equilibria always exist for general congestion games, and in particular for
the network design game that we consider here (both directed and undirected
versions)1. In the following, we consider the price of stability for this network
design game with respect to pure strategies.

The social optimum for this game is a minimum Steiner network connecting
all source-destination pairs. Anshelevich et al. [1] show that the price of stability
of this game is at most H(n) = 1 + 1/2 + · · · + 1/n, where n is the number of
agents. They also exhibit a directed network where this bound is tight.

For undirected graphs the upper bound of H(n) on the price of stability still
holds but the lower bound does not. Furthermore, for the case of two players
and an undirected graph with a single source Anshelevich et al. [1] prove a tight

1 Some weighted congestion games do not have Nash equilibria in pure strategies.
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bound on the price of stability of 4/3 which is less than H(2) = 3/2. Thus, [1]
left open the question of whether there is a tighter bound for undirected graphs.

Our Results. We prove that for undirected graphs with an agent in every vertex
and a distinguished source vertex r to which all agents must connect, the price of
stability of the network design game of [1] is O(log log n) where n is the number
of agents. In contrast, in directed graphs even when there is a single source and
an agent in every vertex the price of stability is still Θ(log n). This follows by a
slight modification of the lower bound example of [1].

Related Work on Network Games. Much of the work on network games
has focused on congestion games [7,8]. In particular, latency minimization and
some network construction/design games can be modeled as congestion games
or weighted congestion games.

Most of the previous work has been focused on bounding the price of anarchy.
The main focus was latency minimization for linear and polynomial latency
functions [3,5,9]. The price of stability for linear latency functions has been
studied by Christodoulou and Koutsoupias [4].

As most of previously considered games the game that we consider here is also
a congestion game where players are source-destination pairs and a strategy of a
player is a single path from the source to the destination. The difference is that
the cost that a player pays for each edge e on its path is c(e)/xe where xe is the
number of players using the edge. The price of anarchy for this game can be high
as shown in [1]. But we are interested in the price of stability. The price of stability
of a different connection game was also considered by Anshelevitz et al. [2].

2 Preliminaries

Our input is an undirected graph G = (V, E), along with a distinguished source
vertex r ∈ V , and a cost function c : E �→ R+. We will refer to c(e), e ∈ E, as
the cost of the edge e.

Associated with every vertex v ∈ V is a selfish player. The network design
game defines a strategy of a player v, to be a simple path in G connecting v to
the source r. Let Sv denote the strategy chosen by player v, we define the state
S to be the set of all paths Sv, for all players v. We define E(S) to be the set of
edges that appear in one or more of the paths in state S. 2

It follows that the graph (V, E(S)) is a subgraph of G. In state S, let xs(e) be
the number of players whose strategy contains edge e ∈ E. We define the cost
of player v in state S, CS(v), to be

∑
e∈Sv

c(e)/xs(e). A state S is in a Nash
equilibrium if no player can lower her cost by unilaterally changing her path to
the source r.

We shall use the standard potential function Φ, see e.g. [1,7], that maps every
state S into a numeric value: Φ(S) =

∑
e∈E c(e)H(xs(e)), where H(n) = 1 +

2 Note that if one allow non simple paths as strategies then for every non simple
strategy there is always a simple one which is strictly better.
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1/2 + 1/3 + · · ·+ 1/n is the n’th Harmonic number. If a single player v changes
her strategy then the difference between the potential of the new state and the
potential of the original state is exactly the change in the cost of player v. This
implies that the improving response dynamics converges to a Nash equilibrium
in pure strategies.

Notice that the sum of the costs of all players in state S is exactly the sum
of the costs of the edges of E(S). It follows that if the social cost function is
the sum of the costs of all players then the social optimum of this game is a
minimum spanning tree of the graph. We denote by OPT an arbitrary but fixed
minimum spanning tree. Let p be the path from vertex u to vertex v in OPT.
We define the distance between u and v in OPT, denoted by dopt(u, v), to be the
sum of the costs of the edges between vertex u and vertex v along p.

Let S be a state and let e = (x, y) ∈ Su. We say that u uses e in the direction
x → y if y is closer than x to the r on Su. Similarly, we say that u uses e in the
direction y → x if x is closer than y to r on Su. We say that e appears in S in
the direction x → y (or simply x → y appears in S) if there is a player u such
that e appears in Su in the direction x → y.

In the following definitions assume that v is the only player making the change,
and we denote the new state by S′ which is identical to S except that we replace
Sv by S′

v. We say that a player v makes an improvement move when the player
chooses a new strategy S′

v such that CS′(v) < CS(v). We limit player v to choose
strategies S′

v of the following three types.

EE (Existing Edges) – An improvement move such that E(S′) ⊆ E(S). Fur-
thermore, if S′

v uses an edge e = (x, y) in the direction x → y then x → y
appears in S.

OPT – An improvement move such that E(S′) ⊆ E(S) ∪ OPT, but E(S′) �
E(S). Furthermore, if S′

v uses an edge e = (x, y) /∈ OPT in the direction
x → y then x → y appears in S.

OPT – The first edge e = (v, w) on S′
v is not in E(S)∪OPT, and E(S′)−{e} ⊆

E(S). Furthermore, if S′
v uses an edge e′ = (x, y), e′ �= e in the direction

x → y then x → y appears in S.

Remark 1. Note that if we start from OPT and perform only EE, OPT, and
OPT moves then in the state that we reach, no edge (x, y) /∈ OPT appears in
both directions, x → y and y → x. It appears in the same direction determined
by the OPT move that added (x, y).

Overview. In Section 3 we prove that if no player has an improvement move
of type EE, OPT, or OPT then the state is a Nash equilibrium. We single out a
specific Nash equilibrium, denoted by N , that we reach by carefully scheduling
EE, OPT, and OPT moves. We then prove that the cost of N is larger than the
cost of OPT by a factor of at most O(log log n).

After an OPT move of a player u that adds the edge (u, v) into the current
state, we make further OPT and EE moves so that more players use (u, v). We
traverse players in increasing distance from u in OPT. Each player that improves
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her strategy by using the path to u in OPT following by the strategy of u makes
the corresponding improvement move.

Let c(u, v) = z. This scheduling has two effects which our proof exploits.

1. If there are O(log n) players whose distance to u in OPT is no larger than
z/4 then the potential decreases by O(z log n). Therefore, the total cost
introduced into N by such edges is O(OPT).

2. Edges in N \ OPT cannot be too close to each other in the metric defined
by OPT. This allows us to relate the cost of all other edges in N \ OPT to
the cost of OPT.

Our scheduling algorithm is described in Section 4. In Section 5 we prove
the bound on the price of stability of the Nash Equilibrium obtained by the
scheduler. Due to the space limit some of the proofs are omitted.

3 Improvement Moves Result in Nash Equilibria

We now show that if no player has an improvement move of type EE, OPT, or
OPT then the current set of strategies is a Nash equilibrium.

Lemma 1. Let S be a state such that no player has an improving move of type
EE. Then (V, E(S)) is a tree.

Proof. Assume that (V, E(S)) is not a tree. Since our strategies are simple paths
there must be some vertex w from which one can follow two paths to r; one path is
the strategy Sw of w, and the other path, denoted by Ŝw, is a suffix of some path
Su of a vertex u that goes through w. If

∑
e∈Ŝw

c(e)/xs(e) ≤
∑

e∈Sw
c(e)/xs(e)

then w has an improving EE move in which she replaces her path by Ŝw which
is a contradiction. On the other hand, if

∑
e∈Sw

c(e)/xs(e) ≤
∑

e∈Ŝw
c(e)/xs(e)

then u has an improving EE move in which she replaces the suffix Ŝw of Su by
Sw. 	

Lemma 2. Let S be a state in which no player can make an OPT, OPT, or EE
improvement move. Then S is in a Nash equilibrium.

4 Scheduling OPT, OPT, and EE Improvement Moves

For technical reasons that we will elaborate on later, instead of considering the
stability problem on the graph G, we switch to a related multigraph, G. It
would be clear from the definition of G that every minimum spanning tree in
G corresponds to a minimum spanning tree in G with the same cost and vice
versa. We also argue that a Nash equilibrium in the multigraph gives us a Nash
equilibrium in the original graph with the same cost.

We define G as follows. Associate with every edge e ∈ G, not in OPT, an
identical edge e′ ∈ G. Replace an edge e ∈ G that is in OPT by parallel edges
e1 and e2 in G, each of weight c(e). We say that e1 and e2 are associated with
e and vice versa. We can show that:
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Lemma 3. For every Nash equilibrium in G there is a Nash equilibrium in G
of the same cost.

We define EE, OPT, or OPT moves in G the same as we defined them in Section
2 where by edges of OPT in G we refer to both copies of each edge of OPT in G.

The scheduler: We start the scheduler on G from an initial state isomorphic
to OPT. We define the initial state S to consist of all edges e1 ∈ G associated
with some e ∈ OPT. The scheduler halts and the process converges when no EE,
OPT, or OPT moves are possible. The scheduler works in phases where in each
phase we make a single OPT move.

Let S be some state, that includes strategy Sv for player v and Sw for player w.
Given that w is a vertex on Sv, we define Follow(S, v, w) as a possible alternative
strategy for vertex v. Strategy Follow(S, v, w) consists of the prefix of Sv up to
and including vertex w, followed by Sw.

As an aid to the exposition, we use colors red and blue to label the parallel
edges of G. Initially, for every e ∈ OPT we assign the edge e1 the color red
and the edge e2 the color blue. In the beginning of a phase we may change the
assignment of the red/blue colors to the parallel edges.

OptFollow(S, v, w) is a strategy for player v that is defined if there is an
edge (v, w) that is a copy of an edge in OPT colored blue. The strategy
OptFollow(S, v, w) consists of the single edge (v, w) followed by Sw.

A phase of the scheduler: Let S be the state at the beginning of a phase. We
maintain the invariant that in S no player can make an improving OPT or EE
move, and thereby S is a tree according to Lemma 1. Before the phase starts
we make a Recoloring step. In this step we recolor red each edge in S which is
a copy of an edge in OPT, and we color blue the other copy of the edge which
not in S.
OPT-move: The phase starts with some player u changing her strategy by an
improving OPT move. We denote by S′ the state after this OPT move of u at
the beginning of the phase.
OPT-loop: Following this OPT move we start a breadth first search of OPT
from u and for each player v in increasing order of dopt(u, v) we do the following.
Let CurS be the state right before we process v, and let p(v) be the parent
of v in the breadth first search tree. We check if OptFollow(CurS, v, p(v)) is
an improving strategy for v. If it is improving then v changes her strategy to
OptFollow(CurS, v, p(v)). If it is not improving then we truncate the breadth
first search at v. Note that all these OptFollow moves are defined since we started
the phase with a recoloring step. We call this part of the phase of the scheduler
the OPT-loop since all improvement moves made in this part are OPT moves.
We denote by D the set of players that includes u and players who performed
an OPT move in the OPT-loop.
EE-loop: For each player w ∈ D let Mw be the subset of descendants of w in
the tree S rooted at r, such that v ∈ Mw if and only if v /∈ D and w is the
first player in D along the path from v to r in S. In the second part of the
phase we traverse the vertices in

⋃
w∈D Mw. For each player v ∈ Mw, let CurS
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be the state right after we process w, if the strategy Follow(CurS, v, w) is an
improving strategy for v, then v changes her strategy to Follow(CurS, v, w). We
call this part of the phase of the scheduler the EE-loop since all improvement
moves made in this part are EE moves.

In the last part of the scheduler we perform any improving OPT or EE moves
until no such improving move exists. Then the phase ends, and we start the next
one if there is an improving OPT move, or we stop if there isn’t.

5 The Price of Stability

In this section we bound the cost of the Nash equilibrium reached by the sched-
uler.

We introduce the following definitions. Let S be the state which is a tree.
Assume we root the tree at r. Let PS(v, w) be the path from vertex v to w in
state S and let LCAS(v, w) be the lowest common ancestor of v and w in state
S (when we root the tree at r). We remove the subscript S when it is clear from
the context.

Let P v
w = P (w, LCA(v, w)) and define Cv

S(w) =
∑

e∈P v
w

c(e)
xs(e)+1 +

∑
e∈Sw−P v

w

c(e)
xs(e) , where Sw is the strategy of w in state S. In other words, we

take into account an additional player on the path from w to LCA(v, w) in S.
One can think of Cv

S(w) as the cost of w after v changes her strategy to a strategy
in which she takes some path to w and then continues to the source according
to Sw. It is clear that Cv

S(w) ≤ CS(w) since the share of w in the cost of each
edge on P v

w in Cv
S(w) is smaller than in CS(w).

Lemma 4. Assume that no improving OPT moves, and no improving EE moves
are possible in a state S. Then for every pair of players v and w the inequality
CS(v) ≤ Cv

S(w) + dopt(v, w) holds.

Proof. Suppose that CS(v) > Cv
S(w) + dopt(v, w). Consider the strategy S′

v that
consists of the path of OPT edges from v to w followed by the strategy of w. The
strategy S′

v has cost CS′(v) ≤ Cv
S(w) + dopt(v, w), so it is an improving OPT

move and we get a contradiction. 	

Let S′ be the state after player u performs an OPT move during the execution
of the scheduler and let S be the state preceding this move. Let the cost of the
newly used edge e′ = (u, v) be c(e′) = z. In the following lemma we show that
for every player w for which dopt(u, w) ≤ z

4 , w would pay less if she takes the
path in OPT to u and then continues as u in S′. The intuition of why this holds
is as follows: From Lemma 4 we know that when no OPT moves are possible
the cost of u in S could not be much larger than the cost of w. The difference is
about dopt(u, w) ≤ z

4 . So if we make w go through u in S her cost may increase
by at most z/2. It increases by at most z/4 for the path to get to u and by at
most z/4 since the cost of u may be larger by at most z/4 from the cost of w.
In S′ however w will split the cost of the edge (u, v) with u, paying only z/2 to
go through it and thereby recovering the extra cost to get to u.
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Lemma 5. Let S be a state where no OPT moves and no EE moves which are
improving are possible. Let S′ be the new state after player u makes an improving
OPT move defined by the edge e′ = (u, v). Let the cost of c(e′) be z. Then for
every player w for which dopt(u, w) ≤ z

4 , CS′(w) > CS′(v) + z
2 + dopt(u, w).

Proof. The strategy of player u in S′ is the edge (u, v) followed by the strategy
of player v, Sv, that is CS′(u) = CS′(v) + z. Since u performed an improving
OPT move, CS′(u) < CS(u), and thus

CS′(v) + z < CS(u) . (1)

Since in S there are no improving OPT moves and no improving EE moves,
then, by Lemma 4,

CS(u) ≤ Cu
S(w) + dopt(u, w) . (2)

We claim that Cu
S(w) ≤ CS′(w). First note that the strategy Sw is equal to the

strategy S′
w, since only the strategy of u is different in S and S′. The cost of

w however may be different in S and S′. Split Sw into two pieces. One piece,
denoted by P1, from w to LCAS(u, w), and the other piece, denoted by P2,
from LCAS(u, w) to the source (see Figure 1). In S, player w shares with player
u the cost of the edges in P2, but this may not be true in S′, so for e ∈ P2,
xs(e) ≥ xs′(e). Consider P1. In S player w does not share with player u the cost
of the edges on P1, but she may share this cost with u in S′. So for e ∈ P1 we
have xs(e) + 1 ≥ xs′(e). In contrast Cu

S(w) is the tentative cost of w assuming
that she shares with u the cost for every edge of her strategy. Therefore,

Cu
S(w) =

∑

e∈P1

c(e)
xs(e) + 1

+
∑

e∈P2

c(e)
xs(e)

≤
∑

e∈S′
w

c(e)
xs′(e)

= CS′(w) , (3)

as we claimed. From inequalities (2) and (3) we obtain

CS(u) ≤ CS′(w) + dopt(u, w) . (4)

Considering inequalities (1) and (4) we get CS′(w) + dopt(u, w) > CS′(v) + z,
and therefore

CS′(w) > CS′(v) + z − dopt(u, w) .

For player w for which dopt(u, w) ≤ z
4 ,

CS′(w) > CS′(v) + z − dopt(u, w) ≥ CS′(v) +
3z

4
≥ CS′(v) +

z

2
+ dopt(u, w) . ��

Let S′ be the state after player u performs an OPT move during the execu-
tion of the scheduler, defined by the edge eu = (u, v) whose cost is z. Let
w0, w1, w2, . . . , wm be the vertices with dopt(u, wi) ≤ z

4 . Assume that dopt(u, wi)
≤ dopt(u, wi+1). In particular w0 = u, and the vertex w1 is adjacent to u in
OPT. Lemma 5 implies that the strategy OptFollow(S, w1, u) is improving for
w1. But what happens after w1 changes her strategy? Can w2 still make an OPT
move using some edge which is not in S and lower her cost? The following lemma
shows that indeed this is the case.
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c(e′) = z
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v
P1

P2

w

LCA(u,w)

u

Fig. 1. Player u makes an OPT-move and buys edge e′ = (u, v) of cost z. We assume

that dopt(u, w) ≤ z
4
.

Lemma 6. Let wk be the vertex following wi on the path from wi to u in OPT
(that is, wk is the parent of wi in the BFS tree traversed by the OPT-loop).
Let Si be the state just before the scheduler processes wi in its OPT-loop. Then
CSi(wi) > CSi(v) + z

2 + dopt(u, wi), and therefore OptFollow(Si, wi, wk) is an
improvement move for wi and the scheduler changes the state of wi to this strat-
egy.

Remark 2. To make Lemma 6 work we had to introduce G. With one set of OPT
edges it is possible that when wi changes her strategy she uses OPT edges that
can be part of the strategy of w� for some � > i. If these edges are not in Sv,
and are not on the path between w� and u in OPT then this may lower the cost
of Sw�

such that when the scheduler gets to w� in the OPT-loop, her alternative
OptFollow move is not improving.

The following lemma gives a lower bound on the decrease in the potential during
a phase of the scheduler.

Lemma 7. Let u be the player making the OPT move at the beginning of a
phase. Let e′ = (u, v) be the first edge in the new strategy of player u, and let
z = c(e′). Let m be the number of players at distance at most z

4 from player u
in OPT (other than u itself). If m ≥ 2 then the potential of the state at the end
of the phase is smaller by Ω(zm) from the potential of the state at the beginning
of the phase.

Proof. Let w1, . . . , wm be the players such that dopt(u, wi) ≤ z
4 . Assume that

dopt(u, wi) ≤ dopt(u, wi+1). Let Si be the state right before the scheduler pro-
cesses wi in its OPT-loop.

By Lemma 6, when the scheduler processes player wi we have that CSi(wi) >
CSi(v)+ z

2 +dopt(u, wi). Also according to Lemma 6 players w1, . . . , wi−1 already
use the edge (u, v) in their strategy in Si. Therefore the cost of the new strategy
OptFollow(Si, wi, wk) for wi is at most CSi(v)+ z

i+1 +dopt(u, wi). (Here wk is the
vertex adjacent to wi on the path in OPT from wi to u.) It follows that player wi

decreases her cost by at least z
2 − z

i+1 . Summing up the decrease in the cost of all
m players w1, . . . , wm, we get

∑m
i=1

z
2 − z

i+1 = z(m
2 − (H(m + 1)− 1)) = Θ(zm).

This is also the decrease in the potential since when a single player changes her
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strategy the change in the potential is equal to the change in the cost of the
player. 	

As before, let S′ be the state after player u performs an OPT move and uses
an edge e′ = (u, v) �∈ OPT. Let D be the set of vertices accumulated while the
scheduler performed the OPT-loop, together with u, and let S′′ be the state
after the execution of the EE-loop. Consider an edge e �∈ OPT which was the
first edge in the strategy Sw in state S, of some player w ∈ D. By the definition
of the scheduler, the first edge in the strategy of w in S′′ would be an edge in
OPT (or e′ for u) and not e. However, it could be that some descendant of w
still uses e in her strategy. We want to show that this could not be the case.
That is, while performing the EE-loop all these descendants take an alternative
strategy that does not use e.

Lemma 8. Consider a phase of the scheduler. Let S be the starting state, and
let D be the set of players that includes player u and the players that change
their strategy in the OPT-loop. Let e �∈ OPT be the first edge in a strategy Sw,
for some w ∈ D. Let S′′ be the state after the execution of the EE-loop. Then
e �∈ S′′.

The total cost of the edges in N ∩ OPT is no larger than the cost of OPT. We
associate each edge (u, v) ∈ N \ OPT with player u that actually improved her
strategy by the OPT move that added the edge (u, v) to N . We further partition
the edges e = (u, v) in N \ OPT according to the number of vertices in OPT
in a neighborhood of size c(e)/4 around the associated player. Specifically, let
e = (u, v) ∈ N \ OPT be associated with player u. We say that e is crowded if
|{w | dopt(u, w) ≤ c(e)

4 }| ≥ log n, and we say that e is light otherwise.

Lemma 9. The total cost of all crowded edges is O(OPT).

Proof. Let e be a crowded edge in N \ OPT. By Lemma 7, in the phase that
started with the OPT move that put e into N , the potential dropped by
Ω(c(e) log n). Since initially the potential is at most OPT · log n, and is always
decreasing, the lemma follows. 	

Lemma 10. The total cost of all light edges in N is O(OPT · log log n).

Proof. Let U be the set of players assigned to light edges. For a player v ∈ U we
denote the associated light edge by ev. We define the cost of v to be the cost of
ev and denote it by zv.

We choose a subset F ⊆ U as follows. Start with T = U and F = ∅. Let v ∈ T
be a player of maximum cost in T . Let Uv = {w ∈ U | dopt(v, w) ≤ zv/4, zw ≤
zv/log n}. Add v to F and continue with T = T \ ({v} ∪ Uv) until T is empty.

Since every vertex v ∈ F is a light vertex, the total cost of all vertices in Uv

is at most zv, so its enough to prove that the total cost of all vertices in F is
O(OPT · log log n).

For v ∈ F , consider a ball, Bv, of radius zv/12 around v in OPT. According
to Lemma 4, zv < dopt(v, r), so the ball Bv contains at least one path of length
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at least zv/12. We prove that every point ξ ∈ OPT is contained in at most
log log n balls Bv for v ∈ F . Therefore the total cost of all vertices in F is
O(OPT · log log n).

Let e ∈ OPT and let ξ be some point on edge e. Let Aξ be the set of vertices
whose balls contain ξ. We show that |Aξ| ≤ log log n. Let v1, . . . , vm be the
vertices of Aξ in the order that their light edges ev1 , . . . , evm were added to N (if
some edge was added more than once, we consider the last time it was added).
Let 1 ≤ i < j ≤ m. By Remark 1, when vj makes the OPT move that adds evj , vi

was using evi in her strategy. Since evi ∈ N , that is vi did not change her strategy
in the OPT -loop of the phase where vj added evj , according to Lemma 8, we have

dopt(vi, vj) >
zvj

4
. (5)

Since dopt(vi, ξ) ≤ zvi/12 and dopt(vj , ξ) ≤ zvj /12, we obtain

dopt(vi, vj) ≤ zvi

12
+

zvj

12
. (6)

Substituting j = i + 1 and combining the Inequalities (5) and (6), we get
zvi+1 < zvi/2 and, by induction, zvi+1 <

zv1
2i . In particular, for every i we have

zvi+1 < zv1 , so by applying Equation 6 to vi+1 and v1 we get dopt(vi+1, v1) ≤
zv1/6. Therefore, by the definition of F , it must be that zvi+1 > zv1/log n. Since
zv1
log n < zvi+1 ≤ zv1

2i , we get that i < log log n, and therefore |Aξ| ≤ log log n. 	

The following theorem follows from Lemmas 9 and 10 and is the main result of
this work.

Theorem 1. For a graph with a source vertex and a player in every vertex the
price of stability is O(log log n).
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