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Preface

This volume presents the papers contributed to DEON 2006, the 8th Interna-
tional Workshop on Deontic Logic in Computer Science, held in Utrecht, The
Netherlands, July 12–14, 2006. These biennial DEON (more properly, ΔEON)
workshops are designed to promote international cooperation among scholars
across disciplines who are interested in deontic logic and its use in computer
science. They support research that links the formal-logical study of normative
concepts and normative systems with computer science, artificial intelligence,
philosophy, organization theory, and law.

Papers for these workshops might address such general themes as the devel-
opment of formal systems of deontic logic and related areas of logic, such as logics
of action and agency, or the formal analysis of all sorts of normative concepts,
such as the notions of rule, role, regulation, authority, power, rights, responsi-
bility, etc., or the formal representation of legal knowledge. They might also be
more concerned with applications, such as the formal specification of systems for
the management of bureaucratic processes in public or private administration, or
the specification of database integrity constraints or computer security protocols,
and more. Of particular interest is the interaction between computer systems and
their users. (The DEON 2006 website, http://www.cs.uu.nl/deon2006/, con-
tains links to previous workshops and their papers. This history reveals a vibrant
interdisciplinary research program.)

In addition to those general themes, the 2006 iteration of the workshop fo-
cused also on the special topic of artificial normative systems, their theory,
specification and implementation, such as electronic institutions, norm-regulated
multi-agent systems and artificial agent societies generally. Here too the concern
is both with theoretical work, such as the design of formal models and representa-
tions, and also work more oriented toward implementation, such as architectures,
programming languages, design models, simulations, etc.

The 18 papers printed here were selected for presentation at the workshop
after a thorough process of review and revision. All are original and presented
here for the first time. They range from studies in the pure logic of deontic
operators to investigation of the normative extension of the computer language
C+ to examination of the structure of normative systems and institutions. The
titles themselves demonstrate commitment to the themes of the workshop. In
addition to these full papers, we present abstracts of the talks of our three invited
speakers, José Carmo (University of Madeira), Frank Dignum (University of
Utrecht), and Paola Petta (University of Vienna).

We are grateful to all who contributed to the success of the workshop, to
our invited speakers, to all the authors of the presented papers, to all who
participated in discussion. Special thanks go to the members of the Program
Committee for their service in reviewing papers and advising us on the program
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and to the members of the Organization Committee for taking care of all the
countless details that a workshop like this requires, especially Jan Broersen for
setting up and maintaining the DEON 2006 website and Henry Prakken for fi-
nancial arrangements, sponsorships, and more. Thanks too to Richard van de
Stadt whose CyberChairPRO system was a very great help to us in organizing
the papers from their initial submission to their final publication in this vol-
ume. We are also very grateful to the several sponsoring organizations for their
essential support. Finally, we wish to express our appreciation to Springer for
publishing these proceedings in their LNCS/LNAI series. This is the second such
volume in this series; the first was from DEON 2004, Deontic Logic in Computer
Science, LNAI 3065, edited by Alessio Lomuscio and Donald Nute. We hope
these volumes may continue into the future to provide a record of research in
this rich and growing field.

April 2006 Lou Goble
John-Jules Ch. Meyer



Workshop Organization

Organization Committee

General Co-chairs Lou Goble, Willamette University
John-Jules Ch. Meyer, University of Utrecht

Local Organization Co-chairs Henry Prakken, University of Utrecht
Jan Broersen, University of Utrecht

Local Committee Gerard Vreeswijk, University of Utrecht
Davide Grossi, University of Utrecht
Susan van den Braak, University of Utrecht

Program Committee

Co-chairs
Lou Goble Willamette University
John-Jules Ch. Meyer University of Utrecht

Members
Paul Bartha University of British Colombia
Jan Broersen University of Utrecht
Mark Brown Syracuse University
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Roles, Counts-as and Deontic and Action Logics 

José Carmo 

Engineering and Mathematics Department 
University of Madeira 

Campus Universitário da Penteada 
9000-390 Funchal, Madeira, Portugal 

jcc@uma.pt 

An organization may be the subject of obligations and be responsible for not fulfilling 
its obligations. And in order for an organization to fulfill its obligations, it must act. 
But an organization cannot act directly, so someone must act on its behalf (usually 
some member of the organization), and this must be known by the “external world” 
(by the agents that interact with the organization). 

In order to account for this, the organization is usually structured in terms of what 
we may call posts, or roles within the organization, and the statute of the organization 
distributes the duties of the organization among the different posts, specifying the 
norms that apply to those that occupy such positions (that hold such roles), and 
describing who has the power to act in the name of the organization. But this 
description is abstract, in the sense that it does not say which particular person can act 
in the name of the organization; it attributes such power to the holders of some roles. 
Depending on the type of actions, the power to act in the name of an organization may 
be distributed through different posts, and the holders of such posts may (or may not) 
have the permission or the power to delegate such power. On the other hand, those 
that can act in the name of an organization can establish new obligations for the 
organization through their acts, for instance by establishing contracts with other 
agents (persons, organizations, etc.). And in this way we have a dynamic of 
obligations, where the obligations flow from the organization to the holders of some 
roles, and these, through their acts, create new obligations in the organization. 

On the other hand, a person (or, more generally, an agent) can be the holder of 
different roles within the same organization or in different organizations (being the 
subject of potentially conflicting obligations), and can act by playing different roles. 
And in order to know the effects of his acts we must know in which role they were 
played. Thus, it is fundamental to know which acts count as acts in a particular role. 

If we want a logical formalism to abstractly specify and reason about all these 
issues, we need to consider and combine deontic, action and counts-as operators. 
Particularly critical is to decide which kind of action logic we consider. For some 
aspects, like that of describing how the obligations flow from the organization to the 
holders of some posts and how some of the acts of the latter count as acts of the 
organization, it seems it is better to consider a “static” approach based on the “brings 
it about” action operators. On the other hand, if we want to be able to describe the 
dynamics of the obligations deriving, for instance, from the contracts that are made in 
the name of the organization, it seems that a dynamic logic is necessary, or at least 
very useful. However, the combination of the two kinds of logic of actions has proven 
to be not an easy task. This paper addresses these issues. 



Norms and Electronic Institutions

F. Dignum

Institute of Information and Computing Sciences
Utrecht University, The Netherlands

Abstract. The term Electronic Institution seems to be well accepted
in the agent community and to a certain extent also in the e-commerce
research community. However, a search for a definition of an electronic
institution does not yield any results on the Internet. This is different for
the term institution. North [9] defines institutions (more or less) to be a
set of norms that govern the interactions of a group of people. Examples
are family and government. Here we are not so much interested in giving
a very precise definition of an institution, but just want to note that
the concept refers to a very abstract notion of a set of norms or social
structure.

It is not immediately clear how such an abstract set of norms can be
“electronic”. The term electronic institution is therefore a bit misleading.
It actually refers to a description of a set of electronic interaction pat-
terns that might be an instantiation of an institution. E.g. an electronic
auction house (which can be seen as an instantiation of the auction in-
stitution). So, it is not referring (directly) to a set of norms or a social
structure. However, because the term is widely used by now, although it
is not entirely appropriate, we will stick with using the term “electronic
institution” to refer to such a kind of specification.

In contrast to the situation in human society, where these interaction
patterns might emerge over a long period of time and the institution-
alization follows after the stabilizing of these patterns, the electronic
institutions are specifically designed by humans to fit with existing in-
stitutions. E.g. an electronic market can be designed to instantiate the
auction institution. So, the mechanism and interactions to be used in the
electronic market can be designed such that they comply to the norms
specified in the auction institution (e.g. following a bidding protocol to
ensure a fair trade).

If the electronic institution is specified and implemented using a tool
like AMELI [5] then the agents interacting in the institution can only
follow precisely the pre-specified interaction patterns. Any attempt to
perform a deviating action is caught by the so-called governors and has
no effect. Thus if the interaction patterns are such that agents always
interact in a way that keeps the system in a non-violation state according
to the norms of the institution then by definition the agents will never
(be able to) violate any of the norms of the institution.

However, this is not the only way to “instantiate” the set of norms
that define the institution. One of the main characteristics of norms
is that they can be violated. So, how does this relate to the design of
electronic institutions? Should they also allow for violations? If they allow
for violations, what should happen in these violation states?

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 2–5, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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What we are actually looking for is what it means for an electronic
institution to instantiate an (existing) institution (seen as a set of norms)
in this context. And subsequently what are the concepts necessary to
describe all elements of the electronic institution such that one could
“prove” that it actually instantiates the abstract institution.

One obvious way to go ahead is to use (a) deontic logic to specify the
norms and use the same formalism to specify the electronic institution.
This specification can then be used to describe ideal vs. real behavior. It
can also be used to verify compliance to norms and/or to reason about the
combination of norms. We can even use it to check whether the system
has means to return from any possible violation state to a permitted
state.

However, although this approach is a good first step, it does not cap-
ture all the subtleties involved. We will briefly touch upon a few of these
issues in the following.

One immediate problem is the connection of an abstract set of norms
with a concrete specification of interaction patterns. Almost by defini-
tion, the terms used in the norm specification are more abstract than the
terms used in the specification of the electronic institution. E.g. a norm
might mention a prohibition to “reveal” certain information. Because
agents will not have a specific action “reveal”, they will by definition
comply to this norm. However, there is of course a connection between
(sets of) actions that an agent can perform and the abstract action of re-
vealing. This relation is usually given using the counts-as relation. Some
important groundwork on this relation has already been done in [8] but
much work still needs to be done to capture all aspects of it (see e.g. [7]).

Another issue that is also related to levels of abstraction are the tem-
poral aspects of norms. Often norms are abstracting away from the use
of temporal aspects. E.g. the winning bidder in an auction has to pay
for the item she has won. However, in order to compare a norm with a
concrete specification of interactions the temporal aspects are of prime
importance. Does the winning bidder have to pay right away, before some
deadline, at some time in the future,...? So, it seems to be important to
specify the norms at least with some kind of temporal logic in order to es-
tablish this relation. Some first steps in this direction are taken in [2, 1],
but no complete formal analysis is as yet given of a temporal deontic
logic.

A third issue that arises is that some norms seem to relate to the
behavior of a complete organization. E.g. the auction house should ensure
the payment of auctioned items. The question is which agents of the
auction house should take care of this? Should it be only one agent
or more than one? Should there be backups for if an agent fails? In
general this is the question on how a norm for an organization dissipates
over the members of that organization. This depends, of course, on the
organizational structure(s), power relations, knowledge distribution, etc.
Some preliminary work is described in [6, 10].

A fourth issue is that of norm enforcement within the electronic in-
stitution. Basically this can be done in two ways: Preventing a norm
from being violated or checking for the violation of a norm and react-
ing on the violation. A decision on which method to choose depends on



4 F. Dignum

aspects such as efficiency and safety of the electronic institution. It also
reveals another important aspect, if an agent has to enforce a certain
norm it should be able to “know” whether the norm is violated or not.
Often this aspect leads to certain additional interactions which have as
only purpose to gather information necessary to check a violation of a
norm [11]. E.g. if a participant of an auction should be at least 18 years
old, the auction house might institute a registration protocol in which a
participant has to prove he is over 18.

A last issue I would like to mention here is the influence of the exis-
tence of the norms themselves on the behavior of the agents. In human
situations the existence of the norms alone influences the decision process
of the persons. In an electronic institution one might have a more com-
plicated situation where some agents are software agents, while others
are human agents. How does this influence the interactions? Can we ef-
fectively build norm aware agents? Some theory does exist (e.g. [4, 3]),
but no practical implementations yet. Does this function better, more
efficient, or not?

In the above I have risen more questions than given answers. However,
I think they are interesting questions and very relevant if one considers
the more general relation between deontic logic and computer science.
The relation between deontic logic and computer science is also a relation
between the abstract (philosophical logic) and the concrete (engineered
processes). So, besides giving an idea of the place of norms in electronic
institutions, I hope this presentation also encourages some people to
(continue to) perform research in the areas mentioned above.
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Research in logic-based multi-agent modelling has been pushing steadily the
boundaries of the domain models adopted, while associated enquiries on the rela-
tions between constituent entities contribute in turn to an improved understand-
ing of the underlying domain as well as pave the way for moving beyond static
scenarios of analysis (see e.g., Munroe et al. 2003, Boella and van der Torre 2004,
Dastani and van der Torre 2005, as well as theoretical work on dynamic semantics
in logics).

The present talk results from a thread of activities including an ongoing in-
vestigation into the relation between the Emotional and computational models
of situated normative systems (Staller and Petta 2001, Petta 2003) and work
towards the realisation of dynamical representations in multi-agent systems (e.g,
Jung and Petta 2005). In it, we will draw a picture of today’s status in emotion
theorising from the perspective of the ongoing dialogue between computational
and psychological research. We will develop a view of the domain of human
emotions as informed in particular by cognitive appraisal theories and situated
cognition research that illustrates the role of emotions within the coordination
of action and (different kinds of) cognition in social scenarios and tries to clarify
the nature of processes and concepts involved.
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Abstract. In this paper, following the work of Hare, we consider moral rea-
soning not as the application of moral norms and principles, but as reasoning
about what ought to be done in a particular situation, with moral norms per-
haps emerging from this reasoning. We model this situated reasoning drawing on
our previous work on argumentation schemes, here set in the context of Action-
Based Alternating Transition Systems. We distinguish what prudentially ought
to be done from what morally ought to be done, consider what legislation might
be appropriate and characterise the differences between morally correct, morally
praiseworthy and morally excusable actions.

1 Introduction

In Freedom and Reason [7], R.M. Hare, perhaps the leading British moral philosopher
of the twentieth century, notes that:

“There is a great difference between people in respect of their readiness to
qualify their moral principles in new circumstances. One man may be very
hidebound: he may feel that he knows what he ought to do in a certain situation
as soon as he has acquainted himself with its most general features ... Another
man may be more cautious ... he will never make up his mind what he ought
to do, even in a quite familiar situation, until he has scrutinized every detail.”
(p.41)

Hare regards both these extreme positions as incorrect:

“What the wiser among us do is to think deeply about the crucial moral ques-
tions, especially those that face us in our own lives, but when we have arrived
at an answer to a particular problem, to crystallize it into a not too specific or
detailed form, so that its salient features may stand out and serve us again in a
like situation without so much thought.” (p.41–2)

Thus, for Hare, while everyday moral decisions may be made by applying principles
and norms, serious moral decisions require reasoning about the particular situation,

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 8–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and it is such reasoning that gives rise to moral principles. Moral norms are an out-
put from, not an input to, serious moral reasoning. In this paper we will try to model
such reasoning, with a view to enabling autonomous software agents to engage in this
form of reasoning. In doing so we will distinguish at least three things that might be
intended by “agent A should φ”. We might mean something like “it is prudent to φ”,
as when we say “you should wear a coat when the weather is cold”. Here the obliga-
tion is determined only by reference to the interests of the agent doing the reasoning.
Alternatively, we might mean “it is morally right to φ”, as when we say “you should
tell the truth”. Here the obligation is required to reflect the interests not only of the rea-
soning agent, but also of other agents affected by the action. Thirdly, we might mean
“it is legally obligated to φ” as in “you should pay your taxes”, where the obligation
derives from a legal system with jurisdiction over the agent. We will explore the dif-
ferences between these three senses of “should”: in particular we will explain the dif-
ference between prudential “should” and moral “should” in terms of the practical rea-
soning involved, and consider the reasoning that might be used in devising appropriate
legislation.

We will base our considerations on the representation and discussion of a specific
example, a well known problem intended to explore a particular ethical dilemma dis-
cussed by Coleman [5] and Christie [4], amongst others. The situation involves two
agents, called Hal and Carla, both of whom are diabetic. Hal, through no fault of his
own, has lost his supply of insulin and urgently needs to take some to stay alive. Hal is
aware that Carla has some insulin kept in her house, but Hal does not have permission
to enter Carla’s house. The question is whether Hal is justified in breaking into Carla’s
house and taking her insulin in order to save his life. It also needs to be considered
that by taking Carla’s insulin, Hal may be putting her life in jeopardy. One possible
response is that if Hal has money, he can compensate Carla so that her insulin can be
replaced. Alternatively if Hal has no money but Carla does, she can replace her insulin
herself, since her need is not immediately life threatening. There is, however, a serious
problem if neither have money, since in that case Carla’s life is really under threat. Cole-
man argued that Hal may take the insulin to save his life, but should compensate Carla.
Christie’s argument against this was that even if Hal had no money and was unable to
compensate Carla he would still be justified in taking the insulin by his immediate ne-
cessity, since no one should die because of poverty. Thus, argues Christie, he cannot be
obliged to compensate Carla even when he is able to.

In section 2, we model our agents as simple automata and describe Action-Based
Alternating Transition Systems (AATS) [10], which we use as the semantic basis of
our representation, and instantiate an AATS relevant to the problem scenario. In any
particular situation, the agents will need to choose how to act. In section 3 we model
this choice as the proposal, critique and defence of arguments justifying their available
strategies in the manner of [2]. In section 4 we show how reasoning about the result-
ing arguments can be represented as an Argumentation Framework [6, 3] to enable the
agents to identify strategies that are prudentially and morally justified. In section 5 we
consider how this framework can also be used to answer the question of what would be
appropriate legislation for the situation, and what could be appropriate moral principles
to take from the reasoning. Section 6 concludes the paper.
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2 Representing the Problem

For the purposes of our representation three attributes of agents are important: whether
they have insulin (I), whether they have money (M) and whether they are alive (A). The
state of an agent may thus be represented as a vector of three digits, IMA, with I, M and
A equal to 1 if the agent has insulin, has money and is alive, and 0 if these things are
false. Since I cannot be true and A false (the agent will live if it has insulin), an agent
may be in any one of six possible states. We may now represent the actions available to
the agents by depicting them as automata, as shown in Figure 1. An agent with insulin
may lose its insulin; an agent with money and insulin may compensate another agent;
an agent with no insulin may take another’s insulin, or, with money, buy insulin. In any
situation when it is alive, an agent may choose to do nothing; if dead it can only do
nothing.

111

101

011 010

001 000

lose

compensate buy

lose

take

take

do nothing

do nothing

do nothing

do nothing

do nothing

do nothing

Fig. 1. State transition diagram for our agents

Next we draw upon the approach of Wooldridge and van der Hoek [10] which for-
mally describes a normative system in terms of constraints on actions that may be per-
formed by agents in any given state. We will now briefly summarise their approach.

In [10] Wooldridge and van der Hoek present an extension to Alur et al’s Alternating-
time Temporal Logic (ATL) [1] and they call this extension Normative ATL∗ (NATL∗).
As Wooldridge and van der Hoek explain, ATL is a logic of cooperative ability. Its
purpose is to support reasoning about the powers of agents and coalitions of agents in
game-like multi-agent systems. ATL contains an explicit notion of agency, which gives
it the flavour of an action logic. NATL∗ is intended to provide a link between ATL
and deontic logic and the work presented in [10] provides a formal model to represent
the relationship between agents’ ability and obligations. The semantic structures which
underpin ATL are known as Action-based Alternating Transition Systems (AATSs) and
they are used for modelling game-like, dynamic, multi-agent systems. Such systems
comprise multiple agents which can perform actions in order to modify and attempt to
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control the system in some way. In Wooldridge and van der Hoek’s approach they use
an AATS to model the physical properties of the system in question - the actions that
agents can perform in the empty normative system, unfettered by any considerations of
their legality or usefulness. They define an AATS as follows.

Firstly the systems of interest may be in any of a finite set Q of possible states, with
some q0 ∈Q designated as the initial state. Systems are populated by a set Ag of agents;
a coalition of agents is simply a set C ⊆ Ag, and the set of all agents is known as the
grand coalition. Note, Wooldridge and van der Hoek’s usage of the term ‘coalition’
does not imply any common purpose or shared goal: a coalition is simply taken to be a
set of agents.

Each agent i ∈ Ag is associated with a set Aci of possible actions, and it is assumed
that these sets of actions are pairwise disjoint (i.e., actions are unique to agents). The set
of actions associated with a coalition C ⊆ Ag is denoted by AcC , so AcC =

⋃
i∈CAci.

A joint action jC for a coalition C is a tuple 〈α1,...,αk〉, where for each αj (where j≤
k) there is some i ∈ C such that αj ∈ Aci. Moreover, there are no two different actions
αj and αj′ in JC that belong to the same Aci. The set of all joint actions for coalition
C is denoted by JC , so JC =

∏
i∈C Aci. Given an element j of JC and an agent i∈C, i’s

complement of j is denoted by ji.
An Action-based Alternating Transition System (AATS) is an (n + 7)-tuple S = 〈Q,

q0, Ag, Ac1, ... , Acn, ρ, τ, Φ, π〉, where:

– Q is a finite, non-empty set of states;
– q0 ∈ Q is the initial state;
– Ag = {1,...,n} is a finite, non-empty set of agents;
– Aci is a finite, non-empty set of actions, for each i ∈ Ag where Aci ∩ Acj = ∅ for

all i 	= j ∈ Ag;
– ρ : AcAg → 2Q is an action precondition function, which for each action α ∈ AcAg

defines the set of states ρ(α) from which α may be executed;
– τ : Q× JAg → Q is a partial system transition function, which defines the state τ (q,

j) that would result by the performance of j from state q - note that, as this function
is partial, not all joint actions are possible in all states (cf. the precondition function
above);

– Φ is a finite, non-empty set of atomic propositions; and
– π : Q → 2Φ is an interpretation function, which gives the set of primitive propo-

sitions satisfied in each state: if p ∈ π(q), then this means that the propositional
variable p is satisfied (equivalently, true) in state q.

We now turn to representing the Hal and Carla scenario as an AATS. Recall from
section 2 that each agent may independently be in one of six states, giving 36 possible
states for the two agents, q0 .. q35. Normally both agents will have insulin, but we are
specifically interested in the situations that arise when one of them (Hal) loses his in-
sulin. The initial state therefore may be any of the four states in which IH = 0. Moreover,
since Hal is supposed to have no time to buy insulin, his only available actions in these
states, whether or not MH = 1, are to take Carla’s insulin or do nothing. If Hal does
nothing, neither agent can act further. If Hal takes Carla’s insulin and if MH = 1, then
Hal can compensate Carla or do nothing. Similarly, after Hal takes the insulin, Carla, if
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MC = 1, can buy insulin or do nothing. The possible developments from the four initial
states are shown in Figure 2. States are labelled with the two vectors IHMHAH (on the
top row) and ICMCAC (on the bottom row), and the arcs are labelled with the joint
actions (with the other labels on the arcs to be explained in section 4).
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Fig. 2. Developments from the four possible initial states

The instantiation of the problem as an AATS is summarised below. We give only the
joint actions and the transitions relevant to this particular scenario.

States and Initial States:
Q = {q0, ..., q35}. The initial state is one of four, as shown in the diagram in Figure 2.

Agents, Actions and Joint Actions:
Ag = {H, C} AcH={takeH , compensateH , do nothingH} AcC = {buyC , do nothingC}

JAG={j0, j1, j2, j3,}, where j0=〈do nothingH , do nothingC〉, j1 = 〈takeH , do nothingC〉,
j2=〈do nothingH , buyC〉, j3=〈compensateH , do nothingC〉.

Propositional Variables:
Φ = {insulinH , moneyH , aliveH , insulinC , moneyC , aliveC}
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Transitions/Pre-conditions/Interpretation are given in Table 1:

Table 1. Transitions/Pre-conditions/Interpretation

q\j j0 j1 j2 j3 π (q)
q0 q5 q4 – – {aliveH , insulinC , aliveC}
q1 q7 q6 – – {aliveH , insulinC , moneyC , aliveC}
q2 q9 q8 – – {moneyH , aliveH , insulinC , aliveC}
q3 q11 q10 – – {moneyH , aliveH , insulinC , moneyC , aliveC}
q4 q12 – – – {insulinH , aliveH , aliveC}
q5 – – – – {insulinC , aliveC}
q6 q13 – q14 – {insulinH , aliveH , moneyC , aliveC}
q7 – – – – {insulinC , moneyC , aliveC}
q8 q15 – – q14 {insulinH , moneyH , aliveH , aliveC}
q9 – – – – {moneyH , insulinC , aliveC}
q10 q18 – q17 q16 {insulinH , moneyH , aliveH , moneyC , aliveC}
q11 – – – – {moneyH , insulinC , moneyC , aliveC}
q12 q12 – – – {insulinH , aliveH}
q13 q13 – – – {insulinH , aliveH , moneyC}
q14 q14 – – – {insulinH , aliveH , insulinC , aliveC}
q15 q15 – – – {insulinH , moneyH , aliveH}
q16 q16 – – – {insulinH , aliveH , insulinC , moneyC , aliveC}
q17 q17 – – q16 {insulinH , moneyH , aliveH , insulinC , aliveC}
q18 q18 – – – {insulinH , moneyH , aliveH , moneyC}

3 Constructing the Arguments

In [2] we have proposed an argument scheme and associated critical questions to enable
agents to propose, attack and defend justifications for action. Such an argument scheme
follows Walton [9] in viewing reasoning about action (practical reasoning) as presump-
tive justification - prima facie justifications of actions can be presented as instantiations
of an appropriate argument scheme, and then critical questions characteristic of the
scheme used can be posed to challenge these justifications. The argument scheme we
have developed is an extension of Walton’s sufficient condition scheme for practical
reasoning [9] and our argument scheme is stated as follows:

AS1 In the current circumstances R
We should perform action A
Which will result in new circumstances S
Which will realise goal G
Which will promote some value V.

In this scheme we have made Walton’s notion of a goal more explicit by separating
it into three elements: the state of affairs brought about by the action; the goal (the
desired features in that state of affairs); and the value (the reason why those features
are desirable). Our underlying idea in making this distinction is that the agent performs
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an action to move from one state of affairs to another. The new state of affairs may
have many differences from the current state of affairs, and it may be that only some
of them are significant to the agent. The significance of these differences is that they
make the new state of affairs better with respect to some good valued by the agent.
Note that typically the new state of affairs will be better through improving the lot of
some particular agent: the sum of human happiness is increased only by increasing
the happiness of some particular human. In this paper we take the common good of all
agents as the aggregation of their individual goods. It may be that there are common
goods which are not reflected in this aggregation: for example, if equality is such a
common good, increasing the happiness of an already happy agent may diminish the
overall common good. For simplicity, we ignore such possibilities here.

Now an agent who does not accept this presumptive argument may attack the con-
tentious elements in the instantiation through the application of critical questions. We
have elaborated Walton’s original four critical questions associated with his scheme by
extending them to address the different elements identified in the goal in our new argu-
ment scheme. Our extension results in sixteen different critical questions, as we have
described in [2]. In posing such critical questions agents can attack the validity of the
various elements of the argument scheme and the connections between them, and addi-
tionally there may be alternative possible actions, and side effects of the proposed ac-
tion. Each critical question can be seen as an attack on the argument it is posed against
and examples of such critical questions are: “Are the circumstances as described?”,
“Does the goal promote the value?”, “Are there alternative actions that need to be con-
sidered?”. The full list of critical questions can be found in [2].

To summarise, we therefore believe that in an argument about a matter of practical
action, we should expect to see one or more prima facie justifications advanced stating,
explicitly or implicitly, the current situation, an action, the situation envisaged to result
from the action, the features of that situation for which the action was performed and
the value promoted by the action, together with negative answers to critical questions
directed at those claims. We now describe how this approach to practical reasoning can
be represented in terms of an AATS.

In this particular scenario we recognise two values relative to each agent: life and
freedom (the ability to act in a given situation). The value ‘life’ (L) is demoted when
Hal or Carla cease to be alive. The value ‘freedom’ (F) is demoted when Hal or Carla
cease to have money. The arcs in Figure 2 are labelled with the value demoted by a
transition, subscripted to show the agent in respect of which it is demoted. We can now
examine the individual arguments involved.

In all of q0 – q3, the joint action j0 demotes the value ‘life’ in respect of Hal, whereas
the action j1 is neutral with regard to this value. We can instantiate argument scheme
AS1 by saying where Hal has no insulin he should take Carla’s to avoid those states
where dying demotes the value ‘life’.

A1: Where Insulinh = 0, Takeh (i.e. j1), To avoid Aliveh = 0, Which demotes Lh.

Argument A2 attacks A1 and it arises from q0 where Hal taking the insulin leads to
Carla’s death and thus demotes the value ‘life Carla’. By ‘not take’ we mean any of the
other available actions.
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A2 attacks A1: Where Moneyc = 0, Not Takeh (i.e. j0 or j2), To avoid Alivec = 0, Which
demotes Lc.

Argument A3 arises from q2 where Carla’s death is avoided by Hal taking the insulin
and paying Carla compensation.

A3 attacks A2 and A5: Where Insulinh = 0, Takeh and Compensateh (i.e. j1 followed
by j3), To achieve Alivec = 1 and Moneyc = 1, Which promotes Lc and Fc.

Argument A4 represents a critical question directed at A2 which challenges the fac-
tual premise of A2, that Carla has no money.

A4 attacks A2: Moneyc = 1, (Known to Carla but not Hal)

Next argument A5 mutually attacks A3 and it also attacks A2. A5 states that where
Hal has no insulin but he does have money, then he should take Carla’s insulin and she
should buy some more. The consequences of this are that Carla remains alive, promot-
ing the value ‘life Carla’, and, Hal has money, promoting the value ‘freedom Hal’.

A5 attacks A3 and A2: Where Insulinh = 0 and Moneyh = 1, Takeh and Buyc (i.e. j1
followed by j2), To achieve Alivec = 1 and Moneyh = 1, Which promotes Lc and Fh.

Argument A6 critically questions A5 by attacking the assumption in A5 that Carla
has money.

A6 attacks A5: Moneyc = 0 (Known to Carla but not Hal)

Another attack on A5 can be made by argument A7 stating that where Carla has
money then she should not buy any insulin so as to avoid not having money, which
would demote the value ‘freedom Carla’.

A7 attacks A5: Where Moneyc = 1, Not Buyc (i.e. j0 or j1 or j3), To avoid Moneyc = 0,
Which demotes Fc.

A8 is a critical question against A3 which states that where Hal does not have money,
taking the insulin and compensating Carla is not a possible strategy.

A8 attacks A3: Where Moneyh = 0, Takeh and Compensateh (i.e. j1 followed by j3), Is
not a possible strategy.

A8 is attacked by argument A9 which challenges the assumption in A8 that Hal has
no money, and A9 is in turn attacked by A10 which challenges the opposite assumption,
that Hal does have money.

A9 attacks A8 and A11: Moneyh = 1 (Known to Hal but not Carla)
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A10 attacks A9: Moneyh = 0 (Known to Hal but not Carla)

Argument A11 attacks A1 in stating that where Hal does not have money but Carla
does, then Hal should not take the insulin to avoid Carla being left with no money,
which would demote the value of ‘freedom Carla’.

A11 attacks A1: Where Moneyh = 0 and Moneyc = 1, Not Takeh (i.e. j0), To avoid
Moneyc = 0, Which demotes Fc.

Argument A12 can attack A5 by stating that in the situations where Hal does not
have insulin, then he should take Carla’s insulin but not compensate her. This would
avoid him being left with no money, as when Hal has no money the value ‘freedom
Hal’ is demoted.

A12 attacks A5: Where Insulinh = 0, Takeh and Not Compensateh (i.e. j1 followed by
j0 or j2), To avoid Moneyh = 0, Which demotes Fh.

Finally, argument A13 attacks A2 by stating that where Hal has no insulin and no
money he should take Carla’s insulin and she should buy some. This would ensure that
Carla stays alive, promoting the value ‘life Carla’.

A13 attacks A2: Where Insulinh = 0 and Moneyh = 0, Takeh and Buyc (i.e. j1 followed
by j2), To achieve Alivec = 1, Which promotes Lc.

This concludes the description of the arguments and attacks that can be made by
instantiating argument scheme AS1 and posing appropriate critical questions.

4 Evaluating the Arguments

In the previous section we identified the arguments that the agents in our problem situa-
tion need to consider. In order to evaluate the arguments and see which ones the agents
will accept, we organise the arguments into a Value Based Argumentation Framework
(VAF) [3]. VAFs extend the Argumentation Frameworks introduced by Dung in [6], so
as to accommodate different audiences with different values and interests. The key no-
tion in Dung’s argumentation framework is that of a preferred extension (PE), a subset
of the arguments in the framework which:

– is conflict free, in that no argument in the PE attacks any other argument in the PE;
– is able to defend every argument in the PE against attacks from outside the exten-

sion, in that every argument outside the PE which attacks an argument in the PE is
attacked by some argument in the PE;

– is maximal, in that no other argument can be added to the PE without either intro-
ducing a conflict or an argument that cannot be defended against outside attacks.

In a VAF strengths of arguments for a particular audience are compared with ref-
erence to the values to which they relate. An audience has a preference order on the
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values of the arguments, and an argument is only defeated for that audience if its value
is not preferred to that of its attacker. We then replace the notion of attack in Dung’s PE
by the notion of defeat for an audience to get the PE for that audience. We represent
the VAF as a directed graph, the vertices representing arguments and labelled with an
argument identifier and the value promoted by the argument, and the edges represent-
ing attacks between arguments. Attacks arise from the process of critical questioning,
as described in the previous section, not from an analysis of the arguments themselves.
The values promoted by the arguments are identified in the instantiations of the argu-
ment scheme presented in the previous section. The VAF for our problem scenario is
shown in Figure 3. Note that two pairs of arguments, A4–A6 and A9–A10 relate to
facts known only to Carla and Hal respectively. In order to bring these into a value
based framework, we ascribe the value “truth” to statements of fact, and as in [3], truth
is given the highest value preference for all audiences, since while we can choose what
we consider desirable, we are constrained by the facts to accept what is true.
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Fig. 3. VAF for the problem scenario

The questions posed by the problem scenario are whether Hal should take the insulin
and whether Hal should compensate Carla. We answer these questions by finding the
preferred extensions (PE) of the framework for various audiences. Note that the PE may
contain both arguments providing reasons for performing an action and for not perform-
ing it. The actions which will be chosen are those supported by effective arguments, that
is, those which do not feature in an unsuccessful attack. Thus in q0, for example, A2,
which provides a reason for Hal not to take the insulin, is not attacked and so will be
in the PE. If, however, we prefer LH to LC , A1, which gives a reason for Hal to take
the insulin will also be included. In such a case A2 is ineffective and so Hal should take
the insulin, despite there being reasons against this action which cannot be countered
through argument. If A1 is in the PE it is always effective since it attacks nothing, and
so if A1 is present then Hal should take the insulin. If A3, which gives a reason for Hal
to compensate Carla, is included it is also always effective since it always defeats A2,
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because its values are a superset of A2, and it must defeat A5 or be defeated by it. If both
A1 and A3 are in the PE, Hal should take the insulin and compensate Carla. If A3, but
not A1, is present Hal should take the insulin only if he then compensates Carla. What
we must do therefore is to consider for which audiences A1 and A3 appear in the PE.

For this discussion we will assume that the agents are part of a common culture in
which the value life is preferred to the value freedom. This seems reasonable in that life
is a precondition for any exercise of freedom. There will therefore be no audience with
a value order in which FA > LA, for any agent A, although of course it is possible for
an agent to prefer its own freedom to the life of another.

First we note that {A7, A11, A12} are not attacked and so will appear in every PE.
Immediately from this we see that A1 will not appear in any PE of an audience for
which FC ≥ LH , and that A3 will not appear in any PE of an audience for which FH

≥ LC . A5 will never be defeated by A7, since LC > FC for all audiences.
To proceed we must now resolve the factual issues which determine the conflicts

A4–A6 and A9–A10. Thus we need to consider the initial states q0 – q3 separately.
In states q0 and q1 A10 defeats A9 and hence A8 is included. Since truth is the high-

est value this will exclude A3 (reasonably enough since Hal cannot pay compensation).
In q0 A6 defeats A4, A5 and A13, so that A2 is no longer attacked, and will be in the
PE. In the presence of A2, we can include A1 only if LH > LC . Thus for q0 the PE
will be {A2, A6, A7, A8, A10, A11, A12} extended with A1 for audiences for which
LH > LC > FC . In q1 A4 defeats A6 so A13 will be included. A4 also defeats A2 so
A1 will be included for audiences for which LH > FC . Thus for q1 the PE will be {A4,
A13, A7, A8, A10, A11, A12} extended with A1 for audiences for which LH > FC .
In q2 and q3 A9 will defeat A10, A8 and A13. In q2 A6 defeats A4 and A5, so A3 will
now be included for audiences for which LC > FH . If A3 is included A2 is defeated
and A1 included, provided LH > FC . So the PE for q2 will be {A6, A7, A9, A11,
A12} extended by A3 for audiences for which LC > FH and by A1 for audiences for
which LH > FC . Finally in q3, A4 defeats A6 and A2, so A1 is included if LH > FC .
A5 and A3 are now in mutual conflict, and the conflict will be resolved depending on
whether FC or FH is preferred. Thus the PE in q3 will contain {A4, A7, A9, A11,
A12}, extended by A1 if LH > FC , by A3 if FC > FH and by A5 if FH > FC .

We can now summarise the status of A1 and A3 in Table 2.

Table 2. Status of A1 and A3

Initial State A1 included if: A3 included if:
q0 LH > LC > FC never
q1 LH > FC never
q2 LH > FC LC > FH

q3 LH > FC FC > FH

A5 included otherwise

From this we can see that if the interests of Hal are ranked above those of Carla, Hal
should take the insulin and not pay compensation, whereas if the interests of Carla are
ranked above those of Hal, then Hal should take the insulin only if he pays for it. These
two positions thus express what is prudentially right for Hal and Carla respectively.
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From the standpoint of pure morality, however, people should be treated equally:
that is (LH = LC) > (FH = FC ). Remember, that if the problem is considered in the
abstract, one does not know if one will be the person who loses the insulin: one may
find oneself playing the role of Hal or Carla, and so there is no reason to prefer one
agent to the other. If this perspective is adopted, then Hal should take the insulin in all
situations other than q0, and is obliged to compensate only in q2, since there are two
PEs in q3. We can see this as representing the morally correct judgement, the judgement
that would be arrived at by a neutral observer in full possession of the facts.

However, the point about being in full possession of the facts is important. In prac-
tice we need to evaluate the conduct of the agents in the situations in which they find
themselves. In our scenario Hal cannot know whether or not Carla is in a position to
replace the insulin herself: for Hal, q0 is epistemically indistinguishable from q1, and
q2 is epistemically indistinguishable from q3. Now consider Hal in q2/q3. He will of
course take the insulin and justify this by saying that his life is more important than
Carla’s freedom of choice with regard to her money. In a society which rates L > F,
this will be accepted. Thus Hal should take the insulin. If he then chooses to compen-
sate, he can be sure of acting in a morally acceptable manner, since this is required in
q2 and appears in one of the alternative PEs in q3. If, on the other hand, he does not
compensate, while he may attempt justification in q3 by saying that he saw no reason
to prefer Carla’s freedom of choice to his own, in q2 he would have to argue that his
freedom of choice is preferred to Carla’s life. This justification will be rejected for the
same reason that the justification for taking the insulin at all was accepted, namely that
L > F. Morally, therefore, in q2/q3, Hal should take the insulin and compensate Carla.

Now consider q0/q1, where compensation is impossible. In q1 taking the insulin is
justifiable by L > F. In q0, however, the justification is only LH > LC . Hal’s problem,
if this is not acceptable, is that he cannot be sure of acting in a morally correct manner,
since he could take the insulin in q1 and not take it in q0. Our view is that taking the
insulin should be seen as morally excusable, even in q0 although not morally correct1,
since the possibility of the actual state being q1 at least excuses the preference of Hal’s
own interests to Carla’s. The alternative is to insist on Hal not taking the insulin in q1,
which could be explained only by LH ≤ FC , and it seems impossibly demanding to
expect Hal to prefer Carla’s lesser interest to his own greater interest.

5 Moral, Prudential and Legal “Ought”

In our discussion in the previous section we saw that what an agent should do can
be determined by the ordering the agent places on values. This ordering can take into

1 This distinction is merely our attempt to capture some of the nuances that are found in every-
day discussions of right and wrong. There is considerable scope to explore these nuances,
which are often obscured in standard deontic logic. See, for example, the discussion in [8]
which distinguishes: what is required (what morality demands); what is optimal (what moral-
ity recommends); the supererogatory (exceeding morality’s demands); the morally indifferent;
the permissible suboptimal; the morally significant; and the minimum that morality demands.
Clearly a full consideration of these nuances is outside the scope of this paper, but we believe
that our approach may offer some insight into this debate.
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account, or ignore, which of the agents the values relate to. Prudential reasoning takes
account of the different agents, with the reasoning agent preferring values relating to
itself, whereas strict moral reasoning should ignore the individual agents and treat the
values equally. In fact there are five possible value orders which respect L > F, and
which order the agents consistently.

V01 Morally correct: values are ordered: within each value agents are treated equally,
and no distinctions relating to agents are made. In our example, for Hal: (LH =
LC) > (FH = FC ).

V02 Self-Interested: values are ordered as for moral correctness, but within a value an
agent prefers its own interests. In our example, for Hal: LH > LC > FH > FC .

V03 Selfish: values are ordered, but an agent prefers its own interests to those of other
agents: In our example, for Hal: LH > FH > LC > FC .

V04 Noble: values are ordered as for moral correctness, but within a value an agent
prefers the other’s interests. In our example, for Hal: LC > LH > FC > FH .

V05 Sacrificial: values are ordered, but an agent prefers the other’s interests to its own.
In our example, for Hal: LC > FC > LH > FH .

Note that the morally correct order is common to both agents, while the orders for
self-interested Hal and noble Carla are the same, as are those for selfish Hal and sacri-
ficial Carla.

Now in general an agent can determine what it should do by constructing the VAF
comprising the arguments applicable in the situation and calculating the PE for that
VAF using some value order. Using VO1 will give what it morally should do and VO3
what it prudentially should do.

It is, however, possible that there will not be a unique PE: this may be either because
the value order cannot decide a conflict (as with A3 and A5 when using VO1 in q3
above), or because the agent lacks the factual information to resolve a conflict (as with
Hal with respect to A4 and A6 above). In this case we need to consider all candidate
PEs. In order to justify commitment to an action the agent will need to use a value order
which includes the argument justifying the action in all candidate PEs.

Consider q3 and VO1: we have two PEs, {A1, A3, A4, A7, A9, A11, A12} and {A1,
A4, A5, A7, A9, A11, A12}. A1 is in both and it is thus morally obligatory to take the
insulin. A3 on the other hand is in one PE but not the other and so both compensate
and not compensate are morally correct in q3. It is possible to justify A3 by choosing a
value order with FH > FC , or A5 by choosing a value order with FC > FH . Thus in q3
a selfish or a self-interested agent will not compensate, whereas a noble or sacrificing
one will. Either choice is, however, consistent with the morally correct behaviour. Next
we must consider what is known by the reasoning agent. Consider Hal in q2/q3, where
we have three PEs to take into account. The relevant PE for q2 is {A1, A3, A6, A7,
A9, A11, A12} and as A1 is in all three, taking the insulin is obligatory. To exclude A3
from the PE for q2, the preference FH > LC is required. Here legitimate self-interest
cannot ground a choice: this preference is only in VO3, which means that only a selfish
agent will not compensate. In q2, however, failing to compensate is not consistent with
morally correct behaviour, and an agent which made this choice would be subject to
moral condemnation. VO2 cannot exclude A3 from the PE in q2, and so cannot rule
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out compensation. Therefore, the agent must, to act morally, adopt VO4 or VO5, and
compensate, even if the state turns out to be q3.

In q0/q1, we have two PEs for Hal using VO1: from q0 {A2, A6, A7, A8, A10, A11,
A12} and from q1 {A1, A4, A5, A7, A8, A10, A11, A12, A13}. Here A3 is always
rejected, reflecting the fact that compensation is impossible. Hal must, however, still
choose whether to take the insulin or not. This means that he must adopt a value order
which either includes A1 in the PE for both q0 and q1, or which excludes it from both.
A1 can be included in both given the preference LH > LC . A1 can, however, only be
excluded from the PE for q1 if FC > LH . VO4 does not decide the issue: thus Hal must
choose between self-interest (VO2) and being sacrificial (VO5). Neither choice will be
sure to be consistent with morally correct behaviour: VO2 will be wrong in q0 and V5
will be wrong in q1, where the sacrifice is an unnecessary waste. It is because it is
unreasonable to require an agent to adopt VO5 (for Carla to expect Hal to do this would
require her to adopt the selfish order VO1), that we say that it is morally excusable for
Hal to take the insulin in q0/q1.

The above discussion suggests the following. An agent must consider the PEs relat-
ing to every state which it may be in. An action is justified only if it appears in every
PE formed using a given value order.

– If VO1 justifies an action, that action is morally obligatory.
– If VO1 does not produce a justified action, then an action justified under VO2, VO4

or VO5 is morally permissible.
– If an action is justified only under VO3, then that action is prudentially correct, but

not morally permissible.

Amongst the morally permissible actions we may discriminate according to the de-
gree of preference given to the agent’s own interests and we might say that: VO2 gives
actions which are morally excusable, VO4 gives actions which are morally praisewor-
thy, and VO5 gives actions which are supererogatory, beyond the normal requirements
of morality2.

We may now briefly consider what might be appropriate legislation to govern the
situation. We will assume that the following principle governs just laws: that citizens
are treated equally under the law. This in turn means that the legislator can only use
VO1, as any other ordering requires the ability to discriminate between the interests of
the agents involved. We will also assume that the legislator is attempting to ensure that
the best outcome (with regard to the interests of all agents) is reached from any given
situation. Thus in our example, from q0 the legislature will be indifferent between q5
and q12; from q1 and q2 they will wish to reach q14; and from q3 they will be indifferent
between q16 and q17. Now consider the following possible laws:

Law 1. Any agent in Hal’s position should be obliged to take the insulin absolutely.
This may lead to q14 if such an agent does not compensate in q2, and so may not
achieve the desired ends. Moreover, in q0 this requires that q12 rather than q5 be
reached, which prefers the interests of agents in Hal’s position to agents in Carla’s
position.

2 Again, this is merely our suggestion for possible moral nuances.
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Law 2. Any agent in Hal’s position is forbidden to take the insulin unless he pays
compensation. This fails to produce the desired outcome in q1, where it leads to q7.

Law 3. Any agent in Hal’s position is permitted to take the insulin, but is obliged to
compensate if he is able to. This will reach a desired outcome in all states, and is
even-handed between agents in Hal and Carla’s positions in q0. In q3, however, it
favours the interests of agents in Carla’s position over agents in Hal’s position by
determining which of the two agents ends up with money.

Law 4. Any agent in Hal’s position is obliged to take the insulin and obliged to com-
pensate if able to. This will reach a desired state in every case, but favours agents
in Hal’s position in q0 and agents in Carla’s position in q3.

Thus if we wish to stick with the principle of not favouring the interests of either
agent, we can only permit Hal to take the insulin and permit Hal to pay compensation:
none of the proposed laws are at once even-handed and desirable in all of the possible
situations. Under this regime we have no problem in q0: the states reached are of equal
value, and it is Hal, not the state, who chooses whose interest will be favoured. In q1
we will reach a desired state provided Hal is not sacrificial. In q2 we must rely on Hal
not being selfish, and acting in a moral fashion. Finally in q3 we reach a desired state
and again Hal chooses whose interests will be favoured. Provided that we can expect
agents to act in a morally acceptable, but not supererogatory, fashion, and so use VO2
or VO4, the desired outcomes will be reached. It may be, however, that the legislature
will take the view that favouring Carla in q3 is a price worth paying to prevent selfish
behaviour on the part of Hal in q2, and pass Law 3. This is a political decision, turning
on whether the agents are trusted enough to be given freedom to choose and the moral
responsibility that goes with such freedom. A very controlling legislature might even
pass Law 4, which gives the agents no freedom of choice, but which reaches the desired
state even when agents act purely in consideration of their own interests.

Finally we return to the initial observations of Hare: is it possible to crystallise our
reasoning into “not too specific and not too detailed form”? What moral principle might
Hal form? First moral principles which apply to particular states would be too specific.
In practice Hal would never have sufficient knowledge of his situation to know which
principle to apply. On the other hand, to frame a principle to cover all four states would
be arguably too general, as it would ignore pertinent information. In states q2/q3, the
appropriate moral principle is to take and compensate: this ensures that moral censure
is avoided, and although it may be, if the state turns out to be q3, that Carla’s interests
are favoured, Hal is free to make this choice, even if we believe that the state should
not impose it. In q0/q1, the choice is not so clear: since moral correctness cannot be
ensured, either taking or not taking the insulin is allowed. While taking it is morally
excusable, and so an acceptable principle, Hal is free to favour Carla’s interests over his
own, provided that it is his own choice to do so. While Hal cannot be compelled, or even
expected, to be sacrificial, he cannot be morally obliged to be self-interested either.

6 Concluding Remarks

In this paper we have described how agents can reason about what they ought to do
in particular situations, and how moral principles can emerge from this reasoning. An
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important feature is how their choices are affected by the degree of consideration given
to the interests of the other agents involved in the situation, which is captured by an
ordering on the values used to ground the relevant arguments. Different value orders
will attract varying degrees of moral praise and censure.

In future work we will wish to consider further the relation between the various kinds
of “ought” we have identified here. In particular, it might be conjectured that reasoning
with the morally reasonable value orders VO2 and VO4 will always lead to an outcome
which is desirable when aggregating the interests of the agents involved. Another in-
teresting line of inquiry would be to increase the number of agents involved, and to
consider the effect of agents having different attitudes towards the others depending
on their inter-relationships, modelling notions such as kinship, community and national
groupings. A third interesting line of inquiry would be to see whether this approach
gives insight into the emergence of norms of cooperation. Finally, we intend to fully
formalise, in terms of an AATS, the instantiations of arguments in the form of our ar-
gument scheme, AS1, and the critical questions that accompany this scheme. This will
enable our approach to be fully automatable and it forms the basis of our current work.
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Abstract. Logical architectures combine several logics into a more complex log-
ical system. In this paper we study a logical architecture using input/output op-
erations corresponding to the functionality of logical components. We illustrate
how the architectural approach can be used to develop a logic of a normative
system based on logics of counts-as conditionals, institutional constraints, oblig-
ations and permissions. In this example we adapt for counts-as conditionals and
institutional constraints a proposal of Jones and Sergot, and for obligations and
permissions we adapt the input/output logic framework of Makinson and van der
Torre. We use our architecture to study logical relations among counts-as con-
ditionals, institutional constraints, obligations and permissions. We show that in
our logical architecture the combined system of counts-as conditionals and insti-
tutional constraints reduces to the logic of institutional constraints, which again
reduces to an expression in the underlying base logic. Counts-as conditionals and
institutional constraints are defined as a pre-processing step for the regulative
norms. Permissions are defined as exceptions to obligations and their interaction
is characterized.

1 Introduction

In this paper we are interested in logical architectures. The notion of an ‘architecture’
is used not only in the world of bricks and stones, but it is used metaphorically in
many other areas too. For example, in computer science it is used to describe the hard-
or software organization of systems, in management science it is used to describe the
structure of business models in enterprise architectures [16], and in psychology and
artificial intelligence it is used to describe cognitive architectures of agent systems like
SOAR [15], ACT [2] or PRS [13]. Though architectures are typically visualized as a di-
agram and informal, there are also various formal languages to describe architectures,
see, for example, [16]. The notion of architecture reflects in all these examples an ab-
stract description of a system in terms of its components and the relations among these
components. This is also how we use the metaphor in this paper. In logic and knowl-
edge representation, architectures combine several logics into a more complex logical
system.

Advantages of the architectural approach in logic are that logical subsystems can
be analyzed in relation to their environment, and that a divide and conquer strategy
can reduce a complex theorem prover to simpler proof systems. These advantages are
related to the advantages of architectural approaches in other areas. For example, in
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computer science a devide and conquer strategy is used frequently to develop com-
puter systems. In this area, the architectural approach is used also to bridge the gap
between formal specification and architectural design, and to facilitate the communi-
cation among stakeholders discussing a system, using visual architectural description
languages [16].

The logical architecture we introduce and discuss in this paper is based on an ar-
chitecture we recently introduced for normative multiagent systems [7]. In Figure 1,
components are visualized by boxes, and the communication channels relating the
components are visualized by arrows. There are components for counts-as condition-
als (CA), institutional constraints (IC), obligations (O) and permissions (P). Moreover,
the norm base (NB) component contains sets of norms or rules, which are used in the
other components to generate the component’s output from its input. This component
does not have any inputs, though input channels can be added to the architecture to rep-
resent ways to modify the norms. The institutional constraints act as a wrapper around
the counts-as component to enable the connection with the other components, as ex-
plained in detail in this paper. The open circles are ports or interface nodes of the com-
ponents, and the black circles are a special kind of merge nodes, as explained later
too. Note that the architecture is only an abstract description of the normative system,
focussing on the relations among various kinds of norms, but for example abstracting
away from sanctions, control systems, or the roles of agents being played in the system.

Fig. 1. A Logical Architecture of a Normative System

Figure 1 is a visualization of a logical architecture, where logical input/output oper-
ations correspond to the functionality of components. Considering a normative system
as an input/output operation is not unusual. For example, inspired by Tarski’s defin-
ition of deductive systems, Alchourrón and Bulygin [1] introduce normative systems
with as inputs factual descriptions and as output obligatory and permitted situations.
For counts-as conditionals and institutional constraints we adapt a proposal of Jones
and Sergot [14], and for obligations and permissions we adapt the input/output logic
framework of Makinson and van der Torre [17]. Moreover, we use Searle’s distinction
between regulative and constitutive norms [21], and brute and institutional facts.
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The contribution of the paper thus lies not in the components, but in their mutual
integration. Rather than following some highly general template for such an integration
we stick closely to the contours of the specific domain: complex normative structures
with multiple components. We focus on two kinds of interactions.

The main issue in the logical architecture is the relation among regulative and con-
stitutive norms, that is, among on the one hand obligations and permissions, and on the
other hand so-called counts-as conditionals. The latter are rules that create the possibil-
ity of or define an activity. For example, according to Searle, “the activity of playing
chess is constituted by action in accordance with these rules. Chess has no existence
apart from these rules. The institutions of marriage, money, and promising are like the
institutions of baseball and chess in that they are systems of such constitutive rules or
conventions.” They have been identified as the key mechanism to normative reasoning
in dynamic and uncertain environments, for example to realize agent communication,
electronic contracting, dynamics of organizations, see, e.g., [6].

Extending the logical analysis of the relation between constitutive and regulative
norms, we also reconsider the relation between obligations and permissions in our ar-
chitecture. In the deontic logic literature, the interaction between obligations and per-
missions has been studied in some depth. Von Wright [22] started modern deontic logic
literature by observing a similarity between the relation between on the one hand ne-
cessity and possibility, and on the other hand obligation and permission. He defined
permissions as the absence of a prohibition, which was later called a weak permission.
Bulygin [10] argues that a strong kind of permissions must be used in context of mul-
tiple authorities and updating normative systems: if a higher authority permits you to
do something, a lower authority can no longer make it prohibited. Moreover, Makinson
and van der Torre distinguish backward and forward positive permissions [19]. In this
paper we consider permissions as exceptions of obligations.

This paper builds on the philosophy and technical results of the input/output logic
framework. Though we repeat the basic definitions we need for our study, some knowl-
edge of input/output logic [17] or at least of its introduction [20] is probably needed.
The development of input/output logic has been motivated by conditional norms, which
do not have a truth value. For that reason, the semantics of input/output logic given by
Makinson and van der Torre is an operational semantics, which characterizes the out-
put as a function of the input and the set of norms. However, classical semantics for
conditional norms exists too. Makinson and van der Torre illustrate how to recapture
input/output logic in modal logic, and thus give it a classical possible worlds semantics.
More elegantly, as illustrated by Bochman [4], the operational semantics of input/output
logic can be rephrased as a bimodel semantics, in which a model of a set of conditionals
is a pair of partial models from the base logic (in this paper, propositional logic).

The layout of this paper is as follows. We first represent a fragment of Jones and
Sergot’s logic of counts-as conditionals as an input/output operation, then we represent
their logic of institutional constraints as an input/output operation, and characterize their
interaction. Thereafter we adapt Makinson and van der Torre’s logic of input/output for
multiple constraints, and we characterize the interaction among institutional constraints
and obligations. Finally we introduce permissions as an input/output operation with
multiple outputs, and we use them as exceptions to obligations.
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2 Counts-as Conditionals (Constitutive Norms)

For Jones and Sergot [14], the counts-as relation expresses the fact that a state of affairs
or an action of an agent “is a sufficient condition to guarantee that the institution creates
some (usually normative) state of affairs”. Jones and Sergot formalize this introducing a
conditional connective⇒s to express the “counts-as” connection holding in the context
of an institution s. They characterize the logic for ⇒s as a conditional logic together
with axioms for right conjunction,

((A ⇒s B) ∧ (A ⇒s C)) ⊃ (A ⇒s (B ∧ C))

left disjunction,

((A⇒s C) ∧ (B ⇒s C)) ⊃ ((A ∨B) ⇒s C)

and transitivity.
((A⇒s B) ∧ (B ⇒s C)) ⊃ (A ⇒s C)

Moreover, they consider other important properties not relevant here.
In this paper, we consider an input/output operation corresponding to the functional-

ity of the counts-as component. This means that we restrict ourselves to the flat condi-
tional fragment of Jones and Sergot’s logic. Despite this restriction, we can still express
the relevant properties Jones and Sergot discuss.1 The input of the operation is a set
of counts-as conditionals CA, a normative system or institution s, and the sufficient
condition x, and an output is a created state of affairs y. Calling the operation outCA,
we thus write y ∈ outCA(CA, s, x). To relate the operation to the conditional logic, we
equivalently write (x, y) ∈ outCA(CA, s), where (x, y) is read as “x counts as y”.

Jones and Sergot propose a combined logic that incorporates besides the conditional
logic also an action logic. We therefore assume a base action logic on which the in-
put/output operation operates. This may be a logic of successful action as adopted by
Jones and Sergot, according to which an agent brings it about that, or sees to it that,
such-and-such is the case. But alternatively, using a simple propositional logic based on
the distinction between controllable and uncontrollable propositions [9] most relevant
properties can be expressed as well, and of course a more full-fledged logic of action
can also be used, incorporating for example a model of causality.

Definition 1. Let L be a propositional action logic with � the related notion of deriv-
ability and Cn the related consequence operation Cn(x) = {y | x � y}. Let CA be
a set of pairs of L, {(x1, y1), . . . , (xn, yn)}, read as ‘x1 counts as y1’, etc. Moreover,
consider the following proof rules: conjunction for the output (AND), disjunction of the
input (OR), and transitivity (T) defined as follows:

(x, y1), (x, y2)
(x, y1 ∧ y2)

AND
(x1, y), (x2, y)
(x1 ∨ x2, y)

OR
(x, y1), (y1, y2)

(x, y2)
T

1 When comparing their framework to a proposal of Goldman, Jones and Sergot mention (but
do not study) irreflexive and asymmetric counts-as relations. With an extension of our logical
language covering negated conditionals, these properties can be expressed too.
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For an institution s, the counts-as output operator outCA is defined as closure op-
erator on the set CA using the rules above, together with a silent rule that allows
replacement of logical equivalents in input and output. We write

(x, y) ∈ outCA(CA, s)

Moreover, for X ⊆ L, we write

y ∈ outCA(CA, s, X)

if there is a finite X ′ ⊆ X such that (∧X ′, y) ∈ outCA(CA, s), indicating that the output
y is derived by the output operator for the input X , given the counts-as conditionals
CA of institution s. We also write outCA(CA, s, x) for outCA(CA, s, {x}).
Example 1. If for some institution s we have CA = {(a, x), (x, y)}, then we have
outCA(CA, s, a) = {x, y}.
Jones and Sergot argue that the strengthening of the input (SI) and weakening of the
output (WO) rules presented in Definition 2 are invalid, see their paper for a discussion.
The adoption of the transitivity rule T for their logic is criticized by Artosi et al. [3].
Jones and Sergot say that “we have been unable to produce any counter-instances [of
transitivity], and we are inclined to accept it”. Neither of these authors consider to
replace transitivity by cumulative transitivity (CT), see Definition 4.

Jones and Sergot give a semantics for their classical conditional logic based on min-
imal conditional models. For our reconstruction, the following questions can be asked
(where the second could provide a kind of operational semantics analogous to the se-
mantics of input/output logics [17], and the third to the semantics of input/output logic
given in [4]):

– Given CA of s, and (x, y), do we have (x, y) ∈ outCA(CA, s)?
– Given CA of s and x, what is outCA(CA, s, x)?
– Given CA of s, what is outCA(CA, s)?

The following theorem illustrates a simpler case.

Theorem 1. With only the AND and T rule, assuming replacements by logical equiva-
lents, outCA(CA, s, X) = {∧Y | Y ⊆ ∪∞

i=0outiCA(CA, s, X)} is calculated as follows.
out0CA(CA, s, X) = ∅
outi+1

CA (CA, s, X) = outiCA(CA, s, X) ∪ {y | (∧X ′, y) ∈ CA, X ′ ⊆ outiCA(CA, s, X)}
With the OR rule the situation is more complicated due to reasoning by cases. However,
as we show by Theorem 3 in Section 3, we do not need the semantics of this component
to define a semantics of the whole normative system.

3 Institutional Constraints

Jones and Sergot’s analysis of counts-as conditionals is integrated with their notion of
so-called institutional constraints. Note that the term “constraints” is used here in an-
other way than it is used in input/output logic for handling contrary-to-duty obligations
and also permissions, as we discuss in the following section, because the input/output
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constraints, but not the institutional constraints, impose consistency requirements. We
have chosen not to avoid the possible confusion, given the existence of the institutional
constraints in the literature and the appropriateness of input/output constraints for what
it is actually doing.

Jones and Sergot introduce the normal KD modality Ds such that DsA means that
A is “recognized by the institution s”. Ds is represented by a so-called wrapper around
the counts-as component in our normative system architecture. In computer science,
a wrapper is a mechanism to pre-process the input and to post-process the output of a
component. there are various ways to formalize this idea in a logical architecture. In this
section we formalize it by stating that the input/output relation of the counts-as compo-
nent is a subset of the input/output relation of the institutional constraints component.

Jones and Sergot distinguish relations of logical consequence, causal consequence,
and deontic consequence. We do not consider the latter, as they are the obligations
and permissions which we represent by separate logical subsystems. An institutional
constraint “if x then y” is represented by Ds(x → y).

Definition 2. Let IC be a set of pairs of L, {(x1, y1), . . . , (xn, yn)}, read as ‘if x1
then y1’, etc. Moreover, consider the following proof rules strengthening of the input
(SI), weakening of the output (WO) and Identity (Id) defined as follows:

(x1, y)
(x1 ∧ x2, y)

SI
(x, y1 ∧ y2)

(x, y1)
WO

(x, x)
Id

For an institution s, the institutional constraint output operator outIC is defined as
closure operator on the set IC using the three rules of Definition 1, together with the
three rules above and a silent rule that allows replacement of logical equivalents in
input and output.

The output of the institutional constraints can be obtained by a reduction to the base
logic. Whereas the logic of counts-as conditionals is relatively complicated, the logic
of institutional constraints is straightforward.

Theorem 2. outIC(IC, s, x) = Cn({x} ∪ {x ⊃ y | (x, y) ∈ IC})
Proof. (sketch). T follows from the other rules, and the property for the remaining
rules follows from results on throughput in [17].

Counts-as conditionals and institutional constraints are related by Jones and Sergot by
the axiom schema:

(A⇒s B) ⊃ Ds(A ⊃ B)

Using our input/output operations, the combined system of counts-as conditionals and
institutional constraints are thus characterized by the following bridge rule.

Definition 3. Let outIC+CA be an operation on two sets of pairs of L, IC and CA, defined
as outIC (with all six rules discussed thus far) on the first parameter, together with the
following rule:

(x, y) ∈ outCA(CA, s)
(x, y) ∈ outIC+CA(IC, CA, s)
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The following theorem shows that we can calculate the output of the joint system with-
out taking the logic of counts-as conditionals into account.

Theorem 3. outIC+CA(IC, CA, s, X) = outIC(IC ∪CA, s, X).

Proof. (sketch). Clearly we have outIC+CA(IC, CA, s, X)=outIC(IC∪outCA(CA), s, X).
Since the proof rules of outIC contain the proof rules of outCA, the result follows.

The limitation of Jones and Sergot approach, according to Gelati et al. [11], is that the
consequences of counts-as connections follow non-defeasibly (via the closure of the
logic for modality Ds under logical implication), whereas defeasibility seems a key
feature of such connections. Their example is that in an auction if a person raises one
hand, this may count as making a bid. However, this does not hold if he raises his hand
and scratches his own head. There are many ways in which the logic of institutional
constraints can be weakened, which we do not further consider here.

4 Obligations

There are many deontic logics, and there are few principles of deontic logic which
have not been criticized. In this paper we do not adopt one particular deontic logic,
but Makinson and van der Torre’s framework [17] in which various kinds of deontic
logics can be defined. Their approach is based on the concept of logic as a ‘secretarial
assistant’, in the sense that the role of logic is not to formalize reasoning processes
themselves, but to pre- and post-process such reasoning processes. Though a discussion
of this philosophical point is beyond the scope of this paper, the idea of pre- and post-
processing is well suited for the architectural approach.

A set of conditional obligations or rules is a set of ordered pairs a → x, where
a and x are sentences of a propositional language. For each such pair, the body a is
thought of as an input, representing some condition or situation, and the head x is
thought of as an output, representing what the rule tells us to be obligatory in that
situation. Makinson and van der Torre write (a, x) to distinguish input/output rules from
conditionals defined in other logics, to emphasize the property that input/output logic
does not necessarily obey the identity rule. In this paper we also follow this convention.
We extend the syntax of input/output logic with a parameter s for the institution to
match Jones and Sergot’s definitions.

Definition 4 (Input/output logic). For an institution s, let O be a set of pairs of L,
{(a1, x1), . . . , (an, xn)}, read as ‘if a1 then obligatory x1’, etc. Moreover, consider the
following proof rules strengthening of the input (SI), conjunction for the output (AND),
weakening of the output (WO), disjunction of the input (OR), and cumulative transitivity
(CT) defined as follows:

(a, x)
(a ∧ b, x)

SI
(a, x ∧ y)

(a, x)
WO

(a, x), (a, y)
(a, x ∧ y)

AND

(a, x), (b, x)
(a ∨ b, x)

OR
(a, x), (a ∧ x, y)

(a, y)
CT
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The following output operators are defined as closure operators on the set O using
the rules above, together with a silent rule that allows replacement of logical equiv-
alents in input and output. Moreover, we write (a, x) ∈ outO(O, s) to refer to any of
these operations. We also write x ∈ outO(O, s, A) if there is a finite A′ ⊆ A with
(∧A′, x) ∈ outO(O, s).
out1O: SI+AND+WO (simple-minded output)
out2O: SI+AND+WO+OR (basic output)
out3O: SI+AND+WO+CT (reusable output)
out4O: SI+AND+WO+OR+CT (basic reusable output)

Example 2. Given O = {(a, x), (x, z)} the output of O contains (x ∧ a, z) using the
rule SI . Using also the CT rule, the output contains (a, z). (a, a) follows only if there is
an identity rule in addition (when Makinson and van der Torre call it throughput [17]).

The institutional constraints (and thus the counts-as conditionals) can be combined with
the obligations using iteration.

Definition 5. For an institution s, let outIC+CA+O be an operation on three sets of pairs of
L, IC, CA, and O, defined in terms of outIC+CA and outO using the following rule:

(x, y) ∈ outIC+CA(IC, CA, s), (y, z) ∈ outO(O, s)
(x, z) ∈ outIC+CA+O(IC, CA, O, s)

Theorem 4

outIC+CA+O(IC, CA, O, s, x) = outO(O, s, outIC+CA(IC, CA, x))

In case of contrary-to-duty obligations, the input represents something which is inal-
terably true, and an agent has to ask himself which rules (output) this input gives rise
to: even if the input should have not come true, an agent has to “make the best out of
the sad circumstances” [12]. In input/output logics under constraints, a set of mental
attitudes and an input does not have a set of propositions as output, but a set of sets of
propositions. We can infer a set of propositions by for example taking the join (credu-
lous) or meet (sceptical), or something more complicated. In this paper we use the meet
to calculate the output of the obligation component. Moreover, we extend the definition
to a set of constraints. Although we need only one constraint set for Definition 7, we
will need arbitrary sets in the following section in order to integrate permissions.

Definition 6 (Constraints). For an institution s, let O be a set of conditional obliga-
tions, and let {C1, . . . , Cn} be a set of sets of arbitrary formulas, which we will call
the “constraint set”. For any input set A, we define maxfamily(O,s,A,{C1, . . . , Cn})
to be the family of all maximal O′ ⊆ O such that outO(O′, A) is consistent with Ci for
1 ≤ i ≤ n. Moreover, we define outfamily(O, s, A, {C1, . . . , Cn}) to be the family
of outputs under input A, generated by elements of maxfamily(O, s, A, {C1, . . . , Cn}).
The meet output under constraints is

out∩O (O, s, A, {C1, . . . , Cn}) = ∩outfamily(O, s, A, {C1, . . . , Cn})



32 G. Boella and L. van der Torre

We can adopt an output constraint (the output has to be consistent) or an input/output
constraint (the output has to be consistent with the input). The following definition uses
the input/output constraint, because the output of the obligation component is consistent
with the output of the institutional constraints.

Definition 7

out∩IC+CA+O(IC,CA, O, s, x) = out∩O (O, s, {outIC+CA(IC,CA, s, x)}, outIC+CA(IC,CA, s, x))

See [17, 18] for the semantics of input/output logics, further details on its proof theory,
its possible translation to modal or propositional logic, the extension with the identity
rule, alternative constraints, and examples.

5 Permissions

Permissions are often defined in terms of obligations, called ‘weak’ permissions, in
which case there are no conditional permissions in NB. When they are not defined
as weak permissions, as in this paper, then the norm databse also contains a set of
permissive norms [19]. Such ‘strong’ permissions are typically defined analogously to
obligation, but without the AND rule. The reason AND is not accepted is that p as well
as¬p can be permitted, but it does not make sense to permit a contradiction. Permissions
are simpler than obligations, as the issue of contrary-to-duty reasoning is not relevant,
and therefore we do not have to define constraints. Here we consider only the rules SI
and WO. As the output of the permission component we do not take the union of the
set indicated, as this would lose information that we need in the next integrative step.

Definition 8 (Conditional permission). For an institution s, let conditional permis-
sions P be a set of pairs of L, {(a1, x1), . . . , (an, xn)}, read as ‘if a1 then permitted
x1’, etc. The output of the permission component is

outP(P, s, A) = {Cn(x) | (∧A′, x) ∈ P, A′ ⊆ A}
In the normative system, we merge the output of permission component X with the
output of the obligation component Y to get the property that if something is obliged,
then it is also permitted.

Definition 9. Let X ⊆ 2L and Y ⊆ L. The merger of the two sets is defined as follows

merge(X, Y ) = {Cn(x ∪ Y ) | x ∈ X}
The combination of the counts-as conditionals and the permissions is analogous to the
combination of the counts-as conditionals and obligations.

Definition 10

(x, y) ∈ outIC+CA(IC, CA, s), (y, Z) ∈ outP(P, s)
(x, Z) ∈ outIC+CA+P(IC, CA, P, s)

Finally, we consider the output of the normative system. For obligations, the output of
the institutional constraints is merged with the output of the permissions component
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as defined in Definition 9. It is an extension of the output of the obligation component
given in Definition 7, where we did not consider permissions yet.

Definition 11. out∩IC+CA+P+O(IC, CA, O, P, s, X) =
out∩O (O, merge(outIC+CA+P(IC, CA, P, s, X), outIC+CA(IC, CA, s, X)), s, outIC+CA(IC, CA, s, X))

We have now defined the output of each component in the normative system archi-
tecture visualized in Figure 1, and the final step is to define the output of the whole
normative system. The first output is the set of obligations as given in Definition 11.
The second output is the set of permissions, which combines the output of the permis-
sion component with the output of the obligation component. The permissions of the
normative system are defined as follows.

Definition 12. outIC+CA+P+O+P(IC, CA, P, O, s, X) =

merge(outIC+CA+P(IC,CA, P, s, X), out∩IC+CA+P+O(IC,CA, O, P, s, X))

6 Further Extensions

In a single component, feedback is represented by the cumulative transitivity rule, in the
following sense [5]. If x is in the output of a, and y is in the output of a∧x, then we may
reason as follows. Suppose we have as input a, and therefore as output x. Now suppose
that there is a feedback loop, such that we have as input a∧ x, then we can conclude as
output y. Thus in this example, feedback of x corresponds with the inference that y is
in the output of a.

Moreover, there may be feedback among components, leading to cycles in the net-
work. As a generalization of the cumulative transitivity rule for the obligation com-
ponent, we may add a feedback loop from the obligation component to the counts-as
component, such that new institutional facts can be derived for the context in which the
obligations are fulfilled. Likewise, we may add a feedback loop from obligation to per-
mission. Since there is already a channel from permission to obligation, this will result
in another cycle.

Another interesting feedback loop is from counts-as conditional to a new input of
the norm database. In this way, the normative system can define how the normative
system can be updated, see [6] for a logical model how constitutive norms can define
the role and powers of agents in the normative system. This includes the creation of
contracts, which may be seen as legal institutions, that is, as normative systems within
the normative system [8].

A more technical issue is what happens when we create a feedback loop by connect-
ing the permissions in the output of the normative system component to the constraints
input of the obligation component.

7 Concluding Remarks

In the paper we have presented a logical architecture of normative systems, combin-
ing the logics of counts-as conditionals and institutional constraints of Jones and
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Sergot with the input/output logics of Makinson and van der Torre. The contribution
of the paper thus lies not in the components, but in their mutual integration. The re-
sults established are all fairly straightforward given familiarity with the background on
input/output logics. Finally, we have discussed various ways in which the normative
system can be further extended using timed streams, feedback loops and hierarchical
normative systems.

The architecture presented is just one (rather natural) example, and there may be ad-
ditional components, and other kinds of interactions which would also be worth study-
ing using the same techniques. We believe that it may be worthwhile to study other
logical components and other ways to connect the components, leading to other rela-
tions among counts-as conditionals, institutional constraints, obligations and permis-
sions. An important contribution of our work is that it illustrates how such studies can
be undertaken.

Besides the further logical analysis of the architecture of normative system, there are
two other important issues of further research. First there is a need for a general theory
of logical architectures, besides the existing work on combining logics and formal soft-
ware engineering, along the line of logical input/output nets as envisioned in [20, 5].
Second, in agent based software engineering there is a need for a study whether the log-
ical architecture developed here can be used for the design of architectures in normative
multi-agent systems.
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Abstract. In this paper we reconsider the definition of counts-as relations in
normative multiagent systems: counts-as relations do not always provide directly
an abstract interpretation of brute facts in terms of institutional facts. We argue
that in many cases the inference of institutional facts from brute facts is the result
of actions of agents acting on behalf of the normative systems and who are in
charge of recognizing which institutional facts follow from brute facts. We call
this relation delegation of power: it is composed of a counts-as relation specifying
that the effect of an action of an agent is an institutional fact and by a goal of the
normative system that the fact is considered as an institutional fact. This relation
is more complex than institutional empowerment, where an action of an agent
counts-as an action of the normative system but no goal is involved, and than
delegation of goals, where a goal is delegated to an agent without giving it any
power. With two case studies we show the importance of the delegation of power.
Finally, we show how the new definition can be related with existing ones by
using different levels of abstraction.

1 Introduction

It is well known that normative systems include not only regulative norms like obliga-
tions, prohibitions and permissions, but also constitutive norms stating what counts as
institutional facts in a normative system.

In this paper we introduce a new notion, called delegation of power beside constitu-
tive and regulative norms. Thus, the research questions of this paper are:

– What is delegation of power in a normative multiagent system?
– How does it relate to counts-as conditionals?
– How does it relates to regulative norms?

The notion of counts-as introduced by Searle [1] has been interpreted in deontic
logic in different ways and it seems to refer to different albeit related phenomena [2].
For example, Jones and Sergot [3] consider counts-as from the constitutive point of
view. According to Jones and Sergot , the fact that A counts-as B in context C is read as
a statement to the effect that A represents conditions for guaranteeing the applicability
of particular classificatory categories. The counts-as guarantees the soundness of that
inference, and enables “new” classifications which would otherwise not hold.

An alternative view of the counts-as relation is proposed by Grossi et al. [4]: accord-
ing to the classificatory perspective A counts-as B in context C is interpreted as: A is

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 36–52, 2006.
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classified as B in context C. In other words, the occurrence of A is a sufficient condition,
in context C, for the occurrence of B. Via counts-as statements, normative systems can
establish the ontology they use in order to distribute obligations, rights, prohibitions,
permissions, etc.

In [5, 6] we propose a different view of counts-as which focuses on the fact that
counts-as often provides an abstraction mechanism in terms of institutional facts, al-
lowing the regulative rules to refer to legal notions which abstract from details.

None of the above analyses, however, considers the motivational aspects behind con-
stitutive norms required by agent theory. Constitutive norms are modelled as counts-as
conditionals which allow to infer which institutional facts follow from brute facts and
from existing institutional facts. E.g., a car counts as a vehicle for the traffic law. The
inference from facts to institutional facts is considered as automatic, i.e., it is assumed
not to need any agent or resource to perform it. Agent theory, instead, considers also
the resources needed to perform inferences. Calculating the consequences following
from some premises has a cost which must be traded off against the benefit of making
the inferences. Thus in Georgeff and Ingrand [7] inferences are considered as actions
which are planned and subject to decision processes as any other action: there must be
an agent taking the decision and executing them.

According to resource bounded reasoning, the assumption made above on constitu-
tive rules, even if useful in some circumstances, is not realistic. In many circumstances
facts which in principle should be considered as institutional facts are not recognized
as such. In such circumstances, the interpretation of a fact as an institutional fact may
depend on the action of some agent who acts to achieve a goal of the normative system
that a brute fact is interpreted as an institutional fact: we say that this agent has been
delegated the power to interpret the fact as an institutional fact. In the next section two
such examples are considered.

To answer the research questions of this paper we use our normative multiagent
system framework [5, 8] which explicitly takes into account the activity of agents in
the definition of sanction based obligations. The basic assumptions of our model are
that beliefs, goals and desires of an agent are represented by conditional rules, and
that, when an agent takes a decision, it recursively models the other agents interfering
with it in order to predict their reaction to its decision as in a game. Most importantly,
the normative system itself can be conceptualized as a socially constructed agent with
whom it is possible to play games to understand what will be its reaction to the agent’s
decision: to consider its behavior as a violation and to sanction it. These actions are
carried out by agents playing roles in the normative system, like judges and policemen.
In the model presented in [5, 6], regulative norms are represented by the goals of the
normative system and constitutive norms as its beliefs.

We relate the notion of delegation of power with our previous work on norms pro-
viding the definition of counts-as and of obligations at different levels of abstraction
depending on whether agents are considered or not as acting for the normative system.

The paper is organized as follows. In Section 2 we show two case studies motivating
the paper. In Section 3 we introduce delegation of power and in Section 4 we distin-
guish three different levels of abstraction. In Section 5 we introduce the formal model
explained by examples. Comparison with related work and conclusion end the paper.
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2 Motivating Examples

To illustrate the necessity of the notion of delegation of power we resort to two moti-
vating case studies. The first one is a case which happened to one of the authors. The
second case concerns how the law deals with the enforcement of obligations.

The first example is about traffic norms. Due to increased levels of pollution, on
certain days, only ecological vehicles are allowed in major towns. In particular, cars
with a catalytic converter count as ecological vehicles. One author of this paper bought
many years ago one of the first catalytic cars. So he felt permitted to go around by car in
the days when non-catalytic cars were prohibited. Instead, he was stopped by the police
and fined. Why? The car was bought before the local law recognized catalytic cars as
ecological vehicles. The police agreed that the car had a catalytic converter: they could
see it, the car worked only with unleaded fuel, both the manual and the licence of the
car said it has a catalytic converter. However, there was a missing rubber stamp by the
office declaring that the car counts as an ecological vehicle. The problem is not simply
that only catalytic cars bought after a certain date are considered as ecological. Rather, a
catalytic car is not ecological unless an agent officialy recognizes it as such. The police
has no power to consider the car as ecological, the evidence notwithstanding.

The moral is that even if a brute fact is present and could allow the recognition of an
institutional fact, the institutional fact is the result of the action of some agent who is
empowered to do that.

The second example concerns how obligations are dealt with by the law. Obligations
represent the social order the law aims to achieve. However, specifying this order is not
sufficient to achieve it. Thus, obligations are associated with other instrumental norms
- to use Hart [9]’s terminology: the lack of the wanted state of affairs is considered as
a violation and the violator is sanctioned. These tasks are distributed to distinct agents,
like judges and policemen, who have to decide whether and how to fulfill them.

There is, however, an asymmetry between considering something as a violation and
sanctioning. The latter can be a physical action like putting into jail, while the former
has always an institutional character. So, while the sanction can be directly performed
by a policeman, the recognition of a violation can only be performed indirectly by
means of some action which counts as the recognition of a violation, e.g., a trial by a
judge.

The two examples have some similarities and differences. Both in case of ecological
cars and in case of violations an action of an agent is necessary to create the institutional
fact. These cases can be modelled by a counts-as relation between the action of an agent
(putting a stamp on the car licence or recognizing a violation) and the institutional
fact (being an ecological vehicle or having violated an obligation), rather than by a
direct counts-as relation between the brute facts and the institutional facts. But at first
sight the two cases also have a difference: the recognition of a violation is wanted
by the normative system to achieve its social order. In this case besides the counts-
as rule between the action and the recognition as a violation there is also the goal of
the normative system that this recognition contributes to the social order. In the next
section we argue that indeed both cases should be modelled by means of a goal of
the normative system and a counts-as relation between actions of agents acting for the
normative system and institutional facts: they are both examples of delegation of power.
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3 Goal Delegation and the Delegation of Power

In this section we show how both examples of Section 2 can be modelled in the same
way, starting from the analysis of two apparently unrelated phenomena: goal delegation
and institutional empowerment.

According to Castelfranchi [10], goal delegation is relying on another agent for the
achievement of one own’s goal: “in delegation an agent A needs or likes an action of
another agent B and includes it in its own plan. In other words, A is trying to achieve
some of its goals through B’s behaviours or actions; thus A has the goal that B performs
a given action/behaviour.” This is not an institutional phenomenon but a basic capability
of agents which enables them to interact with each other.

Institutional empowerment, instead, is by nature an institutional phenomenon which
is based on the counts-as relation: an agent is empowered to perform an institutional
action - a kind of institutional fact - if some of its actions counts as the institutional
action. For example, a director can commit by means of his signature his institution to
purchase some goods. Thus it is essentially related to counts-as rules, albeit restricted
to actions of agents. Consider as a paradigmatic case the work by Jones and Sergot [3]

Bottazzi and Ferrario [11] argue that the two phenomena are related, as in cases like
the two examples of Section 2: an agent which is institutionally empowered, is also
delegated the goal of the institution of making true an institutional fact by exercising its
power in the specified situations.

The connection between goal delegation and institutional empowerment is not a nec-
essary one. For example, the agent in charge for sanctioning an obligation is delegated
the goal of sanctioning, but there is no need of institutional powers in case of physical
sanctions. Viceversa, the law institutionally empowers agents to stipulate private con-
tracts which have the force of law, without being delegated by the law to do so, since
contracting agents act for their own sake [5].

This connection, which we call delegation of power, can be used to explain the two
examples above. In the case of cars, for the normative system, catalytic cars have to
be considered as ecological vehicles. There are three possibilities: first, recognizing all
catalytic cars as ecological vehicles by means of a constitutive norm. This solution,
however, does not consider the actual performance of the inference and the possible
costs related to it. Second, the normative system can rely on some agent to recognize
catalytic cars as ecological vehicles. As said above, this can be done by means of a
counts-as relation between an action of an agent and its effects. This solution, however,
fails to account for the motivations that the agent should have to perform the action
of recognizing ecological vehicles as such. Third, also a goal of the normative system
is added to motivate its action: there is an agent who has the institutional power to
recognize cars as ecological vehicles and the normative system has delegated it the goal
that it does so in order to motivate it.

In the case of obligations, beside the counts-as relation between an action of judge
and the institutional fact that a violation is recognized, we have the goal that the spec-
ified behavior is considered as a violation. The goal is an instrumental goal asso-
ciated with the definition of obligation which aims at regulating how violations are
prosecuted.
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Thus to model delegation of power we need a model where:

– Both constitutive and regulative norms are modelled.
– Since we want to model goal delegation, mental attitudes are attributed to the nor-

mative system.
– Agents act inside the normative system.

All these features are present in our model of normative multiagent systems [5]. Our
model is based on the so called agent metaphor: social entities like normative systems
can be conceptualized as agents by attributing them mental attitudes like beliefs and
goals. The cognitive motivations of the agent metaphor underlying our framework are
discussed in [12].

Beliefs model the constitutive rules of the normative system, while goals model reg-
ulative rules. Thus, in the normative system the interaction between constitutive and
regulative rules is the same as the interaction of beliefs and goals in an agent.

However, differently from a real agent, the normative system is a socially constructed
agent. It exists only because of the collective acceptance by all the agents and, thus,
it cannot act in the world. Its actions are carried out by agents playing roles in the
normative system, like legislators, judges and policemen. It is a social construction
used to coordinate the behavior of the agents.

Our model of roles, which allows to structure organizations in sub-organizations and
roles to make a multiagent system modular and thus manage its complexity, is described
in [13]. For space reason, we do not introduce roles explicitly in this paper.

In our model obligations are not only modelled as goals of the normative system, but
they are also associated with the instrumental goals that the behavior of the addressee of
the norms is considered as a violation and that the violation is sanctioned. Considering
something as a violation and sanctioning are actions which can be executed by the
normative system itself, or, at a more concrete level of detail, by agents playing roles in
the normative system.

The counts-as relation in our model is modelled as a conditional belief of the norma-
tive system to provide an abstraction of reality in terms of institutional facts. Regulative
norms can refer to this level, thus decoupling them from the details of reality. For exam-
ple, it must be distinguished the institutional fact that traffic lights are red from the brute
fact that red light bulbs in the traffic lights are on: in the extreme case the institutional
fact can be true even if all the red bulbs are broken. As a consequence, as discussed in
[6, 14], we do not accept the identity rule for counts-as.

In this paper, we consider how counts-as can be used to define delegation of power.
Counts-as relations are not used in this case to directly connect brute facts to institu-
tional facts, but only to express the (institutional) effects of actions of agents empowered
by the normative system (in the same sense as the act of signing of the director counts
as the commitment of the institution he belongs to).

In our model [5], constitutive rules have also other roles, in particular, they specify
how the normative system can change. In this sense a normative multiagent system is
a system in the sense that it specifies itself how it can change. Since it is a socially
constructed agent, it cannot directly change itself. Rather it relies on the actions of
agents playing roles in it, like legislators, which count as changes of the system.
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4 Level of Abstractions in the Definition of Norms

Obligations and counts-as relations can be defined at different levels of abstraction.
We identify three different levels of abstraction, which are suited for different applica-
tions. The abstraction dimension is the detail at which we consider agents acting for
the normative system: at the higher abstraction level agents have no role, at the middle
abstraction level only actions of the normative system are considered but agents are
not considered; only at the more concrete level, where agents are in charge of the ac-
tual functioning of the normative system concerning regulative and constitutive rules,
delegation of power enters the picture:

1. The higher level abstracts from the fact that violations, sanctions and institutional
facts are the result of the action that an agent decides to perform. Thus obligations
are defined as in Anderson’s reduction [15]: the recognition of the violation and the
sanction logically follow from the violation. This abstraction level for regulative
rules is adopted also by [16, 17] and we use it in [18]. For constitutive rules, up to
our knowledge, this is the only level considered.

2. The middle level abstracts from the role of agents in the normative system, but the
normative system is in some way personified and is assumed to act in the world:
thus the recognition of violations and sanctions are considered as the actions of the
normative system itself. We adopt this level of representation for regulative norms
in [5, 8]. Analogously, institutional facts follow from actions of the normative sys-
tem: they are not anymore logical consequences of facts, but consequences of deci-
sions of the normative systems which are traded-off against other decisions. They,
thus, do not follow automatically, since the normative system can take a different
decision due to conflicts with other goals or to lack of resources.

3. The lower level takes into account the actions of the agents in the normative sys-
tem. Concerning regulative norms, some agents are delegated the goal to sanction
violations and the goal and power of recognizing violations. I.e., they are delegated
the power to do so. Concerning constitutive norms, the agents are delegated the
goal to recognize some facts as institutional facts and the power to do so by means
of their actions. I.e., they are delegated the power to do so. The problem of agents
recognizing violations has been partially addressed in [19], but the recognition ac-
tion was considered as a physical action like the sanction. In this paper we add the
counts-as relation to the recognition of violations.

At the lower two levels it becomes possible to answer the question whether consti-
tutive norms can be violated like it happens for regulative ones. A constitutive norm
can be violated in the sense that the normative system or the agent who is delegated
the goal to recognize the institutional fact and empowered to do so fails to achieve the
delegated goal. In our first example the office could fail or refuse to recognize the car as
an ecological vehicle. The reason can be the inability to perform the necessary actions,
laziness, bribing, etc., like it happens for regulative norms. Moreover, constitutive rules
can be abused, in the sense that the delegated agent can exercise its power without being
delegated to do so in the given circumstances. This possibility assumes that the institu-
tional power can be exercised beyond the conditions under which it has been delegated
the goal to exercise it.
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5 The Formal Model

The definition of the agents is inspired by the rule based BOID architecture [20], though
in our theory, and in contrast to BOID, obligations are not taken as primitive concepts.
Beliefs, desires and goals are represented by conditional rules rather than in a modal
framework. Intentions have been introduced as a form of bounded rationality: since
an agent has not enough resources to make the optimal decision at each moment, he
maintains its previous choices. In this paper we consider only one decision, so we do
not need to introduce intentions to model decisions which persist over time.

5.1 Input/Output Logic

To represent conditional mental attitudes we take a simplified version of the input/output
logics introduced in [21, 22]. A rule set is a set of ordered pairs P → q. For each such
pair, the body P is thought of as an input, representing some condition or situation, and
the head q is thought of as an output, representing what the rule tells us to be believed,
desirable, obligatory or whatever in that situation. In this paper, to keep the formal
exposition simple, input and output are respectively a set of literals and a literal.

The development of input/output logic has been motivated by conditional norms,
which do not have a truth value. For that reason, the semantics of input/output logic
given by Makinson and van der Torre [21] is an operational semantics, which charac-
terizes the output as a function of the input and the set of norms. However, it is easy
to define a classical semantics for conditional norms too. Makinson and van der Torre
illustrate how to recapture input/output logic in modal logic, and thus give it a clas-
sical possible worlds semantics. More elegantly, as illustrated by Bochman [23], the
operational semantics of input/output logic can be rephrased as a bimodel semantics, in
which a model of a set of conditionals is a pair of partial models from the base logic (in
this paper, propositional logic).

Though the development of input/output logic has been motivated by the logic of
norms, the same logic can be used for other conditionals like conditional beliefs and
conditional goals – which explains the more general name of the formal system. More-
over, Bochman [23] also illustrates how the same logic is used for causal reasoning and
various non-monotonic reasoning formalisms.

Definition 1 (Input/output logic). Let X be a set of propositional variables, the set of
literals built from X , written as Lit(X), is X ∪ {¬x | x ∈ X}, and the set of rules
built from X , written as Rul(X) = 2Lit(X) × Lit(X), is the set of pairs of a set of
literals built from X and a literal built from X , written as {l1, . . . , ln} → l. We also
write l1∧ . . .∧ ln → l and when n = 0 we write� → l. For x ∈ X we write ∼x for ¬x
and ∼(¬x) for x. Moreover, let Q be a set of pointers to rules and RD : Q → Rul(X)
is a total function from the pointers to the set of rules built from X .

Let S = RD(Q) be a set of rules {P1 → q1, . . . , Pn → qn}, and consider the
following proof rules strengthening of the input (SI), disjunction of the input (OR),
cumulative transitivity (CT) and Identity (Id) defined as follows:

p → r

p ∧ q → r
SI

p ∧ q → r, p ∧ ¬q → r

p → r
OR

p→ q, p ∧ q → r

p→ r
CT

p → p
Id
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The following output operators are defined as closure operators on the set S using
the rules above.

out1: SI (simple-minded output) out3: SI+CT (reusable output)
out2: SI+OR (basic output) out4: SI+OR+CT (basic reusable output)

Moreover, the following four throughput operators are defined as closure
operators on the set S. out+i : out i+Id (throughput) We write out(Q) for any of
these output operations and out+(Q) for any of these throughput operations. We
also write l ∈ out(Q, L) iff L → l ∈ out(Q), and l ∈ out+(Q, L) iff
L→ l ∈ out+(Q).

Example 1. Given RD(Q) = {a → x, x → z} the output of Q contains x ∧ a → z
using the rule SI . Using also the CT rule, the output contains a → z. a → a follows
only if there is the Id rule.

A technical reason to distinguish pointers from rules is to facilitate the description of
the priority ordering we introduce in the following definition.

The notorious contrary-to-duty paradoxes such as Chisholm’s and Forrester’s para-
dox have led to the use of constraints in input/output logics [22]. The strategy is to adapt
a technique that is well known in the logic of belief change - cut back the set of norms
to just below the threshold of making the current situation inconsistent.

Definition 2 (Constraints). Let ≥: 2Q × 2Q be a transitive and reflexive partial rela-
tion on the powerset of the pointers to rules containing at least the subset relation and
RD : Q → Rul(X) a function from the pointers to the set of rules. Moreover, let out
be an input/output logic:

– maxfamily(Q, P ) is the set of⊆-maximal subsets Q′ of Q such that out(Q′, P )∪P
is consistent.

– preffamily(Q, P,≥) is the set of ≥-maximal elements of maxfamily(Q, P ).
– outfamily(Q, P,≥) is the output under the elements of preffamily, i.e.,
{out(Q′, P ) | Q′ ∈ preffamily(Q, P,≥)}.

– P → x ∈ out∪(Q,≥) iff x ∈ ∪outfamily(Q, P,≥)
P → x ∈ out∩(Q,≥) iff x ∈ ∩outfamily(Q, P,≥)

Example 2. Let RD({a, b, c}) = {a = (� → m), b = (p → n), c = (o → ¬m)},
{b, c} > {a, b} > {a, c}, where by A > B we mean as usual A ≥ B and B 	≥ A.
maxfamily(Q, {o}) = {{a, b}, {b, c}},
preffamily(Q, {o},≥) = {{b, c}},
outfamily(Q, {o},≥) = {{¬m}}
The maxfamily includes the sets of applicable compatible pointers to rules together
with all non applicable ones: e.g., the output of {a, c} in the context {o} is not con-
sistent. Finally {a} is not in maxfamily since it is not maximal, we can add the non
applicable rule b. Then preffamily is the preferred set {b, c} according to the ordering
on set of rules above. The set outfamily is composed by the consequences of applying
the rules {b, c} which are applicable in o (c): ¬m.
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Due to space limitations we have to be brief on details with respect to input/output
logics, see [21, 22] for the semantics of input/output logics, further details on its proof
theory, its possible translation to modal logic, alternative constraints, and examples.

5.2 Multiagent Systems

We assume that the base language contains boolean variables and logical connectives.
The variables are either decision variables of an agent, which represent the agent’s ac-
tions and whose truth value is directly determined by it, or parameters, which describe
both the state of the world and institutional facts, and whose truth value can only be
determined indirectly. Our terminology is borrowed from Lang et al. [24] and is used
in discrete event systems, and many formalisms in operations research.

Given the same set of mental attitudes, agents reason and act differently: when facing
a conflict among their motivations and beliefs, different agents prefer to fulfill different
goals and desires. We express these agent characteristics by a priority relation on the
mental attitudes which encode, as detailed in [20], how the agent resolves its conflicts.
The priority relation is defined on the powerset of the mental attitudes such that a wide
range of characteristics can be described, including social agents that take the desires
or goals of other agents into account. The priority relation contains at least the subset-
relation which expresses a kind of independence among the motivations.

Background knowledge is formalized by a set of effects E represented by rules.

Definition 3 (Agent set). An agent set is a tuple 〈A, X, B, D, G,AD , E,≥,≥E〉,
where:

– the agents A, propositional variables X , agent beliefs B, desires D, goals G, and
effects E are six finite disjoint sets.

– B, D, G are sets of mental attitudes. We write M = D ∪ G for the motivations
defined as the union of the desires and goals.

– an agent description AD : A→ 2X∪B∪M is a total function that maps each agent
to sets of variables (its decision variables), beliefs, desires and goals, but that does
not necessarily assign each variable to at least one agent. For each agent b ∈ A,
we write Xb for X ∩ AD(b), and Bb for B ∩ AD(b), Db for D ∩ AD(b), etc. We
write parameters P = X \ ∪b∈AXb.

– the set of effects E represents the background knowledge of all agents.
– a priority relation≥: A → 2B×2B∪2M ×2M is a function from agents to a tran-

sitive and reflexive partial relation on the powerset of the motivations containing
at least the subset relation. We write ≥b for ≥ (b).

– a priority relation ≥E : 2E × 2E is a transitive and reflexive partial relation on the
powerset of effects containing at least the subset relation.

Example 3. A = {a}, Xa = {drive}, P = {s, catalytic}, Da = {d1, d2},
≥a= {d2} ≥ {d1}. There is a single agent, agent a, who can drive a car. Moreover,
it can be sanctioned and the car can be catalytic. It has two desires, one to drive (d1),
another one not to be sanctioned (d2). The second desire is more important.

In a multiagent system, beliefs, desires, goals and effects are abstract concepts which
are described by rules built from literals.
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Definition 4 (Multiagent system). A multiagent system, written as NMAS , is a tuple
〈A, X, B, D, G,AD , E,RD ,≥,≥E〉, where 〈A, X, B, D, G,AD , E,≥,≥E〉 is
an agent set, and the rule description RD : (B ∪ M ∪ E) → Rul(X) is a total
function from the sets of beliefs, desires and goals, and effects to the set of rules built
from X . For a set of pointers S ⊆ B ∪M ∪E, we write RD(S) = {RD(q) | q ∈ S}.
Example 4 (Continued). RD(d1) = � → drive , RD(d2) = � → ¬s.

In the description of the normative system, we do not introduce norms explicitly, but we
represent several concepts which are illustrated in the following sections. Institutional
facts (I) represent legal abstract categories which depend on the beliefs of the normative
system and have no direct counterpart in the world. F = X \ I are what Searle calls
“brute facts”: physical facts like the actions of the agents and their effects. V (x,a)
represents the decision of agent n that recognizes x as a violation by agent a. The goal
distribution GD(a) ⊆ Gn represents the goals of agent n the agent a is responsible for.

Definition 5 (Normative system). A normative multiagent system, written as NMAS ,
is a tuple 〈A, X, B, D, G,AD , E,RD ,≥,≥E,n, I, V,GD〉 where the tuple
〈A, X, B, D, G,AD , E,RD ,≥,≥E〉 is a multiagent system, and

– the normative system n ∈ A is an agent.
– the institutional facts I ⊆ P are a subset of the parameters.
– the norm description V : Lit(X)×A→ Xn∪P is a function from the literals and

the agents to the decision variables of the normative system and the parameters.
– the goal distribution GD : A → 2Gn is a function from the agents to the powerset

of the goals of the normative system, such that if L → l ∈ RD(GD(a)), then
l ∈ Lit(Xa ∪ P ).

Agent n is a normative system with the goal that non catalytic cars are not driven.

Example 5 (Continued). There is agent n, representing the normative system.
P = {s, V (drive , a), catalytic}, Dn = Gn = {g1},
RD(g1) = {¬catalytic → ¬drive}, GD(a) = {g1}.

The parameter V (drive,a) represents the fact that the normative system considers a
violation agent a’s action of driving. It has the goal that non-ecological vehicles should
not be driven by a and it has distributed this goal to agent a.

In the following, we use an input/output logic out to define whether a desire or goal
implies another one and to define the application of a set of belief rules to a set of
literals; in both cases we use the out3 operation since it has the desired logical property
of not satisfying identity.

We now define obligations and counts-as at the three levels of abstraction.
Regulative norms are conditional obligations with an associated sanction. At the

higher level of abstraction, the definition contains three clauses: the first two clauses
state that recognitions of violations and sanctions are a consequence of the behavior of
agent a, as it is represented by the background knowledge rules E. For an obligation to
be effective, the third clause states that the sanction must be disliked by its addressee.
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Definition 6 (Obligation (level 1)). Let NMAS be a normative multiagent system
〈A, X, B, D, G,AD , E,RD ,≥,≥E,n, I, V,GD〉.

Agent a ∈ A is obliged to see to it that x ∈ Lit(Xa ∪ P ) with sanction s ∈ Lit(P )
in context Y ⊆ Lit(X) in NMAS , written as NMAS |= O1

an(x, s|Y ), if and only if:

1. Y ∪ {∼x} → V (∼x,a) ∈ out(E,≥E): if Y and x is false, then it follows that∼x
is a violation by agent a.

2. Y ∪{V (∼x,a)} → s ∈ out(E,≥E): if Y and there is a violation by agent a, then
it is sanctioned.

3. Y →∼s ∈ out(Da,≥a): if Y , then agent a desires ∼s, which expresses that it
does not like to be sanctioned.

Example 6. Let: E = {e1, e2}, Da = {d2}
RD(e1) = {¬catalytic, drive} → V (drive ,a)
RD(e2) = {¬catalytic, V (drive, a)} → s
RD(d2) = ¬catalytic →∼s

NMAS |= O1
an(¬drive , s | ¬catalytic), since:

1. {¬catalytic, drive} → V (drive,a) ∈ out(E,≥E)
2. {¬catalytic, V (drive ,a)} → s ∈ out(E,≥E)
3. ¬catalytic →∼s ∈ out(Da,≥a)

Constitutive norms introduce new abstract categories of existing facts and entities,
called institutional facts. In [6] we formalize the counts-as conditional as a belief rule
of the normative system n. Since the condition x of the belief rule is a variable it can be
an action of an agent, a brute fact or an institutional fact. So, the counts-as relation can
be iteratively applied. In our model the counts-as relation does not satisfy the identity
rule. See [6] for a discussion of the motivations.

Definition 7 (Counts-as relation (level 1)). Let NMAS be a normative multiagent
system 〈A, X, B, D, G,AD , E,RD ,≥,≥E,n, I, V,GD〉. A literal x ∈ Lit(X)
counts-as y ∈ Lit(I) in context C ⊆ Lit(X), NMAS |= counts-as1

n(x, y|C), iff
C ∪ {x} → y ∈ out(Bn,≥n): if agent n believes C and x then it believes y.

Example 7. P \ I = {catalytic}, I = {eco}, Xa = {drive}, Bn = {b1}, RD(b1) =
catalytic → eco

Consequently, NMAS |= counts-as1
n(catalytic, eco|�). This formalizes that for

the normative system a catalytic car counts as an ecological vehicle. The presence of
the catalytic converter is a physical “brute” fact, while being an ecological vehicle is an
institutional fact. In situation S = {catalytic}, given Bn we have that the consequences
of the constitutive norms are out(Bn, S,≥n) = {eco} (since out3 does not include Id ).

At the middle level of abstraction, actions of the normative systems are added in the
definition of the obligations: the recognition of a violation and sanctions. Since the
actions undergo a decision process, desires and goals of the normative system are added.
The first and central clause of our definition of obligation defines obligations of agents
as goals of the normative system, following the “your wish is my command” metaphor.
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It says that the obligation is implied by the desires of the normative system n, implied
by the goals of agent n, and it has been distributed by agent n to the agent. The latter
two steps are represented by out(GD(a),≥n).

The second and third clause can be read as the normative system has the goal that
the absence of p is considered as a violation. The third clause says that the agent desires
that there are no violations, which is stronger than that it does not desire violations, as
would be expressed by � → V (∼x, a) 	∈ out(Dn,≥n).

The fourth and fifth clause relate violations to sanctions. The fifth clause says that the
normative system is motivated not to sanction as long as their is no violation, because
otherwise the norm would have no effect. Finally, for the same reason the last clause
says that the agent does not like the sanction. The second and fourth clause can be
considered as instrumental norms [9] contributing to the achievement of the main goal
of the norm.

Definition 8 (Obligation (level 2)). Let NMAS be a normative multiagent system
〈A, X, B, D, G,AD , E,RD ,≥,≥E,n, I, V,GD〉. Agent a ∈ A is obliged to see to it
that x ∈ Lit(Xa ∪ P ) with sanction s ∈ Lit(Xn ∪ P ) in context Y ⊆ Lit(X) in
NMAS , written as NMAS |= O2

an(x, s|Y ), if and only if:

1. Y → x ∈ out(Dn,≥n) ∩ out(GD(a),≥n): if Y holds then agent n desires and
has as a goal that x, and this goal has been distributed to agent a.

2. Y ∪ {∼x} → V (∼x,a) ∈ out(Dn,≥n) ∩ out(Gn,≥n): if Y holds and ∼x, then
agent n has the goal and the desire V (∼x,a): to recognize it as a violation by
agent a.

3. � → ¬V (∼x,a) ∈ out(Dn,≥n): agent n desires that there are no violations.
4. Y ∪ {V (∼x,a)} → s ∈ out(Dn,≥n) ∩ out(Gn,≥n): if Y holds and agent n

decides V (∼x,a), then agent n desires and has as a goal that it sanctions agent a.
5. Y →∼s ∈ out(Dn,≥n): if Y holds, then agent n desires not to sanction. This

desire of the normative system expresses that it only sanctions in case of violation.
6. Y →∼s ∈ out(Da,≥a): if Y holds, then agent a desires∼s, which expresses that

it does not like to be sanctioned.

The rules in the definition of obligation are only motivations, and not beliefs, because
a normative system may not recognize that a violation counts as such, or that it does
not sanction it: it is up to its decision. Both the recognition of the violation and the
application of the sanction are the result of autonomous decisions of the normative
system that is modelled as an agent.

The beliefs, desires and goals of the normative agent - defining the obligations - are
not private mental states of an agent. Rather they are collectively attributed by the agents
of the normative system to the normative agent: they have a public character, and, thus,
which are the obligations of the normative system is a public information.

Example 8. Let: {g1, g2, g4} = Gn, Gn∪{g3, d2} = Dn, {g1} = GD(a), {d2} = Da

RD(g2) = {¬catalytic, drive} → V (drive ,a) RD(g3) = � → ¬V (drive , a)
RD(g4) = {¬catalytic, V (drive , a)} → s

NMAS |= O2
an(¬drive , s | ¬catalytic), since:
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1. ¬catalytic → ¬drive ∈ out(Dn,≥n) ∩ out(GD(a),≥n)
2. {¬catalytic, drive} → V (drive, a) ∈ out(Dn,≥n) ∩ out(Gn,≥n)
3. � → ¬V (drive ,a) ∈ out(Dn,≥n)
4. {¬catalytic, V (drive ,a)} → s ∈ out(Dn,≥n) ∩ out(Gn,≥n)
5. ¬catalytic →∼s ∈ out(Dn,≥n)
6. ¬catalytic →∼s ∈ out(Da,≥a)

At the middle level of abstraction, the beliefs of the normative system represent only the
connections between actions and the consequences of these actions for the normative
system. The normative system has the desire and goal that the institutional fact y holds
if the fact x holds in context C. The normative system believes that to make y true it
has to perform an action z. Thus it is not sufficient the fact x holding in context C for
the institutional fact y to be true: it is necessary also a decision to do z by the normative
system.

Definition 9 (Counts-as relation (level 2)). Let NMAS be a normative multiagent
system 〈A, X, B, D, G,AD , E,RD ,≥,≥E,n, I, V,GD〉. A literal x ∈ Lit(X)
counts-as y ∈ Lit(I) in context C ⊆ Lit(X), NMAS |= counts-as2

n(x, y|C), iff:

1. C∧x→ y ∈ out(Dn,≥n)∩out(Gn,≥n): it is a desire and goal of the normative
system that in context C the fact x is considered as the institutional fact y.

2. ∃z ∈ Xn such that C ∪ {z} → y ∈ out(Bn,≥n): there exists an action z of the
normative system n such that if it decides z in context C then it believes that the
institutional fact y follows (i.e., counts-as1

n(z, y|C) at the first level of abstraction).

Example 9. P \ I = {catalytic}, I = {eco}, Xa = {drive}, Xn = {stamp}
Dn = Gn = {d3},RD(d3) = catalytic → eco
Bn = {b1}, RD(b1) = stamp → eco

Consequently, NMAS |= counts-as2
n(catalytic, eco|�). This formalizes that the

normative system wants that if a car is catalytic, then it is considered as an ecological
vehicle and the normative believes that from system putting a stamp on a catalytic car
licence follows the fact that the car is catalytic. In situation S = {catalytic}, given Bn

we have that the consequences of the constitutive norms are out(Bn, S,≥n) = ∅ and
thus the goal d3 remains unsatisfied, while in situation S′ = {catalytic, stamp} they
are out(Bn, S′,≥n) = {eco} and the goal d3 is satisfied.

The institutional facts can appear in the conditions of regulative norms:

Example 10. A regulative norm which forbids driving non catalytic cars can refer to
the abstract concept of ecological vehicle rather than to catalytic converters:
O2

an(¬drive , s | ¬eco).

As the system evolves, new cases can be added to the notion of ecological vehicle by
means of new constitutive norms, without changing the regulative norms about it. E.g.,
if a car has fuel cells, then it is an ecological vehicle: fuelcell → eco ∈ RD(Bn).

This level of abstraction supposes that the normative system is an agent acting in the
world. This abstraction can be detailed by introducing agents acting on behalf of the
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normative system: the normative system wants that an agent a makes the institutional
fact y true if x holds in context C and believes that the effect of action z of agent a is
the institutional fact y.

Before introducing the more concrete level of abstraction in obligations we discuss
the third level of constitutive norms which is based on the notion of delegation of power.

Definition 10 (Counts-as relation (level 3) and delegation of power). Let NMAS
be a normative multiagent system 〈A, X, B, D, G,AD , E,RD ,≥,≥E,n, I, V,GD〉.

a ∈ A is an agent, z ∈ Xa an action of agent a, x ∈ Lit(X) is a literal built out of a
variable, y ∈ Lit(I) a literal built out of an institutional fact, C ⊆ Lit(X) the context.
Agent a has been delegated the power to consider x in context C as the institutional
fact y, NMAS |= delegatedn(a, z, x, y|C), iff:

1. C ∧ x → y ∈ out(Dn,≥n) ∩ out(GD(a),≥n): it is a desire of the normative
system and a goal distributed to agent a that in context C the fact x is considered
as the institutional fact y.

2. ∃z ∈ Xa such that C∪{z} → y ∈ out(Bn,≥n): there exists an action z of agent a
such that if it decides z then the normative system believes that the institutional
fact y follows (i.e., counts-as1

n(z, y|C) at the first level of abstraction).

If NMAS |= delegatedn(a, z, x, y|C), then NMAS |= counts-as3
n(x, y|C),

Example 11. b ∈ A, P \ I = {catalytic}, I = {eco}, Xa = {drive}, Xb = {stamp}
Dn = GD(b) = {d3},RD(d3) = catalytic → eco
Bn = {b1}, RD(b1) = stamp → eco

Thus, NMAS |= delegatedn(b, stamp, catalytic, eco|�). Note that with respect to
Example 9, the goal d3 is distributed to agent b and stamp is an action of agent b.

We can now define obligations where agents have been delegated the power of recogniz-
ing violations by means of actions which count as such. Differently from the obligation
of level 2, clause 2 distributes a goal to agent b who is in charge of recognizing viola-
tions and whose action z is believed by the normative system n to be the recognition of
a violation (clause 7).

Definition 11 (Obligation (level 3)). Let NMAS be a normative multiagent system
〈A, X, B, D, G,AD , E,RD ,≥,≥E,n, I, V,GD〉. Agent a ∈ A is obliged to see to
it that x ∈ Lit(Xa ∪ P ) with sanction s ∈ Lit(Xb ∪ P ) in context Y ⊆ Lit(X)
in NMAS , written as NMAS |= O3

an(x, s|Y ), if and only if ∃b ∈ A and a decision
variable z ∈ Xb such that Definition 8 holds except that:

2. Y ∪ {∼x} → V (∼x,a) ∈ out(Dn,≥n) ∩ out(GD(b),≥n): if Y holds and ∼x
is true , then agent n has distributed the goal V (∼x,a): that it is recognized as a
violation in context Y .

7. Y ∪{z} → V (∼x,a) ∈ out(Bn,≥n): from action z of agent b is believed to follow
the recognition of the violation.

From clause 2 and 7 it follows that agent b has been delegated the power to recognize
violations by means of its action z.

NMAS |= ∃b ∈ A, z ∈ Xb delegatedn(b, z,∼x, V (∼x,a) | Y )
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Note that clause 2 of the definition above is like the first clause of an obligation
Obn(V (∼ x,a), s′ | Y ∪ {∼x}). The model can thus be extended with obligations
towards agents which have to take care of the procedural aspects of law, like prosecut-
ing violations and sanctioning violators. These additional obligations are discussed in
[19] and provide a motivation for the prosecuting and sanctioning agents. In the Italian
law, for example, it is obligatory for an attorney to start a prosecution process when he
comes to know about a crime (art. 326 of Codice di procedura penale).

6 Conclusions and Related Work

In this paper we introduce the notion of delegation of power which elaborates the
counts-as relation extending it to cope with some real situations. We show that counts-as
relations in some cases depend on the action of agents which are in charge of recogniz-
ing facts as institutional facts. Moreover, we show that these agents are motivated to do
so by a goal delegated to them by the normative system. If these two conditions are true
we say that the agents have been delegated a power. Once we define the delegation of
power relation, we can use it to extend our sanction based definition of obligations in
order to model agents which prosecute violations.

Our model allows to distinguish three levels of abstractions: at the higher level of ab-
straction violations, sanctions and institutional facts follow without the intervention of
any agent. At the middle level the normative system acts to satisfy its goal to recognize
violations, to sanction and to establish institutional facts. At the most concrete level,
agents are in charge of achieving the goals of the normative system and are empowered
to do so.

The notion of empowerment in normative multiagent systems is widely discussed,
but it has not been related yet with the notion of goal delegation.

Pacheco and Santos [25], for example, discuss the delegation of obligations among
roles. In particular, they argue that when an obligation is delegated, a corresponding
permissions must be delegated too. This rationality constraint inside an institution par-
allels our notion of delegation of power: when the goal to make true an institutional fact
is delegated, the agent must be empowered to do so too. Moreover, in our model we
can add to the notion of delegation of power also the permission for the delegated agent
to perform the action which counts as the delegated institutional fact. This can be done
using the definition of permission given in [8].

Pacheco and Santos consider the delegation process among roles rather than among
agents. This feature can be added to our model too, using the framework for roles
we discuss in [13]. Note that our model of roles describes roles by means of beliefs
and goals; it is, thus, compatible with the distribution of goals to agents described by
clause 2 of Definition 11.

Gelati et al. [26] combine obligations and power to define the notion of mandate in
contracts: “a mandate is a proclamation intended to create the obligation of exercising
a declarative power”. However, they do not apply their analysis to the definition of
constitutive rules but to the normative positions among agents.

Comparison with other models of counts-as is discussed in [6] and [14].
Future work is studying the relation between regulative rules and delegation of

power: defining how it is possible to create global policies [8] obliging or permitting
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other agents to delegate their power. Finally, abstraction in the input/output logic
framework has been left for lions or input/output networks. In such networks each black
box corresponding to an input/output logic is associated with a component in an archi-
tecture. A discussion can be found in [14].
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Abstract. In this paper we extend earlier work on deontic deadlines in CTL to
the framework of alternating time temporal logic (ATL). The resulting setting
enables us to model several concepts discussed in the deontic logic literature.
Among the issues discussed are: conditionality, ought implies can, deliberateness,
settledness, achievement obligations versus maintenance obligations and deontic
detachment. We motivate our framework by arguing for the importance of tempo-
ral order obligations, from the standpoint of agent theory as studied in computer
science. In particular we will argue that in general achievement obligations cannot
do without a deadline condition saying the achievement has to take place before it.
Then we define our logic as a reduction to ATL. We demonstrate the applicability
of the logic by discussing a possible solution to Chisholm’s paradox. The solution
differs considerably from other known temporal approaches to the paradox.

1 Introduction

In agent theory, as studied in computer science, we are interested in designing logi-
cal models that describe how agents can reason about and decide what to do, given
their obligations, permissions, abilities, desires, intentions, beliefs, etc. Decisions have
a temporal aspect, namely, they are about what to do in the future, and they deal with
conditional information, namely, they have to result from considering and reasoning
about hypothetical circumstances. The deontic ATL operators we consider in this paper
are both conditional and temporal. Their syntactical form is OA(ρ ≤ δ : ξA). The intu-
itive interpretation of the operator is that if the agents in the set A achieve δ, they are
obliged to achieve ρ at the same time or before that, under penalty of suffering the neg-
ative condition ξA. A good example of such an obligation is the following: according to
Dutch traffic regulations one has to indicate direction before one turns off. In this exam-
ple, δ is ‘turning off’, ρ is ‘indicating direction’ and ξ can be the circumstance of being
vulnerable for being fined by a police officer. Obligations OA(ρ ≤ δ : ξA) are thus condi-
tional on the actual occurrence of δ and are temporal in the sense that the achievement
ρ has to precede the condition δ. Readers familiar with the deontic logic literature will
recognize that another example is the second sentence of Chisholm’s original paradox-
ical scenario: ‘if one helps, first one has to tell’. In section 9 we discuss formalizations
of Chisholm’s scenario in our formalism.

One might wonder why we think obligations expressed as OA(ρ ≤ δ : ξA) are so
important. Let us explain. Obligations that guide agents in the actions they select for
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performing are always about the future. Obligations about the past are not interesting
for agents having to decide what to do, because we may safely assume that agents do
not control the past. We adopt terminology from BDI-theory, and say that the reference
time of the obligations we are interested in is the future, while the validity time is the
present1. The latter emphasizes that we want our logic to model the reasoning of an
agent that has to decide what to do ‘now’, considering the obligations he has about the
future. A rough classification of obligations whose reference time is the future is the di-
vision in achievement obligations and maintenance obligations. Similar terminology is
used by Cohen and Levesque [8] who distinguish between achievement goals and main-
tenance goals. In an achievement obligation, the objective is to achieve something in
the future that is not already (necessarily) true now. For a ‘maintenance obligation’ the
objective is to preserve the truth of a condition that is already true now. Our main inter-
est in this paper will be with achievement obligations, since as we will see in section 6,
maintenance obligations can be rewritten into equivalent achievement obligations. So,
for agent theory as studied in computer science achievement obligations are the most
interesting type of norms. Now we will argue in section 2 that achievement obligations
are close to meaningless without a condition δ before whose occurrence the achieve-
ment ρ has to be realized, which explains why obligations of the form OA(ρ ≤ δ : ξA)
are central to our investigations.

In some of the previous work on this subject [4], we referred to the condition δ as a
‘deadline’ of an obligation OA(ρ ≤ δ : ξA). That was partly because there we studied
this type of modality in the purely temporal framework of CTL. Here we use ATL for
the temporal component. ATL has elements of logics of Agency. In [5] we showed
how to embed Coalition Logic (CL), which is a subset of ATL, in the STIT framework
of Horty [11]2. Since ATL can be seen as a logic of (strategic) ability it enables us
to define different notions of control over conditions. And adding information about
control over the condition δ (or, to be more precise, absence of control over ¬δ, which
is something else) is actually what can turn a conditional temporal order obligation into
a real deadline obligation, as we explain in section 8. So obligations OA(ρ ≤ δ : ξA) as
such should not be referred to as ‘deadline’ obligations. They are conditional temporal
order obligations, which can be made into deadline obligations, by adding that agents
A do not control avoidance of the deadline condition δ.

2 Why Achievement Obligations Need a ‘Deadline’ Condition

Dignum et al [9, 17] stress the importance of providing deadlines (which they do not
view as particular kinds of conditionals, like we do) for obligations from practical
considerations. And indeed, in the environments where software agents are envisioned

1 The distinction between validity time and reference time for logics that contain a temporal
modality as one of the logic components, was, for instance, formulated by Lindström and
Rabinowicz [13] in the context of temporal epistemic logics. But it equally applies to temporal
motivational logics. And we belief that a failure to distinguish the two concepts is the source
of a lot of confusion.

2 And a paper on embedding ATL as a whole into the strategic version of Horty’s STIT formal-
ism is under review.
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to operate, they will have to deal with deadlines. Think about agents negotiating cer-
tain deadlines, to coordinate their behavior. For instance, agents may engage in mutual
agreements by means of contracts, which typically contain deadlines.

However, there are more fundamental reasons to equip achievement obligations with
deadline conditions. A fundamental assumption in deontic logic is that norms (oblig-
ations) can be violated, and that we should be able to reason about this circumstance.
Now, if we think about the situation where an agent has an achievement obligation ϕ
for, say, ‘stop smoking’, and we want to make the temporal component of ϕ explicit,
then we cannot model this by writing for ϕ a formula like OFstop smoking (Oψ for
‘it is obliged that ψ’ and Fχ for ‘some time in the future χ’), because we cannot vio-
late this obligation. At any future point, the agent can claim that although he has not
stopped smoking yet, he will eventually, at some point even further in the future. Most
deontic logicians would agree that obligations that cannot be violated are no obliga-
tions at all. So what it takes for an achievement obligation to really be an obligation
is reference to a condition under which it is violated. And this is exactly what a dead-
line condition is: a condition giving rise to a violation if the achievement has not been
accomplished before. If this condition corresponds to a given point is some time met-
ric, we have a genuine deadline obligation. But if this condition is an abstract propo-
sition δ, we have a special kind of conditional obligation, namely, a temporal order
obligation.

A possible objection against the above line of reasoning is that sometimes there do
seem to be ways in which to violate an achievement obligation without a deadline. Be-
fore explaining the objection, we need to point out that obligations play multiple roles
in rational agent modelling. There are two abstraction levels on which they play a role.
First there are achievement obligations incurred and represented by agents. These oblig-
ations should have a deadline, since otherwise they cannot be violated which means
that they do not influence the agents decision making. But there are also achievement
obligations that function as specifications for the agents behavior as seen by an agent
designer. A good example is the formal property of fairness. For instance, a designer
might specify that his agent is obliged to distribute its deliberation efforts fairly over
its set of goals. The design of the agent may violate this fairness obligation. But note
that in general this is not something the agent itself is concerned with. The agent is
designed as it is, and it cannot choose to have another design. And thus it cannot violate
an achievement obligation without a deadline. Or can he? Of course, we can imagine
that an agent indeed is able to alter its own design, thereby violating a certain achieve-
ment obligation. For instance, we might claim that an agent violates the achievement
obligation to shake hands with president Bush someday by cutting off his own hands.
A similar objection is that an agent might perform something irrevocable in its environ-
ment. For instance, an agent can be said to violate the achievement obligation to bring
back the book to the library some day by burning it3.

We acknowledge these as valid objections against our claim that achievement oblig-
ations need deadlines. However, there are still some good reasons to claim that deadline
conditions are crucial for achievement obligations. For instance, an agent cannot destroy

3 What if we are able to reproduce exactly the same book? Then, apparently burning did not
count as irrevocably destroying the possibility to comply.
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the possibility to be able to stop smoking, so at least for some achievement obligations
a deadline is necessary. Furthermore, one seems to have a contrived interpretation of
an obligation like ‘having to return a book to the library some day’ if one claims that
it does not imply that one actually has to bring it back but only that one should not
irrevocably destroy it.

Our suggestion, is that we can study the difference between, for instance the smok-
ing example and the library example as a difference in the interaction with abilities.
In section 8 we will mention several ways in which obligations act with ability. One
interaction with ability is that we can choose to define that an obligation for achieving
ϕ implies that an agent is obliged to keep open the possibility of reaching ϕ (we will
however not discuss this interaction in section 8). If we choose to include this property,
indeed, in the library example we violate the achievement obligation to bring back the
book eventually, by burning the book. However, for the smoking example there is no
difference: it is hard to imagine how an agent can violate an obligation to keep open the
possibility to stop smoking.

3 Reduction Using Negative Conditions

As explained, the syntax of the central modality we study in this paper is OA(ρ ≤ δ : ξA)
(although we permit ourselves a brief generalization to a conditional variant OA(ρ ≤ δ :
ξA | η) in section 9). The O stands for obligation, A is a group of agents having the
obligation, ρ is the condition to be achieved, δ the condition functioning as the deadline
for the achievement, and ξA a condition necessarily true in case the deadline obligation
is violated. We think of ξA as a condition that is in some sense negative for the group
of agents A. Negative conditions typically play a role in the semantics of notions like
obligation, commitment and intention. Goals, desires, wants, wishes, objectives, etc.
are typically associated with positive conditions. Our approach differs from most others
working with negative condition [3, 15] in that we make the negative condition explicit
in the syntax of the obligation modalities. In standard deontic logic (SDL) [18], the
negative conditions are implicit in the modal semantics: modally accessible worlds are
optimal worlds where no violations occur. In Anderson’s reduction for SDL [3], the
negative conditions are explicit in the object language through a propositional constant
Viol. In this paper we go one step further by explicitly giving the negative conditions
ξA as parameters for the obligation operator OA(ρ ≤ δ : ξA). This has many advantages.
For instance, it gives us the machinery to specify that certain obligations are incurred
as the result of violating other obligations. That is, we can nest obligations by using
formulas of the form OA(ρ ≤ δ : ξA) for ξA. However, we do not consider such nestings
in this paper. The most important reason for making the negative conditions explicit,
is the advantage this has in the study of Chisholm’s scenario in section 9. It enables
us to view the choice of which temporal obligation to comply to as a decision about
which non-temporal negative condition to prefer. Obviously, such decisions can only
be made relative to a preference order over negative conditions. In this paper such an
order is not made explicit, since here we are only concerned with a possible definition
for temporal obligations in terms of negative conditions. Possible logical structures for
negative conditions themselves are not explored.
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Also, allowing general negative conditions ξA enables us to discuss some principles
of deontic logic. For instance, in case ξA = ⊥, the norm is ‘regimented’. Actually this
means that the norm is no longer a norm, since it is no longer possible to violate it; the
norm simply becomes a hard constraint on the behavior of agents. Thus OA(ρ ≤ δ : ⊥)
means that A can only do ρ before δ, and nothing else. In terms of strategies: the agent
has no strategy where eventually he meets a δ without having met a ρ first. The case
ξA = � gives a dual effect: now the penalty is always true, which means that it looses
its meaning as a divider between ‘the good’ and ‘the bad’. As a result, OA(ρ ≤ δ : ξA)
looses its normative meaning; any point of achieving ρ or δ becomes as good as any
other. This means that OA(ρ ≤ δ : �) has to be generally valid, as is the case for our
definitions for the operator.

Our aim is to define the semantics of the modality OA(ρ ≤ δ : ξA) entirely by con-
structing reductions to formulas of alternating time temporal logic (ATL) [1, 2] talking
about negative conditions. ATL is a temporal logic of agency with a game theoretic
semantics in terms of strategies. The deadline obligations we define will then be strate-
gic obligations in the sense that they limit the possible strategies of agents by asso-
ciating negative conditions with courses of agent choices that do not comply to the
obligation.

Reducing to ATL has many advantages. We can use the logical machinery of ATL
(axiomatization, model checking algorithms), to do reasoning. We can check properties
of deontic logics by translating and proving them in ATL. Finally, we can do planning
with obligations and deadlines using a satisfiability checker for ATL. We do not have
to be too afraid that ATL, as a formal system, might be to weak to encode interesting
properties, since it has been shown to have an exponential time complete complexity.

4 ATL

We present ATL ([1, 2]) here using a non-standard, but concise and intuitive syntax and
semantics.

4.1 Core Syntax, Abbreviations and Intuitions

Definition 1. Well-formed formulas of the temporal languageLATL are defined by:

ϕ, ψ, . . . := p | ¬ϕ | ϕ ∧ ψ | 〈[A]〉η | [〈A〉]η
η, θ, . . . := ηUeeθ

where ϕ, ψ, . . . represent arbitrary well-formed formulas, η, θ, . . . represent temporal
path formulas, the p are elements from an infinite set of propositional symbols P, and
A is a subset of a finite set of agent names E (we define A ≡de f E \ A). We use the su-
perscript ‘ee’ for the until operator to denote that this is the version of ‘the until’ where
ϕ is not required to hold for the present, nor for the point where ψ, i.e., the present
and the point where φ are both excluded. Roughly, 〈[A]〉η is read as ‘A can ensure η’,
and the dual [〈A〉]η is read as ‘A cannot avoid η’. A more precise explanation, revealing
the existential and universal quantification over strategies in both these operators (which
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explains our choice of syntax using a combination of sharp and square brackets for both
operators) is as follows:

〈[A]〉(ϕUeeψ): agents A have a strategy that, whatever strategy is taken by agents A,
ensures that eventually, at some point m, the condition ψ will hold,
while ϕ holds from the next moment until the moment before m

[〈A〉](ϕUeeψ): for all strategies of agents A the agents A have a strategy such that
eventually, at some point m, the condition ψ will hold, while ϕ holds
from the next moment until the moment before m

We use standard propositional abbreviations, and also define the following operators
as abbreviations.

Definition 2

〈[A]〉Xϕ ≡de f 〈[A]〉(⊥Ueeϕ) [〈A〉]Xϕ ≡de f [〈A〉](⊥Ueeϕ)
〈[A]〉Fϕ ≡de f ϕ ∨ 〈[A]〉(�Ueeϕ) [〈A〉]Fϕ ≡de f ϕ ∨ [〈A〉](�Ueeϕ)
〈[A]〉Gϕ ≡de f ¬[〈A〉]F¬ϕ [〈A〉]Gϕ ≡de f ¬〈[A]〉F¬ϕ
〈[A]〉(ϕUeψ) ≡de f ϕ ∧ 〈[A]〉(ϕUeeψ) [〈A〉](ϕUeψ) ≡de f ϕ ∧ [〈A〉](ϕUeeψ)
〈[A]〉(ϕUψ) ≡de f 〈[A]〉(ϕUe(ϕ ∧ ψ)) [〈A〉](ϕUψ) ≡de f [〈A〉](ϕUe(ϕ ∧ ψ))
〈[A]〉(ϕUwψ) ≡de f ¬[〈A〉](¬ψU¬ϕ) [〈A〉](ϕUwψ) ≡de f ¬〈[A]〉(¬ψU¬ϕ)

The informal meanings of the formulas are as follows (the informal meanings in com-
bination with the [〈A〉] operator follow trivially):

〈[A]〉Xϕ : agents A have a strategy to ensure that at any next moment ϕ will hold
〈[A]〉Fϕ : agents A have a strategy to ensure that eventually ϕ will hold
〈[A]〉Gϕ : agents A have a strategy to ensure that holds globally
〈[A]〉(ϕUeψ): agents A have a strategy to ensure that, eventually, at some point m,

the condition ψ will hold, while ϕ holds from now until the moment
before m

〈[A]〉(ϕUψ): agents A have a strategy to ensure that, eventually, at some point the
condition ψ will hold, while ϕ holds from now until then

〈[A]〉(ϕUwψ): agents A have a strategy to ensure that, if eventually ψ will hold, then
ϕ holds from now until then, or forever otherwise

4.2 Model Theoretic Semantics

The intuition behind ATL models is that agents have choices, such that the non-determi-
nism of each choice is only due to the choices other agents have at the same moment.
Thus, the simultaneous choice of al agents together, always brings the system to a
unique follow-up state. In other words, if an agent would know what the choices of other
agents would be, given his own choice, he would know exactly in which state he arrives.

Definition 3. An ATL modelM = (S ,C, π), consists of a non-empty set S of states, a
total function C : A × S 
→ 22S

yielding for each agent and each state a set of choices
(informally: ‘actions’) under the condition that the intersection of each combination
of choices for separate agents gives a unique next system state (i.e., for each s, the
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function RX(s) = {⋂
a∈A

Cha | Cha ∈ C(a, s)} yields a non-empty set of singleton sets

representing the possible follow-up states of s), and, finally, an interpretation function
π for propositional atoms.

Note that from the condition on the function C it follows that the choices for each
individual agent at a certain moment in time are a partitioning of the set of all choices
possible for the total system of agents, as embodied by the relation Rsys = {(s, s′) | s ∈
S and {s′} ∈ RX(s)}. And, also note that this latter condition does not entail the former.
That is, there can be partitions of the choices for the total system that do not correspond
to the choices of some agent in the system.

Definition 4. A strategy αa for an agent a, is a function αa : S 
→ 2S with ∀s ∈ S :
αa(s) ∈ C(a, s), assigning choices of the agent a to states of the ATL model.

Often, strategies are defined as mappings αa : S + 
→ 2S , from finite sequences of
states to choices in the final state of a sequence. However, to interpret ATL, this is not
necessary, because ATL is not expressive enough to recognize by which sequence of
previous states a certain state is reached. More in particular, without affecting truth of
any ATL formula, we can always transform an ATL model into one where Rsys is tree-
like. On tree structures it is clear right away that a mapping from states to choices in
that state suffices, since any state can only be reached by the actions leading to it.

The strategy function is straightforwardly extended to sets of agents.

Definition 5. A full path σ in M is an infinite sequence4 σ = s0, s1, s2, . . . such that for
every i ≥ 0, si ∈ S and (si, si+1) ∈ Rsys. We say that the full path σ starts at s if and only
if s0 = s. We denote the state si of a full path σ = s0, s1, s2, . . . inM by σ[i].

A full path σ complies to a strategy αA of a set of agents A if and only if for every
n ≥ 0, σ[n + 1] ∈ αA(σ[n]). We denote the set of full paths complying to a strategy αA

by Σ(αA).

Definition 6. Validity M, s |= ϕ, of an ATL-formula ϕ in a world s of a modelM =
(S ,C, π) is defined as:

M, s |= p ⇔ s ∈ π(p)
M, s |= ¬ϕ ⇔ notM, s |= ϕ
M, s |= ϕ ∧ ψ ⇔M, s |= ϕ andM, s |= ψ
M, s |= 〈[A]〉η ⇔ ∃αA s. t. ∀σ ∈ Σ(αA) with σ[0] = s :M, σ[0], σ |= η
M, s |= [〈A〉]η ⇔ ∀αA : ∃σ ∈ Σ(αA) with σ[0] = s s. t.M, σ[0], σ |= η
M, σ[0], σ |= ϕUeeψ⇔ ∃n > 0 s. t.

(1)M, σ[n] |= ψ and
(2) ∀i with 0 < i < n :M, σ[i] |= ϕ

Validity on a ATL modelM is defined as validity in all states of the model. If ϕ is valid
on an ATL modelM, we say that M is a model for ϕ. General validity of a formula

4 Alternatively, we may drop the requirement that Rsys is serial, and add a maximality condition
to the notion of ‘full path’.
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ϕ is defined as validity on all ATL models. The logic ATL is the subset of all general
validities of LATL over the class of ATL models.

5 Conditional Temporal Order Obligations

In this section we define operators for temporal order obligations as reductions to ATL-
formulas talking about negative conditions. We use ATL-formulas indexed with a set of
agents, i.e, ξA, to denote negative conditions. The central observation linking obligations
OA(ρ ≤ δ : ξA) to ATL, is the following:

OA(ρ ≤ δ : ξA) holds if and only if it is not the case that the group of agents A
has a strategy to achieve δ, to avoid ρ at all moments until δ occurs for the first
time, and avoid the negative condition ξA at the point where δ.

In other words, if A want to achieve δ at some future point, they have to make sure that
before that they achieve ρ, because otherwise the negative condition ξA will be valid at
the point where δ. We can rewrite this formally as a truth condition on ATL models:

Definition 7 (temporal order obligations)

M, s |= OA(ρ ≤ δ : ξA)⇔ �αA,∀σ ∈ Σ(αA) with σ[0] = s,∃ j :
such that
∀0 ≤ i < j :M, σ[i] |= ¬ρ ∧ ¬δ andM, σ[ j] |= ¬ρ ∧ δ
and
M, σ[ j] |= ¬ξA

This says: if at some future point δ occurs, than A has no way of ensuring that, if ρ has
not occurred before the point where δ occurs for the first time, there is not a negative
condition ξA at the point where δ. This means that if A do have a strategy to avoid the
negative condition while not doing ρ before δ, they do not have the obligation.

Under the above definition, in case only some strategies of agents may lead to neg-
ative conditions if they do not ensure that ρ is achieved before δ, the agents are not
obliged to achieve ρ before δ. This situation actually constitutes a kind of condition-
ality other than the conditionality with respect to deadline conditions δ. Modelling it
would require an operator OA(ρ ≤ δ : ξA | η), where η is a temporal formula denoting
the subset of paths the obligation holds on. Note that the original obligation reappears
as the case where η equals �. This kind of conditionality (which is not further explored
in this paper) can be modelled using the more expressive variant AT L∗. We leave this
extension and a discussion on the different kinds of conditionality that can be defined
for temporal deontic operators for a future paper.

A second aspect of definition 7 that has to be explained is that it by no means implies
that an obligation requires that δ becomes true eventually (which is why it is conditional
on δ). However, we do have that if A cannot avoid that δ might never become true, they
cannot have a strategy that ensures that at some point δ will hold (and where if ρ has not
been done before, there is not a negative condition), which means that they are obliged



Strategic Deontic Temporal Logic as a Reduction to ATL 61

every ρ before δ (validity 10 in proposition 2 reflects this). This seems rather counter
intuitive. However, in section 8 we define a deliberate version of the operator for which
this property is eliminated.

The third thing to discuss is that intuitively, a strategic notion of obligation should
distinguish between the strategies that are good and the strategies that are bad. How-
ever, our definition suggests that we can define the obligation in terms of what strate-
gies agents have. The link between these two views is the use of the negative conditions
and the conditionality with respect to occurrence of the condition δ. Actually we can
view the definition as distinguishing between good and bad strategies in the following
sense: the strategies in which an agent eventually meets the condition δ without hav-
ing achieved the condition ρ before, are the bad strategies, all the others are the good
ones.

We can circumscribe the truth condition of definition 7 as an ATL formula. We have
the following proposition:

Proposition 1. A formula OA(ρ ≤ δ : ξA) is true at some point of an ATL model if and
only if the point satisfies the ATL formula (δ ∧ (¬ρ → ξA)) ∨ ¬〈[A]〉((¬ρ ∧ ¬δ)Ue(δ ∧
¬ρ ∧ ¬ξA)).

Proof. We only give an impression of the proof. The present is not controlled by any
strategy. If δ holds presently, and ρ does not hold presently, there is a violation presently.
In the truth condition this corresponds to the case j = 0, and in the formula to δ∧(¬ρ→
ξA). Equivalence is easy to see. For moments other than the present, the equivalence
follows almost directly from the semantics of the ATL operators involved.

6 Maintenance Obligations with a Relief Condition

In the introduction we explained what maintenance obligations are. Where achievement
obligations for a property ρ naturally come with a property δ functioning as a deadline
condition, maintenance properties ϕ come with a property ψ functioning as a relief
condition: if the relief condition occurs, the obligation to maintain ϕ no longer holds.
We can define maintenance obligations OA(ϕ � ψ : ξA) in terms of achievement
obligations as follows:

Definition 8
OA(ϕ� ψ : ξA) ≡de f OA(ψ ≤ ¬ϕ : ξA)

The rationale for the definition is as follows. An agent can comply to obligations OA(ρ ≤
δ : ξA) in two different ways: (1) he can look at it as having to do ρ before he does δ,
but he can also (2) look at it as having to preserve ¬δ as long as he has not achieved
ρ. Note that for a maintenance obligation OA(ϕ � ψ : ξA), the negative condition
occurs at the first point where ϕ is no longer maintained, provided this point is before
ψ. In section 9 we will use a maintenance obligation to model one of the sentences of
Chisholm’s scenario.
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7 More Logical Properties

In this section we mention some logical properties of the defined obligation operator.

Proposition 2. The following schemas are valid:

|= OA((ρ ∧ χ) ≤ δ : ξA)→ OA(ρ ≤ δ : ξA) (1)

|= OA(ρ ≤ � : ξA) ∧OA(χ ≤ � : ζA)→ OA((ρ ∧ χ) ≤ � : ξA ∨ ζA) (2)

|= OA(� ≤ δ : ξA) (3)

|= OA(γ ≤ γ : ξA) (4)

|= OA(ρ ≤ ⊥ : ξA) (5)

|= ¬OA(⊥ ≤ � : ⊥A) (6)

|= ¬(OA(ρ ≤ � : ξA) ∧ OA(¬ρ ≤ � : ξA)) (7)

|= OA(ρ ≤ δ : �) (8)

|= OA(ρ ≤ δ : ⊥)→ OA(ρ ≤ δ : ξA) (9)

|= [〈A〉]G¬δ→ OA(ρ ≤ δ : ξA) (10)

|= OA(ρ ≤ δ : ξA)→ [〈A〉](OA(ρ ≤ δ : ξA)Uw(ρ ∨ δ)) (11)

|= OA(ρ ≤ δ : ξA)→ OA(OA(ρ ≤ δ : ξA)� (ρ ∨ δ) : ξA) (12)

|= ξA → OA(ρ ≤ � : ξA) (13)

|= OA(ρ ≤ ξA : ξA) (14)

Proposition 3. The following schemas are not valid:

�|= OA(ρ ≤ δ : ξA) ∧OA(δ ≤ γ : ζA)→ OA(ρ ≤ γ : ξA ∨ ζA) (15)

�|= OA(ρ ≤ δ : ξA)→ OA(ρ ≤ (δ ∧ γ) : ξA) (16)

�|= OA(ρ ≤ δ : ξA) ∧OA(ρ ≤ γ : ξA)→ OA(ρ ≤ (δ ∨ γ) : ξA) (17)

�|= OA(ρ ≤ δ : ξA) ∧OA(ρ ≤ γ : ξA)→ OA(ρ ≤ (δ ∧ γ) : ξA) (18)

�|= OA(ρ ≤ δ : ξA) ∧OA(χ ≤ δ : ξA)→ OA((ρ ∧ χ) ≤ δ : ξA) (19)

�|= OA(ρ ≤ δ : ξA)→ OA(δ ≤ ρ : ξA) (20)

�|= OA(⊥ ≤ δ : ξA) �|= ¬OA(⊥ ≤ δ : ξA) (21)

�|= ¬OA(⊥ ≤ � : ξA) �|= OA(⊥ ≤ � : ξA) (22)

�|= ¬(OA(ρ ≤ δ : ξA) ∧OA(¬ρ ≤ δ : ξA)) (23)

�|= OA(ρ ≤ � : ξA) �|= ¬OA(ρ ≤ � : ξA) (24)

We have no opportunity here to discuss these properties. In stead we briefly discuss
some more logical issues.

The logical properties for maintenance obligations with a relief condition follow
easily from the properties for achievement obligations with a deadline condition.

Many of the above properties concern properties of single paths within arbitrary
strategies. Therefore we were able to give most of the proofs using an LTL theorem
prover [12].
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An interesting question is whether we can see classical non-temporal obligations
(such as the ones of SDL) as limit cases of temporal order obligations. Intuitively it
should be the case that if we ‘substitute’ the most common temporal connotations of
general obligations in the temporal deontic operators, we get standard deontic operators
back. In our opinion, the most likely substitution for this purpose is δ = �. We have the
following theorem:

Theorem 1. The logic of Oa(ρ≤� : ⊥) is standard deontic logic (the modal logic KD)5.

Proof. Substitution in the definition for O gives ¬〈[A]〉((¬ρ ∧ ¬�)Ue(� ∧ ¬ρ ∧ ¬⊥)).
This reduces to [〈a〉]Xρ. Since there is only one agent, system actions and actions of
a are identical. The seriality condition on system actions ensures modal property D. K
follows from the fact that for one agent, the ATL structure is based on a classical Kripke
frame. From this it also follows that the logic is exactly KD, since this frame satisfies
no additional properties.

8 Interactions with Ability: Deadlines and Deliberate Versions

In the previous sections, we did not consider the issue whether or not the conditions ρ,
δ and ξ were actually ‘under control’ of groups of agents A. However, as is well known
from the deontic literature, issues like ‘ought implies can’, ‘settledness’ and ‘power’
take a central place in it. In this section we study some interactions of obligations and
‘control’.

First we discuss the issue of control over the condition δ. We called the obligations
‘temporal order obligations’ exactly because we did not exclude that δwas indeed under
control of the group of agents A. In contrast, a deadline obligation can be viewed as a
temporal order obligation where the agents A do not control δ. However we have to be
very careful with what we mean. Actually, not controlling δ should not be understood
as agents A not having a strategy for Fδ (consequently they also would not have a
strategy to violate without negative consequences, and thus would be obliged anything
before ρ). Not controlling δ should be understood as not having a strategy for G¬δ.
The difference with conditional temporal order obligations is thus that agents A cannot
avoid their duty by pushing a deadline forward indefinitely, that is, they do not control
¬δ. We can imagine that a temporal deadline D(δ, n) for n time units is defined as (Xn

represents n nestings of the next operator.):

Definition 9

D(δ, n) ≡de f 〈[∅]〉Xn(δ ∧ 〈[∅]〉G¬δ) ∧
∧

0≤i<n

〈[∅]〉Xi¬δ

The ATL formula D(δ, n) says that on all paths, after n steps δ is true, while δ is never
true before or after that. Clearly, in case of a temporal deadline of this kind, no set of
agents A can have a strategy for G¬δ. In this circumstance the temporal order obligation
becomes a real deadline obligation: δ is sure to happen in n time units, and agents

5 Like in conditional deontic logics, the logic of O(ϕ | �) is often also SDL.
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do not have a strategy to avoid ρ at all points before δ and not experience a negative
condition at δ. We may thus introduce deadline obligations by conjuncting temporal
order obligations with formulas D(δ, n). Note that for deadline obligations, there is no
longer any conditionality with respect to δ, since δ is sure to happen at a given point in
the future.

Now we return to variants that are due to different possibilities for the control of
achievements ρ. To give content to his concept of ‘categorical imperative’, Kant sug-
gested the principle of ‘ought implies can’. Kant’s principle also makes sense in the
present, more profane context. Rational agents are assumed to be realistic, which means
that they will not let their decisions be influenced by obligations for conditions ρ they
cannot achieve before δ anyway. Obligation variants that incorporate this property can
be defined as:

Definition 11

Ooc
A (ρ ≤ δ : ξA) ≡de f OA(ρ ≤ δ : ξA) ∧ 〈[A]〉(¬δUρ)

For agent theory, Kant’s dictum can be supplemented with a second principle concern-
ing the interaction of obligation and ability. We might call this second principle ‘ought
implies can avoid’. This relates to a problem with the definition of O that has been
signaled many times before in deontic logic. It is sometimes called the problem of ‘set-
tledness’ [10, 14]. The issue is that any obligation O for which compliance is settled,
or, in other words, temporally inevitable, is true. In particular we have the property
ρ → OA(ρ ≤ δ : ξA), which is an instance of the more general property 9 of section 7.
We avoid the property (and some others that are non-intuitive, such as property 10 of
section 7) by defining deliberate versions of the obligation operators:

Definition 12

Odl
A (ρ ≤ δ : ξA) ≡de f OA(ρ ≤ δ : ξA) ∧ ¬OA(ρ ≤ δ : ⊥)

The formula ¬OA(ρ ≤ δ : ⊥) says that it is not the case that O is an obligation for which
a violation is impossible (i.e., an obligation for which the negative condition cannot
become true). In other words, agents do have a strategy not to comply to the obligation.
However, if they do so, there will be a negative condition. So, now the obligation is
conditional on the possibility not to comply. Thus, agents can only have an obligation
to achieve something if they have the choice not to do so. i.e., when it is not already
settled.

The two principles of ‘ought implies can’ and ‘ought implies can avoid’ come down
to the requirement that choices are not empty and have alternatives. Incorporating these
principles in the definitions avoids counter intuitive properties like always having the
obligation to achieve tautologies (OA(� ≤ δ : ξA)). But in deontic logic, properties like
O� have actually been defended (it is, for instance, a property of SDL). We think that for
the applications of deontic logic in agent theory, they should be excluded. An artificial
agent having to deal with obligations is only interested reasoning about obligations that
influence his decisions. If there is nothing to choose, either because the set of choices
is empty or there is only one alternative, the obligations mean nothing to the agent.
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To conclude this section, we want to point out that not all properties of section 7 hold
for the variants in this section. To save space, we did not elaborate on the effects of the
interaction with abilities on the logical properties. However, we do need to mention the
following property that holds for the deliberate variant:

Proposition 4

|= Odl
A (ρ ≤ δ : ξA) ∧ Odl

A (δ ≤ γ : ζA)→ Odl
A (ρ ≤ γ : ξA ∨ ζA)

This property is crucial in our discussion on the modelling of a Chisholm’s scenario in
section 9.

9 Modelling Chisholm’s Scenario

The original formulation of Chisholm’s problematic scenario is [7]:

1. it ought to be that a certain man go to the assistance of his neighbors
2. it ought to be that if he does go he tell them he is coming
3. if he does not go then he ought not to tell them he is coming
4. he does not go

The modelling task we pursue in this section is to find a logical formalization that:

– faithfully reflects the natural language meaning, including the temporal aspects (the
temporal order in sentence 2, the future directedness of all obligations, the present
as the validity time of all obligations, etc.),

– is consistent,
– has no logically redundant sentences,
– derives that A ought not to tell.

As explained in the introduction, we are interested in obligations whose validity time
is the present and whose reference time is the future, since these are the obligations an
agent has to account for when making a decision about what to do. In particular we
will interpret all sentences of Chisholm’s scenario as sentences being valid presently
while the ‘regulating force’ of the obligations involved refers to the future. Note that
this differs from many other temporal interpretations of Chisholm’s sentences. For in-
stance, [6] discusses also a backwards looking interpretation that considers a setting
where we know for a fact that the man did not help, that the obligation to help has
been violated, and whether or not the agent told that he would come. However, most
temporal interpretations of the scenario have been particularly aimed at using time to
avoid the looming inconsistencies of a-temporal interpretations. For instance, Prakken
and Sergot [16] suggest that temporalization can avoid ‘pragmatic oddities’, such as the
one consisting of the obligation to help in combination with the obligation not to tell,
by stipulating that the validity times of these obligations are disjoint. Following their
line of reasoning, the oddity should be solved by interpreting the scenario in such a way
that the obligation to help is valid until the moment it is violated, while from that point
on the obligation not to tell is valid. We do not regard that as a solution, since we want
a solution where the validity time of all obligations is the present.
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Let us give our formalization first, before explaining the formulas.

Odl
A (help ≤ too late : ξA) ∧ D(too late, n) (25)

Odl
A (tell ≤ help : ζA) (26)

〈[∅]〉(¬help U too late)→ Odl
A (¬tell� too late : ηA) (27)

〈[∅]〉(¬help U too late) (28)

In the first sentence we have to model that the man is obliged to go to the assistance
of his neighbors. As said, we want to interpret this as an obligation about the future:
the man is obliged to help at some future point. However, as explained in section 2, we
cannot simply model this as an obligation of the form OFhelp. Such obligations are
vulnerable for indefinite deferral, and there is no reason for the man to start helping
soon. So, if we want to interpret the obligation as an achievement obligation, we have
to bring in a condition δ before which the helping needs to take place. Since the sen-
tence does not explicitly refer to such a condition, we simply model it as the condition
too late and define that too late is true in exactly n time units. One might argue that we
are introducing a concept that is not in the natural language description of the obliga-
tion. However, we claim that this is the only way we can make sense of the sentence
if we interpret it as an achievement obligation. Although from the natural language de-
scription we cannot know the exact value of n, in our opinion it is safe to assume it is a
parameter playing a role in the intuitive interpretation of the sentence as an achievement
obligation.

As mentioned in the introduction, the second sentence is an outstanding example of
the kind of obligations we can model in our formalism. The obligation to tell, with the
present as its validity time, is conditional on the condition of helping, while the telling
has to precede the helping. We know of no other temporal deontic formalism that can
model this sentence as faithful as the present one.

It has been argued that the third sentence should have the same form as the second
sentence, since both are conditionals. However, we argue that for our future directed
interpretation this is not a sensible requirement. In particular, the second sentence is
an achievement obligation, while the third is a maintenance obligation (see section 6):
from the present until the moment where it is too late to help, the man has the obligation
to preserve the condition of not telling, that is, if he will not help. This conditionality
with respect to not helping is simply modelled using a material implication6 expressing
dependency on the condition whether presently it is known for a fact that the man is not
going to help.

To interpret the fourth sentence as a fact about the future, we model it as an ATL
expression saying that no strategies are possible that possibly result in the man actually
helping before it is too late. We acknowledge that this is not necessarily the most in-
tuitive choice. First of all it would contradict (and not violate) the formula modelling
the first sentence if this would be a variant that incorporates ‘ought implies can’ (see
definition 11). Second, modelling the sentence as a fact about the future is problematic

6 Actually a conditional obligation of the form Odl
A (¬tell� too late : ηA) | (¬help U too late))

as briefly mentioned in section 5 would be a better choice here. But this would not affect the
main idea behind the solution to Chisholm’s scenario.
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as such. Intuitively, one should always keep open the possibility that the man will help.
Therefore it would be much better to model the fourth sentence as an intention. Actu-
ally intentions can be suitably modelled as self-directed obligations, which means we
can express them in the present formalism. We leave this for future research.

The above formalization is consistent, does not contain logical dependencies, and
stays close to the natural language sentences. We now investigate whether it gives rise
to the right conclusions. With the formulas modelling the first two sentences, together
with the logical principle of proposition 4 for deliberate obligations, we derive OA(tell ≤
too late : ξA ∨ ζA). Deriving a ‘new’ obligation from the first two sentences has been
called ‘deontic detachment’ in the literature. But note that it is a rather special kind of
deontic detachment specific for temporal order obligations.

With the formulas modelling the last two sentences, we derive OA(¬tell� too late :
ηA). Obviously, this conflicts with the obligation derived through deontic detachment.
But there is no inconsistency, not even when we use one and the same negative condition
for all obligations involved (or when ξA ↔ ζA ↔ ηA). What the conflicting information
tells us is that we cannot avoid one of the negative conditions ξA ∨ ζA or ηA becoming
true at some point before too late: we cannot at the same time achieve ‘telling’ and
preserve ‘not telling’: a choice has to be made. Of course one of the requirements for
a solution to the scenario is that this choice should be ‘not telling’: we should be able
to conclude that given the above modelling of the scenario, the obligation not to tell is
‘relevant’, while the obligation to tell is not. This is seen as follows. The agent will want
to avoid the negative conditions. And in this case there is a best way to do that. Given
the information in sentence 4 that there will be no helping before it is too late, we can
derive that negative condition ξA is sure to occur at the point too late. This means that
the derived obligation OA(tell ≤ too late : ξA ∨ ζA) is not interesting for the agent to
base its decision on: trying to obey it is pointless, because its negative condition is valid
anyway. This leaves the obligation OA(¬tell � too late : ηA) as the relevant one: the
agent will want to avoid the negative condition ηA, and thus should not tell.

10 Conclusion

In this paper we argued that achievement obligations need a deadline condition that
functions as a point where a possible violation of the obligation is payed for. We named
the resulting conditional obligations ‘temporal order obligations’. We showed how to
define several semantics for temporal order obligations by giving characterizations of
these modalities in plain ATL. This has as an advantage that all logic machinery already
developed for ATL is applicable. The resulting framework is quite rich: we showed that
it enables us to investigate issues like ‘ought implies can’, ‘ought implies can avoid’,
deliberateness and deontic detachment. We mentioned logical properties of the defined
operators, discussed their conditionality aspect, and demonstrated its applicability by
modelling Chisholm’s famous scenario.

Many issues had to be left for future research. In particular the generalization to
obligations OA(ρ ≤ δ : ξA | η) could not be explained in detail, despite its possible
relevance for Chisholm’s scenario. Also intentions, which are also relevant for the sce-
nario, had to be left aside. Among the other issues we are planning to investigate in the
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present framework are concepts like ‘power’,‘responsibility’ and ‘counts as’. For the
longer term, we would also like to investigate the relation between deontic semantics
and game equilibria.
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Abstract. Supplementing an account of actions offered by Horty and
Belnap [8] makes it more suitable for use in deontic logic. I introduce a
new tense operator, for a while in the immediate future, provide for action
terms as well as action formulas, and introduce an intention function into
our models. With these changes, we are able to (a) explore means/ends
relations involving actions, (b) make room for one agent to enable an-
other to act, and (c) provide a means for distinguishing intended from
unintended consequences. In combination, these improvements make it
possible to consider collaborative action aimed at a goal, within a set-
ting open to detailed normative scrutiny of ends, means, actions and
intentions.

1 Introduction

Deontic logic is inevitably concerned with actions, since actions can create oblig-
ations, permissions, or prohibitions, fulfill or violate obligations, exploit permis-
sions, and in other ways transform normative situations. It is therefore natural
to partner a deontic logic with, or indeed build it upon, a suitable logic of action.
Recently Governatori and Rotolo [6] have noted three deficiencies in the logics
of action most often used for such purposes, defects which prevent deontic logics
based on such systems from respecting some important normative subtleties:

1. they cannot distinguish intended from unintended consequences of actions,
and thus cannot distinguish between deliberately bringing something about,
and merely bringing it about1;

� A portion of this paper is based on my presention prepared for the conference on
Norms, Knowledge and Reasoning in Technology, 3–4 June, 2005, Boxmeer, Nether-
lands. I am grateful to the organizers of that conference for the opportunity to
participate, and particularly to Jesse Hughes, whose helpful comments and criti-
cisms have motivated some of the further work reflected in this paper. I am grateful,
as well, to the anonymous referees, whose helpful suggestions and comments have
led to substantial improvements.

1 Governatori and Rotolo use the phrase ‘seeing to it’ to mean intentionally bringing
it about. This introduces a source of potential confusion into the discussion, since
the phrase ‘sees to it that’ is now established in the literature as synonymous with
‘bring it about that’, and thus as devoid of any intimation of intention. Accordingly,
I have rephrased their objection.

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 69–84, 2006.
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2. they provide no way to discuss the means of achieving a result, and thus
cannot be sensitive to the distinction between normatively acceptable and
normatively unacceptable ways of achieving an end2;

3. they cannot distinguish between direct and indirect actions, and thus can-
not distinguish between doing something oneself, and influencing others to
do it.

These criticisms seem entirely apt. Moreover, to these we may add another
rather shocking criticism (not mentioned in [6]) which, if it does not apply to all
logics of action, at least applies to my favorite versions, namely existing accounts
based on branching time models:

4. existing logics of action based on branching time models do not, on close
examination, offer a sense of action in which it can be said that an agent
performs simple actions such as opening a door.

I will take these points up in reverse order. In section 2, after a brief review
of the most useful of the existing logics of action based on branching time, I
will discuss my reasons for holding that point 4 above applies. In section 3,
I propose a step in the direction of remedying that defect and note that the
resulting improved logic of action also provides new possibilities of addressing
criticism 3. In section 4, I will argue that with this improved system we are in
a better position to address criticism 2 above as well. In section 5, I will show
how names for actions can be introduced into our modal language, placing us
in a still better position to address criticism 2. In section 6, I provide a way
to incorporate agents’ intentions into the system so as to address criticism 1.
Section 7 will sum up.

2 Logics of Action Based on Branching Time

Existing logics of action that are based on a theory of branching time (as explored
in, for example, Thomason [10]) stem primarily from the work of Nuel Belnap
and his various students and collaborators ([1–3], [7], [8], [11]). The version
introduced by Horty [7] and Horty and Belnap [8] is particularly important for
our discussion.

Early work on the logic of action (e.g. Pörn [9]) observed that what we do is
not merely something that happens. This shows up in normative contexts. I am
not responsible for the fact that it is raining—that just happens, and I have no
choice in the matter. But I am responsible for the fact that I left my umbrella
at home—that didn’t just happen, it was a matter with respect to which I had,
and made, some effective choice. Belnap holds that genuine action, as contrasted
with mere occurrence of some event, requires some exercise of freedom of choice
2 Governatori and Rotolo suggest that dynamic logic has an advantage over the usual

modal systems, because it provides terms for actions. As I show in Section 5, modal
systems can provide such terms too, so this is not a sound basis for preferring
dynamic logic treatments.
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on the part of the agent involved. But the availability of genuine choices implies
indeterminism about the future: if I genuinely have a choice about whether to
take my umbrella with me or not, then there are details of the future that depend
on which choice I make; and to the degree that such choices are freely available,
the course of the future is correspondingly undetermined.

This leads naturally to a view of time as branching into the future, with
branching occurring at those moments when agents have genuine choices3, and
with different branches corresponding to the different courses which history will
take, depending on the agent’s choice. On some branches, having chosen to leave
my umbrella behind, I get wet. On others, having chosen to bring it with me, I
remain dry.

The past, we suppose, is fixed, so although time branches into the future there
is no branching backwards into the past. Thus the basic picture is as in Figure 1,
with time represented as flowing from bottom to top:

Fig. 1. Branching Fig. 2. Choices

A history is any complete, non-backtracking path from past to future (bottom
to top, in the figures) through this tree. A total of 10 histories are represented
in Figure 1.

In making choices, we are presumably not choosing a single future branch—
to do so would mean that we were rendering the world deterministic from that
moment on. Rather, then, we are choosing a class of possible futures, with other
factors (including the choices of others, our own as yet unmade choices, and
perhaps random events) narrowing that class gradually as time goes on. Thus,
if we look in more detail at a single choice point, an “exploded view” might be
represented as in Figure 2.

Here, at moment m, the unnamed agent is depicted as having three choices,
c1, c2, and c3, with choice c1 including histories h1 and h2, choice c2 including
h3, and choice c3 including h4 and h5. To accommodate all these details, then,
frames for such a logic of action will consist of a class M of moments, a partial
ordering relation < among moments, a class A of agents, and a choice function C

3 And perhaps at other moments as well, if there are other kinds of genuinely unde-
termined events, e.g. atomic decay.
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which, for each moment/agent pair, partitions the class of histories through that
moment into the choices available to that agent at that time.4

I will focus on the simplest plausible logic of action within the class of logics
based on branching time, a system devised by Jeff Horty, using what he calls the
deliberative5 stit, or dstit, operator, with ‘stit’ standing as an acronym for “sees
to it that”.

For an agent a with name α, I’ll represent this as the operator �d α. Then in
the situation represented in Figure 2 we can say that at moment m in history
h1, the agent a deliberatively sees to it that A is true6, and can record this by
writing that m, h1 |= �d αA, because two conditions are met:

+ the positive condition: reliability

all the histories in the same choice as h1

(i.e. all the histories within c1, in this case)
are ones in which A is true at moment m; and

− the negative condition: freedom

there is another choice open to a at moment m
which contains at least one history in which A is false at m
(history h4 in choice c3, in this case).

The positive condition assures that the agent’s choice is effective: no matter
which history eventuates within that choice, the fact remains that A. The neg-
ative condition assures that the agent’s choice is significant: a different choice
might have had a significantly different outcome.

We can give satisfaction conditions for a number of useful temporal operators.
Two of these (with their duals, defined as usual) are important here—a future
tense operator and a historical possibility operator:

m, h |= �F A iff for some m∗ later than m in history h, we have m∗, h |= A
m, h |= �• A iff for some h∗ through m, we have m, h∗ |= A.

Combining the historical possibility operator �• with the dstit operator gives us
an ability operator �• �d α.

4 Suitable constraints must be imposed on < and C to assure that time branches
only forwards and that agents do not yet have choices which discriminate between
histories which will for a time thereafter remain undifferentiated.

5 The use of the term ‘deliberative’ here was presumably intended to indicate that
the action in question is one taken as a part of deliberation, not that it is an action
taken as a result of deliberation. It is thus not intended to indicate that the action
is deliberate, and in particular does not mean that the indicated outcome was in-
tended. In general, operators introduced by Belnap and his co-workers are intended
to be “austere”, i.e. devoid of any psychological content such as belief, desire, and
intention. In section 6 I will depart from this tradition by introducing intentions.

6 Hereafter, I will often abbreviate ‘that A is true’ to simply ‘that A’.
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Among results which fall out fairly easily from the semantics, we have:

|= �d αA → A; (however: �|= A → �d αA);
|= �d α�d αA ↔ �d αA;
|= �d αA → �• �d αA.
|= �d α¬�d α¬�d αA ↔ �d αA;

To see the interest of this last result, note that in order to express the claim
that a refrains from seeing to it that A, it seems appropriate to say that a sees to
it that a doesn’t see to it that A, i.e. �d α¬�d αA. Thus we record that a refrains
from refraining from doing it, by writing that �d α¬�d α¬�d αA. The equivalence
in this third result, then, shows that, in the sense of action expressed by the �d

operator, refraining from refraining from doing something amounts to doing it.
These are pretty results—charming to the logician’s eye.

Horty’s dstit operator is extremely useful, but it has an odd feature. In the
sense of action (and the correlative sense of ability) which it directly captures, it
is at best extremely unlikely that I am able to open the door. To see this, consider
again the situation depicted in Figure 2. At the moment m, agent a has three
choices (two would be sufficient to illustrate my point, more would not interfere
with the outcome). If a adopts choice c1, then (depending on circumstances not
under a’s control) time either continues as in history h1, or else as in history h2,
but in either case A is true. On the other hand, choice c3 is also available, and if
it is adopted, history may continue as in h4, in which case A is false. Any other
choices are, for our purposes, irrelevant, and alternative histories issuing from
c3 do not affect matters. As long as all the histories issuing from c1 are ones in
which A is true, the positive condition is met for �d αA to be satisfied at the
moment m along h1, and as long as at least one history issuing from c3 (or from
c2) is one in which A is false, the negative condition is met. So this illustrates a
situation in which we have m, h1 |= �d αA.

But what sort of a claim can A express? If A expresses the claim that the
door is open, then the door is not both open and shut at the very same moment
and so we cannot satisfy both the positive and the negative condition for the
truth of �d αA. If instead A expresses the claim that the door will be open,
and is thus expressible in the form �F B, then it is almost certainly the case that
A is true at m along every history because surely, no matter what a does or
doesn’t do, that door will get opened eventually along history h4 (or any other),
if only by the wind or by someone else coming through some years from now.
As a result, it is very unlikely that the negative condition for the truth of �d αA
will be met. If that is so, it would be equally unlikely that the formula �• �d αA
can adequately express the claim that a can open the door. Yet an agent’s being
able to open the door doesn’t seem at all unlikely. Supposing A to be of the
form �F B fares no better, since then A is almost certainly false in each history.

The problem here seems to be that with �d we have only the possibility of
considering what is true either as a present aspect of the moment m or as a
feature of the choice’s outcome placed sometime in the indefinite future. What
we would like instead of either the immediate present or the indefinite future,
it seems, is some way to focus on the immediate future, the near-term result of
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an agent’s choice. Of course if time were discrete, we could look at what would
become true at the very next moment after m, along each of the various histories
through m. However, if we can’t be sure that time is discrete we can’t be sure
there is a next moment after m; and if, as in fact seems appropriate for discussions
of human agency, we actually wish to assume that time is densely ordered along
all histories, then there will be no next moment after m along any history.

3 An Improved Logic of Action

Reflecting on such matters (and influenced also by reflection on what I take to be
some unsatisfactory features of Belnap’s astit operator7, which I won’t take the
time to discuss here) has led me to consider developing a new stit operator—I’ll
designate it �p for pstit (with p for progressive tense, or perhaps for process)—
focusing on choices among sets of transitions8, and more specifically among sets
of immediate transitions, from pasts to future branch points, rather than choices
among sets of histories. This would emphasize the notion that actions are, in the
sense presented by Xu, events, and more specifically processes.

To make a long story short, however, pursuing that line of investigation even-
tually reveals that there is an equivalent but much simpler approach, namely
to introduce a new tense operator, with the sense for a while in the immediate
future, and use it in combination with Horty’s dstit operator.9 Keeping in mind
that the moments along a given history may well be densely ordered, so that
there will likely be no immediately next moment after a given moment m, we
can give truth conditions for such a tense operator as follows:

m, h |= �W A iff in history h there is some moment m∗, later than m, such
that at each moment m′ after m, up to and including m∗: m′, h |= A.

Now the combined modality �d α�W can do the work I had expected a new operator
�p α to do, and we can use the formula �• �d α�W A to express the correlative claim
that α is able to see to it that (for a while in the immediate future) A will be
true.

However, it will make the next discussion easier to follow and to assess, if
we simplify our notation as much as possible. Accordingly, let �p α serve to
abbreviate �d α�W , and let us even omit the subscript when only a single agent is

7 While the astit operator does not fail in the way the dstit does, still it does not
fill our needs here, since the astit expresses a claim in the past perfect tense: The
agent has seen to it that A. We need a present tense, or present progressive tense,
operator.

8 Transitions were introduced by Belnap and exploited by Xu [11]. In the final analysis,
the details of the definition turn out to be unimportant for our work here, though
they were a significant influence in drawing me to my current views.

9 So we come back to the dstit after all, which is certainly a testimonial to the fun-
damental importance of Horty’s dstit. Still, if we, like sheep, have gone astray, we
return to the fold older and wiser and—more to the point—better equipped by virtue
of our new tense operator.
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in question. So �p A will express the claim that the (tacit) agent sees to it that
(for a while) A will be true.

The behavior of the pstit operator �p is quite different from that of the dstit
operator �d . Some of the similarities and differences are indicated in Table 1
(where the agent is taken to be the same throughout).

Table 1. Comparing the two operators

schema for the pstit for the dstit
operator �p operator �d

1 �A → A invalid valid
2 A → �A invalid invalid
3 �A → �F A valid invalid
4 �A → ¬�¬A valid valid
5 ��A ↔ �A invalid valid
6 �A → �• �A valid valid
7 ��• �A → �• �A invalid trivially valid
8 �¬�¬�A ↔ �A invalid valid
9 (�A ∧ �B) → �(A ∧ B) valid valid

Reflecting on line 1 of the table, we recall that it sounded reasonable to say
that if I see to it that A, then A is true, but that on closer examination we saw
that this was not so reasonable when the moment at which A is to be true is
the very same moment as the moment of choice. A careful reading of the pstit
formula �p αA → A would interpret it as saying that if I am (by my choice this
very moment) seeing to it that A will become true then A is already true, and
that sounds quite unreasonable. What will be correct, however, is to say, as in
line 3 of the table, that if I am (by my choice this very moment) seeing to it
that A, then A will be true. This schema for the dstit is invalid, because any
future implications of the use of the dstit operator must arise from within the
formula A to which it is applied, not from the use of the operator itself, since
the operator only looks at the one moment of evaluation.

Of course the two operators agree, as line 2 indicates, that something’s being
so does not by itself imply that any agent has done, is doing, or will do anything
to make it so. In line 4 they agree, as well, that it is not possible in a single act
to both make something true and make it false at the very same time.

Line 5 shows that although there is no difference, for the dstit operator, be-
tween seeing to it that one sees to it that A, on the one hand, and simply seeing
to it that A, on the other, no such reduction works for the pstit. From left to
right, we have an instance of the generally invalid schema 1. But the right to
left half of the equivalence also fails for the pstit, because my current choice may
ensure that A is true for a short interval in the immediate future, but during
that interval there may be no choice points, and so no chance to act.

Note that in the composite modality �p α�p α the inner operator must apply to
its complement continuously through an interval of time, and thus must express
the activity of sustaining the truth of its complement, for a while, from a certain
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point on. This would be applicable in the case of holding the door open, and also
in the case of (being engaged in the process of) opening the door, as contrasted
with (the achievement of) the door’s being open.10 I can see to it that I keep
the door open, by seeing to it that I see to it that the door is open.

In line 6, we see that the two operators agree on the thought that what an
agent does do, that agent can do. It should be noted, however, lest this usage
be misinterpreted, that in both cases the sense of can involved is exceedingly
fleeting—it implies nothing about lasting talents, capacities, or opportunities,
and speaks only of what is open to the agent at the very moment of evaluation.11

Turning to line 7 of the table, we should note that the consequent of the
schema could be replaced using almost any modality composable by combining
¬, � and �• , and the results would be the same. The exceptions: modalities
equivalent to the antecedent simply by virtue of the fact that �• �• is equivalent
to �• , and ones entailed by such equivalents under schema 6. Apart from such
trivial consequences of the S5 character of �• and the validity in line 6, no
modality of this sort entails any other, for the pstit. For the dstit, however,
it makes no difference what the consequent might be, since the antecedent is
logically false. If, at moment m, there is any history at all along which �d αA
is true, then �• �d αA is true along every history through m, and as a result the
negative condition for �d α�• �d αA cannot possibly be met.

This result and the result in line 5 illustrate the value of the new pstit operator.
We now have a whole host of distinct modalities formed from combinations of
action and ability, and available to perform distinct roles in our reasoning. We
shall put these to use in Section 4.

In line 8 of the table we find that, in contrast to the sense of action given
by the dstit operator, the pstit operator does not support the conclusion that
refraining from refraining from an action is identical with simply performing
that action.12 Again the equivalence fails in both directions, and again it is the
fact that a succession of times—not just a single moment—are involved in the
pstit version, that creates the critical contrast with the dstit.

In line 9 of the table, we see that on either account, action is agglomerative:
if the choice made at a given moment assures the truth of each of two claims,
it assures the truth of their conjunction. The converse, however, is not valid in
either account, because one of the conjuncts could be a logical truth, for which
the negative condition could never be satisfied.

There is another important contrast—one which could not be expressed in the
compressed format of the table—, namely that although any formula of the form

10 This prompts the thought that previous accounts of refraining are probably inade-
quate, and that in at least some cases perhaps refraining involves actively sustained
non-action, not just active momentary non-action.

11 This meets a criticism, recently raised by Elgesem [5], of certain logics of ability,
including the system in Brown [4].

12 At least not in the �¬� account of refraining normally used in similar logics of
action. If a more subtle account of refraining grows out of our present work, the
matter will need to be reconsidered; but the prospects for the so-called refref thesis
seem dim.
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�d α�• �d βA will be logically false, it is perfectly possible for formulas of the form
�p α�• �p βA (or, for that matter, ones of the form �d α�• �p βA) to be true. Thus
I cannot enable you (or enable myself, either) to do anything, according to the
dstit, while according to the pstit it is conceivable that I can. This opens the door
(so to speak) to addressing the third of the criticisms listed in the Introduction.
Although this does not quite amount to talk of influencing the actions of other
agents, it does at least make room for enabling such actions.

4 Actions as Means to Ends

Let us consider now what all this can do for us in expressing claims, and rea-
soning, about means and ends. Let us first consider the case of a single agent a,
acting alone to secure some end state expressed by a formula A. And since we
will no longer be concerned with the dstit except as a component of the pstit, let
us again prune our notation to bring out the essentials as sharply as possible, by
using the simple expression �A as an abbreviation for �p αA, i.e. for �d α�W A.
Finally, in the same spirit of parsimony, let us abbreviate the associated ability
operator by using �A as an abbreviation for �• �αA, i.e. for �• �d α�W A.

Using this abbreviated notation, we can say that the action reported by �A,
which assures the truth of A for the immediate future, surely counts as a means
to this end—the goal of having A true. But since this is so, it seems right to say,
as well, that the action reported by ��A is also a means to that end, since
it assures the truth of �A for the immediate future, which will in turn secure
the truth of A for a while thereafter.13 And it might well happen that, at a
given moment, it was not within a’s ability to secure the truth of A immediately
and directly, yet it might well be possible for a to see to it that she will in the
immediate future see to it that A. That is to say, it might well be true that
��A, yet false that �A. More likely still, it may well be true that ��A, yet
false that �A, i.e. that a is in a position to make it possible to see to it that
A, though not yet in a position to see to it that A. I cannot just now hit the
nail with a hammer, because I have no hammer in my hand, but the hammer is
within reach, so I am in a position to grasp the hammer, thereby putting myself
in a position to hit the nail.

With thoughts like these in mind, we see that we can initiate an iterative
account of actions as means to an end A, via the associated formulas asserting
the performance of those actions.

(1) �A is a means to A;
(2) if �B is a means to A then ��B is a means to A;
(3) if �B is a means to A then ��B is a means to A.

13 In such cases the“inner” action will have to be a sustaining action (e.g. holding the
door open) or a progressive action (e.g. increasing the amount by which the door is
open) as contrasted with an instantaneous action (e.g. making first contact with the
door-opening button) in order for it to be possible to perform the action continuously
over an interval of time.
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Thus we have �A, ��A, ��A, ���A, ���A, ���A, · · · , all as
various means to A.14

In clause 1, we recognize that when achieving the end is something that can
be accomplished by a single simple act, then performing that action is a means
to the end. In clause 2, we recognize that achieving the ability to achieve the
means to an end will also count. This will be a common situation, and indeed
it might seem that it encompasses clause 3 as a special case. But in some cases,
no matter what we do just now, we will still be able to achieve the end. So we
can sometimes procrastinate without compromising our capacity to achieve the
end. In such cases we cannot, strictly speaking, see to it that we will be able
to achieve the end, because the negative condition is not satisfied: there’s no
alternative choice available just now which would risk not being able to achieve
the end. In such situations, it would be inappropriate to describe any temporizing
action as a means to the end. Nonetheless, in some such situations, there may
be actions we can take which will not count as temporizing. For example I desire
to complete a certain task before noon. There is still plenty of time, so if I so
desire, I can go out for a coffee break now, without compromising my ability to
finish my work before noon. However, I can also proceed directly to finish the
task, and postpone or forego the coffee break. Taking the coffee break will not
count as a means to the end, but proceeding to finish the task now rather than
later certainly will, and it is actions such as this that are acknowledged as means
to an end in clause 3.

Actions that fall under clause 2 may be of two sorts, which may be worth
distinguishing in our thought, though they are not yet directly distinguished in
the notation. There are cases in which it is not currently true that �B, and
I perform an action that makes this become true for a while in the immediate
future. There are also cases in which it is already true that �B, but where
my action now will be relevant to whether it remains true for a while in the
immediate future or not. In this latter kind of case, it seems more natural to
describe the action reported in the formula ��B by saying that I non-trivially
sustain the possibility of achieving the end, while in the former kind of case it
seems more appropriate to say I achieve and then sustain that possibility. Both
are equally covered by the formula ��B; the only difference between the cases
is that in one case �B is not yet true, and in the other it is already true, though
at risk for the future.

It will be helpful, as we shall soon see, to introduce a special notation � for
this concept of non-trivially sustaining the truth of a formula, and we can define
it as follows:

�αA iff A ∧ �p αA.

There are cases—most cases, I have no doubt—in which the end to be achieved
is compound. Suppose, then, that the end to be achieved is conjunctive, of the
14 One might consider saying, as well, that abilities such as are expressed by

�A, ��A, ��A, · · · are also means to A. That would perhaps not be unrea-
sonable, but I prefer for present purposes to consider only actions, not potentials for
action, as themselves being means to an end.
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form A ∧ B. (We must assume A and B are consistent, else this cannot rea-
sonably be an end goal.) Actions directed toward achieving the truth of one of
the conjuncts would then normally be considered contributions to achieving the
truth of the conjunction, provided they don’t interfere with achieving the truth
of the other conjunct. In such a case, of course, after making progress towards
achieving the truth of one conjunct, we must sustain that gain as we take steps
towards achieving the truth of the other conjunct.

Suppose, for example, that we wish to bring about the truth of the conjunction
A ∧ B, and that there is a two step process by which we can make A true, and
a three-step process by which we can make B true. One way in which we might
proceed, in securing the truth of the conjunction, would be to pass through
the following stages (where we again drop the subscript for the agent, which is
assumed to be fixed for the duration of our current discussion):

stage 1 ��A ∧ ���B our starting position,
stage 2 ��A ∧ ����B doing the first step towards A,
stage 3 ��A ∧ ���B doing the first step towards B,
stage 4 ��A ∧ ��B doing the second step towards B,
stage 5 ��A ∧ �B doing the final step towards B,
stage 6 �A ∧ �B doing the final step towards A,
stage 7 A ∧ B our final position.

The final action, in line 6, could also be described by the formula �(A ∧ B),
which is entailed by �A ∧ �B. The formula �(A ∧ B) is perhaps more
informative for purposes of assessing the overall project, but less informative for
purposes of indicating the details of the process chosen. Similarly, each of the
steps 2–5 could be described as the performance of a single action. Doing this
for the whole process, we would get this description:

stage 1 ��A ∧ ���B ��A ∧ ���B

stage 2 ��A ∧ ����B �(�A ∧ ���B)
stage 3 ��A ∧ ���B �(�A ∧ ��B)
stage 4 ��A ∧ ��B �(�A ∧ �B)
stage 5 ��A ∧ �B �(�A ∧ B)
stage 6 �A ∧ �B �(A ∧ B)
stage 7 A ∧ B A ∧ B

Obviously other routes to the same end were possible in the circumstances,
but they could be described using the same logical tools.

Each of the stages in this process except the first and last should be considered
a means to achieving the end state, described by A ∧ B. But now we see that
we must add some clauses to our iterative definition in order to cover such cases.
Clause 1 of our iterative definition establishes that stage 6 (as described in the
right hand column) is a means to achieving stage 7. But no combination of
clauses 1–3 will explain why we should say that stage 5 is a means to achieving
either stage 6 or stage 7. To cover that, we must acknowledge that:

(4) if �C is a means to A then �(�C ∧ B) is a means to �(A ∧ B).
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And surely we should add:

(5) if �C is a means to A then �(�C ∧ B) is a means to �(A ∧ B).

Similarly, to cover transitions such as that from stage 4 to stage 5, we need:

(6) if �C is a means to B then �(A ∧ �C) is a means to �(A ∧ B);
(7) if �C is a means to B then �(A ∧ �C) is a means to �(A ∧ B).

Between them, these principles cover all the transitions in our sample
case, provided we add two very general principles which we should acknowledge
anyway:

(8) if A is a means to B and B is a means to C, then A is a means to C;
(9) if �• ¬�W A and B |= A then �B is a means to A.

Clause 8 obviates the necessity for clause 3 above, of course, but it is helpful
for expository purposes to have clause 3 explicit.

Clause 9 says that (unless A expresses something which is absolutely certain
to become true, in the circumstances) if B entails A, then seeing to it that
B becomes true is one means to A. The need for guarding against guaranteed
values of A is particularly evident in the case of logical truths: nothing we can
do can properly be considered a means of achieving the truth of a tautology,
though any B which we can achieve will certainly entail that logical truth.

When we move to the common situation in which more than one agent is
involved, the expression of the principles indicated above—and their extensions
to multiple agents—becomes less compact, of course, but not fundamentally
more complex. For example, clause 2 above can be generalized to:

(2∗) if �p αB is a means to A then �p β�• �p αB is a means to A.

This is appropriate irrespective of whether it is true that α = β. Your getting
the hammer for me to use in hitting the nail counts as a means to the end of the
nail’s being in its intended resting place, and counts just as much as my getting
it for my own use to that end.

We could go on to cases of group action involving simultaneous action of the
members of a set Γ of agents. This would require us to modify the syntax and
truth conditions for the �p operator to allow it to take a group of agents as
index, but the modification is easy, and proceeds along lines already thoroughly
explored for the dstit, so I will not go into that here.

5 Naming Actions

At this point, it would be desirable to provide ourselves with a way of talking
about the actions themselves. So far we have been dealing with formulas which
depend for their truth on the performance of actions which the formulas do
not name. The formulas describe, and thus correspond to, (types of) states, so
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our treatment via formulas treats means and ends both as states. Having the
hammer in hand is a means to having the nail properly in the wood. But it must
be agreed that it is more natural to think of means and ends as both actions,
rather than states: getting the hammer is a means to sinking the nail properly in
place. And it is even possible to think of the action as a means and the resulting
state as its end, though when we express this we seem to revert naturally to
speaking of the action as a means to achieving the state, thus treating the end
as itself an action, or at least a completed process of some sort.

How, within the metaphysical framework provided by our models, are we to
identify actions? One simple answer is that an action is, at its most basic level,
a choice made by (or at least available to) an agent at a moment. But that is
perhaps too simple, at least for the purposes at hand. When we say my picking
up the hammer is a means to my pounding the nail, we don’t intend to refer to
anything quite so specific as a particular choice available to me at one particular
moment. Rather we mean that kind of choice, whenever it might be available
to me.15 What characterizes the kind of choice in question? It’s outcome state,
apparently: my having the hammer in hand, in our example. So where up until
now I have spoken as if a formula �p αA might express a means to B, or to
achieving (the truth of) B, now I want to suggest that it is the kind of choice
whose selection could be correctly reported by the formula �p αA, i.e. by �d α�W A,
that would constitute the action which was a means to B. Let me introduce
the notation δαA to name the action reportable by the formula �d A, i.e. to
correspond to the gerundial noun phrase: a’s (deliberatively) seeing to it that A.
Its extension would then be the set of choices available to a at various moments
(various choice points) which, if selected, would make the formula �d αA true at
those choice points. In the same fashion, we can also provide a progressive tense
operator δα based in the corresponding way on �p α.

To provide a home for these new locutions in our language, we need to provide
a way to fit them into formulas, and that means, in effect, providing a verb with
which such nouns as δαA and δαA could be combined to form sentences. So
let me introduce the performance verb π for this purpose, via the following
equivalences:

m, h |= πδαA iff m, h |= �d αA
m, h |= πδαA iff m, h |= �p αA

together with the condition that, applied to any other term except a δ-term, π
produces a falsehood (only actions—not people or hammers, for example—can
be performed in the sense intended here).

6 Intentions

A single action may fit many descriptions, and may have many outcomes. As I
open the door, I also create a draft. The choice I made in doing so may have
15 Perhaps we should limit this to some relevant time period. I will leave considerations

of the relevant time period aside for the moment, however—our subject is difficult
enough as it is, so I’ll be content to tackle one matter at a time.
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assured both outcomes, and both outcomes might have been avoidable had I
chosen differently, and so the same choice might be the basis for the truth of
both the formula �p αA and the formula �p αB, where A expresses the claim the
door is opening, and B expresses the claim there is a draft. As a result it may
seem that (at that time and place) δαA = δαB. Yet the opening of the door
might have been intended, and the creation of a draft an unintended, and even
perhaps an unwanted, side effect. Surely this difference will often be important.
How, then, are we to take account of such differences in intentions?

In a way, we already have, and yet in a way we have not. If, as I suggested
in section 5, we take the action to be a set of choices characterized by a certain
outcome, then the set of choices which (at various choice points) would result
in the door’s opening will be different from the set of those which would result
in there being a draft. Opening the door will not in all cases involve creating
a draft, and there are other ways of creating a draft without opening the door.
So already, we can expect that in fact δαA �= δαB except when there is some
strong connection (probably mutual entailment) between A and B. So when
we say that a performs the action δαA, we should be permitted to deny that
a performed the action δαB, without fear of inconsistency, even if both �p αA
and �p αB are true. However, the upshot of this is that the performance verb π
we introduced in Section 5 isn’t fully satisfactory, since if both �p αA and �p αB
are true then both πδαA and πδαB will be, as well, according to the semantic
account we offered a moment ago.

Properly understood, the performance verb π still makes a genuine contri-
bution to our language: πδαA expresses the claim that a performs the action
δαA only in the weak sense that agent a selects one of the choices constitut-
ing the action δαA. But we also want to be able to express the stronger claim
that a chose that action (and no other) to perform. For this stronger sense of
performance, let us introduce the verb Π into our formal language. Barring
something comparable to a successful naturalistic theory of mental states, it is
difficult to see how we can provide a semantics for the strong performance verb
Π in which the truth conditions for ΠδαA and ΠδαA would depend only
on the sort of simple more-or-less atomic and more-or-less purely physical facts
which we normally tacitly presuppose are the contents of the simplest formulas
of the language—facts such as those about what is where at a given time, and
related more complex, but purely naturalistic, facts such as whether the door is
open. In contexts such as this, we don’t normally think of the atomic formulas
of the language as expressing claims about mental states, for example.16

The consequence of this reflection is that we cannot expect to base the truth
conditions for formulas involving Π solely on the information which the valua-
tion provides about the truth values of atomic formulas at the various points of
evaluation, together with the semantic account of the other logical constants of
our language. To deal with Π , our models will need to be made more complex

16 There are reasons for this presupposition, of course, associated with the expecta-
tion that logic should treat all expressions of propositional attitudes as involving
operators of some sort.
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in one of two ways. One way would be to augment the frame with a function
from agents and points of evaluation to (intended) actions, or something of the
sort. Another would be to modify the notion of a valuation so that in addition
to assigning truth values to atomic formulas, it also assigned values directly to
Π-formulas. The latter strategy, apart from being slightly distasteful, might be
complex to pursue, since it seems likely to require some delicate constraints on
the valuation to secure the proper logical relations between Π-formulas and
related Π-free formulas.

So to the components already mentioned for our models, we add one more in
the frame: an intention function I which, given any agent, any moment, and any
history through that moment, specifies which action, if any17, the agent intends
at that moment to perform, by pursuing the choice within which that history
falls. We may wish to impose the constraint that the action be one which has as
a member the choice of which this history is an element, although perhaps a case
could be made for leaving open the possibility that (speaking loosely, at least)
the action the agent performs is not always in fact the one the agent intends, in
the sense that sometimes ¬πδαA even though the agent intends that it be true
that πδαA. If we do impose this constraint on I, then we will have:

m, h |= ΠδαA iff I(α, m, h) = ‖δαA‖
(where ‖δαA‖ is the extension of δαA).

If, instead, we choose not to impose the constraint on I, then we will have:

m, h |= ΠδαA iff I(α, m, h) = ‖δαA‖ and m, h |= πδαA.

Analogous truth conditions would apply for ΠδαA.

7 Summing Up

With these resources all in place, we are now free to combine this logic of action
with additional normative resources in ways that will allow us to place means in
relation to ends, to differentiate normatively acceptable means from normatively
unacceptable means, to speak of intended and unintended actions, to discuss
actions by one agent which enable another agent to act, to discuss collaborative
efforts in which different agents perform actions which serve as means towards
a mutual end, etc. In short, we now have a much more subtle and sophisticated
tool with which to approach problems in the logic of action and deontic logic.

Still, we haven’t yet achieved all our original goals. Although we now have
a present progressive tense operator capable of expressing the claim that I am
opening the door, this will not convey any claim that the process will continue to
its intended conclusion: that the door be (fully) open. So in effect we now have

17 Presumably no action is intended, in the sense taken up here, at moments which
are not choice points for the agent. The intention function given here is designed
only to handle immediate intentions, not (for example) intentions about what I’ll do
tomorrow.
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present tense process verbs, but still don’t have a satisfactory array of present
tense achievement verbs. This in turn means that our discussion of means and
ends is still not fully satisfactory, since it cannot yet relate achievements as
means to achievement of an end. And although we can now express the claim
that one agent enables another to act (or prevents another from acting) in a
certain way, we still have no means of expressing the more subtle claim that
one agent influences another to act. So although we have made palpable and
promising progress, there is clearly a large domain for future investigation. No
doubt it should be reassuring that we have not yet run out of work to do.
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Abstract. This paper studies a logic that combines deontic and tem-
poral aspects. We first present a state/event temporal formalism and
define a deontic extension of it. Then, we study the interaction between
the temporal dimension and the deontic dimension. We present some
logical properties, concerning formulas where deontic and temporal op-
erators are nested, and discuss their intuitive meaning. We focus more
particularly on the properties of obligation with deadline and define a
specific operator to express this notion.

1 Introduction

Deontic logic is useful for specifying normative systems, i.e., systems which in-
volve obligations, prohibitions, and permissions. Applications can be found in
computer security, electronic commerce, or legal expert systems [21].

In this paper, we are interested in applications where both temporal and
deontic notions appear. For instance, it may be interesting to express an access
control policy in which the permissions depend on time, or events. Such a policy
can be called an availability policy [8].

Consider a simple resource monitoring problem. An availability policy consists
in giving a set of obligations and permissions for users to use resources.

– useri has the permission to use the resource r for 5 time units continuously,
and he must be able to access it 15 time units after asking, at the latest

– useri has always the permission to use the resource r, and he has to release
it after 5 time units of utilization

– If useri is asking for the resource and he has the permission to use it, then
the system has the obligation to give it to him before 5 time units

– If useri uses the resource without the permission, he must not ask for it
during 10 time units

The cases where permissions (idem with obligations and prohibitions) are
granted may depend on the temporal events of the system, as in the two first
sentences. But in the two last sentences, we see that permissions and prohibi-
tions are granted according to other deontic notions. The last sentence gives for
instance a prohibition if an obligation is violated.
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Cuppens and Saurel have used in [8] predicate logic. They have exhibited
four dedicated predicates to express a policy - which gives a limited expressive
power - and about ten formulas to check that the system does not violate the
policy. Our goal is to define a language which allows to specify easily avail-
ability policies, or other systems in which time and norms play an important
role.

We will first present a state/event extension of the temporal logic LTL[18].
Section 3 defines a deontic extension of this formalism. Then, we will discuss in
section 4 about properties of formulas where temporal and deontic operators are
nested. In section 4, we will particularly focus on obligation with deadline.

2 State/Event Extensions of LTL

We present here an extension of the state based Linear Temporal Logic (LTL)[18].
We will first discuss about the notions of event and action. Then we will present a
state/event extension of Kripke structures. We will also present the logic which is
interpreted on such structures : State/Event Linear Temporal Logic[5] (SE-LTL),
a state/event extension of LTL. Note that these extensions do not increase the
expressiveness, but allow to express behaviours in a much more succinct way (see
[5] for more details).

2.1 Events or Actions?

The notion of event is close to an action in dynamic logic [12]. But an event is
atomic, and has no duration. The actions can be composed with several com-
binators: sequence, choice, iteration, converse. Some propositions to combine
dynamic and temporal logics [13] strengthen the temporal operator until U .
ϕ1U

αϕ2 means that ϕ1Uϕ2 is satisfied along some path which corresponds to
the execution of the action α. This gives a good expressive power, but the spec-
ification of properties can be much harder. For instance, consider the sentence
“If useri uses the resource, he will release it”. in_usei is a proposition, and
releasei an event (or an atomic action in dynamic logic). In a state/event logic,
we express it naturally: in_usei ⇒ F releasei.

But in a dynamic temporal logic, we cannot put actions and propositions at
the same level. We have to use specific operators to introduce actions: in_usei ⇒
� UΣ∗;releasei � where Σ represents any atomic action.

Moreover, in many cases the composition of events, can be expressed with-
out using the combinators of dynamic logic. For instance, the formula e1 ∧Xe2
expresses that the event e1 happens, followed by e2, which corresponds to the
action e1; e2 in a dynamic logic. The formula e1Ue2 means that there is an arbi-
trary number of executions of e1, followed by an execution of e2, and corresponds
to the execution of the composed action e1∗ ; e2.

Besides, the semantics of events is much simpler, and there exists efficient
tools for state/event logics [5, 4]. In the rest of this paper, we have preferred
events to actions.
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2.2 Labeled Kripke Structures

We define here a labeled Kripke structure. Although it has the same expres-
sive power than event free Kripke structure, it is an interesting implementation
formalism because it allows to express behaviours in a much more succinct way.

Definition 1 (LKS). A labeled Kripke structure (LKS) over (P, E) is a tuple
(S, I, T, α, β, λ, ν) where

– P is a countable set of atomic propositions that label the states.
– E is a countable set of events that label the transitions.
– S is a countable set of states.
– I ⊆ S is a set of the initial states.
– T is a set of transition identifiers, hereafter simply called transitions.
– α : T → S is a function which associates each transition with its source

state.
– β : T → S is a function which associates each transition with its destination

state.
– λ : T → E is a function which associates each transition with the event

performed during the transition.
We often write t : s

e→ s′, where t ∈ T, s, s′ ∈ S, and e ∈ E, to mean that
α(t) = s , β(t) = s′, and λ(t) = e
We suppose that every state has an outgoing transition:
∀s ∈ S ∃(t, e, s′) ∈ T × E × S t : s

e→ s′1

– ν : S → 2P is a valuation function which associates each state with the set
of the atomic propositions it satisfies.

Definition 2 (Run and trace). A run ρ = (s0, t0, s1, t1 . . .) of an LKS is an
infinite alternating sequence of states and transitions such that s0 ∈ I and
∀i ∈ N ∃e ∈ E ti : si

e→ si+1. We can talk about infinite runs because we have
supposed that there is a starting transition from every state.

A trace τ = (τpr, τev) over a run ρ = (s0, t0, s1, t1 . . .) is defined as follows

– τpr : seq(2P ) is the sequence2 of the atomic proposition sets associated with
the states of the run
∀i τpr(i) = ν(si)

– τev : seq(E) is the sequence of the events associated with the transitions of
the run
∀i τev(i) = ei where ti : si

ei→ si+1

2.3 SE-LTL

We present now the syntax and the semantics of the specification formalism
SE-LTL [5]. It is an extension of the state based logic LTL which takes into
account both events and propositions.
1 This is equivalent to range(α) = S.
2 seq(E)

def
= N → E is the set of sequences of elements of E.
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Definition 3 (Syntax of SE-LTL). Given a countable set P of atomic propo-
sitions, and a countable set E of events, a well-formed formula of SE-LTL is
defined by:

ϕ ::= p ∈ P | e ∈ E | ⊥ | ϕ ⇒ ϕ | ϕU+ϕ

ϕ1U
+ϕ2 means that ϕ2 will hold at some point m in the strict future, and ϕ1

will hold from the next moment until the moment before m.
We can define some usual abbreviations:

¬ϕ
def
= ϕ ⇒ ⊥ � def

= ¬⊥
ϕ1 ∨ ϕ2

def
= ¬ϕ1 ⇒ ϕ2 ϕ1 ∧ ϕ2

def
= ¬(ϕ1 ⇒ ¬ϕ2)

X ϕ
def
= ⊥ U+ ϕ ϕ1 U ϕ2

def
= ϕ2 ∨ (ϕ1 ∧ ϕ1 U+ ϕ2)

F ϕ
def
= �Uϕ G ϕ

def
= ¬F ¬ϕ

The timed operators (with discrete time) are defined as follows:

ϕ1 U�kϕ2
def
=

{
ϕ2 if k = 0
ϕ2 ∨ (ϕ1 ∧X (ϕ1 U�k−1 ϕ2)) else

ϕ1 U=kϕ2
def
=

{
ϕ2 if k = 0
ϕ1 ∧X (ϕ1 U=k−1 ϕ2) else

We can now define F�kϕ
def
= � U�k ϕ, F=k ϕ

def
= � U=k ϕ, and

G�kϕ
def
= ¬F�k(¬ϕ).

Definition 4 (Satisfaction). A formula ϕ of SE-LTL is interpreted on a trace
of an LKS. Given a trace τ = (τpr, τev), a natural i, and a formula ϕ, we can
define the satisfaction relation |= by induction on ϕ:

(τ, i) |= p iff p ∈ τpr(i) where p ∈ P
(τ, i) |= e iff e = τev(i) (e will be performed next) where e ∈ E
(τ, i) � ⊥
(τ, i) |= ϕ1 ⇒ ϕ2 iff (τ, i) |= ϕ1 implies (τ, i) |= ϕ2
(τ, i) |= ϕ1 U+ ϕ2 iff ∃j > i ((τ, j) |= ϕ2

and ∀ i < k < j (τ, k) |= ϕ1)

We say that a trace τ satisfies a formula ϕ (τ |= ϕ) if the first state of τ
satisfies ϕ.

τ |= ϕ iff (τ, 0) |= ϕ

We can easily extend the satisfaction relation to labeled Kripke structures, which
are preferred to sequences in order to model programs.
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Definition 5 (Satisfaction by a model and validity). A labeled Kripke
structure M is called a model of a formula ϕ, and we write M |= ϕ, if all the
traces τ of M satisfy ϕ.

A formula ϕ is said to be valid if every LKS satisfy it.

Remark 1 (Extension to concurent events). We have chosen a state/event point
of view, as SE-LTL to build our temporal and deontic language. However, we
have considered that several events may happen simultaneously. It follows that
from each state of a sequence, a set of events can be performed. This reveals to be
interesting to model true concurrency (also called non-interleaved concurrency).
For instance , if the model of the system contains connected events, they may
happen simultaneously. It may be the case with the events start_sound and
start_video in a multimedia context. In this case, the formula start_sound ∧
start_video has to be satisfiable.

From now, each transition of an LKS is labeled with a set of events. (λ :
T → 2E .) A trace over a run ρ = (s0, t0, s1, t1, . . .) is a pair τ = (τpr, τev)
where τpr ∈ seq(2P ) is defined as for SE-LTL, and τev ∈ seq(2E) is now a
sequence of sets of events. We call the extension of SE-LTL to concurrent events
State/Concurrent Events LTL (SCE-LTL).

Definition 6 (Syntax of SCE-LTL). The syntax of SCE-LTL is the same
as the syntax of SE-LTL. Only the semantics of the events differs.

Definition 7 (Semantics of SCE-LTL). The semantics of an event in SCE-
LTL is defined by

τ, i |= e iff e ∈ τev(i) where e ∈ E
e is satisfied if it is one of the events that are going to be performed simultane-
ously.

The other formulas have the same semantics as in SE-LTL.

3 Deontic Extension

We define here a deontic extension of the state/event formalism described in
section 2. In Standard Deontic Logic (SDL) [23, 17], the semantics of deontic
modalities is given by a relation on states (also called worlds). We extend this
relation to combine both deontic and temporal aspects.

We first present deontic labeled Kripke structures (DLKS). Then, we define
the logic State/Event Deontic Linear Temporal Logic (SED-LTL), extension of
SCE-LTL with a deontic modality. And in the last part, we discuss about some
logic properties in SED-LTL.

3.1 Deontic Labeled Kripke Structures

We present here a deontic extension of a labeled Kripke structure. In our frame-
work, which describes temporal behaviours, a world is a LKS. We call these
worlds the alternatives, because they represent different possible behaviours.



90 J. Brunel, J.-P. Bodeveix, and M. Filali

They all have the same states and transitions, but the labels (on both states and
transitions) differ from one alternative to another. Thus, we extend the deontic
relation to be a relation on alternatives.

Definition 8 (Deontic labeled Kripke structure). A deontic labeled Kripke
structure over (P, E) is a tuple (A, a0, S, I, T, α, β, λ, ν, Ro) where

– A is a (countable) set of alternative names (hereafter called alternatives).
– a0 ∈ A is the alternative that corresponds to the real behaviour. The other

alternatives are needed to model the deontic aspects.
– S, I, T, α, and β are defined as in part 2.2.
– λ : A× T → 2E is the valuation function which associates each transition of

an alternative with its label (a set of events that occur simultaneously during
the transition). If t ∈ T , s, s′ ∈ S, E ⊆ E, a ∈ A, we often write t : s → s′

to mean that α(t) = s and β(t) = s′, and t : s
E→
a

s′ to mean that α(t) = s,
β(t) = s′, and λ(a, t) = E.

– ν : A × S → 2P is the valuation function that associates each state of an
alternative with a set of atomic propositions. ν(a, s) represents the set of the
atomic propositions satisfied by s ∈ S in the alternative a ∈ A.

– Ro ⊆ A×A is the deontic relation which associates each alternative with the
set of its good alternatives. Ro is supposed to be serial.

s2

t1 :

access
skip

access
skip

t3 :

release
release
release
skip

t4 :

skip
skip
skip

release

{busy}
{busy}
{busy}
{busy}

t0 :

skip
access
skip

access

t2 :

skip
skip
skip
skip

{}
{busy}
{}

{busy}

{}
{}
{}

{busy}

{}
{}
{}
{}

s0

s1

s3

Fig. 1. Example of a DLKS

The figure 1 shows an example of a DLKS in which there are four alternatives.
Thus, each transition and each state has four labels. We have not shown the
relation Ro.

Definition 9 (Run and trace). As in part 2.3, we define a run ρ = (s0, t0, s1,
t1, . . .) of a DLKS as an alternating sequence of states and transitions, such that
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so ∈ I, and ∀i ∈ N ti : si → si+1. A trace τ of a run ρ = (s0, t0, s1, t1, . . .) is a
pair (τpr , τev) where the sequences τpr and τev are now indexed by the alternative.
Indeed, through one run, the labels of states and transitions may differ from one
alternative to another.

– τpr : A → seq(2P ) associates each alternative with a sequence of proposition
sets.
∀(i, a) ∈ N×A τpr(a)(i) = ν(a, si)

– τev : A → seq(2E) associates each alternative with a sequence of event sets.
∀(i, a) ∈ N×A τev(a)(i) = λ(a, ti)

busy

deontic relation

temporal relation

busy busy

busy

busy busy

busy busy busy

busy busy

access

access

release

release

accessa0

releaseaccess

Fig. 2. Example of a DLKS trace

The figure 2 shows an illustration of the trace over the run (s0, t0, s1, t1,
s2, t2, s2, t3, s3, . . .) of the DLKS of the figure 1.

3.2 Syntax and Semantics

We present here the syntax of our specification formalism State/Event Deontic
Linear Temporal Logic (SED-LTL), and its semantics.

Definition 10 (Syntax of SED-LTL). Given a countable set P of atomic
propositions, and a countable set E of events, a well-formed formula of SED-
LTL is defined by:

ϕ ::= p ∈ P | e ∈ E | ⊥ | ϕ⇒ ϕ | ϕ U+ ϕ | O(ϕ)

The deontic modality O represents the obligation. We can define the permission
(P) and the prohibition (F ) as the following abbreviations:

P(ϕ)
def
= ¬O(¬ϕ) F (ϕ)

def
= O(¬ϕ)

We define some usual operators, and timed operators (with discrete time) as
for SE-LTL (cf part (2.3)).

We define here the semantics of the formulas in SED-LTL.
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Definition 11 (Satisfaction). A formula ϕ is interpreted on a trace τ =
(τpr, τev) of a DLKS. Given a DLKS M, an alternative a, a trace τ , an in-
teger i, and a formula ϕ, we can define the satisfaction relation |= by induction
on ϕ:

a, τ, i |= p iff p ∈ τpr(a)(i) where p ∈ P
a, τ, i |= e iff e ∈ τev(a)(i) where e ∈ E
a, τ, i � ⊥
a, τ, i |= ϕ1 ⇒ ϕ2 iff a, τ, i |= ϕ1 implies a, τ, i |= ϕ2
a, τ, i |= ϕ1 U+ ϕ2 iff ∃i′′ > i such that a, τ, i′′ |= ϕ2 and

∀i′ i < i′ < i′′ ⇒ a, τ, i′ |= ϕ1
a, τ, i |= Oϕ iff ∀a′ such that (a, a′) ∈ Ro a′, τ, i |= ϕ

An alternative in a trace satisfies a formula if its first state satisfies it.

a, τ |= ϕ iff a, τ, 0 |= ϕ

A DLKS M satisfies a formula if the alternative a0 in the trace of any run
satisfies it.

M |= ϕ iff ∀τ trace of M a0, τ |= ϕ

A formula is valid if all the DLKS satisfy it.

|= ϕ iff ∀M M |= ϕ

Remark 2 (Product). This formalism is very closed to a product of a temporal
and a deontic logic. However, in this case, the definition of a product [11] does
not match because of the use of events that makes the temporal semantics more
complex than in LTL. We plan to study the adaptation of decidability results
to SED-LTL.

Let us consider the trace of figure 2. The behaviour of the alternative a0 accesses
to the resource while it is permitted, and does not release it after three time units
although it is obliged. This deontic trace satisfies the following formulas, which
express the violation of some obligations.

a0, τ |= F=3(O release ∧ ¬release)
a0, τ |= O (access⇒ F�3release) ∧ (access ∧ ¬F�3release)
a0, τ |= GO (busy ⇒ F�3¬busy) ∧ X(busy ∧ ¬F�3¬busy)

3.3 Expression of Availability Policies

We express here in our formalism the policies given in the introduction.

– useri has the permission to use the resource r for 5 time units continuously,
and he must be able to access it 15 time units after asking, at the latest
The first part of this sentence has an ambiguity. It is not clear whether it
is forbidden to use the resource after 5 time units of utilization. The first
formula does not consider it is the case, whereas the second one does.
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G ((access⇒ G�5(Puse)) ∧ (request ⇒ O(F�15 access)))

G ((access⇒ F�5O(¬use)) ∧ (request ⇒ O(F�15 access)))

– useri has always the permission to use the resource r, and he has to release
it after 5 time units of utilization

G(Puse) ∧G(access⇒ O(F�5release))

– If useri is asking for the resource and he has the permission to use it, then
the system has the obligation to give it to him before 5 time units

G((request ∧Puse) ⇒ O(F�5access))

– If useri uses the resource without the permission, he must not ask for it
during 10 time units

G((use ∧O(¬use)) ⇒ O(G�10¬request))

We have shown that the translation from natural language to our formalism is
easy for such sentences, that describe availability policies. We now focus on the
logical properties of SED-LTL, and discuss their intuitiveness.

3.4 Finiteness of the Set of Alternatives

We have not discussed yet about the nature of the set A of alternatives. Our
first idea was to consider A countable, by analogy with a usual Kripke structure.
But in order to develop a decision procedure, or to reason on some examples, as
the figure 2, it would be simpler to have a finite set of alternatives.

Let us exhibit a formula which may be satisfiable or unsatisfiable, whether
we consider A finite or countable. Consider the following statement “p is always
permitted, and p ought to happen at most once”. It corresponds to the formula
ϕ

def
= GPp ∧ O(AtMostOne(p)), where p ∈ P is an atomic proposition, and

AtMostOne(p) is the abbreviation of G(p ⇒ XG¬p), which means p happens
at most once. If we consider the class of models such that A is finite, ϕ is un-
satisfiable. Indeed a model of ϕ necessarily contains a infinite number of good
alternatives, since each point of the alternative a0 satisfies Pp. For each of these
future points, there is an alternative satisfying p different from the other alter-
natives. It follows that there are as many alternatives as points in the future.
The figure 3 shows the construction of a model of ϕ.

In the same way, ϕ is clearly satisfiable if we consider that A can be infinite.
This shows that our formalism has not the finite model property.

At a first sight, there is no direct contradiction in ϕ. Thus, it is in the favour
of an infinite set A of alternatives.

3.5 Properties

In this part, we will focus on the properties of formulas in which temporal and
deontic modalities are nested. For instance, PXϕ, or OGϕ.
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deontic relation

temporal relation

{p}

{p}

{p}

a0

Fig. 3. A model for GPp ∧ O(AtMostOne(p)

The fact that the deontic relation Ro is a relation on sequences, and not
on states, has consequences on such formulas. Indeed, the good alternatives of
a0 can be seen as the rules to be obeyed. What is obligatory is then what is
true in all the rules, and what is permitted is what is true in at least one rule.
Each of these rules is consistent from a temporal point of view. For instance, if
Xϕ is permitted in one state (a0, τ, i), then there exists a good state (a1, τ, i)
which satisfies Xϕ. Since (a1, τ, i + 1) is a good state of (a0, τ, i + 1), (a0, τ, i)
also satisfies XPϕ. Then, for any alternative a, trace τ , and natural i, we have
(a, τ, i) |= PXϕ⇒ XPϕ

In the same way, we prove the converse property (a, τ, i) |= XPϕ⇒ PXϕ.
Therefore,

|= PXϕ ⇔ XPϕ

This is in accordance with one intuition. Indeed, the natural language gives
some ambiguities to the expression “I have the permission to check in tomorrow”.
One can understand that this permission can be withdrawn before tomorrow.
That is not our point of view. We consider the permissions globally, and not
from an operational point of view. In other words, we do not model changing
norms. If the permission to check in does not exist tomorrow, then we cannot
say today that we have the permission to check in tomorrow.

The same reasoning shows that the two modalities O and X commute.

|= OXϕ ⇔ XOϕ

As a consequence, the deontic modalities commute with the timed operator
F=k (cf. part 2.3).

|= OF=k ϕ ⇔ F=k Oϕ

|= PF=k ϕ ⇔ F=k Pϕ

This is not the case with the operators F , i.e., the property OFϕ ⇔ FOϕ
is not valid, which is intuitive. Indeed, having the obligation to meet ϕ in the
future does not imply that there will be an immediate obligation to satisfy ϕ. On
the other hand, we would like the obligation to continue while ϕ is not satisfied.
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The general expression of this propagation property is :

O(ϕ ∨Xψ) ∧ ¬Oϕ ∧ ¬ϕ ⇒ XOψ (1)

We need O(ϕ∨Xψ)∧¬Oφ in the hypothesis of (1) rather than only O(ϕ∨Xψ).
Indeed, we want to express the fact that the disjunction ϕ ∨Xψ is obligatory,
but not ϕ.

A consequence of the simpler formula O(ϕ ∨ ψ) ∧ ¬ϕ ⇒ XOψ would be
O(ϕ) ∧ ¬ϕ ⇒ XOψ, where ψ can be any formula, which is of course not
desirable.

However, the property (1) is not valid because of the semantics of O given
by the deontic relation Ro. The problem does not rely on the addition of the
temporal dimension, but on the interaction between obligation and disjunction.
The problem raised by propagation comes from the fact the following property
is not valid in SDL:

O(ϕ1 ∨ ϕ2) ∧ ¬Oϕ1 ∧ ¬ϕ1 ⇒ Oϕ2

The intuition suggests a strong interaction between what happens (¬ϕ1 in this
formula) and what is obliged (ϕ1 ∨ϕ2). This interaction does not exist in SDL,
and thus does not exist either in our formalism. The obligation we model is a
norm that does not depend on the facts.

We have the same problem with the obligation with deadline (OF�kϕ), be-
cause F�kϕ is equivalent to ϕ∨XFk−1ϕ (if k � 1). We will focus on the notion
of obligation with deadline, which is closer to real cases than the obligation to
satisfy ϕ in the future without deadline.

So, we would like the following property to be satisfied

O F�kϕ ∧ ¬Oϕ ∧ ¬ϕ ⇒ XOF�k−1 ϕ

As explained, this property is not satisfied. To overcome this problem, we
introduce a new operator in the next section.

4 Obligation with Deadline

In this part, we will focus on the notion of obligation with deadline. We want
to specify that it is obliged to satisfy ϕ before k time units. We will use the
notation Ok(ϕ).

4.1 A First Definition

The natural way to specify it is : Ok(ϕ) def= O(F�k ϕ).
Do we have properties that are in accordance with our intuition? First of all,

we have the property of monotonicity with respect to the deadline:

|= Ok(ϕ) ⇒ Ok′ (ϕ) where k � k′
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It is in accordance with the first intuition we have of obligation with deadline.
Indeed, if it is obliged to meet ϕ before k time units, then it is also obliged to
meet ϕ before a greater deadline k′.

Another property is the property of monotonicity with respect to ϕ:

|= Ok(ϕ1 ∧ ϕ2) ⇒ Ok(ϕ1) and |= Ok(ϕ1) ⇒ Ok(ϕ1 ∨ ϕ2)

However, as we said in part (3.5), the property of propagation of an obligation
with deadline is not satisfied. It expresses that if it is obliged to satisfy ϕ before
k time units, and if ϕ is not satisfied now, then in one time unit, it will be obliged
to satisfy ϕ before k − 1 time units. It corresponds to the formula:

Ok(ϕ) ∧ ¬Oϕ ∧ ¬ϕ ⇒ XOk−1(ϕ)

This is not a valid formula in SED-LTL. Indeed, a model satisfies Okϕ if all
the good alternatives of a0 satisfy ϕ before k time units. But one of these good
alternatives may satisfy ϕ now, and ¬ϕ thereafter. In this case, the obligation
does not hold in one time unit, even if ϕ has not been satisfied.

4.2 A New Operator for Obligation with Deadline

The fact obligation with deadline is not propagated while it is not complied with
implies that it can be violated without having an immediate obligation at any
moment. In other words, O(F�kϕ)∧¬F�kϕ ∧ G¬Oϕ is satisfiable. A solution
is to have a “counter” which is set to k when OF�k ϕ holds, and decremented
while ϕ is not satisfied. So, we have to define a new operator dedicated to the
obligation with deadline, Ok(ϕ), which means that there is an obligation to meet
ϕ before k which has not been fulfilled yet.

a, τ, i |= Ok(ϕ) iff ∃k′ ∈ N a, τ, i− k′ |= OF�k+k′ ϕ ∧ ¬ϕU=k′ �
∧ �k′′ < k + k′ a, τ, i− k′ |= OF�k′′ ϕ

More precisely, Ok(ϕ) may be read as “k′ time units ago, there were an obligation
to satisfy ϕ before k+k′, and the obligation has not been fulfilled yet”. The second
part of the definition (on the second line) means that k′ time units ago, there
was no obligation to satisfy ϕ before a shorter deadline. Otherwise, an immediate
obligation Oϕ would imply Okϕ (for any k) while ϕ is not satisfied.

Because of this last point, the new operator cannot be deduced from O(F�kϕ).
Indeed, if Oϕ is satisfied at some moment, then O(F�kϕ) is also true, whereas
Ok(ϕ) may not be true. There exists a, τ, i such that

a, τ, i � OF�k(ϕ) ⇒ Ok(ϕ)

In the same way, the property of monotonicity with respect to the deadline does
not hold either: there exists a, τ, i such that

a, τ, i � Ok(ϕ) ⇒ Ok′(ϕ) where k � k′

Indeed, unlike the first definition (cf section 4.1), the new definition of Ok(ϕ)
considers an exact deadline k: what is obligatory is to meet ϕ before k time units,
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not to meet ϕ before k +1, or k− 1 time units. Of course, the fact that Ok(ϕ) is
complied with, which corresponds to F�kϕ, has the monotonicity property with
respect to k.

With a deadline 0, the new operator can be seen as a generalization of the
obligation O . Indeed, when ϕ is obligatory, in the sense of O , then O0(ϕ) holds,
but the converse property is not true. For any a, τ, i

a, τ, i |= O(ϕ) ⇒ O0(ϕ)

But there exists a, τ, i such that a, τ, i � O0ϕ⇒ Oϕ.
Thus, O0 can be seen as a generalised immediate obligation. Indeed, it holds if

– there is an explicit immediate obligation O
– or there is an obligation with deadline which has not been fulfilled, and we

have reached the deadline

For instance, consider the case where we check that a violation condition for
a formula ϕ does not hold. O0(ϕ)∧¬ϕ is much stronger that the usual violation
condition O(ϕ) ∧ ¬ϕ.

Note that since the semantics of the operator Ok involves the past, we give
properties for any step i, given a trace τ and an alternative a. Until this point,
the temporal operators only involved the future of the current state, so the
properties was given at step 0, and thus expressed as validity properties.

Figure 4 shows an illustration of obligation with deadline. In the first state of
a0, there is an obligation to release the resource before three time units. Indeed,
each of the three good alternatives of a0 do so. In the second state, the resource
has not been released, but the obligation does not hold anymore because one of
the good alternatives has already released the resource. But our new operator Ok

holds until the deadline is reached. And in the fourth state, there is a generalised
immediate obligation to release the resource.

busy busy

busy

busybusy

busy

busy busy

deontic relation

temporal reation
release

F�2(release) O1(release) O0(release)

release

release

access

accessa0

Fig. 4. Illustration of the obligation with deadline operator
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5 Related Work

In this section, we compare our formalism with some existing formalisms. We
have proposed to define both deontic and temporal concepts using a Kripke
model. In [16, 9], Meyer proposes a definition of deontic notions in dynamic
logic, based on the reduction of deontic logic to alethic modal logic by Anderson
[1]. The idea is to introduce a new proposition V that represents the violation of
an obligation, and to define obligation in terms of this violation proposition. This
differs from our formalism since we have defined deontic concepts by a relation
on states of a Kripke model, and then the violation of some obligation O(ϕ) as
O(ϕ) ∧ ¬ϕ. A consequence is that reductionist approaches cannot distinguish
the violation of a formula ϕ1 from the violation of another formula ϕ2.

Broersen et al. also suggests in [3] a reductionist approach. The goal is to
model obligations with deadline in the branching time logic CTL (Computation
Tree Logic [6, 19]), using a violation constant and an ideality constant. The
deadline is a formula and not a concrete duration as suggested in this paper. This
is an interesting point of view which can be considered as a more abstract point
of view as ours. Dignum et al. [10] have also proposed a reductionist approach
to study the specification of deadlines.

Some other formalisms represent both time and deontic notions using rela-
tions on states in Kripke models. For instance, in [22, 20] there is no constraint
that link the two relations (deontic and temporal). This is another possible in-
terpretation of the natural language, which corresponds to the case where the
obligations can change over time. We have chosen here to model obligations that
cannot be withdrawn, or added if they are in contradiction with previous oblig-
ations. For instance, OGp ∧X¬Op and OGp ∧XO(¬p) are both unsatisfiable
in SED-LTL. If one gets the obligation to always establish p, this obligation
cannot be withdrawn tomorrow, and a new obligation cannot be added if it is
in contradiction with the previous one.

In [7], Cuppens et al. present the formalism NOMAD which can be consid-
ered as a starting point of our study. Nevertheless, the only temporal operator
is “next”, and there is a distinction between two kinds of obligations: contextual
obligations, and effective obligations. Moreover, they have chosen a representa-
tion of actions which differs from our concurrent events. Actions have a duration,
and they are observed via the three predicates start, done, and doing.

Aqvist proposes in [2] a logic that combines temporal and deontic modalities.
His model differs from ours. The deontic relation associates two states of two
histories only if they share the same past. This implies an interesting interaction
between the two dimensions. The temporal operator is the “absolute” operator
Rt (“it holds at the time t that”) instead of the “relative” operators X and U ,
which are more expressive.

We have talked in this paper neither about the entities who give the obliga-
tions, nor about those who are concerned by the obligations. For instance, [15, 20]
present a formalism where the deontic modalities are indexed by agents. There
are in the model as many deontic relations as there are agents. It would be
interesting to integrate these aspects which would give a greater expressiveness.
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6 Conclusion and Future Work

We have proposed a deontic and temporal logic that takes into account states
and events, following the idea of SE-LTL[5]. We have focused on the interac-
tion between the temporal dimension and the deontic dimension. Thus, we have
discussed the intuitiveness of some properties of formulas where deontic and tem-
poral modalities are nested, and we have studied more particularly obligation
with deadline.

We plan to study a modification of the semantics of obligation that would
take into account an interaction between the facts and the rules, in order to
have the propagation property. We also want to study a (sound and complete)
axiomatization of SED-LTL, and its decidability. Indeed, a decision procedure
would allow to check the internal coherency of an availability policy expressed
in this formalism. Another direction for future work is to check if a system does
not violate an obligation within a policy. This last problem, which requires to
reason on both a pure temporal behaviour (the system) and a deontic temporal
formula (the policy), need to be formalised.

As we said in section 5, it would be interesting to integrate the notion of
agents. We have begun to model access control policies which can be described
in the OrBAC[14] model, where the notion of agent appear. Following [20] in
which roles and groups of agents are represented, we are studying an agent
based extension of SED-LTL in order to express such policies.

References

1. A. R. Anderson. A reduction of deontic logic to alethic modal logic. Mind, pages
100–103, 1958.

2. L. Aqvist. Combinations of tense and deontic logic. Journal of Applied Logic,
3:421–460, 2005.

3. J. Broersen, F. Dignum, V. Dignum, and J.-J. C. Meyer. Designing a deontic logic
of deadlines. In 7th International Workshop on Deontic Logic in Computer Science
(DEON’04), Madeira, Portugal, 26-28 May 2004.

4. S. Chaki, E. Clarke, O. Grumberg, J. Ouaknine, N. Sharygina, T. Touili, and
H. Veith. State/event software verification for branching-time specifications. In
Fifth International Conference on Integrated Formal Methods (IFM 05), volume
3771 of Lecture Notes in Computer Science, pages 53–69, 2005.

5. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-
based software model checking. In E. A. Boiten, J. Derrick, and G. Smith, edi-
tors, Proceedings of the 4th International Conference on Integrated Formal Meth-
ods (IFM ’04), volume 2999 of Lecture Notes in Computer Science, pages 128–147.
Springer-Verlag, April 2004.

6. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Proceedings of the 3rd Workshop of Logic
of Programs (LOP’81), volume 131 of Lecture Notes in Computer Science, pages
52–71, 1981.

7. F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: a security model with non
atomic actions and deadlines. In Proceedings of the 18th IEEE Computer Security
Foundations Workshop, June 2005.



100 J. Brunel, J.-P. Bodeveix, and M. Filali

8. F. Cuppens and C. Saurel. Towards a formalization of availability and denial of
service. In Information Systems Technology Panel Symposium on Protecting Nato
Information Systems in the 21st Century, Washington, 1999.

9. P. d’Altan, J.-J. C. Meyer, and R. Wieringa. An integrated framework for ought-
to-be and ought-to-do constraints. Artif. Intell. Law, 4(2):77–111, 1996.

10. F. Dignum and R. Kuiper. Obligations and dense time for specifying dead-
lines. In Thirty-First Annual Hawaii International Conference on System Sciences
(HICSS)-Volume 5, 1998.

11. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyachev. Many-Dimensional Modal
Logics: Theory and Applications. Elsevier, 2003.

12. D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In D. Gabbay and F. Guen-
ther, editors, Handbook of Philosophical Logic Volume II — Extensions of Classical
Logic, pages 497–604. D. Reidel Publishing Company: Dordrecht, The Netherlands,
1984.

13. J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic. Annals
of Pure and Applied Logic, 96(1-3):187–207, 1999.

14. A. A. E. Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miège, C. Saurel, and G. Trouessin. Organization based access control. In
IEEE 4th International Workshop on Policies for Distributed Systems and Net-
works (Policy 2003), Lake Come, Italy, June 2003.

15. A. Lomuscio and M. Sergot. On multi-agent systems specification via deontic logic.
In Agent Theories Languages, and Architectures, volume 2333 of Lecture Notes in
Artificial Intelligence, Seattle, Springer 2001. Springer Verlag.

16. J.-J. C. Meyer. A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic, 1988.

17. J.-J. C. Meyer, R. Wieringa, and F. Dignum. The role of deontic logic in the
specification of information systems. In Logics for Databases and Information
Systems, pages 71–115, 1998.

18. A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45–60, 1981.

19. J.-P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in cesar. In Proceedings of the 5thInternational Symposium on Programming
(SOP’82), volume 137 of Lecture Notes in Computer Science, pages 337–351, 1982.

20. L. van der Torre, J. Hulstijn, M. Dastani, and J. Broersen. Specifying multiagent
organizations. In Seventh International Workshop on Deontic Logic in Computer
Science (DEON’04), volume 3065 of Lecture Notes in Computer Science, pages
243–257, 2004.

21. R. J. Wieringa and J.-J. C. Meyer. Applications of Deontic Logic in Computer
Science: A Concise Overview, pages 17–40. John Wiley & Sons, 1993.

22. B. Woz̀na, A. Lomuscio, and W. Penczek. Bounded model checking for deontic
interpreted systems. In Electronic Notes in Theoretical Computer Science, volume
126, pages 93–114, march 2005.

23. G. H. V. Wright. Deontic logic. Mind, 1951.



Speech Acts with Institutional Effects
in Agent Societies

Robert Demolombe1 and Vincent Louis2

1 ONERA Toulouse
France

Robert.Demolombe@cert.fr
2 France Telecom Research & Development

Lannion, France
vincent.louis@francetelecom.com

Abstract. A general logical framework is presented to represent speech
acts that have institutional effects. It is based on the concepts of the
Speech Act Theory and takes the form of the FIPA Agent Communica-
tion Language.

The most important feature is that the illocutionary force of all of
these speech acts is declarative. The formal language that is proposed
to represent the propositional content has a large expressive power and
therefore allows to represent a large variety of speech acts such as: to
empower, to appoint, to order, to declare,...etc.

The same formal language is also used to express the feasibility pre-
conditions, the illocutionary effects and the perlocutionary effects.

1 Introduction

Agent communication languages play an important role for interactions between
electronic institutions, in particular for electronic commerce [8, 9]. These lan-
guages must have a well defined semantics, and they have to be based on con-
cepts as close as possible to those which are used to define communication in
natural language, in order to have an intuitive semantics. That is why Speech
Act Theory [26] and the concept of institutional fact [5, 22, 21] are recognized as
a good framework for this purpose.

In this paper we investigate the formalization of speech acts that have insti-
tutional effects in agent societies such as: to create an obligation, to assign a role
to an agent, to accept an offer or to declare that auctions are open.

The context of our work is the formalization of interactions between electronic
agents, and we concentrate on actions that are communicative acts.

The Speech Act Theory, that has been defined by Searle in [26] and formalized
by Searle and Vanderveken in [27], has been already applied to electronic agents,
and the semantics of actions such as inform and request has been formalized in
modal logic in the definition of the FIPA Action Communication Language [16].
This formalization was initiated by Sadek’s work presented in [25].

It does not seem to be an over simplification to apply concepts of the Speech
Act Theory to electronic agents when beliefs are assigned to electronic agents.

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 101–114, 2006.
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However, it is more problematic to assign to them intentions, and it is not
clear whether it is sensible to talk about obligations and institutional powers
for electronic agents. Indeed, obligations, and norms in general, are intended to
influence the behaviour of agents who have some free will.

Some authors, such as McCarthy in [24], do not reject the idea that electronic
agents may have a free will, like human agents, and that they can really choose
their intentions or that they can choose to violate, or to fulfil, an obligation.

We do not pretend here to give an answer to the philosophical question of free
will for electronic agents, and we accept, as an assumption, that, with respect to
the rules of a given institution, electronic agents can be considered like human
agents.

A justification for this assumption is that electronic agents can be seen as
representative of human agents, in a similar way as human agents can represent
institutional agents, as it is proposed by Carmo and Pacheco in [2]. Then, we
can assume that the actions performed by electronic agents are determined and
chosen, explicitly or implicitly, by human agents. So, in our approach electronic
agents’ actions count as human agents’ actions.1

Now, if we ask the question: what will happen if an electronic agent has violated
an obligation?, the answer is that the human agent, who is represented by the
electronic agent, will have to repair the violation. Indeed, if an agent has to
pay a penalty, to repair a violation we can imagine that it will be possible to
decrease the amount of the electronic agent’s account (forget the question of
what it means that an electronic agent owns an account. However if an agent
has to go to jail to repair a violation, it is obvious that the electronic agent will
not be able to repair the violation himself.

We are perfectly aware that there are difficult issues about the relationships
between electronic agents and human agents in terms of responsibility. For in-
stance, assume an electronic agent violates an obligation because he does not
what he is supposed to do according to his specification. Such a case occurs in
particular when there is an error in the software. Which human agent is then
responsible?

However, in this paper we leave open the problems related to these issues,
and we just reason about electronic agents like about human agents.

The structure of the paper is as follows. We start with an informal analysis
of the components of speech acts with institutional effects. Then, in section
3, we present a formalization of each component within a logical system. In
section 4, we compare our proposal to some similar work. Finally, the conclusion
summarizes the main results and sketches future work.

2 Informal Analysis

In this work we do not consider all the subtleties of a speech act definition as
presented in [26] and we will restrict ourselves, like in the FIPA Agent Commu-
nication Language, to the following features:
1 We take “count as” in the same sense as Searle in [26] or Jones and Sergot in [20].
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– the illocutionary force,
– the propositional content,
– the feasibility preconditions,
– the illocutionary effects,
– the perlocutionary effects.

The agent who plays the role of the speaker is called in the following the
“sender”, and the agent who plays the role of the hearer is called the “receiver”.
In general the sender and the receiver are called i and j, respectively.

2.1 Illocutionary Force

The illocutionary force is determined by the direction of fit between the words
and the world. The kind of speech acts we want to consider here are those that
create institutional facts. In other words, their performance “have the function
[...] of affecting institutional state of affairs”, as K. Bach writes in the entry
“speech act” of the Routledge Encyclopedia of Philosophy Online (version 2.0).
Such speech acts satisfy the double direction of fit, and, for that reason, their
illocutionary force is declarative.

The kind of institutional facts we have in mind can be made more concrete
with a series of examples. However, we feel quite important to distinguish facts
that are represented by descriptive sentences from facts that are represented by
normative sentences.
Examples of “descriptive institutional facts” are:

1. the auctions are open.
2. agent j holds the role of salesman.
3. agent j has the institutional power to open the auctions.

Examples of “normative institutional facts” are:

4. agent j has the obligation to pay the bill of the hotel.
5. it is obligatory to have a credit card.
6. agent j has the permission to sell wine.
7. agent j is prohibited to sell cocaine.

It seems clear that the illocutionary force of a speech act which would create
institutional facts that do not refer to the performance of some action by the
receiver (namely 1, 2, 3 and 5, in these examples), is declarative.

The creation of institutional facts that refer to the performance of an ac-
tion by the receiver, like 4, raises the question: Is the illocutionary force of the
corresponding speech acts really declarative, or directive?

Indeed, one could argue that in example 4, i’s intention is that j pay the bill.
That is the case, for example, if i is the cashier of an hotel, and i gives the bill
to a client j and says: “you have to pay the bill!”.

But we can also argue that i’s intention is that it be obligatory for j to pay
the bill. For instance, the cashier gives the bill, which is an official document, to
the client because his intention is that the client know that his statement is not
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just a request but rather an order, and that by doing so it is obligatory for the
client to pay.

Of course, it is true that i’s intention is not just to create the obligation to
pay, he also has the intention to be paid. But i believes that this obligation is a
more efficient means of being paid than just asking j to pay.

Indeed, if j refuses to pay, he knows that he violates an obligation and that
he shall have to pay a penalty. i knows that j knows that, and this gives comfort
to i about the payment. Moreover, if the threat of the penalty is not enough to
influence j’s behaviour, then i can ask to a lawyer, or a policeman, to force j
to pay, and i expects that such representatives of the institution will be more
successful than he would have been if he had only requested j to pay.

Our proposal is that, in cases like 4, the speech act has two perlocutionary
effects: (1) the establishment of an institutional fact (in that example, the oblig-
ation for j to pay), and (2) the performance of some action by the receiver (in
that example, the payment of the bill), which we call a “secondary perlocutionary
effect”.

In example 6, i’s intention is to give j permission to perform the action (to
sale wine), but it is not i’s intention that j perform the action. In example 7, it
is obvious that i’s intention is not that j perform the action (to sale cocaine).
Thus, in cases 6 and 7, it is clear that the illocutionary force of the act is
declarative.

2.2 Propositional Content

The propositional content represents the institutional fact to create by perform-
ing the speech act. More precisely, this representation can be decomposed into
a reference to an institution, the propositional content itself, and possibly some
particular circumstances required for the speech act to obtain its institutional
effect.

We have considered several types of propositional contents that are relevant
in the context of applications such as electronic commerce, but, depending on
the application domain, the list below may be extended.

For propositional contents that represent descriptive institutional facts, we
have the following types of propositional contents:

– Propositional contents that represent situations where some actions count,
or do not count, as institutional actions. A typical example is a situation
where auctions are open. In this situation, bids have an institutional status.
Another example is a situation where a given service is proposed. In this
situation, under certain conditions, a request to the server creates some
obligations. In natural language, the speech acts that create these situations
can be called: “to open” or “to close”.

– Propositional contents that represent situations where an agent holds, or
does not hold, a role. For example, agent j holds, or does not hold, the role
of salesman. In natural language, the speech acts that create these situations
can be called: “to appoint” or “to dismiss”.
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– Propositional contents that represent situations where an agent has, or does
not have, some institutional power. For example, agent j has, or does not
have, the institutional power to open the auctions. In natural language, the
speech acts that create these situations can be called: “to empower” or “to
remove some power”.

Propositional contents that represent normative institutional facts may actu-
ally represent obligations, permissions or prohibitions. When considering norms
about actions, like “obligations to do”, the speech acts can respectively be called
in natural language: “to order”, “to permit” or “to prohibit”. Similar verbs
can be used when considering “obligations to be”.

In addition to the propositional content itself, the circumstances under which
the institutional facts to create are acknowledged by the institution as a regular
consequence of the speech act performance, have to be mentioned. In the previous
example of the cashier and the client, the fact that the client has actually stayed
for a night at the hotel and that the rates are officially displayed, are implicit
circumstances or conditions, which make the cashier’s order valid with respect
to the law. This order can therefore be put into words as: “whereas you stayed
for a night and whereas the official rate is such and such an amount, I order you
to pay this bill”. If such conditions are not satisfied, for instance if the client has
not stayed at the hotel, the speech act makes no sense.

Finally, the intuitive meaning of our proposed speech act with institutional
effects may be expressed in a more complete form as: “the sender declares to
the receiver his willing to change the institutional state of affairs, given the fact
that some conditions, which empower him to create this state of affairs from the
institution point of view, are satisfied”.

2.3 Feasibility Preconditions

The sincerity precondition is that i believes that he has the institutional power
to create the institutional fact represented by the propositional content of the
speech act, and also believes that the conditions required to exercise this power
hold.

Note that there is a significant difference here between to order to do an
action (which is considered as a declarative), and to request to do an action
(which is considered as a directive). Indeed, if i requests to j to do α, a sin-
cerity precondition is that i believes that j has the capacity to do α, while, if
i orders to j to do α, there is no such precondition, because, as we have men-
tioned before, i’s intention in performing this action is to create the obligation
to do α.

For instance, if we consider again the example of the cashier and the client,
the cashier’s intention to be paid is independent of the fact that the client is
able to pay. That is why the fact that the client is able to pay is not a sincerity
precondition.

The relevance precondition, like for other speech acts, is that i does not believe
that the perlocutionary effect already holds.
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2.4 Illocutionary Effect

In a first approach, we can say that the illocutionary effect is that j (the receiver)
believes that i’intention is that the propositional content holds.

However, it is a bit more complicated if we consider another agent k who
observes (receives) the speech act. In that case, the illocutionary effect on k is
that k believes that i’s intention is that j believes what we have mentioned just
before.

2.5 Perlocutionary Effect

One of the perlocutionary effects is that the institutional fact represented by the
propositional content holds. Another perlocutionary effect is that the receiver j
believes that this fact holds.

For instance, in the example of the cashier and the client, the fact that it be
obligatory for the client to pay is not enough. Another significant effect is that
the client is informed about this obligation. It is the same, for example, if the
perlocutionary effect is to appoint someone to some position.

According to the previous discussion about the illocutionary force, we will
distinguish the “direct perlocutionary effect” from the “indirect perlocutionary
effect”.

There is an indirect perlocutionary effect only when the meaning of the speech
act is to order to do an action. In that case, the indirect effect is that this action
has been done.

3 Formalization

We adopt the FIPA Agent Communication Language structure2 for speech act
definitions. A speech act a with institutional effects is formally defined by the
following components:

a = < i, Declare(j, Dsn, cond) >
FP = p
DRE = q1
IRE = q2

where:

– i is the sender,
– j is the receiver,
– s is the institution,
– n is a formula that represents the propositional content,
– cond is a formula that represents a condition,
– p is a formula that represents the feasibility preconditions,

2 The only difference is that we have two perlocutionary effects.
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– q1 is a formula that represents the direct perlocutionary effects,3
– q2 is a formula that represents the indirect perlocutionary effects.

Such a speech act means that the sender i declares to the receiver j he intends,
by performing this act, to create the institutional fact n with respect to the
institution s, given the fact that this institution empowers him to do so in the
context where the condition cond holds.

3.1 Formal Language and Its Semantics

The syntax of the language used to express the formulas n, p, q1 and q2 is defined
as follows.

Language L0. L0 is a language of a classical first order logic.
Language L. If i is the name of an agent, s is the name of an institution, α
is the name of an action and p and q are formulas in L0 or L, then Bip, Eip,
donei(α, p), Op, Obgi(α < p), Permi(α < p), Prohi(α < p), Dsp, (¬p), (p ∨ q)
and (p ⇒s q) are in L.

The reason why L is built upon L0 is to avoid complications due to quantifiers
outside the scope of the modal operators (see [14]).

The intuitive meaning of the modal operators of language L, including the
non standard connective ⇒s, are:

Bip: agent i believes p.
Eip: agent i has brought it about that p.
donei(α, p): agent i has just done the action α, and p was true just before the

performance of α.
Op: it is obligatory that p.
Obgi(α < p): it is obligatory that i performs α before p becomes true.
Permi(α < p): it is permitted that i performs α before p becomes true.
Prohi(α < p): it is prohibited that i performs α before p becomes true.
Dsp: in the context of the institution s, we have p.
p ⇒s q: in the context of the institution s, p counts as q.

The other logical connectives: ∧, → and ↔, are defined in function of ¬ and
∨ as usual. The permission and prohibition to have p are defined in function of
Op as usual.

We have introduced the operators Obgi(α < p), Permi(α < p) and
Prohi(α < p) because obligations to do make sense only if there is an explicit
deadline (here expressed as “when p becomes true”) to check if they are violated.

We leave open the possibility to consider actions as atomic actions or as
complex actions, structured with the standard constructors: sequence, non de-
terministic choice, test,...etc.
3 In FIPA definitions, the perlocutionary effect of a speech act is called “rational effect”

in order to highlight its understanding as the formal reason for which a speech act
is selected in a planning process. In this paper, we maintain this appellation by
choosing the notations DRE and IRE to refer respectively to direct and indirect
perlocutionary effects.
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We use the following notations:

donei(α) def= donei(α, true)
power(i, s, cond, α, f) def= (cond ∧ donei(α)) ⇒s f , where cond and f are

formulas in L.

The meaning of power(i, s, cond, α, f) is that, in the context of the institution
s, the agent i has the power to create a situation where f holds by doing the
action α in circumstances where we have cond.

Speech acts whose intuitive meaning are: to open or to close, are respectively
represented by a propositional content n of the form: p or ¬p, where p is a
formula of L0.

If holds(i, r) is a predicate that means that the agent i holds the role r, the
speech acts to appoint or to dismiss are respectively represented by a proposi-
tional content n of the form: holds(i, r) or ¬holds(i, r).

The speech acts: to empower or to remove some power, are respectively rep-
resented by a propositional content n of the form: power(i, s, cond, α, f) or
¬power(i, s, cond, α, f).

The speech acts: to order, to permit or to prohibit to do an action α before a
deadline d, are respectively represented by a propositional content of the form:
Obgi(α < d), Permi(α < d) and Prohi(α < d).

In general, the language L allows to define speech acts that have more complex
meaning than those expressed by usual verbs of the natural language.

It is not the main topic of this work to define a formal semantics for the modal
operators involved in the language L. Then, we only give brief indications about
their semantics and we adopt, when it is possible, quite simple definitions.

For the epistemic operator Bi, we adopt a KD system, according to Chellas
terminology [3]. The dynamic operator donei is defined as a variant and a re-
striction (see [23]) of the Dynamic Propositional Logic defined by Harel in [19].
The dynamic operator Ei is defined by a system with RE, C, ¬N and T.

For the “obligation to be” operator O, we adopt the Standard Deontic Logic,
that is a KD system. For the “obligation to do” operators Obgi, Permi and
Prohi, we adopt the semantics defined in [7], which is an extension of the Dy-
namic Deontic Logic defined by Segerberg in [28].

Finally, to reason about institutional facts, we adopt, for the operator Ds and
for the connective ⇒s, the semantics defined by Jones and Sergot in [20].

3.2 Components of a Speech Act with Institutional Effects

Now, we can formally define the components of a speech act with institutional
effects.

Propositional content
The propositional content is represented by the two parameters Dsn and cond
where n and cond are formulas in L.
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Feasibility preconditions
The sincerity precondition expresses that (1) i believes that he has the institu-
tional power to create the institutional fact represented by Dsn by doing the
speech act a in some circumstances described by the formula cond, and that
(2) i believes that these circumstances hold in the current situation. This is
represented by the formula: Bi(power(i, s, cond, a, Dsn) ∧ cond).

The relevance precondition is represented by the formula: ¬BiDsn. Then we
have:

FP = Bi(power(i, s, cond, a, Dsn) ∧ cond) ∧ ¬BiDsn

Illocutionary effect
The fact that j believes that i’s intention is that Dsn holds is represented by:
BjIiDsn. And the fact that an observer k believes that this is i’s intention is
represented by: BkIiBjIiDsn.

Then the illocutionary effect E is:

E = BkIiBjIiDsn

Perlocutionary effects
The direct perlocutionary effect is that Dsn holds, and that j believes that Dsn
holds. Then, we have:

DRE = Dsn ∧BjDsn

The indirect perlocutionary effect depends on the propositional content n. For
example, if n is of the type Obgk(α < d), where k can be either the sender i or
the receiver j, the indirect perlocutionary effect is represented by donek(α < d).
Note that if k is the sender the meaning of the speech act is a commitment. In
general we have:

IRE =
- donek(α < d), if n = Obgk(α < d),
- ¬donek(α < d), if n = Forbk(α < d),
- true, in other cases.

The direct perlocutionary effect Dsn is obtained if i has the relevant institu-
tional power power(i, s, cond, a, Dsn), and if we are in circumstances where cond
holds and the speech act a has been performed, that is when we have:

power(i, s, cond, a, Dsn) ∧ cond ∧ donei(a)

In a similar way, the direct perlocutionary effect BjDsn is obtained if we have:

Bj(power(i, s, cond, a, Dsn) ∧ cond ∧ donei(a))

The indirect perlocutionary effect donek(α < d) is obtained if k has adopted
the intention to do α before d, and if he has the ability to do α. We have not
expressed these conditions in formal terms here because the formal representa-
tion of ability by itself is a non trivial problem (see [11]).
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Note that, even in the case of a commitment, that is when k is the sender i, it
may happen that the conditions to reach the perlocutionary effect are not satis-
fied. For instance, in the example of the cashier and the client, if the locutionary
act performed by the client is, for example, to sign an official document where
he declares that he will pay the bill before the end of the week, it may happen
that, even so, he has not really the intention to pay or that he has not the ability
to pay.

The indirect perlocutionary effect ¬donek(α < d) is obtained if k has adopted
the intention to refrain to do α until d, and if he has the ability to do so.

4 Comparison with Other Work

There is a very limited number of papers that have proposed a formalization of
speech acts with institutional effects.

In [10], Dignum and Weigand consider speech acts that have the effect to
create obligations, permissions and prohibitions. Their analysis is also based on
the concepts of Speech Acts Theory.

A significant difference with our work is that, in their approach, the illo-
cutionary force of the speech acts is directive. Another difference is that the
perlocutionary effects are obtained if the sender has the power to order to the
receiver to perform some action, or if the receiver has authorized the sender to
order to do this action. This second type of relationship between the sender and
the receiver is quite different of the first one, which is close to an institutional
power. Then, in our view, the status of the obligations created in the second con-
text is not clear because we do not know if this obligation counts as an obligation
with regard to some institution.

From a technical point of view this work has some weaknesses. In particular,
there are two distinct operators (DIRa and DIRp) to represent speech acts that
have the same illocutionary force. Also, the authors consider assertive speech
acts, but the distinction between directives and assertives is not perfectly clear.
Finally, axioms of the form: [DIR(i, j, α)]I(i, α), which mean that after i has
requested j to do α, necessarily i intends α to be done, say that I(i, α) is an
effect of DIR(i, j, α), while it is a feasibility precondition.

We can also see that the expressive power of their logic is more limited
than ours. For instance, the action DIRp(i, j, α) is represented in our frame-
work as a special case of speech act with institutional effects of the form:
< i, Declare(j, Ds(Obgj(α < true), true) >. In addition, in their framework
there is no way to specify the institution s.

In [13], Firozabadi and Sergot have introduced the operator Declaresin,
whose meaning is that the agent i declares that n, and where n is supposed
to be an institutional fact. They also have defined the operator Powin, which
means that the agent i is empowered to create the institutional fact n. The
relationship between the two operators is defined by the property:

[DECL] � Declaresin ∧ Powin → n
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where [DECL] “expresses the exercise of a power to create n by designated agent
i”. There is a deep analogy between this relationship and the following property
that holds in our framework:

� cond ∧ donei(a) ∧ power(i, s, cond, a, n)→ Dsn

where the speech act a is < i, Declare(j, n) >.
There are some minor technical differences. In Declaresin there is no refer-

ence to the addressee of the speech act. And the institutional power Powin is
independent of the context (there is no condition cond).

A more significant difference with our work is that there is no distinction be-
tween what we have called the primary and the secondary perlocutionary effects.
Maybe this distinction is ignored because the authors consider a particular appli-
cation domain where n only represents either the permission or the prohibition
to do an action (for instance, the permission or prohibition for an agent to read
a file). Then, they can assume that the sender’s intention is just to create a new
normative situation. Another difference is that feasibility preconditions are not
mentioned.

In [4], Cohen and Levesque show how performatives can be used as requests
or assertions, but they do not consider the creation of institutional facts.

In [18], Fornara, Vigan and Colombetti claim that all the communicative acts
can be defined in terms of declarations. They have defined a formal syntax for
an Agent Communication Language that refers to the concepts of the Speech
Act Theory and of institutions. For each type of communicative act are defined
the preconditions and postconditions. But these conditions are different of the
feasibility preconditions and perlocutionary effects. Moreover, there is no formal
logic to define the semantics of this language.

In [12], El Fallah-Segrouchni and Lemaitre informally analyse the different
types of communicative interactions between electronic agents, or groups of
electronic agents, who represent companies. However, the formal contribution
of their work is limited to the formal definitions of obligations to do for groups
of agents.

In this paper, we have presented an extension of the FIPA ACL. It was not our
purpose to compare the FIPA approach, which refers to agents’ mental states,
to other approaches of agent communication languages, in particular the ones
proposed by authors like Singh [29, 30], Colombetti et al. [6, 17, 18] and Chaib-
draa and Pasquier [15], which refer to the notion of social commitment.

In [18] the authors write: ”the main advantage of this approach [social com-
mitment] is that commitments are objective and independent of agent’s internal
structure, and that it is possible to verify whether an agent is behaving according
to the given semantics”.

We would like to point out that in our proposal agents can create commit-
ments, and many other normative positions of agents, like prohibitions and per-
missions. Also, it is possible to check whether a speech act has actually created
such normative positions. Indeed, that depends on the fact that the speaker has
the corresponding institutional power, and this can be checked in the context of
a given institution.
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For instance, in the context of the institution of e-commerce, the fact that
an agent has paid for a given service counts as the fact that he has the right
to use this service. Then, by asking to use this service (this can be expressed in
our framework by a declare act with the appropriate propositional content) the
agent can create the obligation for the server to provide him with this service.

In that example, we see that in order to check whether the obligation has been
created, an observer has to check whether the agent has paid for this service, and
that raises no specific problem. Moreover, after the obligation has been created,
it is possible to check whether the obligation has been fulfilled by the server, i.e.
whether the service has been delivered.

However, there is no means to check, for example, the agent’s sincerity, or
to check whether the agent’s intention was to create the rational effect of a
given speech act. But, even if there is some degree of uncertainty about these
mental states, they can be quite useful in the perspective of plan generation and
intention recognition.

5 Conclusion

We have presented a general formal definition of speech acts whose intended
effects are to create institutional facts. The original aspect of our work is that
all of them, including orders, are considered as declaratives. Another significant
aspect is that the formalization is perfectly compatible and homogeneous with
the formalization of assertives and directives in the FIPA Agent Communication
Language framework. Then, the results can be seen as a proposal for an extension
of this language.

In another context (not discussed within this paper), we have checked the
practical usability of our approach with the Letter Credit procedure presented
in [1]. This procedure is supposed to guarantee that a customer that has bought
some goods will receive the goods, and that the supplier will be paid for that.
The procedure is a bit complex and involves three other agents: the carrier,
the issuing bank and the corresponding bank. We did not find any difficulty
to represent the procedure in terms of speech acts. For example, the procedure
involves an action of the type “notification”, to officially inform the customer
that the carrier has carried on the good at its destination. This can be easily
expressed with a propositional content of the form: DsBj(goods.are.arrived).

In further work, we will investigate how the axioms that determine the planning
of speech acts by a rational agent have to be adapted to this type of speech act.
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Abstract. By making use of modal logic techniques, the paper disen-
tangles two semantically different readings of statements of the type X
counts as Y in context C (the classificatory and the constitutive readings)
showing that, in fact, ‘counts-as is said in many ways’.

1 Introduction

The term “counts-as” derives from the paradigmatic formulation that in [19]
and [20] is attributed to the non-regulative component of institutions, i.e., con-
stitutive rules:

[...] “institutions” are systems of constitutive rules. Every institutional
fact is underlain by a (system of) rule(s) of the form “X counts as Y in
context C” ( [19], pp.51-52).

In legal theory the non-regulative component of normative systems has been
labeled in ways that emphasize a classificatory, as opposed to a normative or
regulative, character: conceptual rules ( [2]), qualification norms ( [18]), defini-
tional norms ( [13]). Constitutive rules are definitional in character:

The rules for checkmate or touchdown must ‘define’ checkmate in chess
or touchdown in American Football [...] ( [19], p.43).

With respect to this feature, a first reading of counts-as is thus readily available:
it is plain that counts-as statements express classifications. For example, they
express what is classified to be a checkmate in chess, or a touchdown in Amer-
ican Football. However, is this all that is involved in the meaning of counts-as
statements?

The interpretation of counts-as in merely classificatory terms does not do jus-
tice to the notion which is stressed in the label “constitutive rule”, that is, the
notion of constitution. Aim of the paper is to show that this notion, as it is
presented in some work in legal and social theory, is amenable to formal charac-
terization (in modal logic) and that the theory we developed in [11] provides a
ground for its understanding. These investigations stem therefore from the ac-
knowledgment that what is commonly studied under the label “counts-as”, hides
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in fact (at least) two different, though related, phenomena. Aim of the work is to
disentangle these two different meanings and to do it formally. The result will be
a formal characterization of both of them together with their logical relations.

The work is structured as follows. In Section 2 we provide an informal analysis
of the differences between the classificatory and the constitutive readings and we
isolate some constraints concerning in particular the semantics of the constitutive
reading. In Section 3 we expose a modal logic of contextual classifications and
by means of it we make explicit what a classificatory view of counts-as implies.
In Sections 4 and Section 5 a formal characterization of the constitutive view is
instead provided and some logical interdependencies between the two readings
are derived. Section 6 is devoted to a brief discussion of what we deem to be
the most characteristic features of our approach with respect to the literature
available on the topic. Conclusions follow in Section 7.

2 Counts-as Between Classification and Constitution

Consider the following inference: it is a rule of normative system Γ that self-
propelled conveyances count as vehicles; it is always the case that cars count
as self-propelled conveyances; therefore, according to normative system Γ , cars
count as vehicles. This is an instance of a typical normative reasoning pattern:
from the rule of a given normative system and a common-sense fact, another
fact is inferred which holds with respect to that normative system. The count-as
locution occurs three times. However, the first premise states a constitutive rule,
the second one states a generally acknowledged classification, and the conclu-
sion states a classification which is considered to hold with respect to the given
normative system. The formal analysis proposed in this paper moves from the
observation that these different occurrences of the same term counts-as denote,
in effect, different concepts. Counts-as can be said in many ways, and the aim of
the paper is to show that these ‘many ways’ all have a precise formal semantics.

The distinction we are going to focus on can be distilled in the following obser-
vation: counts-as statements used to express constitutive rules have a different
meaning from the counts-as statements which are instead used for expressing
what follows from the existence of a constitutive rule. We call the first ones
constitutive counts-as statements, and the second ones classificatory counts-as
statements. We will see (Proposition 5) that the formal counterpart of the above
reasoning pattern is a validity of the modal logic framework that we are going
to introduce for capturing and analyzing this distinction.

2.1 The Classificatory Reading of Counts-as

According to a classificatory perspective on the semantics of counts-as, such as
the one we investigated in [9,10,11], the fact that A counts-as B in context c is
interpreted as “A is a subconcept of B in context c”. In other words, counts-as
statements are read as contextual classifications.

A notion of context is necessary because classifications holding for a norma-
tive system are not of a universal kind, they do not hold in general. What does
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this mean? The set of classifications stated as constitutive rules by a normative
system (for instance, “self-propelled conveyances count as vehicles”) can be seen
as exactly the set of situations (possible worlds) which make that set of classi-
fications true. Hence, the set of constitutive rules of any normative system can
be seen as a set of situations. And a set of situations is what is called a context
in much literature on context theory (see for instance [22, 7]). To put it in a
nutshell, a context is a set of situations, and if the constitutive rules of a given
normative system Γ are satisfied by all and only the situations in a given set,
then that set of situations is the context defined by Γ 1. This simple observation
allows us to think of contexts as “systems of constitutive rules” ( [19], p.51).
Getting back to the above example: the statement “according to Γ , cars count
as vehicles” is read as “in the set of situations defined by the rules of system
Γ , car is a subconcept of vechicle”. These features, here just informally in-
troduced, will be fully captured by the formalism we are going to present in the
following sections.

Understanding counts-as statements in classificatory terms sheds light on an
essential function of constitutive rules within normative systems, namely the
function of specifying the ontology that each normative system presupposes in or-
der to be able to carry out its regulative task ( [8]). Counts-as statements describe
the ontology that normative systems use in order to distribute obligations, rights,
prohibitions, permissions: vehicles are not admitted to public parks (general
norm), but then, if cars count as vehicles (classification), cars are not admitted
to public parks (specific norm). An analysis in terms of contextual classification
captures exactly this type of reasoning patterns enabled by counts-as statements.

2.2 The Constitutive Reading of Counts-as

The classificatory perspective does not exhaust, though, all aspects involved in
the meaning of counts-as statements. As the analysis developed in [14] shows,
there is something more. According to that work, the fact that A counts-as B
in context c is read as a statement to the effect that A represents “conditions
for guaranteeing the applicability of particular classificatory categories” [14], in
this case the category B in context c. One is not generally entitled to infer B
from A, but it is the counts-as itself which guarantees the soundness of that
inference. Indeed, if we can say that cars count as vehicles in c, is just because
there is a constitutive rule of normative system Γ defining c, which states that
self-propelled conveyances are vehicles. Without this constitutive rule the con-
clusion could not be drawn. As said in [14], the constitutive rule “guarantees”
the soundness of the inference. The constitutive reading of counts-as stresses
exactly this aspect.

In this view, counts-as statements do not only state contextual classifications,
but they state new classifications which would not otherwise hold. This is per-
fectly in line with what maintained in [19]:
1 The definition of sets of situations via sets of formulae is a well-known formal phe-

nomenon, which has been object of deep investigations especially in epistemic logic.
We will come back to this in more detail in Section 4 and 5.



118 D. Grossi, J.-J. Ch. Meyer, and F. Dignum

[...] where the rule (or systems of rules) is constitutive, behaviour which
is in accordance with the rule can receive specifications or descriptions
which it could not receive if the rules did not exist [p.35] ( [19]).

In other words, A counts as B in context c because, in general, it does not hold
that A is classified as B. Otherwise such a constitutive rule would be futile.

Remark 1. Constitutive counts-as statements are classifications which hold with
respect to a context (set of situations) but which do not hold in general (i.e., with
respect to all situations).

There is yet another feature characterizing the constitutive reading of counts-as.
Let us go back to the first premise of our example: it is a rule of normative
system Γ that self-propelled conveyances count as vehicles. Being normative
systems sets of rules, this means that “self-propelled conveyances are classified
as vehicles” is one of the rules specifying Γ . We know that any set of rules defines
a context, namely, the context of all and only the situations which satisfy that
set of rules, so:

Remark 2. A constitutive counts-as statement is a classification such that:
a) it is an element of the set of rules specifying a given normative system Γ ;
b) the set of rules of Γ define the context (set of situations) to which the counts-as
statement pertains.

In other words when statements “A counts as B in the context c of normative
system Γ” are read as constitutive rules, what is meant is that the classification
of A under B is a promulgation of the normative system Γ defining context c.

Finally, let us spend some preliminary words about the relation between the
classificatory and the constitutive reading which we should expect to be enabled
in a framework capturing both those meanings. As the informal analysis above
points out, the classificatory view is somehow implied by the constitutive one: a
constitutive counts-as does not only express that A is classified as B in c, but
it expresses also that this classification is not a universally valid one, and that
it is an element of the the system Γ defining c. A clear logical relation between
the two views should therefore be expected.

Remark 3. Constitution implies classification: if A counts as B in a constitutive
sense, then A counts as B in a classificatory sense.

Such a logical relation is precisely the ground for the type of reasoning typically
involved in the manipulation of constitutive rules. The presence of a constitutive
rule entitles the reasoner to apply reasoning patterns which are typical of rea-
soning with concepts and classifications. This aspect is thoroughly investigated
in Section 5.5.

Along the lines just sketched, the work presents a proposal for developing the
formal analysis we presented in [11] in order to deliver a unified modal logic
framework able to capture both the constitutive and the classificatory views of
counts-as.
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3 Modal Logic of Classificatory Counts-as

This section summarizes the results presented in [11]. We first introduce the lan-
guages we are going to work with: propositional n-modal languages MLn ( [5]).
The alphabet ofMLn contains: a finite set of propositional atoms p; the set of
boolean connectives {¬,∧,∨,→}; a finite non-empty set of n (context) indexes
C, and the operator [ ]. Metavariables i, j, ... are used for denoting elements of
C. The set of well formed formulas φ of MLn is then defined by the following
BNF:

φ ::= ⊥ | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | [i]φ.

We will refer to formulae φ in which at least one modal operator occurs as modal-
ized formulae. We call instead objective formulae in which no modal operator
occur and we denote them using the metavariables γ1, γ2, . . ..

3.1 Semantics

Semantics for these languages is given via structures M = 〈F , I〉, where:

– F is a Cxt multi-frame, i.e., a structure F = 〈W, {Wi}i∈C〉, where W is a
finite set of states (possible worlds) and {Wi}i∈C is a family of subsets of
W .

– I is an evaluation function I : −→ P(W ) associating to each atom the set
of states which make it true.

Some observations are in order here. To put it another way, Cxt multi-frames
can be seen as Kripke frames in which, instead of the family of sets {Wi}i∈C ,
a family of accessibility relations {Ri}i∈C is given which defines for each world
w the same set of accessible worlds Wi. Relations enjoying such a property are
called locally universal2. Such multi-frames model thus n different contexts i
which might be inconsistent, if the corresponding set Wi is empty, or global
if Wi coincides with W itself. This implements in a straightforward way the
thesis developed in context modeling according to which contexts can be soundly
represented as sets of possible worlds ( [22]).

Satisfaction for modal formulae of these languages is then defined as follows:

M, w � [i]φ iff ∀ w′ ∈Wi :M, w′ � φ.

Satisfaction of atoms and boolean formulae is omitted and runs as usual. A
formula φ is said to be valid in a model M, in symbols M � φ, iff for all w in
W , M, w � φ. It is said to be valid in a frame F (F � φ) if it is valid in all
models based on that frame. Finally, it is said to be valid on a class of frames F
(F � φ) if it is valid in every frame F in F.

It is instructive to make a remark about the [i]-operator clause, which can be
seen as the characterizing feature of the modeling of contexts as sets of worlds3.
2 See [11] for a detailed discussion of these frames.
3 Propositional logics of context without this clause are investigated in [4,3].
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It states that the truth of a modalized formula abstracts from the point of
evaluation of the formula. In other words, the notion of “truth in a context i” is
a global notion: [i]-formulae are either true in every state in the model or in none.
This reflects the idea that what is true or false in a context does not depend on
the world of evaluation, and this is what we would intuitively expect especially
for contexts interpreted as normative systems: what holds in the context of a
given normative system is not determined by the point of evaluation but just by
the system in itself, i.e., by its rules.

3.2 Axiomatics

The multi-modal logic that corresponds, i.e., that is sound and complete with
respect to the class of Cxt multi-frames, is a system we call here K45ij

n. It
consists of a logic weaker than the logic KD45ij

n investigated in [11] in that the
semantic constraint has been dropped which required the sets in family {Wi}i∈C

to be non-empty. As a consequence the D axiom is eliminated. To put it in a
nutshell, the system is the very same logic for contextual classification developed
in [11] except for the fact the we want to allow here the representation of empty
contexts as well. In the knowledge representation setting we are working in,
where contexts can be identified with the normative systems defining them,
this amounts to accept the possibility of normative systems issuing inconsistent
constitutive rules.

Logic K45ij
n is axiomatized via the following axioms and rules schemata:

(P) all tautologies of propositional calculus
(K) [i](φ1 → φ2)→ ([i]φ1 → [i]φ2)

(4ij) [i]φ→ [j][i]φ
(5ij) ¬[i]φ→ [j]¬[i]φ
(MP) φ1, φ1 → φ2 / φ2

(N) φ / [i]φ

where i, j denote elements of the set of indexes C. The system is a multi-modal
homogeneous K45 with the two interaction axioms 4ij and 5ij . The system is a
subsystem of the EDL system studied in [17]. The proof of the soundness and
completeness of the system with respect to Cxt multi-frames can be derived by
the proof of the completeness of EDL ( [17]).

A remark is in order especially with respect to axiomata 4ij and 5ij . In fact,
what the two schemata do, consists in making the nesting of the operators re-
ducible which, leaving technicalities aside, means that truth and falsehood in
contexts ([i]φ and ¬[i]φ) are somehow absolute because they remain invariant
even if evaluated from another context ([j][i]φ and [j]¬[i]φ). In other words, they
express the fact that whether something holds in a context i is not something
that a context j can influence. This is indeed the kind of property to be expected
given the semantics presented in the previous section.
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3.3 Classificatory Counts-as Formalized

Using a multi-modal logic K45ij
n on a languageMLn, the formal characterization

of the classificatory view on counts-as statements runs as follows.

Definition 1. (Classificatory counts-as: ⇒cl
c )

“γ1 counts as γ2 in context c” is formalized in a multi-modal language MLn as
the strict implication between two objective sentences γ1 and γ2 in logic K45ij

n:

γ1 ⇒cl
c γ2 := [c](γ1 → γ2)

These properties for ⇒cl
c follow.

Proposition 1. (Properties of ⇒cl
c )

In logic K45ij
n, the following formulas and rules are valid:

γ2 ↔ γ3 / (γ1 ⇒cl
c γ2)↔ (γ1 ⇒cl

c γ3) (1)
γ1 ↔ γ3 / (γ1 ⇒cl

c γ2)↔ (γ3 ⇒cl
c γ2) (2)

((γ1 ⇒cl
c γ2) ∧ (γ1 ⇒cl

c γ3)) → (γ1 ⇒cl
c (γ2 ∧ γ3)) (3)

((γ1 ⇒cl
c γ2) ∧ (γ3 ⇒cl

c γ2)) → ((γ1 ∨ γ3) ⇒cl
c γ2) (4)

γ ⇒cl
c γ (5)

(γ1 ⇒cl
c γ2) ∧ (γ2 ⇒cl

c γ3) → (γ1 ⇒cl
c γ3) (6)

(γ1 ⇒cl
c γ2) ∧ (γ2 ⇒cl

c γ1) → [c](γ1 ↔ γ2) (7)
(γ1 ⇒cl

c γ2)→ (γ1 ∧ γ3 ⇒cl
c γ2) (8)

(γ1 ⇒cl
c γ2)→ (γ1 ⇒cl

c γ2 ∨ γ3) (9)

We omit the proofs, which are straightforward via application of Definition 1.
This system validates all the intuitive syntactic constraints isolated in [14] (va-
lidities 1-5). In addition, this semantic-oriented approach to classificatory counts-
as enables the four validities 6-9. Besides, this analysis shows that counts-as
conditionals, once they are viewed as conditionals of a classificatory nature,
naturally satisfy reflexivity (5), transitivity (6), and a form of “contextualized”
antisymmetry (7), strengthening of the antecedent (8) and weakening of the
consequent (9).

The property of transitivity, in particular, deserves a special comment. In [14]
the transitivity of counts-as is accepted, but not with strong conviction: “we
have been unable to produce any convincing counter-instances and are inclined
to accept it” ( [14], p.436). What our approach shows is that once we first
proceed to the isolation of the exact meaning we are aiming at formalizing, no
room for uncertainty is then left about the syntactic properties enjoyed by the
formalized notion: if we intend counts-as statements as contextual classifications,
then transitivity must be accepted on the ground of pure logical reasons.

4 Counts-as Beyond Contextual Classification

The previous section has provided a formal analysis of the classificatory view of
counts-as (Definition 1), explicating what logical properties are to be expected
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once such an analytical option on the semantics of counts-as is assumed (Propo-
sition 1). In this section, on the basis of Remark 1 and 2, we develop a formal
semantics of the constitutive reading of counts-as.

4.1 From Classification to Constitution

What has to be done is just to give formal clothes to Remarks 1 and 2 stated
in Section 2. Let us define the set (X) of all formulae which are satisfied by all
worlds in a finite set of worlds X in a Cxt model M:

(X) = {φ | ∀w ∈ X :M, w |= φ}.
and the set →(X) of all implications between objective formulae which are
satisfied by all worlds in a finite set of worlds X :

→(X) = {γ1 → γ2 | ∀w ∈ X :M, w |= γ1 → γ2}.
Obviously, for every X : →(X) ⊆ (X). In the classificatory reading, given a
model M where the set of worlds Wc ⊆ W models context c, the set of all
classificatory counts-as statements holding in c, i.e., (Wc), is nothing but the
set →(Wc):

(Wc) ≡ →(Wc).

Obviously, (Wc) is a superset of all conditional truths of W , that is, of the
“universal” context of model M. This is to say that interpreting counts-as as a
mere classification makes it inherit all trivial classifications which hold globally
in the model, and in this consists precisely the crux of the failure of contextual
classifications in capturing a notion of constitution. The notion of contextual
classification is indifferent to what the context adds to standard classifications.

This suggests, though, a readily available strategy to give a formal specifi-
cation of Remark 1: the set of constitutive counts-as statements holding in a
context c should be contained in the set →(Wc) from which all the global clas-
sifications are eliminated:

(Wc) ⊆ →(Wc) \ (W ). (10)

Intuitively, the set of constitutive counts-as holding in c corresponds to the set
of implications holding in c, i.e. the set of classificatory counts-as statements of
c, minus those classifications which hold globally.

As to Remark 2, what comes to play a role is the notion of a definition of the
context of a counts-as statement. A definition of a context c is a set of objective
formulae Γ such that, ∀w ∈W :

M, w |= Γ iff w ∈ Wc.

that is, the set of forumlae Γ such that all and only the worlds in Wc satisfy Γ .
In practice, we are making use, in a different setting but with exactly analo-

gous purposes, of a well-known technique developed in the modal logic of knowl-
edge, i.e., the interpretation of modal operators on “inaccessible worlds” typical,
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for instance, of the “all that I know” epistemic logics ( [15]). Consequently, when
it comes to Remark 2 we do not just refer to a context, but also (even if often
implicitly) to the set of formulae (or rules) that define it. From a formal point
of view constitutive counts-as should thus be indexed not only by the context
they pertain to, but also by the definition of the context:

Γ (Wc) ⊆ {γ1 → γ2 | γ1 → γ2 ∈ Γ and ∀w(M, w |= Γ iff w ∈Wc)} (11)

That is to say, the set of constitutive counts-as statements of a context c w.r.t.
a definition Γ should be a subset of the set of implications which belong to the
set of formulae Γ defining c.

If we take the constraints expressed in formulae 10 and 11 to exhaust the
meaning of a constitutive view of counts-as, then the set of constitutive counts-
as statements of a given set c w.r.t. a definition Γ can be defined as follows.

Definition 2. (Set of constitutive counts-as in c w.r.t. definition Γ )
The set Γ (Wc) of constitutive counts-as statements of a context c defined by
Γ is:

Γ (Wc) :=

{
( →(Wc) \ (W )) ∩ Γ, if: ∀w(M, w |= Γ iff w ∈Wc)

∅, otherwise.
(12)

Section 5 is devoted to the development of a modal logic based on this definition
and to a detailed analysis of this interpretation of counts-as statements especially
in relation with the analytical option of viewing counts-as as mere contextual
classificatory statements.

5 Counts-as as Constitution

In the following section a logic is developed which implements the above defi-
nition 2. By doing this, all the following requirements will be met at the same
time: first, capture the intuitions discussed in Section 2 concerning the intu-
itive reading of counts-as statements in constitutive terms (Remark 1 and 2);
second, maintain the possible worlds semantics of context exposed in Section 3
and developed in order to account for the classificatory view of counts-as; third,
account for the logical relation between classificatory and constitutive counts-as
(Remark 3).

5.1 Expanding MLn

Language MLn is expanded as follows. The set of context indexes C consists of
a finite non-empty set K of m atomic indexes c among which the special context
index u denoting the universal context, and their negations −c. The following
morphological clause is thus needed:

k ::= c | − c

The cardinality n of K is obviously equal to 2m. We call this language MLu,−
n .

Metavariables i, j, ... for context identifiers range on the elements of C.



124 D. Grossi, J.-J. Ch. Meyer, and F. Dignum

5.2 Semantics

LanguagesMLu,−
n are given a semantics via a special class of Cxt multi-frames,

namely the class of Cxt multi-frames F = 〈W, {Wc}c∈C〉 such that there always
exists a Wu ∈ {Wc}c∈C s.t. Wu = W . That is, the frames in this class, which we
call Cxt
, always contain the global context among their contexts.

The semantics for MLu,−
n is thus easily obtained interpreting the formulae

on models built on Cxt
 frames. The new clauses needed to be added to the
definition of the satisfaction relation in Section 3 are the following ones:

M, w � [u]φ iff ∀ w′ ∈Wu :M, w′ � φ

M, w � [−c]φ iff ∀ w′ ∈W\Wc :M, w′ � φ.

Intuitively, the first clause states that the [u] operator is interpreted on the
universal 1-frame contained in each Cxt
 multi-frame, and the second states
that the [−c] operator ranges over the complement of the set Wc on which [c]
instead ranges.

In fact, the [c] operator specifies a lower bound on what holds in context c
(‘something more may hold in i’), that is, a formula [c]φ means that φ at least
holds in context c. The [−c] operator, instead, specifies an upper bound on what
holds in c (‘nothing more holds in c’), and a [−c]φ formula means therefore that
φ at most does hold in c, i.e., φ at least does hold in the complementary context
of c4.

5.3 Axiomatics

To axiomatize the above semantics an extension of logic K45ij
n is needed which

can characterize also atomic context complementation. The extension, which we
call logic Cxtu,\, results from the union K45ij

n ∪ S5u, that is, from the union
of K45ij

n with the S5u logic for the [u] operator together with the interaction
axioms (⊆ .ui) (⊆ .uc) and (−.¬) below. The axiomatics is thus as follows:

(P) all tautologies of propositional calculus
(Ki) [i](φ1 → φ2) → ([i]φ1 → [i]φ2)

(4ij) [i]φ→ [j][i]φ
(5ij) ¬[i]φ→ [j]¬[i]φ
(Tu) [u]φ→ φ

(⊆ .ui) [u]φ→ [i]φ
(⊆ .uc) [c]φ ∧ [−c]φ → [u]φ
(−.¬) [−c]υ → ¬[c]υ
(MP) φ1, φ1 → φ2 / φ2

(Ni) φ / [i]φ

4 For an extensive discussion of this technique we refer the reader to [17].



Counts-as: Classification or Constitution? An Answer Using Modal Logic 125

where i, j are metavariables for the elements of K, c denotes elements of the
set of atomic context indexes C, and υ ranges over uniquely satisfiable objective
formulae, i.e., “objective” formulae which are true in at most one world.

The interaction axioms deserve some comments. Axiom (⊆ .ui) is quite intu-
itive. It just says that what holds in the global context, holds in every context.
Axiom (⊆ .uc) is needed in order to axiomatize the interplay between atomic
contexts and their complements: if some formula holds in both a context and its
complement, than it holds globally. Axiom (−.¬) states instead that the contexts
denoted by c and −c are strongly disjoint, in the sense that they do not contain
the same valuations.

The system is nothing but a multi-modal version of a fragment of the S5O
system investigated in [17] (that system contained also a “strongly universal
context”, that is the context of all logically possible valuations), which is in
turn an extension of the propositional fragment of the “all I know” logic studied
in [15]. We conjecture that the completeness proof can be obtained extending
the completeness result concerning S5O provided in [17].

5.4 Constitutive Counts-as Formalized

Using a multi-modal logic Cxtu,\ on a languageMLu,−
n , the constitutive reading

of counts-as statements can be formalized as follows.

Definition 3. (Constitutive counts-as: ⇒co
c,Γ )

Given a set of formulae Γ the conjunction on which is Γ = (φ1 ∧ . . . ∧ (γ1 →
γ2) ∧ . . . ∧ φn), the constitutive counts-as statement “γ1 counts as γ2 in context
c” is formalized in a multi-modal logic Cxtu,\ on language MLu,−

n as:

γ1 ⇒co
c,Γ γ2 := [c]Γ ∧ [−c]¬Γ ∧ ¬[u](γ1 → γ2)

with γ1 and γ2 objective formulae.

A detailed comment of the definition is in order. The definition implements in
modal logic the intuition summarized in Remark 1 and 2, and formalized in
Definition 2: constitutive counts-as correspond to those classifications which are
stated by the definition Γ of the context c. Of course, for a given context, we
can have a number of different equivalent definitions. The linguistic aspect comes
thus into play and that is why⇒co

c,Γ statements need to be indexed also with the
chosen definition of the context, i.e. with the set of explicit promulgations of the
normative system at issue. The warning “no logic of norms without attention to
a system of which they form part” ( [16], pag. 29) is therefore taken seriously. As
a result, constitutive counts-as statements can also be viewed as forms of speech
acts creating a context: given that γ1 → γ2 is a formula of Γ , γ1 ⇒co

c,Γ γ2 could
be read as “let it be that γ1 → γ2 with all the statements of Γ and only of Γ or,
using the terminology of [21], “fiat Γ and only Γ”.

On the other hand, notice that because of this linguistic component of Defini-
tion 3 there is no logic, in a classical sense, of constitutive statements pertaining
to one unique context description. That is to say, given a set of⇒co

c,Γ statements,
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nothing can be inferred about ⇒co
c,Γ statements which are not already contained

in the set Γ . How awkward this might sound it is perfectly aligned with the
intuitions on the notion of constitution which backed Definition 3: constitutive
counts-as are those classifications which are explicitly stated in the specification
of the normative system. In a sense, constitutive statements are just given, and
that is it. This does not mean, however, that constitutive statements cannot
be used to perform reasoning. The following proposition touches upon the log-
ical link relating constitutive statements pertaining to different but equivalent
specifications of the same context.

Proposition 2. (Equivalent sets of ⇒co
c,Γ )

Let M be a Cxt
 model and Γ and Γ ′ be context definitions containing no φ
s.a. M |= φ. Let Γ contain (γ1 → γ2) ∧ (γ3 → γ4), and let Γ ′ be obtained by Γ
substituting (γ1 → γ2) ∧ (γ3 → γ4) with a formula (γ5 → γ6). Then, it is valid
that:

M |= [u](Γ ↔ Γ ′)→ ((γ1 ⇒co
c,Γ γ2 ∧ γ3 ⇒co

c,Γ γ4)↔ (γ5 ⇒co
c,Γ ′ γ6)).

This states nothing but that the substitutions of equivalents in the description
Γ of a context always yields a set of constitutive ⇒co

c,Γ ′ statements which is
equivalent with the first set, provided that the the two definitions do not contain
globally true statements.

Proof. Given that [u](Γ ↔ Γ ′) and the conditions on Γ and Γ ′, it follows from
the construction of Γ ′ that [u](((γ1 → γ2) ∧ (γ3 → γ4)) ↔ (γ5 → γ6)). �

Precise logical relations hold also between the two characterizations of Defini-
tion 1 and 3 and are investigated in the next section.

5.5 Classification vs Constitution

Since Cxtu,\ is an extension of K45ij
n it can be used to represent and reason

about, at the same time, both ⇒cl
c and ⇒co

c,Γ formulae. The logical relations be-
tween the two are formally explicated and studied in the following three propo-
sitions.

Proposition 3. (⇒cl
c vs ⇒co

c,Γ )
In logic Cxtu,\, the following formula is valid for every context definition Γ
containing γ1 → γ2:

(γ1 ⇒co
c,Γ γ2)→ (γ1 ⇒cl

c γ2) (13)

Proof. It follows from Definitions 1 and 3: given that γ1 → γ2 is in Γ , then
γ1 ⇒co

c,Γ γ2 implies that [c]Γ holds. From which it follows that [c](γ1 → γ2). �

The proposition translates the following intuitive fact: the statement of a con-
stitutive rule guarantees, to say it with [14], the possibility of applying specific
classificatory rules. If it is a rule of Γ that self-propelled conveyances count as
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vehicles (constitutive sense) then self-propelled conveyances count as vehicles in
the context c defined by Γ (classificatory sense).

Furthermore, it is noteworthy that formula 13 has a striking resemblance
with the syntactic constraint that in [14] was imposed on the conditional min-
imal model semantics of counts-as conditionals: A ⇒c B → Dc(A → B). This
constraint was used to relate the logic of counts-as and the multi-modal KDn
system chosen there as a logic of “general institutional constraints”. Such a con-
straint, though intuitively motivated from a syntactic point of view, appears in
that work a bit ad hoc since the choice for the KDn logic is not thoroughly
investigated and it is even explicitly considered to be a “provisional proposal”
( [14], p.437). In our characterization, instead, the constraint emerges as a valid-
ity of the system, finding thus in our semantics a strong grounding and a clear
formal motivation. It seems then safe to say that what authors in [14] meant un-
der the label “constraint operative in institution c” was nothing but the notion
of truth in a context (defined by a given normative system), i.e., what we have
here represented via the [i] operator. As a consequence, their strict implication
under a KDn logic (Dc(γ1 → γ2)) was in our view an attempt to capture the
kind of statements that we investigated in [11] and that we have here called
classificatory counts-as statements (γ1 ⇒cl

c γ2). A more detailed comparison of
the two approaches can be found in [12].

The following result about constitutive counts-as statements also follows.

Proposition 4. (Impossibility of ⇒co
u,Γ )

Constitutive counts-as are impossible in the universal context u. In fact, the
following formula is valid for every Γ containing γ1 → γ2:

(γ1 ⇒co
u,Γ γ2)→ ⊥ (14)

Proof. The proposition is proved considering Definition 3: if γ1 ⇒co
u,Γ γ2 then

[u](γ1 → γ2) and ¬[u](γ1 → γ2), from which contradiction follows. �

In other words, what holds in general is never a product of constitution. This is
indeed a very intuitive property strictly related to what discussed about Remark
1 in Section 2. As a matter of fact, that apples are classified as fruits is not due to
any constitutive activity. Asserting that “apple always count as fruits” can only
be true in a classificatory sense, while intending it as “apple always constitute
fruits” is, logically speaking, nonsense. On the contrary, contextual classification
statements are perfectly sound with respect to the universal context since no
contradiction follows from sentences such as γ1 ⇒cl

u γ2. This is related with the
last property we report in this paper:

Proposition 5. (From ⇒co
c,Γ to ⇒cl

c via ⇒cl
u )

The following formula is valid for every Γ containing γ1 → γ2:

(γ2 ⇒co
c,Γ γ3) → ((γ1 ⇒cl

u γ2)→ (γ1 ⇒cl
c γ3)) (15)

Proof. Straightforward from Definition 1, Definition 3, Proposition 3 and the
transitivity of classificatory counts-as (Proposition 1). �
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Formula 15 represents nothing but the form of the reasoning pattern occurring in
the illustrative example with which our informal analysis started in Section 2: if
it is a rule of Γ that γ2 → γ3 (“self-propelled conveyances count as vehicles”) and
it is always the case that γ1 → γ2 (“cars count as self-propelled conveyances”),
then γ1 → γ3 (“cars count as vehicles”) in the context c defined by normative
system Γ . What is remarkable about this property is that it neatly shows how
the two senses of counts-as both play a role in the kind of reasoning we perform
with constitutive rules: the constitutive sense, though enjoying extremely poor
logical properties, enables all the rich reasoning patterns proper of classificatory
reasoning.

5.6 Counts-as and the “Transfer Problem”

The two meanings of counts-as behave differently with respect to the so-called
transfer problem ( [14]). This problem can be exemplified as follows: suppose
that somebody brings it about that a priest effectuates a marriage. Does this
count as the creation of a state of marriage? In other words, is the possibility
to constitute a marriage transferable to anybody who brings it about that the
priest effectuates the ceremony?

From the standpoint of classificatory counts-as, the transfer problem is a fea-
ture of the formalism because ⇒cl

c enjoys the strengthening of the antecedent
(Proposition 1). This is nevertheless what we would intuitively expect when in-
terpreting counts-as statements as contextual classifications: whatever situation
in which a priest performs a marriage ceremony, and therefore also the situation
in which the priest is, for instance, forced to carry out the ritual, is classified as
a situation in which a marriage state comes to be, with respect to the clerical
statutes.

This is not the case for the constitutive reading of counts-as statements. In
this view, counts-as statements represent the rules specifying a normative sys-
tem. So, all that it is explicitly stated by the‘institution of marriage’ is that if the
priest performs the ceremony then the couple is married, while no rule belongs
to that normative systems which states that the action of a third party bringing
it about that the priest performs the ceremony also counts as a marriage. Our
formalization fully captures this feature. Let the ‘marriage institution’ c be rep-
resented by the set of rules Γ = {p→ m}, i.e., by the rule “if the priest performs
the ceremony, then the couple is married”. Let then t represent the fact that a
third party brings it about that p. For Definition 3 the counts-as (t∧ p)⇒co

c,Γ m
is just an undefined expression, because ((t ∧ p)→ m) 	∈ Γ , that is, because the
‘marriage institution’ does not state such a classification.

6 Discussion

The main difference between our analysis and the formal approaches available
-to our knowledge- in the literature at this moment ( [14, 1, 6]) is of a method-
ological nature. In fact, though using modal logic like also [14, 6], we did not
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proceed to the isolation of syntactic constraints that seem intuitive on the basis
of the common usage of the term “counts-as”. Instead, we made some precise
interpretations formal of what counts-as statements mean (see Remarks 1-3),
following hints from related disciplines such as legal and social theory. We deem
the core advantage of this methodology to reside in the fact that the obtained
formal characterizations could not be the result of mixing under the the same
logical representation (in this case a conditional ⇒c) different semantic flavors
that, from an analytical point of view, should be separated. For instance, sup-
pose to establish whether transitivity is a meaningful property for a conditional
characterization of counts-as. Tackling this issue syntactically amounts to check,
on the basis of the natural usage of the term, the acceptability of the inference:
if “A counts as B” and “B counts as C” then “A counts as C”. However, it can
be case that the sense we naturally attach to the term “counts as” in the first
premise is not the same sense we attach to the term “counts as” in the second
premise or in the conclusion. This is indeed the case in the example with which
our analysis started in Section 2 and which has been formalized in Proposition 5.
A syntax-driven approach runs the risk of overlooking these ambiguities risking
to import them in the formalization.

A last aspect worth mentioning concerns how our semantic analysis relates to
syntax-driven approaches to counts-as which emphasize the defeasibility aspects
of counts-as statements such as in particular [6]. Approaches analyzing counts-as
as a form of defeasible rule or defeasible conditional deal in fact with something
which is in essence different from what has been investigated here. In a sense
they investigate yet another possible meaning of counts-as statements: “normally
(or, unless stated otherwise), A counts as B in context C”. Our approach stands
to those ones as the classical approach to the formalization of a statement such
as “all birds can fly” (bird ⊆ fly) stands to those approaches formalizing it as
a defeasible conditional or rule, that is, as “normally, all birds can fly”.

7 Conclusions

The work has aimed at providing a clarification of the different meanings that
can be given to counts-as statements. It has shown that there exist at least two
senses in which ‘counts-as can be said’: the classificatory and the constitutive
ones (a third one is investigated in [12]), both of which find grounds in legal and
social theory literature. The modal logic characterizations of these two senses
has made explicit the formal properties yielded by the two semantic options and,
more noticeably, the logical relations holding between them.
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Abstract. This paper studies long-term norms concerning actions. In
Meyer’s Propositional Deontic Logic (PDeL), only immediate duties can
be expressed, however, often one has duties of longer durations such as:
“Never do that”, or “Do this someday”. In this paper, we will investigate
how to amend PDeL so that such long-term duties can be expressed.
This leads to the interesting and suprising consequence that the long-
term prohibition and obligation are not interdefinable in our semantics,
while there is a duality between these two notions. As a consequence, we
have provided a new analysis of the long-term obligation by introducing
a new atomic proposition I (indebtedness) to represent the condition
that an agent has some unfulfilled obligation.

1 Introduction

The classical deontic logic introduced by von Wright (1951) is based on a set of
“ideal” or “perfect” worlds, in which all obligations are fulfilled, and introduces
formula-binding deontic operators. Meyer (1988, 1989) instead based deontic
logic on dynamic logic by introducing a special violation atom V , indicating
that in the state of concern a violation of the deontic constraints has been com-
mitted. But there is a deeper difference than this stress of violation over ideal
outcomes. Namely, Meyer’s PDeL (Propositional Deontic Logic) is a dynamic
logic.

Following Anderson’s proposal in (1967), Meyer introduced deontic operators
to propositional dynamic logic (PDL) as follows: an action α is forbidden in w
if doing α in w inevitably leads to violation. Similarly, α is obligatory in w if
doing anything other than α inevitably leads to violation. In PDeL, then, duties
bind actions rather than conditions: one is obligated to do something, rather
than bring about some condition.

The benefit from this approach of reducing deontic logic to dynamic logic
is twofold. Firstly, in this way we get rid of most of the nasty paradoxes that
have plagued traditional deontic logic (cf. Castañeda (1981)), and secondly, we
have the additional advantage that by taking this approach to deontic logic and
employing it for the specification of integrity constraints for knowledge based
systems we can directly integrate deontic constraints with the dynamic ones.
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Nonetheless, PDeL comes with its own limitations, notably in the kinds of
ought-to-do statements that can be expressed. In particular, PDeL’s deontic op-
erators express norms about immediate rather than eventual actions. Certainly,
some prohibitions are narrow in scope: “Do not do that now.” But other prohi-
bitions restrict action more broadly: “Don’t ever do that” (i.e., at every point in
the future, do not do that). Our aim here is to investigate how to amend PDeL
so that such long-term norms can be expressed.

Interestingly, our semantics for long-term obligation is not as closely related
to long-term prohibition as one might expect. The essential difference comes in
evaluating whether a norm has been violated. A long-term prohibition against
α is violated if there is some time at which the agent has done α. Thus, long-
term prohibitions can be expressed in terms of reaching worlds in violation.
Long-term obligations are different: an obligation to do α is violated just in
case the agent never does α. But there is no world corresponding to this con-
dition. At each world, the agent may later do α and thus fulfill his obligation.
In learning-theoretic terms (Kelly (1996)), violations of prohibitions are verifi-
able with certainty but not refutable, and dually fulfillment of obligations are
verifiable with certainty but not refutable.

Thus, while there is a duality between long-term prohibitions and obligations,
the two notions are not inter-definable in our possible world semantics. Instead,
we must provide a new analysis of obligation that is considerably subtler than
Meyer’s definition of immediate obligation. We find that the asymmetry between
our long-term normative concepts is one of the most interesting and surprising
consequences of our investigations.

Our presentation begins with a summary of a somewhat simplified version of
PDeL, introducing Meyer’s definitions of (immediate) prohibition and obliga-
tion. In Section 3, we introduce our definition of long-term contiguous prohibi-
tion, an admonition to never perform a particular sequence of actions one after
the other. We also introduce long-term contiguous obligation and explain why
inter-definability fails for these two concepts. In Section 4, we briefly discuss
non-contiguous variations for prohibitions and obligations. These include pro-
hibitions against doing a sequence of actions in order, but with other actions
interspersed (and an analog for obligations).

We close with a few comments about future directions for dynamic deontic
logic.

For reasons of space, we have omitted most of the proofs. However, we have
given enough properties of the relations and concepts involved so that the missing
derivations are simple and straightforward. We have included a few proofs where
the reasoning is not obvious and immediate from previous discussion, but our
focus here is on semantic appropriateness rather than technical developments.

2 The Basic System PDeL

We present here a somewhat simplified form of PDeL. Our presentation is pri-
marily based on Meyer (1988, 1989).
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2.1 Actions and Their Interpretations

PDeL is a dynamic logic aimed at reasoning about duties and prohibitions. It
differs from most deontic logics by focusing on actions rather than conditions:
Things one ought to do (or not do) rather than conditions one ought to bring
about (or avoid). The syntax is similar to other dynamic logics, with complex
action terms built from a set A of atomic action terms (or atoms) and complex
propositions built from a set of atomic propositions. We use a, b, . . . to range over
A. The semantics, too, are similar to other dynamic logics: models are given by
a labeled transition system on a set W of worlds and actions are interpreted as
sets of paths in this transition system.

PDeL differs from classical PDL (Harel (1984); Meyer (2000)) primarily in
the set of action-constructors. In particular, PDeL includes synchronous com-
position (doing both α and β at the same time) and negation (doing something
other than α). Synchronous composition adds a new degree of non-determinism
to our semantics, because actions can be specified to greater or lesser degree.
If one does α & β, then he has done α, but the converse is not true. On this
approach, even atomic action terms are not fully specified: a is interpreted as a
set of alternatives, which include doing a and b simultaneously, doing a and c
simultaneously, doing a by itself and so on.

Therefore, our semantics comes with an extra step: we interpret actions as sets
of sequences of fully specified atomic actions (what Meyer calls “synchronicity
sets” or “s-sets”). Meyer took his set of fully specified atomic actions to be
P+P+A, where P+S is the set PS \ {∅} of non-empty subsets of S. He maps
atoms a to subsets of P+A via

a �→ {S ⊆ A | a ∈ S },
and hence interpretation of actions is a function TA → P+P+A. This concrete
interpretation is well-motivated, but we prefer a simpler, more flexible and ab-
stract approach. We fix a set X to be our fully specified atomic actions together
with a function

i : A → P+X,

where we recover Meyer’s interpretation by choosing X = P+A and using the
mapping above. Intuitively, the set X provides the alternative ways in which one
can do each atomic action term a. An atomic term a may describe the act of
whistling, say, but there are many different ways to whistle. One may whistle
while walking or whistle while writing a letter; one may also whistle this tune
or that. The set X specifies each of these alternatives.

Our semantics is more flexible than Meyer’s in the following sense: in Meyer
(1989), each pair of atomic action terms can be performed simultaneously, i.e.
�a & b� 	= ∅, but this is not always reasonable. By choosing X and i appro-
priately, we allow that some pairs of atomic actions (whistling and chewing
crackers, say) cannot be done at the same time. In particular, a and b can be
done simultaneously just in case i(a) ∩ i(b) 	= ∅.

To summarize: we fix a set A of atomic action terms, a set X of fully specified
atomic actions and a function i : A → PX . We build a set TA of action terms
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from the elements of A. Each action term will be interpreted as a set of sequences
over X , yielding

�−� : TA→ P(X<ω),

so P(X<ω) is our set of actions, the interpretations of action terms. The set �α�
represents the alternative fully specified ways of doing α. Such X-sequences will
define a set of paths in our X-labeled transition system on W and this yields
the usual interpretation of the dynamic operator [α], but let us not get ahead of
ourselves.

The set TA of action terms is defined by

β ::= a | ∅ | ε | any | α ∪ β | α & β | α; β | β
The action term ∅ describes the impossible action, ε the do-nothing action,1 any
the do-any atomic action and any∗ the do-any complex action. As mentioned,
α & β represents simultaneous performance of α and β and β represents doing
anything but β. As usual, α∪ β represents the non-deterministic choice between
α and β and α; β for the sequential composition of actions α and β.

Table 1. The interpretation of action terms as sets of X-sequences

Definition of �α�

�a� = { 〈x〉 | x ∈ i(a) }
�any� = { 〈x〉 | x ∈ X }

�any∗� = X<ω

�∅� = ∅
�ε� = {〈 〉}

�α ∪ β� = �α� ∪ �β�

�α; β� = { r ∗ s | r ∈ �α�, s ∈ �β� }
�α1 & α2� = { s | s ∈ �αi� and ∃n . s � n ∈ �αj�, j �= i }

�α� =
{ s ∗ 〈x〉 | cmp(�α�, s) ∧ ¬cmp(�α�, s ∗ 〈x〉) } if �α� �= ∅
�any� else

Before defining the interpretation TA→ P(X<ω), we must introduce a bit of
terminology for sequences.

Let |s| denote the length of the sequence s. If n ≤ |s|, the sequence s � n is
the prefix of s of length n, i.e.

s � n = 〈x0, x1, . . . , xn−1〉.
If n ≥ |s|, then s � n = s.
1 This symbol does not occur in other versions of dynamic logic in the literature. It

is, however, comparable with the ε process in process algebra.
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We write s ∗ t for the concatenation of s and t. We say that s is a prefix of
t if there is some n such that s = t � n, equivalently there is some r such that
t = s ∗ r, and s is a proper prefix if the chosen r is not the empty sequence
〈〉. Two sequences are comparable if one is a prefix of the other. If S is a set of
sequences, we define

cmp(S, s)⇔ ∃t ∈ S . t is comparable to s.

A set S of sequences is n-uniform iff every sequence s in S has length n. If S is
n-uniform for some n, then it is uniform. We will also say that α is (n-)uniform
if �α� is and that a set S ⊆ TA of action terms is uniform if there is some n
such that each α ∈ S is n-uniform.

Our definition of �−� : TA → P(X<ω) is found in Table 1. This definition is
a slight simplification of Meyer (1989). In Meyer’s system, all the sequences are
infinite, but only finite initial segments are relevant (specified) by marking the s-
sets. We do not deal with marked s-sets, since we admit only finite sequences and
all s-sets in the treated sequences we consider “relevant”. Furthermore, we do
not have the restriction of action terms to be in normal form, i.e., a form in which
every subexpression of the form α ∪ β has the property that �α & β� = ∅, and
dually, every subexpression of the form α & β has the property that �α & β� = ∅.
This condition is necessary in Meyer’s system, since otherwise some axioms would
not be sound.2 This is a result of his definition of the “∪”-operator, which is not
the set-theoretic union as in our language. It gives the union of two sets of
sequences but subtracts every sequence s in the union comparable with some
sequence t in the union and is not a proper prefix of t. So, �α ∪ (α; β)� ⊆ �α�,
which is not a property in our language.

Consequently, we lose a few properties, such as the desirable property �β� =
�β�. However, these properties play no significant role in our development of
long-term norms. Thus, we prefer to simplify PDeL and focus on the original
work as far as possible.

See Figures 1 and 2 for a pictorial explanation of & and −.

s =

∈ �α
i�

∈ �α
j
�

∈
�α

1 &
α
2 �

Fig. 1. s is in �α1 & α2� if s is in one
of the αi’s and a prefix of s is in the
other

x1 x2 x3 x4 x5 ∈ �α�

x1

s

�
�
�

x2 x3 x4 x

�
�
� �=

∈ �α�

Fig. 2. s ∗ 〈x〉 ∈ �α� if s is comparable
to something in �α�, but s ∗ 〈x〉 is not

2 E.g. axiom [α ∪ β]φ ≡ [α]φ ∧ [β]φ: In Meyer’s system it holds that �a� = �a ∪ a; b�,
however, [a ∪ a; b]φ ≡ [a]φ �≡ [a]φ ∧ [a; b]φ.
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If every sequence in �α� is also in �β�, then consequences of doing β are
also consequences of doing α. Because this fact is so basic to our reasoning, we
introduce the partial order �, defined by

α � β iff �α� ⊆ �β�.

We write α ≈ β iff �α� = �β�.

Table 2. Basic properties of �

Properties of �

α ∪ β ≈ α & β α & β � α if {α, β} is uniform

α & β ≈ α ∪ β if �α & β� �= ∅ α & β � α;any∗

α � α; β α & (β ∪ γ) ≈ (α & β) ∪ (α & γ)

α � any∗ α ∪ (β & γ) � (α ∪ β) & (α ∪ γ)

α � α;any∗ any ≈ any∗ ≈ ∅
α � any∗; α α ≈ α; any ≈ α;any∗

a � any any∗; α ≈ ∅ if �α� �= ∅
α; ∅ ≈ ∅; α ≈ ∅ ∅ ≈ any

ε; β ≈ β; ε ≈ β

α ∪ γ � β ∪ δ

α; γ � β; δ
if α � β and γ � δ

We give some of the basic properties regarding � and ≈ in Table 2. In each
case, the derivation is fairly simple. Moreover, Table 2 contains every property
needed to derive the properties discussed hereafter and so we may take them as
axioms for � in what follows. (It is not a minimal list, however.)

2.2 Formulas and Their Interpretations

In the previous section, we interpreted action terms as sets of sequences over
X . The final step in defining semantics for PDeL is interpreting sequence-world
pairs as sets of paths in our model and using this to interpret formulas. In fact,
as with other dynamic logics, we are not interested in the paths per se, but only
with the final worlds in each path. This simplifies our definitions a bit.

A PDeL model consists of a set W of worlds together with an X-labeled
transition system and an interpretation of atomic propositions. We define an
interpretation

�−� : X<ω → (PW)W
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taking a sequence 〈x1, . . . , xn〉 and world w to the set of all w′s reachable from
w via a path like so:

w
x1 ��w1

x2 �� · · · xn ��w′.

Explicitly,

�〈〉�(w) = {w},
�s ∗ 〈x〉�(w) = {w′ | ∃w′′ ∈ �s�(w) and w′′ x→ w′ }.

This induces an interpretation �−� : TA→ (PW)W defined by

�α�(w) = {w′ | ∃s ∈ �α� . w′ ∈ �s�(w) }.
Clearly, we are overloading the notation �−� here, but we hope that our meaning
is clear from context. When we write �α�, we mean a set of X-sequences and
when we write �α�(w), we mean a set of worlds.

Assertions in PDeL are either atomic propositions, logical compositions ¬φ,
φ1∨φ2, φ1∧φ2, φ1 → φ2, φ1 ≡ φ2, or expressions of the form [α]φ with intended
meaning that φ holds after the performance of action α. The semantics of the
formula [α]φ is defined by

w |= [α]φ iff ∀w′ ∈ �α�(w) . w′ |= φ.

We summarize the rules and axioms for our simplified PDeL in the top half
of Table 3. This theory is sound but not complete (see Meyer (1988, 1989)).

Thus far, we have defined a variant of PDL, with no particular relevance for
reasoning about prohibitions or obligations. The reduction of deontic operators
to dynamic ones uses Anderson’s violation atom V (1967) to represent deontic
violations. This yields deontic operators f and o, representing that an action
is prohibited/obligatory, resp., presented in Table 3 along with some prominent
theorems.

Note that these definitions of prohibition and obligation are about immediate
actions. Let us focus on prohibition for a moment. A world w satisfies f(α) just
in case in w, the result of doing the action �α� is a world in violation. But if
our agent performs some other action first, say �β�, then he may no longer be
in w and so the fact that w |= f(α) is not relevant for him. In other words, the
formula f(α) expresses that an agent is prohibited from doing �α� now, not that
he is prohibited from ever doing �α�.

We close this section with some comments about one unfortunate consequence
of this approach. It seems reasonable that, if α is forbidden, so is any action
beginning with α, i.e. f(α) → f(α; β). But this property does not hold in general.
Indeed, it is easy to see that

� (f(ε)→ f(ε;any∗)) ≡ (V → [any∗]V ).

Thus, if one wants f(α) → f(α; β) to hold in general, he must either give up
the defining axiom for [α; β] or require V → [any∗]V . This is a very strong and
usually undesirable condition which we briefly discuss in Section 3.1.
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Table 3. The theory PDeL

Inference rules
φ

[α]φ
(N)

φ → ψ φ

ψ
(MP)

Axioms

every propositional tautology [β]φ → [α]φ if α � β

[β](φ1 → φ2) → ([β]φ1 → [β]φ2) [α ∪ β]φ ≡ [α]φ ∧ [β]φ

[α; β]φ ≡ [α]([β]φ) [α]φ ∨ [β]φ → [α & β]φ
if {α, β} is uniform

[∅]φ [any]φ → [a]φ

[ε]φ ≡ φ [any∗]φ → φ ∧ [any][any∗]φ

Deontic definitions

f(α) ≡ [α]V o(α) ≡ [α]V

PDeL theorems

f(α; β) ≡ [α]f(β) f(α ∪ β) ≡ f(α) ∧ f(β)

f(β) → f(α) if α � β f(α & β) ∧ o(α) ≡ f(β) ∧ o(α)

o(α ∪ β) ∧ f(α) → o(β) o(α & β) ≡ o(α) ∧ o(β)
if α, β are both 1-uniform if �α & β� �= ∅

o(α) ∨ o(β) → o(α ∪ β)

f(α) ∨ f(β) → f(α & β)
if {α, β} is uniform

It may be argued that, in the end, a dynamic deontic logic indeed wants
f(α) → f(α; β) and ¬(V → [any∗]V ). The natural way to satisfy this is to
change the semantics to interpret �α�(w) as a set of paths and define: w |= [α]V
just in case for each path

w
x1 ��w1

x2 �� · · · xn ��wn

in the interpretation of α, there is a world wi |= V . Such an interpretation
violates not only [α; β]φ ≡ [α][β]φ, but also the axiom K: [β](φ1 → φ2) →
([β]φ1 → [β]φ2). We postpone this alternative for later research.

3 The Long-Term Contiguous System

We turn our attention now to long-term norms. The definitions of f and o from
the previous section are intended to express immediate duties, but often one has
duties of longer duration, such as: “Never do that”, or, “Do this someday.” In
this section, we introduce the machinery to express such long-term norms.
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3.1 The Long-Term, Contiguous Prohibition

As previously mentioned, the formula f(α) expresses one important kind of
prohibition, namely, that the agent is prohibited from doing �α� in this world.
But many prohibitions are stronger than this. They express that one is never
allowed to perform a particular act3, such as “Never point a loaded gun at an
innocent man and pull the trigger.” But we mean a particular interpretation of
this “never”. We do not mean “in every world, one should not point a loaded
gun. . . ,” but rather “in every world reachable from the current world, one should
not point a loaded gun. . . ”

Such prohibitions are easy to express in the logic at hand. One is never allowed
to do the action �α� just in case, for any action term β, doing �β� followed by
�α� results in violation. In other words, in world w, one is forever prohibited
from doing �α� iff for all β,

∀w′ ∈ �β; α�(w) . w′ |= V.

But this is true just in case for every w′ ∈ �any∗; α�(w), we have w′ |= V , i.e.
just in case w |= f(any∗; α). Thus, we define F (α) ≡ f(any∗; α).

We summarize our definition of F and give a derived rule of inference and
several theorems in Table 4. The derivations are straightforward.

Table 4. The definition of F and several Consequences

Defining axiom Rule of inference

F (α) ≡ f(any∗; α)
f(α) → f(β)
F (α) → F (β)

PDeL theorems for F

F (β) → F (α) if α � any∗; β F (α) → f(α)

F (β) → F (α) if α � β F (α; β) ≡ [any∗; α]f(β)

F (α;any∗; β) ≡ [any∗; α]F (β)

F (α) → F (β;α) F (α) ∧ F (β) ≡ F (α ∪ β)

F (α) ≡ F (any∗; α) F (α) ∨ F (β) → F (α & β)
if {α, β} is uniform

3.2 The Long-Term, Contiguous Obligation

As we have seen, long-term prohibition is easy to express in PDeL and in fact
requires only one small change to Meyer’s 1989 presentation: the addition of
3 In practice, such prohibitions are likely to include a conditional, such as, “Always

obey local traffic laws unless in an emergency.” Admittedly, these conditional prohi-
bitions are not expressible as F (α) in the sense given here, because we have omitted
the test action constructor φ?. But we did so only for simplicity’s sake. The test
constructor presents no particular difficulty for our logic.
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the action term any∗. But the situation for long-term obligation is considerably
more subtle.

Suppose one has promised to repay a loan, without any deadline regarding
repayment. When can we conclude that he has failed to fulfill his duty? What
behavior satisfies his obligation? One fulfills his obligation provided there is some
point at which he actually repays the loan. Until then, he has an outstanding
obligation.

One is naturally tempted to define O in terms of F , just as o was defined in
terms of f . Unfortunately this yields unreasonable results: suppose O(a) ≡ F (a).
The latter is equivalent [any∗]f(a) and hence to [any∗]o(a). But [any∗]o(a) →
[any∗; a]o(a) and so this obligation can never be discharged! After doing �a�, the
agent must do it again and again and . . . . This may be adequate for perpetual
obligations, like honoring one’s parents,4 but not for long-term obligations.

So what properties should O capture? When we assert that α is a long-term
obligation, we mean that we cannot discharge our obligation without first doing
�α�. This does not mean that we must do �α� now. It also does not mean that if
we do �α�, our obligation will be discharged: if we are indebted Paul, we have to
acquire the necessary funds to repay him. But acquiring the funds is not enough
to discharge our debt, of course: we must also repay Paul! Long term obligations
are about necessary actions, rather than sufficient actions.

Thus, O(α) should be interpreted as: our obligations will not be discharged
unless we do some act in �any∗; α; any∗�. That is, whatever fully specified s we
perform, if s 	∈ �any∗; α; any∗�, then the outcome will be a world in which we
still have an unfulfilled duty. Consequently, we introduce a new action term, α̂
and interpret it as:

�α̂� = X<ω \ �any∗; α; any∗�.

We also introduce a defining axiom scheme for α̂ in Table 5 along with a few
useful properties. The defining axiom can be understood as follows: suppose
that never doing �α� guarantees a φ-world, i.e. w |= [α̂]φ. Suppose also that
doing �β� always results in a ¬φ-world. Then it must be the case that by doing
�β�, one has also done α, i.e. that β � any∗; α; any∗. Hence, in this case w |=
[any∗; α; any∗]ψ → [β]ψ for every ψ.

We provide proofs for the soundness of the axiom scheme and the property
α̂ � α̂ & β, since these proofs are not as obvious as the others.

Proof (of defining axiom). We aim to show that, for every world w, pair of
actions α, β and pair of formulas φ, ψ,

w |= ([α̂]φ ∧ [β]¬φ) → ([any∗; α; any∗]ψ → [β]ψ).

Suppose that w |= [α̂]φ ∧ [β]¬φ. First, we will establish that, for every s ∈
�α̂� ∩ �β�, �s�(w) = ∅.5 Let such s be given. Because w |= [α̂]φ, we see that

4 Thanks to one of our reviewers for this observation.
5 Note that Meyer assumes that for every world w and atomic action x, there is a w′

such that w
x→ w′. Under this assumption, one can show �α� ∩ �β� = ∅.
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Table 5. Properties of the α constructor

Defining axiom

([α]φ ∧ [β]¬φ) → ([any∗; α;any∗]ψ → [β]ψ)

Properties for α and �

If α � β then β � α α � α̂ & β β � α̂ & β

α̂ ∪ β � α & β α � α; β β � α; β

α ≈ ̂any∗; α α ≈ α̂; any∗

�s�(w) ⊆ �φ�. But since w |= [β]¬φ, we also see that �s�(w) ⊆ �¬φ�. Hence
�s�(w) is empty.

Now suppose that w |= [any∗; α; any∗]ψ and we will complete the proof by
showing w |= [β]ψ. Let s ∈ �β� be given and we must show �s�(w) ⊆ �ψ�. If
s ∈ �any∗; α; any∗� then �s�(w) ⊆ �ψ� by assumption. Otherwise, �s�(w) = ∅
and so is trivially contained in �ψ�.

Proof (of α̂ � α̂ & β). We will prove the claim by showing that

�any∗; (α & β);any∗� ⊆ �any∗; α; any∗�.

Let s be an element of the set �any∗; (α & β);any∗�. Then there are sequences
s1, s2 and s3 such that s2 ∈ �α & β� and s = s1 ∗ s2 ∗ s3.

By definition of �α & β�, there is some n such that s2 � n ∈ �α�. Thus, we can
find t1 and t2 such that s2 = t1 ∗ t2 and t1 ∈ �α� (namely, we take t1 = s2 � n).
Then s = s1 ∗ t1 ∗ (t2 ∗ s3) and hence s ∈ �any∗; α; any∗�, as desired.

Finally, there is one more characteristic difference between long-term obligation
and prohibition. When we are obligated to pay a debt, say, or perform a promised
act, then we have an unsatisfied duty. This is not the same as being in viola-
tion nor is there any obvious way of expressing this condition in terms of our
violation predicate V . Rather, we should introduce a new atomic proposition I
(for indebtedness) to represent the condition that an agent has some unfulfilled
obligation and define O in terms of I. We investigate some possible relations
between I and V below.

Thus O(α) represents that �α� is a necessary means to �¬I�, i.e. that a ¬I-
world will not be reached unless we do some sequence in �α�. Therefore, we
propose to define O(α) by [α̂]I.

We give a few simple theorems regarding O in Table 6. The proofs are routine.
There is an unfortunate consequence of this definition: if an agent is in a world

in which ¬I is unreachable, he is obligated to do everything, which is absurd.
Thus, one may be tempted to amend the definition so that O(α) is defined as

[α̂]I ∧ 〈any∗〉¬I.
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Table 6. The definition of O and some consequences

Defining axiom

O(α) ≡ [α]I

PDeL theorems for O

O(β) → O(α) if α � β O(α & β) → O(α) ∧ O(β)

O(β) → O(α) if β � α O(α; β) → O(α) ∧ O(β)

O(α) ≡ O(any∗; α) O(α) ∨ O(β) → O(α ∪ β)

O(α) ≡ O(α; any∗)

We do not use this more complicated definition here, partly for simplicity’s sake
and partly for consistency with the prior definition of o. Also, the amended
definition has its own motivational problem: an agent that cannot reach ¬I is
never obligated to do anything, which seems similarly absurd.

We have presented only the most basic and useful theorems for O in Table 6,
but this list can be extended in many natural directions. For instance, if one is
obligated to do �a� and also �b�, then he is obligated to do �a� and later �b� or
�b� and later �a� or both at once, i.e.

O(a) ∧O(b) ≡ O((a;any∗; b) ∪ (b;any∗; a) ∪ (a & b)).

This is the long-term analogue of o(α & β) ≡ o(α)∧o(β) and applies to any pair
of 1-uniform actions.

Another intuitive example: one expects that, if an agent is obliged to even-
tually do α; β, then after doing α, he will still be obliged to do β. In fact, this
is not quite the case, if α is sufficiently complex, but a similar claim does hold.
For this, let us introduce a new action term constructor, . . . α.

Let �. . . α� be the set of sequences s such that (i) s ends in an α-sequence,
i.e. s = t ∗ t′ where t′ ∈ �α� and (ii) no proper prefix of s ends in an α-sequence.
In other words, �. . . α� = �any∗; α� \ �any∗; α; any; any∗�. Then one can easily
show:

|= O(α; β) → O(α) ∧ [. . . α]O(β).

In other words, the agent obligated to do α; β is still obligated to do β at the
instant he has first completed α. For atomic actions a, it is easy to see that
. . . a = â; a, and thus

|= O(a; β) → O(a) ∧ [â; a]O(β).

This formula is analogous to the formula o(α; β) → o(α)∧ [α]o(β), which is valid
if �β� 	= ∅.

Because O is defined in terms of a new indebtedness proposition, we have lost
the strong connection between prohibition and obligation. In fact, we think this
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is natural: long term obligations are not a simple conjugate of prohibition. They
impose looser restrictions on behavior and cannot be captured in terms of V .
Nonetheless, it would be natural to suppose some connection between I and V
and we briefly consider a few proposals here.

Loosely, a moral agent aims to reach a world in which his obligation is relieved:
he aims to realize ¬I. This is not quite accurate, however, since new obligations
may be created before paying old ones. Borrowing from Peter to pay Paul relieves
the obligation to Paul at the expense of creating a new obligation and thus
remaining in a state of indebtedness. Nonetheless, this strategy is not obviously
immoral (provided that Peter is eventually repaid, perhaps by borrowing from
Paul), regardless of its practical merits. A moral agent may fulfill each obligation
without ever reaching a ¬I-world!

On the other hand, perhaps one should avoid situations in which he can
never fulfill his outstanding obligations without first acquiring new ones. In
such situations, the agent has exceeded his ability to meet his duties. Thus, one
may wish to relate I and V by requiring that our models satisfy the axiom of
eventual repayment :

[any∗]I → V (ER)

Alternatively, we may wish to restrict the ways in which an agent discharges his
obligations. One should not fulfill obligations by doing prohibited acts: it may be
okay to borrow from Peter to pay Paul, but robbing Peter is out of bounds. The
natural way to restrict such disreputable strategies is the converse of eventual
repayment, which we call the axiom of forbidden means :

V → [any∗]I (FM)

Thus, if one ever reaches a world in violation, he is thereafter in an I-world.
With this axiom, one can prove

O(α ∪ β) ∧ F (α) → O(β).

(The proof depends on a proof of the abstruse property α̂ ∪ β∪(any∗; α; any∗) ≈
β̂ ∪ (any∗; α; any∗), but is otherwise straightforward.)

One may adopt both of the above axioms. In this case, [any∗]I is equivalent to
V . But this means that, once in a V world, every path leads to a [any∗]I world,
and hence to another V world. Consequently, such models satisfy the axiom of
unforgiveness:

V ≡ [any∗]V. (UF)

Once an agent is in violation, he remains there. This is an unforgiving model of
deontic logic!

4 The Non-contiguous System

In the previous section, we explored long-term prohibitions and obligations of
certain kinds of actions, namely contiguous actions. The prohibition F (α; β)
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expresses that one is never allowed to do �α� immediately followed by �β�, but
it does not restrict one from doing �α�, then something else and then �β�.

It seems reasonable that most prohibitions do involve such contiguous actions.
One is not allowed to aim the gun at an innocent and pull the trigger, but he can
aim the gun at an innocent6, then point it at the ground and pull the trigger.
The effect of aiming the gun can be undone before pulling the trigger.

But in rare situations, the effects of doing �α� cannot be undone and thus
one should never do �β� thereafter. Suppose that a big yellow button arms a
bomb and that, once armed, it cannot be disarmed. Suppose also that a big red
button detonates the bomb if it is armed. Then one should never press the yellow
button followed eventually by pressing the red button. We denote this kind of
prohibition by F ∗.

Admittedly, such strong prohibitions tend to be as artificial as our bomb exam-
ple, but we claim that long-term non-contiguous obligations are fairly common.
We will discuss these in Section 4.1, but let us first examine prohibitions.

We must introduce a few relations on sequences and actions in order to express
non-contiguous prohibitions. The first relation, r � s, expresses that r is a
subsequence of s and that the last element of r is the last element of s. Explicitly,
r � s iff there is a f : |r| → |s| satisfying the following:

– f is strictly increasing;
– f(|r| − 1) = |s| − 1;
– for every i < |r|, we have s(f(i)) = r(i).

In other words, r � s iff r is a subsequence of s such that the last element of r
is also the last element of s. We say in this case that r is a tail-fixed subsequence
of s. See Figure 3 for an illustration.

t = x0 x1 x2 x3 x4 x5

x0s =

�

���������
x1

���������
x2

���������
x3

������������
x4

��������������
x5

�����������������

Fig. 3. Illustration of s � t

t =

t1 t2

x0 x1 x2 x3 x4 x5

x0s =

�

s1 s2

���������
x1

���������
x2

���������
x3

������������
x4

��������������
x5

�����������������

Fig. 4. Illustration for � properties (2)
and (3)

We can express the intended meaning of long-term non-contiguous prohibition
in terms of �. Suppose that F ∗(β) and s ∈ �β�. Then any fully specified t
satisfying s � t will lead to violation. In order to express this prohibition on the
level of action terms, we introduce an action constructor β̃ defined by
6 Let us briefly ignore very sensible rules regarding gun handling and safety and the

very disturbing effect caused by staring down the wrong end of a gun barrel.
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Table 7. Properties of � and α

Properties of �
1. � is a partial order.
2. If s1 � t1 and s2 � t2 then s1 ∗ s2 � t1 ∗ t2.
3. If s1 ∗s2 � t, then there are t1, t2 such that t = t1 ∗t2, s1 � t1 and s2 � t2.

4. If s � t then s � r ∗ t for any r.
5. If s1 ∗ s2 � t then s2 � t.
6. 〈x〉 � 〈x1, . . . , xn〉 iff x = xn.

Definition of α

�α� = { s ∈ X<ω | ∃r ∈ �α� . r � s }
Properties of α and �

α � α α; β ≈ α; β

If α � β then α � β α̃ ∪ β ≈ α ∪ β

α; β � β a ≈ any∗; a

β ≈ β any∗ ≈ ãny∗

�β̃� = { s ∈ X<ω | ∃r ∈ �β� . r � s }.
Hence, α � β̃ iff each s in �α� has some r in �β� as a tail-fixed subsequence.
Thus, if w |= F ∗(β) and α � β̃, then w |= f(α).

In case α � β̃, we say that α involves β. In this case, however one does �α�
(whichever fully specified sequence is chosen), one is doing �β� “along the way”,
i.e. doing some t ∈ �β� as a tail-fixed subsequence. For example, α involves a
just in case each s ∈ �α� has as last element some element of i(a).

We summarize properties of � and α̃ in Table 7.

4.1 Long-Term Non-contiguous Prohibition and Obligation

We have already tipped our hand regarding the long-term non-contiguous prohi-
bition F ∗. When we say that β is forbidden in this sense, we mean that each fully
specified sequence s containing some t ∈ �β� as a tail-fixed subsequence leads to
violation. In other words, we define F ∗(β) ≡ f(β̃), equivalently F ∗(β) ≡ [β̃]V .

With this definition, one can easily derive F ∗(β) → f(α) whenever α � β̃. In

fact we can derive a stronger consequence in this case. If α � β̃ then α̃ � ˜̃
β ≈ β̃,

so � F ∗(β) → F ∗(α).
This and other properties of F ∗ are presented in Table 8. Again, the proofs

are straightforward from the properties stated previously. We can also see now
that the three prohibition operators are comparable, with F ∗ the strongest and
f the weakest, since F ∗(α) → F (α) and F (α) → f(α).
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Table 8. The long-term non-contiguous prohibition operator F ∗

Defining axioms

F ∗(α) ≡ [α]V O∗(α) = [α]I

PDeL theorems for F ∗

[β]φ → [α]φ if α � β F ∗(α) → F (α)

F ∗(β) → F ∗(α) if α � β F (a) ≡ F ∗(a)

F ∗(β) → F ∗(α) if α � β F ∗(α; a) ≡ [α]F (a)

F ∗(a;α) ≡ [any∗; a]F ∗(α) F ∗(α; β) ≡ [α]F ∗(β)

F ∗(α ∪ β) ≡ F ∗(α) ∧ F ∗(β) F ∗(α) ∨ F ∗(β) → F ∗(α & β)

F ∗(β) → F ∗(α; β)

PDeL theorems for O∗

O∗(α) → O∗(β) if α � β O(α) → O∗(α)

O∗(α) → O∗(β) if α � β O∗(α & β) → O∗(α) ∧ O∗(β)

O∗(α; β) → O∗(α) ∧ O∗(β) O∗(α) ∨ O∗(β) → O∗(α ∪ β)

O∗(α) ≡ O∗(any∗; α) O∗(a) ≡ O(a)

O∗(α) ≡ O∗(α;any∗)

The converse implications are not valid, with a counterexample given in Fig-
ure 5 (where X = A and i : A → P+A is the singleton map a �→ {a}). World w1
satisfies f(a) but not F (a) since �〈b, a〉�(w1) 	⊆ �V �. World w0 satisfies F (a; a)
but not F ∗(a; a), since �〈a, b, a〉� 	⊆ �V �.

As we have admitted, long-term non-contiguous prohibitions may be fairly
rare, since they involve actions with effects that cannot be undone. However, it
seems that non-contiguous obligations are fairly common. Suppose that Peter
owes Paul five dollars, but does not have five dollars. Then he is obliged to first
acquire five dollars (or more) and then repay it. But he does not have to repay
the money immediately after acquiring it. Rather, he is free to do other things in
between. Of course, if he loses the money in between acquiring and repayment,

w0

a
��
w1

a ��
b

�� •
V

Fig. 5. A counterexample: w1 satisfies
f(a)∧ ¬F (a) and w0 satisfies F (a;a) ∧
¬F ∗(a; a)

w
a �� • b �� • a �� •

¬I

Fig. 6. A counterexample: The world
w satisfies O∗(a; a) but not O(a; a)



Don’t Ever Do That! Long-Term Duties in PDeL 147

then he cannot discharge his obligation — but we are interested here in necessity
rather than sufficiency, and it is necessary that he first acquires and some time
later repays.

This suggests the definition O∗(α) ≡ O(α̃), equivalently O∗(α) ≡ [̂̃α]I. Prop-
erties for O∗ can be found in Table 8. The consequence relation between O
and O∗ is dual to that between F and F ∗, namely O(α) → O∗(α). Again, the
converse does not hold, as indicated in Figure 6.

Unfortunately, there is no simple relation between O and o. It is clearly not
the case that o(α) 	→ O(α), but this is not too surprising, since the motivation for
o (avoiding violation) is different than for O (eventually reaching ¬I). It is not
hard to show that, for 1-uniform α, the axiom (FM) proves (o(α) ∧ I)→ O(α),
but a tighter relationship eludes us.

5 Concluding Remarks

Meyer’s work on PDeL has contributed a formal logic for certain kinds of oblig-
ation and prohibition, namely, the immediate kind. One of the nice features of
his approach is that the two normative concepts are inter-definable: obligation is
the same as prohibition from refraining. We aimed to extend his work to include
duties of wider scope, duties to never do �α� or to eventually do �α�. As we
have seen, however, the natural duality between obligation and prohibition has
become obscured by our possible world semantics. Obligations are violated only
in the limit, and this is not expressible in terms of worlds reached along the way.

Our work is an extension of an existing framework for deontic logic to include
new normative expressions. But we also believe it suggests a new direction for
dynamic deontic logic. We would like to recover the duality between prohibitions
and obligations that seems so natural in the immediate case. To do so, one needs
to evaluate actions in terms of infinite X-sequences andW-paths rather than the
worlds encountered at the end of finite paths. In this conceptual setting, it makes
sense to discuss failure to meet obligations (i.e., never doing what is required)
and adherence to long-term prohibitions (i.e., never doing what is forbidden).
Moreover, we believe that the topological approach of learning theory gives a
natural framework for investigating these infinite paths. We hope to return to
this topic in future work.

We also believe that some of our considerations provide argument for a hy-
brid of dynamic and propositional deontic logic. In Section 4.1, we discussed the
obligation to obtain funds in order to repay one’s debt. But why does a debt
impose an obligation to obtain money? Because having money is a necessary
precondition for repaying the debt and obtaining money is a means to realize
this precondition. It is natural to discuss both ought-to-do and ought-to-be in
explaining derivative obligations like the obligation to obtain money. We would
like a single framework that includes dynamic operators for both actions and
conditions and that allows for reasoning about derived obligations and prohibi-
tions. This would allow for new constructions like, “while φ, do �α�.” We expect
that existing work on agent planning would be relevant for this project.
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Abstract. The paper outlines an approach to the formal representation
of signalling conventions, emphasising the prominent role played therein
by a particular type of normative modality. It is then argued that, in
terms of inferencing related to this modality, a solution can be given to
the task J. L. Austin set but failed to resolve: finding a criterion for dis-
tinguishing between what Austin called constatives and performatives.
The remainder of the paper indicates the importance of the normative
modality in understanding a closely related issue: reasoning about trust
in communication scenarios; this, in turn, facilitates a clear formal artic-
ulation of the role of a Trusted Third Party in trade communication.

1 Introduction

The approach to the analysis of communicative acts taken in this paper dif-
fers from those currently most in vogue, in that its focus is neither on the in-
tentions of communicators (FIPA: http://www.fipa.org/, and in particular
http://www.fipa.org/repository/bysubject.html) nor on their supposed
commitments [1, 2]. By contrast, the focus here is on the conventions that—
as we shall say—constitute any given communication system s. These conven-
tions make possible the performance of meaningful communicative acts by the
agents, human or electronic, who have adopted s as a means of communicating
with each other. We begin by summarising some of the main features of the
approach.

2 Signalling Conventions

A convention-based system that defines a framework for agent interaction may
appropriately be called an institution.1 In common with other institutions,
1 This section summarizes the approach to signalling conventions described in [3] and

[4], but with somewhat closer attention here to the normative aspect.
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communication systems exist to serve a purpose; specifically, their purpose,
or point, obviously, is to facilitate the transmission of information of various
kinds.

In order to develop these intuitions, and to begin to move towards a for-
mal model, we look first at the communicative act of asserting (or stating, or
saying) that such-and-such is the case. The key question is this: in the consti-
tution of communication system/institution s, what is it that makes it possible
for an agent, if he so wishes, to make an assertion? Our answer is that s con-
tains conventions according to which the performance of particular acts count
as assertions, and which also specify what those acts mean. Consider, by way
of illustration, the institution that was once operative for sea-going vessels, in
virtue of which they were able to send signals indicating aspects of the state of
a vessel by hoisting sequences of flags. Raising flag sequence q1 would count (by
convention) as a means of saying that the vessel was carrying explosives, raising
flag-sequence q2 would conventionally count as indicating that the vessel carried
injured crew members. . . and so on. Note the general form of the conventions
themselves: they each associate a particular type of act with a particular state
of affairs, and because they are conventions for asserting (i.e., for that type of
communicative act) they each count as a means of saying that the associated
state of affairs holds.

For present purposes, it matters not at all which sorts of acts are used in
a given communication system; the account of communication conventions we
offer is entirely neutral on that issue.2

Suppose now that in communication system/institution s, the act of bringing
it about that A counts as a means of asserting that the state of affairs described
by B obtains; (abbreviating: by convention in s, doing A counts as an asser-
tion that B.) And suppose further that agent j, who is an s-user, does A in
circumstances in which B does not hold.3 Then it is appropriate to say that,
from the point of view of the institution s, something has gone wrong, in as
much as the purpose or function within institution s of acts of asserting is to
facilitate the transmission of reliable information. The point of asserting, as an
institutionalised act, is to be able to show how things stand in a given state of
affairs. Given that this is the point of asserting, the doing of A in circumstances
where B does not hold is a form of abuse of the system. Relative to the purpose
of asserting, as an institutionalised act, A ought to be done only when B is the
case, and so the doing of A in non-B circumstances amounts to a deviation from
the ideal that the system is supposed to achieve.

The conventions for asserting make it possible for acts of assertion to be per-
formed, and they do so by indicating what would be the case in circumstances in
which the purpose of asserting, qua institutionalised act, is fulfilled. If, by con-
vention in s, doing A counts as an assertion that B, then in ideal circumstances
B holds whenever A is done. These observations are the key to understand-

2 By ‘communication system’ we here mean the set of conventions that constitute the
system, together with the set of agents who make use of those conventions.

3 It is irrelevant to the present point whether or not j believes that B does not hold.
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ing the intuitions on which is grounded the general logical form we assign to
communication conventions of the assertoric type.4

Following the theory developed in [3], the form of the signalling convention
(sc) according to which, in s, agent j’s seeing to it that A counts as an assertion
that B, is given by

(sc-assert) EjA ⇒s I∗s B

where expressions of the form EjA are read ‘j sees to it that A’,⇒s is the ‘counts
as’ connective of [8], and I∗s is a normative operator, intended to capture the
sense of ‘ought’, or ideality, alluded to above. Details of the logics and semantics
for the action and ‘counts as’ modalities are given in [8]. Expressions of the
form (sc-assert) say that j’s seeing to it that A counts in conventional signalling
system s as a means of indicating that, were s to be in an ideal/optimal state with
respect to its function of facilitating the transmission of reliable information, B
would be true.

The logic of the normative modality is that of a (relativised) normal modality
of type K. Closure under logical consequence is a natural assumption, given the
intended interpretation of the operator, for if a signalling system would be in an
ideal state only if B were true, then it would be in an ideal state only if the logical
consequences of B were also true. Note also (cf. [9, p.184]) that the absence of
the D. schema reflects the obvious fact that mutually inconsistent assertions can
be made: according to one of them, B ought to be true, but according to the
other, B ought to be false.

Such other types of communicative acts as commanding, promising, requesting
and declaring (the latter in the sense of [10]) are characterised in terms of sig-
nalling conventions of the same basic form as that of (sc-assert) with, crucially,
some further elaboration of the scope-formula B falling to the immediate right
of the I∗s operator in the consequent (cf. [3]). This means, of course, that each
of these communicative act-types is here treated as a sub-species of the act of
asserting, a consequence of the fact that—in stark contrast to Austin [11]—we
take all communicative acts to be acts of transmitting information which may,
or may not, be true. We shall see in due course how this approach provides the
basis for formally articulating the distinction that Austin sought, but failed to
capture, between what he called constatives and performatives.

The form of the signalling convention for commanding is

(sc-command) EjA ⇒s I∗s OEkB

where the O operator is a directive normative modality representing obligation.
(We do not here specify a logic of obligation, since it is not the focus of our
4 [5] is the source from which we take the idea that, in order to understand the com-

municative act of asserting, one must understand in what sense of ‘ought’ that which
is asserted ought to be true. Stenius’s much neglected paper is in our opinion one
of the most insightful essays written on the analysis of different types of commu-
nicative acts. The idea that the ‘counts as’ notion figures crucially in the convention
constituting asserting appears for the first time, to our knowledge, in [6]. For further
discussion of the philosophical roots of our approach, see [7].
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concern. For present purposes, SDL (standard deontic logic) would suffice.) Ac-
cording to (sc-command), if j sees to it that A, s would then be in an ideal state
(things would then be as they ought to be), relative to s’s function of facilitating
the transmission of reliable information, if there were then an obligation on k
(the agent to whom the command is addressed) to see to it that B (where B is
the state of affairs that k is commanded to bring about).

The form of the signalling convention for promising is

(sc-promise) EjA⇒s I∗s OEjB

According to (sc-promise), if j sees to it that A, s would then be in an ideal state
(things would then be as they ought to be), relative to s’s function of facilitating
the transmission of reliable information, if there were then an obligation on j
(the agent making the promise) to see to it that B (where B is the state of affairs
that j promises to bring about).5

The form of the signalling convention for requesting is

(sc-request) EjA⇒s I∗s HjEkB

where expressions of the form HjA are read ‘j attempts to see to it that A’,
and the logic of the attempts operator is essentially that of the action operator
minus the ‘success’ condition (the T. schema). According to (sc-request), if j
sees to it that A, s would then be in an ideal state (things would then be as they
ought to be), relative to s’s function of facilitating the transmission of reliable
information, if j were attempting to get k to see to it that B.

The point of declaratives is to create a new state of affairs, as when, for
instance, a couple are declared married, or a meeting is declared open. Let j be
the agent issuing the declarative, and let B describe the state of affairs to be
created by the performance of the declarative. Then the form of the governing
convention is

(sc-declare) EjA⇒s I∗s EjB

According to (sc-declare), if j sees to it that A, s would then be in an ideal state
(things would then be as they ought to be), relative to s’s function of facilitating
the transmission of reliable information, if it were then the case that j has indeed
seen to it that B.

3 Distinguishing Constatives from Performatives

Austin sought a grammatical criterion for distinguishing between constative
sentences (characteristically used in communicative acts the point of which is
5 We accept that a case can be made for inserting the operator Ej immediately to the

left of the obligation operator in the consequent of (sc-command) and (sc-promise),
since it is the agent j who, by performing the communicative act EjA, sees to it that
the obligation is created. A move of that sort would then make commanding and
promising sub-species of declaring (see below), which is perhaps a very natural way
of viewing these matters. A change of this kind could be made without necessitating
revision of the main points addressed in this paper.
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essentially to state or assert that such-and-such is the case) and performative
sentences, which are characteristically employed—as he saw it—in doing the
other kinds of things that one does with words, i.e., other than stating/asserting,
such as giving orders, accepting offers, making promises, opening meetings and
naming ships. The first seven lectures recorded in the posthumously published
How to Do Things with Words [11] describe his ultimately unsuccessful attempt
to define an appropriate distinguishing criterion—a criterion compatible with
the basic assumption he made to the effect that performative sentences, unlike
constatives, lack truth values. On our view it was in part that very assumption
that prevented him from finding what he sought.6

We have characterised four types of performatives (commanding, promising,
requesting and declaring) in terms of conventions that are all special cases of
the convention for asserting, (sc-assert). So we are maintaining that the general
form of all of these conventions is expressed by (sc-assert). Suppose now that
agents j and k are users of communication system s, and that they are mutually
aware of the content of the various instances of (sc-assert), each of which shows
what the communicative acts performable in s mean. (j’s seeing to it that A1
counts as an assertion that B1, j’s seeing to it that A2 counts as an assertion
that B2, j’s seeing to it that A3 counts as a command to do B3, j’s seeing to it
that A4 counts as a request to do B4 . . . and so on. The particular instances of
(sc-assert) are, we may say, the code that constitutes s.)

In terms of the general form of communicative conventions, as expressed by
(sc-assert), we may say that k, on witnessing j’s performance of the act EjA,
forms a belief 7 the content of which is the consequent of (sc-assert):8

BkI∗s B (1)

The key question now is this: under what conditions would k, as a rational agent,
be prepared to trust the reliability of j’s communicative act, and move from the
belief expressed by (1) to (2)?

BkB (2)

Crucially, the answer to this question will depend on whether j’s act is a per-
formative or a constative, in Austin’s sense. If it is a performative (for instance,

6 What follows in due course below has its roots, in part at least, in an old idea. A
number of early contributors to the literature on performatives (Lemmon, Åqvist
and Lewis among them) suggested that the characteristic feature of performatives,
in contrast to constatives, was ‘verifiability by use’, or the fact that ‘saying makes
it so’. See [7] for references and discussion.

7 For present purposes we shall assume that the belief modality is assigned the logic of
a relativised normal modality of type KD. We leave open the question as to whether
the positive and negative introspection axioms (4. and 5.) should also be adopted
for the logic of belief—the BDI framework ordinarily does adopt them—since this
appears to have no bearing on the issues we are here primarily concerned to address.

8 This is the default conclusion k will draw, on the assumption that j’s act is a
serious communicative act, i.e., a literal implementation of the governing (sc-assert)
convention. For more detail on this, see [3].
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one of the four types mentioned above) then k will be justified in making the
inference from (1) to (2) provided merely that j is relevantly empowered—i.e.,
empowered to give commands, or empowered to make requests, or empowered
to make promises, or empowered to make declarations. Consider commanding: if
j is empowered/authorised to give commands, then his performance of the com-
municative act of commanding will indeed create an obligation on the addressee,
k, to see to it that B. The scope formula to the right of the I∗s operator in the
convention is made true by j’s performance of the communicative act. If he is
empowered, then ‘saying makes it so’.

The situation with respect to constatives, however, is quite different, for here
there is no notion of empowerment or authorisation which would itself license
the inference of B from I∗s B. The closest one could get to such a notion would
arise in cases in which j is deemed to be an authority on the subject about which
he is making an assertion. But even then, his saying that B does not in itself
make it the case that B. The signal he transmits is not ‘verifiable by its use’, but
by appeal to the facts on which he is deemed to have expert, or authoritative,
knowledge.

Does this analysis do justice to a distinction—considered by Austin to be
important—between fully performative and merely descriptive usage of perfor-
mative sentences? To explain the question, consider the utterance by the officer-
in-command of the performative sentence ‘I command you to open fire’ in two
different contexts: in the first, he is using the utterance itself to give the com-
mand (the fully performative usage), but in the second he is giving the command
by signing a written order, and uttering the sentence ‘I command you to open
fire’ so as to describe what (by signing) he is doing. The answer to the question
is surely affirmative, for the difference between the two cases lies precisely in the
evidence that would be required in order to justify inferring that an obligation
(to open fire) had been created. For the fully performative case, the inference is
justified if the communicator is indeed empowered to issue commands. But in
the descriptive case more evidence is needed, for there the inference is justified
only if it is the case both that the communicator is empowered to command and
that he is performing another action by means of which he is exercising that
authority (signing the written order). The descriptive case falls then in the cat-
egory of constatives, according to our criterion, and this is surely in line with
the point Austin had in mind regarding these different usages of performative
sentences.

Towards the end of Lecture VII in [11], Austin gives up the pursuit of a
distinguishing criterion. He says this:

Now we failed to find a grammatical criterion for performatives, but we
thought that perhaps we could insist that every performative could be in
principle put into the form of an explicit performative, and then we could
make a list of performative verbs. Since then we have found, however,
that it is often not easy to be sure that, even when it is apparently in
explicit form, an utterance is performative or that it is not; and typically
anyway, we still have utterances beginning ‘I state that. . . ’ which seem
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to satisfy the requirements of being performative, yet which surely are
the making of statements, and surely are essentially true or false.

It is time to make a fresh start on the problem. We want to recon-
sider more generally the senses in which to say something may be to
do something, or in saying something we do something (and also per-
haps to consider the different case in which by saying something we do
something). [11, p. 91]

And then it is in the remaining lectures that Austin developed the now famil-
iar distinction between locutionary, illocutionary and perlocutionary—indeed the
latter two are already hinted at in the last bit of the passage just quoted. On our
view, by contrast, there is no need to despair of finding a means of distinguishing
constative from performative, but one should look not for a grammatical crite-
rion, as Austin did, but at the grounds upon which one may justifiably infer a
belief of form (2), above, from a belief of form (1).

There is also no need to resort to the theory of illocutionary acts; for we can
supply a formal characterisation of different types of communicative acts—as
outlined above—that makes no explicit use of the notion of illocutionarity, and
which, in contrast to the approach taken by FIPA (http://www.fipa.org/,
and in particular http://www.fipa.org/repository/bysubject.html), does
not focus on the intended perlocutionary effects (what FIPA call the ‘rational
effects’) of communication.

As indicated above, we give the analysis in terms of conventions that specify
what ought to hold true when, for instance, an order is given or a request or
promise is made. The normative, ideality operator is the key element, marking
what will be the case if the governing convention is exploited in a way that
conforms to the function that the communication/signalling system is designed
to fulfil: the transmission of reliable information.

This, in turn, enables us to represent in a very straightforward way the belief
of an agent who is aware of what a particular transmitted signal means (see
above, formula (1)). The content of that belief is a normative expression, of
form I∗s B, where s is the communication system used in transmitting the signal.
To be aware of what the signal means, on our view, is just to be aware of what, by
convention, ought to be true given that the signal has been sent—it is to be aware
of what would be the case if the reliability of the communicator could be trusted.9

In contrast to some other approaches to the analysis of Agent Communication
Languages (ACLs), we do not need to require the recipient to believe that the
communicator is intending to produce in him the belief that B or that the
communicator believes that B, or the belief that the communicator intends to
get him to recognise that it is the communicator’s intention to get him to believe
that B. . . or indeed any other part of the convoluted Gricean mechanism.10 Our
9 The authors are considering a further paper which would address CTD issues arising

in situations in which ideality conditions are not met, i.e., in which the communicator
cannot be trusted.

10 A considerably more detailed critique of the Gricean approach—in which of course
the FIPA approach has its roots—is to be found in [7, chapter 4].
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approach is very much simpler, and is made possible, essentially, by the role
played by the normative operator.

We note in passing two additional advantages of our approach. First, it facil-
itates third party determination of what is said. Conventions, unlike intentions,
beliefs, and desires, are quite public and open to objective assessment by dis-
interested parties. This is a key property if disputes are to be resolved in a
manner that discourages cheating and reneging. Intentions, beliefs, desires and
other mental states are, perhaps, not entirely inaccessible to neutral third parties.
Even so, they are quite problematic in comparison to established conventions.
This is apparent in the case of commercial transactions and electronic commerce
in particular, but the point applies in the large, to all forms of communication
for which it is valuable to be able to ascertain what was said in a fair and objec-
tive way. A second additional advantage of our approach is that it fits well with
naturalistic accounts of the evolutionary emergence of communication and sig-
nalling systems. These appear in organisms—such as plants and bacteria—for
which beliefs, intentions, and even desires are not plausibly ascribable. Philo-
sophical work (e.g., [12, chapter 5] [13, chapter 4]) and scientific work (e.g., [14])
is underway, with results that, we believe, accord well with the theory on offer
here. These are, however, matters that must await future research.

4 Reasoning About Messages Received

As we have seen, the formal characterisation of the belief state of a message
recipient k enables us to represent what it would be for k to trust the reliability
of the message sent: k would make the transition from a belief of type (1) to
a belief of type (2). The formalism also facilitates the representation of the
reasoning of k in a situation prior to that in which he has decided whether or
not to trust messages he has received. This is important at least for the reason
that, in trying to determine whether trust is justified, k—as a rational agent—
will want to evaluate the consistency of the messages he has received with other
beliefs he already holds.

To illustrate, suppose that k has received a message asserting that B, and a
message asserting the conditional ‘if B then C’. Then

BkI∗s B ∧BkI∗s (B → C) (3)

Since the belief modality is normal it follows that

Bk(I∗s B ∧ I∗s (B → C)) (4)

Since the I∗s modality is also normal, we also have

� (I∗s B ∧ I∗s (B → C)) → I∗s C (5)

Since the belief modality, as a normal modality, is closed under logical conse-
quence, it now follows from (4) and (5) that

BkI∗s C (6)
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Suppose now that, prior to receiving the two assertions, k already had the belief
that C is false, i.e., Bk¬C. Since the D. schema holds for the belief modality,
it now follows that ¬BkC, from which it follows by the normality of the belief
modality that

¬(BkB ∧Bk(B → C)) (7)

From this it now follows that k cannot trust both of the messages he has received,
so long as he retains his belief (which he might, of course, choose to revise) that
C is false. This is a rather simple example, but it nevertheless serves to exhibit
how the combination of the logics of the belief and ideality operators may be
used to represent aspects of the recipient k’s reasoning, as he tries to work out
which messages he can trust.

5 Business Communication and the Trusted Third Party

In [15] and [16] we develop a synthesis of Jones’s convention-based analysis of
communicative acts and Kimbrough’s FLBC (Formal Language for Business
Communication, see [17, 18, 19, 20, 21, 22, 23]), together with a detailed look at
how the resulting combined formal models might be applied to the description
of a trading scenario, involving, essentially, a buyer, a seller and a TTP (Trusted
Third Party). Both [15] and [24] also discuss design of a Prolog implementa-
tion of the combined model. This combined model affords the prospect of deep
and, we believe, plausibly complete formal integration of the theory described
in this paper with the mundane, but complex, requirements of modern transac-
tion processing. Moreover, we believe that the combined model will facilitate,
in an entirely practicable and deployable manner, automated reasoning about
communicated messages. These claims are under development and investigation.
We content ourselves here with a brief indication of how the notions of conven-
tional signalling systems, discussed in this paper, may be extended to support
reasoning with additional sources of information.

Consider, then, a scenario in which a seller of goods and a prospective buyer
communicate with each other not directly, but via a TTP. The seller, v, and the
buyer, b, send via TTP messages of various kinds, which will typically include
(among others) messages that serve to state facts about available goods and
their mode of delivery, to request information, and—if a deal is initiated—to
create obligations. As the recipient of these messages, the TTP (agent t) forms
a set of beliefs of the type exhibited by

BtI
∗
s B (cf. (1), above) (8)

where, as we have earlier emphasised, the scope formula to the right of the I∗s
operator may take a number of different forms, depending on the nature of the
communicative act performed.

In terms of our formal theory, the role of the Third Party, qua Trusted Third
Party, is easily articulated. The key task for which TTP is responsible is to
determine which inferences may be accepted from schemas of type (8) to schemas
of type
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BtB (cf. (2), above) (9)

and then to communicate to buyer and seller the result of his deliberations.
Since t is assumed by v and b to be trusted, they will accept what he says as
true (they may even be obligated to do so by the contractual agreements they
made in order to participate in the system). In other words, for v and b the task
of making inferences from schemas of type (1) to schemas of type (2) has been
delegated to t: they trust him to do that job for them.

Read schemas of the form SaystB/A as ‘t says that B by seeing to it that
A’, where it is understood that ‘says’ is a generic term, referring to any type of
communicative act. We define SaystB/A as follows

(Df.says) SaystB/A
def= (EtA ∧ (EtA ⇒s I∗s B))

where, as before, it is understood (i) that s is the conventional signalling (or
communication) system that the agents t, v and b have adopted (for the purposes
of their trade communication) and (ii) that the scope formula B may exhibit a
range of different forms, depending on which type of communicative act EtA is.

Then we may represent the trusting beliefs that v and b have, vis-à-vis t, in
the following way

Bv(SaystB/A→ B) (10)

Bb(SaystB/A→ B) (11)

And we may also wish to add that v and b and t are mutually aware that v and
b have these trusting beliefs.11
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Abstract. In this paper we are interested in non-monotonic extensions of Bengt
Hansson’s standard dyadic deontic logic 3, known as DSDL3. We study speci-
ficity principles for DSDL3 with both controllable and uncontrollable proposi-
tions. We introduce an algorithm for minimal specificity which not only covers
obligations but also permissions, and we discuss the distinction between weak
and strong permissions. Moreover, we introduce ways to combine algorithms for
minimal and maximal specificity for DSDL3 with controllable and uncontrollable
propositions, based on ‘optimistic’ and ‘pessimistic’ reasoning respectively.

1 Introduction

Hansson’s standard dyadic deontic logic 3 [9], known as DSDL3, is an extension of
standard deontic logic, SDL, also known as system KD, with dyadic obligations. It has
been called a defeasible deontic logic because it does not satisfy unrestricted strength-
ening of the antecedent, the derivation of O(p|q ∧ r) from O(p|q). Spohn’s axiom in
his axiomatization of DSDL3 [18] informs us that strengthening of the antecedent only
holds conditional to a permission, where P (p|q) = ¬O(¬p|q):

P (r|q) → (O(r → p|q)↔ O(p|q ∧ r))

Monotonic and non-monotonic extensions to DSDL3 have been studied to strengthen
the antecedent. The former has been studied using notions of settledness or necessity
by, for example, Prakken and Sergot [16]. The latter has been directly inspired by the
interpretation of DSDL3 as a theory of default conditionals, or more generally as a
framework for non-monotonic logic following the work of Shoham [17] and Kraus,
Lehmann and Magidor [11]. The main approach in this setting to strengthen the an-
tecedent is based on the so-called minimal specificity principle by, amongst others,
Lehmann and Magidor [13] and Boutilier [4]. These non-monotonic extensions are ac-
companied by efficient algorithms [15], though these algorithms have the drawback to
be defined only for sets of dyadic obligations, not for more complex formulae such as,
for example, permissions.

DEON2006 has a special focus on deontic notions in the theory, specification and
implementation of artificial normative systems, such as electronic institutions, norm-
regulated multi-agent systems, and artificial agent societies more generally. In the con-
text of agent theory, Boutilier studies non-monotonic DSDL3 extended with the distinc-
tion between controllable and uncontrollable propositions [5]. Though this distinction
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originates from the areas of discrete event systems and control theory, Boutilier uses
it as a simple theory of decision (or action) in qualitative decision theory. It has been
further developed by, for example, Lang et al. [12] and Cholvy and Garion [8].

In this paper we are interested in the following questions:

1. How can we extend non-monotonic DSDL3 with permissions?
2. What is the relevance of the distinction between controllable and uncontrollable

propositions in non-monotonic DSDL3?

Despite the work in non-monotonic extensions of DSDL3 for default condition-
als [4, 1], desires [12], and preferences [2, 10] in artificial intelligence, somewhat sur-
prisingly the extension of existing algorithms to permission seems to have received
less attention. Apparently, whereas permission plays a central role in deontic logic, the
analogous negation of default conditionals, absence of desires, and non-strict prefer-
ence are of less interest in the other research areas. Though there are related extensions,
such as ones dealing with equalities, the only extension of algorithms concerned with
permission we are aware of has been proposed by Booth and Paris [3]. However, their
algorithm is inefficient as it requires the construction of a potentially large number of
pre-orders. Our algorithm constructs only the minimal specific pre-order.

When a distinction between controllable and uncontrollable propositions is intro-
duced in DSDL3, one may revisit the use of the minimal specificity principle. For ex-
ample, another option would be to use the maximal specificity principle, which does not
assume that worlds are as normal as possible, or gravitate towards the ideal, but which
assumes that worlds are as abnormal as possible, or gravitate towards the worst. We ar-
gue that whereas the ‘optimistic’ reasoning underlying the minimal specificity principle
may make sense for controllable propositions, because, for example, any rational agent
will see to it that the best state will be realized, for uncontrollable propositions a more
‘pessimistic’ attitude may be used as well. We also study the combination of both kinds
of reasoning.

In this paper we do not discuss the advantages and disadvantages of DSDL3, nor
of non-monotonic DSDL3, since they have already been discussed extensively during
the last 35 years. For the same reason we do not present the usual examples again, but
we focus on the logical properties of the system. Next to SDL, DSDL3 is probably the
best known deontic logic, and the most successful logic developed in deontic logic and
used outside this area (in particular in artificial intelligence). We also do not discuss
its well known relation to preference logic, due to the fact that “the best q are p” is
equivalent to “p ∧ q is preferred to ¬p ∧ q” in several preference logics, see for ex-
ample [20]. However, we believe that the preference-based reading of DSDL3 suggests
that the ‘optimistic’ reading of non-monotonic DSDL3 may be arbitrary, because in
this representation, there does not seem to be a reason why we compare the best p ∧ q
worlds, and not the worst ones (or, for example, the ones in the middle).

The layout of this paper is as follows. In Section 2 we repeat the definitions of non-
monotonic DSDL3, and in Section 3 we present the algorithm to compute the most
specific pre-order satisfying a set of obligations and permissions. In Section 4 we repeat
the distinction between controllable and uncontrollable propositions, and we present the
algorithms for the uncontrollable case. In Section 5 we consider the merging of the two
kinds of obligations.
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2 Non-monotonic Extension of DSDL3

Norm specifications consist of obligations and permissions. O(p|q) is read as ‘p is
obligatory if q’ and P (p|q) is read as ‘p is permitted if q’.

Definition 1 (Norm specification). Let A be a finite set of propositional atoms, and L
a propositional logic based on A. A norm specification is a set of norms C = CO ∪ CP

where for pi, qi, p
′
j , q

′
j ∈ L:

CO = {Ci = O(pi|qi) | i = 1 . . . n}

CP = {C′
j = P (p′j |q′j) | j = 1 . . .m}

The norms are interpreted on a total pre-order on the propositional valuations
(or worlds).

Definition 2 (Monotonic semantics). Let A and L be as before, let “worlds” W be
the set of propositional valuations of L, and � a total pre-order on W . Let |φ| be the
set of propositional models of φ. We write w � w′ for w � w′ without w′ � w, and we
write max(p,�) for {w ∈ |p| | ∀w′ ∈ |p| we have w � w′}. Satisfiability is defined as
follows:

〈W,�〉 |= O(p|q) iff max(q,�) ⊆ |p|, which is equivalent to stating that
∀ω ∈ max(p ∧ q,�), ∀ω′ ∈ max(p ∧ ¬q,�), we have ω � ω′.

Moreover, we define

〈W,�〉 |= P (p|q) iff 〈W,�〉 |= ¬O(¬p|q) which is equivalent to stating that
|p ∧ q| 	= ∅, and ∀ω ∈ max(p ∧ q,�), ∀ω′ ∈ max(p ∧ ¬q,�), we have ω � ω′.

A total pre-order� is a model of (satisfies) a norm specification C iff it satisfies each
norm in the specification C. We write M(C) for the set of models of C.

For an infinite set of propositional atoms A, a more sophisticated definition proposed
by Lewis [14] and popularized in AI by Boutilier [4], deals with infinite descending
chains. They define 〈W,�〉 |= O(p|q) iff |q| = ∅, or there exists a p ∧ q world w such
that there does not exist a ¬p ∧ q world w′ with w′ ≥ w.

In the algorithm we do not use the total pre-order� directly, but we use an equivalent
representation as an ordered partition, defined as follows. E1 is the set of ideal worlds,
and En is the set of worst worlds.

Definition 3 (Ordered partition). Asequenceof setsofworldsof the form (E1, · · · , En)
is an ordered partition of W iff ∀i, Ei is nonempty, E1 ∪ · · · ∪ En = W and ∀i, j,
Ei ∩ Ej = ∅ for i 	= j. An ordered partition of W is associated with pre-order � on
W iff ∀ω, ω′ ∈W with ω ∈ Ei, ω

′ ∈ Ej we have i ≤ j iff ω � ω′.

In this section we compare total pre-orders based on the so-called minimal specificity
principle which is also known as System Z or gravitating towards the ideal.
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Definition 4 (Preference semantics). Let � and �′ be two total pre-orders on a set of
worlds W represented by ordered partitions (E1, · · · , En) and (E′

1, · · · , E′
m) respec-

tively. We say that � is at least as specific as �′, written as �′��, iff ∀ω ∈ W , if
ω ∈ Ei and ω ∈ E′

j then i ≤ j. � is less specific as �′, written as ���′, iff ���′

without �′��. � is the least specific pre-order among a set of pre-ordersO if there is
no �′ in O such that �′��.

The following example illustrates minimal specificity.

Example 1. Consider the single obligation O(p|q). Applying the minimal specificity
principle gives the following model�= (|p∧ q| ∪ |p∧ ¬q| ∪ |¬p∧ ¬q|, |¬p ∧ q|). The
ideal worlds in this model are those which do not violate the obligation. More precisely,
worlds in |p ∧ q| belong to the set of ideal worlds since they fulfill the obligation, but
worlds in |p ∧ ¬q| and |¬p ∧ ¬q| are ideal too since they do not violate the rule even if
they do not fulfill it.

Shoham [17] defines non-monotonic consequences of a logical theory as all formulas
which are true in the ‘preferred’ models of the theory. An attractive property is case
is which there is only one ‘preferred’ model, because in that case it can be decided
whether a formula non-monotonically follows from a logical theory by calculating the
unique ‘preferred’ model, and testing whether the formula is satisfied by the ‘preferred’
model. Likewise, finding all non-monotonic consequences can be found by calculating
the unique ‘preferred’ model and characterizing all formulas satisfied by this model.

Definition 5 (Non-monotonic entailment). A norm specification C preferentially im-
plies O(p|q) (or P (p|q)) if and only if for least specific models of C are also a model of
O(p|q) (or P (p|q)).
The following example illustrates non-monotonic entailment, which can be used to rea-
son about violations or exceptions.

Example 2 (Continued). The norm specification consisting of the obligation O(p|q)
preferentially implies O(p|q ∧ r), but the norm specification consisting of both O(p|q)
and O(¬p|q ∧ r) does not preferentially imply O(p|q ∧ r).

3 Algorithm for Obligations and Permissions

The algorithm to calculate the least specific pre-order of a norm specification is given in
Algorithm 1.1. The basic idea of the algorithm is to construct the least specific pre-order
by calculating the sets of worlds of the ordered partition, going from ideal to the worst
worlds. It extends the known algorithm [15, 2] for obligations with the second line to
check whether the individual permissions are consistent, the inner while loop, to deal
with permissions, and the second removal clause in the end to take care of the removal
of permissions. Given a norm specification, let C = CO ∪ CP where

CO = {Ci : O(pi|qi)|i = 1 · · ·n} and CP = {C′
j : P (p′j|q′j)|j = 1 · · ·m}

and let L = {(L(Ci), R(Ci)) : Ci ∈ CO} ∪ {(L(C′
j), R(C′

j)) : C′
j ∈ CP }, where

L(Ci) = |pi ∧ qi|, R(Ci) = |¬pi ∧ qi|, L(C′
j) = |p′j ∧ q′j | and R(C′

j) = |¬p′j ∧ q′j |.
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Algorithm 1.1. Handling obligations and permissions

begin
if any L(C′

i) = ∅ then Stop (inconsistent constraints);
m = 0 ; W = set of all models of L ;
while W �= ∅ do

– m ← m + 1, i = 1;
– Em = {ω : ∀(L(Ci), R(Ci)) ∈ LC, ω �∈ R(Ci)} ;
while i = 1 do

i=0;
for each (L(C′

j), R(C′
j) in LC do

if (L(C′
j) ∩ Em = ∅ and R(C′

j) ∩ Em �= ∅) then Em = Em\R(C′
j); i=1;

– if Em = ∅ then Stop (inconsistent constraints);
– W = W − Em ;
– remove from LC each (L(Ci), R(Ci)) such that L(Ci) ∩ Em �= ∅ ;
– remove from LC each (L(C′

j), R(C′
j)) such that L(C′

j) ∩ Em �= ∅;

return (E1, · · · , Em)
end

If we consider the case without permissions, then the algorithm calculates the next
equivalence class of the partitioning Em by taking all worlds which do not violate one
of the obligations. Once an obligation is satisfied by an equivalence class, it no longer
constrains the construction of the preorder, and can be removed.

With permissions, the construction is complicated since we cannot directly define the
equivalence class Em. The definition of Em in line 6 of the algorithm is therefore an up-
per bound of this class. To make sure that all permissions are satisfied, thereafter some
worlds may have to be removed from Em. Moreover, once some worlds are removed, it
may be the case that permissions which were already checked are now violated, so we
have to reconsider them too (for which we use the variable j). Removal of permissions
is analogous to the removal of obligations.

In the remainder of this section, we prove that the algorithm calculates the least
specific pre-order.

Lemma 1. The total pre-order computed by algorithm 1 belongs to the set of least
specific pre-orders of C.

Proof. This can be checked by construction. Since the set of constraints is finite, the
algorithm terminates. Since Em cannot be the empty set, the sequence is an ordered
partition. Let �= (E1, · · · , En) be this total pre-order. Suppose that � doesn’t belong
to the set of least specific pre-orders of C, i.e., for some ω ∈ Ej we could have put ω in
Ei with i < j. However ω 	∈ Ej because either:

obligations in CO. ω ∈ Ej means that ω falsifies obligations in CO which are not
falsified by worlds in Ei with i < j. So if we put ω in Ei with i < j, we get a
contradiction,
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permissions in CP . Following the algorithm, ω ∈ Ei because otherwise there is some
permission P (p′|q′) in CP for which the best worlds of p′ ∧ q′ are in Ek and the
best worlds of ¬p′ ∧ q′ are in El with l < k which is a contradiction.

To show the uniqueness of the least specific pre-order of C, we follow the line of the
proof given in [1]. We first define the maximum of two preference orders.

Definition 6. Let � and �′ be two preference orders represented by their well or-
dered partitions (E1, · · · , En) and (E′

1, · · · , E′
m) respectively. We define the MAX

operator by MAX (�,�′) = (E′′
1 , · · · , E′′

min(n,m)), such that E′′
1 = E1 ∪ E′

1 and
E′′

k = (Ek ∪ E′
k) − (

⋃
i=1,···,k−1 E′′

i ) for k = 2, · · · , min(n, m), and the empty sets
E′′

k are eliminated by renumbering the non-empty ones in sequence.

Lemma 2 proves the uniqueness of the least specific pre-order inM(C).
Lemma 2. If there is a minimal specific pre-order, then it is unique.

Proof. We first show that MAX (�,�′) ∈ M(C) (1). Let �= (E1, · · · , Eh),
�′= (E′

1, · · · , E′
h′), �′′= (E′′

1 , · · · , E′′
min(h,h′)), and P (p|q) ∈ C. �,�′∈ M(C), i.e.,

�|= P (p|q) and �′|= P (p|q). In other words, max(p ∧ q,�) ⊆ Ei and
max(p ∧ ¬q,�) ⊆ Ej such that i ≤ j and max(p ∧ q,�′) ⊆ E′

k and
max(p ∧ ¬q,�′) ⊆ E′

l such that k ≤ l. Following Definition 6,
max(p ∧ q,�′′) ⊆ E′′

min(i,k) and max(p ∧ ¬q,�′′) ⊆ E′′
min(j,l). Since i ≤ j and

k ≤ l we have min(i, k) ≤ min(j, l). We conclude�′′|= P (p|q). The proof for O(p|q)
is analogous and can be found in [1]. Consequently,MAX (�,�′) ∈M(C).

Moreover, we have that MAX (�,�′) is less specific than or identical to both �
and �′ (2), the proof can be found also in [1].

Finally, we prove that the lemma follows from the two items by contradiction. So
suppose that there are two distinct minimal specific orders � and �′. Then according
to item (1),MAX (�,�′) is also a model of the preference specification and according
to item (2), it is less specific than either � or �′. Contradiction.

We can now conclude:

Theorem 1. Algorithm 1 computes the least specific model ofM(C).

Proof. Following Lemma 1 it computes a preference order which belongs to the set of
the least specific models and following Lemma 2, this preference order is unique.

4 Ought-to-Be and Ought-to-Do

Some approaches introduce a full fledged logic of actions in theories of rational deci-
sion, but Boutilier [5] introduces the distinction between controllable and uncontrol-
lable propositions from discrete event systems and control theory in his qualitative de-
cision theory. This relatively simple approach to actions has reached some popularity,
see [12, 7, 19]. The reason is that this abstract representation of actions – which are typ-
ically called decision variables – lets us focus on other aspects of decision making than
the usual issues concerning causality, frame axioms, etc.
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In the context of deontic logic, the distinction between controllable and uncontrol-
lable propositions can be used as a simple way to distinguish and study the relation
between ought-to-be and ought-to-do obligations. Consider a dynamic deontic logic.
Dynamic logic contains expressions like [α]p, which can be read as ‘after doing or
executing α, p holds, and dynamic deontic logic contains expressions O(α), express-
ing an ought-to-do obligation for α, and O(p), expressing an ought-to-be obligation
for p. Now assume that we add propositions done(α) for every action statement α,
together with the axiom [α]done(α). In that case, we may say that O(done(α)) is a
kind of ought-to-do obligation. Summarizing, if we have O(p) – which is short for
O(p|�) for any tautology � – for uncontrollable p, then we may call it an ought-to-be
obligation, and if we have O(x) for controllable x, then we may call it an ought-to-do
obligation.

Having made the distinction between the two kinds of obligations, we are now
faced by the question whether their logic is distinct. Neither Boutilier nor the other
researchers working on controllable and uncontrollable propositions seem to have intro-
duced distinct logics or distinct non-monotonic extensions to represent the two kinds of
obligations.

When we consider DSDL3 and the related minimal specificity principle, we may
observe that both of them are ‘optimistic’, in the following sense. First, the logic of
O(p|q) only considers the best or ideal worlds. Second, the non-monotonic extension
of the minimal specificity principle assumes that each world is as good as possible.
But why not select a more ‘pessimistic’ approach? Note that the notion of ‘optimistic’
and ‘pessimistic’ should be read metaphorically, referring to psychological or decision-
theoretic notions.

For controllable propositions, this choice seems justified to us. The agent can control
the truth value of the propositions, and therefore he or she should see to it that the best
world will be realized. But for uncontrollable propositions, it is less clear. the choice of
the best worlds seems rather arbitrary. Moreover, in decision making, there is often a
trend to reason pessimistically about the environment.

Therefore, in the remainder of this paper we study ‘pessimistic’ kinds of reasoning
for ought-to-be obligations. The ‘pessimistic’ alternatives are that O(p|q) no longer
means that the best q worlds are p worlds, but that the worst q worlds are ¬p worlds.
Moreover, instead of assuming that worlds are as good as possible, we assume that
worlds are as bad as possible. As one may expect, the ‘pessimistic’ definition and the
‘pessimistic’ specificity principle go well together.

From now on, we write O+ and P+ to refer to the usual kinds of ‘optimistic’ oblig-
ations and permissions of DSDL3, as studied thus far in this paper. Moreover, we intro-
duce new ‘pessimistic’ obligations and permissions, which we write as O− and P−.

Definition 7 (Norm specification). Let C and U be two disjoint finite sets of control-
lable resp. uncontrollable propositional atoms, and L a propositional logic based on
C ∪ U . A norm specification is a set of norms C = C+

O ∪ C+
P ∪ C−O ∪ C−P , where the

‘optimistic’ C+
O ∪ C+

P are defined using C only, and C−O ∪ C−P using U only.

As before, the norms are interpreted on a total pre-order. The semantics are straightfor-
ward.
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Definition 8 (Monotonic semantics). Satisfiability is defined as follows:

〈W,�〉 |= O+(p|q) iff max(q,�) ⊆ |p|
〈W,�〉 |= O−(p|q) iff min(q,�) ⊆ |¬p|
Moreover, we define

〈W,�〉 |= P+(p|q) iff 〈W,�〉 |= ¬O+(¬p|q)
〈W,�〉 |= P−(p|q) iff 〈W,�〉 |= ¬O−(¬p|q)
The non-monotonic semantics based on maximal specificity principle are straightfor-
ward too, and the maximal specificity algorithm is simply the dual of the minimal
specificity algorithm. The basic idea of the algorithm is to construct the most specific
pre-order by calculating the sets of worlds of the ordered partition, going from worst to
the ideal worlds. As can easily be verified, we obtained algorithm 2 by replacing left
hand side and right hand side in various places. Moreover, the pre-order is constructed
from worst to ideal class, so in the last line we have to reverse the order of the classes.
Let C = CO ∪ CP where

CO = {Ci : O(pi|qi)|i = 1 · · ·n} and CP = {C′
j : P (p′j|q′j)|j = 1 · · ·m}

We put L = {(L(Ci), R(Ci)) : Ci ∈ CO} ∪ {(L(C′
j), R(C′

j)) : C′
j ∈ CP }, where

L(Ci) = |pi ∧ qi|, R(Ci) = |¬pi ∧ qi|, L(C′
j) = |p′j ∧ q′j | and R(C′

j) = |¬p′j ∧ q′j |.

Algorithm 1.2. Handling ought-to-be obligations and permissions

begin
if any R(C′

i) = ∅ then Stop (inconsistent constraints);
m = 0 ; W = set of all models of L ;
while W �= ∅ do

– m ← m + 1, i = 1;
– Em = {ω : ∀(L(Ci), R(Ci)) ∈ LC, ω �∈ L(Ci)} ;
while i = 1 do

i=0;
for each (L(C′

j), R(C′
j) in LC do

if (L(C′
j) ∩ Em �= ∅ and R(C′

j) ∩ Em = ∅) then Em = Em\L(C′
j); i=1;

– if Em = ∅ then Stop (inconsistent constraints);
– W = W − Em ;
– remove from LC each (L(Ci), R(Ci)) such that R(Ci) ∩ Em �= ∅ ;
– remove from LC each (L(C′

j), R(C′
j)) such that R(C′

j) ∩ Em �= ∅);

return (E′
1, · · · , E′

l) s.t. ∀1 ≤ h ≤ l, E′
h = El−h+1

end

The ‘pessimistic’ approach may be criticized, just as we have criticized the ‘opti-
mistic’ approach, and more sophisticated approaches may be developed. However, our
more general point is that one may reason in a different way with ought-to-be and
ought-to-do obligations, or with controllable and uncontrollable propositions - where
the above suggestion is just an instance of that general idea. Any approach that deals
with these two kinds of obligations in a different way has to solve the problem we
address in the following section: how can these approaches be combined?
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5 Merging Ought-to-Be and Ought-to-Do

Figure 1 visualizes our approach to combine two distinct ways to reason with ought-to-
be and ought-to-do in DSDL3. Our approach is based on ‘optimistic’ reasoning about
controllables, and ‘pessimistic’ reasoning about uncontrollables. The former represent
the agent’s rationality to choose the optimal state if he has the power to do so, and
the latter represents Wald criterion: the decision-maker selects that strategy which is
associated with the best possible worst outcome.

Fig. 1. Combining ‘optimistic’ and ‘pessimistic’ norms

The norms in the norm specifications are interpreted as constraints on total pre-orders
on worlds. Moreover, there are non-monotonic reasoning mechanisms to calculate dis-
tinguished pre-orders from the norm specifications. There is an ‘optimistic’ algorithm
to calculate the unique distinguished total pre-order from the ‘optimistic’ norm spec-
ification (step 1), and a ‘pessimistic’ algorithm to calculate the unique distinguished
total pre-order from the ‘pessimistic’ norm specification (step 2). Since we need a sin-
gle preference order for decision making, we need to merge the two total pre-orders
(step 3). We distinguish symmetric and a-symmetric mergers.

In this section we consider the merger of the least specific pre-order satisfying the
‘optimistic’ norm specification, and the most specific pre-order satisfying the ‘pes-
simistic’ norm specification. From now on, let L be a propositional language on disjoint
sets of controllable and uncontrollable propositional atoms C ∪ U . A norm specifica-
tion consists of an ‘optimistic’ and a ‘pessimistic’ norm specification, i.e., ‘optimistic’
norms on controllables, and ‘pessimistic’ norms on uncontrollables. In general, let �
be the merger of a pre-order�d generated by ‘optimistic’ reasoning about ought-to-do
obligations and a pre-order�b generated by ‘pessimistic’ reasoning about ought-to-be
obligations. We assume that the following conditions hold, known in economic theory
as Arrows’ conditions:

Definition 9. Let�d,�b and� be three total-preorders on the same set.� is a merger
of �d and �b if and only if the following three conditions hold:
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If w1 �d w2 and w1 �b w2 then w1 � w2
If w1 �d w2 and w1 �b w2 then w1 � w2
If w1 �d w2 and w1 �b w2 then w1 � w2

Given two arbitrary pre-orders, there are many possible mergers. We therefore again
consider distinguished pre-orders below.

The two minimal and maximal specific pre-orders of ‘optimistic’ and ‘pessimistic’
preference specifications satisfy the property that no two sets are disjoint.

Proposition 1. Let (E1, · · · , En) and (E′
1, · · · , E′

m) be the ordered partitions of �d

and �b respectively. We have for all 1 ≤ i ≤ n and all 1 ≤ j ≤ m that Ei ∩E′
j 	= ∅.

Proof. Due to the fact that �d and �b are defined on disjoint sets of variables.

The least and most specific mergers (thus satisfying Arrow’s conditions) are unique and
identical, and can be obtained as follows. Given Proposition 1, thus far nonempty sets
E′′

k do not exist, but we prefer a more general definition which can also be used in other
mergers.

Proposition 2. Let (E1, · · · , En) and (E′
1, · · · , E′

m) be the ordered partitions of �d

and �b respectively. The most specific merger of �d and �b is �= (E′′
1 , · · · , E′′

n+m)
such that if ω ∈ Ei and ω ∈ E′

j then ω ∈ E′′
i+j−1, and by eliminating nonempty sets

E′′
k and renumbering the non-empty ones in sequence.

The most specific merger is illustrated by the following example.

Example 3. Consider the ‘optimistic’ preference specificationO(p)and the ‘pessimistic’
preference specification O(m), where p and m stand respectively for “I have to work on
a project in order to get money” and “my boss has given me money to pay my conference
fee”.

We have �d= ({mp,¬mp}, {m¬p,¬m¬p}) and �b= ({mp, m¬p},
{¬mp,¬m¬p}). The most specific merger is {{mp}, {¬mp, m¬p}, {¬m¬p}}.
Analogously we may also consider the product rule (. . . then ω ∈ E′′

i∗j ), or other sym-
metric mergers.

The minimax merger gives priority to the preorder associated to the ‘optimistic’ pref-
erence specification and computed following the minimal specificity principle (�d) over
the one associated to the ‘pessimistic’ preference specification and computed following
the maximal specificity principle (�b). Indeed alternatives are first ordered w.r.t. �d

and only in the case of equality �b is considered.

Definition 10 (Minimax merger). w1 �w2 iff w1 �1 w2 or w1 ∼1 w2 and w1 �2 w2.

The minimax merger can be defined as follows.

Proposition 3. Let (E1, · · · , En) and (E′
1, · · · , E′

m) be the ordered partitions of �d

and �b respectively. The result of merging �d and �b is �= (E′′
1 , · · · , E′′

n×m) such
that if ω ∈ Ei and ω ∈ E′

j then ω ∈ E′′
(i−1)∗m+j .
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Example 4. (continued) The minimax merger of the norm specification is
{{mp}, {¬mp}, {m¬p}, {¬m¬p}}.
The principle of this merger is similar to minimax merger. The dictator here is the pre-
order associated to the ‘pessimistic’ preference specification and computed following
the maximal specificity principle.

Definition 11. w1 � w2 iff w1 �2 w2 or w1 ∼2 w2 and w1 �1 w2.

Example 5. Consider the ‘optimistic’ O(p) and the ‘pessimistic’ O(m). The merger is
{{mp}, {m¬p}, {¬mp}, {¬m¬p}}.
The problem of handling preferences on controllable variables and uncontrollable vari-
ables separately is that it is not possible to express interaction between the two kinds
of variables. For example my decision on whether I will work hard to finish a paper
(which is a controllable variable) depends on the uncontrollable variable “money”, de-
cided by my boss. If my boss accepts to pay the conference fees then I have to work
hard to finish the paper. We therefore consider in the remainder of this paper preference
formulas with controllable and uncontrollable variables.

A general approach would be to define ‘optimistic’ and ‘pessimistic’ preference
specifications on any combination of controllables and uncontrollables, such as an ‘op-
timistic’ preference O−(p ∧ x) or even O+(p). However, this approach blurs the idea
that ‘optimistic’ reasoning is restricted to controllables, and ‘pessimistic’ reasoning is
restricted to uncontrollables. Mixed ‘optimistic’ and ‘pessimistic’ norms are defined as
follows.

Definition 12 (Mixed norm specification). A conditional ‘optimistic’ obligation is a
formula of the form {O(xi|pi ∧ yi) | i = 1, · · · , n, pi ∈ LU , xi, yi ∈ LC}.
We merge the two pre-orders using the symmetric merger operator since there is no
reason to give priority either to �d or to �b.

6 Related Work

6.1 Permission

One may wonder whether there is a role for permissive norms in deontic logic, once we
have obligations. The issue is whether there is a need to distinguish between the absence
of a prohibition and an explicit permission. Several researchers have doubted whether
there is such a need, which may explain why the study of permission has gotten so little
attention in the deontic logic literature, despite the fact that deontic logic started by von
Wright’s observation that the relation between obligation and permission is analogous
to the relation between necessity and possibility, and despite the fact that the earliest
papers used permission instead of its dual obligation.

The distinction between weak and strong permission is well known in deontic logic,
and the permission in DSDL3 is a standard example of a weak permission. Basically,
the argument is that a weak permission is only the absence of an obligation, and this
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is precisely how permissions are defined in DSDL3. Moreover, we have as a theorem
O(p|q) ∨ P (¬p|q), indicating that every proposition is normed; a typical property of
weak permission. However, it is a priori less clear whether these arguments still hold
in non-monotonic DSDL3. We therefore consider two more detailed discussions on the
distinction between weak and strong permissions.

However, there has been a convincing argument that permissions are a distinct kind
of norms, besides obligations. Bulygin [6] observes that in a setting with higher and
lower authorities, a higher authority needs to issue strong permissions to delimit the
power of the lower authorities. So when there are two agents only and we consider
DSDL3 as a compact specification language used by agent 2 (an authority) to define a
pre-order for agent 1 (his ideal and sub-ideal states), then we only have to use obliga-
tions. However, as Bulygin argues, the picture is completely different when we consider
three agents, for example in hierarchical normative systems, where a higher authority
agent 0 limits the pre-orders agent 1 can prescribe to agent 2. Agent 0 can say now,
for example, that agent 1 is not allowed to oblige p for agent 2. Bulygin’s game among
three agents is challenging for the development of deontic logic for normative multi-
agent systems, but its implications for non-monotonic DSDL3 are not clear to us at this
moment.

In Makinson and van der Torre’s analysis of permission in their input/output logic
framework, the distinction between weak and strong permissions has been made ex-
plicit (because the set of norms in the input/output logic framework is explicit). Maybe
the norm specification used in non-monotonic DSDL3 may also be seen as such an
explicitly represented set of norms.

6.2 Non-monotonic Logic

Our algorithm generalizes the algorithm of Benferhat et al. [2] which captures “equal
preferences” , denoted p = q, which stands for “all best p worlds are q worlds and all
best q worlds are p worlds”. These equivalences can be represented in our framework
by two non-strict preferences p ≥ q and q ≥ p, but our non-strict preferences cannot be
represented in their framework.

7 Summary

We study specificity principles for non-monotonic extensions of Bengt Hansson’s stan-
dard dyadic deontic logic 3, known as DSDL3, with both controllable and uncontrol-
lable propositions. This extension is important in artificial normative systems, maybe
more than in alternative applications of DSDL3 in default reasoning, qualitative deci-
sion or preference logic. Permissions play an important role in normative multi-agent
systems, for example when higher and lower authorities are distinguished in normative
multi-agent systems. Moreover, the distinction between ought-to-be and ought-to-do is
central in agent theory too.

We introduce an efficient algorithm for minimal specificity which not only covers
obligations but also permissions. The extension with permissions is more complicated,
because we cannot directly define the equivalence classes of the pre-order, but we need
a second loop in the algorithm to deal with the permissions. The algorithm may be
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further extended with other kinds of obligations and permissions, for example with
ceteris paribus obligations (p is obliged if each p world is preferred to each ¬p world,
ceteris paribus).

Moreover, we introduce ways to combine ought-to-be and ought-to-do obligations in
DSDL3 extended with the distinction between controllable and uncontrollable propo-
sitions. We illustrate our approach for algorithms for minimal and maximal specificity
for DSDL3 with controllable and uncontrollable propositions, based on ‘optimistic’
and ‘pessimistic’ reasoning respectively. Alternative ways to combine ought-to-be and
ought-to-do obligations in non-monotonic DSDL3 are subject of further research.

An assumption of this paper has been that DSDL3 is established as a deontic logic,
and that its non-monotonic mechanisms are needed to deal with either violations or
exceptions. However, a referee has suggested to us that in a deontic logic it does not
seem to make sense to assume that worlds are as good as possible and that agents will
see to it that the best (or worst) worlds are realized. Moreover, he or she observes that
these criticisms seem to only apply to deontic uses of DSDL3. It may thus be that
we have not sufficiently separated applications of DSDL3 to deontic reasoning from
applications to default reasoning and decision making. We have left this issue for further
research.
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Abstract. Extending John Horty’s multi-agent deontic logic to moral
reasoning with subjective utilities, we provide a language and semantics
to study moral reasoning with sentences like ‘Group G of agents ought
see to it that φ in the interest of group F ’. We illustrate our deontic logic
with a new formal analysis of the Prisoner’s Dilemma, thereby showing
that games can be studied fruitfully with our deontic logic. Finally, we
prove a characterization theorem on conflicting obligations.

1 Introduction

J.L. Austin once suggested that “before we consider what actions are good or
bad, right or wrong, it is proper to consider first what is meant by, and what
not, (..) the expression ‘doing an action’ or ‘doing something’ ” (Austin 1957,
p. 178). In the same vein, G.H. von Wright deems a logic of action a necessary
requirement for deontic logic.1 For want of a sufficiently sophisticated logic of
action – von Wright’s proposals were pioneering, but primitive –, Austin’s sug-
gestion hardly found response among deontic logicians.2 Over the last twenty
years, however, the (modal) logic of action has made significant progress, cov-
ering philosophical inquiries into the basic notions of agency and (meta)logical
investigations of various modal logics of action, known as stit theory.3

In his groundbreaking Agency and Deontic Logic (2001), John Horty substi-
tutes modern stit theory for von Wright’s logic of action, and thus makes an
important contribution to deontic logic. On the basis of stit theory, objective
utilities, and the concept of dominance from decision theory, Horty develops a
new semantics for deontic formulas of the form  [Γ cstit: A], interpreted infor-
mally as “Group (of agents) Γ ought to see to it that A”.

In the present paper we generalize Horty’s deontic logic to subjective util-
ities. Unlike Horty’s objective utilities, in our deontic logic one and the same
evaluation index – moment/history pairs in Horty’s approach, possible worlds in

1 See von Wright (1963), p. vii and von Wright (1966), p. 134.
2 Thus, in his pioneering study on deontic logic, Fred Feldman writes: “we avoid all

the problems about the nature of actions and their alternatives” (Feldman 1986,
p. 13).

3 For a textbook exposition of stit theory, see Belnap, Perloff and Xu (2001).

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 175–186, 2006.
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ours – may have different utilities for different agents. Moreover, pace Horty, we
do not assume that a deontic formula always must be evaluated with respect to
the utilities of all agents, although, of course, it must be possible to do so. Hence,
in evaluating a deontic formula we must know whose utilities are pertinent to
the evaluation, i.e. we must know what the group of agents is whose utilities we
have to consider in evaluating a deontic formula. We shall refer to this group of
agents as the “interest group”. Accordingly, the basic expressions of our deontic
logic are of the form  F

G φ, interpreted informally as “Group G ought to see to
it that φ in the interest of group F”.

One of the merits of introducing subjective utilities and interest groups in
deontic logic is that the resulting multi-agent deontic logic enables us to analyse
single-shot games in remarkable detail.4 To substantiate this claim, we shall il-
lustrate our deontic logic with an analysis of the well-known Prisoner’s Dilemma.
We shall show that the dilemma can be completely translated into our model
theory and that our semantics rules that both agents ought to confess in their
own interest, but also that both agents ought not to confess in their collective in-
terest. Hence, agents may have conflicting obligations, depending on the interest
groups in whose interest they act. We conclude our exposition of our multi-agent
deontic logic with a formal characterization of the necessary and sufficient con-
ditions for conflicts of obligations, thereby giving a formal answer to a question
central to ethical theory.

In Section 2 we introduce our multi-agent deontic logic. We provide a language
and semantics, and illustrate the semantics with the Prisoner’s Dilemma. In
Section 3 we characterize the situation in which conflicts of obligations can only
occur. In Section 4 conclusions are drawn.

2 Multi-agent Deontic Logic

In multi-agent contexts, where different (groups of) agents may attach different
utilities to certain states of affairs, moral reasoning may seem to escape all
attempts at formalization. We introduce subjective utilities and interest groups
to cope with the vagaries of multi-agent moral reasoning. Adopting the basic
notions of Belnap, Perloff, Xu and Horty’s stit logic of action, we omit, for
the sake of exposition, their underlying branching-time models and restrict our
attention to models in which there is one moment only. In this way, we simplify
the semantics of our logic considerably and focus directly on multi-agent moral
reasoning with subjective utilities and interest groups.

2.1 Language

Definition 1. The language L is built from a countable set P of propositional
variables {p1, p2, . . .} and a finite set A of individual agents {a1, . . . , an}. Let

4 Repeated games might be studied fruitfully from a deontic point of view, if we include
the branching-time framework in our model theory.
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p ∈ P. Let F ,G ⊆ A be sets of agents. Then L is given by the following rule in
Backus-Naur Form (BNF)5:

φ ::= p | ¬φ | φ ∧ φ | �φ | [G]φ |  F
G φ

The three modalities �, [G], and  F
G are interpreted as the standard necessity

operator, the Chellas-von Kutschera stit operator, and our new deontic operator,
respectively:

�φ It is necessary that φ.
[G]φ Group G sees to it that φ.
 F

G φ Group G ought to see to it that φ in the interest of group F .

The language L allows us to formalize various sentences relevant to multi-agent
moral reasoning. An egoistic obligation like ‘Agent a ought to see to it that
φ in his own interest’ can be formalized as  a

aφ. If a 	= b, then an altruistic
obligation like ‘Agent a ought to see to it that φ in the interest of the agent b’
may be formalized as  b

aφ. In utilitarianism, the well-being of the community as
a whole is pertinent to the evaluation of obligations. Since A denotes the group
of all agents, a utilitarian obligation like ‘Agent a ought to see to it that φ in
everybody’s interest’ is formalized as  A

aφ. The other limiting case would be a
formula  ∅

aφ, which is a formal rendering of the sentence ‘Agent a ought to see to
it that φ in nobody’s interest’ (our semantics implies that such empty obligations
are true if and only if φ is a tautology). Obviously, combinations of operators
are allowed as well. Hence, a sentence like ‘Agent a is able to see to it that φ’
may be formalized as ♦[a]φ. Hence, the Kantian principle that ‘ought’ implies
‘can’ may be formalized as  F

G φ → ♦[G]φ. It is, according to our semantics, a
valid formula.

From the perspective of ethical theory, it is particularly interesting to study
the conditions under which obligations for (groups of) agents may conflict. We
shall show that it is perfectly possible for a single agent (or a single group of
agents) to have conflicting obligations, if these are obligations with respect to
different interest groups. In our formal analysis of the Prisoner’s Dilemma, both
‘Agent a ought to confess in his own interest’ and ‘Agent a ought not to confess
in the collective interest of himself and his partner in crime’ are true in the same
model. More generally, it may be asked whether it is possible to characterize
the circumstances under which obligations with respect to the same interest
group never conflict, that is, to characterize the circumstances under which the
following formula is a contradiction:

 F
G1

φ ∧  F
G2
¬φ.

We conclude our paper with a precise answer to this question.
5 Logical rigour would demand that we draw a sharp distinction between (1) the names

of (sets of) agents and (2) the objects that are being named, i.e., the (sets of) agents
themselves. We waive this distinction and thereby avoid unnecessary complications,
as our present aims can be reached without it.
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2.2 Agency and Ability

Now we have set forth the language L for our multi-agent deontic logic, we pro-
vide a formal semantics for it. The standard semantics for stit logics relies on
branching-time frames, tree-like structures that represent possible future devel-
opments of the present. For expository reasons, we shall omit these branching-
time frames: a fully-fledged branching-time semantics would needlessly obfuscate
our present aims. Hence, we shall interpret the Chellas-von Kutschera stit oper-
ator [G] and our deontic operator  F

G in rather standard possible worlds models,
leaving aside all temporal considerations.6 This policy amounts to a logical study
of actions at a single moment in time. Hence, a formula of the form [G]φ is true
if the group of agents G performs an action that constrains the set of possible
worlds to worlds in which φ is true.

We render an action of a single agent a as the choice of an option from a’s set
of possible choices, where a’s set of possible choices, denoted by Choice(a), is a
partition of the set W of possible worlds. We shall refer to elements of Choice(a)
as a’s “choices”. Furthermore, for every agent a it holds that all of a’s choices
are real options, that is, no choice of a can be obstructed by choices of the other
agents. Formally, this demand can be met by requiring that the intersection of
every possible combination of each agent’s chosen options is nonempty.7

Definition 2 (Individual Agent’s Choices). Let W be a set of possible
worlds and let A be a finite set of agents. Then Choice : A �→ ℘(℘(W)) is a
choice function for A, if

(i) for all a ∈ A it holds that Choice(a) is a partition of W,
(ii)

⋂
a∈A s(a) 	= ∅ for every selection function s : A �→ ℘(W) with s(a) ∈

Choice(a) for all a ∈ A.

For example, if W = {w1, w2, w3, w4} and A = {a, b}, then Choice(a) = {{w1,
w2}, {w3, w4}} and Choice(b) = {{w1, w3}, {w2, w4}} is a choice function for A,
since both Choice(a) and Choice(b) are partitions of W and for all four possible
selection functions s with s(a) ∈ Choice(a) and s(b) ∈ Choice(b) it holds that
s(a) ∩ s(b) 	= ∅.8

As is clear from the language presented in the previous section we also wish
to model actions performed by groups of agents. When actions are viewed as
constraining the set of possible worlds, then the actions of a group of agents
are the ways in which that group can constrain the set of possible worlds. We
take it as quite natural that the individual choice function determines the set of
choices assigned to a group. This leads to the following definition which extends
the function Choice to groups of agents.
6 For a standard treatment of branching-time models for stit logics, we refer to Belnap,

Perloff and Xu (2001) and Horty (2001). Note that our semantics can easily be
extended to Belnap, Perloff, Xu and Horty’s branching-time frames.

7 This is called “the condition of independence of agents” (Horty 2001, p. 31).
8 s1(a) = {w1, w2}, s1(b) = {w1, w3}; s2(a) = {w1, w2}, s2(b) = {w2, w4}; s3(a) =

{w3, w4}, s3(b) = {w1, w3}; s4(a) = {w3, w4}, s4(b) = {w2, w4}.
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Definition 3 (Collective Choice Functions). Let G ⊆ A and let S be the
set of selection functions s : G �→ ℘(W) such that s(a) ∈ Choice(a) for all a ∈ G.
Then

Choice(G) =

{ ⋂
a∈A

s(a) : s ∈ S

}
.

So group G’s set of possible choices is completely determined by the possible
choices of all the agents in the group G. For instance, in the example above
Choice(a, b) = {{w1}, {w2}, {w3}, {w4}}.

From the point of view of possible worlds semantics for modal logic one can
think of a partition as being generated by an equivalence relation, with which
we can associate an S5 modality. When two worlds are in the same element
of the partition assigned to a group of agents, it means that these worlds are
choice-equivalent for that group.

Definition 4. Let G ⊆ A. The choice equivalence relation ∼G ⊆ W × W is
defined to be:

w ∼G w′ iff ∃K(K ∈ Choice(G) and w, w′ ∈ K).

If w ∼G w′ we say that w and w′ are choice-equivalent for G.

The choice equivalence relation associated with a group of agents G is the inter-
section of all the relations assigned to the members of G. This relation provides
the semantics of the [G] modality.

2.3 Utilities

In order to determine whether an action is right or better than another action, we
follow Horty and take a consequentialist approach. The idea is that a normative
theory distinguishes the ideal from the nonideal worlds, or generally imposes
some order on the set of possible worlds. This has led Horty to develop utilitarian
models in which each history is assigned some value by a utility function which
encodes the order on the worlds. As before, we leave the temporal issues aside
and thus assign values to possible worlds, but we also deviate from Horty in
another respect.

We view the values assigned to the possible worlds as utilities in the game-
theoretic or economical sense. In this view it is obvious that different agents can
assign different values to the same worlds. Consequentialist normative theories,
in particular utilitarianism, use these utilities to determine the value of actions.
The value of a world depends both on which individuals one counts as part of
the moral community and also on the relative weight one assigns to the interests
of each of the members in the community. In this paper we leave it open which
individuals are members of the moral community, but, in order to keep things
simple, we let the interests of each individual in that community count equally.
This leads to a simple calculation of the average utility when determining the
value of a possible world. Hence, we extend the utility function U to groups of
agents by stipulating that
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UG(w) =
1
|G|

∑
a∈G

Ua(w)

where |G| denotes the cardinality of G, and let U∅(w) = 0.

2.4 F-Dominance

In this section, we shall define and investigate the notion of F -dominance, a
notion that will be central to our semantics for formulas of the form  F

G φ. When
a group G performs a collective action by choosing an option K from Choice(G),
it constrains the set W of possible worlds to the set K of possible worlds. It may
be, however, that the agents who are not members of G (and thus are members
of the group A − G) perform a collective action L, thereby constraining the set
K to the set of possible worlds K ∩ L. Hence, G usually will not be able to
fully determine the outcome of its collective actions, since the final outcome also
depends on the actions of agents in A − G. Hence, the outcome of a collective
action is, in this sense, uncertain. Nevertheless, we can define an F -dominance
relation �F

G over G’s choices. If K and K ′ both are in Choice(G), then, intuitively,
K �F

G K ′ is true if and only if K promotes the interests of group F at least as
well as K ′, whatever the collective action of the agents in A−G may be. Hence,
we insert an interest group F in Horty’s Definitions 4.1 and 4.5 (Horty 2001,
p. 60 and p. 68) to define F -dominance:

Definition 5 (F-Dominance). Let F ,G ⊆ A. Let K, K ′ ∈ Choice(G). Then
K �F

G K ′ (K weakly F -dominates K ′ for G) is defined to be:

K �F
G K ′ iff for all S ∈ Choice(A − G) and for all w, w′ ∈ W

it holds that if w ∈ K ∩ S and w′ ∈ K ′ ∩ S, then
UF(w) ≥ UF (w′)

As usual, K �F
G K ′ if and only if K �F

G K ′ and K ′ 	�F
G K. We shall say that

K strongly F -dominates K ′ for G, if K �F
G K ′.

It is easy to check that F -Dominance has the following properties:9

Lemma 1 (Properties of F-Dominance). Let F ,G ⊆ A. Let K, K ′, K ′′ ∈
Choice(G). Then

(i) If K �F
G K ′, then K �F

G K ′

(ii) If K �F
G K ′ and K ′ �F

G K ′′, then K �F
G K ′′

(iii) If K �F
G K ′ and K ′ �F

G K ′′, then K �F
G K ′′

(iv) If K �F
G K ′ and K ′ �F

G K ′′, then K �F
G K ′′

(v) If K �F
G K ′ and K ′ �F

G K ′′, then K �F
G K ′′

(vi) If K �F
G K ′, then K ′ 	�F

G K

(vii) K 	�F
G K.

9 Compare Horty’s Proposition 4.7 (Horty 2001, p. 69).
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In our theorem on conflicting obligations (in Section 3), we shall need a lemma
to infer F -dominance relations between choices of a group G1 ∪ G2 from F -
dominance relations between choices of a subgroup G1.

Lemma 2. Let F ,G1,G2 ⊆ A such that G1 ∩ G2 = ∅. Let K, K ′ ∈ Choice(G1)
and L ∈ Choice(G2). Then

If K �F
G1

K ′, then (K ∩ L) �F
(G1∪G2) (K ′ ∩ L).

Proof. Assume that K �F
G1

K ′. Then for all M ∈ Choice(A − G1) and for all
w, w′ ∈ W it holds that if w ∈ K ∩M and w′ ∈ K ′ ∩M , then UF (w) ≥ UF(w′).
Suppose that N ∈ Choice(A−(G1∪G2)) and w ∈ K∩L∩N and w′ ∈ K ′∩L∩N .
It holds that L ∩ N ∈ Choice(A − G1). Hence, UF (w) ≥ UF (w′). Therefore,
(K ∩ L) �F

(G1∪G2) (K ′ ∩ L). !"

2.5 Semantics

The language introduced in Section 2.1 is interpreted in consequentialist models
M = 〈W, A, Choice, V, U〉, which consist of a set of possible worlds, a finite set of
agents, a choice function for the agents, a valuation that assigns a set of possible
worlds to each atomic proposition, and a utility function that assigns a value for
each agent to each world.

Most of the semantics is standard. The notion of F -dominance underlies our
semantical rule for formulas of the form  F

G φ. The idea is that a group ought
to see to it that φ iff each action the group can take that does not lead to φ
is strongly dominated by an action that does lead to φ, moreover this second
action is only dominated by actions that also lead to φ. More precisely: a group
G ought to see to it that φ in the interest of a group F if and only if every choice
K in Choice(G) that does not guarantee φ is strongly F -dominated for G by a
choice K ′ in Choice(G) that does guarantee φ and every choice K ′′ in Choice(G)
that weakly F -dominates K ′ for G also guarantees that φ.

Definition 6 (Semantics). Let M = 〈W, A, Choice, V, U〉 be a consequention-
alist model and let w ∈W. Let p ∈ P and let φ, ψ ∈ L. Then

(i) M/w |= p iff w ∈ V(p)

(ii) M/w |= ¬φ iff M/w 	|= φ

(iii) M/w |= φ ∧ ψ iff M/w |= φ and M/w |= ψ

(iv) M/w |= �φ iff for all w′ in W it holds that M/w′ |= φ

(v) M/w |= [G]φ iff for all w′ in W with w ∼G w′ it holds that
M/w′ |= φ

(vi) M/w |=  F
G φ iff for all K in Choice(G) with K 	⊆ [[φ]] there is

a K ′ in Choice(G) with K ′ ⊆ [[φ]], such that
(1) K ′ �F

G K (2) for all K ′′ in Choice(G) with
K ′′ �F

G K ′ it holds that K ′′ ⊆ [[φ]]
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We write M |= φ, if for all w in W it holds that M/w |= φ. Moreover, we write
|= φ, if for all M it holds that M |= φ.

These semantics generalize Horty’s semantics. Horty’s class of ‘utilitarian
models’ is a subclass of our consequentionalist models. When all the agents
in A agree on the values of all possible worlds, then Ua(w) ≥ Ua(w′) if and only
if UG(w) ≥ UG(w′) for all w, w′ ∈ W, all a ∈ A, and all G ⊆ A.

The semantics for formulas of the form  F
G φ also allows one to deal with

the case where a group can perform infinitely many actions where there are no
optimal actions (that are not dominated by other actions). In such a case where
there are infinitely many actions, the rule says that a group ought to see to it
that φ iff from some point onwards the better actions all see to it that φ. If there
are only finitely many actions (or the dominance relation is well founded) one
could simplify the semantics by saying that a group ought to see to it that φ iff
each optimal action the group can take ensures that φ.

2.6 Validities

The semantics defined in the previous section makes the  F
G operator a fairly

standard deontic operator.

Lemma 3 (Validities). Let φ, ψ ∈ L. Then

DF
G |=  F

G φ→ ♦[G]φ
REF

G If |= φ↔ ψ, then |=  F
G φ ↔  F

G ψ

NF
G If |= φ, then |=  F

G φ

MF
G |=  F

G (φ ∧ ψ)→ ( F
G φ ∧ F

G ψ)
CF

G |= ( F
G φ ∧  F

G ψ)→  F
G (φ ∧ ψ)

Proof. The proofs of DF
G , REF

G , NF
G , MF

G are straightforward. For a proof
of CF

G , see Horty (2001), pp. 166-167. !"
This set of validities does not capture the whole logic as a complete axiomatiza-
tion would. We do not attempt to give such an axiomatization in this paper. One
can see that validities concerning the relation between different deontic opera-
tors (i.e. for operators  F1

G1
and  F2

G2
, where all these groups may be different) do

not occur in the list. In Section 3 we study one relation between such operators.

2.7 The Prisoner’s Dilemma

Let us illustrate our semantics for multi-agent deontic logic with an analysis of
the Prisoner’s Dilemma. We take its standard version from Osborne and Ru-
binstein (1994), p. 17. The Prisoner’s Dilemma is a two-player strategic game,
represented by the following pay-off matrix:

Don’t confess Confess

Don’t confess 3, 3 0, 4

Confess 4, 0 1, 1
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In this game, the Nash-equilibrium is reached when both players confess and the
outcome is 〈1, 1〉. Many find this solution counterintuitive, as the outcome 〈1, 1〉
differs from the Pareto-efficient outcome 〈3, 3〉.

If we read p as “a confesses” and q as “b confesses”, we can translate the
payoff-matrix of the Prisoner’s Dilemma into our model theory as the con-
sequentionalist model M = 〈W, A, Choice, V, U〉, where W = {w1, w2, w3, w4},
A = {a, b}, Choice(a) = {{w1, w2}, {w3, w4}}, Choice(b) = {{w1, w3}, {w2, w4}},
V(p) = {w3, w4}, V(q) = {w2, w4}, and

Ua(w1) = 3 Ua(w2) = 0 Ua(w3) = 4 Ua(w4) = 1
Ub(w1) = 3 Ub(w2) = 4 Ub(w3) = 0 Ub(w4) = 1.

First, our semantics for multi-agent deontic logic rules that in the present model
the agents a and b ought to see to it that the Nash-equilibrium is reached, if
they base their obligations on their own individual interests only, i.e.,

M |= ( a
ap) ∧ ( b

bq).

Note that M |=  a
ap if and only if for each K ∈ Choice(a) with K 	⊆ [[p]]

there is a K ′ ∈ Choice(a) with K ′ ⊆ [[p]], such that K ′ �a
a K, and for each

K ′′ ∈ Choice(a) with K ′′ �α
α K ′ it holds that K ′′ ⊆ [[p]]. By the definition of

M, we have Choice(a) = {{w1, w2}, {w3, w4}}. It holds that {w1, w2} 	⊆ [[p]] and
{w3, w4} ⊆ [[p]]. Hence, we only need to check (i) {w3, w4} �a

a {w1, w2} and (ii)
{w3, w4} �a

a {w3, w4}.
Ad (i). It holds that {w3, w4} �a

a {w1, w2} if and only if {w3, w4} �a
a {w1, w2}

and {w1, w2} 	�a
a {w3, w4}. The first conjunct holds if and only if for all K ′′ ∈

Choice(b) and for all w, w′ ∈ W it holds that if w ∈ {w3, w4} ∩ K ′′ and w′ ∈
{w1, w2} ∩ K ′′, then Ua(w) ≥ Ua(w′). Since Choice(b) = {{w1, w3}, {w2, w4}},
this is indeed the case.

The second conjunct holds if and only if there is a K ′′ ∈ Choice(b) and there
are w, w′ ∈ W such that w ∈ {w1, w2} ∩ K ′′ and w′ ∈ {w3, w4} ∩ K ′′ and
Ua(w) < Ua(w′). Any K ′′ ∈ Choice(b) suffices.

Ad (ii). It holds that {w3, w4} �a
a {w3, w4} if and only if for all K ′′ ∈ Choice(b)

and for all w, w′ ∈W it holds that if w ∈ {w3, w4}∩K ′′ and w′ ∈ {w3, w4}∩K ′′,
then Ua(w) ≥ Ua(w′). As for each K ′′ ∈ Choice(b) it holds that {w3, w4} ∩K ′′

is a singleton, the requirements hold trivially.
Second, our semantics rules that in the present model the agents a and b

ought to see to it that the Pareto-efficient outcome is reached, if they base their
obligations on the collective interests of the group {a, b}, i.e.,

M |=  a,b
a,b(¬p ∧ ¬q).

Third, it is not the case that agents a and b individually ought to see to it
that the Pareto-efficient outcome is reached, if they base their obligations on the
collective interest of the group {a, b}, i.e.,

M 	|= ( a,b
a (¬p ∧ ¬q)) ∨ ( a,b

b (¬p ∧ ¬q)).
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This is exactly what is intuitively required, as a is unable to see to it that ¬q
and b is unable to see to it that ¬p. As we have seen in the previous section, this
must be so as ‘ought’ implies ‘can’.

Fourth, the agent a ought to see to it that ¬p, if a bases his obligations on
the collective interests of the group {a, b}. Likewise, the agent b ought to see to
it that ¬q in the interest of {a, b}. Hence,

M |= ( a,b
a ¬p) ∧ ( a,b

b ¬q).

Therefore, our deontic logic provides a precise description of the different
senses of what agents ought to do, once they have chosen to maximize their
individual utility or the utility of a group to which they belong. It does not,
of course, solve the Prisoner’s Dilemma: our logic does not prescribe agents to
opt for the interests of a group to which they belong rather than to follow their
individual interests, nor the other way round.

3 On Conflicts of Obligations

Let us finally present our characterization theorem stating the exact conditions
under which the formula  F

G1
φ∧ F

G2
¬φ is a contradiction.10 With our theorem,

we give a partial answer to a question raised by von Wright: “In order to answer
the question whether a norm and its negation-norm are ... mutually exclusive,
we ought to give criteria for the possible co-existence of norms” (von Wright
1963, p. 140).

Theorem 1. Let G1,G2 ∈ A. Then

|= ¬(( F
G1

φ) ∧ ( F
G2
¬φ)) iff G1 ⊆ G2 or G2 ⊆ G1 or G1 ∩ G2 = ∅.

Proof. (⇐) [Case 1] Assume G1 ⊆ G2. Suppose w |= ( F
G1

φ) ∧ ( F
G2
¬φ). We first

show that (�) there is a M� ∈ Choice(G2) with M� 	⊆ [[¬φ]]. Let M ∈ Choice(G2).
If M 	⊆ [[¬φ]], we are done. Otherwise, suppose M ⊆ [[¬φ]]. Note that M = K∩L
with K ∈ Choice(G1) and L ∈ Choice(G2 − G1). Then K 	⊆ [[φ]]. Hence, since
w |=  F

G1
φ, there is a K� ∈ Choice(G1) with K� ⊆ [[φ]]. Let M� = K� ∩ L. Then

M� ∈ Choice(G2) and M� 	⊆ [[¬φ]]. Therefore, (�) has been established.
Hence, since w |=  F

G2
¬φ, there is a M ′ ∈ Choice(G2) with M ′ ⊆ [[¬φ]], such

that M ′ �F
G2

M� and for all M ′′ ∈ Choice(G2) with M ′′ �F
G2

M ′ it holds that
M ′′ ⊆ [[¬φ]]. Note that M ′ = K ′∩L′ with K ′ ∈ Choice(G1) and L′ ∈ Choice(G2−
G1). Then K ′ 	⊆ [[φ]]. Hence, since w |=  F

G1
φ, there is a K ′′ ∈ Choice(G1) with

K ′′ ⊆ [[φ]] and K ′′ �F
G1

K ′′. By Lemma 2, it holds that K ′′ ∩ L′ �F
G2

K ′ ∩ L′.
Note that K ′′ ∩ L′ ⊆ [[φ]]. Finally, substituting K ′′ ∩ L′ for M ′′, we find that
K ′′ ∩ L′ ⊆ [[¬φ]]. Contradiction. Therefore, |= ¬(( F

G1
φ) ∧ ( F

G2
¬φ)).

[Case 2] Assume G2 ⊆ G1. Analogous to Case 1.
[Case 3] Assume G1 ∩ G2 = ∅. Suppose w |= ( F

G1
φ) ∧ ( F

G2
¬φ). By DF

G of
Lemma 2.6, w |= ♦[G1]φ and w |= ♦[G2]¬φ. Hence, there are a K ∈ Choice(G1)
10 For a discussion of characterizations of frame conditions by modal formulas, see van

Benthem (1983) and van Benthem (1984).
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with K ⊆ [[φ]] and a L ∈ Choice(G2) with L ⊆ [[¬φ]]. By our assumption and
Definition 3, K ∩ L 	= ∅. Contradiction. Therefore, |= ¬(( F

G1
φ) ∧ ( F

G2
¬φ)).11

(⇒) Assume G1 	⊆ G2, G2 	⊆ G1, and G1 ∩ G2 	= ∅. Then there are (at
least) three agents. We define M = 〈W, A, Choice, V, U〉. Let W = {wi : 1 ≤
i ≤ 8}. Let A = {a, b, c}. Let Choice(a) = {{w1, w2, w3, w4}, {w5, w6, w7, w8}},
Choice(b) = {{w1, w3, w5, w7}, {w2, w4, w6, w8}}, Choice(c) = {{w1, w2, w5, w6},
{w3, w4, w7, w8}}. Let V(p) = {w2, w4}. Let Ua(wi) = 0, if i ∈ {1, 5, 6, 8} and
Ua(wi) = 1, if i ∈ {2, 3, 4, 7}. This situation is represented by the following
matrices:

0
w1

1 p
w2

1
w3

1 p
w4

0
w5

0
w6

1
w7

0
w8

where a chooses between the left and right matrix, b chooses between the left and
right columns, and c chooses between the upper and lower rows. Note that for
all K ∈ Choice(a, b) with K 	= {w2, w4} it holds that {w2, w4} �a

a,b K and that
for all L ∈ Choice(b, c) with L 	= {w3, w7} it holds that {w3, w7} �a

b,c L. Hence,
M |=  a

a,bp and M |=  a
b,c¬p. Hence, M 	|= ¬(( a

a,bp) ∧ ( a
b,c¬p)). Therefore,

	|= ¬(( F
G1

φ) ∧ ( F
G2
¬φ)). !"

Hence, only when there are at least three agents a, b, and c, such that {a, b} ⊆ G1
and {b, c} ⊆ G2, can a model be built in which it does not hold that  F

G1
φ ∧

 F
G2
¬φ. The agent b cannot make a principled choice from Choice(b) to maximize

the interest of group F . If b is taken to belong to group G1, he has to choose
{w2, w4, w6, w8} to maximize F ’s interest. On the other hand, if b is seen as a
member of group G2, he must rather choose {w1, w3, w5, w7} to maximize F ’s
interest. Obviously, b cannot choose both options. The agent b is wearing two
hats here.

4 Conclusion

In Section 2.7 we showed that, when one takes the Prisoner’s Dilemma as a moral
situation, one agent can have conflicting obligations with respect to different
interests groups (himself, and the group of all agents). In Section 3 we showed
that a conflict of obligations between two groups who act in the interests of one
and the same group can only occur in situations involving at least three agents.
The agents that are members of both acting groups are in a dilemma. Do they
coordinate their actions with the one group or with the other? The fact that this
situation only occurs when there are at least three agents, and the fact that there
are two agents involved in the Prisoner’s Dilemma emphasizes the importance
of studying multi-agent situations in deontic logic. Conflicts of obligations only
occur in multi-agent context.

11 Compare Horty’s proof of Case 3 (Horty 2001, p. 48).
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Intermediate Concepts in Normative Systems

Lars Lindahl and Jan Odelstad

lars.lindahl@jur.lu.se, jod@hig.se

Abstract. In legal theory, a well-known idea is that an intermediate
concept like “ownership” joins a set of legal consequences to a set of
legal grounds. In our paper, we attempt to make the idea of a joining
between grounds and consequences more precise by using an algebraic
representation of normative systems earlier developed by the authors.
In the first main part, the idea of intermediate concepts is presented
and earlier discussions of the subjects are outlined. Subsequently, in the
second main part, we introduce a more rigorous framework and develop
the formal theory. In the third part, the formal framework is applied to
examples and some remarks on a methodology of intermediate concepts
are given.

1 The Problem of Intermediaries

1.1 Introduction

The role played by concept formation in philosophy and science has been varying.
After some decades of rather low interest, there are signs indicating that the
situation is changing. The aim of the present paper is to contribute to the study of
this field. More specifically, our contribution aims at presenting a framework for
analysing the role of what we call “intermediaries” as links between conceptual
structures.

In [5], we presented a first working model for analysing the notion of inter-
mediary. The present paper is different in several respects. The framework to be
developed is based on the theory of Boolean algebra instead of lattice theory.
The structures dealt with are not necessarily finite. The basic kind of relations
considered are quasi-orderings rather than partial orderings as was the case in
our previous paper, where partial orderings were introduced by a transition to
equivalence classes. The framework is abstract in the sense that the main results
are not tied to a specific interpretation in terms of conditions as was the case
in the earlier paper.1 Thus, the case where the domains of the orderings have
conditions, or equivalence classes of conditions, as their members only plays the
part of one of several models for the theory.

The first part of the paper presents the background of the idea of interme-
diaries. The second part introduces the formal framework. In the third part,
the formal tools are used to clarify different types of intermediaries in concept
formation.
1 For our previous development of the abstract theory, see, in particular, [6] with

further references. Cf. [8].

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 187–200, 2006.
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1.2 Legal Concepts as Intermediaries

Facts, Deontic Positions and Intermediaries. Legal rules attach obliga-
tions, rights, deontic positions to facts, i.e., actions, events, circumstances. De-
ontic positions are, so we might say, legal consequences of these facts:

Facts Deontic positions
Events, actions, circumstances Obligations, claims, powers etc.

Facts and deontic positions are objects of two different sorts; we might call them
Is-objects and Ought-objects. In a legal system, when Ought-objects are said to
be “attached to” or to be “consequences of” Is-objects, there is sense of direction.
In a legal system, inferences and arguments go from Is-objects to Ought-objects,
not vice versa.

In the scheme just shown, something very essential is missing, namely the
great bulk of more specific legal concepts. A few examples are: property, tort,
contract, trust, possession, guardianship, matrimony, citizenship, crime, respon-
sibility, punishment. These concepts are links between grounds on the left hand
side and normative consequences on the right hand side of the scheme just given:

Facts Links Deontic positions
Events Ownership Obligations
Actions Valid contract Claims

Circumstances Citizenship (etc.) Powers (etc.)

Using this three-column scheme, we might say that ownership, valid contract,
citizenship etc. are attached to certain facts, and that deontic positions, in turn,
are attached to these legal positions.

To exemplify: Among the facts justifying an assertion that there is a valid
contract between two parties are: that the parties have made an agreement, that
they were in a sane state of mind when agreeing, that no force or deceit was
used by any of them in the process, and so on. The deontic positions attached
to there being a valid contract between them depend on what they have agreed
on but are formulated in terms of claims and duties, legal powers etc. In the
example, the facts are stated in terms of communicative acts, mental states and
other descriptive notions, while the deontic positions are stated in normative or
deontic terms.

Wedberg and Ross on Ownership. In the 1950’s, each of the two Scandina-
vians Wedberg and Ross proposed the idea that a legal term such as “ownership”,
or “x is the owner of y at time t” is a syntactical tool serving the purpose of
economy of expression of a set of legal rules. In the same year 1951, when Ross
published his well-known essay “Tû-Tû” in a Danish Festschrift [10]2, Wedberg
published an essay on the same theme in the Swedish journal Theoria. Possibly,
the two authors arrived at these ideas independently of each other.3 In any case
no priority can be established.
2 English translation [11].
3 Cf [12] at p. 266, footnote 15, and [11] at p. 822, footnote 6.
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As an example, the function of the term “ownership” is illustrated as follows
by Ross [10], [11]:

F1 →
F2 →
F3 →

Fp →

C1
C2
C3

Cn

O →

Ross’s scheme is aimed at representing a set of legal rules concerning ownership
in a particular legal system (for example the rules on ownership in Danish law
at a specific time). In the picture, the letters are to be interpreted as follows:

F1 − Fp for: x has lawfully purchased y, x has inherited y, x has acquired y
by prescription, and so on.

C1 − Cn for: judgment for recovery shall be given in favor of x against other
persons retaining y in their possession, judgment for damages shall be given
in favor of x against other persons who culpably damage y, if x has raised a
loan from z that it is not repaid at the proper time, z shall be given judgment
for satisfaction out of y, and so on.

The letter “O” is a link between the left hand side and the right hand side.
It can be read “x is the owner of y”.

In Ross’s scheme, the number of implications to ownership from the grounds
for ownership is p (since the grounds are F1, . . . , Fp); similarly the number of
implications from ownership to consequences of ownership is n (since there are
n consequences). Therefore, the total number of implications in the scheme is
p + n. On the other hand, if the rules were formulated by attaching each Cj

among the consequences to each Fi among the grounds, the number of rules
would be p · n. Consequently, by the formulation in the scheme, the number of
rules is reduced from p ·n to p + n, a number that is much smaller.4 In this way,
economy of expression is obtained.

The similarities between Wedberg’s and Ross’s ideas are striking. Both use
the example of ownership. Central ideas propounded by both of them are: By
use of the linking term, the number p · n of rules is reduced to p + n, and,
the linking term has no independent meaning (Wedberg) or has no semantical
reference (Ross).

In our view, there is a great difference between speaking of an expression like
“O is the property of P at t” as meaningless and speaking of it as being without
independent meaning. The latter way of speaking goes well together with the
view that the term has meaning but that this meaning consists precisely in its
occurrence and use in inference rules linking the term to facts, on one hand, and
to deontic consequences on the other.
4 [12] pp. 273 f.
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1.3 Intermediaries in Non-legal Contexts

Michael Dummett’s Example. Dummett distinguishes between the condi-
tions for applying a term and the consequences of its application. According to
Dummett both are part of the meaning. Dummett exemplifies by the use of the
term “Boche” as a pejorative term.

The condition for applying the term to someone is that he is of German
nationality; the consequences of its application are that he is barbarous
and more prone to cruelty than other Europeans. We should envisage
the minimal joinings in both directions as sufficiently tight as to be in-
volved in the very meaning of the word: neither could be severed without
altering its meaning. Someone who rejects the word does so because he
does not want to permit a transition from the grounds for applying the
term to the consequences of doing so. The addition of the term ‘Boche’
to a language which did not previously contain it would produce a non-
conservative extension, i.e., one in which certain statements which did
not contain the term were inferable from other statements not containing
it which were not previously inferable. [1] at p. 454.5

Dummett’s example illustrates how the use of a word is determined by two rules
(I) and (II):6

(I) Rule linking a concept a to an intermediary m:
For all x, y : If a(x, y) then m(x, y).

(II) Rule linking intermediary m to a concept b:
For all x, y : If m(x, y) then b(x, y).

If the standpoint “meaning is use” is adopted, it can be held that the meaning
of m is given by two rules (I) and (II) together. To understand the meaning of
an intermediary m is to know how it is used in such a pair of rules.

Dummett’s example is not concerned with a legal system and with an inference
from facts to deontic positions. We note, however, that the antecedent “being
of German nationality” in (I) and the consequent “being more prone . . . etc” in
(II) are conditions of “different kinds”.

5 Since the example is interesting from a philosophical point of view, we use it even
though it has the disagreeable feature of being offensive to German nationals.

6 The rules (I) and (II) can be compared to the rules of introduction and rules of
elimination, respectively, in Gentzen’s theory of natural deduction in [2]. If this
comparison is made, (I) is regarded as an introduction rule and (II) as an elimination
rule for m. An obvious difference is that while Gentzen’s introduction rules and
elimination rules are rules of inference, the rules (I) and (II) are formulated in “if,
then” sentences of predicate logic. A reason for the difference is, of course, that
Gentzen aims at providing a theory for predicate logic, and, therefore, the language
of predicate logic itself is not admissible within his theory.
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Dummett intends his example to illustrate a non-conservative extension. In
Section 3, where applications of our formal framework is discussed, we will indi-
cate how this idea is expressed within our framework.

Other well-known examples, outside the area of connections from descriptive
to normative, are the connection from physical to mental and the connection
from chemical to biological. At a very general level, in empirical science, there
is the problem of the connection from observable to theoretical.7

In some of the cases where the connection of different kinds is problematic,
the notion of supervenience is used for clarifying the nature of the connection.
Existing theories of supervenience, seem to us, however, to yield at best a very
partial insight into the nature of the relation in view. In particular, they do not
provide much information about the specific interrelations between parts of the
two different structures.

2 The Formal Framework

2.1 Introduction

As stated in Section 1.1 above, we distinguish between the abstract level of
formal analysis (to be dealt with in the present section), where a general algebraic
framework is developed, and the level of applications where the abstract theory
is used as a tool for analysing different conceptual structures (Section 3).

At the abstract algebraic level, the notion “intermediary” will not be used. In
the algebraic theory, however, a technical notion “intervenient” will be defined.
In Section 3, the notion “intervenient” will be used as a tool for analysis of
what, informally, is called “intermediaries”. More precisely, in Section 3, we will
distinguish different types of intermediaries and indicate how intermediaries can
be interrelated.

The algebraic theory contains a number of definitions of technical terms. Be-
fore going into this theory, it is appropriate briefly to suggest how the algebraic
theory can be used for analysing a normative system with intermediaries.

Let C be a non-empty set. We say that N = 〈B,∧,′ , ρ〉 is a supplemented
Boolean algebra freely generated by C if 〈B,∧,′ 〉 is a Boolean algebra freely

7 An interesting approach to the problem of intermediate terms in mechanics was
outlined in the nineteenth century by Henri Poincaré. Poincaré pointed out that a
proposition like (1) “the stars obey Newton’s laws” can be broken up into two others,
namely (2) “gravitation obeys Newton’s laws” and (3) “gravitation is the only force
acting on the stars”. Among these, proposition (2) is a definition and not subject to
the test of experiment, while (1) is subject to such a test. “Gravitation”, according
to Poincaré, is an intermediary. Poincaré maintains that in science, when there is a
relation between two facts A and B, an intermediary C is often introduced by the
formulation of one relationship between A and C, and another between C and B.
The relation between A and C, then, is often elevated to a principle, not subject to
revision, while the relation between C and B is a law, subject to such revision. See
[9], pp. 124 f., in the chapter “Is science artificial?”
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generated by C and ρ is a binary relation on B.8 The partial ordering determined
by the Boolean algebra 〈B,∧,′ 〉 is a subset of ρ. An application can be that N
is a normative system expressed in terms of a set of conditions B and a relation
ρ such that, for a, b ∈ B, aρb holds if and only if a implies b in the normative
system N .

Next, let 〈B1,∧,′ ρ/B1〉 and 〈B2,∧,′ , ρ/B2〉 be two substructures of 〈B,∧,′ , ρ〉
where B1 and B2 are disjoint, except for the zero and unit constants ⊥ and �.
In the application where N is a normative system, we can think of B1 as a set
of descriptive conditions and B2 as a set of normative conditions. If B is a set
of conditions, ⊥ stands for the absurd condition and � for the trivial condition.

Of special interest is where B contains a subset M, disjoint from B1 ∪ B2,
where, for m ∈ M, there is a ∈ B1 and b ∈ B2 such that aρm and mρb. In this
case, given certain further requirements, m will be called an “intervenient”. In
the application where N is a normative system, we can conceive of a case where
a condition m belongs neither to the set B1 of descriptive conditions nor to the
set B2 of normative conditions but where, in N , m is implied by a descriptive
condition and implies a normative condition.

2.2 The Basic Formal Framework

Boolean Quasi-orderings, Fragments and Joinings. One formal structure
that will be used in our investigation of how subsystems of different kinds are
linked is that of a Boolean quasi-ordering (Bqo). Technical concepts related
to Bqo’s, defined in previous papers are: fragments of Bqo’s, and joinings of
elements of Bqo’s. For formal definitions of a Bqo and of these related notions,
the reader is referred to [6]. A short recapitulation is as follows.

The relational structure 〈B,∧,′ , R〉 is a Boolean quasi-ordering (Bqo) if
〈B,∧,′ 〉 is a Boolean algebra and R is a binary, reflexive and transitive relation
on B (i.e. R is a quasi-ordering),⊥ is the zero element, � is the unit element, and
where R satisfies some additional requirements.9 If B = 〈B,∧,′ , R〉 is a Boolean
quasi-ordering, and 〈Bi,∧,′ 〉 is a subalgebra of 〈B,∧,′ 〉, and Ri = R/Bi, then
the structure Bi = 〈Bi,∧,′ , Ri〉 is a fragment of B. Let B, B1, B2 be Bqo’s such
that B1 and B2 are fragments of B. A joining from B1 to B2 in B is a pair 〈b1, b2〉
in B such that b1 ∈ B1, b2 ∈ B2, b1Rb2, not b1R⊥ and not �Rb2.

Narrowness and Minimal Elements. The narrowness-relation determined
by two quasi-orderings 〈B1, R1〉 and 〈B2, R2〉 is the binary relation 	 on B1×B2
such that 〈a1, a2〉 	 〈b1, b2〉 if and only if b1R1a1 and a2R2b2. 〈a1, a2〉 is a minimal
element in X ⊆ B1 × B2 with respect to 〈B1, R1〉 and 〈B2, R2〉 if there is no
〈x1, x2〉 ∈ X such that 〈x1, x2〉 
 〈a1, a2〉. The set of minimal elements in X

8 For the notion of freely generated Boolean algebras, see for example [4] p.131. Instead
of freely generated one can say independently generated.

9 (1) aRb and aRc implies aR(b ∧ c), (2) aRb implies b′Ra′, (3) (a ∧ b)Ra, (4) not
�R⊥.(Requirement (4) excludes the possibility that R = B1 × B2, which holds for
inconsistent systems.)
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is denoted minR2
R1

X . When there is no risk of ambiguity we write just minX .
We note that 	 is a quasi-ordering. We let � denote the equality part of 	 and

 the strict part of 	. The equality part � is an equivalence relation and we
denote the equivalence class determined by 〈b1, b2〉 ∈ B1 ×B2 by [b1, b2] �.10

Boolean Joining Systems (Bjs). Another important structure is that of a
Boolean joining-system (Bjs), see [7]. A Boolean joining-system is an ordered
triple 〈B1,B2, J〉 such that B1 = 〈B1,∧,′ , R1〉 and B2 = 〈B2,∧,′ , R2〉 are Boolean
quasi-orderings and J ⊆ B1 × B2 , J 	= ∅ and three specific requirements are
satisfied.11

If B, B1 and B2 are Boolean quasi-orderings such that B1 and B2 are fragments
of B and J is the set of joinings from B1 to B2 in B, then 〈B1,B2, J〉 is a Bjs.
Also, if a1, b1 ∈ B1, a2, b2 ∈ B2, and 〈a1, a2〉 ∈ J, then 〈a1, a2〉 	 〈b1, b2〉 implies
〈b1, b2〉 ∈ J.

Generating of Joining-Spaces. We note that if B1 and B2 are Bqo’s and

J = {J ⊆ B1 ×B2| 〈B1,B2, J〉 is a Bjs} ,

then J is a closure system.
If 〈B1,B2, J〉 is a Boolean joining-system, we call J the joining-space from

B1 to B2 in 〈B1,B2, J〉. J is the family of all joining-spaces from B1 to B2. If
K ⊆ B1 ×B2 let

[K]J = ∩{ J | J ∈ J , J ⊇ K } .

[K]J is the joining-space over B1 and B2 generated by K.12

If J is the joining-space from B1 to B2 generated by K but J is not generated
by any proper subset of K, then we say that J is non-redundantly generated
by K.

Connectivity. A Bjs 〈B1,B2, J〉 satisfies connectivity if whenever 〈c1, c2〉 ∈ J
there is 〈b1, b2〉 ∈ J such that 〈b1, b2〉 is a minimal joining in 〈B1,B2, J〉 and
〈b1, b2〉 	 〈c1, c2〉.

Suppose that 〈B1,B2, J〉 is a Bjs that satisfies connectivity. Then

J = { 〈b1, b2〉 ∈ B1 ×B2 : (∃ 〈a1, a2〉 ∈ min J : 〈a1, a2〉 	 〈b1, b2〉) } .

10 The sign � should be written as a subscript. The reason why this is not done is
typograhical.

11 The requirements are: (1) for all b1, c1 ∈ B1 and b2, c2 ∈ B2, 〈b1, b2〉 ∈ J and
〈b1, b2〉 	 〈c1, c2〉 implies 〈c1, c2〉 ∈ J, (2) for any C1 ⊆ B1 and b2 ∈ B2, if 〈c1, b2〉 ∈ J
for all c1 ∈ C1, then 〈a1, b2〉 ∈ J for all a1 ∈ lubR1C1, (3) for any C2 ⊆ B2 and
b1 ∈ B1, if 〈b1, c2〉 ∈ J for all c2 ∈ C2, then 〈b1, a2〉 ∈ J for all a2 ∈ glbR2C2. (Note
that the definitions of least upper bound (lub) and greatest lower bound (glb) for
partial orderings are easily extended to quasi-orderings, but the lub or glb of a subset
of a quasi-ordering is not necessarily unique but can consist of a set of elements.)

12 For definition and results of closure systems, see for example [3] p. 23f.
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If we use the notion of an image of a set under a relation, then we can say that
J is the image of min J under 	.

It is easy to see that if 〈B1,B2, J1〉 and 〈B1,B2, J2〉 are Bjs which satisfy
connectivity and minJ1 = min J2, then J1 = J2. Note that if we “substantially
reduce” min J , then the image of the new set under 	 is not J . To be more
precise: Suppose that 〈a1, a2〉 ∈ min J and K ⊂ min J such that if 〈a1, a2〉 �
〈b1, b2〉 then 〈b1, b2〉 /∈ K. Then it follows that the image of K under 	 is a
proper subset of J .

If in a Bjs 〈B1,B2, J〉 , B1 and B2 are complete (in a sense which is a straight-
forward generalization of the notion of completeness applied to Boolean alge-
bras), then 〈B1,B2, J〉 satisfies connectivity.

Couplings and Pair Couplings. If 〈B1,B2, J〉 is a Bjs and the number of
�-equivalence classes defined by the elements in min J is exactly one, then the
elements in min J are called couplings. If the number of equivalence classes de-
fined by the elements in minJ is exactly two, then sets consisting of one element
from each equivalence class is called a pair coupling. Thus if [b1, b2] � is the only
equivalence class, any 〈a1, a2〉 ∈ J encompasses every element of [b1, b2] �; simi-
larly, if [b1, b2] � and [c1, c2] � are the only equivalence classes, any 〈a1, a2〉 ∈ J
encompasses every element of [b1, b2] � or every element of [c1, c2] �.

Base of a Joining-Space and Counterparts. Note that if 〈B1,B2 J〉 is a
Bjs and J is generated by K, then J is also generated by min K. If 〈B1,B2, J〉
is a Bjs and J is non-redundantly generated by K and K ⊆ min J , then K is
called a base of J in 〈B1,B2, J〉.

Suppose that K, L ⊆ B1 × B2 and that K � is the set of �-equivalence
classes defined by the elements in K and L � is the set of �-equivalence classes
defined by the elements in L. If there is a bijection ϕ between K � and L �
such that ϕ(x) = y if and only if there is 〈a1, a2〉 , 〈b1, b2〉 ∈ B1 × B2 such that
〈b1, b2〉 ∈ x and 〈a1, a2〉 ∈ y and 〈a1, a2〉 � 〈b1, b2〉 , then we say that K and L
are �-counterparts.

If K and L are �-counterparts, then the image of K under 	 is the same as
the image of L under 	, and the sets of joinings generated by K and L are the
same.

If, for a base K of J in 〈B1,B2, J〉, K and L are �-counterparts, then we say
that L up to �-equivalence is the base of J in 〈B1,B2, J〉.

2.3 Intervenients

Weakest Grounds and Strongest Consequences. Suppose that 〈B,∧,′ , ρ〉
is a supplemented Boolean algebra, B1, B2 ⊆ B and m ∈ B\B1. Then a1 ∈ B1 is
one of the weakest grounds in B1 of m with respect to 〈B,∧,′ , ρ〉 if a1ρm, and it
holds that if there is b1 ∈ B1 such that b1ρm, then b1ρa1. Furthermore, a2 ∈ B2
is one of the strongest consequences of m in B2 with respect to 〈B,∧,′ , ρ〉 if
mρa2, and it holds that if there is b2 ∈ B2 such that mρb2, then a2ρb2.
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Definition of Intervenient. Suppose that C is a non-empty set and that
〈B,∧,′ 〉 is the Boolean algebra freely generated by C. Suppose further that
N = 〈B,∧,′ , ρ〉 where ρ is a binary relation over B, i.e. N is a supplemented
Boolean algebra extended by the binary relation ρ (cf. above, Section 2.1). (Note
that N is not necessarily a Boolean quasi-ordering.)

A Bjs 〈B1,B2, J〉 lies within a supplemented Boolean algebra 〈B,∧,′ , ρ〉 if
〈B1,∧,′ 〉 and 〈B2,∧,′ 〉 are subalgebras of 〈B,∧,′ 〉, B1∩B2 = {�,⊥}, ρ|B1 = R1
and ρ|B2 = R2, and ρ| (B1 ×B2) = J .

Suppose that N = 〈B,∧,′ , ρ〉 is a supplemented Boolean algebra and that B1
and B2 are disjoint subsets of B such that 〈B1,∧,′ 〉 and 〈B2,∧,′ 〉 are subalgebras
of 〈B,∧,′ 〉. An element m ∈ B\ (B1 ∪B2) is an intervenient between B1 and B2
in 〈B,∧,′ , ρ〉 if there is 〈a1, a2〉 ∈ ρ such that a1 is a weakest ground in B1 of
m with respect to 〈B,∧,′ , ρ〉 and a2 is a strongest consequence in B2 of m with
respect to 〈B,∧,′ , ρ〉. We say that the intervenient m corresponds to the joining
〈a1, a2〉 from B1 and B2.

We note that in a Bjs 〈B1,B2, J〉 lying within N , an intervenient m between
B1 and B2 can be used for inferring joinings from B1 to B2. That m is an inter-
venient in 〈B,∧,′ , ρ〉 between B1 and B2 corresponding to the joining 〈a1, a2〉
in 〈B1,B2, J〉 implies that 〈a1, a2〉 	 〈b1, b2〉 if and only if b1ρmρb2.

The fact that, in the way shown, intervenients can be used for inferring join-
ings, makes it appropriate to speak of an intervenient as a “vehicle of inference”.

JoinM and Systems of Intervenients. Recalling the presuppositions con-
cerning N = 〈B,∧,′ , ρ〉 above, let M ⊆ B and M ∩ (B1 ∪B2) = ∅. We say that
M produces the set

K = { 〈b1, b2〉 ∈ B1 ×B2 | ∃m ∈M : b1ρmρb2 } .

The set of joinings corresponding to a set of intervenients M between B1 and
B2 is denoted JoinM where

JoinM = { 〈b1, b2〉 ∈ B1 ×B2 | ∃m ∈ M : m corresponds to 〈b1, b2〉 }
Note that M produces K iff K is the image of JoinM under 	. We say that
M non-redundantly produces K if M produces K but no proper subset of M
produces K.

If M is a set of intervenients such that JoinM is a base of J, we say that M
is a base of intervenients for J . Of special interest is the case where M consists
of a set of generators for the Boolean algebra 〈B,∧,′ 〉 in N .

Three Types of Intervenients. Suppose that m is an intervenient between
B1 and B2 in 〈B,∧,′ , ρ〉, corresponding to the joining 〈a1, a2〉 in 〈B1,B2, J〉.
Then a classification can be made according to whether 〈a1, a2〉 (1) is a joining
that is not a minimal joining, (2) is a minimal joining that is not a pair coupling
or coupling, or (3) is a pair coupling or coupling. In case (1), we say that m
corresponds to a mere joining, in case (2), that m corresponds to a mere minimal
joining, and, in case (3), that m corresponds to a pair coupling or coupling.
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3 Applications

3.1 The cis Models

In what follows we shall be interested in a particular model of the abstract theory
of quasi-orderings, Boolean quasi-orderings, and Boolean joining-systems. This
model is the model of a condition implication structure (cis).13 A cis model of
a Bqo 〈B,∧,′ , R〉 is obtained if B is a domain of conditions, and aRb represents
that a implies b. Similarly, a cis model of a Bjs 〈B1,B2, J〉 is obtained if B1,B2
are cis models of Bqo’s and, for a1 ∈ B1 and a2 ∈ B2, a1Ja2 represents that a1
implies a2.

In simple cases, conditions can be denoted by expressions, using the sign of the
infinitive, such as “to be of German nationality”, ”to be a citizen of the U.S.”,
“to be a child of”, ”to be entitled to inherit”, or by corresponding expressions in
the ing-form, like “being of German nationality” etc. Often, however, conditions
should appropriately be expressed by open sentences, like ”x’s promises to pay
$ y to z”, “x is a citizen of state y”, ”x is entitled to inherit y”.

If a, b are conditions, we assume that a′, b′ are negations of a, b respectively,
that a ∧ b is the conjunction of a and b, and that a ∨ b is the disjunction of a
and b.14

If a Bjs 〈B1, B2, J〉 represents a normative (mini-)system, a norm in this
system is represented by a1Ja2, where a1 ∈ B1 is descriptive, while a2 ∈ B2 is
normative.

Dummett’s “Boche” Example Once More. In our formal framework, Dum-
mett’s Boche example can be represented as follows. Let N = 〈B,∧,′ , ρ〉 be a
supplemented Boolean algebra freely generated by a set C of concepts, and
let 〈B1,B2, J〉 be a Bjs which lies within N . The set B1 contains conditions
expressing different nationalities and B2 conditions expressing different psycho-
logical dispositions. Let B(1) be B extended with the term Boche and ρ(1) an
extension of ρ such that Boche is an intervenient in N (1) = 〈B(1),∧,′ , ρ(1)〉 be-
tween B1 and B2. J (1) is the extension of J as an effect of the extension of ρ
to ρ(1). Suppose that 〈a1, a2〉 is a joining in

〈B1,B2, J
(1)

〉
but not a joining in

〈B1,B2, J〉, and that the intervenient Boche corresponds to the joining 〈a1, a2〉
in

〈B1,B2, J
(1)

〉
. The question arises whether 〈a1, a2〉 is a mere joining or a

minimal joining, perhaps a coupling or pair coupling. If Dummett’s example is
perceived to be such that in N (1) Boche corresponds to a minimal joining, we
can make an extension of the system N (1) to a system N (2) = 〈B(2),∧,′ , ρ(2)〉
by adding the intervenient Berserk (See figure 1 below) corresponding to the
joining 〈b1, a2〉 in

〈B1,B2, J
(2)

〉
. In N (2) Boche corresponds to a mere joining,

since 〈c1, a2〉 = 〈a1 ∨ b1, a2〉 is a minimal joining in J (2).

13 The present section on condition implication structures recapitulates ideas presented
in earlier papers. See, in particular, [6].

14 The procedure of forming compounds can be iterated. So, for example, (a ∧ b) ∨ c is
a condition. A condition a is simple if it is not compound.
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b1

Boche

c1

Berserk

Fig. 1.

c1b1 d1a1

a2 d2c2b2

m1 = purchase 

e1

e2

Fig. 2.

Minimal Joining and Modes for Acquiring Ownership. Next, we give a
legal example concerning modes for ownership acquisition. The legal system we
study is represented by the supplemented Boolean algebra 〈B,∧,′ , ρ〉. The legal
rules of ownership are expressed in terms of a set M of conditions: purchase m1,
inheritance m2, occupation m3, specification m4, ownership m5 (See figure 2
above). M is a subset of B. B1 is a subset of B containing the following con-
ditions: a1 (making a contract etc.), b1 (having particular kinship relationship),
c1 (appropriating something not owned), d1 (creating a valuable thing out of
worthless material), e1 = 〈a1 ∨ b1 ∨ c1 ∨ d1〉. The weakest grounds in B1 of the
conditions in M with respect to 〈B,∧,′ , ρ〉 are described by the following set G
of ordered pairs: 〈a1, m1〉, 〈b1, m2〉, 〈c1, m3〉, 〈d1, m4〉, 〈e1, m5〉. The strongest
consequences in B2 ⊆ B of the conditions in M with respect to 〈B,∧,′ , ρ〉 are
described by the following set C of ordered pairs: 〈m1, a2〉, 〈m2, b2〉, 〈m3, c2〉,
〈m4, d2〉, 〈m5, e2〉 , where e2 = 〈a2 ∨ b2 ∨ c2 ∨ d2〉. Note that G∪C ⊆ ρ and that
M is a set of intervenients from B1 to B2 in 〈B,∧,′ , ρ〉.

Let the joining-space J from B1 = 〈B1,∧,′ , ρ|B1〉 to B2 = 〈B2,∧,′ , ρ|B2〉 be
characterized by G and C in the following sense: J is the the joining-space gener-
ated by JoinM . Then m1 corresponds to 〈a1, a2〉, m2 corresponds to 〈b1, b2〉, m3
corresponds to 〈c1, c2〉, m4 corresponds to 〈d1, d2〉 and m5 corresponds to 〈e1, e2〉.
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Each of 〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉, 〈d1, d2〉 and 〈e1, e2〉 is a minimal joining in J .
Note that M is not a base of intervenients for J but under plausible assumptions,
it can be assumed that the subset {m1, . . . , m4} is such a base. Then the Bjs
〈B1,B2, J〉 can be described by the system 〈B1, M,B2〉 which can appropriately
be called a ground-intervenient-consequence-system, abbreviated a GIC-system.

e2

c1b1 d1
a1

e1

e1,e2 coupling m5 = ownership 

Fig. 3.

Ownership as Corresponding to a Coupling. Recalling the example of
the previous subsection with 〈B1,B2, J〉 lying within N = 〈B,∧,′ , ρ〉, let N =
〈B,∧,′ , ρ〉 be exchanged for N ∗ = 〈B∗,∧,′ , ρ∗〉, where m5 (ownership) is a mem-
ber of B∗, but where a2, b2, c2, d2 and m1, . . . , m4 are not members of B∗ and
where ρ∗ is restricted accordingly. Thus subset B∗

1 of B∗ is as B1 in the previous
example, but a2, b2, c2, d2 are not members of subset B∗

2 . In N ∗, (like in N ), e1 is
a weakest ground for m5 and e2 is a strongest consequence of m5. The set M of
intervenients from B1 to B∗

2 , however, has m5 as its only member.In 〈B∗
1 ,B∗

2 , J
∗〉,

〈e1, e2〉 is the only member of minJ∗. Therefore 〈e1, e2〉 is a coupling (see Sec-
tion 2.2) and, in the example, m5 (ownership) corresponds to a coupling (See
figure 3 above). This system is strikingly similar to Ross’s scheme, since Ross
(like Wedberg) does not take into account such consequences that are specific to
particular modes of acquisition such as purchase, inheritance, occupation etc.15

3.2 The Methodology of Intermediaries in Legal Systems

From the point of view of methodology, there is the task of formulating rational
principles for constructing a system with concepts that, in a Bjs representation,
are appropriately represented by intervenients. Three aspects to be taken into
account are: (i) economy of expression, (ii) efficient inference, and (iii) adaptation
to linguistic usage and commonly made distinctions.

A concept appropriately represented by an intervenient corresponding to a
minimal joining, a pair coupling, or a coupling will serve the purpose of economy
of expression and efficient inference. We recall the discussion concerning owner-
ship as corresponding to a minimal joining or a coupling.
15 Thus in the Bjs 〈B∗

1 , B∗
2 , J∗〉 lying within N ∗, B∗

2 is generated by those simple con-
ditions that are consequences of ownership regardless of mode of acquisition.
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With regard to concepts represented by intervenients corresponding to mere
joinings, considerations relating to economy of expression and efficient inference
do not justify having these concepts in the system. What comes into focus is
rather aspect (iii). Here, we can distinguish two situations:

One is the case where, in the appropriate representation of linguistic usage,
several grounds a1, b1, . . . have the same strongest consequence a2. If, in a Bjs
representing linguistic usage, an intervenient corresponding to 〈a1 ∨ b1 ∨ . . . , a2〉
does not appropriately represent linguistic usage and commonly made distinc-
tions, this usage might sometimes be more appropriately represented by a Bjs
with particular intervenient(s) corresponding to one or more of 〈a1, a2〉, 〈b1, a2〉
etc., even though these are mere joinings. Thus in Dummett’s example (see
above), where the intervenient Boche corresponds to the mere joining 〈a1, a2〉.

The dual situation is where, in the representation of linguistic usage, a1 is
the weakest ground for several consequences a2, b2, . . . If, in the Bjs representa-
tion, an intervenient corresponding to 〈a1, a2 ∧ b2 ∧ . . .〉 is not an appropriate
representation of usage, a better representation can sometimes be achieved with
particular intervenient(s) corresponding to one or more of the mere joinings
〈a1, a2〉, 〈a1, b2〉 etc.

4 Conclusion

As exemplified in the foregoing, intermediate concepts (intermediaries) play an
essential role in normative systems. In the paper, we have used an algebraic
framework, previously developed by us, for representing normative systems.
Within this framework, we have outlined a theory of intervenients including
weakest grounds and strongest consequences and bases of intervenients. Also,
we have taken a first step towards a typology of intervenients. This theory is
intended as a means for analysing intermediate concepts, and we have sketched
its application in a few cases. As a report on work in progress, we have focused
on systems consisting of an algebra of grounds and an algebra of consequences
and a system of intervenients between these algebras (GIC-systems). In further
developments of the theory, we intend to extend the investigation to incorporate
nets of GIC -systems, where the consequence-structure in one system can be the
ground-structure in another, and the intervenients in one GIC -system can be
grounds or consequences in another. Consequently, in more complex normative
systems, there can be hierarchies of intervenients worth investigating.
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Abstract. Several systems of monadic deontic logic are defined in terms
of systems of alethic modal logic with a propositional constant. When the
universal propositional quantifier is added to these systems, the propo-
sitional constant becomes definable in terms of the deontic operator. As
a result, the meaning of this constant becomes clearer and it becomes
easy to axiomatize the deontic fragments of the alethic modal systems.

1 Introduction

In 1950s Anderson [2, 3] and Kanger [9] suggested that deontic logic can be
defined in terms of alethic modal logic by means of the following definition:

OA = L(e ⊃ A).

Here O and L are sentential operators that turn a sentence into another sen-
tence, A is an arbitrary sentence, e is a propositional constant, and ⊃ is a binary
connective. Both Anderson and Kanger read O as “it is obligatory that,” L as “it
is necessary that” and ⊃ as “materially implies.” But their interpretations of the
constant e differed: Kanger read it as “what morality requires” and Anderson
as “the good state of affairs.” Åqvist [1] later interpreted e as a “prohairetic,
i.e., preference-theoretical constant” that may be read as “optimality or admis-
sibility,” Smiley [13] interpreted it “as expressing the content of an (unspecified)
moral code,” McNamara [11] read it as “all normative demands are met,” while
Van Fraassen [14] regarded it as the negation of “all hell breaks loose.”

The definition OA = L(e ⊃ A) may also be written as OA = e ≺ A, where
≺ is strict implication. In 1967, Anderson [4, 5] suggested that it would be bet-
ter to replace strict implication by relevant implication in this definition and
accordingly redefined O by OA = e → A, where → is relevant implication.
The resulting system avoids the so-called “fallacies of relevance” but it is un-
satisfactory because its treats O as an extensional operator in the sense that
(A↔ B)→ (OA ↔ OB) is a theorem.

In 1992, Mares [12] combined both approaches and defined O as OA = L(e →
A), where L is the necessity operator and → is relevant implication. He read e
in the same way as Anderson did.

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 201–209, 2006.
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In this paper, we will study the effects of adding a propositional quanti-
fier to these three systems. We will show that this has two noteworthy con-
sequences. First, the meaning of e becomes clearer. In suitably strong proposi-
tionally quantified versions of the systems, e turns out to be provably equivalent
with ∀p(Op ⊃ p) (in the classical case) or ∀p(Op → p) (in the two relevant
systems). Thus, McNamara’s [11] interpretation of e as “all normative demands
are met” emerges as the most appropriate one. Second, it will turn out to be
easy to find deontic systems in which e is defined in terms of O that have the
same theorems as the alethic systems.

We start with Anderson’s extensional relevant deontic logic [4, 5], then discuss
intensional relevant deontic logic along the lines of Mares [12], and end with the
oldest system, classical deontic logic. We conclude by indicating some other areas
in which our results can be applied.

2 Relevant Logic

Definition 1 (R). Relevant system R has the following axioms and rules [6,
ch. V].

R1 A → A (Self-implication)
R2 (A → B)→ ((C → A)→ (C → B)) (Prefixing)
R3 (A → (A → B))→ (A → B) (Contraction)
R4 (A → (B → C))→ (B → (A → C)) (Permutation)
R5 (A & B) → A, (A & B) → B (&Elimination)
R6 ((A → B) & (A → C)) → (A→ (B & C)) (&Introduction)
R7 A → (A ∨B), B → (A ∨B) (∨Introduction)
R8 ((A → C) & (B → C)) → ((A ∨B)→ C) (∨Elimination)
R9 (A & (B ∨ C)) → ((A & B) ∨ C) (Distribution)

R10 ¬¬A → A (Double Negation)
R11 (A → ¬B) → (B → ¬A) (Contraposition)
→E If A and A→ B are theorems, B is a theorem (Modus Ponens)
&I If A and B are theorems, A & B is a theorem (Adjunction)

Definition: A↔ B = (A → B) & (B → A).

Definition 2 (R∀p). Propositionally quantified relevant system R∀p has the fol-
lowing axioms and axiom clause in addition to those of R [7, ch. VI].

Q1 ∀p(A → B)→ (∀pA → ∀pB)
Q2 (∀pA & ∀pB)→ ∀p(A & B)
Q3 ∀pA(p) → A(B)
Q4 ∀p(A → B)→ (A → ∀pB) (p not free in A)
Q5 ∀p(A ∨B)→ (A ∨ ∀pB) (p not free in A)
Q∗ If A is an axiom then ∀pA is an axiom.

Note that Q1, Q2 and Q∗ yield Generalization (Gen): if A is a theorem then
∀pA is a theorem.
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3 Anderson’s Relevant Deontic Logic

Anderson [4, 5] defined his system of relevant deontic logic as R supplemented
with the constant e and the following definition of O: OA = e → A. He also
considered an optional “axiom of avoidance” ¬(e → ¬e).

We similarly define propositionally quantified relevant deontic logic R∀p
e as

R∀p supplemented with the constant e and the definition OA = e → A. (We do
not include the axiom of avoidance and will discuss it at the end of this section.)

Theorem 1. R∀p
e has the following theorem: e ↔ ∀p(Op → p).

Proof.

→: 1. (e → A)→ (e → A) self-impl
2. e→ ((e → A)→ A) 1, permut
3. e→ ∀p((e → p)→ p) 2, Gen, Q4
4. e→ ∀p(Op → p) 3, def O

←: 5. ∀p(Op → p)→ ∀p((e → p)→ p) def O
6. ∀p((e → p)→ p)→ ((e → e)→ e) Q3
7. (e → e) self-impl
8. ((e → e)→ e)→ e 7, self-impl, permut
9. ∀p(Op → p)→ e 5, 6, 8

↔: 10. e↔ ∀p(Op → p) 4, 9, adj

Thus e says that all obligations are fulfilled (all normative demands are met).
As noted above, this agrees with McNamara’s reading of e [11].

Definition 3 (OR∀p). Propositionally quantified relevant deontic system OR∀p

is R∀p supplemented with a primive operator O, a propositional constant e de-
fined by e = ∀p(Op → p), and the following axioms in addition to those of R∀p.

OA (A→ B)→ (OA → OB)
OBF ∀pOA → O∀pA
OT O(OA → A)

Theorem 2. OR∀p has the following theorem:

OK O(A → B)→ (OA → OB).

Proof. We first prove (Th1) O(A → B) → (A → OB).

1. (A→ B) → (A → B) self-impl
2. A→ ((A → B) → B) 1, permut
3. A→ (O(A → B)→ OB) 2, OA
4. O(A → B) → (A→ OB) 3, permut

We also derive (Th2) (A→ OB) → O(A → B).

1. (OB → B)→ ((A → OB) → (A→ B)) prefixing
2. O(OB → B)→ O((A → OB) → (A → B)) 1, OA
3. O((A → OB) → (A→ B)) 2, OT
4. (A→ OB) → O(A → B) 3, Th1
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Next, we show that

(ROOO) if OOA is a theorem, then OA is a theorem

is a derivable rule.

1. OOA premiss
2. (OA → A) → (OOA → OA) OA
3. (OA → A) → OA 1, 2, permut
4. (OA → A) → (((OA → A)→ OA) → ((OA → A) → A)) pref
5. (OA → A) → ((OA → A) → A) 3, 4, permut
6. (OA → A) → A 5, contract
7. O(OA → A)→ OA 6, OA
8. OA 7, OT

We may now derive (Th3) OOA → OA.

1. OOA → OOA self-impl
2. O(OOA → OA) 1, Th2
3. OO(OOA → A) 2, Th2, OA
4. O(OOA → A) 3, rule ROOO
5. OOA → OA 4, Th1

After this, theorem OK is easy:

1. O(A → B) → (A→ OB) Th1
2. (A→ OB) → (OA → OOB) OA
3. (OA → OOB) → (OA → OB) Th3
4. O(A → B) → (OA → OB) 1–3

Theorem 3. R∀p
e and OR∀p have the same theorems.

Proof. First, all theorems of OR∀p are theorems of R∀p
e . All cases are easy

except perhaps e ↔ ∀p(Op → p), which has already been discussed. Second, all
theorems of R∀p

e are theorems of OR∀p. It is sufficient to prove that OA ↔ (e →
A) is a theorem of OR∀p.

→: 1. e → (OA → A) def e, Q3
2. OA → (e → A) 1, permut

←: 3. O(e → A)→ (Oe → OA) OK
4. Oe → ((e → A)→ OA) 3, permut
5. ∀pO(Op → p) OT, Q∗
6. O∀p(Op → p) 5, OBF
7. Oe 6, def e
8. (e → A) → OA 4, 7

↔: 9. OA ↔ (e → A) 2, 8, adj

Corollary 1. OR∀p is the deontic fragment of R∀p
e (in the sense of Åqvist [1]

and Goble [8]). R∀p
e is the alethic fragment of OR∀p (in a similar, but converse

sense).
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It has been proven that OR∀p without propositional quantifiers and with OBF
replaced by (OA & OB) → O(A & B) is the deontic fragment of R∀p

e without
propositional quantifiers [8, 10]. The proof makes use of the Routley-Meyer se-
mantics of these systems. Our proof is much shorter. Moreover, Theorem 3 shows
that one cannot only reduce relevant deontic logic to alethic relevant logic, but
carry out the converse reduction as well.

Finally, let us briefly discuss the axiom of avoidance ¬(e → ¬e). We define
R∀p

e + as R∀p
e plus this axiom and OR∀p+ as OR∀p plus OA → ¬O¬A. It can

be shown that R∀p
e + and OR∀p+ have the same theorems and that OR∀p+ is

the deontic fragment of R∀p
e +, but we shall not discuss this in detail and refer

to [8] for a more extended discussion.

4 Relevant Mixed Alethic-Deontic Logic

Definition 4 (RKT∀p). Propositionally quantified relevant alethic modal sys-
tem RKT∀p has the following axioms and rules in addition to those of R∀p.

LK L(A→ B) → (LA→ LB)
LC (LA & LB)→ L(A & B)

LBF ∀pLA→ L∀pA
Nec If A is a theorem then LA is a theorem
LT LA→ A

Definition 5 (RS4∀p). RS4∀p is RKT∀p plus the following axiom:

L4 LA→ LLA.

Definition 6 (RKT∀p
e and RS4∀p

e ). Systems RKT∀p
e and RS4∀p

e have the
same axioms and rules as RKT∀p and RS4∀p, respectively, except that they
contain a propositional constant e and a propositional operator O defined by
OA = L(e → A).

Theorem 4. RKT∀p
e has the following theorem: e↔ ∀p(Op → p).

Proof.

→: 1. L(e→ A) → (e → A) LT
2. e→ (L(e → A) → A) 1, permut
3. e→ ∀p(L(e → p)→ p) 2, Gen, Q4
4. e→ ∀p(Op → p) 3, def O

←: 5. ∀p(Op → p)→ ∀p(L(e → p)→ p) def O
6. ∀p(L(e→ p)→ p) → (L(e→ e)→ e) Q3
7. L(e→ e) self-impl, Nec
8. (L(e→ e)→ e)→ e 7, self-impl, permut
9. ∀p(Op → p)→ e 5, 6, 8

↔: 10. e↔ ∀p(Op → p) 4, 9, adj
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As above, e again says that all obligations are fulfilled (all normative demands
are met), which agrees with McNamara’s reading of e [11]. In systems that are
weaker than RKT∀p

e one may have a greater freedom of interpretation.

Definition 7 (RMS4∀p). Propositionally quantified relevant mixed alethic-
deontic system RMS4∀p is RS4∀p supplemented with a primive operator O,
a propositional constant e defined by e = ∀p(Op → p), and the following axioms
and rules in addition to those of RS4∀p.

OK O(A → B) → (OA → OB)
OBF ∀pOA → O∀pA
OT O(OA → A)
LO LA→ OA
M4 OA → LOA

Theorem 5. RS4∀p
e and RMS4∀p have the same theorems.

Proof. First, all theorems of RMS4∀p are theorems of RS4∀p
e . All cases are easy

except perhaps e ↔ ∀p(Op → p), which has already been discussed. Second,
all theorems of RS4∀p

e are theorems of RMS4∀p. It is sufficient to prove that
OA ↔ L(e→ A) is a theorem of RMS4∀p.

→: 1. e→ (OA → A) def e, Q3
2. OA→ (e → A) 1, permut
3. L(OA→ (e → A)) 2, Nec
4. LOA→ L(e → A) 3, LK
5. OA→ L(e→ A) 4, M4

←: 6. L(e→ A) → O(e → A) LO
7. O(e → A) → (Oe → OA) OK
8. Oe → (L(e → A)→ OA) 6, 7, permut
9. ∀pO(Op → p) OT, Q∗
10. O∀p(Op → p) 9, OBF
11. Oe 10, def e
12. L(e→ A) → OA 8, 11

↔: 13. OA↔ L(e→ A) 5, 12, adj

Corollary 2. RMS4∀p is the alethic-deontic fragment of RS4∀p
e (in the sense

of Åqvist [1] and Goble [8]). RS4∀p
e is the alethic modal fragment of RMS4∀p

(in a similar, but converse sense).

Goble [8] has proven that RMS4∀p without propositional quantifiers and with
OBF replaced by (OA & OB) → O(A & B) is the alethic-deontic fragment of
RS4∀p

e without propositional quantifiers and without LBF. He used the Routley-
Meyer semantics of these systems to prove this. Our proof is much shorter.
Moreover, Theorem 5 shows that one cannot only reduce mixed alethic-deontic
logic to alethic modal logic, but carry out the converse reduction as well.

Finally, we remark that systems RS4∀p
e plus ¬L¬e, on the one hand, and

RMS4∀p plus OA → ¬O¬A, on the other, have the same theorems and that
the latter system is the deontic fragment of the former, but we shall not discuss
this in detail and refer to [8] for a more extended discussion.
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5 Classical Mixed Alethic-Deontic Logic

Let K be an abbreviation of A → (B → A) (the archetypical fallacy of rele-
vance). Propositionally quantified classical modal systems KT∀p

e and S4∀p
e may

be defined by KT∀p
e = RKT∀p

e + K and S4∀p
e = RS4∀p

e + K. The proof that
e ↔ ∀p(Op → p) is a theorem of these systems is identical with the proof of
Theorem 4.

Propositionally quantified classical mixed alethic-deontic systems MKT∀p

and MS4∀p may be defined by MKT∀p = RMKT∀p + K and MS4∀p =
RMS4∀p + K. The proof that MS4∀p is the alethic-deontic fragment of S4∀p

e is
the same as the proof of Theorem 5.

It is to be noted that axiom M4 of MS4∀p is really required to prove this.
The formula OA → L(∀p(Op → p)→ A) is invalid in MKT∀p, as Fig. 1 shows.
Since all theorems of RMKT∀p are theorems of MKT∀p, this shows that this
formula is invalid in RMKT∀p, too.

A ¬A

w0 w1

RL

RL RL

RO RO

Fig. 1. An MKT∀p-model that refutes OA → L(∀p(Op → p) → A). RL is the alethic
modal accessibility relation, RO is the deontic accessibility relation. A holds at w0 but
not at w1. As a result, OA → L(∀p(Op → p) → A) does not hold at w0.

6 A Classical Version of Anderson’s Relevant Deontic
Logic

Finally, one might wonder what would happen if K were added to the exten-
sional Andersonian systems R∀p

e and R∀p
e +. The answer is simple: A → OA is a

theorem of R∀p
e plus K and A ↔ OA is a theorem of R∀p

e + plus K. Thus, one
gets a collapse to the trivial system.

7 Further Prospects

Up to this point, we have read OA as “it is obligatory that A.” But O can also
be interpreted in alternative ways. As Smiley put it:
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If we define OA as L(e ⊃ A) then to assert OA is to assert that e strictly
implies A or that A is necessary relative to e. Since the pattern of the
definition is independent of the particular interpretation that may be put
on e we can say that to the extent that the standard alethic modal sys-
tems embody the idea of absolute or logical necessity, the corresponding
O-systems embody the idea of relative necessity—necessity relative to
an arbitrary proposition or body of propositions. They should therefore
be appropriate for the formalisation of any modal notion that can be
analysed in terms of relative necessity. Thus by applying the definition
in the case where e expresses the postulates of a mathematical theory, O
can be read ‘it is provable that.’ Where e expresses the content of a legal
code, O will be read ‘it is the law that’; where e is interpreted in terms of
an individual’s corpus of beliefs, O will be read ‘so-and-so believes that.’
(Smiley [13, p. 113]; he used the symbol T instead of e.)

It almost goes without saying that our formal results can be applied to these
other areas as well.
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Abstract. We aim at an adequate formal description of the dynamics
of commitments and trust by transferring insights about actual human
practices to a formal setting. Our framework is based on Belnap’s theory
of agents and choices in branching time (stit theory) and his analysis
of commitments in terms of strategies. The main points are that (i)
commitments come in various degrees of stringency, (ii) we can define
a stringency ordering on an agent’s possible strategies, and that (iii)
trustworthiness can be spelled out in terms of strategies: An agent is
living up to a given commitment, and thus, is trustworthy with respect
to that commitment, if her strategy is at least as stringent as required.
Overall trustworthiness of an agent can be defined by averaging over such
single case assessments.

Introduction

Human beings can enter freely into normative relations towards other human
beings. Two of our most important practices in this respect are making promises
and entering into contracts. Similar practices are also important when it comes
to artificial normative systems; they are often taken together under the heading
of commitments. The notion of a commitment has been analysed from a wide
range of perspectives—cf. [1] for a recent contribution. In this paper, our focus
is on transferring insights about details of actual human practices to a setting of
artificial normative agents. We will take a lead from the formal characterisation
of commitments given by Belnap et al. [2] (who acknowledge earlier, related work
by Thomson [3]). Belnap specifies the content of a commitment in terms of an
agent’s strategy, employing a theory of agency that is based on the objectively
indeterministic theory of branching time.

We will argue that looking at an agent’s strategy allows us to assess in a fine-
grained way the trustworthiness of an agent who is under a certain commitment.
Even before fulfillment or non-fulfillment of the commitment can be assessed,
the agent’s strategy, which reveals itself through what the agent chooses to do,
gives information on how seriously an agent takes the commitment she is subject
to. The main technical contribution of this paper is the definition of a partial
ordering on the set of strategies available for an agent that classifies strategies as
more or less stringent with respect to a given commitment. That partial ordering
allows us to classify the agent’s behaviour as appropriate or inappropriate in

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 210–221, 2006.
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relation to a given commitment, and thus, to classify the agent herself as more
or less trustworthy with respect to that commitment. An estimate for the agent’s
overall trustworthiness can be obtained by averaging over individual assessments
of trustworthiness for a number of commitments.

The main features of the model we shall describe are the following (numbers
indicate the respective sections of this paper):

1. Agents and their possible choices are described in the objectively indeter-
ministic framework of branching time. That framework allows us to model
the objective uncertainty that agents have to face when making plans in a
world like ours, in which there are both indeterministic external influences
and indeterministic actions by other agents. The theory doesn’t just assume
that the agents do not know what the future will bring, but that, in many
cases, what will happen is not determined until it happens.

2. Continuous action of agents is described via the strategy that the agent is
following. A strategy allows the agent to fix defaults for future choices in an
objectively indeterministic setting.

3. By looking at our (human) practices of promising vs. entering into contracts,
we find that commitments come in various degrees of stringency. There are
commitments not backed by sanctions, but by moral force only, and there are
commitments for which there are only sanctions but no moral force. These
observations open the view for an ordering among possible strategies for an
agent: Given a commitment, some strategies are more stringent with respect
to the commitment than others.

4. We distinguish the soft constraints that are in effect through a commitment
from hard constraints used to model the effect of a possible sanction. Then,
taking a lead from Belnap’s analysis of promising, we arrive at a formal def-
inition of a stringency ordering among an agent’s possible strategies relative
to a commitment.

5. We suggest that each commitment comes with an appropriate level of strin-
gency. Not all commitments are alike in this respect. Thus, in assessing
whether an agent deals with a commitment adequately, it seems best to
(i) identify the strategy that the agent is following and (ii) compare that
strategy with the required level of stringency of the given commitment. If
the agent’s strategy meets or surpasses the required level of stringency, we
will say that the agent is living up to her commitment. Finally, we suggest
that when it comes to assessing trustworthiness, it is the notion of living
up to one’s commitment that is important. Identifying an agent’s strategy
thus provides the basis for an appropriate description of the dynamics of
commitments and trust.

1 Background: Agents and Choices in Branching Time

In this section we describe the theory of agency that forms the background of our
approach. That theory is motivated and explained both formally and informally
in Belnap et al.’s [2], which may be consulted for additional detail and for its
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many examples.1 (In what follows, the notation of [2] has been slightly altered
in a number of places.)

Branching time is a theory of objective indeterminism that was first invented
by Prior [6] and that has subsequently found many applications in logic and
computer science. A branching time structure is a tree-like partial ordering of
moments without backward branching:

Definition 1. A branching time structure is a partial ordering 〈W, <〉 such that
there is no backward branching, i.e., if x < z and y < z, then x ≤ y or y ≤ x.

The elements of W are called moments, and m < m′ is read temporally, i.e.,
as “m is before m′”. A history h is a maximal linear chain (set of pairwise
comparable elements) in W , and for each moment m, the set Hm is the set of
histories to which m belongs. Two histories h1, h2 ∈ Hm can either split at m
or be undivided at m:

Definition 2. Two histories h1, h2 ∈ Hm are called undivided at m (h1 ≡m h2)
iff they share a moment that is properly later than m, i.e., iff there is m′ ∈ h1∩h2
s.t. m < m′. If, on the other hand, m is maximal in h1 ∩ h2, we say that h1
splits off from h2 at m (h1 ⊥m h2).

The notation is sugestive: ≡m is easily shown to be an equivalence relation,
inducing a natural partition Πm of Hm. Assuming h ∈ Hm, we write Πm〈h〉 for
that unique element of Πm that contains h.

Given a set A = {α1, . . . , αn} of agents, the theory of agents and choices in
branching time specifies, for each agent α ∈ A and each moment m, the set of
choices open to α at that moment. That set, Choiceα

m, partitions Hm and may
be more coarse-grained, but not more fine-grained, than the natural partition
Πm at m. Metaphorically, an agent has at most as much, but possibly less,
control over what can happen next as nature herself. Assuming h ∈ Hm, we
write Choiceα

m(h) for that unique member of Choiceα
m to which h belongs.

Our main definition is the following:

Definition 3. A structure of agents with choices in branching time is a quadru-
ple 〈W, <, A, Choice〉, where 〈W, <〉 is a branching time structure, A is a finite
set of agents, and Choice is a function that assigns a partition Choiceα

m of Hm to
each pair 〈α, m〉 in such a way that Choiceα

m is a coarse-graining of the natural
partition Πm, i.e.,

for all α, m and h ∈ Hm, Πm〈h〉 ⊆ Choiceα
m(h).

We will only say a little about the formal language that is appropriate for the
theory of agents and choices in branching time (cf. [2] for details). Formulae

1 In accord with Belnap [4], we are convinced that a really successful theory of agency
must not stop at the level of resolution supplied by branching time. Rather, branching
space-times models [5] will have to be employed. As the theory of agency in branching
space-times is little developed so far, in this paper we will hold on to the technically
well understood theory of agency in branching time.
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are built up from propositional variables by means of the truth-functional sen-
tential connectives and modal operators for the tenses (“was” and “will”) and
for agency (“α stit : φ” for “agent α sees to it that φ”). In accord with the
ideas of Prior-Thomason semantics [7], these formulae are evaluated not just
at moments, but at moment-history pairs 〈m, h〉, where m ∈ h. Future-tense
propositions are typically history-dependent, i.e., at moment m, the truth value
of such a proposition also depends on the history of evaluation. For the purposes
of this paper, the most important concept is the modality of settled truth, which
corresponds to universal quantification over histories: φ is settled true at 〈m, h〉
iff φ is true at 〈m, h′〉 for all h′ ∈ Hm. Settled truth is thus independent of the
history of evaluation.

The respective inductive semantic clauses for the mentioned modal operators
are:

– m, h |= was : φ iff there is m′ < m s.t. m′, h |= φ
(note that m′ ∈ h follows by backwards linearity),

– m, h |= will : φ iff there is m′ ∈ h s.t. m < m′ and m′, h |= φ, and
– m, h |= settled : φ iff for all h′ ∈ Hm we have m, h′ |= φ.

2 Background: Strategies

A strategy specifies defaults for an agent’s future choices by fixing which choices
of the agent count as in accord with the strategy. Strategies are needed to de-
scribe agency since most of what we actually do takes time. Thus, consider
baking a cake, which takes about an hour. You can’t at the beginning of that
one hour period, m0, act in such a way, or see to it, that no further choice of
yours is required for finishing the cake. At any moment in the process, you can
toss everything and leave. Nor can you make all the required future choices at
the initial moment, m0. It is a conceptual necessity that a choice can only be
made once it is due—otherwise it wouldn’t be a choice. This is not to say that
an agent at m0 is completely helpless, however. The agent can adopt a strategy,
s, that prescribes default choices for future moments from m0 on. It seems that
temporally extended agency can be best described via strategies (cf. [8] for an
attempt at spelling this out in a type of modal logic). Also, almost all commit-
ments pertain to a whole array of future choices—e.g., hardly any promise can
be fulfilled instantaneously.

The formal theory of strategies is laid out in detail in [2, Chap. 13]. We only
give the main definitions:

Definition 4. A strategy for α is a partial function s on moments such that
for each moment m for which s is defined, s(m) is a subset of Hm that respects
the available choices of α at m, i.e., for every h ∈ Hm, if h ∈ s(m), then
Choiceα

m(h) ⊆ s(m).

A strategy thus specifies what α should do, and in this, the strategy can give
advice at most as fine-grained as the available choices for α at m allow (which,
in turn, may be at most as fine-grained as the natural partition Πm allows).
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If an agent follows a strategy, some histories and moments will be admitted
(the strategy will advise to stay on the history / reach the moment), and others
will be excluded. Technically, we define:

Definition 5. If s is a strategy for α, we say that

– s admits h iff for every m for which s is defined, if m ∈ h, then h ∈ s(m).
– s admits m iff for every m′ on which s is defined and for which m′ < m we

have m ∈ ⋃
s(m′).

– s excludes h or m iff it does not admit it.

The set of histories admitted by s, Admh(s), and the set of admitted moments,
Admm(s), are defined to be

Admh(s) = {h | s admits h}, Admm(s) = {m | s admits m}.

The concept of an admitted moment will be used in our definition of a stringency
ordering among strategies below.

By our definition, strategies are allowed to leave open choices for α—their
advice does not have to be as fine-grained as possible. A strategy that gives the
most detailed kind of advice possible, is called strict :

Definition 6. A strategy s for α is called strict at m iff it is defined at m and
s(m) ∈ Choiceα

m. The strategy s is called strict iff is it strict at every moment
at which it is defined.

Strict strategies enjoy a special epistemic status: if an agent α is following a
strategy that is strict at a moment m, then her actual choice at that moment
reveals her strategy s(m) at m in full detail. In this case, behaviour is a perfectly
reliable guide to the agent’s strategy. This is not so if the agent is following a
non-strict strategy: at a moment m at which s(m) �∈ Choiceα

m, the actual choice
that α makes (which corresponds to an element of Choiceα

m) does not reveal s(m)
completely. In such a case, we would have to ask α to tell us which strategy was
on her mind. However, if our task is to find out about α’s strategy in order to
assess her trustworthiness, asking α may appear to be circular: in order to rely
on α’s answer, we would have to know that we can trust her, but that is exactly
what we wish to find out. Studying α’s behaviour, on the other hand, does not
presuppose trusting α.

At this juncture, we face a methodological decision regarding our theory of
trust. It is clear that we can only ever identify an agent’s strategy in full detail if
that strategy is strict, and we need to know about the agent’s strategy in order
to assess trustworthiness (as spelled out below). May we assume that agents
always follow strict strategies? It is not an easy task to weigh the pros and
cons of that assumption. Assuming strict strategies allows for a smooth formal
picture. Furthermore, the point can be made that action is after all our most
fundamental guide to intention, or strategy [9, § 4]. On the other hand, we can
never be sure that an agent is really following a strict strategy, and presupposing
strict strategies from the outset may appear to impose an unnecessary restriction
on our formal theory. In what follows, we will therefore try to sketch a general
theory that is not confined to strict strategies.
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3 Commitments: Promises vs. Contracts

Having laid out the formal background for our theory, we now turn to human
practices concerning commitments. Among these, promises and contracts are
the most significant examples. We suggest that taking a close look at these
practices opens up the view towards an important distinction that can be made
formally precise within our framework: commitments come with various degrees
of stringency. That distinction will later on be used to assess trustworthiness.

Is there a difference between a promise and a contract? The terminology
is certainly not established as firmly as to allow for a straight yes. However,
we wish to suggest that a typical promise and a typical contract are different
creatures of the normative realm, and that it is useful for our purposes to dis-
tinguish the two notions sharply. In effect we will be arguing that there is a
continuum of normative relations, one pole of which can be exemplified by a
certain type of promise, while the other pole corresponds to a certain type of
contract.

A normative relation between agents α and β is a certain type of normative
constraint on the behaviour of α. Minimally, the content of the relation specifies
what counts as fulfilling or violating the norm (and what is neutral with respect
to this distinction). Typically, β is also in a position to put a sanction on α for
non-compliance (perhaps with the aid of an overarching normative metasystem
such as the state and its legislation). Apart from the sanction, which is external
to the normative relation, many normative relations also have a moral dimension:
quite apart from any sanction, many norm violations are judged to be morally
wrong.

Promises are normally made between people who know and trust each other
at least to some extent, and in most cases, there are no enforceable external sanc-
tions connected with promise breaking. (However, the relation between promissor
and promisee is typically altered by a broken promise, which may count as a kind
of sanction in some cases, and promises may give rise to additional legal relations
that are associated with sanctions.) Promises normally concern matters of little
economical importance, but of some personal, practical importance to β. They
usually have a clear moral dimension, since for most promises it is judged to be
morally wrong to break them.

Contracts can be made between any two persons, but certain very close rela-
tionships may make contracts appear to be inappropriate, and some legal systems
do not recognise certain types of contracts between, e.g., husband and wife. Most
contracts come with enforceable external sanctions backed by the law. Contracts
usually concern matters of some economical importance, while the personal im-
portance of the content of a contract may be wholly derived from its economical
aspects. Not all contracts need to have a moral dimension—there seem to be
contracts that it may be costly, but not morally wrong, to break.

Based on these observations, we propose to assume a continuum of normative
relations characterised by the degree of stringency (pure moral bindingness) vs.
external sanction involved, as follows:
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1. The most solemn and most stringent case is a case of promising without
any associated external sanction. In the philosophical literature, the typical
example of this is a death-bed promise given without witnesses. If α promises
something to dying β and there are no witnesses, there is no possibility of an
external sanction. However, such promises seem to have great moral force—
maybe just because of the sheer helplessness of β, who himself knows that
there is no possibility of enforcing what is promised.

2. In a typical case of promising, there is no or little external sanction possible,
but a relatively large degree of moral force. If α promises β to meet her at
the station and fails to do so (for no good reason), then there is usually little
that β can do, but α’s behaviour will be judged morally wrong. Whether it
is good to fulfill a promise is mostly a matter of morality and only to a little
extent a matter of α’s personal utility.

3. In a typical contract, there is a relatively large degree of external sanctioning
possible, but (usually) little moral force. E.g., if α enters a contract with β to
the effect that α deliver some goods at a specified time, but fails to deliver,
the consequences are mostly external: α may be sued and have to pay for β’s
damages. This is not to say that such behaviour on α’s side will be assumed
to be morally neutral—there will usually be some negative assessment in
this dimension too. Whether it is good to fulfill a contract is to some degree
a matter of morality, but mostly a matter of α’s personal utility.

4. Finally, there seem to be contracts the fulfillment or non-fulfillment of which
is purely a matter of utility. A freely levelled contract between α and β gives
α a choice to either comply or opt out and pay a fine. Some contracts we
enter seem to be of that arbitrary, game-like kind.

When α and β enter into a normative relation, there is normally some kind of
agreement as to which level of stringengy that relation should be assumed to
have—and if there is not, such agreement can usually be reached by discussing
the issue. (If such agreement cannot be reached, the agents may choose not
to create the commitment.) Cases in which β is completely helpless (incapable
of sanctioning) will tend to be more stringent morally, while free-market type
agreements tend to have a low level of moral stringency.

The point of these observations about human practices is twofold. First, by
showing that there are different types of normative relations in human social
interaction, we wish to suggest that it may be beneficial to employ a correspond-
ingly rich notion of normative relations in artificial normative systems, too. Cer-
tainly, distinctions of stringency of norms can be made for artificial normative
systems—e.g., business transactions over the internet may be typical contracts,
while giving root privileges to an agent may suggest a promissory commitment
not to exploit that power in a harmful way. Secondly, the description given above
already points towards a formal characterisation of stringency for strategies. We
will develop that characterisation in the next section. In Section 5, we will then
employ our formal framework in order to discuss the question of trustworthiness
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of an agent. Roughly, the idea will be that an agent is trustworthy if her strategy
is appropriate with respect to the degree of strictness of the commitment she
has entered.

4 On the Stringency of Strategies

In employing strategies to analyse commitments, we take a lead from Belnap’s
analysis of promising, which in turn is based on the theory of strategies and
agents and choices in branching time. In [2, Chap. 5C], the analytical target for
promising is

at m0, α promises β that p,

where α and β are agents, m0 is the moment of promising, and p is the content of
the promise, which is typically a future-tense proposition. The meaning of that
target is spelled out in terms of a strategy that α adopts at m0. The main idea
is that from m0 onwards, the promise-keeping strategy advises α to choose such
as to make p settled true if possible, and to keep p an open possibility otherwise.

In the context of his theory of promising, Belnap distinguishes two kinds of
commitments, which he calls word-giving vs. promising (taking up a distinction
from [3]). Word-giving he takes to be a less stringent commitment, which is
expressed by the fact that α’s strategy for word-giving does not advise α to do
anything until the commitment is either fulfilled or violated.2 In the latter case,
the strategy advises α to compensate β, and that is all there is to it.

We wish to suggest that Belnap’s analysis points in the right direction, but
that it can be improved. First of all, it appears to us that the notion of a sanction
or compensation that kicks in when a commitment has been violateed, should
be analysed differently. Secondly, rather than distinguishing just two types of
strategies, we will be able to order strategies with respect to their stringency,
thus allowing for a more fine-grained assessment of the adequacy of the strategy
that an agent is following, relative to a given commitment.

4.1 Commitments and Sanctions

Commitments are normative relations between agents. Norms can be fulfilled or
violated. There are two basic schemes that can be used to monitor and perhaps
force compliance to norms. Hard constraints are such that it becomes (physically)
impossible to violate the norm. E.g., in many parking garages you cannot leave
without having paid—the gate just won’t open. The norm to pay for parking is
therefore monitored and enforced by a hard constraint. Quite another scheme is
in effect in so-called soft constraints : Here, compliance to the norm is monitored,
perhaps on a statistical basis, and non-compliance leads to sanctions if detected.
2 Belnap et al. [2, 126f.] suggest to choose more neutral terminology. According to

their (non-standard) usage, promises are “satisfied” or “infringed”, and mere word-
givings are “vindicated” or “impugned”. We will use the standard terminology of
fulfillment vs. violation, but we wish to stress that the moral implications that these
words normally suggest may be absent in the case of some commitments.
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E.g., in many schemes of paid on-street parking, you can park and retrieve your
car without a valid ticket, but there will be a penalty if you are found not to
have a ticket on display.

Most issues of our social lives are regulated via soft constraints. It is altogether
impractical to try to enforce too many norms via hard constraints. E.g., how
would you try to implement the rule not to steal via a hard constraint? This
may be feasible in a few select circumstances (e.g., at vending machines), but
generally, our society relies heavily on soft constraints. Indeed it seems difficult to
imagine any society of human beings that would rely solely on hard constraints.

In the realm of artificial agents, hard constraints are often somewhat easier
to impose than in the society of human beings—e.g., communication ports can
be blocked relatively easily. However, even in a society of artificial agents, the
more complex systems become, the less feasible does it become to rely on hard
constraints only. Usually, hard constraints must be implemented and enforced
centrally, and there is a computational and protocol overhead as well as security
issues speaking against reyling on hard constraints exclusively.

Commitments are conceptually tied to soft constraints: If an agent is under a
commitment, she is normally free to fulfill or violate the commitment (of course,
influences outside the agent’s control can have an impact on these possibilities).
Once a commitment is violated, depending on the type of commitment, some
sanction is appropriate. The question we now wish to address is how to model
this sanction.

In human interactions, first of all, not all violations of commitments are de-
tected. Secondly, the sanctions imposed upon (detected) norm violation are usu-
ally again enforced via soft constraints. E.g., if you fail to pay one of your bills,
there will be a penalty, but it will again be up to you to pay the penalty or not.
The situation can however escalate by taking a number of turns at court, and
in the end, if you fail to comply persistently, you might be put in prison, which
means that a truly hard contraint would be triggered. In our daily lives, we thus
mostly operate with soft constraints, but legally binding norms are in the end
backed by hard constraints.

In our formal model, we will employ an idealisation: We will assume that com-
mitments are subject to soft constraints, but that upon violating a commitment,
detection is certain, and a hard constraint kicks in to make sure the sanction
has its desired effect. Thus, we will assume that sanctions are automatic.3 One
effect of this is that an agent must take the cost of sanctions into her utility con-
siderations from the outset. This is how mere considerations of personal utility
can lead to compliance with norms. We wish to suggest that in some cases, this
will be judged good enough, whereas in other cases, it won’t—it depends on the
stringency of the commitment in question.
3 This assumption is closely related to Anderson’s [10] early proposal of a “reduction

of deontic logic to alethic modal logic”, according to which the deontic-logical “it is
obligatory that p” is reduced to the alethic “necessarily, if non-p, then SANCTION”.
The main difference is that we do not suggest an overall reduction of anything to
anything else, and that any sanction is relative to the commitment to which it is
attached, whereas Anderson seems to have thought of a single, all-purpose sanction.
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4.2 Ordering Strategies by Stringency

Having discussed the question of how sanctions take their effect, we can now
address the question of when it is appropriate to call one strategy more stringent
than another.

Stringency is always relative to a given commitment. We specify a commit-
ment c as a quintuple c = 〈m0, α, β, p, Z〉, where m0 is the moment at which the
commitment is created, α is the agent who is committed, β is the addressee of
the commitment, p is its content (usually, a future-tense proposition), and Z is
the sanction attached to non-fulfillment.

In our approach, a commitment is monitored via soft constraints. Thus, what
α can do is not directly influenced by the commitment she has entered—unless
the commitment is violated, in which case the hard constraint enforcing the
sanction Z kicks in. However, what α does will be more or less appropriate
relative to the commitment c. Belnap proposes to distinguish promising, which
requires a strategy that actively aims at fulfilling the commitment, from mere
word-giving, which only requires a strategy that takes care of accepting the
sanction—which in our case, in which sanctions are automatic, does not require
any choices by the agent at all. These two strategies can be seen to indicate two
poles in an ordering of strategies with respect to their stringency.

To give our (perhaps preliminary) formal definition, let a commitment c =
〈m0, α, β, p, Z〉 be given, and let s and s′ be two strategies for α defined (par-
tially) on the future of m0. We define comparative stringency pointwise first:
If both s and s′ are defined at m ≥ m0, we say that s is more stringent with
respect to c at m than s′, or that s′ is less stringent with respect to c at m than s
(s′ ≺m

c s) iff s prescribes to choose w and s′ prescribes w′ (where w �= w′) such
that

– choice w makes p settled true, whereas w′ does not, or
– choice w′ makes p settled false, whereas w does not, or
– choice w (considered as a one-step strategy) admits a moment at which α

can make p settled true, whereas w′ does not.

Thus, a choice w at moment m is more stringent with respect to commitment
c than choice w′ iff overall, w more strongly favours the fulfillment of the com-
mitment than w′.4 We generalise this pointwise definition to full strategies:

Definition 7. Let a commitment c = 〈m0, α, β, p, Z〉 be given, and let s and s′

be two strategies for α defined (partially) on the future of m0. We say that s
is more stringent with respect to c than s′ (s′ ≺c s) iff there is some m ≥ m0
such that (i) s′ ≺m

c s and (ii) for all m′ for which m0 ≤ m′ and m′ < m, the
strategies coincide (s(m′) = s′(m′)).

4 The above definition is the natural place to take into account probability considera-
tions, too. In this paper, however, we refrain from introducing probabilities. Cf. [11]
for an attempt at introducing probabilities into the branching space-times frame-
work, which also applies to the (simpler) theory of branching time employed here.
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5 Strategies, Stringency, and Trust

How trustworthy is an agent? A normal and reasonable response to this question
is that agents are trustworthy if they fulfill their commitments with high proba-
bility, which can be monitored statistically in terms of actual fulfillment. This is
good as far as it goes, but we suggest that the theory of agency in branching time
plus strategies sketched above, together with the stringency ordering on strate-
gies defined in the previous section, allows for a more fine-grained assessment of
trustworthiness. The key ideas are the following:

– Above we have pointed out that there are different types of commitments
distinguished by their stringency. Thus we may suppose that each commit-
ment comes with an appropriate level of stringency. As we have noticed, some
(but only some) promises rely strictly on moral binding and are not backed
by any means of sanctioning. On the other hand, some (but only some) con-
tracts seem to be able to do without any moral binding altogether.—We
give no theory of stringency here at all; we simply suppose that formally,
each commitment is created with a specific level of stringency, specified in
terms of a class of strategies that are appropriate for the agent who commits
herself.

– On the set of strategies available for the agent at the moment of commitment,
we have defined a partial ordering that tells us when one strategy is more
stringent than another.

– The main idea for assessing trustworthiness of an agent with respect to
a single commitment is to identify the strategy that the agent is actually
following by looking at what she chooses to do. As we pointed out above,
a strict strategy completely reveals itself through the agent’s choices, and
if the agent is following a non-strict strategy, the strict strategy read off
from her actions is still our best guess as to what her strategy actually
is. The initial segment of the agent’s strategy thus identified may then be
compared to the members of the class of appropriate strategies. If the agent’s
strategy is itself appropriate, or at least as stringent as one of the appropriate
strategies, we say that the agent is living up to her commitment. Living up to
one’s commitment, of course, counts in favour of trust. On the other hand,
if the agent’s strategy is less stringent than appropriate, this counts against
trusting the agent.

– Trustworthiness is not an episodic issue, but more of a character trait. Thus,
individual assessments of trustworthiness should be averaged over to obtain
an estimate of an agent’s overall trustworthiness.

These considerations may be illustrated by daily life examples. First, we do judge
agents by their strategies, not just by actual performance. We accept excuses—
e.g., if α has promised you to meet you at the station, but couldn’t make it
because she had an accident on the way, that will not count against trusting
her: her strategy was good enough (it is conceptually true that nobody has a
no-accident strategy, since accidents are exactly that which cannot be planned).
On the other hand, we may be disappointed by an agent’s strategy even if the
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commitment was fulfilled: if α had forgotten about the promise and meets you
at the station just by chance, this will count against trusting her. Secondly,
which normative relations we are prepared to enter with a given person depends
on the level of trust, and we make fine distinctions. Suppose that α has often
broken her promises to you in the past. Then you may be unwilling to accept
another promise by α, while you may still be ready to enter a legally binding
contract with her, since a contract is backed by enforceable sanctions. When we
judge whether to enter a normative relation with somebody, the important issue
seems to be whether we have good reason to suppose that that person will live
up to her commitment, i.e., really adopt a strategy that is appropriate to the
commitment at issue.

Our formal description has shown that in the realm of artificial agents, a sim-
ilarly rich notion of commitment and trust can be implemented. Future work
in the form of actual case studies will be required to strengthen the altogether
plausible hypothesis that our framework indeed provides an adequate basis for
describing the dynamics of commitments and trust in artificial normative sys-
tems.
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Abstract. The action language C+ of Giunchiglia, Lee, Lifschitz, Mc-
Cain, and Turner is a formalism for specifying and reasoning about the
effects of actions and the persistence (‘inertia’) of facts over time. An
‘action description’ in C+ defines a labelled transition system of a cer-
tain kind. n C+ (formerly known as (C+)++) is an extended form of C+
designed for representing normative and institutional aspects of (human
or computer) societies. The deontic component of n C+ provides a means
of specifying the permitted (acceptable, legal) states of a transition sys-
tem and its permitted (acceptable, legal) transitions. We present this
component of n C+, motivating its details with reference to some small
illustrative examples.

1 Introduction

The action language C+ [1] is a formalism for specifying and reasoning about
the effects of actions and the persistence (‘inertia’) of facts over time, build-
ing on a general purpose non-monotonic representation formalism called ‘causal
theories’. An ‘action description’ in C+ is a set of C+ rules which define a la-
belled transition system of a certain kind. Implementations supporting a wide
range of querying and planning tasks are available, notably in the form of the
‘Causal Calculator’ CCalc [2]. C+ and CCalc have been applied successfully
to a number of benchmark examples in the knowledge representation literature
(see e.g. [3] and the CCalc website [2]). We have used it in our own work to
construct executable specifications of agent societies (see e.g. [4, 5]).

n C+ [6, 7] is an extended form of C+ designed for representing normative
and institutional aspects of (human or computer) societies. There are two main
extensions. The first is a means of expressing ‘counts as’ relations between ac-
tions, also referred to as ‘conventional generation’ of actions. This feature will
not be discussed in this paper. The second extension is a way of specifying the
permitted (acceptable, legal) states of a transition system and its permitted (ac-
ceptable, legal) transitions. The aim of the paper is to present this component of
n C+ and some simple illustrative examples. n C+ was called (C+)++ in earlier
presentations.

n C+ is intended for modelling system behaviour from an external ‘bird’s eye’
perspective, that is to say, from the system designer’s point of view. It may then
be verified whether properties hold or not of the system specified (a process
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analogous to that described in [8, 9], which concentrates on epistemic properties
and communicative acts). n C+ is not intended for representing norms from an
individual agent’s perspective. We have a separate development, agent-centric
n C+, for specifying system norms as directives that constrain an individual
agent’s behaviour, in a form that can be used by a (computer) agent in its internal
decision-making procedures. That development will be presented elsewhere.

We have three existing implementations of the n C+ language. The first em-
ploys the ‘Causal Calculator’ CCalc. As explained later in the paper, the re-
quired modifications to CCalc are minor and very easily implemented. The sec-
ond implementation provides an ‘event calculus’ style of computation with C+
and n C+ action descriptions. Given an action description and a ‘narrative’—a
record of what events have occurred—this implementation allows all past states,
including what was permitted and obligatory at each past state, to be queried
and computed. The third implementation connects C+ and n C+ to model check-
ing software. System properties expressed in temporal logics such as CTL can
then be verified by means of standard model checking techniques (specifically the
model checker NuSMV) on transition systems defined using the n C+ language.
A small example is presented in [7]. We do not discuss the implementations
further for lack of space, except to explain how the CCalc method works.

Related work. Some readers may see a resemblance between n C+ and John-
Jules Meyer’s Dynamic Deontic Logic [10], and other well known works based
on ‘modal action logics’ generally (e.g. [11, 12]). There are three fundamental
differences. (1) C+ and n C+ are not variants of dynamic logic or modal action
logic. They are languages for defining specific instances of labelled transitions
systems. Other languages—we refer to them as ‘query languages’—can then
be interpreted on these structures. Dynamic logic is one candidate, the query
language in CCalc is another, but there are many other possibilities: each C+ or
n C+ action description defines a Kripke-structure, on which a variety of (modal)
query languages, including a wide range of deontic and temporal operators, can
be evaluated. We do not have space to discuss any of these possibilities in detail.
(2) The representation of action is quite different from that in dynamic logic and
modal action logic. (3) There are important differences of detail, in particular
concerning the interactions between permitted states and permitted transitions
between states.

The semantical devices employed in n C+—classification of states and tran-
sitions into green/red (good/bad, ideal/sub-ideal), violation constants, explicit
names for norms, and orderings of states according to how well they comply with
these norms—are all frequently encountered in the deontic logic literature. The
novelty here lies, first, in the details of how they are incorporated into labelled
transition systems, and second, in the way the n C+ language is used to define
these structures.

Finally, C+ is a (recent) member of a family of formalisms called ‘causal
action languages’ in the AI literature. Several groups have suggested encoding
normative concepts in such formalisms. We have done so ourselves in other work
(see e.g. [13, 4, 5]) where we have used both C+ and the ‘event calculus’ for
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this purpose. Leon van der Torre [14] has made a suggestion along similar lines,
though using a different causal action language and a different approach. See also
the discussion in [12]. One feature that distinguishes C+ from other AI action
languages is that it has an explicit semantics in terms of transition systems. It
thereby proves a bridge between AI formalisms and standard methods in other
areas of computer science and logic. It is this feature that n C+ seeks to exploit.

2 The Language C+

We begin with a concise, and necessarily rather dense, summary of the C+
language. Some features (notably ‘statically determined fluents’ and ‘exogenous
actions’) are omitted for simplicity. There are also some minor syntactic and
terminological differences from the version presented in [1]. See [6] for details.

A multi-valued propositional signature σ is a set of symbols called constants.
For each constant c in σ there is a non-empty set dom(c) of values called the
domain of c. For simplicity, in this paper we will assume that each dom(c) is
finite and has at least two elements. An atom of a signature σ is an expression
of the form c = v where c is a constant in σ and v ∈ dom(c). A formula ϕ of
signature σ is any propositional compound of atoms of σ. The expressions � and
⊥ are 0-ary connectives, with the usual interpretation.

A Boolean constant is one whose domain is the set of truth values {t, f}. If
p is a Boolean constant, p is shorthand for the atom p = t and ¬p for the atom
p = f. Notice that, as defined here, ¬p is an atom when p is a Boolean constant.

In C+, the signature σ is partitioned into a set σf of fluent constants (also
known as ‘state variables’ in other areas of Computer Science) and a set σa of
action constants. A fluent formula is a formula whose constants all belong to σf;
an action formula is a formula containing at least one action constant and no
fluent constants.

An interpretation of a multi-valued signature σ is a function that maps every
constant c in σ to some value v in dom(c); an interpretation I satisfies an atom
c = v, written I |= c = v, if I(c) = v. The satisfaction relation |= is extended
from atoms to formulas in accordance with the standard truth tables for the
propositional connectives. We write I(σ) for the set of interpretations of σ.

Transition systems. Every C+ action description D of signature (σf, σa) defines
a labelled transition system 〈S,A, R〉 where

– S is a (non-empty) set of states, each of which is an interpretation of the
fluent constants σf of D; S ⊆ I(σf);

– A is a set of transition labels, also called events ; A is the set of interpretations
of the action constants σa, A = I(σa);

– R is a set of transitions, R ⊆ S × A × S.

A path of length m of the labelled transition system 〈S,A, R〉 is a sequence
s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0) such that (si−1, εi−1, si) ∈ R for i ∈ 1..m.

It is convenient in what follows to represent a state by the set of fluent atoms
that it satisfies, i.e., s = {f = v | s |= f = v}. A state is then a (complete, and



The Deontic Component of Action Language n C+ 225

consistent) set of fluent atoms. We sometimes say a formula ϕ ‘holds in’ state s
or ‘is true in’ state s as alternative ways of saying that s satisfies ϕ.

Action constants in C+ are used to name actions, attributes of actions, or
properties of a transition as a whole. Since a transition label/event ε is an in-
terpretation of the action constants σa, it is meaningful to say that ε satisfies
an action formula α (ε |= α). When ε |= α we say that the transition (s, ε, s′) is
a transition of type α. Moreover, since a transition label is an interpretation of
the action constants σa, it can also be represented by the set of atoms that it
satisfies.

An action description D in C+ is a set of causal laws, which are expressions
of the following three forms. A static law is an expression:

F if G (1)

where F and G are fluent formulas. Static laws express constraints on states. A
state s satisfies a static law (1) if s |= (G → F ). A fluent dynamic law is an
expression:

F if G after ψ (2)

where F and G are fluent formulas and ψ is any formula of signature σf ∪ σa.
Informally, (2) states that fluent formula F is satisfied by the resulting state s′

of any transition (s, ε, s′) with s ∪ ε |= ψ, as long as fluent formula G is also
satisfied by s′. Some examples follow. An action dynamic law is an expression:

α if ψ (3)

where α is an action formula and ψ is any formula of signature σf ∪ σa. Action
dynamic laws are used to express, among other things, that any transition of
type α must also be of type α′ (written α′ if α), or that any transition from a
state satisfying fluent formula G must be of type β (written β if G).

The C+ language provides various abbreviations for common forms of causal
laws. We will employ the following in this paper.

α causes F if G expresses that fluent formula F is satisfied by any state fol-
lowing the occurrence of a transition of type α from a state satisfying fluent
formula G. It is shorthand for the dynamic law F if � after G∧α. α causes F
is shorthand for F if � after α.

nonexecutable α if G expresses that there is no transition of type α from a
state satisfying fluent formula G. It is shorthand for the fluent dynamic
law ⊥ if � after G ∧ α, or α causes ⊥ if G.

inertial f states that values of the fluent constant f persist by default (by ‘in-
ertia’) from one state to the next. It is shorthand for the collection of fluent
dynamic laws f = v if f = v after f = v for every v ∈ dom(f).

Of most interest are definite action descriptions, which are action descriptions
in which the head of every law (static, fluent dynamic, or action dynamic) is
either an atom or the symbol ⊥, and in which no atom is the head of infinitely
many laws of D. We will restrict attention to definite action descriptions in this
paper.
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Causal theories. The language C+ is presented in [1] as a higher-level notation
for defining particular classes of theories in a general-purpose non-monotonic
formalism called ‘causal theories’. For present purposes the important points are
these: for every (definite) action description D and non-negative integer m there
is a natural translation from D to a causal theory Γ D

m which encodes the paths
of length m in the transition system defined by D; moreoever, for every definite
causal theory Γ D

m there is a formula comp(Γ D
m ) of (classical) propositional logic

whose (classical) models are in 1-1 correspondence with the paths of length m
in the transition system defined by D. Thus, one method of computation for
C+ action descriptions is to construct the formula comp(Γ D

m ) from the action
description D and then employ a (standard, classical) satisfaction solver to de-
termine the models of comp(Γ D

m ). This is the method employed in the ‘Causal
Calculator’ CCalc.

A causal theory of signature σ is a set of expressions (‘causal rules’) of the
form

F ⇐ G

where F and G are formulas of signature σ. F is the head of the rule and G is
the body. A rule F ⇐ G is to be read as saying that there is a cause for F when
G is true (which is not the same as saying that G is the cause of F ).

Let Γ be a causal theory and let X be an interpretation of its signature.
The reduct Γ X is the set of all rules of Γ whose bodies are satified by the
interpretation X : Γ X =def {F | F ⇐ G is a rule in Γ and X |= G}. X is a model
of Γ iff X is the unique model (in the sense of multi-valued signatures) of Γ X .

Given a definite action description D in C+, and any non-negative integer
m, translation to the corresponding causal theory Γ D

m proceeds as follows. The
signature of Γ D

m is obtained by time-stamping every fluent constant of D with
non-negative integers between 0 and m and every action constant with integers
between 0 and m−1: the (new) atom f [i] = v represents that fluent f = v holds
at integer time i, or more precisely, that f = v is satisfied by the state si of a
path s0 ε0 · · · εm−1 sm of the transition system defined by D; the atom a[i] = v
represents that action atom a = v is satisfied by the transition εi of such a path.
The domain of each timestamped constant c[i] is the domain of c. In what follows,
ψ[i] is shorthand for the formula obtained by replacing every atom c = v in ψ by
the timestamped atom c[i] = v.

Now, for every static law F if G in D and every i ∈ 0 .. m, include in Γ D
m a

causal rule of the form
F [i] ⇐ G[i]

For every fluent dynamic law F if G after ψ in D and every i ∈ 0 .. m−1, include
a causal rule of the form

F [i+1] ⇐ G[i+1] ∧ ψ[i]

And for every action dynamic law α if ψ in D and every i ∈ 0 .. m−1, include a
causal rule of the form

α[i] ⇐ ψ[i]
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We also require the following ‘exogeneity laws’. For every fluent constant f and
every v ∈ dom(f), include a causal rule:

f [0] = v ⇐ f [0] = v

And for every action constant a, every v ∈ dom(a), and every i ∈ 0 .. m−1,
include a causal rule:

a[i] = v ⇐ a[i] = v

It is straightforward to check [1] that the models of causal theory Γ D
m , and

hence the (classical) models of the propositional logic formula comp(Γ D
m ), corre-

spond 1-1 to the paths of length m of the transition system defined by the C+
action description D. In particular, models of comp(Γ D

1 ) encode the transitions
defined by D and models of comp(Γ D

0 ) the states defined by D.

3 n C+: Coloured Transition Systems

An action description of n C+ defines a coloured transition system, which is a
structure of the form 〈S,A, R, Sg, Rg〉 where 〈S,A, R〉 is a labelled transition
system of the kind defined by C+ action descriptions, and where the two new
components are

– Sg ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we call
Sg the ‘green’ states of the system;

– Rg ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—we
call Rg the ‘green’ transitions of the system.

We refer to the complements Sred = S −Sg and Rred = R−Rg as the ‘red states’
and ‘red transitions’, respectively. Semantical devices which partition states (and
here, transitions) into two categories are familiar in the field of deontic logic. For
example, Carmo and Jones [15] employ a structure which has both ideal/sub-
ideal states and ideal/sub-ideal transitions (unlabelled). van der Meyden’s ‘Dy-
namic logic of permission’ [16] employs a structure in which transitions, but not
states, are classified as ‘permitted/non-permitted’. van der Meyden’s version was
constructed as a response to problems of Meyer’s ‘Dynamic deontic logic’ [10]
which classifies transitions as ‘permitted/non-permitted’ by reference only to the
state resulting from a transition. ‘Deontic interpreted systems’ [8] classify states
as ‘green’/‘red’, where these states have further internal structure to model the
local states of agents in a multi-agent context. In all of these examples (and oth-
ers) the task has been to find axiomatisations of such structures in one form of
deontic logic or another. Here we are concerned with a different task, that of de-
vising a language for defining coloured transition systems of the form described
above.

A coloured transition system 〈S,A, R, Sg, Rg〉 must further satisfy the fol-
lowing constraint, for all states s and s′ in S and all transitions (s, ε, s′) in R:

if (s, ε, s′) ∈ Rg and s ∈ Sg then s′ ∈ Sg (4)
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We refer to this as the green-green-green constraint, or ggg for short. (It is
difficult to find a suitable mnemonic.) The ggg constraint (4) expresses a kind
of well-formedness principle: a green (permitted, acceptable, legal) transition in
a green (permitted, acceptable, legal) state always leads to a green (acceptable,
legal, permitted) state. What is the rationale? Since we are here classifying
both states and transitions into green/red, it is natural to ask whether there
are any relationships between the classification of states and the classification
of transitions between them. As observed previously by Carmo and Jones [15]
any such relationships are necessarily quite weak. In particular, and contra the
assumptions underpinning John-Jules Meyer’s construction of Dynamic Deontic
Logic [10], a red (unacceptable, non-permitted) transition can result in a green
(acceptable, permitted) state. Indeed such cases are frequent: suppose that there
are two different transitions, (s, ε1, s

′) and (s, ε2, s
′), between a green or red state

s and a green state s′. It is entirely reasonable that the transition (s, ε1, s
′) is

classified as green whereas (s, ε2, s
′) is classified as red. (s, ε1, s

′) might represent
an action by one agent, for example, and (s, ε2, s

′) an action by another. This
situation cannot arise if the transition system has a tree-like structure in which
there is at most one transition between any pair of states, but we do not want
to restrict attention to transition systems of this form. Similarly, it is easy to
encounter cases in which a green (acceptable, permitted) transition can lead
sensibly to a red (unacceptable, non-permitted) state: not all green (acceptable,
permitted) transitions from a red state must be such that they restore the system
to a green state. Some illustrations will arise in the examples later. The only
plausible relationship between the classification of states and the classification
of transitions, as also noted by Carmo and Jones [15], is what we called the
ggg constraint above, if we regard it (as we do) as a required property of any
well-formed system specification. Since the ggg constraint is so useful for the
applications we have in mind, we choose to adopt it as a feature of every coloured
transition system.

Note that the ggg constraint (4) may be written equivalently as:

if (s, ε, s′) ∈ R and s ∈ Sg and s′ ∈ Sred then (s, ε, s′) ∈ Rred (5)

Any transition from a green (acceptable, permitted) state to a red (unacceptable,
non-permitted) state must itself be red, in a well-formed system specification.

One can consider a range of other properties that we might require of a
coloured transition system: that the transition relation must be serial, for ex-
ample, or that there must be at least one green state, or that from every green
state there must be at least one green transition, or that from every green state
reachable from some specified initial state(s) there must be at least one green
transition, and so on. The investigation of these, and other, properties is worth-
while but not something we undertake here. We place no restrictions on coloured
transition systems, beyond the ggg constraint.

The language n C+. To avoid having to specify separately which states and
transitions are green and which are red, an n C+ action description specifies
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those that are red and leaves the remainder to be classified as green by default.
This is for convenience, and also to ensure that all states and transitions are
classified completely and consistently. (One might ask why the defaults are not
chosen to operate the other way round. It is very much more awkward to specify
concisely what is green and allow the remainder to be red by default.)

Accordingly, the language n C+ extends C+ with two new forms of rules. A
state permission law is an expression of the form

n : not-permitted F if G (6)

where n is an (optional) identifier for the rule and F and G are fluent formulas.
not-permitted F is a shorthand for not-permitted F if �. An action permission
law is an expression of the form

n : not-permitted α if ψ (7)

where n is an (optional) identifier for the rule, α is an action formula and ψ is any
formula of signature σf∪σa. not-permitted α is shorthand for not-permitted α if �.
We also allow oblig F as an abbreviation for not-permitted ¬F and oblig α as an
abbreviation for not-permitted ¬α.1

Informally, in the transition system defined by an action description D, a state
s is red whenever s |= F ∧G for a state permission law not-permitted F if G. All
other states are green by default. A transition (s, ε, s′) is red whenever s ∪ ε |=
ψ and ε |= α for any action permission law not-permitted α if ψ. All other
transitions are green, subject to the ggg constraint which may impose further
conditions on the colouring of a given transition.

Let D be an action description of n C+. Dbasic refers to the subset of laws of
D that are also laws of C+. The coloured transition system defined by D has
the states S and transitions R that are defined by its C+ component, Dbasic,
and green states Sg and green transitions Rg given by Sg =def S −Sred, Rg =def
R − Rred where

Sred =def {s | s |= F ∧ G for some law of the form (6) in D}
Rred =def {(s, ε, s′) | s ∪ ε |= ψ, ε |= α for some law of the form (7) in D}

∪ {(s, ε, s′) | s ∈ Sg and s′ ∈ Sred}

The second component of the Rred definition ensures that the ggg constraint is
satisfied. (The state permission laws not-permitted F if G and not-permitted (F ∧
G) are thus equivalent in n C+; we allow both forms for convenience.) It can be
shown easily [6] that the coloured transition system defined in this way is unique
and satisfies the ggg constraint. The definition of course does not guarantee
that the coloured transition system satisfies any of the other possible properties
that we mentioned earlier. If they are felt to be desirable in some particular
1 This does not raise the issue of ‘action negation’ as encountered in modal action

logics. (See e.g. [12].) In C+ and n C+, α is not the name of an action but a formula
expressing a property of transitions.
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application, they must be checked separately as part of the specification process.
(These checks are easily implemented.)

The overall effect is thus:

– a state is green unless coloured red by some static permission law;
– a transition is red if it is coloured red by some action permission law, or by

the ggg constraint; otherwise it is green.

That the colouring of transitions is dependent on the colouring of states should
not be interpreted as a commitment to any philosophical position about the
priority of the ought-to-be and the ought-to-do, and the derivability of one from
the other. It is merely a consequence of, first, adopting the ggg constraint as
an expression of the well-formedness of a system specification, and second, of
choosing to specify explicitly what is red and letting green be determined by
default.

Causal theories. Any (definite) action description of n C+ can be translated
to the language of (definite) causal theories, as follows. Let D be an action
description and m a non-negative integer. The translation of the C+ component
Dbasic of D proceeds as usual. For the permission laws, introduce two new fluent
and action constants, status and trans respectively, both with possible values
green and red. They will be used to represent the colour of a state and the colour
of a transition, respectively.

For every state permission law n : not-permitted F if G and time index i ∈
0 .. m, include in Γ D

m a causal rule of the form

status[i] = red ⇐ F [i] ∧ G[i] (8)

and for every i ∈ 0 .. m, a causal rule of the form

status[i] = green ⇐ status[i] = green (9)

to specify the default colour of a state. A state permission rule of the form
n : oblig F if G produces causal rules of the form status[i] = red ⇐ ¬F [i] ∧ G[i].

For every action permission law n : not-permitted α if ψ and time index i ∈
0 .. m−1, include in Γ D

m a causal rule of the form

trans[i] = red ⇐ α[i] ∧ ψ[i] (10)

and for every i ∈ 0 .. m−1, a causal rule of the form

trans[i] = green ⇐ trans[i] = green (11)

to specify the default colour of a transition. An action permission law of the form
n : oblig α if ψ produces causal rules of the form trans[i] = red ⇐ ¬α[i] ∧ ψ[i].

Finally, to capture the ggg constraint, include for every i ∈ 0 .. m−1 a causal
rule of the form

trans[i] = red ⇐ status[i] = green ∧ status[i+1] = red (12)
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It is straightforward to show [6] that models of the causal theory Γ D
m correspond

to all paths of length m through the coloured transition system defined by D,
where the fluent constant status and the action constant trans encode the colours
of the states and transitions, respectively.

The translation of n C+ into causal theories effectively treats status = red and
trans = red as ‘violation constants’. Notice that, although action descriptions in
n C+ can be translated to causal theories, they cannot be translated to action
descriptions of C+: there is no form of causal law in C+ which translates to the
ggg constraint (12). However, implementation in CCalc requires only that the
causal laws (8)–(12) are included in the translation to causal theories, which is
a very simple modification.

4 Examples

The examples in this section are deliberately chosen to be as simple as possible,
so that in each case we can show the transition system defined in its entirety.
Other examples may be found in [6, 7]. The first example illustrates the use
of n C+ in a typical (but very simple) system specification. The second is to
motivate the more complicated account to come in Section 5.

Example (File system). I is some piece of (confidential) information. I, or ma-
terial from which I can be derived, is stored in a file. Let x range over some set
of agent names. Boolean fluent constants Kx represent that agent x has access
to information I, that x ‘knows’ I. Boolean fluent constants Fx represent that
x has read access to the file containing I. If x has read access to the file (Fx)
then x knows I (Kx). Fx is inertial: both Fx and ¬Fx persist by default. ¬Kx
persists by default but once Kx holds, it holds for ever.

Suppose, for simplicity, that there are two agents, a and b. Suppose moreover
that the file is the only source of information I, in the sense that if Kx holds for
any x then either Fa or Fb. This does not change the essence of the example
but it reduces the number of states and simplifies the diagrams.

There are two types of acts: Boolean action constants read(x) represent that
x is given read access to the file containing I. Boolean action constant a tells b
represents that a communicates to b the information I (whether or not b knows it
already), and b tells a that b communicates it to a. In this simple example there
are no actions by which read access to the file is removed once it is granted.

We can represent the above as a definite action description as follows, for x
ranging over a and b.

inertial Fx read(x) causes Fx

¬Kx if ¬Kx after ¬Kx a tells b causes Kb

Kx if � after Kx b tells a causes Ka

nonexecutable a tells b if ¬Ka

Kx if Fx nonexecutable b tells a if ¬Kb

⊥ if Kx ∧ ¬Fa ∧ ¬Fb nonexecutable read(x) if Fx
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Now suppose that a is permitted to know I, and b is not. We add the following
law to the action description. (Ka is permitted by default.)

p(b) : not-permitted Kb

The transition system defined by this action description is shown below.
The labels read(a), read(b), a tells b, b tells a stand for the transition labels
{read(a), ¬read(b), ¬a tells b, ¬b tells a}, {¬read(a), read(b), ¬a tells b,
¬b tells a} and so on, respectively. The label read(a), read(b) is shorthand for
the transition label {read(a), read(b), ¬a tells b, ¬b tells a}. Reflexive arcs, cor-
responding to the ‘null event’ or to transitions of type a tells b and b tells a from
state {Fa, Ka,¬Fb, Kb} to itself, are omitted from the diagram to reduce clut-
ter. Also omitted from the diagram are transitions of type read(a) ∧ a tells b,
a tells b ∧ b tells a, etc. Again, this is just to reduce clutter.

¬Fa ¬Fb
¬Ka¬Kb

green

Fa ¬Fb
Ka¬Kb

green

Fa ¬Fb
Ka Kb

red

¬Fa Fb
KaKb

red

¬Fa Fb
¬KaKb

red

Fa Fb
Ka Kb

red

read(a)

gr
ee

n
read(b)

red

read(b)

red

read(a)
gr

ee
n

read(b)
green

read(a)
gre

en

a tells bred

b tells agreen

read(a), read(b)
red

Notice that transitions of type read(b) are red because of the ggg constraint,
except that read(b) transitions come out to be green in states where Kb already
holds. If the latter is felt to be undesirable, one could add another action per-
mission law not-permitted read(b), or a state permission law not-permitted Fb.
We will discuss some of these options in more detail later.

In a computerised system, b’s access to information I would be controlled by
the file access system. Naturally the file access system cannot determine whether
b knows I: in practice, a specification of the computer system would simply say
that read(b) actions are nonexecutable, or simply that Fb is false. The latter can
be expressed by adding the following static law to the action description:

⊥ if Fb

This eliminates all states in which Fb holds from the transition system. The
transition system defined by this extended action description is the following:

¬Fa ¬Fb
¬Ka¬Kb

green

Fa ¬Fb
Ka¬Kb

green

Fa ¬Fb
Ka Kb

red

read(a)
green

a tells b
red
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As usual, reflexive arcs are omitted from the diagram for clarity. Here, the ac-
tion read(a) is under the control of the file access system, and a tells b is an
action that can be performed by agent a. This difference is not explicit in the
semantics of C+ nor of n C+. The agent-centric version of n C+, alluded to in
the introduction, allows such distinctions to be made.

Example (Secrets). Suppose we have agents a, b, and c, Boolean fluent constants
Ka, Kb, and Kc as in the previous example, and Boolean action constants
a tells b and a tells c. We ignore the file system and read access to it from now
on since they play no role in this example, and we leave out other possible actions
such as b tells a, c tells a, etc, to simplify the diagrams. The persistence of Ka,
Kb, and Kc, and the effects of a tells b and a tells c actions are represented using
C+ laws as shown earlier.

Suppose now that b is not permitted to know I. The coloured transition system
contains the following fragment:

Ka
¬Kb
¬Kc

green

Ka
Kb

¬Kc
red

Ka
Kb
Kc

red

a tells b
red

a tells c
green

¬a tells c
green

The states {Ka, Kb, ¬Kc} and {Ka, Kb, Kc} are red because Kb is not per-
mitted. The transition labelled a tells b is red because of the ggg constraint. The
transition labelled a tells c is not forced to be red by the ggg constraint and so
becomes green by default. The (reflexive) transition labelled ¬a tells c is also
green for the same reason.

But suppose now that we change the example, by adding that c is also not
permitted to know I. The fragment of the transition system shown above remains
unchanged (because the state {Ka, Kb, Kc} was already red). The transition
labelled a tells c is green even though a tells c results in Kc, and Kc is not
permitted. We have here an instance of a general phenomenon: once a state is
red, all transitions from it (including actions by all other agents) become green
by default unless explicitly coloured red by action permission laws.

One possibility is to leave some transitions uncoloured, or what comes to the
same thing, remove the default colouring of transitions and allow an n C+ action
description to define multiple transition systems differing in the colours assigned
to some transitions. This is easy to encode, and easy to implement, but it is too
weak for what we want: we would then never be able to conclude that there are
(necessarily) green transitions from any red state.

Our diagnosis is that the classification of states into red/green is too crude.
Why should we think that a tells c transitions should be inferred red even after
a tells b has occurred and Kb holds? Because a tells c would lead to violation of
another norm which says that Kc is not permitted. So we will introduce names
for (instances of) norms and then classify states according to how well, or how
badly, they comply with these norms.
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5 n C+: Graded Transition Systems

A graded transition system is a structure of the form: 〈S,A, R, Rg, ≺〉 where
〈S,A, R〉 is a labelled transition system of the kind defined by C+ action de-
scriptions, and where

– Rg ⊆ R is the set of ‘green’ transitions;
– ≺ is a (strict, partial) ordering on S: s ≺ s′ represents that state s′ is worse

than state s.

We refer to Rred = R − Rg as the ‘red transitions’ as usual.
Notice that we have chosen to grade/rank states but not transitions: transi-

tions are still either green or red. There may be good reasons to rank transitions
as well, but we will not do so here.

As in the case of coloured transition systems, we further impose a well-
formedness constraint, analogous to the ggg constraint. The natural general-
ization of ggg is to require that in any green transition (s, ε, s′) from state s to
state s′, the resulting state s′ must be no worse than the state s: (s, ε, s′) ∈ Rg
implies s �≺ s′. This constraint may be written equivalently as:

if (s, ε, s′) ∈ R and s ≺ s′ then (s, ε, s′) ∈ Rred (13)

We refer to (13) as the BRW constraint (short for ‘better-red-worse’), again
apologising for the ugliness of the label.

A coloured transition system is thus a special case of a graded transition sys-
tem in which s ≺ s′ iff s ∈ Sg and s′ ∈ Sred. In that case the BRW constraint (13)
takes the form: if (s, ε, s′) ∈ R and s ∈ Sg and s′ ∈ Sred then (s, ε, s′) ∈ Rred,
which is equivalent to the formulation of the ggg constraint given earlier (4).

Note that according to the BRW constraint, a transition (s, ε, s′) is not forced
to be red if s �≺ s′. In particular, when s and s′ are not comparable in ≺, the BRW
constraint does not apply. This is deliberate. One could look for stronger well-
formedness constraints than BRW. The requirement that (s, ε, s′) ∈ Rg implies
s′ ≺ s is clearly much too strong, but there are several candidates stronger than
BRW for which a plausible case can be made. We are inclined, however, not to
adopt any of these stronger constraints as a fixed feature of graded transition
systems.

Violation orderings. Of particular interest is the special case of graded transition
systems where the ordering on states is determined by how well, or how badly,
each state complies with a set of explicitly named norms.

A normative code N is a finite set of pairs 〈n, o(F/G)〉 where n is an identifier
for a norm, and F and G are fluent formulas. Note that we do not require that
norm labels are unique in N .

The violation set VN (s) of a state s in S is the set of norm identifiers in N
that are violated in s.

VN (s) =def {n | 〈n, o(F/G)〉 ∈ N and s |= G ∧ ¬F} (14)
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Now we can define an ordering on states by comparing their violation sets. A
state s is better than a state s′ if the violation set of s is a proper subset of the
violation set of s′:

s ≺N s′ iff VN (s) ⊂ VN (s′) (15)

It would be easy to add weights or priorities on norms, and adjust the definition
of ≺N to take these weights into account. The details are straightforward and
we omit them.

Let D be an action description of n C+. The graded transition system defined
by D is 〈S,A, R, Rg, ≺N 〉 where the states S, transition labels/events A, and
transitions R are exactly as in the coloured transition system described in Sec-
tion 3; Rg = R − Rred where the red transitions Rred are determined by the
action permission laws and the BRW constraint; and where the ordering ≺N
on states is the ordering defined in (15) by the normative code N consisting of
elements 〈n, o(¬F/G)〉 where n : not-permitted F if G is a law in D and elements
〈n, o(F/G)〉 where n : oblig F if G is a law in D.

Encoding in causal theories. Let the Boolean fluent constant viol(n) represent
that norm n in N is violated. For every state permission law n : not-permitted F
if G and time index i ∈ 0 .. m, include in the causal theory Γ D

m the causal rules:

¬viol(n)[i] ⇐ ¬viol(n)[i] (16)
viol(n)[i] ⇐ F [i] ∧ G[i] (17)

A state permission rule of the form n : oblig F if G produces causal rules of the
form viol(n)[i] ⇐ ¬F [i] ∧ G[i].

(In place of the Boolean violation constants viol(n)[i] we could have used fluent
constants status(n)[i] with possible values green and red.)

In order to encode the BRW constraint, it is not necessary to compute and
compare violation sets for each state. Instead, we can encode the BRW constraint
as follows. Include in Γ D

m , for every i ∈ 0 .. m−1 and every norm identifier n in
N , the causal rules:

trans[i] = green ⇐ trans[i] = green (18)
trans[i] = red ⇐ viol(n)[i+1] ∧ ¬viol(n)[i] ∧ ¬q[i] (19)

¬q[i] ⇐ ¬q[i] (20)
q[i] ⇐ viol(n)[i] ∧ ¬viol(n)[i+1] (21)

Causal rules (18) and (19) generalise the causal rules (11) and (12) used to encode
the ggg constraint in causal theories. They make use of auxiliary constants q[i]
defined in (20)–(21). One can easily check that in the case where the action
description contains a single state permission law, causal rules (18)–(21) collapse
to a form equivalent to the causal rules (11) and (12) encoding the ggg constraint.
In the case where the action description contains no state permission law, these
two sets of causal laws are trivially equivalent, since both are empty.
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Example (Secrets, contd). Suppose we formulate the example of Section 4 using
two state permission laws as follows:

p(b) : not-permitted Kb (22)
p(c) : not-permitted Kc (23)

The graded transition system defined is as follows, where the annotations on the
states show the respective violation sets.

Ka
Kb

¬Kc {p(b)}

¬Ka
¬Kb
¬Kc {}

Ka
¬Kb
¬Kc {}

Ka
Kb
Kc {p(b), p(c)}

Ka
¬Kb

Kc {p(c)}

a tells b
red

a tells c
red

¬a tells c
green

a tells c
red

a tells b
red

¬a tells b
green

a tells b, a tells c
red

‘Null events’ and other reflexive arcs are omitted from the diagram for clarity.
Contrast this with a different version of the example. Suppose that instead of

permission laws (22) and (23) with two explicit norms labelled p(b) and p(c) we
specify just one explicit norm with a single label p, either in the form

p : not-permitted Kb (24)
p : not-permitted Kc (25)

or equivalently as a single state permission law: p : not-permitted (Kb ∨ Kc).
In this version of the action description, the three states {Ka, Kb, ¬Kc},

{Ka, ¬Kb, Kc}, and {Ka, ¬Kb, ¬Kc} all have the same violation set, {p}. Since
they are now not strictly worse than each other, the BRW constraint does not
colour transitions between them red: they are all green by default. This transition
system corresponds to the example in Section 4, but now with states annotated
by violation sets {} and {p} rather than colours ‘green’ and ‘red’.

6 Conclusion

n C+ adds a simple deontic component to C+, intended to support system speci-
fications where there is a need to distinguish between acceptable/permitted and
unacceptable/non-permitted system states and behaviours.

It was our intention to continue the discussion of the examples to show how
n C+ copes with (temporal) ‘contrary-to-duty’ structures. For instance, a natural
extension of the examples would take the form ‘a must not tell b and a must not
tell c; but if a tells b it must tell c, and if a tells c it must tell b’, as in Belzer’s
Reykjavik scenario [17]. Another interesting variant is ‘b is not permitted to
know I and c is not permitted to know I; but if a tells b it must tell c, and if a
tells c it must tell b’. We leave that discussion for a separate paper.
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Besides investigating variants of the BRW well-formedness constraint and
other desirable properties of coloured/graded transition systems, we are devel-
oping a refined version of n C+ to make explicit the distinction between actions
and transitions, and an agent-centric n C+ for specifying system norms as direc-
tives that constrain an individual agent’s behaviour.
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Abstract. We solve the problem left open in [5] by providing a com-
plete axiomatisation of deontic interpreted systems on a language that
includes full CTL as well as the Ki, Oi and Kj

i modalities. Additionally
we show that the logic employed enjoys the finite model property, hence
decidability is guaranteed. To achieve these results we follow and extend
the technique used by Halpern and Emerson in [2].

1 Introduction

Concepts based on deontic notions are increasingly being used in specification
and verification of large multi-agent systems. Because of their open and self-
interested nature it is unrealistic to assume that a team of engineers in a single
organisation may maintain designe, engineer and control a whole multi-agent sys-
tem. This makes it difficult, even a priori, to verify either off-line or at runtime
that each individual agent complies with a set of specifications. It seems more fea-
sible, instead, to permit the agents to perform incorrect/unwanted/undesirable
actions, only to flag all unwanted behaviours and reason about the properties
that these may bring about in the system.

In other words, by adding a suitable set of deontic notions we can aim to
verify not only what properties the system enjoys when each individual agent
is performing following the intended specifications (as it is traditionally done in
Software Engineering), but also what consequences result from the violation of
some of these specifications by some agents. This shift to a more liberal, finer
grained approach requires the introduction of suitable formal machinery both in
terms of specification languages and verification tools.

Deontic interpreted systems [5] have recently been introduced for this objec-
tive. In their basic form they provide a computationally grounded semantics [9]
to interpret a logic capturing epistemic, temporal and correctness notions. By us-
ing this formalism it is possible to give a semantical description of key scenarios
[6] and use the logic to check whether or not particular properties hold on these
specifications. Specifically, deontic interpreted systems can be used to interpret a
language that includes CTL modalities AU, EU, EX [2], epistemic modalities Ki
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[3], modalities representing correct functioning behaviour Oi, and modalities K̂j
i

representing knowledge under the assumption of correct behaviour. Automatic
model checking tools for deontic interpreted systems have been developed [4, 7]
supporting the automatic verification of state spaces of the region of 1040 and
beyond [8, 10, 7].

While the above results concern specification patters, verification tools, and
concrete scenarios, important theoretical issues have so far been left open. In
particular, the axiomatisation of deontic interpreted systems originally provided
in [5] was limited to a language that did not include temporal operators. Further-
more, the bi-indexed modality K̂j

i , whose importance in practical verification is
now well recognised, was not included in the language.

The difficulty of the problem is linked to two issues. First, the modality K̂j
i

is defined in terms of the intersection between two relations with different prop-
erties: modalities like these are known to be hard to treat. Second, any ax-
iomatisation for deontic interpreted systems would have to include a logic for
branching-time, but the standard procedure for axiomatising CTL involves a
non-standard filtration procedure [2].

The contribution of the present work is to solve the problem left open in
[5], i.e., to provide a complete axiomatisation of deontic interpreted systems on
a language that includes full CTL as well as the Ki, Oi and K̂j

i modalities.
Additionally we show that the logic employed enjoys the finite model property,
hence it is decidable. To show these results we extend the technique originally
presented by Halpern and Emerson in [2] to the richer language above.

The rest of the paper is organised as follows. In Section 2 we present syntax
and semantics of the logic. Section 3 is devoted to the construction of the under-
lying machinery to prove the main results of the paper. Sections 4 and 5 present
a decidability theorem and a completeness proof for the logic.

2 Deontic Interpreted Systems

Deontic interpreted systems [5] constitute a semantics to interpret epistemic,
correctness and temporal operators in a computational setting. They extend the
framework of interpreted systems [3], popularised by Halpern and colleagues in
the 90s to reason about knowledge, to modalities expressing correctness and
knowledge under assumptions of correctness. Technically, deontic interpreted
systems provide an interpretation to the operators Oi (Oiφ representing “when-
ever agent i is working correctly φ is the case”) and K̂j

i (K̂j
iφ representing “agent

i knows that φ under the assumption that agent j is working correctly”) as
well as the standard epistemic operators Ki and branching time operators of
CTL already supported by interpreted systems. Semantically this is achieved
simply by assuming that the local states of the agents are composed by two dis-
joint sets of allowed (or “green”) and disallowed (or “red”) local states. Loosely
speaking an agent “is working correctly” whenever it is following its protocol
(defined in interpreted systems as a function from local states to sets of actions)
in its choice of actions. Given that the focus of this paper is to axiomatise the
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result trace based semantics resulting from this we refer to [5] and related papers
for more details.

It also should be noted that the Oi (respectively K̂) operators tackled in this
paper concern correctness of execution (respectively knowledge under the as-
sumption of correctness). Although they intuitively are related to some deontic
concepts, they do not refer to the standard meaning of ”obligation”. Conse-
quently the widely-discussed paradoxes of deontic logic do not apply to the
concepts presented here.

Let IN = {0, 1, 2, . . .}, IN+ = {1, 2, . . .}, PV be a set of propositional variables,
and AG = {1, . . . , n} a set of agents, for n ∈ IN+.

Definition 1 (Syntax). Let p ∈ PV and i ∈ AG. The language L is defined by
the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ) | Kiϕ | Oiϕ | K̂j
iϕ

The language above extends CTL [1] with a standard epistemic operator Ki [3],
and two further modalities: Oi and K̂j

i [5]. The formula EXα is read as “there
exists a computation path such that at the next step of the path α holds”,
E(αUβ) is read as “there exists a computation path such that β eventually
occurs and α continuously holds until then”, Kiα is read as “agent i knows
that α”, Oiα is read as “whenever agent i is functioning correctly α holds”, and
K̂j

iα is read as “agent i knows that α under the assumption that the agent j is
functioning correctly”.

The remaining operators can be introduced via abbreviations as usual, i.e.,
α∧β

def
= ¬(¬α∨¬β), α ⇒ β

def
= ¬α∨β, α ⇔ β

def
= (α ⇒ β)∧(β ⇒ α), AXα

def
= ¬EX¬α,

EFα
def
= E(�Uα), AFα

def
= A(�Uα), EGα

def
= ¬AF¬α, AGα

def
= ¬EF¬α, A(αWβ)

def
=

¬E(¬αU¬β), E(αWβ)
def
= ¬A(¬αU¬β), Kiα

def
= ¬Ki(¬α), Oiα

def
= ¬Oi(¬α).

Since most of the proofs of the paper are by induction on the length of the
formula, below we give a definition of length that will be used throughout the
paper.

Definition 2 (Length). Let ϕ ∈ L. The length of ϕ (denoted by |ϕ|) is defined
inductively as follows:

• If ϕ ∈ PV, then |ϕ| = 1,
• If ϕ is of the form ¬α, Kiα, Oiα, or K̂j

iα, then |ϕ| = |α| + 1,
• If ϕ is of the form EXα, then |ϕ| = |α| + 2,
• If ϕ is of the form α ∨ β then |ϕ| = |α| + |β| + 1,
• If ϕ is of the form A(αUβ) or E(αUβ), then |ϕ| = |α| + |β| + 2.

Following [5] we interpret L on deontic interpreted systems. Whenever reasoning
about models and other semantic structures (such as Hintikka’s structures below)
we assume that each agent i ∈ AG (respectively the environment e) is associated
with a set of local states Li (respectively Le). These are partitioned into allowed
(or green) Gi (respectively Ge) and disallowed (red) Ri (respectively Re) states.
The selection and execution of actions on global states generates by means of
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a transition function runs, or computational paths, that are represented below
by means of the temporal relation T . Given our current interest is presently
concerned with axiomatisations we will focus at the level of models as defined
below. For more details on what below we refer to [3, 5].

Definition 3 (Deontic Interpreted Systems). A deontic interpreted system
(or a model) is a tuple M = (S, T, (RK

i )i∈AG, (RO
i )i∈AG, (Rj

i )i,j∈AG, V) where
S ⊆ ∏n

i=1 Li × Le is a set of global states with L1 ⊇ G1, . . . , Ln ⊇ Gn, Le ⊇ Ge;
T ⊆ S × S is a serial relation on S; RK

i ⊆ S × S is a relation for each agent
i ∈ AG defined by: (s, s′) ∈ RK

i iff li(s) = li(s′), where li : S → Li is a function
returning the local state of agent i from a global state; RO

i ⊆ S × S is a relation
for each agent i ∈ AG defined by: (s, s′) ∈ RO

i iff li(s′) ∈ Gi; Rj
i ⊆ S × S is a

relation for each agent i ∈ AG defined by: (s, s′) ∈ Rj
i iff (s, s′) ∈ RK

i ∩ RO
j ;

V : S −→ 2PV is a valuation function, which assigns to each state a set of
proposition variables that are assumed to be true at that state.

We call F = (S, T, (RK
i )i∈AG, (RO

i )i∈AG, (Rj
i )i,j∈AG) a frame.

A path in M is an infinite sequence π = (s0, s1, . . .) of states such that
(si, si+1) ∈ T for each i ∈ IN. For a path π = (s0, s1, . . .), we take π(k) = sk. By
Π(s) we denote the set of all the paths starting at s ∈ S.

Definition 4 (Satisfaction). Let M be a model, s a state, and α, β ∈ L. The
satisfaction relation |=, indicating truth of a formula in model M at state s, is
defined inductively as follows:

(M, s) |= p iff p ∈ V(s), (M, s) |= α ∧ β iff (M, s) |= α and (M, s) |= β,
(M, s) |= ¬α iff (M, s) �|= α, (M, s) |= EXα iff (∃π ∈ Π(s))(M,π(1)) |= α,
(M, s) |= E(αUβ) iff (∃π∈Π(s))(∃m≥0)[(M, π(m)) |= β and (∀j <m)(M, π(j)) |=α],
(M, s) |= A(αUβ) iff (∀π∈Π(s))(∃m≥0)[(M, π(m)) |= β and (∀j <m)(M, π(j)) |=α],
(M, s) |= Kiα iff (∀s′ ∈ S) (sRK

i s′ implies (M, s′) |= α),
(M, s) |= Oiα iff (∀s′ ∈ S) (sRO

i s′ implies (M, s′) |= α),
(M, s) |= Kj

i α iff (∀s′ ∈ S) (sRj
is

′ implies (M, s′) |= α).

We conclude this section with a definition of validity/satisfiability problems.

Definition 5 (Validity and Satisfiability). Let M be a model and ϕ ∈ L.
(a) ϕ is valid in M (written M |= ϕ), if M, s |= ϕ for all states s ∈ S. (b) ϕ
is satisfiable in M , if M, s |= ϕ for some state s ∈ S. (c) ϕ is valid (written
|= ϕ), if ϕ is valid in all the models M . (d) ϕ is satisfiable if it is satisfiable in
some model M . In this case M is said to be a model for ϕ.

In the next section we prove that L has the finite model property (FMP), that
is, we show that any satisfiable L formula is also satisfiable on a finite model.
This result allows us to provide a decidability algorithm for L (see Section 4),
which we use later on to prove that the language has a complete axiomatic
system.
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3 Finite Model Property (FMP)

The standard procedure for showing the FMP in modal logic is to construct a fil-
tration of an arbitrary model of a satisfiable formula and show that this filtrated
model is itself a model for the formula. As it is well-known, while this procedure
produces the intended result for a number of logics, it fails in others, for instance
in the case of CTL. More refined techniques for showing the FMP exist; notably
the construction given in [2] via Hintikka structures guarantees the result. In-
deed, given that the logic in study here is an extension of CTL, here we follow
the procedure given in [2] and show it can be extended to extensions of CTL.

We start by defining two auxiliary structures: a Hintikka structure for a given
L formula, and the quotient structure for a given model. As in the previous
section and in rest of the paper we assume to be dealing with a set of agents
defined on local states, and protocols.

Definition 6 (Hintikka structure). A Hintikka structure for ϕ is a tuple H =
(S, T, (RK

i )i∈AG, (RO
i )i∈AG, (Rj

i )i,j∈AG, L) where F =(S, T, (RK
i )i∈AG, (RO

i )i∈AG,

(Rj
i )i,j∈AG) is a frame and L : S → 2L is a labelling function assigning a set

of formulas to each state such that ϕ ∈ L(s) for some s ∈ S and the following
conditions are satisfied:

H.1. if ¬α ∈ L(s), then α �∈ L(s)
H.2. if ¬¬α ∈ L(s), then α ∈ L(s)
H.3. if (α ∨ β) ∈ L(s), then α ∈ L(s) or β ∈ L(s)
H.4. if ¬(α ∨ β) ∈ L(s), then ¬α ∈ L(s) and ¬β ∈ L(s)
H.5. if E(αUβ) ∈ L(s), then β ∈ L(s) or α ∧ EXE(αUβ) ∈ L(s)
H.6. if ¬E(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or ¬β ∧ ¬EXE(αUβ) ∈ L(s)
H.7. if A(αUβ) ∈ L(s), then β ∈ L(s) or α ∧ ¬EX(¬A(αUβ)) ∈ L(s)
H.8. if ¬A(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or ¬β ∧ EX(¬A(αUβ)) ∈ L(s)
H.9. if EXα ∈ L(s), then (∃t ∈ S)((s, t) ∈ T and α ∈ L(t))

H.10. if ¬EXα ∈ L(s), then (∀t ∈ S)((s, t) ∈ T implies ¬α ∈ L(t))
H.11. if E(αUβ) ∈ L(s), then (∃π ∈ Π(s))(∃n ≥ 0)(β ∈ L(π(n))

and (∀j < n)α ∈ L(π(j)))
H.12. if A(αUβ) ∈ L(s), then (∀π ∈ Π(s))(∃n ≥ 0)(β ∈ L(π(n))

and (∀j < n)α ∈ L(π(j)))
H.13. if Kiα ∈ L(s), then (∀t ∈ S)(sRK

i t implies α ∈ L(t))
H.14. if ¬Kiα ∈ L(s), then (∃t ∈ S)(sRK

i t and ¬α ∈ L(t))
H.15. if Oiα ∈ L(s), then (∀t ∈ S)(sRO

i t implies α ∈ L(t))
H.16. if ¬Oiα ∈ L(s), then (∃t ∈ S)(sRO

i t and ¬α ∈ L(t))
H.17. if Kj

iα ∈ L(s), then (∀t ∈ S)(sRj
i t implies α ∈ L(t))

H.18. if ¬Kj
iα ∈ L(s), then (∃t ∈ S)(sRj

i t and ¬α ∈ L(t))
H.19. if sRK

i t and sRK
i u and Kiα ∈ L(t), then α ∈ L(u)

H.20. if Oiα ∈ L(s) and (sRO
i t), then Oiα ∈ L(t)

H.21. if sRO
i t and sRO

j u and Oiα ∈ L(u), then α ∈ L(t)
H.22. if Kj

iα ∈ L(s) and (sRj
i t), then Kj

iα ∈ L(t)
H.23. if sRj

i t and sRj
iu and Kj

iα ∈ L(t), then α ∈ L(u)
H.24. if Kiα ∈ L(s), then Kj

iα ∈ L(s)
H.25. if Ojα ∈ L(s), then Kj

iα ∈ L(s)
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Lemma 1 (Hintikka’s Lemma for L). A formula ϕ ∈ L is satisfiable (i.e.,
ϕ has a model) if and only if there is a Hintikka structure for ϕ.

Proof. It is easy to check that any model M = (S, T, (RK
i )i∈AG, (RO

i )i∈AG,

(Rj
i )i,j∈AG, V) for ϕ is a Hintikka structure for ϕ, when we extend V to cover all

formulae which are true in a state, i.e., in M we replace V by L that is defined
as: α ∈ L(s) if (M, s) |= α, for all s ∈ S.

Conversely, any Hintikka structure H = (S, T, (RK
i )i∈AG, (RO

i )i∈AG,

(Rj
i )i,j∈AG, L) for ϕ can be extended to form a model for ϕ. Namely, it is

enough to restrict L to propositional variables only, and require that for every
propositional variable p appearing in ϕ and for all s ∈ S either p ∈ L(s) or
¬p ∈ L(s). �
Observe that the Hintikka structure differs from a the deontic interpreted system
in that the assignment L is not restricted to propositional variables, nor it is
required to contain p or ¬p for any p ∈ PV. In line with the construction in
[2], we call H1-H8 propositional consistency rules, H9, H10, H13-H25 local
consistency rules, and H11 and H12 eventuality properties.

We now proceed to define a quotient structure for a given model. The quotient
construction depends on an equivalence relation of states on a given model. To
define this we use the Fischer-Ladner closure of a formula ϕ ∈ L (denoted by
FL(ϕ)) as FL(ϕ) = CL(ϕ) ∪ {¬α | α ∈ CL(ϕ)}, where CL(ϕ) is the smallest
set of formulas that contains ϕ and satisfy the following conditions:

(a). if ¬α ∈ CL(ϕ), then α ∈ CL(ϕ),
(b). if α ∨ β ∈ CL(ϕ), then α, β ∈ CL(ϕ),
(c). if E(αUβ) ∈ CL(ϕ), then α, β,EXE(αUβ) ∈ CL(ϕ),
(d). if A(αUβ) ∈ CL(ϕ), then α, β,AXA(αUβ) ∈ CL(ϕ),
(e). if EXα ∈ CL(ϕ), then α ∈ CL(ϕ),
(f). if Kiα ∈ CL(ϕ), then α ∈ CL(ϕ),
(g). if Oiα ∈ CL(ϕ), then α ∈ CL(ϕ),
(h). if K̂j

iα ∈ CL(ϕ), then α ∈ CL(ϕ).

Observe that for a given formula ϕ ∈ L, FL(ϕ) forms a finite set of formulae,
as the following lemma shows (the size of a finite set A — denoted by Card(A)
— is defined as the number of elements of A).

Lemma 2. Given a formula ϕ ∈ L, Card(FL(ϕ)) ≤ 2(|ϕ|).
Proof.Straightforward by induction on the length of ϕ. �

Definition 7 (Fischer-Ladner’s equivalence relation). Let ϕ ∈ L and
M = (S, T, (RK

i )i∈AG, (RO
i )i∈AG, (Rj

i )i,j∈AG, V) be a model for ϕ. The relation
↔FL(ϕ) on a set of states S is defined as follows:

s ↔FL(ϕ) s′ if (∀α ∈ FL(ϕ))((M, s) |= α iff (M, s′) |= α)

By [s] we denote the set {w ∈ S | w ↔FL(ϕ) s}.
Observe that ↔FL(ϕ) is indeed an equivalence relation, so using it we can define
the quotient structure for a given model for L.
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Definition 8 (Quotient structure). Let ϕ ∈ L, M = (S, T, (RK
i )i∈AG,

(RO
i )i∈AG, (Rj

i )i,j∈AG, V) be a model for ϕ, and ↔FL(ϕ) a Fischer-Ladner’s equi-
valence relation. The quotient structure of M by ↔FL(ϕ) is the tuple M↔F L(ϕ) =
(S′, T ′, (R′K

i )i∈AG, (R′O
i )i∈AG, (R′j

i )i,j∈AG, L′) such that S′ = {[s] | s ∈ S},
T ′ = {([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) such that (w, w′) ∈ T },
R′K

i = {([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) such that (w, w′) ∈ RK
i },

R′O
i = {([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) such that (w, w′) ∈ RO

i },
R′j

i = {([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) such that (w, w′) ∈ Rj
i}, and

L′ : S′ → 2FL(ϕ) is defined by: L′([s]) = {α ∈ FL(ϕ) | (M, s) |= α}.
Note that the set S′ is finite as it is the result of collapsing states satisfying formu-
las that belong to the finite set FL(ϕ). In fact we have Card(S′) ≤ 2Card(FL(ϕ)).
Note also that since L is an extension of CTL, the resulting quotient structure
may not be a model. In particular, the following lemma holds.

Lemma 3. The quotient construction does not preserve satisfiability of formulas
of the form A(αUβ), where α, β ∈ L. In particular, there is a model M for
A(�Up) with p ∈ PV such that M↔F L(ϕ) is not a model for A(�Up).

Proof. [Sketch] Consider the following model M = (S, T, RK
1 , RO

1 , R1
1, V) for

A(�Up), where S = {s0, s1, . . .}, T = {(s0, s0)} ∪ {(si, si−1) | i > 0}, RK
1 =

RO
1 = R1

1 = S × S, p ∈ V(s0) and p �∈ V(si) for all i > 0. It is easy to observe
that in the quotient structure of M , i.e., in M↔F L(A(�Up)) , two distinct states si

and sj , for all i, j > 0, will be identified. As a result of that, a cycle along which
p is always false will appear in M↔F L(A(�Up)) . This implies that A(�Up) does
not hold along the cycle. �
Although the quotient structure of a given model M by ↔FL(ϕ) may not be
a model, it satisfies another important property, which allows us to view it as
a pseudo-model; it can be unwound into a proper model. This observation can
be used to show that the language L has the FMP property. To make this idea
precise, we introduce the following auxiliary definitions.

An interior (respectively frontier) node of a directed acyclic graph (DAG)1

is one which has (respectively does not have) a successor. The root of a DAG
is the node (if it exists) from which all other nodes are reachable. A fragment
M ′ = (S′, T ′, (R′K

i )i∈AG, (R′O
i )i∈AG, (R′j

i )i,j∈AG, L′) of a Hintikka structure is a
structure such that (S′, T ′) generates a finite DAG whose interior nodes sat-
isfy H1-H10 and H13-H25, and the frontier nodes satisfy H1-H8 and H24-
H25. Given M = (S, T, (RK

i )i∈AG, (RO
i )i∈AG, (Rj

i )i,j∈AG, L) and M ′ = (S′, T ′,
(R′K

i )i∈AG, (R′O
i )i∈AG, (R′j

i )i,j∈AG, L′), we say that M is contained in M ′, and
write M ⊆ M ′, if S ⊆ S′, T = T ′ ∩ (S × S), RK

i = R′K
i ∩ (S × S), RO

i =
R′O

i ∩ (S × S), Rj
i = R′j

i ∩ (S × S), L = L′|S.

Definition 9 (Pseudo-model). Let ϕ ∈ L. A pseudo-model M = (S, T,
(RK

i )i∈AG, (RO
i )i∈AG, (Rj

i )i,j∈AG, L) for ϕ is defined in the same manner as a
1 Recall that a directed acyclic graph is a directed graph such that for any node v,

there is no nonempty directed path starting and ending on v.
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Hintikka structure for ϕ in Definition 6, except that condition H12 is replaced
by the following condition H ′12: (∀s ∈ S) if A(αUβ) ∈ L(s), then there is a frag-
ment (S′, T ′, (R′K

i )i∈AG, (R′O
i )i∈AG, (R′j

i )i,j∈AG, L′) ⊆ M such that: (a) (S′, T ′)
generates a finite DAG with root s; (b) for all frontier nodes t ∈ S′, β ∈ L′(t);
(c) for all interior nodes u ∈ S′, α ∈ L′(u).

We have the following.

Lemma 4. Let ϕ ∈ L, FL(ϕ) be the Fischer-Ladner closure of ϕ, M = (S, T,
(RK

i )i∈AG, (RO
i )i∈AG, (Rj

i )i,j∈AG, V) a model for ϕ, and M↔F L(ϕ) = (S′, T ′,
(R′K

i )i∈AG, (R′O
i )i∈AG, (R′j

i )i,j∈AG, L) the quotient structure of M by ↔FL(ϕ).
Then, M↔F L(ϕ) is a pseudo-model for ϕ.

Proof. The proof for the CTL part of L follows immediately from Lemma 3.8 in
[2] while the cases for the other modalities can be proven as follows. Consider ϕ
to be of the following forms:

H.13 . ϕ = Kiα. Let (M, s) |= Kiα, and Kiα ∈ L([s]). By the definition of
|=, we have that (M, t) |= α for all t ∈ S such that sRK

i t. Thus, by
the definitions of ↔FL(ϕ) and L, we have that α ∈ L([t]) for all t ∈ S
such that sRK

i t. Therefore, by the definition of R′K
i we conclude that

(∀[t] ∈ S′) if [s]R′K
i [t] then α ∈ L([t]). So, condition H13 is fulfilled.

H.14 . ϕ = ¬Kiα. Let (M, s) |= ¬Kiα, and ¬Kiα ∈ L([s]). By the definition
of |=, we have that ∃t ∈ S such that sRK

i t and (M, t) |= ¬α. Thus, by
the definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]). Therefore, by
the definition of R′K

i we conclude that (∃[t] ∈ S′) such that [s]R′K
i [t] and

¬α ∈ L([t]). So, condition H14 is fulfilled.
H.15 . ϕ = Oiα. Let (M, s) |= Oiα, and Oiα ∈ L([s]). By the definition of |=, we

have that (M, t) |= α for all t ∈ S such that sRO
i t. Thus, by the definitions

of ↔FL(ϕ) and L, we have that α ∈ L([t]) for all t ∈ S such that sRO
i t.

Therefore, by the definition of R′O
i we conclude that (∀[t] ∈ S′) if [s]R′O

i [t]
then α ∈ L([t]). So, condition H15 is fulfilled.

H.16 . ϕ = ¬Oiα. Let (M, s) |= ¬Oiα, and ¬Oiα ∈ L([s]). By the definition
of |=, we have that ∃t ∈ S such that sRO

i t and (M, t) |= ¬α. Thus, by
the definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]). Therefore, by
the definition of R′K

i we conclude that (∃[t] ∈ S′) such that [s]R′O
i [t] and

¬α ∈ L([t]). So, condition H16 is fulfilled.
H.17 . ϕ = K̂j

iα. Let (M, s) |= K̂j
iα, and K̂j

iα ∈ L([s]). By the definition of
|=, we have that (M, t) |= α for all t ∈ S such that sRj

i t. Thus, by the
definitions of ↔FL(ϕ) and L, we have that α ∈ L([t]) for all t ∈ S such
that sRj

i t. Therefore, by the definition of R′j
i we conclude that (∀[t] ∈ S′)

if [s]R′j
i [t] then α ∈ L([t]). So, condition H17 is fulfilled.

H.18 . ϕ = ¬K̂j
iα. Let (M, s) |= ¬K̂j

iα, and ¬K̂j
iα ∈ L([s]). By the definition

of |=, we have that (∃t ∈ S) such that sRj
i t and (M, t) |= ¬α. Thus, by

the definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]). Therefore,
by the definition of R′j

i we conclude that ∃[t] ∈ S′ such that [s]R′j
i [t] and

¬α ∈ L([t]). So, condition H18 is fulfilled.
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H.19 . Let [s]R′K
i [t] and [s]R′K

i [u], and Kiα ∈ L([u]). Since [s]R′K
i [u] and R′K

i is
symmetric, we have that [u]R′K

i [s]. Further, since R′K
i is transitive and

[u]R′K
i [s] and [s]R′K

i [t], we have that [u]R′K
i [t]. Since Kiα ∈ L([u]), by

case H.13 of the proof, we have that (∀[w] ∈ S′)([u]R′K
i [w] implies α ∈

L([w])). Therefore, we have that α ∈ L([t]). So, condition H19 is fulfilled.
H.20 . Let [s]R′O

i [t] and Oiα ∈ L([s]). By case H.15 of the proof, we have that

(∀[w] ∈ S′)([s]R′O
i [w] implies α ∈ L([w])) (1)

So, in particular, we have that α ∈ L([t]). Consider any [t′] ∈ S′ such that
[t]R′O

i [t′]. Since R′O
i is transitive, we have that [s]R′O

i [t′]. Since (1) holds,
we have that α ∈ L([t′]) for each [t′] such that [t]R′O

i [t′]. This implies
that Oiα ∈ L([t]). So, condition H20 is fulfilled.

H.21 . Let [s]R′O
i [t] and [s]R′O

j [u], and Oiα ∈ L([u]). By case H.15 of the proof,
we have that

(∀[w] ∈ S′)([u]R′O
i [w] implies α ∈ L([w])) (2)

Since R′O
i is i − jeuclidean, we have that [u]R′O

i [t]. Therefore, since (2)
holds, we have that α ∈ L([t]). So, condition H21 is fulfilled.

H.22 . Let [s]R′j
i [t] and K̂j

iα ∈ L([s]). By case H.17 of the proof, we have that

(∀[w] ∈ S′)([s]R′j
i [w] implies α ∈ L([w])) (3)

So, in particular, we have that α ∈ L([t]). Consider any [t′] ∈ S′ such that
[t]R′j

i [t′]. Since R′j
i is transitive, we have that [u]R′j

i [t′]. Since (3) holds,
we have that α ∈ L([t′]) for each [t′] such that [t]R′j

i [t′]. This implies that
K̂j

iα ∈ L([t]). So, condition H22 is fulfilled.
H.23 . Let [s]R′j

i [t] and [s]R′j
i [u], and K̂j

iα ∈ L([u]). Since R′j
i is euclidean, we

have that [u]R′j
i [t]. Since K̂j

iα ∈ L([u]) holds, by case H.17 of the proof,
we have that (∀[w] ∈ S′)([u]R′j

i [w] implies α ∈ L([w])). Therefore, we
have that α ∈ L([t]). So, condition H23 is fulfilled.

H.24 . ϕ = Kiα. Let (M, s) |= Kiα, and Kiα ∈ L([s]). By the definition of |=, we
have that (M, t) |= α for all t ∈ S such that sRK

i t. Consider the following
two sets K(s, i) = {t | (sRK

i t) and (M, t) |= α} and O(s, i, j) = {t ∈
K(s, i) | (sRO

j t)}, where i, j ∈ {1 . . . , n}. By the definition of K(s, i) and
O(s, j), we have that O(s, i, j) = {t | (sRj

i t) and M, t |= α}. Therefore, by
the definition of |= we have that (M, s) |= K̂j

iα. Thus, by the definitions of
↔FL(ϕ) and L, we have that K̂j

iα ∈ L([s]). So, condition H24 is fulfilled.
H.25 . ϕ = Ojα. Let (M, s) |= Ojα, and Ojα ∈ L([s]). By the definition of |=, we

have that (M, t) |= α for all t ∈ S such that sRO
j t. Consider the following

two sets O(s, j) = {t | (sRO
j t) and (M, t) |= α} and K(s, i, j) = {t ∈

O(s, j) | (sRK
i t)}, where i, j ∈ {1 . . . , n}. By the definition of K(s, i, j)

and O(s, i), we have that K(s, i, j) = {t | (sRj
i t) and M, t |= α}. There-

fore, by the definition of |= we have that (M, s) |= K̂j
iα. Thus, by the

definitions of ↔FL(ϕ) and L, we have that K̂j
iα ∈ L([s]). So, condition

H25 is fulfilled. �
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We can now prove the main claim of the section, i.e., the fact that L has the
finite model property.

Theorem 1 (FMP for L). Let ϕ ∈ L. Then the following are equivalent: (1)
ϕ is satisfiable; (2) There is a finite pseudo-model for ϕ; (3) There is a Hintikka
structure for ϕ.

Proof. [sketch] (3) ⇒ (1) follows from Lemma 1. (1) ⇒ (2) follows from Lemma 4.
To prove (2) ⇒ (3) it is enough to construct a Hintikka structure for ϕ by
“unwinding” the pseudo-model for ϕ. This can be done in the same way as is
described in [2] for the proof of Theorem 4.1. �

4 Decidability for L
Let ϕ be a L formula, and FL(ϕ) the Fischer-Ladner closure of ϕ. We define
Δ ⊆ FL(ϕ) to be maximal if for every formula α ∈ FL(ϕ), either α ∈ Δ or
¬α ∈ Δ.

Theorem 2. There is an algorithm for deciding whether any L formula is sat-
isfiable.

Proof. Given a formula ϕ ∈ L, we will construct a finite pseudo-model for ϕ of
size less or equal 22·|ϕ|. We proceed as follows.

1. Build a structure M ′ = (S′, T ′, (R′K
i )i∈AG, (R′O

i )i∈AG, (R′j
i )i,j∈AG, L′) in the

following way:
– S′ = {Δ | Δ ⊆ FL(ϕ) and Δ is maximal and satisfies all the proposi-

tional consistency rules};
– T ′ ⊆ S′ ×S′ is a relation such that (Δ1, Δ2) ∈ T ′ iff ¬EXα ∈ Δ1 implies

that ¬α ∈ Δ2;
– for each agent i ∈ AG, R′K

i ⊆ S′ × S′ is a relation such that (Δ1, Δ2) ∈
R′K

i iff {α | Kiα ∈ Δ1} ⊆ Δ2;
– for each agent i ∈ AG, R′O

i ⊆ S′ × S′ is a relation such that (Δ1, Δ2) ∈
R′O

i iff {α | Oiα ∈ Δ1} ⊆ Δ2;
– for each agent i, j ∈ AG, R′j

i ⊆ S′ ×S′ is a relation such that (Δ1, Δ2) ∈
R′j

i iff {α | K̂j
iα ∈ Δ1} ⊆ Δ2;

– L′ : S → 2FL(ϕ) is a function defined by L′(Δ) = Δ.
It is easy to observe that M ′, as constructed above, satisfies all of the proposi-
tional consistency properties; properties H10, H13, H15, and H17 (because
of the definition of T , RK

i , RO
i , and Rj

i respectively). Note also that since
Card(FL(ϕ)) ≤ 2 · |ϕ| (see Lemma 2), S′ has at most 22·|ϕ| elements.

2. Test the above structure M ′ for fulfilment of the properties H9, H11, H ′12,
H14, H16 H18 − H25 by repeatedly applying the following deletion rules
until no more states in M ′ can be deleted.
(a) Delete any state which has no T -successors.
(b) Delete any state Δ1 ∈S′ such that E(αUβ) ∈ Δ1 (respectively A(αUβ) ∈

Δ1) and there does not exist a fragment M ′′ ⊆ M ′ such that: (i) (S′′, T ′′)
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generates a finite DAG with root Δ1; (ii) for all frontier nodes Δ2 ∈ S′′,
β ∈ Δ2; (iii) for all interior nodes Δ3 ∈ S′′, α ∈ Δ3.

(c) Delete any state Δ1 ∈ S′ such that ¬Kiα ∈ Δ1, and Δ1 does not have
any R′K

i successor Δ2 ∈ S′ with ¬α ∈ Δ2.
(d) Delete any state Δ1 ∈ S′ such that ¬Oiα ∈ Δ1, and Δ1 does not have

any R′O
i successor Δ2 ∈ S′ with ¬α ∈ Δ2.

(e) Delete any state Δ1 ∈ S′ such that ¬K̂j
iα ∈ Δ1, and Δ1 does not have

any R′j
i successor Δ2 ∈ S′ with ¬α ∈ Δ2.

(f) Delete any state Δ1 ∈ S′ such that Δ1R′K
i Δ2 and Δ1R′K

i Δ3 and α ∈ Δ2
and Ki¬α ∈ Δ3

(g) Delete any state Δ1 ∈ S′ such that Δ1R′O
i Δ2 and Oiα ∈ Δ1 and ¬Oiα ∈

Δ2.
(h) Delete any state Δ1 ∈ S′ such that Δ1R

O
i Δ2 and Δ1R

O
j Δ3 and Oi¬α ∈

Δ3 and α ∈ Δ2 .
(i) Delete any state Δ1 ∈ S′ such that Δ1R

j
iΔ2 and K̂j

iα ∈ Δ1 and ¬K̂j
iα ∈

Δ2.
(j) Delete any state Δ1 ∈ S′ such that Δ1R

′j
i Δ2 and Δ1R

′j
i Δ3 and α ∈ Δ2

and K̂j
i¬α ∈ Δ3.

(k) Delete any state Δ ∈ S′ such that Kiα ∈ Δ and ¬K̂j
iα ∈ Δ.

(l) Delete any state Δ ∈ S′ such that Ojα ∈ Δ and ¬K̂j
iα ∈ Δ.

We call the above two points a decidability algorithm for L.

Claim (1). The decidability algorithm for L terminates.
Proof. The termination is obvious given that the initial set S′ is finite.

Claim (2). Let M = (S, T, (RK
i )i∈AG, (RO

i )i∈AG, (Rj
i )i,j∈AG, L) be the resulting

structure of the algorithm. The formula ϕ ∈ L is satisfiable iff ϕ ∈ s, for some
s ∈ S.

Proof. In order to show the part right-to-left of the above property, note that
either the resulting structure is a pseudo-model for ϕ, or S = ∅ (this can be
shown inductively on the structure of the algorithm). So, if ϕ ∈ s for some
s ∈ S, ϕ is satisfiable by Theorem 1.

Conversely, if ϕ is satisfiable, then there exists a model M∗ such that M∗ |=
ϕ. Let M∗

↔F L(ϕ)
= M ′ = (S′, T ′, (R′K

i )i∈AG, (R′O
i )i∈AG, (R′j

i )i,j∈AG, L′) be the
quotient structure of M∗ by ↔FL(ϕ). By Theorem 1 we have that M ′ is a
pseudo-model for ϕ. So, L′ satisfies all the propositional consistency rules, the
local consistency rules, and properties H11 and H ′12. Moreover, by the definition
of L′ in the quotient structure, L′(s) is maximal with respect to FL(ϕ) for all
s ∈ S′. Now, let M ′′ = (S′′, T ′′, (R′′K

i )i∈AG, (R′′O
i )i∈AG, (R′′j

i )i,j∈AG, L′′) be a
structure defined by step 1 of the decidability algorithm, and f : S′ → S′′ a
function defined by f(s) = L′(s). The following conditions hold:

1. If (s, t) ∈ T ′, then (f(s), f(t)) ∈ T ′′;
Proof (via contradiction): Let (s, t) ∈ T ′ and (f(s), f(t)) �∈ T ′′. By the defin-
ition of T ′′ we have that ¬EXα ∈ f(s) and α ∈ f(t). Then, by the definition
of f , we have that ¬EXα ∈ L′(s) and α ∈ L′(t). So, by the definition of L′
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in the quotient structure we have that M∗, s |= ¬EXα and M∗, t |= α, which
contradict the fact that (s, t) ∈ T ′.

2. If (s, t) ∈ R′K
i , then (f(s), f(t)) ∈ R′′K

i ;
Proof (via contradiction): Let (s, t) ∈ R′K

i and (f(s), f(t)) �∈ R′′K
i . By the

definition of R′′K
i we have that Kiα ∈ f(s) and α �∈ f(t). Then, by the

definition of f , we have that Kiα ∈ L′(s) and α �∈ L′(t). So, by the definition
of L′ in the quotient structure we have that M∗, s |= Kiα and M∗, t |= ¬α,
which contradict the fact that (s, t) ∈ R′K

i .
3. If (s, t) ∈ R′O

i , then (f(s), f(t)) ∈ R′′O
i ;

Proof (via contradiction): Let (s, t) ∈ R′O
i and (f(s), f(t)) �∈ R′′O

i . By the
definition of R′′O

i we have that Oiα ∈ f(s) and α �∈ f(t). Then, by the
definition of f , we have that Oiα ∈ L′(s) and α �∈ L′(t). So, by the definition
of L′ in the quotient structure we have that M∗, s |= Oiα and M∗, t |= ¬α,
which contradict the fact that (s, t) ∈ R′O

i .
4. If (s, t) ∈ R′j

i , then (f(s), f(t)) ∈ R′′j
i ;

Proof (via contradiction): Let (s, t) ∈ R′j
i and (f(s), f(t)) �∈ R′′j

i . By the
definition of R′′j

i we have that K̂j
iα ∈ f(s) and α �∈ f(t). Then, by the

definition of f , we have that K̂j
iα ∈ L′(s) and α �∈ L′(t). So, by the definition

of L′ in the quotient structure we have that M∗, s |= K̂j
iα and M∗, t |= ¬α,

which contradict the fact that (s, t) ∈ R′j
i .

Thus, the image of M ′ under f is contained in M ′′, i.e., M ′ ⊆ M ′′. It re-
mains to show that if s ∈ S′, then f(s) ∈ S′′ will not be eliminated in step
2 of the decidability algorithm. This can be checked by induction on the order
in which states of S′′ are eliminated. For instance, assume that s ∈ S′, and
A(αUβ) ∈ f(s). By the definition of f , we have that A(αUβ) ∈ L′(s). Now,
since M ′ is a pseudo-model, by Definition 9 we have that there exists a fragment
rooted at s that is contained in M ′ and it satisfies property H ′12. Thus, since f
preserves the above condition (a), we have that there exists a fragment rooted
at f(s) that is contained in M ′′ and it satisfies property H ′12. This implies that
f(s) ∈ S′′ will not be eliminated in step 2b of the decidability algorithm. Other
cases can be proven similarly. Therefore, it follows that for some s ∈ S we have
ϕ ∈ L(s). �

5 A Complete Axiomatic System for L
An axiomatic system consists of a collection of axioms and inference rules. An
axiom is a formula, and an inference rule has the form “from formulas ϕ1, . . . , ϕm

infer formula ϕ”. We say that ϕ is provable (written � ϕ) if there is a sequence of
formulas ending with ϕ, such that each formula is either an instance of an axiom,
or follows from other provable formulas by applying an inference rule. We say
that a formula ϕ is consistent if ¬ϕ is not provable. A finite set {ϕ1, . . . , ϕm} of
formulas is consistent if and only if the conjunction ϕ1 ∧ . . .∧ϕm of its members
is consistent, and an infinite set of formulas is consistent if all of its finite subsets
are consistent. A set F of formulas is a maximal consistent set if it is consistent
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and for all ϕ �∈ F , the set F ∪ {ϕ} is inconsistent. An axiom system is sound
(resp. complete) with respect to the class of models, if � ϕ implies |= ϕ (resp. if
|= ϕ implies � ϕ).

Definition 10 (Axiomatisation of deontic interpreted systems). Let i ∈
{1, . . . , n}. Consider the following axiomatic system for L:

PC. All substitution instances of classical tautologies.
X1. EX� U1. E(αUβ) ⇔ β ∨ (α ∧ EXE(αUβ))
X2. EX(α ∨ β) ⇔ EXα ∨ EXβ U2. A(αUβ) ⇔ β ∨ (α ∧ AXA(αUβ))
KKi . (Kiα ∧ Ki(α ⇒ β)) ⇒ Kiβ TKi . Kiα ⇒ α
5Ki . ¬Kiα ⇒ Ki¬Kiα KOi . (Oiα ∧ Oi(α ⇒ β)) ⇒ Oiβ
4Oi . Oiα ⇒ OiOiα DOi . Oiα ⇒ ¬Oi¬α

5i−j
Oi

. ¬Oiα ⇒ Oj¬Oiα O − K̂j
i. Ojα ⇒ K̂j

iα

K − K̂j
i. Kiα ⇒ K̂j

iα KKj
i
. (K̂j

iα ∧ K̂j
i (α ⇒ β)) ⇒ K̂j

iβ

4Kj
i
. K̂j

iα ⇒ K̂j
i K̂

j
iα 5Kj

i
. ¬K̂j

iα ⇒ K̂j
i¬K̂j

iα

MP. From α and α ⇒ β infer β NecKi. From α infer Kiα
NecOi . From α infer Oiα R1X. From α ⇒ β infer EXα ⇒ EXβ
R2X . From γ ⇒ (¬β ∧ EXγ) infer γ ⇒ ¬A(αUβ)
R3X. From γ ⇒ (¬β ∧ AX(γ ∨ ¬E(αUβ))) infer γ ⇒ ¬E(αUβ)

We note that the system above includes the axiomatisation for CTL [2], S5 [3]
for Ki and KD45i−j [5] for Oi. The fragment for the operators K̂j

i , previously
not explored, is K45. In line with the traditional interpretation of these axioms
in an epistemic setting these are to be interpreted from the point of view of
an external observer ascribing properties to the system. They both seem in line
with the interpretation of the modality of knowledge under the assumption of
correct behaviour. Further note that axioms 4Kj

i
, and 5Kj

i
are to be expected

given that both the underlying relations are transitive and Euclidean.
The interaction axioms Oi − K̂j

i and Ki − K̂j
i regulate the relationship be-

tween Oi, Ki and K̂j
i . They were both discussed in [5] and correspond to our

intuition regarding the meaning of the modalities. Note also that they closely
match the interaction axioms for distributed versus standard knowledge, which
again confirms our intuition given that distributed knowledge is defined on the
intersection of the relations for standard knowledge.

The inference rules for all the components are also entirely expected — note
that while Necessitation for K̂j

i is not explicitly listed, it may easily be deduced
from NecKi or NecOi .

Theorem 3. The axiomatic system for L is sound and complete with respect to
the deontic interpreted systems, i.e. |= ϕ iff � ϕ, for any formula ϕ ∈ L.

Proof. Soundness can be checked inductively as standard. For completeness,
we show that any consistent formula ϕ is satisfiable. To do this, we first con-
sider the structure M = (S, T, (RK

i )i∈AG, (RO
i )i∈AG, (Rj

i )i,j∈AG, L) for ϕ as de-
fined in step 1 of the decidability algorithm. We then execute step 2 of the
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algorithm, obtaining a pseudo-model for ϕ. Crucially we show below that if a
state s ∈ S is eliminated at step 2 of the algorithm, then the formula ψs =∧

α∈s α is inconsistent. Observe now that that for any α ∈ FL(ϕ) we have
� α ⇔ ∨ {s | α ∈ s and

ψs is consistent} ψs. In particular, � ϕ ⇔ ∨ {s | ϕ ∈ s and
ψs is consistent} ψs. Thus, if ϕ is

consistent, then ψs is consistent as well for some s ∈ S. It follows by Claim 2 of
Theorem 2 that this particular s is present in the pseudo-model resulting from
the execution of the algorithm. So, by Theorem 1, ϕ is satisfiable. Note that
pseudo-models share the structural properties of models, i.e., their underlying
frames have the same properties.

It remains to show that if a state s ∈ S is eliminated at step 2 of the algorithm
then the formula ψs is inconsistent. Before we do it, we need some auxiliary
claims.

Claim (3). Let s ∈ S and α ∈ FL(ϕ). Then, α ∈ s iff � ψs ⇒ α.

Proof. (’if’). Let α ∈ s. Then, by PC we have that � ψs ⇒ α. (’only if’). Let
� ψs ⇒ α. Then, since s is maximal and propositionally consitent, we have that
α ∈ s. �
Claim (4). Let s, t ∈ S, both of them be maximal and propositionally consistent,
sRK

i t (respectively sRO
i t and sRj

i t ), and α ∈ FL(ϕ). If α ∈ t, then ¬Ki¬α ∈ s

(respectively ¬Oi¬α ∈ s and ¬K̂j
i¬α ∈ s).

Proof.[By contraposition] Let α ∈ t and ¬Ki¬α /∈ s. Then, since s is maximal
we have that Ki¬α ∈ s. Thus, since sRK

i t, we have that ¬α ∈ t. This contradicts
the fact that α ∈ t, since t is propositionally consistent.

The same proof applies to Oi and K̂j
i . �

Claim (5). Let s ∈ S be a maximal and consistent set of formulas, α ∈ FL(ϕ)
and α such that � α. Then α ∈ s.

Proof. Suppose α �∈ s and � α. Since s is maximal, ¬α ∈ s. Thus ¬α ∧ ψs is
consistent where ψs where ψs ∈ s. So by definition of consistency we have that
�� ¬(¬α ∧ ψs), so �� α ∨ ¬ψs. But we have � α ∨ ψs, so this is a contradiction. �
We now show, by induction on the structure of the decidability algorithm for L,
that if a state s ∈ S is eliminated at step 2 of the decidability algorithm, then
� ¬ψs.

Claim (6). If ψs is consistent, then s is not eliminated at step 2 of the decidability
algorithm for L.
Proof.
(a). Let EXα ∈ s and ψs be consistent. By the same reasoning as in the proof

of Claim 4(a) in [2], we conclude that s satisfies H9. So s is not eliminated.
(b). Let E(αUβ) ∈ s (respectively A(αUβ) ∈ s) and suppose s is eliminated

at step 2 because H11 (respectively H ′12) is not satisfied. Then ψs is
inconsistent. The proof showing that fact is the same as the proof of Claim
4(c) (respectively Claim 4(d)) in [2].

(c). Let ¬Kiα ∈ s and ψs be consistent. Consider the set S¬α = {¬α} ∪ {β |
Kiβ ∈ s}. We will show that S¬α is consistent. Suppose that S¬α is in-
consistent. Then, � β1 ∧ . . . ∧ βm ⇒ α, where βj ∈ {β | Kiβ ∈ s} for
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j ∈ {1, . . . , m}. By rule NecKi we have � Ki((β1 ∧ . . . ∧ βm) ⇒ α). By
axioms KKi and PC we have � (Kiβ1 ∧ . . . ∧ Kiβm) ⇒ Kiα. Thus, since
each Kiβj ∈ s for j ∈ {1, . . . , m} and s is maximal and propositionally con-
sistent, we have Kiα ∈ s. This contradicts the fact that ψs is consistent.
So, S¬α is consistent. Now, since each set of formulas can be extended to a
maximal one, we have that S¬α is contained in some maximal set t. Thus
¬α ∈ t, and moreover, by the definition of RK

i in M and the definition of
S¬α we have that sRK

i t. Thus, s satisfies H14, and it is not eliminated by
step (c) of the decidability algorithm.

(d). Let ¬Oiα ∈ s and ψs be consistent. Consider the set S¬α = {¬α} ∪ {β |
Oiβ ∈ s}. We will show that S¬α is consistent. Suppose that S¬α is in-
consistent. Then, � β1 ∧ . . . ∧ βm ⇒ α, where βj ∈ {β | Oiβ ∈ s} for
j ∈ {1, . . . , m}. By rule NecOi we have � Oi((β1 ∧ . . . ∧ βm) ⇒ α). By
axioms KOi and PC we have � (Oiβ1 ∧ . . . ∧ Oiβm) ⇒ Oiα. Since each
Oiβj ∈ s for j ∈ {1, . . . , m} and s is maximal and propositionally consis-
tent, we have Oiα ∈ s. This contradicts the fact that ψs is consistent. So,
S¬α is consistent. Now, since each set of formulas can be extended to a
maximal one, we have that S¬α is contained in some maximal set t. Thus
¬α ∈ t, and moreover, by the definition of RO

i in M and the definition of
S¬α we have that sRO

i t. Thus, s satisfies H16, and it is not eliminated by
step (d) of the decidability algorithm.

(e). Let ¬K̂j
iα ∈ s and ψs be consistent. Consider the set S¬α = {¬α} ∪ {β |

K̂j
iβ ∈ s}. We will show that S¬α is consistent. Suppose that S¬α is in-

consistent. Then, � β1 ∧ . . . ∧ βm ⇒ α, where βj ∈ {β | K̂j
iβ ∈ s} for

j ∈ {1, . . . , m}. By rule NecKi we have � Ki((β1 ∧ . . . ∧ βm) ⇒ α). By
axiom (K − K̂j

j) we have � K̂j
i ((β1 ∧ . . . ∧ βm) ⇒ α). By axioms KKj

i

and PC we have � (K̂j
iβ1 ∧ . . . ∧ K̂j

iβm) ⇒ K̂j
iα. Since each K̂j

iβj ∈ s for
j ∈ {1, . . . , m} and s is maximal and propositionally consistent, we have
K̂j

iα ∈ s. This contradicts the fact that ψs is consistent. So, S¬α is consis-
tent. Now, since each set of formulas can be extended to a maximal one,
we have that S¬α is contained in some maximal set t. Thus ¬α ∈ t, and
moreover, by the definition of Rj

i in M and the definition of S¬α we have
that sRj

i t. Thus, s satisfies H18, and it is not eliminated by step (e) of the
decidability algorithm.

(f). Suppose that s is consistent and it is eliminated at step (f) of the decid-
ability algorithm. Thus, we have that sRK

i t, sRK
i u, α ∈ t, and Ki¬α ∈ u.

So, since sRK
i t, α ∈ t, s and t are maximal and propositionally consistent,

by Claim 4 we have that ¬Ki¬α ∈ s. Since s is maximal and consistent, by
axiom 5Ki and Claim 5, we have that ¬Ki¬α ⇒ Ki¬Ki¬α ∈ s. Therefore,
we have that Ki¬Ki¬α ∈ s. Thus, since sRK

i u, we have that ¬Ki¬α ∈ u.
But this is a contradictions given that Ki¬α ∈ u an u is propositionally
consistent. So s is inconsistent. Therefore s cannot be eliminated at step
(f) of the decidability algorithm.
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(g). Suppose that ψs is consistent and s is eliminated at step (g) of the decidabil-
ity algorithm. Then, we have that sRO

i t, Oiα ∈ s and ¬Oiα ∈ t. Thus, since
s and t are maximal and propositionally consistent, by Claim 4 we have that
¬OiOiα ∈ s. By axiom 4Oi and Claim 5 we have that Oiα ⇒ OiOiα ∈ s.
So, since Oiα ∈ s we have that OiOiα ∈ s. So s is inconsistent. Therefore
s cannot be eliminated at step (g) of the decidability algorithm.

(h). If ψs is consistent, s cannot be eliminated at step (h) (respectively (i) and (j))
of the decidability algorithm. The proof can be done similarly to the one in
(f) (respectively (g) and (f)) by using axiom 5i−j

Oi
(respectively 4Kj

i
and 5Kj

i
).

(i). Suppose that s is consistent and s is eliminated at step (k) of the decid-
ability algorithm. Thus, we have that Kiα ∈ s and K̂j

iα �∈ s. Since s is
maximal we have that ¬K̂j

iα ∈ s. Since s is consistent, by axiom K − K̂j
i

and Claim 5 we have that Kiα ⇒ K̂j
iα ∈ s. So, since Kiα ∈ s we have that

K̂j
iα ∈ s. So s is inconsistent. Therefore s cannot be eliminated at step (k)

of the decidability algorithm.
(j). Suppose that s is consistent and s is eliminated at step (l) of the decidability

algorithm. Thus, we have that Ojα ∈ s and K̂j
iα �∈ s. Since s is maximal

we have that ¬K̂j
iα ∈ s. Since s is consistent, by axiom O − K̂j

i and Claim
5 we have that Ojα ⇒ K̂j

iα ∈ s. So, since Ojα ∈ s we have that K̂j
iα ∈ s.

So s is inconsistent. Therefore s cannot be eliminated at step (l) of the
decidability algorithm. �

We have now shown that only states s with ψs inconsistent are eliminated. This
ends the completeness proof. �

6 Conclusion

We have given a complete axiomatisation of deontic interpreted systems on a
language that includes full CTL as well as the the Ki, Oi and K̂j

i modalities.
Thereby, we have solved the problem left open in [5]. Further, we have shown
that the language considered here has the finite model property, so it is decidable.

The K̂j
i modality can be straightforwardly extended to K̂X

i [5] representing
knowledge of i under the assumption of correctness of all agents in X. We believe
that the technique of this paper can be extended to prove completeness for
axiomatisation for K̂X

i without difficulty. For clarity this is not presented in this
paper.
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Abstract. In order to provide an implemented language of deontic
concepts on complex actions for the purposes of social simulation, we
consider the logical representation of obligations, sequences of actions,
and the Contrary to Duty (CTD) Paradox. We show that approaches
which follow Standard Deontic Logic (Carmo and Jones (2002)) or Dy-
namic Deontic Logic (Khosla and Maibaum (1987) and Meyer (1988))
encounter problems with obligations, sequences, and CTDs. In particu-
lar, it is crucial to differentiate sequences of obligations from obligations
on sequences and to consider contract change over time. Contra Meyer
(1988), we argue that the CTD problem cannot be reduced to a a se-
quence of obligations. Contra Carmo and Jones (2002), the analysis of
CTDs needs explicit state change and does not need a concept of ideality.
We discuss Pörn’s Criterion, which states that it is critical to a compre-
hensive theory of deontic reasoning to take dynamic aspects into account
(Pörn (1977:ix-x)); in our view, this ought to encompass Contract State
Change. In a theory of deontic specifications on actions, we show that ar-
ticulated, compositional, and productive markers for violation and fulfill-
ment are key to address the problems identified. The theorical arguments
inform the Abstract Contract Calculator, a prototype implementation in
Haskell of a language for reasoning with and simulating the results of
deontically specified actions (Wyner (2006a) and Wyner (2006b)). With
the language, one can represent and study the outcomes of multi-agent
artificial normative systems as agents execute actions over time.

1 Introduction

We consider the logical representation of obligations, sequences of actions, and
the Contrary to Duty (CTD) Paradox. We agree with Carmo and Jones (2002)
that the CTD problem is the key defining problem for deontic reasoning. Though
Carmo and Jones (2002), which develops the Standard Deontic Logic (SDL)

� Copyright c©2006 Adam Zachary Wyner. This work was prepared while the author
was a postgraduate student at King’s College London under the supervision of Tom
Maibaum and Andrew Jones, which was funded by a studentship from Hewlett-
Packard Research Labs, Bristol, UK. The author thanks Tom, Andrew, HP, and
anonymous reviewers for their support and comments. Errors rest with the author.

L. Goble and J.-J.C. Meyer (Eds.): DEON 2006, LNAI 4048, pp. 255–271, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



256 A.Z. Wyner

analysis, as well as Meyer (1988), which presents one version of the Dynamic
Deontic Logic (DDL) analysis, claim to have solved the CTD problem, we ar-
gue that there are problems with each solution. We show that a better solution
to the CTD problem must also resolve other interlocking issues in deontic rea-
soning – the relationship of obligations and sequences, the negation of actions,
and the expression of violations and fulfillments. While each of these subtopics
has been discussed in the literature (cf. Carmo and Jones (2002), Meyer (1988),
Royakkers (1996), van der Meyden (1996), Khosla and Maibaum (1987), and
Kent, Maibaum, and Quirk (1993)), the problems in the relationship between
them have not been shown, an integrated solution has not been provided, nor
has an implementation been given. In a companion paper (Wyner (2006b)) and
related work (Wyner (2006a), we provide an integrated solution in an imple-
mentation – the Abstract Action Calculator (ACC). The ACC is a prototype
language in which one can express deontic specifications on complex actions,
show the results of executing actions relative to deontic specifications, as well as
express inferential relationships between deontic specifications. With the ACC,
one has a prototype program in which one can simulate executions of actions in
multi-agent artificial normative systems. Our primary objective in this paper is
to show the problems and sketch their solution.

We develop arguments to show the following. It is crucial to differentiate se-
quences of obligations from obligations on sequences, a distinction mentioned in
Khosla and Maibaum (1987); we argue that one cannot be reduced to the other
(and conflated in Meyer (1988)). The CTD problem cannot be reduced to an
obligation on a sequence, and a sequence of obligations does not account for the
CTD problem, contra Meyer (1988). Contra Carmo and Jones (2002) but agree-
ing with Meyer (1988) and Khosla and Maibaum (1987), the analysis of CTDs
needs explicit state change and the concept of ideality is problematic. In contrast
to Meyer (1988) and Khosla and Maibaum (1987), we claim that to be of use
in practical deontic reasoning, negation of an action cannot be the complement
set of actions from the domain of action, but is like the notion of antonym in
natural language lexical semantics. Antonyms are opposites of one another, but
otherwise undefined in opposition to other actions. In addition, though markers
for violation and fulfillment have been proposed (Anderson and Moore (1957),
Meyer (1988), Khosla and Maibaum (1987, van der Meyden (1996), and Carmo
and Jones (2002)), we show that not only do they have a central role in guiding
the process of deontic reasoning, but that we must have articulated, compo-
sitional, and productive markers. This later point has not, to our knowledge,
previously been made in the literature.

To show how these issues relate, we introduce and discuss a problem related to
what we call Pörn’s Criterion (Pörn (1977:ix-x)), which states that it is critical
to a comprehensive theory of deontic reasoning to take dynamic aspects into
account. While sequences of obligations do involve a dynamic aspect, the more
problematic cases are inferences relative to contract state change, where the set
of deontic expressions change from context to context. We show that previous
theories make the wrong inferences under these circumstances.
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The layout of the paper is as follows. In the next section, narrow the scope
of the presentation. Then we briefly outline elements of SDL and DDL. In the
subsequent section, we present several problems, comparing the informal cases
to formal analyses and a more desireable solution. In the final section, we very
briefly sketch our implementation in the ACC, which addresses the problems
raised in the paper.

2 Scope of Discussion

Having outlined our presentation, we should point out its scope. While we do dis-
cuss the CTD problem, we do not discuss the whole range of paradoxes of deontic
logic, but see Wyner (2006a) where we argue that many of the paradoxes are
not problems when given linguistically well-motivated semantic representations.
In addition, our goal is a logic-based implemented prototype language which ex-
presses deontic concepts as applied to complex actions. The role of logical analy-
sis is to clarify issues and problems in the design of the language. Moreover, the
langugage can be used to express alternative definitions of the concepts. With
the implementation, we can simulate the execution of agentive actions relative
to a contract. Thus, we are not giving a logic, and we have not addressed formal
properties of the language such as completeness or decidability for two reasons.
First, the choice of definitions in the language is still under discussion. Second,
the formal properties which a simulation ought to satisfy is under intensive dis-
cussion (cf. Dignum, Edmonds, and Sonenberg (2004), Dignum and Sonenberg
(2002), Edmonds (2002), and Fasli (2004)). While this paper expresses a view
on the relation of logic, language, and simulation, it is beyond the scope of this
paper to explicitly present it.

3 SDL and DDL

In this section, we very briefly review some basic elements of SDL and DDL with
the goal to make clear the problems discussed in the following section.

3.1 SDL

Standard deontic logic (SDL) is the weakest normal modal system of type KD
(in the Chellas classification). The theorems of KD are characterized by the
smallest set of formulas of the propositional calculus together with propositional
operators O and P and including the axioms K and D in (1). The formulas are
closed under the rules of O-necessitation and Modus Ponens in (2). We suppose
that O stands for the obligation operator and P for the permission operator; as
we are not concerned with permission in this paper, we do not discuss it further.

Definition 1.a. PC: All instances of tautologies of Propositional Calculus
b. K: O(A → B) → (OA → OB)
c. D: (OA → PA)
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Definition 2.a. O-necessitation: A � OA,
where A is an axiom, theorem, or logical tautology

b. Modus Ponens: A, A → B � B

The models for the semantics of SDL are standard modal logic models. A model
is M = (W, R, V), where W is a non-empty set of worlds, R is a binary relation
on worlds (the accessibility relation), and V is the valuation function which
assigns sets of worlds to atomic sentences. V(p) denotes the set of worlds where
p is true. The D schema is valid where the accessibility relation R is serial, where
wRv is read as w is in the accessibility relation to v: ∀w ∃v wRv.

For deontic logic, we assume that the accessibility relation wRv means that v
is a deontic alternative to w. Another way to say it is that wRv means that v is
an ideal version of w; it is an ideal world. We have the definition of a formula A
true in a world w of a model M, written M |=w A. For the deontic expressions,
this means the following:

Definition 3.Models for Obligated(A)
M |=w Obligated(A) if and only if ∀v (if wRv, then M |=v A)

This is to be understood informally as the formula Obligated(A) is true in world
w if and only if A is true in all of the ideal versions v which are accessible from w.
We also can understand that all those worlds in which A is false and are accessible
from w are subideal worlds. Thus, relative to an obligation, a proposition, and a
world, the accessible the worlds are partitioned between the ideal and subideal.

It is worth emphasizing that in SDL, there is no context change, even though
there is evaluation of the truth of a proposition relative to alternative worlds.
By the same token, there are no actions in the sense of Dynamic Logic (cf. Harel
(2000)) which change contexts.

3.2 DDL

Meyer (1988) expresses the logic of obligation, permission, and prohibition on
actions in dynamic logic. Dynamic logic is a very weak modal logic like K, but
with extra axioms for actions. One of the key aspects of a dynamic logical system
is that actions and assertions are strictly separated, which avoids paradoxes and
counterintuitive propositions which appear in SDL (Meyer 1988p.109). In DDL,
we have action names such as α and β, which are syntactic entities that we use
to define atomic actions. The action names denote abstract semantic actions α’
and β’. In DDL, there is no way to further specify properties of atomic actions or
relations among them in terms of more basic attributes; there is no fine-grained
structure to them. Complex actions are constructed from atomic (or complex)
actions by action combinators. For example, given α and β are actions, then
(α;β) is the sequence formed by first executing α and then executing β. Given
an action name α, we may form the action [α]φ. We suppose that the action [α]φ
applies in a context in which the weakest preconditions defined by the action
hold and results in a context in which the postconditions, here φ, hold. Action
negation, the negation of α indicated by α, is largely given axiomatically; the
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negation of an action denotes the set of actions of the domain of actions other
than the action.

The deontic notions apply directly to action names, but are reduced to an
action and a violation marker. In Meyer (1988) this is the special propositional
letter V (which first appeared in Anderson and Moore (1957) and is related to
the the normative proposition of Khosla and Maibaum (1987)). Thus, given an
arbitrary action α and a world where σ holds is, Obligation O, Prohibition F,
and Permission P, appear as:

Definition 4.a. σ |= Fα iff σ |= [α](V)
b. σ |= Oα iff σ |= Fα iff [α](V)
c. σ |= Pα iff σ |= ¬Fα iff ¬[α](V)

Given the single marker of violation, V does not differentiate among who exe-
cuted which action with respect to which deontic specification; that is, there are
no distinctions among what follows should a violation hold.

It is a theorem of DDL that sequences of obligations are equivalent to oblig-
ations on sequences.

Theorem 1. O(α1;α2) ≡ O(α1) ∧ [α1](O(α2))

3.3 Comparisons

Carmo and Jones (2002) and Meyer (1988) both find fault with the approach of
the other. Carmo and Jones (2002) claim that DDL does not handle deontic spec-
ifications on static expressions (but see d’Altan, Meyer, and Wieringa (1996) and
Wyner (2004) for solutions). Meyer (1988) argues that SDL uses the problem-
atic concept of ideality, incurs a host of paradoxes, and cannot accommodate con-
text change. We tend to agree with Meyer (1988). However, we believe that SDL
has maintained a key insight that is obscured in DDL, namely a reference to the
context-sensitivity of secondary obligations. Moreover, we claim that SDL and
DDL share similar problems, though to save space, we represent the issues in DDL.

4 The Problems

We focus the discussion on CTDs, which cover a range of different cases and is-
sues. We consider three issues: changing deontic specifications of contexts; parti-
tioning the action space; and the relationship between sequences and obligations.
Following this discussion, we touch on a range of tangential issues before the for-
mal issues. We discuss examples and relate them to formal theories to show the
problems and indicate the issues which drive our analysis and implementation.

4.1 Changing Deontic Contexts

A Basic CTD Case. Suppose we have the following set of statements, which
all hold consistently in one context (cf. Carmo and Jones (2002) for discussion
of a broad range of issues that arise for CTD arguments). We comment below
on our choice of CTD case.
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Example 1. a. It is obligatory that Bill walk through Hyde Park.
b. If Bill does walk through Hyde Park,

then it is obligatory that Bill walk up Primrose Hill.
c. If Bill does not walk through Hyde Park,

then it is obligatory that Bill walk along
the South Bank Promenade.

d. Bill does not walk through Hyde Park.

The places mentioned here are various parks in London. We make the following
assumptions to facilitate the discussion. First, let us assume that there are only
four available actions in this model, one of which is not explicit in the examples:
walking through Hyde Park, walking up Primrose Hill, walking along the South
Bank Promenade, and walking through Finsbury Park. The parks are all distinct
locations, none a part of the other. All of the locations are of finite extent, and
execution of the action implies covering the space from end to end. Finally, we
allow modest violations of space and time such that having walked through one
park or the other, one is in a position to carry on walking in one of the other
locations, as the case may be.

There is a clear intuition that from (1d) and (1c), we can infer:

Example 2. It is obligatory that Bill walk along the South Bank Promenade.

Additional intuitions are associated with the argument in (1). From (1a) and
(1d), we may say that Bill has not done what he has been obligated to do. Let
us assume that instead of walking through Hyde Park, he has walked through
Finsbury Park. Thus, he has violated his obligation to walk through Hyde Park
by walking through Finsbury Park. Thus, (2) is said to be a contrary-to-duty
obligation, for it is an obligation which is implied where someone has done some-
thing which has violated another obligation. We can say that (1a) is the primary
obligation and (2) is a secondary obligation, for it arises relative to the primary
obligation. From the violation, other consequences may follow.

We may consider, counterfactually, had Bill instead have walked through Hyde
Park, then it would follow, in such a circumstance, that he would be obligated to
walk up Primrose Hill. In addition, in this counterfactual context, we would say
that Bill had fulfilled his obligation. Consequences may follow from Bill’s having
fulfilled his obligation such as he is endowed with a novel permission. In the
counterfactual context, we have a different secondary obligation. In Carmo and
Jones (2002), this is called an ideal obligation, for it is the obligation which arises
in the ideal circumstance; they devote considerable effort to providing an analysis
which implies the ideal obligation in the subideal context. For our purposes, we
do not discuss it further except to point out that different secondary obligations
arise relative to the primary obligation. Furthermore, the different contexts are
associated with fulfillment or violation of the primary obligation.

Carmo and Jones (2002), Meyer, Wieringa, and Dignum (1998), and Dignum
(2004) discuss a range of CTD cases. The one we consider here is called the
forward version of the Chisholm set by Meyer, Wieringa, and Dignum (1998).
What they call the parallel version incorporates Forrester’s Paradox (the gentle
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murderer) and the backwards version includes a secondary obligation which is
temporally prior to the action which violates the primary obligation. We have
not used the original Chisholm set of arguments, where we find a wide-scope
deontic operator in the second argument (scope over the conditional) and a
narrow-scope deontic operator in the third argument (scope over the consequent
only)). In Wyner (2006a), we argue that when informed linguistic considerations
are brought to bear on the basic expressions, we can provide well-motivated
alternative logical forms which do not introduce paradoxes. In general, following
the formal semantic analysis of Montague (1974), we should provide independent
analyses for components of the CTD puzzles so as not to conflate issues. In other
words, we should provide a semantics for adverbial modification, sequence of
tense, and interaction of the conditional with modal operators. With these in
place, we can provide a compositional and well-motivated analysis. However, we
do not discuss these alternatives further here.

An Analysis. Consider an analysis of (1). Let us assume four actions α, β, γ,
and δ, which we associate with the four actions of Bill’s walking through Hyde
Park, up Primrose Hill, along the South Bank Promenade, and through Finsbury
Park, respectively. In DDL, we can represent the CTD problem as:

Example 3. a. O(α)
b. [α](O(β))
c. [α](O(γ))
d. Execute an action which is an element of α.

We assume, for the moment, that α denotes a set of actions, namely the set of
actions of the domain of actions other than α. Thus, executing an action that
is an element of α is well-formed. Furthermore, the execution of an action in α
means that in the subsequent context, V holds (since the obligation on α has
been violated) and also that O(γ) holds. Let us assume that, certeris paribus,
what held in the precondition context holds in the postcondition context as well,
unless this results in inconsistency. We assume, then, that O(α) and [α](O(β))
hold in the postcondition context as well. In addition, given the equivalence in
(1), we have an obligation on a sequence: O(α;β). So far as we are aware, Meyer
(1988) is not concerned with ideal obligations.

Changing the Primary Obligation. Let us consider what we can infer should
we have the following case, where we have an obligation on Bill’s walking through
Finsbury Park, which is another park in London. This is part of Pörn’s Criterion
in that we consider what follows from a changed set of deontic specifications.

Example 4. a. It is obligatory that Bill walk through Finsbury Park.
b. If Bill does walk through Hyde Park,

then it is obligatory that Bill walk up Primrose Hill.
c. If Bill does not walk through Hyde Park,

then it is obligatory that Bill walk along
the South Bank Promenade.

d. Bill does not walk through Hyde Park.
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We can represent this set of arguments as follows.

Example 5. a. O(δ)
b. [α](O(β))
c. [α](O(γ))
d. Execute an action which is an element of α.

After execution of the action and from this set of arguments, we may infer that
(O(γ)) holds. As δ is an element of α, the action executed could be δ, in which
case, we infer that V does not hold; but, since δ and α intersect, some action
other than δ could be executed, in which case V does hold. Morever, since δ is
an element of α, we can infer that O(δ;γ) holds as well.

Whatever the logical consequences, it seems intuitively unreasonable to infer
that Bill’s not walking through Hyde Park should be considered a violation or
fulfillment relative to his obligation to walk through Finsbury Park. Rather, we
are indeterminate as to whether we are in a context where Bill has violated his
primary obligation or fulfilled it. Along the same lines, it seems unreasonable to
say that the secondary obligation which is introduced, Bill’s walking along the
South Bank Promenade, is a contrary-to-duty obligation, which is essentially an
obligation which is inferred in a context where a primary obligation has been
violated. By the same token, we should not say that it follows from fulfillment of
a primary duty, where Bill’s not walking through Hyde Park was Bill’s walking
through Finsbury Park.

Finally, it seems intuitively odd to infer that we have an obligation on a
sequence in this example:

Example 6. It is obligatory that Bill walk through Finsbury Park,
and then walk along the South Bank Promenade.

Our problem is not with the logic per se, but that the logic does not correlate
with our intuitions; the logic allows us to draw definite inferences which do not
seem intuitively plausible. As an abstraction, the logic may serve a purpose, but
as a model of natural legal reasoning, it seems to be overdetermined. It does not
seem that (1) and (4) should follow the same reasoning patterns. It appears that
the link between the primary and secondary obligations as well as the violation
marker in (1) has been broken in (4). We see that the issue arises where we
change primary deontic specifications, a problem neither SDL nor DDL seem to
have previously accounted for (cf. Khosla and Maibaum (1987) who mention it,
but do not provide an account).

4.2 Partitioning the Action Space

The reason the cases are treated alike is related to a second issue. Suppose one
obligation and our four actions.

Example 7. It is obligatory that Bill walk up Primrose Hill.
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Given definitions of obligation and action negation, it seems clear that Bill’s
walking up Primrose Hill fulfills the obligation, while any other action violates
it. In other words, no matter what Bill does, he either violates or fulfills his
obligation. By the same token, as soon as Bill incurs his obligation, and suppos-
ing he must do something, then he immediately induces either a violation or a
fulfillment. Similarly, were Bill to bear two obligations which could not both be
simultaneously satisfied, then he is sure to violate one or the other. While in an
abstract and theoretical domain, these conclusions might not seem unreasonable,
in any application or for real world reasoning, they are untenable.

The underlying reason for the problem is that, relative to a particular oblig-
ation, one can consider the domain of actions partitioned between those actions
which fulfill the obligation (the explicitly given action) and those which vio-
late it (the complement set of the given action) (cf. Meyer (1988) and Royakkers
(1996)). There are no actions which are underspecified with respect to the obliga-
tion such that executing that action induces neither a violation, nor a fulfillment.
But consider a case where one were obligated to deliver pizzas for an hour. It is
reasonable that delivering 4 pizzas, one every 15 minutes, counts as fulfilling the
obligation, while delivering no (prepared) pizzas in the hour counts as violating
it. However, we do not want just any action to count as not delivering pizzas for
an hour. For example, eating an apple or many other actions would seem to be
deontically underspecified. We want a more refined abstract analysis.1

While it is relatively elementary to determine which actions count towards
violation or fulfillment where we have deontic specifications on atomic actions,
the issues are more significant where we consider deontic specification on complex
actions such as obligations on sequences. Given an obligation on a sequence,
exactly which actions count as not executing the sequence such that a violation
arises? As complex actions are compositional (the meaning of the action arising
from the meanings of the component actions and the mode of combination) and
productive (the processes apply to any appropriate actions), then negation on
an action must also be sensitive to compositionality and productivity.

The objective is to be able to calculate the denotation of α for any action α.
For our purposes here, we can say that α denotes a proper subset of the domain of
actions minus α. Thus, there may be actions which are not deontically specified
relative; that is, in O(α), there are actions which lead to fulfillment, others which
lead to violation, and others which are underspecified either way. One way to
calculate such a denotation is given in the implementation (cf. Wyner (2006a)
for the specifics).

4.3 Obligations on Sequences and Sequences of Obligations

Our third consideration is the relationship between an obligation on a sequence
(OOS) as in (8a) and a sequence of obligations (SOO) as in (8b).
1 One could take the tack that every deontic specification has some temporal speci-

fication such that other actions can be executed without inducing violation or ful-
fillment (cf. Dignum (2004)). However, in Wyner (2006a), we argue that aspectual
distinctions (as in the previous example) rather than temporal extents are key.
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Example 8. a. It is obligatory that Bill walk through Hyde Park,
then walk up Primrose Hill.

b. It is obligatory that Bill walk through Hyde Park.
After having walked up Hyde Park,

it is obligatory that Bill walk up Primrose Hill.

Meyer (1988) and Royakkers (1996) prove that (8a) and (8b) are equivalent in
DDL. In contrast, Khosla and Maibaum (1987) claim they are distinct – an
obligation on a sequence is an obligation on an action which is distinct from its
components. They introduce distinct deontic operators for complex expressions
which are not equivalent to deontic operators on the parts. However, they do not
discuss the problem it introduces for Meyer’s analysis. We are unaware of any
subsequent discussion of the distinction. There are several ways to implement
this idea, and we give one example, though the implementation allows a range
of alternatives.

One way to see that an OOS and a SOO are not equivalent is to consider
consequences which follow from violation or fulfillment, what we refer to as the
violation conditions : if OOSs and SOOs are equivalent, then they must have
the same violation conditions. We can show that they do not, so they are not
equivalent.2

Suppose the following, where we have co-indexed expressions of the form It
is obligatory P, for P a proposition, and this obligation to make it clear exactly
which obligation we are referring to. We suppose that the statements in (9) hold
in one context and (10) hold in another.

Example 9. a. [It is obligatory that Bill walk through Hyde Park.]i
If he fulfills [this obligation]i, then he gets paid £3.
If he violates [this obligation]i, then he owes £3.

b. [It is obligatory that Bill walk up Primrose Hill.]j
If he fulfills [this obligation]j, then he gets paid £2.
If he violates [this obligation]j, then he owes £2.

Example 10. [It is obligatory that Bill walk through Hyde Park,
then walk up Primrose Hill.]k

If he fulfills [this obligation]k, then he gets paid £10.
If he violates [this obligation]k, then he owes £10.

We assume the middle two arguments of the CTD set in (1) which introduce
secondary obligations. Suppose (9). Bill first walks through Hyde Park, for which
he gets paid £3 as he has fulfilled his obligation to walk through Hyde Park.
Given the CTD set, he incurs a secondary obligation to walk up Primrose Hill.
2 An anonymous reviewer provided another case where an obligation on a sequence

and a sequence of obligations are not equivalent. Suppose O(α;β). If the execution
of α is such that the execution of β is no longer obligated, then the obligation on
the sequence cannot be equivalent to the sequence of obligations given by O(α) ∧
[α](O(β)), where the obligation on β does follow the execution of α. This is entirely
within the spirit of our analysis.
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He does not walk up Primrose Hill, so he incurs a penalty, and loses £2. In the
end, he has £1. Alternatively, consider that Bill executes the same sequence of
actions relative to (10). In this case, it is plausible that Bill ends up with nothing
because it is clear that he has not fulfilled his obligation on the sequence per se.
One could jigger the cases to suit, but the basic point is clear: there is no logical
relationship between OOS and SOO in terms of what follows from violations and
fulfillments. Meyer (1988) assumes that there is; as this is a proven equivalence,
it indicates a deeper problem with his analysis. What Meyer (1988) misses is
that the deontic specifier can apply to the compositional meaning of sequences,
which are not necessarily reducible to their parts.

Notice that the key tool we have used to make the argument are articulated
violation and fulfillment markers. They are, in our view, the key for deontic
reasoning. This is in contrast to Meyer (1988) and Khosla and Maibaum (1987),
where there is only one atomic violation and fulfillment proposition. In these
systems, the same consequences follow from a violation no matter who is the
agent, what is the action, or what is the deontic operator. In an application, this
is infeasible. Others have suggested articulating the markers, though not with
the same motivations or of the same form as in our implementation (cf. Kent,
Maibaum, and Quirk (1993), van den Meyden (1996), Dignum (2004), among
others).

To formalize the analysis, let us suppose that rather than one violation propo-
sition, we have as many violations as there are basic and complex actions, in-
dicating each with a subscript as in (VioOα), which is read The obligation to
execute α has been violated. We could further articulate this with respect to the
agent (cf. Wyner (2006a) along the lines of Bill has violated his obligation to ex-
ecute α. For clarity, we also assume there are fulfillment markers, (FulOα ), which
are not equivalent to the negation of the violation markers. Fulfillent markers
allow us to explicitly reason with what follows from satisfaction of a deontic
specification such as rewards. In addition, we explicitly introduce the conditions
under which an obligation is fulfilled. We have the conditions for obligations on
basic actions as follows.

Definition 5. O(α) =def [α](FulOα) ∧ [α](VioOα), where α is a basic action.

We read this as saying that an obligation on an action α holds where execution
of α leads to a context where the proposition The obligation on the execution of
α has been fulfilled holds, and where execution of an action among α leads to
a context where the proposition The obligation on the execution of α has been
violated holds. Where we understand α to be some specified proper subset of
actions from the domain of actions, then (5) allows for the execution of actions
which neither induce fulfillment or violation of the obligation.

Next, we assume that we can make our deontic operators sensitive to the
compositional structure of the complex action. As we discuss in Wyner (2006a),
there are many possible alternative analyses of the operators. We present two
versions of obligations on sequences. The first is along the lines of Meyer, where
an obligation operator on a sequence distributes the basic operator to each of
the component actions; in this case, the violation conditions are per component
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action. We give this as an distributed obligation on a sequence – Odis. This is
the version closest to Meyer’s (1988) definition.

Definition 6. Odis(α;β) =def

O(α) ∧ [α](O(β))

The second version allows the sequence to be broken up into parts (so is distinct
from Khosla and Maibaum’s (1987) obligation on sequences operator), yet there
are violation flags relative to the sequence per se. We can indicate at which
points of the sequence violation or fulfillment flags are introduced. We give this
as an obligation on an interruptable sequence – Oint.

Definition 7. Oint(α;β) =def

[α](VO(α;β)) ∧ [α]([β](VO(α;β)) ∧ [β](FO(α;β)))

Odis(α;β) is not equivalent to Oint(α;β), for different violation conditions arise in
each; nor does one imply the other, by the same token. A sequence of obligations
and an obligation on a sequence are not necessarily equivalent.

Once one allows complex violation and fulfillment markers and variants of the
deontic operators, we can define the deontic operators in a variety of ways.

4.4 Inference

Let us consider inference with respect to definitions along the lines of (5) and (7).
One advantage of the analysis is that it allows us to provide rules about what
follows from particular violations (or fulfillments). For example, what follows
from (VioOα) may be distinct from what follows from (VioOβ

). Were we to add
additional distinctions in terms of agents and in terms of the particular deontic
operator, as we do in the implementation, we would make fine-grained inferences
based on who violated what deontic specification on which action; legal systems
have this flavor.

However, such an analysis does not, in and of itself, allow for inferential re-
lationships between deontically specified actions exactly because the reductions
to actions and violation flags is so specific. For instance, where O(α) holds, then
we would like to infer that it is prohibited to not do α, which we can represent
as Pr(α). However, the reduction of O(α) does not itself allow this inference.
Nor, by the same token, does the analysis account for consistency of deontic
specifications. Indeed, there is nothing inconsistent with O(α) and Pr(α) since
they are reduced to distinct expressions.

The solution, given fuller expression in the implementation (Wyner (2006a)),
is to provide an additional, finite set of lexical axioms to ensure such inferences.
These are in the spirit of the Meaning Postulates of Montague (1974), which
are introduced to restrict the class of admissible models. In addition, we discuss
negation of deontic specifications and consistency so as to provide consistent
sets of deontic specifications. The resultant language may be less general and
abstract that deontic logics, but it also avoids the overgeneration of problematic
inferences (i.e. the paradoxes). However, it is beyond the scope of this paper to
discuss this further.
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4.5 A Summary

By way of summarizing our observations, we outline of our approach to CTDs,
using enriched markers for violation conditions. First, in contrast to Carmo and
Jones (2002) and Meyer (1988), secondary obligations do not follow from actions
(or propositions) directly, but rather from the articulated violation or fulfillment
markers themselves; we make the markers syntactically active in the language.

Example 11. a. It is obligatory that Bill walks through Hyde Park
b. If Bill has fulfilled his obligation to walk through Hyde Park,

then it is obligatory that Bill walk up Primrose Hill.
c. If Bill has violated his obligation to walk through Hyde Park,

then it is obligatory that Bill walk along
the South Bank Promenade.

d. Bill does not walk through Hyde Park.

And in our logical language, this appears as follows.

Example 12. a. O(α)
b. FulOα → (O(β))
c. VioOα → (O(γ))
d. Execute an action which is an element of α.

Bill’s not walking through Hyde Park implies that Bill has violated his obligation
to walk through Hyde Park (from (5)). Furthermore, this violation implies that
Bill is obligated to walk along the South Bank Promenade, which is the secondary
obligation. We can similarly calculate a secondary obligation in a counterfactual
context where Bill does walk through Hyde Park. In contrast to Meyer (1988),
we cannot infer from (12) that any sequence of obligations or obligation on a
sequence holds; we view this as an important result.

Let us then consider the case where we change the primary obligation, which
we represent as follows.

Example 13. a. It is obligatory that Bill walks through Finsbury Park
b. If Bill has fulfilled his obligation to walk through Hyde Park,

then it is obligatory that Bill walk up Primrose Hill.
c. If Bill has violated his obligation to walk through Hyde Park,

then it is obligatory that Bill walk along
the South Bank Promenade.

d. Bill does not walk through Hyde Park.

And in our logical language, this appears as follows.

Example 14. a. O(δ)
b. FulOα → (O(β))
c. VioOα → (O(γ))
d. Execute an action which is an element of α.
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If Bill’s not walking through Finsbury Park is δ, then Bill fulfills his obligation
on δ; if Bill’s not walking through Finsbury Park is some action from δ, then
Bill violates his obligation on δ. However, given the articulated violation and
fulfillment markers, these violation and fulfillment markers are distinct from
those for an obligation on α. Thus, in the argument in (14), we cannot infer any
secondary obligations. This analysis comports much better with our intuitions
about (4). We can refine the analysis further if we suppose that α is a functionally
specified particular action rather than any action other than α; suppose it is β.
Similarly, let us suppose that δ is γ. If this is the case, then from (14) we cannot
make any further inferences. As we argued earlier, this seems to be intuitively
the case in (4).

The articulated violation and fulfillment markers plus a lexical semantic ap-
proach to action negation allow an accurate analysis of CTD cases where we
change the primary obligation. In our view, we have made productive and overt
use of metatheoretical goal of ideality, though we have not used ideality any-
where in the analysis. In our view, the goal is to make inferences to secondary
obligations depend on properties of the context which are ascribed relative to
the primary obligation. Informally, it is not an action itself which induces the
secondary obligations, but the action in relation to its deontic specification.

4.6 Additional Issues

We have not discussed a host of issues relating to deontic reasoning in general
or CTDs in particular (cf. Wyner (2006a)). We mention some of these in order
to put them aside. We have focussed on one construction using It is obligatory
that ; there are other constructions or lexical items. For example, one can consider
the relative scope of the deontic operator and elements of the conditional. One
can consider ought rather than obligatory. There are many other CTD cases
to consider such as the Considerate Assassin and Reykjavik. One can employ
alternative axioms to account for implications. We have argued (op. cit.) that
much of this is not relevant for our purposes or have provided other (linguistic)
reasons to set the issues aside.

5 A Reference to the Implementation

In Wyner (2006a) and Wyner (2006b), we implement our language of deon-
tic specifications on complex actions so as to take into account the problems
and analyses outlined above. Here we mention a few of the aspects of the pro-
gram so as to relate it to this paper. The implementation, Abstract Contract
Calculator (ACC), has been written in Haskell, which is a functional program-
ming language, (cf. Wyner (2006a) for the code and documentation; on Haskell
and Computational Semantics, see Doets and van Eijck (2004) and van Eijck
(2004)). The ACC processes the deontic notions of prohibition, permission, and
obligation applied to complex actions. The ACC is a prototype language and
not a deontic logic. Alternative notions of actions, complex actions, and deontic
specification can be systematically examined and animated. The tool enables us
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to abstractly simulate environments in which agents behave relative to actions,
contract states, and contract changes. It is intended to be used for simulation
and modelling of Multi-Agent systems where deontic specifications govern the
behavior of individual or collectives of agents (see Gilbert and Troitzsch (2005)
for a discussion of social science simulations).

The ACC has the following modules. We define States of Affairs (SOAs),
which are consistent lists of propositions along with indices for worlds and times.
Basic Actions are functions from SOAs to SOAs. An action is executed where
the preconditions of the action are satisfied and the postconditions do not induce
inconsistency. Given abstract actions, we may define exactly which propositions
are changed from context to context, and otherwise leave propositions unaffected
(inertia). We have Lexical Semantic Functions to allow us to calculate actions
in the lexical semantic relation of opposition. In particular, we observe that for
the purposes of deontic specification, actions in opposition must be executable
in the same context. The analogy to natural language is that if one is obligated
to leave a room, then leaving the room fulfills the obligation, while remaining
in the room violates it; leaving the room and remaining in the room have the
same preconditions, but different postconditions. Thus, we can calculate the
denotation of a proper subset of actions which are reasonably construed to be
in opposition. Alternative formulations are possible. Deontic Operators apply
to actions so as to specify what actions lead to contexts where fulfillment or
violation is marked relative to the action and agent. We call such a specification
a Contract Flag State. When an action is executed, we check whether the action is
deontically specified in the contract flag state. If it is, then we record in a history
not only that the action has been executed, but the value of the execution of
the action relative to the deontic specification. For example, if it is prohibited to
execute α, then executing α implies that a violation of that prohibition holds in
the history after the execution. We implement reasoning for Contrary-to-Duty
Obligations by modifying contract flag states relative to violation or fulfillment
flags. For example, if we find in the history that the prohibition to execute α has
been violated, then that may trigger contract state modification, for example by
adding an obligation to the contract flag state. In the course of the discussion, we
introduce consistency constraints on contracts. To provide fine-grained analyses
of deontic specifications on complex actions, we provide a structure in which the
input actions and output actions are available for deontic specification. With
this, we may distinguish between deontic specification on the parts of a complex
action from deontic specification on the whole. Thus, we can implement the
alternative definitions of obligations on sequences or sequences of obligations as
above. In Wyner (2006b), we discuss related proposals in the literature.

6 Conclusion

We have argued for an alternative approach to dynamic deontic logic. It allows
articulated violation and fulfillment markers as well as a spectrum of deontic
specifications on complex actions. We have also argued for an alternative ap-
proach to action negation, drawing on analogies to natural language antonyms.
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We have shown how our analysis provides a better approach to CTDs, partic-
ularly where we consider alternative primary obligations, which is crucial given
Pörn’s Criterion; when primary obligations change and all else remains the same,
we want to ensure that we make intuitively plausible inferences. Finally, we have
given some indication of how our analysis is implemented in Haskell so as to
allow simulations of agentive behavior relative to contract specifications.
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Woźna, Bożena 238
Wyner, Adam Zachary 255


	Frontmatter
	Abstracts of Invited Papers
	Roles, Counts-as and Deontic and Action Logics
	Norms and Electronic Institutions
	Emotion Models for Situated Normative Systems?

	Contributed Papers
	Addressing Moral Problems Through Practical Reasoning
	A Logical Architecture of a Normative System
	Delegation of Power in Normative Multiagent Systems
	Strategic Deontic Temporal Logic as a Reduction to ATL, with an Application to Chisholm's Scenario
	Acting with an End in Sight
	A State/Event Temporal Deontic Logic
	Speech Acts with Institutional Effects in Agent Societies
	Counts-as: Classification or Constitution? An Answer Using Modal Logic
	Don't Ever Do That! Long-Term Duties in {\itshape PD}<Subscript>{\itshape e}</Subscript>{\itshape L}
	On the Normative Aspect of Signalling Conventions
	Permissions and Uncontrollable Propositions in DSDL3: Non-monotonicity and Algorithms
	Conflicting Obligations in Multi-agent Deontic Logic
	Intermediate Concepts in Normative Systems
	Propositional Quantifiers in Deontic Logic
	A Question of Trust: Assessing the Fulfillment of Commitments in Terms of Strategies
	The Deontic Component of Action Language $n{\mathcal{C}}+$
	A Complete and Decidable Axiomatisation for Deontic Interpreted Systems
	Sequences, Obligations, and the Contrary-to-Duty Paradox

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




