
Performance Prediction of Component-Based Systems
A Survey from an Engineering Perspective

Steffen Becker1, Lars Grunske2, Raffaela Mirandola3, and Sven Overhage4

1 Software Engineering Group, University of Oldenburg,
OFFIS, Escherweg 2, 26121 Oldenburg, Germany

steffen.becker@informatik.uni-oldenburg.de
2 School of Information Technology and Electrical Engineering, University of Queensland,

Brisbane, QLD 4072, Australia
grunske@itee.uq.edu.au

3 Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy

mirandola@elet.polimi.it
4 Dept. of Software Engineering and Business Information Systems,

Augsburg University, Universitätsstraße 16, 86135 Augsburg, Germany
sven.overhage@wiwi.uni-augsburg.de

Abstract. Performance predictions of component assemblies and the ability of
obtaining system-level performance properties from these predictions are a cru-
cial success factor when building trustworthy component-based systems. In order
to achieve this goal, a collection of methods and tools to capture and analyze
the performance of software systems has been developed. These methods and
tools aim at helping software engineers by providing them with the capability to
understand design trade-offs, optimize their design by identifying performance
inhibitors, or predict a systems performance within a specified deployment envi-
ronment. In this paper, we analyze the applicability of various performance pre-
diction methods for the development of component-based systems and contrast
their inherent strengths and weaknesses in different engineering problem scenar-
ios. In so doing, we establish a basis to select an appropriate prediction method
and to provide recommendations for future research activities, which could sig-
nificantly improve the performance prediction of component-based systems.

1 Introduction

In many application domains such as avionics, automotive, production-control, bio-
informatics and e-business, software systems must meet strict performance goals in
order to fulfill their requirements. Consequently, designers must address performance
as a fundamental issue during the design and construction of software systems. This
requires annotating component-based architectures with known performance qualities,
and choosing fast and scalable component implementations and infrastructures. How-
ever, without an upfront effort to produce a flexible architecture during the design phase,
it is rarely possible to retrofit component-based systems to significantly improve their
performance.

R.H. Reussner et al. (Eds.): Architecting Systems, LNCS 3938, pp. 169–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 S. Becker et al.

Especially decisions taken in a late development stage, such as increasing the size of
a thread pool or deploying replicated components on different hardware platforms, typ-
ically lead to a limited system performance improvement only. For that reason, unwise
decisions at design-time probably render it impossible to achieve the required perfor-
mance level once the system has been composed.

Current industrial practice to evaluate the performance impact of early design deci-
sions involves the construction of prototypes, which are executed on the target deploy-
ment platform in order to measure performance properties. In this way, prototyping
can help to give confidence in the resulting system performance being adequate for its
needs. Prototyping is, however, expensive and time-consuming, and the results will not
be valid if substantial design changes are made during implementation. Consequently,
software engineering practices could be improved if software architects were able to
predict the performance of the final system based on design documents without imple-
mentation details. This would reduce the effort and costs of performance prediction.

There is a substantial amount of research devoted to creating performance predic-
tion techniques for software systems. A leading example, the software performance en-
gineering community (SPE) [1, 2] has spent a number of years to integrate design and
performance modeling activities. The developed methods are based on use case models,
object and functional modeling mostly using UML-based notations. Other techniques
combine analytical models with benchmarking or support model-based prototype gen-
eration. Regardless of their approach, techniques for the performance prediction of
component-based systems should exhibit the following basic characteristics:

– Accuracy. The prediction must be accurate enough in order to provide useful re-
sults. On the other hand, a compromise between the accuracy of predictions and the
analysis effort must be found in order to enable the efficient evaluation of complex
applications.

– Adaptability. Prediction techniques should support efficient performance predic-
tion under architecture changes where components are added/modified or replaced
by different type of components.

– Cost effectiveness. The approach should require less effort than prototyping and
subsequent measurements.

– Compositionality. Prediction techniques should be able to make performance
predictions based on the performance characteristics of the components, which
together build the system. Since component-based systems usually are structured
hierarchically and consist of composite components, performance prediction tech-
niques should be able to exploit this structure by using the analysis results on lower
abstraction layers to enable the performance prediction of composite components.

– Scalability. Component-based systems are typically built either with a large set
of simple components or utilize a few large-grain, complex components. To predict
performance attributes, analysis techniques need to be scalable to handle both cases.

– Analyzability. Prediction techniques should not only reveal performance bottle-
necks, but also give insights into possible flaws in architecture designs that are
causing problems.

– Universality. The approach should be applicable to different component technolo-
gies with minimal modification. This enables the performance prediction of an
integrated system with multiple component technologies involved.

Performance Prediction of Component-Based Systems 171

In this paper, we analyze the applicability of existing performance prediction tech-
niques in various software engineering problem scenarios. The aim is to highlight the
strengths and weaknesses of the approaches, and reveal areas where further research is
required. We start by describing a set of practical concerns which should be taken into
account by performance prediction methods in section 2. Afterwards, we introduce cur-
rent performance prediction methods in section 3 and classify them according to their
underlying prediction technique. In section 4, we examine the individual strengths and
weaknesses of the different prediction methods with respect to the before-mentioned
basic characteristics and the practical concerns provided in section 2. Based on the
examination of existing performance prediction techniques, we derive a variety of rec-
ommendations to improve the performance prediction of component-based systems in
section 5. Finally, we conclude the paper in section 6.

2 A Taxonomy of Practical Concerns

In addition to the basic characteristics of component-based performance prediction
techniques, which are mentioned in the previous section, we want to highlight some
practical concerns in this section. The result will be a taxonomy of concerns, which
have to be considered by performance prediction methods and their underlying predic-
tion models. Additionally, the introduced taxonomy should also guide system architects
to identify appropriate performance prediction methods with respect to their practical
concerns. Both topics are investigated in detail in later sections of this paper.

It is important to stress that the problems listed in the following paragraphs are not
merely scientific cases but have practical relevance. The mentioned concerns emerge in
industrial scale development scenarios. This is being illustrated by the case study of an
experimental Web server, which has been implemented by the Palladio group at Olden-
burg University with a set of C# components. The Web server has been developed with
the aim to compare and validate performance prediction methods. It supports handling
basic HTTP GET and POST requests and provides an interface for the generation of
dynamic HTML pages, e.g., by returning data stored in a connected database. Despite
this restricted functionality and the fact that it has not that many lines of code (LOC),
many concerns with today’s performance prediction methods can be demonstrated by
using this server. Especially, the concerns listed below emerged during the Web server
development.

Third-party deployment. A major concept when looking at the performance evalu-
ation of component-based systems is reasoning about the system properties based on
the properties of the constituting components. This concept is a prerequisite to enable
scalable prediction methods. Additionally, when considering Szyperski’s definition [3]
of a component, it is mentioned that components have to be third-party deployable. It
becomes difficult to reason about extra-functional properties of components that can be
deployed by third-parties, because the QoS of a component service can be only deter-
mined at run-time and only ex-post. This means that the QoS of a component service
only can be determined by running the program and by measuring the QoS in question.
This results from the fact that the QoS is not solely dependant on the executable code
of the component but also on the run-time dynamics and the environment in which the

172 S. Becker et al.

component is executed in. In the web server example we have used a component ac-
cessing a database. Its QoS is significantly different if the component is deployed on
the back-end server hosting the database or if it is run on a laptop with limited memory
and processing power.

Third-party deployment can be regarded as super-concern, in a sense that it has an
impact on all the other concerns. Thus, third-party deployment is not independent of
the other concerns. Nevertheless, it is worth looking at some of the following concerns
in more detail. The concerns regarded below are the usage of external services, the
deployment environment, resource usage and congestion, the operational profile, and
interdependencies caused by these aspects.

The third-party deployment paradigm raises an additional issue that will be elab-
orated later on: Approaches specifying extra-functional properties of components as
constant figures will fail. This is obvious: One can only specify QoS when fixing the
environment, e.g. using a reference platform, which supports the QoS figures. But then,
it is only possible to deploy the component on exactly the same environment if we want
to get the same QoS which is a major restriction of independent deployment. Thus, it is
necessary to use specification languages and methods which are able to specify the QoS
of components depending on every possible environment. During our survey, we will
consequently also examine the applicability of existing approaches to QoS specification
(section 3.3).

In the following, the introduced example system is investigated further to highlight
the afore mentioned concerns.

External Services. The QoS of a component’s service depends on the QoS of the exter-
nal services called by this service. Consider for example the response-time of the com-
ponent handling HTTP requests. We observe that the QoS of the HandleRequest
method depends on the QoS of the external services the component calls, i.e., the per-
formance of this call will never exceed the performance of the external method. For
example, the attached HTML reader component (retrieving Web pages from the hard
disk) needs to open a HTML file, read the data and close the file again. If opening
and closing takes 200ms and processing the required data take another 100ms then the
initial request will never be processed faster than 500ms. Additionally, when the re-
quest processor component is deployed in a different context, perhaps the file stream
is replaced by a component delivering a network stream, it will likely perform its tasks
slower due to the different QoS of the external service.

Deployment. It is not solely the constituent components of a component-based system
have an impact on the component’s performance, the hardware and middleware plat-
form on which the component is deployed can make a significant difference (as already
mentioned above). A component which is executed on a fast CPU will perform bet-
ter than the same component which is executed on a slower CPU. Other well known
influential factors are memory availability, network bandwidth, number of CPUs, per-
formance of external storage devices (e.g. disks, optical media), and so on. Equivalent
concerns apply with component-based systems that utilize software infrastructures such
as middleware platforms or virtual machines. With such environments, for example, the

Performance Prediction of Component-Based Systems 173

performance of the byte code interpreter or bandwidth of the middleware server are
crucial performance factors.

Given the Web server example there is a difference if its components are deployed
on the .NET runtime installed on a high performing back-end server or on a desktop PC.
Additionally, we have also measured that the performance of a component deployed on
the Mono runtime environment (www.mono-project.com) is different from the deploy-
ment on the Microsoft implementation. This demonstrates the mentioned influences of
hard- and middleware.

Resources. Software infrastructures have resource limits that constraint the perfor-
mance of a component-based system. For example, the amount of threads (thread pool
size), software caches/ buffers, semaphores, database connections and locking schemes
must be understood in order to predict the behavior of component-based systems. Some
of these factors, e.g. thread pool size, can be configured for the example Web server
and their impact can be measured. Further, as a part of the deployment decisions, we
could consider deploying the component redundantly on several hosts and using a load
balancer to spread and monitor application load.

In general, any resource acquisition takes a certain amount of time, depending on
the number of resources available. If many components have to use a rare resource it
is more likely that resource conflicts will occur. In this case the component has to line
up itself into a queue of components requesting the resource. Consequently, this delay
due to resource conflicts need to be considered, as it influences the performance of a
service call. As a result a performance prediction model has to include somehow the
shared resources in environment with (virtual or physical) concurrent control flows.
Additionally, the priority inversion problem could occur, where a high priority process
is blocked by a low priority process, because this low priority process uses a resource
which is needed by the high priority process [4].

Operational Profile. The previous section highlights additional obstacles in perfor-
mance engineering. Considering the resource acquisition example, as long as the soft-
ware architecture has to deal with only a single user calling its services, it is unlikely
that resource conflicts will be an issue. This situation changes as soon as the compo-
nent is deployed to service multiple concurrent requests. The system will have to deal
with many simultaneous requests, making resource contention a major issue in terms of
performance. This kind of dependency is called operational profile [5, 6].

There are additional important aspects, namely the probability of supported use
cases occurring, the size and value of input parameters (which may also lead to different
usage scenarios), the rate with which requests for a certain service are being made. Note
the distinction between use case occurrence and request rate for a specific service. The
first is from the viewpoint of the user of the system and might be translated into calls
to services offered by the whole application. The second is from the viewpoint of the
single components of the system. The request rate is important at every component in
the system architecture even at those which cannot be called by the user directly. The
translation of the usage profile in service request rates is an open field of research.

In the web server example the type of the request determines the response time. Re-
trieving a static HTML page stored on the hard drive is faster than retrieving a dynamic

174 S. Becker et al.

page which has to be computed from database queries. So, it is important to capture the
relationship between the request types quite accurately or to model the two cases in sep-
arate use cases. Additionally the frequency and the amount of requests per unit of time
have to be taken into account, especially as many concurrent requests lead to contention
of the CPU resource(s). Finally, also the size of the return type is important. Retrieving
and streaming a small HTML page is faster than the retrieval of a large image.

Interdependencies. Note that there are certain interdependencies between the different
aspects of a component’s context. The usage of the component results in a load on the
hard- and software resources as well as external services, for example the amount of
concurrent threads/requests, request frequency of certain mutually exclusive resources
locks, and so on. It is a major challenge to predict - utilizing the operational profile
of a single service call - the operational profiles of the components which actually are
involved in the handling the request. For example, a single HTTP request for a yel-
low page application creates several queries of the yellow page database to generate
the descriptions of the matching companies for the initial query. Another example of
the dependencies on external service calls can be seen in an authentification server. If
this component is used on a website it mostly has to serve plain password challenges.
In an enterprise context the same server might be also challenged by certificate requests.

There are two challenges arising from the preceding discussion:

– The aspects discussed above must be considered by performance evaluation tech-
niques. Every time a certain technique abstracts one of these aspects, the prediction
becomes less accurate or in certain cases totally wrong.

– If we want to support QoS prediction in the context of third-party deployable com-
ponents there has to be a large specification of the respective components. There
has to be a specification of the component which allows the estimation of QoS in
different contexts. Usually this kind of specifications contain a lot of information
enabling the component user to evaluate the performance and contextual aspects
in a parametric way. The information can only be specified by the component pro-
ducer. This is a strong assumption and appears infeasible without extensive tool
support.

3 Classification of Approaches

As already outlined in the introduction, the integration of quantitative evaluation into
the software development processes is an important activity to meet extra-functional,
and in particular performance requirements. Balsamo et al. [7] presents a survey of dif-
ferent approaches for model-based performance evaluation. The proposed classification
is based on the type of the performance model (Queueing Networks, Petri Nets, Process
Algebras, Markov Processes), the applied evaluation method (analytical or simula-
tive) and the presence of automated support for performance prediction. Some of these
approaches have also been extended to deal with component-based systems.

In this section, we present a (short) survey of the existing approaches for predic-
tive performance analysis of component-based systems. We distinguish between quan-
titative (section 3.1) and qualitative (section 3.2) analysis. Furthermore, quantitative

Performance Prediction of Component-Based Systems 175

Fig. 1. Approaches overview

techniques are categorized by the kind of techniques used (measurement-based, model-
based, combination of measurement-based and model-based). Figure 1 visualizes the
different approaches together with the cross-cutting aspect of performance specification
(dealt with in section 3.3), whose existence plays a key role for a successful application
of performance prediction techniques.

A comparison of these approaches with respect to the characteristics and concerns
described in sections 1 and 2 will be presented in the next section.

3.1 Quantitative Approaches

Measurement-Based. Measurement-based approaches are suitable and useful, if the
focus is on quantitative evaluation of performance. In [8] (M1) a discussion is given
about how component-based system properties may influence the selection of methods
and tools used to obtain and analyze performance measures. Then, a method is pro-
posed for the measurement of performance distinguishing between application-specific
metrics (e.g., execution time of various functions) and platform-specific metrics (e.g.,
resource utilization). The automation of the process of gathering and analyzing data for
these performance metrics is also discussed. The major drawbacks of this approach are
that it is only suitable for already implemented systems and the obtained results do not
show general applicability of the approach.

A different approach that partially overcomes these difficulties is presented in [9]
(M2), where starting from a specific COTS middleware infrastructure, in a first step,
performance measures are collected empirically. Afterwards, in a second step, the ob-
tained results are elaborated to extend their validity to a more general setting. The
proposed approach includes a reasoning framework for understanding architectural
trade-offs and the relationship between technology features and the derivation of a set
of mathematical models describing the generic behavior of applications using that spe-
cific COTS technology. An inherent limitation of this approach is that it leads to sound
results only for a specific hardware platform.

Denaro et al. [10] (M3) describes and evaluates a method for testing performance of
distributed software in the early development stages. Their method takes into account
the impact of the middleware used to build a distributed application. To this end the
authors use architecture designs to derive application-specific performance test cases.
These test cases are then executed on the available middleware platform and used to
improve performance prediction in the early stages of the development process.

176 S. Becker et al.

Model-Based. An approach, which includes predictability of performance behavior of
component-based systems is presented in [11] (MB1). The basic idea of this approach
is that the ”behavior of a component-based system must be compositional in order to be
scalable”. To fulfill this requirement, in addition to the descriptions of the functional be-
havior, performance specifications are also included in component specifications. The
paper outlines, how classical techniques and notations for performance analysis are ei-
ther unsuitable or unnatural to capture the performance behavior of generic software
components, and points out that, ”performance specification problems are so basic that
there are unresolved research issues to be tackled even for the simplest reusable com-
ponents”. A first attempt towards a compositional approach to performance analysis
is then presented, mainly based on the use of formal techniques. However, as the au-
thors argue, an engineering approach to predictability on performance is a necessary
ingredient to ensure predictable components.

The papers [12, 13, 14] (MB2) propose a prototype enabled prediction technology,
called PECT that integrates component technology with analysis models. The main
goal of PECT is to enable the prediction of assembly level properties, starting from
certifiable components, prior to component composition. In fact PECT is described as
a ”packaging of engineering methods and a supporting technical infrastructure that,
together enable predictable assembly from certifiable components”.

Bertolino and Mirandola introduce in [15, 16] (MB3) the CB-SPE framework: a
compositional methodology for component-based performance engineering and its sup-
porting tool. CB-SPE is based on the concepts and steps of the SPE technology, and
uses OMG’s SPT profile [17]. The technique is compositional: It is first applied by
the component developer at the component layer, achieving a parametric performance
evaluation of the components in isolation; then, at the application layer, the system as-
sembler uses a step-wise procedure for predicting the performance of the assembled
components on the actual platform.

In [18, 19] (MB4) a specific performance evaluation technique, layered queueing
networks, is applied to generate performance models for component-based systems. To
achieve this goal an XML-based language is defined that describes performance models
of both software components and component-based systems. A model assembler tool
starting from component sub-models automatically generates a layered performance
models that can be solved by use of classical techniques.

In [20] (MB5), Balsamo and Marzolla present a simulation environment, where
starting from Use Case, Activity and Deployment diagrams with RT-UML annotations
(augmented, in some cases, to better fit performance features) a discrete-event C++
simulation program is derived. The transformation methodology is close to a one-to-
one mapping from elements of UML model to elements of the simulator, so that the
structure and the dynamics of the simulator closely follow the structure and the behavior
of the UML model.

Eskenazi et al. [21] presents a method for the ”Analysis and Prediction of Perfor-
mance for Evolving Architectures” (APPEAR) that combines both structural and statis-
tical techniques in a flexible way. It allows a choice of, which parts of the component
are structurally described, modeled and simulated, and which parts are evaluated sta-
tistically. Additionally, the same authors present in [22] (MB6) a stepwise approach to

Performance Prediction of Component-Based Systems 177

predict the performance of component compositions. ”The approach considers the ma-
jor factors influencing the performance of component compositions sequentially: com-
ponent operations, activities, and composition of activities. During each analysis step,
various models - analytical, statistical, simulation-based - can be constructed to specify
the contribution of each factor to the performance of the composition. The architects
can choose which model they use at each step.”

A simulation-based approach for predicting real-time behavior of an assembly based
on models of its contained components is proposed by Chaudron et al. in [23] (MB7).
The presented method deals with the main aspects of real-time systems such as:
mutual exclusions, combinations of periodic and aperiodic tasks and synchronization
constraints. Additionally, the simulator provides data about the dynamic resource con-
sumption and real-time properties like response time, blocking time and number of
missed deadlines per task.

In [24] (MB8) a compositional component performance model based on parametric
contracts is presented. The approach allows for parameterization with context depen-
dencies in order to model the performance of a single component that depends on the
performance properties of the environment by using so-called service effect automata.
These automata describe the call sequence of the external services on which a compo-
nent service depends.

Combined Use of Measurement and Model-Based Approaches. Menasce et al. [25]
(MBM1) proposes a QoS-based approach to distributed software system composition
and reconfiguration. This method uses resource reservation mechanisms at the com-
ponent level to guarantee soft (i.e., average values) QoS requirements at the software
system level. Different metrics can be used for measuring and providing a given QoS
property, such as response time, throughput, and concurrency level. Specifically, the
method relies on the definition of QoS-aware components, where a client component
can request a service with a certain QoS level. In case the server is able to provide
this QoS level, it commits itself to do so; otherwise a negotiation is started until an
agreement on a new QoS level is reached. The method implementation is based on the
combination of queueing models and measurement techniques.

In [26] (MBM2) a methodology is presented, which aims for predicting the perfor-
mance of component-oriented distributed systems both during development and after
the system have been built. The methodology combines monitoring, modelling and per-
formance prediction. Specifically, performance prediction models based on UML mod-
els are created dynamically with non-intrusive methods. The application performance
is then predicted by generating workloads and simulating the performance models.

In [27] (MBM3) an approach to predict the performance of component-based ap-
plications during the design phase is presented. The proposed methodology derives a
quantitative performance model for a given application using aspects from the underly-
ing component platform, and from a design description of the application. The results
obtained for an EJB application are validated with measurements of different imple-
mentations. Using this methodology, it is possible for the software architect to make
early decisions between alternative application architectures in terms of their perfor-
mance and scalability.

178 S. Becker et al.

3.2 Qualitative Approaches

In this section we shortly describe some approaches which evaluate the quality of
component-based systems either based on the affinity between software architecture
and software components or exploiting the principles of the model driven engineering.
The common characteristic of these approaches is to consider qualitative analyzes that
are derived from an attribute-based style or trough ”screening questions” and are meant
to be coarse-grained versions of the quantitative analysis that can be performed when a
precise analytic model of a quality attribute is built.

SA-Based. A qualitative approach to performance analysis of component-based sys-
tems is undertaken in [28], where the affinity between Software Architecture (SA) and
Software Component (SC) technology is outlined and exploited. This affinity is related
to different aspects: (i) the central role of components and connectors as abstraction en-
tities, (ii) the correlation of architectural style and component model and frameworks,
(iii) the complementary agendas followed by the SA and SC technologies: enabling
reasoning about quality attributed, and simplifying component integration. Therefore,
the basic idea of these approaches is to develop a reference model that relates the key
abstractions of SA and component-based technology, and then to adapt and apply some
existing SA analysis methods, such as SAAM, ATAM and QADP.

Model-Based. The basic idea of model-driven engineering (MDE) is to create a set of
models that help the designers to understand and to evaluate both the system require-
ments and its implementation. A key point for a successful application of an MDE-
based process is the integration of orthogonal models taking into account cross-cutting
aspects such as the application’s performance. The following approaches are mainly de-
scriptive and focus on paths leading to the construction of different performance mod-
els. A crucial issue for the application of MDE techniques is the existence of automatic
tools allowing model transformations from design models to analysis-oriented models.

Solberg et al. [29] outlines the need to incorporate QoS specification and evaluation
within a MDA-based approach at a more abstract level and at the platform-specific
level. In this view, the model transformations, the code generation, the configuration
and deployment should be QoS-aware. Ideally the target execution platform should be
also QoS-aware.

Grassi and Mirandola [30] present an approach for the predictive analysis of extra-
functional properties of component-based software systems. According to a model-
driven perspective, the construction of a model that supports some specific analysis
methodology is seen as the result of a sequence of refinement steps, where earlier steps
can be generally shared among different analysis methodologies. The focus is mainly
on a path leading to the construction of a stochastic model for the compositional perfor-
mance analysis, but some relationships with different refinement paths are also outlined.

To facilitate extra-functional analysis in the design phase, automatic prediction tools
should be devised, to predict some overall quality attributes of the application without
requiring extensive knowledge of analysis methodologies to the application designer.
To achieve this goal, a key idea is to define a model transformation system that takes
as input some ”design-oriented” model of the component assembly and (almost) au-
tomatically produces as a result an ”analysis-oriented” model that lends itself to the

Performance Prediction of Component-Based Systems 179

application of some analysis methodology. However, to actually devise such a transfor-
mation, one must face both the heterogeneous design level notations for component-
based systems, and the variety of extra-functional attributes.

In this perspective, the work in [31, 32] describes an intermediate model called Core
Scenario Model (CSM), which can be extracted from an annotated design model. Ad-
ditionally a tool architecture called PUMA is described, which provides a unified inter-
face between different kinds of design information and different kinds of performance
models, for example Markov-models, stochastic Petri nets and process algebras, queues
and layered queues. Petriu et al. [33] proposes a transformation method of an annotated
UML model into a performance model defined at a higher level of abstraction based on
graph transformation concepts, whereas the implementation of the transformation rules
and algorithm uses lower-level XML trees manipulations techniques, such as XML al-
gebra. The target performance model used as an example in this paper is the Layered
Queueing Network (LQN).

A different approach is described in [34]. This approach defines a kernel language
with the aim to capture the relevant information for the analysis of extra-functional
attributes (performance and reliability) of component-based systems. Using this kernel
language a bridge between design-oriented and analysis-oriented notations could be
established, which enables a variety of direct transformations from the former to the
latter. The proposed kernel language is defined within a MOF (Meta-Object Facility)
framework, to allow the exploitation of MOF-based model transformation facilities.

3.3 Performance Specification

A key point for a successful application of quantitative validation of performance prop-
erties during component-based software development is the existence of languages al-
lowing performance specification when designing a component-based system both at
component and at assembly level.

A UML Profile for Schedulability, Performance and Time (SPT Profile) has been
proposed and adopted as an OMG standard [17] as a response to the exigencies of
introducing in UML diagrams quantifiable notions of time and resources usage. The
SPT Profile is not an extension to the UML meta model, but a set of domain profiles for
UML. Basically, the underlying idea is to import annotations in the UML models, which
describe the characteristics relative to the target domain viewpoint (performance, real-
time, schedulability, concurrency). In this a way various (existing and future) analysis
techniques can usefully exploit the provided features. In fact, the SPT profile is intended
to provide a single unifying framework encompassing the existing analysis methods,
still leaving enough flexibility for different specializations.

Zschaler in [35] investigates the possibility to define a framework, which can be
used to provide semantics for extra-functional specifications of component-based sys-
tems, by explaining also how the different parts of a component-based system coop-
erate to deliver a certain service with certain extra-functional properties. The claimed
objectives are ”To allow application developers to use Component-Based Software En-
gineering to structure their applications and thus lower the complexity of the software
development process while at the same time enabling them to make use of proven and
tested theories for providing extra-functional properties of those applications.”

180 S. Becker et al.

In [36], the authors define a simple language, based on an abstract component
model, to describe a component assembly, outlining which information should be in-
cluded to support compositional performance analysis. Moreover, a mapping of the
constructs of the proposed language to elements of the UML Performance Profile is
outlined, to give them a precisely defined ”performance semantics”, and to get a start-
ing point for the exploitation of proposed UML-based methodologies and algorithms
for performance analysis.

In [37] the QoS modeling language (QML) is described. The QML is used to specify
QoS attributes for interfaces, operations, operation parameters, and operation results. It
is based on the fundamental concepts of contract types, contracts and profiles. Contract
types are utilized to specify the metrics used to determine a specific QoS concept. Con-
tracts are used afterwards to specify a certain level of the metrics of a contract type. The
linking between contracts and interface methods, operation parameters or results is done
via QML profiles. There is a conformance relation defined on profiles, contracts, and
constraints. The conformance is needed at runtime, so that client-server connections do
not have to be based on an exact match of QoS requirements with QoS properties. For
example, if the client requests a response time of less than 5ms the server has to pro-
vide exactly a response time of less than 5ms. Nevertheless, instead of exact matches, a
service is allowed to provide more than what is required by a client. In the example, the
server is also allowed to provide a response time of less than 2ms as this is conforming
to the required 5ms requested by the client.

4 Abstract Comparison

Table 1 relates the different performance prediction approaches described in section 3
with (a) the concerns to component-based systems described in section 2 (columns C
in the table) and (b) with general characteristics of performance (prediction) techniques
described in section 1 (columns A in the table). The comparison has been carried out
only for quantitative approaches since qualitative methods pose themselves on the dif-
ferent perspective to give only qualitative insights about the performance of component-
based systems.

Each row in the table refers to a specific methodology. The considered methods
are grouped according to the categories introduced in section 3 (first column) and each
methodology is identified by the assigned labels (second column), by the author’s names
(third column) and by the reference paper(s)(fourth column).

To quantify the fulfillment of the concerns C (columns 5-9) and the characteristics A
(columns 10-16) we have adopted a coarse-grained classification, i.e.,: High, Medium,
Low, Absent, since the considered methods are often described with a low level of de-
tail. Moreover, in some cases, the description is carried out at an high abstraction level
that is not sufficient to quantify the relationships for the factors A and C. In these cases
we have inserted in the table an educated guess followed by a question mark. Addition-
ally, dealing with aspect A7, we have considered the existence of an automated tool or
framework for the derivation of performance characteristics as a good starting point.

In the remaining part of this section we describe in some details each row of table 1
presenting how each methodology deals with factors A and C.

Performance Prediction of Component-Based Systems 181

T
ab

le
1.

P
er

fo
rm

an
ce

pr
ed

ic
ti

on
of

C
om

po
ne

nt
-B

as
ed

S
ys

te
m

s
-

co
m

pa
ri

so
n

of
qu

an
ti

ta
ti

ve
ap

pr
oa

ch
es

Method

Authors

Reference

ThirdpartydeploymentC1
ExternalservicesC2

DeploymentandresourcesC3
UsageProfilesC4

InterdependenciesC5

AccuracyA1

AdaptabilityA2

Cost-effectiveA3

CompositionalityA4

ScalabilityA5

AnalyzabilityA6

UniversalityA7

M
1

Y
ac

ou
b

[8
]

M
L

L
M

L
M

L
L

L
L

A
A

M
ea

su
re

m
en

t
M

2
C

he
n

et
al

.
[9

]
M

L
H

M
M

-L
M

L
M

M
L

L
A

M
3

D
en

ar
o

et
al

.
[1

0]
M

L
H

M
M

M
L

L
L

L
L

A

M
B

1
S

it
ar

am
an

et
al

.
[1

1]
M

L
L

M
M

L
M

L
M

L
M

A

M
B

2
H

is
sa

m
et

al
.

[1
2,

14
]

H
H

M
M

H
M

-H
H

H
H

M
H

M

M
od

el
-b

as
ed

M
B

3
B

er
to

li
no

et
al

.
[1

5,
16

]
H

M
M

M
M

M
?

H
H

H
M

-L
H

M

M
B

4
W

u
et

al
.

[1
8,

19
]

M
H

M
L

M
M

?
H

H
M

M
H

M

M
B

5
B

al
sa

m
o

et
al

.
[2

0]
M

-L
L

L
M

-L
L

M
-L

?
M

H
M

M
H

M

M
B

6
E

sk
en

az
i

et
al

.
[2

2]
M

M
M

L
L

M
?

M
?

M
?

M
H

H
L

M
B

7
B

on
da

re
v

et
al

.
[2

3]
M

M
H

L
M

L
?

M
?

M
H

L
M

L

M
B

8
R

eu
ss

ne
r

et
al

.
[2

4]
M

H
L

M
-L

A
M

?
L

M
H

L
H

M

M
od

el
an

d
M

B
M

1
M

en
as

ce
et

al
.

[2
5]

M
M

H
H

L
H

M
M

M
L

H
M

M
ea

su
re

m
en

t
M

B
M

2
D

ia
co

ne
sc

u
et

al
.

[2
6]

H
M

-H
?

H
H

M
?

H
?

L
L

M
L

-M
?

H
M

M
B

M
3

L
iu

et
al

.
[2

7]
H

M
H

H
M

H
L

M
M

M
H

A

L
eg

en
d

:
H

=
H

ig
h,

M
=

M
ed

iu
m

,L
=

L
ow

,A
=

A
bs

en
t,

th
e

?
de

no
te

s
an

ed
uc

at
ed

gu
es

s

182 S. Becker et al.

Let us consider, for example, the measurement based approaches (M1-M3): M1 is
a introductive study and is simply based on the monitoring of single applications, while
M2 and M3 seem more promising to deal with component-based systems. Both of them
take middleware details into account and consider J2EE application with EJB contain-
ers. To deal with the concerns factors C4 and C5, M2 defines application-specific be-
havioral characteristics through the design of a set of test-cases. The performance of
the server side is characterized using these tests with parameter settings concerning
the transaction type and frequency, the database connection, and the pool size. Instead
M3 tries to model usage scenarios relevant to performance through the modeling of
workload in terms of number of user and frequency of inputs. The interactions among
distributed components and resources are studied according to whether they take place
between middleware and components, among components themselves or to access per-
sistent data in a database.

Considering the general foreseeable characteristics of prediction techniques, the
methods based on measurements show good value for the accuracy aspect, while
they exhibit quite low values for all the other features. Actually, since they require
already implemented systems their cost effectiveness is low. Moreover, they are often
platform-specific and this fact limits the adaptability, the scalability and the analyz-
ability. The universality facet in these approaches is completely absent, because the
implementation and the analysis are completely manual and no automatic support is
provided.

The weak point of model-based approaches is the lack of empirical studies for the
validation of the predicted results. As a consequence the column A1 regarding the ac-
curacy of the obtained results is filled-in only with educated guesses.

MB1 is one of the first papers addressing the importance of a performance engineer-
ing approach for component-based systems, and this paper specifically outlines issues
like compositionality, performance specification and usage profile definition (as shown
by the quite good values in the table). However, the proposed formal approach is not
supported by an automated framework and seems to be only a good reasoning tool
rather than a method to be applied in an industrial software development context.

MB2’s aim at integrating component technology with analysis models, allowing
analysis and prediction of assembly-level properties prior to component composition.
It is based on the definition of an analytic interface, that takes into account the compo-
nent technology, but spans aspects related to the use of some analysis methodology to
support predictions about quantitative properties of the system. This approach is very
attractive and shows high values in the table. It is supported by an automatic framework
as well as it includes also a first ”measurement and validation environment” to validate
the analysis results and to give informed feedback to the design team. A weak point is
that the performance model does take usage profiles and resource contention aspects
into account.

MB3, MB4 and MB5 are based on the use of UML models as design notation
augmented with performance annotations compliant to the SPT profile [17]. These
approaches are all supported by (semi-)automatic frameworks and provide good (also
very good) values for general properties of prediction techniques. They differ in the
type of performance models (queueing network, layered queueing network and

Performance Prediction of Component-Based Systems 183

simulation, respectively) and in the way of addressing the concerns that arise when
developing component-based systems. MB3 and MB4 consider (even if in simple
way) most aspects related to component-based models, while MB5 has been conceived
for a traditional software development process and scores therefore not so well for
component-based systems.

In MB6 component composition is considered in terms of concurrent activities that
invoke a number of component operations. At first, a detailed analysis of performance
models for component operations is carried out; then an activity model is constructed
through a flow graph and finally a model of the concurrent activities is obtained. The
first step is based on the combination of different methods and deals well with the con-
cerns that occur with component-based development. The second step uses traditional
techniques related to flow graphs, while the third step is not detailed enough, which
making the overall understanding of the characteristics of this prediction technique
difficult.

MB7 assumes as starting point Robocop component models that include resource,
function, behavior and executable models. The following step combines the behavior
and resource consumption models with an application model constructed for possible
critical execution scenarios. This combination is performed taking into account the ap-
plication static structure and its internal and external events. This model serves as an
input to a simulation tool, which outputs the execution behavior of the assembly with its
timing properties (latency and resource utilization). Therefore, MB7 shows quite good
scores for component-based development concerns, but it is specifically targeted for
the Robocop component model and this fact decreases its adaptability and scalability
values.

MB8 uses components described in the Palladio component model, which includes
service effect specifications (gray box component view) with service effect automata.
Additionally, annotations of the probability density distribution of the response times
of the external service calls and the internal calculations are used. Consequently, it gets
good marks for the inclusion of external dependencies and compositional reasoning.
Nevertheless, in so doing it regards hardware dependencies only implicitly. Also the
usage profile is used solely to estimate probabilities of certain control flows. Multiple
threads or concurrent resource utilization is disregarded.

The methods based on the combination of measurement and modeling seems to
have the capabilities to combine the different concerns Cs and As in Table 1, however
a weak point is represented by a low level of adaptability and scalability due to the
specifics of the selected platform.

MBM1 focuses on component specifications rather than on the analysis, it consists
of the definition of component QoS-aware capable of engaging QoS negotiation with
other components in a distributed environment. This approach seems to be very promis-
ing, because it allows to cope with external services, deployment and usage profile in a
good way. The accuracy of the obtained results are validated in an experimental envi-
ronment and the presence of an automated tool for performance model generation and
analysis increases the value/ attractiveness of this approach. The major drawback is the
low scalability, due to the simplicity of the treated models. The models are hardly able
to cope with complex systems.

184 S. Becker et al.

MBM2 presents a framework composed of a module, which collects run-time per-
formance information on the software components and on the software application ex-
ecution environment. This module is implemented for J2EE applications and EJB con-
tainer and allows also the execution of performance analyses. This is achieved with
an instrumentation of the software components by a proxy layer that lowers the cost-
effectiveness of the approach. Additionally, there is also a partially implemented adap-
tation module, which aims to solve performance problems through the selection of dif-
ferent, functionally-equivalent, components. The two modules are supposed to operate
in an automated feedback-loop. Currently, this framework is only partially implemented
and automated. This is reflected by some low (or guessed) values in the table. However,
it is the first automated framework including both component and application layer,
which contains an optimization module. Consequently this approach get high values
for both aspects: As and Cs.

MBM3 is based on the modeling of an application in terms of component interac-
tions and demands placed on the component container; its parameterization is carried
out based on the definition of a performance profile of the container and the underlying
platform obtained through benchmarking. In this way the factors Cs can be fulfilled
in a quite satisfactory way. The accuracy of the obtained results is validated in a real
setting and thus theoretically justified. In addition, the other A factors show medium
to high values, except for the adaptability, because the method is only presented and
validated in an EJB context. Furthermore, the universality of the approach can be ques-
tioned, since the method has to be applied manually and thus the results are based on
the expertise and skills of the design team.

To summarize, figure 2 depicts the different scores of the discussed techniques with
respect to concerns As and Cs. Roughly speaking, we can observe how measurement-
based methods show low values for characteristics A while deal quite well with
concerns Cs. On the contrary, the model-based approaches deal quite well with A fac-
tors while show Low or Medium values handling factors C. The joint use of models
and measurement techniques combine the potentialities of both methods. A detailed
comparison of different techniques would require performing some common valida-
tion experiment with the various tools and methodologies. Our feeling is that working

Fig. 2. Models and measurement techniques

Performance Prediction of Component-Based Systems 185

on simple examples could lead to misleading results because of lacking of critical as-
pects inherent to component-based systems. To overcome this problem we are working
towards the definition of a reference system including the main characteristics and con-
cerns of a typical component-based applications and our long-term goal is to use this
system to compare and validate the various performance approaches.

Although several approaches have been proposed and applied we are still far from
seeing performance analysis as an integrated activity into component-based software de-
velopment, both for the novelty of the topic and for the inherent difficulty of the problem.

5 Recommendations

In the last sections, we have stressed the importance of performance predictability in
component-based development approaches as ”the ability to reason about application
behavior from the quality attributes of the components and the components’ intercon-
nections” [38]. In the following we summarize the lessons learned from the review of
the current performance predictions techniques and we offer some suggestions for im-
provement of the performance predictability of component-based systems.

Component-based development is a new paradigm for the development of large
complex software-intensive systems, but while the functional properties of the systems
have been extensively dealt with both from industrial and academic communities, the
quality (performance) aspect of the software products are not adequately addressed [7].
As described in section 3, in the last few years some attention has been paid also to
include quantitative performance validation within component-based software develop-
ment processes. The existing approaches are based on models, which has proven good
predictive qualities, but they are often not considering the characteristics of component-
based systems; on the other hand, measurement-based approaches are able to tackle the
component-based development concerns but are frequently related to a single environ-
ment and lack of generality. Table 1 summarizes how different methods deal with the
different aspect of component-based systems and could be used as a first guide in the
selection of an appropriate methodology for the objective of the study/ project.

However, since the ability to predict the performance characteristics of the assem-
bled system should be applied as early as possible to reduce the costs of late problem
fixing [2], it becomes crucial to determine from the design phase whether the compo-
nent-based product will satisfy its requirements. This goal can be obtained only via
a rigorous design discipline and by accepting standard modelling notations as well as
strict documentation and design rules, so that independently constructed components
can be effectively connected and properly interact. This basic notion is central to the
Design-by-Contract discipline [39], originally conceived for object-oriented systems,
but even better suited for component-based development [3].

To obtain performance predictability of a component-based system several factors
must be available. We devise three main features as crucial for performance prediction
of component-based systems:

1. Necessity of component technology providing the means for specification of com-
ponent performance taking into account its dependency both on the environment
(middleware and hardware platform) and on different software resources;

186 S. Becker et al.

2. Component selection based on the exposed performance characteristics;
3. Combination of measurement and modeling techniques embedded in an automated

framework.

Considering issue 1 we devise parametric performance contracts as a good way to
model the dependency of a component on the ”external world” and in the following we
describe the form of a parametric contract, we conceive for each service offered by a
given component. Let us suppose that a given component Ci offers h � 1 services Sj

(j=1, . . ., h). Each offered service can be carried out either locally (i.e., exploiting only
the resources of the component under exam) or externally (i.e., exploiting also the re-
sources of other components). A service Sj is defined with a set of parameters/attributes
(a1, . . ., am) that define/are related to its resource usage, i.e., Sj (a1, . . ., am); among
these attributes we can distinguish:

– constant (or non parametric attributes) such as, for example, the kind of resources
required

– “stand-alone” parametric attributes that depend only on the kind of metric we are
interested in for the performance measurement (e.g., a number, if we are consid-
ering ”average” metric, a range of numbers if we are interested in best-worst case
analysis);

– “external” parametric attributes that depend also on other services.

We consider a user management component with Login and Logout methods
to give examples for the above mentioned categories. The component is implemented
for the J2EE platform running on a Java virtual machine. Hence, J2EE and JavaVM
can be seen as constant parameters. The performance influence of the J2EE middleware
platform for example was investigated in [40]. Information on the duration of the exe-
cution of the code of each of the user management services is part of the stand-alone
parameters, e.g., the average execution time of the methods or a distribution of their
response times. Additionally, the Login method calls an external database to verify
any given username and password combination. As this call’s response time adds to
the Login method’s response time the call has to be considered as external parametric
attribute. Further examples for the inclusion of external service calls into a performance
prediction model can be found in [41].

In a performance prediction model capable of modeling situations as in the example
above, each component’s service should be accompanied by a performance parametric
contract PerfC i(Sj(. . .)) whose form depends on the kind of service parameters.

For example, if Sj is a simple service with constant attributes (a1, . . ., ai) and stand-
alone parametric attributes (ai + 1, . . ., am) then it can be characterized as

PerfC iSj (a1, . . ., am) = fSj (ai + 1, . . ., am)

where fSj denotes some kind of internal dependency. Otherwise, if Sj is a composite
service with constant attributes (a1, . . ., ai), stand-alone parametric attributes (ai + 1,
. . ., aj) and external parametric attributes (aj + 1, . . ., am) then it can be characterized
as:

PerfC iSj (a1, . . ., am) =fSj (ai + 1, . . ., aj) ⊕ gSj (aj + 1, . . ., am)

where ⊕ represents some kind of composition operator.

Performance Prediction of Component-Based Systems 187

Considering issue 2, it is obvious that to fulfill performance requirements, the sys-
tem assembler will choose those components among multiple component implementa-
tions providing the same functional behavior that best fit the performance requirements.

Let us describe how the above introduced characterization can help the system as-
sembler in the service pre-selection step where one chooses, among components offer-
ing the same service, those that provide the best performance. In fact, one can instantiate
the generic PerfC iSj (a1, . . ., am), with the characteristics of the adopted (or hypoth-
esized) environment, so obtaining a set of values among which the best ones can be
selected. Obviously, this kind of selection does not consider the impact of contention
with other services for the use of a resource. To this end it should be necessary to
define an order (≺) between the PerfC iSj (a1, . . ., am) indices that depends on the
adopted measurement framework (i.e., what kind of measurement we are interested in:
mean, distribution, best/worst case) and on the execution environment and then select
the components following this order.

Finally, taking into consideration issue 3, a trustworthy performance prediction
methodology should consider the integrated use of models and measures to exploit the
inherent advantages of both methods and to handle the complexity of component-based
systems. Moreover, the process of performance analysis should be automated as best
as possible to avoid errors and increase the efficiency of performance prediction. This
applies both to the derivation of the performance model as well as the model solution.
Another, often neglected, important aspect that should be included in the prediction
methodology is the assessment of the goodness of a model, i.e., how close the model
is to the real system. This involves a verification step ensuring that the model is cor-
rectly built and a validation step ensuring that the model produces results close to those
observed in the real system.

Figures 3 and 4 show a foreseeable component-based software design environment
with a built-in performance prediction tool combining both measurement and modeling
techniques. As illustrated in figures 3 and 4, the final goal should be to have some

Fig. 3. A CBSE Framework with Performance prediction included

188 S. Becker et al.

Produce Components

Reuse Components / Build Architecture Determine Prediction Parameters

Predict Performance
[Performance insufficient] [Performance Sufficient]

Component Developer

System Architect

Performance

Prediction Tool

Fig. 4. Activity diagram of the Performance Framework

automatic tool allowing performance prediction at design time, so the effort required at
assemby time at the software designer is quite small.

To summarize, the area of performance prediction for component-based systems is
extensive and more research is necessary to achieve a full integration of quantitative
prediction techniques in the software development process. Several related research di-
rections should cover, for example the design of component models allowing quality
prediction and building of component technologies supporting quality prediction. Fur-
ther research is needed to include also other quality attributes, such as reliability, safety
or security in the software development process. Another interesting point that deserves
further investigation is to study interdependencies among the different quality attributes,
to determine, for example, how the introduction of performance predictability can affect
other attributes such as reliability or maintainability. To this end a good starting point
would be a unified view on software quality attributes taking into account the various
existing trade-offs between related quality attributes ([42]).

6 Conclusion

In this paper, we have reviewed performance prediction techniques for component-
based software systems. Especially, we focus on the practicability of these techniques
for various software engineering problem scenarios. For that reason, we have discussed
some practical concerns that emerge when developing component-based systems and
given an overview of current performance prediction approaches. As a result, we can
present the inherent strengths and weaknesses of each performance prediction technique
for different problems and system categories. This leads to a survey from an engineer-
ing perspective, which allows software engineers to select an appropriate performance
prediction technique. Moreover, based on our examination of existing performance pre-
diction techniques we have presented some recommendations for future research activ-
ities. Finally, we think that this survey could have a significant impact on the current
software engineering practices and on the applicability of Component-Based Software
Engineering methodologies.

Performance Prediction of Component-Based Systems 189

Acknowledgements

The authors would like to thank Viktoria Firus and Ian Gorton for their valuable and in-
spiring input during our break-out session at Dagstuhl, which preceded this paper. Stef-
fen Becker is funded by the German Science Foundation in the DFG-Palladio project.

References

1. Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley, Reading,
MA, USA (1990)

2. Smith, C.U., Williams, L.G.: Performance Solutions: a practical guide to creating responsive,
scalable software. Addison-Wesley (2002)

3. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-
gramming. 2 edn. ACM Press and Addison-Wesley, New York, NY (2002)

4. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to real-
time synchronization. IEEE Trans. Comput. 39 (1990) 1175–1185

5. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability – Measurement, prediction,
application. McGraw-Hill, New York (1987)

6. Dongarra, J., Martin, J., Vorlton, J.: Computer benchmarking: paths and pitfalls. IEEE Spectr.
24 (1987) 38–43

7. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Transactions on Software Engineering 30 (2004)
295–310

8. Yacoub, S.M.: Performance Analysis of Component-Based Applications. In Chastek,
G.J., ed.: Software Product Lines, Second International Conference, SPLC 2, San Diego,
CA, USA, August 19-22, 2002, Proceedings. Volume 2379 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer (2002) 299–315

9. Chen, S., Gorton, I., Liu, A., Liu, Y.: Performance Prediction of COTS Component-Based
Enterprise Applications. In: Proceedings of 5th ICSE workshop on Component-Based Soft-
ware Engineering (CBSE 2002). (2002)

10. Denaro, G., Polini, A., Emmerich, W.: Early Performance Testing of Distributed Software
Applications. In Dujmovic, J.J., Almeida, V.A.F., Lea, D., eds.: Proceedings of the Fourth
International Workshop on Software and Performance, WOSP 2004, Redwood Shores,
California, USA, January 14-16, 2004, New York, NY, ACM Press (2004) 94–103

11. Sitaraman, M., Kulczycki, G., Krone, J., Ogden, W.F., Reddy, A.L.N.: Performance Specifi-
cation of Software Components. In: Proceedings of the Symposium on Software Reusability:
Putting Software Reuse in Context, May 18-20, 2001, Toronto, Ontario, Canada, New York,
NY, ACM Press (2001) 3–10

12. Hissam, S.A., Moreno, G.A., Stafford, J.A., Wallnau, K.C.: Packaging Predictable Assembly.
In Bishop, J.M., ed.: Component Deployment, IFIP/ACM Working Conference, CD 2002,
Berlin, Germany, June 20-21, 2002, Proceedings. Volume 2370 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer (2002) 108–124

13. Hissam, S., Hudak, J., Ivers, J., Klein, M., Larsson, M., Moreno, G., Northrop, L., Plakosh,
D., Stafford, J., Wallnau, K., Wood, W.: Predictable Assembly of Substation Automa-
tion Systems: An Experiment Report. Technical Report CMU/SEI-2002-TR-031, Software
Engineering Institute (2002)

14. Wallnau, K.C.: A Technology for Predictable Assembly from Certifiable Components. Tech-
nical Report CMU/SEI-2003-TR-009, Software Engineering Institute (2003)

190 S. Becker et al.

15. Bertolino, A., Mirandola, R.: Towards Component-Based Ssoftware Performance Engineer-
ing. In: Proceedings of 6th ICSE workshop on Component-Based Software Engineering
(CBSE 2003). (2003)

16. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Performance Engi-
neering into Practice. In Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.C., eds.:
Component-Based Software Engineering, 7th International Symposium, CBSE 2004, Ed-
inburgh, UK, May 24-25, 2004, Proceedings. Volume 3054 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer (2004) 233–248

17. OMG: UML Profile for Schedulability, Performance, and Time. OMG Specification
ptc/2002-03-02, Object Management Group (2002)

18. Wu, X., McMullan, D., Woodside, M.: Component-Based Performance Prediction. In: Pro-
ceedings of 6th ICSE workshop on Component-Based Software Engineering (CBSE 2003).
(2003)

19. Wu, X., Woodside, C.M.: Performance Modeling from Software Components. In Dujmovic,
J.J., Almeida, V.A.F., Lea, D., eds.: Proceedings of the Fourth International Workshop on
Software and Performance, WOSP 2004, Redwood Shores, California, USA, January 14-16,
2004, New York, NY, ACM Press (2004) 290–301

20. Balsamo, S., Marzolla, M.: A Simulation-Based Approach to Software Performance Mod-
eling. In: ESEC/FSE-11: Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, New York, NY, ACM Press (2003) 363–366

21. Eskenazi, E.M., Fioukov, A.V., Hammer, D.K., Obbink, H., Pronk, B.: Analysis and Predic-
tion of Performance for Evolving Architectures. In IEEE, ed.: Proceedings of the 30th EU-
ROMICRO Conference 2004, 31 August - 3 September 2004, Rennes, France, Los Alamitos,
CA, IEEE Computer Society Press (2004) 22–31

22. Eskenazi, E.M., Fioukov, A.V., Hammer, D.K.: Performance Prediction for Compo-
nent Compositions. In Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.C., eds.:
Component-Based Software Engineering, 7th International Symposium, CBSE 2004, Ed-
inburgh, UK, May 24-25, 2004, Proceedings. Volume 3054 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer (2004) 280–293

23. Bondarev, E., de With, P.H., Chaudron, M.R.V.: Towards Predicting Real-Time Properties
of a Component Assembly. In IEEE, ed.: Proceedings of the 30th EUROMICRO Conference
2004, 31 August - 3 September 2004, Rennes, France, Los Alamitos, CA, IEEE Computer
Society Press (2004) 601–610

24. Reussner, R.H., Firus, V., Becker, S.: Parametric Performance Contracts for Software Com-
ponents and their Compositionality. In Weck, W., Bosch, J., Szyperski, C., eds.: Proceed-
ings of the 9th International Workshop on Component-Oriented Programming (WCOP 04).
(2004)

25. Menasce, D.A., Ruan, H., Gomaa, H.: A Framework for QoS-Aware Software Components.
In: Proceedings of the Fourth International Workshop on Software and Performance, WOSP
2004, Redwood Shores, California, USA, January 14-16, 2004, New York, NY, ACM Press
(2004) 186–196

26. Diaconescu, A., Mos, A., Murphy, J.: Automatic Performance Management in Component
Based Software Systems. In IEEE, ed.: Proceedings of the 1st International Conference on
Autonomic Computing (ICAC 2004), 17-19 May 2004, New York, NY, USA, Los Alamitos,
CA, IEEE Computer Society Press (2004) 214–221

27. Liu, Y., Fekete, A., Gorton, I.: Predicting the Performance of Middleware-Based Applica-
tions at the Design Level. In: Proceedings of the Fourth International Workshop on Software
and Performance, WOSP 2004, Redwood Shores, California, USA, January 14-16, 2004,
New York, NY, ACM Press (2004) 166–170

Performance Prediction of Component-Based Systems 191

28. Wallnau, K.C., Stafford, J., Hissam, S., Klein, M.: On the Relationship of Software Ar-
chitecture to Software Component Technology. In: Proceedings of the Sixth International
Workshop on Component-Oriented Programming (WCOP’01), Budapest, Hungary, 19 June
2001. (2001)

29. Solberg, A., Husa, K.E., Aagedal, J.., Abrahamsen, E.: QoS-Aware MDA. In: Proceed-
ings of the Workshop Model-Driven Architecture in the Specification, Implementation and
Validation of Object-Oriented Embedded Systems (SIVOES-MDA’03) in conjunction with
UML’03. (2003)

30. Grassi, V., Mirandola, R.: A Model-Driven Approach to Predictive Non-Functional Analysis
of Component-Based Systems. In: Proceedings of the Workshop Models for Non-functional
Aspects of Component-Based Software at UML 2004, 12 October 2004,. (2004)

31. Petriu, D.B., Woodside, C.M.: A Metamodel for Generating Performance Models from UML
Designs. In Baar, T., Strohmeier, A., Moreira, A.M.D., Mellor, S.J., eds.: UML 2004 - The
Unified Modelling Language: Modelling Languages and Applications. 7th International Con-
ference, Lisbon, Portugal, October 11-15, 2004. Proceedings. Volume 3273 of Lecture Notes
in Computer Science., Berlin, Heidelberg, Springer (2004) 41–53

32. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., J.Merseguer: Performance by
Unified Model Analysis (PUMA). In: Proceedings of the Fifth International Workshop on
Software and Performance, WOSP 2005, Palma, Illes Balears, Spain, July 11-15, 2005, New
York, NY, ACM Press (2005) forthcoming

33. Gu, G., Petriu, D.C.: From UML to LQN by XML Algebra-Based Graph Transformations.
In: Proceedings of the Fifth International Workshop on Software and Performance, WOSP
2005, Palma, Illes Balears, Spain, July 11-15, 2005, New York, NY, ACM Press (2005)
forthcoming

34. Grassi, V., Mirandola, R., Sabetta, A.: From Design to Analysis Models: A Kernel Language
for Performance and Reliability Analysis of Component-Based Systems. In: Proceedings of
the Fifth International Workshop on Software and Performance, WOSP 2005, Palma, Illes
Balears, Spain, July 11-15, 2005, New York, NY, ACM Press (2005) forthcoming

35. Zschaler, S.: Towards a Semantic Framework for Non-Functional Specifications of
Component-Based Systems. In IEEE, ed.: Proceedings of the 30th EUROMICRO Con-
ference 2004, 31 August - 3 September 2004, Rennes, France, Los Alamitos, CA, IEEE
Computer Society Press (2004) 92–99

36. Grassi, V., Mirandola, R.: Towards Automatic Compositional Performance Analysis of
Component-Based Systems. In: Proceedings of the Fourth International Workshop on Soft-
ware and Performance, WOSP 2004, Redwood Shores, California, USA, January 14-16,
2004, New York, NY, ACM Press (2004) 59–63

37. Frølund, S., Koistinen, J.: Quality-of-Service Specification in Distributed Object Sys-
tems. Technical Report HPL-98-159, Hewlett Packard, Software Technology Laboratory
(1998)

38. Larsson, M.: Predicting Quality Attributes in Component-Based Software Systems. PhD
thesis, Mlardalen University (2004)

39. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25 (1992) 40–51
40. Liu, Y., Gorton, I., Liu, A., Jiang, N., Chen, S.: Designing a test suite for empirically-based

middleware performance prediction. In Noble, J., Potter, J., eds.: Fortieth International Con-
ference on Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002).
Conferences in Research and Practice in Information Technology, Sydney, Australia, ACS
(2002)

192 S. Becker et al.

41. Firus, V., Becker, S., Happe, J.: Parametric performance contracts for qml-specified software
components. In: Formal Foundations of Embedded Software and Component-based Software
Architectures (FESCA). Electronic Notes in Theoretical Computer Science, ETAPS 2005
(2005)

42. Crnkovic, I., Firus, V., Grunske, L., Jezequel, J.M., Overhage, S., Reussner, R.: Unified Mod-
els for Predicting the Quality of Component-Based Software Architectures. In Reussner, R.,
Stafford, J., Szyperski, C., eds.: Architecting System with Trustworthy Components. Lecture
Notes in Computer Science, Berlin, Heidelberg, Springer (2005) forthcoming

	Introduction
	A Taxonomy of Practical Concerns
	Classification of Approaches
	Quantitative Approaches
	Qualitative Approaches
	Performance Specification

	Abstract Comparison
	Recommendations
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

