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Abstract. A Web Service (WS) is a type of component specifically con-
ceived for distributed machine-to-machine interaction. Interoperability
between WSs involves both data and messages exchanged and protocols
of usage, and is pursued via the establishment of standard specifications
to which service providers must conform. In previous work we have en-
visaged a framework for WS testing. Within this framework, this paper
focuses on how the intended protocol of access for a standard service
could be specified, and especially on how the conformance of a service
instance to this specified protocol can then be tested. We propose to
augment the WSDL description with a UML2.0 Protocol State Machine
(PSM) diagram. The PSM is intended to express how, and under which
conditions, the service provided by a component through its ports and
interfaces can be accessed by a client. We then propose to translate the
PSM to a Symbolic Transition System, to which existing formal test-
ing theory and tools can be readily applied for conformance evaluation.
A simple example illustrates the approach and highlights the peculiar
challenges raised by WS conformance testing.

1 Introduction

Service Oriented Architecture (SOA) is the emerging paradigm for the realization
of heterogeneous, distributed systems, obtained from the dynamic combination
of remote applications owned and operated by distinct organizations. Today the
Web Service Architecture (WSA) certainly constitutes the most relevant and
widely adopted instance of such a paradigm.

A Web Service (WS) is essentially characterized by the capability to “support
interoperable machine-to-machine interaction over a network”[5]. This capabil-
ity is achieved due to the agreement of all major players on the usage of uniform
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WS interfaces, coded into the standard machine-processable Web Service Def-
inition Language (WSDL) format [9], and of the Simple Object Access Proto-
col (SOAP) [18] for WS communication. Moreover, WSA interconnects service
providers and service requesters via a standard Service Broker called the UDDI
(Universal Description and Discovery Integration)[10]. The information in this
catalog follows the yellow, green or white pages paradigms open technology, and
defines a common mechanism to publish and retrieve information about available
Web Services.

From a methodology viewpoint, WSA builds on the extensive framework
of the Component-Based Software Development (CBSD) paradigm, of which it
can be considered an attractive successor. Where in fact CBSD pursued the
development of a composite system by the assembly of pre-existing (black-box)
components, WSA chases the dynamic composition of services at client requests.
The two paradigms share the underlying philosophy of developing building blocks
(either components or services) of a system for external generalized reuse, whose
implementation details are hidden behind a published interface.

By building on the extensive results of CBSD, WSs can today rely on a much
more mature culture for compositional development, as testified by the emer-
gence of established standard access and communication protocols. On the other
hand, by exacerbating the aspects of loose coupling, distribution and dynamism,
WSs have also inherited the most challenging issues of the component-based ap-
proach, directly descending here from the need of dynamically composing the in-
teractions between services whose internal behavior is unknown. This fact brings
several consequences on the trustability and reliability of WSA; in particular, it
calls for new approaches to validate the behavior of black-box components whose
services are invoked by heterogeneous clients in a variety of unforeseen contexts.

Although similar problems have been encountered and tackled in the area
of software components, testing of WSs is even more difficult since the differ-
ent machines participating in the interaction could be dispersed among different
organizations, so even a simple monitoring strategy or the insertion of probes
into the middleware is not generally feasible. Moreover, the notion of the WSA
establishes rigid limitations on the kind of documentation that can be provided
and used for integrating services. In particular, a service must not include infor-
mation on how it has been implemented. This obviously is desirable to enable
the decoupling between requesters and providers of services, but obviously makes
integration testing more difficult.

Speaking in general, it is clear that the capability of testing a software artefact
is strongly influenced by the information available [3]. In fact, different kinds of
testing techniques can be applied depending on the extent and formalization
degree of the information available. The technique to be applied will also be
different depending on the quality aspects to be evaluated, e.g. functionality,
performance, interoperability, etc.

In CBSD, different proposals have been made to increase the information
available with software components [24], following what we generally refer to as
the metadata-based testing approach [25]. Fortunately, as already said, today
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the area of WS can rely on a more mature attitude towards the need for stan-
dardized documentation, with respect to the situation faced by early component
developers, and in fact the interaction among WSs is based on a standardized
protocol stack and discovery service. Current practice is that the information
shared to develop interacting WSs is stored in WSDL files. However, such doc-
uments mainly report signatures (or syntax) for the available services, but no
information concerning specific constraints about the usage of the described
service can be retrieved. Obviously, this way of documenting a service raises
problems regarding the capability of correctly integrating different services. In
particular, the technology today relies on the restrictive assumption that a client
knows in advance the semantics of the operations provided by a service or other
properties of it [1].

To facilitate the definition of the collaborations among different services,
various approaches are being proposed to enrich the information that should be
provided with a WS. Languages such as the Business Process and Execution
Language for Web Services (BPEL4WS) and the Web Service - Choreography
Description Languages (WS-CDL) are emerging [1], which permit to express how
the cooperation among the services should take place. The formalized descrip-
tion of legal interactions among WSs turned out to be instrumental in verify-
ing interoperability through the application of specific conformance evaluation
instruments.

We claim that it would be highly useful to attach this description in the form
of an XML Metadata Interchange (XMI [29]) file, since in this form it can be
easily reused by UML based technologies. XMI is becoming the de facto stan-
dard for enabling interaction between UML tools, and it can be automatically
generated from widespread UML editors such as IBM Rational Rose XDE or
Poseidon.

It is indeed somewhat surprising how two broad standardization efforts, such
as the UML and the WSA, are following almost independent paths within dis-
tinct communities. Our motivating goal is the investigation of the possibility to
find a common ground for both communities. Hence our proposal is that the
WS description (including the WSDL file) will report some additional informa-
tion documented by the WS developer in UML, and in particular, as we explain
below, as a Protocol State Machine, that is a UML behavior diagram newly
introduced into the latest version of this language [11]. In this way an XMI file
representing the associated PSM could be inserted in the UDDI registry along
with the other WS documentation. Moreover, as we show in this paper, the PSM
provides a formal description of the legal protocol for WS interaction, and fol-
lowing some translation step it can be used as a reference model for test case
derivation, applying well established algorithms from formal testing theory.

The framework for automatic testing of WSs presented in this paper has been
specifically defined considering technologies related to the WS domain. It will
probably be straightforward to apply a similar approach also in a Component
Based (CB) setting when the necessary information is provided as data attached
to the component. WSs can be considered as being an extreme consequence of
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the CB paradigm, in which the developer of a system looses the control, also at
run time, of the “assembled” components.

The paper is structured as follows: Section 2 provides an overview of the dif-
ferent flavors of the interoperability notion for WSs, and in particular introduces
WS conformance testing; Section 3 presents PSMs and their proposed usage for
WS protocol specification; Section 4 synthesizes the general framework we pro-
pose for WS testing, and Section 5 outlines related work. In Section 6 a short
survey of formal approaches to conformance testing is given, before focusing
on the specific formalism which we are going to exploit for WS conformance
testing, called Symbolic Transition Systems (STSs). In Section 7 we relate the
PSM specification to the presented STS one. Finally, Section 8 summarizes our
conclusions and mentions the work remaining to be done.

2 Interoperability of Web Services

Web Services are cooperating pieces of software that are generally developed and
distributed among different organizations for machine-to-machine cooperation,
and which can act, at different times, as servers, providing a service upon request,
or as clients, invoking some others’ services. The top most concern in develop-
ment of WSA is certainly WS interoperability. Actually, WS interoperability is
a wide notion, embracing several flavors, all of them important. Without pre-
tending to make a complete classification, for the sake of exposition in our case
we distinguish between two main kinds of interoperability issues. A first type of
interoperability refers to the format of the information stored in the relevant doc-
uments (such as WSDL files, UDDI entry), and to the format of the exchanged
SOAP messages. This interoperability flavor is briefly presented below in Section
2.1, in which the approach defined by the WS-I consortium (where the “I” stands
for Interoperability) to ensure this kind of interoperability is outlined. A second
interoperability issue, discussed in Section 2.2, is instead relative to the correct
usage of a WS on the client’s side, in terms of the sequencing of invocations of
the provided services. Certainly, other kinds of heterogeneity hindering correct
interactions of WSs can be identified. For instance, in [16] the authors report
about an interesting experience in integrating externally acquired components in
a single system. As they highlight, different assumptions made by the different
components, such as who has to take the control of the interaction, often prevent
real interoperability.

2.1 Data and Messaging Conformance

As said, a first factor influencing the interoperability of WSs is obviously related
to the way the information is reported in the different documents (such as SOAP
messages, WSDL files, UDDI entries) necessary to enable WS interactions, and
to the manner this information is interpreted by cooperating WSs.

This concern is at the heart of the activities carried on by the WS-I con-
sortium, an open industry organization which joins diverse communities of Web
Service leaders interested in promoting interoperability. WS-I provides several
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resources for helping WS developers to create interoperable Web Services and
verify that their results are compliant with the WS-I provided guidelines. In
particular, WS-I has recently defined several profiles [12] that define specific re-
lations that must hold among the information contained in different documents.
In so doing the interactions among two or more WSs are enabled. Besides, WS-I
has defined a set of requirements on how specific information reported in these
files must be interpreted.

Just to show the kind of interoperability addressed by WS-I we report below
without further explanation a couple of examples from the specification of the
Basic Profile. Label R1011 identifies a requirement taken from the messaging
part of the profile, which states:

R1011 - An ENVELOPE MUST NOT have any element children of soap:
Envelope following the soap:Body element.

The second example has been taken from the service description part and
describes relations between the WSDL file and the related SOAP action:

R2720 - A wsdl:binding in a DESCRIPTION MUST use the part
attribute with a schema type of "NMTOKEN" on all contained
soapbind:header and soapbind:headerfault elements.

Alongside the Basic Profile, the WS-I consortium also provides a test suite
(that is freely downloadable from the WS-I site) that permits to verify the con-
formance of a WS implementation with respect to the requirements defined in
the profile. In order to be able to verify the conformance of the exchanged mes-
sages, part of the test suite acts as a proxy filtering the messages and verifying
that the conditions defined in the profile are respected.

The WS-I profile solves many issues related to the representation of data,
and to how the same data are represented in different data structures. Another
kind of data-related interoperability issue not addressed by the WS-I profile
concerns instead the interpretation that different WSs can give for the same
data structure. Testing can certainly be the right tool to discover such kind of
mismatches. The testing theory presented in Section 6 and its application to the
domain of WSs, exerted in Section 7, provides a formal basis for the derivation
of test cases that permit to verify that a single implementation of a WS correctly
interprets the exchanged data.

2.2 Protocol Conformance

A different interoperability flavor concerns the correct usage of a WS on the
client’s side, in terms of the sequencing of invocations of the provided services.
A correct usage of a WS must generally follow a specified protocol defining the
intended sequences of invocations for the provided interface methods, and possi-
bly the pre- and post-conditions that must hold before and after each invocation,
respectively.

This is the kind of interoperability we focus on in the remainder of this paper.
Generally speaking a protocol describes the rules with which interacting entities
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must comply in their communication in order to have guarantees on the ac-
tual success of the interaction. Such rules are generally defined by organizations
that act as (de facto) standard bodies. The aim of companies joining these orga-
nizations is to allow different vendors to produce components that can interact
with each other. Often the rules released by such organizations are actually
established as standards and adopted by all the stakeholders operating in the
interested domain.

It is obvious to everybody though that the definition of a standard per se
does not guarantee correct interaction. What is needed in addition is a way to
assess the conformance of an implementation to the corresponding specification.
Different ways can be explored to verify such conformance, among which testing
deserves particular attention. Protocol testing is an example of functional testing
in which the objective is to verify that components in the protocol correctly
respond to invocations made in correspondence to the protocol specification.

Conformance of an implementation to a specification is one of the most stud-
ied subjects from a formal and empirical point of view. Several studies have been
carried on for assessing conformance when protocol specifications are considered.

Conformance testing is a kind of functional testing in which an implemen-
tation of a protocol entity is solely tested with respect to its specification. It
is important to note that only the observable behavior of the implementation
is tested. No reference is made to the internal structure of the protocol imple-
mentation. In [26] the parties are listed which are involved in the conformance
testing process. In a SOA paradigm this can be partially revised in the following
way:

1. the implementer or supplier of a service that needs to test the implementation
before selling it;

2. the user of a service, claiming to be conform, can be interested in retesting
the service to be sure that it can actually cooperate with the other entities
already in his/her system;

3. organizations that act as service brokers and that would like to assess the
conformance of a service before inserting it in the list of the available services;

4. third parties laboratories that can perform conformance testing for any of
the previously mentioned parties.

It is worth noting that the standard may provide different levels of confor-
mance, for instance defining optional features that may or may not be imple-
mented by an organization. This has to be taken in to account when it comes to
conformance testing.

3 UML and Web Services

As said in the Introduction, an important topic that is not receiving adequate
attention in the research agenda of WS developers and researchers is how the
Unified Modeling Language (UML) can be fruitfully used to describe a WS spec-
ification and interaction scenarios. The basic idea is to increase the documenta-
tion of a WS using UML diagrams. The motivation is to find a trade-off between
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a notation which is widespread and industrially usable on one side, but that is
also apt to formal treatment and automated analysis on the other. Therefore, a
wealth of existing UML editors and analysis tools could be exploited also for WS
development. Moreover, from these diagrams a tester should be able to generate
useful test suites that, when run on a specific implementation, would provide a
meaningful judgment about conformance with the “standard” specification.

The forthcoming UML 2.0 [23] introduces several new concepts and diagrams,
in particular supporting the development of Component-Based software. Among
these, Protocol State Machine (PSM) diagrams seem particularly promising for
our purposes. The idea underneath PSMs is to provide the software designer
with a means to express how, and under which conditions, the service provided
by a component through its ports and interfaces can be accessed by a client,
for instance regarding the ordering between invocations of the methods within
the classifier (port or interface). The PSM diagram directly derives from that of
the State Machine but introduces some additional constraints and new features.
The UML 2.0 Superstructure Specification [23] provides the following definition
for this kind of diagram: A PSM specifies which operations of the classifier can
be called in which state and under which condition, thus specifying the allowed
call sequences on the classifier’s operations. A PSM presents the possible and
permitted transitions on the instances of its context classifier, together with the
operations which carry the transitions. In this manner, an instance lifecycle can
be created for a classifier, by specifying the order in which the operations can be
activated and the states through which an instance progresses during its existence.

Another interesting feature of these diagrams is that they support the defi-
nition of pre- and post-conditions associated with the methods in the interface.
This feature provides an improved semantical characterization of the offered ser-
vices and at the same time increases the verification capability of testers by
permitting the application of the well known Design-by-Contract [22] principles.
Using first order logic a contract characterizes a service by specifying the condi-
tions that should hold before the invocation and conditions that will be true after
the execution of the service. At the same time a contract can specify invariant
conditions that remain true during the whole execution of the service. Contracts
have proved to be a useful mechanism in CB development, and in particular for
the testing of COTS, as for instance developed in [17], and its usage for WS
testing is being explored, e.g. [19].

A pre-condition can contain constraints on the parameters passed to the
method, or on the values in any way associated to the current status of the
environment. If a pre-condition is fulfilled when the invocation is triggered, the
implementation must guarantee the respect of the constraints expressed in the
post-conditions. In UML this kind of constraints can be naturally expressed
using OCL. When a PSM of a WS is defined also using pre- and post-conditions,
the assumption is that a component interacting with this WS needs to know
these rules, but no more details than these rules, to correctly interact with the
system. In fact, a PSM does not define the detailed behavior elaborated inside a
component, since this kind of information stays in the scope of traditional State
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Machines (or more precisely, Behavioral State Machine - BSM - as defined in
UML 2 Superstructure Specification [23]). Instead a state in a PSM represents
the point reached in the foreseen interaction between the client and the server.
Obviously the definition of a PSM will also influence the definition of the BSM
for the object to which the associated port or interface belongs. In order to have
a non conflicting specification, related PSMs and BSMs must in some way be
compatible.

In the specification of a PSM it is important that no assumptions about
the real implementation of the classifier are made, for instance it is incorrect
to refer, within a pre- or post-condition, to an internal (state-)variable of a
possible implementation of the classifier. Nonetheless, when dealing with non-
trivial specifications, it is somehow inevitable to (abstractly) model the inter-
nal state of the system. This is done via (internal) variables of the specifica-
tion model. These two views on a system, the implementation and specification
view, cause sometimes confusion. For instance, there is no semantical correspon-
dence between the variables of the specification model and the implementation
model.

Therefore, one central issue when dealing with PSMs is how to make them
completely neutral with respect to internal specification variables. Several ways
could be found to deal with this issue. The one we will exemplify in this paper
is the augmentation of the classifier with side-effect free “get”-methods to in-
crease its observability. These methods can then be used in the corresponding
specification PSM instead of internal variables. On the other hand, such speci-
fied “get”-methods must then be implemented. This imposes extra work on the
implementer for developing these additional methods, but the advantage of this

Fig. 1. Introduction of a utility class in a model
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practice is the possibility of expressing a more precise definition for the imple-
mentation, with corresponding benefits regarding conformance evaluation.

It can also be useful to introduce other elements in the model which ease
the specification of pre- and post-conditions in the PSM. For instance, hav-
ing to handle parameters representing XML files it could be useful to intro-
duce a class with methods that can check the well-formedness or the validity
of an instance with respect to a corresponding XML Schema. Again this means
extra-burden on the side of the developers, because for checking purposes such a
<<utility>> class needs to be instantiated at run-time. Figure 1, for instance,
shows an example of a <<utility>> class added in order to facilitate the ex-
pression of XML instance conformance within the pre-condition of a generic
PSM transaction.

4 A Framework for Web Service Testing

In this section we briefly summarize a framework for testing of WSs, which we
have previously introduced in [4]. The framework relies on an increased infor-
mation model concerning the WS, and is meant for introducing a test phase
when WSs ask for being published on a UDDI registry. In this sense we called
it the “Audition” framework, as if the WS undergoes a monitored trial before
being put “on stage”. It is worth noting that from a technical point of view the
implementation of the framework does not present major problems, and even
from the scientific perspective it does not introduce novel methodologies; on
the contrary, one of its targets is to reuse sophisticated software tools (such as
test generators) in a new context. The major difficulties we foresee is that a
real implementation based on accepted standards requires that slight modifi-
cations/extensions are made to such standard specifications as UDDI. This in
turn requires wide acceptance from the WS community and the recognition of
the importance of conformance testing.

Figure 2 shows the main elements of the framework. The figure provides a
logical view, i.e., the arrows do not represent invocations on methods provided
by one element, but a logical step in the process; they point to the element that
will take the responsibility of carrying on the associated operation.

The process is activated by the request made by the provider of a WS asking
for the inclusion of it in the entries of a registry and is structured in eight main
steps, which are also annotated in Fig. 2 (numbers in the list below correspond
to the numbers in the figure):

1. a Web Service WS1 asks a UDDI registry to be published among the ser-
vices available to accept invocations;

2. the UDDI service puts WS1 in the associated database, but marking the
registration as a pending one, and starts the creation of a specific tester;

3. the WS Testing Client will start to make invocations on WS1, acting as the
driver of the test session;

4. during the audition, WS1 will plausibly ask the UDDI service for references
to other services;
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5. UDDI checks if the service asking for references is in the pending state. If
not the reference for the WSDL file and relative binding and access point to
the service are provided. In the case that the service is in the pending state
the UDDI will generate, using a WS factory, a WS Proxy for the required
services;

6. for each inquiry made by WS1 the UDDI service returns a binding reference
to a Proxy version of the requested service;

7. WS1 will start to make invocations on the Proxy versions of the required
services. As a consequence the Proxy version can check the content and the
order of any invocation made by WS1;

8. if the current invocation is conforming, the Proxy service invokes the real
implementation of the service and returns the result obtained to the invok-
ing (WS1) service. Then the process continues driven by the invocations
made by the testing client.

Fig. 2. The Audition Framework

In this framework several testing exigencies and approaches can be identi-
fied. Specifically, we address the scenario that a standard body has published
some WS specification (adopting the PSM notation) and the conformance to
this specification of a developed WS instance must be validated. The confor-
mance theory discussed in the following of this paper is applied to the confor-
mance testing of the interface provided by a single Web service. In Fig. 2 the
elements involved in this verification have been shaded. As a future step we
want deal with extending the existing results from conformance theory to also
consider interactions among services. Before presenting our approach we briefly
overview recent related work in the field of WS testing.
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5 Related Work in Testing of Web Services

WSs testing is an immature discipline in intense need of further research by
academy and industry. Indeed, while on the practitioner’s side WSs are evi-
dently considered a key technology, research in the area seems not to draw an
adequate attention from the testing community, probably due to the contigu-
ity/overlap with other emerging paradigms, especially with Component-Based
Software Engineering (CBSE), or perhaps to the quite technical details that
this discipline entails. In this section we give a brief overview of those papers
that share some similar views with our work.

The possibility of enhancing the functionality of a UDDI service broker with
logic that permits to perform a testing step before registering a service has been
firstly proposed in [28] and [27], and subsequently in [20]. This idea is also the
basis for the framework introduced in this paper. However, the information we
use and the tests we derive are very different from those proposed in the cited
papers. In particular while in the cited works testing is used as a means to
evaluate the input/output behavior of the WS that is under registration, in the
Audition framework we mainly monitor the interactions between the WS under
registration with providers of services already registered. In this sense, we are
not interested in assessing if a WS provided is bug-free in its logic, but we focus
on verifying that a WS can correctly cooperate with other services, by checking
that a correct sequence of invocations to the service leads in turn to a correct
interaction of the latter with other services providers (and that vice versa an
incorrect invocation sequence receives an adequate treatment).

With reference to the information that must be provided with the WS de-
scription, the authors of [28] foresee that the WS developer provides precise
test suites that can be run by the enhanced UDDI. In [20] instead the authors
propose to include Graph Transformation Rules that will enable the automatic
derivation of meaningful test cases that can be used to assess the behavior of
the WS when running in the “real world”. To apply the approach they require
that a WS specifically implements interfaces that increase the testability of the
WS and that permit to bring the WS in a specific state from which it is possible
to apply a specified sequence of tests.

The idea of providing information concerning the right order of the invoca-
tions can be found in a different way also in specifications such as BPEL4WS
and the Web Service Choreography Interface (WSCI). The use of such informa-
tion as main input for analysis activities has also been proposed in [15]. How-
ever, the objective of the authors in this case is to formally verify that some
undesired situations are not allowable given the collaboration rules. To do this
the authors, after having translated the BPEL specifications into Promela (a
language that can be accepted by the SPIN model checker), apply model check-
ing techniques to verify if specific properties are satisfied. Another approach to
model-based analysis of WS composition is proposed in [13]. From the integra-
tion and cooperation of WSs the authors synthesize Finite State Machines and
then they compare if the obtained result and allowable traces in the model are
compatible with that defined by BPEL4WS-based choreography specification.
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6 Model-Based Conformance Testing

As said, conformance verification involves both static conformance to an estab-
lished WSDL interface, and dynamic conformance of exposed behaviors to an
established interaction protocol. Clearly the second aspect is the challenging
one. In the following we first introduce the basic notion of formal conformance
testing and then develop a possible strategy for formal conformance testing of
Web Services based on the existing ioco implementation relation (see below),
and related tools.

We want to test conformance with respect to a protocol specification, given
as a PSM. One can see such a PSM as a high-level variant of a simple state
machine, such as a Finite State Machine (FSM) or a Labeled Transition Sys-
tem (LTS). Hence we can use classical testing techniques based on these simple
models to test for conformance. In this paper we focus on LTS-based testing
techniques.

6.1 LTS-Based Testing

Labeled Transition Systems serve as a semantic model for several formal
languages and verification- and testing theories, e.g. process algebras and stat-
echarts. They are formally defined as follows:

Definition 1. A Labeled Transition System is a tuple L = 〈S, s0, Σ, →〉, where

– S is a (possibly infinite) set of states.
– s0 ∈ S is the initial state.
– Σ is a (possibly infinite) set of action labels. The special action label τ /∈ Σ

denotes an unobservable action. In contrast, all other actions are observ-
able. Στ denotes the set Σ ∪ {τ}.

– →⊆ S×Στ×S is the transition relation.

In formal testing the goal is to compare a specification of a system with its im-
plementation by means of testing. The specification is given as a formal model
in the formalism at hand, so in our case as an LTS or as an expression in a
language with underlying LTS semantics. This formal specification is the basis
to test the implementation (System Under Test – SUT). This implementation,
however, is not given as a formal model but as a real system about which no
internal details are known (hidden in a “black box”), and on which only experi-
ments, or tests, can be performed. This implies that we cannot directly define a
formal implementation relation between formal specifications and physical im-
plementations. To define such an implementation relation, expressing which im-
plementations are conforming, and which are not, we need an additional as-
sumption, referred to as the test hypothesis. The test hypothesis says that the
SUT exhibits a behavior which could be expressed in some chosen formalism.
Now conformance can be formally defined by an implementation relation be-
tween formal specification models and assumed implementation models.

Typically, in LTS testing the formalism assumed for implementations is the
LTS formalism itself. So, an implementation is assumed to behave as if it were
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Fig. 3. The ioco relation

an LTS. Based on this assumption many different implementation relations on
LTSs have been defined in the literature, most of them being preorders or equiv-
alences on LTSs. These relations differ, for example, in the way they treat non-
determinism, the extent to which they allow partial specifications, whether they
allow ”look-ahead” in behaviors, etc. For several of these implementation rela-
tions also testing scenarios and test generation algorithms have been published.
These testing algorithms are usually proved to be complete in the limit, i.e., the
execution of all (usually infinitely many) test cases constitutes a decision proce-
dure for the relation. For an annotated bibliography for testing based on LTSs
see [6], for a survey on existing test theory in general see [8].

The ioco Implementation Relation — In this paper we use the ioco im-
plementation relation for testing, see [26]. ioco is not a preorder relation, but
it turns out to be highly suited for testing. Several state-of-the-art testing tools
nowadays implement it, e.g. TorX [2] and the TGV-based tools [21].

In the ioco setting the specifications are LTSs where the set of action labels
is partitioned into input- and output action labels. The test hypothesis is that
implementations can be modeled as input-output transition systems (IOTS).
IOTSs are a subclass of LTSs for which it is assumed that all input actions are
enabled in all states (input enabledness). A trace is a sequence of observable ac-
tions, starting from the initial state. As an example take the LTSs from Fig. 3.
We have one input action ?but , standing for pushing a button on a machine sup-
plying chocolate and liquorice. These are the output actions !choc and !liq . Both
r1 and r2 are input enabled, at all states it is possible to push the button, hence
both LTSs are also IOTSs. Some traces of r1 are ?but · !liq , ?but · ?but · !choc,
and so on.

A special observation embedded in the ioco theory is the observation of
quiescence, meaning the absence of possible output actions. The machine can
not produce output, it remains silent, and only input actions are possible. For
instance both r1 and r2 are quiescent in the initial state (the upmost state),
waiting for the button to be pressed. After applying ?but to the systems, both
may be quiescent due to nondeterminism (following the right branch). They
may also nondeterministically chose the left branch and produce liquorice via
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the output action !liq . Hence, when it comes to test generation, and the tester
observes quiescence after pushing the button, it knows that the systems chose
the right branch, waiting for the button to be pushed again, and can forget
about the left branch of the specification. This waiting for output before gener-
ating the next input is the principle of on-the-fly testing, which helps in avoid-
ing a state space explosion when computing test cases out of a given specifi-
cation. The test tool TorX implements a test generation algorithm which tests
for ioco-correctness via such an on-the-fly approach, see [2]. The observation of
quiescence is embedded in the notion of traces, leading to so called suspension
traces.

We will not give a formal definition of the ioco relation here to keep an
introductory flavor. We refer to [26] for a detailed description and give instead
an informal intuition of it. Let i be an implementation IOTS and s be an LTS
specification of it. Then we have:

i ioco-conforms to s ⇔
– if i produces output x after some suspension trace σ, then s can

produce x after σ
– if i cannot produce any output after suspension trace σ, then s can

reach a state after σ where it cannot produce any output (quies-
cence)

The addition of quiescence increases the discriminating power of ioco, as il-
lustrated by Fig. 3. Taking r2 as the specification for r1, we have that r1 can
produce !liq and !choc after the suspension trace ?but · quiescence · ?but . The
specification though can only produce !choc after pressing the button, observing
quiescence, and pressing the button again. Hence the ioco condition “if i pro-
duces output x after suspension trace σ, then s can produce x after σ” is not
fulfilled, r1 is not ioco-conform to r2. On the other hand, r2 is ioco-conform
to r1.

Extensions of ioco — The model of LTSs has the advantage of being simple
and highly suited for describing the functional behavior of communicating, re-
active systems. But in practice one does not want to specify a system in such
a low-level formalism. Instead high-level description languages like statecharts,
PSMs, or process algebras with data extensions are the preferred choice. Fur-
thermore, non-functional properties like embedding timing constraints into the
model are mandatory means in certain application areas. Recent research ac-
tivities have produced first promising results in dealing with these extensions,
see e.g. [7].

In our setting we are interested in testing based on automata allowing for
a symbolic treatment of data, meaning that one can specify using data of dif-
ferent types, guarded transitions, and so on. This makes the specification much
more compact and readable. At first sight using such formalisms for ioco test-
ing is straightforward, because usually these models have an underlying LTS
semantics, meaning that one just has to convert the high-level model into its
underlying LTS, and then test as usual based on that. The difficulty here is,
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that even a small, finite symbolic model has commonly an infinite underlying
LTS semantics. This problem is commonly known as state-space explosion. To
address this problem recent research has focused on testing based directly on
a symbolic specification, without mapping it at all to its underlying LTS. The
ioco relation has been recently lifted to such a symbolic setting based on so
called Symbolic Transition Systems (STSs), see [14]. Such an STS has many
similarities with formalisms like PSMs, and hence serves as a promising choice
for testing WSs specified with PSMs.

Symbolic Transition Systems — STSs extend LTSs by incorporating an
explicit notion of data and data-dependent control flow (such as guarded tran-
sitions), founded on first order logic. The STS model clearly reflects the LTS
model, which is done to smoothly transfer LTS-based test theory concepts to an
STS-based test theory. The underlying first order structure gives formal means
to define both the data part algebraically, and the control flow part logically.
This makes STSs a very general and potent model for describing several aspects
of reactive systems. We do not give here a formal definition of the syntax and
LTS-semantics of STSs due to its extent, and give instead a simple example in
Fig. 4 showing all necessary ingredients. For a formal definition we refer to [14].

Fig. 4. An STS counter

The shown STS specifies a counter consisting of three so called locations
(the black dots). The uppermost one is the initial location, distinguished by
the sourceless arrow. Being in this initial location the system is quiescent, it
awaits an input called ?start<>, which has no parameters. For instance one
can think of it as a button. After this button is pressed, the system nondeter-
ministically chooses the left or right branch (called “switches”), and sets the
internal variable x to zero. Both switches are always enabled because both are
unconstrained, the guards say true. Each switch consists of three parts: first
the name of an input- or output action together with its parameters; next a
guard talking about the parameters and the internal variables; and finally an
update of the internal variables. As commonly done we precede the names of
input actions with a question mark, and the names of output actions with an
exclamation mark.

If the system chooses the left switch it first performs an output via the ac-
tion !display<n>. This action has one parameter called n, which is constrained
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in the guard [n = x], saying that the display has to show the value of the in-
ternal variable x (which is zero at first). Next it increments x by one, denoted
x++, and loops. The right branch does the same, but decrements x in every loop.
Hence think of x and n as being declared as integer in the underlying first order
structure. Altogether we have a system which, after a button has been pressed,
either displays 0,1,2,..., or 0,-1,-2,... on a display. Another feature not
shown is the use of internal so called τ -switches, which become for instance im-
portant when composing systems.

In the next section we give a more complex STS, on which we will also ex-
emplify the ioco test generation algorithm.

7 Testing Based on PSMs

In this section we want to provide an idea of how WS conformance testing can
be based on PSM specifications using the STS testing approach. PSMs serve as
formal specifications of WS behavior. These PSMs are transformed into STSs,
which, in turn, have an LTS semantics. This allows us to formally root our work
in the ioco-testing theory as applicable to STSs [14]. The choice of STSs as
the formal notation to be used for the derivation of test cases has been mainly
influenced by the expressive power of such a formalism which in principle allows
to easily embed in an STS diagram all parts of the information that can be
found in a PSM diagram.

A practical example can ease the explanation of the approach that we in-
tend to pursue. We first introduce a PSM example in subsection 7.1. Then we
present, informally, the transformation of the PSM into an STS in subsection
7.2. Finally, we exemplify the test case generation in subsection 7.3.

7.1 An Example PSM

Fig. 5 shows a PSM for a Web Service dispensing coffee and tea, for simplicity
without giving back the possible change. Obviously this is just a toy-example
to illustrate our ideas. However, the coffee machine example already exemplifies
most of the features of a Web Service specification for which the protocol can be
dependent on the data provided by the client. In fact the drinks can be provided
only after the specified amount of money has been inserted.

Each invocation of a method will return an object of type Status repre-
senting all possible output actions which can be observed by the test system.
In particular there is a variable CoffeeButtonLight expressing the status of
the coffee button, a variable TeaButtonLight expressing the status of the tea
button, a variable Display expressing the value reported by the display, and
finally a variable Drink expressing the possible drink to be dispensed.

Each transition in the PSM is a tuple of the form (actual-state, pre-condition,
method invocation, post-condition, final state). The pre-condition expresses un-
der which constraint a transition is admissible from the given source state. For
our intended mapping to STSs it is crucial that all method-calls in a pre-condition
are query-methods, i.e., they don’t affect the internal state of the system (no
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Fig. 5. PSM model for the coffee machine example

side effects). The post-condition expresses the expected results of the corre-
sponding method invocation, leading to the given target state. For instance
transition 1 declares that entering a coin c greater then 0.80, i.e., 1 or 2 Euro,
when being in state WaitCustomer, the result should be the highlighting of the
coffee and tea buttons, the visualization of amount ”c” in the display, no dis-
pense of any drink, and finally an update of the internal state via the invoca-
tion of the getMoney() method. The arriving state for the transition will be
CoffeeAvailable. A state in a PSM usually corresponds to a quiescent state
of the system, i.e., the system waits for an input from its environment.

It is worth noting that the model only specifies the correct sequences of
method-invocations. Nevertheless, since a client of a WS can invoke the meth-
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Fig. 6. PSM and the state space explosion problem

ods in the interface in any order, it becomes important to specify the behavior
also when an incorrect sequence is triggered. This corresponds to the input-
enabledness as introduced in section 6, and would require the introduction of
exceptions to the specification for each method in the interface. In particular
for the coffee machine example the invocation of a method in an incorrect or-
der, such as the pushing of the dispense button before it becomes highlighted,
should leave the protocol in the same status, notifying the client with an excep-
tion. Such a behavior can be considered similar to that of a real coffee machine
that triggers a beep when a button is incorrectly pushed. However, since the in-
troduction of exceptions would result in an unwieldy increase in the complexity
of the diagram we decided to elide them in the model.

Our simple example shows the influence of the special “get”-method in the
interface, related to state data that influences protocol transitions, in this case
the getMoney() method. Fig. 6 shows an extract of the resulting PSM when
no such method is provided (omitting return values). In particular the whole
machine contains 17 states and 70 state transitions, a clear complexity increase
with respect to the machine in Fig. 5. Having the possibility of logically
expressing values through the usage of the getMoney() method permits to pro-
duce manageable models.

7.2 Mapping from PSM to STS

In Fig. 7 the STS variant of the coffee machine example of Fig. 5 is shown. It
consists of 14 locations and 20 switches. The (linear) increase in the number of
locations and switches is due to the fact that STSs are more fine-grained than
PSMs, which subsume a guarded procedure call together with its post-conditions
on one transition. In STSs a transition corresponds to either an input action
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1.1: ?insertCoin<c> [c>0.8] c_var:=c
1.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=c_var & s.Drink=null] money+=c_var
2.1: ?insertCoin<c> [c<=0.5] c_var:=c
2.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=c_var & s.Drink=null] money+=c_var
3.1: ?selectDrink<d> [d="Tea"] d_var:=d
3.2: !selectDrink<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=0 & s.Drink=d_var] money:=0
4.1: ?selectDrink<d> [d="Coffee"] d_var:=d
4.2: !selectDrink<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=0 & s.Drink=d_var] money:=0
5.1: ?insertCoin<c> [0.55<=money+c<0.8] c_var:=c
5.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
6.1: ?insertCoin<c> [money+c<0.55] c_var:=c
6.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=money+c_var & s.Drink=null] money+=c_var
7.1: ?insertCoin<c> [money+c>=0.8] c_var:=c
7.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
8.1: ?insertCoin<c> [money+c>=0.8] c_var:=c
8.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
9.1: ?insertCoin<c> [0.55<=money+c<0.8] c_var:=c
9.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
10.1: ?insertCoin<c> [true] c_var:=c
10.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var

Fig. 7. STS model for the coffee machine example

(i.e. a procedure call), or an output action (i.e. the returned value of the proce-
dure). Hence every interface method invocation corresponds to an input action
and an output action. For instance, the insertCoin(c: Coin): Status method
is mapped to an input action ?insertCoin<c: Coin>, and an output action
!insertCoin<s: Status>. This allows to specify an asynchronous message in-
terchange, and has a number of consequences, for instance we have to remember
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the values given to procedures. To do so we store them in variables, an inherent
concept of STSs. For instance take transition 1 of the PSM from Fig. 5. This
transition is mapped to the transitions 1.1 and 1.2 in Fig. 7. Here the method
invocation (i.e. input action) insertCoin(c) is executed with the restriction
that c>0.8. We do so via the guarded transition 1.1, and store the parameter
value c in an internal variable c var (called location variable in STSs) to re-
member it. Next the SUT performs an output action, it returns a Status with
certain settings. This is done via transition 1.2. Here we make use of the re-
membered parameter value of the preceding procedure call by referring to the
internal variable via s.Display=c var.

The challenging issue is the mapping of the special “get”-methods in the in-
terface to STSs. The use of these methods corresponds to location variables in
STSs. They are used to model state-dependent behavior, and they can be uti-
lized in guards. In our example this concerns the getMoney() method, which
is mapped onto a location variable money. After having inserted a coin, like in
transition 1.1, we have to update the internal state. In the PSM this is ex-
pressed via getMoney()=getMoney@pre()+c. In the STS we can express this as
money := money + c var, shortly written as money += c var in transition 1.2.

In so doing we can map the PSM into the given STS, which in turn allows
us to use the existing ioco-based test theory and algorithm, which was adapted
for STSs in [14].

Note that this transformation might not always be as easy as in the given
example. One problem is that it is possible to partially specify methods like the
getMoney() in a PSM. For instance we could have simply left out the update
getMoney()=getMoney@pre()+c when applying the insertCoin(c) method in
the PSM. Doing so we could not have developed the given STS without ap-
plying knowledge about this method which is not in the PSM. Hence in future
research we will try to give exact restrictions to PSMs allowing for a guaranteed
and automated translation process.

7.3 Automated Testing Based on STSs

In the remainder of this section we give a simple example run of the test gener-
ation algorithm as given in [14], which tests for ioco-conformance. It generates
and executes test cases on-the-fly. That means that instead of firstly computing
a set of test cases from the STS, and then applying them to the SUT, it gen-
erates a single input, applies it to the SUT, and continues w.r.t. the observed
response of the system. As a consequence we avoid the state space explosion
when generating test cases, see also [2].

First of all the system has to be initialized by giving initial values to the
internal variables, in this case money and c var. We assume both to be zero,
i.e. no coin has been entered in the coffee machine, yet. At first the initial se-
mantical state is computed. Such a state consists of a set of locations in which
the SUT could currently be, and a valuation of the internal variables. In our
case the STS is fully deterministic, therefore the set of locations will always be
a singleton. The initial state here is (WaitCustomer, (money=0, c var=0)).
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The basic principle of the algorithm is to continously choose nondetermin-
istically one out of these three options:

– Stop testing and give the verdict Pass
– Give an input to the SUT
– Observe output (including quiescence) of the SUT (which may result in

Fail)

Let’s assume that first an input is given. The only specified input action in
the initial location is ?insertCoin<c>. The input constraint is computed for
this action, which is a first order formula telling the condition for the parame-
ters under which the action can be applied. To do so all outgoing switches with
this specific action have to be taken into account. We get here (c>0.8)∨(c≤0.5).
If a solution exists, one is chosen and applied to the system, e.g.
?insertCoin(0.5). Now the set of next possible locations is computed, which
is only the one location where transition 2.1 leads. The new values of the vari-
ables are (money=0, c var=0.5). Now the tester observes output, it receives
the returned Status object saying that no drink is available and that the dis-
play shows 0.5. This is conformant with the specification, money is updated to
0.5 and we proceed to the semantical state (NotEnoughMoney, (money=0.5,
c var=0.5)). If we would have observed a different result, for instance a differ-
ent display value, the test would have stopped with verdict Fail. Choosing next
for another ?insertCoin<c> action we get the input constraint
(0.55≤0.5+c<8)∨(0.5+c<0.55)∨(0.5+c≥0.8), assembled from switches 5.1,
6.1 and 8.1. Again one solution is chosen for c, e.g. 1. We apply insertCoin(1)
and observe in the returned status that coffee and tea are available, we end up
in state (CoffeeAvailable, (money=1.5, c var=1)). Now the algorithm may
choose to stop the testing and give the verdict Pass. In practice the testing
continues in this manner until either a fault is discovered via verdict Fail, or
the testing is stopped after a predefined halting criteria.

For the audition of WSs it remains to be evaluated how such a halting crite-
ria should be defined. It will also depend on the given application domain and
its inherent security demands which specific halting criteria is considered suf-
ficient. There are several well known halting criteria for model-based testing,
mainly concerning coverage of the specification ingredients (locations, switches,
evaluation criteria for the guards, etc.). Also more specific testing scenarios
(called test purposes) might be of high value.

In Fig. 8 you find the test case corresponding to the exerted test run. We have
abbreviated the returned Status object and we give it as a tuple representing
the values of CoffeeButtonLight, TeaButtonLight, Display, and Drink, re-
spectively. The abbreviation “qui” stands for observed “quiescence”. As seen in
the figure a test case formally corresponds to a tree-like LTS with distinguished
terminal states Pass and Fail. When observing outputs such a test case must
tell the tester how to proceed w.r.t. all possible outputs. For instance in our
case the test case must specify this for all possible resulting Status objects.
We have abbreviated this by the usage of an else transition. Given a system
with a huge (let alone infinite) set of possible output actions, such a test case
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else
qui.

Fail Fail

else
qui.

Fail Fail

?insertCoin<0.5>

!insertCoin<false, false, 0.5, null>

?insertCoin<1>

!insertCoin<true, true, 1.5, null>

Pass

Fig. 8. An example test case

generation leads to an explosion of the state space. Due to the on-the-fly testing
it is not necessary to generate such a complete test-case tree out of the speci-
fication, the tester just checks the single observed output for conformance, and
continues accordingly.

This simple example does not reveal the hidden complexity within this process,
like nondeterminism, or checking for quiescence. It is just presented to exemplify
the basic principle. The detailed algorithmical tasks can be found in [14].

8 Conclusions and Future Work

Our research addresses the problem of testing a WS instance for conformance
to a published specification, which could, for instance, be included in the UDDI
registry. We have in fact conceived a possible framework for trustable WSs [4],
in which a WS before UDDI registration undergoes sort of an “audition” to as-
certain both whether it behaves conforming to the specifications when invoked,
and also whether it in turn correctly invokes other published services.

The idea is that for widespread services within an application domain, the
community agrees on some standard features and functions to be provided from
any service provider who wishes to claim conformance to that standard. In this
way interoperability between services provided by different companies can be
achieved, and this is somehow what is being done by the WS-I initiative rel-
atively to data and messaging conformance. Another important aspect of WS
interoperability concerns how the service is used, i.e., the correct sequencing of
invocations of the provided WS interface methods, and possibly the pre- and
post-conditions to be guaranteed before and after each invocation. Hence, a key
open issue in WSA research is currently how to augment the WSDL definition,
so to provide a description of the intended usage for a “standard” service.

To obtain WS interoperability establishing a standardized protocol of us-
age per se is not enough: we also need sound approaches to assess that a WS
implementation actually conforms to the corresponding standard specification.
This is precisely the objective pursued here: we proposed in particular to exploit
the extensive background in formal conformance testing of reactive systems,
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by adapting it to the peculiar features of WSs. On the other hand, to foster
industrial adoption, we intend to start from a protocol specification written in
the widespread UML notation. In particular, we have identified the PSM di-
agram of the UML2.0 as a suitable formalism for expressing how a WS has
to be accessed. Then, to be able to readily apply the existing algorithms and
tools for conformance testing, we envisaged to convert the PSM specification
to a Symbolic Transition System model, which in principle possesses an ade-
quate expressive power. Once the STS is derived, we intend to directly apply
the test generation algorithm given in [14] which tests for ioco-conformance.
As discussed, the advantage of this algorithm is that it generates and executes
test cases on-the-fly, thus preventing state space explosion.

In this paper we have provided a preliminary overview of the approach and
illustrated it through a simple example of a hypothetical coffee dispenser ma-
chine (admittedly coffee remains something quite difficult to produce via Inter-
net, but the example is just to be seen as an intuitive illustration of client-server
interaction). The latter was already sufficient to highlight the crucial point in
the approach we propose: how to specify protocols of interaction between ser-
vices without making any assumption on the internal implementation of the
specific service instances.

We will continue investigating the specific issues raised by WS conformance
in general, and the application of the ioco-test theory to it in particular. There
are several issues which require further investigation. First, the use of the spe-
cial “get”-methods to model internal state variables extend the visible interface,
and they moreover put a requirement on the implementers to implement them
correctly, and on the testers to test them. A question is whether there are al-
ternatives to specify this in PSMs, e.g., using something analogous to location
variables in STS. Second, a restriction of the formal testing approach currently
is that only the providing interface of a WS is tested, and not the invocations
to other WSs. Using the PSMs of the invoked services it seems possible to also
consider the conformance of these invocations, both in isolation, or in combina-
tion with its own PSM. Third, a theoretical question is to what extent the test
hypothesis that SUTs behave as input-output transition systems, really hold:
can all methods always be invoked at any time? Finally, the translation from
PSM to STS should, of course, be generalized, and automated in a tool.

Trustable services are the ultimate goal of our research: we wish to increase
the interoperability and testability of WSA by fostering the application of rig-
orous model based testing methodologies. At present, a huge effort is taken by
the various communities towards identifying common standard models for WSs,
allowing for a smooth combination and inter-operation of WSs1. It is impor-
tant to raise awareness within the same communities that also common stan-
dard methods for rigorous verification and validation of functional and non-
functional properties of WS must be sought. In this sense, we hope that the

1 This is for instance currently pursued within the EU Project TELCERT in the
e-Learning domain.
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approach proposed in this paper, although preliminary, provides first convinc-
ing arguments and interesting directions for further investigations.
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