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Preface

Software components are most generally viewed as a means of software re-use and, as
such, much past research has been devoted to the study of problems associated with in-
tegrating components into cohesive systems. However, even when a collection of trust-
worthy components have been successfully assembled the quality of the resultant system
is not guaranteed. In December 2004, 41 experts on this topic from around the world,
from research as well as industrial organizations, came together at Dagstuhl to discuss
pressing issues related to architecting software systems from trustworthy components.

During the course of the cold, yet sunny, December days in Dagstuhl, discussion ses-
sions addressed topics such as compositional reasoning on various system-level proper-
ties (such as deadlocks, live-locks etc.), compositional prediction models for different
quality attributes (such as performance or reliability), blame analysis, interaction pro-
tocols, and composition frameworks. Using the liberal form of Dagstuhl Seminars, the
days of the seminar were filled mostly with discussion in a variety of settings: in work-
ing sessions, around the table at meals, small groups in a corner, and also all together
in the main meeting room.

Component software technologies attract much attention for their promise to enable
scaling of our software industry to new levels of flexibility, diversity, and cost effi-
ciency. Yet, these hopes collide with the reality that assemblies typically suffer from
the proverbial “weakest link” phenomenon. If a component is used in a new composi-
tional variation, then it will likely be stressed in a new way. Asserting useful properties
of assemblies based on the used composition schema and theory requires a firm han-
dle on the properties of both the components being composed and the communication
mechanisms (connectors) that bind them. For such assertions to hold, these composition
elements must meet their advertized properties, even if used under circumstances not
explicitly envisaged by their developers. A component or connector that fails to do so
becomes a weak link of its hosting assembly and may cause the entire assembly to fail
to meet its advertized properties.

In contrast, components that promise to be a strong link in their assemblies can be
called ‘trustworthy’ and ways to get to the construction and proper use of such com-
ponents was the subject of this seminar. Transitively, the seminar was also concerned
with trustworthy assemblies: assemblies that reliably meet their requirements based on
trustworthy components and solid composition methods.

The weakest link phenomenon is not a new observation, but the recent trends to
move to dynamic and late composition of non-trivial components exasperate the prob-
lem. A concrete example promising deep widespread relevance are Web services. The
problem space is complex and multi-faceted. Practical solutions will have to draw on
combined insights from a diverse range of disciplines, including component software
technology, software engineering, software architecture, dependable systems, formal
methods, as well as areas such as type systems and proof-carrying code.
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A lot of good, and sometimes even groundbreaking, work has been performed in
the focus area of this seminar, but many problems remain open. To spark discussions, a
small set of core problems was prepared by the organizers:

– Measurement and normalization of extra-functional properties
– Modular reasoning over extra-functional properties
– capture of component requirements in interfaces and protocols
– Interference and synergy of top-down and bottom-up aspects
– Duality of componentization and architecture
– System properties (non-deadlocks, liveness, fairness, etc.)
– Opportunities for correctness by construction/static checking

All of these problems are considered hard today and yet, all of them, if solved ap-
propriately, promise the creation of key stepping stones toward an overall approach
yielding trustworthy components as well as trustworthy compositions. It is likely that
any such approach supports a multitude of more specialized disciplines and methods,
targeting different requirement profiles at the assembly level; for example, those with
tight resource management or that rely on real-time characteristics.

Most of the time at Dagstuhl was used for focused discussions in break-out groups;
the abstracts of the break-out groups as well as position papers submitted by all par-
ticipants are available on the seminar Website. In this volume of Lecture Notes on
Computer Science we present extended papers reflecting work of seminar participants.
Among the articles are ten peer-reviewed papers and five invited papers of outstanding
researchers whose work is related to the Dagstuhl seminar but were not able to attend.
The peer-reviewed papers were submitted by participants after the conclusion of the
workshop and were selected based upon the high quality of scholarly work, their time-
liness, and their appropriateness to the goals of the seminar, some reflecting ongoing
collaboration that grew out of the seminar.

We would like to gratefully acknowledge the friendly and very helpful support of the
Dagstuhl administration staff, Alfred Hofmann from Springer for his support during the
preparation and publication of the LNCS volume and Klaus Krogmann for preparing
the final manuscript for Springer.

Karlsruhe, Medford, and Redmond Ralf Reussner
Judith Stafford

Clemens Szyperski
February 2006
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Audition of Web Services for Testing
Conformance to Open Specified Protocols�

Antonia Bertolino1, Lars Frantzen2, Andrea Polini1, and Jan Tretmans2

1 Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”,
Consiglio Nazionale delle Ricerche,
via Moruzzi, 1 – 56124 Pisa, Italy

{antonia.bertolino, andrea.polini}@isti.cnr.it
2 Institute for Computing and Information Sciences,

Radboud University Nijmegen, The Netherlands
{lf, tretmans}@cs.ru.nl

Abstract. A Web Service (WS) is a type of component specifically con-
ceived for distributed machine-to-machine interaction. Interoperability
between WSs involves both data and messages exchanged and protocols
of usage, and is pursued via the establishment of standard specifications
to which service providers must conform. In previous work we have en-
visaged a framework for WS testing. Within this framework, this paper
focuses on how the intended protocol of access for a standard service
could be specified, and especially on how the conformance of a service
instance to this specified protocol can then be tested. We propose to
augment the WSDL description with a UML2.0 Protocol State Machine
(PSM) diagram. The PSM is intended to express how, and under which
conditions, the service provided by a component through its ports and
interfaces can be accessed by a client. We then propose to translate the
PSM to a Symbolic Transition System, to which existing formal test-
ing theory and tools can be readily applied for conformance evaluation.
A simple example illustrates the approach and highlights the peculiar
challenges raised by WS conformance testing.

1 Introduction

Service Oriented Architecture (SOA) is the emerging paradigm for the realization
of heterogeneous, distributed systems, obtained from the dynamic combination
of remote applications owned and operated by distinct organizations. Today the
Web Service Architecture (WSA) certainly constitutes the most relevant and
widely adopted instance of such a paradigm.

A Web Service (WS) is essentially characterized by the capability to “support
interoperable machine-to-machine interaction over a network”[5]. This capabil-
ity is achieved due to the agreement of all major players on the usage of uniform
� This work has been supported by the European Project TELCERT (FP6 STREP

507128), by Marie Curie Network TAROT (MRTN-CT-2004-505121), and by the
Netherlands Organization for Scientific Research (NWO) under project: STRESS –
Systematic Testing of Realtime Embedded Software Systems.

R.H. Reussner et al. (Eds.): Architecting Systems, LNCS 3938, pp. 1–25, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Bertolino et al.

WS interfaces, coded into the standard machine-processable Web Service Def-
inition Language (WSDL) format [9], and of the Simple Object Access Proto-
col (SOAP) [18] for WS communication. Moreover, WSA interconnects service
providers and service requesters via a standard Service Broker called the UDDI
(Universal Description and Discovery Integration)[10]. The information in this
catalog follows the yellow, green or white pages paradigms open technology, and
defines a common mechanism to publish and retrieve information about available
Web Services.

From a methodology viewpoint, WSA builds on the extensive framework
of the Component-Based Software Development (CBSD) paradigm, of which it
can be considered an attractive successor. Where in fact CBSD pursued the
development of a composite system by the assembly of pre-existing (black-box)
components, WSA chases the dynamic composition of services at client requests.
The two paradigms share the underlying philosophy of developing building blocks
(either components or services) of a system for external generalized reuse, whose
implementation details are hidden behind a published interface.

By building on the extensive results of CBSD, WSs can today rely on a much
more mature culture for compositional development, as testified by the emer-
gence of established standard access and communication protocols. On the other
hand, by exacerbating the aspects of loose coupling, distribution and dynamism,
WSs have also inherited the most challenging issues of the component-based ap-
proach, directly descending here from the need of dynamically composing the in-
teractions between services whose internal behavior is unknown. This fact brings
several consequences on the trustability and reliability of WSA; in particular, it
calls for new approaches to validate the behavior of black-box components whose
services are invoked by heterogeneous clients in a variety of unforeseen contexts.

Although similar problems have been encountered and tackled in the area
of software components, testing of WSs is even more difficult since the differ-
ent machines participating in the interaction could be dispersed among different
organizations, so even a simple monitoring strategy or the insertion of probes
into the middleware is not generally feasible. Moreover, the notion of the WSA
establishes rigid limitations on the kind of documentation that can be provided
and used for integrating services. In particular, a service must not include infor-
mation on how it has been implemented. This obviously is desirable to enable
the decoupling between requesters and providers of services, but obviously makes
integration testing more difficult.

Speaking in general, it is clear that the capability of testing a software artefact
is strongly influenced by the information available [3]. In fact, different kinds of
testing techniques can be applied depending on the extent and formalization
degree of the information available. The technique to be applied will also be
different depending on the quality aspects to be evaluated, e.g. functionality,
performance, interoperability, etc.

In CBSD, different proposals have been made to increase the information
available with software components [24], following what we generally refer to as
the metadata-based testing approach [25]. Fortunately, as already said, today



Audition of WS for Testing Conformance to Open Specified Protocols 3

the area of WS can rely on a more mature attitude towards the need for stan-
dardized documentation, with respect to the situation faced by early component
developers, and in fact the interaction among WSs is based on a standardized
protocol stack and discovery service. Current practice is that the information
shared to develop interacting WSs is stored in WSDL files. However, such doc-
uments mainly report signatures (or syntax) for the available services, but no
information concerning specific constraints about the usage of the described
service can be retrieved. Obviously, this way of documenting a service raises
problems regarding the capability of correctly integrating different services. In
particular, the technology today relies on the restrictive assumption that a client
knows in advance the semantics of the operations provided by a service or other
properties of it [1].

To facilitate the definition of the collaborations among different services,
various approaches are being proposed to enrich the information that should be
provided with a WS. Languages such as the Business Process and Execution
Language for Web Services (BPEL4WS) and the Web Service - Choreography
Description Languages (WS-CDL) are emerging [1], which permit to express how
the cooperation among the services should take place. The formalized descrip-
tion of legal interactions among WSs turned out to be instrumental in verify-
ing interoperability through the application of specific conformance evaluation
instruments.

We claim that it would be highly useful to attach this description in the form
of an XML Metadata Interchange (XMI [29]) file, since in this form it can be
easily reused by UML based technologies. XMI is becoming the de facto stan-
dard for enabling interaction between UML tools, and it can be automatically
generated from widespread UML editors such as IBM Rational Rose XDE or
Poseidon.

It is indeed somewhat surprising how two broad standardization efforts, such
as the UML and the WSA, are following almost independent paths within dis-
tinct communities. Our motivating goal is the investigation of the possibility to
find a common ground for both communities. Hence our proposal is that the
WS description (including the WSDL file) will report some additional informa-
tion documented by the WS developer in UML, and in particular, as we explain
below, as a Protocol State Machine, that is a UML behavior diagram newly
introduced into the latest version of this language [11]. In this way an XMI file
representing the associated PSM could be inserted in the UDDI registry along
with the other WS documentation. Moreover, as we show in this paper, the PSM
provides a formal description of the legal protocol for WS interaction, and fol-
lowing some translation step it can be used as a reference model for test case
derivation, applying well established algorithms from formal testing theory.

The framework for automatic testing of WSs presented in this paper has been
specifically defined considering technologies related to the WS domain. It will
probably be straightforward to apply a similar approach also in a Component
Based (CB) setting when the necessary information is provided as data attached
to the component. WSs can be considered as being an extreme consequence of
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the CB paradigm, in which the developer of a system looses the control, also at
run time, of the “assembled” components.

The paper is structured as follows: Section 2 provides an overview of the dif-
ferent flavors of the interoperability notion for WSs, and in particular introduces
WS conformance testing; Section 3 presents PSMs and their proposed usage for
WS protocol specification; Section 4 synthesizes the general framework we pro-
pose for WS testing, and Section 5 outlines related work. In Section 6 a short
survey of formal approaches to conformance testing is given, before focusing
on the specific formalism which we are going to exploit for WS conformance
testing, called Symbolic Transition Systems (STSs). In Section 7 we relate the
PSM specification to the presented STS one. Finally, Section 8 summarizes our
conclusions and mentions the work remaining to be done.

2 Interoperability of Web Services

Web Services are cooperating pieces of software that are generally developed and
distributed among different organizations for machine-to-machine cooperation,
and which can act, at different times, as servers, providing a service upon request,
or as clients, invoking some others’ services. The top most concern in develop-
ment of WSA is certainly WS interoperability. Actually, WS interoperability is
a wide notion, embracing several flavors, all of them important. Without pre-
tending to make a complete classification, for the sake of exposition in our case
we distinguish between two main kinds of interoperability issues. A first type of
interoperability refers to the format of the information stored in the relevant doc-
uments (such as WSDL files, UDDI entry), and to the format of the exchanged
SOAP messages. This interoperability flavor is briefly presented below in Section
2.1, in which the approach defined by the WS-I consortium (where the “I” stands
for Interoperability) to ensure this kind of interoperability is outlined. A second
interoperability issue, discussed in Section 2.2, is instead relative to the correct
usage of a WS on the client’s side, in terms of the sequencing of invocations of
the provided services. Certainly, other kinds of heterogeneity hindering correct
interactions of WSs can be identified. For instance, in [16] the authors report
about an interesting experience in integrating externally acquired components in
a single system. As they highlight, different assumptions made by the different
components, such as who has to take the control of the interaction, often prevent
real interoperability.

2.1 Data and Messaging Conformance

As said, a first factor influencing the interoperability of WSs is obviously related
to the way the information is reported in the different documents (such as SOAP
messages, WSDL files, UDDI entries) necessary to enable WS interactions, and
to the manner this information is interpreted by cooperating WSs.

This concern is at the heart of the activities carried on by the WS-I con-
sortium, an open industry organization which joins diverse communities of Web
Service leaders interested in promoting interoperability. WS-I provides several
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resources for helping WS developers to create interoperable Web Services and
verify that their results are compliant with the WS-I provided guidelines. In
particular, WS-I has recently defined several profiles [12] that define specific re-
lations that must hold among the information contained in different documents.
In so doing the interactions among two or more WSs are enabled. Besides, WS-I
has defined a set of requirements on how specific information reported in these
files must be interpreted.

Just to show the kind of interoperability addressed by WS-I we report below
without further explanation a couple of examples from the specification of the
Basic Profile. Label R1011 identifies a requirement taken from the messaging
part of the profile, which states:

R1011 - An ENVELOPE MUST NOT have any element children of soap:
Envelope following the soap:Body element.

The second example has been taken from the service description part and
describes relations between the WSDL file and the related SOAP action:

R2720 - A wsdl:binding in a DESCRIPTION MUST use the part
attribute with a schema type of "NMTOKEN" on all contained
soapbind:header and soapbind:headerfault elements.

Alongside the Basic Profile, the WS-I consortium also provides a test suite
(that is freely downloadable from the WS-I site) that permits to verify the con-
formance of a WS implementation with respect to the requirements defined in
the profile. In order to be able to verify the conformance of the exchanged mes-
sages, part of the test suite acts as a proxy filtering the messages and verifying
that the conditions defined in the profile are respected.

The WS-I profile solves many issues related to the representation of data,
and to how the same data are represented in different data structures. Another
kind of data-related interoperability issue not addressed by the WS-I profile
concerns instead the interpretation that different WSs can give for the same
data structure. Testing can certainly be the right tool to discover such kind of
mismatches. The testing theory presented in Section 6 and its application to the
domain of WSs, exerted in Section 7, provides a formal basis for the derivation
of test cases that permit to verify that a single implementation of a WS correctly
interprets the exchanged data.

2.2 Protocol Conformance

A different interoperability flavor concerns the correct usage of a WS on the
client’s side, in terms of the sequencing of invocations of the provided services.
A correct usage of a WS must generally follow a specified protocol defining the
intended sequences of invocations for the provided interface methods, and possi-
bly the pre- and post-conditions that must hold before and after each invocation,
respectively.

This is the kind of interoperability we focus on in the remainder of this paper.
Generally speaking a protocol describes the rules with which interacting entities
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must comply in their communication in order to have guarantees on the ac-
tual success of the interaction. Such rules are generally defined by organizations
that act as (de facto) standard bodies. The aim of companies joining these orga-
nizations is to allow different vendors to produce components that can interact
with each other. Often the rules released by such organizations are actually
established as standards and adopted by all the stakeholders operating in the
interested domain.

It is obvious to everybody though that the definition of a standard per se
does not guarantee correct interaction. What is needed in addition is a way to
assess the conformance of an implementation to the corresponding specification.
Different ways can be explored to verify such conformance, among which testing
deserves particular attention. Protocol testing is an example of functional testing
in which the objective is to verify that components in the protocol correctly
respond to invocations made in correspondence to the protocol specification.

Conformance of an implementation to a specification is one of the most stud-
ied subjects from a formal and empirical point of view. Several studies have been
carried on for assessing conformance when protocol specifications are considered.

Conformance testing is a kind of functional testing in which an implemen-
tation of a protocol entity is solely tested with respect to its specification. It
is important to note that only the observable behavior of the implementation
is tested. No reference is made to the internal structure of the protocol imple-
mentation. In [26] the parties are listed which are involved in the conformance
testing process. In a SOA paradigm this can be partially revised in the following
way:

1. the implementer or supplier of a service that needs to test the implementation
before selling it;

2. the user of a service, claiming to be conform, can be interested in retesting
the service to be sure that it can actually cooperate with the other entities
already in his/her system;

3. organizations that act as service brokers and that would like to assess the
conformance of a service before inserting it in the list of the available services;

4. third parties laboratories that can perform conformance testing for any of
the previously mentioned parties.

It is worth noting that the standard may provide different levels of confor-
mance, for instance defining optional features that may or may not be imple-
mented by an organization. This has to be taken in to account when it comes to
conformance testing.

3 UML and Web Services

As said in the Introduction, an important topic that is not receiving adequate
attention in the research agenda of WS developers and researchers is how the
Unified Modeling Language (UML) can be fruitfully used to describe a WS spec-
ification and interaction scenarios. The basic idea is to increase the documenta-
tion of a WS using UML diagrams. The motivation is to find a trade-off between
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a notation which is widespread and industrially usable on one side, but that is
also apt to formal treatment and automated analysis on the other. Therefore, a
wealth of existing UML editors and analysis tools could be exploited also for WS
development. Moreover, from these diagrams a tester should be able to generate
useful test suites that, when run on a specific implementation, would provide a
meaningful judgment about conformance with the “standard” specification.

The forthcoming UML 2.0 [23] introduces several new concepts and diagrams,
in particular supporting the development of Component-Based software. Among
these, Protocol State Machine (PSM) diagrams seem particularly promising for
our purposes. The idea underneath PSMs is to provide the software designer
with a means to express how, and under which conditions, the service provided
by a component through its ports and interfaces can be accessed by a client,
for instance regarding the ordering between invocations of the methods within
the classifier (port or interface). The PSM diagram directly derives from that of
the State Machine but introduces some additional constraints and new features.
The UML 2.0 Superstructure Specification [23] provides the following definition
for this kind of diagram: A PSM specifies which operations of the classifier can
be called in which state and under which condition, thus specifying the allowed
call sequences on the classifier’s operations. A PSM presents the possible and
permitted transitions on the instances of its context classifier, together with the
operations which carry the transitions. In this manner, an instance lifecycle can
be created for a classifier, by specifying the order in which the operations can be
activated and the states through which an instance progresses during its existence.

Another interesting feature of these diagrams is that they support the defi-
nition of pre- and post-conditions associated with the methods in the interface.
This feature provides an improved semantical characterization of the offered ser-
vices and at the same time increases the verification capability of testers by
permitting the application of the well known Design-by-Contract [22] principles.
Using first order logic a contract characterizes a service by specifying the condi-
tions that should hold before the invocation and conditions that will be true after
the execution of the service. At the same time a contract can specify invariant
conditions that remain true during the whole execution of the service. Contracts
have proved to be a useful mechanism in CB development, and in particular for
the testing of COTS, as for instance developed in [17], and its usage for WS
testing is being explored, e.g. [19].

A pre-condition can contain constraints on the parameters passed to the
method, or on the values in any way associated to the current status of the
environment. If a pre-condition is fulfilled when the invocation is triggered, the
implementation must guarantee the respect of the constraints expressed in the
post-conditions. In UML this kind of constraints can be naturally expressed
using OCL. When a PSM of a WS is defined also using pre- and post-conditions,
the assumption is that a component interacting with this WS needs to know
these rules, but no more details than these rules, to correctly interact with the
system. In fact, a PSM does not define the detailed behavior elaborated inside a
component, since this kind of information stays in the scope of traditional State
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Machines (or more precisely, Behavioral State Machine - BSM - as defined in
UML 2 Superstructure Specification [23]). Instead a state in a PSM represents
the point reached in the foreseen interaction between the client and the server.
Obviously the definition of a PSM will also influence the definition of the BSM
for the object to which the associated port or interface belongs. In order to have
a non conflicting specification, related PSMs and BSMs must in some way be
compatible.

In the specification of a PSM it is important that no assumptions about
the real implementation of the classifier are made, for instance it is incorrect
to refer, within a pre- or post-condition, to an internal (state-)variable of a
possible implementation of the classifier. Nonetheless, when dealing with non-
trivial specifications, it is somehow inevitable to (abstractly) model the inter-
nal state of the system. This is done via (internal) variables of the specifica-
tion model. These two views on a system, the implementation and specification
view, cause sometimes confusion. For instance, there is no semantical correspon-
dence between the variables of the specification model and the implementation
model.

Therefore, one central issue when dealing with PSMs is how to make them
completely neutral with respect to internal specification variables. Several ways
could be found to deal with this issue. The one we will exemplify in this paper
is the augmentation of the classifier with side-effect free “get”-methods to in-
crease its observability. These methods can then be used in the corresponding
specification PSM instead of internal variables. On the other hand, such speci-
fied “get”-methods must then be implemented. This imposes extra work on the
implementer for developing these additional methods, but the advantage of this

Fig. 1. Introduction of a utility class in a model
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practice is the possibility of expressing a more precise definition for the imple-
mentation, with corresponding benefits regarding conformance evaluation.

It can also be useful to introduce other elements in the model which ease
the specification of pre- and post-conditions in the PSM. For instance, hav-
ing to handle parameters representing XML files it could be useful to intro-
duce a class with methods that can check the well-formedness or the validity
of an instance with respect to a corresponding XML Schema. Again this means
extra-burden on the side of the developers, because for checking purposes such a
<<utility>> class needs to be instantiated at run-time. Figure 1, for instance,
shows an example of a <<utility>> class added in order to facilitate the ex-
pression of XML instance conformance within the pre-condition of a generic
PSM transaction.

4 A Framework for Web Service Testing

In this section we briefly summarize a framework for testing of WSs, which we
have previously introduced in [4]. The framework relies on an increased infor-
mation model concerning the WS, and is meant for introducing a test phase
when WSs ask for being published on a UDDI registry. In this sense we called
it the “Audition” framework, as if the WS undergoes a monitored trial before
being put “on stage”. It is worth noting that from a technical point of view the
implementation of the framework does not present major problems, and even
from the scientific perspective it does not introduce novel methodologies; on
the contrary, one of its targets is to reuse sophisticated software tools (such as
test generators) in a new context. The major difficulties we foresee is that a
real implementation based on accepted standards requires that slight modifi-
cations/extensions are made to such standard specifications as UDDI. This in
turn requires wide acceptance from the WS community and the recognition of
the importance of conformance testing.

Figure 2 shows the main elements of the framework. The figure provides a
logical view, i.e., the arrows do not represent invocations on methods provided
by one element, but a logical step in the process; they point to the element that
will take the responsibility of carrying on the associated operation.

The process is activated by the request made by the provider of a WS asking
for the inclusion of it in the entries of a registry and is structured in eight main
steps, which are also annotated in Fig. 2 (numbers in the list below correspond
to the numbers in the figure):

1. a Web Service WS1 asks a UDDI registry to be published among the ser-
vices available to accept invocations;

2. the UDDI service puts WS1 in the associated database, but marking the
registration as a pending one, and starts the creation of a specific tester;

3. the WS Testing Client will start to make invocations on WS1, acting as the
driver of the test session;

4. during the audition, WS1 will plausibly ask the UDDI service for references
to other services;
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5. UDDI checks if the service asking for references is in the pending state. If
not the reference for the WSDL file and relative binding and access point to
the service are provided. In the case that the service is in the pending state
the UDDI will generate, using a WS factory, a WS Proxy for the required
services;

6. for each inquiry made by WS1 the UDDI service returns a binding reference
to a Proxy version of the requested service;

7. WS1 will start to make invocations on the Proxy versions of the required
services. As a consequence the Proxy version can check the content and the
order of any invocation made by WS1;

8. if the current invocation is conforming, the Proxy service invokes the real
implementation of the service and returns the result obtained to the invok-
ing (WS1) service. Then the process continues driven by the invocations
made by the testing client.

Fig. 2. The Audition Framework

In this framework several testing exigencies and approaches can be identi-
fied. Specifically, we address the scenario that a standard body has published
some WS specification (adopting the PSM notation) and the conformance to
this specification of a developed WS instance must be validated. The confor-
mance theory discussed in the following of this paper is applied to the confor-
mance testing of the interface provided by a single Web service. In Fig. 2 the
elements involved in this verification have been shaded. As a future step we
want deal with extending the existing results from conformance theory to also
consider interactions among services. Before presenting our approach we briefly
overview recent related work in the field of WS testing.
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5 Related Work in Testing of Web Services

WSs testing is an immature discipline in intense need of further research by
academy and industry. Indeed, while on the practitioner’s side WSs are evi-
dently considered a key technology, research in the area seems not to draw an
adequate attention from the testing community, probably due to the contigu-
ity/overlap with other emerging paradigms, especially with Component-Based
Software Engineering (CBSE), or perhaps to the quite technical details that
this discipline entails. In this section we give a brief overview of those papers
that share some similar views with our work.

The possibility of enhancing the functionality of a UDDI service broker with
logic that permits to perform a testing step before registering a service has been
firstly proposed in [28] and [27], and subsequently in [20]. This idea is also the
basis for the framework introduced in this paper. However, the information we
use and the tests we derive are very different from those proposed in the cited
papers. In particular while in the cited works testing is used as a means to
evaluate the input/output behavior of the WS that is under registration, in the
Audition framework we mainly monitor the interactions between the WS under
registration with providers of services already registered. In this sense, we are
not interested in assessing if a WS provided is bug-free in its logic, but we focus
on verifying that a WS can correctly cooperate with other services, by checking
that a correct sequence of invocations to the service leads in turn to a correct
interaction of the latter with other services providers (and that vice versa an
incorrect invocation sequence receives an adequate treatment).

With reference to the information that must be provided with the WS de-
scription, the authors of [28] foresee that the WS developer provides precise
test suites that can be run by the enhanced UDDI. In [20] instead the authors
propose to include Graph Transformation Rules that will enable the automatic
derivation of meaningful test cases that can be used to assess the behavior of
the WS when running in the “real world”. To apply the approach they require
that a WS specifically implements interfaces that increase the testability of the
WS and that permit to bring the WS in a specific state from which it is possible
to apply a specified sequence of tests.

The idea of providing information concerning the right order of the invoca-
tions can be found in a different way also in specifications such as BPEL4WS
and the Web Service Choreography Interface (WSCI). The use of such informa-
tion as main input for analysis activities has also been proposed in [15]. How-
ever, the objective of the authors in this case is to formally verify that some
undesired situations are not allowable given the collaboration rules. To do this
the authors, after having translated the BPEL specifications into Promela (a
language that can be accepted by the SPIN model checker), apply model check-
ing techniques to verify if specific properties are satisfied. Another approach to
model-based analysis of WS composition is proposed in [13]. From the integra-
tion and cooperation of WSs the authors synthesize Finite State Machines and
then they compare if the obtained result and allowable traces in the model are
compatible with that defined by BPEL4WS-based choreography specification.
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6 Model-Based Conformance Testing

As said, conformance verification involves both static conformance to an estab-
lished WSDL interface, and dynamic conformance of exposed behaviors to an
established interaction protocol. Clearly the second aspect is the challenging
one. In the following we first introduce the basic notion of formal conformance
testing and then develop a possible strategy for formal conformance testing of
Web Services based on the existing ioco implementation relation (see below),
and related tools.

We want to test conformance with respect to a protocol specification, given
as a PSM. One can see such a PSM as a high-level variant of a simple state
machine, such as a Finite State Machine (FSM) or a Labeled Transition Sys-
tem (LTS). Hence we can use classical testing techniques based on these simple
models to test for conformance. In this paper we focus on LTS-based testing
techniques.

6.1 LTS-Based Testing

Labeled Transition Systems serve as a semantic model for several formal
languages and verification- and testing theories, e.g. process algebras and stat-
echarts. They are formally defined as follows:

Definition 1. A Labeled Transition System is a tuple L = 〈S, s0, Σ,→〉, where

– S is a (possibly infinite) set of states.
– s0 ∈ S is the initial state.
– Σ is a (possibly infinite) set of action labels. The special action label τ /∈ Σ

denotes an unobservable action. In contrast, all other actions are observ-
able. Στ denotes the set Σ ∪ {τ}.

– →⊆ S×Στ×S is the transition relation.

In formal testing the goal is to compare a specification of a system with its im-
plementation by means of testing. The specification is given as a formal model
in the formalism at hand, so in our case as an LTS or as an expression in a
language with underlying LTS semantics. This formal specification is the basis
to test the implementation (System Under Test – SUT). This implementation,
however, is not given as a formal model but as a real system about which no
internal details are known (hidden in a “black box”), and on which only experi-
ments, or tests, can be performed. This implies that we cannot directly define a
formal implementation relation between formal specifications and physical im-
plementations. To define such an implementation relation, expressing which im-
plementations are conforming, and which are not, we need an additional as-
sumption, referred to as the test hypothesis. The test hypothesis says that the
SUT exhibits a behavior which could be expressed in some chosen formalism.
Now conformance can be formally defined by an implementation relation be-
tween formal specification models and assumed implementation models.

Typically, in LTS testing the formalism assumed for implementations is the
LTS formalism itself. So, an implementation is assumed to behave as if it were
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Fig. 3. The ioco relation

an LTS. Based on this assumption many different implementation relations on
LTSs have been defined in the literature, most of them being preorders or equiv-
alences on LTSs. These relations differ, for example, in the way they treat non-
determinism, the extent to which they allow partial specifications, whether they
allow ”look-ahead” in behaviors, etc. For several of these implementation rela-
tions also testing scenarios and test generation algorithms have been published.
These testing algorithms are usually proved to be complete in the limit, i.e., the
execution of all (usually infinitely many) test cases constitutes a decision proce-
dure for the relation. For an annotated bibliography for testing based on LTSs
see [6], for a survey on existing test theory in general see [8].

The ioco Implementation Relation — In this paper we use the ioco im-
plementation relation for testing, see [26]. ioco is not a preorder relation, but
it turns out to be highly suited for testing. Several state-of-the-art testing tools
nowadays implement it, e.g. TorX [2] and the TGV-based tools [21].

In the ioco setting the specifications are LTSs where the set of action labels
is partitioned into input- and output action labels. The test hypothesis is that
implementations can be modeled as input-output transition systems (IOTS).
IOTSs are a subclass of LTSs for which it is assumed that all input actions are
enabled in all states (input enabledness). A trace is a sequence of observable ac-
tions, starting from the initial state. As an example take the LTSs from Fig. 3.
We have one input action ?but , standing for pushing a button on a machine sup-
plying chocolate and liquorice. These are the output actions !choc and !liq . Both
r1 and r2 are input enabled, at all states it is possible to push the button, hence
both LTSs are also IOTSs. Some traces of r1 are ?but · !liq , ?but · ?but · !choc,
and so on.

A special observation embedded in the ioco theory is the observation of
quiescence, meaning the absence of possible output actions. The machine can
not produce output, it remains silent, and only input actions are possible. For
instance both r1 and r2 are quiescent in the initial state (the upmost state),
waiting for the button to be pressed. After applying ?but to the systems, both
may be quiescent due to nondeterminism (following the right branch). They
may also nondeterministically chose the left branch and produce liquorice via
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the output action !liq . Hence, when it comes to test generation, and the tester
observes quiescence after pushing the button, it knows that the systems chose
the right branch, waiting for the button to be pushed again, and can forget
about the left branch of the specification. This waiting for output before gener-
ating the next input is the principle of on-the-fly testing, which helps in avoid-
ing a state space explosion when computing test cases out of a given specifi-
cation. The test tool TorX implements a test generation algorithm which tests
for ioco-correctness via such an on-the-fly approach, see [2]. The observation of
quiescence is embedded in the notion of traces, leading to so called suspension
traces.

We will not give a formal definition of the ioco relation here to keep an
introductory flavor. We refer to [26] for a detailed description and give instead
an informal intuition of it. Let i be an implementation IOTS and s be an LTS
specification of it. Then we have:

i ioco-conforms to s ⇔
– if i produces output x after some suspension trace σ, then s can

produce x after σ
– if i cannot produce any output after suspension trace σ, then s can

reach a state after σ where it cannot produce any output (quies-
cence)

The addition of quiescence increases the discriminating power of ioco, as il-
lustrated by Fig. 3. Taking r2 as the specification for r1, we have that r1 can
produce !liq and !choc after the suspension trace ?but · quiescence · ?but . The
specification though can only produce !choc after pressing the button, observing
quiescence, and pressing the button again. Hence the ioco condition “if i pro-
duces output x after suspension trace σ, then s can produce x after σ” is not
fulfilled, r1 is not ioco-conform to r2. On the other hand, r2 is ioco-conform
to r1.

Extensions of ioco — The model of LTSs has the advantage of being simple
and highly suited for describing the functional behavior of communicating, re-
active systems. But in practice one does not want to specify a system in such
a low-level formalism. Instead high-level description languages like statecharts,
PSMs, or process algebras with data extensions are the preferred choice. Fur-
thermore, non-functional properties like embedding timing constraints into the
model are mandatory means in certain application areas. Recent research ac-
tivities have produced first promising results in dealing with these extensions,
see e.g. [7].

In our setting we are interested in testing based on automata allowing for
a symbolic treatment of data, meaning that one can specify using data of dif-
ferent types, guarded transitions, and so on. This makes the specification much
more compact and readable. At first sight using such formalisms for ioco test-
ing is straightforward, because usually these models have an underlying LTS
semantics, meaning that one just has to convert the high-level model into its
underlying LTS, and then test as usual based on that. The difficulty here is,



Audition of WS for Testing Conformance to Open Specified Protocols 15

that even a small, finite symbolic model has commonly an infinite underlying
LTS semantics. This problem is commonly known as state-space explosion. To
address this problem recent research has focused on testing based directly on
a symbolic specification, without mapping it at all to its underlying LTS. The
ioco relation has been recently lifted to such a symbolic setting based on so
called Symbolic Transition Systems (STSs), see [14]. Such an STS has many
similarities with formalisms like PSMs, and hence serves as a promising choice
for testing WSs specified with PSMs.

Symbolic Transition Systems — STSs extend LTSs by incorporating an
explicit notion of data and data-dependent control flow (such as guarded tran-
sitions), founded on first order logic. The STS model clearly reflects the LTS
model, which is done to smoothly transfer LTS-based test theory concepts to an
STS-based test theory. The underlying first order structure gives formal means
to define both the data part algebraically, and the control flow part logically.
This makes STSs a very general and potent model for describing several aspects
of reactive systems. We do not give here a formal definition of the syntax and
LTS-semantics of STSs due to its extent, and give instead a simple example in
Fig. 4 showing all necessary ingredients. For a formal definition we refer to [14].

Fig. 4. An STS counter

The shown STS specifies a counter consisting of three so called locations
(the black dots). The uppermost one is the initial location, distinguished by
the sourceless arrow. Being in this initial location the system is quiescent, it
awaits an input called ?start<>, which has no parameters. For instance one
can think of it as a button. After this button is pressed, the system nondeter-
ministically chooses the left or right branch (called “switches”), and sets the
internal variable x to zero. Both switches are always enabled because both are
unconstrained, the guards say true. Each switch consists of three parts: first
the name of an input- or output action together with its parameters; next a
guard talking about the parameters and the internal variables; and finally an
update of the internal variables. As commonly done we precede the names of
input actions with a question mark, and the names of output actions with an
exclamation mark.

If the system chooses the left switch it first performs an output via the ac-
tion !display<n>. This action has one parameter called n, which is constrained
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in the guard [n = x], saying that the display has to show the value of the in-
ternal variable x (which is zero at first). Next it increments x by one, denoted
x++, and loops. The right branch does the same, but decrements x in every loop.
Hence think of x and n as being declared as integer in the underlying first order
structure. Altogether we have a system which, after a button has been pressed,
either displays 0,1,2,..., or 0,-1,-2,... on a display. Another feature not
shown is the use of internal so called τ -switches, which become for instance im-
portant when composing systems.

In the next section we give a more complex STS, on which we will also ex-
emplify the ioco test generation algorithm.

7 Testing Based on PSMs

In this section we want to provide an idea of how WS conformance testing can
be based on PSM specifications using the STS testing approach. PSMs serve as
formal specifications of WS behavior. These PSMs are transformed into STSs,
which, in turn, have an LTS semantics. This allows us to formally root our work
in the ioco-testing theory as applicable to STSs [14]. The choice of STSs as
the formal notation to be used for the derivation of test cases has been mainly
influenced by the expressive power of such a formalism which in principle allows
to easily embed in an STS diagram all parts of the information that can be
found in a PSM diagram.

A practical example can ease the explanation of the approach that we in-
tend to pursue. We first introduce a PSM example in subsection 7.1. Then we
present, informally, the transformation of the PSM into an STS in subsection
7.2. Finally, we exemplify the test case generation in subsection 7.3.

7.1 An Example PSM

Fig. 5 shows a PSM for a Web Service dispensing coffee and tea, for simplicity
without giving back the possible change. Obviously this is just a toy-example
to illustrate our ideas. However, the coffee machine example already exemplifies
most of the features of a Web Service specification for which the protocol can be
dependent on the data provided by the client. In fact the drinks can be provided
only after the specified amount of money has been inserted.

Each invocation of a method will return an object of type Status repre-
senting all possible output actions which can be observed by the test system.
In particular there is a variable CoffeeButtonLight expressing the status of
the coffee button, a variable TeaButtonLight expressing the status of the tea
button, a variable Display expressing the value reported by the display, and
finally a variable Drink expressing the possible drink to be dispensed.

Each transition in the PSM is a tuple of the form (actual-state, pre-condition,
method invocation, post-condition, final state). The pre-condition expresses un-
der which constraint a transition is admissible from the given source state. For
our intended mapping to STSs it is crucial that all method-calls in a pre-condition
are query-methods, i.e., they don’t affect the internal state of the system (no
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Fig. 5. PSM model for the coffee machine example

side effects). The post-condition expresses the expected results of the corre-
sponding method invocation, leading to the given target state. For instance
transition 1 declares that entering a coin c greater then 0.80, i.e., 1 or 2 Euro,
when being in state WaitCustomer, the result should be the highlighting of the
coffee and tea buttons, the visualization of amount ”c” in the display, no dis-
pense of any drink, and finally an update of the internal state via the invoca-
tion of the getMoney() method. The arriving state for the transition will be
CoffeeAvailable. A state in a PSM usually corresponds to a quiescent state
of the system, i.e., the system waits for an input from its environment.

It is worth noting that the model only specifies the correct sequences of
method-invocations. Nevertheless, since a client of a WS can invoke the meth-
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Fig. 6. PSM and the state space explosion problem

ods in the interface in any order, it becomes important to specify the behavior
also when an incorrect sequence is triggered. This corresponds to the input-
enabledness as introduced in section 6, and would require the introduction of
exceptions to the specification for each method in the interface. In particular
for the coffee machine example the invocation of a method in an incorrect or-
der, such as the pushing of the dispense button before it becomes highlighted,
should leave the protocol in the same status, notifying the client with an excep-
tion. Such a behavior can be considered similar to that of a real coffee machine
that triggers a beep when a button is incorrectly pushed. However, since the in-
troduction of exceptions would result in an unwieldy increase in the complexity
of the diagram we decided to elide them in the model.

Our simple example shows the influence of the special “get”-method in the
interface, related to state data that influences protocol transitions, in this case
the getMoney() method. Fig. 6 shows an extract of the resulting PSM when
no such method is provided (omitting return values). In particular the whole
machine contains 17 states and 70 state transitions, a clear complexity increase
with respect to the machine in Fig. 5. Having the possibility of logically
expressing values through the usage of the getMoney() method permits to pro-
duce manageable models.

7.2 Mapping from PSM to STS

In Fig. 7 the STS variant of the coffee machine example of Fig. 5 is shown. It
consists of 14 locations and 20 switches. The (linear) increase in the number of
locations and switches is due to the fact that STSs are more fine-grained than
PSMs, which subsume a guarded procedure call together with its post-conditions
on one transition. In STSs a transition corresponds to either an input action
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1.1: ?insertCoin<c> [c>0.8] c_var:=c
1.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=c_var & s.Drink=null] money+=c_var
2.1: ?insertCoin<c> [c<=0.5] c_var:=c
2.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=c_var & s.Drink=null] money+=c_var
3.1: ?selectDrink<d> [d="Tea"] d_var:=d
3.2: !selectDrink<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=0 & s.Drink=d_var] money:=0
4.1: ?selectDrink<d> [d="Coffee"] d_var:=d
4.2: !selectDrink<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=0 & s.Drink=d_var] money:=0
5.1: ?insertCoin<c> [0.55<=money+c<0.8] c_var:=c
5.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
6.1: ?insertCoin<c> [money+c<0.55] c_var:=c
6.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=money+c_var & s.Drink=null] money+=c_var
7.1: ?insertCoin<c> [money+c>=0.8] c_var:=c
7.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
8.1: ?insertCoin<c> [money+c>=0.8] c_var:=c
8.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
9.1: ?insertCoin<c> [0.55<=money+c<0.8] c_var:=c
9.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
10.1: ?insertCoin<c> [true] c_var:=c
10.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var

Fig. 7. STS model for the coffee machine example

(i.e. a procedure call), or an output action (i.e. the returned value of the proce-
dure). Hence every interface method invocation corresponds to an input action
and an output action. For instance, the insertCoin(c: Coin): Status method
is mapped to an input action ?insertCoin<c: Coin>, and an output action
!insertCoin<s: Status>. This allows to specify an asynchronous message in-
terchange, and has a number of consequences, for instance we have to remember



20 A. Bertolino et al.

the values given to procedures. To do so we store them in variables, an inherent
concept of STSs. For instance take transition 1 of the PSM from Fig. 5. This
transition is mapped to the transitions 1.1 and 1.2 in Fig. 7. Here the method
invocation (i.e. input action) insertCoin(c) is executed with the restriction
that c>0.8. We do so via the guarded transition 1.1, and store the parameter
value c in an internal variable c var (called location variable in STSs) to re-
member it. Next the SUT performs an output action, it returns a Status with
certain settings. This is done via transition 1.2. Here we make use of the re-
membered parameter value of the preceding procedure call by referring to the
internal variable via s.Display=c var.

The challenging issue is the mapping of the special “get”-methods in the in-
terface to STSs. The use of these methods corresponds to location variables in
STSs. They are used to model state-dependent behavior, and they can be uti-
lized in guards. In our example this concerns the getMoney() method, which
is mapped onto a location variable money. After having inserted a coin, like in
transition 1.1, we have to update the internal state. In the PSM this is ex-
pressed via getMoney()=getMoney@pre()+c. In the STS we can express this as
money := money + c var, shortly written as money += c var in transition 1.2.

In so doing we can map the PSM into the given STS, which in turn allows
us to use the existing ioco-based test theory and algorithm, which was adapted
for STSs in [14].

Note that this transformation might not always be as easy as in the given
example. One problem is that it is possible to partially specify methods like the
getMoney() in a PSM. For instance we could have simply left out the update
getMoney()=getMoney@pre()+c when applying the insertCoin(c) method in
the PSM. Doing so we could not have developed the given STS without ap-
plying knowledge about this method which is not in the PSM. Hence in future
research we will try to give exact restrictions to PSMs allowing for a guaranteed
and automated translation process.

7.3 Automated Testing Based on STSs

In the remainder of this section we give a simple example run of the test gener-
ation algorithm as given in [14], which tests for ioco-conformance. It generates
and executes test cases on-the-fly. That means that instead of firstly computing
a set of test cases from the STS, and then applying them to the SUT, it gen-
erates a single input, applies it to the SUT, and continues w.r.t. the observed
response of the system. As a consequence we avoid the state space explosion
when generating test cases, see also [2].

First of all the system has to be initialized by giving initial values to the
internal variables, in this case money and c var. We assume both to be zero,
i.e. no coin has been entered in the coffee machine, yet. At first the initial se-
mantical state is computed. Such a state consists of a set of locations in which
the SUT could currently be, and a valuation of the internal variables. In our
case the STS is fully deterministic, therefore the set of locations will always be
a singleton. The initial state here is (WaitCustomer, (money=0, c var=0)).
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The basic principle of the algorithm is to continously choose nondetermin-
istically one out of these three options:

– Stop testing and give the verdict Pass
– Give an input to the SUT
– Observe output (including quiescence) of the SUT (which may result in

Fail)

Let’s assume that first an input is given. The only specified input action in
the initial location is ?insertCoin<c>. The input constraint is computed for
this action, which is a first order formula telling the condition for the parame-
ters under which the action can be applied. To do so all outgoing switches with
this specific action have to be taken into account. We get here (c>0.8)∨(c≤0.5).
If a solution exists, one is chosen and applied to the system, e.g.
?insertCoin(0.5). Now the set of next possible locations is computed, which
is only the one location where transition 2.1 leads. The new values of the vari-
ables are (money=0, c var=0.5). Now the tester observes output, it receives
the returned Status object saying that no drink is available and that the dis-
play shows 0.5. This is conformant with the specification, money is updated to
0.5 and we proceed to the semantical state (NotEnoughMoney, (money=0.5,
c var=0.5)). If we would have observed a different result, for instance a differ-
ent display value, the test would have stopped with verdict Fail. Choosing next
for another ?insertCoin<c> action we get the input constraint
(0.55≤0.5+c<8)∨(0.5+c<0.55)∨(0.5+c≥0.8), assembled from switches 5.1,
6.1 and 8.1. Again one solution is chosen for c, e.g. 1. We apply insertCoin(1)
and observe in the returned status that coffee and tea are available, we end up
in state (CoffeeAvailable, (money=1.5, c var=1)). Now the algorithm may
choose to stop the testing and give the verdict Pass. In practice the testing
continues in this manner until either a fault is discovered via verdict Fail, or
the testing is stopped after a predefined halting criteria.

For the audition of WSs it remains to be evaluated how such a halting crite-
ria should be defined. It will also depend on the given application domain and
its inherent security demands which specific halting criteria is considered suf-
ficient. There are several well known halting criteria for model-based testing,
mainly concerning coverage of the specification ingredients (locations, switches,
evaluation criteria for the guards, etc.). Also more specific testing scenarios
(called test purposes) might be of high value.

In Fig. 8 you find the test case corresponding to the exerted test run. We have
abbreviated the returned Status object and we give it as a tuple representing
the values of CoffeeButtonLight, TeaButtonLight, Display, and Drink, re-
spectively. The abbreviation “qui” stands for observed “quiescence”. As seen in
the figure a test case formally corresponds to a tree-like LTS with distinguished
terminal states Pass and Fail. When observing outputs such a test case must
tell the tester how to proceed w.r.t. all possible outputs. For instance in our
case the test case must specify this for all possible resulting Status objects.
We have abbreviated this by the usage of an else transition. Given a system
with a huge (let alone infinite) set of possible output actions, such a test case
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else
qui.

Fail Fail

else
qui.

Fail Fail

?insertCoin<0.5>

!insertCoin<false, false, 0.5, null>

?insertCoin<1>

!insertCoin<true, true, 1.5, null>

Pass

Fig. 8. An example test case

generation leads to an explosion of the state space. Due to the on-the-fly testing
it is not necessary to generate such a complete test-case tree out of the speci-
fication, the tester just checks the single observed output for conformance, and
continues accordingly.

This simple example does not reveal the hidden complexity within this process,
like nondeterminism, or checking for quiescence. It is just presented to exemplify
the basic principle. The detailed algorithmical tasks can be found in [14].

8 Conclusions and Future Work

Our research addresses the problem of testing a WS instance for conformance
to a published specification, which could, for instance, be included in the UDDI
registry. We have in fact conceived a possible framework for trustable WSs [4],
in which a WS before UDDI registration undergoes sort of an “audition” to as-
certain both whether it behaves conforming to the specifications when invoked,
and also whether it in turn correctly invokes other published services.

The idea is that for widespread services within an application domain, the
community agrees on some standard features and functions to be provided from
any service provider who wishes to claim conformance to that standard. In this
way interoperability between services provided by different companies can be
achieved, and this is somehow what is being done by the WS-I initiative rel-
atively to data and messaging conformance. Another important aspect of WS
interoperability concerns how the service is used, i.e., the correct sequencing of
invocations of the provided WS interface methods, and possibly the pre- and
post-conditions to be guaranteed before and after each invocation. Hence, a key
open issue in WSA research is currently how to augment the WSDL definition,
so to provide a description of the intended usage for a “standard” service.

To obtain WS interoperability establishing a standardized protocol of us-
age per se is not enough: we also need sound approaches to assess that a WS
implementation actually conforms to the corresponding standard specification.
This is precisely the objective pursued here: we proposed in particular to exploit
the extensive background in formal conformance testing of reactive systems,
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by adapting it to the peculiar features of WSs. On the other hand, to foster
industrial adoption, we intend to start from a protocol specification written in
the widespread UML notation. In particular, we have identified the PSM di-
agram of the UML2.0 as a suitable formalism for expressing how a WS has
to be accessed. Then, to be able to readily apply the existing algorithms and
tools for conformance testing, we envisaged to convert the PSM specification
to a Symbolic Transition System model, which in principle possesses an ade-
quate expressive power. Once the STS is derived, we intend to directly apply
the test generation algorithm given in [14] which tests for ioco-conformance.
As discussed, the advantage of this algorithm is that it generates and executes
test cases on-the-fly, thus preventing state space explosion.

In this paper we have provided a preliminary overview of the approach and
illustrated it through a simple example of a hypothetical coffee dispenser ma-
chine (admittedly coffee remains something quite difficult to produce via Inter-
net, but the example is just to be seen as an intuitive illustration of client-server
interaction). The latter was already sufficient to highlight the crucial point in
the approach we propose: how to specify protocols of interaction between ser-
vices without making any assumption on the internal implementation of the
specific service instances.

We will continue investigating the specific issues raised by WS conformance
in general, and the application of the ioco-test theory to it in particular. There
are several issues which require further investigation. First, the use of the spe-
cial “get”-methods to model internal state variables extend the visible interface,
and they moreover put a requirement on the implementers to implement them
correctly, and on the testers to test them. A question is whether there are al-
ternatives to specify this in PSMs, e.g., using something analogous to location
variables in STS. Second, a restriction of the formal testing approach currently
is that only the providing interface of a WS is tested, and not the invocations
to other WSs. Using the PSMs of the invoked services it seems possible to also
consider the conformance of these invocations, both in isolation, or in combina-
tion with its own PSM. Third, a theoretical question is to what extent the test
hypothesis that SUTs behave as input-output transition systems, really hold:
can all methods always be invoked at any time? Finally, the translation from
PSM to STS should, of course, be generalized, and automated in a tool.

Trustable services are the ultimate goal of our research: we wish to increase
the interoperability and testability of WSA by fostering the application of rig-
orous model based testing methodologies. At present, a huge effort is taken by
the various communities towards identifying common standard models for WSs,
allowing for a smooth combination and inter-operation of WSs1. It is impor-
tant to raise awareness within the same communities that also common stan-
dard methods for rigorous verification and validation of functional and non-
functional properties of WS must be sought. In this sense, we hope that the

1 This is for instance currently pursued within the EU Project TELCERT in the
e-Learning domain.
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approach proposed in this paper, although preliminary, provides first convinc-
ing arguments and interesting directions for further investigations.
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Abstract. We discuss – on the basis of a theory of components, architectures, 
refinement, and interfaces – object orientation with its notions of objects and 
classes aiming at interfaces of classes and of components as well as their spe-
cification. We define and analyze, in particular, concepts of components and 
interfaces for object oriented software systems and their architecture. We discuss 
“design by contract” as well as “specification by contract” and analyze their limit-
ations. We discuss how to model interfaces. We treat a formal definition of class 
composition and analyze semantic complications. We outline, in particular, how 
we can extend concepts from object orientation towards components and more 
sophisticated ways to handle interfaces. Our approach is based on the notion of 
states, state assertions, and state machines. 

1   Motivation 

To master their complexity large software systems are typically built in terms of 
architectures, in a modular fashion, and hierarchically structured into components. The 
components are grouped together into software architectures. Such ideas of structuring 
software go back to “structured programming” according to Dijkstra, Hoare, Dahl, and, 
in particular, to Parnas (see [8]). 

In the following, we introduce a simple theory of composition and interfaces. We 
apply the theory to object orientation. To do that we consider a very simple-minded 
concept of object orientation and deal mainly with classes that define attributes and 
methods, and cooperate exclusively by method invocation. 

Basically we see the following principle ways to specify the behavior of classes 
and objects following the idea of interfaces (apart from writing code – which we do 
not see as a technique of specification): 

− Predicates on the interaction between the objects, classes, and components in terms 
of streams of invocations and return messages  
− Message sequence charts (interaction diagrams) 
− Stream processing functions (see [3]) 

− State based specifications 
− Pre/post assertion specifications 
− State machines 
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In this paper we try to develop a foundational approach to modular interface 
specifications of classes and components and their composition. Such a modular view 
is badly needed when trying to compose system parts to large, fairly complex systems. 
The architectural decomposition of systems into components and their systematic inte-
gration need interface specifications. 

We introduce and discuss a theory of components, architecture, and composition. 
We relate this theory to object orientation considering generalizations of conventional 
classes to classes with export/import interfaces: 

− As long as we consider only simple classes (without forwarded calls) such that 
method invocations can be understood to be synchronous and thus atomic state 
changes. 

− “Design by contract” works in this case where specifying interfaces of classes, 
although this implies a kind of violation of the principles of encapsulation, infor-
mation hiding, and data abstraction; the assertions have to refer to the local states 
defined by the attributes. 
But such simple classes hardly can be seen as components. We need a concept of 

composition for components. Components are of interest in the context of architect-
tures. 
− Architectures have to cover distributed and concurrent systems. Supporting con-

currency is a must for components. 
− Components in architectures must be large, coarse grain building blocks with a lot 

of cohesion inside but minimal interfaces to the outside. 
− Powerful abstractions are required for architectures that support tractable concepts 

of interfaces. 
Our criticism of the object-oriented paradigm trying to use simple classes is as 

follows: 
− Classes are a too small and, with respect to an interface given only by a set of 

(exported) methods not appropriate as a concept of a component. 
− A notion of composition does not really exist for simple classes. 

A better concept of a class being a component is obtained if we generalize the idea 
of an interface to sets of exported and imported methods and if we associate several 
of such interfaces with a class; but this makes only sense, however, if  
− we deal explicitly with forwarded method calls, since invocation of exported 

methods in general may lead to invocations of imported methods and thus to 
forwarded method calls. 

− we allow for call-backs where a method invocation of an exported method in turn 
leads to an invocation of imported methods and thus to forwarded method calls that 
in turn may lead to the invocation of an exported method and thus to  call backs. 
This manifests to the following view: 

− A basic class is a simple form of a system with only an export interface. 
− Generalizations of simple classes are classes with interfaces with export and import 

parts. 
− Components are sets of classes with export and import parts. 
− Composition of components is realized by matching and connecting their export/ 

import interfaces. 
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Export/import interfaces, however, introduce a number of severe complications: 
− Method calls are carried out by sequences of exchanged messages representing 

forwarded calls and returns.  
− Simple pre/post specifications of method calls do no longer work.  
− Classes have to be represented by state machines with input and output. 
− The state spaces are formed by the data state of the objects of the classes (the 

valuations of their attributes) and the control states (including the call stacks). 
− In the composition of components represented by state machines we get state 

machines with internal state transitions. An explicit abstraction from local step 
requires recursion to define the state machines. 

The latter idea leads to a break down of the idea of design by contract. One 
solution would be to capture the complete effect of a method invocation even in the 
case of forwarded calls in the pre/post-assertions. This would, however, not only 
destroy the principles of encapsulation, information hiding, and data abstraction in a 
even more general sense, since we had to refer the states and attributes of other cla-
sses in the assertions. It would also obscure the concept of substitutability since we 
could not replace a class by another one that has completely different internal repre-
sentations of its states, but the same observable behavior. 

Giving up the model of synchronous method invocations and seeing method 
invocations consisting of at least two actions, issuing the call and issuing the return to 
the call, we gain a more flexible concept of observability onto the behavior of a class 
and its objects. However, then we have to deal with the more sophisticated question in 
which state an object is when it issues a forwarded call. This analysis leads to a 
critical conclusion: 

− When modeling classes by state machines that receive calls of its export methods 
(and in turn issues return messages for these calls) and issue calls of its imported 
methods (and in turn receives return messages for these calls), then not only the 
states of its local attributes but also its call stack has to be dealt with as part of its 
state space. 

The later fact is a methodological disaster for object orientation showing that the 
idea of method invocations like procedure calls is a concept of programming in the 
small that does not scale up to programming in the large. 

In the following we discuss all these problems, concepts, and demonstrate all these 
complications by examples in detail and point out solutions. 

2   Interfaces and Compatibility: The Principle of Substitutability, 
Modularity, and Observability 

In this section we fix the essential notions of abstraction, interface and architecture. 
We describe the essentials of a basic theory (see also [1]). 

2.1   Syntactic Framework 

We assume some syntax to describe components and architectures. This means that we 
have a syntactic notion of components. Let LC be the formal language of components. 
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Every syntactic element c ∈ LC represents a component. For our purpose, it does not 
matter whether we describe components by graphical languages (like UML) or by 
textual languages (like a programming language such as Java or C# or an architecture 
description language).  

We in addition assume a syntactic composition operator. It is a partial operation on 
components that allows us to compose two components: 

⊗: LC × LC → LC written in infix notation 

Here partial means that not for every pair c1, c2 ∈ LC of components the operation 
yields a well-defined result. Only if two components c1, c2 fit together with respect to 
their syntactic properties (such as their types of their shared variables, their messages 
or method calls fit together) their composition is meaningful. For every pair c1, c2 ∈ 
LC of components, c1 ⊗ c2 is called the composed component, if the composition is 
defined for c1 and c2. In order to deal with the partiality we assume a relation 

ℜ: ℘(LC) → IB 

ℜ(C) holds for a family of components C ⊆ LC if their composition is well-defined. 
So if and only if ℜ({c1, c2}) holds for components c1, c2 ∈ LC (for simplicity we 
ignore here the case c1 = c2 and assume that c1  c2 holds) we get that c1 ⊗ c2 yields 
a well-defined result (we assume that c ⊗ c is not well-defined).  

For finite sets of components {c1, ..., ck} ⊆ LC with ℜ({ c1, ..., ck}) we define 

∏ {c1, ..., ck} = c1 ⊗ ... ⊗ ck 

Using this notation we better assume that the operator ⊗ is commutative and 
associative. Whenever for C ⊆ LC the proposition ℜ(C) holds, ∏ C is called an 
architecture with components from C. 

Using the operation ⊗ we get a hierarchical concept of components – composing 
two components yields a component. Thus an architecture is again a component. A 
more restricted concept is obtained, if ∏ C is not seen as a component again. 
However, such a restriction is not substantial. Given two (disjoint) sets of components 
C1, C2 ⊆ LC we easily define C1 ⊗ C2 by ∏(C1 ∪ C2). 

To keep our framework simple, we only introduced the concept of components 
here but not that of connectors as found in a couple of architecture description 
languages. Connectors are easily subsumed modelling them by special versions of 
components.  

We assume that in the set of all components a subset LS ⊆ LC is given that 
characterizes comprehensive self-contained systems. 

2.2   Substitutability and Compatibility  

When dealing with specifications and behaviours we are in particular interested in an 
essential semantic relation for components namely substitutability (see [15], [10]).  

Definition. Substitutability and Compatibility 
A component c1 is called substitutable for a component c2 if the following holds: in 
every system that is syntactically correct and in which c2 occurs as a component we 
can replace c2 by c1 which results in a system that is again syntactically correct and 
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the observable behaviour it shows is identical to (or a refinement of) the observable 
behaviour of the original system. In this case we also say that c1 is compatible to (or 
refined by)  c2. ❑ 

This definition is informal, since it does not provide a formal model of observable 
behavior. The concept of substitutability is closely related to that of interface speci-
fications, as we will show in more detail below. Each interface specification has to 
characterize the set of components that can be used as replacements for the specified 
component. Thus an interface specification for a component defines the set of comp-
atible components. 

The essential concept that formalizes substitutability is observability. Looking at 
an entity from the outside we can observe certain actions and events. By such 
observations we filter out the relevant information about systems. If we restrict the 
concept of observations we obtain a more abstract view. 

We give a more formal approach to observability in the following section. 

2.3   Syntactic Compatibility 

Our concept of syntactic composability formalized by the predicate ℜ introduces the 
idea of syntactic compatibility of components. Two components c1, c2 ∈ LC are 
called syntactically compatible if we can use component c2 whenever we use c1 
without running into syntactic problems.  

To formalize this we introduce a relation 

 ⊆ LC × LC 

with the following definition for components c1, c2 ∈ LC 

c1  c2 ⇔ ∀ C ⊆ LC \ {c1, c2}:  ℜ(C∪{c1})  ℜ(C∪{c2}) 

The proposition c1  c2 expresses that whenever component c1 can be used as a 
component in a system (leading to a syntactically correct system), c2 can be used 
instead, too. Component c1 can be syntactically replaced by c2. Of course, the system 
that we obtain by replacing component c2 for c1 may show a rather different beha-
viour. We only require that it be syntactically well formed. 

Syntactic substitutability induces an equivalence relation  

˜ ⊆ LC × LC 

on components that corresponds to mutually syntactically substitutability. This 
relation is defined as follows: 

c1 ˜ c2 ⇔ (c1  c2 ∧ c2  c1) 

and called syntactic equivalence.  

2.4   Observable Equivalence 

Now, after we have introduced a basic syntactic framework of components and 
architectures we develop a semantic view onto components. This cannot be done 
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without a precise semantic perspective. We introduce such a concept only for systems, 
to begin with by assuming that we have some idea of observations about systems. 

To formalize observable equivalence we are interested in the question, under 
which conditions two systems are observable equivalent. Syntactic equivalence was 
introduced above. Observable equivalence is modelled by an equivalence relation on 
systems 

≅ ⊆ LS × LS 

The equivalence relation expresses by the proposition s1 ≅ s2 that two systems s1, 
s2 ∈ SC are observably and thus semantically equivalent.  

Theoretically and practically, there are of course many options to define observable 
equivalence. In the end, observability has to be related to the users’ views onto a 
system making explicit which observations about a system are relevant for the users. 
Practically, what is a good notion of observation for system seems often obvious. In 
principle, we may include also non-functional aspects into observability such as re-
action time or consumed resources. In the following, we are rather interested in 
observability of functional properties. 

2.5   Refinement 

On components we introduce the relation of semantic substitutability for components. 
We call this relation refinement and denote it by the relation 

 ⊆ LC × LC 

The relation  is assumed to be transitive and reflexive. Semantic substitutability for 
components has to be and can be directly related to observable equivalence of 
systems. In fact, we could define the relation  formally based on the observability 
relation ≅. We rather keep the two relations independent to begin with and show, how 
they are and must be related then. 

2.6   Compositionality and Modularity 

Refinement for components has to be consistent with composition. This is called 
compositionality. With the introduced concepts we can formally define composition-
ality of refinement  with respect to observabilty ≅. 

Definition. Compositionality and modularity 
The relation  is called compositional (or modular) with respect to ≅, if for all 
components c1, c2 ∈ LC we have: 

c1  c2  ∀ C ⊆ LC, s ∈ LS: ℜ(C∪{c1}) ∧ s ≅ ∏(C∪{c1})  s ≅ ∏(C∪{c2})      

This definition expresses that if c1  c2 holds we can replace in any system s that 
uses the component c1 the component c1 by c2 and get an observably equivalent 
system.  

By refinement  we can extent the relation ≅ from systems to components c1, c2 ∈ 
LC \ LS by the definition 
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c1 ≅ c2 ⇔ (c1  c2 ∧ c2  c1) 

This defines what it means that two components and two systems are observably 
equivalent. For systems c1, c2 ∈ LS, the formula is a straightforward theorem. 

Of course, we expect that observable equivalence implies syntactic equivalence 

c1 ≅ c2  c1 ˜ c2 

If   is compositional, then for all components c1, c2, c3, c4 ∈ LC we have 

ℜ({c1, c2}) ∧ c1 ≅ c3 ∧ c2 ≅ c4  ℜ({c3, c4}) ∧ c1 ⊗ c2 ≅ c3 ⊗ c4 

In this case we call the relation ≅ compositional, too, and we speak of a modular 
theory of components and architectures. 

Refinement and substitutability is, of course, related to inheritance. Actually, 
refinement is the semantically more appropriate idea of inheritance – a relation which 
in object oriented languages, where inheritance is often just code reuse, is not always 
guaranteed. 

Finally we consider the notion of what it means that refinement is fully abstract.  

Definition. Full abstractness 
The relation  is called fully abstract for the equivalence relation ≅, if for all 
components c1, c2 ∈ LC 

c1  c2 ⇐ ∀ C ⊆ LC, s ∈ LS: ℜ(C∪{c1}) ∧ s ≅ ∏(C∪{c1})  s ≅ ∏(C∪{c2})     

Full abstractness means that the refinement relation on components is the most 
abstract relation that guarantees modularity for the chosen concept of observability 
onto systems. There is a way to introduce refinement  based on ≅ such that it is 
always fully abstract. This is achieved by taking the following formula as a definition 
of refinement: 

c1  c2 ⇔ ∀ C ⊆ LC, s ∈ LS: ℜ(C∪{c1}) ∧ s ≅ ∏(C∪{c1})  s ≅ ∏(C∪{c2}) 

If we introduce  independently, this full abstractness is not guaranteed. If   is 
fully abstract and compositional, however, this formula obviously holds and we have 
then also for all components c1 and c2: 

c1 ≅ c2 ⇔ ∀ C ⊆ LC, s ∈ LS:  

(ℜ(C∪{c1}) ∧ s ≅ ∏(C∪{c1})) ⇔ (ℜ(C∪{c2}) ∧ s ≅ ∏(C∪{c2})) 

The relations ≅ and  are called fully abstract, if for all components c1, c2 ∈ LC 
we have 

[ ∀ c ∈ LC: ℜ({c1, c})  c1 ⊗ c ≅ c2 ⊗ c]  c1 ≅ c2 

and respectively 

[ ∀ c ∈ LC: ℜ({c1, c})  ℜ({c1, c}) ∧ c1 ⊗ c  c2 ⊗ c]  c1  c2 

Full abstractness is a methodological essential concept, since only then we can 
replace a component by any of its refinements. 
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2.7   Interfaces and Specifications 

For practical purposes it is difficult to work with an abstract notion of refinement and 
observable equivalence. It is better to introduce explicitly the concept of syntactic and 
semantic interfaces that characterize sets of components that can be used for a certain 
system. Interfaces are specifications of components. 

The notion of a syntactic interface is straightforward. A syntactic interface defines 
a set of components. Formally, an interface is nothing but a predicate 

ℑ: LC → IB 

However, the predicate should fulfil certain properties. Formally, a syntactic 
interface is a predicate 

ℑ: LC → IB 

that is closed under the relation . Formally, then for all components c1, c2 ∈ LC 

ℑ(c1) ∧ c1  c2  ℑ(c2)   

In other words, a syntactic interface ℑ characterizes a set of components, such that 
with every components that is syntactically fine with respect to ℑ all its valid 
syntactic replacements do also fulfil ℑ. 

Formally, a semantic interface is a predicate 

ℑ: LC → IB 

that is closed under the relation . Then for all components c1, c2 ∈ LC we assume 

ℑ(c1) ∧ c1  c2  ℑ(c2)   

In other words, a semantic interface ℑ characterizes a set of components such that 
with every component that is semantically fine with respect to ℑ all its valid 
refinements do also fulfil ℑ. 

The semantic interface ℑ characterizes a set of components. Logical implication 
induces a refinement relation on interfaces. This way notions such as compositionality 
or full abstractness carry over to interfaces.  

A consequent methodological step is to consider interface specifications as non-ope-
rational components, too. Then in architectures specifications and realized components 
can be freely combined. 

2.8   Final Remarks on the Theory 

The introduced theory offers all the concepts introduced and fulfils all the rules given 
can be found for instance in the approach Focus (see [3]). Actually, such a theory 
does not exist so far for object orientation. 

What we have described in this section is essential for a theory and methodology for 
the specification and modular design of architectures and their components. Of course, 
the theory alone is not enough for engineering. Obviously, we need, in addition, a 
useful syntax to represent interface specifications and architectures. The theory, how-
ever, provides a theoretical framework that gives hints which properties an approach 
with a concrete syntax has to fulfil.  
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3   Object-Oriented Components and Interfaces  

Following the object oriented programming paradigm we introduce the essential 
syntactic and semantic notions of method, method specification, interface, class, and 
finally that of a component. We briefly analyze ideas of design by contract (see [7]). 

We repeat the notion of a method, interface, class, and relate it to the concept of 
component based on the idea of design by contract and on state machines. Throughout 
this paper we work with only a few basic notations for state machines.  

3.1   Methods, Invocations and Return Messages 

In this section we introduce an approach to interfaces and components based on ideas 
used in object oriented software development.  

3.1.1   Types, Methods and Invocation Messages 
We work with interfaces that refer to the concept of data types. We deal with variable 
types and constant types.  A constant type is basically a set of data values. 

Definition. Types 
A type is either a constant type or a variable type. Constant types denote basically sets 
of data values or class types (being names of classes used as types of the objects of 
that class). An identifier with constant type denotes a value of that set. A variable type 
is denoted by Var T where T is a constant type. An identifier with variable type 
denotes a variable (an attribute) that has assigned a value out of the set of elements of 
type T.                                                                                                                            ❑ 

A method in object orientation consists syntactically of a method header and method 
body. Since we are not interested in programming as such nor in the particular code 
forming the method body we just deal with syntactic method headers in the following.  

Definition. Method header 
A method header has the syntactic form  

Method m (p1 : T1, … , pn : Tn)   

where p1, … , pn are identifiers for parameters and T1, … , Tn their types. Identifiers 
with constant types carry input and those with variable types serve for output 
(carrying results). To keep notation simple we consider only methods with one 
constant parameter w and one variable parameter v; thus the headers read 

Method m (w : WT, v : Var VT)   

where WT and VT are constant types. The set of method invocations INVOC(m) for 
the method m is defined by the following equation: 

INVOC(m) = {m(b1, b2, w, v, v’): w ∈ WT, v, v’ ∈ VT, b1, b2 ∈ Object} 

where the phrase p ∈ T expresses that p is a value of type T and m(b1, b2, w, v, v’) 
denotes a tuple of values. Here b1 denotes the caller and b2 the callee, v denotes the 
value of the variable parameter before and v’ its value after the end of the execution 
of the method invocation.                                                                                              ❑ 
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In design by contract we treat method invocations as atomic state changes. Later we 
treat method invocations as sequences of state changes, starting with the method 
invocation and ending with the corresponding method return message. In the later 
case, the asynchronous case, method invocations correspond to two messages. 

Definition. In- and Out-Messages for a method header 
A method invocation consists of two interactions of messages called the method 
invocation message and the return message. Given a method header (for explanations 
see above) 

Method m (w : WT, v : Var VT) 

the corresponding set of invocation messages is defined by the following equation 

SINVOC(m) = {m(b1, b2, w, v): w ∈ WT, v ∈ VT, b1, b2 ∈ Object} 

Here we treat variables as call-by-value-return parameters.  The v represents the value 
of the variable parameter before the call. The return message has the type  (where v’ 
is the value of the variable after the execution of the method invocation) 

RINVOC(m) = {m(b1, b2, v’): v’ ∈ VT, b1, b2 ∈ Object} 

With each method we associate this way two types of messages, the invocation 
message and the return message.                                                                                   ❑ 

Given a set of methods M we define 

INVOC(M)  = 
 m∈M

INVOC(m)  

SINVOC(M)  = 
 m∈M

SINVOC(m)   

RINVOC(M)  = 
 m∈M

RINVOC(m) 

This way we denote the set of all possible invocations of methods that are in the set 
of methods M. 

3.1.2   Specification by Contract 
A method can be specified by contract as long as we can understand it as a definition 
of an atomic state change (see [7], [6], [12]). To do that we have to refer to the states 
of an object or more precisely to the states of an object oriented system before and 
after the invocation of a method.  

Definition. States and their Attributes 
The states of the objects of a class are determined by the valuations of the attributes of 
that class. An attribute is a typed identifier. An attribute set V is a set of the form  

V = {a1 : T1, … , an : Tn} 

where a1, … , an are (distinct) identifiers and T1, … , Tn are their types. A type is 
either a constant type or a variable type. Variable types have the syntactic form Var T 
where T is a constant type. A valuation of the attribute set V is a mapping 
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σ: V → UD 

where UD is universe of data values. Of course, we assume for each valuation σ that 
for each attribute a the value σ (a) has the type given to the attribute. σ is also called a 
(data) state of V. By Σ (V) we denote the set of all states for V. In the following we 
consider for simplicity only classes with only one attribute a : Var AT.                       ❑ 

Given the concept of a state of attributes and objects we now define what it means to 
write a specification by contract for a method. 

Definition. Specification by contract for a Method 
Let V = {a : Var AT} be an attribute set. A specification by contract for a method 
with header  

Method m (w : WT, v : Var VT) 

in a class with attribute set V is given by 

Method m (w : WT, v : Var VT) 
 pre P(w, v, a)  
 post Q(w, v, a, v’, a’) 

Here P(w, v, a) and Q(w, v, a, v’, a’) denote predicates – more precisely formulas in 
predicate logic called assertions which contain w, v, a and w, v, a, v’, a’ as their free 
variables. We assume that each “primed” variable v’ and a’ denotes the value of that 
variable in the state after the termination of the invocation.                                          ❑ 

Example. Design by contract 
The following section gives a syntactic interface of the class List. We consider only 
one method here and assume only one attribute 

u : Var Seq Data 

We give the following example of design by contract for a method that gets access 
(“reads”) the ith element of sequence v: 

Method get (i : Nat, r : Var Data); 
 pre 1  i  length(u) 
 post r’ = ith(i, u) ∧ u’ = u 

Here we assume that the functions length (yielding the length of a sequence) and ith 
(yielding the i-th element of a sequence) are predefined for sequences, for instance, 
by an algebraic data type specification. It is essential to write also u’ = u to express 
that the value of the attribute u is not changed by the execution of the method 
invocation.                                                                                                                      ❑ 

It is important to emphasize that the design by contract approach requires knowledge 
about the local state structure of the respective class and object, determined by the 
attribute names and their types. 

3.2   Object Oriented Interfaces 

In this section we formalize the concept of an interface and that of the behavior of 
classes. We start with syntactic aspects and then go on treating behavioral aspects. 
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3.2.1   Simple Export Interfaces 
We start with interfaces of conventional classes which we call export classes. An 
object oriented export interface is described simply by a collection of (exported) class 
names and the methods associated with them. The description of a syntactic class 
interface obviously is very simple. It is the collection of a set of syntactic method 
headers. Nothing is said about behavioral aspects. 

Definition. Syntactic export interface 
A syntactic export interface consists of a set of class types (names) and for each class 
a set M of method headers. Of course, we assume for simplicity that all methods have 
different names, since we do not want to deal with overloading.                                   ❑ 

Of course, we gain more flexibility, if we consider also sets of objects as part of the 
interface. Since we are rather interested in foundational issues, we do not do that. 
Nevertheless, the approach can schematically be extended into this direction. 

In the following we discuss semantic, behavioral notions of interfaces in object 
orientation. 

3.2.2   Specification by Contract for Export Interfaces 
In this section we show how to express a specification by of classes contract. It is 
essentially based on the way to specify methods by contract as introduced above. 

Definition. State transition assertion 
Given a set of attributes V = {a : AT}  a state transition assertion is an assertion  

R(a, a’) 

that restricts the state changes and also the set of reachable states. If the primed 
attributes a’ do not occur in the assertion, we speak of a state assertion, otherwise of a 
state transition assertion.                                                                                                 ❑ 

We use state transition assertions and state assertions to provide behavioral speci-
fications for classes in addition to the assertions given for methods in the design by 
contract. Now we give the definition of the specification of a class by design by 
contract. 

Definition. Specification by contract of classes 
For a syntactic interface consisting of a set of method headers a specification by 
contract is given by a set of typed attributes defining the class state and a specification 
by contract for each of its methods. In addition, a state transition assertion R may be 
given restricting the state changes and a state assertion defining the initial properties. 
R defines by the formula 

∃ a’: R(a, a’) 

also an invariant.                                                                                                             ❑ 

An invariant R for an export interface expresses that each method call fulfills R. This 
means that R(a, a’) holds for every invocation where a is the attribute value before 
and a’ is the attribute value after the invocation. 
 



38 M. Broy 

 

Example  
For the attribute a the relation a’ = a+1 used as an invariant expresses that each 
method invocation increases the value of a by one.                                                       ❑ 

In the next section we show the relation to state machines. 

3.2.3   Export Interfaces Described by State Machines 
The specification by contract takes an atomic state transition view. Every method 
invocation results in an atomic state transition. The pre- and post-conditions 
characterize the states under which such an invocation can take place to guarantee a 
certain property of the generated state. In this section we show that this way 
essentially a state machine is defined (see [10]). 

Definition. Class state machine for an export interface 
Given an interface with an attribute set and a set of methods M the associated state 
transition function is a partial function of the form 

Δ: Σ(V) × INVOC(M) → (Σ(V) ∪ {⊥})  partial 

Here for m ∈ INVOC(M) and s, s’ ∈ Σ(V) the equation Δ(s, m) = s’ expresses that in 
state s the method invocation m is enabled and leads to the state s’ (note that m 
includes the results of the invocation – thus if m is not enabled in state s it may simply 
mean that the results indicated in m of the method invocation cannot occur). If Δ(s, m) 
does not have a defined result, this means that the method invocation m is not enabled 
in state s. Δ(s, m) = ⊥ expresses that the method invocation does not terminate. In 
addition, we assume a set of initial states ΙΣ ⊆ Σ(V).                                                    ❑ 

The state machine associated with a class is easily defined via the specification by 
contract. Give a method invocation m(c1, c2, w, v, v’) for method m with precondition 
P(w, v, a) and post-condition Q(w, v, a, v’, a’), we get (if the call terminates): 

Δ(σ, m) = {σ’: P(w, v, σ(a)) ∧ Q(w, v, a, v’, σ’(a))} 

The difference between a state transition diagram specification of a class and a 
specification by contract is mainly a methodological one. In the first case we consider 
the states and define which method calls are possible in each state and to which suc-
cessor state they lead. In the second case we specify for each method in which states 
they may be invoked leading to which successor states.  

 

c = void c ≠ void 

store(d) {cÕ = d} 

delete() {cÕ = void} 

read(v) {vÕ = cÕ ∧ cÕ = c} 

initial 

 

Fig. 1. State Transition Diagram for the Interface of the Cell 
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Mainly for demonstration purposes we introduce a simple example of a class called 
Cell. Let Data be a given type of data elements. 

Example. Memory Cell 
The memory cell is specified by contract easily as follows. 
Class Cell =  
{ c: Var Data | {void} 
 initial c = void 

 Method store (d: Data) 
  pre c = void 
  post c’ = d 

 Method read (v: Var Data) 
  pre c ≠ void 
  post c’ = c ∧ v’ = c  
 Method delete () 
  pre c ≠ void 
  post  c’ = void 
} 

This defines the interface of a very simple memory cell. Here there is no nontrivial 
invariant involved since all states are reachable.                                                            ❑ 

It is easy to provide a state transition description for the state machine modelling a cell 
as it is shown in Fig. 1. 

3.3   Closed View: Systems 

By classes with export interfaces we get a closed view onto object oriented systems. 
Two systems with export-only interfaces cannot be composed in a nontrivial way 
since all we can do with these systems is to call their methods. Therefore we conclude 
that such classes describe systems, but not general components. 

For closed system we get a very simple concept of observability. What we can 
observe is the sequences of method calls, and, in particular, whether method calls 
terminate and which results they produce. 

4   Open View: Components 

In this section we develop a concept of a component for object orientation. A 
component is a syntactic unit that can be composed. 

4.1   Forwarded Method Invocations 

To be able to compose two components in a way that they cooperate they have to 
exchange information. The only way to do this in object orientation is by mutual 
method invocation. The possibilities to allow for such forwarded calls and to compose 
components on this basis are discussed in the following. 

The specification of export-only interfaces is particularly simple since it can rely 
on a very simple control flow. By each method invocation exactly one state transition 
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is executed. The control is transferred to the component and returned at once. A 
method invocation is seen as an atomic possible huge state change this way. This is 
also called the synchronous view. This makes the execution model extremely simple 
– too simple for the component world. 

The simplicity of this situation changes significantly if we allow and consider 
additional invocations of methods during the execution of methods. We speak of 
forwarded method calls. This way we get a considerably more complex execution 
model. A method invocation can be seen as an atomic state change then only, if we 
comprise also state changes for the objects affected by the forwarded method 
invocations in this state change. As a consequence the method invocations change not 
only the local attributes of the called object, but also those of other objects. 

In this section we consider further invocations of methods during the execution of 
method calls. Then we need a more involved execution model. A method invocation 
can be seen as an atomic state change only, as long as we comprise also state changes 
for all the objects affected by the forwarded method invocations. As an effect we do 
no longer consider a single class or a single object with an encapsulated state changed 
by the method invocations. We consider a family of objects the encapsulated states of 
which are changed by a method invocation by forwarded method calls. 

4.1.1   Interactive Method Invocation Illustrated by MSCs 
In this section we do not understand method calls as events that result in atomic huge 
state changes for all the objects affected by forwarded message calls, but consider the 
addressed class and object in isolation. A message sequence chart can nicely represent 
an instance of the interaction behavior of an interactive method invocation. An exam-
ple for a method get is shown in Fig. 2. 

Here we simplify the representation of the method invocation messages and  
the return messages in diagrams. We do not list the identifier of the object in the 
 

LinkedList

2 ≤ i ≤ le

 {le  = le ∧ lr  = lr ∧ vd = vd }

get(i)

lr.get(i-1)

return(d)

return(d)

 

Fig. 2. Message sequence chart for the method get 
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invocations explicitly. The message return(d) stands for a return message with the 
return variable r with r = d. We can give or even generate a message sequence chart 
for each of the state transitions, however, the number of message sequence charts can 
be very high – even infinite. We study the situation of forwarded method invocations 
in a more systematic way in the following section. 

4.2   Export/Import Interfaces 

In general, in object orientation, a class uses other classes via their methods as sub-
services to offer its interface behavior. Thus a class on one hand offers methods to its 
environment called an export method and on the other hand invokes methods of other 
classes called import methods. We speak of the exported methods and the imported 
methods of a class. This is captured by import/export interfaces.  

In the following we deal with issues related to the import and export of interfaces 
in more detail. 

4.2.1    Syntax of Export/Import Interfaces  
In the case of forwarded calls we deal with classes dealing with two kinds of methods, 
imported and exported ones. This should be explicitly reflected in the syntactic and 
semantic interface. Every interface specification with an explicit import part and an 
explicit export part defines a so-called export/import interface. 

Definition. Syntactic export/import interface 
A syntactic export/import interface consists of two syntactic interfaces represented by 
two sets of method headers, the export and the import methods. For simplicity, we 
assume that all methods in the export and import interfaces have different names, 
since we do not want to deal with overloading. Given an export/import interface of a 
component c we denote by EX(c) its export interface and by IM(c) its import inter-
faces, both being simple one-way interfaces.                                                                 ❑ 

A syntactic export/import interface can easily be described graphically as it is shown 
in Fig. 3. 

A class in object oriented programming, in general, uses other classes in forwarded 
method invocations and therefore in general has an export/import interface in spite of 
the fact that the idea of explicit imported interfaces is surprisingly not supported by 
most of the conventional object oriented techniques. Often the import interface is kept 
implicit for classes and not mentioned at all. 

  

 Import 

 Method mi ... 

 

 Export 

 Method me ... 

 

Fig. 3. Graphical representation of an export/import interface 
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4.2.2   Control Flow and the Call Stack 
When dealing with export/import interfaces there may be call-backs, in general. In 
other words, a method invocation for object b may lead to a forwarded call that in 
turn may lead to invocation of methods of object b. We speak of a call-back. If the 
number of forwarded calls and possible call-backs is not statically bounded, we need 
additional attributes in the local state of the interface to be able to find the correct 
continuation for returned invocations (in the sense of the return addresses for subrou-
tine calls in assembler languages).  

In the general case, we use a full call stack. The call stack is the classical way to 
manage nested procedure calls or method invocations. Every time a procedure or 
method is called, the parameters and the return address are pushed onto the call stack. 
This way the call stack has to deal with control as well as data aspects. The call stack 
determines the continuation after the return of a forwarded call and provides the local 
state information providing the values of the parameters of the call under execution.  

4.2.3   Export/Import Interfaces by State Machines with I/O 
In this section we demonstrate how to describe the behavior of export/import 
interfaces by state machines. Since we have a set of in- and out-messages related to 
each of the method headers, this easily generalizes to class interfaces. 

Definition. In- and Out-Messages of a syntactic class interface 
Let c be a syntactic export/import interface with set EX(c) of export methods in the 
set IM(c) of import methods. It defines a set In(c) of ingoing messages 

In(c) = SINVOC(EX(c)) ∪ RINVOC(IM(c)) 

and of a set of outgoing messages Out(c) specified by 

 Out(c) = SINVOC(IM(c)) ∪ RINVOC(EX(c))                              ❑ 

Since we have a set of in- and out-messages related to each of the method headers of 
an export/import interface, we construct a state machine that describes the behavior of 
the export/import interface. It uses the invocation messages in the export interface and 
the return messages in the import interface as input and the invocation messages in the 
import interface and the return messages in the export interface as output. 

Definition. Export/import state machine 
Given an interface c with an attribute set V and a set of methods, the associated state 
machine has the form (here we work with a total function) 

Δ: State × In(c) → ((State × Out(c)) ∪ {⊥}) 

Here for m ∈ In(IF) the equation Δ(s, m) = ⊥ expresses that the method invocation 
does not terminate. The state space State is defined by 

State = Σ(V) × CS 

Here CS is the control state space. Its members can be understood as representations 
of the control stack. Since we do not want to go deeper into the very technical discus-
sion of control stacks, we do not further specify CS. Of course, we assume that a set of 
initial states IState ⊆ State is given.                                                                               ❑ 
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A convenient way to describe I/O state machines is a state transition diagram. In the 
case of asynchronous models of method invocations we work with state machines 
with input and output called Mealy machines.  

It is not difficult to go - in the case of export-only interfaces - from such a Mealy 
machine  

Δ: State × In(IF) → (State × Out(IF)) ∪ {⊥}) 

to the kind of state machines  

Δ’: Σ(V) × INVOC(M) → (Σ(V) ∪ {⊥}) 

we have introduced for export-only interfaces. In the case of export-only interfaces 
the only output messages that exist are return messages. Each transition (s’, y) = Δ(s, 
x) determines a transition z’ = Δ(z, c) and vice versa. From (s’, y) = Δ(s, x) we easily 
construct the data states z, z’ ∈ Σ(V) from s and s’ since in this case the control stack 
is trivial. The message c ∈ INVOC(M) with c = m(b1, b2, w, v, v’) with z’ = Δ(z, c) is 
determined by x = m(b1, b2, w, v), y = m(b1, b2, v’). 

4.2.4   Observability for Export/Import Interfaces  
For an interface with export and import it makes an essential difference how a system 
is seen from the import/export point of view either making the import explicit or 
keeping it implicit. For a useful interface description, we have to make the export 
explicit. This leads to another idea of observability. Now we observe sequences of 
alternating input and output actions as well as the termination of method invocation. 

Actually we have now two ways of non-termination. In one case an input message 
m in a state s may not lead to an output message. This is indicated by Δ(s, m) = ⊥. 
Moreover, a method invocation will lead to an infinite sequence of in- and out-
messages under certain reactions of the environment. 

In this model of observability using I/O state machines we can even do a step in 
the direction of concurrency using interleaving. Assume, we send a method invo-
cation method to a component that triggers an invocation of an import method repre-
senting a forwarded method call. Then a sequential execution the next input message 
could only be another invocation message (triggered by a back-call) or the return 
message to the previous call. But nothing prevents us from giving an arbitrary invo-
cation message (which cannot be distinguished from a back-call, anyhow) and thus to 
handle interleaved independent method invocations. We only have to place return 
messages at the right places in the input streams. Thus we get a restricted form of 
concurrency. 

4.2.5   Concurrency and Multi-threading 
So far we have mainly considered sequential control flow without concurrency. In more 
technical terms we did only consider executions of one thread. This kept our execution 
model simple. In large distributed systems a more complex situation is mandatory. 
There are several threads executed concurrently. Then it is no longer valid that a method 
invocation leads to a sequence of method invocations and return mes-sages that is 
completed before the next method invocation takes place. New method invocations 
from other threads may arrive before a method invocation sequence is completed. 
Several method invocations are executed, in general, in an interleaving mode. 
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Decomposing a method call into to complementary method exchanges, the 
invocation call and the return, which is done to be able to have open specifications of 
components and classes gives an interesting additional option: now we may (or may 
not) accept further method invocations before a method call has been completely exe-
cuted – before is has sent back its return message. This forces us to freely introduce 
interleavings of calls and to introduce language constructs that allow us to avoid them 
in cases where calls should be completed before further calls are processed (mutual 
exclusion). 

As a result of concurrency and multi-threading we get interleaving of single threa-
ded invocation sequences. This leads also to issues of synchronization to be able to 
control the interleaving. Note that now the invocation stack has to be replaced by a 
individual stack for each thread. 

4.3   Towards a Theory of Components and Architectures in OO 

In this chapter we discuss where we are with a theory of components and archi-
tectures in object orientation. In this section we relate the introduced notion of object 
orientation to those of the theory introduced in section 3. We discuss the state of the 
art and methodological challenges. 

4.3.1   What Is a Component in Object Orientation 
In object orientation an obvious choice for the notion of a component is a class. 
Actually one can argue that objects should be considered components. We, however, 
prefer to see components as building blocks at design time in contrast to objects that are 
rather building blocks at runtime. So, for our purpose, classes or compounds of classes 
are an obvious choice. But is a class really a good choice for the notion of a component? 

Obviously classes show a lot addressing the idea of components. There is a notion 
of interface, state encapsulation, and information hiding for classes as we would 
expect it for components. There at least two arguments, however, throwing some 
doubts on classes being good candidates for components: 

− Classes are too small. Actually, of course, one may argue that we can write very 
large classes. But then we get unstructured huge entities. We need for components 
larger building blocks with additional hierarchical structuring concepts. 

− Classes do not support concurrency. 
− There is no tractable interface specification technique for classes with export and 

import. 
This shows that classes, although they provide concepts close to what we need for 

components, fail to address necessary requirements for the notion of components. 

4.3.2   What Is Composition in Object Orientation 
There is no widely accepted concept of composition in object orientation. Never-theless, 
it is not so difficult to define a concept for composition in object orientation. Giving two 
classes with export and import methods (where import methods are related to objects of 
certain classes), we can compose them in a way, where classes may mutually call 
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methods in their import signature that are in the export signature of the other class. We 
speak of internal calls. For simplicity, we ignore any problems that may arise with 
inheritance and method overloading where methods may be called for classes with 
names that do not occur in the export of the class or methods. So we concentrate on the 
method names and ignore any aliasing. 

We start with the definition, when two classes can be defined. Given classes ci with 
i = 1, 2, and export signature EX(ci) and import IM(ci) we define that ℜ({c1, c2}) 
holds, if there are no name conflicts. Then export signature EX and import IM of the 
result of the composition c1 ⊗ c2 is defined by 

EX(c1 ⊗ c2) = (EX(c1) \ IM(c2)) ∪ (EX(c2) \ IM(c1)) 

IM(c1 ⊗ c2) = (IM(c1) \ EX(c2)) ∪ (IM(c2) \ EX(c1)) 

In other words, in the composed class c = c1⊗c2 exports what is exported by one of 
the classes and not imported by the other one and imports what is imported by one  
of its component classes and not exported by the other one. 

Next we consider the semantic composition of the two state machines associated 
with the classes (i = 1, 2) 

Δι: Statei × In(ci) → (Statei × Out(ci)) ∪ {⊥} 

Now we define the composed state machine 

Δ: State × In(c) → (State × Out(c)) ∪ {⊥} 

as follows 

State = State1 × State2 

and for x ∈ In(c) and (s1, s2)  ∈ State1 × State2 we define:  

 x ∈ In(c1) ∧ (s’1, y) = Δ1(s1, x)  
 y ∈ In(c2)  Δ((s1, s2), x) = Δ((s’1, s2), y) 

 y ∉ In(c2)  Δ((s1, s2), x) = ((s’1, s2), y) 

 x ∈ In(c1) ∧ Δ1(s1, x) = ⊥  Δ((s1, s2), x) = ⊥ 

In other words, we give the input to that state machine to which the input fits. If the 
output is in the input of the other state machine, we do another state transformation. If 
this is done forever, then the state transition does not terminate, and thus Δ((s1, s2), x) 
= ⊥. In analogy we define the case where the input goes to the second component: 

 x ∈ In(c2) ∧ (s’2, y) ∈ Δ2(s2, x)  
 y ∈ In(c1)  Δ((s1, s2), x) = Δ((s1, s’2), y) 

 y ∉ In(c1)  Δ((s1, s2), x) = ((s1, s’2), y) 

 x ∈ In(c2) ∧ Δ2(s2, x) = ⊥  Δ((s1, s2), x) = ⊥ 

This gives a recursive definition for the state transition function Δ. Actually, this 
way of definition results in a classical least fixpoint characterization of Δ. 
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4.3.3   What Is a System in Object Orientation 
A system in terms of our theory in object orientation is a class (perhaps a composed 
one) with an empty import signature. A system nevertheless can actually be composed 
with a component in an interesting way. Consider a system s with export set EX(s) and 
import set IM(s) = ∅ and a component c with EX(s) ⊆ IM(c). Then c ⊗ s describes a 
composed system where s is used as a local sub-system. For two systems composition 
degrades to the union of the signatures. 

5   Conclusion 

We have defined a first step of an instance of a theory of components, interfaces, and 
composition in object orientation. What we presented is certainly not sufficient for 
practical purposes. However, it gives a first idea what can be achieved and shows the 
limitations of existing approaches and unsolved problems. 

Perhaps, it is worthwhile to draw a bottom line for what we have achieved by out 
theory and also to draw some conclusions: 

− We defined a concept of component in OO as a generalization of the concept of a 
class: a component is a set of classes and their visible methods, divided into export, 
import and internal (hidden) ones. 

− We described a model for this concept of components, namely state machines with 
input and output. 

− We introduced composition for this concept of components. 
− But we pay a (too) high price: we have to make the call stack explicit in the state 

space of the machine, in general. 

There seems to be only one way out: introducing an explicit notion of a 
component, defining a wrapper for a set of classes and the methods (being the 
components in object orientation as we have introduced them), and connecting them 
by asynchronous message passing. 

                                                                                                        To be continued ... 
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Abstract. Good components need precise contracts. In the practice of
Design by ContractTM, applications and libraries typically express, in
their postconditions and class invariants, only a subset of the relevant
properties. We present:

– An approach to making these contract elements complete without
extending the assertion language, by relying on “model classes” di-
rectly deduced from mathematical concepts.

– An actual “Mathematical Model Library” (MML) built for that pur-
pose

– A method for using MML to express complete contracts through ab-
straction functions, and an associated theory of specification sound-
ness.

– As a direct application of these ideas, a new version of a widely
used data structure and algorithms library equipped with complete
contracts through MML.

All the software is available for download. The approach retains the prag-
matism of the Design by Contract method, suitable for ordinary appli-
cations and understandable to ordinary programmers, while potentially
achieving the benefits of much heavier formal specifications.

The article concludes with a discussion of applications to testing and
program proving, and of remaining issues.

1 Introduction

Professional-quality components should be accompanied by precise specifica-
tions, or “contracts”, of their functionality. Contracts as written today are often
incomplete; we will discuss how to make them complete through the use of a
model library.

The rest of section 1 discusses contracts and the problem of how to make them
complete. Section 2 outlines the key element of our solution: the notion of model.
Section 3 describes our application of this concept: the Mathematical Model Li-
brary (MML) which we have developed for this work. Section 4 explains how
then to use MML to turn incomplete contracts into complete ones. Section 5 de-
scribes how we applied this approach to provide a completely contracted version
of a widely used data structure and fundamental algorithms library. Section 6
presents a comparison with earlier uses of models for specification. Section 7 is
a conclusion and presentation of future work.
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1.1 Contracts

Before they will accept a large-scale switch to Component-Based Development,
organizations with a significant stake in the correct functioning of their software
need some guarantee that the components they include in their applications will
themselves perform correctly. The first step is to know what exactly each of these
components is supposed to do.

The Design by ContractTMtechniques of Eiffel address this issue: every com-
ponent is characterized by contract elements specifying its abstract relationship
to other software elements. An individual operation (feature) has a precondition,
stating what initial conditions it expects from its callers, and a postcondition sta-
ting what it provides in return; a group of operations (class) has an invariant,
stating consistency conditions which each of these operations must preserve and
each initialization mechanism (creation procedure) must ensure initially.

Design by Contract provides a number of advantages [21]: a methodological
basis for analysis, design and implementation of correct software; automatic doc-
umentation, such as the class abstracters present in Eiffel environments extract
from the class texts themselves; help for project management; a disciplined ap-
proach to inheritance, polymorphism and dynamic binding; and support for test-
ing and debugging, including [8] component tests automatically generated and
run from the contracts. An important characteristic of these techniques as avail-
able in Eiffel is that they are not for academic research but for practical use by
developers, and indeed libraries such as EiffelBase [20,18,10] covering fundamen-
tal data structures and algorithms are extensively equipped with contracts. This
distinguishes the context of the present study from extensions to Java or other
languages (such as JML [16] or iContract [14]), which require the use of tools,
libraries and language extensions different from what programmers actually use
for real programs. We are closer in this respect to frameworks such as Spec# [2]

This pragmatic focus also explains why Design by Contract distinguishes itself
from more heavy-duty “formal methods” in its attitude to specification complete-
ness: you can benefit from the various advantages of contracts mentioned above
even if your contracts express only part of the relevant specification properties.
More precisely, in the practice of Design by Contract as illustrated by the Eiffel
libraries:

– Preconditions tend to be complete. Specifying “require cond” enables the
routine to assume that condition cond will hold on entry, and not to provide
any guarantee if it doesn’t. Clearly, this is safe only if the routine specifies
such conditions exhaustively.

– Postconditions and class invariants, however, are often underspecified; the
next section will give typical examples. Unlike with preconditions, there is
no obviously disastrous consequence; operations simply advertise less than
they guarantee or (in the invariant case) maintain. The same holds for other
uses of contracts: loop invariants and loop variants.

Why are such specification elements incomplete? There are three common
justifications:
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– Economy of effort (or, less politely, laziness): expressing complete specifica-
tions would require more effort than is deemed beneficial.

– Limitations of the specification language: in the absence of higher-level mech-
anisms, such as first-order predicate calculus (“for all”, and “there exists”
quantifiers), some specifications appear impossible to express; an example
would be “All the elements of this list are positive”.

– The difficulty of expressing postconditions that depend on a previous state
of the computation

This discussion will show that there is no theoretical impossibility, and will
propose an approach that makes it possible to express complete specifications
and apply them to practical libraries such as EiffelBase [10].

1.2 Incomplete Contracts

A typical feature exhibiting incomplete postconditions is put from class STACK
of EiffelBase describing the abstract notion of stack, and its descendants provid-
ing various implementations of stacks. It implements the “push” operation on
stacks (the name put is a result of the strict consistency policy of Eiffel libraries
[18,20]). In its “flat” form taking inheritance of assertions into account, it reads

put (v: like item)
-- Push ‘v’ onto top.

require
not full: not full

. . . Implementation, or “deferred” mark . . .

ensure
item on top: item = v
count increased: count = old count + 1

end

The query item yields the top of the stack, and the query count its number
of items; full tells whether a stack’s representation is full (never true for an
unbounded stack).

The precondition is complete: if the stack is not full, you may always push
an element onto it. The postcondition, however, is not: it only talks about the
number of items and the top item after the operation, but doesn’t say what
happens to the items already present. As a result:

– It leaves some questions unanswered, for example, what will get printed by
create stack.make empty
stack.put (1)
stack.put (2)
stack.remove
print (stack.item)
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whereas the corresponding abstract data type specification [21] is sufficient
to compute the corresponding mathematical expression: item (remove (put
(put (new, 1), 2))).

– It leaves the possibility of manifestly erroneous or hostile implementations,
for example one that would push v but change some of the previously present
items.

The specification of STACK, like most specifications in existing libraries, tells
the truth, and tells only the truth; but it does not tell the whole truth.

For most practical applications of Design by Contract, these limitations have
so far been considered acceptable. But it is desirable to go further, in particular
to achieve the prospect of actual proofs of class correctness. Proving a class
correct means proving that its implementation satisfies its contracts; this will
require the specifications to be complete.

1.3 Approaches to Completing the Contracts

To address the issue of incomplete specifications, and obtain contracts that tell
the whole truth, we may envision several possibilities.

A first solution is to extend the assertion language. In Eiffel and most other
formalisms that have applied similar ideas, assertions are essentially Boolean
expressions, with two important additions:

– The old notation, as used in the last postcondition clause (labeled count inc-
reased:), making it possible to refer to the value of an expression as captured
on routine entry (a “previous state of the computation” as mentioned in the
earlier terminology).

– The only clause of ECMA Eiffel [24] (similar to the “modifies” clause of
some other formalisms), stating that the modifying effect of a feature is
limited to a specific set of queries; a clause only a, b, . . . is equivalent to a
set of clauses of the form q = old q for all the queries q not listed in a, b, . . ..

This conspicuously does not include first-order predicate calculus mechanisms.
It is conceivable to extend the assertion language to include first-order con-

structs; the Object Constraint Language [30] for UML has some built-in quan-
tifiers for that purpose. We do not adopt this approach for several reasons. One
is that first-order calculus is often insufficient anyway; it doesn’t help us much
to express (in a graph class) an assertion such as “the graph has no cycles”.
Another more practical reason is that it is important in the spirit of Design by
Contract to retain the close connection between the assertion language and the
rest of the language, part of the general seamlessness of the method. In par-
ticular, for applications to testing and debugging — which will remain essential
until proofs become widely practical — it is important to continue ensuring that
assertions can be evaluated at reasonable cost during execution. This rules out
properties of the form “For all objects, . . .” or “For all objects of type T, . . .”.
Properties of the form “For all objects in data structure D, . . .”, on the other
hand, are easy to handle through Eiffel’s agent mechanism [9,25]. For example,
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we state that “all values in the list of integers il are positive” through the simple
Boolean expression

il.for all (agent is positive)

using a simple query is positive. In the absence of an agent mechanism, it would
be still possible, although far more tedious and less elegant, to write a special
function for any such case, here all positive applying to a list of integers.

A second solution is to rely on extra features that express all the properties of
interest. all positive is a simple example, but we may extend it to more specific
features; for example a class such as STACK may have a query body yielding the
stack consisting of all the items except the top one (the same that would result
from a “pop” command). We can then add to put a postcondition

body === old Current

where === is object equality. This technique works and has the advantage that
it is not subject to the limitations of first-order predicate calculus; in our graph
example we may write a query acyclic — a routine in the corresponding class —
that ascertains the absence of cycles. The disadvantage, however, is to pollute
classes with numerous extra features useful for specification only. In addition, we
must be particularly careful to ensure that such features can produce no state
change. The solution retained below is in part inspired by this approach but
puts the specification features in separate classes with impeccable mathematical
credentials.

A third solution would be to refer explicitly, in contracts, to internal (non-
exported) elements of the objects’ state. This is partially what a query such
as body does, in a more abstract way. But the need for complete specification
is not a reason to break the fundamental rules of information hiding and data
abstraction.

For the record, we may mention here a fourth solution, as used in some specifi-
cations of the ELKS library standard [29], based on [26] and relying on recursive
specifications. In the absence of a precise semantic theory it is not clear to us
that the specifications are mathematically well-founded.

2 Using Models

The approach we have adopted for specifying libraries retains some of the el-
ements of the second and third solutions above, but through a more abstract
technique for describing the state.

2.1 The Notion of Model

The basic idea is to consider that a software object — an instance of any particu-
lar class — is a certain computer representation of a certain mathematical entity,
simple or complex, called a model for the object, and to define the semantics of
the applicable operations through their effect on the model.
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model.extended(x)old

(Top)

modelold x

Fig. 1. Sequence model of a stack

As model for a stack, for example we may choose a sequence, with the con-
vention that the last element of the sequence corresponds to the top of the stack
(although the reverse convention would work too). Figure 1 illustrates this.

Then the effect of put can be specified through the model: put simply adds
the new element at the end of the sequence. We will express this below and see
that the existing postconditions (count increased by one, item denoting the new
element) become immediate consequences of this property.

2.2 A Model Library

The model for a software object, as noted, is a mathematical object, such as a
set, a sequence, a number, or some combination of any such elementary objects.
But we still want to preserve the seamlessness of the approach; this would not
be the case if we expressed contracts in a separate mathematical notation, for
example a mathematical specification language.

It turns out that a language such as Eiffel is perfectly appropriate to express
such concepts. For example we can write a class MML SEQUENCE [G] that
directly models the mathematical notion of sequence, and use it in lieu of the
mathematical equivalents, as long as we observe a golden rule:

Model Library Principle

Model classes may not have com-
mands.

A command (as opposed to query), also called a procedure, is a feature
that modifies the object state; this is also excluded for purposes of specifica-
tion. (“Creation procedures” will, however, be permitted, as they are neces-
sary to obtain the mathematical objects in the first place.) For example the
MML SEQUENCE class may not have a procedure extend, which would modify
a sequence by adding an element at the end; but it has a query extended such that
s.extended (v) denotes another sequence with the elements of s complemented
by an extra one, v, at the end.

In Eiffel a query may be implemented as either a function (“method” in some
programming languages’ terminology) or an attribute (“field”, “data member”,
“instance variable”). The “Principle of Uniform Access” implies that the differ-
ence is not visible from the outside. As detailed below, the basic model classes
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will be deferred, meaning that they stay away from any choice of implemen-
tation; this is how client classes will see them. Implementation classes are also
provided (section 3.7) for testing purposes; these classes, representing mathe-
matical objects, may implement some queries as attributes. In other words the
corresponding objects have a state, but this causes no conceptual problem since
the Model Library principle guarantees that the state is immutable.

Our library of such model classes is called the Mathematical Model Library
(MML). It is important to note that MML is couched in the programming lan-
guage — Eiffel — for purposes of expressiveness, convenience and seamlessness
only; underneath the syntax, it is a direct expression of well-known and unim-
peachable mathematical concepts as could be expressed in a mathematical text-
book or in a formal specification language such as Z [33] or B [1].

Instead of relying on explicit knowledge of the state, the contracts will rely
on abstract properties of the associated model. We add to every relevant class a
query

model: SOME MML TYPE

and then rely on model to express complete contracts for the class and its fea-
tures. Taking advantage of the “selective export” facility of Eiffel [19,25], we
declare model in a clause labeled

feature {SPECIFICATION}

which implies that, depending on the view they choose, client programmers will,
through the documentation tools in the environment, either see it or not. For
simple-minded uses, it is preferable to ignore it; as soon as one is interested in
advanced specification, tests or proofs, it is preferable to retain it.

The model describes a kind of abstract implementation of the concept under-
lying a class. As an implementation, however, it is purely mathematical and does
not interfere with the rest of the class. In particular, the approach described here
has no effect whatsoever on performance in normal operational circumstances,
where contract monitoring is usually disabled. If contract monitoring is on (for
debugging or testing), options should be available to include or exclude the extra
“model contracts”.

2.3 Model Example

Let us now express how to use the notion of model on our earlier example of an
unbounded stack. We use an MML SEQUENCE as model for a stack. To this
effect we add to class STACK a query:

feature {SPECIFICATION} -- Model

model: MML SEQUENCE [G]
ensure

not void: Result / = Void



Making Specifications Complete Through Models 55

Based on this model, we can complete the contract of put by adding the
model-based properties:

put (v: like item)
-- Push ‘v’ onto top.

require
not full: not full

do
. . . Implementation . . .

ensure
model extended: model === old model.extended (v)
item on top: item = v
count increased: count = old count + 1

end

The assertion model === old model.extended (v) states that the model after
the feature invocation is the same as the model before the feature invocation
except that v has been added to the end of the sequence. In a formalism such as
Z it would be expressed as the following before-after predicate (where :: is the
operator for appending a value to a sequence):

model′ = model :: v

We now have a completely contracted version of put: the postcondition spec-
ifies the full effect, without revealing details about the implementation [35].

2.4 Theories and Models

As detailed in section 6 (devoted to the comparison with earlier work), mod-
els have already been used in several approaches to program specification and
verification, notably Larch and JML.

In general, these approaches treat models as additions to the specification
framework, each created in response to a particular specification need. The model
classes themselves have to be contracted in the existing specification language
(without model features); the meaning of the model is based solely on its own
contracts. We again get into the problems of underspecification, this time within
the model library.

MML does not integrate the models into the specification framework, but
into the specification language. We postulate that the models correctly reflect
their theoretical counterparts which, as a consequence, define their semantics.
To reason about assertions using models, we translate them into the underlying
theory. The contracts of model classes directly reflect axioms and theorems of the
associated theory, assumed to have been proved (often long ago, and documented
in mathematical textbooks), so we can just take them for granted.

As our basic theory, we choose typed set theory. It is a well-defined formal-
ism, easy to understand for the average software developer; the typed nature of
modern programming languages such as Eiffel makes types a familiar concept.
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A formalization intended for software modelling purposes can be found in the
language of the B method [1] (whose program refinement aspects, studied in
[31] in relation to contracts, are not relevant for this work). The availability of
theorem provers for this theory [28,34] is an added advantage.

3 Model Library Design

The model library is designed around a set of deferred classes describing the
interfaces of the modeling abstractions.

3.1 Model Classes

Eiffel’s inheritance and genericity mechanisms enable us to model the definition
of powersets, relations, functions, sequences, bag and graphs in terms of sets and
pairs. The result reflects the definitions of [1]. Inheritance in particular provides
a direct way to represent the subtype relation.

Figure 2 is a BON diagram of the inheritance structure of the principal de-
ferred classes. The top type is MML ANY, with two direct heirs MML SET and
MML PAIR. (All the class names have the MML suffix, omitted in the figure
except for MML ANY.)

3.2 Specifics of Model Objects

Mathematical objects are different from software objects:

– Mathematical objects are normally immutable: the operation 5 + 1 does not
change 5, but instead describes another number. Similarly, we cannot “add”

Fig. 2. A BON diagram of MML
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an element to a set; rather, we describe new sets by union or intersection of
existing sets like in {a, b, c} ∪ {d} = {a, b, c, d}.

– They have no notion of identity distinct from their value.

Software objects do not have these properties: they have a mutable state, and
an identity independent from their value. MML classes, although expressed in
Eiffel, represent mathematical objects and hence must satisfy immutability and
not rely on object identity.

3.3 Immutability

Enforcing immutability means that an instance of an MML class, once created,
will never change its state. All features of the class other than creation procedures
are pure (side-effect-free) queries.

3.4 Comparing Mathematical Objects

Not relying on object identity means that comparison operations will never apply
to references, but to objects.

Object equality in Eiffel has a predefined version, default is equal, which com-
pares objects field-by-field, and a redefinable version, is equal, whose semantics
also governs the equality operator. Neither is adequate, however, for defining
the equality of model objects, because two Eiffel objects cannot be equal un-
less they have the same type; in mathematics this is too strong a requirement,
even with the type approach we are following. For example an object of type
MML RELATION [X, Y] can never be equal, in the Eiffel sense, to an object of
type MML SET [MML PAIR [X, Y]], whereas mathematically they may repre-
sent the same concept (a relation is a set of pairs).

For that reason, MML ANY introduces a special query equals to represent
mathematical object equality. Its descendants redefine it to describe their specific
notions of equality. Every comparison of MML objects should use equals, not
is equal. To guarantee this and avoid mistakes, MML ANY and descendants do
not export is equal.

Here is the specification of equal in MML ANY:

equals alias “===” (other: MML ANY): BOOLEAN
-- Is other mathematically equivalent to current object?

require
other not void: other / = Void

ensure
symmetric: Result implies (other.equals (Current))
yes if equal as objects: is equal (other) implies Result

The first postcondition clause expresses symmetry, the second that object
equality implies mathematical equality (although, as noted, not necessarily the
other way around).



58 B. Schoeller, T. Widmer, and B. Meyer

The precondition refers to Void values, which will not arise with mathematical
objects. This clause will go away thanks to the ECMA Eiffel standard [24] which
deals with this issue statically; all MML types will be attached [23] and hence
statically guaranteed non-void.

The alias clause makes it possible to use a === b as shorthand for a.eq-
uals (b).

3.5 Class Overview

Here are some of the features of the MML classes in the top part of the hierarchy
as shown in figure 2.

MML SET is the basic class for the definition of sets as models. It implements
most basic operators. Examples of available predicates on sets are is member
(x ∈ A), is subset (A ⊆ B), is proper subset (A ⊂ B) or is disjoint (A ∩B = ∅).
Other operators include united (A∪B), intersected (A∩B), subtracted (A−B),
cartesian product (A×B) and so on. The class also provides a non-deterministic
choice operator called any item.

MML PAIR represents tuples of cardinality two. All other types can be de-
scribed in terms of MML PAIR and MML SET.

MML RELATION describes relations viewed as sets of pairs. Thanks to in-
heritance we adapt set operations into operations on relations.

The class then adds another substantial set of relation-specific features: queries
such as is reflexive and is transitive, transformations such as image and inversed.

Relational composition causes the only problem with using the language’s type
mechanisms to model set-theoretical type rules. The notion of relation involves
two generic parameters, representing the types of the source and target sets. But
the expression r1.composed (r2) requires a third generic type, the target set of
r2. This cannot be modelled directly since only classes, not features, may have
generic parameters.

Our solution is to take ANY as the type of the second argument. This has
sufficed for the examples we have encountered so far, but we may have in the
future to add a third generic parameter to the class just for the sake of the
composition operator.

MML FUNCTION describes possibly partial functions, viewed as a special
case of relations. It defines such concepts as partiality and surjectivity.

MML SEQUENCE, MML BAG, MML GRAPH provide the library with a
richer set of modeling concepts. Sequences in particular provide part or all of
the model for many concepts, including lists, strings, files and others for which
the ordering of data is important.

3.6 Quantifiers

To model quantifiers, we use Eiffel’s agent mechanism. Agents are objects encap-
sulating features, and hence functionality. These objects are immutable, so the
introduction of agents does not affect the “pure” (side-effect-free) requirement
on the model library.
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The agents we use for our model-based specifications represent predicates. For
example ∀x ∈ S.P (x) will appear as S.for all(agent P(?)) where the question
mark represents the bound variable — “open argument”’ in Eiffel terminology;
an agent expression like agent P(?) where all arguments are open can be ab-
breviated into just agent P.

For modularity and ease of use, all the basic quantifier mechanisms based on
this technique are grouped into a specific class (a “facet” abstraction [35]) called
MML QUANTIFIABLE, with the following two features.

feature -- Quantifiers

there exists (predicate: FUNCTION [ANY, TUPLE [G], BOOLEAN]):
BOOLEAN is

-- Does current contain an element which satisfies
-- predicate ?

require
predicate not void: predicate / = Void

deferred
ensure

definition: Result =
(not for all (agent negated (?, predicate)))

end

for all (predicate: FUNCTION [ANY, TUPLE [G], BOOLEAN]):
BOOLEAN is

-- Does current contain only elements which satisfy
-- predicate ?

require
predicate not void: predicate / = Void

deferred
ensure

definition: Result =
(not there exists (agent negated (?, predicate)))

end

The contracts capture the relations of ∀ and ∃. negated is a feature from the
class MML FUNCTIONALS offering generic functionals such as negation and
composition on predicates defined by agents. We may note in passing that this
class and MML QUANTIFIABLE achieve — thanks in particular to agents —
the side goal of providing, within the Eiffel framework, a substantial subset of
the mechanisms of functional languages such as Haskell.
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3.7 Implementing the Model Classes

MML classes as seen so far are all deferred (abstract). A deferred class may have
no direct instances; correspondingly, it need not provide any implementation for
its features. Non-deferred (concrete) classes, directly describing software objects,
are called effective [21].

If we are interested in completely contracted classes for proving purposes, de-
ferred classes are clearly sufficient. There is no need for direct instances of model
objects, for implementation of model features, or more generally for execution.

If, on the other hand if we are also interested in equipping classes with com-
plete contracts for the purpose of testing them more effectively, we will need
implementations — effective versions of the original classes.

As a result of these observations, MML includes a set of reference implemen-
tations, one provided (as an effective descendant) for each of the directly usable
deferred classes.

All implementations assume that the sets are finite and small enough to be
represented through ARRAY or LINKED LIST data structures. This is sufficient
for the problems we have tackled so far.

Most of the work for the default implementation is done in the two classes
MML SET and MML PAIR. MML SET uses the ARRAYED SET data struc-
ture of EiffelBase. MML PAIR just defines two variables one and two to represent
the values of a pair.

Because typed set theory allows describing all other structures (bags, se-
quences etc.) in terms of these two, their implementation builds on implemen-
tations of sets and pairs.

4 Using Models to Achieve Complete Contracts

The model library as sketched in the previous section enables us to reach our
original goal of equipping realistic, practical classes with complete contracts. We
now explore this process and its application to some important classes of the
EiffelBase library.

4.1 Devising a Model

The first step in equipping a class with model-based complete contracts is to
choose a model that will adequately capture the state of its instances; in the
STACK example the choice was sequences.

As with the basic object-oriented design issue of of finding the right inher-
itance or client relation, there is no general, infallible process. [35] gives some
hints.

For example, a mathematical relation is probably the right model for classes
describing hash tables or other dictionary-like structures. As another hint, the
EiffelBase placement of the random number generator class as as a descendant
of COUNTABLE SEQUENCE suggests sequences as the model for this notion.
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4.2 The Abstraction Function

We may call the relationship between a concrete software object and its MML
model its “abstraction function” (a notion introduced in [13] in the form of
the “representation function”, its inverse, actually multi-valued). For the AR-
RAYED STACK class we use the following model:

feature{SPECIFICATION} -- Model

model: MML SEQUENCE [G] is
-- Model of the stack

local
l: LINEAR[G]

do
create {MML DEFAULT SEQUENCE [G]}Result.make empty
l := linear representation
from

l.start
until

l.off
loop

Result := Result.prepended (l.item)
l.forth

end
end

Model queries always return an attached (non-void) result in the sense of
ECMA Eiffel. They have no feature-specific contracts (preconditions or post-
conditions), but may have associated constraints as part of the class invariant.
Any implementation of the abstraction function (potentially useful, as noted, for
applications to testing) may only rely on the invariant.

4.3 Composite Models

In many of the more advanced examples it is not realistic to capture the complete
state of a data structure through an atomic model built directly from one of
the classes of MML, such as a single sequence in the examples above. As an
example, consider the EiffelBase class LINKED LIST, describing a sequence of
values equipped with a cursor to facilitate traversal and manipulation (figure 3).

To describe the full state, we may use a tuple of a sequence s and a cursor
position n, yielding an abstraction function of type:

model : LINKED LIST [G]⇒ SEQUENCE[G]× N

To build this abstraction function into the class we first define an abstraction
for each component of the model:
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feature{SPECIFICATION} -- Model

model index: INTEGER is
-- Model of the cursor position

do
Result := index

end

model sequence: MML SEQUENCE [G] is
-- Model of the list when regarded as a sequence

do
. . .

end

Then we create a common model by pairing the two components:

model: MML PAIR [SEQUENCE [G],INTEGER] is
-- Model of the list

do
create {MML DEFAULT PAIR}Result.

make(model sequence,model index)
end

Our experience shows that this is a convenient practice. In particular we have
retained the technique, illustrated in all the above examples, of always using a
single model query expressing the entire abstraction function and yielding a sin-
gle object; if the model conceptually involves several components — in the last
example, a sequence and an integer — we turn them into a single one by taking
advantage of the MML classes for pairs and sets. This rule yields a consistent style
and enables us to refer for any class to “the model” and “the abstraction function”.

1 count

item

index

back forth

start finish

before after

Fig. 3. LINKED LIST with active cursor

4.4 Classic and Model Contracts

Most Eiffel classes, especially in libraries, are equipped with some contracts
expressing important elements of their intended semantics. We will call them
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classic contracts in contrast to contracts relying on the model library, called
model contracts.

Classic contracts are usually easy to understand for programmers, even those
who may be put off by more formal approaches. But, as noted, they are often
incomplete, especially postconditions and invariants. With the help of model
contracts we should be able to check that they are at least sound, according to
the following definition:

Definition: Soundness of a Model

A classic contract for a model-equipped class is sound
if:

1. Every classic precondition implies the corre-
sponding model precondition.

2. Every model postcondition implies the corre-
sponding classic postcondition.

3. Every model invariant implies the corresponding
classic invariant.

In the informal terms used at the beginning of this discussion: model contracts
give us “all the truth”; classic contracts, the only ones that less advanced or less
interested programmers will see, are sound if what they tell, while perhaps not
the full truth, is still “the truth”.

To this effect, condition 1 guarantees that every call that appears correct to
a client programmer working on the sole knowledge of the classic contracts will
indeed satisfy all the required conditions — even if it might satisfy more than
strictly needed.

Condition 2 guarantees that every call will, on return, deliver every condition
promised to clients - even if it might deliver more than classically advertised.

Condition 3 guarantees that the consistency constraints expected of instances
of a class actually hold.

On the basis of this definition, let us examine the soundness of the STACK
specification extract. The interesting part is the postcondition, consisting of three
clauses, two classic and one model-related:

ensure
model is extended: model === old model.extended (v)
item pushed: item = v
count increased: count = old count + 1

From the invariant, we know that

invariant
count defined through model: count = model.count
item defined through model: item = model.last
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By combining the assertions of the postcondition and the invariant, we can
derive the following two proof obligations to verify the soundness of the classical
contracts:

(model === old model.extended (v)) and
(item = model.last)

implies
(v = item)

(model === old model.extended (v)) and
(old count = old model.count) and
(count = model.count)

implies
(count = old count + 1)

Both properties can be easily verified using a theory for sequences. The no-
tion of soundness is particularly interesting in combination with inheritance.
It is possible to prove soundness at an abstract level, in a deferred class such
as STACK, without having to redo the proof in effective descendants such as
ARRAYED STACK. This point was discussed in [22].

5 Specification of a Full Library

As a testbed for the approach described here, and a major application of in-
terest in its own stake, we considered EiffelBase [10], a reusable, open-source
library of data structures provided with the Eiffel environment. Making heavy
use of multiple-inheritance and genericity,the classes of EiffelBase include not
only implementations of the data structures but also offer a rich set of deferred
classes that capture useful concepts such as abstract containers, common traver-
sal strategies, and mathematical structures such as “ring” and total order. The
full design of the library is discussed in [20].

5.1 Overall Structure

We produced a fully contracted version of the structural classes of EiffelBase;
a significant endeavor since that part of the library includes 36 classes totalling
1853 exported (public) features.

The process of completing the specifications brought to light numerous in-
consistencies in the library. Using model specifications, we were able to come up
with a cleaned up hierarchy for EiffelBase. Figure 4 on the facing page presents a
BON diagram of this hierarchy. A full specification for each class appears in [35].

5.2 Models of DYNAMIC LIST

As an illustration of the work involved in this reengineering of EiffelBase for com-
plete contracts, we consider a typical class. DYNAMIC LIST is the parent for
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Fig. 4. The inheritance hierarchy of EiffelBase

the implementation of lists through arrays (ARRAYED LIST) and linked struc-
tures LINKED LIST. Dynamic lists, like EiffelBase lists in general (see figure 4)
are “active”: they contain a movable cursor with a current cursor position.

The classes of our reengineered library bear the names of the correspond-
ing EiffelBase classes prefixed by SPECIFICATION , for example SPECIFICA-
TION DYNAMIC LIST.

Four different models are available to describe the state of the dynamic list.
They are inherited from the parent classes and describe different possible views
of lists:

feature{SPECIFICATION} -- Model
model bag: MML BAG [G]

-- Bag model for the list
-- (from SPECIFICATION BAG)

model indexable: MML RELATION [INTEGER,G]
-- Table model for the list
-- (from SPECIFICATION TABLE)

model cursor: INTEGER
-- Cursor model for the list
-- (form SPECIFICATION TRAVERSABLE)

model sequence: MML SEQUENCE [G]
-- Sequence model for the list
-- (from SPECIFICATION TRAVERSABLE)
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All four relations are connected by the invariant of SPECIFICATION DYNA-
MIC LIST. For example the value of the cursor is limited by the size of the
sequence:

model cursor >= model sequence.lower bound − 1
model cursor <= model sequence.upper bound + 1

The domain of the bag has to be the range of the sequence:

model bag.domain === model sequence.range

This shows how the class invariant can be used as a so-called gluing invariant
between the different mathematical abstractions of the list.

5.3 Problems Discovered

Most problems we found in EiffelBase were caused by heavy underspecifications,
contradictions in contracts and flaws in the taxonomy. Here are some examples:

– The equality relation of “active” (cursor-based) data structures might involve
not only elements of the structure, but also a cursor position and other
internal data. All active data structures were missing a clear specification of
whether they should be regarded equivalent if they have the same data but
different cursor positions.

– The class TRAVERSABLE SUBSET does not inherit from class TRAVER-
SABLE, even though it implements all features offered by TRAVERSABLE.
This design decision prohibits polymorphic use.

– The features prune and prune all in class SEQUENCE move the cursor to
off, even if the element to be pruned is not present in the sequence.

– The feature wipe out in class ARRAY is marked as obsolete. Obsolete feature
clauses are not the proper way to declare a feature as inapplicable.

– The class BILINEAR inherits twice from LINEAR to implement bi-linearity.
This makes specification difficult, as it is not always clear which iteration
features are derived for which inheritance relation.

– Internal cursors and functionals such as for all, there exists and do all do
not represent the same concept and should be distinguished. The linearity
is not necessary for an implementation of logic quantifiers.

A full list of problems discovered can be found in [35].

6 Related Work

Models have been used before for software specification. Early work by Hoare [13]
suggested the use of models. The Larch language and toolset [12] relies on models
for program verification. In contrast to our approach, Larch introduces a special
language for the specifications of models. This creates a conceptual separation
between the model-based specifications and the programming language. Special
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projects provide embedding mechanisms of Larch models into such languages as
Smalltalk [6] and C++ [15].

JML [16,5] applies models to the domain of modular specifications of Java pro-
grams. JML includes an extensive model library for the specification of object-
oriented programs, offering more than a hundred Java classes describing very
diverse specification mechanisms. The core of the library comprises structural
classes such as JMLSequence and JMLValueSet. The technique presented in this
paper is strongly related to the model variables of JML [7]. The major difference
is that JML model variables introduce the notion of state into the contractual
specification. We view models as abstraction functions, without model variables.
In addition, as explained earlier, we treat models as an extension to the contrac-
tual language and not as part of the surrounding framework.

Müller, Poetzsch-Heffter and Leavens [27] extend the use of model variables
and procedures to the field of frame properties. We have not explicitly addressed
this important issue here. Our working hypothesis is that to the extent that the
model expresses all the properties of interest any effect the software’s operations
may have on properties not covered by the model is irrelevant. (Eiffel can, as
noted, express frame properties through the newly introduced only postcondi-
tion clause, but the precise relation between models and the only clause still
needs to be explored).

The Spec# programming language [2] currently offers predefined sets and
sequences as value types. In [17], Leino and Müller suggest a general approach
for model fields that employs the Boogie methodology for object invariants.
This promises a major simplification for reasoning on model fields and model
field updates.

ASMs [11] and AsmL [3] use the concept of models and introduce model
variables with a related notion of model programs. This yields executable speci-
fications since one may treat the model as an abstract program that operates on
the abstract state denoted by the model variables. By this, AsmL can provide
executable specifications. The verification process consists of showing that the
implementation is a behavioral subtype of that executable specification.

Also, ASMs define a set of background constructs [4], like sets, tuples, arrays
and lists. These constructs are defined “ahead of time” used by algorithms as a
variable working space.

The Z specification language [33,32] and the B method [1] have both been used
to apply set theory to specify software in conjunction with before-after predicates.
Our work is intended to provide Eiffel contracts with the same expressive power.

Mitchell and McKim [26] introduced models in the context of Eiffel and Design
by Contract.

7 Conclusion

The framework described here appears to allow the development of libraries
with complete contracts, not too difficult to write yet still understandable by
any programmer who cares to learn a few basic concepts. We are continuing
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to apply this process to the EiffelBase library, which lies at the core of many
applications and hence plays a major practical role. Research work that will
immediately benefit from this effort includes:

– Our ongoing effort to produce proofs that the classes indeed satisfy their
contracts.

– Complementary work on entirely automatic (“push-button”) tests of com-
ponents based on their contracts [8], evidently made all the more interesting
if the contracts are more extensive.

So far we have mostly applied our model-based techniques to libraries such
as EiffelBase describing fundamental computer science concepts. Although we
believe they can also be fruitfully applied to more application-oriented classes,
or to graphical libraries such as EiffelVision, this remains to be demonstrated
and is one of the next challenges.

The effort of producing complete contracts for EiffelBase has already born
fruit: while the library has been carefully designed and is reused in many com-
mercial and non-commercial applications, the process has uncovered a number of
technical and conceptual flaws. These will be reported and fixed in the “classic”
EiffelBase, although we definitely hope that — in line with the applied nature
of this work and its intention, thanks to Eiffel’s built-in contracts, to serve the
direct needs of operational developments — the version with complete contracts
will become the reference.

The mere process of writing the complete contracts and the resulting improve-
ments to classic EiffelBase has already shown that more complete specifications
improve the Design by Contract process and lead to clearer abstractions.
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Abstract. This paper describes a solution for bus scheduling of distributed 
multi-mode TDL (Timing Definition Language) components. The TDL compo-
nent model is based on the concept of Logical Execution Time (LET), which 
abstracts from physical execution time and thereby from both the execution 
platform and the communication topology. The TDL component model allows 
the decomposition of hard real-time applications into modules (= components) 
that are executed in parallel. A TDL module runs in one particular mode at a 
time and may switch to another mode independently from other modules. This 
is in contrast with global modes as introduced by other available hard real-time 
systems and introduces new challenges for bus scheduling. 

1   Introduction 

Traditionally, the development of software for embedded systems is highly platform 
specific. However, with more powerful processors available, there is a shift of 
functionality from hardware to software and the requirements are becoming more 
ambitious. A luxury car, for example, comprises about 80 electronic control units 
interconnected by multiple buses and driven by more than a million lines of code. In 
order to cope with the increased complexity of the resulting software, a more platform 
independent “high-level” programming style becomes mandatory. In case of real-time 
software, this applies not only to functional aspects but also to the temporal behavior 
of the software. Dealing with time, however, is not covered appropriately by any of 
the existing component models for high-level languages. 

A particularly promising approach towards a high-level component model for real 
time systems has been laid out in the Giotto project [5][8][9][10] at the University of 
California, Berkeley, by introduction of  Logical Execution Time (LET), which abst-
racts from the physical execution time on a particular platform and thereby abstracts 
from both the underlying execution platform and the communication topology. Thus, it 
becomes possible to change the underlying platform and even to distribute components 
between different nodes without affecting the overall system behavior. 

 This paper refers to a component model, named TDL (Timing Definition 
Language) [15], which has been developed in the course of the MoDECS1 project at 
the University of Salzburg, as a successor of Giotto. It shares with Giotto the basic 
idea of LET but introduces additional high-level concepts for structuring large real 
time systems.  
                                                           
1  The MoDECS project (www.MoDECS.cc) is supported by the FIT-IT Embedded Systems 

grant 807144 (www.fit-it.at). 
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In the following, we shall start with an explanation of LET and proceed with an 
overview of the TDL component model. Then, we focus on the distribution of TDL 
components and describe the problems related to independent mode switches. The 
description of our approach to automatic bus schedule generation for these 
requirements is the core contribution of the paper. 

2   Logical Execution Time (LET) 

LET means that the observable temporal behavior of a task is independent from its 
physical execution [8]. It is only assumed that physical task execution is fast enough 
to fit somewhere within the logical start and end points. Fig. 1 shows the relation bet-
ween logical and physical task execution. 

 

Fig. 1. Logical Execution Time 

The inputs of a task are read at the release event and the newly calculated outputs 
are available at the terminate event. Between these, the outputs have the value of the 
previous execution.  

LET introduces a delay for observable outputs, which might be considered a 
disadvantage. On the other hand, however, LET provides the cornerstone to deter-
ministic behavior, platform abstraction, and well-defined interaction semantics bet-
ween parallel activities [11]. It is always defined which value is in use at which time 
instant and there are no race conditions or priority inversions involved. LET also 
provides the foundation for what we call transparent distribution [3] (see Section 4). 

3   TDL Component Model 

Based on the concept of LET, Giotto introduces the notion of a mode as a set of 
periodically executed activities. The activities are task invocations (according to LET 
semantics), actuator updates, and mode switches. All activities can have their own 
rate of execution and all activities can be executed conditionally. Actuator updates 
and mode switches are considered to be much faster than task invocations, thus they 
are executed in logical zero time. The set of all modes reachable from a distinguished 
start mode constitutes the Giotto program. 

Our successor of Giotto, named TDL (Timing Definition Language), extends these 
concepts by the notion of the module, which is a named Giotto program that may 
import other modules and may export some of its own program entities to other client 
modules. Every module may provide its own distinguished start mode. Thus, all 
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modules execute in parallel or in other words, a TDL application can be seen as the 
parallel composition of a set of TDL modules. It is important to note that LET is 
always preserved, that is, adding a new module will never affect the observable 
temporal behavior of other modules. It is the responsibility of internal scheduling 
mechanisms to guarantee conformance to LET, given that the worst-case execution 
times (WCET) and the execution rates are known for all tasks. 

Parallel tasks within a mode may depend on each other, that is, the output of one 
task may be used as the input of another task.  All tasks are logically executed in sync 
and the dataflow semantics is defined by LET. 

Modules support an export/import mechanism similar to modern general purpose 
programming languages such as Java or C#. A service provider module may export a 
task’s outputs, which in turn may be imported by a client module and used as input 
for the client’s computations. All modules are logically executed in sync and again 
the dataflow semantics is defined by LET. Modules are a top-level structuring concept 
that serves multiple purposes:  

1. a module provides a name space and an export/import mechanism and thereby 
supports decomposition of large systems,  

2. modules provide parallel composition of real time applications,  
3. modules are the unit of mode switching, that is, every module executes in its own 

mode and may switch to a different mode independently from other modules, 
4. modules serve as units of loading, that is, a runtime system may support dynamic 

loading and unloading of modules, and  
5. modules are the natural choice as unit of distribution, because dataflow within a 

module (cohesion) will most probably be much larger than dataflow across module 
boundaries (adhesion).  

The fact that modules are the unit of mode switching implies that an application 
consisting of multiple TDL modules is not in a single global mode. This is in contrast to 
state-of-the-art systems, which support only global mode switches. Furthermore, the 
possibility to distribute TDL modules across different computation nodes leads us to the 
notion of transparent distribution as explained in more detail in Section 4 and in [3].  

Example TDL Modules 
The following TDL source code shows two modules M1 and M2. M1 exports three 
named constants and two tasks, and M2 imports M1 and may therefore access the 
exported entities. Module M1 defines two modes of operation, f11 and f12, where f11 
is the start mode. Both modes invoke two tasks inc and dec and check the mode 
switch condition once per mode period, which in both cases is 10ms. The difference 
between the two modes is that in f12 the task dec will be invoked twice as fast as in 
f11. Module M2 defines a single mode, which uses the outputs of tasks inc and dec in 
order to calculate the sum and update an actuator. Depending on the mode of M1, the 
output will be a constant value or it will change over time. As a developer specifies 
only the timing behavior in TDL, the functionality of the tasks has to be implemented 
in another programming language. The functions invoked by the tasks, the drivers for 
reading sensors and updating actuators, and the guards for conditional execution can 
be implemented in any imperative programming language such as C. The external 
functionality code is indicated by the keywords uses and if. 
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module M1 { 

 

  public const 

    c1 = 50; c2 = 200; refPeriod = 10ms; 

 

  sensor 

    int s uses getS; 

 

  public task inc {    // wcet=1ms 

    output int o := c1; 

    uses incImpl(o);   // inc. by step 10 

  } 

 

  public task dec {    // wcet=1ms 

    output int o := c2; 

    uses decImpl(o);   // dec. by step 10 

  } 

 

  start mode f11 [period=refPeriod] { 

    task 

      [freq=1] inc();  // LET of task inc is 10/1 = 10ms 

      [freq=1] dec(); 

    mode 

      [freq=1] if switch2m2(s, inc.o) then f12; 

  } 

 

  mode f12 [period=refPeriod] { 

    task 

      [freq=1] inc(); 

      [freq=2] dec();   // LET of task dec is 10/2 = 5ms

    mode 

      [freq=1] if switch2m1(s, inc.o) then f11; 

  } 

} 

module M2 { 

 

  import M1; 

 

  actuator 

    int a := M1.c2 uses setA; 

 

  public task sum {  // wcet=1ms 

    input int i1; int i2; 

    output int o := M1.c2; 

    uses sumImpl(i1, i2, o); 

  } 

 

  start mode main [period=M1.refPeriod] { 

    task 

      [freq=1] sum(M1.inc.o, M1.dec.o); 

    actuator 

      [freq=1] a := sum.o; 

  } 

} 

 

Fig. 2 shows the outputs of module M1’s inc and dec tasks, and module M2’s sum 
task. Module M1 is in mode f11 at the beginning, therefore the sum task is producing 
a constant output. After pushing the sensor button, a mode switch occurs and task sum 
produces the corresponding output pattern. The delay between the output of the sum 
task and the output of the inc and dec tasks is due to the LET semantics. 
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Fig. 2. Functional and temporal behavior of modules M1 (mode f11 and then f22) and M2  

4   Transparent Distribution  

The term transparent distribution in the context of hard real-time applications is 
defined with respect to two points of view. Firstly, at run-time a TDL application 
behaves exactly the same, no matter if all modules (that is, components) are executed 
on a single node or if they are distributed across multiple nodes. The logical timing is 
always preserved, only the physical timing, which is not observable from the outside, 
may be changed. Secondly, for the developer of a TDL module, it does not matter 
where the module itself and any imported modules are executed. The TDL tool chain 
and run-time system frees the developer from the burden of explicitly specifying the 
communication requirements of modules. The mapping of modules to computation 
nodes is defined separately in a platform configuration file, which also contains the 
physical properties of the communication infrastructure (e.g., bandwidth, protocol 
overhead and payload size). It should be noted that in both aspects transparency 
applies not only to the functional but also to the temporal behavior of an application. 

In order to illustrate the importance of LET for transparent distribution, we 
consider an example of two modules M1 and M2, located on two different nodes. For 
the sake of simplicity, we assume that each module has a single mode of operation, 
which invokes a single task. task1 runs within module M1 and task2 runs within 
module M2 using as input the output of task1. In other words, module M2 imports 
module M1, and task2 has as input the output port of task1. For this example, we 
further assume that task2 runs twice as often as task1, that is, the LET of task1 is 
twice the LET of task2.  

Fig. 3 shows an example for the communication required between the two tasks. In 
order to implement this exchange of information, we assume a communication layer 
on both nodes that we call TDL-Comm [3]. Its purpose is to send and receive 
messages at appropriate times so that the LET constraint of task1 is met. This means 
that the output value of task1 has to arrive at node2 before LET1 ends. 
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Fig. 3. Sample communication between two tasks 

5   Bus Schedule Generation 

This section presents the basic concepts, terminology and the algorithm which 
generates the bus schedule for the TDL component model. The bus schedule is gen-
erated at compile time. We do not describe how the TDL tasks are scheduled on the 
particular node where a TDL module is executed. 

5.1   Preliminaries for Bus Scheduling 

We assume a network infrastructure based on broadcast semantics, that is, a frame 
sent by one node can be received at the same time by all other nodes. Furthermore, we 
assume that packets sent by different nodes cannot be combined into a single packet 
but are sent as individual network frames according to some protocol. This rules out 
special support for systems such as EtherCAT, where a frame can be shared by 
multiple nodes. 

The access to the shared communication medium is collision free via a TDMA 
(Time Division Multiple Access, [12]) approach. In order to support this, we rely on a 
mechanism for clock synchronization over the network. Furthermore, we adhere to 
the Producer/Consumer model. This means that the nodes that generate information—
the producers—trigger the sending of information over the network. The nodes that 
need the information—the consumers—do not send any requests to the producers as it 
is the case in the Request/Response model. 

5.2   Mode Switch Instants Per Module 

TDL restricts mode switches such that task invocations are never interrupted by a 
mode switch. Thus, mode switches are said to be harmonic, that is, a mode switch 
must not occur during the LET of every task invocation of the currently active mode. 
Therefore, the period of a mode switch must be a multiple of the LCM (least common 
multiple) of the period of tasks invoked in this mode. This check is done during 
compilation. Furthermore, the mode period is always a multiple of the periods of task 
invocations and mode switches. 
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For a given module M, we define mspGCDM as the GCD (greatest common divi-
sor) of mode periods and mode switch periods in all modes in M. We know that 
within the time span [N*mspGCDM  .. (N+1)*mspGCDM] there will not be a mode 
switch within module M. In other words, we can express the mode switch instants as 
an integer multiple of mspGCDM.  

5.3   Bus Period 

As we generate a static schedule, the size of the schedule needs to be finite. Thus, the 
schedule is repeated periodically. We call the time span covered by the schedule the 
bus period. 

As each mode in every module may have its specific communication requirements, 
an obvious candidate for the bus period is the longest time span without a mode 
switch in any module. Thus we calculate the bus period as GCD of the mspGCDM of 
each module M which communicates on the bus.  

Each mode period consists of an integer multiple of bus periods and we introduce 
the term phase in order to distinguish these mutually exclusive parts of a mode. 

5.4   Messages 

We define the term message as the collection of all values of the task output ports 
produced by a task invocation. Each task invocation produces one message. Note that 
if a task is invoked N times per mode period, N messages are produced.  

As an optimization, task output ports that are not used by any client are ignored. 
Furthermore, tasks that are not public or that have no clients produce no messages. 

A message has a unique tag. The reason for that is explained below. The tag 
defines the node, module, mode, task invocation, and the phase of the mode in which 
the message has been produced.  

The size of a message is measured in bytes as the sum of the size of the contained 
values and the size of the tag. 

Each message has individual timing constraints. The release constraint is the 
earliest time instant message sending can be started. The deadline constraint of the 
message is the latest time instant when the message sending must be finished.  

A simple approach is to set the release constraint to the release time of the task 
invocation that produces that message plus its worst case execution time (wcet). The 
deadline constraint results from the end of the LET of the producer task invocation. 
The release and deadline of a message are relative to the phase where the task 
invocation ends. 

5.5   Frames Per Module 

In order to use the communication medium efficiently, we map the messages of a 
phase to one or more reserved communication windows within the bus period such 
that these communication windows can be used for all phases of a module. A reserved 
communication window corresponds to a frame, which is the unit of information to be 
sent on the bus. The exact point in time when the frame will be scheduled within this 
communication window is computed later, see Sect.5.7 
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The schedule generator determines the frames and binds each message to exactly 
one frame. At run-time, the phase of a module determines which subset of the 
messages bound to a frame is actually sent. As the content of a frame varies at run-
time, we need a means to identify messages. For that purpose we have introduced the 
message tag as described above. 

The release (r) constraint of a frame is the maximum of the release constraints of 
the bound messages. The deadline (d) constraint of a frame is the minimum of the 
deadline constraints of the bound messages. The schedule generator guarantees that 
the frame size and constraints are sufficient for the communication requirements of all 
phases. 

To exemplify this, we consider a module with a mode of execution that has three 
phases, and we assume that it produces a message of 4 bytes in phase0, a message of 
3 bytes in phase1, and two messages of 1 byte each in phase2. Depending on their 
size and timing constraints, all messages may be bound to the same frame in the 
schedule, as seen in Fig. 4. The left and right bounds of the message and frame boxes 
represent the release and deadline constraints. 

time

mode period

phase 0 phase 1 phase 2

4
messages
(size in bytes)3

bus period

4

1

1

frames
(size in bytes)

 

Fig. 4. Sample binding of several messages to one frame 

The following pseudo code shows how messages are extracted and bound to 
frames. We assume that the bus period is globally available. 

createFrames(Module M) returns Set { 
 let frames be an empty  set 
 for each mode m of module M { 
    for each phase p of m { 
       let msgs be an empty set 
       for each task invocation instance t that ends in p { 
         add new Message(M, m, t, p) to msgs 
       } 
       bindMsgs(msgs, frames) 
    } 
 } 
 return frames 
} 



 Bus Scheduling for TDL Components 79 

 

The following pseudo code refines bindMsgs, which associates a message with an 
existing frame if possible. Otherwise a new frame is created and the message is bound 
to the new frame. The method createFrame creates a frame, binds the message to that 
frame, sets the size of the frame to the size of the message, and adds the frame to the 
set frames. It also checks if the size does not exceed the maximum allowed on the 
network and if the frame transmission time fits in the bus period. 

The decision of binding a message to a frame depends on the result of metric 
computation and on how many bytes we still have available from the size of the 
frame. We define for each frame the instance variable available, which is reset at the 
beginning of each phase to the size of the frame. The method bind binds a message to 
a frame and reduces the available bytes of the frame by the message size. The concept 
of computing metrics is explained below. 

bindMsgs(Set msgs, Set frames) { 
  reset the available bytes of all frames to the size of each frame 
 for each msg in msgs { 
  if (frames is empty) { 
   createFrame(msg, frames) 
  } else { 
   for each frame in frames { 
    computeMetric(msg, frame) 
    } 
   select the frame selFrame with the highest metric 
   if (selFrame.metric > threshold) { 
    bind(msg, selFrame)  
   } else { 
    createFrame(msg, frames) 
    } 
   } 
 } 
} 

5.6   Heuristics 

The method computeMetric calculates a real number between 0 and 1 and stores that 
number in the instance variable metric of a frame. For each message, we choose the 
frame that has the highest value for the metric, and if that value is higher than a 
threshold (e.g, equal to 0.5), then we bind the message to the frame. The allocation of 
messages to existing frames introduces a tradeoff between saving bandwidth and 
tightening the timing constraints. Hence, the topic is subject to further optimizations 
and heuristics. 

The metric measures the degree of overlapping between the message and frame 
windows. We define the window, for a message or a frame, as the time interval 
between the release and deadline. If we allocate the message to this frame, then the 
new timing constraints for the frame will be the window of the overlapping section. 
Therefore, we want this to be as close as possible to the message and to the existing 
frame, otherwise the timing constrains would be too restrictive and we reduce the 
chance to find a feasible schedule. The overlapping and the metric as an average 
percentage are defined by the following formulas: 
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5.7   Bus Schedule 

For each module in the system, we have identified the required messages and mapped 
them to frames, but the communication windows of different frames could overlap. 
Therefore we collect the frames required by all modules and apply on this global set a 
variation of the Reversed EDF scheduling algorithm, that is, the Latest Release Time 
(LRT) [13].  

This decides when each frame must be sent on the network, depending on the 
release, deadline and worst case transmission time of each frame. Furthermore, the 
bus scheduler has additional constraints that result from the physical properties of the 
communication infrastructure. For example, it includes gaps in the schedule, because 
it has to align the sending time according to the inter frame gaps and the clock 
resolution on the computing nodes. The bus scheduler also generates extra frames, for 
example for time synchronization. Furthermore, it merges adjacent frames in the 
sorted list of frames if they are sent by the same node. This leads to the remapping of 
the corresponding messages to the merged frame. 

6   Related Work 

The state-of-the-art methods and tools for the development of distributed systems 
support at most global mode switches. By our knowledge, there is no other available 
system that allows real-time components to switch modes independently. Further-
more, the LET abstraction is the only model that leads to predictable real-time 
applications in both value and time determinism [11], thus we will emphasize the 
distribution approach in Giotto. Then we will present an example of static off-line 
scheduling, the TTP/C protocol. Another scheduling approach, especially in the 
automotive industry (DaVinci [18], dSPACE[2]) is to use a real-time kernel with 
dynamic scheduling (e.g. OSEK[14]) and a communication system based on static 
priorities (e.g., CAN[1]), therefore the system cannot be predicted and it has to be 
simulated as whole. 

The Giotto language [8][9][10] focuses on task distribution, therefore it provides 
support only for global modes, and only one program runs in the system. [6] presents 
a methodology for distributed real-time code generation, thus multiple suppliers can 
independently compile different parts of a Giotto program to run on multiple CPUs. A 
system integrator assigns each task a particular host and supplier, by annotating the 
Giotto source code. Each supplier receives a part of the Giotto program, and a timing 
interface specifying the time slots that can be used for the task and communication 
scheduling. Given these, each supplier produces code, and then the integrator checks 
the interface compliance and the time safety, that is, if the code meets the Giotto 
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timing requirements (e.g., release and deadlines) on a given platform. The schedule is 
generated off-line in form of virtual machine code, that is, S code [7]. The timing 
interface provides the exclusive time windows for scheduling, but not exactly when to 
perform the actions within the windows, so the supplier still has some flexibility. 
However, these timing interfaces are currently generated manually. Furthermore, the 
approach [6] is described by means of a single mode Giotto program. So it is unclear 
if a distributed multi-mode Giotto system has ever been implemented, though that 
would still stick to the global mode switch approach. 

The time-triggered protocol (TTP) [12] is a communication protocol for fault-
tolerant distributed hard real-time systems. It provides time-triggered communication, 
distributed clock synchronization and a membership service. The communication on 
the bus is done with static, periodic TDMA rounds. In TTP/C [17] the schedule is 
implemented as a message description list (MEDL), specifying exactly when a node 
has to send a certain message and when it has to receive messages from other nodes. 
A TTP cluster cycle consists of multiple TDMA rounds and the messages sent in a 
TDMA round can differ throughout the cluster cycle. A task descriptor list describes 
the cyclic scheduling of application tasks, thus at run-time the scheduler is a simple 
dispatcher. The TTTech [16] tool chain consists of two main tools for application 
development. The TTPplan tool generates the bus schedule (cluster level design). The 
TTPbuild tool generates the task schedule (node level design). The developer must 
specify in TTPplan every message that is sent from any node, and then in TTPbuild 
every periodic task and the messages it consumes. This is in contrast to our approach 
where the required messages are automatically identified from the TDL code. 
Furthermore, the TTP/C protocol supports global mode switches. The length of the 
cluster cycle can be changed from cluster mode to cluster mode and the messages 
transferred in the rounds of each node can be changed as well. However, although the 
protocol is designed for mode switches per subsystem, the current limitation of the 
TTTech tools is that they only support a single global mode of execution.  

Regarding off-line scheduling and flexibility in real-time systems, [4] describes 
algorithms to support also aperiodic messages and to switch modes at run-time. When 
the condition for a mode change is enabled, the mode change request is commun-
icated within a message on the network. All nodes receive the request at the same 
time, and perform the mode switch at the same time (that is, there is a consistent view 
of the mode switch requests). The duration of the mode switch results from the delay 
in the current schedule until it gets to a slot where the switch is feasible, and the 
duration of a transition schedule. This mode switch delay can be computed off-line 
and tested to be lower than some deadline set at design time. 

7   Conclusions 

The LET abstraction invented in the realm of the Giotto project paved the way for 
transparent distribution in real-time systems. We think this novel approach will lead 
to significantly more robust embedded software and will reduce the costs of 
integration testing. The TDL component architecture implies that modes may switch 
independently in each component, which is a radical innovation in real-time systems. 
We presented a scheduling algorithm for message communication, to support these 
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independent mode switches, while maintaining transparent distribution. Future 
research and implementation efforts are required to show the scalability of transparent 
distribution and the scheduling algorithm. Another set of challenges comprises 
optimizations, improved heuristics and metrics for generating the communication 
schedules, considering the feedback from the time safety check for task execution, 
and strategies for avoiding the re-generation of schedules when components are added 
or modified. 
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Abstract. In a step-wise design of systems, models of components are
being developed on several levels of abstractions. In such a design process
model transformations are used to change or replace (parts of) models.
Model transformations are required to be behaviour preserving: com-
ponent models at lower levels should adhere to the descriptions given
in higher levels thus achieving substitutability. Moreover, for complex
components, models usually consist of descriptions of different views or
aspects (e.g. data and protocols). Consequently, different kinds of trans-
formations take place on different views, and together they should
guarantee behaviour preservation.

In this paper we discuss the applicability of formal methods concepts
to model transformations. Formal methods come with build-in notions
of transformations between models, or more precisely, with refinement
and subtyping concepts which provide means for comparing component
models on different levels with respect to their behaviour. Moreover, re-
finement and subtyping concepts for different views can be shown to
neatly fit together. This is achieved by giving a common semantics to all
views, which furthermore opens the possibility of checking consistency.

Keywords: Modelling of components, refinement, substitutability, con-
sistency.

1 Introduction

The OMG’s (Object Managemant Group’s) standard for model-driven archi-
tecture defines models to be the core concept in software development. Model
transformations are intended to provide the means for getting from high-level
platform independent to lower level platform specific models. Model transforma-
tions are expected to be behaviour preserving: lower-level models should reflect
the behaviour of higher-level models.

When modelling complex systems consisting of several components, there
are usually multiple different aspects to be taken into account. A complex
system has to fulfill several orthogonal requirements: on the static behaviour
(data and operations), on its dynamic behaviour (adherence to protocols, sce-
narios), its timing behaviour, etc. Thus a model of a component will usually
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consist of descriptions of several views. As a consequence, a modelling lan-
guage has to supply the designer with facilities for modelling multiple views
and with (at the best formal) concepts supporting a stepwise design with multi-
ple views. This does in particular apply to model transformations which should
operate on all views, but concerns questions of consistency between views as
well.

The UML partly fulfills these requirements on modelling languages. It offers
possibilities for describing multiple views: the static behaviour can be modelled
using class diagrams, protocols are denotable as state machines, scenarios in
sequence diagrams. Concepts supporting a model-driven stepwise design with
multiple views, in particular formal concepts, are however less developed. In this
paper we will therefore discuss which concepts developed in the context of formal
methods can be applied to a model-driven development with multiple views. It
turns out that in particular refinement concepts, which play a central rôle in a
formal approach to software development, can be seen to tightly match (certain
forms of) model transformations. Refinement guarantees that the desired crite-
rion of behaviour preservation (and thus subsitutability) is met. Thus a model
transformation involving a change of a data type or a protocol, a splitting of
an activity or an extension with new operations can be evaluated wrt. a defini-
tion of refinement. Furthermore, questions of consistency between views (and its
preservation under a transformation of the model) can be precisely studied in a
formal framework.

The main focus of this paper lies on illustrating the applicability of formal
methods to a model-driven design. We will therefore most often refrain from
giving a precise definition of the formal concepts and instead explain where the
concepts can be used. To this end we sketch some examples of model trans-
formations on UML diagrams. For every transformation we provide a corre-
sponding concept from formal methods covering this case. The concepts are
all variations of refinement [6, 4, 39], a notion of transformation correctness be-
ing central in formal methods. Definitions of refinement can both be found in
state-based and process-oriented formalisms, and are thus applicable to differ-
ent views. In Section 3 we will discuss how transformations on different views
can be brought together and what their effect on the semantics of the overall
model is. Finally, we show what concepts from formal methods can be used to
define consistency, and whether this kind of consistency is preserved under model
transformations.

Related work. There is a huge amount of work to be found on model transfor-
mations and refactorings, see for instance [14, 38, 35, 18, 23]. The OMG’s focus
is currently on the description of model transformations: its QVT request [14]
aims at defining (standardising) a language for model transformations. A main
issue in this area is the choice of language; aspects of formal correctness play
a minor role. Formal underpinnings of model transformations can especially be
found in the area of graph transformations [22, 2], a relational approach in [1]
and an overview on formal approaches to refactoring in [27]. The work most clos-
est to ours is that of [10] which uses the process algebra CSP and its refinement
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concept for model transformations. That work studies consistency as well, how-
ever, not between static and dynamic diagrams. Concerning the formal methods
side, refinement and its variations is an intensively studied topic as well. For
modelling systems by different views a number of integrations of formal meth-
ods have recently been proposed [21, 31, 13, 11], one of which we will use in this
paper. Refinement in integrated specification techniques is for instance studied
in [3, 33]. The issue of substitutability in component-based designs is (among
others) studied in [20, 25, 19].

2 Model transformations

In the following we will sketch some rather small examples of different kinds
of model transformations on different views of a component. As a modelling
language we employ the UML. It offers various diagram types to model different
aspects of complex system models, in particular diagrams for a static view (data
and operations) and for a dynamic view (process behaviour).

In order to apply formal concepts to UML diagrams we need a formal se-
mantics for them. For this, we first of all have to choose a semantic domain,
and afterwards define a translation of the diagram to this domain. The semantic
domain (or formal method) should most closely reflect the modelling domain
of the particular sort of diagram, i.e. a diagram for describing static behaviour
should be given a semantics in terms of a state-based formal method whereas a
diagram for protocols or interactions should be translated to a formal method
good at modelling dynamic behaviour.

The examples of different views and model transformations elaborated on in
the sequel are described by class diagrams, protocol state machines and sequence
diagrams. The semantic domains for them are Object-Z (for class diagrams) and
CSP (for state machines and sequence diagrams). Object-Z [32] is an object-
oriented extension of Z [34], a state-based specification language for describing
states and operations on them. CSP [30, 16] is a process algebra developed for
modelling parallel communicating systems by means of process descriptions. The
actual translation from the diagrams to the semantic domains is not of inter-
est for the study undertaken in this paper and will therefore only be exempli-
fied here, for details see [24]. Of interest are the formal concepts coming with
these languages, and whether and how they are applicable in a model-driven
development.

The following model transformations will be studied. On the static model, i.e.
class diagrams, we look at classes with

– changes of data types (and corresponding operations),
– splitting of operations, and
– extension with new operations.

On the dynamic model, i.e. protocol state machines, we look at corresponding
transformations which are
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– changes of protocols,
– splitting of transitions, and
– extension with new transitions.

Change of a data type. Figure 1 shows a class A being part of a class diagram
of one model and a corresponding class C of a different model. Attributes and
operations are described in a mathematical notation, close to Z. The change
made in the model transformation concerns the type of the attribute buffer and
consequently the definition of the method choose operating on this attribute. In
class A attribute buffer is of type set (of some elements) and choose chooses just
any element of this set, whereas in C buffer is of type (injective) sequence and
choose always chooses the first element in the sequence.

A C

buffer: set(elements) buffer: iseq (elements)

choose: el! = first(buffer)choose: el! in buffer

initially empty initially empty

Fig. 1. Model transformation changing a data type

The question of interest for the correctness of the model transformation is the
following:

Is every behaviour of C a behaviour of A?

The requirement on this type of transformation is that C should not show a be-
haviour which has not been possible in A, thus preventing unexpected surprises.
The formal concept which can be used for answering the above question is that of
data refinement coming from Object-Z [33, 6]. Data refinement is concerned with
describing the allowed changes for attributes and operations when the externally
observable behaviour is required to be preserved, or more precisely, when every
behaviour of C has to have a corresponding behaviour in A.

For applying this concept to UML diagrams we have to give an Object-Z se-
mantics to it. For our example the resulting Object-Z classes can be found in
Figure 2. An Object-Z class specification starts with a schema (box) describ-
ing the state space, i.e. the attributes of the class. The Init schema declares
restrictions on initial values of attributes. Then a number of operation schemas
can be used to define methods. The Δ-list appearing in operation schemas
lists the variables which are allowed to be modified by an execution of the
operation.

A data refinement relationship between classes is achieved by imposing the
following conditions (which are the downward simulation conditions of Object-Z
data refinement) on the two classes A and C with state AState and CState,
operations AOp and COp and initialisation AInit and CInit , respectively:
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A

buffer : PElements

Init

buffer = ∅

choose
Δ()
el ! : Elements

el ! ∈ buffer

C

buffer : iseq Elements

Init

buffer = 〈 〉

choose
Δ()
el ! : Elements

el ! = first buffer

Fig. 2. Object-Z classes for UML classes

1. A representation relation R : AState ↔ CState has to be given, which relates
the attributes in A with corresponding ones in C . For the example, R is

bufferA =
⋃

1≤i≤#bufferC
bufferC [i ]

(the set buffer in A consists of the elements in the sequence buffer in C ).
2. Initialisation: Every initial state in C must have a corresponding (via R)

initial state in A:

∀CInit • (∃AInit • R)

(which holds since an empty sequence is related to an empty set),
3. Corresponding operations must have corresponding behaviour:

– Applicability: choose in A is applicable iff choose in C is applicable:

∀AState; CState • R =⇒ (preAOp ⇐⇒ preCOp)

(which is true since both are applicable when the set/sequence, respec-
tively, is non-empty),

– Correctness: Whenever choose is applied in C , the result (concerning
outputs and next state) corresponds with an application of choose in A:

∀AState; CState; CState ′ • R ∧ COp =⇒ (∃AState ′ • R′ ∧ AOp)

(which holds since the first element of the sequence in C is an element
of the corresponding set in A as well and thus can be chosen as output).

In model transformations data refinement is usually applied for transfering ab-
stract data types (like sets) to more concrete ones (like arrays, which the sequence
is almost) which are closer to actual data types used in an implementation.
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open

close
read
write

A:
open

close
read
write

C:

open

 

Fig. 3. Model transformation changing a protocol

Change of protocol. Figure 3 shows two protocol state machines belonging to
classes A and C , respectively, which are part of different models, however, where
C is the class corresponding to A. The state machines describe the ordering of
operations which are allowed for a file. The state machine of A belongs to a
higher-level model, it is nondeterministic and also models the case where the
file to be opened is non-existent (and thus no read/write might be possible
after open). In C , the nondeterminism has been resolved, possibly by ensuring
applicability of open on existing files only.

The correctness criterion for such kind of changes is again:

Is every behaviour of C a behaviour of A?

and the formal concept applicable here is that of process refinement [30] coming
from the process algebra CSP. For applying this we now have to translate the
state machine to the semantic domain CSP. On our example the translation
gives us the following process descriptions:

procA = open → OpenA
� open → STOP

OpenA = read → OpenA

� write → OpenA
� close → procA

procC = open → OpenC
OpenC = read → OpenC

� write → OpenC

� close → procC

Here → is the prefix operator of CSP (for sequencing) and � is the external
choice.

Process refinement allows to reduce nondeterminism in a process. Depending
on how discriminating the notion should be one can either use trace or failures re-
finement. The traces describe the possible sequences of operation execution, e.g.
open; read ; write; close ∈ traces(A); failures give additional information, they
describe the traces plus sets of operations which cannot be executed after a trace,
i.e. are refused. The failures of A for instance include the pair (open, {read}):
after executing trace open the class A might reach a state where operation read
is not possible next. Based on these two notions the two versions of refinement
are defined.

1. Trace refinement:
The traces of C have to be a subset of those of A: traces(C ) ⊆ traces(A).
This holds for the example since the state machine of C is contained in that
of A.
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2. Failures refinement:
The failures of C have to be a subset of those of A: failures(C ) ⊆ failures(A).
This holds for the example but would for instance not hold for the reverse
direction: the failures of A are not a subset of the failures of C since A
might refuse read after open whereas C does not. Failures give additional
information about the availability of operations and thus provide a more
discriminating view on processes.

In model transformations, process refinement is used to reduce the nondetermin-
ism in a model and thus again to improve implementability. In an initial model
a designer might want to specify the system in a highly nondeterministic man-
ner thus leaving room for different kinds of implementations. Successive model
transformations might then step by step reduce the nondeterminism, and thus
make the decisions as to how the system is concretely behaving.

Splitting of operation in static model. Figure 4 shows two classes with operations
for sending messages over a network. While class A contains a single operation
send , class C uses two operations for one send, the first one being responsible for
preparing the message for sending (e.g. adding certain headers) and the second
one for actual transmission. (We refrain from actually specifying them since this
gets a bit complex.)

send prepare
transmit

A C

Fig. 4. Model transformation splitting an operation into two

The question to be asked on this type of model transformation is slightly
different since the classes have different operations:

Has every behaviour of C a corresponding behaviour in A?

Here, corresponding means that the execution of prepare and transmit should
have the same effect as that of send . The formal concept to be used in this case
of that of non-atomic data refinement [5, 7] from Object-Z. The conditions to be
checked can be seen as an extension of those of ordinary data refinement. We
assume A to be the abstract class with state AState, initialisation AInit and
operation(s) AOp, and C to contain CState, CInit and split the operation into
COp1 and COp2.

1. Again a representation relation R : AState ↔ CState has to be given.
2. With this R the usual data refinement conditions have to hold, which are

initialisation:

∀CInit • (∃AInit • R)
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and applicability and correctness of prepare; transmit with respect to send :
send is applicable iff prepare is applicable, and the execution of prepare;
transmit corresponds to one of send :

∀AState; CState; CState ′ • (COp1
o
9 COp2) ∧ R ⇒ ∃AState ′ • R′ ∧AOp

∀AState; CState • R ⇒ (preAOp ⇐⇒ preCOp1)

3. Furthermore, there are additional conditions for ruling out new behaviour in
C which did not occur in A: 1) Continuation: once prepare has been executed
transmit is applicable, and 2) Proper starting: transmit cannot be executed
without prior execution of prepare. Since the definitions are quite technical
we refrain from giving them here (see [7]).

Such transformations might be used when the system is developed with models
on different levels of abstraction: what may be a single operation on an abstract
level might be more complex when looking at the system in more detail.

Splitting of operation in dynamic model. Figure 5 shows a similar example of
the splitting of an operation in a state machine. This time sending of messages
is part of a simple protocol involving the receipt of messages as well.

send

receive

A:
prepare

receive

C:
transmit

Fig. 5. Model transformation splitting a transition of a protocol

Again sending is divided into preparation and transmission, in this case by
splitting a transition into two. The question is again

Has every behaviour of C a corresponding behaviour in A?

The formal concept applicable in this case is that of non-atomic process refine-
ment [8] from CSP. The translation of the state machines is straightforward:

procA = send → receive → procA
procC = prepare → transmit → receive → procC

Correspondence of behaviours in this setting is declared via an operation ↑
on traces and failures of processes which (roughly) maps the sequence prepare;
transmit in traces to send . The following formal definition assumes that an oper-
ation AOpi (with index i ∈ I ranging over the operations of class A) is replaced
by a sequence of two operations COpi

1; COpi
2 from class C (e.g. send is replaced

by prepare; transmit).

tr ↑= (tr � {COpi
2 | i ∈ i})[COpi

2 �→ AOpi , i ∈ I ]
X ↑= (X \ {COpi

2 | i ∈ i})[COpi
1 �→ AOpi , i ∈ I ]
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Here, � is a projection function and �→ is renaming. The abstraction operator on
traces removes all COp1s and then replaces COp2s by AOps. For an example:
(prepare; transmit ; receive; prepare; transmit) ↑= send ; receive; send . On
failures, the abstraction operator ignores COp2s and replaces COp1s by AOps.
As an example: {prepare, receive} ↑= {send , receive} and {transmit} ↑= ∅.

Technically, the conditions to be checked are an extension of ordinary process
refinement:

1. Depending on whether traces or failures are to be used we either check
traces(C ) ↑ ⊆ traces(A) or failures(C ) ↑ ⊆ failures(A) (and both of them
hold in our example) .

2. In addition, two conditions corresponding to those of non-atomic data re-
finement have to be checked: 1) Continuation: after a trace of C in which
prepare has occured but transmit not, transmit may not be refused; 2) Proper
starting: There are no traces in C in which transmit occurs without a prior
prepare.

The application scenario of this type of transformation is the same as that of
non-atomic data refinement: the granularity of operations change when moving
to a more detailed level of abstraction.

Extension of static model. The model transformation in Figure 6 replacing class
A by class C is concerned with an extension of the class with new methods. The
classes model buffers with methods put and get , and class C in addition with a
method empty querying the contents of the buffer.

buffer : set(elements)

put: buffer’ = buffer + el?

buffer’ = buffer − el!

A

buffer : set(elements)

buffer’ = buffer − el!
put: buffer’ = buffer + el?

get: el! in buffer get: el! in buffer

C

empty: b! = isempty(buffer)

Fig. 6. Model transformation extending a class with new operations

It is obvious that class C now cannot have exactly the same behaviour as
A anymore (since empty cannot be called on A). The question to be asked for
correctness of the transformation is thus slightly rephrased. Instead of requiring
behaviour preservation, we require substitutivity:

Can a user of A use C as if it were A?

If a client uses C as if it were A (i.e. on A’s interface only), then no difference to
A should be detectable. The formal concept achieving this kind of substitutivity
is subtyping [20], in case of classes it is state-based subtyping from Object-Z [36].
Again, we thus translate the two classes to Object-Z.
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A

buffer : P Elements

put
Δ(buffer)
el? : Elements

buffer ′ = buffer ∪ {el?}

get
Δ(buffer)
el ! : Elements

el ! ∈ buffer
buffer ′ = buffer \ {el !}

C

buffer : PElements

put
Δ(buffer)
el? : Elements

buffer ′ = buffer ∪ {el?}

get
Δ(buffer)
el ! : Elements

el ! ∈ buffer
buffer ′ = buffer \ {el !}

empty
Δ()
b! : B

b!⇔ (buffer = ∅)

Subtyping can be seen as a combination of refinement and inheritance: as far
as existing methods and attributes are concerned they may be changed according
to the data refinement rules and in addition functionality is allowed to be added.
For the new methods it is required that they

– either do not modify attributes at all (which is the case in our example since
empty is a query method),
or

– they only modify new attributes. This allows them to access values of at-
tributes already defined in A, but not to change them.

Formulated in terms of the Z schema calculus, we thus require:

∀AState,CState,CState ′ • R ∧COp ⇒ ∃AState ′ • R′ ∧ ΞAState

In model transformations this type of change is applied when additional func-
tionality is to be added to an existing model. This is for instance the case if
software (and their models) is incrementally constructed, starting with a small
protoype which is then gradually extended.

Extension of behaviour model. The last model transformation to be considered
is the case of extension on the dynamic model. Figure 7 gives the behaviour-
oriented version of the extension described in the previous example, however, in
this case restricting the allowed ordering of method execution (only put and get
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A:

put

get

put

get
C:

empty

Fig. 7. Model transformation extending a protocol with new transitions

in turn). A state machine is extended with a parallel component independently
executing the method empty.
The question is again that of substitutivity:

Can a user of A use C as if it were A?

The formal concept applicable here is the behaviour-oriented version of subtyp-
ing: when the state machines are given a CSP semantics they can be compared
via behaviour-oriented subtyping [37]. The CSP processes of the two state ma-
chines are the following:

procA = put → get → procA procC = C1 ||| C2
C1 = put → get → C1
C2 = empty → C2

Here, ||| is the interleaving operator of CSP, setting two processes in parallel
without any communication between them.

Technically, subtyping is defined on the failure sets of the processes for C and
A:

failures(C ) ⊆ failures(A ||| CHAOS (empty))

The process CHAOS in this definition allows any behaviour over the method
empty, refusing as well as executing it. A weaker notion can be defined by using
the traces of processes instead of the failures (see [26]). The definition says
that the behaviour of C has to be a process refinement of the behaviour of A
interleaved with executions of empty at any time. Hence execution of empty in
C may not interfere with the ”old” behaviour modelled in A.

3 Transformations and Views

These rather small examples have sketched how concepts from formal methods
can be applied for evaluating model transformations once the diagrams have
been supplied with a formal semantics. The question still to be answered is,
however, what is the relationship between these different concepts being applied
to different views? What is the impact of transformations on separate views on
the overall system? In order to formally define this, one semantic domain has to
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be chosen into which all views of one model can be translated. An appropriate
combination of the semantics of separate views then gives the semantics of the
system model. For class diagrams and state machines a possible common seman-
tic domain is CSP. The semantics can be obtained by translating Object-Z to
CSP, and afterwards combining the CSP semantics of the state machine with
that of the class diagram:

CSP(ClassDiagram) ||{joint methods} CSP(StateMachine)

The two CSP processes are combined with parallel composition, this time not
with an arbitrary interleaving of the operations but with synchronisation on
joint methods. That is, if both the class diagram and the state machine give
a specification of a method then both restrictions have to be obeyed. This is
achieved by synchronising on these methods: execution is only possible if both
the class description and the state machine currently allow it.

Applying this technique to the last example of the previous section (buffer
with put and get) we get the following. The CSP process of the class C is

ClassC = �buf :P Elements
C (buf )

C (buf ) = nonempty(buf ) & �el∈buf
get .el → C (buf \ {el})

� put?el → C (buf ∪ {el})
� empty!isempty(buf )→ C (buf )

In this definition the guard (&) and internal choice (�) of CSP are used. The
guard really works as a guard to the execution of the method, get can only be
executed when the buffer is nonempty. The internal choice is used to internally
choose a value, for the initial value of the buffer (since there is no Init schema
restricting it) or for the output of operation get . The CSP process procC for the
state machine has been given in the last section. Thus the semantics of class and
state machine together is ClassC ||{put,get,empty} procC .

The idea of combining Object-Z and CSP part in this way follows an approach
taken in CSP-OZ, a combination of CSP and Object-Z [11]. As a consequence, all
Object-Z concepts which have been used for model transformations need to be
mapped to CSP. Fortunately, this works quite well. For all three kinds of model
transformations (change, splitting, extension) correspondence results between
the state-based and the behaviour-oriented definitions have been proven. More
precisely, the following result has been shown for data and process refinement
[15, 17], adapted to Object-Z in [33]:

Object−Z  
 

 

A

C

trans

trans

data
ref

CSP(A)

CSP(C)

CSP

process
ref
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Theorem 1. Let A,C be Object-Z classes such that C is a data refinement of
A. Let furthermore CSP(A) and CSP(C ) be their corresponding CSP processes.
Then CSP(C ) is a failures refinement of CSP(A).

Whenever a class C is a data refinement of a class A then the corresponding
CSP processes of C and A (obtained via a translation from Object-Z to CSP)
are in a process refinement relationship. This result carries over to the cases of
non-atomic refinement [8]

Object−Z   

A

C

trans

trans

non−atomic
data ref

 

CSP(A)

CSP(C)

non−atomic
process ref

CSP

as well as subtyping [36]:

 

subtype
state−based

 

 

Object−Z   

A

C

trans

trans

CSP(A)

CSP(C)

CSP

behaviour−oriented
subtype

Moreover, all three notions of refinement/subtyping can be shown to be preserved
under parallel composition, which is the operator used to combine the semantics
of views. For instance, for ordinary data and process refinement we have (leaving
out a precise formalisation of the synchronisation set in parallel composition):

Theorem 2. Let A be an Object-Z class with a state machine SMA, and C
and SMC class and state machine, respectively, in another model. If C is a
data refinement of A and CSP(SMC ) a failures refinement of CSP(SMA), then
CSP(C ) || CSP(SMC ) is a failures refinement of CSP(A) || CSP(SMA).

As a consequence, it is possible to separately apply the state-based concepts on
the class diagrams and the behaviour-oriented concepts on the state machines
while still achieving a correct transformation on the complete model.

4 Consistency and Transformations

Correctness of model transformations is sometimes also referred as vertical con-
sistency. In this section we are concerned with horizontal consistency between
views. Views partially define the behaviour of a system. The parts they define
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might not necessarily be disjoint, thus the question arises whether the views
within one model specify contradictory requirements. A formal semantics for
views is useful for answering this type of question as well.

Again, we only sketch this on very small examples. The first example concerns
classes and associated state machines.

put: buffer’ = buffer + el?

buffer’ = buffer − el!

A

get: el! in buffer

buffer : set(elements)
get

put

initally empty

A model with a class diagram and state machines has two partially overlapping
views: the state machines restrict the order of method executions, and precon-
ditions of methods specified in class diagrams might restrict it as well. These
requirements might be contradictory in that the two specifications cannot be
fulfilled at the same time (and therefore no execution of methods is possible at
all). In the above example, the class diagram specifies the buffer to be empty
initially and the method get to require that at least one element is in the buffer.
The state machine on the other hand only allows get as the first operation, which
the class diagram forbids.

For checking whether such contradictory requirements are in the model, the
semantics of the whole system can be checked [28]:

– Set the system semantics to S = CSP(ClassDiagram) || CSP(StateMachine),
– check whether there is a deadlock in S but none in CSP(ClassDiagram) and

CSP(StateMachine). If the answer is yes, then the class diagram and the
state machine impose conflicting requirements on method executions.

Formally (again leaving out the synchronisation set in the parallel composition),

Definition 1. A class specification A and its associated state machine are con-
sistent iff the CSP process CSP(A) || CSP(StateMachine) is deadlock free.

This check for consistency can be performed automatically using the CSP mod-
elchecker FDR [12]. On our example it indeed claims to have found a deadlock
after the empty trace, i.e. initially. The designer can then be confronted with this
example and can change the model in one or the other way. The result of such
analysis can thus be used to enhance the consistency of models with multiple
views.

The second example concerns consistency in a system model consisting of a
state machine and a class diagram plus a sequence diagram describing a possible
scenario. The following example describes (part of) an automatic teller machine
with a specification of the interface towards clients. The state machine states
that initially a pin has to be typed in, which is then checked. When correct,
the client can either choose withdraw (with a successive issue of money) or



98 H. Wehrheim

view account (with a successive show account). When the pin is wrong the
procedure starts again. The scenario described in the sequence diagram show a
successful withdrawl of money.

ATM

pin
correct

correct

withdraw
money

showAcc
viewAcc

Client ATM
pin

withdraw

correct

money

wrong

The class diagram and state machine are consistent with the sequence diagram
if the scenario is possible in the model, i.e. there is one run of the model which
shows the behaviour of the scenario. This can be checked as follows:

– Again set S = CSP(ClassDiagram) || CSP(StateMachine),
– take P = CSP(SequenceDiagram),
– and check whether traces(P) ⊆ traces(S ), i.e. whether the behaviour de-

scribed in the sequence diagram is part of the behaviour of the system.
Again this can be checked with FDR.

The CSP process of the sequence diagram is obtained by composing the CSP
processes of the lifelines in the diagram in parallel. In our example these are
SDClient = pin → correct → withdraw → money and SDATM = pin →
correct → withdraw → money. They are the same because all messages in
the sequence diagram involve both actors (and we have not included input and
output parameters here which could show the direction of communication). The
process for the complete diagram is then

CSP(SD) = SDClient ||{pin,correct,withdraw,money} SDATM .

Definition 2. A class specification A and its associated state machine are
consistent with a sequence diagram iff traces(CSP(SequenceDiagram)) ⊆ traces
(CSP(A) || CSP(StateMachine)).

A more elaborate definition of consistency between sequence diagrams and UML
models can be found in [29].

Preserving consistency under model transformations. Furthermore, a formal se-
mantics can be used to study what types of consistency are preserved under
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what model transformations. For the two examples given above the theory from
the process algebra CSP immediately gives us the following results. Consistency
between classes and state machines is preserved under refinement: If A and C
are both models comprising a class and a state machine, the model A is consis-
tent and there is a refinement relationship between the corresponding views of
C and A, then C is consistent as well. Formulating it for one of the refinement
relationships discussed in this paper:

Theorem 3. Let A and C be classes with state machines SMA and SMC , re-
spectively, and let C be a data refinement of A and CSP(SMC ) a failures refine-
ment of CSP(SMA). Then the following holds: If A is consistent with its state
machine then C is consistent with its state machine.

A similar result can, however, not be obtained for consistency with scenarios.
Consistency between a system model and a scenario might not be preserved
under refinement: Refinement allows for a reduction of behaviour, thus a scenario
possible in A might not be possible in C anymore, even if C is a refinement of A.

As an example, consider the following state machine which is a failures refine-
ment of those of the ATM .

pin

correct

showAcc
viewAcc

wrong

The above depicted scenario between a client and the ATM is not possible
here anymore because the branch with withdraw has been cut off. This is allowed
by refinement because a refusal of withdraw after the trace pin; correct was also
possible before. Actually, the inital specification of the ATM’s state machine was
wrong, there should not be two transitions labelled correct . This can, however,
not be detected by a consistency analysis; this falls into the area of property
verification.

5 Conclusion

The purpose of this paper was to illustrate on several small examples from the
UML what concepts coming from the area of formal methods can be applied to
what questions arising in a model-based design of complex systems. In particular,
several kinds of model transformations on different views as well as consistency
between views has been considered. As future work we plan a more systematic
study of these issues, in particular on preservation of consistency under model
transformations. Furthermore, more complex types of model transformations are
needed. Here, we focussed on single entities which are transformed, essentially
keeping the structure of the model. It would be interesting to look at structure-
building transformations as well, or transformations which cross the borders of
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views (as in [9]). In this respect, there is still work to be done on the formal
methods side.

In order to have a designer of a model apply these techniques on his/her mod-
els it would furthermore be important to have graphical transformation patterns
on UML models which guarantee a refinement relationship on the underlying
formal semantics.

Acknowledgement. I am grateful to John Derrick and Holger Rasch for joint
work which became part of this paper.
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Abstract. The component paradigm promises to address many of the productiv-
ity and quality problems currently faced by the software industry. However, its 
correct application requires systematic, methodological support. A wide range 
of theoretical and practical methods have been developed in the context of the 
component paradigm. A taxonomy of these methods can provide a tool for in-
creasing the understanding of the ways in which component-based development 
is currently addressed and directions for future development. This paper  
outlines a taxonomy based on the fundamental criteria and definitions, and pro-
vides examples to justify this classification. It can therefore serve as a first ori-
entation for new researchers interested in the area of component-based software 
engineering. 

1   Introduction 

Software is of growing importance in human society since it is contained at the core 
of nearly any modern product or service. However, the development processes of 
such software is undergoing a tremendous change due to market requirements for 
time-to-market and cost. This has been the major reason for the development of object 
technology and subsequently component-based software engineering techniques. 
These promise that software systems can be created with significantly less effort than 
in traditional approaches, simply by assembling the appropriate prefabricated parts. In 
popular computer terminology this is captured by the “plug and play” metaphor. As 
soon as the relevant parts have been “plugged” together, they should be able to “play” 
with each other in the resulting system.  

To obtain the goals of the component paradigm, systematic methodological support 
is required. For this reason, over the years there has been a vast amount of research 
and development which incrementally established a large body of knowledge, known 
as Component-based Software Engineering (CBSE). Unfortunately, the number of 
available approaches is rapidly growing, and often developers are disoriented and 
unable to select and adopt the appropriate tools that can best facilitate their work. 

This paper offers a coherent and comprehensive view of methods and technologies 
supporting CBSE activities. According to [14] any attempt to provide an abstract view 
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of a complex and composite entity is inevitably exposed to risks: on the one hand, it is 
possible to oversimplify or confuse different issues and topics; on the other, there is a 
risk of providing a flat presentation with limited insight and abstraction. The approach 
presented in this paper is pragmatic, and tries to attempt to find a reason-able and 
useful compromise between these two opposite forces.  

The paper is organized as follows. Section 2 shortly sketches existing approaches 
to the classification of software engineering methods. Section 3 illustrates the classifi-
cation scheme that has been adopted in this paper by defining the basic terms, provid-
ing characterization criteria, briefly discussing the chosen approach, and introducing a 
simple approach for visualizing and analyzing the results. Section 4 describes the 
main existing methods that support and guide component-based software develop-
ment activities. However, these only represent a small sample of the existing methods. 
Section 5 presents the results of applying the proposed taxonomy and briefly sketches 
some important topics that will likely have an impact to future research on metho-
dological support for component-based software development. Finally, Section 6 
proposes some concluding remarks.  

2   Related Work 

The field of software development methodologies is large and still rapidly growing. 
For example a popular link-list [7] contains links to more than 50 different method-
ologies. Even if the focus is narrowed to methods suitable for component-based de-
velopment, the number of methods is still remarkably large. Therefore, several at-
tempts have been made in the past to provide an overview of the field, the goal being 
threefold: 

1. To inform those interested in understanding the technology (e.g., [7]). 
2. To justify avoidance or acceptance of the technology (e.g., [11], [13], [17]). 
3. To reveal open research issues (e.g., [4], [14]).  

Unfortunately, these surveys are either outdated and/or address the field of (object-
oriented) software development in general. No surveys, specifically targeted at open 
research issues, are currently available which present an in-depth analysis of compo-
nent-based software development methods. This might be due to the fact that objec-
tively evaluating methodologies is a difficult and complex task because of several 
reasons: 

1. Comparing methodologies is often like comparing apples and oranges (e.g., differ-
ences in terminology which have a significant impact on the appropriateness and 
application). 

2. Many methods are targeted or strongly influenced by specific context constraints 
(e.g., programming languages). Thus, the evaluation of methods requires an under-
standing of the target platform for which the methodology is intended. 

3. Certain methodologies assume a "greenfield" development context (i.e., the project 
is separate, stand-alone, and has no need to integrate with existing applications). 
This assumption removes certain constraints the methodology may have to deal 
with [4].  
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4. The completeness of various methodologies varies drastically (i.e., some methods 
simply describe a process, others present a graphical notation, while still others 
combine both graphics and a process). The depth and completeness of each of 
these components varies significantly from method to method.  

Thus, on the one hand, an in-depth comparison or survey requires an understanding 
of the culture underlying a particular development approach. However, on the other 
hand, before such a comparison may start a general taxonomy is needed to classify 
existing methods. First applications of such a taxonomy may already reveal some 
open research issues, but only an in-depth examination may reveal limitations and 
restrictions of methods and can be used as a basis for a research agenda in compo-
nent-based software development.  

3   Taxonomy 

The goal of this paper is to present a taxonomy for classifying component-based de-
velopment methods as a basis for further analysis. Each method presented in this and 
the following sections can be regarded as an attempt for formalizing the process of 
software development following specific principles.  The taxonomy is based on ex-
perience, user needs, and the published state of the art/practice. In addition, following 
[4], as technology changes, methods will evolve. Consequently, a taxonomy flexible 
enough to capture the dynamic nature of development methods must avoid rigid and 
precise definitions. Its structure, will depend more on judgment than on scientific 
objectivity [4]. This means that the taxonomy will remain partly subjective. 

3.1   Definitions 

Component-based software development methods aim at enabling humans to perform 
software engineering processes to produce software products that are of value to their 
customers. Thus, the integration of people, processes and products is a key enabler 
and has to be reflected in a taxonomy of such methods. However, although terms like 
method, process, or product are widely used in software engineering there are many 
conflicting definitions. In the following we define the major terms used in the context 
of this chapter. 

• Method: Following [21] a method is a systematic approach for developing a 
product which provides a definition of the activities to be performed and the 
artifacts (requirements specification, design, etc.) to be developed. In other 
words, a method is a codified set of practices (i.e., a series of steps, to build 
software) that may be repeatable carried out to produce software, and which 
are accompanied by additional material such as templates, tools, best-practice 
know-how, etc. In this sense, a method can be seen as a combination of consis-
tent process and product models, enriched by experience.  

• Process model: In general, a process model describes the tasks that are under-
taken within a software project, and it shows how and what information needs 
to be communicated between tasks [6]. Typically, a process model is instanti-
ated from a software life-cycle model (e.g., waterfall) and can be used to  
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expose the manner in which the defined development activity is going to be 
conducted. In the context of component-based software development, the 
process defines basic development steps as well as the composition of compo-
nents, their quality, assurance, and deployment. 

• Product Model: In general, the Product Model is the entire product informa-
tion resource that describes the product completely and unambiguously.  
According to [21], a software product model includes any of the artifacts gen-
erated during a software project: those that are delivered (e.g., manuals or 
code) and those that are usually not delivered (e.g., specifications, design, 
etc.). For each of these there can be a variety of models (including notations) 
that characterize attributes of the product. In general, product models can be 
broken down into several categories, with static (i.e., based on static properties 
or structure) and dynamic models (i.e., based on the execution behavior) being 
the most important ones. Together they provide a comprehensive view of a 
software product. In the context of component-based software development, 
products are viewed as a composition of components, whereby some compo-
nents are atomic and some are composed of simpler components. In addition, 
software components of various kinds exhibit tangible properties that impact 
the quality of software.    

• Framework: In object-oriented systems a framework represents a set of classes 
that embodies an abstract design for solutions to a number of related problems 
[21]. Transferred to the component-based development, a framework can be 
viewed as a collection of components with extension and composition mecha-
nisms regarding a certain type of application 

3.2   Criteria 

Software development is a complex task which requires experience and knowledge. 
In order to systematically obtain valuable results it therefore has to be based on solid 
methodological grounds. It is simply impossible to develop component-based systems 
effectively by simply “writing code”. In this sense the term “component-based soft-
ware engineering methods” means all concepts, notations, guidelines, and techniques 
that can be used in creating better and more effective software systems. Many of these 
are embedded in or supported by a specific technology (e.g., design and coding tool-
sets). In other cases, methods are just concepts and knowledge that software develop-
ers have to in their daily work. 

According to [14] methods include four different entities: principles, development 
techniques, meta-methods, as well as styles and patterns. Principles are essential in-
gredients of all software engineering methods and include concepts such as modular-
ity, flexibility, robustness, interoperability, and quality. In order to obtain modularity 
other principles (e.g., information hiding, hierarchical decomposition, cohesion and 
decoupling) have to be in place. Flexibility in turn, also known as design for change, 
requires properties like extensibility, and scalability. Quality is represented by princi-
ples such as usability, reliability, or efficiency.  

Software development activities are carried out according to a number of different 
development techniques. They can be roughly organized in three classes:  



 A Taxonomy on Component-Based Software Engineering Methods 107 

 

• Informal approaches are not based on any formal syntax or semantics. They 
simply state a number of guidelines and principles that should be followed in 
software development activities.  

• Semi-formal approaches are techniques that include some more formal con-
cepts. Typically, they exploit notations that do have syntax, but lack formal 
semantics.  

• Formal approaches not only exploit formal notations but also use formal  
semantics based on mathematics and logic. 

Strongly related to the formality of a method is the level of abstraction it typically 
operates on. On a rough scale three different levels (i.e., low, medium, and high) can 
be distinguished, corresponding to the level of detail typically obtained in different 
life-cycle phases (e.g., high corresponds to the requirements/analysis phase whereby 
low corresponds to the implementation phase.).  

Another important property, especially in the area of component-based develop-
ment, is the underlying development strategy of a method. Here we simply can distin-
guish between top-down and bottom-up strategies or a mixture of these two. In the 
component domain the strategy describes in which order components are specified 
and assembled. 

The goal of each method is to support humans in developing a product. However, 
software systems are diverse in nature and have specific needs concerning methodo-
logical support. Therefore it is important to know which properties of a system are 
addressed. Here we can distinguish between system properties such as support for 
functional and non-functional properties, or development properties such as process 
and product. 

Finally, it is important to mention the domain a method is targeted at. A method 
domain represents a scientific classification of software systems [26] which are tar-
geted by a method, and should not be confused with the application domain of a sys-
tem (e.g., logistics). Typically different domains have specific requirements concern-
ing documentation, modeling languages, standards, and concepts.  Following the SEI  
classification schema [26], domains can roughly be organized in the following 
groups: 

• General – This group contains those methods which are more a process 
framework than a concrete method (e.g., Unified Process) and which 
claim to support software development in every domain.  

• Artificial Intelligence – Systems concerned with basic models of behavior 
and the building of virtual and actual machines to simulate animal and 
human behavior. 

• Information Systems – Systems concerned with file systems, database sys-
tems, and database models.  

• Human-Computer Interaction – Systems concerned with user interfaces, 
computer graphics, and hypertext/hypermedia. 

• Numerical and Symbolic Computing – Systems concerned with methods 
for efficiently and accurately using computers to solve equations for 
mathematical models. 
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• Computer Simulation – Systems concerned with the basic aspects of 
|modeling and simulation (i.e., statistical models, queuing theory, variable 
generation, discrete simulation, etc.). 

• Real-Time Systems – Systems concerned with knowledge about the devel-
opment of real-time and embedded software systems (e.g., automotive). 

In summary, Fig. 1 presents an overview on the proposed taxonomy for component-
based software engineering methods. 
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Fig. 1. CBSE Taxonomy 

3.3   Applying the Taxonomy 

In the previous subsections, basic definitions and criteria have been given to charac-
terize component-based software development methods. Together these define the 
dimensions of the taxonomy and provide a schema to characterize every available 
method.  However, it is important to stress that the taxonomy should not be consid-
ered exhaustive or a finished work. In the first instance, it deliberately did not address 
all possible aspects of component-based development. In the second instance, the 
taxonomy itself is subject to continuous evolution, since the elements that it classifies 
continue to evolve, due to scientific and technological advances in the field. In the 
following it is discussed how to apply the taxonomy to position some concrete  
methods, and how to draw conclusions and recommendations from the collected data. 
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In principle, the taxonomy will be applied to the methods presented in section four. 
These methods have been selected because of their different nature and coverage of 
the field. As such, this should also be reflected in their comparison based on the  
taxonomy. This comparison can then be used to identify to which extent the methods 
complement each other. Another typical use of the taxonomy is to compare methods 
that share the same or a similar purpose. This allows the identification of differences, 
strengths and weaknesses.  

3.4   Presentation 

The goal of a taxonomy is not only to provide a comprehensive overview (e.g., in 
form of tables) but also to identify white-spots and areas where future work should 
take place. The latter requires a simple and easy to compare representation of the 
collected and characterized data. This can be achieved by the application of radar or 
spider-web charts (see Fig. 2 for an example).  These are not only useful to look at 
several different factors related to one item, but also to overlay several of them to 
have a quick overview on multiple items. 

Principles

Formality

PropertiesStrategy

Abstraction

OMT KobrA Unified Process

 

Fig. 2. Spider-Web Chart Example 

Spider-web charts have multiple axes along which data can be plotted. A point 
close to the center on any axis indicates a low value, and a point near the edge a high 
value.  Within this paper we define a general spider-web chart which has an axis for 
each taxonomy criteria. The single values are then plotted along these axes and con-
nected by a single line, resulting in an individual shape for each characterized method. 
By placing the single charts on top of each other a common method chart is created 
which allows to quickly identifying white-spots and areas which warrant future  
research.  
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4   Methods for Component-Based Software Development 

4.1   First Generation Object-Oriented Methods 

Almost all modern software development approaches have roots in the first generation 
of object-oriented methods. The explosion in the number of object-oriented methods 
in the early 1990's, and the subsequent cross-fertilization of ideas, makes it very diffi-
cult to trace the precise influence and contribution of each method. Other well known 
first generation methods such as Shlaer/Mellor [28], Objectory [18], Booch [5] and 
Coad/Yourdon [9] are not discussed explicitly because their influence has been less 
direct. Since they were developed relatively early in the history of object technology, 
none of these methods directly considers components, design patterns and product 
lines. Nevertheless, they all embody important ideas that can be helpful in using these 
technologies. 

4.1.1   OMT 
Probably the single most influential method in the evolution of object-oriented devel-
opment methods is the OMT (Object Modeling Technique) method developed by 
Rumbaugh et al. [25]. Many of its ideas have been adopted in ensuing generations of 
methods and notations. Its two most significant legacies are the UML [23], whose 
notational concepts are primarily based on OMT and its approach to analysis. In de-
tail, OMT identifies three distinct but overlapping models to be generated during the 
development of a system: 

• Object Model, which identifies the user visible data abstractions that the sys-
tem manipulates, and the relationships between them.  

• Dynamic Model, which describes the dynamic behavior of the system in 
terms of states, events and object interactions. 

• Functional Model, which shows the computations or data transformation per-
formed by the system. 

The analysis phase is followed by a design phase in which the system is divided into 
subsystems and algorithms are designed for the methods of the identified classes. 
Although it is the strongest part of the method, OMT's analysis approach has one 
major weakness. The functional model is difficult to be kept consistent with the other 
analysis models. In practice, therefore, OMT users often ignore this model. The de-
sign process is the major shortcoming of OMT as a general purpose method. It is 
much less well defined than the analysis process, and lacks any kind of support for 
incremental development.  

4.1.2  Fusion 
Fusion [10] is a descendent of OMT, which fixed some of the problems with OMT's 
analysis approach, and significantly enhanced the design process. Fusion also pointed 
the way towards increased rigor and prescriptiveness in object-oriented development. 

The analysis phase adopts the same three basic viewpoints as OMT, but with 
slightly different models and terminology. One of the main innovations was to require 
that textual operation schemata describe the effects of system operations in terms of 
the concepts in the object model. This improved the presentation of the functional 
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model and introduced a set of consistency rules between the functional and object 
model. 

The other main contribution of Fusion was the use of interaction modeling. It 
showed that the design process could be organized in a highly systematic fashion 
based on the elaboration and documentation of interaction scenarios on an operation-
by-operation basis. The basic idea in the Fusion design phase is to create a collabora-
tion diagram that documents how each system operation is realized in terms of lower 
level interactions. Unfortunately, Fusion suffers from the same problem as OMT in 
having a "flat" waterfall-based process model. 

4.1.3   ROOM 
The Real-Time Object-Oriented Modeling (ROOM) [27] method views software 
systems based on the concept of interacting processes. The basic building blocks of 
ROOM, known as actors, are active "logical machines", rather than simple ADTs, and 
typically encapsulate an active thread or process as well as state information. At the 
language level they therefore correspond to active constructs such as tasks in Ada or 
threads in Java. 

Although ROOM was published before component-based development became a 
buzzword and dedicated component technologies (e.g., JavaBeans) became available, it 
contains all the basic characteristics of a classic run-time component model. Actors 
represent self-contained, autonomous components that can be realized as hardware 
elements as well as software elements, ports represent independently defined interfaces 
that allow components to be connected together in arbitrary configurations, and bind-
ings represent concrete connectors that link components together to solve particular 
problems.  

The main problem with ROOM is its lack of integration with data-modeling. Al-
though ROOM defines an advanced and highly systematic way of using state machine 
diagrams, it makes little use of the core object modeling concepts such as associa-
tions, attributes and multiplicities etc. and gives little indication of how they fit in. 
This is a symptom of the fact that ROOM is more process (i.e., thread) oriented than 
data oriented. 

4.1.4   HOOD 
The Hierarchical Object-Oriented Design (HOOD) method [16] is largely limited to 
the European Space Agency (HOOD's creator) and its contractors. However, it has 
powerful and unique concepts not found in any other methods.  

HOOD views a system as a community of objects organized in terms of two hier-
archies: the seniority and the usage hierarchy. The first reflects the containment of 
objects within one another, and always yields a tree structure. The second reflects the 
usage of one object by another, in the sense of a client-server relationship. The key 
idea is to organize the development steps around the containment hierarchy (or sen-
iority hierarchy). The overall development approach is thus one of recursive, top-
down refinement in which progressively smaller objects are identified, modeled and 
implemented.     

4.1.5   OORAM 
OORAM [24] introduced some important ideas relating to the way in which systems 
can be modeled. The key innovation is to focus on roles throughout the modeling 
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process as a way of tying different perspectives of a system together. A role essen-
tially defines how a client object sees a server object, including its operations, behav-
ior and needs.  

Unfortunately the overall lifecycle process adopted in OORAM is essentially a wa-
terfall model, although there is a high level of iteration within the major phases such 
as analysis and design. Object containment and hierarchical development play no part 
in the process, and thus it is essentially a "flat" method like OMT and Fusion. 

4.2   Component-Oriented Methods 

In view of the importance of the component paradigm, most modern methods aim to 
accommodate them in one form or another, but generally components are viewed as 
just a convenient implementation tool rather than an integral part of the overall soft-
ware development cycle. In the last few years, however, methods have emerged 
which orient the whole development process around components and view them as 
richer abstractions than just binary code modules.  

4.2.1   Catalysis 
Catalysis [12] was one of the first methods developed specifically to leverage the 
UML [23] in connection with component based development, and embraces many of 
the other reuse technologies (i.e., architectural styles, design patterns and frame-
works). The method either introduced or popularized many of the ideas that today are 
considered natural ingredients of component-based development, and several of these 
have been explicitly adopted in the UML. 

Catalysis uses an iterative and incremental process based on cleanly defined abstrac-
tion and refinement mechanisms. These mechanisms are applied throughout system 
development from early analysis to implementation and set up the basis for recursive 
relationships between models, which then support forward- and re-engineering of  
systems. Catalysis makes use of the UML [23] with strong semantic consistency and 
completeness criteria based on a small set of ’core’ constructs. 

4.2.2   KobrA 
The KobrA method [1], developed at Fraunhofer IESE, propagates the use of compo-
nents throughout all phases of the software life cycle. This goal is achieved by inte-
grating the three most important software-engineering paradigms today: Components, 
Product Lines, and Model Driven Architectures (MDA). In addition, the KobrA 
method comes equipped with powerful means to achieve continuous, model-driven 
quality assurance. So far the KobrA method has only mainly been developed for sys-
tem engineering in the domain of ERP systems. A common problem in all compo-
nent-based development methods is their complete lack of capability to support the 
non-functional requirements. 

4.2.3   MARMOT 
MARMOT (Method for Component-Based Real-Time Object-oriented Development 
and Testing) [22], a descendant of KobrA, is specifically geared towards embedded 
and real-time system development in an object and component-oriented context. It 
subsumes the powerful principles of the KobrA, but provides additional features, that 



 A Taxonomy on Component-Based Software Engineering Methods 113 

 

are particularly important in embedded, real-time application construction. MARMOT 
is based upon fundamental principles (i.e., software/hardware integration, aspect-
orientation, real-time specification and scheduling, etc.) that are fully in line with the 
KobrA method’s meta-model. 

4.2.4   Select Perspective 
Select Perspective [2] emphasizes the importance of business process modeling as the 
starting point of development, and follows a clean process that transforms system-
independent business processes into implementation-oriented models of the system of 
interest in a step-by-step way. This includes the explicit identification of components, 
as well as the potential integration of legacy systems. 

Select Perspective is particularly rich in practical recommendations and guidelines. 
It defines most of the essential ingredients needed for component-based development 
in the early stages of the software life cycle, and provides some useful guidelines for 
their application. Unlike other methods, it also explains the role that component tech-
nology can play in integrating legacy systems into new applications, and suggests 
how this can be achieved. However, its main weakness is that it is not always clear 
which aspects of the underlying business objects are being described by which mod-
els. In other words, the distribution of the information describing a business object is 
somewhat arbitrary.  

4.2.5   UML Components 
UML Components [8] focuses on the specification of components using the UML 
[23]. The method identifies two main phases (or workflows): the requirements work-
flow which captures the basic needs that the system must fulfill in terms of use cases 
and high level business classes, and the specification workflow which documents the 
business types, interfaces, and components that have been chosen to satisfy these 
requirements.  

In essence, UML components offer a subset of Catalysis concepts but with a much 
simpler, UP-flavored process. This is both its strength and weakness. On the one hand 
it packages a core subset of the Catalysis concepts in a more accessible and prescrip-
tive way, but on the other, it loses some of the key ideas of Catalysis, including the 
nesting of components to arbitrary depths, the recursive application of development 
concepts, and the use of frameworks to package larger-grained reusable structures than 
interface and components. Nevertheless, the early emphasis on the definition of com-
ponent architectures in terms of component instances and their connections, and the 
enhancement of the idea of focusing diagrams on individual components or interfaces, 
represent valuable insights. 

4.3   Product-Line Oriented Methods 

With the possible exception of Catalysis, the methods described to this point are fo-
cused on the development of single systems. The creation of system variants takes 
place as part of the maintenance activity, and is generally viewed as a repeated appli-
cation of the method rather than an integral part of the method itself. With the grow-
ing recognition of the value of a product line approach to the software life cycle,  
several methods have emerged in recent years that focus on product-line oriented 
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software development and maintenance.  Catalysis can support such an approach 
thanks to its advanced framework concepts, but product-lines are not its main focus. 
The product-line oriented methods vary in their degree of customizability, and the 
level of abstraction at which they address the variability’s and commonalities in a 
product family. 

4.3.1   FODA 
Feature-Oriented Domain Analysis (FODA) [19], published by the Software Engi-
neering Institute, relies on the basic idea that a domain is analyzed to identify the 
features which a system in this domain must or may provide. These features are hier-
archically represented within a feature model. Features are recursively composed of 
other features, with some features being optional or alternatives to other features. A 
feature model thus serves as a useful input to the designers of a reference architecture 
for the domain. 

Unfortunately, FODA is not described in sufficient detail to be easily applied with-
out guidance.  Nevertheless, the feature model is a useful way of capturing common-
ality and variability within a system family, and adds value to methods that focus on 
software reuse and product lines.  

4.3.2   FAST 
The core of FAST [29] is the commonality analysis to identify commonalities in a 
family of systems in terms of general textual statements. This is used as the basis for 
"implementing the domain", which involves the creation of domain-specific lan-
guages, architectures, generators, etc. to facilitate the low-effort creation of new mem-
bers of the product family. 

One problem of FAST is that it only addresses the product line issues at a very 
high level of abstraction, akin to the analysis level in conventional development 
methods. The critical connection to concrete implementation technologies is not di-
rectly addressed. Moreover, the guidelines provided for the domain analysis process 
are vague and unprescriptive. 

4.3.3   PuLSE 
PuLSE [3], developed at Fraunhofer IESE, splits the life-cycle of a system into four 
phases: initialization, product line infrastructure construction, usage, and evolution. It 
provides technical components for the different deployment, which itself are custom-
izable to the context. Unfortunately PuLSE suffers from the same basic problem  
as other approaches due to its focus on the description of family properties at a  
very high-level of abstraction without giving concrete guidance on how the required 
flexibility should be realized at the implementation level. 

4.4   Object-Oriented Method Frameworks 

Object-oriented methods have come a long way since the early approaches mentioned 
above. Not only have they become more sophisticated, they have had to embrace a 
significant set of new concepts, such as components, architectures, frameworks, use 
cases and incremental development. One strategy for accommodating all these ideas 
in a coherent way is to raise the level of abstraction in which a process is described 
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and make it more generic. This leads to methods that are compatible with a large 
number of specific development strategies, but are not ready to use "out of the box". 
They must consequently be tailored to the needs of specific projects.  Such ap-
proaches, of which there are two main examples, are therefore often characterized as 
method frameworks. 

4.4.1   Unified Process 
The Unified Software Development Process [20] has been developed to provide a 
unified process to support the full power of the UML [23]. It can be characterized as a 
component-based, use-case-driven, architecture-centric, iterative, and incremental 
software development method. In principle the Unified Process iterates a series of 
cycles, whereby a cycle consist of four phases: Inception, Elaboration, Construction, 
and Transition. In addition, the Unified Process defines various workflows, the most 
prominent being Requirements, Analysis, Design, Implementation, and Test, which 
are carried out to a specific extent in each phase of a cycle. In general the Unified 
Process focuses more on management (e.g., workflows planning, evaluation, business 
modeling, etc.) than on technical issues, and provides most support, due to its origins 
in OMT, the Booch method, and Objectory, to modeling with only a high-level  
add-on for other phases of development. 

4.4.2   OPEN 
OPEN (Object-Oriented, Process, Environment and Notation) [15] initially encom-
passed a unified notation, known as the OML as well as a process, but the former has 
been subsumed by the UML standardization effort. In its current form OPEN can be 
characterized as a highly generic process framework oriented towards development 
with the UML. 

Like the Unified Process, the generic nature of OPEN is a double edged sword. On 
the one hand it means that the ideas of OPEN are applicable, when properly instanti-
ated, to a very wide range of domains. On the other hand, it means that much of the 
difficulty in using the method is wrapped up in the instantiation process. Poor or in-
correct instantiation can easily lead to an incoherent process with very little chance of 
success. Unfortunately, the instantiation of the OPEN process is still one of its least 
well-developed parts. Also, in trying to integrate all acclaimed object-oriented tech-
niques, including components, architectural styles and design patterns, OPEN suffers 
from the same "feature overload" problem as the Unified Process.  

5   Results 

The methods presented in the previous section represent only a small sample of all 
available development methods, although the list seems to be quite complete concern-
ing component-based development. However, even this small selection shows that the 
knowledge required to analyze existing methods and to identify areas for future re-
search is large and quite diverse. The taxonomy presented in Section 3 was used to 
get a first overview by applying it to the methods presented in the previous section.  

Instead of presenting large tables we use a two-part radar chart based on the highest 
level taxonomy items (i.e., principles, formality,  abstraction,  strategy  and  properties).  
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Fig. 3. Spiderweb - Development Methods 
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The two parts of this chart with together 15 methods are presented in Fig. 3. To obtain 
values for the top-level items the following process was applied: (1) Atomic values 
have been assigned a 0 if non-existent or 1 if existent. (2) For all sub-items (i.e., 
modularity) the mean of its atomic values was calculated. (3) Finally, the mean of all 
sub-items for each of the top items was calculated and the visualized in the radar 
chart.  

For example, for the OMT method, we assigned for Formality the following val-
ues: 1 for Informal and 0 for Semi-formal and Formal. Therefore, the value assigned 
to OMT for the Formality axis is the average of these 3 values, which is 0.33. 

At a first glance Fig. 3 shows that the required properties, principles and strategies 
for component-based development are covered. Especially component specific meth-
ods such as Catalysis or KobrA have made significant advances. However, most 
methods fail when it comes to non-functional properties or support for the lower lev-
els of abstraction. The latter might be based on the fact that methods tend to focus on 
the early phases of development (i.e., requirements, analysis, and design), neglecting 
the link to the implementation phase. Often this link is seen as a responsibility of tools 
(code generation) or developers. However, the recent advent of the Model-Driven-
Architecture (MDA) approach has shown models and code can be tightly linked and 
that this not only increases development speed but also has a positive impact on the 
overall quality.   

Software becomes more and more prominent also in domains such as aviation, 
automotive, or even consumer-electronics. However, these systems, often character-
ized as embedded systems, have specific requirements concerning safety, perform-
ance, or timing. These non-functional properties dominate the development of such 
systems to a large extent. Therefore, systematic development methods have to provide 
support for handling and quality assurance of such properties. In the area of compo-
nent-based development this becomes even more important. Assembling systems out 
of pre-fabricated components requires mechanisms to assess specific non-functional 
properties as well as actions to optimize and handle them properly.  

6   Summary and Conclusions 

This paper has briefly presented a taxonomy for classifying component-based soft-
ware engineering methods on a high level of abstraction. This taxonomy has then 
been applied on a small selection of published methods. However, it has to be stated 
that the paper focused on some key criteria in order to identify areas which warrant 
future research, rather than presenting specific features of a method in detail. 

In summary the taxonomy showed that methodological support for component-based 
software development has made significant advances, compared to early methods, such 
as OMT. However, the methods available today are no silver-bullets and sensitive 
against the requirements of different domains and system types. More specifically, the 
area of safety-critical systems requiring formal development and support for addressing 
non-functional properties warrants future research. Another problem is the level of 
detail or abstraction covered by single methods. It seems that methodological support is 
missing for the lowest abstraction levels (e.g., implementation). The reason might be 
that the link between models, as used in analysis and design, and the corresponding 
source-code is weak. The advent of the MDA paradigm might offer a solution.   
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However, it must be clear that, as in any similar effort, this is just one step forward 
in a never-ending process. New results in technology development as well as in soft-
ware engineering theory require further extensions and enhancements concerning the 
studied methods. Thus, the classification attempt made in this chapter may have to be 
revised and, eventually, deeply changed.  

Following [14] it must be stated, that software engineering is a dynamic and chal-
lenging discipline, where novel approaches and technologies emerge as our under-
standing of software increases and deepens. Thus the classification of methods is an 
essential aid to researchers and practitioners. 
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Abstract. Model-driven and component-based software development, using the 
UML, has become one of the dominant development paradigms, particularly in 
business and web application engineering. Unfortunately, model-driven and 
UML-based development methods are still inferior to conventional software 
development approaches when it comes to component-based embedded system 
development. One important aspect is the heterogeneity of embedded systems: 
they contain both, hardware and software components. Although, component-
based development in embedded systems (with hardware components) has a 
long tradition, there is still a problem of combining it with component-based 
software development. One reason is the inability of contemporary component 
technologies to cope with the specific non-functional requirements of embedded 
systems (e.g., timing, resource consumption). Thus, the major question is how 
both approaches can be successfully combined.  

The goal of this chapter is to discuss the problems of embedded systems  
engineering in the context of a component-based development approach, and to 
identify specific requirements for a development process under this paradigm. In 
addition, the chapter proposes an approach to specify software and hardware 
components in a uniform way, concerning their functional and non-functional 
properties, so that they can be applied in embedded system development. The 
method proposed is not yet solving all the problems associated with component-
based embedded systems development, but it addresses important issues  
like hardware/software integration, and how timing and resource issues can be 
dealt with. 

1   Introduction 

In the past, embedded systems used to be highly specialized, custom designed, and 
primarily targeted toward mission critical applications. Today, embedded systems are 
ubiquitous, controlling almost everything from mobile phones to cars, from household 
appliances to global positioning systems, and entire production environments. The 
development of embedded systems requires multidisciplinary knowledge of the in-
volved parties ranging from physics, through mechanical engineering and electronics, 
to computer science, in general, and software engineering, in particular. The driving 
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factor behind contemporary embedded system engineering has become software. 
Software accounts by far for most of the new functionality, for competitive distinction 
and market share, and for integration and internetworking of increasingly smart  
devices.  

In the domain of embedded systems we can currently observe the same trend that 
has turned the business computing world upside-down some ten years ago: the advent 
of the Internet. This had generated a huge momentum toward the development of the 
e-business applications that we now take for granted, and it led to an exponential 
growth in the need for new software. For embedded systems, this leap forward comes 
in the form of a tremendous shift from the more traditional custom hardware imple-
mentation to more and more functionality being realized purely through software that 
is running on and controlling cheap standard hardware components.  

Component-based development and reuse are as attractive in the embedded domain 
as they are in other areas of the software industry, and they may be considered the 
single most important foundational technologies to appease the ever increasing  
demand in new and more complex systems. Component-based development method-
ologies, technologies, and tools have come a long way in the past years to meet the 
increasing demands of most contemporary information systems. However, software 
engineering principles, in general, and component technology, in particular, are not 
successfully exploited in embedded systems development. The disciplines that are 
dealing with the design of such systems, mechanical engineering, electrical engineer-
ing, and software engineering, are not in sync. This situation cannot really be attrib-
uted to one of these fields alone. As a matter of fact, engineers are struggling hard to 
master the pitfalls of modern, complex embedded systems, but they only approach the 
problems from their individual perspectives. What is really lacking in embedded sys-
tem development is a vehicle to transport the recent advances in software engineering 
and component technologies into the hardware world in a way that all the stake-
holders can communicate and understand each other. In other words, the techniques 
and tools in each of the three disciplines involved are now sound and applicable, but 
there are no obvious methods to transfer ideas and concepts between the various 
stakeholders in one single project. 

This chapter introduces and explains a methodology, referred to as MARMOT, 
which is intended to provide all the ingredients to master the multi-disciplinary effort 
of developing component-based embedded systems. It does this by extending an ex-
isting methodology, the KobrA method, to incorporate the views and artifacts that 
typical mechanical and electrical engineers would apply with the views of a typical 
software engineer. The aim of MARMOT is to enable engineers from the three disci-
plines to work in tandem in a single project, rather than in separation and ignorance.  

2   Related Work 

2.1   Model-Based Approaches to Embedded System Development 

The Unified Modeling Language (UML) [13], in its most recent version (i.e., UML 
2.0) already has the capability to model the most relevant real-time system features, 
such as performance (using tagged attributes or OCL statements), resources (using 
Component or Deployment Diagrams), and time (using timing diagrams, classifiers 



122 C. Bunse and H.-G. Gross 

 

and tagged attributes). Unfortunately, the absence of a standard and ‘unified’ ap-
proach for applying UML in embedded system development, the same embedded 
system properties may be modeled in several different ways, leading to problems in 
the composition and reuse of software components. Thus, how to use UML for mod-
eling real-time and other embedded system features, has become recently an active 
area of research and several proposals have been made. 

The Real-Time UML profile [16], developed and standardized by the OMG, defines 
a unified framework to specify timing, scheduling and performance aspects of a sys-
tem. The profile is based on a set of modeling elements that can be used by developers 
to build models of real-time systems annotated with relevant ‘Quality-of-Service’ 
(QoS) parameters. Based on these models, external tools can perform different analy-
ses and provide information on the system’s performance and schedulability before it 
is actually built. The profile standardizes an extended UML notation to support  
the interoperability of modeling and analysis tools, but it says little about platform 
representation [4]. 

UML-RT [15] is a profile that extends UML with stereotyped active objects, 
known as capsules, in order to represent system components. The internal behavior of 
a capsule is defined using state-diagrams, whereby the interactions of capsules are 
specified by ‘protocols’. These protocols define the sequence of signals exchanged 
through ports (i.e., stereotyped objects). The UML-RT profile is able to capture the 
behavior of an embedded system, and it provides support for simulation or synthesis 
tools, due to its precise execution semantics. However, UML-RT has only limited 
architecture and performance modeling capabilities. Thus, it should be considered 
complementary to the Real-Time UML profile [16]. 

HASoC [7, 8] is a design methodology based on the UML-RT profile, which pro-
vides a development process for embedded system development. First, the behavior of 
a system is described from an external point of view using ‘standard’ use case  
diagrams. In a second step, these are transferred to a UML-RT-compliant version 
including annotations with mapping information.  

Other approaches such as that presented in [11] aim at combining UML Diagrams 
with the formal semantics of SDL specifications to model embedded systems. Typi-
cally, the high-level system specification is defined through use-case diagrams, 
whereby system components and their interactions are specified through block dia-
grams and message sequence charts, respectively. The behavior of each module is 
specified using SDL. This specification can be executed and simulated, allowing for 
early verification of the specific properties of embedded systems. 

2.2   CBSE Methods 

Catalysis [5] was amongst the first methods to use or integrate the UML, contempo-
rary component technologies, and modern re-use techniques. However, Catalysis 
defines a large number of principles, techniques, and artifacts without systematically 
defining their relations, and their application and use throughout the entire develop-
ment process. Developers therefore have to rely on their experiences in configuring 
and applying Catalysis. In addition, the development of technical systems with their 
specific non-functional characteristics is not addressed sufficiently.  
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The Unified Process [12] represents an attempt to integrate methods such as OMT 
[14], Booch [3], and Objectory [10]. However the Unified Process, defined as a stan-
dard, is only vaguely applying rules and guidelines that help developers or application 
programmers to achieve their daily tasks. For example, they require the development 
and application of models without stating how to perform the modeling, how to in-
corporate non-functional requirements, or how to assure the overall quality of the 
resulting system.  

The KobrA method [1] propagates the use of components throughout all phases of 
the software life cycle. This goal is achieved by integrating the three most important 
software-engineering paradigms today: Components, Product Lines, and Model 
Driven Architectures (MDA). In addition, the KobrA method comes equipped with 
powerful means to achieve continuous, model-driven quality assurance. The more 
recent advances in aspect oriented software development such as those proposed in 
[6], are not yet part of the KobrA method. 

2.3   Summary 

In summary, existing component-based development methods provide little guidance 
on how to achieve their promises under stringent constraints of developing embedded 
systems. In particular, quality requirements are often completely ignored, and they are 
later burdened upon the testing phase, or it is simply taken for granted that the com-
ponent-based methods, by definition, lead to high quality software units right from the 
beginning of a project. Such practices and assumptions are utterly detrimental. Qual-
ity must be built into the components on purpose, and this principle must be followed 
right from the very start of the project. In doing so, existing techniques, methods, and 
tools need to be tailored and used for achieving this overall goal. However, quality-
enhancing technologies are often limited to conventionally structured development 
methods. 

3   Embedded Systems 

Embedded systems are systems comprising both, hardware and software. They take 
control over a considerable portion of our everyday lives since they are ubiquitous in 
most technical devices such as cars, cellular phones, household appliances, etc., with 
their importance steadily growing. Due to their dual nature, the design of hardware 
and software parts cannot be done in isolation but should be treated uniformly.  

Unfortunately, there is no generally agreed and comprehensive definition of em-
bedded systems, due to their large spread over many domains.  On an abstract level, 
an embedded system can be defined as: 

A special purpose computer system comprising a combination of hardware and 
software (and optionally mechanical, electrical or other parts) designed to per-
form a dedicated function, and which is inseparably interconnected with, and 
embedded in a larger product. 

Most embedded systems are reactive systems operated by a micro-controller. Thus, 
they have to receive  signals  from  their  environment,  process  them  and  implement  
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Fig. 1. Abstract structure of an embedded system 

corresponding actions, e.g., again in their environment. Figure 1 shows a more ab-
stract structure of an embedded system. A system can be divided horizontally in soft-
ware (Kernel, Driver, and Firmware), and hardware (μC, Interface, and ASIC) and 
vertically in micro-controllers (μC), user-specific hardware components (ASIC) and 
interfaces (Interface) between the individual components and the environment (see 
Fig. 1). These parts of a system are elaborated in the following paragraphs. 

3.1   Hardware vs. Software Components 

In hardware engineering, the reuse of pre-existing building blocks or components is a 
common way for rapid system development. The main goal is to reduce the high costs 
of hardware development by using existing building blocks. In practice, there are 
large libraries or catalogues providing lists of available components together with 
their specifications or even their ‘source-code’ or realization (i.e., detailed electronic 
circuit descriptions). From a historic point of view this reuse process has evolved over 
time, from transistors and registers to complex microcontrollers, which today expands 
into the software world (i.e., building blocks perform complex tasks and are systems 
in their own right). Thus, they can be seen as components, and, in fact, they are. Here, 
the idea of component-based development of embedded systems, comprising hard-
ware and software components, is quite natural. Unfortunately, there are some con-
ceptual differences between hardware and software components, which complicate 
the task of a unified development. 

According to Szyperski , “a software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies. A software compo-
nent can be deployed independently and is subject to composition by third-parties 
[17].” Thus, a software component can be characterized as being standardized, in that 
it follows a standard component model, being independent, in that it is usable without 
adaptation, being composable, in that external interactions use its public interface, 
deployable, with components as stand-alone entities, and, additionally, having a 
documentation. Most of these principles have their analogy in the hardware world.  
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For hardware components, there are “runtime” composition standards available, 
e.g. plug-and-play hardware and bus protocols such as PCMCIA, USB, and the like. 
However, the hardware world is not providing a model for creating component in-
stances dynamically and for connecting such instances in a uniform way. Such a 
model would define not only component interfaces, but also additional information on 
a higher level of abstraction that can be used for run-time instantiation, integration, 
and for the deployment in a broader context. Information, at a higher level of abstrac-
tion is either not existing or does not follow a standard. Put it that way, the documen-
tation of hardware components, usually consisting of textual descriptions and data-
sheets on a low level of abstraction, i.e., voltages, currents, temperatures, etc, so that 
uniform high-level software and hardware composition and deployment is hugely 
difficult. The primary problem is the dependence between interface and implementa-
tion in hardware.  

In order to treat hardware and software components in system development in a 
uniform way and in order to bridge the apparent conceptual gap between the two 
worlds, a ‘generic’ or abstract view on hardware components is needed. This would 
allow the composition of systems from high-level components. Therefore, hardware 
components are wrapped and hidden inside software-like interfaces which provide the 
required level of abstraction, and can then be combined with other software compo-
nents at the same abstraction level during development. As analogy, we could look at  
these additional artifacts in the same way as device drivers in operating systems, only 
that here, we are concerned with development-time “device drivers”, rather than  
runtime artifacts. 

3.2   Component-Based Development of Embedded Systems 

Reuse is a key success factor in industry today and a major driving force in hardware 
and software development pushed forward by the growing complexity of systems. 
This chapter introduces a new methodology for the component-based development of 
embedded systems, referred to as MARMOT (Method for Component-Based Real-
Time Object-Oriented Development and Testing).  This methodology is an extension 
of the KobrA [1] method and its aim is to provide support and guidelines for assem-
bling embedded systems from existing building blocks of known quality at a high 
level of abstraction. The main concept is that on high level of abstraction component 
and system developers do not need to be aware of anything about a component’s, or 
its associated components’ implementations, or about the type of a component, such 
as whether it is hardware, software, or a mixture of both. In addition, MARMOT 
supports hierarchical development, and thus allows the reuse of more complex  
systems in the form of them being components in their own right.  

3.2.1   Principles 
Most existing component-based development methods only regard an entity as a com-
ponent if it is implemented through a specific construct (e.g., a Java Bean), or modeled 
by using a particular abstraction (e.g., a component icon). In other words, being a com-
ponent is regarded as an absolute property. But, quite in contrast, being a component is 
a relative term rather than an absolute one. The term “component” indicates that one 
artifact (the component) may be a part of another artifact (another component), and 
certainly not that it is described in some particular form or abstraction. It only needs 
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to come equipped with the right features that permit the tools to integrate it with other 
such entities. Composition is a key activity in component-based development. Meth-
ods such as MARMOT recognize this fact in that they advocate composition as the 
single most important engineering activity. A system can thus be viewed as a tree-
shaped hierarchy of components, in which the parent/child relationship represents 
development-time composition (i.e., a super-ordinate component is composed out  
of its contained sub-ordinate components). Another form of composition is the  
acquisition of a component during run-time according to the client-server model. 

Another, long established principle of software engineering is the separation of the 
description of what a software unit does (e.g., "specification", "interface" and "signa-
ture") from the description of how it does it (e.g., "realization", "design", "archi-
tecture", “body”, and "implementation"). This facilitates a "divide-and-conquer"  
approach to modeling, in which a component can be developed independently. It also 
allows new versions of a component to be interchanged with old versions provided 
that they do the same thing and abide by the same interface. 

This principle is as important when modeling architectural components as it is 
when implementing them. A component that is modeled according to this principle is 
essentially described at two levels of detail - one representing a component's interface 
(i.e., what it does) and the other representing its body (i.e., how it fulfills the specified 
interface). Following this principle, each component within a system can be described 
through a suite documents, for example UML diagrams, as if it was an independent 
system in its own right. This is shown in Fig. 2. A MARMOT component is equiva-
lent with a KobrA component plus additional artifacts that are essential for embedded 
systems. The arrows indicate consistency rules [1] ensuring that the various models 
describe the same entity from different points of view. The separation between speci-
fication and realization allows developers who want to use an existing component, or 
to replace one component with another one, to concentrate on the interface, neglecting 
the details of the body. 
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Fig. 2. MARMOT Component Model (extends the KobrA component model) 

3.2.2   Embedded Components 
The idea of modeling the components of a system using a standard suite of documents 
or artifacts seems to be applicable in general, so that hardware components may be 
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described in the same way, only perhaps through different types of documents. In 
particular, this means that software and hardware components are treated in the same 
logical way. In principle, hardware components in an embedded system typically 
consist of the hardware itself and a device driver to communicate with the software. 
For component-based development, however, an additional interface definition is 
required which follows the same standard as that for software components (i.e., a 
uniform specification for all component types). Therefore, a “hardware wrapper” 
must be devised that provides such an interface, and that triggers the events concern-
ing hardware interrupts, and that passes calls and parameters to the hardware’s device 
driver. In this sense, the wrapper and the device driver hide hardware-specific details 
(e.g., port access) and allow the component to participate in remote method calls. 
From the view point of the software system, this will turn a hardware component into 
any odd software component. 

Components within an embedded system belong to one out of three groups or 
types: (1) Software, (2) Hardware (divided into electronics, mechanics, and mecha-
tronics components), and (3) Software/Hardware components, which have a software 
and a hardware realization. Due to the wrapper concept, each component type can be 
described at the interface level using a standard set of UML diagrams. Fig. 3 shows 
the meta-model for these diagrams.   
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Fig. 3. Meta-model for an embedded component according to MARMOT 

3.3   MARMOT Process Model 

The core principle of MARMOT is separation of concerns, so it associates its main 
development effort with two basic dimensions that map to four basic activities [1]. 
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These are illustrated in Fig. 3. The third dimension (Genericity/Specialization) is only 
used in product-line developments, when a generic component framework (product 
line) is instantiated according to decision models to form a final concrete product of 
that product line. The other, more important two dimensions are 

– Composition/Decomposition dimension. 
 Decomposition follows the “divide-and-conquer” paradigm, and it is performed 

to subdivide the entire embedded system into smaller parts that are easier to un-
derstand and control. Composition represents the opposite activity, which is per-
formed when the individual components have been implemented, or some others 
reused, and the system is put together. 

– Abstraction/Concretization dimension. 
 This is concerned with the implementation of a system and a move toward more 

and more executable representations. The activity is called embodiment, and it 
turns the abstract system represented by models into more concrete representa-
tions that can be executed by a computer. The move back is called validation. 
This activity checks whether the concrete representations are in line with the ab-
stract ones. 

The following paragraphs explain the individual activities along the primary two 
development dimensions in more detail. 

 

Fig. 4. Two main development dimensions of MARMOT with activities 

3.3.1   Decomposition 
An embedded system development project always starts above the top left-hand side 
box in Fig. 4. The box represents the entire system to be built. Before the specifica-
tion of the box, we have to determine the concepts of the domain, or the physical 
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world in which the system is supposed to operate. This comprises descriptions of all 
entities relevant in the domain including standard hardware components that will 
eventually appear on the right-hand side towards concretization. In embedded systems 
these implementation-specific entities often determine the way in which a system is 
broken up into smaller parts [9].  

During decomposition we attempt to map newly identified logical parts of the sys-
tem to existing components. Whether these are hardware or software does not play a 
role at this early phase because of the way all components are treated in terms of 
collections of descriptive artifacts, as said before. Decomposition always requires a 
good understanding of the domain under consideration, and it is always directed to-
ward already existing pre-fabricated parts. After all, everything is about reuse. Chan-
neling all the constraints of a component-based project into a logical decomposition is 
one of the most difficult engineering challenges and it can be seen as the single most 
important determining factor for a good resulting system architecture.  

3.3.2   Embodiment 
During decomposition we define the shapes of each identified individual component 
in an abstract and logical way. The system, or its parts thereof, can then be moved 
toward more concrete representations, some of which will turn out to be program 
code, some others hardware realizations. This depends on the constraints of the do-
main and the type of existing entities that can be identified. If functionality exists, it 
needs to be integrated into the logical architecture through (hopefully) existing and 
reusable abstract descriptions. If no existing abstractions can be identified, engineers 
have to decompose the system further until they find a suitable reusable comopnent, 
or, in the worst case, they have to develop functionality from scratch.  

3.3.3   Composition 
After we have implemented some of the boxes and some others reused, we can start to 
put the system together according to our abstract model. By doing this we have to 
interconnect the subordinate with their respective super-ordinate boxes, or other dy-
namically acquired boxes in a way that exactly follows our component standard pre-
viously described. Hard- and software components are treated in a uniform way, be-
cause they have a uniform abstract component model.  Dynamically acquired external 
components may require adapters. 

3.3.4   Validation 
A final activity, validation, is carried out in order to check, whether the concrete compo-
sition of the embedded system corresponds to its abstract description. Validation is not 
necessarily the last activity in this cycle. We do not have to fully decompose the system 
in order to implement a single box. Because KobrA and, as a consequence, MARMOT 
are recursive, each box can be seen as a system in its own right, which passes through 
all steps individually. The advantage of complete initial decomposition is that all the 
system dependencies of recursive containment of instances can be resolved from bottom 
up. This facilitates testing, since components at a higher level of decomposition are 
usually depending upon components at lower levels of decomposition. 
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3.4   The Basic MARMOT Product Model 

MARMOT is an extension of the KobrA method [1] that adds concepts particularly 
aimed at embedded systems development to an otherwise restricted model that has 
initially only been devised for information-type systems. MARMOT fully subsumes 
KobrA’s principles and component model, and it extends both. According to the 
MARMOT method, components are built on the same fundamental principles that are 
coming from object technology. Therefore MARMOT components follow the princi-
ples of encapsulation, modularity and unique identity that most component definitions 
put forward [2, 13, Szy99], and these lead to a number of properties that are obligatory 
for MARMOT components: 

– Composability is the primary property of a MARMOT component, and it can be 
applied recursively: components make up components, which make up compo-
nents, and so on. 

– Reusability is the second key property that can be separated into development for 
reuse, which deals with how components have to be specified and treated, so that 
they can be reused, and development with reuse, which refers to the way in which 
existing individual components need to be combined in order to make up an em-
bedded system. Both strategies are fully described in [1]. 

– Having unique identities requires that a component may be uniquely identifiable 
within its development environment as well as within its runtime environment. 
KobrA provides the principles for that. 

– Modularity and encapsulation refer to a component’s scoping property as an 
assembly of services, which is also true for a hardware component, and as an as-
sembly of common data, which is true for the hardware and the software parts of 
an embedded component. Here, the software part only represents an abstraction 
of the hardware part that essentially provides the memory for the data. 

– An additional important property is communication through interface contracts, 
which becomes feasible in the hardware or embedded world through typical 
software abstractions. Here, the additional hardware wrapper of MARMOT real-
izes that the typical hardware communication protocol is translated into a typical 
component communication contract. 

Composition along the Composition/Decomposition dimension turns a MARMOT 
project into a tree-shaped structure with consecutively nested abstract component 
representations. Such a tree is called containment tree. Each of the boxes in the tree, 
that represents an instance of a component or a system in its own right, is made up of 
a component specification and a component realization. The specification is a suite of 
descriptive artifacts that collectively define everything externally knowable about a 
component.  These descriptions fully specify a component in a way that it can be 
assembled in a system and used by the system. The realization is a suite of descriptive 
artifacts that collectively define how a component is internally realized. And accord-
ing to the composition principles, components can be made up of other components 
which, in our case, can even be hardware components or combinations of hardware 
and software components. Any component instance in a MARMOT containment tree 
can therefore be a containment tree in its own right, and, as a consequence, another 
MARMOT project. These principles are subsumed from the KobrA method. The only 
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difference in MARMOT is the type of artifacts that can or must be used to describe a 
specific type of component. MARMOT components can be software, hardware, me-
chanics, or a combination of everything. This organization is explained in the follow-
ing paragraphs. 

3.5   Hardware/Software Integration in MARMOT 

A component specification is a collection of models that describe the externally visi-
ble features of a MARMOT component, such as a structural model that shows the 
immediate external neighbors, and other interacting components, a behavioral model 
that shows the reactions to externally generated stimuli and how these may change the 
component’s state, and a functional model that describes externally accessible indi-
vidual functionality, etc. These are common for all components. In addition, each 
specific component type, distinguishable through the stereotypes <<Electronics>>, 
<<Mechanics>>, and <<Mechatronics>>, will have their own specific document 
types that are common and understood in the domain of that component.  

In this way, each component that is somehow related to one or several of the do-
mains involved in a project will be equipped with the right documents, so that each 
stakeholder of each domain can understand its specification. The software engineer 
will most probably concentrate more on the UML abstraction of the component, 
whereas the electrical engineer will probably be more interested in the data sheets of 
the encapsulated hardware entities and the electrical signals that they provide and 
require. The interface between the two worlds is realized through a wrapper that, in 
 

 
Fig. 5. Component wrapper along the embodiment dimension 
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terms of a specification, represents operation invocations and parameter communica-
tion along the lines of a component contract. In terms of a realization, this would be 
represented as electrical signals. The wrapper corresponds to an interface between the 
source/binary code (software) and the hardware, as depicted in Fig. 5. 
    The wrapper component in the adaptor abstraction in Fig. 5. explicitly communi-
cates with the hardware component in the hardware abstraction in terms of signals. 
The abstract source code component will talk to the wrapper component in terms of a 
component contract, e.g., through operation invocations and pre- and post-conditions. 

The following paragraphs provide examples of which documents can be used in the 
various component types and according to the various stakeholders of the domains.  

<<Electronics>> components, such as microprocessors, microcontrollers, sensors, 
and actuators, in addition to the standard descriptive artifacts like behavioral and 
structural model, will provide data sheets (Table 1) and technical drawings (Fig. 6.). 
These documents, in tandem with the other standard MARMOT specification arti-
facts, provide a sufficient black-box view on such components. 

Table 1. Data sheet template 

Type Type of the <<Electronics>> component. 

Name 
Name of the <<Electronics>> type, from the containment 
hierarchy, or realization structural model 

Description 
Standard name/type of the component, or specific vendor 
name/type 

Interfaces 
List of the external interfaces that the <<Electronics>> Com-
ponent requires or provides 

Physical Proper-
ties 

Electrical and other physical properties that of the component 
(data sheet of the physical component) 

 

Fig. 6. Example technical drawing and technical specification 

    <<Mechanics>> components are pieces of hardware that are fully governed by 
their physical properties. It is arguable, whether the properties of mechanical compo-
nents will have an effect on the software system. This becomes more apparent when 
we look at <<Mechatronics>> components that are made up of mechanical elements 
and electronics. The mechanical properties of a component may have a substantial 
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effect on its electrical properties, which, in turn, define the way the software needs to 
be designed. Component-based development is supposed to separate the three do-
mains, although their views have to be incorporated. MARMOT deals with this sepa-
ration and combination issue through the component wrapper that essentially realizes 
an abstract device driver. We can separate the view on a component in terms of me-
chanical engineering, electronics and software documents, but, at the same time, they 
are part of the same abstraction, so that we can combine these views into one individ-
ual building block. 

MARMOT’s specification level provides a simplified view on the entire system 
through component abstractions. At the realization level, this simple view has to be 
specialized and made more concrete. In practice, the system architects, and this may 
include roles from the three domains under consideration, must decide, which existing 
component will most likely satisfy its abstract specification requirements, and needs 
to adapt the wrapper according to the abstract specification. Currently, this would be a 
manual negotiation and adaptation effort, but automation is also perceivable. 

4   Non-functional Properties 

Non-functional, or so-called quality-of-service (QoS), requirements are typically 
derived from user-level abstractions in very early stages of system development. 
Within the two-dimensional development model of the MARMOT method this would 
be a stage that is even above the left-hand side top box in Fig. 7. However, in embed-
ded system development, most QoS attributes are coming from requirements of the 
physical world in which the software system is embedded and which it is supposed to 
monitor and control. In other words, here, the non-functional requirements are in fact 
coming from above the upper right hand side box (hardware abstraction) in Fig. 7. 
The dilemma is that it is not initially clear how to distribute the QoS requirements 
among the boxes along the decomposition hierarchy at the abstract (model) level. The 
question here is: how much budget of a QoS requirement will be implemented by one 
lower-level box? A customer of a system is interested in that the system as a whole 
satisfies its non-functional requirements. However, systems are decomposed into 
finer-grained parts that are easier to deal with. So, the implementation of the non-
functional requirements takes place at the lowest-level of decomposition and at the 
lowest level of abstraction. This can be regarded as a semantic gap between high-level 
and low-level composition entities. 

The fact that MARMOT represents a spiral approach (in contrast to a waterfall 
model) to embedded system development may alleviate this distribution problem to 
some extent. In other words, how much budget of memory or execution time will be 
“used up” by each of the boxes, so that, in combination, they can satisfy their high-
level memory or timing requirements, for example? In our opinion, this is not entirely 
solvable unless there is a direct one-to-one mapping between high-level decomposi-
tion abstract and low-level decomposition concrete entities. What we can do is to 
decompose the system vertically, box by box, in terms of functionality and assess how 
well the QoS requirements are met by each individual part and then compose the 
system box by box until the budgets of the QoS requirements are fully “used up”. If 
we have decomposed and composed our system completely in the way it was planned, 
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we are finished. Otherwise, we still have uncompleted boxes, for which we do not 
have any more budgets left over in terms of QoS requirements. And we have to go 
back to the other boxes and optimize and gain some budgets that we can use for other 
boxes. This must be repeated until all boxes as a composition satisfy all the high-level 
QoS requirements. 
    As discussed earlier, MARMOT’s specification level provides a simplified view on 
the entire system through component abstractions. These, in turn, are specified in 
form of UML diagrams, and, in case of non-software components, accompanying 
additional documents. Therefore, the question is how to describe the non-functional 
properties of a component already at the specification level? One approach, follo-
wing the ideas of different UML profiles, is to provide a meta-model of specific non-
functional aspects in form of a UML class diagram.  

Fig. 8. shows such a simple model concerning reliability. In this example reliabil-
ity can be estimated low, medium and high, which depend on other attributes such as 
portability and developer. The system or a component (i.e., a robot) can then have 
specific non-functional requirement asking for a high reliability.  

<<NF-At t ribute>>
Developer
name: st ring
external_developer: bool

<<NF-At t ribute>>
Portability
fully_portable : bool

<<NF-At tribute>>
Reliability
reliability: enum(none,low,medium,high)
<<OCL>>
p: Portability
q: Developer
not  p.fully_portable implies self .reliability <> high
q.external_developer and not  p.fully_portable
implies self .reliability = low 

<<NF-At tribute>>
Reliability
reliability: enum(none,low,medium,high)
<<OCL>>
p: Portability
q: Developer
not  p.fully_portable implies self .reliability <> high
q.external_developer and not  p.fully_portable
implies self .reliability = low 

<<has>>

<<imports>>

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliability = high

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliability = high

Robot

 

Fig. 7. Reliability Model 

Control

GripperEngine

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliabilit y = high

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliabilit y = high

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliabilit y = medium

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliabilit y = medium

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliabilit y = high

<<NF-Requirement>>
Systemrequirements
fully_portable = t rue
external_developer = false
reliabilit y = high

<<has>>

<<has>> <<has>>

 

Fig. 8. Refined Reliability Model 
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In the context of a MARMOT development project, such a high-level requirement 
can be refined as components and subcomponents.  

Fig. 8. shows the refinement of the Control component into two subcomponents and 
how the reliability properties of these components are specified. During the composi-
tion process it can then be evaluated, whether the non-functional requirements of a 
super-component can be met, taking the properties of the subcomponents into account.  

5   Summary and Conclusions 

The phenomenal interest in the Unified Modeling Language provides a unique opportu-
nity to increase the amount of modeling work performed in the software development 
industry, and to increase quality standards. UML 2.0 promises new opportunities to 
apply object-oriented and model-based development techniques throughout embedded 
systems engineering. However, this chance will be lost, if developers are not given 
effective and practical means for handling the complexity of such systems, and if they 
are lacking guidelines for systematically applying them. 

This chapter has outlined the UML modeling practices, which are needed in order 
to fully leverage the component paradigm in the development of embedded software. 
Following the principles of encapsulation and uniformity - separating the description 
of what a system unit does (e.g., “specification”, “interface” and “signature”) from the 
description of how it does it (e.g., “realization”, “design”, “architecture”, “body”, and 
“implementation”), and describing both levels with a standard set of models – it be-
comes feasible to model hardware and software components of an embedded system 
in a uniform way. This facilitates also a "divide and conquer" approach to modeling, 
in which a system unit can be developed independently. It also allows new versions of 
a unit to be interchanged with old versions provided that they do the same thing. The 
MARMOT method supports this approach to modeling by providing embedded sys-
tem developers with step-by-step guidelines throughout a complete development 
project. The principles of the MARMOT method are currently being tried out in real 
industrial case studies, and adapted to various embedded systems domains. The next 
step will be the provision of a tool suite. 
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Abstract. We survey compositionality results for three classes of system
properties: invariance/safety properties and liveness properties (based on
work by Abadi and Lamport), and confidentiality properties (based
on work by Mantel). We then analyse the difficulties which occur when
trying to apply the compositionality results of these classes of properties
simultaneously.

1 Introduction

In many areas of engineering, compositional reasoning is a key to master the
complexity of practical applications. Briefly spoken, compositional reasoning al-
lows to derive properties of a complex system from the individual properties of
it’s components. In civil engineering, the structural integrity of a building for
example is calculated from the properties of the used materials (stiffness of steel,
thickness of concrete, etc.) plus the structure of the overall construction plan.

Since complexity is one of the fundamental problems of modern software sys-
tems, the idea of compositional reasoning has also been applied in software engi-
neering. The growing area of component-based systems (for an overview see
Szyperski [17]) can be regarded as a witness for the importance of this issue. How-
ever, compositional reasoning is no silver bullet. Reasoning about the composition
of systems is nothing which can be taken lightly because it needs to pay careful at-
tention to the subtle and often surprising ways in which components may interact.

There are many ways in which it is possible to investigate compositional
reasoning. On the one hand, the component-based system community has doc-
umented many efforts in this direction, often under the heading of component
predictability (see for example recent work by Crnkovic et al. [7]). The focus of
this stream of work lies on particular practical system properties (like reliability
and performance) and their compositionality. Thus, the models used are tailored
to a specific setting and context. On the other hand, there is a more theoretical
view which is closer to the work in the software verification community. There,
compositional reasoning is based on an (often rather general and) rigorous (i.e.,
formal) theory of system semantics. Both streams of work (the predictability
stream and the verification stream) focus on orthogonal issues of composition-
ality: While the verification community wishes to obtain results which are as
general as possible (within the respective semantic domain), the predictability
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community strives for concrete formulas from which the behavior of a composed
system may be forecast.

Based on the background of the authors, in this paper we follow the path of the
verification community. Several theories of composition and for distinct classes
of properties have been proposed. But while being rather general, most of the
theories available today are far from universal. Instead of aiming at a (complex)
“meta theory” of composition comprising all types of system properties, it seems
more promising to ask the question whether and in what way existing methods of
compositional reasoning for different types of system properties are themselves
compositional.

In this paper we look at three domains of system properties and their com-
positionality results and ask whether these results can be applied in the same
system context simultaneously. The classes of system properties considered are:

1. Assertional properties of the system state, i.e., properties which hold or
which do not hold in the history (the “past”) of a system execution. Exam-
ples for this kind of property are partial correctness, i.e., the property that
the termination state of a system satisfies a certain input/output relation, or
mutual exclusion, i.e., the property that no two processes in the system ac-
cess a shared resource simultaneously. Assertional properties are often called
safety properties. The characteristic of such properties is that their violation
occurs in finite time.

2. Liveness properties of systems, i.e., properties which demand that the sys-
tem will do something in the “future” of a system execution. Examples of
such properties are termination, i.e., that eventually the system reaches a
termination state, or many types of fairness properties, e.g., every process
which requests access to a shared resource will eventually be able to access
it in finite time. The characteristic of such properties is that their violation
occurs in infinite time.

3. Confidentiality properties of systems, i.e., properties which assert that an ob-
server of the system is not able to deduce information about the occurrence or
non-occurrence of certain types of internal system events. The characteristic
of such properties is that they cannot be judged by observing an individual
system execution but require an analysis of the actual system behavior in re-
lationship to alternative behaviors the system might have exhibited instead.
As an example, consider a hospital information system where patients can
usually access their medical files but are denied access in case a doctor has
added a terminal diagnosis (in order to convey it to the patient in the pres-
ence of medical staff). Knowing this rule (i.e., the complete system behavior)
and observing an access restriction a patient is able to conclude that he has
a terminal diagnosis without observing this directly. So the system does not
satisfy confidentiality.

Our selection of properties was made partly based on their prominence in the
verification literature and partly based on the background of the authors. The
classes of safety and liveness properties are well-established in classical verifi-
cation of reactive systems [11, 12, 5] while the particular class of confidentiality
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properties investigated here is part of an increasingly popular stream of work
within the security community. It should be noted, however, that there are also
other streams of work which we could have considered, for example work by
Charpentier and Chandy [6] which, in contrast to the work considered here,
does not use automata-based models of computation.

Our notion of compositional reasoning for a class of properties P basically
is the following: Given a set of components {Π1, . . . , Πn}. Each component Πi

satisfies property Pi ∈ P . Now consider the composition Π of the Πi (written
as Π1‖Π2‖ . . . ‖Πn). We would like to derive the property P which Π satisfies
from the properties of the Πi. The class of properties admits compositional
reasoning if P is expressible as a function of Pi, i.e., P = F (P1, . . . , Pn). A
composition theorem for the class of properties generally has the form: Given
Πi which satisfy properties Pi. Under some hypothesis H there exists a function
F such that Π = Π1‖ . . . ‖Πn satisfies P = F (P1, . . . , Pn).

In the following Section 2, we survey basic compositionality results for the pre-
viously described classes of properties, namely Abadi and Lamport’s composition
principle for safety and liveness properties [1] and Mantel’s compositionality re-
sults for the domain of confidentiality properties [14]. In Section 3 we examine
the difficulties which occur when trying to apply these compositionality results
simultaneously. The main results of this examination are the following:

1. The compositionality theorems are mutually compatibe in the sense that the
system models are equivalent and their hypotheses are — in general — not
inconsistent.

2. Certain types of confidentiality properties imply the absence of certain types
of safety properties. This means that a system specification which requires
both properties to hold may not be implementable.

3. In contrast to safety properties, liveness properties do not contain a potential
conflict with confidentiality properties. However, this insight may be of little
help in practical settings where the problem is to find a proper decomposition
that ensures the preconditions of the individual compositionality theorems
simultaneously.

We conclude the paper in Section 4.

2 Classes of System Properties and Compositional
Reasoning

In this section we review the fundamental compositionality results for the do-
mains of safety and liveness properties on the one hand and the domain of
confidentiality properties on the other.

2.1 Safety and Liveness Properties

In 1993, Abadi and Lamport [1] discussed the composition of safety and liveness
properties at a semantic level. Followup work by the same authors [2] investigated
composition using a particular logic (TLA). We now briefly revisit their system
model and the main results.
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Semantic Model. The model is state based with the addition of agents. For a
component, basically two agents are distiguished: the component and its envi-
ronment. Agents are responsible for state changes.

A behavior is a sequence of alternating state and agents meaning that the next
state is reached by the agent executing some action. Concurrency is modeled
using interleaving semantics. Two behaviors are stuttering equivalent if they
are equal after sequences of stuttering steps (where the state does not change)
are replaced by the single state. A property is a set of behaviors closed under
stuttering equivalence.

A property is a safety property if it is closed under prefixes. A property is a
liveness property if every finite behavior prefix is a prefix of a behavior in that
property. The specification of a system is the property consisting of all behaviors
in which the system is considered to perform correctly.

Using results from topology, Alpern and Schneider [3] proved that every prop-
erty (in the above sense) can be represented as the intersection of a safety
property and a liveness property. In a sense, safety and liveness properties are
therefore universal for the domain of properties which are sets of behaviors. For
a survey of safety and liveness see Kindler [9].

Types of Specifications Considered. A system we specify cannot control
its environment. Therefore a specification must be written such that it does
not constrain the environment. A good specification asserts that the system
behaves correctly if the environment behaves correctly. A specification is called
unrealizable if it constrains the environment and therefore is unimplementable.
We now describe this concept more precisely.

A behavior is the outcome of a two-player infinite game played between the
system and its environment. The environment chooses the initial state. Then sys-
tem and environment take turns in extending the behavior. The system can add
at most one step, the environment any finite number of steps. The system wins
if the resulting behavior satisfies the specification. A specification is realizable if
the system always has a winning strategy, i.e., the system can always make the
behavior satisfy the specification no matter what the environment does.

The realizable part of a specification is the set of behaviors in which the
environment never had the chance to win. Abadi and Lamport [1] consider only
the realizable part of a specification.

Programs. A program consists of a set of states, a set of initial states, a next
state relation and a progress property (often called a fairness property). Initial
states and the next state relation define a safety property. The semantics of a
program is the intersection of the safety property of the program (defined by the
set of initial states and the next state relation) and the progress property.

A pair of properties (M, P ) is machine-closed iff M equals the safety closure of
P . Machine closure of (M, P ) means that P does not imply any safety property
not implied by M . Let S be the safety property of the program and L be its
progress property. Then Abadi and Lamport demand that (S, S ∩ L) should be
machine-closed. All published forms of progress properties (strong/weak fairness,
progress, maximality) are machine-closed for any program.
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x = 0 x = 1 x = 2

Fig. 1. Example system for which the liveness property “eventually x = 2” is not
machine closed.

As an example, consider the system depicted in Fig. 1. Consider the safety
property S defined by the transition relation of that system: the state x = 1 is
the initial state and only two subsequent state transitions are possible (either to
x = 0 or x = 2). Once that state is reached, the system remains in that state.
Let the liveness property L be “eventually x = 2”. Now the pair (S, S ∩ L) is
not machine-closed. To see this, observe that requiring the system to satisfy L
implies that it never takes the state transition from x = 1 to x = 0. So S ∩ L
implies the safety property “never x = 0” which is not part of S.
Normal Forms of a Specification. A specification has the canonical form

I ∩ ES ∩ EL ⇒MS ∩ML

where I is an initial state predicate, ES is the safety property of the environment
and MS is the safety property of the system. The properties EL and ML should be
machine-closed with respect to their respective safety properties, i.e., ES and MS .

Abadi and Lamport prove [1–Theorem 1] that the progress properties ML

and EL can be combined to one and the specification be written as:

I ∩ ES ⇒MS ∩ (EL ⇒ML)
Composition Principle. For simplicity, we just consider the composition Π of
two systems Π1 and Π2. We assume that they refer to the same state space and
they “contain” different agents. Composition of two properties is interpreted as
conjunction (or intersection) of the properties. Property S′ implements property
S if the realizable part of S′ is a subset or equal to S.

Given two components Π1 and Π2 with specifications Ei ⇒ Mi and let the
composition Π of Π1 and Π2 have specification E ⇒ M . Here, E, E1, and E2
are assumed to be safety properties.

The composition principle has three hypotheses:

1. Π guarantees M if each component Πi guarantees Mi. This basically means
that M = M1 ∩M2.

2. If Π satisfies E and Πj satisfies Mj then Ei is satisfied for all Πi. Basically
this means that E ∩M1 ∩M2 ⇒ E1 ∩ E2.

3. Every component Πi guarantees Mi under environment assumption Ei. Ba-
sically this means that each Πi satisfies its specification Ei ⇒Mi.

The conclusion of the composition principle states that Π satisfies E ⇒M1∩M2.
Note that the composition principle is very general in that it does not restrict the
way in which components interact, i.e., the components can mutually influence
each other.
Example. The following example is directly taken from Abadi and Lamport
[1]. Assume you are given two components Π1 and Π2 as depicted in Fig. 2. A
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Π1

in1

Π1 Π2

out1

out2

out1

out2

Π2

in2

Fig. 2. Example for the composition principle [1–p. 75]

split wire outputs the same value at both heads of an arrow. The specification
of the two components is as follows:

– Π1 guarantees that it never sends a “1” on out1 (M1), assuming that its
environment never sends it a “2” on in1 (E1).

– Π2 guarantees that it never sends a “2” on out2 (M2), assuming that its
environment never sends it a “1” on in2 (E2).

Note that the composed system Π does not receive values from its environment
and so it has no environment assumption E.

If we consider the two components above as two people, the specifications
can be metaphorically rephrased as “if you never do X then I will never do
Y ” for the first person and “if you never do Y then I will never do X” for
the second. Intuitively, it should be clear that the resulting system satisfies the
property that X and Y never happen (like in a nonaggression treaty). So let’s
check the hypotheses of the composition principle for Π , the composition of Π1
and Π2: Firstly, E1 and E2 as well as E1 ∩E2 are safety properties. Secondly, if
M1 ∩M2 holds, then E1 ∩E2 are satisfied. Thirdly, each component satisfies its
specification in isolation. So, alltogether Π satisfies E1 ∩ E2 ⇒M1 ∩M2.

Now we change the specifications of Π1 and Π2 by exchanging the word
“never” to the word “eventually” as follows:

– Π1 guarantees that it eventually sends a “1” on out1 (M1), assuming that
its environment eventually sends it a “2” on in1 (E1).

– Π2 guarantees that it eventually sends a “2” on out2 (M2), assuming that
its environment eventually sends it a “1” on in2 (E2).

Intuitively, this means that one component says “if you start doing X I will start
doing Y ” and the other “if you start doing Y then I will start doing X”. Here,
the conclusion of the composition principle would be that Π satisfies M1 ∩M2,
i.e., eventually a “1” is output at out1 and a “2” is output at out2. But it
should be clear that as in politics of deterrence the result is stagnation (neither
X nor Y happen). Formally, the composition principle is not applicable here.
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The hypothesis is violated which states that the environment assumptions are
safety properties.

2.2 Confidentiality Properties

We now investigate confidentiality properties and their compositionality. More
precisely, we consider possibilistic information flow properties. These properties
require that, given the system can perform a certain behavior, it can also perform
certain other behaviors. A system satisfying such a property keeps unobservable
differences between those behaviors confidential. Mantel’s thesis [14], on which
the presentation is based, presents a comprehensive overview over different types
of confidentiality properties and fundamental compositionality results.

Information flow properties like the ones investigated by Mantel are usually
discussed using examples from the area of multi-level security. Confidentiality of
events should be ensured regarding two types of users which are named High and
Low after their corresponding security levels. User High is assumed to manipulate
confidential information whereas user Low also has access to the system but
should not be able to deduce certain types of confidential information.

Note that in the context of confidentiality properties, the term property has
a slightly different formal interpretation (as will be describes below). Also, the
term trace is used instead of the term behavior. A trace is a sequence of events,
whereas a behavior is a sequence of agents and states. Technically, traces and
behaviors can be mapped to each other.

System Model. The system model on which the definitions of information flow
properties is based describes the possible traces over a given set of events, which
are classified as inputs, outputs, and internal events.

An event system is a tuple (E, I, O,Tr), where E is the set of all possible
events, I ⊆ E, O ⊆ E are disjoint sets of input and output events, and Tr is
a prefix closed set of traces, i.e., sequences of events. The set E∗ comprises all
finite traces. The set E∗∞ additionally includes the infinite ones.

A property Q of sets of events is a closure property if for all Tr ⊆ E∗ there is
a set Tr ⊇ Tr with Q(Tr).

All properties of traces can be expressed as properties of sets of traces (using
their characteristic sets). Conversely, a property of sets of traces can be expressed
by an equivalent property of traces if the property is closed under subsets and has
a maximal element. Therefore, closure properties cannot be reduced to equivalent
properties of traces [14]. McLean [16] has proved a similar theorem.

Basic Security Predicates. Mantel’s Modular Assembly Kit for Security Prop-
erties (MAKS) identifies basic properties that can be conjoined to produce dif-
ferent information flow properties. These basic security predicates (BSP) are
related to a view V = (C, N, V ) partitioning the events E of a system into con-
fidential ones C, visible ones V , and non-visible but not confidential ones N .
Each BSP has the following form, where the predicate SV(τ, β, c, v) implies that
β is a prefix of τ .
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BSPV(Tr) ⇐⇒
∀τ : Tr; c : C; v : V ; β : E∗.SV(τ, β, c, v) =⇒ ∃τ ′ : Tr.TV(τ ′, τ, β, c, v) (1)

Thus, a BSP basically requires that, under certain conditions, there exists some
trace τ ′ ∈ Tr for a each τ ∈ Tr. All basic security predicates hold for E∗, i.e.,
BSPV(E∗) is true. Therefore, a BSP is a closure property.

Constructing τ ′ from τ can be considered a two step process: first, some τ is
disturbed by adding or deleting one or more confidential events, which produces
a sequence of events that not necessarily is a trace in Tr; second, that sequence
is corrected to produce τ ′ by adding or deleting events in N .

Standard information flow properties such as generalized noninterference [15]
and forward correctability [8] formally capture the intuition that observing only
the visible events of a system trace does not allow an adversary to gain informa-
tion about the confidential events of that system trace. Such properties can be
expressed as conjunctions of BSPs in MAKS.

A view determines which events are considered confidential. The question who
“owns” events is a motivation for that distinction. Usually, the Low part of a
system is considered the one against whom the High part needs to be protected.
Therefore, it is obvious that all events directly accessible to Low are considered
visible. Often, only high inputs are considered confidential because low events
may influence high outputs (if High computes outputs based on data gained from
Low). Then, the high outputs are not visible (to Low) but also not confidential,
i.e., they make up the set N of a view.

Forms of Composition. The general composition ES1 ‖ ES2 of two event
systems ES1 and ES2 is defined by

E = E1 ∪ E2

I = (I1 \O2) ∪ (I2 \O1)
O = (O1 \ I2) ∪ (O2 \ I1)
Tr = {t ∈ E∗|t|E1 ∈ Tr1 ∧ t|E2 ∈ Tr2}

The events of E not in I and O are the internal communication events of
the composed system. Depending on the possible directions of communications
between the subsystems, one can distinguish the following special cases of general
composition:

– In a product, both subsystems work completely independently.
– A general cascade allows only unidirectional communication between the

subsystems, i.e., outputs of ES1 become inputs of ES2 but not vice versa.
– A proper cascade is a general cascade where I = I1 and O = O2, i.e., it pipes

inputs through ES1 to ES2, which produces the system outputs.

Figure 3 shows a general cascade Π3 ‖ Π3 of two identical components Π3.
That component receives confidential events from the set

{ck|k = pq, p �= q, prime(p), prime(q)}
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Π3

ck / np

vp

Π3

vq

ckck

Fig. 3. Cascaded Leaking of a Prime Factor

or non-visible but unobservable events from the set {np|prime(p)}. Each event
represents the natural number which is its index. An event ck thus represents a
natural number with exactly two prime factors. The component forwards events
ck but it suppresses events np. In any case, it produces an observation from these
inputs.

For each ck it receives, Π3 produces a visible event vp, where p is an arbitrary
prime factor of k. If it receives an event np then Π3 produces the visible event
vp corresponding to the same prime number p.

The cascade Π3 ‖ Π3 produces two visible events vp and vq for each ck, where
p and q are – not necessarily distinct – prime factors of k. If the cascade receives
an event np, then it produces only one observation, the corresponding vp.

A single Π3 keeps the occurrence of ck confidential: For each observed vp,
there is an infinite number of ck that could have caused this observation, indeed
it could also have been caused by the non-confidential event np.

The cascade Π3 ‖ Π3, however, does not keep products of two prime numbers
confidential: if k = pq and the two components choose to reveal vp and vq then
it is clear that ck must be the confidential event that caused those observations.

Separation of Views. The different forms of composition are made up by
varying the relationship of inputs and outputs of the subsystems. They do not
consider views associated to the systems.

To come up with a compositional verification of a BSP for a composed event
system with a given view V , this view must be decomposed to views V1 and V2
on the subsystems. The latter two form a proper separation of V if V ∩E1 = V1,
V ∩ E2 = V2, C ∩ E1 ⊆ C1, C ∩ E2 ⊆ C2, and N1 ∩N2 = ∅.

The separation of views for the cascade in Figure 3 is straight forward. Note
that N1 = {np|prime(p)} for the left component, whereas N2 = ∅ for the right
component.

Well-Behaved Composition. As mentioned above, a basic security predicate
always requires corrections of certain pertubations to exist in the trace set of
a system. When composing systems, those requirements for the components
may contradict each other: a correction necessary for one component may be a
perturbation for the other, requiring another correction, which in turn may be a
perturbation in terms of the first component, and so on. For two components Π1
and Π2, there are four conditions each of which is sufficient to avoid this kind of
situation. If one of those conditions holds, the composition is well-behaved. The
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most simple condition for well-behavedness requires the set of confidential events
of one component to be disjoint from the set of non-visible events of the other,
i.e., N1 ∩ E2 = ∅ ∧ N2 ∩ E1 = ∅. If only Π1, say, satisfies this condition, e.g.,
N1∩E2 = ∅ holds, then it may be sufficient to require that Π1 also can accept (or
produce) non-visible events of the other component at any time (total(ES1, C1∩
E2)) and that it satisfies an additional information flow property, saying that it
can correct certain insertions of confidential events. The latter condition ensures
that Π1 can correct perturbations caused by Π2. The third condition is similar
to the second with the roles of Π1 and Π2 exchanged. The remaining fourth
condition handles the case that both components can produce perturbations for
the other. It is considerably more complex than the other conditions are.

Although the composition in Figure 3 is well-behaved (the second condition
holds), the composition does not protect the events ck, as we have seen above.
The reason is that the instance of Π3 at the right-hand side does not protect
ck with respect to a view that has no non-visible events. This shows that a
proper separation of views is established “after the fact”: The separated views
are derived from the composed system, they are not an independent part of the
description of the components.

Well-behavedness is a necessary condition for compositionality of all known
information flow properties, but for most properties it is not sufficient. Additional
conditions need to ensure that the specific requirements of how perturbations
may be corrected for a given information flow property are compatible for the
two components.

Verification of Compositionality. The essential tool to verify compositional-
ity of information flow properties is Mantel’s Generalized Zipping Lemma, which
generalizes a lemma used by Johnson and Thayer [8] to prove compositionality
of forward correctability. The Generalized Zipping Lemma states that, given a
proper separation of views and a well-behaved composition, the following must
always be possible: If both components can extend a trace τ of the composed
system independently such that they do not produce confidential events and
they agree on the visible events, then there is an extension of τ in the composed
system that contains the same visible events but no confidential events.

Classification of Compositionality Results. Mantel classifies composition-
ality results by distinguishing the workings of components with respect to well-
behavedness: Locally correcting perturbations, a polite component will not
produce perturbations that the other component needs to correct, whereas a
tolerant component can correct any perturbation that the other component may
produce. If the composition is a general cascade and the non-visible events of
Π1 do not contain input events of Π2, then Π1 is polite. If it is also tolerant,
i.e., satisfies an appropriate information flow property, then there is no need to
further restrict the behavior of Π2. This is the case for generalized noninterfer-
ence, which is compositional under general cascade. The most liberal alternative
is to make both components tolerant. To make this composable, the components
must satisfy a strong information flow property, such as forward correctability
[8] or Mantel’s weakened forward correctability [14].
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2.3 Summary

In this section we surveyed basic compositionality results for the classes of
safety/liveness properties on the one hand and confidentiality properties on the
other. In the next section we investigate the compatibility of these results, i.e.,
the question whether the results can be applied to reason about safety/liveness
and confidentiality simultaneously.

3 Composing Compositional Reasoning

In this section we examine the difficulties which occur when trying to apply the
compositionality results of Abadi/Lamport [1] and Mantel [14] simultaneously.

3.1 Basic Considerations

Given two domains of system properties T1 and T2. We want to reason about two
components in Π1 and Π2 in both theories simultaneously. Assume that both
theories allow to express Π1 and Π2.

Compatibility of System Model. Here, T1 is the domain of safety and live-
ness properties, and T2 is the domain of confidentiality properties as discussed in
Section 2. We consider the basic system models (state-based for safety/liveness
and event-based for confidentiality) as equivalent. An event can be modeled as
a state change and a state can be modeled as an equivalence class of sequences
of events [1–p. 77]. We regard the restriction of confidentiality properties to fi-
nite traces as merely technical. For example, McLean [16] provides a theory of
possibilistic information flow properties which is based on infinite traces. The
expressiveness of the types of properties however is different. Safety properties
are sets of traces whereas confidentiality properties are sets of sets of traces,
and, being closure properties, cannot be reduced to sets of traces. But what is a
liveness property in the system model of traces?

A property Q, e.g., stating that some event x will eventually occur, is a live-
ness property if every finite trace τ can be extended by some (possibly infinite)
sequence of events t such that Q(τ.t) holds. In other words, the set of all finite
prefixes of all traces σ satisfying Q(σ) comprises all finite sequences, i.e.,

{τ ∈ E∗|∃σ ∈ E∗
∞.Q(σ) ∧ τ ≤ σ} = E∗ (2)

Now, let Tr be the trace set of an event system (with possibly infinite traces).
In general, the finite traces of Tr are a proper subset of E∗, because Tr sat-
isfies not only liveness but also safety properties. By definition, Tr is prefix
closed. Therefore Q constrains Tr in that all traces in Tr are extensible to traces
satisfying Q.

LQ(Tr) ⇐⇒ ∀τ ∈ Tr ∩ E∗.∃t ∈ E∗
∞.Q(τ.t) ∧ τ.t ∈ Tr (3)

Although Q essentially determines LQ, LQ cannot be reduced to a property
of traces, because it is not closed under subsets: Suppose LQ holds for Tr and
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let τ ∈ Tr be a finite trace not satisfing Q. Then Tr \ {σ ∈ E∗
∞|τ < σ} does not

satisfy LQ.
On the other hand, LQ also is not a closure property, because LQ(E∗∞) need

not hold: Let σ0 be an infinite trace not satisfing Q. Then, there is no way to
extend the singleton {σ0} to a set satisfying LQ.

Compatibility of Hypotheses. In T1 the components satisfy properties P1
and P2 and the composition Π1‖Π2 satisfies property F1(P1, P2) under hypoth-
esis H1. The hypothesis H1 for safety/liveness is mainly that the liveness prop-
erty is machine-closed with respect to the safety property. As argued above, F1
is conjunction, i.e., the composition satisfies P1 ∩ P2.

Similarly, in T2 the components satisfy properties Q1 for view V1 and Q2
for view V2, and the composition Π1‖Π2 satisfies property F2(Q1, Q2) under
hypothesis H2. The hypothesis H2 for confidentiality properties mainly con-
cern the notion of well-behaved composition, as discussed above. The property
F2(Q1, Q2) of the composition then is an appropriate information flow property
for a view V , for which V1 and V2 make up a proper separation.

Hypothesis H1 guarantees the existence of F1, and H2 guarantees the exis-
tence of F2. The hypotheses H1 and H2 are consistent, i.e., there are safe/live
and secure systems which are composed from components with the respective
properties. Therefore, if H1 and H2 hold and the respective properties of the
components hold, then the two composition theorems can be applied and
the composition satisfies both, F1(P1, P2) and F2(Q1, Q2).

First Summary. Safety, liveness and information flow are three different kinds
of properties. Being properties of sets of traces that cannot be reduced to prop-
erties of traces but also are not closure properties, liveness properties seem to
have a conceptual complexity between the relatively simple safety properties and
the quite complex information flow properties.

Because the system models are equivalent and the hypotheses of the compo-
sition theorems are consistent, there is no fundamental reason why the results
could not be applied simultaneously. However, there are some possible conflicts
in the details of the models which we now explain.

3.2 Possible Conflicts Between Safety and Confidentiality

There is a possible conflict between confidentiality properties and safety prop-
erties. A confidentiality property may disallow certain safety properties. If the
system specification for domain T1 requires these properties, then there exists
no implementation for such a system.

As observed by Mantel [13–p. 192ff], the specification of a secure system
usually consists of two parts:

1. A part which specifies the functional aspects of the system. This part can
conveniently consist of a safety and a liveness property, i.e., a set P of traces.

2. A part which specifies the security requirements of the system. This part
can conveniently consist of a closure condition C for the set of traces P .
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In general, P need not be closed with respect to C. Simply constructing the
closure of P with respect to C is no solution because this adds traces that were
not considered correct regarding P . The task is to find a subset P ′ of P which
is closed with respect to C. However, this set may be empty and therefore not
be suitable as a system specification.

Mantel [13–p. 193] defines the notion of compatibility between P and C to
formalize this issue. The set P is compatible with C if the closure of P with
respect to C is equal to P . Otherwise, P and C are incompatible.

As an example, consider a system which immediately audits low level events
at the high level. Thus observing a low level event admits the conclusion that
the corresponding high level event has happened after a certain time. Security
properties that disallow this form of information flow are incompatible with the
functional requirements of the auditing system.

3.3 Possible Conflicts Between Liveness and Confidentiality

Section 3.1 showed that there is no principal hindrance in applying both compo-
sitionality results for liveness and confidentiality simultaneously. If there are two
components with exactly the desired liveness and information flow properties,
then composing them yields a live and secure system.

From an engineering point of view, this “bottom up” result is not very helpful.
Usually, a system development would start with required liveness property Lsys

and an information flow property Csys for the system to be built. Then engineers
would try and find decomposions Lsys = F1(P1, P2) and Csys = F2(Q1, Q2) of
those properties such that it is possible to build (or find) components Π1 and
Π2 satisfying P1 ∧Q1 and P2 ∧Q2, respectively.

In this setting, two problems arise: First, the decomposition of the properties
may be inconsistent, i.e., it may be impossible to satisfy Pi and Qi simulta-
neously. This does not necessarily mean that there is no system which would
satisfy both Lsys and Csys. Rather the decomposition is inadequate. Although
the general forms of both properties (c.f., formulas (1) and (3)) are similar, the
traces of Tr they relate, i.e., τ and τ ′ in (1), and τ and τ.t in (3) are structurally
different. The “alternative” τ ′ of τ in (1) usually is not an extension of τ but a
modification at the last occurrence of a confidential event in τ or τ ′. Thus, the
differences in traces required by liveness and information flow concern different
“dimensions” of the set of system traces. As a consequence, a trace required to
be in Tr by liveness, say, may require the presence of another trace in Tr to
satisfy the information flow property.

Second, the hypotheses H1 and H2 of the composition theorems may not be
satisfied. This means, although both components are “live and secure”, their
composition is not guaranteed to be, because they do not satisfy the additional
requirements that make the composition theorems applicable. For safety and
liveness, the hypotheses (H1) require the environmental assumptions to be safety
properties. For information flow properties, the hypotheses (H2) require a well-
behaved composition.
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To determine the possible interference of those two types of hypotheses, it is
useful to rephrase the possible instances of H2 as environment conditions for the
components.

1. Conditions of the form N1 ∩ E2 = ∅ can be interpreted as an environment
condition of Π1: “Π2 does not produce events in N1”.

2. Totality conditions (total(ES1, C1 ∩E2)) are environment conditions of Π2:
“Π1 can always accept (output) events in C1 ∩ E2 ∩ O2, and it can always
produce (input) events in C1 ∩ E2 ∩ I2”.

3. The remaining information flow properties that a well-behaved composition
must satisfy do not have sensible interpretations as environment conditions,
i.e., they must be considered part of Mi for Πi.

Condition (1) clearly is a safety condition, as is Condition (2). Therefore, there
is no general contradiction between H1 and H2. Nevertheless, specific environ-
ment assumptions to ensure liveness may be inconsistent with a well-behaved
composition with respect to information flow.

In summary, to ensure applicability of both compositionality theorems, it is
necessary to design the decomposition in such a way that the safety conditions
the single components impose on their environment for liveness and information
flow are consistent. Only after this is established it is useful to consider the
liveness and information flow properties that the two theorems require the single
components to fulfill.

4 Summary and Conclusion

We investigated the problems which may arise if compositional reasoning for
different types of properties is applied simultaneously to a system. We con-
sidered three distinct classes of system properties, namely safety, liveness and
confidentiality properties. We found that Abadi and Lamport’s [1] and Mantel’s
[14] compositionality results can work together. However, difficulties arise in the
compatibility of individual system properties (like safety and confidentiality) and
in certain engineering aspects of system decomposition.

Our findings emphasize that compositionality of compositional reasoning ex-
ists and is a promising direction of further work, but it requires new interdis-
ciplinary efforts within computer science to bring together different domains of
research. For example, the safety/liveness framework in the area of concurrency
theory has remained unnoticed by the security community for quite some time.
Similarly, many members of the concurrency theory community are still trapped
in the safety/liveness world and think that there are no properties beyond it.

Furthermore, we have only investigated three classes of system properties.
There are many more, for example the complex field of system (hardware) re-
liability [4] or software reliability [10]. Especially in the area of non-functional
properties there are many areas which still do not have sound compositionality
results of their own. Thus, our findings can only be seen as a starting point for
further investigation.
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Abstract. Frameworks are large building blocks of systems, encapsu-
lating the commonalities of a family of applications. For reuse of these
common features, frameworks are instantiated by smaller-sized compo-
nents, plugins, to specific products. However, the framework instantiation
process is often difficult, because not all aspects of the interplay of the
framework and its plugins can be captured by standard type systems.
Application developers instantiating a framework often fail to develop
correct applications. Thus, this paper surveys several typical framework
instantiation problems. A simple facet-based classification of the prob-
lems is given. It is shown how the different problem classes are related
to phases of the software process and how they can be tackled appropri-
ately. Finally, the paper derives several research challenges, in particular,
the challenge to define appropriate framework instantiation languages.

1 Introduction

The use of frameworks eases the creation of large software systems and leads to
lower overall production costs. However, the instantiation of a complex frame-
work still requires a lot of resources: besides the time required for training, it is
necessary to dedicate person power exclusively, sometimes even a specific team,
for the treatment of all issues. Complex frameworks turn out to be hard to
instantiate, because the dependencies between the numerous extension points
hamper finding and understanding of valid instantiations. Hence, the process of
framework instantiation should be made as easy and reliable as possible.

A framework is instantiated by specifying values at predefined extension
points. Technically, different forms of frameworks are established, which implies
that different kinds of extension mechanisms exist [1]. White-box frameworks
are extended towards applications by subclassing framework classes to appli-
cation classes. Black-box frameworks are extended by delegating functionality
from framework classes to application classes. Generic frameworks provide sev-
eral generic classes with parameter types, the framework parameters, which must
be instantiated towards application types. More general forms are possible; for in-
stance, Model-Driven Architecture (MDA) defines platform-independent models,
model frameworks, that are instantiated towards applications by model transfor-
mations [2]. Other frameworks apply the concept of extension points not only to
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code, but also to intrinsic data, resources, or GUI-elements [3]. Then, extension
points do not directly correspond to classes, but comprise more elements.

In the following, we speak in all of these different cases uniformly of frame-
work instantiation at extension points. In particular, we are interested in the as-
sumptions the framework makes about its extensions. These assumptions, both
about single extension points or between them, will be considered as constraints
that must be fulfilled in order to validly instantiate a framework. In Section 2,
some examples of constraints will be given together with a classification that can
be used to decide how a constraint should be treated by the framework designer.
In Section 3, several techniques for the treatment are given, e.g., for the removal
or for static checking of a constraint. In the concluding Section 4, an outlook
including open research questions is given.

2 Framework Instantiation Problems

In order to successfully instantiate a framework, the properties that separate the
valid instantiations from the invalid ones must be known. These properties are
usually described by constraints. A simple constraint may only restrict the in-
stantiation of a single extension point (such as“The value used to instantiate this
extension point must not be null”), whereas others, multi-point constraints, span
several extension points (e.g., “The value used to instantiate extension point A
must be different from the one used for extension point B”). Frameworks are hard
to instantiate if they constrain their valid instantiations; the more constraints
are exposed by the framework, the harder it is to find a valid instantiation.

2.1 Some Examples

In order to understand the problems raised by the instantiation of frameworks,
some examples are given in the following. They cover the range between hypo-
thetical, academic and practical frameworks. The problems illustrated by the
examples will be classified in Section 2.2.

Example 1. Car Configurator
Imagine a car configurator, a component of many car manufacturer websites.
Usually, when configuring a car, you first choose a base model. Afterwards, you
are able to add extra features to the car. The configurator checks whether a
feature you want to add fits your configuration. Sometimes, one feature enforces
or rules out some other feature. A good example is the dependency between the
catalytic converter and the engine. If you are configuring a car with a diesel
engine, you need to use the appropriate converter.

When the car configuration is developed as a framework, car models, engines
etc. can be defined as base classes. The car has the extension points engine and
catalytic converter ; however, in valid instantiations, engine and converter type
must match, which is a typical multi-point constraint.

Example 2. SalesPoint Framework
Domain-specific multi-point constraints occur in many frameworks. As an ex-
ample, take the SalesPoint framework, a Java framework for sales applications,
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Fig. 1. A constraint in the SalesPoint Framework

used to teach students about framework-based applications [4]. Applications,
typically instantiated from the framework by a student project group, consist of
a shop, the main controlling entity and several points of sale, each of which is
used for business transactions, for instance, buying goods or managing the in-
ventory. SalesPoint also supports data management, user management, logging
and simple GUI components, such as tables and forms. The framework is doc-
umented extensively, making the access easier for novices [5], but nevertheless,
often instantiation problems are reported.

One multi-point constraint of SalesPoint has to do with its built-in data
management. SalesPoint provides data structures essential for warehouse and
order management, e.g., so-called Catalog and Stock classes (Fig. 1). Catalogs
contain CatalogItems, which are descriptions of potentially available objects.
CatalogItems store attributes such as name, price, size, or weight of an object.
Stocks contain StockItems, which, in contrast, describe attributes of the actu-
ally available objects. To ensure data integrity of catalogs and stocks, there are
strict rules to be adhered to. As StockItems of the same kind always have com-
mon attributes, they always refer to a CatalogItem, while on the other hand,
properties differing between StockItems, like serial numbers, are stored individ-
ually in the StockItem itself. Similarly, a Stock must always refer to a Catalog.
A StockItem can only be added to a Stock, if the corresponding CatalogItem
is contained in the Catalog to which the Stock refers. If this is not the case,
adding the StockItem to the Stock is being refused [5].
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windowClass menuClass

Fig. 2. The Window/Menu collaboration

The data management of SalesPoint has been implemented using the Com-
posite pattern, so that Catalogs and Stocks can be nested. The abovementioned
constraint of a StockItem’s parent Stock referring to the appropriate Catalog-
Item’s parent Catalog implies that the Catalog and Stock hierarchy have to
match (see the invariant in Fig. 1). A common mistake is that students try to
set up the Stock hierarchy before the associated Catalog hierarchy is created.

Example 3. Window/Menu collaboration
When implementing a framework for applications using multiple widget sets,
such as Qt [6] and GTK+ [7], one often ends up with a component in the frame-
work that implements the mere collaboration between a window and its (main)
menu. This component exposes a quite simple constraint: the instantiation with
a Qt-window (resp. a GTK-window) implies the use of a Qt-menu (resp. a GTK-
menu). Such a collaboration, which is called a “parallel class hierarchy” in [8], is
shown in Fig. 2 as a UML collaboration.

Example 4. Fulfilment of Dynamic Assumptions
Verification of many constraints can be supported by reasoning over types. In
some cases, however, the static type information is not enough to preserve con-
sistency of the instantiated framework. For example, changes of object states
at run-time can invalidate some operations which previously could be applied.
Checking of such constraints requires checking of the value or state of the object.

Perhaps the best-known dynamic assumption is the absence of null val-
ues, preventing the code from any erroneous access to non-existing objects. This



156 U. Aßmann et al.

usually requires a considerable number of checks, which are scattered throughout
the framework code. Another example are sortedness constraints. If a framework
works with several collection types (sets, bags and lists), it may offer an extension
point for a search algorithm, relying on different key comparison strategies. De-
pending on run-time decisions, the framework may switch between algorithms,
some of which require sorted collections. For example, binary search requires
that the underlying collection is sorted. As a solution, a dynamic checker can
determine the sortedness of the collection, and eventually sort it.

In general, it can be argued that virtually any non-trivial framework makes
assumptions about extensions, which have an intrinsically dynamic nature.

2.2 Classification of Constraints

The constraints that underly the presented problems can be classified in several
ways. The classification proposed in the following is based on two facets. The
first facet is the cause of the constraint. During the creation of a framework, a
constraint might basically occur within different phases of the software devel-
opment process. In the following, a process that first creates a domain and an
analysis model, followed by the creation of a design model, is assumed. Such
a process is described by the V-model in Fig. 3. Then, a constraint occuring
during the domain or the analysis modeling is called domain-specific, whereas a
constraint introduced during the design is called a technical constraint.

Fig. 3. Safe framework instantiation mechanisms in a V-model-like software process
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The second facet is the stage of the constraint, i.e., whether it can be checked
statically or needs to be checked dynamically. Static checking in this case means
checking of types: a constraint is static, if it is merely a statement about the
classes of its participants. On the other hand, a dynamic constraint involves
properties of instances: a constraint is dynamic, if it involves instances, their
states, and values.

The two facets lead to four categories of constraints, which can be mapped
to the four examples given above. An example for the class of domain-specific
static constraints is Ex. 1. Obviously, it is a domain-specific constraint, because
it is a statement about the domain engineering of cars. Furthermore, it is static,
because the constraint itself only states something about the type of engine parts
that can be combined.

Ex. 2 is an example for a domain-specific dynamic constraint. It is dynamic,
because the final structure of Catalogs and Stocks can be set during runtime.
Furthermore, it is domain-specific, because the Catalogs and Stocks and their
nesting are not a design issue, but rather originate from the domain modeling.

An example for a technical static constraint is given in Ex. 3. Obviously, the
constraint is technical because it deals with the suitability of classes from several
widget sets. Moreover, it has been modeled as a static constraint: the framework
is instantiated by binding classes to the extension points.

Last, Ex. 4 shows a technical dynamic constraint: the sortedness predicate is
technical by being defined in the framework design model, and it has inherently
dynamic nature by operating on run-time object values.

The constraint classes are not entirely unrelated. For instance, it is possible
to model a domain-specific constraint using technical means, e.g., in Ex. 1, you
could use the design pattern Marker Interface [9] to designate the suitability
of the diesel catalytic converter for the diesel engine. In this pattern, interfaces
are used to model unary predicates of classes, i.e., if their invariants obey a
unary predicate, it should inherit from the corresponding marker interface. On
the other hand, we believe that such workarounds are often not a good idea. In
this specific example, the concept of interfaces is abused for a matter that does
not have to do something with interfacing.

It is usually also possible to turn a static constraint into a dynamic constraint
by using object instances instead of classes for the instantiation. However, an
advice on whether a static constraint should be replaced by a dynamic one can
hardly be given.

Based on this classification, we show in the next section how the validity of
different classes of constraints should be checked by different mechanisms.

3 Supporting Safe Instantiation

There are several ways to support safe instantiation—all based on some treat-
ment of the constraints exposed by a framework. Fig. 3 gives an overview. We
assume as underlying software process a simple V-model. Several of the methods
can be attached to a specific phase of the software process, others are ubiquitous.
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First, and under all circumstances, both simple constraints as well as multi-
point constraints should be documented well. The often-used approach to utilize
some JavaDoc-like API documentation tool can be improved with user-defined
metadata annotations, to be exploited by additional tools, such as code gener-
ators. Second, one can try to remove a constraint by means of refactoring, an
approach that should be used in particular, if the overall design of the frame-
work benefits from the refactoring. Third, static constraints can be verified, once
they are specified in a logic that cohabitates with class models. We suggest to
employ UML collaborations and OCL constraints here. Fourth, static as well as
dynamic constraints can be described using framework instantiation languages,
domain-specific languages that can be used to validate plugins. Fifth, when a
dynamic instantiation constraint is violated, a framework should behave conve-
niently, which can be ensured by negative testing. Finally, conformance with a
dynamic constraint should be checked at run time, which can be done in several
ways, e.g., using aspects.

3.1 Documentation

One of the simplest possibilities to prevent instantiation problems is a thorough
documentation of framework’s extension points and their requirements on plug-
ins. Documentation describes how the application developer has to work with the
framework and which constraints are to consider. One way to share the necessary
knowledge are cookbooks, informal descriptions explaining how to instantiate a
framework. Cookbooks divide the instantiation process into subtasks, for which
step-by-step solutions are presented. Therefore, they can be seen as a collection
of recipes that describe how typical framework usage problems are solved.

It is important that the framework documentation follows the pyramid prin-
ciple [10]. This principle structures the documentation into three levels. At the
top level, the framework selection level, the application domain of the framework
is described, so that an application developer can decide whether she wants to
use the framework. The second level, the standard usage level, answers the ques-
tion how to use the framework. Documentation at the third, so-called detailed
design level, describes the design of the framework and its technical aspects in
depth, so that a framework developer can maintain and evolve it.

The SalesPoint framework can be taken as an example. A “Technical Over-
view” [5] constitutes the top level of the framework documentation pyramid. For
the other levels, there are two cookbooks, the so-called “Hooks” and “How To”
documents. While the “How To” cookbook covers a very limited but often suf-
ficient set of code examples, the “Hooks” cookbook provides an extensive and
rather formal approach. As a consequence, the “How To” is preferred of begin-
ners (standard usage level), whereas the “Hooks” are of greater use to advanced
programmers, also covering the detailed design level. With a pyramid-based doc-
umentation, students can find solutions for their problems easily.

In recent years, programming environments have started to employ metadata
annotations for documentation and tool support. Java documentation tags and
C# annotations enable users to define tag structures, write tools that exploit
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the tags, and generate code from them. On the one hand, these tag structures
provide excellent documentation information, so that they are quite popular
among programmers. On the other hand, tagging tools such as XDoclet [11]
provide extensible code generators that help to adapt frameworks towards their
extensions. For instance, XDoclet can adapt Enterprise Java Beans when they are
embedded into application frameworks, because it can generate transaction code,
serialization code, and many other forms of critical glue code. Since metadata
annotations do not belong to the programming language per se, but offer a
second, a metalevel of descriptions, one could characterize this approach as a
form of semi-automatic documentation tool, which can also be helpful to increase
the reliability of framework instantiation.

The usage of different forms of documentation for trustworthy instantiation
of frameworks is not a new but rather down-to-earth approach. However, the
methods can never give assistance for all aspects of using the framework. Further-
more, the application developer typically has the responsibility and the freedom
of choice between many solutions.

3.2 Refactoring Multi-point Constraints

Often constraints between extension points evolve from technical issues inside
the framework. Such constraints are—even when documented appropriately—a
constant source of instantiation problems. However, in many cases, these con-
straints can be removed from the framework by refactoring it in a way that hides
them inside.

An example for a design that is exposing a technical constraint has been
given in Ex. 3. That framework can be refactored to a form where the constraint
between the extension points lies inside the framework: instead of exhibiting two
extension points for the classes of the window and of the menu, the latter one can
be removed. To this end, the responsibility of determining the menu class must
be moved to the subclasses of Window, which is implemented by declaring an
abstract factory method in the Window class. The refactored example framework
is shown in Fig. 4.

Before applying refactorings to move constraints from outside the framework
to the inside it should be carefully evaluated, whether this makes the frame-
work easier to understand. No general rule can be given on this, but usually a
comparison of the states before and after the refactoring should show, whether
refactoring is worth the effort. In the given example, the refactoring should def-
initely be made—especially since a real-world example would incorporate more
collaboration parties. Most probably, it would be better to introduce a new ab-
stract factory class that needs to be implemented once for the various widget
sets, capturing which widget classes belong together.

3.3 Static Checking of Multi-point Constraints

Contracts are a well-known mechanism for achieving trustworthy software [12].
In a required contract, a client describes its expectations to a service, whereas
a service offers functionality in a provided contract [13]. Required and provided
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GTKWindow
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QtWindow
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GTKMenu QtMenu

windowClass:Class

context GTKWindow::getMenuClass() : Class
body: return GTKMenu.class

context QtWindow::getMenuClass() : Class
body: return QtMenu.class

windowClass

Fig. 4. The framework from Fig. 2 after refactoring

contracts can be specified as pre-conditions, post-conditions and invariants us-
ing some logic, but also with state- or protocol-based models [14]. In all cases,
required and provided contracts are verified to match in a process called con-
tract checking by a contract verifier, be it a theorem prover or a model checker.
So far, research has mainly focused on procedure- and class-oriented contracts.
Here, contracts are presented in the context of frameworks, both to static and
dynamic instantiation constraints (framework instantiation contracts).

Example 5. Generic Frameworks with Generic Classes
In languages with genericity, a set of generic classes can be regarded as a generic
framework. Additionally, some languages allow for the specification of inheri-
tance bounds for formal class parameters, which specify a simple required con-
tract of a generic class, the compiler has to check at every instantiation point.
For instance, in the Java 5 framework, parameters of collection classes can be
bound by the interface Comparable, which means that the collection elements
are comparable using a compare function [15].

In general, if an instantiation constraint deals with information about types and
is given in a decidable logic, it is a static instantiation constraint and can be ver-
ified with a verification tool at instantiation time. The instantiation process can
assemble all instantiation constraints, bind formal parameters in the constraints
to actual parameters, and then verify the entire constraint specification.
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For multi-point constraints, UML collaborations turn out to be useful, be-
cause they describe the constraint in a closed form (Ex. 2 and 3 have already
used UML collaborations). Originally, this technique has been proposed in the
Catalysis approach [16], but its standardization in UML 2.0 makes the technique
available for CASE tools and integrated development environments. However,
UML collaborations differ slightly from Catalysis collaborations. In Catalysis,
a collaboration is a framework, i.e., specifies all framework classes and con-
straints together. Catalysis does not distinguish instantiation constraints from
internal framework invariants, which hampers comprehensibility, because both
groups deal with different concerns. Instead, instantiation constraints should be
separately specified. Then, they can further be distributed over several collabora-
tions, for instance, collaborations describing domain-specific and collaborations
describing technical constraints. In this way, constraints of all classes of our clas-
sification can be specified separately, orthogonalizing their handling. For large
frameworks, this is very important for documentation purposes, and UML 2.0
follows this trend.

Once specified with OCL, the constraints can be assembled and checked by
appropriate tools [17], which ensures trustworthy instantiation already on the
modelling level [18]. On the other hand, in the future, domain-specific analysis
constraints will probably be specified with ontology languages. The reason is
that software processes will be based on standardized domain ontologies [19]:
development will start with the domain ontology and enrich it with require-
ments and design information, until the implementation can be delivered. In
such an ontology-aware software process, the domain-specific constraints are au-
tomatically shared with all designs and implementations; a verifier can check
the constraints in all development phases. This holds in particular when prod-
uct lines are constructed based on domain ontologies. For all products in a line,
an ontology reasoner is able to verify the domain constraints. Ex. 1 provided
an illustrative example: the car configuration constraints can be described in a
domain ontology and verified in an ontology-based software process using an on-
tology reasoner. Hence, it is likely that ontology languages, such as OWL [20, 21],
will play a major role in the trustworthy development of product lines [19].

3.4 Framework Instantiation Languages

In order to support the safe instantiation of frameworks, not only constraint lan-
guages can be used. Since a framework may deal with other resources than classes
or objects, e.g. files, data or widget resources, other concepts need to be included
when talking about extension points. This suggests to define domain-specific lan-
guages for framework instantiation, framework instantiation languages, which
should not only provide a good way to specify the code extension points, but
also verify assertions over all kinds of resources.

A well-known example for a simple framework instantiation language is the
plugin language of the universal tool platform Eclipse [3]. Eclipse provides ex-
tension points into which components, so-called plugins, can be dynamically
loaded on demand. In this way, both the original platform as well as other plugin
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Fig. 5. A structural overview about the Eclipse platform

components can be extended easily, and new applications can be built (Fig. 5).
Eclipse itself consists of the core platform and some set of plugins, including, for
example, the Java Development Tools (JDT).

The Eclipse extension mechanism is based on the specification of extension
points with the standard markup language XML. Each plugin for Eclipse con-
tains a so-called manifest file plugin.xml with extensibility information. For
every extension point, the file references an extended XML schema definition
(in extensions schema language (exsd)), describing the structure of a extension.
Whenever an extension is programmed, its content has to be described according
to this schema definition (Fig. 6), and XML tools can be used to check the valid-
ity of the specifications. In this way, Eclipse can control, whether all extensions
of a plugin fill the specification of their extension points. In Fig. 6, the mecha-
nism is illustrated. A plugin description extended is typed by two schema files.
Most of the specification is typed by the plugin schema file plugin.xsd that
defines standard plugin tags, such as plugin or extension-point. An extension
point example, however, references another schema file example.exsd typing all
possible extensions of this extension point. Since different extension points must
be extended differently (extensions can refer to code, menu actions, and other
resources), their extensions must be typed by a particular extension schema.

This plugin specification mechanism supports trustworthy instantiation of
frameworks, because the plugin description is machine-processable and can be
used to check whether technical constraints are met, both of static and dynamic
nature. However, since XML is used, only constraints expressible in XML types
can be formulated and processed, such as tree-structure constraints, or type con-
straints on the basic XML data types. Nevertheless, since XML is standardized
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Fig. 6. The XSD/XML mechanism of the Eclipse plugin concept. On the top: schema
files. On the bottom: plugin descriptions.

and supported by tools, checking of plugins becomes much simpler than in an
ad-hoc approach.

The Eclipse plugin language seems to be one of the first specification languages
for framework extension points. Eclipse shows that in a framework, extensibility
does not only refer to code alone, but also to resources, such as widgets, views,
repositories, transaction policies and others. However, this requires that for in-
stantiation, domain-specific framework instantiation languages have to be devel-
oped that allow for reasoning about all of these artifacts. These languages must
provide the concepts of frameworks, extension points, and plugins, to reason about
variability, extensibility, and consistency of instantiations. In the long run, such a
language must go beyond XML and build on a form of logic that is apt to handle
context-sensitive constraints, so that multi-point instantiation constraints can be
specified and handled. Clearly, such a domain-specific, logic-based language for
framework instantiation could be defined as an extension of OCL or OWL.

3.5 Framework Instantiation Testing

So far, we dealt with the checking of static constraints, but turn now to the role
of dynamic constraints in framework instantiation. Although testing is generally
advised, it needs to be mentioned in this context that framework testing is crucial
to prevent misinstantiations. The testing process for frameworks has to be much
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more censorious than a usual testing process: it has not only to serve positive
functional testing, but has also to ensure that a framework is not abused, i.e.,
must stress negative testing.

To specify negative test cases, several methods are available. Misuse case dia-
grams, dually to use case diagrams, specify actions that should not be performed,
but prevented by the system [22]. Although mainly applied in the specification of
requirements for security-critical systems, misuse diagrams can specify abnormal
use cases in general, in particular erroneous attempts to instantiate frameworks.
However, misuse case diagrams are only the first step to find negative test cases,
because they abstract from many important details. Before a test class can be
derived, they have to be refined by scenario analysis, as in scenario-based use
case realization [23].

Starting from use and misuse case diagrams, test case tables are elabo-
rated [24]. Such tables may have positive test case entries that stem from use
cases and describe functional test cases, as well as negative entries that stem
from misuse cases and describe cases of absent behavior. Usually, erroneous in-
puts have to be specified for a negative test case, along with the expected be-
havior of the application. In case of framework instantiation, instead erroneous
instantiation conditions have to be described, as well as the expected reactions of
the framework. Since violated dynamic instantiation constraints typically gener-
ate run-time exceptions, instantation testing should show that these are handled
appropriately and that generated error messages are comprehensible not only
for the programmers, but also for the end-users.

Finally, test case entries are usually transformed by hand into test case meth-
ods or test case classes, e.g., as extensions of unit testing frameworks such as JU-
nit [25]. Alternatively, automatic derivation methods are being researched [26].
The derived test cases for misinstantiation have the same structure as other,
positive test cases.

3.6 Run-Time Checks

If a framework instantiation contract cannot be described in a statically de-
cidable logic, it must be checked dynamically. This section presents two best
practices, contract layers and contract aspects.

While tests allow for checking of dynamic constraints before deployment of
the application, there are dynamic constraints, which must be checked at run-
time of the application, because not all inputs and application states can be
foreseen. Framework instantiation constraints that cannot be checked statically
nor tested exhaustively, should be checked at the border of the framework, i.e.,
whenever the flow of control moves from the application code into the framework
code. Then, the inner parts of the framework are protected against contract
violations. Hence, a framework should be protected by a contract layer which
checks for all dynamic instantiation constraints.

Example 6. Checking Sortedness with Contract Layer
Reconsider Ex. 4 from Section 2.1, in which a binary search algorithm should
run solely on a sorted collection. Before searching on a collection, its sortedness
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has to be checked and, eventually, it has to be sorted. Such a constraint can be
encapsulated into a contract checking procedure at the border of the framework:

class Collection {
public boolean sorted() { ... /* sortedness predicate */ }
public Element searchBinary(ElementKey key){
// contract checking
if(!sorted())
sort();

// calling the inner layer
return searchBinaryInternal(key);

}
// inner layer
protected Element searchBinaryInternal(ElementKey key){
.. binary search algorithm ...

}
}

In this code, the methods of the framework class are divided into a group
of methods that solely check the dynamic constraints, and methods that do the
real work. From the application, only the contract checking methods are visible;
they ensure the validity of the dynamic constraints and call the internal group
that takes the contract for granted. In our example, searchBinary belongs to
the first group, searchBinaryInternal belongs to the second group.

Contract layers have other advantages. Because from inside the framework,
the inner layers can be used directly, the contract checks can be saved so that
the application runs faster. This is not possible if contracts are intermingled
with arbitrary framework code. Secondly, contract layers encapsulate the con-
tract concern. According to the principles of aspect-oriented programming [27],
they form a contract aspect and can be specified separately. Such a separate
specification of contract aspects is important for multi-point instantiation con-
straints and for simple instantiation constraints that refer to many extension
points. The implementation of such constraints will be scattered throughout
the framework; the contract checks crosscut the program structure. By increas-
ing the code interdependencies, this crosscutting can complicate the frame-
work instantiation considerably. The following example shows a contract as-
pect written in the AspectJ language [28], an aspect-oriented extension of
Java.

Example 7. Testing for null objects
Testing for invalid parameters is one of the main tasks of contract checking.
Usually, checks for null objects are distributed all over the framework methods.
Such checks can be factored out of the code into a contract aspect that is woven
as a contract layer into the framework accessor methods.
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before(Menu m): call(* framework.*.*(Menu)) && args(m) {
if (m == null) {

throw new Exception ("Null Menu parameter passed when " +
thisJoinPoint.getThis() + " was called ");

}
}

The aspect specifies that before a method of a class in package framework is
called, a parameter of type Menu, designated in the aspect as m, should be checked
on a null value. Since window classes provide many functions to which menus are
passed as parameters, these checks, if they were implemented by hand, would
be scattered all over the framework. Encapsulated as an aspect, the Aspecjt/J
aspect weaver is responsible to distribute the checks over the framework.

Aspects can also be used to implement the collaborations of Section 3.3. Be-
cause collaborations encapsulate the interplay of objects or classes, they can be
regarded as a simple form of aspects without crosscutting. The relation between
a formal collaboration parameter and an actual type is 1:1, whereas aspect spec-
ifications can express crosscutting, i.e., n:m relations. Hence, with aspects, also
more general framework instantiation contracts can be specified.

4 Conclusions

This paper surveyed some typical framework instantiation problems, classified
them with regard to cause and stage, and summarized several techniques, which
can be used along the software process to achieve trustworthy instantiation. From
real-world examples, such as SalesPoint and Eclipse, it can be derived that both
human-readable and machine-processable documentation of constraints lead to
frameworks that are easier to instantiate. The paper has discussed the expres-
sive power of UML-2.0-collaborations for the modelling of frameworks, espe-
cially when used in conjunction with OCL expressions. Framework instantiation
contracts can be specified with aspects, even if they span framework exten-
sion points. Because framework instantiation is such a multidimensional problem
space, it has been suggested that domain-specific languages should be developed
for framework instantiations. Those should integrate contract checking with plu-
gin descriptions, for instance, combine approaches such as UML collaborations
with Eclipse extensions.

However, the paper has left many questions for future research. How shall
future framework instantiation languages look that go beyond standard contract
languages, providing expressive concepts for variablity, extensibility, and consis-
tency among the different resources of the framework? How can these languages
help to improve the systematic documentation of frameworks? How can collab-
orations and aspects be embedded into these languages for better specification
of consistency constraints? How can the framework instantiation languages help
to automate the code generation for test suites and run-time monitoring?

Because the benefit of a framework, whether developed with a commercial fo-
cus or not, strongly depends on a widespread usage, trustworthy instantiation is
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the key to its success. So, spending some thoughts on how to simplify framework
instantiation is always worth the effort.
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Abstract. Performance predictions of component assemblies and the ability of
obtaining system-level performance properties from these predictions are a cru-
cial success factor when building trustworthy component-based systems. In order
to achieve this goal, a collection of methods and tools to capture and analyze
the performance of software systems has been developed. These methods and
tools aim at helping software engineers by providing them with the capability to
understand design trade-offs, optimize their design by identifying performance
inhibitors, or predict a systems performance within a specified deployment envi-
ronment. In this paper, we analyze the applicability of various performance pre-
diction methods for the development of component-based systems and contrast
their inherent strengths and weaknesses in different engineering problem scenar-
ios. In so doing, we establish a basis to select an appropriate prediction method
and to provide recommendations for future research activities, which could sig-
nificantly improve the performance prediction of component-based systems.

1 Introduction

In many application domains such as avionics, automotive, production-control, bio-
informatics and e-business, software systems must meet strict performance goals in
order to fulfill their requirements. Consequently, designers must address performance
as a fundamental issue during the design and construction of software systems. This
requires annotating component-based architectures with known performance qualities,
and choosing fast and scalable component implementations and infrastructures. How-
ever, without an upfront effort to produce a flexible architecture during the design phase,
it is rarely possible to retrofit component-based systems to significantly improve their
performance.
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Especially decisions taken in a late development stage, such as increasing the size of
a thread pool or deploying replicated components on different hardware platforms, typ-
ically lead to a limited system performance improvement only. For that reason, unwise
decisions at design-time probably render it impossible to achieve the required perfor-
mance level once the system has been composed.

Current industrial practice to evaluate the performance impact of early design deci-
sions involves the construction of prototypes, which are executed on the target deploy-
ment platform in order to measure performance properties. In this way, prototyping
can help to give confidence in the resulting system performance being adequate for its
needs. Prototyping is, however, expensive and time-consuming, and the results will not
be valid if substantial design changes are made during implementation. Consequently,
software engineering practices could be improved if software architects were able to
predict the performance of the final system based on design documents without imple-
mentation details. This would reduce the effort and costs of performance prediction.

There is a substantial amount of research devoted to creating performance predic-
tion techniques for software systems. A leading example, the software performance en-
gineering community (SPE) [1, 2] has spent a number of years to integrate design and
performance modeling activities. The developed methods are based on use case models,
object and functional modeling mostly using UML-based notations. Other techniques
combine analytical models with benchmarking or support model-based prototype gen-
eration. Regardless of their approach, techniques for the performance prediction of
component-based systems should exhibit the following basic characteristics:

– Accuracy. The prediction must be accurate enough in order to provide useful re-
sults. On the other hand, a compromise between the accuracy of predictions and the
analysis effort must be found in order to enable the efficient evaluation of complex
applications.

– Adaptability. Prediction techniques should support efficient performance predic-
tion under architecture changes where components are added/modified or replaced
by different type of components.

– Cost effectiveness. The approach should require less effort than prototyping and
subsequent measurements.

– Compositionality. Prediction techniques should be able to make performance
predictions based on the performance characteristics of the components, which
together build the system. Since component-based systems usually are structured
hierarchically and consist of composite components, performance prediction tech-
niques should be able to exploit this structure by using the analysis results on lower
abstraction layers to enable the performance prediction of composite components.

– Scalability. Component-based systems are typically built either with a large set
of simple components or utilize a few large-grain, complex components. To predict
performance attributes, analysis techniques need to be scalable to handle both cases.

– Analyzability. Prediction techniques should not only reveal performance bottle-
necks, but also give insights into possible flaws in architecture designs that are
causing problems.

– Universality. The approach should be applicable to different component technolo-
gies with minimal modification. This enables the performance prediction of an
integrated system with multiple component technologies involved.
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In this paper, we analyze the applicability of existing performance prediction tech-
niques in various software engineering problem scenarios. The aim is to highlight the
strengths and weaknesses of the approaches, and reveal areas where further research is
required. We start by describing a set of practical concerns which should be taken into
account by performance prediction methods in section 2. Afterwards, we introduce cur-
rent performance prediction methods in section 3 and classify them according to their
underlying prediction technique. In section 4, we examine the individual strengths and
weaknesses of the different prediction methods with respect to the before-mentioned
basic characteristics and the practical concerns provided in section 2. Based on the
examination of existing performance prediction techniques, we derive a variety of rec-
ommendations to improve the performance prediction of component-based systems in
section 5. Finally, we conclude the paper in section 6.

2 A Taxonomy of Practical Concerns

In addition to the basic characteristics of component-based performance prediction
techniques, which are mentioned in the previous section, we want to highlight some
practical concerns in this section. The result will be a taxonomy of concerns, which
have to be considered by performance prediction methods and their underlying predic-
tion models. Additionally, the introduced taxonomy should also guide system architects
to identify appropriate performance prediction methods with respect to their practical
concerns. Both topics are investigated in detail in later sections of this paper.

It is important to stress that the problems listed in the following paragraphs are not
merely scientific cases but have practical relevance. The mentioned concerns emerge in
industrial scale development scenarios. This is being illustrated by the case study of an
experimental Web server, which has been implemented by the Palladio group at Olden-
burg University with a set of C# components. The Web server has been developed with
the aim to compare and validate performance prediction methods. It supports handling
basic HTTP GET and POST requests and provides an interface for the generation of
dynamic HTML pages, e.g., by returning data stored in a connected database. Despite
this restricted functionality and the fact that it has not that many lines of code (LOC),
many concerns with today’s performance prediction methods can be demonstrated by
using this server. Especially, the concerns listed below emerged during the Web server
development.

Third-party deployment. A major concept when looking at the performance evalu-
ation of component-based systems is reasoning about the system properties based on
the properties of the constituting components. This concept is a prerequisite to enable
scalable prediction methods. Additionally, when considering Szyperski’s definition [3]
of a component, it is mentioned that components have to be third-party deployable. It
becomes difficult to reason about extra-functional properties of components that can be
deployed by third-parties, because the QoS of a component service can be only deter-
mined at run-time and only ex-post. This means that the QoS of a component service
only can be determined by running the program and by measuring the QoS in question.
This results from the fact that the QoS is not solely dependant on the executable code
of the component but also on the run-time dynamics and the environment in which the
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component is executed in. In the web server example we have used a component ac-
cessing a database. Its QoS is significantly different if the component is deployed on
the back-end server hosting the database or if it is run on a laptop with limited memory
and processing power.

Third-party deployment can be regarded as super-concern, in a sense that it has an
impact on all the other concerns. Thus, third-party deployment is not independent of
the other concerns. Nevertheless, it is worth looking at some of the following concerns
in more detail. The concerns regarded below are the usage of external services, the
deployment environment, resource usage and congestion, the operational profile, and
interdependencies caused by these aspects.

The third-party deployment paradigm raises an additional issue that will be elab-
orated later on: Approaches specifying extra-functional properties of components as
constant figures will fail. This is obvious: One can only specify QoS when fixing the
environment, e.g. using a reference platform, which supports the QoS figures. But then,
it is only possible to deploy the component on exactly the same environment if we want
to get the same QoS which is a major restriction of independent deployment. Thus, it is
necessary to use specification languages and methods which are able to specify the QoS
of components depending on every possible environment. During our survey, we will
consequently also examine the applicability of existing approaches to QoS specification
(section 3.3).

In the following, the introduced example system is investigated further to highlight
the afore mentioned concerns.

External Services. The QoS of a component’s service depends on the QoS of the exter-
nal services called by this service. Consider for example the response-time of the com-
ponent handling HTTP requests. We observe that the QoS of the HandleRequest
method depends on the QoS of the external services the component calls, i.e., the per-
formance of this call will never exceed the performance of the external method. For
example, the attached HTML reader component (retrieving Web pages from the hard
disk) needs to open a HTML file, read the data and close the file again. If opening
and closing takes 200ms and processing the required data take another 100ms then the
initial request will never be processed faster than 500ms. Additionally, when the re-
quest processor component is deployed in a different context, perhaps the file stream
is replaced by a component delivering a network stream, it will likely perform its tasks
slower due to the different QoS of the external service.

Deployment. It is not solely the constituent components of a component-based system
have an impact on the component’s performance, the hardware and middleware plat-
form on which the component is deployed can make a significant difference (as already
mentioned above). A component which is executed on a fast CPU will perform bet-
ter than the same component which is executed on a slower CPU. Other well known
influential factors are memory availability, network bandwidth, number of CPUs, per-
formance of external storage devices (e.g. disks, optical media), and so on. Equivalent
concerns apply with component-based systems that utilize software infrastructures such
as middleware platforms or virtual machines. With such environments, for example, the
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performance of the byte code interpreter or bandwidth of the middleware server are
crucial performance factors.

Given the Web server example there is a difference if its components are deployed
on the .NET runtime installed on a high performing back-end server or on a desktop PC.
Additionally, we have also measured that the performance of a component deployed on
the Mono runtime environment (www.mono-project.com) is different from the deploy-
ment on the Microsoft implementation. This demonstrates the mentioned influences of
hard- and middleware.

Resources. Software infrastructures have resource limits that constraint the perfor-
mance of a component-based system. For example, the amount of threads (thread pool
size), software caches/ buffers, semaphores, database connections and locking schemes
must be understood in order to predict the behavior of component-based systems. Some
of these factors, e.g. thread pool size, can be configured for the example Web server
and their impact can be measured. Further, as a part of the deployment decisions, we
could consider deploying the component redundantly on several hosts and using a load
balancer to spread and monitor application load.

In general, any resource acquisition takes a certain amount of time, depending on
the number of resources available. If many components have to use a rare resource it
is more likely that resource conflicts will occur. In this case the component has to line
up itself into a queue of components requesting the resource. Consequently, this delay
due to resource conflicts need to be considered, as it influences the performance of a
service call. As a result a performance prediction model has to include somehow the
shared resources in environment with (virtual or physical) concurrent control flows.
Additionally, the priority inversion problem could occur, where a high priority process
is blocked by a low priority process, because this low priority process uses a resource
which is needed by the high priority process [4].

Operational Profile. The previous section highlights additional obstacles in perfor-
mance engineering. Considering the resource acquisition example, as long as the soft-
ware architecture has to deal with only a single user calling its services, it is unlikely
that resource conflicts will be an issue. This situation changes as soon as the compo-
nent is deployed to service multiple concurrent requests. The system will have to deal
with many simultaneous requests, making resource contention a major issue in terms of
performance. This kind of dependency is called operational profile [5, 6].

There are additional important aspects, namely the probability of supported use
cases occurring, the size and value of input parameters (which may also lead to different
usage scenarios), the rate with which requests for a certain service are being made. Note
the distinction between use case occurrence and request rate for a specific service. The
first is from the viewpoint of the user of the system and might be translated into calls
to services offered by the whole application. The second is from the viewpoint of the
single components of the system. The request rate is important at every component in
the system architecture even at those which cannot be called by the user directly. The
translation of the usage profile in service request rates is an open field of research.

In the web server example the type of the request determines the response time. Re-
trieving a static HTML page stored on the hard drive is faster than retrieving a dynamic
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page which has to be computed from database queries. So, it is important to capture the
relationship between the request types quite accurately or to model the two cases in sep-
arate use cases. Additionally the frequency and the amount of requests per unit of time
have to be taken into account, especially as many concurrent requests lead to contention
of the CPU resource(s). Finally, also the size of the return type is important. Retrieving
and streaming a small HTML page is faster than the retrieval of a large image.

Interdependencies. Note that there are certain interdependencies between the different
aspects of a component’s context. The usage of the component results in a load on the
hard- and software resources as well as external services, for example the amount of
concurrent threads/requests, request frequency of certain mutually exclusive resources
locks, and so on. It is a major challenge to predict - utilizing the operational profile
of a single service call - the operational profiles of the components which actually are
involved in the handling the request. For example, a single HTTP request for a yel-
low page application creates several queries of the yellow page database to generate
the descriptions of the matching companies for the initial query. Another example of
the dependencies on external service calls can be seen in an authentification server. If
this component is used on a website it mostly has to serve plain password challenges.
In an enterprise context the same server might be also challenged by certificate requests.

There are two challenges arising from the preceding discussion:

– The aspects discussed above must be considered by performance evaluation tech-
niques. Every time a certain technique abstracts one of these aspects, the prediction
becomes less accurate or in certain cases totally wrong.

– If we want to support QoS prediction in the context of third-party deployable com-
ponents there has to be a large specification of the respective components. There
has to be a specification of the component which allows the estimation of QoS in
different contexts. Usually this kind of specifications contain a lot of information
enabling the component user to evaluate the performance and contextual aspects
in a parametric way. The information can only be specified by the component pro-
ducer. This is a strong assumption and appears infeasible without extensive tool
support.

3 Classification of Approaches

As already outlined in the introduction, the integration of quantitative evaluation into
the software development processes is an important activity to meet extra-functional,
and in particular performance requirements. Balsamo et al. [7] presents a survey of dif-
ferent approaches for model-based performance evaluation. The proposed classification
is based on the type of the performance model (Queueing Networks, Petri Nets, Process
Algebras, Markov Processes), the applied evaluation method (analytical or simula-
tive) and the presence of automated support for performance prediction. Some of these
approaches have also been extended to deal with component-based systems.

In this section, we present a (short) survey of the existing approaches for predic-
tive performance analysis of component-based systems. We distinguish between quan-
titative (section 3.1) and qualitative (section 3.2) analysis. Furthermore, quantitative
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Fig. 1. Approaches overview

techniques are categorized by the kind of techniques used (measurement-based, model-
based, combination of measurement-based and model-based). Figure 1 visualizes the
different approaches together with the cross-cutting aspect of performance specification
(dealt with in section 3.3), whose existence plays a key role for a successful application
of performance prediction techniques.

A comparison of these approaches with respect to the characteristics and concerns
described in sections 1 and 2 will be presented in the next section.

3.1 Quantitative Approaches

Measurement-Based. Measurement-based approaches are suitable and useful, if the
focus is on quantitative evaluation of performance. In [8] (M1) a discussion is given
about how component-based system properties may influence the selection of methods
and tools used to obtain and analyze performance measures. Then, a method is pro-
posed for the measurement of performance distinguishing between application-specific
metrics (e.g., execution time of various functions) and platform-specific metrics (e.g.,
resource utilization). The automation of the process of gathering and analyzing data for
these performance metrics is also discussed. The major drawbacks of this approach are
that it is only suitable for already implemented systems and the obtained results do not
show general applicability of the approach.

A different approach that partially overcomes these difficulties is presented in [9]
(M2), where starting from a specific COTS middleware infrastructure, in a first step,
performance measures are collected empirically. Afterwards, in a second step, the ob-
tained results are elaborated to extend their validity to a more general setting. The
proposed approach includes a reasoning framework for understanding architectural
trade-offs and the relationship between technology features and the derivation of a set
of mathematical models describing the generic behavior of applications using that spe-
cific COTS technology. An inherent limitation of this approach is that it leads to sound
results only for a specific hardware platform.

Denaro et al. [10] (M3) describes and evaluates a method for testing performance of
distributed software in the early development stages. Their method takes into account
the impact of the middleware used to build a distributed application. To this end the
authors use architecture designs to derive application-specific performance test cases.
These test cases are then executed on the available middleware platform and used to
improve performance prediction in the early stages of the development process.
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Model-Based. An approach, which includes predictability of performance behavior of
component-based systems is presented in [11] (MB1). The basic idea of this approach
is that the ”behavior of a component-based system must be compositional in order to be
scalable”. To fulfill this requirement, in addition to the descriptions of the functional be-
havior, performance specifications are also included in component specifications. The
paper outlines, how classical techniques and notations for performance analysis are ei-
ther unsuitable or unnatural to capture the performance behavior of generic software
components, and points out that, ”performance specification problems are so basic that
there are unresolved research issues to be tackled even for the simplest reusable com-
ponents”. A first attempt towards a compositional approach to performance analysis
is then presented, mainly based on the use of formal techniques. However, as the au-
thors argue, an engineering approach to predictability on performance is a necessary
ingredient to ensure predictable components.

The papers [12, 13, 14] (MB2) propose a prototype enabled prediction technology,
called PECT that integrates component technology with analysis models. The main
goal of PECT is to enable the prediction of assembly level properties, starting from
certifiable components, prior to component composition. In fact PECT is described as
a ”packaging of engineering methods and a supporting technical infrastructure that,
together enable predictable assembly from certifiable components”.

Bertolino and Mirandola introduce in [15, 16] (MB3) the CB-SPE framework: a
compositional methodology for component-based performance engineering and its sup-
porting tool. CB-SPE is based on the concepts and steps of the SPE technology, and
uses OMG’s SPT profile [17]. The technique is compositional: It is first applied by
the component developer at the component layer, achieving a parametric performance
evaluation of the components in isolation; then, at the application layer, the system as-
sembler uses a step-wise procedure for predicting the performance of the assembled
components on the actual platform.

In [18, 19] (MB4) a specific performance evaluation technique, layered queueing
networks, is applied to generate performance models for component-based systems. To
achieve this goal an XML-based language is defined that describes performance models
of both software components and component-based systems. A model assembler tool
starting from component sub-models automatically generates a layered performance
models that can be solved by use of classical techniques.

In [20] (MB5), Balsamo and Marzolla present a simulation environment, where
starting from Use Case, Activity and Deployment diagrams with RT-UML annotations
(augmented, in some cases, to better fit performance features) a discrete-event C++
simulation program is derived. The transformation methodology is close to a one-to-
one mapping from elements of UML model to elements of the simulator, so that the
structure and the dynamics of the simulator closely follow the structure and the behavior
of the UML model.

Eskenazi et al. [21] presents a method for the ”Analysis and Prediction of Perfor-
mance for Evolving Architectures” (APPEAR) that combines both structural and statis-
tical techniques in a flexible way. It allows a choice of, which parts of the component
are structurally described, modeled and simulated, and which parts are evaluated sta-
tistically. Additionally, the same authors present in [22] (MB6) a stepwise approach to
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predict the performance of component compositions. ”The approach considers the ma-
jor factors influencing the performance of component compositions sequentially: com-
ponent operations, activities, and composition of activities. During each analysis step,
various models - analytical, statistical, simulation-based - can be constructed to specify
the contribution of each factor to the performance of the composition. The architects
can choose which model they use at each step.”

A simulation-based approach for predicting real-time behavior of an assembly based
on models of its contained components is proposed by Chaudron et al. in [23] (MB7).
The presented method deals with the main aspects of real-time systems such as:
mutual exclusions, combinations of periodic and aperiodic tasks and synchronization
constraints. Additionally, the simulator provides data about the dynamic resource con-
sumption and real-time properties like response time, blocking time and number of
missed deadlines per task.

In [24] (MB8) a compositional component performance model based on parametric
contracts is presented. The approach allows for parameterization with context depen-
dencies in order to model the performance of a single component that depends on the
performance properties of the environment by using so-called service effect automata.
These automata describe the call sequence of the external services on which a compo-
nent service depends.

Combined Use of Measurement and Model-Based Approaches. Menasce et al. [25]
(MBM1) proposes a QoS-based approach to distributed software system composition
and reconfiguration. This method uses resource reservation mechanisms at the com-
ponent level to guarantee soft (i.e., average values) QoS requirements at the software
system level. Different metrics can be used for measuring and providing a given QoS
property, such as response time, throughput, and concurrency level. Specifically, the
method relies on the definition of QoS-aware components, where a client component
can request a service with a certain QoS level. In case the server is able to provide
this QoS level, it commits itself to do so; otherwise a negotiation is started until an
agreement on a new QoS level is reached. The method implementation is based on the
combination of queueing models and measurement techniques.

In [26] (MBM2) a methodology is presented, which aims for predicting the perfor-
mance of component-oriented distributed systems both during development and after
the system have been built. The methodology combines monitoring, modelling and per-
formance prediction. Specifically, performance prediction models based on UML mod-
els are created dynamically with non-intrusive methods. The application performance
is then predicted by generating workloads and simulating the performance models.

In [27] (MBM3) an approach to predict the performance of component-based ap-
plications during the design phase is presented. The proposed methodology derives a
quantitative performance model for a given application using aspects from the underly-
ing component platform, and from a design description of the application. The results
obtained for an EJB application are validated with measurements of different imple-
mentations. Using this methodology, it is possible for the software architect to make
early decisions between alternative application architectures in terms of their perfor-
mance and scalability.



178 S. Becker et al.

3.2 Qualitative Approaches

In this section we shortly describe some approaches which evaluate the quality of
component-based systems either based on the affinity between software architecture
and software components or exploiting the principles of the model driven engineering.
The common characteristic of these approaches is to consider qualitative analyzes that
are derived from an attribute-based style or trough ”screening questions” and are meant
to be coarse-grained versions of the quantitative analysis that can be performed when a
precise analytic model of a quality attribute is built.

SA-Based. A qualitative approach to performance analysis of component-based sys-
tems is undertaken in [28], where the affinity between Software Architecture (SA) and
Software Component (SC) technology is outlined and exploited. This affinity is related
to different aspects: (i) the central role of components and connectors as abstraction en-
tities, (ii) the correlation of architectural style and component model and frameworks,
(iii) the complementary agendas followed by the SA and SC technologies: enabling
reasoning about quality attributed, and simplifying component integration. Therefore,
the basic idea of these approaches is to develop a reference model that relates the key
abstractions of SA and component-based technology, and then to adapt and apply some
existing SA analysis methods, such as SAAM, ATAM and QADP.

Model-Based. The basic idea of model-driven engineering (MDE) is to create a set of
models that help the designers to understand and to evaluate both the system require-
ments and its implementation. A key point for a successful application of an MDE-
based process is the integration of orthogonal models taking into account cross-cutting
aspects such as the application’s performance. The following approaches are mainly de-
scriptive and focus on paths leading to the construction of different performance mod-
els. A crucial issue for the application of MDE techniques is the existence of automatic
tools allowing model transformations from design models to analysis-oriented models.

Solberg et al. [29] outlines the need to incorporate QoS specification and evaluation
within a MDA-based approach at a more abstract level and at the platform-specific
level. In this view, the model transformations, the code generation, the configuration
and deployment should be QoS-aware. Ideally the target execution platform should be
also QoS-aware.

Grassi and Mirandola [30] present an approach for the predictive analysis of extra-
functional properties of component-based software systems. According to a model-
driven perspective, the construction of a model that supports some specific analysis
methodology is seen as the result of a sequence of refinement steps, where earlier steps
can be generally shared among different analysis methodologies. The focus is mainly
on a path leading to the construction of a stochastic model for the compositional perfor-
mance analysis, but some relationships with different refinement paths are also outlined.

To facilitate extra-functional analysis in the design phase, automatic prediction tools
should be devised, to predict some overall quality attributes of the application without
requiring extensive knowledge of analysis methodologies to the application designer.
To achieve this goal, a key idea is to define a model transformation system that takes
as input some ”design-oriented” model of the component assembly and (almost) au-
tomatically produces as a result an ”analysis-oriented” model that lends itself to the
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application of some analysis methodology. However, to actually devise such a transfor-
mation, one must face both the heterogeneous design level notations for component-
based systems, and the variety of extra-functional attributes.

In this perspective, the work in [31, 32] describes an intermediate model called Core
Scenario Model (CSM), which can be extracted from an annotated design model. Ad-
ditionally a tool architecture called PUMA is described, which provides a unified inter-
face between different kinds of design information and different kinds of performance
models, for example Markov-models, stochastic Petri nets and process algebras, queues
and layered queues. Petriu et al. [33] proposes a transformation method of an annotated
UML model into a performance model defined at a higher level of abstraction based on
graph transformation concepts, whereas the implementation of the transformation rules
and algorithm uses lower-level XML trees manipulations techniques, such as XML al-
gebra. The target performance model used as an example in this paper is the Layered
Queueing Network (LQN).

A different approach is described in [34]. This approach defines a kernel language
with the aim to capture the relevant information for the analysis of extra-functional
attributes (performance and reliability) of component-based systems. Using this kernel
language a bridge between design-oriented and analysis-oriented notations could be
established, which enables a variety of direct transformations from the former to the
latter. The proposed kernel language is defined within a MOF (Meta-Object Facility)
framework, to allow the exploitation of MOF-based model transformation facilities.

3.3 Performance Specification

A key point for a successful application of quantitative validation of performance prop-
erties during component-based software development is the existence of languages al-
lowing performance specification when designing a component-based system both at
component and at assembly level.

A UML Profile for Schedulability, Performance and Time (SPT Profile) has been
proposed and adopted as an OMG standard [17] as a response to the exigencies of
introducing in UML diagrams quantifiable notions of time and resources usage. The
SPT Profile is not an extension to the UML meta model, but a set of domain profiles for
UML. Basically, the underlying idea is to import annotations in the UML models, which
describe the characteristics relative to the target domain viewpoint (performance, real-
time, schedulability, concurrency). In this a way various (existing and future) analysis
techniques can usefully exploit the provided features. In fact, the SPT profile is intended
to provide a single unifying framework encompassing the existing analysis methods,
still leaving enough flexibility for different specializations.

Zschaler in [35] investigates the possibility to define a framework, which can be
used to provide semantics for extra-functional specifications of component-based sys-
tems, by explaining also how the different parts of a component-based system coop-
erate to deliver a certain service with certain extra-functional properties. The claimed
objectives are ”To allow application developers to use Component-Based Software En-
gineering to structure their applications and thus lower the complexity of the software
development process while at the same time enabling them to make use of proven and
tested theories for providing extra-functional properties of those applications.”
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In [36], the authors define a simple language, based on an abstract component
model, to describe a component assembly, outlining which information should be in-
cluded to support compositional performance analysis. Moreover, a mapping of the
constructs of the proposed language to elements of the UML Performance Profile is
outlined, to give them a precisely defined ”performance semantics”, and to get a start-
ing point for the exploitation of proposed UML-based methodologies and algorithms
for performance analysis.

In [37] the QoS modeling language (QML) is described. The QML is used to specify
QoS attributes for interfaces, operations, operation parameters, and operation results. It
is based on the fundamental concepts of contract types, contracts and profiles. Contract
types are utilized to specify the metrics used to determine a specific QoS concept. Con-
tracts are used afterwards to specify a certain level of the metrics of a contract type. The
linking between contracts and interface methods, operation parameters or results is done
via QML profiles. There is a conformance relation defined on profiles, contracts, and
constraints. The conformance is needed at runtime, so that client-server connections do
not have to be based on an exact match of QoS requirements with QoS properties. For
example, if the client requests a response time of less than 5ms the server has to pro-
vide exactly a response time of less than 5ms. Nevertheless, instead of exact matches, a
service is allowed to provide more than what is required by a client. In the example, the
server is also allowed to provide a response time of less than 2ms as this is conforming
to the required 5ms requested by the client.

4 Abstract Comparison

Table 1 relates the different performance prediction approaches described in section 3
with (a) the concerns to component-based systems described in section 2 (columns C
in the table) and (b) with general characteristics of performance (prediction) techniques
described in section 1 (columns A in the table). The comparison has been carried out
only for quantitative approaches since qualitative methods pose themselves on the dif-
ferent perspective to give only qualitative insights about the performance of component-
based systems.

Each row in the table refers to a specific methodology. The considered methods
are grouped according to the categories introduced in section 3 (first column) and each
methodology is identified by the assigned labels (second column), by the author’s names
(third column) and by the reference paper(s)(fourth column).

To quantify the fulfillment of the concerns C (columns 5-9) and the characteristics A
(columns 10-16) we have adopted a coarse-grained classification, i.e.,: High, Medium,
Low, Absent, since the considered methods are often described with a low level of de-
tail. Moreover, in some cases, the description is carried out at an high abstraction level
that is not sufficient to quantify the relationships for the factors A and C. In these cases
we have inserted in the table an educated guess followed by a question mark. Addition-
ally, dealing with aspect A7, we have considered the existence of an automated tool or
framework for the derivation of performance characteristics as a good starting point.

In the remaining part of this section we describe in some details each row of table 1
presenting how each methodology deals with factors A and C.
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Let us consider, for example, the measurement based approaches (M1-M3): M1 is
a introductive study and is simply based on the monitoring of single applications, while
M2 and M3 seem more promising to deal with component-based systems. Both of them
take middleware details into account and consider J2EE application with EJB contain-
ers. To deal with the concerns factors C4 and C5, M2 defines application-specific be-
havioral characteristics through the design of a set of test-cases. The performance of
the server side is characterized using these tests with parameter settings concerning
the transaction type and frequency, the database connection, and the pool size. Instead
M3 tries to model usage scenarios relevant to performance through the modeling of
workload in terms of number of user and frequency of inputs. The interactions among
distributed components and resources are studied according to whether they take place
between middleware and components, among components themselves or to access per-
sistent data in a database.

Considering the general foreseeable characteristics of prediction techniques, the
methods based on measurements show good value for the accuracy aspect, while
they exhibit quite low values for all the other features. Actually, since they require
already implemented systems their cost effectiveness is low. Moreover, they are often
platform-specific and this fact limits the adaptability, the scalability and the analyz-
ability. The universality facet in these approaches is completely absent, because the
implementation and the analysis are completely manual and no automatic support is
provided.

The weak point of model-based approaches is the lack of empirical studies for the
validation of the predicted results. As a consequence the column A1 regarding the ac-
curacy of the obtained results is filled-in only with educated guesses.

MB1 is one of the first papers addressing the importance of a performance engineer-
ing approach for component-based systems, and this paper specifically outlines issues
like compositionality, performance specification and usage profile definition (as shown
by the quite good values in the table). However, the proposed formal approach is not
supported by an automated framework and seems to be only a good reasoning tool
rather than a method to be applied in an industrial software development context.

MB2’s aim at integrating component technology with analysis models, allowing
analysis and prediction of assembly-level properties prior to component composition.
It is based on the definition of an analytic interface, that takes into account the compo-
nent technology, but spans aspects related to the use of some analysis methodology to
support predictions about quantitative properties of the system. This approach is very
attractive and shows high values in the table. It is supported by an automatic framework
as well as it includes also a first ”measurement and validation environment” to validate
the analysis results and to give informed feedback to the design team. A weak point is
that the performance model does take usage profiles and resource contention aspects
into account.

MB3, MB4 and MB5 are based on the use of UML models as design notation
augmented with performance annotations compliant to the SPT profile [17]. These
approaches are all supported by (semi-)automatic frameworks and provide good (also
very good) values for general properties of prediction techniques. They differ in the
type of performance models (queueing network, layered queueing network and
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simulation, respectively) and in the way of addressing the concerns that arise when
developing component-based systems. MB3 and MB4 consider (even if in simple
way) most aspects related to component-based models, while MB5 has been conceived
for a traditional software development process and scores therefore not so well for
component-based systems.

In MB6 component composition is considered in terms of concurrent activities that
invoke a number of component operations. At first, a detailed analysis of performance
models for component operations is carried out; then an activity model is constructed
through a flow graph and finally a model of the concurrent activities is obtained. The
first step is based on the combination of different methods and deals well with the con-
cerns that occur with component-based development. The second step uses traditional
techniques related to flow graphs, while the third step is not detailed enough, which
making the overall understanding of the characteristics of this prediction technique
difficult.

MB7 assumes as starting point Robocop component models that include resource,
function, behavior and executable models. The following step combines the behavior
and resource consumption models with an application model constructed for possible
critical execution scenarios. This combination is performed taking into account the ap-
plication static structure and its internal and external events. This model serves as an
input to a simulation tool, which outputs the execution behavior of the assembly with its
timing properties (latency and resource utilization). Therefore, MB7 shows quite good
scores for component-based development concerns, but it is specifically targeted for
the Robocop component model and this fact decreases its adaptability and scalability
values.

MB8 uses components described in the Palladio component model, which includes
service effect specifications (gray box component view) with service effect automata.
Additionally, annotations of the probability density distribution of the response times
of the external service calls and the internal calculations are used. Consequently, it gets
good marks for the inclusion of external dependencies and compositional reasoning.
Nevertheless, in so doing it regards hardware dependencies only implicitly. Also the
usage profile is used solely to estimate probabilities of certain control flows. Multiple
threads or concurrent resource utilization is disregarded.

The methods based on the combination of measurement and modeling seems to
have the capabilities to combine the different concerns Cs and As in Table 1, however
a weak point is represented by a low level of adaptability and scalability due to the
specifics of the selected platform.

MBM1 focuses on component specifications rather than on the analysis, it consists
of the definition of component QoS-aware capable of engaging QoS negotiation with
other components in a distributed environment. This approach seems to be very promis-
ing, because it allows to cope with external services, deployment and usage profile in a
good way. The accuracy of the obtained results are validated in an experimental envi-
ronment and the presence of an automated tool for performance model generation and
analysis increases the value/ attractiveness of this approach. The major drawback is the
low scalability, due to the simplicity of the treated models. The models are hardly able
to cope with complex systems.
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MBM2 presents a framework composed of a module, which collects run-time per-
formance information on the software components and on the software application ex-
ecution environment. This module is implemented for J2EE applications and EJB con-
tainer and allows also the execution of performance analyses. This is achieved with
an instrumentation of the software components by a proxy layer that lowers the cost-
effectiveness of the approach. Additionally, there is also a partially implemented adap-
tation module, which aims to solve performance problems through the selection of dif-
ferent, functionally-equivalent, components. The two modules are supposed to operate
in an automated feedback-loop. Currently, this framework is only partially implemented
and automated. This is reflected by some low (or guessed) values in the table. However,
it is the first automated framework including both component and application layer,
which contains an optimization module. Consequently this approach get high values
for both aspects: As and Cs.

MBM3 is based on the modeling of an application in terms of component interac-
tions and demands placed on the component container; its parameterization is carried
out based on the definition of a performance profile of the container and the underlying
platform obtained through benchmarking. In this way the factors Cs can be fulfilled
in a quite satisfactory way. The accuracy of the obtained results is validated in a real
setting and thus theoretically justified. In addition, the other A factors show medium
to high values, except for the adaptability, because the method is only presented and
validated in an EJB context. Furthermore, the universality of the approach can be ques-
tioned, since the method has to be applied manually and thus the results are based on
the expertise and skills of the design team.

To summarize, figure 2 depicts the different scores of the discussed techniques with
respect to concerns As and Cs. Roughly speaking, we can observe how measurement-
based methods show low values for characteristics A while deal quite well with
concerns Cs. On the contrary, the model-based approaches deal quite well with A fac-
tors while show Low or Medium values handling factors C. The joint use of models
and measurement techniques combine the potentialities of both methods. A detailed
comparison of different techniques would require performing some common valida-
tion experiment with the various tools and methodologies. Our feeling is that working

Fig. 2. Models and measurement techniques
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on simple examples could lead to misleading results because of lacking of critical as-
pects inherent to component-based systems. To overcome this problem we are working
towards the definition of a reference system including the main characteristics and con-
cerns of a typical component-based applications and our long-term goal is to use this
system to compare and validate the various performance approaches.

Although several approaches have been proposed and applied we are still far from
seeing performance analysis as an integrated activity into component-based software de-
velopment, both for the novelty of the topic and for the inherent difficulty of the problem.

5 Recommendations

In the last sections, we have stressed the importance of performance predictability in
component-based development approaches as ”the ability to reason about application
behavior from the quality attributes of the components and the components’ intercon-
nections” [38]. In the following we summarize the lessons learned from the review of
the current performance predictions techniques and we offer some suggestions for im-
provement of the performance predictability of component-based systems.

Component-based development is a new paradigm for the development of large
complex software-intensive systems, but while the functional properties of the systems
have been extensively dealt with both from industrial and academic communities, the
quality (performance) aspect of the software products are not adequately addressed [7].
As described in section 3, in the last few years some attention has been paid also to
include quantitative performance validation within component-based software develop-
ment processes. The existing approaches are based on models, which has proven good
predictive qualities, but they are often not considering the characteristics of component-
based systems; on the other hand, measurement-based approaches are able to tackle the
component-based development concerns but are frequently related to a single environ-
ment and lack of generality. Table 1 summarizes how different methods deal with the
different aspect of component-based systems and could be used as a first guide in the
selection of an appropriate methodology for the objective of the study/ project.

However, since the ability to predict the performance characteristics of the assem-
bled system should be applied as early as possible to reduce the costs of late problem
fixing [2], it becomes crucial to determine from the design phase whether the compo-
nent-based product will satisfy its requirements. This goal can be obtained only via
a rigorous design discipline and by accepting standard modelling notations as well as
strict documentation and design rules, so that independently constructed components
can be effectively connected and properly interact. This basic notion is central to the
Design-by-Contract discipline [39], originally conceived for object-oriented systems,
but even better suited for component-based development [3].

To obtain performance predictability of a component-based system several factors
must be available. We devise three main features as crucial for performance prediction
of component-based systems:

1. Necessity of component technology providing the means for specification of com-
ponent performance taking into account its dependency both on the environment
(middleware and hardware platform) and on different software resources;
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2. Component selection based on the exposed performance characteristics;
3. Combination of measurement and modeling techniques embedded in an automated

framework.

Considering issue 1 we devise parametric performance contracts as a good way to
model the dependency of a component on the ”external world” and in the following we
describe the form of a parametric contract, we conceive for each service offered by a
given component. Let us suppose that a given component Ci offers h � 1 services Sj

(j=1, . . ., h). Each offered service can be carried out either locally (i.e., exploiting only
the resources of the component under exam) or externally (i.e., exploiting also the re-
sources of other components). A service Sj is defined with a set of parameters/attributes
(a1, . . ., am) that define/are related to its resource usage, i.e., Sj (a1, . . ., am); among
these attributes we can distinguish:

– constant (or non parametric attributes) such as, for example, the kind of resources
required

– “stand-alone” parametric attributes that depend only on the kind of metric we are
interested in for the performance measurement (e.g., a number, if we are consid-
ering ”average” metric, a range of numbers if we are interested in best-worst case
analysis);

– “external” parametric attributes that depend also on other services.

We consider a user management component with Login and Logout methods
to give examples for the above mentioned categories. The component is implemented
for the J2EE platform running on a Java virtual machine. Hence, J2EE and JavaVM
can be seen as constant parameters. The performance influence of the J2EE middleware
platform for example was investigated in [40]. Information on the duration of the exe-
cution of the code of each of the user management services is part of the stand-alone
parameters, e.g., the average execution time of the methods or a distribution of their
response times. Additionally, the Login method calls an external database to verify
any given username and password combination. As this call’s response time adds to
the Login method’s response time the call has to be considered as external parametric
attribute. Further examples for the inclusion of external service calls into a performance
prediction model can be found in [41].

In a performance prediction model capable of modeling situations as in the example
above, each component’s service should be accompanied by a performance parametric
contract PerfC i(Sj(. . .)) whose form depends on the kind of service parameters.

For example, if Sj is a simple service with constant attributes (a1, . . ., ai) and stand-
alone parametric attributes (ai + 1, . . ., am) then it can be characterized as

PerfC iSj (a1, . . ., am) = fSj (ai + 1, . . ., am)

where fSj denotes some kind of internal dependency. Otherwise, if Sj is a composite
service with constant attributes (a1, . . ., ai), stand-alone parametric attributes (ai + 1,
. . ., aj) and external parametric attributes (aj + 1, . . ., am) then it can be characterized
as:

PerfC iSj (a1, . . ., am) =fSj (ai + 1, . . ., aj) ⊕ gSj (aj + 1, . . ., am)

where⊕ represents some kind of composition operator.
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Considering issue 2, it is obvious that to fulfill performance requirements, the sys-
tem assembler will choose those components among multiple component implementa-
tions providing the same functional behavior that best fit the performance requirements.

Let us describe how the above introduced characterization can help the system as-
sembler in the service pre-selection step where one chooses, among components offer-
ing the same service, those that provide the best performance. In fact, one can instantiate
the generic PerfC iSj (a1, . . ., am), with the characteristics of the adopted (or hypoth-
esized) environment, so obtaining a set of values among which the best ones can be
selected. Obviously, this kind of selection does not consider the impact of contention
with other services for the use of a resource. To this end it should be necessary to
define an order (≺) between the PerfC iSj (a1, . . ., am) indices that depends on the
adopted measurement framework (i.e., what kind of measurement we are interested in:
mean, distribution, best/worst case) and on the execution environment and then select
the components following this order.

Finally, taking into consideration issue 3, a trustworthy performance prediction
methodology should consider the integrated use of models and measures to exploit the
inherent advantages of both methods and to handle the complexity of component-based
systems. Moreover, the process of performance analysis should be automated as best
as possible to avoid errors and increase the efficiency of performance prediction. This
applies both to the derivation of the performance model as well as the model solution.
Another, often neglected, important aspect that should be included in the prediction
methodology is the assessment of the goodness of a model, i.e., how close the model
is to the real system. This involves a verification step ensuring that the model is cor-
rectly built and a validation step ensuring that the model produces results close to those
observed in the real system.

Figures 3 and 4 show a foreseeable component-based software design environment
with a built-in performance prediction tool combining both measurement and modeling
techniques. As illustrated in figures 3 and 4, the final goal should be to have some

Fig. 3. A CBSE Framework with Performance prediction included
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Produce Components
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Predict Performance
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Component Developer

System Architect
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Prediction Tool

Fig. 4. Activity diagram of the Performance Framework

automatic tool allowing performance prediction at design time, so the effort required at
assemby time at the software designer is quite small.

To summarize, the area of performance prediction for component-based systems is
extensive and more research is necessary to achieve a full integration of quantitative
prediction techniques in the software development process. Several related research di-
rections should cover, for example the design of component models allowing quality
prediction and building of component technologies supporting quality prediction. Fur-
ther research is needed to include also other quality attributes, such as reliability, safety
or security in the software development process. Another interesting point that deserves
further investigation is to study interdependencies among the different quality attributes,
to determine, for example, how the introduction of performance predictability can affect
other attributes such as reliability or maintainability. To this end a good starting point
would be a unified view on software quality attributes taking into account the various
existing trade-offs between related quality attributes ([42]).

6 Conclusion

In this paper, we have reviewed performance prediction techniques for component-
based software systems. Especially, we focus on the practicability of these techniques
for various software engineering problem scenarios. For that reason, we have discussed
some practical concerns that emerge when developing component-based systems and
given an overview of current performance prediction approaches. As a result, we can
present the inherent strengths and weaknesses of each performance prediction technique
for different problems and system categories. This leads to a survey from an engineer-
ing perspective, which allows software engineers to select an appropriate performance
prediction technique. Moreover, based on our examination of existing performance pre-
diction techniques we have presented some recommendations for future research activ-
ities. Finally, we think that this survey could have a significant impact on the current
software engineering practices and on the applicability of Component-Based Software
Engineering methodologies.
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Abstract. Component adaptation needs to be taken into account when devel-
oping trustworthy systems, where the properties of component assemblies have
to be reliably obtained from the properties of its constituent components. Thus,
a more systematic approach to component adaptation is required when build-
ing trustworthy systems. In this paper, we illustrate how (design and architec-
tural) patterns can be used to achieve component adaptation and thus serve as
the basis for such an approach. The paper proposes an adaptation model which
is built upon a classification of component mismatches, and identifies a number
of patterns to be used for eliminating them. We conclude by outlining an engi-
neering approach to component adaptation that relies on the use of patterns and
provides additional support for the development of trustworthy component-based
systems.

1 Introduction

In an ideal world, component-based systems are assembled from pre-produced com-
ponents by simply plugging perfectly compatible components together, which jointly
realize the desired functionality. In practice, however, it turns out that the constituent
components often do not fit one another and adaptation has to be done to eliminate the
resulting mismatches.
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Mismatches between components, for example, always need to be addressed when
integrating legacy systems. Thereby, the impossibility of modifying large client appli-
cations is a major reason for the need to employ some form of adaptation during the
development of component-based systems. Besides that, the most structured way to
deal with component evolution and upgrading, which is likely to result in new mis-
matches at the system level, arguably is by applying adaptation techniques. Finally,
adaptation becomes a major task in the emerging area of service-oriented computing,
where mismatches must be solved to ensure the correct interoperation among different
Web services, which have been assembled according to a bottom-up strategy.

For these reasons, the adaptation of components has to be recognized as an unavoid-
able, crucial task in Component-Based Software Engineering (CBSE). Until now, how-
ever, only a number of isolated approaches to eliminate mismatches between compo-
nents have been proposed. They introduce adapters, which are capable of mediating the
interaction between components (e.g., to transform data between different formats or to
ensure a failure-free coordination protocol). In [1, 2, 3, 4, 5, 6, 7, 8, 9], for instance, the
authors show how to automatically derive adapters in order to reduce the set of system
behaviors to a subset of safe (e.g., lock-free) ones. Other papers [9, 10, 11, 12, 13, 14]
show how to plug a set of adapters into a system in order to augment the system behav-
iour by introducing more sophisticated interactions among components. The presented
protocol transformations can be applied to ensure the overall system dependability, im-
prove extra-functional characteristics, and properly deal with updates of the system
architecture (e.g., insertion, replacement, or removal of components).

The approaches mentioned above only address some forms of component mismatch
types, employ specific specification formalisms, and usually do not support any reason-
ing about the impact that component adaptation has on the extra-functional properties
(e.g., reliability, performance, security) of the system. For these reasons, employing
these approaches to adapt components in an ad hoc strategy typically is error prone,
reduces the overall system quality, and thus increases the costs of system development.
Above all, employing such an ad hoc strategy to component adaptation hinders the de-
velopment of trustworthy component-based systems, since it is impossible to reliably
deduce the properties of component assemblies from the properties of the constituent
components and the created adapters.

To counter these problems, it is the objective of this paper to initiate the develop-
ment of an engineering approach to component adaptation that provides developers
with a systematic solution consisting of methods, best practices, and tools. As the basis
for such an approach we suggest the usage of adaptation patterns, since they provide
generic and systematic solutions to eliminate component mismatches. Before establish-
ing the details of the proposed engineering approach, we start by clarifying important
concepts (section 2). After introducing an initial taxonomy of component mismatches
(section 3), we describe a generic process model for component adaptation and discuss
relevant patterns that have emerged both in literature and in practice (section 4). To
illustrate the employment of patterns to eliminate component mismatches, we addition-
ally present some examples (section 5). After discussing related work we conclude by
outlining some of the remaining challenges. They will have to be solved to establish
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a fully-fledged engineering approach, capable of supporting the development of trust-
worthy component-based systems.

2 Component Adaptation: Coming to Terms

Component mismatches originate from contradicting assumptions about the context,
in which interacting components should be used, and the real context, in which they
are being deployed. These contradicting assumptions have been made by the develop-
ers of individual components and become obvious during the assembly of the system,
when individual components are brought together. Component mismatches have been
examined both from an architectural [15] and a reuse-oriented perspective [16].

From a reuse-oriented perspective there always is a tension between the goals of
extending the functionality of a component on the one hand and keeping it reusable
on the other hand. These are contradicting goals, since reuse typically requires sim-
ple, well-defined and well-understood functionality. Because of this reason, it is likely
that a reused component will not exactly fit the required context. In the software reuse
community, component mismatches are usually called component incompatibilities.

From a software architecture perspective, problems occur when components have
different assumptions about normal and abnormal behaviour of other components or
when a software architect makes decisions which contradict individual assumptions
of the components and connectors [17]. Problems of this kind are called architectural
mismatches. In our paper, we summarize the terms ”component incompatibilities” and
”architectural mismatches” as component mismatches to emphasize that they relate to
the same problem.

Before we elaborate the proposed engineering approach to component adaptation,
some terms have to be clarified as they are not used consistently in the domain of adap-
tation techniques.

Software adaptation is the sequence of steps performed whenever a software entity is
changed in order to comply with requirements emerging from the environment in which
the entity is deployed. Such changes can be performed at different stages during the life
cycle. Therefore, we distinguish requirement adaptation, design-time adaptation, and
run-time adaptation (see [18]):

– Requirement adaptation is used to react to changes during requirements engineer-
ing, especially when new requirements are emerging in the application domain.

– Design-time adaptation is applied during architectural design whenever an analysis
of the system architecture indicates a mismatch between two constituent compo-
nents.

– Run-time adaptation takes place when parts of the system offer different behav-
iour depending on the context the parts are running in. This kind of adaptation is
therefore closely related to context-aware systems.

In the following, we restrict ourselves to design-time adaptation.
Software Component Adaptation is the sequence of the steps required to bridge a

component mismatch. According to the common definition, components offer services
to the environment, which are specified as provided interfaces [19, 20]. In addition,
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components explicitly and completely express their context dependencies [19], i.e. their
expectations on the environment. Context dependencies are stated in the form of re-
quired interfaces [19, 20]. Using the concept of provided and required interfaces, a
component mismatch can be interpreted as a mismatch between properties of required
and provided interfaces, which have to be connected (see figure 1). Consequently,
identifying mismatches between components is equivalent to identifying mismatches
between interfaces. A component mismatch thus occurs, when a component, which im-
plements a provided interface, and a component, which uses a required interface, are
not cooperating as intended by the designer of the system.

A Adapter B

Bridge Interoperability 

Problem

Change QoS

in a predictable way

Fig. 1. A software component adapter and its QoS impact

Note that component mismatches explicitly refer to interoperability problems which
have not been foreseen by the producer of one of the components. Many components
offer so called customization interfaces to increase reusability. These interfaces allow
changes to the behaviour of the component during assembly time by setting parameters.
As they are foreseen by the component developer and thus planned in advance, we do
not consider parameterization as adaptation. Therefore, in the following customization
is disregarded.

In accordance with the term adaptation we define a software component adapter as
a software entity especially constructed to overcome a component mismatch.

3 A Taxonomy of Component Mismatches

Although an efficient technique to adapt components is of crucial importance to facili-
tate CBSE, there currently exist only a few approaches to enumerate and classify differ-
ent kinds of component mismatches [21]. Moreover, many of the existing approaches
just broadly distinguish between syntactic, semantic, and pragmatic mismatches and
put them into relation to various aspects of compatibility like functionality, architec-
ture, and quality [22, 23]. In order to get a more detailed understanding of the problem
domain, we start implementing the proposed engineering approach to component adap-
tation by introducing a taxonomy of mismatches. The introduced taxonomy enumerates
different types of component mismatches which will be taken into consideration when
we develop a pattern-based approach to adaptation later on.

In addition, the provided taxonomy summarizes the different types of component
mismatches into categories and classifies them according to a hierarchy of interface
models (see figure 2). Each of the distinguished interface models determines a (distinct)
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Level 4: Quality of Service

Quality Attributes

Level 3: Synchronization

Path Expressions

Level 2: Behavior

Pre- and Postconditions

Level 1: Syntax

Signatures

Basic

Augmented

Level 5: Conceptual Semantics

Concepts

Signatures

Assertions

Protocols

Quality Attributes

Concepts

Interface Models Mismatch Types

Fig. 2. A hierarchy of interface models (based on [24]), which orders interface properties accord-
ing to their specification complexity, supports the identification and elimination of different types
of component mismatches

set of properties which belongs to a component interface [24, 25]. Because compo-
nent mismatches originate from mismatching properties of connected interfaces (the so-
called provided and required interfaces, cf. section 2), the hierarchy of interface models
underlying the interface descriptions simultaneously determines our ability to diagnose
and eliminate a certain type of component mismatch.

The (classical) syntax-based interface model, which focuses on signatures as con-
stituent elements of component interfaces, supports the identification and elimination
of signature mismatches. By using such a syntax-based interface model, the following
types of (adaptable1) mismatches can be distinguished when connecting the required
interface of a component ”A” with a provided interface of a component ”B” as shown
in figure 1 [26, 27]:

– Naming of methods. Methods, which have been declared in the provided and re-
quired interface, realize the same functionality but have different names.

– Naming of parameters. Parameters of corresponding methods represent the same
entity and have the same type but have been named differently in the provided and
required interface.

– Naming of types. Corresponding (built-in or user-defined) types have been declared
with different names.

1 An adaptable mismatch can eventually be eliminated by adaptation.
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– Structuring of complex types. The member lists of corresponding complex types
(e.g. structures) declared both in the provided and required interface are permuta-
tions.

– Naming of exceptions. Exceptions thrown by corresponding methods have the same
type, but have been declared with different names.

– Typing of methods. The method declared in the provided interface returns a type,
which is a sub-type of the one that is returned by the method declared in the required
interface.

– Typing of parameters. Parameters of methods declared in the provided interface
have a type, which is a super-type of the one that belongs to corresponding para-
meters declared in the required interface.

– Typing of exceptions. Exceptions thrown by methods declared in the provided in-
terface have a type, which is a sub-type of the one that belongs to corresponding
exceptions declared in the required interface.

– Ordering of parameters. The parameter lists of corresponding methods declared
both in the provided and required interface are permuted.

– Number of parameters. A method declared in the provided interface has fewer para-
meters or additional parameters with constant values compared to its corresponding
method declared in the required interface.

Compared to this basic interface model, a behavioral interface model also contains
assertions (i.e. pre- and postconditions) for the methods, which have been declared
in the required and provided interfaces. With a behavioral interface model in place,
it becomes principally conceivable to additionally search for (adaptable) mismatches
between assertions when comparing provided and required interfaces. However, we
chose not to consider the detection and adaptation of mismatching assertions as part
of the proposed engineering approach, since they usually cannot be statically identified
in an efficient manner [28, p. 578]. Instead, we refer to [29] for details about existing
techniques, which can be applied to identify and adapt mismatching assertions, as well
as their principal limitations.

By making use of an interaction-based interface model, which focuses on describ-
ing the interaction that takes place between connected components in the form of mes-
sage calls, developers are able to diagnose and eliminate protocol mismatches. Provided
that the interaction protocols belonging to the provided and the required interface are
specified in a way that supports an efficient, i.e. statically computable, comparison, the
following (adaptable) mismatches can be distinguished [2, 30]:

– Ordering of messages. The protocols belonging to the provided and required inter-
face contain the same kinds of messages, but the message sequences are permuted.

– Surplus of messages. A component sends a message that is neither expected by the
connected component nor necessary to fulfil the purpose of the interaction.

– Absence of messages. A component requires additional messages to fulfil the pur-
pose of the interaction. The message content can be determined from outside.

Since it is generally possible to specify interaction protocols as pre- and postconditions
[28, p. 981-982], we have to admit that introducing a behavioral interface model already
would have been sufficient to cover the interaction aspect as well. Nevertheless, we
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chose to view interaction protocols as a separate aspect that has to be distinguished
from pre- and postconditions. This decision is mainly motivated by the problems that
arise when trying to statically compare assertions. We have to admit, however, that
our decision to view interaction protocols as a separate aspect only is profitable, if the
specified interaction protocols can be statically compared in a more efficient way than
assertions. To ensure a better comparability of protocol specifications, we eventually
have to prefer notations of limited expressive power (e.g. finite state machines).

The quality-based interface model instead focuses on describing an aspect that has
not been covered so far. It documents the Quality of Service (QoS) which is being
provided by each of the interface methods by describing a set of quality attributes. The
set of quality attributes that is to be described is determined by the underlying quality
model, e.g. the ISO 9126 quality model [31, 32], which is one of the most popular. By
making use of an interface model that is based on the ISO 9126 quality model, it is
possible to detect and eliminate the following quality attribute mismatches:

– Security. The component requiring a service makes assumptions about the authen-
tication, access, and integrity of messages that differ from the assumptions made
by the component which provides the service.

– Persistency. The component requiring a service makes assumptions about the per-
sistent storage of computed results that differ from the assumptions made by the
component which provides the service.

– Transactions. The component requiring a service makes assumptions about the ac-
companying transactions that differ from the assumptions made by the component
which provides the service.

– Reliability. The service required by component A needs to be more reliable than
the one that is being provided by component B. Reliability is a trustworthiness at-
tribute characterizing the continuity of the service, e.g. by measuring the meantime
between failure, mean downtime, or availability [32, p. 23]. Typically reliability is
achieved by employing fault tolerance means.

– Efficiency (Performance). The service required by component A needs to be more
efficient than the one that is being provided by component B. The efficiency of a ser-
vice is typically characterized by its usage of time and resources, e.g. the response
time, throughput, memory consumption, or utilization of processing unit [32, pp.
42-50].

It is important to stress the fact that, with respect to adaptation, the quality aspect is a
cross-cutting concern. This means, creating and inserting an adapter to eliminate one of
the other component mismatches mentioned in this paper probably influences the qual-
ity properties, e.g. by delaying the response time of a service that now has to be invoked
indirectly. In fact, the quality attributes distinguished above are even cross-cutting con-
cerns among each other, which means that adapting one of the quality attributes is likely
to influence the others.

A conceptual interface model, which describes the conceptual semantics of compo-
nent interfaces as an ontology (i.e. a set of interrelated concepts), supports the identifica-
tion and elimination of so-called concept mismatches. Thereby, concepts can principally
characterize each of the elements contained in a syntactical interface model. Thus, they
may refer to entities (such as parameters, type declarations etc.), functions (methods),
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and processes (protocols). By making use of a concept model that consists of a term
(denominator), an intension (definition), and an extension (corresponding real objects),
the following concept mismatches can be principally distinguished [33, 34]:

– Synonyms. Two concepts, which characterize corresponding interface elements of
a provided and required interface, are identical with respect to their definition, but
have been used with different terms (e.g. customer and buyer).

– Sub- and Superordination. Two concepts, which characterize corresponding inter-
face elements of a provided and required interface, are in a specialization or gener-
alization relationship to each other.

– Homonyms. Two concepts, which characterize corresponding interface elements of
a provided and required interface, are named with the same term but have different
definitions (e.g. price as price including value-added tax and price as price without
value-added tax).

– Equipollences. Two concepts, which characterize corresponding interface elements
of a provided and required interface, have the same extension. However, they have
different definitions which only share some common aspects (e.g. customer and
debitor).

Both conceptual interface models, which make use of ontologies to describe the seman-
tics of component-interfaces, as well as their usage for compatibility tests and adapta-
tion are still under research. Consequently, there currently is little substantial support
that can help in detecting and adapting concept mismatches (an overview of approaches
can be found in [35, 36]). However, conceptual interface models are helpful in detecting
and eliminating certain kinds of signature mismatches, like e.g. methods with identical
functionality and different namings.

Fig. 3. The taxonomy contains five distinct classes of component mismatches

To complete our taxonomy of component mismatches, we finally introduce technical
mismatches as additional component mismatch type. Technical mismatches between
components occur, if two interacting components have been developed for different
platforms (i.e. operating systems, frameworks etc.). Since technical dependencies of the
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former kind usually are not described as interfaces and instead remain as implicit com-
ponent properties, they have not been covered by the introduced taxonomy so far, which
builds upon the hierarchy of interface models to classify component mismatches. They
represent an important mismatch type, however, and have to be considered accordingly
when developing an engineering approach to adaptation. Figure 3 shows the classifica-
tion of component mismatches that results from the inclusion of technical mismatches.
It shows extra-functional mismatches as cross-cutting concern, whereas the other con-
cerns can be summarized as functional mismatches.

4 Relevant Patterns for Component Adaptation

Patterns - either on the component design or on the architectural level - have become
popular since the Gang of Four [37] published their well-known book on design pat-
terns. According to our classification there are a lot of possible component incompat-
ibilities. Therefore, it is reasonable that there are several patterns for bridging those
incompatibilities. As patterns are established and well known solutions to reoccurring
problems we decide to utilize patterns for adaptation problems. Thus, in this section we
highlight some of the relevant patterns - mainly taken from literature [37, 38, 39, 40].

Before we go into details, we focus on the basic structure of some of the patterns.
Many patterns look similar or even identical at the design or source code level. This
leads to the assumption that there are even more basic concepts used in the patterns
than the patterns itself. For example, delegation is such a concept. Delegation takes
place whenever a component wrapping another component uses the wrapped compo-
nents service to fulfil its own service. For example, an adapter (see below) converting
currencies from Euro to US Dollar. It first converts the input currency, then it delegates
the call to the wrapped component using the right currency, and afterwards the cur-
rency is translated back again. The same idea is used also in, i.e., the Decorator pattern.
Therefore, we try to identify in the following text these basic structures as well to build
a taxonomy of the basic building blocks of the patterns introduced and also to capture
the basic technique used in the patterns mentioned. An analysis of the basic techniques
can also lead to a more engineering-based approach to adaptation in future work.

We classify the introduced patterns according to section 2 basically in adapters
dealing primarily with functional aspects and extra-functional aspects respectively.

4.1 Functional Adaptation Patterns

This section gives an overview of the most often used patterns to bridge functional
component incompatibilities. Most are well known to experienced developers and used
quite frequently - even without the knowledge that a pattern has been used.

Adapter. The adapter or wrapper pattern is described in [37, p. 139]. The pattern di-
rectly corresponds to the definition given in section 2 as its main idea is to bridge be-
tween two different interfaces. The pattern is used in different flavours: a variant using
inheritance and a second one based on delegation. The latter can be used in component-
based development by using the concepts on the component instance level instead of the
object instance level. The adapter pattern is very flexible as theoretically every interface
can be transformed into every other interface. Thus, the range of adapters is infinite.
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Decorator. The decorator pattern [37, p. 175] can be seen as a special class of adapters
where the adapter’s interface is a subtype of the adapted component. This enables the
use of a decorated component instead of the undecorated. Additionally, it is possible
to decorate a single component as often as necessary. As the adapted component has
the same list of signatures as the original component, a decorator can only change or
add functionality to the methods already offered by the original component. As the
decorator is a special kind of adapter it also uses delegation as main technique.

Interceptor. Often the term interception is used when implementing aspect oriented
programming (AOP) techniques. Interception is a technique which intercepts method
calls and presents the call to some pre- or post-code for additional processing [39, p.
109]. It can be realized by the afore-mentioned decorator pattern but is often part of
component runtime environments. For example, the J2EE container technology uses
interception to add advanced functionality to components during deployment like con-
tainer managed persistency or security. Basically, it also uses delegation but as said
before often hidden in the runtime environments.

Wrapper Facade. The wrapper facade pattern is used to encapsulate a non-object
oriented API using wrapper objects [39, p. 47]. Therefore, it can also be used to en-
capsulate services in a component-based framework. The basic idea is to encapsulate
corresponding state and functions operating on this state in a single component. For ex-
ample, consider a file system component encapsulating a file handle and the operations
which can be performed on the respective file. Basic principles used in this pattern are
delegation and the encapsulation of state.

Bridge. The bridge pattern is used to decouple an abstraction and its implementation
[37, p. 151]. Thus, it is often used to define an abstract interface on a specific technol-
ogy and its implementations deal with vendor specific implementations. Abstract GUI
toolkits like Swing which can be used on top of different GUI frameworks can be seen
as example. The basic technique here is the use of the subtype relation and polymor-
phism.

Microkernel. The Microkernel pattern uses a core component and drivers to build
an external interface to emulate a specific environment [38, p. 171]. It can be used
to simulate a complete target environment on a different technological platform. The
pattern has been used for adaptation in writing emulation layers or virtual machines.

Mediator. The Mediator pattern is used to encapsulate how a given set of objects in-
teract [37, p. 283]. A typical scenario in the context of adaptation is to use several com-
ponents to provide a service, e.g., querying multiple database servers to return a single
result set. The components can interact using the mediator’s coordinating role. Often
mediation is used simultaneously with the adapter pattern to transform data passed
to or from the service in formats being expected by the respective interfaces. With
a focus on data transformations the pattern is often also called Coordinator pattern
[40, p. 111].
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4.2 Extra-Functional Adaptation Patterns

The extra-functional patterns selected here are often used to increase a single or several
quality attributes of the components being adapted. We give examples of properties that
are often addressed by the patterns in the respective paragraphs.

Proxy. A Proxy is put in front of a component to control certain aspects of the access to
it [37, p. 207]. Security issues like access control, encryption, or authentication are often
added to components by respective Proxys. Additionally, it can be used to implement
caching strategies [40, p. 83] or patterns for lazy acquisition of resources [40, p. 38] to
increment response times. The basic technique used in this pattern is delegation.

Component Replication. The component replication pattern is derived from the object
replication pattern [41, p. 99]. The idea is to distribute multiple copies of the same com-
ponent to several distinct computation units to increase response time and throughput.
Additionally, you might get an increased reliability in the case the controller coordi-
nating the replicated components is not the point of failure. The basic technique in this
pattern is based on copying the state of a component.

Process Pair. The process pair pattern runs each component twice so that one com-
ponent can watch the other and restart it in case of a failure [41, p. 133]. The pattern
is used to increase the availability of components in high availability scenarios, e.g.,
whenever safety is an important aspect of the system design. The basic principle of this
pattern is based on timeouts.

Retransmission. Retransmission is used when a service call might vanish or fail [41,
p. 187]. In case the failure lasts for a short period of time, e.g., a network transmission
failure, a retransmission results in successful execution. Thus the pattern increases the
reliability of the system - especially when unreliable transactions are involved. The
pattern is based on timeouts combined with a respective retry strategy.

Caching. The cache pattern keeps data retrieved from a slower memory in a faster
memory area to allow fast access if an object is accessed twice [40, p. 83]. Therefore,
the pattern is used to increase response time and throughput. The benefits are acquired
by accepting a larger memory footprint. The basic technique of the pattern uses memory
buffers to increase performance.

Pessimistic Offline Lock. The pessimistic offline lock is a pattern used to control
concurrent access to components or resources controlled by components [42, p. 426].
The lock is used to ensure that solely one single thread of execution is able to access
the protected resource. Hence, the lock ensures certain safety criteria on the cost of
performance as concurrent threads have to wait before they can execute. The basic
principle used in the pattern is based on blocking the control flow using the process
scheduler.

Unit of Work. The unit of work pattern is used to collect a set of sub-transactions in
memory until all parts are complete and then commits the whole transaction by access-
ing the database only a short time [42, p. 184]. Like the cache pattern there is a trade-off
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Fig. 4. A classification of Patterns and Mismatches

between memory consumption and efficiency. As in the caching pattern the basic idea
is to use a memory buffer.

4.3 Classification of Patterns

The collection of patterns does not claim to be complete, there are more patterns which
we could look at. We introduced it to show that there are a lot of patterns which can be
used to adapt components - mostly in a way which is not producing hand written glue
code. In the table in figure 4 we show which patterns can be used to solve problems of
the introduced mismatch classes.

5 Using Patterns to Eliminate Component Mismatches

After introducing a set of patterns in the previous section, we will now discuss how to
use the patterns in a software engineering process. First, we will introduce a generic
process which is supposed to serve as a guideline for adaptation. We will illustrate its
usage by giving an example of a functional and an extra-functional adaptation. In par-
ticular, we will show an application of the Adapter/Wrapper pattern and of the Caching
pattern.

The process of adapting components in order to construct trustworthy component
assemblies using software engineering consists of the following steps:

1. Detect mismatches: First the mismatch between the required and provided interface
has to be detected. As stated above, this directly depends on the specifications avail-
able, i.e., if no protocol specification is available then we can not detect protocol
mismatches.
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2. Select measures to overcome the mismatch: Second, we select from a set of estab-
lished methods the one which is known to solve the specific mismatch. Note, that
this choice also depends on the specifications available as some patterns can only
be distinguished by examining subtle differences in the target setting (as already
mentioned in section 4). This can sometimes require semantic information which
is hard to analyze automatically. It is therefore necessary in many cases to leave the
final choice to the developer. Nevertheless, it is possible to filter unsuitable patterns
out in advance.

3. Configure the measure: Often the method or pattern selected can be fine-tuned as
patterns are described as abstract solutions to problems. Thereby, we can for in-
stance utilize the specifications and query the developer for additional input. If the
specification is complete the solution to the mismatch problem is analyzed.

4. Predict the impact: After determining the solution of the problem we predict the
impact of the solution on our setting. This is common in other engineering disci-
plines.

5. Implement and test the solution: If the prediction indicates that the mismatch is
fixed, the solution is implemented, either by systematic construction or by using
generative technologies.

5.1 Adapting Functional Mismatches with the Adapter Pattern

This section shows how functional adaptation can be implemented by utilizing the
Adapter/Wrapper pattern [37, p. 139]. As shown in the table in figure 4, this pattern
might be used to repair syntax, protocol and semantics mismatches.

The Adapter pattern (also known as Wrapper pattern) maps the interface of a compo-
nent onto another interface expected by its clients. The Adapter lets components work
together that could not otherwise because of incompatible interfaces. The participants
in the “schema” of this pattern are: (i) the existing component interface that needs to
be adapted, usually denoted as Adaptee; (ii) Target is the interface required by a client
component and it is not compatible to Adaptee; (iii) Client denotes any client whose
required interface is compatible to Target and (iv) Adapter, which is the component
responsible for making Adaptee compatible to Target.

Here, we discuss an example of a possible application of the Adapter pattern seen
as a means to overcome only protocol mismatches. Let us suppose that we want to
assemble a component-based cooling water pipe management system that collects and
correlates data about the amount of water that flows in different water pipes. The water
pipes are placed in two different zones, denoted by P and S, and they transport water
that has to be used to cool industrial machinery. The system we want to assemble is
a client-server one. The zones P and S have to be monitored by a server component
denoted as Server. Server allows the access to a collection of data related to the water
pipes it monitors. It provides an interface denoted as IServer. Since some of the water
pipes do not include a Programmable Logic Controller (PLC) system, Server cannot
always automatically obtain the data related to the water that flows in those water pipes.
Therefore, IServer exports the methods PCheckOut and SCheckOut to get an exclusive
access to the data collection related to the water which flows in the pipes. This allows
a client to: (i) read the data automatically stored by the server and (ii) manually update
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the report related to the water which flows in the pipes that are not monitored by a PLC.
Correspondingly, IServer exports also the methods PCheckIn and SCheckIn to both
publish the updates made on the data collection and release the access gained to it. We
want to assemble the discussed client-server system formed by the following selected
components: Server and one client denoted as Client. The interface required by Client
is compatible to IServer at level of both signature and semantics.

According to step 1 of the presented process, we need to be able to detect possi-
ble protocol mismatches. These days, we can utilize UML2 Sequence Diagrams and
Interaction Overview Diagrams (i.e., the UML2 Interaction Diagrams suite) to extend
the IDL specification of a component interface for including information related to the
component interaction protocol. UML2 sequence diagrams are for describing a single
execution scenario of a component or a system; UML2 interaction overview diagrams
can be used to compose all the specified component/system execution scenarios into ex-
ecution flows to indicate how each scenario fit together different ones during the overall
execution of the component/system (see Figure 5).

Adapter
sd Server_S2

:Server :Environment

SCheckOut

PCheckOut

SCheckIn

PCheckIn

sd Server_Overview

ref
Server_S1

ref
Server_S2

sd Server_S1

:Server :Environment

PCheckOut

SCheckOut

PCheckIn

SCheckIn

sd Client_S1

:Client :Environment

PCheckOut

PCheckIn

sd Client_S2

:Client :Environment

SCheckOut

SCheckIn

sd Client_Overview

ref
Client_S1

ref
Client_S2

Fig. 5. An example of UML2 Interaction Diagrams specification to detect protocol mismatches

From the UML2 specification shown in Figure 5, it is possible to check automatically
that the interaction protocols expected by Server and Client mismatch. That is, the
selected server component forces its clients to always access to the data collections
related to the zone P and S subsequently and in any possible order, before releasing
the access gained for both of them. Instead, the selected client component gains the
access and releases it for the data collections related to the zone P and S separately.
This protocol mismatch leads to a deadlock.

According to step 2 of our proposed engineering approach to component adaptation,
we have to choose the right type of measure to solve the problem. We decide to deploy
an Adapter/Wrapper component to force a “check-out” of the data collection related to
the zone S (P) after the client has performed a PCheckOut (SCheckOut) method call.
The release of the gained access is handled analogously. In doing so, the interaction
protocol of Client is enhanced in order to match the interaction protocol of Server (i.e.,
to avoid the deadlock). This adaptation strategy can be automatically derived by a tool
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Client

Adapter
PCheckOut(…)
SCheckOut(…)
PCheckIn(...)
SCheckIn(...)

res = pServer->PCheckOut(…);
pServer-SCheckOut(…);
return res;

<requires>

<requires>

<implements>

sd Client_S1

:Client :Environment

PCheckOut

PCheckIn

sd Client_S2

:Client :Environment

SCheckOut

SCheckIn

sd Client_Overview

ref
Client_S1

ref
Client_S2

Target Protocol

Adaptee Protocol

sd Server_S2

:Server :Environment

SCheckOut

PCheckOut

SCheckIn

PCheckIn

sd Server_Overview

ref
Server_S1

ref
Server_S2

sd Server_S1

:Server :Environment

PCheckOut

SCheckOut

PCheckIn

SCheckIn

Fig. 6. Overall structure of the Adapter/Wrapper pattern to avoid protocol mismatches

that - by exploiting the UML2 XMI - is able to take in input an XML representation
of the UML2 interaction diagrams specification of Server and Client. This tool might
elaborate - in some way - this specification and produce the adaptation strategy that
must be implemented by the Adapter. A similar approach can be found in [14].

In the third step of our process we have to customize the pattern to our needs (i.e.,
protocol adaptation purposes) and choose the right variant of it. We plan to implement
the pattern according to Figure 6 depicting the overall structure of our realization.

The following are the participants to the Adapter patter applied to bridge protocol
mismatches: (i) Target Protocol which is the protocol required by a client component
(i.e., the interaction protocol of Client); (ii) Client which is a component whose pro-
tocol is compatible to the Target Protocol (i.e., Client); (iii) the Adapter which is the
component responsible for making an existing protocol compatible to the Target Proto-
col; and (iv) the Adaptee Protocol which is the existing protocol (i.e., the interaction
protocol of Server). In the figure we also show a portion of the code implementing
the method PCheckOut as provided by the Adapter component. SCheckOut, PCheckIn
and SCheckIn are implemented analogously. This code reflect the adaptation strategy
discussed above.

In the next step, in order to make it an engineering process, we predict the impact
of the deployed Adapter in terms of checking whether the detected protocol mismatch
has been solved or not. To be able to do so, we do not need any further information
beyond the UML2 Interaction Diagrams specification of Client and Server and the un-
derlined structure of the Adapter component. In fact, from this kind of specification, it
is possible to automatically derive a process algebra notation e.g., FSP notation [43], of
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the interaction behavior of Client, Server and of the Adapter component. FSP notation
might be a useful formalism to check automatically if the insertion of the Adapter in
the system will avoid the detected protocol mismatch. In the literature, there are more
functional analysis tools that support FSP as input language.

One of these tools is LTSA (Labeled Transition System Analyser) [43]. LTSA is
a plugin-based verification tool for concurrent systems. It checks automatically that
the specification of a concurrent system satisfies required properties of its behavior
such as deadlock-freeness. Thus, by integrating our process with such tools we can
predict whether the detected protocol mismatch will be solved by the Adapter com-
ponent or not. Moreover - since the Adapter also changes extra-functional properties
of the system, e.g., by slowing down accesses because of the injected method calls -
we should predict the impact of the Adapter on the performance of method calls. In
the next subsection it is very clearly explained how to predict it by using an usage
profile of an adapted service. Here, we simply note that performance of method calls
should decrease but very little because the Adapter adds only a lightweight extra-level of
indirectness.

In the final step, the adapter is built by exploiting the information contained in its
pattern description. Depending on the complexity of the Adapter, this can be done either
mechanically by a tool or by the developers. Once the Adapter is deployed, tests that
validate both the results of the prediction and the adapter correctness are performed.

5.2 Adapting Extra-Functional Mismatches with the Caching Pattern

In the following we show how extra-functional adaptation can be achieved by employ-
ing the Caching pattern [40, p. 83]. A cache is used if a service needs some kind of re-
source whose acquisition is time consuming and the resource is not expected to change
frequently but to be used often. The idea is to acquire the resource and to put it in the
cache afterwards. The resource can be retrieved faster from the cache than re-acquiring
it again. This is often done by utilizing additional memory to store the resource for
faster retrieval. Hence, a trade-off is established between retrieval time and memory
consumption. If the resource is needed again, it is retrieved from the cache. Often a val-
idation check is performed in advance to test whether the cached resource is still up to
date. Additionally, if the resource is altered by its usage we have to ensure consistency
with the non-cached original object. This can be done by either storing it at its original
location directly when the resource is altered (write-through-strategy). The other option
is that the resource gets stored as soon as it gets evicted from the cache.

According to step 1 of the presented process, we need to be able to detect the mis-
matching response times. These days, we can utilize QML [44] specifications of the
respective interfaces for this task. For example, let’s assume an average response time
of 3000ms is needed and an average response time of 6000ms is provided for service
under investigation (see figure 7).

Additionally, we know that the required service processes requests to a static data-
base. Therefore, we can consider the database table rows in the above stated sense. The
database is not updated frequently, so caching the database query results will improve
the average response time. Note, that we also need to know that the service fulfills these
prerequisites of the cache pattern. It is to automatically determine if the prerequisites
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Cache

require Performance contract 

{

delay { mean < 3000 msec }

};

provide Performance contract 

{

delay { mean < 6000 msec}

};

type Performance = contract {

delay: decreasing numeric msec;

};

Fig. 7. An example QML specification to detect a QoS mismatch

are fulfilled as service specifications often state nothing about the resource usage of the
specified service.

Second, we have to choose the right type of measure to solve the problem. We decide
to deploy a cache to speed up an encapsulated resource access in the component being
used. In doing so, the response time is decreased and the components can interoperate
as desired.

In the third step we have to customize the pattern to our needs and choose the right
variant of the pattern. Referring to the description in [40] we have to

– Select resources: The database query results
– Decide on an eviction strategy: Here we can choose between well-known types like

least recently used (LRU), first in - first out (FIFO), and so on.
– Ensure consistency: We need a consistency manager whose task is to invalidate

cache entries as soon as the master copy is changed. In the given database scenario
it makes no sense to omit that part.

– Determine cache size: How much memory the cache is going to use. Most likely
this is specified in number of cacheable resource units.

We plan to implement the pattern according to the following figure depicting the
static structure of our realization (see figure 8).

Fig. 8. The cache pattern implemented with components

In the next step, in order to make it an engineering process, we predict the impact
of the deployed cache. To be able to do so, the usage profile of the adapted service
is needed, as the performance of a cache depends on it. The usage profile information
needed in this context, is the (estimated) frequency and type of requests. Together with
the decisions taken in the previous step a specialized prediction model for the cache
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impact can be applied and the result is compared to the requirements. This step is not
well researched so that today we often neglect the step and trust on the experience
of the deployer. Future work might come up with more prediction models to enable
the engineering process as depicted here. To continue, let us assume, that the result is
2500ms and thus, the mismatch is resolved.

In the final step the adapter is finally constructed or generated by using the instruc-
tions given in the respective pattern description. Once the adapter is deployed, we per-
form tests to ensure that the predictions have been right and that everything works as
expected.

6 Related Work

Even though Component-Based Software Engineering was first introduced in 1968 [45],
developing systematic approaches to adaptation of components in order to resolve in-
teroperability problems is still a field of active research. Many papers are based on the
work done by Yellin and Strom [2, 46], who introduced an algorithm for the (semi-)
automatic generation of adapters using protocol information and an external adapter
specification. Bracciali et al. propose the use of some kind of process calculus to en-
hance this process and generate adapters using PROLOG [47].

Schmidt and Reussner present adapters for merging and splitting interface protocols
and for a certain class of protocol interoperability problems [30]. Besides adapter gen-
eration, Reussner’s parametrized contracts also represent a mechanism for automated
component adaptation [48]. Additionally, Kent et al. [49] propose a mechanism for the
handling of concurrent access to a software component not built for such environments.

Vanderperren et al. have developed a tool called PaCoSuite for the visual assembly
of components and adapters. The tool is capable of (semi-)automatic adapter generation
using signature and protocol information [50]. Gschwind uses a repository of adapters
to dynamically select a fitting adapter [51]. Min et al. present an approach called Smart
Connectors which allows the construction of adapters based on the provided and re-
quired interface of the components to connect [27].

Passerone, de Alfaro and Henzinger developed a game-theoretical approach to find
out whether incompatible component interfaces can be made compatible by inserting
a converter between them which satisfies specified requirements [4]. This approach is
able to automatically synthesize the converter. Their approach can only be applied to a
restricted class of component mismatches (protocols and interaction). In fact, they are
only able to restrict the system’s behavior to a subset of desired ones and, for example,
they are not able to augment the system’s behavior to introduce more sophisticated
interactions among components.

In [10], Garlan et al. have shown how to use formalized protocol transformations
to augment the interaction behavior of a set of components. The key result was the
formalization of a useful set of interaction protocol enhancements. Each enhancement
is obtained by composing wrappers. This approach characterizes wrappers as modular
protocol transformations. The basic idea is to use wrappers to introduce more sophisti-
cated interactions among components. The goal is to alter the behavior of a component
with respect to the other components in the system, without actually modifying the
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component or the infrastructure itself. While this approach deals with the problem of
enhancing component interactions, it does not provide a support for wrapper generation.

A common terminology for the Quality of Service prediction of systems which are
being assembled from components is proposed in [52]. A concrete methodology for
predicting extra-functional properties of .NET assemblies is presented in [53]. None
of these approaches, however, provides a specialized method for including adapters in
their predictions. Engineering Quality of Service guarantees in the context of distributed
systems is the main topic of [54].

An overview on adaptation mechanisms including non-automated approaches can be
found in [55] (such as delegation, wrappers [37], superimposition [56], metaprogram-
ming (e.g., [57])). Both works also contain a general discussion of requirements for
component adaptation mechanisms. Not all of these approaches can be seen as adapters
as defined in this paper. But some of the concepts presented can be implemented in
adapters as shown here.

7 Conclusions and Future Directions

This paper introduces an engineering approach to software component adaptation. We
define adaptation in terms of dealing with component mismatches, introduce the con-
cept of component mismatch, and present a taxonomy to distinguish different types of
component mismatches. Afterwards, we discuss a selection of adaptation patterns that
can be used to eliminate the different mismatch types. The main contribution of the
paper is a presentation of how these patterns can be used during the component adap-
tation process. The presented approach is demonstrated by both a functional and an
extra-functional adaptation example.

Futureresearchisdirectedtowardsexploringadditionalinterfacedescriptionlanguages
which enable the efficient checking of the introduced mismatch types. On the basis of
the available specification data, algorithms have to be developed to statically check
for the identified component mismatch types during a compatibility test. Further on,
existing prediction methods, which are based on the available component data, have to
be improved to include adaptation and its impact on extra-functional system properties.
In doing so, measures have to be developed that assess the impact on the extra-functional
properties of systems when applying specific patterns to identified adaptation problems.

The application of generative techniques or concepts of Model-Driven Architecture
(MDA) to construct the appropriate adapters is another strand of ongoing work. In this
context, dependable composition of adapters and generation of adapters from the spec-
ification of the integrated system and the components are emerging areas of research.
Finally, to achieve a fully-fledged engineering approach to component adaptation, fur-
ther effort will be required to develop suitable tools that are capable of supporting the
selection of pattern(s) which can be applied to solve specific mismatch types (viz., step
2 of the process proposed in Sect. 5).

Acknowledgments

The authors would like to thank Viktoria Firus, Gerhard Goos, and Raffaela Mirandola
for their valuable and inspiring input during our break-out session at Dagstuhl, which



212 S. Becker et al.

preceded this paper. Steffen Becker is funded by the German Science Foundation in the
DFG-Palladio project. Alexander Romanovsky is supported by the IST FP6 Project on
Rigorous Open Development Environment for Complex Systems (RODIN).

References

1. Balemi, S., Hoffmann, G.J., Gyugyi, P., Wong-Toi, H., Franklin, G.F.: Supervisory Control
of a Rapid Thermal Multiprocessor. IEEE Transactions on Automatic Control 38 (1993)
1040–1059

2. Yellin, D., Strom, R.: Protocol Specifications and Component Adaptors. ACM Transactions
on Programming Languages and Systems 19 (1997) 292–333

3. de Alfaro, L., Henzinger, T.A.: Interface Automata. In Gruhn, V., ed.: Proceedings of
the Joint 8th European Software Engineering Conference and 9th ACM SIGSOFT Sym-
posium on the Foundation of Software Engeneering (ESEC/FSE-01). Volume 26, 5 of ACM
SIGSOFT Software Engineering Notes., New York, ACM Press (2001) 109–120

4. Passerone, R., de Alfaro, L., Henzinger, T., Sangiovanni-Vincentelli, A.L.: Convertibility
Verification and Converter Synthesis: Two Faces of the Same Coin. In: Proceedings of the
International Conference on Computer Aided Design (ICCAD’02). (2002)

5. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption Generation for Software
Component Verification. In IEEE, ed.: 17th IEEE International Conference on Automated
Software Engineering (ASE 2002), 23-27 September 2002, Edinburgh, Scotland, UK, Los
Alamitos, CA, IEEE Computer Society (2002) 3–12

6. Inverardi, P., Tivoli, M.: Software Architecture for Correct Components Assembly. In
Bernardo, M., Inverardi, P., eds.: Formal Methods for Software Architectures, Third Interna-
tional School on Formal Methods for the Design of Computer, Communication and Software
Systems: Software Architectures, SFM 2003, Bertinoro, Italy, September 22-27, 2003, Ad-
vanced Lectures. Volume 2804 of Lecture Notes in Computer Science., Berlin, Heidelberg,
Springer (2003) 92–121

7. Inverardi, P., Tivoli, M.: Failure-Free Connector Synthesis for Correct Components As-
sembly. In: Proceedings of Specification and Verification of Component-Based Systems
(SAVCBS’03). (2003)

8. Tivoli, M., Inverardi, P., Presutti, V., Forghieri, A., Sebastianis, M.: Correct Components As-
sembly for a Product Data Management Cooperative System. In Crnkovic, I., Stafford, J.A.,
Schmidt, H.W., Wallnau, K.C., eds.: Component-Based Software Engineering, 7th Interna-
tional Symposium, CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings. Volume
3054 of Lecture Notes in Computer Science., Berlin, Heidelberg, Springer (2004) 84–99

9. Brogi, A., Canal, C., Pimentel, E.: Behavioural Types and Component Adaptation. In Rat-
tray, C., Maharaj, S., Shankland, C., eds.: Algebraic Methodology and Software Technology,
10th International Conference, AMAST 2004, Stirling, Scotland, UK, July 12-16, 2004, Pro-
ceedings. Volume 3116 of Lecture Notes in Computer Science., Berlin, Heidelberg, Springer
(2004) 42–56

10. Spitznagel, B., Garlan, D.: A Compositional Formalization of Connector Wrappers. In IEEE,
ed.: Proceedings of the 25th International Conference on Software Engineering, May 3-10,
2003, Portland, Oregon, USA, Los Alamitos, CA, IEEE Computer Society (2003) 374–384

11. Tivoli, M., Garlan, D.: Coordinator Synthesis for Reliability Enhancement in Component-
Based Systems. Technical report, Carnegie Mellon University (2004)

12. Autili, M., Inverardi, P., Tivoli, M., Garlan, D.: Synthesis of ’Correct’ Adaptors for Protocol
Enhancement in Component-Based Systems. In: Proceedings of Specification and Verifica-
tion of Component-Based Systems (SAVCBS’04). (2004)



Towards an Engineering Approach to Component Adaptation 213

13. Autili, M., Inverardi, P., Tivoli, M.: Automatic Adaptor Synthesis for Protocol Transforma-
tion. In: Proceedings of the First International Workshop on Coordination and Adaptation
Techniques for Software Entities (WCAT’04). (2004)

14. Tivoli, M., Autili, M.: SYNTHESIS: A Tool for Synthesizing ’Correct’ and Protocol-
Enhanced Adaptors. To appear on L’Objet journal, http://www.di.univaq.it/tivoli/
LastSynthesis.pdf (2005)

15. Garlan, D., Allan, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse Is So Hard.
IEEE Software 12 (1995) 17–26

16. Mili, H., Mili, F., Mili, A.: Reusing Software: Issues and Research Directions. IEEE Trans-
actions on Software Engineering 21 (1995) 528–561

17. de Lemos, R., Gacek, C., Romanovsky, A.: Architectural Mismatch Tolerance. In de Lemos,
R., Gacek, C., Romanovsky, A., eds.: Architecting Dependable Systems. Volume 2677 of
Lecture Notes in Computer Science., Berlin, Heidelberg, Springer (2003) 175–194

18. Canal, C., Murillo, J.M., Poizat, P.: Coordination and Adaptation Techniques for Soft-
ware Entities. In Malenfant, J., Østvold, B.M., eds.: Object-Oriented Technology: ECOOP
2004 Workshop Reader, ECOOP 2004 Workshops, Oslo, Norway, June 14-18, 2004, Final
Reports. Volume 3344 of Lecture Notes in Computer Science., Springer (2005) 133–147

19. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-
gramming. 2 edn. ACM Press and Addison-Wesley, New York, NY (2002)

20. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: The Cataly-
sis Approach. Addison-Wesley, Reading, MA, USA (1999)

21. Becker, S., Overhage, S., Reussner, R.: Classifying Software Component Interoperability
Errors to Support Component Adaption. In Crnkovic, I., Stafford, J.A., Schmidt, H.W.,
Wallnau, K.C., eds.: Component-Based Software Engineering, 7th International Symposium,
CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings. Volume 3054 of Lecture Notes
in Computer Science., Berlin, Heidelberg, Springer (2004) 68–83

22. Yakimovich, D., Travassos, G., Basili, V.: A classification of software components incompat-
ibilities for COTS integration. Technical report, Software Engineering Laboratory Workshop,
NASA/Goddard Space Flight Center, Greenbelt, Maryland (1999)

23. Overhage, S., Thomas, P.: WS-Specification: Specifying Web Services Using UDDI Im-
provements. In Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R., eds.: Web, Web Services,
and Database Systems. NODe 2002 Web- and Database-Related Workshops. Volume 2593
of Lecture Notes in Computer Science., Berlin, Heidelberg, Springer (2003) 100–118

24. Beugnard, A., Jezequel, J.M., Plouzeau, N., Watkins, D.: Making Components Contract
Aware. IEEE Computer 32 (1999) 38–45

25. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Software
Components. In Weske, M., Liggesmeyer, P., eds.: Object-Oriented and Internet-Based Tech-
nologies, 5th Annual International Conference on Object-Oriented and Internet-Based Tech-
nologies, Concepts, and Applications for a Networked World, NODe 2004, Proceedings.
Volume 3263 of Lecture Notes in Computer Science., Berlin, Heidelberg, Springer (2004)
169–184

26. Zaremski, A.M., Wing, J.M.: Signature Matching: A Tool for Using Software Libraries.
ACM Transactions on Software Engineering and Methodology 4 (1995) 146–170

27. Min, H.G., Choi, S.W., Kim, S.D.: Using Smart Connectors to Resolve Partial Matching
Problems in COTS Component Acquisition. In Crnkovic, I., Stafford, J.A., Schmidt, H.W.,
Wallnau, K.C., eds.: Component-Based Software Engineering, 7th International Symposium,
CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings. Volume 3054 of Lecture Notes
in Computer Science., Springer-Verlag, Berlin, Germany (2004) 40–47

28. Meyer, B.: Object-Oriented Software Construction. 2. edn. Prentice Hall, Englewood Cliffs,
NJ (1997)



214 S. Becker et al.

29. Zaremski, A.M., Wing, J.M.: Specification Matching of Software Components. ACM Trans-
actions on Software Engineering and Methodology 6 (1997) 333–369

30. Schmidt, H.W., Reussner, R.H.: Generating Adapters for Concurrent Component Proto-
col Synchronisation. In: Proceedings of the Fifth IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems. (2002)

31. ISO/IEC: Software Engineering - Product Quality - Quality Model. ISO Standard 9126-1,
International Organization for Standardization (2001)

32. ISO/IEC: Software Engineering - Product Quality - External Metrics. ISO Standard 9126-2,
International Organization for Standardization (2003)

33. Horwich, P.: Wittgenstein and Kripke on the Nature of Meaning. Mind and Language 5
(1990) 105–121

34. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matchmaking of Web Services
Capabilities. In Horrocks, I., Hendler, J., eds.: First International Semantic Web Confer-
ence on The Semantic Web. Volume 2342 of Lecture Notes in Computer Science., Berlin,
Heidelberg, Springer (2002) 333–347

35. Noy, N.F.: Tools for Mapping and Merging Ontologies. In Staab, S., Studer, R., eds.: Hand-
book on Ontologies. Springer, Berlin, Heidelberg (2004) 365–384

36. Noy, N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record 33 (2004) 65–70

37. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, USA (1995)

38. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture – A System of Patterns. Wiley & Sons, New York, NY, USA (1996)

39. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architecture
– Volume 2 – Patterns for Concurrent and Networked Objects. Wiley & Sons, New York,
NY, USA (2000)

40. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture: Patterns for Distributed
Services and Components. John Wiley and Sons Ltd (2004)

41. Grand, M.: Java Enterprise Design Patterns: Patterns in Java (Patterns in Java). John Wiley
& Sons (2002)

42. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R.: Patterns of Enterprise
Application Architecture. Addison-Wesley Professional (2002)

43. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley and Sons
(1999)

44. Frølund, S., Koistinen, J.: Quality-of-Service Specification in Distributed Object Systems.
Technical Report HPL-98-159, Hewlett Packard, Software Technology Laboratory (1998)

45. McIlroy, M.D.: “Mass Produced” Software Components. In Naur, P., Randell, B., eds.:
Software Engineering, Brussels, Scientific Affairs Division, NATO (1969) 138–155 Report
of a conference sponsored by the NATO Science Committee, Garmisch, Germany, 7th to
11th October 1968.

46. Yellin, D., Strom, R.: Interfaces, Protocols and the Semiautomatic Construction of Soft-
ware Adaptors. In: Proceedings of the 9th ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA-94). Volume 29, 10 of ACM Sigplan
Notices. (1994) 176–190

47. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. Journal of
Systems and Software 74 (2005) 45–54

48. Reussner, R.H.: Automatic Component Protocol Adaptation with the CoCoNut Tool Suite.
Future Generation Computer Systems 19 (2003) 627–639

49. Kent, S.D., Ho-Stuart, C., Roe, P.: Negotiable Interfaces for Components. In Reussner, R.H.,
Poernomo, I.H., Grundy, J.C., eds.: Proceedings of the Fourth Australasian Workshop on
Software and Systems Architectures, Melbourne, Australia, DSTC (2002)



Towards an Engineering Approach to Component Adaptation 215

50. Vanderperren, W., Wydaeghe, B.: Towards a New Component Composition Process. In:
Proceedings of ECBS 2001 Int Conf, Washington, USA. (2001) 322 – 331

51. Gschwind, T.: Adaptation and Composition Techniques for Component-Based Software
Engineering. PhD thesis, Technische Universität Wien (2002)

52. Hissam, S.A., Moreno, G.A., Stafford, J.A., Wallnau, K.C.: Packaging Predictable Assembly.
In Bishop, J.M., ed.: Component Deployment, IFIP/ACM Working Conference, CD 2002,
Berlin, Germany, June 20-21, 2002, Proceedings. Volume 2370 of Lecture Notes in Computer
Science., Springer (2002) 108–124

53. Dumitrascu, N., Murphy, S., Murphy, L.: A Methodology for Predicting the Performance of
Component-Based Applications. In Weck, W., Bosch, J., Szyperski, C., eds.: Proceedings
of the Eighth International Workshop on Component-Oriented Programming (WCOP’03).
(2003)

54. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems. PhD
thesis, University of Oslo (2001)

55. Bosch, J.: Design and Use of Software Architectures – Adopting and evolving a product-line
approach. Addison-Wesley, Reading, MA, USA (2000)

56. Bosch, J.: Composition through Superimposition. In Weck, W., Bosch, J., Szyperski, C.,
eds.: Proceedings of the First International Workshop on Component-Oriented Programming
(WCOP’96), Turku Centre for Computer Science (1996)

57. Kiczales, G.: Aspect-oriented programming. ACM Computing Surveys 28 (1996) 154–154



Compatible Component Upgrades Through
Smart Component Swapping

Alexander Stuckenholz1 and Olaf Zwintzscher2

1 Department of Data Processing Technologies,
FernUniversität in Hagen

Alexander.Stuckenholz@FernUni-Hagen.de
2 W3L GmbH, Herdecke \ Bochum

olafz@w3l.de

Abstract. Emerging component-based software development architec-
tures promise better re-use of software components, greater flexibility,
scalability and higher quality of services. But like any other piece of
software too, software components are hardly perfect, when being cre-
ated. Problems and bugs have to be fixed and new features need to be
added.

This paper will give an introduction to the problem of component
evolution and the syntactical incompatibilities which result during nec-
essary multi component upgrades. The authors present an approach for
the detection of such incompatibilities between multiple generations of
component revisions basing on a formal interface model. The main con-
cern of the paper will be the automated reconfiguration of component
based software systems by intelligent swapping of component revisions
to find conflict free system states.

1 Introduction

During the last years component based software development changed from a
pure scientific research field to a widely used technique [1]. A number of compo-
nent models for different layers (desktop, server) have been established [2,3,4,5].
After consolidation of standards and specifications in this area, it is now time to
look at the problems that arise from the practical use of software components
in everyday projects.

Just like any other piece of software too, software components are hardly
perfect, when they are created [6]. Problems and bugs have to be fixed and new
features need to be added [7]. Software development generally may be defined
as the process of creating and propagating changes [8]. Through this process,
overtime new generations of software components evolve.

To leverage these updates, one has to deploy the new components into the
system that uses them, which means to replace one or more components by
newer revisions. When performing such updates, the first question is whether
the system will still work with the new components. The modifications of the
components which lead to the new revisions may cause incompatibilities or new
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dependencies to an existing system. In the case of an incompatible component
upgrade, the next question is how the system can be reconfigured, so that a
conflict free system arises again.

The following article describes an approach, which tries to reduce such incom-
patibilities by intelligent component swapping of existing component revisions
in a system. The approach reverts to available information on the configura-
tion of the component based system, the existing component revisions and their
interfaces and does not impose new specification procedures to the developers.

Voluminous, manually created behavior specifications of software components
are feasible, but in reality they are used at least in safety-critical projects.
The bigger parts of software components are verbally documented and merely
specified by means of their interfaces.

By the limitation to such information, the described procedure is able to op-
erate completely automated and can be adopted to existing component models
easily. Corresponding tools will be able to warn developers in the case of incom-
patible component upgrades and try to transform a system configuration into a
conflict free state again.

The paper is structured as follows: Section 2 defines the terms interface, com-
ponent, component revision and software system in a formal model upon we will
develop our approach. Section 3 characterizes the syntactical modifications of
components and interfaces which may cause incompatibilities in component de-
pendency relations and gives an indication for the complexity of the problem of
finding compatible system states. Section 4 introduces dependency graphs and
their characteristic traits. Section 5 establishes the concepts of the compatibility
reachability graph, describes its characteristics and shows, how a system con-
figuration can be transformed to a conflict free state by using it. To evaluate
and limit the set of solutions, we also define corresponding weighting functions
and constraints. Section 6 deals with corresponding approaches for substituting
components with newer revisions and the package management tools of different
Linux systems. Section 7 summarizes the results and gives an outlook to open
questions and future research.

2 Components, Interfaces and Systems

In the following we define the fundamental terms interface, component and sys-
tem, which are required for the rest of the paper.

Components are encapsulated against their environment. The details of the
implementation are not visible for the component user and should not have any
importance for their usage. The whole interaction with the implementation is
carried over their interfaces. We define as follows:

Definition 1 (Interfaces). An interface is a finite set of method signa-
tures I = (m1, ..., mIn).

Interfaces represent one part of the contracts of a component with its environ-
ment. In the component based software development, several levels of contracts
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can be identified. These are (1) simple or syntactical, (2) behavior, (3) synchro-
nization and (4) quality (cf. [9]). Our approach aims at automatically detecting
and reducing component incompatibilities between component contracts. The
levels of behavior, synchronization and quality can be included into such com-
patibility analysis only by using specifications which have to be created manually
by the component developers. As components are only in least cases equipped
with such specifications, our approach will initially be reduced to the syntactical
level of component contracts.

As we are interested in the evolution of component based software systems,
we assume, that components are realized by, at least one, concrete revision. The
terms revision, a modification which leads to a new version, and a variant, a com-
ponent which implements the same interfaces but uses another implementation,
can be directly transferred from the area of Software Configuration Manage-
ment (see [10]). In accordance with other areas of software engineering, the time
dependency of software artifacts is expressed by adding version identifiers to
distinguish the elements. This procedure also found its way to the component
based software development.

A concrete instantiation of a component on the time axis provides and requires
services to and from its environment by means of its interfaces. We define as
follows:

Definition 2 (Components and Revisions). Let R be the set of all possible
component revisions and C the set of all possible components.

A component revision r ∈ R is a tuple r = (t, IR, IP ). t is a somehow
natured version identifier (e.g. the major.minor.build scheme), where we dispose
of a order relation to decide which of two component revisions is newer than the
other. IR is a finite set of required interfaces and IP is a finite set of provided
interfaces.

The relation isRevisionOf ⊆ R × C connects components c ∈ C with their
concrete revisions r ∈ R. It holds, that every component c is realized by at least
one concrete component revision r: ∀c ∈ C : ∃r ∈ R : (r, c) ∈ isRevisionOf. Fur-
thermore we require isRevisionOf to be right-unique, so that component revisions
are always connected to only one component.

In component based software development components are put together to form
bigger systems. This is their original meaning (cf. [11, 12]). We define a system
S as follows:

Definition 3. A system S is a finite set of component revisions S = (r1, ..., rn).
We claim, that for every component c ∈ C we at most have one revision ri in S:
∀ra, rb ∈ S : ¬∃c ∈ C : (ra, c) ∈ isRevisionOf∧(rb, c) ∈ isRevisionOf∧ra �= rb.

As a general rule the set of component revisions in S consists of components from
third parties (so called COTS1), proprietary components, configurators, which
connect multiple components, and system components, which offer fundamental

1 Commercials off-the-shelf.
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services like persistence or transaction safety. The system developer combines the
components to create an executable application. Through this specific selection,
creation and connection of multiple components, the ultimate semantic of the
system S arises.

As software developers and system maintainers we are certainly only inter-
ested in these kind of systems which are well-composed, which denotes, that all
required interfaces in S are covered by compatible counterparts.

Definition 4 (Conflict Rate). We define RS :=
⋃

ri∈S

ri.IR as the set of all

required interfaces and PS :=
⋃

ri∈S

ri.IP as the set of all provided interfaces in a

system S.
It is now possible to define a relation isCompatibleTo which exists for all

couples (ia, ib) ∈ PS × RS where the provided interface ia is compatible to the
required interface ib. In that case we call ia the compatible counterpart to ib in S.

The conflict rate ΘS is now the difference between the number of required in-
terfaces and the number of compatible relations in S. ΘS = #RS−#((iP , iR)|iP
∈ PS ∧ iR ∈ RS ∧ (iP , iR) ∈ isCompatibleTo). A System S is well composed, iff
the conflict rate Θ is equal to zero.

The aforementioned formalisms represent only a fragment of our interface model
which is abutted to the methods of specifying contracts in B (cf. [13]) and is sim-
plified here because for the lack of space. The original interface model allows in
addition the inheritance of interfaces even over the boundaries of components.
The conflict rate Θ represents the count of uncovered method signatured in a
system in contrast to the count of uncovered interfaces. The dynamic part of
the model, which e.g. calculates Θ, is implemented in the logic programming
language Prolog and is embedded into our prototype model-checking-tool Com-
ponentor. We generally target component models like PEAR [14], where we
already have a parser to create the required interface specifications fully auto-
mated from the sourcecode, or JavaBeans [15]. But the model is powerfull enough
to cover other component models with comparable compositional structures
as well.

3 Component Updates

Having a formal model which is able to proof the inherent compatibility of a
specific component configuration in a system, we are now able to adopt these
methods to our initial situation.

Component updates are provably (cf. [16]) regular events in which a system
S is transferred into a new state S′. Component revisions2 in S are swapped
by other, not necessarily newer, revisions. Other revisions have to be installed
additionaly or are removed completely. The reasons for such updates are manifold

2 In the following abbreviatory denoted as revisions.
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and are described in [17,18,19,20]. Incompatible modifications at the component
contracts may cause unforseen system breakdowns.

At the center of our interests are the syntactical changes of the interfaces
between different component revisions, which have impacts to the inherent com-
patibility of the system. These changes induce an alteration of the conflict rate
Θ in S. Especially changes that may increase Θ are critical. These are:

– addition of a method-signature to a required interface IR,
– removal of a method-signature from a provided interface IP ,
– modification of a method-signature of an interface (IP or IR).

Furthermore the removal of whole interfaces from the set P of provided inter-
faces and the addition of interfaces to the set R of required interfaces induces a
rise of the conflict rate Θ.

The intention is, starting with a system S, to find an S′ (1) for which holds,
that the conflict rate ΘS′

is equal to zero and (2) which contains the set of
predetermined revisions that have been specified before the update.

By means of the finite set of components and component revisions it is un-
derstood possible to form solely a finite count of systems. Without considering
if a system is well-composed or not, the maximum count of systems can be
estimated as

Smax =
j=#C∏
j=1

(#{(r, cj)|r isRevisionOf cj}+ 1)− 1, cj ∈ C, r ∈ R. (1)

Here it is assumed, that a system at least consists of one component revision.
Apparently the maximum count of system configurations gets huge with only a
small amount of components and component revisions. E.g. five components with
each five revisions can be combined to a total count of 7775 systems. As a matter
of fact Smax grows exponentially with the number of component revisions. The
trivial solution to find the best composition by testing all possible combinations
consecutively is therefore not sound.

4 Dependency Graphs

As already mentioned in Section 2, a component based system S is the result
of a combination of an appropriate set of component revisions by the developer.
If a revision ri uses services of another revision rj in S, it leads to a depen-
dency relationship between these components. This dependency relation can be
illustrated in a dependency graph with the components in S as nodes and the
dependency relations as edges. Figure 1 shows an example of four components
building a dependency graph. The dependency graph of a component based sys-
tem S may be cyclic. As a simple example, consider two components C1 and C2
which mutually depend on each other to perform their services.

In the dependency graph we are able to distinguish different kinds of com-
ponents. Components, that do not provide services to their environment are
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Fig. 1. Configuration of a sample component based system as a dependency graph

called applications. In this case the node ri representing the application in the
dependency graph G has no predecessors. As some applications work without
requiring services from other components at all, the dependency graph must not
be connected.

The aforementioned dependency graph represents one single well-formed con-
figuration for a system S, which contains exactly one revision for a component.
This kind of illustrating a systems architecture is not inconvenient. The compo-
nent diagram in UML2 (cf. [21]) utilizes also this kind of view. As we target to
find the best configuration using the available amount of component revisions,
we first need to transfer this representation into a data structure, that permits
such a search.

5 Swap Mechanism

In a first step, the dependency graph from Section 4 will be transferred to the
so-called compatibility reachability graph. The logical components C1, ..., Cn of
the system will be completed by their actual component revisions. A dependency
relationship between two logical components will be replaced by a set of com-
patible dependencies of their actual component revisions. This transformation
induces a refinement against the original dependency graph.

Figure 2 shows a simple example. The system consists of two different vir-
tual components (C1, C2), each realized as three actual component revisions
(v1, ..., v3). The dependency relations between the virtual components C1 and C2
adopted from the dependency graph, will be replaced by the compatibility rela-
tions (see defintion 4) between concrete component revisions. The compatibility
graph contains all compatible combinations of concrete component revisions of
the virtual components in S. For better comprehension, Figure 3 shows all con-
flict free system configurations in S. These are subgraphs of the compatibility
reachability graph from Figure 2.

At a certain point in time t0 the system S from the example may consist of the
components C1.v1 and C2.v1. I.e.: S0 = {C1.v1, C2.v1}. During an upgrade C2
ought to be replaced by revision v3. I.e.: S1 = {C1.v1, C2.v3}. Our mechanisms
from the previous sections calculate a conflict rate Θ > 0, which means that the
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Fig. 2. Compatibility reachability graph of a simple system containing two virtual
components with three concrete revisions each

Fig. 3. Conflict free systems as subgraphs of the compatibility reachability graph

system S1 is not executable in this configuration. This fact can also be derived
from Figure 3: There is no conflict free system with the claimed combination of
component revisions. The main aim of the component swapping mechanism is
to restore a conflict free system state.

For this, first of all the conflict free subgraphs of the system S need to be
extracted from the compatibility reachability graph. The conflict free subgraphs
of the example, shown in Figure 3, are those subgraphs, which contain exactly
one concrete component revision to every logical component. Due to the compat-
ibility of a certain concrete component revision to more than one other concrete
revision, a multiplicity of conflict free combinations and therefore multiple con-
flict free systems arise. For the search for such subgraphs the proceedings of
breadth first search or depth first search, described in [22] lend themselves. As
the problem of finding these subgraphs is exponential complex against the count
of components in a system, the effective search for solutions is not trivial. We
currently work on an effective greedy-algorithm that prunes unusable solutions
from the search-space and integrates different constraints (see Section 5.1).
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Supposing that the system S had a conflict free state (Θ = 0) at any point
in time (before an update), it holds that there must be at least one conflict free
subgraph Gi in S. This subgraph is equal to the configuration of the previous,
conflict free system. To choose this solution results in restoring the original
system configuration.

With increasing count of component revision the probability that one can find
more than one subgraph Gi ∈ G also increases. In that case the set of solutions
needs to be evaluated. For this intention according weighting functions (objective
function and constraints) are required.

5.1 Weighting Functions

One approach to weight the kindliness of a solution is to evaluate the newness
of the system over the newness of the particles, which are the component re-
visions in this case. Therefore we first have to introduce an abstract mapping,
which transfers the revision identifier ri.t of a component revision ri to a nat-
ural number n ∈ N. For the well known major.minor.build-scheme, in which the
version identifier is a tuple of three natural numbers, a simple mapping could
be n = build + minor ∗ 104 + major ∗ 108. For the rest of the paper it holds,
that the field ri.n contains such a mapping of the revision identifier of a concrete
component revision ri to a natural number.

An according weighting function, which is able to evaluate the set of solutions,
calculates the sum over the version numbers of the concrete component revisions
that are used in the solution Gi.

Z(Gi) =
ν=#Gi∑

ν=0

rν .n (2)

With the help of Z(Gi) the calculation of a conflict free system can be for-
mulated as a maximization problem. The advantage of this weighting function
is, on the one hand its simple calculability and, on the other hand its tendency
to prefer that solution, wich uses only latest components. One drawback arises
however in case of outliers within the revisions numbers. A component revisions
with an extremely high version number in comparison to the other components
in a particular solution may lead to choose a configuration which does not consist
of latest component revisions in the majority. As an additional enhancement of
the weighting function, the average difference between the version numbers of
a solution can be calculated. To find that solution, which uses the most recent
component revisions (cf. WellVersioned Systems in [20]), this difference needs
to be minimized additionally.

6 Related Work

Approaches like the one by Brada [23] or Visnovsky [24] analyze the substi-
tutability of single components in the case of a modification of the component
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behavior. These practices use manually created specifications, often based on
pre- and post conditions and invariants. In the case of a component upgrade,
it is verified by subtyping that the new component is compatible to the pre-
vious one. Such mechanisms put single components into the center of inter-
est. However, our approach aims at the conflict free combination of multiple
components in a system, which is closer to the original idea of component
usage (Components are for composition!, [11], p. 3). As the compliance of
non syntactical contracts between multiple components cannot be verified at
this time, our approach will only use syntactical information about the
components.

Anyway none of these approaches is in the position to reduce the conflict rate
Θ (see definition 4) by actively changing the configuration of the System S. The
approach sketched here uses the already existing information of the system to
derive a conflict free state automatically.

In this context it is also useful to analyze the mechanisms of the packaging
systems of different Linux distributions. In open source software systems exists
also a notion of a component, namely a software package which can be installed
(like TeX, the C compiler etc.). Some packages need other packages or do not
work with others. Vendors of Linux distributions for example have sophisticated
management tools and package formats, like the Debian [25] or the Red Hat [26]
package format, that check whether the state of the system is consistent (there
are no incompatibilities). But there are certain drawbacks of these systems, which
may lead to inconsistent system states in worst-case.

Both the RPM- as well as the DEB-package format contain the dependen-
cies to other packages in hard coded format by means of course grained ver-
sion intervals (E.g. package x requires package y with version greater or equal
to 1.3.7) which are created manually by the developers of the packages. As
developers sometimes have wrong assumptions about their products, this pro-
ceeding may lead to version conflicts. In our approach the required interface
specifications are derived directly from the sourcecode of the components and
therefore reflect the real state of the requirements without any intermediate
step.

Anymore these management tools rest upon different heuristics, that are prag-
matic but circumsize the solution space for finding compatible systems. In case
of an update tools like apt or rpm will always try to install newest packages
only. If a well-defined system state could be derived by moving different pack-
ages back to an older version, these tools are not the best choice. Furthermore
it is accepted, that deb- or rpm-packages are always downwardly compatible to
older versions. Packages that would violate this rule are simply renamed (E.g.
with the new major-revision-number in the package name) and henceforth exist
in parallel with the older version in the package-repositories.

Our mechanisms for finding best system states looses from such assumptions
and embraces all potential candidates in form of component revisions into the
search for compatible system states.
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7 Summary and Prospects

The previous sections sketched an idea, by which means it is possible to verify
the syntactical correctness of a component based system configuration through
the calculation of the conflict rate Θ. This defines the count of required inter-
faces, which do not have a counterpart in the set of provided interfaces in the
system configuration. Hereon, we presented a possibility for automatic recon-
figuration of a component based system, to restore a conflict free system state
through component revision swapping. Therefore by means of the compatibility
reachability graph the set of conflict free subgraphs have been identified, which
define possible solutions of syntactical correct system configurations. To evaluate
the set of solutions, corresponding weighting functions have been designed.

For the sketched approaches, prototypes are currently beeing implemented,
which map the procedures to concrete component models.

Especially in the area of evaluating the conflict free solutions, the authors
see further need for research. Next to the demand for the most recent system
configuration, related to the revisions of the components, is is certainly possible
to define more constraints.

The authors are confident to improve the quality of component based software
engineering with the sketched approaches and especially to prevent the situations
of unforseen incompatibilities after component upgrades.
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Abstract. At ADL level, most of the current interaction protocols de-
signed to specify components’ behavior at their interfaces do not allow
to capture exceptions explicitly. Based on our experience with real-life
component based applications, handling exceptions as first class enti-
ties in a (formal) behavior specification is an absolute necessity. Other-
wise, due to the need to capture exceptions indirectly, the specification
becomes very complex, therefore hard to read and, consequently, error-
prone. After analyzing potential approaches to introducing exceptions to
LTS-based interaction specification (expressed via terms/expressions) in
ADL, the paper presents the way we built exceptions into the behav-
ior protocols. Finally, we discuss the positive experience with applying
these exception-aware behavior protocols to a real-life Fractal component
model application.

1 Introduction

There are many approaches to describe the desired behavior of software com-
ponents. They include interface automata[4], behavior protocols[16], DFSM[19],
usage policies[6], interactions and reactions[25], parametric contracts[18],
UML2.0 State Machines (in principle stemming from Harel diagrams[8]) and
Protocol State Machines[12], and CSP-based mechanisms, such as Wright[5]
and FSP[11].

Those of them which are based on LTS (Label Transition System) where
the transitions model atomic actions, allow for some kind of reasoning on be-
havior (e.g. equivalence[5], compatibility[4], compliance[16]). For instance, these
atomic actions model the request and response triggered by a method call - i.e.
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mostly the “control-observing” behavior of a component. Obviously, those LTS-
based behavior description mechanisms which are directly applicable in archi-
tecture description languages cannot explicitly utilize any kind of diagrams, and
therefore typically employ some kind of term expressions. However, there is a
problem with this approach: capturing exceptions. While in a graphically ex-
pressed transition system, an exception can be expressed by adding another
transitional edge, most of the term-expression based formalisms do not allow
this easily. We encountered the problem when we were trying to employ be-
havior protocols [1,2,3,16], in non-trivial case studies of component behavior
specification, comprising over 20 components each.

This paper aims at achieving two main goals:

1. To present a “reasonable” syntax extension of behavior protocols which does
not violate the inherent regularity of the traces generated by the protocol
(and therefore preserves important properties like protocol compliance de-
cidability).

2. To show that the proposed syntax increases readability and significantly
simplifies a behavior protocol when an exception is to be thrown/handled.
This claim is supported by experimental results.

The paper is structured as follows: Sect. 2 describes the background - behavior
protocols, in Sect. 3, the problem of handling exceptions in protocols is analyzed
from a perspective of component communication and a solution is proposed.
Section 4 illustrates the proposed solution on a case study. Section 5, as a part
of overall evaluation, shares with the reader the experience with applying the
proposed approach to a real-life Java project. Finally, Sect. 6 is focused on related
work and Sect. 7 draws a conclusion.

2 Background - Behavior Protocols

The basic idea of behavior protocols can be illustrated on the following example
(Fig. 1).

The picture shows the internal structure of a hypothetical Reservation com-
ponent which is composed of five sub-components - Ticket manager (responsible
for registration of tickets), Database manager (implementing the database be-
havior), Storage (permanently stores data), VISA (for payment authentication)
and Operator verification (a connection to third-party servers).

Via behavior protocols, we can capture communication among these compo-
nents. There are three types of protocols - frame protocol specifying the expected
activities on components’ boundaries (their frame), architecture protocol created
automatically as a parallel composition of the frame protocols of the subcom-
ponents (at the first-level of nesting) and the interface protocol describing the
behavior only on a selected interface.

These abstractions allow for addressing two aspects of “design by contract”:
(i) Horizontal contract “Do the children cooperate with no conflicts?” (a conflict
is statically detected as a composition error), and (ii) vertical contract “Do the
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Fig. 1. The Reservation component

cooperating children do what the parent expects?” which is statically verified
via evaluating compliance of the architecture protocol (determined by the sub-
components) and the frame protocol of the parent component. As an aside, the
static composition error detection and compliance verification is done by a tool,
protocol checker, available as a part of the SOFA project[21].

As to (i), three types of composition errors are identified - bad activity (an
emitted event is not accepted), no activity (deadlock), and divergence (infinite
activity). Definition of the semantics of compliance is crucial and has evolved
from a naive[17] and pragmatic[16], to consensual [2] based on the idea that the
architecture should work well (without composition errors) when cooperating
with a separate component representing the architecture’s environment. The
behavior of this environment is defined as the “inverted” frame protocol of the
parent component[2].

For example, compliance of the architecture protocol specifying the composed
behavior of Ticket manager, Database manager, Storage, VISA and Operator
verification with the frame protocol of Reservation can be verified. The frame
protocol of the Ticket manager component can take the form:

?Usr.init;
(
?Usr.buyTicket {

!DatM.preReserve;
!Card.lookUp; !Card.payment;
!DatM.reserve; !DatM.commit;
!Log.print}

+
?Usr.returnTicket {

!Card.revert;
!DatM.free; !DatM.commit}

)*;
?Usr.finish
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The frame protocol specifies that the component expects (?) an init method
call on the interface Usr followed (;) by alternatively (+) a call of buyTicket
or returnTicket. After this is repeated a finite number of times (*), a finish
call is accepted; no other incoming calls are allowed. The statements of the form
?i.a{P}, where P is a subprotocol, i is an interface name and a is a method
name, is an abbreviation of ?i.a;(P)!i.a. The ?i.a means accepting (?) a
request () i.a, and the !i.a means emitting (!) a response () to i.a. Along
these lines we see that the buyTicket method (acquiring and reserving a ticket
for the user), calls (!) the preReserve on the DatM interface to inform the
Database manager that a ticket is to be reserved. As a next step, calls of lookUp
and payment methods on the Card interface are made to perform the payment;
further, the reserve and commit methods on the DatM interface are called in
order to confirm the transaction. The last action is to print information about
the transaction - Log.print.

Instead of the alternative operator +, we could use the or-parallel opera-
tor || to express that calls of buyTicket and returnTicket might be ac-
cepted simultaneously. Additional operators and further details are described
in [16].

3 Handling Exceptions in Behavior Protocols

3.1 Primitive Techniques

In real settings, exceptional situations (not described in the previous protocol)
also have to be handled - e.g. the VISA component may deny service due to
a network error, and the Database manager may refuse to allocate appropri-
ate resources. In other words, specifying behavior of a component inherently
involves exceptions. However, expressing exception via the standard operators
is tedious. For illustration, consider the DatM.preReserve method call from the
example above which could throw a preReserveException exception. In or-
der to specify this behavior, we have to split the return from the preReserve
method into a regular return (?DatM.preReserve) and an accepting return
with exception (?DatM.preReserveException) - we call this technique intrin-
sic exceptions handling. However, in consequence, the frame protocol length
would expand rapidly (exponentially in the number of methods throwing an
exception).

Below is a fragment of the frame protocol of Ticket Manager where several
exceptions are thrown and handled - it illustrates how the protocol becomes
complex. In the example, we suppose that the DatM.preReserve method can
throw PreReserveException, methods Card.lookUp and Card.payment can
throw NetworkException, and finally the DatM.reserve method can throw
ReservationException.
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Technique: Intrinsic exceptions
...
?Usr.buyTicket ;

!DatM.preReserve ;
( ?DatM.preReserve ; !Card.lookUp ;
( ?Card.lookUp ; !Card.payment ;
( ?Card.payment ; !DatM.reserve ;

( ?DatM.reserve ; !DatM.commit ;
( ?DatM.commit ; !Usr.buyTicket )
+
( // exceptions of DatM.commit

?DatM.DatabaseException;
!DatM.cancel; !Card.revert; !Log.print;
!Usr.buyTicket

)
)
+
( // exceptions of DatM.reserve
(?DatM.DatabaseException+?DatM.ReservationException);
!DatM.cancel; !Card.revert; !Log.exEvent; !Log.print;
!Usr.buyTicket

)
)
+
( // exceptions of Card.payment

?Card.NetworkException;
!DatM.cancel; !Card.revert;
!Usr.NetworkException

)
)
+
( // exceptions of Card.lookUp
?Card.NetworkException;
!DatM.cancel; !Card.revert;
!Usr.NetworkException

)
)
+
( // exceptions of DatM.preReserve
?DatM.PreReservationException; !Log.exEvent; !Log.print;
!Usr.buyTicket

)
...

Obviously, a part of the complexity of the problem is the fact that we have
to separate requests and responses of method calls to capture that exceptions
can happen between them. Moreover the “reaction” inside such a call has to
be divided into a “regular” and an exception part, and, even worth, the ex-
ception parthas to contain repeatedly the “regular” continuation of the method
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(notice how many times is !Log.print appears in the specification). Clearly, if
we could take advantage of keeping the expressive power of the abbreviations
?a{P} or !a{P}, and add specific syntactical constructs for capturing exceptions
as classical programming languages do, we could shorten this behavior proto-
col significantly and make it much more concise and, consequently, easier to
comprehend.

Another option is to use the approximation by alternative technique the basic
idea of which is to put after any method call alternative, non-deterministically
chosen reactions (+) covering all the potential continuations. These include “reg-
ular” continuation, and those specific for each of the exceptions the method can
throw. An example of this technique is below. For instance, !DatM.reserve is
followed by alternatively calling !DatM.commit or handling the reservation ex-
ception (the !DatM.cancel; !Card.revert; !Log.exEvent; !Log.print part).
Obviously, this approach only approximates real behavior of a component by not
explicitly specifying the issuing and accepting events related to an exception.

Technique: Approximation by alternative
...
Usr.buyTicket {

!DatM.preReserve;
( !Card.lookUp;
( !Card.payment;
( !DatM.reserve;

( !DatM.commit;
(

null +
// exception on DatM.commit
(!DatM.cancel; !Card.revert; !Log.print)

)
)
+
// exception on DatM.reserve
(!DatM.cancel; !Card.revert; !Log.exEvent; !Log.print)

)
+
// exception on Card.payment
(!DatM.cancel; !Card.revert)

)
+
// exception on Card.lookUp
(!DatM.cancel; !Card.revert)

)
+
// exception on DatM.preReserve
(!Log.exEvent; !Log.print)

}
...
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3.2 Analyzing the Problem and Sketching a Solution

In this section, we discuss all the key aspects related to expressing/capturing ex-
ceptions and behavior protocols at the level of an ADL (Architecture Description
Language). In our view, the driving facts are:

1. In ADLs, exceptions should be specified with a granularity of a method (most
likely in the interface specifications).

2. In ADLs, the key abstractions the protocols are associated with are frame
protocols.

3. Issuing a method call in a frame protocol means the call goes outside of the
component.

4. Throwing an exception in a method means an abnormal end of the method
call.

5. Because of (3) an exception has to be handled in the frame protocol of the
component which issued the call, and, because of (4), such handling is a
specific reaction of the calling component after receiving the exception. In
principle, this reaction has to be reflected by an adequate “traffic” on the
calling component’s interfaces.

Obviously an abnormal end of a method i2.m call from interface i can be
easily modeled by replacing the standard “end of call” response !i.m by an ex-
ception response, e.g. !i.e. Moreover, the “abnormality” has to be reflected by
abandoning the original protocol specifying the execution of m, i.e. the action
!i.e in the protocol P appearing in the context ?i2.m{P} has to be the last ac-
tion generated by P. However, as the example in Sect. 3.1 indicates, addressing
these abnormalities by the standard behavior protocols means becomes cumber-
some. Since any protocol can be interpreted as an abstraction of code, we can,
for this purpose, advantageously adopt a Java inspired construct of the form
?i2.m{... throw !e ...} with the meaning (informally put) throw !e gener-
ates !i.e and then the execution of i2.m internals directly jumps to the lexically
nearest }. In a similar vein, for handling an exception in a caller’s frame proto-
col ((5)), we can adopt a try {P} catch {?i.e:Q} construct with the meaning
very similar to the interrupt operator in CSP (i.e. P�iQ): if the event at the
beginning of Q occurs, then the execution of the process P is abandoned and
the process Q executes further. Along these lines, the event ?i.e is the first one
generated by the catch {?i.e:Q} construct.

However, we have to analyze exception throwing, propagating, and handling
in all the (1)..(4) contexts below, since the methods are called across component
boundaries and components can be nested. These four contexts represent all
the situations on interface bindings related to a method call and an exception
throwing and handling. These are client (1) and server (2) positions at a binding
when no nesting is considered and the related situation when component nesting
is taken into account. The latter are: nested server (3 - delegation) and nested
client (4 - subsumption) positions at a binding.
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Fig. 2. Client-server

(1) Client position (Figure 2)
Consider the component X which calls the method a on the interface A. If an
exception e can be thrown by the call of a (i.e. thrown by Y in the setting of
Fig. 2), the construct try {... !A.a ...} catch {?A.e: ...} is to be used in
the frame protocol of X in order to handle the exception. An unhandled exception
would cause an error (bad activity in terms of [1]).

(2) Server position (Figure 2)
Consider the component Y accepting a call of a through the interface A’. In
general, as mentioned above in this section, an exception in the execution of a
is expressed by:

?A.a { ... throw !e; ... }
Based on the experience with our case studies, typical special cases of throwing

an exception are:

1. An exception e is thrown due to an invalid actual parameter of a (invisible
in protocols, but important for a credible abstraction). In protocols, this is
typically expressed as
?A.a { null + throw !e; ... }

2. An exception is thrown due to a faulty return value in a nested call !C.c:
(again invisible in protocols, but important for a credible abstraction). In
protocols this is typically expressed as
?A.a { ... !C.c; (null + throw !e); ... }
Since both in (1) and (2) the exception is a reaction on an “invisible” invalid
value, it is a good practice to indicate the fact by choosing a mnemotechnical
name for the exception (in Sect. 4, there are several examples of this method).

3. An exception is thrown in a catch construct. This is typical for exception
propagation (even under a different name). For example, in
?A.a { ... try {!C.c} catch {?C.e1: throw !e2); ... }
the C.c method can throw an e1 exception, which is then converted into e2.

(3) Delegation (Figure 3)
Delegation basically means forwarding an acceptance of a call to an internal
component[15]; in Fig. 3 the component Y delegates calls from the component X
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Fig. 3. Delegation

on the interface A to the interface A’ in the internal component ZA. In principle,
an exception e thrown in ZA in its method a, has to be delivered to the original
caller, i.e. to the component X. Since the internals of Y are not visible to X,
throwing of e should be specified not only in the frame protocol of ZA and but
also of Y. Notice, however, that an exception thrown by the component ZC and
handled by the component ZA would not be visible in the frame protocol of Y.

(4) Subsumption (Figure 4)
Subsumption basically means forwarding a call issued in an internal component
to its parent component[15]; in Fig. 4, the component ZA subsumes the calls on
the interface A’ to the interface A in its parent component X.

Apparently, an exception thrown in Y is to be delivered to and handled by
the caller, i.e. the component ZA. However, the component X is also in the client
position with respect to Y (and, at a design stage, the internals of X do not have
to be known). Therefore, handling of the exception has to be specified also in
the frame protocol of X.

Since handling an exception in the frame protocol of X in general causes a
“recovery communication” of X visible outside of X, potentially including a spe-
cific communication on its interface B. Obviously, this recovery communication
should be adequately captured in the architecture protocol of ZA and ZB and, in
particular, triggered by handling the exception in the frame protocol of ZA.

3.3 Proposed Solution - Details

The main purpose of this section is to describe in more detail the semantics of
the constructs introduced in Sect. 3.2 and to analyze the influence of these proto-
col enhancements on protocol compliance evaluation[1,3,15]. By convention, we
will refer to exception handling based on these constructs as Explicit try-catch
technique.

Throwing an exception
Syntax: throw !exception_name

This construct has to appear only in a protocol P written in the context
of the form i.a{P}, i.e. inside the curly brackets abbreviation expressing call
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Fig. 4. Subsumption

acceptance of a method a. In principle, throw !exception_name means that
in the resulting trace the event !i.a modeling return from a is replaced by the
event !i.exception_name and, at the same time, this is the last event generated
by P. Should P contain nested method accepting constructs (such as ?i.b{Q}),
this principle is applied recurently.

For example, ?i.m{!a.x;?a.sl; throw !ex;!a.y}would always generate the
trace ?i.m,!a.x,?a.sl,!a.ex. In a similar vein, ?i.m{X;(null+ throw !ex); Y}
is equivalent to ?i.m; X;(!i.ex + Y; !i.m) for some protocols X and Y.

It should be emphasized that !exception_name is always the last event gener-
ated by P, even though P contains a | and/or || operator. For example, the traces
generated by ?i.m{(!a.x;?a.sl; throw !ex;!a.y)||!a.z*} include (the be-
ginning resp. end of a trace is denoted by < resp. >):

<?i.m;!a.x;!a.x;?a.sl;!a.sl;!i.ex>
<?i.m;!a.z;!a.x;?a.sl;!a.z;!a.z;!i.ex>
<?i.m;!a.x;!a.z;!a.z;?a.sl;!a.z;!a.z;!a.z;!a.ex>
<?i.m;!a.x;!a.z;?a.sl;?a.z;!a.sl;!a.z;!a.ex>

Anyhow, the reason why throw !exception_name generates the last event in
P, no matter how many parallel activities in P are specified, is that it is hard
to define a “reasonable” semantics of more than one exception (the remaining
parallel activities could also throw an exception). As an aside, by opting for
“interrupting” all the parallel activities we basically follow the semantics chosen
in CSP for the interrupt operator[10].

Catching an exception
Syntax:

try { A }
catch {?i1,1.exception name1,1, . . . , ?i1,m1 .exception name1,m1

: B1}
catch {?i2,1.exception name2,1, . . . , ?i2,m2 .exception name2,m2

: B2}
. . .
catch {?in,1.exception namen,1,. . . , ?in,mn .exception namen,mn

: Bn}
where A, Bj are protocols and iij are interfaces. If a throw !exceptionnameij

is applied in A in a context
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try { ... !A.a ...} catch {?iij.exception_namej: ...:Bi},
then the next event generated by the try construct is the first event specified by
Bi. For simplicity, all the exceptions which could be thrown in the try construct
have to be listed exactly once in one of the catch parts of the construct.

Fig. 5. Transition diagram

Influence on compliance evaluation. The exception-related constructs pre-
serve the semantics of the operators defined for behavior protocols (in particular
the semantics of the composition and consent operators important for composi-
tion error detection and compliance evaluation[1,15]).

Unhandled (uncaught) exceptions are captured statically by the protocol
checker (information about the possible exceptions have to be a part of interface
specification in ADL). An improper/non-existent reaction to an exceptions is
typically captured as a bad activity error.

It can be easily shown that these constructs are without difficulty captured
by the LTS representing a behavior protocol. For example, the LTS representing

try { !i.a1; !i.a2; !i.a3}
catch { ?i.e1: !i.b}
catch { ?i.e2: !i.c}

canbe easily constructedby adding transitions to the states representing the meth-
ods’ calls in which e1 and e2 can be returned: these transitions will lead to the LTS
representation of the e1 and e2 handlers (Fig. 5). Since the resulting LTS remains
a finite automaton, the finite trace-based semantics of the behavior protocol oper-
ators is preserved.

4 Case Study

In this section, using again the example from Fig. 1, we illustrate how the
exception-related constructs simplify specification of exceptions in the behav-
ior protocols of the components introduced in Sect. 2.

The frame protocol of the Ticket manager is shown below. The component
was already described in the Sect. 2; here we present a slightly more detailed
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version which includes the initialization of other components and the check of
the lookUp method return value.

Ticket manager frame protocol
?Usr.init { !Card.init; !DatM.init};
(

?Usr.buyTicket {
try {
!DatM.preReserve; !Card.lookUp;
null + (!Card.payment; !DatM.reserve; !DatM.commit)

}
catch { ?DatM.PreReservationException:
!Log.exEvent;}

catch { ?Card.NetworkException:
!DatM.cancel; !Card.revert;
throw !NetworkException}

catch { ?DatM.DatabaseException, ?DatM.ReservationException:
!DatM.cancel; !Card.revert; !Log.exEvent };

!Log.print;
}
+
?Usr.returnTicket {
try { !Card.revert; !DatM.free; !DatM.commit }
catch {?DatM.DatabaseException:
!DatM.cancel; !Log.print}

}
)*;
?Usr.finish {!DatM.finish; !Card.finish}

Below is the frame protocol of the VISA component. After being initialized
by accepting an init call, the “business” stage takes place: lookUp, payment,
and revert. The lookUp and payment methods may throw an exception due to
the problem on the network (null + throw !NetworkException). The lookUp

VISA frame protocol
?Card.init;
(

?Card.lookUp {
try { !Blacklist.verify }
catch { ?BlackList.ListException: !Oper.askValidity};
null + throw !NetworkException

}
+
?Card.payment {
null + throw !NetworkException}

+
?Card.revert
)*;

?Card.finish
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method also verifies the card number via the verify method on the Blacklist
interface. If the verification yields a negative result, ListException is thrown
and validity is re-checked by the operator (call of askValidity on the Operator
interface).

In a similar vein, the frame protocol of Database manager indicates that
the preReserve, reserve and commit methods can be alternatively called af-
ter initialization. All of them communicate with the Storage component via a
!Strg.Access call which can return StorageException. Notice that this excep-
tion is converted to the PreReservationException resp. ReservationException
consequently delivered to the caller of preReserve resp. of reserve or commit.

Database manager frame protocol
?DatM.init { !Strg.init };
(

?DatM.preReserve {
try { !Strg.Access* }
catch { ?Strg.StorageException:
throw !PreReservationExcpetion}

}
+
?DatM.reserve {
try { !Strg.Access* }
catch { ?Strg.StorageException:
throw !ReservationException}

}
+
?DatM.commit {
try { !Strg.Access* }
catch { ?Strg.StorageException:
throw !ReservationException}

}
+
?DatM.cancel

)*;
?DatM.finish { !Strg.finish }

Storage frame protocol
?Strg.init;
(

?Strg.access { null + throw !StorageException}
)*;
?DatM.finish

The frame protocol of Reservation describes the communication with the en-
vironment of the whole reservation application. Notice that the exceptions which
are thrown and handled inside the component are naturally not visible at this
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level, but NetworkException is propagated through the Reserv interface so that
it has to appear in the frame protocol in the throw construct. On the other
hand, ListException is handled in this frame protocol as null} since its han-
dling does not require external component communication (as an aside, details
of its handling are visible the VISA frame protocol - !BlackList.test is sub-
sumed from VISA). In contrast, if a OperatorVerification component were out-
side Reservation (Fig. 6), details of ListException handling would be visible in
the Reservation frame protocol, as illustrated in it by the comment line.

Fig. 6. Modified reservation component

Reservation frame protocol
?Reserv.init;
(

?Reserv.buyTicket {
!Log.exEvent;
!Log.print
+
(
try { !BlackList.test }
catch { ?BlackList.ListException: null};

// catch { ?BlackList.ListException: !Oper.askValidity}
(!Log.exEvent + null);
!Log.print + throw !NetworkException

)
}
+
?Reserv.returnTicket

)*;
?Reserv.finish

5 Evaluation

This work was inspired by our experience gained during our attempt to a apply
behavior protocols to a non-trivial, real-life component-based application. We
had chosen the Speedo project[22] available from the ObjectWeb consortium as
an open source implementation of the Sun JDO specification[23]. The implemen-
tation is based on the FRACTAL component model[7] and is heavily using the
Perseus persistence framework[14]. Together, behavior protocols of 26 compo-
nents were written. Our experiences has been that without an explicit notation
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for exception handling, protocols are very hard to read and comprehend, and
furthermore, the correspondence between the behavior specification and code is
very hard to trace. We support this claim be the figures provided in Fig. 7. Here,
the length of behavior protocol specification is given for four specific techniques
of expressing exceptions via behavior protocols. The “Ignoring exceptions” tech-
niques means specifying behavior in a way which does not consider exceptions
at all. The “Explicit try-catch” technique is based on the behavior protocol ex-
tensions described in Sect. 3.2, while “Intrinsic exceptions” and “Approximation
by alternative” are the methods described in Sect. 3.1.

Each bar of the graph is divided into two parts to indicate the number
of lines specifying the “regular” behavior (gray) and exception-related behav-
ior (black). From the chart it is clearly visible how significantly the proposed
“Explicit try−catch” construct shortens behavior specification. Both “Approx-
imation by alternative” and “Explicit try−catch” do not cause any significant
grows of the “regular” part of the behavior specification, in contrast to the
“Intrinsic exceptions” technique where often some of the specification sections
have to be repeated. Notice also that “Approximation by alternative” causes
grows of the exception-related behavior specification in comparison with “Ex-
plicit try−catch”.

6 Related Work

There are many publications on exception handling, however not many of them
are related to exceptions at a level of abstraction higher than source code.

In [20] the authors employ the C2 architectural style featuring composition
contracts. Components have top and bottom interfaces connected via connec-
tors responsible for routing and filtering asynchronous messages. There are two
types of messages - a request message and a notification message depending on
whether the message flows up or down though the system. This is very similar to
our request-response notation. The composite contract (a service-implementing
component) ends either with a normal notification or an exceptional notification.
In the latter case, an exception handler component is activated. If the exception
recovery is successful, an abort notification is generated; otherwise a failure no-

Fig. 7. Description complexity of the Speedo project formalism
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tification is generated and the component may be left in an inconsistent state.
In this approach, the contract component “remotely” corresponds to our try
construct and exception component to the catch construct, however, the phi-
losophy of component hierarchy is different compared to ours and there is no
behavior specification at the level of the whole component.

The static source analyzing tool PREfast[13] checks all the execution traces
for possible erroneous behavior (typically null reference, memory leaks). In the
context of this paper, it is interesting that during exception propagation some
(predefined) functional failures are detected, such as missing memory dealloca-
tion and resource unlocking. This property is checked by our approach implicitly -
communication errors would be detected in the behavior composition process[3].

Session types are used for describing behavior of CORBA IDL in [24]. The
approach of behavior description is similar to our interface protocol (protocols
restricted to an interface), with a different syntax though. An exception is ex-
pressed in the specification of potential responses of a method. However, if the
method can raise more exceptions, the same label is used for each of them.

A CSP based exception handling is introduced in [9]. The exception opera-
tor (−→�), is inspired by the CSP interrupt operator �i[10]. While P�iQ means
preemption of P on an externally coming event i and continuation by Q (i is
the first event of Q), the exception operator considers in P

−→�Q the event i as an
internal event and therefore Q can be interpreted as an exception handler and
P as a try construct. Since in our proposed extension of behavior protocols the
composition of two components’ behavior also yields an internal action τe (one
of the components throws an exception !e and another one accepts it via ?e in
a catch construct), the approaches are similar in this respect. However, there
are significant differences. In CSP, interrupts can occur without an intervention
of the original process P, thus being similar to hardware interrupts. In our ap-
proach, an exception is triggered by invoking a method call and it has to be an
expected event. Additionally, one catch block can handle more that one excep-
tion to avoid repeating of the same handling routine if an identical reaction is
desirable. Also exception handling can be subject of compliance tests of both
horizontal and vertical contracts (Sect. 2).

7 Conclusion

The key contributions of this paper include:

(i) An analysis of the role and importance of exceptions in behavior specifi-
cation of software components is given and it is shown how behavior protocols
can be extended to handle exceptions in an efficient way in terms of readability,
comprehension, and the size of a behavior specification.

(ii) This claim is supported by providing experimental results from a real-life
case study of applying different exception handling techniques based on behavior
protocols. From these experiments, it is clearly visible how significantly the pro-
posed behavior protocol extension by an explicit exception handling construct
shortens the behavior specification of a non-trivial component-based application.
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Abstract. We propose a novel approach for defining the semantics of
component systems coinductively. In particular, we formalize a frame-
work for component systems within the theorem prover Isabelle/HOL.
Using this formalization, we are able to formally reason about and ver-
ify aspects of component composition and interaction. Furthermore, we
discuss strategies for adaptor code generation from a given component
system specification. We demonstrate the applicability of our approach
by a case study.

Keywords: Components, component interaction, semantics, verifica-
tion, coinduction, Isabelle/HOL.

1 Introduction

Component-oriented system development has become a major approach in soft-
ware engineering. However, most methodologies for constructing component sys-
tems are not able or not even intended to guarantee that the composed systems
obtain a certain behavior. Especially in safety-critical application areas, this is
not sufficient. In this paper, as a necessary basis for verification, we address the
problem of defining a formal semantics for components and component systems.
In particular, we aim for a semantics that allows for the definition of behavioral
equivalence of components as well as entire component systems. Moreover, the
semantics is required to deal with state-based computations as well as potential
non-termination. Furthermore, we discuss strategies for constructing component
systems from existing components and their services. Thereby, we focus on the
generation of adaptor code from given specifications.

Our solution approach for the semantics of component systems is based on
coalgebras and coinduction. In the last decade, coalgebraic methods have evolved
as the method of choice for the specification of and reasoning about state-based
computations, even if the systems potentially do not terminate. An element
of a coalgebra can be thought of as a function that transforms a given state
into successor states and also outputs possible oberservations. We model each
component as well as also entire component systems as elements of suitable coal-
gebras. In the coalgebraic setting, systems can be verified as being behaviorally
equivalent using coinduction, also known as bisimulation. Moreover, coalgebraic
proof methods can be used for the verification of liveness and safety properties.

R.H. Reussner et al. (Eds.): Architecting Systems, LNCS 3938, pp. 245–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Concerning the generation of adaptor code, we show that adaptor code can be
understood as an interaction protocol between the components. In our setting,
components together with their adaptor code are a component themselves, i.e.,
we deal with a recursive notion of components. We demonstrate the introduced
principles in two examples, one dealing with a chocolate vending machine and
one considering currency convertion in bank accounts.

Our specifications and correctness proofs are formulated within the Isabelle/
HOL theorem prover. Even though such a formal verification within a strict
machine-based system is much more expensive than a “paper and pencil”-proof,
it reduces the possibility of errors as much as possible and in particular ensures
that no special cases have been overlooked. In this paper, we specify components
and component systems coalgebraically by employing concepts from process al-
gebras. Furthermore, we model semantic equivalence with bisimulations. In com-
parison to less expressive methods (as e.g. model checking or restricted first-order
approaches as the B method [Abr96]), Isabelle’s higher order logic (HOL) is more
expressive and better suited for the specification of and reasoning about complex
component systems.

The work described in this paper is a step towards a more general research goal
which is depicted in Figure 1. In the desired setting, we start with a formal spec-
ification of the unified modeling language (UML) within Isabelle/HOL. Based
on this specification, we want to model structure and interaction properties of
component systems as well as their behavior via Statecharts. Then we want to
transform such a UML specification of a component system into a process alge-
bra. This transformation possibly abstracts from some structural issues. We can
then transform this process algebra specification of the component system to a
specification that is directly usable for Isabelle/HOL proofs. We want to conduct
all the necessary formalizations and proofs completely within Isabelle/HOL. The
transformations between UML, process algebras, and Isabelle/HOL must be se-
mantics preserving. Therefore we need to make sure that the verified properties
in the Isabelle/HOL representation do hold in the other representations as well.
Note that this is only guaranteed if we verify the transformations between the
three kinds of representations as well. In principle, we can generate code from all
of those three kinds of component system representations. The generation from
UML has been investigated in [BGL05]. In this paper, we concentrate on code
generation from Isabelle/HOL specifications.

This paper is organized as follows: In Section 2, we give a short introduction
to (co)algebras and (co)induction. This is a necessary prerequisite for our se-
mantics and verification framework of component systems and their behavioral
equivalence within the Isabelle/HOL theorem prover as described in Section 3.
Strategies to generate adaptor code from a formal specification are discussed in
Section 4. Section 5 describes our methodology for verifying safety and security
properties by investigating the correctness of interaction protocols within the Is-
abelle/HOL theorem prover. Related work is discussed in Section 6. In Section 7
we draw conclusions and discuss possible directions of future work.
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UML Process Algebra Isabelle/HOL

Proofs

Java Byte Code

Compilation

Java Code
Enterprise Java Bean Code

Code Generation

Formal UML Spec.

Fig. 1. From Specification to Code

2 (Co)Algebras and (Co)Induction

In recent years, coalgebraic methods, in particular coinduction, have gained
increased interest and importance in the specification of and reasoning about
state-based systems [JR97]. While induction is used to define and reason about
elements of initial algebras, coinduction deals with final coalgebras. In Subsec-
tion 2.1, we start by providing a very gentle, intuitive motivation for coalgebras.
Then we proceed in Subsection 2.2 by summarizing the most important concepts
in this area. Afterwards, in Subsection 2.3, we introduce their representation in
the theorem prover Isabelle/HOL.

2.1 A Gentle Motivation for Coalgebras and Coinduction
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Elements in initial algebras can be
understood as finite trees which are
defined in the typical inductive way
by specifying possible leaves and by
specifying how existing subtrees can
be composed to larger trees. The re-
verse definition direction is also pos-

sible and gives us the coinductive definition and proof principle. Starting at the
root node of a tree, we specify how nodes are expanded by defining their chil-
dren nodes. Since this expansion process does not need to terminate, it defines
finite as well as infinite structures. Even though a tree might not be finite, it
is well-defined in each finite depth. Coinductively defined structures are well-
suited to define state transition systems. Therefore, we define an observation,
the state, for each node. The root node of a coinductively defined, possibly infi-
nite tree represents the initial state; successors of a node model possible successor
states.
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2.2 Coalgebras and the Coinductive Proof Principle

Algebras and coalgebras are defined with respect to functors. Given a functor T
and a set X , a T -algebra is a set supplied with a T -structure, i.e. is defined as
a function a : T (X) → X . For example, the structure of the natural numbers
is defined as an T -algebra [0, S] : 1 + IN → IN for the functor T (X) = 1 +
X . Initial T -algebras are characterized by the fact that there exists a unique
homomorphism f from the initial T -algebra into any other T -algebra. Initial
T -algebras are the least fixed point of the functor T .

The functor notation is very precise yet short. If one thinks in the intuitive
tree structures introduced in Subsection 2.1, it summarizes precisely the mapping
from a set of children nodes to their parent node in the inductive case or, vice
versa, from a node to its successor nodes in the coinductive case. While standard
algebraic formalisms are based on a set of functions together with their arities
for a given algebra, our functor notion here summarizes all these functions into
one functor without mentioning the names of the individual functions but only
their typing, i.e. the types of their input and output values. Hence, all T -algebras
as well as all T -coalgebras agree on the input-output-typing of their functions.

Dually, T -coalgebras are defined as functions c : X → T (X). If one thinks of
the elements in X as being states, then a coalgebra maps a given state x ∈ X into
one or several successor states together with observations that can be made in the
state x. In this setting, a state-based system is characterized by the observations
that can be made during its run. For example, a deterministic, not necessarily
terminating transition system is described by a T -coalgebra [stop, 〈value,next〉] :
X → T (X) for the functor T (X) = 1 + A × X where A is an arbitrary non-
empty set of observations. Given a state x ∈ X , [stop, 〈value,next〉](x) is either
the terminating state stop in which no observation is possible, or there exists
the successor state next(x) and the observation value(x) ∈ A.

When modeling components with coalgebras, each state during the run of a
component corresponds to a state which is the input or output of a suitable coal-
gebra. Whenever transactions are performed on the component that potentially
change its state, there is also a state transition in the coalgebra which transforms
the corresponding input state to the corresponding output state together with
observations describing this state. The exact typing of this mapping of input to
output states is described by the functor of the coalgebra.

Final T -coalgebras, as the dual concept to initial algebras, are characterized
by the existence of a unique homomorphism from any other T -coalgebra into
the final T -coalgebra. For the functor T (X) = 1 + A × X , the final coalgebra
is [empty, 〈head , tail 〉] : A∞ → A × A∞. A∞ is the set containing all finite
and infinite sequences with elements from A. Final T -coalgebras, if they exist,
are the greatest fixed point of the functor T . For polynomial functors and even
for the finite power set functor, final coalgebras exist. Polynomial functors are
completely sufficient for our purposes.

Coinduction is – as well as induction – a definition and proof principle. The de-
finition principle uses the fact that homomorphisms from arbitrary T -coalgebras
into the final T -coalgebra exist, while the proof principle uses their uniqueness.
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Especially bisimulation is an important coinductive proof rule. It says that each
binary relation on a final coalgebra that is closed under the operations of the
coalgebra is contained in the equality relation. This proof principle can be used
to show the equality of two state transition systems (for example components).
For this purpose, one needs to define a suitable bisimulation relation and prove
that the two state transition systems are contained in it.

2.3 Using Coalgebras and Coinduction in Isabelle/HOL

The coalgebraic type lazy list is available in Isabelle/HOL in the extension de-
scribed in [Pau04]. This extension also provides basic lemmata and functions
for using lazy lists in practical theorem proving. A lazy list is the coalgebraic
datatype corresponding to the functor T (X) = 1 + (A × X). In an algebraic
interpretation, this functor would define ordinary lists. Then, the “1” represents
the empty list and the“(A×X)” represents the concatenation of an element from
the set A to an existing list from X . Thus, the algebraic interpretation defines fi-
nite lists by specifying how they can be successively constructed from the empty
list. In the coalgebraic interpretation, the “1” represents the fact that no further
state transition is possible, i.e. termination of the process. The “(A×X)”models
the case that a further state transition is possible, mapping a state from X to
an element in A together with a new state contained in X . This element of A
can be observed upon this state transition. Hence, the coalgebraic interpretation
defines lazy, i.e. potentially infinite lists by exploring the state transitions step
by step in a potentially infinite process. The elements of the list contain then
the observations made during the state transitions.

The coalgebraic datatype lazy list is especially relevant to software engineer-
ing and component systems since it is a natural way to represent (potentially
infinite) streams in the Isabelle/HOL system. Even though this coalgebraic kind
of modeling comes in handy, it has been applied only rarely in existing works.

For reasoning about equality on coalgebraic types, one uses the concept of
bisimulation. The lazy list package from [Pau04] provides predefined lemmata
to show via bisimulation that two lazy lists are equal. A bisimulation relation is
a binary relation ∼ on a coalgebraic type that is closed under the operations of
the coalgebra. For lazy lists, this means that with1 CONS a l ∼ CONS a′ l′,
the following must also hold: a = a′ and l ∼ l′. The last condition implies the
fact that two empty lists must be bisimular.

If we want to show the equality of two lazy lists l1, l2 Paulson’s lazy list package
provides two lemmata: llist equalityI, llistD Fun LCons I which do most of
the technical work of reducing the equality problem to these two conditions
which have to be proven manually:

– l1, l2 ∈ R where R is the bisimulation relation which the user of the lazy list
package has to provide manually.

– (CONS a l, CONS a′ l′) ∈ R ⇒ a = a′ ∧ (l, l′) ∈ R

1 “CONS a l” adds an element a to the beginning of a list l, yielding a new list.
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To use coalgebraically defined types, we need to be able to define not nec-
essarily terminating recursive functions. For lazy lists, llist corec allows us to
define a function ′a −→ ′b llist as follows where f is some partially defined
function f : ′a ⇀ ′b × ′a - e.g. a state transition function mapping a state
to an observable part (lazy list element) and a succeeding state - and 1 and 2
the usual projection functions. The [] denotes the empty (lazy) list, the # the
concatination of an element to a (lazy) list.

llist corec x f =
{

[] if f x = ⊥
(f x)1#llist corec (f x)2 f else

These formalizations are the basis for our coalgebraic framework for the se-
mantics of software components and for our correctness proofs of transformations
and the corresponding proof framework. Coalgebraic specification techniques
provide a way for defining the semantics of component systems by modeling
their state transition behavior, whereas coinduction and bisimulation, resp., al-
low us to compare component systems with respect to their observable behavior.

3 Semantics of Component Systems

In this section, we describe our semantics and proof framework for component
systems together with an example. In Subsection 3.1, we introduce our general
framework for the semantics of a component system. We characterize components
as state transition systems via states and state transition functions. Based on this
view, we define a trace semantics for a given component system by an element of
a suitable final coalgebra. This corresponds also directly to our formalization of
component systems within the theorem prover Isabelle/HOL. Subsection 3.2 deals
with equivalence proofs for component systems. In Subsection 3.3, we present an
example involving currency conversion.

3.1 Components as Coalgebras

A component is defined via a state and a state transition function. A component
may encapsulate other components. Hence we have a hierarchical component
concept. The state of an encapsulated component is part of the state of the
top-level component. The state transition functions of the encapsulated compo-
nents are called by the state transition function of the top-level component. Low
level components have to communicate with each other via the top-level compo-
nent. Such a top-level component may be regarded as the interaction protocol
of low level components. An example component is sketched in Figure 2. Each
component offers services which can be called from top-level components. These
services do not necessarily need to terminate.

The semantics of such a component system is defined in an operational way
as a trace semantics. Each component system must have a top-level component
with a state transition function encapsulating the behavior of the component
system. The signature of this state transition function defines a functor giving
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top level component

other internal component

communication

state transition function: t

part of

internal state s

component

state: s´
state transition function: t´

Fig. 2. Example Component

rise to a coalgebra that defines the semantics of the component system. In case
of a deterministic state transition function, the functor generates infinite lists
of states that represent the trace semantics of the component system. In case
of a non-deterministic system, the state transition function may return several
succeeding states to a given state. The corresponding functor generates a possibly
infinite tree of state transitions.

Example 1 ((Non-Deterministic Component Systems and Coalgebraic Functors)).
Consider a component system called“simple vending machine with user(s)”. The
machine may accept 50 (Euro) Cent coins and 1 Euro coins and delivers a choco-
late bar whenever a complete Euro is inserted. The person(s) using this vending
machine is the source of indeterminism of the component system. The machine
may break down at any time. The behavior is – quite informally – depicted as a
finite automaton in Figure 3.

bar
deliver

broken

Euro Euro Euro
0.00 0.50 1.00

Fig. 3. Chocolate Automaton

In the state 0.00 Euro the next state might be 0.50 Euro if someone inserts a
50 Cent coin, 1.00 Euro if someone inserts a 1 Euro coin or broken if the machine
has a failure. In the 0.50 Euro state only a 50 Cent coin may be inserted to reach
the 1.00 Euro state. In other cases the machine fails. After a complete Euro has
been inserted, the machine delivers a chocolate bar or breaks down. Then we
reach the 0.00 Euro state again or once again the broken state might appear.
A datatype that specifies the semantics of this automaton might be defined via
the functor displayed in Figure 4: The + marks alternatives. Each alternative
corresponds to a certain state of the automaton. The X specifies the next states
that might be reached from such a state. The × groups elements that belong
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T (X) =
broken +
0.00 EURO × X × X × X +
0.50 EURO × X × X +
1.00 EURO × X × X +
deliver bar × X × X

Fig. 4. Functor for Chocolate Automaton

to a certain state. A functor defining a coalgebraic datatype is interpreted as
a state observation. For example in the state 0.00 Euro, “0.00 Euro” might be
observed as well as three possible succeeding states denoted via the three X . One
of them will be chosen non-deterministically in the next step. In a coalgebraic
interpretation, the functor may be used to construct an infinite tree of states as
depicted in Figure 5.

0.00 Euro

0.50 Euro 1.00 Euro

broken deliver barbroken1.00 Euro

1.00 Euro

0.00 Eurobroken

broken ....

.....

....

broken

Fig. 5. Infinite State Tree

Note that the functor itself could also be interpreted algebraically. In this
case, the system has to break down at a certain point in all possible use case sce-
narios because we construct algebraic datatypes beginning with the constructor
that has no successors: broken. With the observational view of the coalgebraic
interpretation, the system is allowed to run forever.

Note that this functor is not sufficient to specify the semantics of a system
because this is done with a concrete state transition function. We do however
specify a datatype, or more precisely a process type, whose instances might be
used to represent the semantics of the system. !

In most cases, we do not want the semantics to include all parts of the internal
states of a component. Instead, we usually want the semantics to take care only
of the observable parts of a state of a component. Hence we usually use an
abstraction function and regard the semantics of a system as the infinite tree or
list generated by the state transition functor consisting only of the observable
parts of the internal states. For example, such an abstraction function might
reduce an internal component state to the visible output of a component, i.e. to
its behavior.

Note that one needs to take care that specifications do not overspecify sys-
tems but instead only contain the description of the essentials. Many details that
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are important from an implementation point of view, do not matter for verifi-
cation and might even endanger verification efforts within automated theorem
provers. Therefore, in our general component framework, we do not specify how
components have to interact with each other as this would be such an over-
specification. For most concrete component system specifications, we suggest to
use a chanel mechanism as used in many process algebras, e.g. the Calculus of
Communicating Sequential Processes (CSP) [Hoa85], FOCUS [BDD+92], or the
π-calculus [Mil99].

3.2 Proving Components as Semantically Equivalent

Equality between coalgebraic structures is proved via bisimulation2. In order
to prove the semantical equivalence of two component systems, we prove the
equality of the coalgebraic structures representing their semantics. This can be
accomplished by proving that they are in a bisimulation relation.

This means that we basically have to define a relation and have to prove that
it is indeed a bisimulation relation. This relation contains tuples of corresponding
or equal states, resp., of the two systems. To show that the coalgebraic structures
representing the semantics are bisimilar, we have to show that

– the two start states of the component systems are in the bisimulation rela-
tion,

– each two states in every tuple in the relation are corresponding to each other
or are equal, resp., and

– for each two states in every tuple in the relation the corresponding succeeding
states are in the bisimulation relation again.

In the case of deterministic systems, Isabelle/HOL provides us with large li-
braries of preformalized datatypes and preproved lemmata and theorems [Pau04].
Hence, we only have to provide state transition functions, start states, and the
bisimulation relation, and Isabelle/HOL will do the coalgebraic reasoning for us.
Nevertheless, a formal equivalence proof of two systems may still be a very chal-
lenging task, since there are many details apart from the coalgebraic management
of bisimulation that have to be done, e.g. proving algebraic transformations and
properties of structures.

Note that in the examples and case studies described in this paper with their
finite state character, it is also possible to construct Kripke structures with the
help of the state transition function and do bisimulation in a “model checking”
way [CGP99]. Nevertheless, coinductive techniques provide a better embedding
into the theorem prover Isabelle/HOL since we do not have to provide the bisim-
ulation rules as extra axioms. Moreover, our coalgebraic techniques can also be
applied in more complex scenarios where systems cannot be described by a finite
number of states.
2 This requires us to restrict our semantics framework to coalgebraic structures which

are elements of final coalgebras, cf. Section 2.2. For the systems with which we are
dealing in this paper, this is no limitation.
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3.3 Example: Currency Conversion Example

At the time when the Euro was introduced, in most parts of the European Union
accounts were still operated using the old national currencies while customers
could do transactions both in the national as well as in the new currency.

In this section we want to prove two components representing accounts op-
erated in the old national currencies Deutsche Mark and French Francs as se-
mantically equivalent. Starting with the same amount of money, the same Euro
transactions are carried out on both accounts. The observable part of such an
account state is the balance in Francs – since it is the most accurate – while
both accounts internally operate using the national currency. Another part of
the state is the number of the current transaction. For simplicity, we assume
that 1 Euro is 2 Deutschmarks and 6 French Francs make 1 Euro.

These state transition functions describe the behavior of the accounts, cp.
Figure 6. The transactions being performed are formalized as a function f taking
the actual transaction number and returning an amount of money (negative or
positive) to be added to or subtracted from the balance of the account.

λ(i, s).((Some (DM2Francs s, (i + 1, (Euro2DM (f i)) + s))))

λ(i, s).((Some (s , (i + 1, (Euro2Francs(f i)) + s))))

Fig. 6. State Transition Functions

Each function takes a state consisting of the transaction number and the bal-
ance. It returns an observable state consisting of the balance in Francs and an in-
ternal state consisting of the next transaction number (+1) and the next balance
in DM resp. Francs. The currency conversion functions are defined in Figure 7.

In order to prove two accounts – DM and Francs with the same transactions
– semantically equivalent, we define a state trace and quantify over all possi-
ble transaction sequences f . The traces are represented in Isabelle/HOL by the
coinductive structures lazy lists. The proof is carried out using bisimulation and
predefined theorems and lemmata from [Pau04] as summarized in Subsection 3.2.

constdefs Euro2Francs :: int ⇒ int
Euro2Francs e ≡ (6 ∗ e)

constdefs Euro2DM :: int ⇒ int
Euro2DM e ⇒ (2 ∗ e)

constdefs DM2Francs :: int ⇒ int
DM2Francs e ⇒ (3 ∗ e)

Fig. 7. Currency Conversion Functions
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theorem
(llist corec (0, s0)

(λ(i, s).((Some (DM2Francs s, (i + 1, (Euro2DM (f i)) + s)))))) =
(llist corec ((0 :: nat),DM2Francs s0)

(λ(i, s).((Some (s , (i + 1, (Euro2Francs(f i)) + s))))))

apply (rule tacr = {e.∃ i s. e =
(
(llist corec (i, s)

(λ(i, s).((Some (DM2Francs s, (i + 1, (Euro2DM (f i)) + s)))))),
(llist corec (i, DM2Francs s)

(λ(i, s).((Some (s , (i + 1, (Euro2Francs(f i)) + s))))))
)
} in llist equalityI)
apply clarify
apply force
apply clarify
apply (subst llist corec)
apply (subst llist corec)
apply simp
apply (rule llistD Fun LCons I)
apply simp
apply (simp add : Euro2Francs def Euro2DM def DM2Francs def)
apply force
done

Fig. 8. Component Equality Proof

The total proof is displayed in Figure 8. It is carried out using Isabelle’s tactic-
style. The listing in Figure 8 first states the theorem to be shown. Afterwards,
a sequence of proof rule applications follows. Each of them starts with the key
word “apply” followed by the name of the specific rule. Some of these rules are
built-in in Isabelle, for example apply clarify or apply simp, and apply simple
transformation rules of predicate logic to the proof goal. Other rules, for exam-
ple rule llistD Fun LCons I, apply user-supplied definitions or already proved
lemmata and theorems to the proof goal.

This very simple and small example demonstrates how to use coinduction in
Isabelle/HOL to prove system equivalence. It also provides a glimpse at how
component systems can be specified in the Isabelle/HOL theorem prover. More
complicated examples would be proved in a similar way concerning the coinduc-
tion part of the formalization.

4 Adaptor Code Generation

This section describes approaches for the automated generation of component
implementations from their specifications as described in the previous section.
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We particularly focus on top-level components as adaptors between lower-level
components.

The specification of a top-level component describes the adaptor code between
the lower-level components. In our coalgebraic formulation, the top-level com-
ponent is defined as a state transition system that transfers control flow to one
of its subcomponents depending on its current state. Besides that the number
of possible states does not need to be finite, this kind of specification is simi-
lar to Statecharts. Hence, as a consequence, the approaches for code generation
from Statecharts can be applied to coalgebraic component system specifications
as well. In the remainder of this section, we discuss three major kinds of code
generation strategies.

– (Hierarchical) Switch/Case Loop This most simple approach creates a nested
switch/case statement that branches according to the current state and the
current event. Within a branch, transition-specific code, i.e. the action as-
sociated with the transition, is executed and the current state is set to the
target state of the transition. Hierarchical and concurrent structures can be
achieved using recursion.

Note that even though in our setting, there might be an infinite number
of states, we are still able to generate a finite switch/case loop. Since the
state transitions in a coalgebraic structure are defined by a finite number of
transition rules, they can be transformed into a corresponding switch/case
statement. There is only one requirement that needs to be fulfilled, namely
that the predicates on the states, upon which the coalgebraic rules “fire”, can
be checked by decidable functions.

– Table-driven approach The second approach stems from a well-known method
to implement finite state machines in compiler construction (e.g. scanner gen-
eration by the unix tool “lex”). The actions caused by an event in a specific
state are stored in a (nested) state/input table. In its most basic form, entries
in this table might only consist of output symbols and successor states. When
more complicated actions are used, more complex structures are necessary
for the representation of state table entries, as demonstrated in [Zün02].

Out of the same reasons as above (finite number of coalgebraic transition
rules), this approach can also be applied in our setting in order to generate
adaptor code in component systems.

– Virtual Methods Deeply nested switch/case blocks may not be desirable in
an object oriented system. This is especially true when code generated from a
Statechart is subject to manual modification and maintenance (“round-trip
engineering”). An alternative method of code generation from Statecharts
makes use of an extension of the state pattern [GHJV95]. In this method,
each state becomes a class in an inheritance hierarchy created in parallel
to the substate hierarchy of the statechart. The events consumed by these
states are realized as virtual method calls to the respective state classes.

These are the basic strategies for code generation from Statecharts. A more
detailed overview can be found in [Zün02]. [Was03] shows how hierarchical
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structuring information can be exploited to obtain smaller and more efficient
code following the table-based strategy. It is subject of future work to further
investigate the application of these strategies to the problem of generating exe-
cutable code from formal coalgebraic specifications of component systems, given
e.g. in the Isabelle/HOL theorem prover.

5 Verifying Properties of Interaction Protocols

We do not only want to compare component systems for equivalence and gener-
ate code from their specifications but also want to prove user-defined properties
of such systems. For this purpose, in this section we describe how properties
of interaction protocols can be verified within our coalgebraic specification and
proof framework. As described in Section 3, the interaction protocol of a compo-
nent system can be regarded as the top-level component containing all the other
components. Hence the interaction protocol is specified with the state transition
function of the top-level component. Section 3 describes how one can prove se-
mantic equivalence of component systems. When verifying certain properties of
interaction protocols, one usually does not need full semantic equivalence. How-
ever, as described earlier, it is possible to use abstractions that map the states
appearing in a component system to an observable part. When verifying interac-
tion protocols, we map the states to our desired properties, thus regarding them
as the observable part of a state. Furthermore, we construct another abstract
system that behaves like the desired properties and prove via bisimulation that
this second abstract system and the abstraction of the system to be verified
behave in the same way.

Example 2 (Verifying Invariant Preservation). A simple case of verifying sys-
tems against certain properties is the verification that a non-terminating deter-
ministic system fulfills an invariant P . In this case, the observable part of a state
is the boolean value of the predicate describing the invariant.

In our vending machine example, we may want to check that a customer may
not insert more than one euro without breaking down the machine. In this case,
the invariant looks like balancestate ≤ 1 Euro ∨ state = broken.

As described in Section 2.3, we model the semantics of a deterministic system
as a lazy list of states. Such a list is constructed with the help of a state transition
function f denoting with its output value the successor of a given input state.
A second function l list corec constructs lazy state lists with the help of f . It
needs furthermore a predicate that reduces states to their parts of interest and
returns “Ture” if the property of interest holds in the reduction of a given state.
l list corec takes an initial state s0, the predicate P , and the successor function
f . l list corec defines iteratively the state transition sequence by applying in a
step-by-step fashion the predicate P to the current state and taking its resulting
truth value in the result list and, furthermore, by recursively repeating this step
with the successor state of the current state.

To prove the desired invariant, the resulting list of boolean values has to be
equal to a lazy list consisting entirely of“True”values. The proof is conducted via
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theorem

[|∀ s. P s −→ P (f s); P s0|]
=⇒

l list corec s0 (λ x.Some (P x, f x)) =
l list corec T rue (λ x.Some (True, T rue))

apply (rule tac r = {e.∃s.

e = (llist corec s (λ x. Some (P x, f x)),
l ist corec T rue (λ x. Some (True, T rue)))∧
P s } in llist equalityI)

apply force

apply clarify

apply (subst l1)
apply simp

apply (rule llistD Fun LCons I)
apply auto

done

Fig. 9. Invariants Theorem and Proof

bisimulation. The theorem in Figure 9 states that if we prove that the invariant
holds for the initial state and prove that for each state where the invariant holds,
it also holds in the succeeding state as well, then the lazy lists (system semantics
abstracted to P ’s values, “True” values) are equal as well.

For our vending machine invariant, this means that it is sufficient to prove
the following conditions:

– The customer has dropped less than one Euro through the coin slot of the
vending machine in the initial state.

– For each successor of a state where there is one Euro or less chipped into the
machine, there is one Euro or less in the machine in the next state. Otherwise
the broken state is reached.

To prove the last condition, one has to make a case distinction over potentially
succeeding states to a given state.

The proof of the displayed theorem in Figure 9 requires an additional auxiliary
lemma l1 (also conducted within Isabelle/HOL, not shown here) that is applied
in the proof step “apply (subst l1)”. !

Our approach is related to the way one verifies properties with a model checker.
As in the case of model checking, we abstract from the concrete behavior and only
consider the abstraction of interest. However we do not restrict expressions to
logics like CTL so we have greater expressive power. Unlike a model checker, we
do not need full state exploration since we can do state explorations symbolically
using the proof principles that Isabelle/HOL provides. On the other hand this
approach is less feasable for fully automated proving properties as it requires
user interactions.
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6 Related Work

Coalgebras have emerged during the last decade as logical foundation in the
description of state-based computations and systems. An introduction to this
field is e.g. given in [JR97]. Coalgebraic techniques have already been applied in
the area of software engineering, cf. e.g. the work on the specification of object-
oriented programming languages with coalgebraic methods using the theorem
provers PVS and Isabelle [HHJT98, Hui01]. As to the authors’ knowledge, this
is the first work that introduces a coalgebraic notion of component semantics
and component equivalence.

Also related to our approach are process algebras [BPS01], as coalgebras and
coinduction are one possible logical foundation for process algebras. There have
been several approaches of formalizing process algebras in Isabelle/HOL. The
Calculus of Communicating Systems (CCS) has been specified (but not used
for proofs) in [Röc01] within Isabelle/HOL. The Calculus of Communicating
Sequential Processes (CSP) [Hoa85] has been formalized also in Isabelle/HOL,
cf. [TW97]. In [Heu04], the application of the pi-calculus [Mil99] (without use of
theorem provers) has been investigated in the aspect-oriented configuration and
adaptation of component systems. Some work has been done to port coalgebraic
datatypes to Isabelle/HOL [Pau04]. Our component model is similar to the way
the FOCUS system specifies components [BDD+92]. It can be instantiated to
formally reason about properties and transformations within this system.

An interesting approach to adaptor generation is given in [PdAHSV02]. They
model adaptability via game theory to decide whether two components can in-
teroperate. As a byproduct of a positive result, the adaptor is obtained.

In our own related work, we are also working on verified transformations from
Statecharts (as a major specification mechanism for component behavior) to
higher programming languages [BGL05].

7 Conclusions

In this paper, we have introduced a methodology to formally specify and reason
about the semantics of components and component systems. Based on coalge-
braic notions, our semantics specifies component behavior via state transition
systems and is in particular able to also define semantics for non-terminating
systems. Moreover, we have shown that equivalence of component systems can
be verified by coinduction, a proof principle that is also known as bisimulation.

We have formalized our coalgebraic framework for the state-based semantics
of component systems within the theorem prover Isabelle/HOL. Moreover, by
using our exemplary case study, we have demonstrated how correctness proofs
for component systems can be conducted within Isabelle/HOL.

Concerning future work, our methodology for the semantics of component
systems is a necessary prerequisite for the verification of desired properties of
system behavior as well as for the verification of the correctness of compo-
nent system constructions, transformations, optimizations and modifications.
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Moreover, in future work, we want to work on methods for the generation of
components and component systems, in particular for the generation of adaptor
code, from given coalgebraic specifications.

Acknowledgment. We would like to thank Lars Gesellensetter for many valu-
able discussions.
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Abstract. The Object Managment Group’s Meta-Object Facility
(MOF) [19] is a semiformal approach to writing models and metamod-
els (models of models). It works according to a model/metamodel hi-
erarchy, where software is specified by models, models are defined as
instances of metamodels, which are, in turn, defined as instances of the
MOF meta-metamodel. By writing models and metamodels in a common
framework, the MOF meta-metamodel, it is easier to perform systematic
model/metamodel interchange and integration. However, the approach
is only useful if metamodels are correctly specified – a single error in a
metamodel specification will result in the propagation of errors through-
out instantiating models and final model implementations. An important
open question is how to develop provably correct metamodels.

This paper applies constructive type theory to formalize the MOF
metamodelling approach. The benefit of the formalization is that correct
typing corresponds to provably correct metamodels and models. Because
the MOF is the central technology behind the Model Driven Architecture
initiative [18], our work is intended to lay a formal foundation for making
Model Driven Architecture more trustworthy.

1 Introduction

This paper applies constructive type theory to formalize the class/object-based
approach to metamodelling with the Object Managment Group’s Meta-Object
Facility (MOF) specification [19]. The benefit of the formalization is that correct
typing corresponds to “provably correct” models and metamodels (models of
models). A intended application of this approach is to lay a formal foundation
for making Model Driven Architecture [18] more trustworthy.

The MOF is a semiformal approach to writing metamodels and describing
model transformations. It works according to a model/metamodel hierarchy,
where software is specified by models, models are defined as instances of meta-
models, which are, in turn, defined as instances of the MOF meta-metamodel.
By writing models and metamodels in a common framework, the MOF meta-
metamodel, it is easier to perform systematic model/metamodel interchange and
integration. However, this is only useful if metamodels are correctly specified – a
single error in a metamodel specification will result in the systematic introduc-
tion of errors throughout instantiating models and final model implementations.

R.H. Reussner et al. (Eds.): Architecting Systems, LNCS 3938, pp. 262–298, 2006.
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An important open question is how to develop provably correct metamodels for
use. This question is important as the MOF is the central technology behind the
MDA initiative.

In this paper, we exploit the higher-order nature of constructive type theory
to uniformly treat the semantics of models, metamodels and the MOF model
itself. It is well-known that constructive logic corresponds to lambda calculus
with dependent sums and products, where proofs can be represented as lambda
terms, formulae as types and proof inference corresponds to type inference. This
property is known as the Curry-Howard isomorphism (see, e.g., [7, 8, 22]). By
utilizing the Curry-Howard isomorphism, it is possible to define a notion of
metamodel and model correctness in type theoretic terms.

This work is guided by the principle of interoperability with MOF-based in-
dustrial tools and techniques for metamodelling. It is possible to develop a math-
ematically elegant form of metamodelling within higher-order type theory simply
by developing types of software models on an ad hoc basis. For instance, it is
possible to define a type that classifies all UML models, or a type that classifies
all relational database schemata. However, such types are not related and need
to be written by hand for each metamodel. The advantage of the MOF is that it
is generic enough to encode a wide range of metamodels. Our goal is to preserve
this genericity by encoding the MOF model itself and then by generating a type
for a metamodel from its MOF encoding. This way, all MOF-based metamodels
will automatically have corresponding types in the CTT. This approach becomes
important when developing notions of provably correct metamodels and models.

The paper proceeds as follows. Section 2 describes a core fragment of the
MOF and explains how it may be used to write metamodels. Section 3 describes
our constructive type theory and details the Curry-Howard isomorphism and
related notions. Section 4 describes our type theoretic encoding of the MOF.
Conclusions and a discussion of future work is provided in section 5.

This paper assumes the reader is familiar with the UML representation of
classes, class relationships and class objects. We use these terms assuming an
underlying UML-style representation. We do not assume reader familiarity with
the MOF or with constructive type theory.

2 The MOF

A metamodel is a model of models: a modelling language. The Meta-Object
Facility (MOF) is the Object Management Group (OMG) standard for defining
metamodels [19]. Central to the MOF specification is the MOF meta-metamodel
(hereafter referred to as the MOF model), a language for defining metamodels.

The MOF standard employs UML-style object-oriented classifier/object in-
stantiation terminology to define the MOF model, metamodels and to compre-
hend the relationship between metamodels and and models. The UML visual
syntax is often employed as a convenient means to describe the MOF model and
metamodels. However, other notations are permitted – for example, the MOF
standard includes an XML XMI-based textual syntax.
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In this section, we describe a core fragment of the MOF model and explain
how it can be used to define metamodels. We follow the MOF document [19],
defining a syntax for writing metamodel grammars together with an informal,
English language semantics. In Section 4, we shall formalize this fragment within
type theory. The fragment is sufficiently complex to illustrate how our approach
can be extended for the whole of the MOF.

2.1 Metamodelling in the MOF

Metamodelling in the MOF is done according to a 4 level hierarchy, as depicted
in Fig. 1:

– The M0 level consists of model instances. These might be data values, in-
stantiated class objects, instantiated database tables, algorithms, XML code
or function definitions.

– The M1 level consists of models, which may also be considered as metamodel
instances. This level includes elements such as UML diagrams, class, module
and type declarations, database table declarations or XML schema.

– The M2 level consists of metamodels, which may also be considered as MOF
model instances. This level consists of metamodel descriptions, defining the
syntax and semantics of M1 elements. This level includes languages such as
the UML, the XML, Java, the lambda calculus or Casl.

– The M3 level is the MOF language itself, used to define M2 level elements.

The MOF language is intended to be its own metamodel. This levels above M3,
which can be defined using the language of M3. In type theoretic terminology, the
MOF language is impredicative. Impredictative type theories have a history of

M3 MOF model

M2

MOF
model

instance

instance of

�

represents� Metamodel

M1
Metamodel
instance

instance of

�

represents � Model

M0 Model instance

instance of

�

Fig. 1. Relationships between the four levels of the MOF
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inconsistency, Frege’s original formulation of set theory and Martin-Löf’s original
impredictative type theory being famous examples. The MOF approach does not
suffer from this problem, as its impredicative nature is informally specified in
[19] and, in practice, it is rare to need more than the 4 levels of the hierarchy.
However, another good reason for formalizing the MOF within a type theory is
to make sure a consistent interpretation exists!

The levels are related by a class/object instantiation relationship. Elements
of level Mi+1 provide type description of level Mi objects. The objects instan-
tiate their corresponding elements. Class/object instantiation is fundamental to
the MOF hierarchy. UML-style classes, class associations or class object can be
defined at any level in the hierarchy, to serve different purposes. For instance, in
the MOF, classes at the M3 are used to type modelling languages, while classes
at the M2 level are used within modelling languages to type models.

An important aspect of the MOF hierarchy is that M1 and M2 level informa-
tion can be encoded in two separate ways: as model elements or object instances.
This enables the MOF to consider types also as forms of data:

– The MOF language is defined by a set of related model elements at the M3
level.

– A metamodel is defined at the M2 level by a set of MOF objects that in-
stantiate the MOF model elements. This MOF object representation of a
metamodel can also be rewritten as a M2 metamodel that provides type
descriptions via a set of model elements.

– Then, a model at the M1 level is understood as a set of elements that in-
stantiate the classifiers of an M2 level metamodel. Finally, these M1 level
elements can be rewritten to form M1 level model classifiers that specify the
required form of an M0 level model instantiation.

2.2 The MOF Model

The M3 level MOF model consists of a set of associated M3 level classes, “meta-
metaclasses”, hereafter referred to as MOF classes. The MOF classes classify the
kinds of elements that make up a M2 level metamodel.

Fig. 2 provides a UML-style visualization for the simplified fragment of the
MOF model we consider. The fragment consists of several associated MOF
classes: metaclassifiers, metaclasses, attributes, association ends, associations
and constraints.1 Each of these classes defines a type structure that must be
conformed to by instantiating M2 objects.

Metamodels are collections of associated M2 instances of these MOF classes,
in the same sense that, for example, a collections of M0 UML objects represent
an instance of a M1 UML clas diagram.
1 We have simplified the full MOF model by omitting a range of classes that help in

metamodel construction. For instance, we have omitted the MOF classs for defining
operations and references to associated metaclasses. However, from our treatment
of the fragment, it should be easy to infer how we would extend the formalization
described in this paper to the entire MOF model.
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Fig. 2. A core fragment of the MOF model

The class diagram of Fig. 2 defines the structure of MOF metamodels – their
types and relationships. However, the MOF model also includes a semantics,
consisting of constraints that must apply to any instances of the type structure.
This semantics could be integrated within the class diagram by associating con-
straints as notes with MOF classes. However, it is more convenient to describe
the semantics in a separate, detailed documentation of the MOF classes, which
we now provide.

Definition 1. The MOF is a language for writing modelling languages, and con-
sists of a set of associated M3 level classes, called MetaClassifier, MetaClass,
Datatype, Attribute, Association, AssociationEnd and Constraint.

Remark 1. When formalizing the MOF class structure defined by the MOF
model in Fig. 2, we shall interpret navigatable associations between MOF classes
in the same way as attribute fields. That is, if class A is associated with class
B such that B can be navigated via an association end endName of multiplicity
1..n, will say that class A instances contain 1..n instances of class B. We shall
do the same when formalizing metamodel class structures.

Definition 2 (MetaClassifier). The M3 MOF class MetaClassifier is an
abstract MOF class, used to categorize a common structure inherited by its sub-
classes, such as MetaClass, Attribute and Association. Its structure includes
the following elements:
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– A name attribute of type string that identifies the name of the classifier
instance.

– A boolean valued isAbstract attribute, that determines if the classifier
instance is abstract or not within an inheritance hierarchy. (Abstraction
treated in the object-oriented sense: classifiers can be associated with op-
erations that need not have full implementation details if the isAbstract
attribute is true. In this paper we will not deal with operations and will deal
only with concrete classifiers.)

– An associated collection constraints of elements of type Constraint, defin-
ing the required behaviour of M1 level instances of M2 MetaClassifier
metaobjects.

A M2 level MetaClassifier instance must satisfy the following constraints:

1. A classifier cannot be its own direct or indirect supertype.
2. The names of the any of the attributes of a classifier should not collide with

the names of the attributes of any direct or indirect supertype.

Remark 2. All MOF classes are associated with a set of Constraint classes. A
constraint defines how an instance of its associated MOF entity is to behave.
For example, instances of Datatype might be associated with a constraint that
defines its range of values.

Definition 3 (Constraint). The Constraint class consists of two attributes:

– The language of the constraint, language.
– The constraint itself, expression, written in the language language.

Remark 3. The MOF permits constraints to be assocated with any of the ele-
ments of a metamodel. These can be written in an informal language like English
or a formal language such as the Object Constraint Language (OCL).

Remark 4. The MOF model employs constraints in two distinct ways:

1. The MOF model itself has a set of constraints that are defined for each of
its classes. These constraints define a semantics of the model that specifies
how M2 metamodels must behave.

2. Also, the model contains a class called Constraint that is associated with all
other classes of the model. Instances of this class are used to write a semantics
for M2 metamodels that, in turn, is used to specify how M1 instantiating
models must behave.

Definition 4 (Metaclass). Instances of the MetaClass class are the meta-
classes that make up a metamodel description. The M3 MetaClass class defines
the type structure that must be adhered to by all M2 MetaClass instances.
The MetaClass class inerhits from MetaClassifier, and so includes the lat-
ter class’s fields in its structure. The structure also includes references to an
associated collection attributes of instances of MOF class Attribute.

The semantics of a class is given by a range of constraints, including (1) and
(2) of Definition 2, inherited from MetaClassifier. For the sake of illustration,
we will consider the following additional constraint for MetaClass:
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1. No two attributes have the same name.

Definition 5 (Datatype). Instances of the Datatype class are the datatypes
that make up a metamodel description. The M3 Datatype class defines the type
structure that must be adhered to by all M2 Datatype instances. The MetaClass
class inherits from MetaClassifier, and so includes the latter class’s fields in
its structure and its constraints. In addition, there is the following additional
constraint for MetaClass:

1. No datatype is abstract.

Remark 5. A metamodel uses datatypes as instances of the Datatype class. Their
semantics should be described using instantiated Constraint elements. For ex-
ample, integers are given by the MOF object Integer in Fig. 3, where the expres-
sion defining the what an Integer represents, IntegerDefinition.expression
(abbreviated integerDef) is the following constraint, written in English:

The type Integer denotes the subrange of integers from−231 to +231−1.

Fig. 3. Example of a constraint associated with a MOF class object

Definition 6 (Attribute). Instances of the Attribute class are to be used as
attributes of metaclasses. The M3 Attribute class defines the type structure
that must be adhered to by all M2 Attribute instances. The MetaClass class
inerhits from MetaClassifier, and so includes the latter class’s fields in its
structure. Attributes must also have the following fields

– An attribute type type, whose value is any MetaClassifier instance.
– A boolean visibility property, that specifies if the attribute is public or pri-

vate.

Definition 7 (Association End). Instances of the AssociationEnd class rep-
resent encapsulate a reference to a metaclass that might be used by an association
within a metamodel description. Association ends must also have the following
fields:

– An association end name name.
– A type whose value is a Metaclass.
– An integer association multiplicity multiplicity.

For our purposes, we will not consider any constraints upon association ends.

Definition 8 (Association). Instances of the Association class are associa-
tions between metaclasses of a metamodel description. The Association class
inerhits from MetaClassifier, and so includes the latter class’s fields in its
structure. Associations must also have the following fields:
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– An AssociationEnd value from, denoting the domain of the association.
– An AssociationEnd value to, denoting the range of the association.

The semantics of an association must satisfy the following constraints:

1. Associations do not have supertypes (the generalizes attribute must be
empty).

2. The values for isLeaf and isRoot on an Association must be true.
3. An Association cannot be abstract.
4. Associations must have visibility of public.

2.3 Object-Based and Class-Based Representation of Metamodels

The class definitions above identify the types of elements used to define a meta-
model within the MOF. A metamodel is then represented in the MOF via a
collection of associated MOF class object instances. These instances are M2
level objects.

Definition 9 (Metamodel). A metamodel M is a set of MetaClassifier,
MetaClass, Datatype, Attribute, Association, AssociationEnd and
Constraint M2 level objects. Objects within M may only refer to each other.

Example 1 (Access rights metamodel). We will use the following example of a
metamodel throughout this paper. Consider a fragment of a component meta-
model dealing with component access rights. Components are computational
entities. Each component has an access level consisting of an integer value, sig-
nifying its accessibility (0 meaning public, 1 meaning restricted, 2 meaning more
restricted, etc). A component A can use another component B, provided A’s
access level is higher than B’s.

The metamodel for this can be defined as the collection of MOF class objects
given in Fig. 4. Objects COM and AccessPolicy of class Metaclass are used to
denote components and access levels respectively. Objects A1 and A2 of type
Association are used to define the association of access levels to components
and the usage association between components respectively, with the various
AssociationEnd objects used to name and provide multiplicities for these asso-
ciations. The AccessPolicy metaclass object has one attribute, called “Level”,
whose type is an integer.

Objects of class Constraint are not depicted in the metamodel for rea-
sons of space. The COM object is associated with a single Constraint object
usageRights, such that usageRights.language is English and usageRights.
expression is

A component A instance of COM with an AccessPolicy instance a can use
another component instance B of COM with an AccessPolicy instance b,
provided a’s level is greater than b’s level.



270 I. Poernomo

Fig. 4. Example of a metamodel defined as a collection of associated MOF classes

Remark 6. The example metamodel definition above is typical of the kind built
using the MOF specification. A purely syntactic definition of a metamodel gram-
mar is provided, but conformance to the MOF specification itself is not formally
guaranteed. In this sense, metamodels are not proved correct with respect to
MOF conformance (the “semantics” of the MOF). Two problems that can arise
if metamodels are defined without a formal guarantee of correctness: 1) meta-
models might not actually satisfy the constraints imposed by the MOF, leading
to interoperability problems when several metamodels are used, as in the case of
a MDA style metamodel translation definition; 2) if metamodels are not correct,
then model instances of metamodels will be badly formed. The analogy is to
a situation where we try to do mathematics with sets that are defined infor-
mally: if we define the integers informally and forget to include a notion of the
number 0 and the successor function, and define addition incorrectly as multi-
plication, then it will be difficult to 1) use the integers correctly in mathematics
with other sets and 2) the numbers that we form will probably not actually be
integers.
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One of the benefits of the formalization of the MOF within constructive type
theory is that we will then have a mathematically elegant notion of provably
correct metamodels.

2.4 Class-Based Depiction of Metamodels

As can be seen from the example above, even with a small metamodel, the defi-
nition of the metamodel using M2 objects is ungainly (to put it diplomatically).
However, this problem is addressed within the MOF as our M2 level MOF objects
have an equivalent represented as M2 level classes.

When considering a metamodel as a model of models, we need to use this data
to classify models. The MOF again employs a form of UML syntax to achieve
this. Metamodels have another equivalent representation, as M2 level classes,
whose M1 level object instances are models.

Definition 10 (Class-based representation of a metamodel). Given a
metamodel MO represented as a set of M2-level objects, we can build an equiv-
alent representation MC as a set of M2 classes, as follows.

Each Metaclass M2 object o in MO corresponds to a M2 class toClass(o),
whose attributes are such that, for each Attribute object a in o.attributes, c
should contain an attribute declaration of the form

∗ a.name : a.type

where ∗ is + if a.visibility is public, and − if a.visibility is private.
For each Association object a in MO, there is an association in the meta-

model MC between the class toClass(a.to.type) and the class toClass(a.from.type).
The name of the association is a.name, and the names of its ends and their mul-
tiplicities are taken from a.to and a.from in the obvious way.

Each Constraint object associated with an object o is mapped to a note
that is associated with toClass(o). The contents of the note are the same as the
contents of the constraint.

We call MC the class-based representation of MO.

Remark 7. A class-based representation is important as it explains clearly how
the metamodel is used as a typing structure for M1 level models.

Example 2 (Class-based representation of the access rights metamodel). The class-
based representation of the access rights metamodel of Example 1 is given in
Fig. 5. The representation is obtained from Definition 10. Each Metaclass ob-
ject is represented as a M2 level class whose name is the object’s name, with
each associated Attribute object corresponding to an attribute of the class,
and each Association object corresponding to an association. The constraint
object usageRights corresponds to a note that is associated with the COM class,
containing the object’s expression as a constraint on instances of COM.

As can be seen from this example, a class-based representation of a metamodel
is easier to read than an object-based representation. However, it is important
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Fig. 5. The class-based representation of the access rights metamodel of Fig. 4

to note that, according to the MOF, not every collection of M2 level classes
defines a metamodel. To be valid, a metamodel must also have an object-based
representation that instantiates the MOF model.

The dual representation of metamodels is often left implicit when using the
MOF. Users generally employ the class-based notation, with the assumption
that an object-based representation is available. However, for the purposes of
formalizing the notion of a MOF metamodel, it is essential that we understand
both representations and their relationship.

3 Constructive Type Theory

This section presents a brief summary of the constructive type theory (CTT)
that shall be used to formalize the MOF and MDA in the next section. We
define a version of Martin-Löf’s predicative type theory with dependent sum and
product types [17], and explain how the Curry-Howard isomorphism and proofs-
as-programs methods enable the synthesis of correct programs from proofs using
the CTT.

3.1 Typed Lambda Calculus

The lambda calculus is a formal system for defining and applying functions.
It permits anonymous functions through variable abstraction and has a sim-
ple operational semantics provided by reduction rules. Functional programming
languages such as Lisp, Scheme or Haskell are based upon the lambda calculus.
Types are useful in programming, as they constrain the kinds of values that a
function can input and output, permitting compile time type checking, ensuring
safer programs. The simply typed lambda calculus provided a type theory for
determining how types can be associated with lambda terms. It considers the
kinds of type that are commonly used in programming: functional types, disjoint
unions and products. We shall define a lambda calculus that extends the simply
typed calculus with two additional typing constructs: dependent products and
sums. These are powerful typing constructs that enable typing of parameter-
ized relationships within functions and pairs, and, as we shall see, enable the
proofs-as-programs notions.
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a, b, c ::= PT
x varible x ∈ V ar
λ x. a abstraction
(a b) application
〈a, b〉 pair
fst(a) first projection
snd(b) second projection
inl(a) in left
inr(b) in right
match a with inl(x) ⇒ b | inr(y) ⇒ c case
abort(a) abort
show(v, a) witness, v ∈ Terms
select (a) in y.x.b select, y ∈ V ar, x ∈ V ar

Fig. 6. Syntax of the terms PT for our lambda calculus

Lambda calculus. We work with a lambda calculus whose core set of terms,
PT , are given in Fig. 6. The grammar is defined with respect to a denumerable
set of variables, V ar.

We have the usual notions of free and bound variables of the lambda terms
of PT .

Definition 11 (Free and bound variables of PT ). Let x be any variable of
V ar, and t a term of PT . Then, x is bound in t if there is a subterm of t of the
form

λ x : s. b

or
match a with inl(x) ⇒ b | inr(y)⇒ c

or
match a with inl(y) ⇒ b | inr(x) ⇒ c

If x is not bound in t, then x is free in t. We write BV (t) for the set of all bound
variables of t, and FV (t) for the set of all free variables of t. A term with no
free variables is called closed. We write Closed(PT ) for the set of closed terms
from PT .

Types. The terms of our lambda calculus are associated with the following
kinds of types:

– basic types from a set BT ,
– functional types A → B,
– product types A ∗B,
– disjoint unions A|B,
– dependent product types

∏
x : t.a where x is from V ar, and

– dependent sum types Σx : t.b where x is from V ar
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The intuition behind the first four types should be clear. For example, if a
term t has type A→ B, this means that t is a function that can accept as input
any value of type A to produce a value of type B.

A dependent product type expresses the dependence of a function’s output
types on its input term arguments. For example, if a function f has depedent
product type

∏
x : T.F (x), then f can input any value of type T , producing an

output value of type F (arg). Thus, the final output type is parameterized by
the input value.

Example 3. Consider a server webpage script function that responds to a request
for a webpage, given as input information about the requesting clients display
(PDA or PC). Let Client be the type of a client’s display (with only two
elements, PDA and PC). We define the function respond over the client display,
so that it returns HTML formatted for a PDA (of some assumed basic type
PdaHtml) if the client is running a PDA, and ordinary HTML (of an assumed
basic type Html) otherwise:

respond(PDA) : PdaHtml

and
respond(PC) : Html

It is not possible to achieve such a typing of the function using functional,
product and disjoint union types. We can type the respond function using the
product type ∏

x : Client.P (x)

where P is a higher-order function from Client to some collection type of all
datatypes,2 defined:

P (x) =
{

PdaHtml if x is PDA
Html if x is PC

Type inference rules. Type inference rules provide a formal system for de-
termining what the types of a lambda term should be. The core type inference
rules are provided in Fig. 7. They involve a typeing relation (:) between terms
and types. An inference takes the form

Γ " a : s (1)

where Γ is a context, consisting of variables associated with types, of the form
{x1 : s1, . . . , xn : sn}. The inference’s intended meaning is that the term a has
the type s, when its free variables x1, . . . , xn denote possible terms of types
s1, . . . , sn. If an inference of the form (1) can be made for a term a and type s,
we say that a is well-typed with type s for context Γ . If the context Γ can be
determined with no ambiguity from examining a, we simply say a is well-typed
with type s.
2 The fact that P is a function begs the question of what its type is. In order to define

this, the notion of a “collection of datatypes” needs to be clarified. We shall address
this issue shortly.
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x : A � x : A
(Ass-I)

Δ, x : s � p : A

Δ � λ x : s. p : x : s • A
( -I)

Δ1 � p : x : s • A Δ2 � c : s

Δ1, Δ2 � (p c) : A[c/x]
( -E)

Δ, x : s � p : A x : s is not free in A

Δ � λ x : s. p : s → A
(→-I)

Δ1 � p : s → A Δ2 � c : s

Δ1, Δ2 � (p c) : A
(→-E)

Δ � p : P [a/y]
Δ � show(a, p) : Σy : s • P

(Σ-I)

Δ1 � p : Σy : s • P Δ2, x : P [z/y] � q : C

Δ1, Δ2 � select (p) in z.x.q : C
(Σ-E)

Δ � a : A Δ′ � b : B

Δ, Δ′ � 〈a, b〉 : (A ∗ B)
(prod-I)

Δ � p : (A1 ∗ A2)
Δ � fst(p) : A1

(prod-E1)
Δ � p : (A1 ∗ A2)
Δ � snd(p) : A2

(prod-E2)

Δ � p : A1

Δ � inl(p) : (A1|A2)
(union-I1)

Δ � p : A2

Δ � inr(p) : (A1|A2)
(union-I2)

Δ � p : A|B Δ1, x : A � a : C Δ2, y : B � b : C

Δ1, Δ2, Δ � match p with inl(x) ⇒ a | inr(y) ⇒ b : C
(union-E)

Δ � a : ⊥
Δ � abort(a) : A

(⊥-E)

Fig. 7. Type inference rules for our lambda calculus

Predicative universe hierarchy. Dependent types introduce a problem. We
motivated the use of dependent products by considering functions that operate
over elements of a collection CType of datatypes. This raises the question of
what the type of CType should be. It is not permissible to say that CType is of
type CType, as this results in an inconsistent theory. Instead, the solution is to
define a predicative hierarchy of type universes of the form:

Type0,Type1,Type2, . . .

subject to the rules given in Fig. 8. These rules entail that the first universe
Type0 is the type of all types generated by the basic types the typing construc-
tors.

Example 4. Assuming the set of basic types includes strings String and booleans
Bool, types of the form String→ Bool, (Bool∗Bool)→ String have type
Type0. The function P of Example 3 is of the higher-order type Client →
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� Typei : Typei+1
(Universe)

s is a basic type
� s : Type0

(BT)

Γ1 � T : Typei Γ2 � P : Typej

Γ1, Γ2 � ( x : T.P ) : Typemax(i,j)
(dprodt)

Γ1 � T : Typei Γ2 � P : Typej

Γ1, Γ2 � (Σx : T.P ) : Typemax(i,j)
(dsumt)

Γ1 � A : Typei Γ2 � B : Typej

Γ1, Γ2 � A ∗ B : Typemax(i,j)
(prodt)

Γ1 � A : Typei Γ2 � B : Typej

Γ1, Γ2 � A|B : Typemax(i,j)
(uniont)

Γ1 � A : Typei Γ2 � B : Typej

Γ1, Γ2 � A → B : Typemax(i,j)
(fnt)

Fig. 8. Type inference rules relating to the universe hierarchy, where max(i, j) denotes
the maximum of two integers i and j

Type0, because its output ranges over basic types from Type0. This type, in
turn, is of type Type1, because it involves Type0.

Operational semantics. As a lambda calculus, our terms have an operational
semantics that defines how terms are evaluated.

We require the following definition.

Definition 12. A lambda term t is neutral if it is of one of the following forms:
(λx.q), 〈q, r〉, inl(q), inr(q) or show(q, r), where q, r, t1, . . . , tn are arbitrary terms
and f is any datatype constructor of arity n.

The operational semantics of the calculus is defined by the rules in Fig. 9. We
write

p �̂ p′

when p′ may be obtained from p by the transitive closure of �. When p �̂ p′

holds, then p′ is obtainable from p by a sequence of replacements of subterms
using the rules of Fig. 9. In this case, we say that p is reducible, or evaluates,
to p′.

Evaluation is lazy – that is, the operational semantics is applied to the outer-
most terms, working inwards until neutral term is reached.

Example 5. An expression is considered evaluated when it is of the form

λx : t.((λy : u.y + y)2)

is considered evaluated, in spite of the fact that the second lambda expression
could be evaluated further independently.
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1. ((λ X. a) : (A → B) b : A) � a[b/X] : B
2. specific(λ x. a : x : s • A, v : s) � a[v/x] : A[v/x]
3. fst(〈a, b〉 : (A ∧ B)) � a : A
4. snd(〈a, b〉 : (A ∧ B)) � b : B
5. match inl(a) : A ∨ B with inl(x : A) ⇒ b : C | inr(y : B) ⇒ c : C � b[a/x] : C
6. match inr(a) : A ∨ B with inl(x : A) ⇒ b : C | inr(y : B) ⇒ c : C � c[a/y] : C
7. select (show(v, a) : Σy : s • P ) in z.x : P [z/y].b : C � b[a/x][v/z] : C

Fig. 9. The seven reduction rules that define �

3.2 Useful Types and Operations

We have presented the core terms, types and rules that make up our type theory.
The following extensions are necessary in order to enable our encoding of the
MOF.

Extending the type theory with new inductive data types. The type
inference rules may be extended to introduce new recursive data types. Martin-
Löf proposed this as means of keeping the type theory open, in the same way
that an ordinary programming language is open to new libraries of data types.

The type theory can be extended with a new inductive data type by adding
rules defining the constructors for the data type, its position in the type universe
hierarchy and the operational semantics of its terms.

For instance, the natural numbers Nat can be constructed using zero 0 con-
stant and the successor suc function, with the following typing rules:

" 0 : Nat " s : Nat→ Nat

We need to add the following rule to perform induction over natural numbers:

" recNati :
∏

X : (Nat→ Typei).(X 0)∗

(
∏

x : Nat.(X x) → (X (suc x))) → (
∏

x : Nat.(X x))

Finally, we also add a recursion reduction rule to define the operational semantics
of natural numbers.

recNatiC〈p, q〉0 � p

recNatiC〈p, q〉(suc x) � q x (recNatiC〈q, q〉x)

Remark 8. We will assume the following inductive data types within the type
theory:

– Integers Int, Strings String and Booleans Bool, with the obvious constructors,
induction rules and operational semantics.

– A type called Multiplicity, with constructors ∗, 1, 0, 1..∗ and 0..∗.
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We will also assume we have a type of parameterized lists, of the form

[A]

where A is a type. [] is the empty list and [a1, . . . , an] is a list of type [A] if each
ai is of type A.

Record types. Record types are treated as syntactic sugar for a special use of
dependent products.

Definition 13 (Record types in CTT). Given l1, . . . , ln : Label labels, and
T1, . . . Tn types, we write

{l1 : T1, . . . , ln : Tn}

to denote the type

∏
x : String.match x with l1 ⇒ T1 | . . . | ln ⇒ Tn

An element of this type is a function r of the form

λx : String.match x with l1 ⇒ t1 : T1 | . . . | ln ⇒ t1 : Tn

We write
{l1 = t1, . . . , ln = tn}

to abbreviate this and
{l1 = t1, . . . , ln = tn}.lk

to denote the application
r lk

We will take the following as type inference rules. The correctness of the rules
follows from the definition of records just given.

Γ1 " T1 : Typer1 . . . Γn " Tn : Typern

max is maximum of {r1, . . . , rn}
a1, . . . , an ∈ String

Γ1, . . . , Γn " {a1 : T1; . . . ; an : Tn} : Typemax
(RecType)

Γ1 " a1 : T1 . . . Γn " an : dn

Γ1, . . . , Γn " {a1 = d1; . . . ; an = dn} : {a1 : T1; . . . ; an : Tn}
(RecObj)

We conservatively extend our definition of neutral terms to let any record
{l1 = t1; . . . ; ln = tn} be neutral. This follows from our treatment of records in
Definition 13.
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Type equivalence. Because types can be used within higer-order lambda
terms, one type can be reducible to another according to the operational se-
mantics. We treat types as interchangable one can be obtained from another via
the reduction rules. We define an extensional type equivalence relation gener-
ated by the operational semantics as follows. For any Typei (i = 1, . . . , n) types
T1, T2,

T1 ≡ T2 if, and only if, T1 � T2 or T2 � T1

We then permit equivalent types to be interchanged in typing inferences, accord-
ing to the rule

Γ " t : T1 T1 ≡ T2

Γ " t : T2
(≡)

(From a type theoretic perspective, this rule is actually a meta-rule, as it does
not provide a history of the type inference at the term level. This rule can be
incorporated within the a proper type theory through use of coercion operators,
but for our purposes it is enough to simply use the meta-rule.)

Recursive types and terms. In many type theoretic treatments of of object-
oriented programming language semantics, recursive types and infinitely recur-
sive terms are often employed to characterise classes and class objects. They are
employed to model the ability of class objects to include circular self-references
(through, for example, a self or this operator). Because our modelling classes
have the potential for similar self-reference, we shall also require recursive types.

Type theories with the expressive power of ours cannot incorporate infinite
recursion, as they require termination of all elements in order to retain consis-
tency. Infinitely recursive terms are instead “simulated” by means of a corecur-
sion operator. It is possible to represent infinite data through use of corecursion,
intuitively understood as the restricted forms of infinitely recursion that lead to
normal forms, due to the lazy operational semantics. We follow Coquand [9] and
Poll [23] approach.

We also use corecursive terms, formed using the μ operator, according to the
following rule

Γ, x : T " t : T provided t is a neutral term
Γ " (μ x : T.t) : T

(fix)

We add the following rule to our lazy operational semantics, which explains
how corecursive terms are evaluated:

(μ x : T.t) � t[(μ x : T.t)/x]

Observe that, for the corecursive term to be well-typed, the the term t must be
neutral, t[(μ x : T.t)/x] is the evaluated form of (μ x : T.t).

Example 6. The following is not a valid corecursive term

(μ x : int.x + x)
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as + is a derived function and so x+x is not a neutral term. The following term
is valid

(μ x : int.〈x, x〉)

Coinductive types are formed using the μ operator over types. That is, they
are formed using a specialized form of the (fix) rule, as follows

Γ, x : Typei " T : Typei provided T is a neutral type function
Γ " (μ x : Typei.T ) : Typei

(≡fix)

Lemma 1. The rule (≡fix) together with the operational semantics for μ and
the (≡) rule entail the following derived rules:

Γ " t : μ x : Typei.T

Γ " t : T [(μ x : Typei.T )/x]
(≡fix1)

and
Γ " t : T [(μ x : Typei.T )/x]

Γ " t : μ x : Typei.T
(≡fix2)

Mutual recursion can be defined using the μ operators – however, the defi-
nition is difficult to read. For readability, we present an equivalent set of defi-
nitions, where mutual recursion is expressed in terms of abbreviations of types
and terms of dependencies on the abbreviated types. We then display the actual
type definition. That is, write mutually recursive definitions of the form

T ≡ F (U) : Typei

U ≡ G(T) : Typei

with T and U to be taken as shorthand for

π1(μ X : Typei ∗Typei.〈F (π1(X)), G(π2(X))〉)

π2(μ X : Typei ∗Typei.〈F (π1(X)), G(π2(X))〉)

We proceed similarly larger sets of mutually recursive definitions.

Subtyping. We also equip our type theory with a notion of subtyping. We omit
the details of how subtyping is treated within the CTT. For further details, see
[3] or [23]. For our purposes, it is enough to consider the following rule:

Γ1 " a : U Γ2 " U ≤: T

Γ1, Γ2 " a : T
(≤:)

where ≤: is a subtyping relationship that holds between types. In this paper, we
will define when ≤: holds, rather than writing the full rules for inference of the
relation.
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3.3 Classes as Record Types

We first describe how the structure of classes and objects can represented within
our type theory. Our encoding is standard (see, e.g., [24]). We define classes
as recursive record types, with objects taken as terms of these types. Because
we have restricted our attention to classes with attributes but without opera-
tions, we will not deal with representing operations within class types – but our
representation can be easily extended to this.

First, recall that we shall treat the associations of a class in the same way as
attributes. That is, if class M1 is associated with another class M2 with the n
the name of the end of the association at M2, then we treat this as an attribute
n : M2 within M1 if the multiplicity of n is 1, and n : [M2] otherwise.

Essentially, the idea is to map a class C with attributes and associations
a1 : T1, . . . , an : Tn to a record type definition

C ≡ {a1 : T1; . . . ; an : Tn}

where each ai is an element of String corresponding to the attribute name ai and
each Ti a type corresponding to the classifier Ti. The class can reference another
class or itself through the attribute types. The mapping therefore permits mutual
recursion between class definitions. That is, each Ti could be C or could refer
to other defined class types.

Example 7. The three associated UML classes of Fig. 10 are represented in the
type theory via the following mutually recursive definitions:

House ≡ {street : String; number : Int; owner : [Person]; rooms : [Room]}
Person ≡ {bedroom : Room; name : String; home : House}

Room ≡ {ID : Int; home : House}

where Int and String are types given the usual definitions. The UML classes
can be instantiated with objects as in Fig. 11. These objects have the following
mutually recursive term definitions:

me ≡ {bedroom = myBedroom; name = WolfBlass; house = myHouse}
myHouse ≡ {street = Carina; owner = 1; owner = [me];

rooms = [myBedroom,myKitchen]}
myBedroom ≡ {ID = 1; home = myHouse}
myKitchen ≡ {ID = 2; home = myHouse}

It can be proved using the type inference rules for μ that me : Person,
myHouse : House, myBedroom : Room and myKitchen : Room.

This encoding allows us to represent the structure of classes. Note, however, it
does not provide any semantic detail, such as constraints on instantiating class
objects. This is not an important issue for defining the type theory for object-
oriented programming languages. However, it is important for our work, where
we wish to encode the M3 and M2 level class definitions, both of which involve
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Fig. 10. Three associated classes.

Fig. 11. Class objects instantiating classes of Fig. 10

constraints. Our approach will be to first define the structure of these classes
using recursive record types, and then to employ the property known as the
Curry-Howard isomorphism to associate constraints with types within the type
theory. The isomorphism is described now.

3.4 Constructive Logic

We provide a brief overview of how constructive logic can be integrated into
the type theory. This logic is similar to the traditional classical logic that most
computer scientists learn in undergraduate study, except that it considers dis-
junctions and existential statements true only if their proofs provide “evidence”
of truth. For instance, A∨¬A is not self-evident for an arbitrary A – to be true
in constructive logic, evidence of the truth of A or the truth of ¬A must be
provided. Similarly, we cannot assert the truth of ∃x : T.A(x) without providing
evidence that there is some term t : T such that A(t) holds. Constructive logic
has its origins in the intuitionist movement in the philosophy of mathematics.
Constructive logic is a useful logic in computer science, where much work is
naturally constructive – the existence of an algorithm is of less interest to a
developer than actual concrete evidence of the algorithm.

Logical propositions. We will consider a logic with formulae that predicate
and quantify over our lambda terms. These formulae are defined with respect to
an assumed set of predicates.

Definition 14 (Predicate). A predicate P of arity n is a term satisfying a
type judgement of the form

" P : (T1 ∗ . . . ∗ Tn)→ Type0

for some i. The elements of the set {T1, . . . , Tn} are called the argument types
of P .
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Informally, a predicate represents a logical statement about elements of its ar-
gument types.

Example 8. For example, we might define a less than inequality predicate,
lessThan : (Int ∗ Int) → Type0, that declares lessThan(a, b) when a is less
than b.

Definition 15 (Well-formed formulae of a collection of types). The set
of well-formed formulae WFF for a collection of predicates Pred is the least set
containing

– every Q(t1, . . . , tn) where Q : (T1 ∗ . . . ∗ Tn) → Type0 is a predicate from
Pred, and every ti (i = 1, . . . , n) is a well-typed lambda term of type Ti,

– every formula (A ∧B) for A, B ∈ WFF ,
– every formula (A ∨B) for A, B ∈ WFF ,
– every formula (A ⇒ B) for A, B ∈ WFF ,
– every formula ∀x : s • F where x ∈ V ar and F ∈ WFF ,
– every formula ∃x : s • F where x ∈ V ar and F ∈ WFF ,
– the formula ⊥.

We often write ¬A for (A ⇒ ⊥).

Basic rules. The rules of the constructive logic are presented in Fig. 12.

Remark 9 (Substitution for individual variables). As usual A[t/x] denotes the
result of substituting t for all free occurrences of x in A subject to avoiding
clashes of variables, where t and x share the same sort.

Motivation for the rules of intuitionistic logic is well known. We consider
several important rules as an illustration.

Remark 10. Rules (∨-I1) and (∨-I2) are understood as follows.
Consider first the rule for ∨ introduction on the left:

Γ "Int A

Γ "Int (A ∨B)
(∨-I1)

This means that from a sequent Γ "Int A we may infer the sequent Γ "Int (A∨B).
Here we are weakening the conclusion to (A ∨B).

Example 9. The rule (∨-E) is most easily understood by its analogy to proof by
cases. If we have a proof of C from A and also a proof of C from B then we get
a proof of C from A ∨B.

Likewise, for the (∃-E) rule, if we have a proof of ∃x : s •A and a proof of C
from a proof of A with free variable y, then we can get a proof of C.
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Assume that x, y are arbitrary variables of sort s from signature Σ,
and that a and c are well-sorted terms of sort s.

A �Int A
(Ass-I)

Δ, A �Int B

Δ �Int (A ⇒ B)
(⇒-I)

Δ �Int A Δ′ �Int (A ⇒ B)

Δ, Δ′ �Int B
(⇒-E)

Δ �Int A

Δ �Int ∀x : s • A
(∀-I)

Δ �Int ∀x : s • A

Δ �Int A[c/x]
(∀-E)

provided x is free in A

Δ �Int P [a/y]
Δ �Int ∃y : s • P

(∃-I)
Δ1 �Int ∃y : s • P Δ2, P [x/y] �Int C

Δ1, Δ2 �Int C
(∃-E)

where x is not free in C

Δ �Int A Δ′ �Int B

Δ, Δ′ �Int (A ∧ B)
(∧-I)

Δ �Int (A1 ∧ A2)
Δ �Int A1

(∧-E1)
Δ �Int (A1 ∧ A2)

Δ �Int A2
(∧-E2)

Δ �Int A1

Δ �Int (A1 ∨ A2)
(∨-I1)

Δ �Int A2

Δ �Int (A1 ∨ A2)
(∨-I2)

Δ �Int A ∨ B Δ1, A �Int C Δ2, B �Int C

Δ1, Δ2, Δ �Int C
(∨-E)

Δ �Int ⊥
Δ �Int A

(⊥-E)

provided A is Harrop

Fig. 12. The basic rules of many-sorted intuitionistic logic, Int

Extension by axioms. The basic calculus can be extended by further axioms
and schemata that define what formulae are to be taken as true without further
proof. We represent these as additional rules.

Example 10. For instance, the natural numbers can be reasoned about by adding
the axioms of arithmetic. The less than inequality predicate of Example 8,
lessThan : (Int ∗ Int) → Type0, is only of use if we have an axiom explaining
is meaning, such as the following:

" ∀x : Int.lessThan(x, s(x))

3.5 The Curry-Howard Isomorphism

The Curry-Howard isomorphism shows that constructive logic is naturally em-
bedded within our type theory, where proofs correspond to terms, formulae to
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types, logical rules to type inference, and proof normalization to term simpli-
fication. The original idea was first described by Curry [10] and extended to
intuitionistic first order logic by Howard [14].

We first need to make the following assumptions:

– All predicates exist inside the type theory.
– Also, for each axiom

"Int A

in the logic, there is a corresponding term Axiom(A) in the type theory with
the following typing rule

" Axiom(A) : asType(A)

– The recursion rule for each inductive type corresponds to a schema that is
assumed within the logic. The latter schema is formed from the former by
retaining only types and changing the dependent products and functional
types to universal quantifiers and implications, respectively. For example,
the recursion rule for Int corresponds to the following schema in the logic:

Γ1 "Int P (0) Γ2 "Int ∀x : IntP (x) → P (s(x))
Γ1, Γ0 "Int ∀x : Int.P (x)

We define an injection asType, from well-formed formulae WFF to types of
the lambda calculus as in Fig. 13.

A asType(A)
Q(x),where Q is a predicate Q(x)

∀x : T.P x : T.asType(P )
∃x : T.P Σx : T.asType(P )
P ∧ Q asType(P ) ∗ asType(Q)
P ∨ Q asType(P )|asType(Q)
P ⇒ Q asType(P ) → asType(Q)

⊥ ⊥

Fig. 13. Definition of asType, an injection from WFF to types of the lambda calculus

The isomorphism is then given by the following theorem.

Theorem 1 (Curry-Howard isomorphism). Let Γ = {G1, . . . , Gn} be a set
of premises. Let Γ ′ = {x1

G1 , . . . , xn
Gn} be a corresponding set of typed proof-

term variables. Let A be a well-formed formula.
Then,

1. Given a proof of
Γ "Int A

we can use the type inference rules to construct a well-typed proof-term p :
asType(A) whose free proof-term variables are Γ ′.

2. Given a well-typed proof-term p : asType(A) whose free term variables are
Γ ′, we can construct a natural deduction proof of Γ "Int A.
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4 MOF Metamodels Within CTT

We now formalize the MOF framework described in Section 2 using the CTT of
Section 3.

We demonstrate that CTT is a natural choice for encoding the MOF. The
main concepts of the MOF have obvious formal counterparts within the CTT.
Classes and objects are treated using recursive records. The four levels of the
MOF are treated using the CTT’s predicative hierarchy of type universes. The
CTT’s typing relation allows us to systematically treat MOF model/metamodel/
model/model instantiation relationships depicted in Fig. 1 as follows:

– The M3 level MOF classes are defined through Type2 class types,
– M2 level metamodel classifiers are given a dual representation as

objects of the MOF class types and as Type1 class types,
– M1 level model entities are given a dual representation as terms of the meta-

model types and as as Type0 types,
– M0 level implementations of models are instantiating terms of Type0 types.

This section focuses primarily on how to formalize the MOF classes and meta-
models – that is, we focus on levels M3 and M2.

We translate the MOF classes into types of the CTT. By utilizing the logic
that is built into the CTT, these types are able to encode both structural require-
ments and semantic constraints prescribed by the MOF class definitions. This
enables us to define a higher order type of metamodels MetaModel, such that
" mm : Metamodel is derivable if, and only if, the term mm corresponds to
a provably correct metamodel in the sense that it is satisfies the constraints for
metamodels prescribed by the MOF. The term mm corresponds to the object-
based representation of a metamodel. Class-based representations of metamodels
are formally treated by means of a mapping from terms mm : Metamodel to
Type1 class records. The mapping is essentially a direct type theoretic transla-
tion of the informal mapping of Definition 10.

This mapping then enables us to define higher order types for any MOF
metamodel ModelLang, so that " model : ModelLang is derivable if, and
only if, the term model corresponds to a valid model instance of the metamodel
that satisfies the constraints required of it by the metamodel.

The main difficulty with our formalization is in the treatment of instances of
the MOF Constraint class. Instances of this class describe how a metamodel’s
instantiating model must behave. Within the MOF framework, constraints, writ-
ten using Constraint objects, form part of both object- and class-based repre-
sentations of metamodels. It is difficult to express such constraints on instanti-
ating models when metamodels are treated as terms. There is no such difficulty
when metamodels are treated as Type1 classes. Consequently, we do not formal-
ize such constraints as part of Metamodel metamodel terms. We treat them
in our Type1 class record-based representation of metamodels, adding them via
the mapping from terms mm : Metamodel to Type1 class records.
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4.1 Encoding of the MOF

The structure of MOF metamodels was defined as a set of M3 level classes. We
now define a set of mutually recursive Type2 level record types that encode these
classes. A metamodel, considered as a set of M2 level objects that instantiate the
MOF classes, will then be formally understood as a set of mututally recursive
Type1 level terms of these types.

We define the following mutually recursive types: MetaClassifier, the type
of MOF model metaclasses; MetaClass, the type of MOF model metaclasses;
Attribute, the type of MOF model attributes; Association, the type of MOF
model associations; AssociationEnd, the type of MOF model association ends.
The subtyping relationship is defined so that MetaClass ≤: MetaClassifier,
Association ≤: MetaClassifier and Datatype ≤: MetaClassifier.

Definition 16 (MOF classifier type). A MOF classifier is encoded by the
following record type,

MetaClassifier ≡ Σx : ClassStruct.MClassCst(x)

where ClassStruct stands for the record

{name : String; isAbstract : Bool; supertype : MetaClassifier;
attributes : [Attribute]}

and MClassCst(x) is the conjunction of the following statements about x :
ClassStruct:

– Formal translation of constraint (1) in Definition 2 of classifiers:

∀mL : [MetaClassifier].mL = getParents(x) → x ∈ mL

– Formal translation of constraint (2) in Definition 2 of classifiers:

∀mL : [MetaClassifier].mL = getParents(x)→
∀m : MetaClassifier.m ∈ mL.∀a1 : Attribute.a1 ∈ x.attributes →

∀a2 : Attribute.a2 ∈ m.attributes→ a1.name �= a2.name

– Formal translation of constraint (1) in Definition 4 of metaclasses:

∀a1 : Attribute.∀a2 : Attribute.a1 ∈ x.attributes∧ a2 ∈ x.attributes →
a1.name �= a2.name

where getParents is a corecursive function that obtains a list of all supertypes
of a metaclass x.

Definition 17 (MOF Metaclass type). A MOF class is encoded by the fol-
lowing record type,

MetaClass ≡ Σx : ClassStruct.MClassCst(x)
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where ClassStruct stands for the record

{name : String; isAbstract : Bool; supertype : MetaClassifier;
attributes : [Attribute]}

and MClassCst(x) is the conjunction of the following statements about x :
MClassStruct:

– Formal translation of constraint (1) in Definition 2 of classifiers:

∀mL : [MetaClassifier].mL = getParents(x) → x ∈ mL

– Formal translation of constraint (2) in Definition 2 of classifiers:

∀mL : [MetaClassifier].mL = getParents(x)→
∀m : MetaClassifier.m ∈ mL.∀a1 : Attribute.a1 ∈ x.attributes →

∀a2 : Attribute.a2 ∈ m.attributes→ a1.name �= a2.name

– Formal translation of constraint (1) in Definition 4 of metaclasses:

∀a1 : Attribute.∀a2 : Attribute.a1 ∈ x.attributes∧ a2 ∈ x.attributes →
a1.name �= a2.name

where getParents is a corecursive function that obtains a list of all supertypes
of a metaclass x.

Remark 11. The MetaClass type is the type of all metaclasses. That is, a
metaclass M can be encoded correctly within the MOF as an instance of a MOF
class if, and only if, there is a corresponding term representation tM of M , such
that " tM : MetaClass holds. This typing requires two witnesses:

1. a record that encodes the data associated with the metaclass, written ac-
cording to the structure of the record type MClassStruct, and

2. a propositional function over MClassStruct records, that specifies con-
straints that can be proved to hold over the values that can be held by the
record.

This reflects the two aspects of an informal metaclass definition within the MOF:

1. The metaclass contains data in the relevant fields specified by the MOF class
definition.

2. The metaclass satisfies the set of constraints that are particular to its nature.

Remark 12. A similar form of encoding is done for the remaining MOF elements
– a record type used to define its structure, paired with constraints over the
structure using a dependent sum. We do not have the space to present the full
definitions of constraints, and provide only simple illustrations.
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Definition 18 (MOF attribute type). MOF attributes are represented in
the type theory by the following type:

MAtt ≡ Σx : MofAttStruct.AttCst(x)

where MofAttStruct is an abbreviation for the following record type

{name : String; type : MetaClassifier; visibility : Bool}

Definition 19 (MOF Association Ends). The type of MOF association ends
is given by

AssocEnd ≡ {name : String; type : MetaClass; multiplicity : Multiplicity}

Definition 20 (MOF Associations). The type of MOF associations is given
by

Association ≡ Σx : AssocStruct.AssocCst(x)

where AssocStruct abbreviates

{name : String; isAbstract : Bool; supertype : MetaClass;
to : AssocEnd; from : AssocEnd}

where AssocCst(x) is the conjunction of the following statements

– x.supertype = empty
– x.isLeaf = true ∧ x.isRoot = true
– x.isAbstract = false
– x.visibility = true

These statements are formal translations of constraints (1), (2), (3) and (4),
respectively, from Definition 8.

Definition 21 (MOF Datatypes). The Datatype classifier is represented the
type

Datatype ≡ Σx : DatatypeStruct.x.isAbstract = false

where DatatypeStruct abbreviates

{name : String; isAbstract : Bool; supertype : MetaClass; meaning : Type0}

Remark 13. Datatypes are treated in the same way as metaclassifiers, but with
an additional meaning field containing a Type0 type. This enables the seman-
tics of Datatype elements can be provided through an inductive type definition
within the CTT. For example, if the semantics of a Int Datatype object can
be taken as the inductive data type Int instance of Type0 within the CTT, the
following Datatype term formalizes Int:

{name = “Int”; isAbstract = false; supertype = null; meaning = Int}

For the rest of the paper, we will write Int, String and Bool for the obvious
Datatype encodings of integers, strings and booleans.
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4.2 Type of All Metamodels

We now define the type of all metamodels.

Definition 22 (Type of MOF-based metamodels). The type of MOF-
based metamodels is MofModel, consists of lists of metaclasses, attributes,
associations and associationEnds that may reference each other, and is formally
defined by the following fixed point:

μ X : {metaclasses : [MetaClass]; attributes : [Attribute];
associations : [Association]; associationEnds : [AssociationEnd]}.

{metaclasses = mcs; attributes = atts;
associations = assocs; associationEnds = assocEnds}

The definition follows the the MOF, where a metamodel consists of a set of
associated metaclasses (MOF class instances).

Example 11. The metamodel defined in Fig. 4 is formally defined by the follow-
ing fixed point of type Metamodel:

mm ≡ μ Self : {metaclasses : [MetaClass]; attributes : [Attribute];
associations : [Association]; associationEnds : [AssociationEnd]}.

{metaclasses = [COM,AccessPolicy];
attributes = [Attributes,Level];

associations = [A1,A2];
associationEnds = [A1FromEnd,A1ToEnd,A2FromEnd,A2ToEnd]}

where

COM ≡ ({name = “COM”; isAbstract = false; attributes = [Self.attributes@1]}, p1)
Name ≡ ({name = “name”; type = String}, p2)

AccessPolicy ≡ ({name = “AccessPolicy”; isAbstract = false;
attributes = [Self.attributes@2]}, p3)

Level ≡ ({name = “level”; type = Int}, p4)
A1 ≡ ({name = “COMPolicy”; isAbstract = false;

from = Self.associationEnds@1; to = Self.associationEnds@2; }, p5)
A1FromEnd ≡ ({name = “ ”; multiplicity = ∗; type = Self.metaclasses@1}, p6)

A1ToEnd ≡ ({name = “policy”; multiplicity = 1; type = Self.metaclasses@2}, p7)
A2 ≡ ({name = “COMUsed”; isAbstract = false;

from = Self.associationEnds@3; to = Self.associationEnds@4; }, p8)
A2FromEnd ≡ ({name = “ ”; multiplicity = 1; type = Self.metaclasses@1}, p9)

A2ToEnd ≡ ({name = “uses”; multiplicity = ∗; type = Self.metaclasses@1}, p10)

The terms p1, . . . p10 are proofs of the various obligations specified by the MOF
types of COM, . . . ,A1ToEnd, respectively.

Intuitively, the fixed point can be understood as a set of MOF type terms
whose mutually recursive definition is
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COM ≡ ({name = “COM”; isAbstract = false; attributes = [Name]}, p1)
Name ≡ ({name = “name”; type = String}, p2)

AccessPolicy ≡ ({name = “AccessPolicy”; isAbstract = false;
attributes = [Level ]}, p3)

Level ≡ ({name = “level”; type = Int}, p4)
A1 ≡ ({name = “COMPolicy”; isAbstract = false;

from = A1FromEnd; to = A1ToEnd; }, p5)
A1FromEnd ≡ ({name = “ ”; multiplicity = ∗; type = COM}, p6)

A1ToEnd ≡ ({name = “policy”; multiplicity = 1; type = AccessPolicy}, p7)
A2 ≡ ({name = “COMUsed”; isAbstract = false;

from = A2FromEnd; to = A2ToEnd; }, p8)
A2FromEnd ≡ ({name = “ ”; multiplicity = 1; type = COM}, p9)

A1ToEnd ≡ ({name = “uses”; multiplicity = ∗; type = COM}, p10)

4.3 Provably Correct Metamodels

We have shown how to type a metamodel within our theory. The Curry-Howard
isomorphism then provides us with a notion of correctness of MOF metamodel
terms through well-typedness.

Definition 23 (Provably correct metamodel). A term mm is a provably
correct MOF metamodel if, and only if, it inhabits the Metamodel type – that
is, when we can derive

" mm : Metamodel

Each MOF classifier type is a dependent product whose inhabitant consists
of structural data and a constructive proof that the data satisfies the con-
straints imposed by the MOF meta-metamodel. For instance, an inhabitant of
the MetaClass classifier must provide information about the data contained
in the metaclass instance (its name, attributes, operations, etc) together with a
proof that this data does indeed constitute a metaclass according to the MOF
definition.

The type Metamodel is constructed from a set of MOF classifier types. As a
consequence, an inhabitant of this type will consist of data about the structure
of the overall metamodel, together with various proofs that the structure consti-
tutes a MOF metamodel, in the sense that all the elemenents of the metamodel
are valid MOF classifier instances. It is in this sense that a term of Metamodel,
such as given in Example 11 above, represents a provably correct MOF meta-
model.

4.4 Metamodels as Types

Recall that metamodels have a dual representation – as M2 level objects and as
M2 level classes. The relationship between the two was given by Definition 10.

This dual representation will be formalized by means of a transformation be-
tween provably correct instantiating Metamodel terms and Type1 level types.
The transformation is twofold:
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– A reflection map φ is applied to obtains a a set of mutally recursive record
types from a metamodel term. The map essentially obtains a type structure
for the metaclasses and associations of the metamodel.

– The constraints specified by the MOF metamodel description as Constraint
objects are formalized as a specification over the type structure obtained
from the reflection map.

The transformation then uses this information to build a dependent sum type
that represents the metamodel.

Definition 24 (Reflection mapping). We define a reflection map φ, that
transforms MofModel instances into proper Type1 types;

φ : MofModel→ Type1

The map satisfies the following conditions. Assume MM : MofModel such
that

MM.metaclasses = [(mc1, p1), . . . , (mcn, pn)]

Then φ(MM) is of the form

μ X : {mc1.name : Type1; . . . ; mcn.name : Typen).
{mc1.name = f1, . . . , mcn.name = fn} (2)

where f1, . . . , fn denote Type1 types that possibly involve X , defined as follows.

– Assume mci has a list of attributes of the form

mci.attributes = [(att1, o1), . . . , (attq, om)]

– Assume the list of associations MM.associations that are from mci is given
by

[(assoc1, q1), . . . , (assocn, qr)]

Then ach fi is a record type of the form {a1 : T1, . . . , aq : Tq, b1 : U1, . . . , br : Ur}
where

– each ai is atti.name and Ti is X.(atti.type.name)
– each bj is assocj.to.name and Tj is X.(assocj .type.name).

Lemma 2. If Γ " a : Metamodel then Γ " φ(a) : Type1.

Definition 25 (Metamodel types). Given a Metamodel instance

a : Metamodel

the type φ(a) is called the metamodel structure type for a, and represents the
structure of a metamodel, when considered as a collection of M2 classifiers. The
general form of a metamodel type is

Σx : φ(a).P (x)

for some predicate P and a : Metamodel.
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Given a metamodel type Σx : φ(a).P (x), the predicate P should be a formal
specification of the Constraints objects that form part of the MOF metamodel
for a. It is in this way that metamodel constraints are treated in our approach.
They are not represented in Metamodel terms, but are added to the Type1
class record-based representation of metamodels.

In general, constraints can be written in any language, and, consequently, we
cannot define a general method for formally specifying them within our meta-
model dependent sums. If constraints are written in a language with a formal
semantics (such as formal versions of the OCL), it should be possible to auto-
matically develop predicates for metamodel types. This problem is left for future
research.

Example 12. Application of φ to the access rights metamodel mm : Metamodel
of Example 11 yields the following Type2 record type.

μ X : {COM : Type2; AcesssPolicy : Type2).{COM = f1; AcesssPolicy = f2}

where

f1 ≡ {name : String; policy : X.AccessPolicy; uses : X.COM}
f1 ≡ {level : Int}

Given our representation of classes as types, it is clear that this type adequately
represents the structure of the class-based metamodel representation given in
Fig. 5.

It remains to determine a statement over φ(mm) that formalizes the constraint
over COM instances. The statement P will suffice:

P (x : φ(mm)) ≡ ∃y : φ(mm).COM.x.COM.uses = y →
x.COM.AccessPolicy.level > y.AccessPolicy.level

The complete type that defines the class-based metamodel is therefore

Σx : φ(mm).asType(P (x))

4.5 Models as Terms, Models as Types

A model is an instance of a metamodel. In our type theoretic encoding, this
instantiation relationship is formalized by a well-typedness relation between
metamodel types, representing metamodels, and their terms, representing in-
stantiating models.

Because the metamodel type is a dependent product of the metamodel struc-
ture type and a logical constraint over the structure, of the form Σx : φ(a :
Metamodel).P (x), the term representation of a model is a pair of the form
〈M, p〉, where M is data that defines the structure of a the model (a witness
for φ(a : Metamodel)) and p is a proof that the model constraints P hold
over M .
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Understood in this way, models are higher-order terms that inhabit the Type0
universe. This higher-order term encoding of models corresponds to the M1 level
object-based representation in the MOF, as depicted in Fig. 1. However, models,
similarly to metamodels, can also have a classifier-based representation. It is
therefore also useful to represent models as types, whose inhabitants are terms
that implement the type functionality. This formalizes the way in which the MOF
treats a model as both an element that is classified by a metamodel description
and as an entity that classifies M0 level model instances.

The approach to defining models as types is similar to our approach to defining
metamodels as types – via dependent sum types obtained from a reflection map
over the model’s term encoding and the specification of constraints.

Definition 26 (Model reflection mappings). ‘Take a Metamodel instance

a : Metamodel

such that the type φ(a) represents the structure of a metamodel instance. Then
the following is a metamodel type that classifies x : φ(a) elements satisfying
constraints Cst(x):

Σx : φ(a).Cst(x)

Then a function of the type

αφ(a) : φ(a) → Type0

is called a model reflection mapping. Given such model reflection mapping, the
model type for a model term 〈M, p〉 of type Σx : φ(a).Cst(x) is of the form

Σx : αφ(a)(M).Q(x)

where Q is a constraint over x that defines how a model instance should behave.
A term of this type represents a model instance that satisfies the constraints
specified by Q.

Remark 14. The model reflection mapping is key to formalizing how a model
is to be used as an abstraction of a final implemented system. For instance,
a UML model, understood as a term, is usually mapped to a class hierarchy,
so that implementing terms are objects with values inside them. This mapping
takes considers an implementation abstraction as a set of objects at runtime.
A more complex reflection mapping might map UML model terms to object
types within an object-oriented calculus [1]. This mapping would then consider
a deeper implementation abstraction, over which richer constraints might be
defined. The definition of model reflection mappings is fundamentally domain
specific, and cannot be treated universally in the same way that the metamodel
reflection mapping was defined. We leave the problem of obtaining good reflection
mappings to future work.
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4.6 Metamodelling Approach

We have described our approach to formalizing the MOF within CTT. Essen-
tially, we represent the MOF hierarchy of Fig. 1. within the CTT’s predicate
type universe hierarchy according to Fig. 14, with the relation between dual
object- and class-based representations of metamodels and models encoded via
reflection mappings.

Type2 MetaModel

Type1 metamodel

:

�

(φ,P )� Σx : φ(mm).P (x)

Type0 〈M, proofP 〉

:
�

(αM , Q)� Σy : αM (M).Q(y)

Object 〈program, proofQ〉

:
�

Fig. 14. Relationships between the Type2 MetaModel type, Type1 term and type
representations of MOF metamodels, Type0 term and type representations of models
and an Object level representation of a model instance. αM stands for some model
reflection mapping α

φ(MetaModel) : φ(MetaModel) → Type0. This diagram denotes
the type theoretic encoding of the MOF hierarchy depicted in Fig. 1.

5 Future Work and Conclusions

We have attempted to demonstrate that constructive type theory is a natural
choice to formally encode the higher-order structure of the MOF. To the best
of our knowledge, constructive type theory has not been used previously as a
framework to treat metamodelling.

There is a large body of research concerned with the formal treatment of fine-
grain software development methods within type theory. It seems that the issues
differ somewhat between that work and our more coarse-grain formalization
problem. Essentially, previous work has been concerned with using type theory to
encode fine-grain functional specifications and computational algorithms or as a
formal metalanguage for representing software development methods as theories.
Examples of the former approach may be found in the “proofs-as-programs”
work for extracting functional programs from constructive mathematical proofs
[7, 13, 4, 21]. Examples of the latter approach are the use of the PVS type theory
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implementation to verify fault-tolerant architectures [20] and Java programs [15],
the application of the Coq system to circuit verification problems [25] and the
synthesis of provably correct distributed programs within Nuprl [5]. This work
uses type theory as a foundation for specifying and reasoning about algorithms
– but generally not for the overall structure of code or models.

The closest results to our proposal are type theoretic treatments of structured
algebraic specification and refinement. Examples of algebraic specification lan-
guages are Casl [6] or OBJ [12]. In [16], Luo uses higher-order type theory as a
framework for representing algebraic specifications and performing refinements.
A different approach, using a nonstandard constructive logic and type theory,
was developed by Wirsing, Crossley and the investigator in [22]. However, both
these approaches are frameworks for treating single metamodelling language (a
language of algebraic specifications), rather than all metamodelling languages.

Favre [11] developed a methodology for writing correct MDA transformations
restricted to UML PIMs to PSMs for object-oriented code in the Eiffel language.
Transformations are understood formally in terms of the Casl algebraic specifi-
cation language, so a notion of formal correctness is present and Favre proves
correctness of her transformations. However, the work has yet to be generalized
to arbitrary MOF metamodels. Akehurst et al. have used relational algebras to
formalize metamodels and model transformations [2].

The MOF is promoted by the OMG as the metamodelling technology for use
within Model Driven Architecture (MDA). At its simplest, the MDA process
involves a transformation between two models, of the form

PIL T−→ PSL
T (PIM) = PSM

A transformation T takes as input a Platform Independent model PIM, written
in a source metamodel PIL, and outputs a Platform Specific Model PSM, written
in a target metamodel PSL. The input PIM describes an abstract specification of
a system architecture without referring to implementation details. The transfor-
mation defines how the PIM should be implemented for a particular middleware
and platform. The resulting PSM contains specific implementation decisions that
are to be realized by the system programmers. The transformation T should be
applicable to any PIM written using the PIL. It is therefore defined as a general
mapping from elements of the language PIL to elements of the language PSL.

Our work has the potential to be extended to formalize MOF-based MDA.
Model transformations should be representable as functions within the CTT
that are typed by metamodel types. The type of a transformation should be a
functional type of the form T : Pil→ Psl, where metamodel types Pil and Psl
correspond to the transformation’s platform independent and platform specific
metamodels, respectively. Development of this extension forms part of ongoing
research by the author’s group at King’s College London.3

3 See http://palab.kcl.ac.uk.
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