
On Ownership and Accessibility

Yi Lu and John Potter

Programming Languages and Compilers Group
School of Computer Science and Engineering

University of New South Wales, Sydney
{ylu, potter}@cse.unsw.edu.au

Abstract. Ownership types support information hiding by providing
statically enforceable object encapsulation based on an ownership tree.
However ownership type systems impose fixed ownership and an inflex-
ible access policy. This paper proposes a novel type system which gen-
eralizes ownership types by separating object accessibility and reference
capability. With the ability to hide owners, it provides a more flexible
and useful model of object ownership.

1 Introduction

The object-oriented community is paying increasing attention to techniques for
object level encapsulation and alias protection. Formal techniques for modular
verification of programs at the level of objects are being developed hand in hand
with type systems and static analysis techniques for restricting the structure of
runtime object graphs. Ownership type systems have provided a sound basis for
such structural restrictions by being able to statically represent an extensible
object ownership hierarchy. The trick to ownership systems is to hide knowledge
of the identity of an object outside its owner. This form of information hiding is
useful for modular reasoning, data abstraction and confidentiality.

Ownership types support instance-level information hiding by providing a
statically enforceable object encapsulation model based on an ownership tree.
Traditional class-level private fields are not enough to hide object instances. For
example, an object in a private field can be easily returned through a method
call. However, the encapsulation mechanism used by ownership types is still not
flexible enough to express some common design patterns such as iterators and
callback objects. Moreover, ownership types, to date, lack ownership variance.
This means, for instance, that all elements stored in a list must be owned by the
same owner due to the recursive structure of the list.

This paper proposes a novel type system which generalizes ownership types
with an access control system in which object accessibility and reference capability
are treated orthogonally. The rationale behind this mechanism is that one only
needs to hold access permission for an object in order to use it; the capability
of the object can be adapted to the current access context. This allows more
flexible and expressive programming with ownership types.

Our system allows programmers to trade off flexibility/accessibility with use-
ability/capability. We allow object accessibility to be variant; intuitively it is

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 99–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 Y. Lu and J. Potter

safe to allow accessibility to be reduced as computation proceeds. On the other
hand, we allow reference capability associated with an object to be abstracted in
contexts where it is used. Our resulting type system is flexible enough to encode
iterator and callback-like design patterns. It also allows objects, such as recursive
data structures, to hold references to elements owned by different objects.

This paper is organized as follows: Section 2 gives an introduction to object
encapsulation and the mechanisms used in ownership types; it also discusses the
limitations of ownership types. Section 3 proposes the variant ownership object
model and its key mechanisms with some program examples. Section 4 presents
a small object-oriented programming language to allow us to formalize the static
semantics, dynamic semantics and some important properties. Section 5 follows
with discussion and related work. Section 6 briefly concludes the paper.

2 Ownership Types

Earlier object encapsulation systems, such as Islands [13] and Balloons [2], use
full encapsulation techniques to forbid both incoming and outgoing references
to an object’s representation. However, full encapsulation techniques are overly
strong, because outgoing references from the representation are harmless and
are often needed to express typical object-oriented idioms. Ownership types
[11, 10, 7] provide a more flexible mechanism than previous systems; they weaken
the restriction of full encapsulation by allowing outgoing references while still
preventing representation exposure from outside of the encapsulation. The work
on ownership types emanated from some general principles for Flexible Alias
Protection [20] and the use of dominator trees in structuring object graphs [22].

Ownership type systems establish a fixed per object ownership tree, and en-
force a reference containment invariant, so that objects cannot be referenced
from outside of their owner — an object owns its representation and any other
external object wanting to access the representation must do so via the owner.
Ownership types are parameterized by names of runtime objects, called contexts
in the type system [10]. Contexts include all objects and a pre-defined context
called world which is used to name the root of the ownership tree. The world
context is in scope throughout the program. All root objects are created in the
world context and all live objects are reachable from the root objects.

In defining ownership the first context parameter of a class is the owner of
the object. An object’s owner is fixed for its lifetime, thus naturally establishing
an ownership tree in the heap. The rest of the context parameters are optional;
they are used to type and reference the objects outside the current encapsulation,
which is how ownership types free objects from being fully encapsulated, as in
early approaches to alias protection.

Types are formed by binding the formal context parameters of a class. In
order to declare a type for a reference, one must be able to name the owner that
encapsulates the object. An encapsulation is protected from incoming references
because the owners of objects inside the encapsulation cannot be named from
the outside. The key mechanism is the use of variable this to name the current

On Ownership and Accessibility 101

object (or context), which is different from object to object — it is impossible
to name this in an object from outside of the object. Only objects inside the
current object can name the this context, because the name of this can only be
propagated as context arguments for objects owned by this object.

Since an object can only name its dominators (either direct or indirect own-
ers) using formal context parameters, the pre-defined context world or the local
context this, it can never declare a correct type for any object not owned by
these contexts. In the following simple example, the private Data object is in the
this context. Since it is impossible to name the this variable in a Personnel
object from outside, it is impossible to give a correct type for the private Data
object and reference it.

class Personnel<o> {
Data<this> privateData;
Data<this> getData() { return privateData; } }

We now highlight two problems with the standard ownership example of a
linked list in which the linked nodes are protected within their list owner.

class List<o, d> {
Node<this, o> head;
Iterator<this, d> getIter() { return new Iterator<this, d>(head); } }

class Node<o, d> {
Node<o, d> next;
Data<d> data;
Node(Node<o, d> next, Data<d> data) {

this.next = next; this.data = data; } }

class Iterator<o, d> {
Node<o, d> current;
Iterator(Node<o, d> node) { current = node; }
Data<d> element() { return current.data; }
void next() { current = current.next; }
void add(Data<d> data) {

current.next = new Node<o, d>(current.next, data); } }

class Data<o> { void useMe(){ ... } }

A list object is implemented by a sequence of linked node objects. The node
objects form the representation of the list object, in other words, they are owned
by the list object. The owner of the node objects is the this context in the List
class which refers to the current list object. The List class provides iterator
objects to be used by the client to read the elements stored by the list or add
new elements.

The first problem for iterators with ownership is well known. Iterator ob-
jects need to be able to reference the internal data representation of the list in
order to traverse it efficiently. In ownership types, this requires that iterators

102 Y. Lu and J. Potter

are owned by the list, living within the list’s internal representation. The prob-
lem is obvious — iterators cannot be referenced from outside of the list due
to the encapsulation property. In the client code given below, list owns the
iterator object returned by list.getIter(), but iter cannot be declared as
Iterator<list,o>, because list is not a constant.

class Client<o> {
void m() {

List<this, o> list = new List<this, o>(); // OK
Iterator<this, o> iter = list.getIter(); // ERROR, owner mismatch
iter.add(new Data<o>()); // OK
iter.add(new Data<world>()); // ERROR, owner of Data mismatch
iter.add(new Data<this>()); // ERROR, owner of Data mismatch
iter.element().useMe(); } } // OK

The second problem is a less well-known expressiveness problem due to the
recursive nature of the Node class. All Data objects stored in the list must have
the same type; in particular they must be owned by the same context. In the
above example, the client can only add objects with type Data<o> into the list.

For the first problem with iterators, a number of solutions have been proposed
(to be discussed in Section 5). Compared to these, our proposal is more flexible
and somewhat less ad hoc. To solve the second problem, we employ a powerful
mechanism which allows ownership contexts to be abstract or variant (that is,
appearing as an abstraction with bounds) while still maintaining enough control
on object access. The resulting type system is statically type checkable and more
expressive than previous ownership type systems.

3 Variant Ownership Types

In this section, we give an informal overview of variant ownership types which
are more flexible and expressive than ownership types. The two new concepts
involved are the accessibility context and context variance.

3.1 The Accessibility Context

We separate the access permissions for an object from the definition of its class,
by adding another context to ownership types (in addition to the normal con-
text arguments) as an access modifier, which alone determines its accessibility.
In comparison to conventional class-level field access modifiers, such as pub-
lic/protected/private as used in Java and C++, our system provides instance-
level object access modifiers that are dynamic contexts. This extra context is
specified by the creator of the object in its creation type, and controls the ac-
cessibility of the object. Only objects which can name the access modifier have
access permission. In the owners-as-dominators model, owners control access,
but in our model, accessors do not need to have the owner in scope. For a
given ownership hierarchy, our new approach has more flexibility, and strictly
subsumes the owners-as-dominators model. In ownership types, if object l can

On Ownership and Accessibility 103

reference object l′ then l must be inside owner(l′). In our type system, we use
a separate context acc(l) to determine the accessibility of an object; if object
l can reference object l′ then l must be inside acc(l′). This is the accessibility
invariant for our system.

A typical type consists of three parts: [access] Class〈capabilities〉 compris-
ing a class name with a list of contexts. In a type, the capability list binds the
formal parameters of the type’s class definition to actual contexts; the access
modifier context (the prefix in square brackets) restricts accessibility to objects
inside the given context.

Class definitions are parameterized by formal contexts. These formal para-
meters, together with this and world, define the contexts that are available
for types within the class. Note that a class definition does not have a formal
parameter for denoting the accessibility of its instances; there is no need.

Access modifiers are independent from the definition of their objects, that is,
the access modifier is an annotation on a type rather than a context parameter
in the class definition. Note that, in our type system, the ownership tree is still
built from the owner context (the first context argument of a type). The modifier
does not affect the ownership tree, instead, it generalizes the strong containment
invariant of ownership, allowing more general reference structures.

We could use access modifiers to provide various levels of protection on ob-
jects. When an object’s access modifier is the world context, it can be considered
as a public object which is accessible by any other object. When an object’s
access modifier is the owner of the defining object (i.e., the owner parameter of
the current class), it is partially protected — it can be only used by those within
the owner context. When an object’s access modifier is the defining object (i.e.,
the this context), it is private to the defining object and cannot be accessed from
outside the defining object.

In the following example, variable a has world accessibility and owner this.
We interpret this dynamically. Variable a is a field of the current B object that
may hold references to A objects; any such A object must be inside (owned by)
the current B object this because the owner is given as this. Having world
accessibility implies that the referenced object can be used by any other object
via B’s a field. The new expression creates a new A object owned by the current
B object with world accessibility. Such an object may safely be assigned to the
a field of the current object, but not to other B objects.

class A<o> { ... }

class B<o> {
[world] A<this> a;
m() { a = new [world]A<this>; } }

Access modifiers allow indirect exposure of internal states in a controlled man-
ner. Objects in variable a can act as interface objects or proxy objects between
the internal objects of the current B object and accessing objects on the outside.
However, the type system ensures these interface objects cannot directly expose
the internal objects to the accessing objects on the outside. This breaks the

104 Y. Lu and J. Potter

strong owners-as-dominators containment invariant enforced in ownership types
while still retaining enough control on object access.

The access modifier of an object is decided by its creator and does not change
over the object’s lifetime. However, to allow a more flexible programming style,
our type system allows the access modifier to be varied inwards. In the following
example, the assignment a1 = a2 being OK implies that objects accessed via
a2 can also be accessed via a1. This variance is safe because the set of objects
that can access o is a subset of the objects that can access world. In other
words, an object in variable a2 can become less accessible when it is assigned
to variable a1; the converse does not apply. This is typical of access control
mechanisms in security applications where it is safe to increase the security level
by restricting the number of subjects that may access an object. We use this
variance in our type system, and its usage is implicit (via binding) and very
similar to the way type subsumption works in any typed language. As with
subtyping, this variance of accessibility applies to language-level expressions; at
runtime, an object’s accessibility is fixed, and is determined by its creation type.

class C<o> {
[o] A<o> a1;
[world] A<o> a2;
[this] A<o> a3;
m() {

a1 = a2; // OK, o inside world
a1 = a3; // ERROR, o outside this
a2 = a1; // ERROR, world outside o
a2 = a3; // ERROR, world outside this
a3 = a1; // OK, this inside o
a3 = a2; } } // OK, this inside world

When the owner context and access modifier are the same, the variant own-
ership type [o] A<o> is the same as the A<o> in ownership types. Hence our
model with modifiers subsumes the owners-as-dominators model. The following
example illustrates how separating access from the owner allows us to achieve
different kinds of access protection.

class D<o> {
[o] A<o> a1; // partly protected
[this] A<this> a2;// encapsulated
[this] A<o> a3; // encapsulated, but field is writable from outside
[o] A<this> a4; } // not encapsulated, field is read-only from outside

class E<o> {
[o] D<o> d;
m() {

[o]A<o> x = d.a1; // OK to read the reference
d.a1 = x; // OK to update the field

... = d.a2; // ERROR to read, cannot name context inside
// d.a2’s access modifier (‘this’ in d)

On Ownership and Accessibility 105

d.a2 = ... // ERROR to write, cannot name d.a2’s owner (‘this’ in d)

... = d.a3; // ERROR to read, cannot name context inside ‘this’ in d
d.a3 = new [o]A<o>; // OK to write, ‘this’ in d inside o

[o]A<*> y = d.a4; // OK to read, the owner of d.a4 is abstracted
d.a4 = ... } } // ERROR to write, cannot name d.a4’s owner

When an object is encapsulated by its defining object this, it is not accessi-
ble from outside. The reference in field a3 is protected from being accessed from
outside of the object. However a client can assign the field itself with an expres-
sion of type [p]A<o> where this is known to be inside p (= o in the example).
This reference does not break the accessibility invariant because the modifier is
variant inwards (from p to this). Such accessibility restrictions are useful but
cannot be expressed by any of the existing ownership type systems which use an
invariant owner to control access.

In contrast to a3, the field a4 can be read from outside (via context abstrac-
tion, which will be discussed in the next subsection) but is not updatable from
outside of the object. The field a4 can be considered as an object-level (instead
of traditional class-level) read-only field — it is not updatable by a client from
outside, but can be updated from objects within the current context. Again, this
kind of object-level read-only restriction is not supported by previous ownership
type systems.

3.2 Context Variance

Type variance is a recently developed approach for increasing code genericity
in typed programming languages. Use-site variance on parametric types [15]
has been implemented in the new version of Java 1.5 with wildcards [25]. Our
type system adds variance to context arguments rather than type arguments.
By allowing context variance, not only do we achieve code genericity, but we
also allow a much more flexible reference structure than the original ownership
types by removing the naming restriction of object contexts. Technically, use-
site variance is a form of existential types, in our case, existential contexts. The
technical detail and formalization are discussed in Section 4. Here we introduce
the context variances informally with examples.

Programmers may explicitly declare the variance of context arguments wher-
ever they form types. For a concrete context K, we write K+ for inward variance
which means any context inside K, K− for outward variance which means any
context outside K and ∗ for full abstraction which means any context. Recall that
concrete contexts are those of formal context parameters, the current context
this and the world context. Figure 1 shows these variances for a given context K.

The following subtype relations show the variant ownership types with two
contexts K and K ′ where K dominates K ′ (domination is the reflexive and transi-
tive relation of ownership). For simplicity, access modifiers are all defaulted (to
the world context) because they are orthogonal to the context argument variance.

106 Y. Lu and J. Potter

K
K+

*

world

owns

dominates

K-

K’

Fig. 1. Context Variances

C〈K ′〉 <: C〈K ′+〉 <: C〈K+〉 <: C〈∗〉
C〈K〉 <: C〈K−〉 <: C〈K ′−〉 <: C〈∗〉

Variance on context arguments is not to be confused with variance on the
access modifier which is variant implicitly. Moreover, access modifiers can never
be abstracted while argument variances are a form of context abstraction. For
convenience, when all context arguments are fully abstract, we will elide all the
* contexts. For instance, in the following example, [o] A is short for [o] A<*>.
Also because we use the world context as default access modifier, A is short for
[world] A<*>.

class F<o> { [o] A a; }

class G<o> {
F<this> f1; // invariant on context argument
F<*> f2; // fully abstract on context argument
F<this+> f3; // inward variance on context argument
F<this-> f4; // outward variance on context argument
A<this> a;
m() {

[this] A x = f1.a; // OK to read
f1.a = x; // OK to write

... = f2.a;// ERROR, cannot name context inside f2.a’s
// access modifier (which is abstracted)

On Ownership and Accessibility 107

f2.a = ... // ERROR (in most cases),
// cannot name context outside f2.a’s access modifier

f2.a = a; // OK! the only exception, world outside any context!

...= f3.a;// ERROR, cannot name context inside f3.a’s access modifier
f3.a = new [o]A<o>(); // OK, f3.a’s access modifier inside o

x = f4.a; // OK, ‘this’ inside f4.a’s access modifier
f4.a = ... // ERROR (in most cases),

// cannot name context outside f4.a’s access modifier
f4.a = a; } } // OK! the only exception, world outside any context!

The choice of variance is made when types are used. Programmers can use
any combination of invariance, inward/outward variance or full abstraction to
express context arguments in a type. Invariant contexts are most usable but
least flexible because one must be able to name the concrete context. f1 is
most usable, because f1.a is both readable and writable; but f1 is less flexible
because it can only be accessed from within the current context. Fully abstract
contexts are most flexible but least usable because all information about the
context is hidden; f2 is least usable because f2.a is neither readable nor writable
(except for the special case with the world context as shown in the example).
The type of f2.a is [?]A where the ? denotes an unknown context; the only
thing we know about ? is that it is inside world. Unknown contexts are not
for programmer use, but are used in our semantics. They are simply shorthand
for an anonymous context with given variance which is existentially quantified.
However, the combinations of fully abstract and invariant context arguments
are useful as we are about to see in revisiting the list example. Inward/outward
variant contexts give a choice between invariance and full abstraction where
some information of the context is available to give programmers just enough
information they need to use the context, as we see with f3.a and f4.a. Within
class G their types are [this+?]A (respectively [this-?]A) where the unknown
contexts are bounded inside (respectively outside) this.

We extend the above example with some more complicated cases of variance
which involve nested variances and mixed inward/outward variances. The type
system is able to derive the ordering information in the presence of nested vari-
ances. Some of the types involved are:

h1.f1 : F<o+?+> and h1.f1.a : [o+?+?]A<*>

we can derive that o+?+? is inside o. Also we find:

h1.f2 : F<o+?-> and h2.f1 : F<o-?+>

The variance o+?- contains contexts o and world but not this. Similarly o-?+
contains o and this but not world.

class H<o> {
F<o+> f1;
F<o-> f2; }

108 Y. Lu and J. Potter

class I<o> {
H<o+> h1;
H<o-> h2;
[o] A a;
m() {

h1.f1.a = a; // OK, h1.f1.a’s access modifier inside o
a = h2.f2.a; // OK, o inside h2.f2.a’s access modifier

h1.f2 = new F<o>; // OK
h1.f2 = new F<world>; // OK
h1.f2 = new F<this>; // ERROR
h2.f1 = new F<o>; // OK
h2.f1 = new F<this>; // OK
h2.f1 = new F<world>; } } // ERROR

Now we are in a good position to revisit the list example we discussed in the
previous section.

3.3 The List Example: Revisited

We revisit the list example with a solution to the two problems considered pre-
viously: iterator accessibility and fixed ownership of data.

class List<o, d> {
[this] Node<this, d> head;
[o]Iterator<this, d> getIter(){return new [o]Iterator<this, d>(head);}}

class Node<o, d> {
[o] Node<o, d> next;
[d] Data data;
Node([o]Node<o, d> next, [d]Data data) {

this.next = next;
this.data = data; } }

class Iterator<o, d> {
[o] Node<o, d> current;
Iterator([o]Node<o, d> Node) { current = Node; }
[d]Data element() { return current.data; }
void next() { current = current.next; }
void add([d]Data data) {

current.next = new Node<o, d>(current.next, data); } }

class Data<o> { void useMe(){ ... } }

The implementation of the List and Iterator classes is almost the same as
for ownership types except the type of iterators created by the list has the access
modifier the same to the owner of the list, which essentially means anyone who
can name the owner of the list is allowed to access its iterators. By creating
iterators with accessibility as o, the list object authorizes the iterators to act
as its interface objects and to be used by the client to manipulate on itself.

On Ownership and Accessibility 109

However, the list’s representation (that is, the Node objects) is always protected
from the client and never exposed to the outside directly. To access the nodes,
the client must use either the list itself or the iterators created by the list.

In the Node class, the type of data field is [d] Data. As we have mentioned,
this is shorthand for [d] Data<*> where the owner of these Data objects is
abstract. The Node class is a recursive structure so all the node objects must
have the same type. However, with our owner abstraction, each node may contain
data objects owned by different contexts as shown in the client program.

class Client<o> {
void m() {

List<this, o> list = new List<this, o>(); // OK
[this]Iterator<*, o> iter = list.getIter(); // OK
iter.add(new [o]Data<o>()); // OK, o inside o, o matches *
iter.add(new Data<world>()); // OK, o inside world, world matches *
iter.add(new [this]Data<this>()); // ERROR, o outside this!
iter.add(new [o]Data<this>()); // OK, o is inside o, this matches *
iter.element().useMe(); // OK
iter.current = ... } } // ERROR, access modifier abstracted

The client creates the list object as usual, but in order to obtain a reference
to iterator objects returned by the list, it must declare a type which abstracts
the owner of iterators (which is the list object, see the List class). However,
in the type of iterators, the second context argument remains concrete, which
is necessary in order to reference data objects returned by iterators. Moreover,
with context variance, now the client can add data objects owned by various
contexts into the list. Objects with type [this] Data<this> cannot be added
into the list because the access modifier is variant outwards (from this to o)
which is not sound hence not permitted by the type system. Note that the type
system guarantees iterators cannot expose the node objects to the client.

4 The Formal Language

In this section, we formalize variant ownership types in a core language based on
Featherweight Java [14] extended with field assignment. We incorporate contexts
and formalize the main properties.

4.1 Syntax

The abstract syntax for the source languages is given in Table 1. The metavari-
able T ranges over types; N ranges over nameable contexts (or concrete contexts);
K ranges over contexts; V ranges over context variances; L ranges over class defi-
nitions; M ranges over method definitions; e ranges over expressions; C, D range
over class names; f and m range over field names and method names respec-
tively; X, Y range over formal context parameters; and x ranges over variable
names with this as a special variable name to reference the target object for
the current call. The overbar is used for a sequence of constructs; for example,

110 Y. Lu and J. Potter

Table 1. Abstract Syntax for Source Language

T ::= [N] C〈V〉 types
N ::= X | this | world nameable contexts
K ::= N contexts
V ::= K | K+ | K− | ∗ context variances
L ::= class C〈X〉 � D〈Y〉 {T f; M} classes
M ::= T m(T x) {e} methods
e ::= terms

x variable
| new T(e) new
| e.f select
| e.m(e) call
| e.f = e assignment

Table 2. Extended Syntax for Type System

K ::= ... | K+? | K−? | ? contexts
P ::= L e programs
Γ ::= • | Γ , X � Y | Γ , x : T environments

e is used for a possibly empty sequence e1..en, T x stands for a possibly empty
sequence of pairs T1 x1..Tn xn, etc. In the class production, inheritance � D〈Y〉
is optional because our type system does not need a top type.

The syntax distinguishes between concrete (nameable) contexts N and those
contexts K allowing the abstract contexts. Table 2 shows the extended syntax
used by the type system, which is not accessible by programmers. Abstract
contexts K+?, K−? and ? correspond to context variances K+, K− and ∗. The
difference between K+ and K+? is that K+ means all contexts inside K while
K+? is one context in the set of K+. Actually, K+? is a bounded existential
context whose name is anonymous; but we do know it is inside K. The unbound
existential context ? is an arbitrary context; we know nothing about it (except
it is inside the upper bound context world in the context hierarchy). Figure 2
shows the concept of existential contexts. A program P is a pair consisting of
a fixed sequence of class definitions and an expression e which is the body of
the main method. The environment Γ may contain the types of variables and
domination relations between formal context parameters.

4.2 Static Semantics

The same syntactical abbreviation for sequences is used in the typing rules.
A sequence of judgements can be simplified with an overbar on the argument,
such as Γ ; N � T . Substitution [V/X]T is used to substitute V for X in T ; this
substitution also requires |V | = |X|. Sometimes we use implications, denoted by
=⇒ , to avoid repeating rules with similar structure. Other symbols used in the
type system are: • means empty set; and ... match any single or multiple things;
1..n means an enumeration from 1 to n.

On Ownership and Accessibility 111

K
K+

*

world

owns

dominates

K-

K-?

K+?

Fig. 2. Existential Contexts

In ownership type systems the contexts used to form types are actual runtime
objects. In order to prove the desired dynamic properties, we need to incorporate
the bindings of context parameters into the type system. Typically, the expres-
sion judgement Γ ; N � e : T holds for the current context N. The context N is
bound to the current object (the target object of current call); in the static se-
mantics N is always bound to the variable this or world for the top-level program
expression, while in the dynamic semantics N is bound to the location of the
actual object in heap or world. Note that the bindings for all context parameters
in the current environment can be determined from the type of N at runtime. To
simplify the dynamic semantics we will annotate locations with their object type.

[VAR-ANY]
Γ � V ⊆ ∗

[VAR-CRT]
Γ � N ⊆ N

[VAR-IN]
Γ � K+? ⊆ K+

[VAR-OUT]
Γ � K−? ⊆ K−

[VAR-IN ′]
Γ � K � K ′

Γ � K+ ⊆ K ′+

[VAR-OUT ′]
Γ � K ′ � K

Γ � K− ⊆ K ′−

[VAR-TRA]
Γ � V ⊆ V ′′ Γ � V ′′ ⊆ V ′

Γ � V ⊆ V ′

The [VAR] rules define the valid context variances. Since context variances
represent sets of contexts, the [VAR] rules really just define the subset relations
between them. Contexts can be considered as singleton sets containing only one
element. The only rule that can be applied to the unbound existential context ?
is the [VAR-ANY] rule. By inspection it is also clear that we cannot have anything

112 Y. Lu and J. Potter

as a subset of any existential context, bound or unbound. This is a key property
of the system.

The [TYPE] rule states that expressible types are those that are supertypes
of object types; this introduces the context variances into valid types. In order
to maintain an ownership tree on the heap, objects must be constructed using
new with concrete contexts. By [TYPE-OBJ] a well-formed object type must sat-
isfy the standard context ordering constraints for classes, namely that the first
argument, the owner context for the type is within other context arguments;
all contexts must be valid concrete contexts by [CONTEXT]. The [SUB-VAR] rule
allows the access modifier to be varied outwards in a subtype; context arguments
can also be narrowed according to the [VAR] rules. Note that the class definitions
are global so that we simply use class C[X] � D[Y] ... to hypothesize a valid
class definition in the [SUB-EXT] rule and some other rules in the type system.

[TYPE]
Γ ; N �o To Γ � To <: T

Γ ; N � T

[TYP-OBJ]
|N| = arity(C) Γ ; N � N ′,N Γ � N1 � N

Γ ; N �o [N ′] C〈N〉

[SUB-VAR]
Γ � N ′ � N Γ � V ⊆ V ′

Γ � [N] C〈V〉 <: [N ′] C〈V ′〉

[SUB-EXT]
class C〈X〉 � D〈Y〉 ... T = [N] D〈[V/X]Y〉 Γ � T <: T

Γ � [N] C〈V〉 <: T

Our subtyping rules need to handle context abstraction correctly, and avoid
breaking accessibility constraints through assignments to fields, or method para-
meters, with some of their types’ contexts hidden. The main idea of our system
is to substitute existential contexts for any variant contexts in the type of an
object (via an opening process as we see later) when we determine the types of
its fields/methods, and to prohibit binding to fields or method parameters which
include existential contexts in their types. Let us use the phrase existential type
to describe a type containing an existential context. By guaranteeing that exis-
tential types cannot be supertypes, we achieve the desired prohibition (note the
subtyping premise in all [EXP] rules involve binding). We now explain how the
[SUB] rules achieve this. We cannot use [SUB-VAR] to find an existential super-
type because its premise would require there to be some subset of an existential
context, which the [VAR] rules preclude. It follows that no existential type can
be a subtype of itself, because the alternative [SUB-EXT] is not applicable for the
reflexive case. Finally any type T judged to be a supertype by [SUB-EXT] must be
a supertype of itself according to the last premise of the rule. It follows that no
type judged to be a supertype by these rules can contain an existential context.

Legal concrete contexts include formal context parameters, the current con-
text this and the world context. Recall that the current context N, in the static
semantics, is always bound to this or world. Context ordering rules define the
domination relation between contexts. Domination is the reflexive and transi-
tive closure of ownership. Direct ownership is captured in the [ORD-OWN] rule by

On Ownership and Accessibility 113

looking up the owner from the type of the context via [LKP-OWN] (appearing at
the end of this subsection). The only direct ownership relation available in the
static semantics is for the this context; it is owned by the first context parameter
of its type (see [LKP-OWN] and [LKP-OWN ′]). The this context is the only context
that is given a static type; this is both a context parameter and a variable nam-
ing the current object. At runtime, this is bound to the location of the target
object. The ordering on existential contexts is not surprising; ? � world by the
[ORD-WLD] rule, but no other ordering is derivable for ?.

[CTX-LCL]
Γ ; N � N : [N ′′] C〈N〉 N ′ ∈ N ∪ {N}

Γ ; N � N ′

[CTX-WLD]
Γ ; N � world

[ORD-OWN]
Γ � N � ownerΓ (N)

[ORD-TRA]
Γ � K � K ′′ Γ � K ′′ � K ′

Γ � K � K ′

[ORD-RFL]
Γ � N � N

[ORD-ENV]
X � X ′ ∈ Γ

Γ � X � X ′

[ORD-WLD]
Γ � K � world

[ORD-IN]
Γ � K+? � K

[ORD-OUT]
Γ � K � K−?

The [PROGRAM] rule simply checks the expression in the main method; world is
the only concrete context available at this level.

[PROGRAM]
� L •;world � e : T

� L e

Class well-formedness is checked in the [CLASS] rule. Each class defines its own
environment formed from its formal contexts and the type of this object. In the
original ownership type system, the owner parameter X1 had to be dominated
by all other context parameters, we follow the same convention here. Note that
the only direct ownership relation known to the class, that is this � X1, is not
included in the class environment; instead we capture it in the [ORD-OWN] rule to
make it generally derivable, in particular for its use in the dynamic semantics.
Furthermore, field types and methods need to be checked for well-formedness.

If a class is extended from another then the supertype needs to be valid in the
environment formed from the class, and the owner of the supertype must be the
same as the owner of the current context. Not surprisingly, new field names need
to be distinguished from the field names used in the supertype. Moreover, the
supertype is bound to a super variable in the environment that is used only by
the [METHOD] rule to check the correctness of overridden methods. We implicitly
assume the access modifier for the types of both this and super variables is the
default access modifier world.

[CLASS]

Γ = X1 � X, this : C〈X〉, super : D〈Y〉 X1 = Y1 Γ ; this � D〈Y〉, T
Γ � M f ∩ dom(fields(D〈Y〉, this)) = •

� class C〈X〉 � D〈Y〉 {T f; M}

In the [METHOD] rule, all types are checked for well-formedness and a new
environment is constructed by extending the class environment with method pa-
rameters and their types. The method body is checked in the new environment

114 Y. Lu and J. Potter

and the current context this. Methods can be overridden in the traditional way
— covariant on the return type and contravariant on the types of method para-
meters.

[METHOD]

Γ ; this � T , T Γ , x : T ; this � e : T ′′ Γ � T ′′ <: T

method(Γ(super), this, m) = T ′ m(T ′)... =⇒
Γ � T <: T ′ Γ � T ′ <: T

Γ � T m(T x) {e}

In the [EXP-NEW] rule, new objects are created using concrete contexts (accord-
ing to [TYP-OBJ]) in order to establish an ownership tree in heap. For simplicity,
we force all the fields of the object to be initialized at creation time. The in-
ternal context of the newly created object is an anonymous context inside its
owner. The [EXP-SEL] and [EXP-CAL] rules lookup the types of fields or methods
for the target expression e. They need to decide if they are able to name the
internal context of e by using the auxiliary function repT () which simply checks
if e is the current context (i.e. this). If e is the current context then it is used as
the internal context of e in the lookup functions fields() and method(); other-
wise, an anonymous context is used instead thus hiding the internal context (see
[LKP-REP]).

All rules for expressions that involve some form of binding, such as [EXP-ASS],
[EXP-CAL] and [EXP-NEW], use a subtype constraint to ensure that the type of the
target of the binding does not involve any existential contexts (recall the [SUB]

rules). A more conventional formulation of these rules would shift the subtype
check onto a subsumption rule, but that cannot be done here — we need to use
distinct types for the source and target of the binding in the rules.

[EXP-VAR]
Γ(x) = T

Γ ;N � x : T

[EXP-NEW]
Γ ; N �o T Γ ; N � e : T ′ fields(T , owner(T)+?) = f T Γ � T ′ <: T

Γ ; N � new T(e) : T

[EXP-SEL]
Γ ; N � e : T fields(T , repT (N, e))(f) = T ′

Γ ; N � e.f : T ′

[EXP-ASS]
Γ ; N � e ′ : T ′ Γ ; N � e.f : T Γ � T ′ <: T

Γ ; N � e.f = e ′ : T ′

[EXP-CAL]

Γ ; N � e : T Γ ; N � e : T Γ � T <: T ′

method(T , repT (N, e), m) = T ′ m(T ′)...
Γ ; N � e.m(e) : T ′

When accessing the fields or methods via an expression e, we determine their
types, given the type of e. These in turn use [LKP-DEF] to find a correct substitu-
tion for parameters of T ’s class. The opening process requires the replacement of
context variances with corresponding existential contexts. This process is similar
to the usual unpack/open for conventional existential types. The major differ-
ence is that our open process does not introduce fresh context variables into
the current environment. Instead, we keep the existential context anonymous by

On Ownership and Accessibility 115

annotating context variances with a special symbol ?. This technique not only
eliminates the need for the pack/close operation (since anonymous contexts do
not have to be bound to an environment, they naturally become global), but
also makes the proofs simpler. Moreover, this technique is capable of handling
complicated variances which would need nested open/close operations.

[LKP-DEF]
L = class C〈X〉 ... open(T) = C〈K〉

defin(T , K) = [K/X, K/this]L

[LKP-FLD]
defin(T , K) = class ... � T ′ {T f; ... }

fields(T , K) = f T , fields(T ′, K)

[LKP-MTH]
defin(T , K) = class ... T ′ m(T x){e} ...

method(T , K, m) = T ′ m(T x){e}

[LKP-MTH ′]
defin(T , K) = class ... � T ′ { ... ; M} m /∈ M

method(T , K, m) = method(T ′,K, m)

[LKP-ARI]
class C〈X〉 ...
arity(C) = |X|

[OPEN]
open(C〈K〉) = C〈K〉

[OPN-ANY]
open(C〈K, ∗, V〉) = open(C〈K, ?, V〉)

[OPN-IN]
open(C〈K,K+, V〉) = open(C〈K, K+?, V〉)

[OPN-OUT]
open(C〈K,K−, V〉) = open(C〈K, K−?, V〉)

[LKP-OWN]
Γ ; • � e : T

ownerΓ (e) = owner(T)

[LKP-OWN ′]
owner([N] C〈V〉) = V1

[LKP-REP]
e �= N

repT (N, e) = owner(T)+?

[LKP-REP ′]
repT (N, N) = N

4.3 Dynamic Semantics and Properties

The extended syntax and features used by the dynamic semantics are given in
Table 3. The ownership information is usually only used in static type checking.
However, in order to obtain a formal proof for some of the key properties of the
type system, we need to establish a connection between the static and dynamic
semantics by including ownership relations in the dynamic semantics. Terms
and contexts are extended with locations, which are annotated with the type of
object they refer to. A heap is a mapping from locations to objects; an object
maps fields to locations. Object creation extends the heap, introducing a new
location which is then forever associated with its object; field assignment updates
an object but does not directly affect the heap.

116 Y. Lu and J. Potter

Table 3. Extended Syntax with Dynamic Features

l, lT typed locations
e ::= ... | l terms
N ::= ... | l nameable contexts
o ::= f → l objects
H ::= l → o heaps

There are also a few auxiliary definitions to help formalize the properties. Lo-
cations are annotated with their type. From this we can lookup the accessibility
context for an object stored at that location. The objects in the heap form an
ownership tree just as in other ownership type systems. However, the reference
containment invariant is different. An object needs to be inside another object’s
modifier in order to access it.

[EXP-LOC]
Γ ; N � lT : T

[LKP-ACC]
•; • � l : [N] C〈V〉

acc(l) = N

[HEAP]

∀l ∈ dom(H) · •; • � l : T H(l) = f → l

fields(T , l) = f T •; • � l : T ′ Γ � T ′ <: T • � l � acc(l)

� H

The reduction rules are defined in a big step fashion. The context N in ⇓N

refers to the target object of the current call, or the world context in case of
the main method. At the time of method invocation in [RED-CAL], the target
object of the body of the invoked method is l. Notice that the variable this is not
substituted in [l/x]e′. Instead, this is replaced by l in the substitution provided
by the lookup function method(T , l, m).

[EXECUTION]
•; e ⇓world H; l

L e ⇓ l

[RED-CAL]

H; e ⇓N H ′; l H ′; e ⇓N H ′′; l •; N � l : T

method(T , l, m) = ...(x){e ′} H ′′; [l/x]e ′ ⇓l H ′′′; l ′

H; e.m(e) ⇓N H ′′′; l ′

[RED-NEW]

H; e ⇓N H ′; l lT /∈ dom(H ′)
f = dom(fields(T , lT)) H ′′ = H ′, lT → {f → l}

H;new T(e) ⇓N H ′′; lT

[RED-ASS]
H; e ⇓N H ′; l H ′; e ′ ⇓N H ′′; l ′

H; e.f = e ′ ⇓N H ′′[l → H ′′(l)[f → l ′]]; l ′

[RED-SEL]
H; e ⇓N H ′; l

H; e.f ⇓N H ′;H ′(l)(f)

Finally we formalize some of the key properties of the type system. We present a
standard subject reduction result in Theorem 1, together with a statement that
goodness of a heap is invariant through expression reductions. This implies that
the heap invariants are maintained through program execution.

On Ownership and Accessibility 117

Theorem 1 (Subject Reduction). Given � P and � H, if •; N � e : T and
H; e ⇓N H ′; l then •; N � l : T ′ for some T ′ such that • � T ′ <: T and � H ′.

Proof. The proof proceeds by induction on the form of H; e ⇓N H ′; l. Notice
the heap needs to be well-formed over reduction to maintain the accessibility
invariant.

Theorem 2 is the accessibility invariant enforced by the type system, which is
proved as part of Theorem 1.

Theorem 2 (Accessibility Invariant). Given � P and � H, if (f → l′) ∈ H(l)
then • � l � acc(l′).

Proof. This property is enforced by the [HEAP] rule and proved in Theorem 1.

5 Discussion and Related Work

Object encapsulation enforces a separation between the internal state of an
object, and external dependencies. Ownership types achieve object encapsula-
tion by establishing an object ownership tree, and in the owners-as-dominators
model, prevent object references from breaching the encapsulated state. Own-
ership types use the ability to name objects as owners, to permit access to the
objects they own. Ownership types can be considered as an access control system
where other objects are permitted to access an object if they can name all of
its context arguments, including its owner. The reference capability of an object
is determined by its actual context arguments; these are used by the object as
permissions for accessing other objects. In ownership types an object’s acces-
sibility and capability are essentially the same thing — as determined by the
actual context arguments of the object’s ownership type.

In this paper, we have separated accessibility and capability by introducing
the concept of access modifier. The capability of an object remains the same
as in ownership types, although now the context arguments can be abstract or
variant from the site of use. However accessibility to the object now requires
the ability of other objects to name its access modifier. Moreover, to completely
free accessibility from capability, the access modifier is not declared in the ob-
ject’s class definition, that is, it is not part of its formal capability. Accessibility
to an object is therefore independent of the reference capability of the object.
The access context is the only context that must be named in order to access
the object; this yields a much more flexible access control policy. Note that the
access modifier cannot be abstracted — it must be named to gain access. The
capability (context arguments) can be abstract or variant to express less rigid
reference structures as we have seen from the examples. Moreover, an object’s
accessibility also implies its lifetime. The separation of accessibility from capa-
bility naturally means an object’s lifetime is independent from its capability, but
solely dependent on its accessibility.

The soundness of our approach lies in the fact that an object can only be
accessible to those objects created (directly or indirectly) by the owner of the

118 Y. Lu and J. Potter

object. This is because the owner’s internal context can only be named from
within the owner. This highlights the role of the creator — only the creator can
authorize the created objects to access its own representation by defining their
accessibility and capability appropriately.

Obviously, our type system subsumes ownership types; ownership types are
special cases of our type system where the access modifier is the same as the
owner context and no context argument is abstracted. Moreover, the techniques
used in our type system may be applicable in other similar type systems for more
flexibility and expressiveness, such as Effective Ownership [17], Acyclic Types
[16] and Ownership Domains [1].

Aldrich and Chambers noted that ownership types cannot express the event
callback design pattern [1]. Typically, a callback object is created by a listener
object to observe some event. In the event, the callback object is invoked and
will notify the listener object. Callback objects share some of the problems of
iterators. The problem occurs when the callback object needs to directly mutate
the listener’s internal representation rather than use the listener’s interface. The
callback problem does not have such a serious performance issue as iterators do.
The issue here is really about adding some flexibility to the callback classes. For
example, instead of adding more methods (to be called by callback objects in
different events) into the listener class, each callback class may implement its
own code to mutate its listener. In our system, callback objects can be expressed
in exactly the same way as iterators — we may simply promote the access
modifier (permitted by the listener object) of callback objects high enough in
the ownership hierarchy so that they can be named by the user of the callback
objects.

Syntactic overhead for our types is that of ownership types plus an extra
access modifier for each type. As we have seen, with carefully selected defaults
type annotations can be reduced significantly. For instance, access modifiers
can be omitted for globally accessible objects; abstract contexts can be omitted
completely. Moreover, the ideas of Generic Ownership [21] can also be employed
here to reduce the amount of type annotations in the presence of class type
parameters.

As for ownership types, our type system allows separate compilation. It is
statically checkable and does not require any runtime support. Our dynamic
semantics can easily handle typecasting with runtime checks because it incor-
porates full owner information. However, in practice, the overhead for having
owner information available at runtime may be significant for systems with a
large number of small objects because each object will have two extra fields to
identify its owner and access contexts. In security sensitive applications, this
cost may well be worthwhile.

5.1 Related Work

Ownership Type Systems Without Owners-As-Dominators. There have
been a number of proposals made to improve the expressiveness of ownership
types. Some of them tend to break the strong owners-as-dominators encapsula-

On Ownership and Accessibility 119

tion of ownership types. Some of them tend to retain the owners-as-dominators
encapsulation by using harmless cross-encapsulation references. We will discuss
each of them individually.

Most proposals to break strong encapsulation of owners-as-dominators are
essentially methods to increase nameability of internal contexts. Our proposal is
also an owners-as-dominators encapsulation breaking technique. The difference
is that we do not expose internal names, but use abstraction to hide the names
of internal contexts. Compared to previous attempts, our type system appears
to be more flexible and less ad hoc.

JOE [9] allows internal contexts to be named through read-only local variables
(variables that cannot be assigned after initialization) so that internal represen-
tation can be accessed from outside; the justification for this approach is that
encapsulation breeches are localized on the stack. The following code shows a
simple example of JOE, where a method parameter is used to name the owner
context of the Node object.

void joe(List<o, d> list) { Node<list, d> node = list.head; }

Ownership Domains [1] use a similar method where read-only fields (final
fields in Java) are used to name internal domains (partitions of contexts) instead
of read-only variables. The effect of moving variables to fields allows ownership
domains types to have a more flexible reference structure than ownership types
and JOE. To provide some safety with this approach, only domains declared as
public can be named via final fields. Access policy between domains is explicitly
declared and public domains are typically linked to private domains (which are
unnameable from outside). For soundness, object creation is restricted to the
owner domain of the current object or its locally defined subdomains. The fol-
lowing code shows a simple example of ownership domains. Iterator objects are
created in a public domain of the list object and used as interface objects by the
client. Note that a subclass of Iterator is needed to propagate the name of the
private domain owned (as an extra domain parameter) to the iterator objects.
We consider this to be a limited version of our context abstraction: essentially
the Iterator interface hides the Node owner that is a required capability for the
ListIterator object.

class List<o, d> assumes o->d {
domain owned; link owned->d;
public domain iters; link iters->owned, iters->d;
Node<owned, d> head;
Iterator<iters, d> getIter() {

return new ListIterator<iters, d, owned>(head); } }

// in client class
final Link<some, world> list = ...
Iterator<list.iters, world> iter = list.getIter();

In practice, some problems may arise with read-only variables/fields. For ex-
ample, in order to access an object in a context/public domain, it must firstly
obtain a reference to the owner object of the context and then must place the

120 Y. Lu and J. Potter

owner in a read-only variable. Only in this way can the context be named through
the name of the read-only variable and a valid type be constructed for the object
to be accessed. When accessing an object buried deep in the ownership tree, the
programmer may need to declare many read-only variables and obtain references
to each object along an ownership branch.

Moreover, the restriction on where objects can be created may limit some
common programming practices, the factory design pattern for instance, where
objects need to be created in various contexts/domains given by clients. The
explicitly defined domains add finer-grained structures to the system at the cost
of more domain and link annotations. Domains can be used to express some
architectural constraints more precisely than ownership types do, because these
constraints can be expressed directly as links which defines access policy between
each pair of domains.

The inner class solution was suggested for ownership types by Clarke in his
PhD thesis [7] and adopted by Boyapati et al. [4]. The idea of inner classes is very
simple; inner classes can name the outer object directly. The following example
shows the Iterator class is written as an inner class of the List class, who can
name the list object’s internal context directly via List.this.

class List<o, d> {
Node<this, d> head;
class Iterator<o, d> { Node<List.this, d> current; ... } }

Inner classes are lexically scoped and can only be used in limited places where
the usage of the objects are specific and can be foreseen by the programmer. In
general they are not as flexible as our type system.

The closest work to our type system may be the model of Simple Ownership
Types [10]. In this model, there is a separation of owner and rep contexts. The
owner context of the object determines which other objects may access it (like
our accessibility context), while the rep context determines those contexts it
may access (like this). The containment invariant states that if l references l′

then rep(l) � owner(l′). There are a number of major differences between the
two models. The owner context in simple ownership types is a formal parameter
of the class definition; it controls access to the object rather than defining the
containment structure of objects/contexts — we prefer to reserve the notion of
owner for the latter role. To preserve soundness this prevents the owner context
from being variant. Moreover, as for all context parameters, the owner context
must be a dominator of the rep context (which can be thought of as the object
itself). Although simple ownership types use an explicit form of existential types
to hide the internal contexts, it does not support variance of context arguments,
as our system does.

Ownership Type Systems With Owners-As-Dominators. The proposals
to retain the owners-as-dominators encapsulation allow some references to cross
encapsulation boundary but ensure these reference cannot update the internal
states directly (called observational representation exposure in [3]), that is, any
update still has to be initialized by the owner object.

On Ownership and Accessibility 121

The Universes System [18, 19] uses read-only references to cross the boundary
of encapsulation. Its read-only references are restricted and can only return read-
only references. For example, they are able to express iterators by using a read-
only reference to access the internal implementation of the list object. However,
these iterators can only return data elements in read-only mode, that is, the
elements in the list cannot be updated in this way (unless using dynamic casting
with its associated runtime overheads [19]).

Effective Ownership [17] employs an encapsulation-aware effect system which
allows arbitrary reference structure but still retain an owners-as-dominators en-
capsulation on object representation. It guarantees that any update to an ob-
ject’s internal state must occur (directly or indirectly) via a call on a method
of its owner. In contrast to Universes, effective ownership’s cross-encapsulation
references can be used to mutate data elements via references held by a list ob-
ject, while still protecting the list’s representation from being modification. One
limitation of effective ownership is that the iterator objects cannot be used to
update the list’s internal implementation, such as adding or removing elements
from the list, because of the strong owners-as-dominators effect encapsulation.

Other Type Systems for Alias Protection. Many type systems have been
proposed for alias protection. Confined types [26] manage aliases based on a
package level encapsulation which provides a lightweight but weaker constraint
than instance-level object encapsulation. Uniqueness techniques [27, 13] allow
local reasoning and can prevent representation exposure by forbidding sharing;
a reference is unique if it is the only reference to an object. External unique-
ness combines the benefit of ownership types with uniqueness [8]. Boyland et
al designed a system to unify uniqueness and read-only capability [5] where a
reference is combined with a capability. Adoption [12, 6] can be used to provide
information hiding similar to object encapsulation, but it is not clear how com-
mon object-oriented patterns such as iterators can be expressed in this approach.
Alias types [23, 28] allow fine control on aliases at the cost of more complex an-
notations.

Variance on Parametric Types. The idea of use-site variance on type argu-
ments of parametric class was first introduced informally by Thorup and Torg-
ersen but only for covariance [24]. Igarashi and Viroli added contravariance and
bivariance (complete abstraction) in their Variant Parametric Types and formal-
ized type variances as bounded existential types. Our type system uses a similar
technique, where, instead of types with subtyping, we rely on the containment
ordering of ownership. Usually type systems with existential types would need
some form of pack/unpack or close/open pairing to distinguish between typing
contexts where the existential type is visible or not. Igarashi and Viroli used
this idea directly in their type system, without exposing the existential types
in the language syntax. Our use of the *, K+ and K− context variances in the
language syntax and ?, K+? and K−? in the type system is somewhat akin to
the use of pack/unpack mechanisms for existential types, but simpler. In partic-
ular, we avoid introducing new names for contexts into environments by keeping

122 Y. Lu and J. Potter

them anonymous (for example, K+? denotes an anonymous context which is
inside K). Moreover since anonymous existential contexts are not bound to an
environment they naturally become global, in other words, there is no need to
pack/close them.

6 Conclusion

This paper has presented variant ownership types that generalize ownership
types by separating accessibility of a type from its capability. Combined with
context variance, the resulting type system significantly improves the expres-
siveness and utility of ownership types. The authors wish to acknowledge the
support of the Australian Research Council Grant DP0665581.

References

1. J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy
from mechanism. In In European Conference on Object-Oriented Programming
(ECOOP), July 2004.

2. P. S. Almeida. Balloon types: Controlling sharing of state in data types. Lecture
Notes in Computer Science, 1241:32–59, 1997.

3. A. Birka and M. D. Ernst. A practical type system and language for reference
immutability. In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 35–49. ACM Press, 2004.

4. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 213–223. ACM Press, 2003.

5. J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A generalisation
of uniqueness and read-only. In In European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 2–27, 2001.

6. J. T. Boyland and W. Retert. Connecting effects and uniqueness with adoption.
In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 283–295, New York, NY, USA, 2005.
ACM Press.

7. D. Clarke. Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering, The University of New South Wales, Sydney, Australia,
2001.

8. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In In European
Conference on Object-Oriented Programming (ECOOP), July 2003.

9. D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and disjointness
of type and effect. In 17th Annual Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), November 2002.

10. D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object
containment. In European Conference on Object-Oriented Programming (ECOOP),
2001.

11. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protec-
tion. In Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 48–64. ACM Press,
1998.

On Ownership and Accessibility 123

12. M. Fahndrich and R. DeLine. Adoption and focus: practical linear types for im-
perative programming. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, pages 13–24,
New York, NY, USA, 2002. ACM Press.

13. J. Hogg. Islands: aliasing protection in object-oriented languages. In OOPSLA ’91:
Proceedings of Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 271–285, New York, NY, USA, 1991. ACM Press.

14. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In L. Meissner, editor, Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

15. A. Igarashi and M. Viroli. On variance-based subtyping for parametric types. In
Proceedings of the 16th European Conference on Object-Oriented Programming,
pages 441–469. Springer-Verlag, 2002.

16. Y. Lu and J. Potter. A type system for reachability and acyclicity. In Proceedings
of the 19th European Conference on Object-Oriented Programming, pages 479–503.
Springer-Verlag, 2005.

17. Y. Lu and J. Potter. Protecting representation with effect encapsulation. In Pro-
ceedings of the 33th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM Press, 2006.

18. P. Müller and A. Poetzsch-Heffter. Universes: A type system for controlling repre-
sentation exposure. Programming Languages and Fundamentals of Programming,
1999.

19. P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and depen-
dency control. Technical Report 279, Fernuniversität Hagen, 2001.

20. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In European Conference
on Object-Oriented Programming (ECOOP), 1998.

21. A. Potanin, J. Noble, and R. Biddle. Generic ownership: practical ownership control
in programming languages. In OOPSLA Companion, pages 50–51, 2004.

22. J. Potter, J. Noble, and D. Clarke. The ins and outs of objects. In Australian
Software Engineering Conference. IEEE Press, 1998.

23. F. Smith, D. Walker, and G. Morrisett. Alias types. Lecture Notes in Computer
Science, 1782:366–381, 2000.

24. K. K. Thorup and M. Torgersen. Unifying genericity - combining the benefits of
virtual types and parameterized classes. In ECOOP, pages 186–204, 1999.

25. M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé, G. Bracha, and N. M. Gafter.
Adding wildcards to the java programming language. In SAC, pages 1289–1296,
2004.

26. J. Vitek and B. Bokowski. Confined types. In Proceedings of the 14th Annual Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 82–96. ACM Press, 1999.

27. P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors,
IFIP TC 2 Working Conference on Programming Concepts and Methods, Sea of
Galilee, Israel, pages 347–359. North Holland, 1990.

28. D. Walker and G. Morrisett. Alias types for recursive data structures. Lecture
Notes in Computer Science, 2071:177–206, 2001.

	Introduction
	Ownership Types
	Variant Ownership Types
	The Accessibility Context
	Context Variance
	The List Example: Revisited

	The Formal Language
	Syntax
	Static Semantics
	Dynamic Semantics and Properties

	Discussion and Related Work
	Related Work

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

