
The Runtime Structure of Object Ownership

Nick Mitchell

IBM TJ Watson Research Center
19 Skyline Drive, Hawthorne NY 10532

nickm@us.ibm.com

Abstract. Object-oriented programs often require large heaps to run
properly or meet performance goals. They use high-overhead collections,
bulky data models, and large caches. Discovering this is quite challenging.
Manual browsing and flat summaries do not scale to complex graphs with
20 million objects. Context is crucial to understanding responsibility and
inefficient object connectivity.

We summarize memory footprint with help from the dominator re-
lation. Each dominator tree captures unique ownership. Edges between
trees capture responsibility. We introduce a set of ownership structures,
and quantify their abundance. We aggregate these structures, and use
thresholds to identify important aggregates. We introduce the ownership
graph to summarize responsibility, and backbone equivalence to aggre-
gate patterns within trees. Our implementation quickly generates concise
summaries. In two minutes, it generates a 14-node ownership graph from
29 million objects. Backbone equivalence identifies a handful of patterns
that account for 80% of a tree’s footprint.

1 Introduction

In this paper, we consider the problem excessive memory footprint in object-
oriented programs: for certain intervals of time, the live objects exceed available
or desired memory bounds. Excessive memory footprint has many root causes.
Some data structures impose a high per-element overhead, such as hash sets with
explicit chaining, or tree maps. Data models often include duplicate or unneces-
sary fields, or extend modeling frameworks with a high base-class memory cost.
There may be objects that, while no longer needed, remain live [34, 39], such as
when the memory for an Eclipse [17] plugin persists beyond its last use. Often,
to mask unresolved performance problems, applications aggressively cache data
(using inefficient data structures and bulky data models).

To isolate the root causes for large object graph size requires understanding
both responsibility and internal content: the program may hold on to objects
longer than expected, or may use data structures built up in inefficient ways. We
analyze this combination of ownership structures by summarizing the state of the
heap — at any moment in time within the interval of excessive footprint. In con-
trast, techniques such as heap [34, 35, 40, 43], space [36], shape [32], lexical [6], or
cost-center [37] profiling collect aggregate summaries of allocation sites. Profiling
dramatically slows down the program, gives no information about responsibility

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 74–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Runtime Structure of Object Ownership 75

Fig. 1. Growth in the size of Java heaps in recent years

Table 1. A commonly used, but not especially useful, graph summary: aggregate
objects by data type, and then apply a threshold to show only the top few

type objects bytes
primitive arrays 3,657,979 223,858,288
java/lang/String 2,500,389 80,012,448
java/util/HashMap$Entry 2,307,577 73,842,464
java/util/HashMap$Entry[] 220,683 57,726,696
customer data type 338,601 48,758,544
java/lang/Object[] 506,735 24,721,536

or internal content, and conflates the problem of excessive temporary creation
with the problem of excessive memory footprint.

The task of summarizing the state of the heap [12, 20, 9, 29, 19, 32] at any mo-
ment in time [3, 31, 18, 25] is one of graph summarization. In this case, the graph’s
nodes are objects, and the edges are references between them. Summarizing the
responsibility and internal content of these graphs is, from our experience with
dozens of large-scale object-oriented programs, quite challenging. In part, this is
because these object graphs are very large. In Figure 1, we show typical object
graph sizes from a variety of large-scale applications. Over the years, this fig-
ure shows that the problem has grown worse. Contemporary server applications
commonly have tens of millions of live objects at any moment in time.

Furthermore, the way objects are linked together defeats easy summariza-
tion. A good summary would identify a small number of features that account
for much of the graph’s size. Achieving this 80/20 point, especially for large, com-
plex graphs, is challenging. Many commercial memory analysis tools [3, 31, 18]
aggregate by data type, and then chooses a threshold to show those biggest types.
This technique produces a table such as Table 1. Typically, generic data types
float to the top. Even for the customer-specific types, the table gives us no sense
of who is responsible, or how the instances are structured; e.g. are the instance of
these types part of a single large collection, or several smaller ones? These same



76 N. Mitchell

tools also provide filters to ignore third-party providers such as J2SE, AWT, and
database code. But, as the table shows, those third parties often form the bulk
of the graph’s size. In addition, they often provide the collections that (perhaps
inefficiently) glue together the graph’s objects.

Filters, aggregations, and thresholds are essential elements of summarization,
but must be applied carefully. Thresholds help to focus on the biggest con-
tributors, but the biggest contributors are not single data types, or even single
locations in the graph. As we will show in Section 4, those 3.6 million primitive
arrays in Table 1 are placed in many distinct locations. Thus, at first sight, they
appear to be scattered throughout the (18-million node) graph. However, we
will show that only two distinct patterns of locations that account for 80% of
the largest data structure’s size. This careful combination of aggregation and
thresholding can produce concise summaries of internal content.

The same care is necessary when summarizing responsibility. If the object
graph is tree-like (i.e. a diamond-free flow graph), the problem of summarizing
ownership structure reduces to that of summarizing content; responsibility is
clear when each object has a single owner. As we will quantify later, object
graphs are not at all tree-like. For example, in many cases two unrelated program
mechanisms share responsibility for the objects in a data structure; in turn, those
two mechanisms themselves are shared by higher-level mechanisms. The result is
a vast web of responsibility. We can not arbitrarily filter out edges that result in
sharing, even if it does have the desirable property of reducing the responsibility
structure to a tree [23].

This paper has four main contributions.

Analysis Methodology. We decompose the analysis of ownership structures
into two subproblems, by leveraging the dominator forest [22, 14, 33] of the graph.
We use the dominator relation for two reasons. First, it identifies the maximum
unique ownership within the graph. This aligns well with our distinction between
responsibility and content. The edges between trees in this forest capture respon-
sibility, and the elements of a dominator tree capture content. Second, a graph
has a single, well-defined dominator forest; a depth-first traversal, in contrast,
also produces a spanning tree, but one that depends on an arbitrary ordering of
graph roots.

Catalog of Ownership Structures. We develop a catalog of ownership struc-
tures, for both responsibility and for internal content. For example, for content
we introduce six categories of backbones, those structures that allow collections
to grow or shrink. We justify their importance by quantifying their prevalence
in large-scale applications; being common, they will serve as powerful units of
aggregation and filtering. In addition, we demonstrate that categorizing content
by backbone structure provides a powerful, if flat, summary of content.

Algorithm for Summarizing Responsibility in Graphs. Beyond flat sum-
maries, we provide summarization algorithms that use this catalog of structures.
The summary of responsibility is an ownership graph, itself a graph, where each



The Runtime Structure of Object Ownership 77

node is an aggregation of ownership structures. We show how the dominator re-
lation alone is a powerful tool for summarizing responsibility; e.g. in one server
application, it reduces 29 million nodes to 191 thousand dominator trees (a 99%
reduction). We also show how six other structures of responsibility allow us to
reduce that summary to a 14-node ownership graph. Our implementation gen-
erates that summary automatically in around two minutes.

Algorithm for Summarizing Content in Trees. We summarize the con-
tent of a tree by aggregating according to backbone equivalence. We introduce
two equivalence relations that group together the nodes that may be in widely
divergent tree locations, but should be considered as part of a single unit. For
example, in a hash set that contains hash sets of strings, there may be millions
of strings. All of the strings are backbone-equivalent. In Section 4.3, we demon-
strate that this enables a form of analysis that identifies the largest patterns in
the largest trees. For example, we show how to locate the set of distinct patterns
within a tree in which a dominant data type (such as those shown in Table 1)
occur. We demonstrate that a handful of patterns account for most of a hot
type’s footprint, despite it being in millions of distinct locations in the tree.

Section 3 covers the catalog and algorithms for responsibility, and Section 4
covers the issues of content. We begin with a short discussion of the input to our
analysis: seven snapshots from large-scale applications, and seven benchmarks.

2 Object Reference Graphs

To diagnose a memory footprint problem, we analyze a snapshot of its live objects
and the references between them.1 We treat a snapshot as a directed graph,
commonly termed an object reference graph. The nodes of this graph represent
objects and the edges represent a field of one object referring to another. In
addition to objects and references, we assume only that the snapshot associates
a data type and an instance size with each object. Typically, object reference
graphs are neither connected, nor flow graphs (in the sense of [22], where the
graph is rooted); we will see more detail and quantifications in Section 3.

Table 2 introduces the applications and SPEC JVM98 benchmarks [41] we
study in this paper. Real applications frequently have ten or even twenty million
live objects; for this paper, we decided to present a spectrum of graph sizes from
real applications. Notice that even A2’ is large; it represents a web application
server just after server startup has completed. For all fourteen snapshots, the
numbers reflect only live objects. We use the JVM’s built-in support for gener-
ating snapshots, which halts all threads, forces a garbage collection, then writes
the snapshot to disk. In the case of the benchmarks, we use the maximally-sized
run, and take several dozen snapshots over the course of each benchmark’s run.
We document the largest of those snapshots.
1 To manually trigger a heap snapshot with the IBM JVM, send a SIGQUIT signal

to the JVM process. In the rare case of a short spike in memory footprint, set the
heap size so as to cause an out of memory exception upon the spike. At this point,
the JVM automatically triggers a heap snapshot.



78 N. Mitchell

Table 2. The heap snapshots we analyze in this paper. They include both real appli-
cations and benchmarks, divided into the top and bottom half of this table.

application objects bytes description
A1 29,181,452 1,433,937,576 telecom transaction server
A2 20,952,120 1,041,348,768 multi-user collaboration server
A3 17,871,063 818,425,984 e-commerce transaction server
A2’ 4,391,183 241,631,368 A2, just after server startup
A4 4,289,704 232,742,536 catalog management server
A5 4,099,743 269,782,704 rich client
A6 3,757,828 99,909,500 an Eclipse-based rich client

mtrt 509,170 13,590,874

SPECjvm98 benchmarks

db 342,725 10,569,334
javac 316,857 10,593,467
jess 83,815 9,827,946
jack 37,949 4,193,140

mpegaudio 9,997 947,196
compress 7,696 808,741

3 Summarizing Responsibility Within Graphs

This section introduces a way to summarize the responsibility for the memory
footprint of an object reference graph. We first introduce important structural
and semantic graph properties, and quantify the extent to which these properties
occur in both real applications and benchmarks. We then present an algorithm
to compute an ownership graph, a new graph that succinctly summarizes the
ownership structures within a given graph.

3.1 Four Common Graph Structures

We identify four common graph properties of subgraphs within an object ref-
erence graph. They do not depend on features of the language, runtime envi-
ronment, or application. Figure 2 illustrates these four purely structural graph
properties: halos, unique ownership, shared ownership, and butterflies.

Halos. Many object reference graphs include structures such as illustrated in
Figure 2(a). This graph has two roots, one of which is a proper graph root (a
node with no parents). The three objects that form a cycle combine to make up
the second root. We term this cycle at the top of the graph a “halo”. A halo is
a strongly-connected component in which no constituent has a parent outside of
the component’s subgraph.2

2 Sometimes, the objects in a halo are garbage; e.g. HPROF [43] does not collect
garbage prior to writing a heap snapshot to disk. More often, non-Java mechanisms
reference members of a halo, but the snapshot does not report them; e.g. if the
garbage collector is not type accurate, this information may not be available.



The Runtime Structure of Object Ownership 79

(a) Halos (b) Dominator Trees

(c) Shared ownership (d) Butterflies

Fig. 2. Four common structural properties of graphs

Dominator Trees. The dominator relation [22] applied to graphs of memory
describes the unique ownership of objects [7]. A relatively small set of nodes
often dominate large subsets of the graph. The immediate dominator relation
imposes a spanning forest over the graph. Figure 2(b) illustrates a graph whose
dominator forest consists of five trees: four single-node trees and one five-node
tree. We highlight the root of each dominator tree with a darker shade.

Shared Ownership. For those nodes that are roots of the dominator forest,
but not roots of the graph, the ownership responsibility is shared. Figure 2(c)
highlights the two dominator trees of Figure 2(b) with shared ownership. Table 3
shows how, among a number of real applications, more than 75% of the domi-
nator trees have shared ownership; we discuss this table in more detail below.

Butterflies. Mutually shared ownership arises when one node of a dominator
tree points to the root of another dominator tree, while a node of that other
dominator tree points back to the root of the first tree. Figure 2(d) illustrates
a case where two dominator trees mutually own each other; we refer to these
structures as “butterflies”. These structures are common in real applications,
where 7–54% of dominator trees are involved in butterflies.



80 N. Mitchell

Table 3. The structural properties of graphs; the fifth and sixth columns show the
fraction of the dominator trees that are shared and involved in butterflies

application halos
avg. objects
per domtree

shared
domtrees

domtrees in
a butterfly

A1 152 153 81% 25%
A2 3,496 41 91% 24%
A3 1,064 310 87% 54%
A2’ 1,776 39 76% 9%
A4 3,828 27 78% 42%
A5 3,492 43 67% 7%
A6 826 103 72% 13%
mtrt 25 3 2% <1%
db 7 5 32% <1%

javac 27 8 49% 16%
jess 8 3 6% <1%
jack 27 3 24% <1%

mpegaudio 117 8 40% <1%
compress 26 6 45% <1%

Table 3 summarizes the structural properties for the applications and bench-
marks of Table 2. The real applications have many halos, large dominator trees,
and a great deal of shared and butterfly ownership. Only one benchmark, javac,
exhibits characteristics somewhat like the real applications.

3.2 Three Structures Derived from the Language and Data Types

We supplement structural information with three pieces of semantic information:
contingent ownership, the class loader frontier, and context-identical dominator
trees, as illustrated in Figure 3. The first two draw upon language features, and
the third takes object data types into account.

Contingent Ownership. Some language mechanisms reference objects, but
do not impact their lifetime. We choose to filter out these references, for the
purposes of summarizing the responsibility for graph nodes. Java applications
commonly use two such mechanisms: weak references, and the finalizer queue.
The constructor of a WeakReference creates a new object that references a
provided object; the garbage collector ignores this reference when determining
liveness. For example, in the situation illustrated by Figure 3(a), one of the
two referents to the bottom dominator tree is from a weak reference. From
structural perspective, the bottom tree has shared ownership; but it is more
natural to consider the weak ownership to be contingent upon the persistence of
the strong reference. Similarly, instances of a class with a finalize method will
be referenced by the finalizer queue; but, again, these references do not impact
liveness. In addition, we choose to filter references due to Java soft references.
These references informs the garbage collector that, in the absence of other
strong references, to free the object when memory becomes tight.



The Runtime Structure of Object Ownership 81

(a) Contingent ownership (b) Class loader frontier (c) Context-identical trees

Fig. 3. Three common semantic properties of graphs

Definition 1 (Contingent Ownership). We say that an edge (n′, n) offers
contingent ownership to n if n′ is weak, soft, or part of the finalizer queue, and
there exists at least one other edge (n′′, n) such that n′′ is not weak, soft, or part
of the finalizer queue. We say that a reference (n, n′) offers strong contingent
ownership if there is exactly one such n′′.

Table 4 shows the fraction of shared dominator trees that have this property. The
real applications all have thousands of dominator trees with contingent owner-
ship, and on average 52% of the contingent ownership is strong. The benchmarks
have a higher proportion of strong contingent ownership: 78%.

Class Loader Frontier. Real applications have a large boundary between dom-
inator trees headed by class loader mechanisms and trees of non-class loading
mechanisms. Figure 3(b) illustrates a case with four dominator trees located on
either side of this boundary. This boundary is large because real applications
make heavy use of class loaders, and they commonly have shared ownership.
Table 5 shows that real applications have as many as 38 thousand dominator
trees headed by class loader data types; on average, 29% of the class loader
dominator trees from these seven snapshots were shared. Further complicating
matters, these shared class loader dominator trees tend to reach nearly all ob-
jects. This is because, in real applications, the class objects very often reach
a substantial portion of the graph. Next, the class loader dominator trees are
usually reachable from a wide assortment of application, framework, and JVM
mechanisms. For example, to isolate plugins, the Eclipse IDE uses a separate
class loader for each plugin; its plugin system reaches the class loader mecha-
nism, which in turn reaches many of the objects. The result is a highly tangled
web of edges that connect the class loader and other trees.

We say that dominator trees that are headed by an instance of a class loader
data type, and that are on either side of the boundary between class loader



82 N. Mitchell

Table 4. The number of dominator trees that are contingently owned, and strongly
so, compared to the total number of shared dominator trees

application
shared

domtrees
contingently

owned
strongly

contingent
A1 155,069 2,630 1,235
A2 472,177 5,324 1,943
A3 502,534 3,964 2,331
A2’ 85,100 3,851 1,624
A4 121,623 33,208 29,984
A5 121,623 3,502 785
A6 26,430 733 294
mtrt 2,545 45 34
db 20,795 26 22

javac 19,830 1,514 1,503
jess 1,796 24 20
jack 3,103 113 100

mpegaudio 506 79 19
compress 542 116 105

mechanisms and all others are said to be on the class loader frontier. The fourth
column of Table 5 shows the number of dominator trees that lie on this frontier.
All of the benchmarks have a small, and roughly equal number of shared class
loader dominator trees that are on this frontier; this, despite a widely varying
range of shared dominator trees across the benchmarks (as shown in the sec-
ond column of Table 4). The real applications have a varied, and much larger,
class loader frontier. This reflects a richer usage of the class loader mechanism,
compared to the benchmarks.

Table 5. The number of dominator trees headed by class loader mechanisms, the
number of those that have shared ownership, and the number of dominator trees that
are on the class loader frontier

application
class loader

total
class loader

shared
class loader

frontier
A1 8,297 1,032 4,550
A2 26,676 1,008 3,030
A3 38,395 133 3,768
A2’ 19,080 959 2,449
A4 5,475 396 1,127
A5 5,410 363 1,259
A6 1,017 120 522
mtrt 51 8 29
db 46 8 21

javac 48 8 22
jess 135 8 23
jack 48 8 29

mpegaudio 47 8 23
compress 47 8 22



The Runtime Structure of Object Ownership 83

Context Equality. Often, a large number of non-contingently owned domina-
tor trees are headed by nodes of the same type and have identical ownership.
Figure 3(c) illustrates a case of three context-identical dominator trees: all three
are headed by nodes of type A, and the set of dominator trees to which their
predecessors belong is the same. For example, in a server application, this kind
of structure occurs with the per-user session data. The session data structures
are often simultaneously stored in two collections, under two different roots.
Hence, each is shared, but in the same way. In another common situation, an
application allocates and manages Java data structures outside of Java. All that
is visible from a Java heap snapshot are many of those data structures with no
visible Java roots: the same type of data structures, all in the same (in this case,
empty) context. We can leverage this kind of similarity.

Definition 2 (Context-identical). Let n be a node in a graph, R(n) be the
root node of the dominator tree in which that node belongs, P (n) be the set of
predecessor nodes of n that do not have contingent ownership over n, and T (n)
be the type of a node n. Let I(n) = {T (R(p)) : p ∈ P (R(n))}, i.e. the types of
the root nodes of the predecessors of n’s dominator tree root. We say two nodes
n1 and n2 are part of context identical dominator trees if T (R(n1)) = T (R(n2))
and I(n1) = I(n2).

Under this definition of equality, we can group dominator trees into equivalence
classes. Table 6 shows the number and average size of context-identical equiva-
lence classes for our suite of applications and benchmarks. In real applications,
there are typically many thousands of such classes, with a dozen or so dominator
trees per class.

Table 6. The number and average size of the context-identical equivalence classes from
a variety of applications and benchmarks

application
context-identical

equiv. classes
avg. domtrees

per equiv. class
A1 4,420 13
A2 32,087 6
A3 36,464 9
A2’ 3,190 10
A4 1,837 31
A5 2,078 15
A6 2,011 5
mtrt 140 11
db 9 1,706

javac 438 16
jess 72 7
jack 71 14

mpegaudio 8 3
compress 5 21



84 N. Mitchell

3.3 The Ownership Graph

We demonstrate an algorithm that, given an object reference graph, produces a
new ownership graph that concisely summarizes responsibility within the input
graph. To compute the ownership graph, the algorithm performs a chain of graph
edits, each of which filters, aggregates, or applies thresholds to the nodes in an
object reference graph.

Definition 3 (Graph Edit). Given a graph G, a graph edit EG is (C, Dn, De);
C is the collapsing relation, an N : 1 relation among the nodes of G; Dn and De

are, respectively, the node and edge delete sets, and are subsets of the nodes and
edges of G, respectively. We term the range of the collapsing relation as the set
of canonical nodes of the edit. The deleted graph is the subgraph of G consisting
of edges either in De or whose target is in Dn; its nodes are the nodes of G.

Applying a graph edit yields a new, reduced, graph that preserves the reacha-
bility of the input graph. When applying a chain of graph edits, each edit takes
as input the reduced graph generated by the previous graph edit.

Definition 4 (Reduced Graph). Given a graph edit EG, define the reduced
graph of EG to be the graph R whose nodes are the canonical nodes of EG and
whose edges are the union of edges from G renamed according to the collapsing
relation, and edges from the transitive closure of the deleted graph of EG.

Each node in a reduced graph represents an aggregation of nodes from previous
graphs. Since each collapsing relation is a tree relation (i.e. it is N : 1 from nodes
to nodes of the input graph), the correspondence between a node of a reduced
graph to the nodes of any previous reduced graph is just the transitive closure
of the inverse of the collapsing relations.

Definition 5 (Contained Nodes). Let R be a reduced graph derived, via a
chain of graph edits, from a graph G. Define the contained node set of r ∈ R
relative to G to be the set of g ∈ G encountered on a traversal, from r, of the
composition of the inverse of the collapsing relations of the chain of graph edits
that led to R.

Using a combination of five kinds graph edits, some applied multiple times, we
construct concise ownership graphs. We now define those five kinds of edits, and
subsequently describe an ownership graph construction algorithm.

Dominator Edit. Compute a representative for each halo of the input graph;
we find the set of representatives that, on any depth-first traversal of the input,
have only back edges incoming. The union of this set of halo representatives
with those nodes that have no incoming edges form the root set of the graph.
Given this root set, compute the dominator forest of the input graph.3 From

3 The dominator algorithm we use [22] assumes that the input is a flow graph. In our
case, we use an implicit start vertex: one that points to the computed root set.



The Runtime Structure of Object Ownership 85

this forest, we define a graph edit (C, De, Dn). The collapsing relation C maps
a node to its dominator forest root; the deleted edge set De consists of edges
that cross the class loader frontier or that have only contingent ownership; the
deleted node set Dn is empty. This edit collapses the dominator trees into single
nodes. It will also remove the shared ownership from dominator trees that are
strongly contingently owned.

Context-identical Edit. For each node n of the input graph, compute a rep-
resentative type Tn. In the case where each node is a dominator tree, we choose
this representative type to be the node type of the head of the dominator tree;
this will not necessarily be the case when this graph edit is applied subsequent
to graph edits other than the dominator edit. In the case where each node is
a collection of dominator trees whose heads are of uniform type, we choose the
representative type to be that type. Otherwise, we say the representative type is
undefined. Let the parent set of a node n, Pn, be the set of predecessor nodes of
n. Group the nodes of the input graph according to equality, for each graph node
n, of the pair (Pn, Tn). For the remaining equivalence classes, choose an arbitrary
representative node. The context-identical collapsing relation maps each node to
that representative. The deleted edge set and deleted node set are empty.

Butterfly Edit. Compute the strongly connected components of the input
graph. Choose a representative node from each component. The collapsing rela-
tion maps each node to the representative of the component to which it belongs.
The deleted edge set and deleted node set are empty.

Reachable Edit. Given a reduced graph R, for each node r ∈ R determine
the contained node set of R relative to the original input graph G. Recall from
Section 2 that we assume a heap snapshot associates an instance size attribute
with each node. Compute the uniquely-owned size for each r ∈ R, which is the
sum over each node g ∈ G in the contained set of r of the instance size of g.
Next, compute the shared-owned size for each node r ∈ R, which is the sum over
all nodes r′ reachable from r of uniquely-owned size of r′. Choose a threshold
of this shared-owned property, a size below which would not be worth the effort
of further study. We have found that a reasonable threshold is the maximum
of one megabyte and one standard deviation above the mean size of all shared-
owned sizes of the graph’s nodes. The collapsing relation of this graph edit is
the identity. The deleted edge set is empty. The deleted node set is those nodes
whose shared-owned size falls below the threshold.

Miscellaneous Edit. Given a reduced graph R, determine the subset of the
contained set of R relative to the original graph G that have been deleted; that is,
those union of the contained set, relative to G, of nodes in a Dn of some reduced
graph on the chain between G and R. We term this the “miscellaneous” set.
Compute the sum M of the instance sizes of the members of the miscellaneous
set. Compute the shared-owned size, Sr of each nodes r ∈ R. Choose a fraction
ε of M so that the deleted node set of this graph edit is the set of nodes of
r ∈ R with Sr − M < ε; this isolates any node that is responsible for only a



86 N. Mitchell

cum 9MB

everything

x26759

base3MB

Value

x32800

base2MB cum 5MB

Token

base2MB

miscellaneous

x26

(a) jess

cum 10MB

everything

base9MB

Vector

(b) db

cum 12MB

everything

x97837

base2MB

Vector
base6MB cum 10MB

Scene

base3MB

miscellaneous

(c) mtrt

x211644

base 98MB cum 229MB

CategoryImpl

cum 131MB

AttrNSImpl class object
base358kB cum 708MB

Cache

cum 780MB

everything

base9MB cum 720MB

CachedTargets

x21

base3kB cum 143MB

CategoryInfo

x4

base55MB cum 186MB

Registry

base7kB cum 143MB

InvoiceActionManager

base34MB cum 165MB

SinglePathClassProvider

base14MB cum 244MB

CategoryFactory class object

base13kB cum 229MB

Category

base423MB cum 710MB

Cache

base12MB cum 143MB

ListenerRepository

base131MB

miscellaneous

MBB cu

Lis

b

BMB

9MB

29MBm 229

3MB b

(d) A3

Fig. 4. Our implementation automatically generates these ownership graphs

small amount of space, i.e. εM , on top of the miscellaneous size. The collapsing
relation is the identity, and the deleted edge set is empty.

The Ownership Graph Algorithm. The ownership graph is the reduced
graph resulting from the final edit in a chain of graph edits. We will need to
apply certain edits more than once, because one edit may reintroduce a structure
that another edit aggregates. Consider a variant of the graph of Figure 2(d),
where one node in each of the two dominator tree references a third dominator
tree. A dominator edit produces a graph of three nodes. A butterfly edit of
that graph aggregates the two butterfly-connected nodes into one. The resulting
two-node graph has a single edge between the former butterfly and that node
representing the third dominator tree. Reapplying the dominator edit produces
a single-node graph. The chain of graph edits we use to produce an ownership
graph is: dominator, context-identical, butterfly, dominator, reachable-threshold,
miscellaneous-threshold, context-identical, and finally dominator.

We have implemented this algorithm, and it consistently and quickly produces
small ownership graphs. Recall that the two threshold edits may populate a
pseudo-aggregate (miscellaneous) that represents the memory that falls below
the chosen threshold. When rendering an ownership graph, we introduce a second
pseudo-node (everything), to represent the entire snapshot; it refers to every



The Runtime Structure of Object Ownership 87

Table 7. The size and time to compute ownership graphs

application
nodes in

full graph
nodes in

ownership graph
seconds

to construct
A1 29,181,452 14 148
A2 20,952,120 15 98
A3 17,871,063 11 82
A4 4,391,183 3 26
A2’ 4,289,704 19 24
A5 4,099,743 13 27
A6 3,757,828 3 18
mtrt 509,170 2 8
db 342,725 1 7
javac 316,857 8 8
jess 83,815 2 7
jack 37,949 1 7
mpegaudio 9,997 1 5
compress 7,696 1 6

root in the graph. Table 7 shows the size and time to compute4 ownership graphs.
We do not count the two pseudo-nodes towards an ownership graph’s node count.
The computation time figures include the code to compute the graph halos, a
DFS spanning tree, the dominator tree, all of the graph edits, and the time to
render the graph to SVG (scalable vector graphics). For application A3, the full
graph has nearly 18 million nodes; the ownership graph, computed in 82 seconds,
consists of 11 nodes.

Figure 4 shows the output, generated automatically, from three of the bench-
marks and application A3. Our rendering code draws a stack of nodes whenever
an ownership graph node represents a context-identical aggregate. Each node
shows the uniquely-owned bytes (“base”) represented by that aggregate. Each
non-leaf node also show shared-owned bytes (“cum”). Finally, we color the nodes
based on the source package that primarily contributes to that aggregate’s base
size: dark gray for customer code, light gray for framework code (such as the
application server, servlet processing, XML parsing code), black for standard
Java library code, and white for everything else.

4 Summarizing Content Within Trees

This section shows how to summarize the nodes within a tree [12, 9, 20, 21, 25],
using the concept of backbones. A backbone in a tree is a mechanism whereby
collections of objects grow or shrink. The backbone of a linked list is the chain of
“element” objects that store the inter-element linkage; in this case, the backbone
structure is recursive. Section 4.1 introduces a categorization of the contents
of a data structures based on how the objects contribute to backbones. This
categorization alone provides powerful, but flat summaries of a tree’s content.
4 On a 1.8GHz Opteron, using Sun’s Linux 1.5.0 06 64-bit JVM and the -server flag.



88 N. Mitchell

Fig. 5. A categorization of the nodes in a tree according to backbone structure

To summarize the locations of excessive memory footprint, Section 4.2 shows
how to use a backbone categorization to aggregate backbones into equivalence
classes, based on two notions of equality. We show that the equivalence relations
successfully aggregate large number of backbones. Finally Section 4.3 shows how
applying thresholds after having aggregated by backbone equivalence provides
succinct summaries of tree content.

Note that, in some cases, a node in the ownership graph will be a dominator
tree, and the approach described in this section applies directly. In other cases,
it will be a collection of trees. To analyze a forest of trees, we take the union of
the summaries of each tree.

4.1 The Elements of a Backbone

We identify six elements of a backbone within a tree, as shown in Figure 5. Array
backbone types, those nodes labeled A, are responsible for horizontal growth or
shrinkage in a graph. Recursive backbone types, nodes labeled R, can change the
depth of a graph. We refer to the union of A and R types as backbone types. In
some cases, a recursive backbone includes nodes of a non-backbone type (R′) that
are sandwiched between the recursive backbone nodes. Above any backbone is
a node that represents the container (C) to which they belong. There are often
non-backbone nodes placed between one container and another, or between a
backbone and a nested container; these container sandwich nodes are labeled
C′. Underneath the backbone nodes, whether array or recursive, are the nodes
that dominate the true data of the container (D). These six groups of types cover
much of the structure within trees. We bundle any other structures not covered
by the main six groups into the D group.

For example, an XML document can grow by adding elements or by adding
attributes to an existing element. The elements grow recursively, but sometimes
a TextImpl node is sandwiched between two ElementImpl nodes. The attributes
grow along an array backbone, with data of type AttributeImpl under a con-
tainer of type Vector. Between an element’s recursive backbone and the Vector
container is a container sandwich of type AttributeMap.

We categorize node types into one of these six groups. From this categorization
of types, it is straightforward to categorize the nodes themselves. Array types



The Runtime Structure of Object Ownership 89

Fig. 6. The contribution of backbone overheads to total memory footprint

have instances that point to a number of nodes of the same type; the format of
heap snapshots usually distinguishes array types for us. We currently identify
only one-hop recursion, where nodes of a type point to nodes of the same type.
This simple rule is very effective. Even in the XML document example of the
previous paragraph, where there are recursive sandwich types, the recursive-
typed nodes still point to nodes of the same type. A container type is a non-
backbone type that has node instances that point to backbone types. Given a
subpath in the tree that begins and ends with a node from R, all nodes between
those endpoints are from R′. Given a subpath that begins with A, C, or R and
that ends with C, all nodes between the endpoints are from C′. Finally, there
will be a set of nodes that are pointed to by nodes of backbone type; the union
of the types of nodes dominated by them form D.

Categorizing objects in this way yields powerful summaries of content, such as
the ones shown in Figure 6. This figure includes five additional snapshots from
real server applications, A7-A11, that we do not otherwise study in this paper.
Each of the six categories in the figure represents the sum of the instance size
of each node. We split the array backbone overhead into two subcategories: the
memory devoted to unused slots in the array, and slots used for actual references.
We assume that a null reference value in an array is not meaningful data; in
our experience, this is nearly always the case. We also include the contribution
of the Java object header, assuming eight bytes per header. We include header
overhead, as its contribution varies for similar reasons as backbone overheads in
general: many small collections leads to a higher C overhead, but also a higher
object header overhead. We deduct this header cost from the costs associated
with the other backbone overheads.



90 N. Mitchell

The amount of storage in the D group varies from as much as 68% to as
little as 23%. On average, the data consumes 47% of the heap. This fraction is
not well correlated with snapshot size; e.g. the snapshot A4 has over 20 million
nodes, and yet has the highest fraction of data, while application A2’, with a
quarter the number of nodes, has a much lower fraction of data. Furthermore,
the distribution to the various overheads is not constant: there is no hard and
fast rule about how to impose a high backbone cost. It is certainly a property of
the application; e.g. A2 and A2’, which represent the same application in steady
state, and just after server startup, have similar profiles. One application might
have a few large data structures, versus many small ones; another might use
an open-chained hashing implementation, rather than one with explicit chaining
(the former would avoid a high R cost). Appendix A describes the data models we
use in the implementations for this paper. Our layout nearly eliminates backbone
and object header overheads, which is one of the ways we achieve high scalability.

4.2 Aggregates of Backbone Equivalence

Most real applications have a tremendous number of backbone nodes. As the
second column of Table 8 shows, our real applications have anywhere from 67
thousand to 10 million distinct locations in their dominator trees that serve as
either array or recursive backbones. This is far too many for a human to com-
prehend. Fortunately, there is much commonality in those backbone locations.
We group the backbone nodes into equivalence classes, based on two equivalence
properties: one based on type equality of paths and the second based on a notion
of backbone-folding equality. While the second subsumes the first, to achieve a
well-performing implementation, it is important to apply them one after the
other, as computing context equality can be expensive.

Table 8. The number of backbone nodes and the number of root-type-path and
backbone-folding equivalence classes (summed over all dominator trees)

application backbone nodes
root-type-path
equiv. classes

backbone-folding
equiv. classes

A1 10,864,774 21,820 7,689
A2 4,704,630 23,561 10,381
A3 3,690,480 345,863 21,482
A2’ 772,299 13,855 6,550
A4 342,570 9,630 5,046
A5 630,784 14,847 7,793
A6 107,802 3,907 1,840
mtrt 78,153 3,092 448
db 17,173 91 50

javac 116,274 18,818 9,025
jess 15,069 148 101
jack 2,690 289 154

mpegaudio 2,017 117 77
compress 1,985 175 48



The Runtime Structure of Object Ownership 91

Fig. 7. A hash map of inner hash maps. There are two backbone types (Entry[] and
Entry), ten nodes of those two types, nine backbone equivalence classes under root
type path equality, and four backbone-folding equivalence classes.

Root-type-path Equality. Let the root path of a tree node be the list of nodes
from the tree root to that node, inclusive; the root type path is similarly the list
of those node types. We compute the A and R node types, and the instances of
those types in the tree under analysis. We then form equivalence classes of these
instances, using root type path equality.

It is often the case that a large number of backbone nodes in a tree have equal
root type paths. Forming equivalence classes based on this notion of equality can
therefore produce a more succinct summary of a tree’s content than an enumer-
ation of the backbone nodes. The third column in Table 8 shows the number of
root type path equivalence classes in a number of applications and benchmarks.

Consider the common case of root type path equality shown in Figure 7: a hash
map of inner hash maps, where all of maps use explicit chaining. There are two
backbone types (Entry[] and Entry) and ten backbone nodes. Of those ten, there
are nine distinct classes of backbone nodes under root type path equality. The
only non-singleton class has the two top-left Entry nodes. Every other backbone
node has a unique root type path. For example, the third Entry in the upper hash
map is located under an Entry object, a property that the other two Entry nodes
do not have. This difference skews every other node instance under that chained
Entry, rendering little root type equivalence. We chose this example for illustra-
tive purposes only. In practice, we see that from Table 8 that there are quite a
large number of backbone nodes with type-identical root type paths. The figures
in this table represent the sum over all dominator trees in each heap snapshot.

Backbone-folding Equality. Root type path equality identifies nine backbone
equivalence classes in the tree of Figure 7. We feel there should only be four
distinct classes. The upper Entry[] array is rightly in a singleton class, but
the three upper Entry instances, the two lower Entry[] instances, and the four
lower Entry instances should form a total of three classes, respectively. Imagine



92 N. Mitchell

that the lower hash maps contain values of type string: a hash map of hash
maps that map to string values. We feel that each of those strings should be the
same, despite being located in potentially thousands of separate (lower) hash
maps, and despite each lower hash map being under a wide variety of depths of
(upper) Entry recursion.

To capture this finer notion of equivalence, we observe that it is recursive
structures, through combinations of R and R′ nodes, that lead to the kind of
skew that foils root type path equality. We compute the set of A, R, and R′

nodes and, to each backbone node, associate a regular expression. The canonical
set of regular expressions form the equivalence classes (c.f. the RDS types and
instances of [32] and the DSGraphs of [20, 21]). The regular expression of a
node is its root type path, except that any R′ node is optional and any R node
can occur one or more times in any position. For example, the two D nodes
from Figure 5 are backbone-folding equivalent, because they share the regular
expression CAR+(R′?)CARL+(R′?), where + and ? have the standard meanings
of “one or more” and “optional”.

The fourth column in Table 8 shows the number of equivalence classes of
backbone nodes under backbone-folding equality. Even for graphs with tens of
millions of nodes, aggregation alone (i.e. without filters or thresholds) collapses
all dominator trees down to at most 21 thousand backbone equivalence classes.

4.3 Using Thresholds to Identify Large Patterns in Large Trees

Applying thresholds after having aggregated backbones can yield succinct sum-
maries of content. As a first threshold, we usually care to study only the largest
trees, or at least to study the largest trees first. Within a large tree, we consider
two useful thresholds of backbone aggregates: a biggest contributing pattern
analysis, and a suspect locator analysis.

A biggest contributing pattern analysis looks for the equivalence classes that
contribute most to a given tree. Table 9 shows the result of a biggest-contributor
analysis to the largest dominator tree in each application and benchmark. There
are often hundreds of equivalence classes within the largest tree. However, only
a few patterns summarize a substantial fraction of the footprint of the tree. The
third column in the table shows how many of those equivalence classes account
for 80% of the size of the tree (tabulating the largest equivalence classes first).
With just two exceptions, a small handful of classes account for most of the
footprint of the largest tree. Even for the two exceptions, A1 and javac, 80% of
the largest tree’s size is accounted for by 35 and 53 patterns.

Sometimes, it is helpful to know where certain suspicious data types are placed
in an expensive tree. A suspect locator analysis identifies the distinct classes of
locations in which a chosen data type occurs. There may be millions of instances
of this type, but they will not be in a million different equivalence classes. Fur-
thermore, as Table 10 shows, for all of our applications and benchmarks, a only
a handful of equivalence classes account for most of the contribution of that type
in any one tree. This is despite the fact that, in some cases, there are hundreds
of distinct patterns in which the largest data type is located. More generally,



The Runtime Structure of Object Ownership 93

Table 9. A biggest contributing pattern analysis shows that a few hot patterns account
for 80% of the largest dominator tree’s memory footprint

application
equiv. classes
in largest tree

80% contributors
in largest tree

A1 761 35
A2 20 10
A3 1 1
A2’ 11 2
A4 2 1
A5 1172 3
A6 77 3
mtrt 43 10
db 1 1

javac 566 53
jess 1 1
jack 22 1

mpegaudio 2 1
compress 2 1

this suspect locator analysis can apply to other notions of suspects, such as the
major contributors to backbone overhead: if my C overhead is so high, then tell
me the patterns that contribute most. We will explore this more general form of
analysis in future work.

5 Related Work

Techniques that summarize the internal structure of heap snapshots are rel-
atively uncommon. Recent work [27, 29] introduces a system for counting, via
general queries, both aggregate and reachability properties of an object reference
graph. They have also done insightful characterization studies [28, 30]. Another
recent work [25], akin to [12], summarizes reachability properties for each root
in the graph. To our knowledge, these works do not aggregate the internal struc-
tural of the graphs according to context. Other related domains include:

Shape Analysis. Static shape analysis builds conservative models of the heap
at every line of code [12, 9, 19, 20, 21]. They often use abstract interpretation to
form type graphs (such as the RSRSG [9] or the DSGraph [20]); these summaries
capture recursive structures, somewhat analogous to the regular expressions we
form in Section 4.2. The work we discussed above [25] can be thought of as a
kind of dynamic shape analysis.

Heap Profiling. This phrase usually applies to techniques that track the
object allocations of an application for a period of time [6, 36, 34, 35, 37, 40, 32].
Mostly, the allocation site profiles are used to populate aggregate call graphs,
and interpreted as one would a profile of execution time. Sometimes, the data
is used to help design garbage collectors [15]. Some works combine static shape
analysis with dynamic profile collection [32].



94 N. Mitchell

Table 10. A suspect locator analysis shows that a few hot patterns contain 80% of
the bytes due to instances of the dominant data type

application
equiv. classes
in largest tree

80% contributors classes
in largest tree

A1 427 14
A2 7 1
A3 33 2
A2’ 2 2
A4 1 1
A5 248 5
A6 6 3
mtrt 13 7
db 1 1

javac 1 1
jess 1 1
jack 1 1

mpegaudio 1 1
compress 1 1

Ownership Types. There is a large body of recent work on representing
the ownership of objects in the static type system [8, 26, 4, 2, 7, 5, 1, 11, 24]. Some
recent refinements have addressed issues such as sharing [26] and dominance [7].
The primary goal of this work is to enable better static analysis, such as less
conservative alias analysis, or catching deadlocks at compile time [4].

Leak Analysis. An application that leaks memory will eventually be found
to have an excessive memory footprint. Much of the prior work on memory
leak detection either focuses on identifying allocation sites [13, 43, 42, 38, 3, 18],
or on mostly-manual heap snapshot differencing [10, 31]. Our previous work [23]
analyzes a pair of heap snapshots, and automates the detection of the heads of
possibly leaking data structures. It neither address shared ownership, nor how
to summarize the content underneath the leaking structures.

Visualization. The work of [14] introduces the idea of using the dominator
tree to visualize object ownership. They also provide an clever composition of
trees that mirrors the stack of activation records. In a similar vein, [33] presents
an alternative visualization strategy that takes into account object references,
domination, and characteristics of object usage. Similar to our previous work [23],
they use heuristics to impose an ownership tree on a graph. None of these sum-
marize nodes; by using the dominator spanning tree, they do filter out edges.
Other tools require a human to browse what are essentially raw object reference
graphs [10, 31, 3]. In some cases, these tools aggregate, but only locally; e.g. [10]
aggregates outgoing edges by the referred-to type. Many tools also provide flat
summaries that aggregate graph nodes by type, size, etc. The work of [25] in-
cludes a visualization component that describes reachability-from-root and age
properties of objects in a heap snapshot, but concedes that it does not scale to
graphs much larger than several thousand nodes.



The Runtime Structure of Object Ownership 95

6 Future Work

We see three exciting areas of future work. First, Section 4.3 demonstrated how
to locate the patterns that explain the hottest elements of a flat summary by
type. This is a powerful style of analysis, and we can extend it to be driven
by a more general notion of suspects. For example, we can use it to locate the
few patterns that explain most of the Java object header overhead. We can also
introduce new kinds of suspects, such as large base class overhead.

Second, the ownership graph provides a visual representation of responsibility.
We feel that there is a need for schematic visual representations of content. The
backbone equivalence classes provide a good model for this summary. There is
much work to be done in finding the powerful, yet concise, visual metaphors that
will capture these patterns.

Third, we feel that the methodology employed in this paper, and the owner-
ship structures we have identified can be useful in understanding the structure
graphs from other domains. For example, many of the difficult aspects of graph
size (scale, scattering of suspects in disparate locations in a graph, sharing of
responsibility) have analogs in the performance realm. In performance, flat sum-
maries usually only point out leaf methods, and yet the structure of a call graph
is highly complex. We will explore this synergy.

7 Conclusion

It is common these days for large-scale object-oriented applications to be devel-
oped by integrating a number of existing frameworks. As beneficial as this may
be to the development process, it has negative implications on understanding
what happens at run time. These applications have very complicated policies
governing responsibility and object lifetime. From a snapshot of the heap, we
are left to reverse engineer those policies. On top of that, even uniquely-, non-
contingently-owned objects have complex structure. Data structures that are
essentially trees, like XML documents, are large, and represented with a multi-
tude of non-tree edges. The common data types within them may be scattered
in a million places; e.g. the attributes of an XML document’s elements occur
across the width and throughout the depth of the tree.

We have presented a methodology and algorithms for analyzing this web of
complex ownership structures. In addition to their usefulness for summarizing
memory footprint, we hope they are helpful as an exposition of the kinds of struc-
tures that occur in large-scale applications. Work that tackles object ownership
from viewpoints other than runtime analysis may benefit from this study.

Acknowledgments

The author thanks Glenn Ammons, Herb Derby, Palani Kumanan, Derek Ray-
side, Edith Schonberg, and Gary Sevitsky for their assistance with this work.



96 N. Mitchell

References

1. Aldrich, J., Chambers, C.: Ownership domains: Separating aliasing policy from
mechanism. In: The European Conference on Object-Oriented Programming. Vol-
ume 3086 of Lecture Notes in Computer Science., Oslo, Norway, Springer-Verlag
(2004)

2. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program under-
standing. In: Object-oriented Programming, Systems, Languages, and Applica-
tions. (2002)

3. Borland Software Corporation: OptimizeItTM Enterprise Suite.
http://www.borland.com/us/products/optimizeit (2005)

4. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: Object-oriented Programming, Systems,
Languages, and Applications. (2002)

5. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:
Symposium on Principles of Programming Languages. (2003)

6. Clack, C., Clayman, S., Parrott, D.: Lexical profiling: Theory and practice. Journal
of Functional Programming 5(2) (1995) 225–277

7. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: The European
Conference on Object-Oriented Programming. Volume 2743 of Lecture Notes in
Computer Science., Springer-Verlag (2003) 176–200

8. Clarke, D.G., Noble, J., Potter, J.M.: Simple ownership types for object contain-
ment. In: The European Conference on Object-Oriented Programming. Volume
2072 of Lecture Notes in Computer Science., Budapest, Hungary, Springer-Verlag
(2001) 53–76

9. Corbera, F., Asenjo, R., Zapata, E.L.: A framework to capture dynamic data
structures in pointer-based codes. IEEE Transactions on Parallel and Distributed
Systems 15(2) (2004) 151–166

10. De Pauw, W., Sevitsky, G.: Visualizing reference patterns for solving memory leaks
in Java. Concurrency: Practice and Experience 12 (2000) 1431–1454

11. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Special Issue:
ECOOP 2004 Workshop FTfJP, Journal of Object Technology 4(8) (2005) 5–32

12. Ghiya, R., Hendren, L.J.: Is it a tree, a DAG, or a cyclic graph? a shape analysis
for heap-directed pointers in c. In: Symposium on Principles of Programming
Languages. (1996)

13. Hastings, R., Joynce, B.: Purify — fast detection of memory leaks and access
errors. In: USENIX Proceedings. (1992) 125–136

14. Hill, T., Noble, J., Potter, J.: Scalable visualizations of object-oriented systems
with ownership trees. Journal of Visual Languages and Computing 13 (2002)
319–339

15. Hirzel, M., Hinkel, J., Diwan, A., Hind, M.: Understanding the connectivity of
heap objects. In: International Symposium on Memory Management. (2002)

16. Hitchens, R.: Java NIO. First edn. O’Reilly Media, Inc. (2002)
17. Holzner, S.: Eclipse. First edn. O’Reilly Media, Inc. (2004)
18. IBM Corporation: Rational PurifyPlus (2005)
19. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interproce-

dural shape analysis. In: International Static Analysis Symposium. Lecture Notes
in Computer Science, New York, NY, Springer-Verlag (2004)

20. Lattner, C., Adve, V.: Data structure analysis: A fast and scalable context-sensitive
heap analysis. Technical Report UIUCDCS-R-2003-2340, Computer Science Dep-
tartment, University of Illinois (2003)

http://www.borland.com/us/products/optimizeit


The Runtime Structure of Object Ownership 97

21. Lattner, C., Adve, V.: Automatic pool allocation: Improving performance by con-
trolling data structure layout in the heap. In: Programming Language Design and
Implementation, Chicago, IL (2005) 129–142

22. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flow graph.
ACM Transactions on Programming Languages and Systems 1(1) (1979) 121–141

23. Mitchell, N., Sevitsky, G.: Leakbot: An automated and lightweight tool for di-
agnosing memory leaks in large Java applications. In: The European Conference
on Object-Oriented Programming. Volume 2743 of Lecture Notes in Computer
Science., Springer-Verlag (2003) 351–377

24. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Symposium on
Principles of Programming Languages. (2005)

25. Pheng, S., Verbrugge, C.: Dynamic shape and data structure analysis in java.
Technical Report 2005-3, School of Computer Science, McGill University (2005)

26. Pollet, I., Charlier, B.L., Cortesi, A.: Distinctness and sharing domains for static
analysis of Java programs. In: The European Conference on Object-Oriented Pro-
gramming. Volume 2072 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 77–98

27. Potanin, A.: The Fox — a tool for object graph analysis. Undergraduate Honors
Thesis (2002)

28. Potanin, A., Noble, J., Biddle, R.: Checking ownership and confinement. Concur-
rency and Computation: Practice and Experience 16(7) (2004) 671–687

29. Potanin, A., Noble, J., Biddle, R.: Snapshot query-based debugging. In: Australian
Software Engineering Conference, Melbourne, Australia (2004)

30. Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free geometry in object-oriented
programs. In: Communications of the ACM. (2005)

31. Quest Software: JProbe R© Memory Debugger. http://www.quest.com/jprobe
(2005)

32. Raman, E., August, D.I.: Recursive data structure profiling. In: ACM SIGPLAN
Workshop on Memory Systems Performance. (2005)

33. Rayside, D., Mendel, L., Jackson, D.: A dynamic analysis for revealing object
ownership and sharing. In: Workshop on Dynamic Analysis. (2006)

34. Rojemo, N., Runciman, C.: Lag, drag, void and use — heap profiling and space-
efficient compilation revisited. In: International Conference on Functional Pro-
gramming. (1996) 34–41

35. Runciman, C., Rojemo, N.: New dimensions in heap profiling. Journal of Functional
Programming 6(4) (1996) 587–620

36. Sansom, P.M., Peyton Jones, S.L.: Time and space profiling for non-strict higher-
order functional languages. In: Symposium on Principles of Programming Lan-
guages, San Francisco, CA (1995) 355–366

37. Sansom, P.M., Peyton Jones, S.L.: Formally based profiling for higher-order func-
tional languages. ACM Transactions on Programming Languages and Systems
19(2) (1997) 334–385

38. Shaham, R., Kolodner, E.K., Sagiv, M.: Automatic removal of array memory leaks
in java. In: Computational Complexity. (2000) 50–66

39. Shaham, R., Kolodner, E.K., Sagiv, M.: Estimating the impact of heap liveness in-
formation on space consumption in Java. In: International Symposium on Memory
Management. (2002)

40. Shaham, R., Kolodner, E.K., Sagiv, S.: Heap profiling for space-efficient java. In:
Programming Language Design and Implementation. (2001) 104–113

41. SPEC Corporation: The SPEC JVM Client98 benchmark suite.
http://www.spec.org/osg/jvm98 (1998)

http://www.quest.com/jprobe
http://www.spec.org/osg/jvm98


98 N. Mitchell

42. Sun Microsystems: Heap Analysis Tool. https://hat.dev.java.net/ (2002)
43. Sun Microsystems: HPROF JVM profiler.

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
(2005)

A Modeling Gigantic Graphs

To program graph analysis algorithms in Java, we must be careful to avoid our
own memory footprint problems. We could easily find ourselves modeling the
Java heap of a large server inside the Java heap on a development machine. To
write scalable graph analysis algorithms in Java, we made two implementation
decisions. We do not store graphs in an object-oriented style. Instead, we repre-
sent node attributes and edges as columns of data, and store each column as a
separate file on disk. There is no Node data type. Rather, code refers to nodes
as 32-bit integer identifiers, ranging densely from 0 to the number of nodes; the
same is true for the edges (limiting us to two billion nodes). This storage layout
avoids an object header for each node, and avoids any container cost to represent
the outgoing and incoming edges for each node.

In addition to lowering footprint requirements, this style of storage aids per-
formance. It permits direct use of the java.nio package [16] to memory map
attributes on demand. This gives us constant time reloading of graphs, trans-
parent persistence of graphs and attributes, the operating system takes care of
caching for us (even across process boundaries), and we can run any analysis with
the default Java heap size, independent of the size of the graph under analysis.5

5 java.nio is not without its faults; e.g. it currently lacks an explicit unmap facility.

https://hat.dev.java.net/
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

	Introduction
	Object Reference Graphs
	Summarizing Responsibility Within Graphs
	Four Common Graph Structures
	Three Structures Derived from the Language and Data Types
	The Ownership Graph

	Summarizing Content Within Trees
	The Elements of a Backbone
	Aggregates of Backbone Equivalence
	Using Thresholds to Identify Large Patterns in Large Trees

	Related Work
	Future Work
	Conclusion
	Modeling Gigantic Graphs


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




