
CodeQuest:
Scalable Source Code Queries with Datalog

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor

Programming Tools Group,
Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK
{Elnar.Hajiyev, Mathieu.Verbaere, Oege.de.Moor}@comlab.ox.ac.uk,

http://progtools.comlab.ox.ac.uk/projects/codequest/

Abstract. Source code querying tools allow programmers to explore re-
lations between different parts of the code base. This paper describes such
a tool, named CodeQuest . It combines two previous proposals, namely
the use of logic programming and database systems.

As the query language we use safe Datalog, which was originally in-
troduced in the theory of databases. That provides just the right level
of expressiveness; in particular recursion is indispensable for source code
queries. Safe Datalog is like Prolog, but all queries are guaranteed to
terminate, and there is no need for extra-logical annotations.

Our implementation of Datalog maps queries to a relational database
system. We are thus able to capitalise on the query optimiser provided by
such a system. For recursive queries we implement our own optimisations
in the translation from Datalog to SQL. Experiments confirm that this
strategy yields an efficient, scalable code querying system.

1 Introduction

Understanding source code is vital to many tasks in software engineering. Source
code querying tools are designed to help such understanding, by allowing pro-
grammers to explore relations that exist between different parts of the code
base. Modern development environments therefore provide querying facilities,
but these are usually fixed: one cannot define new relationships that are partic-
ular to the project in hand.

It can be very useful, however, to define such project-specific queries, for
instance to enforce coding style rules (e.g. naming conventions), to check correct
usage of an API (e.g. no call to a GUI method from an enterprise bean), or
to ensure framework-specific rules (e.g. in a compiler, every non-abstract AST
class must override the visitChildren method). Apart from such checking tasks,
we might want new ways of navigating beyond the fixed set of relations provided
in a development environment. When cleaning up a piece of legacy software, it is
for example useful to know what methods are never called (directly or indirectly)
from the main method. A good querying tool allows the programmer to define all
these tasks via simple, concise queries. Note that none of these examples is easily

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 2–27, 2006.
© Springer-Verlag Berlin Heidelberg 2006



CodeQuest : Scalable Source Code Queries with Datalog 3

implemented with today’s dominant code querying tool, namely grep. Built-in
querying and navigating facilities of Eclipse, widely used by the IDE users, are
limited to a fixed number of certain queries.

The research community has long recognised the need for flexible code queries,
and many solutions have been proposed. We shall discuss this previous work in
detail in Sect. 6. For now it suffices to say that two crucial ideas have emerged
from that earlier research: a logical query language like Prolog to formulate
queries, and a relational database to store information about the program.

All these earlier attempts, however, fall short on at least one of three counts:
the system is not scalable to industrial-size projects, or the query language is not
sufficiently expressive, or the queries require complex annotations to guarantee
efficiency. Scalability is typically not achieved because no query optimisation is
used, and/or all data is held in main memory. Expressiveness requires recursive
queries, to inspect the graph structures (the type hierarchy and the call graph,
for example) that are typically found in code queries. Yet the use of recursion
in SQL and XQuery is cumbersome, and in Prolog recursion over graphs often
leads to non-termination. In Prolog that problem may be solved via tabling plus
mode annotations, but such annotations require considerable expertise to get
right.

1.1 Contributions

This paper solves all these deficiencies, and it presents a code querying tool
that is scalable, expressive and purely declarative. We achieve this through a
synthesis of the best ideas of the previous work on code querying. To wit, our
contributions are these:

– The identification of safe Datalog (a query language originating in database
theory) as a suitable source code query language, in the sweet spot between
expressiveness and efficient implementation.

– The implementation of Datalog via an optimising compiler to SQL, which is
in turn implemented on a relational database system. Our compiler performs
a specialised version of the well-known ‘magic sets’ transformation, which we
call ‘closure fusion’.

– A method of incrementally updating the database relations when a compi-
lation unit is changed.

– A comprehensive set of experiments, with two different commercial database
systems (Microsoft SQL Server and IBM DB2) as a backend for our query
compiler, to show the scalability of our approach. We also demonstrate that
for this application, a special implementation of recursion outperforms the
built-in recursion provided by these database systems.

– Detailed comparison with other state-of-the-art code querying tools, in par-
ticular JQuery (an Eclipse plugin tailored for code queries) [2, 24, 34] and
XSB (a general optimising compiler for tabled Prolog [3,39]), demonstrating
that on small projects our approach is competitive, and on large projects
superior.



4 E. Hajiyev, M. Verbaere, and O. de Moor

1.2 Paper Organisation

The paper is organised as follows. First we provide a brief introduction to Dat-
alog; we also present its semantics with an emphasis on the concepts that are
important to the implementation of CodeQuest (Sect. 2). That implementation
is presented in Sect. 3. It is also here that we discuss a number of alternative
implementations of recursion, via built-in facilities of the underlying database
system, and via a procedural implementation of our own. Next, in Sect. 4, we
turn to the tricky problem of incrementally updating the database when a change
is made to the source program. Clearly this is crucial to the use of CodeQuest in
the context of refactoring, where queries are interspersed with frequent changes.
The heart of the paper is Sect. 5: there we demonstrate, through careful exper-
iments with a wide variety of queries, that our implementation method yields a
truly scalable system. The experiments are conducted with two major database
systems to factor out any implementation accidents in our measurements. We
also assess the efficiency of incrementally rebuilding the database with a series
of refactoring queries. In Sect. 6, we provide a comprehensive account of all the
previous work on code queries that has inspired the construction of CodeQuest .
Finally, we conclude in Sect. 7.

2 Datalog

Datalog is a query language originally put forward in the theory of databases [20].
Syntacticly it is a subset of a logic language Prolog, but has a different evaluation
strategy. It also poses certain stratification restrictions on the use of negation and
recursion. As a result, in contrast to Prolog, Datalog requires no extra-logical
annotations in order to guarantee termination of the queries. At the same time it
has the right level of expressiveness for the type of applications discussed above.

Datalog’s basic premise is that data is arranged according to relations. For
example, the relation hasName records names of program elements. Variables
are used to find unknown elements; in our syntax, variable names start with a
capital letter. So one might use the hasName relation as follows:

hasName(L, ‘List’)

is a query to find all program elements with the name List ; the variable L will
be instantiated to all program elements that have that name.

Unary relations are used to single out elements of a particular type. So for
example, one might write

method(M ), hasName(M , ‘add’),
interface(L), hasName(L, ‘List’),
hasChild(L,M )

Here the comma stands for logical ‘and’. This query checks that the List interface
contains a method named add . It also illustrates an important issue: a method is
a program element, with various attributes, and the name of the method is just



CodeQuest : Scalable Source Code Queries with Datalog 5

one of those attributes. It is incorrect to write hasChild(‘List’, ‘add’), because
names do not uniquely identify program elements. At present CodeQuest does
not have a type system, so this incorrect predicate would just evaluate to ‘false’.

Above, we have used primitive relations that are built into our version of
Datalog only. One can define relations of one’s own, for instance to define the
notion of subtypes (semi-colon (;) stands for logical ‘or’, and (:−) for reverse
implication):

hasSubtype(T ,S ) :− extends(S ,T ) ; implements(S ,T ).

This says that T has a (direct) subtype S when S extends T or S implements T .
Of course CodeQuest provides many such derived predicates by default, includ-
ing hasSubtype. Unlike primitives such as extends or implements , these derived
predicates are not stored relations, instead they are deduced from the primitives.
A full list of all primitive and derived predicates provided in CodeQuest can be
found on the project web page [5].

In summary, basic Datalog is just a logic programming language, quite similar
to Prolog, but without data structures such as lists. The arguments of relations
are program elements (typically nodes in the abstract syntax tree) and names.
Like other logic programming languages, Datalog is very compact compared to
query languages in the SQL tradition. Such conciseness is very important in a
code querying tool, as verbosity would defeat interactive use.

Recursion. Code queries naturally need to express properties of tree structures,
such as the inheritance hierarchy and the abstract syntax tree. They also need
to express properties of graphs, such as the call graph, which may be cyclic. For
these reasons, it is important that the query language supports recursion. To
illustrate, here is a definition of direct or indirect subtypes:

hasSubtypePlus(T ,S ) :− hasSubtype(T ,S ) ;
hasSubtype(T ,MID), hasSubtypePlus(MID ,S ).

Now seasoned logic programmers will recognise that such definitions pose a po-
tential problem: in Prolog we have to be very careful about variable bindings and
possible cycles to guarantee termination. For efficiency, we also need to worry
about overlapping recursive calls. For example, the above would not be an ad-
equate program in XSB, a state-of-the-art version of Prolog [3, 39]. Instead, we
would have to distinguish between whether T is known or S is known at the
time of query evaluation. Furthermore, we would have to annotate the predicate
to indicate that its evaluation must be tabled to avoid inefficiency due to over-
lapping recursive calls. JQuery [2, 24, 34], the code querying system that is the
main inspiration for CodeQuest , similarly requires the developer to think about
whether T or S is known during query evaluation.

CodeQuest foregoes all such extra-logical annotations: one simple definition of a
recursive relation suffices. We believe this is an essential property of a code query-
ing language, as the queries should be really easy to write, and not require any
understanding of the evaluation mechanism. Termination is never an issue, as all
recursions in CodeQuest terminate, due to certain restrictions explained below.



6 E. Hajiyev, M. Verbaere, and O. de Moor

Semantics. Datalog relations that are defined with recursive rules have a least-
fixpoint semantics: they denote the smallest relation that satisfies the given
implication. To illustrate, the above clause for hasSubtypePlus defines it to be
the least relation X that satisfies

X ⊇ hasSubtype ∪ (hasSubtype ◦ X )

where (◦) stands for sequential relational composition (i.e. (a, c) ∈ (R ◦ S )
iff ∃b : (a, b) ∈ R ∧ (b, c) ∈ S ). The existence of such a smallest solution X
is guaranteed in our version of Datalog because we do not allow the use of
negation in a recursive cycle. Formally, that class of Datalog programs is said
to be stratified; interested readers may wish to consult [9] for a comprehensive
survey.

It follows that we can reason about relations in Datalog using the relational
calculus and the Knaster-Tarski fixpoint theorem [29, 11, 18]: all our recursions
correspond to monotonic mappings between relations (f is monotonic if X ⊆ Y
implies f (X ) ⊆ f (Y )). For ease of reference, we quote that theorem here:

Theorem 1 (Knaster-Tarski). Let f be a monotonic function on (tuples of)
relations. Then there exists a relation R such that R = f (R) and
for all relations X we have

f (X ) ⊆ X implies R ⊆ X

The relation R is said to be the least fixpoint of f .

In particular, the theorem implies that we can compute least fixpoints by it-
erating from the empty relation: to find the R in the theorem, we compute
∅, f (∅), f (f (∅)), . . . until nothing changes. Because our relations range over a
finite universe (all program elements), and we insist that all variables in the
left-hand side of a clause are used at least once positively (that is not under a
negation) on the right-hand side, such convergence is guaranteed to occur in a
finite number of steps. Together with the restriction to stratified programs, this
means we handle the so-called safe Datalog programs. CodeQuest does not place
any further restrictions on the use of recursion in Datalog.

Closure fusion. Another very simple consequence of Knaster-Tarski, which we
have found to be effective as an optimisation in CodeQuest , is closure fusion. The
reflexive transitive closure R∗ of a relation R is defined to be the least fixpoint
of

X 
→ id ∪ (R ◦ X )

where id is the identity relation.

Theorem 2 (closure fusion). The relation R∗ ◦ S is the least fixpoint of

X 
→ S ∪ (R ◦ X )

Furthermore, S ◦ R∗ is the least fixpoint of

X 
→ S ∪ (X ◦ R)



CodeQuest : Scalable Source Code Queries with Datalog 7

In words, this says that instead of first computing R∗ (via exhaustive iteration)
and then composing with S , we can start the iteration with S . As we shall see,
this saves a lot of work during query evaluation. Due to the strictly declarative
nature of Datalog, we can do the optimisation automatically, while compiling
the use of recursive queries.

To illustrate closure fusion, suppose that we wish to find all types in a project
that are subtypes of the List interface:

listImpl(X ) :− type(L), hasName(L, ‘List’), hasSubtypePlus(L,X ).

A näıve evaluation of this query by fixpoint iteration would compute the full
hasSubtypePlus relation. That is not necessary, however. Applying the second
form of the above theorem with R = hasSubtype∗ and

S (L,X ) :− type(L), hasName(L, ‘List’), hasSubtype(L,X ).

we obtain the result

listImpl(X ) :− hasSubtypePlus ′(L,X ).
hasSubtypePlus ′(L,X ) :− type(L), hasName(L, ‘List’), hasSubtype(L,X ).
hasSubtypePlus ′(L,X ) :− hasSubtypePlus ′(L,MID), hasSubtype(MID ,X ).

Readers who are familiar with the deductive database literature will recognise
this as a special case of the so-called magic sets transformation [12]. In the very
specialised context of CodeQuest , it appears closure fusion on its own is sufficient
to achieve good performance.

3 CodeQuest Implementation

CodeQuest consists of two parts: an implementation of Datalog on top of a re-
lational database management system (RDBMS), and an Eclipse [1] plugin for
querying Java code via that Datalog implementation. We describe these two
components separately.

3.1 Datalog Implementation

Our implementation of Datalog divides relations into those that are stored in the
database on disk, and those that are computed via queries. When we are given a
particular query, the relevant rules are compiled into equivalent SQL. The basics
of such a translation are well understood [30, 27]; somewhat surprisingly, these
works do not include careful performance experiments. Details of the translation
that we employ can be found in [23].

The most interesting issue is the implementation of recursion. As noted in
the previous section, we restrict ourselves to safe Datalog programs, and that
implies we can compute solutions to recursive equations by exhaustive iteration.

Modern database systems allow the direct expression of recursive SQL queries
via so-called Common Table Expressions (CTEs), as described in the SQL-99



8 E. Hajiyev, M. Verbaere, and O. de Moor

standard. This is one of the implementations available in CodeQuest . A major
disadvantage, however, is that most database systems impose the additional
restriction that only bag (multiset) operations may be used inside the recursion:
one cannot employ set union, for example. That implies the semantics of CTEs
do not quite coincide with our intended semantics of Datalog. In particular,
while in our semantics, all recursions define a finite relation, the corresponding
CTE may fail to terminate because there are an infinite number of duplicates
in the resulting relation. We shall see a concrete example of that phenomenon
later on, when we write queries over the call graph of a program.

It follows that it is desirable to provide an alternative implementation of
recursion. Suppose we have a recursive rule of the form:

result :− f (result).

where f (R) is some combination of R with other relations. We can then find a
least fixpoint with the following naive algorithm:

result = ∅;
do {

oldresult = result ;
result = f (oldresult);

}
while (result �= oldresult)

All modern database systems allow us to express this kind of computation in
a procedural scripting variant of SQL. Furthermore such scripts get directly
executed on the database server; they are sometimes called stored procedures.
We shall refer to this implementation as Proc1 in what follows. We stress once
more that because of our restriction to safe Datalog, Proc1 always terminates, in
contrast to the CTE implementation. In our experiments, Proc1 is also sometimes
faster than CTEs.

The above method of computing least fixpoints is of course grossly inefficient.
If we know that f (R) distributes over arbitrary unions of relations, significant
improvements are possible. A sufficient requirement for such distribution is that
f (R) uses R only once in each disjunct. Such recursions are called linear, and
in our experience most recursions in code queries satisfy that criterion. The
following semi-näıve algorithm uses a worklist to improve performance when f
distributes over arbitrary unions:

result = f (∅);
todo = result ;
while (todo �= ∅)
{

todo = f (todo) − result ;
result = result ∪ todo;

}
This algorithm, expressed as a stored procedure, will be referred to as Proc2.
One might expect Proc2 to outperform Proc1, but as we shall see, this depends



CodeQuest : Scalable Source Code Queries with Datalog 9

on the characteristics of the underlying database system. Of course many more
interesting fixpoint finding algorithms could be devised, and undoubtedly they
would help to improve performance. In this paper, however, our aim is to assess
the feasibility of implementing Datalog on top of a database system. We therefore
restrict ourselves to the comparison of just these three variants: CTE, Proc1 and
Proc2.

Because our aim is a proof of concept, we have to ensure that our results do not
depend on the peculiarities of one relational database management system. For
that reason, we provide two backends for CodeQuest , one that targets Microsoft
SQL Server 2005, and the other IBM DB2 v8.2. Our use of these systems is
somewhat näıve, and no attempt has been made to tune their performance. It
is very likely that an expert would be able to significantly improve performance
by careful selection of the system parameters.

3.2 Querying Java Code

It is our aim to compare CodeQuest to JQuery, the leading code querying sys-
tem for Java. For that reason, we have striven to make the CodeQuest frontend
as similar as possible to JQuery, to ensure the experiments yield an accurate
comparison. For the same reason, the information we extract from Java source
and store in the database is the same with the information that JQuery collects.
For elements, it consists exhaustively of packages, compilation units, classes,
interfaces, all class members and method parameters. As for relational facts,
we store hasChild, calls, fields reads/writes, extends, implements and returns
relationships.

All these facts are not computed by CodeQuest : they are simply read off the
relevant data structures in Eclipse, after Eclipse has processed a Java compila-
tion unit. In what follows, the process of collecting information, and storing it in
the database is called parsing. It is not to be confused with the translation from
strings into syntax trees that happens in the Eclipse Java compiler. Naturally
parsing is expensive (we shall determine exactly how expensive in Sect. 5), so in
the next section we shall consider how CodeQuest achieves its parsing incremen-
tally, making appropriate changes to the database relations when a compilation
unit is modified.

We are currently working on the implementation of a robust user interface
of our plugin for a neat integration within Eclipse. We also wish to develop a
similar add-in for Visual Studio.

4 Incremental Database Update

Source code queries are typically performed for software development tasks
within an interactive development environment, where frequent changes of the
source code occur. Hence, the database of code facts needs be kept up-to-date
with the source code developers are working on. Developers cannot afford, how-
ever, a reparsing of their entire project between successive modifications and



10 E. Hajiyev, M. Verbaere, and O. de Moor

queries. A querying tool, embedded in a development environment, must pro-
vide an incremental update mechanism.

Yet such a feature is inherently similar to the tough problem of incremental
compilation. Keeping the database in a consistent state, by specifying strong
conditions for which the update of some facts must occur, is a complex task. To
illustrate, consider a Java project with two packages a and b. Package a contains
a class A and package b a class B declared with the code:

package b;
import a.A;
public class B {

A theField;
}

At this stage, the type of theField is the class a.A. If we introduce a new class
A in the package b, although no previously existing file has changed, the type
of theField is now bound to b.A, and the relationship in the database should be
updated accordingly.

Conveniently, Eclipse provides an auto-build feature that triggers a back-
ground incremental compilation of a project after each resource modification on
that project. Eclipse tries to recompile as few compilation units as possible, but
keeps the project in a consistent compiled state.

We leverage the auto-build feature of Eclipse to incrementally update the
database when the developer modifies a Java resource. On notification by the
Eclipse platform, we remove from the database all facts related to compilation
units that are being deleted or recompiled. The cleaning is performed by delet-
ing all compilation unit nodes and their children. These are computed using an
ad hoc stored procedure generated by CodeQuest from the following query:

hasChildPlus(T ,S ) :− hasChild(T ,S ) ;
hasChild(T ,MID), hasChildPlus(MID ,S ).

nodesToDelete(N ) :− compilationUnitsToDelete(N ) ;
compilationUnitsToDelete(C ), hasChildPlus(C ,N ).

All primitive relations, where one of these deleted children is involved, are also
deleted, as well as empty packages. Then, CodeQuest simply reparses and stores
facts about the compilation units that have been recompiled by Eclipse.

One might argue that compilation units provide too coarse a level of gran-
ularity for reparsing. Indeed, in principle one might attempt to do this at the
level of class members, say, but keeping track of the relevant dependencies is
likely to be complex. Furthermore, object-oriented programs have rather small
compilation units. For the projects used in our experiments, the average number
of lines of code per compilation unit varies from 81 to 233 lines per unit (see
Table 1). That level of granularity, although pretty coarse, has proved to be very
workable for our experiments with a series of refactoring queries discussed in the
following section.



CodeQuest : Scalable Source Code Queries with Datalog 11

5 Experiments

In order to determine the performance characteristics – the usability, efficiency
and scalability properties of the CodeQuest system, we have performed a number
of experiments. We compare CodeQuest with two alternative approaches, namely
JQuery (a mature code querying system by Kris de Volder et al. [34, 24]), and
XSB which is an optimising implementation of Prolog.

The experiments can be divided into four categories:

– General queries: these are generally useful queries, of the kind one might
wish to run on any project. They include both recursive and non-recursive
queries. We shall use them to compare all three systems.

– Project specific queries: some examples of queries that are more spe-
cific and specialised for a particular project. It is our contention that such
queries, relating to style rules and API conventions, are often desirable and
necessitate a flexible code querying system beyond the capabilities of today’s
IDEs.

– Program understanding: program understanding is the most common use
of source code querying system. It typically requires a series of queries to be
run; here we take a series inspired by previous work on querying systems.

– Refactoring: this is the process of restructuring software to improve its
design but maintain the same functionality. Typically it involves a series of
queries to be executed and the appropriate changes applied to the source.
This experiment illustrates that our method of keeping the database up-to-
date (described in Sect. 4) is effective.

5.1 Experimental Setup

In our experiments we are going to compare the three versions of CodeQuest
(CTE, Proc1 and Proc2) on two different database systems (MS SQL and DB2),
with the well known source code querying tool JQuery. To rule out the possibility
that JQuery’s performance problems are due to the fact that it was written in
Java, we also compare against XSB, a state of the art optimising compiler for
tabled Prolog that is written in C. We have not written an interface between
XSB and Eclipse, however. Instead we modified the CodeQuest plugin to write
its facts to a text file that is then read in by the XSB interpreter. In summary,
there are eight different systems to compare: six versions of CodeQuest itself,
plus JQuery and XSB.

For our experiments, we shall use four open-source Java applications of differ-
ent size. The chosen projects range from very small one-man software projects
to huge industrial multi-team projects with many developers around the world
involved. Characteristics of the projects are summarised in the Table 1.

Most experiments were run on a Pentium IV 3.2GHz/HT machine with 1GB
of memory running Windows XP. The XSB numbers, however, were obtained
under Debian GNU/Linux with a quad Xeon 3.2Ghz CPU and 4GB of memory,
as we encountered memory violations with XSB when trying to load a large
number of facts on a machine with a lesser specification. The reader should



12 E. Hajiyev, M. Verbaere, and O. de Moor

therefore bear in mind that our experimental setup is giving an advantage to
XSB; as we shall see, that only strengthens our conclusions about scalability.

5.2 Running Experiments

Initial parsing. Before the queries can be run on a project it is parsed into a
database and the time required is shown in Table 2. For all four projects, the
time taken to build the relations in MSSQL is 5 to 7 times as much as it takes
to compile them in Eclipse. The factor does not increase with the size of the
project. For DB2, the situation is similar, but the factor is slightly higher (11
to 14). While this is a significant cost, it should be stressed that such complete
builds are rare. When changes are applied to the program, the database is up-
dated incrementally and usually there is no need for complete reparsing of the
project. We shall measure the cost of such incremental updates when discussing
queries for refactoring. We note that the cost of parsing in JQuery is very simi-
lar to that for CodeQuest , somewhere in between the MSSQL and DB2 versions.
However, JQuery is not able to parse Eclipse. We do not provide parsing times
for XSB, because as pointed out above, there we load facts indirectly, via a text
file produced with a modification of the CodeQuest Eclipse plugin.

The high initial parsing cost of code querying systems is only justified if
subsequent queries evaluate faster, and that is what we investigate next.

General queries. We start by considering three example queries, that represent
typical usage of a code querying tool. They are not specific to a particular project.

The first query is checking a common style rule, namely that there are no
declarations of non-final public fields. When such fields occur, we want to return
both the field F and the enclosing type T . As a Datalog clause, this query might
read as follows:

query1(T ,F ) :− type(T ), hasChild(T ,F ),field(F ),
hasStrModifier(F , ‘public’),not(hasStrModifier(F , ‘final’)).

The above query is non-recursive. A little more interesting is the second exam-
ple. Here, we wish to determine all methods M that write a field of a particular

Table 1. Summary information on benchmark Java projects

Application Description Number of
java files

Source
LOC

Source
Classes

Jakarta Regexp Java Regular Expression
package

14 3265 14

JFreeChart Java library for generating
charts

721 92916 641

abc +Polyglot extensible AspectJ compiler
+ framework

1644 133496 1260

Eclipse Open Source Java IDE 12197 1607982 10338



CodeQuest : Scalable Source Code Queries with Datalog 13

Table 2. Required parsing time for the Java projects (hh:mm:ss)

Application Compile
Relation parsing

(MSSQL/DB2/JQuery)
Ratio (parse/compile)

(MSSQL/DB2/JQuery)
Jakarta Regexp 00:00:01 00:00:07/00:00:12/00:00:06 07/12/06
JFreeChart 00:00:15 00:01:29/00:03:25/00:02:35 06/14/10
abc (+Polyglot) 00:00:28 00:02:41/00:06:12/00:04:45 06/13/10
Eclipse 00:09:23 00:44:45/01:34:46/—:—:— 05/11/—

type, say T . In fact, fields whose type is a subtype of T qualify as well. We
therefore specify:

query2(M ,T ) :− method(M ),writes(M ,F ), hasType(F ,FT ),
hasSubtypeStar(T ,FT ).

Here the main relation of interest is hasSubtypeStar(T ,FT ), which relates a
type T to its subtype FT . It is defined as:

hasSubtypeStar(T ,T ) :− type(T ).
hasSubtypeStar(T ,S ) :− hasSubtypePlus(T ,S ).

where hasSubtype and hasSubtypePlus are relations previously discussed in Sect. 2.
The third query is to find all implementations M 2 of an abstract method M 1.

Naturally Eclipse also provides a way of answering this query, and indeed it is
a good example of how those fixed facilities are subsumed by a general code
querying system. The query reads:

query3(M 1,M 2) :− hasStrModifier(M 1, ‘abstract’), overrides(M 2,M 1),
not(hasStrModifier(M 2, ‘abstract’)).

The definition of overrides does also make use of the recursively defined hasSub-
typePlus :

overrides(M 1,M 2) :− strongLikeThis(M 1,M 2),
hasChild(C1,M 1), hasChild(C2,M 2),
inheritableMethod(M 2), hasSubtypePlus(C2,C1).

In words, we first check that M 1 has the same signature and visibility as M 2,
since a protected method (say) cannot override a public one. We also check that
M 2 can actually be overridden (so it’s not static, for example). When these two
conditions are satisfied, we find the containing types of M 1 and M 2, and check
that one is a subtype of the other.

Let us now consider different systems and their properties. Figure 1 presents
the evaluation times of each system for the three queries. For each query, we
show eight different ways of evaluating it [systems are listed in the legend of the
chart in the same top-down order as the corresponding bars apper in left-right
order; in the colour version of this paper, the correspondence is further enhanced



14 E. Hajiyev, M. Verbaere, and O. de Moor

RegExp

0.00

0.01

0.10

1.00

10.00

query1 query2 query3

XSB

M SSQL CTE

IBM DB2 CTE

M SSQL Proc1

IBM DB2 Proc1

M SSQL Proc2

IBM DB2 Proc2

JQuery 

JFreeChart

0.00

0.01

0.10

1.00

10.00

100.00

query1 query2 query3

XSB

M SSQL CTE

IBM DB2 CTE

M SSQL Proc1

IBM DB2 Proc1

M SSQL Proc2

IBM DB2 Proc2

JQuery 

Eclipse

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

query1 query2 query3

XSB

M SSQL CTE

IBM DB2 CTE

M SSQL Proc1

IBM DB2 Proc1

M SSQL Proc2

IBM DB2 Proc2

JQuery (missing)

 
Fig. 1. General queries evaluation times

via colours]. On the vertical axis, we show the time taken in seconds – note that
this is log-scale.

CodeQuest vs. JQuery. Most of the CodeQuest implementations proved to be
more efficient than JQuery, for each of the three queries. The bars for JQuery
are missing for the last graph because it was impossible to parse Eclipse with
JQuery. It appears, therefore, that while JQuery is very effective for medium
size projects, it does not scale to large projects. That is in line with the design
goals of JQuery, namely to provide a light-weight, pure Java Eclipse plugin.

CodeQuest vs. XSB. It is natural to wonder whether a more efficient implemen-
tation of tabled Prolog such as XSB would yield a system similar to JQuery
but with better efficiency characteristics. Our experiments confirm that this is
indeed the case, and that Prolog outperforms CodeQuest . Notice, however, the
exponential growth of time (with respect to the size of the project) required by
XSB. Furthermore we have observed that XSB strongly depends on main mem-
ory, and for large projects that memory consumption becomes prohibitive (as we



CodeQuest : Scalable Source Code Queries with Datalog 15

shall see in a query involving the call graph below). It therefore lacks scalability,
whereas CodeQuest shows much slower growth of time against project size, for
each of the queries. It is also important to mention that programs and queries
for the XSB system were optimised by hand (distinguishing modes, appropri-
ate use of cut, and tabling), so that their evaluation occurs in the best possible
order and excludes all unnecessary computations. Less carefully optimised pro-
grams for XSB require considerably more time to execute as will be shown in
the following subsection.

CTEs vs. Procs. We now turn to the comparison of the two implementations of
recursion that we described in Sect. 3: via a built-in feature of the DBMS, namely
Common Table Expressions, or via stored procedures. There is a remarkable
difference in evaluation times between these two approaches. CodeQuest Proc1
and Proc2 have slightly worse performance than CodeQuest CTEs for all non-
recursive queries as well as for recursive queries over small code bases. The
situation changes significantly, however, with the recursive queries over large
amounts of source code. It seems that it is the creation of intermediate tables
in the stored procedures approach that causes a certain overhead. But the least
fixpoint computation algorithm, implemented using stored procedures, proves to
be more efficient, as we see in computationally expensive queries.

Proc1 vs. Proc2. Proc2 has an optimised algorithm for computing the fixpoint of
recursively defined relations. It is therefore equivalent to Proc1 for non-recursive
queries, and it should be more efficient for recursive ones. The downside of the
Proc2 algorithm is that it extensively creates and drops temporary tables. Thus,
there is no efficiency gain for recursive queries over small size projects. Somewhat
to our surprise, Proc2 also does worse than Proc1 on top of DB2, contrary to the
situation for MSSQL. In more complex queries, for instance those that involve
the call graph (discussed below), Proc2 pays off even on DB2.

MSSQL vs. IBMDB2. It is clear from the graphs that usually the CodeQuest
implementation on top of IBM DB2 is less efficient than on top of MS SQL
Server. We have found that this may be somewhat sensitive to the exact form of
the SQL that is produced by our compiler from Datalog. For instance, in DB2 it
is better to avoid generating not exists clauses in the code. Furthermore, we note
that: 1) we did not resort to the help of a professional database administrator
and it is very likely that the database systems we were using could be tuned to
increase performance significantly; 2) creation and deletion operations in IBM
DB2 are generally more expensive than in MS SQL Server and since they are
extensively used in the Proc2 algorithm, the performance gain through a lesser
number of joins was overwhelmed by the performance loss of a bigger number of
creation/deletion of temporary tables. Nevertheless, both implementations prove
that the concept of building a query system with a RDBMS at its backend is
both efficient and scalable.

Project specific queries. While one can spend a lot of time trying to come up
with the best possible optimisations for a general query, it is not quite possible



16 E. Hajiyev, M. Verbaere, and O. de Moor

when queries are written frequently and are specific to different projects. In this
subsection we want to run exactly such experiments.

Most of the coding style constraints in an object oriented software system are
implicit and cannot be enforced by means of the programming language. There-
fore it is desirable to run queries to ensure that such constraints are satisfied.
abc is an AspectJ compiler based on an extensible compiler framework called
Polyglot [10,35]. One of the coding style constraints in Polyglot is the following:
every concrete AST class (an AST class is one that implements the Node inter-
face), that has a child (a field which is also subtype of Node) must implement a
visitChildren method. In order to check whether that constraint holds, we write
the following query:

existsVChMethod(C ) :− class(C ), hasChild(C ,M ),method(M ),
hasName(M , ‘visitChildren’).

nodeInterface(N ) :− interface(N ), hasName(N , ‘Node’).
concreteClass(C ) :− class(C ),not(hasStrModifier(C , ‘abstract’)).
query1(C ) :− nodeInterface(N ), concreteClass(C ),

hasSubtypePlus(N ,C ), hasChild(C ,F ), hasType(F , T ),
hasSubtypeStar(N ,T ),not(existsVChMethod(C )).

The existsVChMethod(C ) looks up all the classes that have methods called
visitChildren. The nodeInterface(N ) respectively finds the interface with the
name Node and concreteClass(C ) all the classes that are not abstract. The final
part of the query is read as follows: find all concrete classes that are subtypes of
type Node and have a child (field) of the same type, but there exists no method
called visitChildren in that class.

The evaluation times of this query are given in Fig. 2(query1). In contrast to
the general queries, we did not perform any complex hand-tuning of the Prolog
queries. An obvious equivalent of the CodeQuest query has been taken.

The next query also applies to abc and the Polyglot framework. We would
like to find all the methods that are not called (transitively) from abc’s main
method. We expect to receive a list of methods that are defined to be called
externally, or perhaps via reflection. Potentially we may encounter dead code
here if a function neither reachable from the main nor from any of the extending
modules.

abc

0.001

0.01

0.1

1

10

100

1000

query1

XSB

JQuery

M SSQL CTE

IBM DB2 CTE

M SSQL Proc1

IBM DB2 Proc1

M SSQL Proc2

IBM DB2 Proc2

 

0.001

0.01

0.1

1

10

100

1000

query2

XSB

JQuery 

M SSQL Proc1

IBM DB2 Proc1

M SSQL Proc2

IBM DB2 Proc2

M SSQL Proc1 (CF)

IBM DB2 Proc1 (CF)

M SSQL Proc2 (CF)

IBM DB2 Proc2 (CF)

Fig. 2. Project specific queries evaluation times



CodeQuest : Scalable Source Code Queries with Datalog 17

polyCall(M 1,M 2) :− calls(M 1,M 2).
polyCall(M 1,M 2) :− calls(M 1,M 3), overrides(M 2,M 3).

polyCallPlus(X ,Y ) :− polyCall(X ,Y ).
polyCallPlus(X ,Z ) :− polyCallPlus(X ,Y ), polyCall(Y ,Z ).

mainCalls(Dummy) :− method(Main), hasName(Main, ‘main’),
polyCallPlus(Main,Dummy).

query2(Dummy) :− method(Dummy),not(mainCalls(Dummy)).

We were unable to make this query evaluate successfully on systems other
than CodeQuest with closure fusion (on the DB2 version, it takes 13 seconds).
As the main purpose of this paper is to evaluate CodeQuest relative to other
systems, we decided to run the query on abc sources only, excluding Polyglot.
Naturally that means we do not catch call chains that occur via Polyglot, so the
results of the query will be highly inaccurate.

In the results (Fig. 2(query2)) we have explicitly included query evaluation
time for CodeQuest with and without the closure fusion optimisation. It is evident
that this optimisation is highly effective for this example. Another important
detail to mention here is that recursive relations such as polyCallPlus may have
loops. For example, if method m1 (transitively) calls method m2 and method m2
again (transitively) calls method m1. Computation of recursive relations of this
kind is almost impossible using Common Table Expressions in SQL. There are
various work-arounds to this problem, but none of them is efficient and general.
This is the reason why the numbers for the CTEs based implementation of
CodeQuest are missing for this query. Finally, we note that for the XSB query,
we did have to apply some obvious optimisations by hand to make it terminate
at all, even when the code base was reduced by excluding Polyglot.

Program understanding. The most typical usage of a source code querying
tool is undoubtedly program understanding. In this subsection we give an ex-
ample of a program exploration scenario that involves a series of queries to be
run consecutively as a programmer browses through the source. This scenario
was loosely inspired by an earlier paper on JQuery [24].

JFreeChart is a free Java library for generating charts. Suppose a user would
like to find out when the graph plots are redrawn. They might start by listing
the packages and the classes defined in each one:

query1(P ,T ) :− package(P), hasChild(P ,CU ), hasChild(CU ,T ), type(T ).

The user immediately spots the plot package where all kinds of plots are
defined. Drawing is a standard operation and will be most likely defined in the
supertype of all plots. Thus, he can pick any of the plot-types and search for its
supertype:

query2(SuperT ) :− type(PickedType), hasSubtypePlus(SuperT ,PickedType).



18 E. Hajiyev, M. Verbaere, and O. de Moor

JFreeChart

0.001

0.01

0.1

1

10

100

query1 query2 query3 query4

M SSQL CTE

IBM DB2 CTE

M SSQL Proc1

IBM DB2 Proc1

M SSQL Proc2

IBM DB2 Proc2

JQuery 

 
Fig. 3. Program understanding queries evaluation times

where PickedType is the type, chosen by the programmer. The result of this
query will find an abstract Plot class. To list all its methods, the user defines
the following query:

query3(M ) :− hasChild(AbstractPlotType,M ),method(M ).

In the list the user finds an abstract method draw and he can finally define a
query to spot all calls to this method or any overriding method in an extending
class:

query4(M 2) :− hasChild(C2,M 2), polyCalls(M 2,DrawM ).
query4(M 2) :− hasChild(C2,M 2), polyCalls(M 2,TargetM ),

overrides(TargetM ,DrawM ).

Both JQuery and RDBMSs support some form of caching. As the cache warms
up it requires typically less time to evaluate subsequent queries. This is especially
crucial factor for JQuery since it is known to have strong caching strategies and
run much faster on a warm cache. Figure 3 presents the comparison graph for
the above scenario for JQuery and CodeQuest .

The CodeQuest system again shows better results. In retrospect, this is not
that surprising, since RDBMSs also traditionally possess caching mechanisms to
limit the number of disk I/Os. In addition to that, as described in Sect. 7 further
optimisations can be included in the CodeQuest system itself.

Refactoring. The following refactoring scenario is inspired by a feature request
for JFreeChart [40]. The task is to create an interface for combined plot classes
and make it declare methods common to these classes, notably getSubplots().
We compare JQuery with the Proc2 version of CodeQuest . We start by writing
a query to locate the combined plot classes:

classesToRefactor(C ) :− class(C ), hasName(C ,Name),
re match(‘%Combined%’,Name),
declaresMethod(C ,M ), hasName(M , ‘getSubplots’).



CodeQuest : Scalable Source Code Queries with Datalog 19

In words, this query looks for a class whose name contains the substring Com-
bined, which furthermore declares a method named getSubplots. Evaluation of
this query yields four elements: CombinedDomainCategoryPlot, CombinedDo-
mainXYPlot, CombinedRangeCategoryPlot and CombinedRangeXYPlot.

We perform the first refactoring, by making the four classes implement a new
interface CombinedPlot that declares a single method getSubplots(). This refac-
toring involves a sequence of operations in Eclipse, in particular the application
of built-in refactorings such as ‘Extract Interface’ and ‘Use Supertype Where
Possible’ as well as some minor hand coding.

The next step is to look for other methods than getSubplots(), common to
the four refactored classes, whose declarations could be pulled up in the new
interface. A query for this task reads as follows:

overridingMethod(M ) :− overrides(M ,N ).
declares(C ,S ) :− class(C ), declaresMethod(C ,M ),

hasSignature(M ,S ),not(overridingMethod(M )).

declarations(S ) :− class(C1), hasName(C1, ‘CombinedDomainCategoryPlot’),
class(C2), hasName(C2, ‘CombinedDomainXYPlot’),
class(C3), hasName(C3, ‘CombinedRangeCategoryPlot’),
class(C4), hasName(C4, ‘CombinedRangeXYPlot’),
declares(C1,S ), declares(C2,S ),
declares(C3,S ), declares(C4,S ).

In words, we look for signatures of methods that are defined in all four classes
of interest, which furthermore do not override some method in a supertype. Of
course one might wish to write a more generic query, but as this is a one-off exam-
ple, there is no need. The query yields two method signatures, double getGap()
and void setGap(double), which are related to the logic of the new interface.
Hence, we perform a second refactoring to include these declarations in Com-
binedPlot.

This scenario provides a tiny experiment for measuring the efficiency of our in-
cremental update mechanism and compare it to the one implemented in JQuery.
An important difference between these two update mechanisms is the following.
In CodeQuest , the update runs as a background task just after any incremental
compilation is performed by Eclipse. In JQuery, the update occurs only when

 
JFreeChart 

0

2

4

6

8

10

Executing
query1 Inc. update 1 Executing

query2
Inc. update 2

JQuery 
CodeQuest

0 
20 
40 
60 
80 

100 
120 
140 
160 

Parsing

Fig. 4. Query evaluation and incremental update times for the Refactoring example



20 E. Hajiyev, M. Verbaere, and O. de Moor

user explicitly executes the update action. The results are shown in Fig. 4. The
sequence of measurements consists of the initial parsing time (which neither sys-
tem needs to repeat after the first loading of the project), followed by two queries
and updates.

In the given scenario the update times of the two systems are comparable.
However, this refactoring example requires an update of very few facts. JQuery’s
performance considerably deteriorates when performing a larger change since
it involves the deletion and recreation of many tiny files on the hard drive.
For instance, if we apply the Rename rafactoring to the org.jfree.data.general
package, update of 185 files will be required. It takes JQuery longer to update
its factbase (over 5 mins) than to reparse the entire project again, whereas
CodeQuest completes the update within 30 secs.

5.3 Effect of RDBMS Optimiser

Relational database systems not only enable code querying tools to be scalable
for projects of virtually any size; another advantage lies in the powerful query
optimisers, based on over forty years of intensive research. In order to illustrate
the effect of the RDBMS optimiser we ran the project specific queries again, but
this time with the optimiser switched off. query1 (coding style constraints) was
evaluated using CTEs based implementation of CodeQuest and query2 (methods
not transitively called from main) using Proc2. The evaluation time of query1
with and without the internal IBM DB2 SQL optimiser is 2.7 and 5 seconds
respectively. The difference becomes even more tangible for query2: 3.8 and 404
seconds respectively. Clearly it does not make sense for a code querying tool to
try to re-implement all the work on optimisation already done for databases.

5.4 Memory Usage

We conclude this experimental section with a few brief remarks about mem-
ory usage. Both JQuery and XSB are memory hungry, and simply crash when
there is not sufficient main memory available. Simple experiments confirm this
behaviour: indeed, JQuery is unable to parse the source of Eclipse, and in XSB
we could load it only under Debian Sid on a machine with 4GB of RAM. This
sharply contrasts with the memory behaviour of database systems: these will
use main memory where available, but performance is scalable. Because these
results are entirely as expected, we do not present detailed numbers.

5.5 Summary

In this section we ran a variety of tests to measure performance of CodeQuest and
to compare it against other similar systems. CodeQuest proved to be at least as ef-
ficient as JQuery in all case studies. Furthermore, simple techniques for storing in-
termediate results in temporary tables instead of recomputing them in every sub-
sequent query could be added to already existent caching mechanisms of RDBMSs
which would further leverage their performance. Of course that increased effi-
ciency comes at the price of using a relational database system — there is much



CodeQuest : Scalable Source Code Queries with Datalog 21

merit in JQuery’s lightweight approach, which does not require any additional
software components.

By today’s standards, considering both parameters of the hardware systems at
hand and the size of software projects that require querying, CodeQuest is defi-
nitely competitive with XSB. The memory based computations of an optimised
Prolog program are fast but not scalable. Non-optimised Prolog queries are clearly
less efficient than the same queries evaluated with CodeQuest .
Today’s industrial databases are able to evaluate recursive queries as described
in the SQL99 standard. However, it appears that built-in recursion is often less
efficient than custom algorithms using stored procedures. Furthermore, in some
cases the built-in facilities do not work at all, in particular when an infinite num-
ber of duplicate entries might be generated in intermediate results. So, the choice
between different implementations of CodeQuest with the tested RDBMS comes
down to Proc1 and Proc2. Formally Proc2 is an optimised variant of Proc1 and
should therefore be more preferable. But in practice it requires creating and drop-
ping temporary tables during each iteration step. If a database system has the cost
of creation and dropping tables higher than a certain limit, then the optimisation
becomes too expensive. In our experiments, Proc2 is more efficient than Proc1 in
most of the queries when used in MS SQL Server and vice-versa when used in IBM
DB2. More generally, code generation strategy (CTE, Proc1 or Proc2) is tightly
coupled with an internal RDBMS SQL optimiser. As a consequence of that, the
choice of the appropriate CodeQuest implementation depends not only on the ex-
act type of queries that a user may want to run, but also on the RDBMS and in
particular on the SQL optimiser being used to run produced SQL code.

6 Related Work

There is a vast body of work on code queries, and it is not possible to cover
all of it in a conference paper. We therefore concentrate on those systems that
have provided an immediate inspiration for the design and implementation of
CodeQuest . First we focus on work from the program maintenance community,
then we discuss related research in the program analysis community, and we
conclude with some recent developments that are quite different to CodeQuest ,
and could be seen as alternative approaches to address the same problems.

Storing the program in a database. In the software maintenance community,
there is a long tradition of systems that store the program in a database. One
of the earliest proposals of this kind was Linton’s Omega system [32]. He stores
58 relations that represent very detailed information about the program in the
INGRES database system. Queries are formulated in the INGRES query lan-
guage QUEL, which is quite similar to SQL. There is no way to express recursive
queries. Linton reports some performance numbers that indicate a poor response
time for even simple queries. He notes, however, that future query optimisers
ought to do a lot better; our experiments confirm that prediction.

The next milestone in this line of work is the C Information Abstraction sys-
tem, with the catchy acronym CIA [14]. CIA deviates from Omega in at least two



22 E. Hajiyev, M. Verbaere, and O. de Moor

important ways. First, based on the poor performance results of Omega, CIA
only stores certain relations in the database, to reduce its size. Second, it aims
for an incremental construction of the database — although the precise mech-
anism for achieving that is not detailed in [14], and there are no performance
experiments to evaluate such incremental database construction. In CodeQuest
we also store only part of the program, but it is our belief that modern data-
base systems can cope with much larger amounts of data. Like CIA, we provide
incremental updating of the database, and the way to achieve that efficiently
was described in Sect. 4. CIA does not measure the effects of the optimiser pro-
vided by a particular database system, and in fact it is claimed the system is
independent of that choice.

Despite their disadvantages, Omega and CIA have had quite an impact on
industrial practice, as numerous companies now use a database system as a code
repository, e.g. [13, 42].

Logic query languages. Both Omega and CIA inherited their query language from
the underlying database system. As we have argued in Sect. 2, recursive queries,
as provided in a logic programming language, are indispensable. Indeed, the XL
C++ Browser [26] was one of the first to realise Prolog provides a nice notation
to express typical queries over source code. The implementation is based directly
on top of a Prolog system, implying that all the facts are held in main memory.
As our experiments show, even with today’s vastly increased memory sizes, using
a state-of-the-art optimising compiler like XSB, this approach does not scale.

A particularly interesting attempt at overcoming the problem of expressive-
ness was put forward by Consens et al. [15]. Taking the search of graphs as its
primary focus, GraphLog presents a query language with just enough power to
express properties of paths in graphs, equivalent to a subset of Datalog, with a
graphical syntax. In [15] a convincing case is made that the GraphLog queries
are easier to write than the Prolog equivalent, and the authors state: “One of
our goals is to have such implementations produced automatically by an opti-
mizing GraphLog to Prolog translator.” Our experiments show that to attain
scalability, a better approach is to map a language like GraphLog to a relational
database system.

Also motivated by the apparent inadequacy of relational query languages as
found in the database community, Paul and Prakash revisited the notion of
relational algebra [36]. Their new relational algebra crucially includes a closure
operator, thus allowing one to express the traversals of the type hierarchy, call
graph and so on that code queries require. The implementation of this algebra is
done on top of the Refine system, again with an in-memory representation of the
relevant relations [8]. Paul and Prakash report that hand-written queries in the
Refine language typically evaluate a factor 2 to 10 faster than their declarative
formulations. CodeQuest takes some of its inspiration from [36], especially in our
use of relational algebra to justify optimisations such as closure fusion. Of course
the connection between Datalog (our concrete syntax) and relational algebra
with a (generalised) closure operator has been very thoroughly explored in the
theoretical database community [7].



CodeQuest : Scalable Source Code Queries with Datalog 23

Also spurred on by the desire to have a convenient, representation-independent
query language, Jarzabek proposed PQL, a Program Query Language [25]. PQL
contains quite detailed information on the program, to the point where it is
possible to formulate queries about the control flow graph. The query syntax
is akin to that of SQL, but includes some operators for graph traversal. While
SQL syntax undoubtedly has the benefit of being familiar to many developers,
we feel that advantage is offset by its verbosity. Jarzabek points out that PQL
admits many different implementations, and he describes one in Prolog. If so
desired, it should be possible to use CodeQuest as a platform for implementing
a substantial subset of PQL.

Another logic programming language especially for the purpose of source code
queries is ASTLog, proposed by Crew [16]. Unlike PQL, it is entirely focussed
on traversing the syntax tree, and there is no provision for graph manipulation.
That has the advantage of a very fast implementation, and indeed ASTLog was
used within Microsoft on some quite substantial projects.

The immediate source of inspiration for our work was JQuery, a source-code
querying plugin for Eclipse [24, 34]. JQuery represents a careful synthesis of
all these previous developments. It uses a logic programming language named
TyRuBa [4]. This is similar to Prolog, but crucially, it employs tabled reso-
lution for evaluating queries, which avoids many of the pitfalls that lead to
non-termination. Furthermore, JQuery has a very nice user interface, where the
results of queries can be organised in hierarchical views. Finally, it allows in-
cremental building of the fact base, and storing them on disk during separate
runs of the query interpreter. The main differences with CodeQuest are that
TyRuBa requires mode annotations on predicates, and the completely different
evaluation mechanism in CodeQuest . As our experiments show, that different
evaluation mechanism is more scalable. The increased efficiency comes however
at the price of less expressive power, as TyRuBa allows the use of data struc-
tures such as lists in queries, whereas CodeQuest does not. In JQuery, such data
structures are used to good effect in building up the graphical views of query
results. We feel this loss of expressiveness is a price worth paying for scalability.

Datalog for program analysis. The idea of using a tabled implementation of
Prolog for the purpose of program analysis is a recurring theme in the logic
programming community. An early example making the connection is a paper
by Reps [38]. It observes that the use of the ‘magic sets’ transformation [12] (a
generalised form of our closure fusion) helps in deriving demand-driven program
analyses from specifications in Datalog.

A more recent paper in this tradition is by Dawson et al. [17], which gives
many examples, and evaluates their use with the XSB system. We note that
many of the examples cited there can be expressed in Datalog, without queries
that build up data structures. As it is the most mature piece of work in applying
logic programming to the realm of program analysis, we decided to use XSB
for the experiments reported in Sect. 5. Our focus is not on typical dataflow
analyses, but instead on source code queries during the development process.



24 E. Hajiyev, M. Verbaere, and O. de Moor

Very recently Martin et al. proposed another PQL (not to be confused with
Jarzabek’s language discussed above), to find bugs in compiled programs [33,31].
Interestingly, the underlying machinery is that of Datalog, but with a completely
different implementation, using BDDs to represent solution sets [43]. Based on
their results, we believe that a combination of the implementation technology
of CodeQuest (a relational database system) and that of PQL (BDDs) could
be very powerful: source code queries could be implemented via the database,
while queries that require deep semantic analysis might be mapped to the BDD
implementation.

Other code query languages. Aspect-oriented programming represents a sepa-
rate line of work in code queries: here one writes patterns to find all places in
a program that belong to a cross-cutting concern. The most popular aspect-
oriented programming language, AspectJ, has a sophisticated language of such
patterns [28]. In IBM’s Concern Manipulation Environment, that pattern lan-
guage is deployed for interactive code queries, and augmented with further prim-
itives to express more complex relationships [41]. We subscribe to the view that
these pattern languages are very convenient for simple queries, but they lack the
flexibility needed for sophisticated queries of the kind presented in this paper.

It comes as no surprise that the work on identifying cross-cutting concerns
and code querying is converging. For example, several authors are now proposing
that a new generation of AspectJ might use a full-blown logic query language
instead [22,21]. The results of the present paper seem to suggest Datalog strikes
the right balance between expressiveness and efficiency for this application also.

To conclude, we would like to highlight one effort in the convergence of aspects
and code queries, namely Magellan. Magellan employs an XML representation
of the code, and XML queries based on XQuery [19, 37]. This is natural and
attractive, given the hierarchical nature of code; we believe it is particularly
suitable for queries over the syntax tree. XQuery is however rather hard to
optimise, so it would be difficult to directly employ our strategy of relying on
a query optimiser. As the most recent version of Magellan is not yet publicly
available, we were unable to include it in our experimental setup. An interesting
venue for further research might be to exploit the fact that semi-structured
queries can be translated into Datalog, as described by Abiteboul et al. [6]
(Chapter 6).

7 Conclusion

In this paper, we have demonstrated that Datalog, implemented on top of a
modern relational database system, provides just the right balance between ex-
pressive power and scalability required for a source code querying system. In
particular, recursion allows an elegant expression of queries that traverse the
type hierarchy or the call graph. The use of a database system as the backend
yields the desired efficiency, even on a very large code base.

Our experiments also indicate that even better performance is within reach.
A fairly simple, direct implementation of recursion via stored procedures often



CodeQuest : Scalable Source Code Queries with Datalog 25

outperforms the built-in facilities for recursion provided in today’s database
systems. More careful implementation of recursion, especially in conjunction
with the query optimiser, is therefore a promising venue for further work.

At present the queries that can be expressed with CodeQuest are constrained
by the relations that are stored in the database; we have closely followed JQuery
in that respect, in order to make the experimental comparison meaningful. It
is, in particular, impossible to phrase queries over the control flow of the pro-
gram. There is however nothing inherently difficult about storing the relevant
information. In fact, we plan to make the choice of relations configurable in
CodeQuest , so the database can be adapted to the kind of query that is desired
for a particular project.

We are particularly keen to see CodeQuest itself used as an engine for other
tools, ranging from different query languages through refactoring, to pointcut
languages for aspect-orientation. At present we are in the process of providing
CodeQuest with a robust user interface; once that is complete, it will be released
on the project website [5].

Acknowledgements

Elnar Hajiyev would like to thank Shell corporation for the generous support that
facilitated his MSc at Oxford during 2004-5, when this research was started. We
would also like to thank Microsoft Research (in particular Dr. Fabien Petitcolas)
for its support, including a PhD studentship for Mathieu Verbaere. Finally, this
research was partially funded through EPSRC grant EP/C546873/1. Members
of the Programming Tools Group at Oxford provided helpful feedback at all
stages of this research. We are grateful to Kris de Volder for many interesting
discussions related to the topic of this paper.

References

1. Eclipse. http://www.eclipse.org.
2. JQuery. http://www.cs.ubc.ca/labs/spl/projects/jquery/.
3. XSB. http://xsb.sourceforge.net/.
4. The TyRuBa metaprogramming system. http://tyruba.sourceforge.net/.
5. CodeQuest . http://progtools.comlab.ox.ac.uk/projects/codequest/.
6. Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations

to Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.
7. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.
8. Leonor Abraido-Fandino. An overview of Refine 2.0. In Procs. of the Second Inter-

national Symposium on Knowledge Engineering and Software Engineering, 1987.
9. Krzysztof R. Apt and Roland N. Bol. Logic programming and negation: A survey.

Journal of Logic Programming, 19/20:9–71, 1994.
10. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-

nifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: An extensible AspectJ compiler. In Aspect-Oriented Soft-
ware Development (AOSD), pages 87–98. ACM Press, 2005.

http://www.eclipse.org
http://www.cs.ubc.ca/labs/spl/projects/jquery/
http://xsb.sourceforge.net/
http://tyruba.sourceforge.net/
http://progtools.comlab.ox.ac.uk/projects/codequest/


26 E. Hajiyev, M. Verbaere, and O. de Moor

11. Roland Backhouse and Paul Hoogendijk. Elements of a relational theory of
datatypes. In Bernhard Möller, Helmut Partsch, and Stephen Schuman, editors,
Formal Program Development, volume 755 of Lecture Notes in Computer Science,
pages 7–42. Springer Verlag, 1993.

12. François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
sets and other strange ways to implement logic programs. In Proceedings of the Fifth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March
24-26, 1986, Cambridge, Massachusetts, pages 1–16. ACM, 1986.

13. Cast. Company website at: http://www.castsoftware.com.
14. Yih Chen, Michael Nishimoto, and C. V. Ramamoorthy. The C information ab-

straction system. IEEE Transactions on Software Engineering, 16(3):325–334,
1990.

15. Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing and query-
ing software structures. In ICSE ’92: Proceedings of the 14th international con-
ference on Software engineering, pages 138–156, New York, NY, USA, 1992. ACM
Press.

16. Roger F. Crew. ASTLOG: A language for examining abstract syntax trees. In
USENIX Conference on Domain-Specific Languages, pages 229–242, 1997.

17. Stephen Dawson, C. R. Ramakrishnan, and David Scott Warren. Practical program
analysis using general purpose logic programming systems. In ACM Symposium on
Programming Language Design and Implementation, pages 117–126. ACM Press,
1996.

18. Henk Doornbos, Roland Carl Backhouse, and Jaap van der Woude. A calculational
approach to mathematical induction. Theoretical Computer Science, 179(1–2):103–
135, 1997.

19. Michael Eichberg, Michael Haupt, Mira Mezini, and Thorsten Schäfer. Compre-
hensive software understanding with sextant. In ICSM ’05: Proceedings of the
21st IEEE International Conference on Software Maintenance (ICSM’05), pages
315–324, Washington, DC, USA, September 2005. IEEE Computer Society.

20. Hervé Gallaire and Jack Minker. Logic and Databases. Plenum Press, New York,
1978.

21. Stefan Hanenberg Günter Kniesel, Tobias Rho. Evolvable pattern implementations
need generic aspects. In Proc. of ECOOP 2004 Workshop on Reflection, AOP and
Meta-Data for Software Evolution, pages 116–126. June 2004.

22. Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In 2nd International Conference on Aspect-oriented Soft-
ware Development, pages 60–69. ACM Press, 2003.

23. Elnar Hajiyev. CodeQuest: Source Code Querying with Datalog. MSc The-
sis, Oxford University Computing Laboratory, September 2005. Available at
http://progtools.comlab.ox.ac.uk/projects/codequest/.

24. Doug Janzen and Kris de Volder. Navigating and querying code without getting
lost. In 2nd International Conference on Aspect-Oriented Software Development,
pages 178–187, 2003.

25. Stan Jarzabek. Design of flexible static program analyzers with PQL. IEEE Trans-
actions on Software Engineering, 24(3):197–215, 1998.

26. Shahram Javey, Kin’ichi Mitsui, Hiroaki Nakamura, Tsuyoshi Ohira, Kazu Yasuda,
Kazushi Kuse, Tsutomu Kamimura, and Richard Helm. Architecture of the XL
C++ browser. In CASCON ’92: Proceedings of the 1992 conference of the Centre
for Advanced Studies on Collaborative research, pages 369–379. IBM Press, 1992.

27. Karel Ježek and Vladimı́r Toncar. Experimental deductive database. In Workshop
on Information Systems Modelling, pages 83–90, 1998.

http://www.castsoftware.com
http://progtools.comlab.ox.ac.uk/projects/codequest/


CodeQuest : Scalable Source Code Queries with Datalog 27

28. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen, editor, Eu-
ropean Conference on Object-oriented Programming, volume 2072 of Lecture Notes
in Computer Science, pages 327–353. Springer, 2001.

29. Bronislaw Knaster. Un théorème sur les fonctions d’ensembles. Annales de la
Societé Polonaise de Mathematique, 6:133–134, 1928.

30. Kemal Koymen. A datalog interface for SQL (abstract). In CSC ’90: Proceedings
of the 1990 ACM annual conference on Cooperation, page 422, New York, NY,
USA, 1990. ACM Press.

31. Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzin-
tars Avots, Michael Carbin, and Christopher Unkel. Context-sensitive program
analysis as database queries. In PODS ’05: Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
1–12, New York, NY, USA, 2005. ACM Press.

32. Mark A. Linton. Implementing relational views of programs. In Peter B. Hender-
son, editor, Software Development Environments (SDE), pages 132–140, 1984.

33. Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors
using PQL: a program query language. In Proceedings of the 20th annual ACM
SIGPLAN OOPSLA Conference, pages 365–383, 2005.

34. Edward McCormick and Kris De Volder. JQuery: finding your way through tangled
code. In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN OOPSLA
conference, pages 9–10, New York, NY, USA, 2004. ACM Press.

35. Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
extensible compiler framework for Java. In 12th International Conference on Com-
piler Construction, volume 2622 of Lecture Notes in Computer Science, pages 138–
152, 2003.

36. Santanu Paul and Atul Prakash. Querying source code using an algebraic query
language. IEEE Transactions on Software Engineering, 22(3):202–217, 1996.

37. Magellan Project. Web page at: http://www.st.informatik.tu-darmstadt.de/
static/pages/projects/Magellan/XIRC.html. 2005.

38. Thomas W. Reps. Demand interprocedural program analysis using logic databases.
In Workshop on Programming with Logic Databases, ILPS, pages 163–196, 1993.

39. Konstantinos Sagonas, Terrance Swift, and David S. Warren. XSB as an efficient
deductive database engine. In SIGMOD ’94: Proceedings of the 1994 ACM SIG-
MOD international conference on Management of data, pages 442–453, New York,
NY, USA, 1994. ACM Press.

40. Eric Sword. Create a root combinedplot interface. JFreeChart feature request:
http://sourceforge.net/tracker/index.php?func=detail&aid=1234995&
group_id=15494&atid=365494, 2005.

41. Peri Tarr, William Harrison, and Harold Ossher. Pervasive query support in the
concern manipulation environment. Technical Report RC23343, IBM Research
Division, Thomas J. Watson Research Center, 2004.

42. Michael Thompson. Bluephoenix: Application modernization technology audit.
Available at: http://www.bitpipe.com/detail/RES/1080665824_99.html., 2004.

43. John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using datalog
and binary decision diagrams for program analysis. In Kwangkeun Yi, editor,
Proceedings of the 3rd Asian Symposium on Programming Languages and Systems,
volume 3780, pages 97–118. Springer-Verlag, November 2005.

http://www.st.informatik.tu-darmstadt.de/
static/pages/projects/Magellan/XIRC.html
http://sourceforge.net/tracker/index.php?func=detail&aid=1234995&
group_id=15494&atid=365494
http://www.bitpipe.com/detail/RES/1080665824_99.html

	Introduction 
	Contributions
	Paper Organisation

	Datalog 
	$CodeQuest$ Implementation 
	Datalog Implementation
	Querying Java Code

	Incremental Database Update 
	Experiments 
	Experimental Setup
	Running Experiments
	Effect of RDBMS Optimiser
	Memory Usage
	Summary

	Related Work 
	Conclusion 


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




