Dave Thomas (Ed.)

ECOOP 2006 -
Object-Oriented
Programming

20th European Conference
Nantes, France, July 2006
Proceedings

LNCS 4067

gl

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4067

Dave Thomas (Ed.)

ECOQOP 2006 —
Object-Oriented
Programming

20th European Conference
Nantes, France, July 3-7, 2006
Proceedings

@ Springer

Volume Editor

Dave Thomas

Bedarra Research Lab.

1 Stafford Road, Suite 421, Ottawa, Ontario, Canada K2H 1B9
E-mail: dave @bedarra.com

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.1, D.2, D.3, E3, C.2,K.4,J.1
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-35726-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35726-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11785477 06/3142 543210

Preface

The 20th Anniversary of ECOOP was held in Nantes, France, July 3-7, 2006. For
20 years ECOOP has been a leading conference in Europe. Each year ECOOP
brings together researchers, graduate students, and software practitioners to ex-
change ideas, progress, and challenges. The conference covered the full spectrum
of the field with many sessions to accommodate the varied interests of the partici-
pants including outstanding invited speakers, refereed technical papers, tutorials,
workshops, demonstrations, and a poster session.

This year, the Program Committee received 162 submissions, covering the en-
tire spectrum of object-orientation: aspects, modularity and adaptability; archi-
tecture and patterns; components, frameworks and product lines; concurrency,
real-time and embedded; mobility and distribution; collaboration and workflow,
domain specific, dynamic, multi-paradigm and constraint languages; HCI and user
interfaces; language innovations; compilation and virtual machines; methodology,
process and practices; model engineering, design languages and transformations;
persistence and transactions; theoretical foundations; and tools. The PC commit-
tee accepted 20 papers for publication after a careful and thorough reviewing pro-
cess. Papers were evaluated based on significance, originality, and soundness.

Eric Jul, Chair of the Selection Committee, presented the Dahl-Nygaard Prize
to Erich Gamma, Richard Helm, Ralph Johnson, and (posthumously) to John
Vlissides, popularly known as the “Gang of Four.” Their significant practical
work on design patterns changed the vocabulary and best practices in our soft-
ware development.

Erich Gamma, Serge Abiteboul, and Ralph Johnson presented invited talks
which complimented the technical papers. A highlight of this 20th ECOOP was
the special anniversary invited panel that provided their perspectives on our field.
The invited talks and the special panel papers are published in the proceedings.

ECOOP 2006’s success was due to the dedication of many people. First 1
would like to thank the authors for submitting a high number of quality papers.
The selection of a subset of papers to be published from these took a lot of
careful reviewing and discussion. Secondly I would like to thank our invited
speakers and panelists for their contributions. They provided a rich context for
discussions and future directions. I would like to thank the members of the
Program Committee for their careful reviews, and for thorough and balanced
discussions during the selection process, which was held February 2-3 in Paris. I
thank the General Chairs of the conference, Pierre Cointe and Jean Bézivin, for
organizing the conference and Antoine Beugnard and Thomas Ledoux, Tutorial
Co-chairs, Charles Consel and Mario Siidholt, Workshop Co-chairs, Julien Cohen
and Hervé Grall, Demonstration and Poster Co-chairs. Special thanks to Jean-
Francois Perrot for organizing the invited 20th anniversary panel.

June 2006 Dave Thomas

Organization

ECOOP 2006 was organized by the Computer Science Department of the Ecole
des Mines de Nantes, the University of Nantes, the CNRS LINA laboratory
and by INRIA, under the auspices of AITO (Association Internationale pour les
Technologies Objets), and in cooperation with ACM SIGPLAN and SIGSOFT.

O =il ing B 1NRIA

e

== ECOLE DES MINES DE MWANTES UNIVERSITE DE NANTES

—
CENTRE NATIONAL S (
DE LA RECHERCHE
SCIENTIFIQUE

Executive Committee

Program Chair
Dave Thomas (Bedarra Research Labs)

Organizing Chairs
Jean Bézivin (University of Nantes-LINA, INRIA)
Pierre Cointe (Ecole des Mines de Nantes-INRIA, LINA)

Organizing Committee

Workshops

Charles Consel (LABRI, INRIA)

Mario Siidholt (INRIA-Ecole des Mines de Nantes, LINA)
Tutorials

Antoine Beugnard (ENST Bretagne)

Thomas Ledoux (Ecole des Mines de Nantes-INRIA, LINA)
Webmaster and Registration Chair

Didier Le Botlan (CNRS-Ecole des Mines de Nantes, LINA)
Local Arrangement Chair

Christian Attioghé (University of Nantes, LINA)
Sponsors and Industrial Relations

Gilles Muller (Ecole des Mines de Nantes-INRIA, LINA)
Treasurer

Catherine de Charette (Ecole des Mines de Nantes)
Publicity Chairs

Olivier Roux (Ecole Centrale de Nantes, IRCCYN)

Nathalie Le Calvez (Ecole des Mines de Nantes)

VIII Organization

Posters and Demos Chairs

Julien Cohen (Polytech’ Nantes, LINA)

Hervé Grall (Ecole des Mines de Nantes-INRIA, LINA)
Student Volunteer Chair

Yann-Gaél Guéhéneuc (University of Montreal)
20" Anniversary Chair

Jean-Frangois Perrot (University of Paris VI)
Doctoral Symposium Chair

Mircea Trofin (Dublin City University)
Workshops Review Committee

Uwe Afimann (University of Dresden)

Shigeru Chiba (Tokyo Institute of Technology)

Krystof Czarnecki (University of Waterloo)

Erik Ernst (Aarhus University)

Luigi Liquori (INRIA)

Wolfgang De Meuter (Vrije Universiteit Brussel)

Christian Perez (IRISA)

Calton Pu (Georgia Tech)
Doctoral Symposium Committee

Ada Diaconescu (Dublin City University)

Stephanie Balzer (ETH Zurich)

Robert Bialek (University of Copenhagen)

Simon Denier (Ecole des Mines de Nantes/INRIA)

Sponsoring Organizations

Silver Sponsors

) . S\,
‘Hotearch “3Un Google

Bronze Sponsors

Cli ing the rules of busi france telecom

Institution Sponsors

Nantes Y¥ wetropolo PAYSDELA

Organization

Program Committee

Mehmet Aksit (University of Twente, Netherlands)

Jonathan Aldrich (Carnegie Mellon University, USA)

David F. Bacon (IBM Research, USA)

Don Batory (University of Texas at Austin, USA)

Francoise Baude (University of Nice Sophia-Antipolis, France)
Andrew Black (Portland State University, USA)

Gilad Bracha (SUN Java Software, USA)

Luca Cardelli (Microsoft Research, UK)

Craig Chambers (University of Washington, USA)

Shigeru Chiba (Tokyo Institute of Technology, Japan)
William Cook (University of Texas at Austin, USA)

Wolfgang De Meuter (Vrije Universiteit Brussel, Belgium)
Theo D’Hondt (Vrije Universiteit Brussel, Belgium)
Christophe Dony (University of Montpellier, France)

John Duimovich (IBM, Canada)

Erik Ernst (Aarhus University, Denmark)

Michael D. Ernst (Massachusetts Institute of Technology, USA)
Patrick Eugster (Purdue University, USA)

Bjgrn Freeman-Benson (Eclipse Foundation, USA)

Bill Harrison (Trinity College, Dublin, Ireland)

Eric Jul (Microsoft Research/Univ. of Copenhagen, Denmark)
Gerti Kappel (Vienna University of Technology, Austria)
Gregor Kiczales (University of British Columbia, Canada)
Karl Lieberherr (Northeastern University, USA)

Boris Magnusson (University of Lund, Sweden)

Jacques Malenfant (University of Paris VI, France)

Erik Meijer (Microsoft, USA)

Mira Mezini (Darmstadt University, Germany)

Birger Mller-Pedersen (University of Oslo, Norway)

Douglas C. Schmidt (Vanderbilt University, USA)

Clemens Szyperski (Microsoft, USA)

Frank Tip (IBM, USA)

Mads Torgersen (Microsoft, USA)

Vasco T. Vasconcelos (University of Lisbon, Portugal)
Cristina Videira Lopes (University of California, Irvine, USA)
Wolfgang Weck (Independent Software Architect, Switzerland)
Roel Wuyts (Université Libre de Bruxelles, Belgium)
Matthias Zenger (Google Switzerland)

Referees

Marwan Abi-Antoun Gabriela Arevalo Stephanie Balzer

Joao Aratjo Sushil Bajracharya Klaas van den Berg

IX

X Organization

Alexandre Bergel
Lodewijk Bergmans
Jean Bézivin

Kevin Bierhoff
Elisa Gonzalez Boix
Philippe Bonnet
Johan Brichau

Luis Caires

Ciera Christopher

Thomas Cleenewerck

William Clinger
Pascal Costanza
Ward Cunningham
Tom Van Cutsem
Michel Dao
Marcus Denker
Brecht Desmet
Stéphane Ducasse
Roland Ducournau
Pascal Durr

Chris Dutchyn
Peter Ebraert
Michael Eichberg
Andrew Eisenberg
Luc Fabresse
Johan Fabry
Jingsong Feng
Stephen Fink
Markus Galli
Jacques Garrigue
Vaidas Gasiunas
Simon Gay

Tudor Girba

Sofie Goderis
Ryan Golbeck
Mark Grechanik

Orla Greevy
Gurcan Gulesir
Philip Guo

Wilke Havinga
Gorel Hedin

Tony Hoare
Christian Hofmann
Terry Hon
Marianne Huchard
Ali Ibrahim

Andy Kellens
Adam Kiezun
David Kitchin
Gerhard Kramler
Ivan Krechetov
Viktor Kuncak
Patrick Lam

Peter Lee

Adrian Lienhard
Chuan-kai Lin
Antonia Lopes
Pablo Gomes Ludermir
Donna Malayeri
Francisco Martins
Stephen McCamant
Elke Michlmayr
Todd Millstein
Stijn Mostinckx
Marion Murzek
Istvan Nagy
Srinivas Nedunuri
Trung Ngo

Isabel Nunes
Manuel Oriol
Klaus Ostermann
Ellen Van Paesschen

Jeffrey Palm

Jeff Perkins

Laura Ponisio
Christoph von Praun
Rosario Pugliese
Antonio Ravara
Derek Rayside

Reza Razavi

Tom Rodriguez
Coen De Roover
Kenneth Russell
Alexandru Salcianu
Nathanael Schéarli
Andrea Schauerhuber
Wieland Schwinger
Jan Schwinghammer
Joao Costa Seco
Martina Seidl

Arjun Singh
Therapon Skotiniotis
Hasan Sozer

Tom Staijen
Veronika Stefanov
Bedir Tekinerdogan
Matthew Tschantz
Jorge Vallejos
Sebastien Vaucouleur
Sylvain Vauttier
Jonathan Walpole
Ben Wiedermann
Mike Wilson

Manuel Wimmer
Pengcheng Wu

Chen Xiao

Table of Contents

Keynote

Design Patterns — 15 Years Later
Erich Gamma 1

Program Query and Persistence

CodeQuest: Scalable Source Code Queries with Datalog
Elnar Hajiyev, Mathieu Verbaere, Oege de Moor 2

Efficient Object Querying for Java
Darren Willis, David J. Pearce, James Noble 28

Automatic Prefetching by Traversal Profiling in Object Persistence

Architectures
Ali Ibrahim, William R. Cook 50

Ownership and Concurrency

The Runtime Structure of Object Ownership
Nick Mitchell 74

On Ownership and Accessibility
Yi Lu, John Potter 99

Scoped Types and Aspects for Real-Time Java
Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble,

Jan Vitek, Tian Zhao 124
Transparently Reconciling Transactions with Locking for Java
Synchronization

Adam Welc, Antony L. Hosking, Suresh Jagannathan 148

Special 20th Anniversary Session

Object Technology — A Grand Narrative?
Steve Cooko 174

Peak Objects
William R. Cook 180

XII Table of Contents

From ECOOP’87 to ECOOP 2006 and Beyond
Ole Lehrmann Madsen 186

The Continuing Quest for Abstraction
Henry Lieberman i 192

Early Concurrent/Mobile Objects
Akinori Yonezawa 198

Keynote

Turning the Network into a Database with Active XML
Serge Abiteboul 203

Languages

SuperGlue: Component Programming with Object-Oriented Signals
Sean McDirmid, Wilson C. Hsieh 206

Ambient-Oriented Programming in AmbientTalk
Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckz, Theo D’Hondt,
Wolfgang De Meuter o, 230

Responders: Language Support for Interactive Applications
Brian Chin, Todd Millstein 255

Type Theory

Variance and Generalized Constraints for C# Generics
Burak Emir, Andrew Kennedy, Claudio Russo, Dachuan Yu 279

A Semantic Analysis of C++ Templates
Jeremy Siek, Walid Taha i 304

Session Types for Object-Oriented Languages
Mariangiola Dezani-Ciancaglini, Dimitris Mostrous,

Nobuko Yoshida, Sophia Drossopoulow 328
Parameterized Modules for Classes and Extensible Functions

Keunwoo Lee, Craig Chambers. i, 353
Keynote

The Closing of the Frontier
Ralph E. Johnson e 379

Table of Contents XIIT

Tools
Augmenting Automatically Generated Unit-Test Suites with Regression
Oracle Checking
Tao Xie .. 380

Automated Detection of Refactorings in Evolving Components

Danny Dig, Can Comertoglu, Darko Marinov, Ralph Johnson 404
Modeling Runtime Behavior in Framework-Based Applications

Nick Mitchell, Gary Sevitsky, Harini Srinivasan 429
Modularity

Modular Software Upgrades for Distributed Systems
Sameer Ajmani, Barbara Liskov, Liuba Shrira 452

Demeter Interfaces: Adaptive Programming Without Surprises
Therapon Skotiniotis, Jeffrey Palm, Karl Lieberherr 477

Managing the Evolution of Aspect-Oriented Software with Model-Based

Pointcuts
Andy Kellens, Kim Mens, Johan Brichau, Kris Gybels.............. 501

Author Index 527

Design Patterns — 15 Years Later

Erich Gamma

IBM Rational Zurich Research Lab, Oberdorfstr. 8,
8001 Zurich, Switzerland
erich_gamma@ch.ibm.com

Abstract. Design patterns are now a 15 year old thought experiment. And,
today, for many, software design patterns have become part of the standard
development lexicon. The reason is simple: rather than constantly redis-
covering solutions to recurring design problems developers can refer to a body
of literature that captures the best practices of system design. This talks looks
back to the origins of design patterns, shows design patterns in action, and
provides an overview of where patterns are today.

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006

CodeQuest:
Scalable Source Code Queries with Datalog

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor

Programming Tools Group,
Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
{Elnar.Hajiyev, Mathieu.Verbaere, Oege.de.Moor}@comlab.ox.ac.uk,
http://progtools.comlab.ox.ac.uk/projects/codequest/

Abstract. Source code querying tools allow programmers to explore re-
lations between different parts of the code base. This paper describes such
a tool, named CodeQuest. It combines two previous proposals, namely
the use of logic programming and database systems.

As the query language we use safe Datalog, which was originally in-
troduced in the theory of databases. That provides just the right level
of expressiveness; in particular recursion is indispensable for source code
queries. Safe Datalog is like Prolog, but all queries are guaranteed to
terminate, and there is no need for extra-logical annotations.

Our implementation of Datalog maps queries to a relational database
system. We are thus able to capitalise on the query optimiser provided by
such a system. For recursive queries we implement our own optimisations
in the translation from Datalog to SQL. Experiments confirm that this
strategy yields an efficient, scalable code querying system.

1 Introduction

Understanding source code is vital to many tasks in software engineering. Source
code querying tools are designed to help such understanding, by allowing pro-
grammers to explore relations that exist between different parts of the code
base. Modern development environments therefore provide querying facilities,
but these are usually fixed: one cannot define new relationships that are partic-
ular to the project in hand.

It can be very useful, however, to define such project-specific queries, for
instance to enforce coding style rules (e.g. naming conventions), to check correct
usage of an API (e.g. no call to a GUI method from an enterprise bean), or
to ensure framework-specific rules (e.g. in a compiler, every non-abstract AST
class must override the wisitChildren method). Apart from such checking tasks,
we might want new ways of navigating beyond the fixed set of relations provided
in a development environment. When cleaning up a piece of legacy software, it is
for example useful to know what methods are never called (directly or indirectly)
from the main method. A good querying tool allows the programmer to define all
these tasks via simple, concise queries. Note that none of these examples is easily

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 2-27, 2006.
© Springer-Verlag Berlin Heidelberg 2006

CodeQuest: Scalable Source Code Queries with Datalog 3

implemented with today’s dominant code querying tool, namely grep. Built-in
querying and navigating facilities of Eclipse, widely used by the IDE users, are
limited to a fixed number of certain queries.

The research community has long recognised the need for flexible code queries,
and many solutions have been proposed. We shall discuss this previous work in
detail in Sect. 6. For now it suffices to say that two crucial ideas have emerged
from that earlier research: a logical query language like Prolog to formulate
queries, and a relational database to store information about the program.

All these earlier attempts, however, fall short on at least one of three counts:
the system is not scalable to industrial-size projects, or the query language is not
sufficiently expressive, or the queries require complex annotations to guarantee
efficiency. Scalability is typically not achieved because no query optimisation is
used, and/or all data is held in main memory. Expressiveness requires recursive
queries, to inspect the graph structures (the type hierarchy and the call graph,
for example) that are typically found in code queries. Yet the use of recursion
in SQL and XQuery is cumbersome, and in Prolog recursion over graphs often
leads to non-termination. In Prolog that problem may be solved via tabling plus
mode annotations, but such annotations require considerable expertise to get
right.

1.1 Contributions

This paper solves all these deficiencies, and it presents a code querying tool
that is scalable, expressive and purely declarative. We achieve this through a
synthesis of the best ideas of the previous work on code querying. To wit, our
contributions are these:

— The identification of safe Datalog (a query language originating in database
theory) as a suitable source code query language, in the sweet spot between
expressiveness and efficient implementation.

— The implementation of Datalog via an optimising compiler to SQL, which is
in turn implemented on a relational database system. Our compiler performs
a specialised version of the well-known ‘magic sets’ transformation, which we
call ‘closure fusion’.

— A method of incrementally updating the database relations when a compi-
lation unit is changed.

— A comprehensive set of experiments, with two different commercial database
systems (Microsoft SQL Server and IBM DB2) as a backend for our query
compiler, to show the scalability of our approach. We also demonstrate that
for this application, a special implementation of recursion outperforms the
built-in recursion provided by these database systems.

— Detailed comparison with other state-of-the-art code querying tools, in par-
ticular JQuery (an Eclipse plugin tailored for code queries) [2,24,34] and
XSB (a general optimising compiler for tabled Prolog [3,39]), demonstrating
that on small projects our approach is competitive, and on large projects
superior.

4 E. Hajiyev, M. Verbaere, and O. de Moor

1.2 Paper Organisation

The paper is organised as follows. First we provide a brief introduction to Dat-
alog; we also present its semantics with an emphasis on the concepts that are
important to the implementation of CodeQuest (Sect. 2). That implementation
is presented in Sect. 3. It is also here that we discuss a number of alternative
implementations of recursion, via built-in facilities of the underlying database
system, and via a procedural implementation of our own. Next, in Sect. 4, we
turn to the tricky problem of incrementally updating the database when a change
is made to the source program. Clearly this is crucial to the use of CodeQuest in
the context of refactoring, where queries are interspersed with frequent changes.
The heart of the paper is Sect. 5: there we demonstrate, through careful exper-
iments with a wide variety of queries, that our implementation method yields a
truly scalable system. The experiments are conducted with two major database
systems to factor out any implementation accidents in our measurements. We
also assess the efficiency of incrementally rebuilding the database with a series
of refactoring queries. In Sect. 6, we provide a comprehensive account of all the
previous work on code queries that has inspired the construction of CodeQuest.
Finally, we conclude in Sect. 7.

2 Datalog

Datalog is a query language originally put forward in the theory of databases [20].
Syntacticly it is a subset of a logic language Prolog, but has a different evaluation
strategy. It also poses certain stratification restrictions on the use of negation and
recursion. As a result, in contrast to Prolog, Datalog requires no extra-logical
annotations in order to guarantee termination of the queries. At the same time it
has the right level of expressiveness for the type of applications discussed above.

Datalog’s basic premise is that data is arranged according to relations. For
example, the relation hasName records names of program elements. Variables
are used to find unknown elements; in our syntax, variable names start with a
capital letter. So one might use the hasName relation as follows:

hasName(L, ‘List’)

is a query to find all program elements with the name List; the variable L will
be instantiated to all program elements that have that name.

Unary relations are used to single out elements of a particular type. So for
example, one might write

method(M), hasName(M, ‘add’),
interface(L), hasName(L, ‘List’),
hasChild(L, M)

Here the comma stands for logical ‘and’. This query checks that the List interface
contains a method named add. It also illustrates an important issue: a method is
a program element, with various attributes, and the name of the method is just

CodeQuest: Scalable Source Code Queries with Datalog 5

one of those attributes. It is incorrect to write hasChild(‘List’, ‘add’), because
names do not uniquely identify program elements. At present CodeQuest does
not have a type system, so this incorrect predicate would just evaluate to ‘false’.

Above, we have used primitive relations that are built into our version of
Datalog only. One can define relations of one’s own, for instance to define the
notion of subtypes (semi-colon (;) stands for logical ‘or’, and (:—) for reverse
implication):

hasSubtype(T, S) :— extends(S, T') ; implements(S, T).

This says that T has a (direct) subtype S when S extends T or S implements 7.
Of course CodeQuest provides many such derived predicates by default, includ-
ing hasSubtype. Unlike primitives such as extends or implements, these derived
predicates are not stored relations, instead they are deduced from the primitives.
A full list of all primitive and derived predicates provided in CodeQuest can be
found on the project web page [5].

In summary, basic Datalog is just a logic programming language, quite similar
to Prolog, but without data structures such as lists. The arguments of relations
are program elements (typically nodes in the abstract syntax tree) and names.
Like other logic programming languages, Datalog is very compact compared to
query languages in the SQL tradition. Such conciseness is very important in a
code querying tool, as verbosity would defeat interactive use.

Recursion. Code queries naturally need to express properties of tree structures,
such as the inheritance hierarchy and the abstract syntax tree. They also need
to express properties of graphs, such as the call graph, which may be cyclic. For
these reasons, it is important that the query language supports recursion. To
illustrate, here is a definition of direct or indirect subtypes:

hasSubtypePlus(T, S) :— hasSubtype(T,S) ;
hasSubtype(T, MID), hasSubtypePlus(MID, S).

Now seasoned logic programmers will recognise that such definitions pose a po-
tential problem: in Prolog we have to be very careful about variable bindings and
possible cycles to guarantee termination. For efficiency, we also need to worry
about overlapping recursive calls. For example, the above would not be an ad-
equate program in XSB, a state-of-the-art version of Prolog [3,39]. Instead, we
would have to distinguish between whether T is known or S is known at the
time of query evaluation. Furthermore, we would have to annotate the predicate
to indicate that its evaluation must be tabled to avoid inefficiency due to over-
lapping recursive calls. JQuery [2,24,34], the code querying system that is the
main inspiration for CodeQuest, similarly requires the developer to think about
whether T or S is known during query evaluation.

CodeQuest foregoes all such extra-logical annotations: one simple definition of a
recursive relation suffices. We believe this is an essential property of a code query-
ing language, as the queries should be really easy to write, and not require any
understanding of the evaluation mechanism. Termination is never an issue, as all
recursions in CodeQuest terminate, due to certain restrictions explained below.

6 E. Hajiyev, M. Verbaere, and O. de Moor

Semantics. Datalog relations that are defined with recursive rules have a least-
fixpoint semantics: they denote the smallest relation that satisfies the given
implication. To illustrate, the above clause for hasSubtypePlus defines it to be
the least relation X that satisfies

X D hasSubtype U (hasSubtype o X)

where (o) stands for sequential relational composition (i.e. (a,c¢) € (R o S)
iff 3b : (a,b) € RA (b,c) € S). The existence of such a smallest solution X
is guaranteed in our version of Datalog because we do not allow the use of
negation in a recursive cycle. Formally, that class of Datalog programs is said
to be stratified; interested readers may wish to consult [9] for a comprehensive
survey.

It follows that we can reason about relations in Datalog using the relational
calculus and the Knaster-Tarski fixpoint theorem [29,11,18]: all our recursions
correspond to monotonic mappings between relations (f is monotonic if X C YV
implies f(X) C f(Y)). For ease of reference, we quote that theorem here:

Theorem 1 (Knaster-Tarski). Let f be a monotonic function on (tuples of)
relations. Then there exists a relation R such that R = f(R) and
for all relations X we have

f(X)C X implies RC X
The relation R is said to be the least fixpoint of f.

In particular, the theorem implies that we can compute least fixpoints by it-
erating from the empty relation: to find the R in the theorem, we compute
0,f(D), f(f(D)),... until nothing changes. Because our relations range over a
finite universe (all program elements), and we insist that all variables in the
left-hand side of a clause are used at least once positively (that is not under a
negation) on the right-hand side, such convergence is guaranteed to occur in a
finite number of steps. Together with the restriction to stratified programs, this
means we handle the so-called safe Datalog programs. CodeQuest does not place
any further restrictions on the use of recursion in Datalog.

Closure fusion. Another very simple consequence of Knaster-Tarski, which we
have found to be effective as an optimisation in CodeQuest, is closure fusion. The
reflexive transitive closure R* of a relation R is defined to be the least fixpoint
of

X—idU(RoX)

where id is the identity relation.

Theorem 2 (closure fusion). The relation R* o S is the least fixpoint of
X—SU(RoX)

Furthermore, S o R* is the least fixpoint of
X+— SU(XoR)

CodeQuest: Scalable Source Code Queries with Datalog 7

In words, this says that instead of first computing R* (via exhaustive iteration)
and then composing with S, we can start the iteration with S. As we shall see,
this saves a lot of work during query evaluation. Due to the strictly declarative
nature of Datalog, we can do the optimisation automatically, while compiling
the use of recursive queries.

To illustrate closure fusion, suppose that we wish to find all types in a project
that are subtypes of the List interface:

listImpl(X) :— type(L), hasName(L, ‘List’), hasSubtypePlus(L, X).

A naive evaluation of this query by fixpoint iteration would compute the full
hasSubtypePlus relation. That is not necessary, however. Applying the second
form of the above theorem with R = hasSubtype* and

S(L, X) :— type(L), hasName(L, ‘List’), hasSubtype(L, X).
we obtain the result

listImpl(X) :— hasSubtypePlus' (L, X).
hasSubtypePlus’ (L, X) :— type(L), hasName(L, ‘List’), hasSubtype(L, X).
hasSubtypePlus’ (L, X) :— hasSubtypePlus’ (L, MID), hasSubtype(MID, X).

Readers who are familiar with the deductive database literature will recognise
this as a special case of the so-called magic sets transformation [12]. In the very
specialised context of CodeQuest, it appears closure fusion on its own is sufficient
to achieve good performance.

3 CodeQuest Implementation

CodeQuest consists of two parts: an implementation of Datalog on top of a re-
lational database management system (RDBMS), and an Eclipse [1] plugin for
querying Java code via that Datalog implementation. We describe these two
components separately.

3.1 Datalog Implementation

Our implementation of Datalog divides relations into those that are stored in the
database on disk, and those that are computed via queries. When we are given a
particular query, the relevant rules are compiled into equivalent SQL. The basics
of such a translation are well understood [30,27]; somewhat surprisingly, these
works do not include careful performance experiments. Details of the translation
that we employ can be found in [23].

The most interesting issue is the implementation of recursion. As noted in
the previous section, we restrict ourselves to safe Datalog programs, and that
implies we can compute solutions to recursive equations by exhaustive iteration.

Modern database systems allow the direct expression of recursive SQL queries
via so-called Common Table Expressions (CTEs), as described in the SQL-99

8 E. Hajiyev, M. Verbaere, and O. de Moor

standard. This is one of the implementations available in CodeQuest. A major
disadvantage, however, is that most database systems impose the additional
restriction that only bag (multiset) operations may be used inside the recursion:
one cannot employ set union, for example. That implies the semantics of CTEs
do not quite coincide with our intended semantics of Datalog. In particular,
while in our semantics, all recursions define a finite relation, the corresponding
CTE may fail to terminate because there are an infinite number of duplicates
in the resulting relation. We shall see a concrete example of that phenomenon
later on, when we write queries over the call graph of a program.

It follows that it is desirable to provide an alternative implementation of
recursion. Suppose we have a recursive rule of the form:

result :— f(result).

where f(R) is some combination of R with other relations. We can then find a
least fixpoint with the following naive algorithm:

result = (;

do {
oldresult = result;
result = f(oldresult);

}

while (result # oldresult)

All modern database systems allow us to express this kind of computation in
a procedural scripting variant of SQL. Furthermore such scripts get directly
executed on the database server; they are sometimes called stored procedures.
We shall refer to this implementation as Proc! in what follows. We stress once
more that because of our restriction to safe Datalog, Procl always terminates, in
contrast to the CTE implementation. In our experiments, Proc! is also sometimes
faster than CTEs.

The above method of computing least fixpoints is of course grossly inefficient.
If we know that f(R) distributes over arbitrary unions of relations, significant
improvements are possible. A sufficient requirement for such distribution is that
f(R) uses R only once in each disjunct. Such recursions are called linear, and
in our experience most recursions in code queries satisfy that criterion. The
following semi-naive algorithm uses a worklist to improve performance when f
distributes over arbitrary unions:

result = f(0);
todo = result;
while (todo # ()

todo = f(todo) — result;
result = result U todo;

}

This algorithm, expressed as a stored procedure, will be referred to as Proc2.
One might expect Proc2 to outperform Procl, but as we shall see, this depends

CodeQuest: Scalable Source Code Queries with Datalog 9

on the characteristics of the underlying database system. Of course many more
interesting fixpoint finding algorithms could be devised, and undoubtedly they
would help to improve performance. In this paper, however, our aim is to assess
the feasibility of implementing Datalog on top of a database system. We therefore
restrict ourselves to the comparison of just these three variants: CTE, Procl and
Proc2.

Because our aim is a proof of concept, we have to ensure that our results do not
depend on the peculiarities of one relational database management system. For
that reason, we provide two backends for CodeQuest, one that targets Microsoft
SQL Server 2005, and the other IBM DB2 v8.2. Our use of these systems is
somewhat naive, and no attempt has been made to tune their performance. It
is very likely that an expert would be able to significantly improve performance
by careful selection of the system parameters.

3.2 Querying Java Code

It is our aim to compare CodeQuest to JQuery, the leading code querying sys-
tem for Java. For that reason, we have striven to make the CodeQuest frontend
as similar as possible to JQuery, to ensure the experiments yield an accurate
comparison. For the same reason, the information we extract from Java source
and store in the database is the same with the information that JQuery collects.
For elements, it consists exhaustively of packages, compilation units, classes,
interfaces, all class members and method parameters. As for relational facts,
we store hasChild, calls, fields reads/writes, extends, implements and returns
relationships.

All these facts are not computed by CodeQuest: they are simply read off the
relevant data structures in Eclipse, after Eclipse has processed a Java compila-
tion unit. In what follows, the process of collecting information, and storing it in
the database is called parsing. It is not to be confused with the translation from
strings into syntax trees that happens in the Eclipse Java compiler. Naturally
parsing is expensive (we shall determine exactly how expensive in Sect. 5), so in
the next section we shall consider how CodeQuest achieves its parsing incremen-
tally, making appropriate changes to the database relations when a compilation
unit is modified.

We are currently working on the implementation of a robust user interface
of our plugin for a neat integration within Eclipse. We also wish to develop a
similar add-in for Visual Studio.

4 Incremental Database Update

Source code queries are typically performed for software development tasks
within an interactive development environment, where frequent changes of the
source code occur. Hence, the database of code facts needs be kept up-to-date
with the source code developers are working on. Developers cannot afford, how-
ever, a reparsing of their entire project between successive modifications and

10 E. Hajiyev, M. Verbaere, and O. de Moor

queries. A querying tool, embedded in a development environment, must pro-
vide an incremental update mechanism.

Yet such a feature is inherently similar to the tough problem of incremental
compilation. Keeping the database in a consistent state, by specifying strong
conditions for which the update of some facts must occur, is a complex task. To
illustrate, consider a Java project with two packages a and b. Package a contains
a class A and package b a class B declared with the code:

package b;

import a.A;

public class B {
A theField;

}

At this stage, the type of theField is the class a.A. If we introduce a new class
A in the package b, although no previously existing file has changed, the type
of theField is now bound to b.A, and the relationship in the database should be
updated accordingly.

Conveniently, Eclipse provides an auto-build feature that triggers a back-
ground incremental compilation of a project after each resource modification on
that project. Eclipse tries to recompile as few compilation units as possible, but
keeps the project in a consistent compiled state.

We leverage the auto-build feature of Eclipse to incrementally update the
database when the developer modifies a Java resource. On notification by the
Eclipse platform, we remove from the database all facts related to compilation
units that are being deleted or recompiled. The cleaning is performed by delet-
ing all compilation unit nodes and their children. These are computed using an
ad hoc stored procedure generated by CodeQuest from the following query:

hasChildPlus(T, S) :— hasChild(T, S) ;
hasChild(T, MID), hasChildPlus(MID, S).
nodesToDelete(N) :— compilationUnitsToDelete(N) ;
compilationUnitsToDelete(C), hasChildPlus(C, N).

All primitive relations, where one of these deleted children is involved, are also
deleted, as well as empty packages. Then, CodeQuest simply reparses and stores
facts about the compilation units that have been recompiled by Eclipse.

One might argue that compilation units provide too coarse a level of gran-
ularity for reparsing. Indeed, in principle one might attempt to do this at the
level of class members, say, but keeping track of the relevant dependencies is
likely to be complex. Furthermore, object-oriented programs have rather small
compilation units. For the projects used in our experiments, the average number
of lines of code per compilation unit varies from 81 to 233 lines per unit (see
Table 1). That level of granularity, although pretty coarse, has proved to be very
workable for our experiments with a series of refactoring queries discussed in the
following section.

CodeQuest: Scalable Source Code Queries with Datalog 11

5 Experiments

In order to determine the performance characteristics — the usability, efficiency
and scalability properties of the CodeQuest system, we have performed a number
of experiments. We compare CodeQuest with two alternative approaches, namely
JQuery (a mature code querying system by Kris de Volder et al. [34,24]), and
XSB which is an optimising implementation of Prolog.

The experiments can be divided into four categories:

— General queries: these are generally useful queries, of the kind one might
wish to run on any project. They include both recursive and non-recursive
queries. We shall use them to compare all three systems.

— Project specific queries: some examples of queries that are more spe-
cific and specialised for a particular project. It is our contention that such
queries, relating to style rules and API conventions, are often desirable and
necessitate a flexible code querying system beyond the capabilities of today’s
IDEs.

— Program understanding: program understanding is the most common use
of source code querying system. It typically requires a series of queries to be
run; here we take a series inspired by previous work on querying systems.

— Refactoring: this is the process of restructuring software to improve its
design but maintain the same functionality. Typically it involves a series of
queries to be executed and the appropriate changes applied to the source.
This experiment illustrates that our method of keeping the database up-to-
date (described in Sect. 4) is effective.

5.1 Experimental Setup

In our experiments we are going to compare the three versions of CodeQuest
(CTE, Procl and Proc2) on two different database systems (MS SQL and DB2),
with the well known source code querying tool JQuery. To rule out the possibility
that JQuery’s performance problems are due to the fact that it was written in
Java, we also compare against XSB, a state of the art optimising compiler for
tabled Prolog that is written in C. We have not written an interface between
XSB and Eclipse, however. Instead we modified the CodeQuest plugin to write
its facts to a text file that is then read in by the XSB interpreter. In summary,
there are eight different systems to compare: six versions of CodeQuest itself,
plus JQuery and XSB.

For our experiments, we shall use four open-source Java applications of differ-
ent size. The chosen projects range from very small one-man software projects
to huge industrial multi-team projects with many developers around the world
involved. Characteristics of the projects are summarised in the Table 1.

Most experiments were run on a Pentium IV 3.2GHz/HT machine with 1GB
of memory running Windows XP. The XSB numbers, however, were obtained
under Debian GNU/Linux with a quad Xeon 3.2Ghz CPU and 4GB of memory,
as we encountered memory violations with XSB when trying to load a large
number of facts on a machine with a lesser specification. The reader should

12 E. Hajiyev, M. Verbaere, and O. de Moor

therefore bear in mind that our experimental setup is giving an advantage to
XSB; as we shall see, that only strengthens our conclusions about scalability.

5.2 Running Experiments

Initial parsing. Before the queries can be run on a project it is parsed into a
database and the time required is shown in Table 2. For all four projects, the
time taken to build the relations in MSSQL is 5 to 7 times as much as it takes
to compile them in Eclipse. The factor does mot increase with the size of the
project. For DB2, the situation is similar, but the factor is slightly higher (11
to 14). While this is a significant cost, it should be stressed that such complete
builds are rare. When changes are applied to the program, the database is up-
dated incrementally and usually there is no need for complete reparsing of the
project. We shall measure the cost of such incremental updates when discussing
queries for refactoring. We note that the cost of parsing in JQuery is very simi-
lar to that for CodeQuest, somewhere in between the MSSQL and DB2 versions.
However, JQuery is not able to parse Eclipse. We do not provide parsing times
for XSB, because as pointed out above, there we load facts indirectly, via a text
file produced with a modification of the CodeQuest Eclipse plugin.

The high initial parsing cost of code querying systems is only justified if
subsequent queries evaluate faster, and that is what we investigate next.

General queries. We start by considering three example queries, that represent
typical usage of a code querying tool. They are not specific to a particular project.

The first query is checking a common style rule, namely that there are no
declarations of non-final public fields. When such fields occur, we want to return
both the field F' and the enclosing type T'. As a Datalog clause, this query might
read as follows:

queryl(T, F) :— type(T), hasChild(T, F'), field(F'),
hasStrModifier(F, ‘public’), not(hasStrModifier (F, ‘final’)).

The above query is non-recursive. A little more interesting is the second exam-
ple. Here, we wish to determine all methods M that write a field of a particular

Table 1. Summary information on benchmark Java projects

Application Description Number of Source Source
java files LOC Classes
Jakarta Regexp Java Regular Expression 14 3265 14
package
JFreeChart Java library for generating 721 92916 641
charts
abc +Polyglot extensible AspectJ compiler 1644 133496 1260

+ framework
Eclipse Open Source Java IDE 12197 1607982 10338

CodeQuest: Scalable Source Code Queries with Datalog 13

Table 2. Required parsing time for the Java projects (hh:mm:ss)

.. . Relation parsing Ratio (parse/compile
Application Compile 19501, /DB2/IQuery) (MSSQ(ﬁ)/DBé/JQEer;)
Jakarta Regexp 00:00:01 00:00:07/00:00:12/00:00:06 07/12/06
JFreeChart 00:00:15 00:01:29/00:03:25/00:02:35 06/14/10
abc (+Polyglot) 00:00:28 00:02:41/00:06:12/00:04:45 06/13/10
Eclipse 00:09:23 00:44:45/01:34:46 / —:—:— 05/11/—

type, say T. In fact, fields whose type is a subtype of T qualify as well. We
therefore specify:

query2(M, T) :— method(M), writes(M, F'), hasType(F, FT),
hasSubtypeStar(T, FT).

Here the main relation of interest is hasSubtypeStar(T, FT), which relates a
type T to its subtype FT. It is defined as:

hasSubtypeStar(T, T) :— type(T).
hasSubtypeStar(T,S) :— hasSubtypePlus(T, S).

where hasSubtype and hasSubtypePlus are relations previously discussed in Sect. 2.

The third query is to find all implementations M2 of an abstract method M1.
Naturally Eclipse also provides a way of answering this query, and indeed it is
a good example of how those fixed facilities are subsumed by a general code
querying system. The query reads:

query3(M1, M2) :— hasStrModifier(M1, ‘abstract’), overrides(M2, M 1),
not(hasStrModifier (M2, ‘abstract’)).

The definition of overrides does also make use of the recursively defined hasSub-
typePlus:

overrides(M1, M2) :— strongLikeThis(M 1, M2),
hasChild(C1, M1), hasChild(C2, M2),
inheritableMethod (M 2), hasSubtypePlus(C2, C1).

In words, we first check that M1 has the same signature and visibility as M2,
since a protected method (say) cannot override a public one. We also check that
M2 can actually be overridden (so it’s not static, for example). When these two
conditions are satisfied, we find the containing types of M1 and M2, and check
that one is a subtype of the other.

Let us now consider different systems and their properties. Figure 1 presents
the evaluation times of each system for the three queries. For each query, we
show eight different ways of evaluating it [systems are listed in the legend of the
chart in the same top-down order as the corresponding bars apper in left-right
order; in the colour version of this paper, the correspondence is further enhanced

14 E. Hajiyev, M. Verbaere, and O. de Moor

RegExp 10.00
o XSB 100
B MSSQLCTE

OIBMDB2 CTE

OMSSQL Proct 0101

®IBMDB2 Proct
@ MSSQL Proc2
@IBMDB2 Proc2
0 JQuery

0.01

query1 query2 query3

JFreeChart 0000

10.00

o XSB
mMSSQLCTE
OlIBMDB2 CTE
oMSSQL Proct
mIBMDB2 Proct 0.10
@ MSSsQL Proc2
®BMDB2 Proc2 0.01
o JQuery

100 1

0.00
query1 query2 query3

Eclipse 10000.00

1000.00

o XSB
@BMSSQLCTE
OIBMDB2 CTE 10.00 il
oMSSQLProct
®BMDB2 Proct
@ MSSQL Proc2 0.10
@IBMDB2 Proc2
o JQuery (missing)

100.00

100

0.01

0.00
query1 query2 query3

Fig. 1. General queries evaluation times

via colours]. On the vertical axis, we show the time taken in seconds — note that
this is log-scale.

CodeQuest vs. JQuery. Most of the CodeQuest implementations proved to be
more efficient than JQuery, for each of the three queries. The bars for JQuery
are missing for the last graph because it was impossible to parse Eclipse with
JQuery. It appears, therefore, that while JQuery is very effective for medium
size projects, it does not scale to large projects. That is in line with the design
goals of JQuery, namely to provide a light-weight, pure Java Eclipse plugin.

CodeQuest vs. XSB. It is natural to wonder whether a more efficient implemen-
tation of tabled Prolog such as XSB would yield a system similar to JQuery
but with better efficiency characteristics. Our experiments confirm that this is
indeed the case, and that Prolog outperforms CodeQuest. Notice, however, the
exponential growth of time (with respect to the size of the project) required by
XSB. Furthermore we have observed that XSB strongly depends on main mem-
ory, and for large projects that memory consumption becomes prohibitive (as we

CodeQuest: Scalable Source Code Queries with Datalog 15

shall see in a query involving the call graph below). It therefore lacks scalability,
whereas CodeQuest shows much slower growth of time against project size, for
each of the queries. It is also important to mention that programs and queries
for the XSB system were optimised by hand (distinguishing modes, appropri-
ate use of cut, and tabling), so that their evaluation occurs in the best possible
order and excludes all unnecessary computations. Less carefully optimised pro-
grams for XSB require considerably more time to execute as will be shown in
the following subsection.

CTFEs vs. Procs. We now turn to the comparison of the two implementations of
recursion that we described in Sect. 3: via a built-in feature of the DBMS, namely
Common Table Expressions, or via stored procedures. There is a remarkable
difference in evaluation times between these two approaches. CodeQuest Procl
and Proc2 have slightly worse performance than CodeQuest CTEs for all non-
recursive queries as well as for recursive queries over small code bases. The
situation changes significantly, however, with the recursive queries over large
amounts of source code. It seems that it is the creation of intermediate tables
in the stored procedures approach that causes a certain overhead. But the least
fixpoint computation algorithm, implemented using stored procedures, proves to
be more efficient, as we see in computationally expensive queries.

Procl vs. Proc2. Proc2has an optimised algorithm for computing the fixpoint of
recursively defined relations. It is therefore equivalent to Proc1 for non-recursive
queries, and it should be more efficient for recursive ones. The downside of the
Proc?2 algorithm is that it extensively creates and drops temporary tables. Thus,
there is no efficiency gain for recursive queries over small size projects. Somewhat
to our surprise, Proc2 also does worse than Proc! on top of DB2, contrary to the
situation for MSSQL. In more complex queries, for instance those that involve
the call graph (discussed below), Proc2 pays off even on DB2.

MSSQL vs. IBMDB2. 1t is clear from the graphs that usually the CodeQuest
implementation on top of IBM DB2 is less efficient than on top of MS SQL
Server. We have found that this may be somewhat sensitive to the exact form of
the SQL that is produced by our compiler from Datalog. For instance, in DB2 it
is better to avoid generating not ezists clauses in the code. Furthermore, we note
that: 1) we did not resort to the help of a professional database administrator
and it is very likely that the database systems we were using could be tuned to
increase performance significantly; 2) creation and deletion operations in IBM
DB2 are generally more expensive than in MS SQL Server and since they are
extensively used in the Proc2 algorithm, the performance gain through a lesser
number of joins was overwhelmed by the performance loss of a bigger number of
creation/deletion of temporary tables. Nevertheless, both implementations prove
that the concept of building a query system with a RDBMS at its backend is
both efficient and scalable.

Project specific queries. While one can spend a lot of time trying to come up
with the best possible optimisations for a general query, it is not quite possible

16 E. Hajiyev, M. Verbaere, and O. de Moor

when queries are written frequently and are specific to different projects. In this
subsection we want to run exactly such experiments.

Most of the coding style constraints in an object oriented software system are
implicit and cannot be enforced by means of the programming language. There-
fore it is desirable to run queries to ensure that such constraints are satisfied.
abc is an AspectJ compiler based on an extensible compiler framework called
Polyglot [10,35]. One of the coding style constraints in Polyglot is the following:
every concrete AST class (an AST class is one that implements the Node inter-
face), that has a child (a field which is also subtype of Node) must implement a
visitChildren method. In order to check whether that constraint holds, we write
the following query:

exists VChMethod(C') :— class(C), hasChild(C, M), method (M),
hasName (M, ‘visitChildren’).
nodelnterface(N) :— interface(N), hasName(N, ‘Node’).
concreteClass(C') :— class(C), not(hasStrModifier(C, ‘abstract’)).
queryl(C) :— nodelnterface(N), concreteClass(C'),
hasSubtypePlus(N, C'), hasChild(C, F), hasType(F, T),
hasSubtypeStar(N, T'), not(exists VChMethod(C)).

The ezistsVChMethod(C') looks up all the classes that have methods called
visitChildren. The nodelnterface(N) respectively finds the interface with the
name Node and concreteClass(C') all the classes that are not abstract. The final
part of the query is read as follows: find all concrete classes that are subtypes of
type Node and have a child (field) of the same type, but there exists no method
called visitChildren in that class.

The evaluation times of this query are given in Fig. 2(queryl). In contrast to
the general queries, we did not perform any complex hand-tuning of the Prolog
queries. An obvious equivalent of the CodeQuest query has been taken.

The next query also applies to abc and the Polyglot framework. We would
like to find all the methods that are not called (transitively) from abc’s main
method. We expect to receive a list of methods that are defined to be called
externally, or perhaps via reflection. Potentially we may encounter dead code
here if a function neither reachable from the main nor from any of the extending
modules.

abc
ey 1000 v 1000
@ JQuery 100 @ JQuery 100
OMSSQLCTE o MSSQL Proct
0IBMDB2 CTE 0 OIBMDB2 Proct 0
@ MSSQL Proct @ MSSQL Proc2
@IBMDB2 Proct ! @IBMDB2 Proc2 !
B M SSQL Proc2 01 B M SSQL Proc (CF) 01
0I1BMDB2 Proc2 OIBMDB2 Proc1(CF)
0.01 @ MSSQL Proc2 (CF) 0.01
@ IBMDB2 Proc2 (CF)
0.001 0.001

query1 query2

Fig. 2. Project specific queries evaluation times

CodeQuest: Scalable Source Code Queries with Datalog 17

polyCall(M1,M2) :— calls(M1, M2).
polyCall(M1,M2) :— calls(M1, M3), overrides(M2, M3).

polyCallPlus(X,Y) :— polyCall(X, Y).
polyCallPlus(X,Z) :— polyCallPlus(X, Y), polyCall(Y, Z).

mainCalls(Dummy) :— method(Main), hasName(Main, ‘main’),
polyCallPlus(Main, Dummy).

query2(Dummy) :— method (Dummy), not(mainCalls(Dummy)).

We were unable to make this query evaluate successfully on systems other
than CodeQuest with closure fusion (on the DB2 version, it takes 13 seconds).
As the main purpose of this paper is to evaluate CodeQuest relative to other
systems, we decided to run the query on abc sources only, excluding Polyglot.
Naturally that means we do not catch call chains that occur via Polyglot, so the
results of the query will be highly inaccurate.

In the results (Fig. 2(query2)) we have explicitly included query evaluation
time for CodeQuest with and without the closure fusion optimisation. It is evident
that this optimisation is highly effective for this example. Another important
detail to mention here is that recursive relations such as polyCallPlus may have
loops. For example, if method m1 (transitively) calls method m2 and method m2
again (transitively) calls method m1. Computation of recursive relations of this
kind is almost impossible using Common Table Expressions in SQL. There are
various work-arounds to this problem, but none of them is efficient and general.
This is the reason why the numbers for the CTEs based implementation of
CodeQuest are missing for this query. Finally, we note that for the XSB query,
we did have to apply some obvious optimisations by hand to make it terminate
at all, even when the code base was reduced by excluding Polyglot.

Program understanding. The most typical usage of a source code querying
tool is undoubtedly program understanding. In this subsection we give an ex-
ample of a program exploration scenario that involves a series of queries to be
run consecutively as a programmer browses through the source. This scenario
was loosely inspired by an earlier paper on JQuery [24].

JFreeChart is a free Java library for generating charts. Suppose a user would
like to find out when the graph plots are redrawn. They might start by listing
the packages and the classes defined in each one:

queryl(P, T) :— package(P), hasChild(P, CU), hasChild(CU, T), type(T).

The user immediately spots the plot package where all kinds of plots are
defined. Drawing is a standard operation and will be most likely defined in the
supertype of all plots. Thus, he can pick any of the plot-types and search for its
supertype:

query2(SuperT) :— type(Picked Type), hasSubtypePlus(SuperT, Picked Type).

18 E. Hajiyev, M. Verbaere, and O. de Moor

100

JFreeChart

B MSSQLCTE 10
@ IBMDB2 CTE
O MSSQL Proct
0 IBMDB2 Proct 1
@ MSSQL Proc2
@ IBMDB2 Proc2
@ JQuery

0.1

0.01

0.001
query1 query2 query3 query4

Fig. 3. Program understanding queries evaluation times

where PickedType is the type, chosen by the programmer. The result of this
query will find an abstract Plot class. To list all its methods, the user defines
the following query:

query3(M) :— hasChild(AbstractPlot Type, M), method (M).

In the list the user finds an abstract method drew and he can finally define a
query to spot all calls to this method or any overriding method in an extending
class:

queryd(M2) :— hasChild(C2, M 2), polyCalls(M2, DrawM).
queryd(M?2) :— hasChild(C2, M2), polyCalls(M?2, TargetM),
overrides(TargetM , DrawM).

Both JQuery and RDBMSs support some form of caching. As the cache warms
up it requires typically less time to evaluate subsequent queries. This is especially
crucial factor for JQuery since it is known to have strong caching strategies and
run much faster on a warm cache. Figure 3 presents the comparison graph for
the above scenario for JQuery and CodeQuest.

The CodeQuest system again shows better results. In retrospect, this is not
that surprising, since RDBMSs also traditionally possess caching mechanisms to
limit the number of disk I/Os. In addition to that, as described in Sect. 7 further
optimisations can be included in the CodeQuest system itself.

Refactoring. The following refactoring scenario is inspired by a feature request
for JFreeChart [40]. The task is to create an interface for combined plot classes
and make it declare methods common to these classes, notably getSubplots().
We compare JQuery with the Proc2 version of CodeQuest . We start by writing
a query to locate the combined plot classes:

classesToRefactor(C) :— class(C), hasName(C, Name),
re match(‘%Combined%’, Name),
declaresMethod(C, M), hasName(M , ‘getSubplots’).

CodeQuest: Scalable Source Code Queries with Datalog 19

In words, this query looks for a class whose name contains the substring Com-
bined, which furthermore declares a method named getSubplots. Evaluation of
this query yields four elements: CombinedDomainCategoryPlot, CombinedDo-
mainX YPlot, CombinedRangeCategoryPlot and CombinedRangeX Y Plot.

We perform the first refactoring, by making the four classes implement a new
interface CombinedPlot that declares a single method getSubplots(). This refac-
toring involves a sequence of operations in Eclipse, in particular the application
of built-in refactorings such as ‘Eztract Interface’ and ‘Use Supertype Where
Possible’” as well as some minor hand coding.

The next step is to look for other methods than getSubplots(), common to
the four refactored classes, whose declarations could be pulled up in the new
interface. A query for this task reads as follows:

overridingMethod(M) :— overrides(M, N).
declares(C, S) :— class(C), declaresMethod(C, M),
hasSignature(M, S), not(overridingMethod (M)).

declarations(S) :— class(C1), hasName(C1, ‘CombinedDomainCategoryPlot’),
class(C2), hasName(C2, ‘CombinedDomainX YPlot’),
class(C3), hasName(C3, ‘CombinedRangeCategoryPlot’),
class(C4), hasName(C4, ‘CombinedRangeX YPlot’),
declares(C1, S), declares(C2, S),
declares(C3,S), declares(C4, S).

In words, we look for signatures of methods that are defined in all four classes
of interest, which furthermore do not override some method in a supertype. Of
course one might wish to write a more generic query, but as this is a one-off exam-
ple, there is no need. The query yields two method signatures, double getGap()
and void setGap(double), which are related to the logic of the new interface.
Hence, we perform a second refactoring to include these declarations in Com-
binedPlot.

This scenario provides a tiny experiment for measuring the efficiency of our in-
cremental update mechanism and compare it to the one implemented in JQuery.
An important difference between these two update mechanisms is the following.
In CodeQuest, the update runs as a background task just after any incremental
compilation is performed by Eclipse. In JQuery, the update occurs only when

JFreeChart *° 10
140
@JQuery 120 T 8]
W CodeQuest 100 1 6
80 T
60 T 4
40 T 2 l I
20 T
0 0 -
Parsing Executing Inc. update 1 Executing Inc. update 2

query1 query2

Fig. 4. Query evaluation and incremental update times for the Refactoring example

20 E. Hajiyev, M. Verbaere, and O. de Moor

user explicitly executes the update action. The results are shown in Fig. 4. The
sequence of measurements consists of the initial parsing time (which neither sys-
tem needs to repeat after the first loading of the project), followed by two queries
and updates.

In the given scenario the update times of the two systems are comparable.
However, this refactoring example requires an update of very few facts. JQuery’s
performance considerably deteriorates when performing a larger change since
it involves the deletion and recreation of many tiny files on the hard drive.
For instance, if we apply the Rename rafactoring to the org.jfree.data.general
package, update of 185 files will be required. It takes JQuery longer to update
its factbase (over 5 mins) than to reparse the entire project again, whereas
CodeQuest completes the update within 30 secs.

5.3 Effect of RDBMS Optimiser

Relational database systems not only enable code querying tools to be scalable
for projects of virtually any size; another advantage lies in the powerful query
optimisers, based on over forty years of intensive research. In order to illustrate
the effect of the RDBMS optimiser we ran the project specific queries again, but
this time with the optimiser switched off. query! (coding style constraints) was
evaluated using CTEs based implementation of CodeQuest and query2 (methods
not transitively called from main) using Proc2. The evaluation time of queryl
with and without the internal IBM DB2 SQL optimiser is 2.7 and 5 seconds
respectively. The difference becomes even more tangible for query2: 3.8 and 404
seconds respectively. Clearly it does not make sense for a code querying tool to
try to re-implement all the work on optimisation already done for databases.

5.4 Memory Usage

We conclude this experimental section with a few brief remarks about mem-
ory usage. Both JQuery and XSB are memory hungry, and simply crash when
there is not sufficient main memory available. Simple experiments confirm this
behaviour: indeed, JQuery is unable to parse the source of Eclipse, and in XSB
we could load it only under Debian Sid on a machine with 4GB of RAM. This
sharply contrasts with the memory behaviour of database systems: these will
use main memory where available, but performance is scalable. Because these
results are entirely as expected, we do not present detailed numbers.

5.5 Summary

In this section we ran a variety of tests to measure performance of CodeQuest and
to compare it against other similar systems. CodeQuest proved to be at least as ef-
ficient as JQuery in all case studies. Furthermore, simple techniques for storing in-
termediate results in temporary tables instead of recomputing them in every sub-
sequent query could be added to already existent caching mechanisms of RDBMSs
which would further leverage their performance. Of course that increased effi-
ciency comes at the price of using a relational database system — there is much

CodeQuest: Scalable Source Code Queries with Datalog 21

merit in JQuery’s lightweight approach, which does not require any additional
software components.

By today’s standards, considering both parameters of the hardware systems at

hand and the size of software projects that require querying, CodeQuest is defi-
nitely competitive with XSB. The memory based computations of an optimised
Prolog program are fast but not scalable. Non-optimised Prolog queries are clearly
less efficient than the same queries evaluated with CodeQuest.
Today’s industrial databases are able to evaluate recursive queries as described
in the SQLY9 standard. However, it appears that built-in recursion is often less
efficient than custom algorithms using stored procedures. Furthermore, in some
cases the built-in facilities do not work at all, in particular when an infinite num-
ber of duplicate entries might be generated in intermediate results. So, the choice
between different implementations of CodeQuest with the tested RDBMS comes
down to Procl and Proc2. Formally Proc2 is an optimised variant of Procl and
should therefore be more preferable. But in practice it requires creating and drop-
ping temporary tables during each iteration step. If a database system has the cost
of creation and dropping tables higher than a certain limit, then the optimisation
becomes too expensive. In our experiments, Proc2 is more efficient than ProcI in
most of the queries when used in MS SQL Server and vice-versa when used in IBM
DB2. More generally, code generation strategy (CTE, Procl or Proc2) is tightly
coupled with an internal RDBMS SQL optimiser. As a consequence of that, the
choice of the appropriate CodeQuest implementation depends not only on the ex-
act type of queries that a user may want to run, but also on the RDBMS and in
particular on the SQL optimiser being used to run produced SQL code.

6 Related Work

There is a vast body of work on code queries, and it is not possible to cover
all of it in a conference paper. We therefore concentrate on those systems that
have provided an immediate inspiration for the design and implementation of
CodeQuest. First we focus on work from the program maintenance community,
then we discuss related research in the program analysis community, and we
conclude with some recent developments that are quite different to CodeQuest,
and could be seen as alternative approaches to address the same problems.

Storing the program in a database. In the software maintenance community,
there is a long tradition of systems that store the program in a database. One
of the earliest proposals of this kind was Linton’s Omega system [32]. He stores
58 relations that represent very detailed information about the program in the
INGRES database system. Queries are formulated in the INGRES query lan-
guage QUEL, which is quite similar to SQL. There is no way to express recursive
queries. Linton reports some performance numbers that indicate a poor response
time for even simple queries. He notes, however, that future query optimisers
ought to do a lot better; our experiments confirm that prediction.

The next milestone in this line of work is the C Information Abstraction sys-
tem, with the catchy acronym CTA [14]. CIA deviates from Omega in at least two

22 E. Hajiyev, M. Verbaere, and O. de Moor

important ways. First, based on the poor performance results of Omega, CIA
only stores certain relations in the database, to reduce its size. Second, it aims
for an incremental construction of the database — although the precise mech-
anism for achieving that is not detailed in [14], and there are no performance
experiments to evaluate such incremental database construction. In CodeQuest
we also store only part of the program, but it is our belief that modern data-
base systems can cope with much larger amounts of data. Like CIA, we provide
incremental updating of the database, and the way to achieve that efficiently
was described in Sect. 4. CIA does not measure the effects of the optimiser pro-
vided by a particular database system, and in fact it is claimed the system is
independent of that choice.

Despite their disadvantages, Omega and CIA have had quite an impact on
industrial practice, as numerous companies now use a database system as a code
repository, e.g. [13,42].

Logic query languages. Both Omega and CIA inherited their query language from
the underlying database system. As we have argued in Sect. 2, recursive queries,
as provided in a logic programming language, are indispensable. Indeed, the XL
C++ Browser [26] was one of the first to realise Prolog provides a nice notation
to express typical queries over source code. The implementation is based directly
on top of a Prolog system, implying that all the facts are held in main memory.
As our experiments show, even with today’s vastly increased memory sizes, using
a state-of-the-art optimising compiler like XSB, this approach does not scale.

A particularly interesting attempt at overcoming the problem of expressive-
ness was put forward by Consens et al. [15]. Taking the search of graphs as its
primary focus, GraphLog presents a query language with just enough power to
express properties of paths in graphs, equivalent to a subset of Datalog, with a
graphical syntax. In [15] a convincing case is made that the GraphLog queries
are easier to write than the Prolog equivalent, and the authors state: “One of
our goals is to have such implementations produced automatically by an opti-
mizing GraphLog to Prolog translator.” Our experiments show that to attain
scalability, a better approach is to map a language like GraphLog to a relational
database system.

Also motivated by the apparent inadequacy of relational query languages as
found in the database community, Paul and Prakash revisited the notion of
relational algebra [36]. Their new relational algebra crucially includes a closure
operator, thus allowing one to express the traversals of the type hierarchy, call
graph and so on that code queries require. The implementation of this algebra is
done on top of the Refine system, again with an in-memory representation of the
relevant relations [8]. Paul and Prakash report that hand-written queries in the
Refine language typically evaluate a factor 2 to 10 faster than their declarative
formulations. CodeQuest takes some of its inspiration from [36], especially in our
use of relational algebra to justify optimisations such as closure fusion. Of course
the connection between Datalog (our concrete syntax) and relational algebra
with a (generalised) closure operator has been very thoroughly explored in the
theoretical database community [7].

CodeQuest: Scalable Source Code Queries with Datalog 23

Also spurred on by the desire to have a convenient, representation-independent
query language, Jarzabek proposed PQL, a Program Query Language [25]. PQL
contains quite detailed information on the program, to the point where it is
possible to formulate queries about the control flow graph. The query syntax
is akin to that of SQL, but includes some operators for graph traversal. While
SQL syntax undoubtedly has the benefit of being familiar to many developers,
we feel that advantage is offset by its verbosity. Jarzabek points out that PQL
admits many different implementations, and he describes one in Prolog. If so
desired, it should be possible to use CodeQuest as a platform for implementing
a substantial subset of PQL.

Another logic programming language especially for the purpose of source code
queries is ASTLog, proposed by Crew [16]. Unlike PQL, it is entirely focussed
on traversing the syntax tree, and there is no provision for graph manipulation.
That has the advantage of a very fast implementation, and indeed ASTLog was
used within Microsoft on some quite substantial projects.

The immediate source of inspiration for our work was JQuery, a source-code
querying plugin for Eclipse [24,34]. JQuery represents a careful synthesis of
all these previous developments. It uses a logic programming language named
TyRuBa [4]. This is similar to Prolog, but crucially, it employs tabled reso-
lution for evaluating queries, which avoids many of the pitfalls that lead to
non-termination. Furthermore, JQuery has a very nice user interface, where the
results of queries can be organised in hierarchical views. Finally, it allows in-
cremental building of the fact base, and storing them on disk during separate
runs of the query interpreter. The main differences with CodeQuest are that
TyRuBa requires mode annotations on predicates, and the completely different
evaluation mechanism in CodeQuest. As our experiments show, that different
evaluation mechanism is more scalable. The increased efficiency comes however
at the price of less expressive power, as TyRuBa allows the use of data struc-
tures such as lists in queries, whereas CodeQuest does not. In JQuery, such data
structures are used to good effect in building up the graphical views of query
results. We feel this loss of expressiveness is a price worth paying for scalability.

Datalog for program analysis. The idea of using a tabled implementation of
Prolog for the purpose of program analysis is a recurring theme in the logic
programming community. An early example making the connection is a paper
by Reps [38]. It observes that the use of the ‘magic sets’ transformation [12] (a
generalised form of our closure fusion) helps in deriving demand-driven program
analyses from specifications in Datalog.

A more recent paper in this tradition is by Dawson et al. [17], which gives
many examples, and evaluates their use with the XSB system. We note that
many of the examples cited there can be expressed in Datalog, without queries
that build up data structures. As it is the most mature piece of work in applying
logic programming to the realm of program analysis, we decided to use XSB
for the experiments reported in Sect. 5. Our focus is not on typical dataflow
analyses, but instead on source code queries during the development process.

24 E. Hajiyev, M. Verbaere, and O. de Moor

Very recently Martin et al. proposed another PQL (not to be confused with
Jarzabek’s language discussed above), to find bugs in compiled programs [33,31].
Interestingly, the underlying machinery is that of Datalog, but with a completely
different implementation, using BDDs to represent solution sets [43]. Based on
their results, we believe that a combination of the implementation technology
of CodeQuest (a relational database system) and that of PQL (BDDs) could
be very powerful: source code queries could be implemented via the database,
while queries that require deep semantic analysis might be mapped to the BDD
implementation.

Other code query languages. Aspect-oriented programming represents a sepa-
rate line of work in code queries: here one writes patterns to find all places in
a program that belong to a cross-cutting concern. The most popular aspect-
oriented programming language, AspectJ, has a sophisticated language of such
patterns [28]. In IBM’s Concern Manipulation Environment, that pattern lan-
guage is deployed for interactive code queries, and augmented with further prim-
itives to express more complex relationships [41]. We subscribe to the view that
these pattern languages are very convenient for simple queries, but they lack the
flexibility needed for sophisticated queries of the kind presented in this paper.

It comes as no surprise that the work on identifying cross-cutting concerns
and code querying is converging. For example, several authors are now proposing
that a new generation of AspectJ might use a full-blown logic query language
instead [22,21]. The results of the present paper seem to suggest Datalog strikes
the right balance between expressiveness and efficiency for this application also.

To conclude, we would like to highlight one effort in the convergence of aspects
and code queries, namely Magellan. Magellan employs an XML representation
of the code, and XML queries based on XQuery [19,37]. This is natural and
attractive, given the hierarchical nature of code; we believe it is particularly
suitable for queries over the syntax tree. XQuery is however rather hard to
optimise, so it would be difficult to directly employ our strategy of relying on
a query optimiser. As the most recent version of Magellan is not yet publicly
available, we were unable to include it in our experimental setup. An interesting
venue for further research might be to exploit the fact that semi-structured
queries can be translated into Datalog, as described by Abiteboul et al. [6]
(Chapter 6).

7 Conclusion

In this paper, we have demonstrated that Datalog, implemented on top of a
modern relational database system, provides just the right balance between ex-
pressive power and scalability required for a source code querying system. In
particular, recursion allows an elegant expression of queries that traverse the
type hierarchy or the call graph. The use of a database system as the backend
yields the desired efficiency, even on a very large code base.

Our experiments also indicate that even better performance is within reach.
A fairly simple, direct implementation of recursion via stored procedures often

CodeQuest: Scalable Source Code Queries with Datalog 25

outperforms the built-in facilities for recursion provided in today’s database
systems. More careful implementation of recursion, especially in conjunction
with the query optimiser, is therefore a promising venue for further work.

At present the queries that can be expressed with CodeQuest are constrained
by the relations that are stored in the database; we have closely followed JQuery
in that respect, in order to make the experimental comparison meaningful. It
is, in particular, impossible to phrase queries over the control flow of the pro-
gram. There is however nothing inherently difficult about storing the relevant
information. In fact, we plan to make the choice of relations configurable in
CodeQuest, so the database can be adapted to the kind of query that is desired
for a particular project.

We are particularly keen to see CodeQuest itself used as an engine for other
tools, ranging from different query languages through refactoring, to pointcut
languages for aspect-orientation. At present we are in the process of providing
CodeQuest with a robust user interface; once that is complete, it will be released
on the project website [5].

Acknowledgements

Elnar Hajiyev would like to thank Shell corporation for the generous support that
facilitated his MSc at Oxford during 2004-5, when this research was started. We
would also like to thank Microsoft Research (in particular Dr. Fabien Petitcolas)
for its support, including a PhD studentship for Mathieu Verbaere. Finally, this
research was partially funded through EPSRC grant EP/C546873/1. Members
of the Programming Tools Group at Oxford provided helpful feedback at all
stages of this research. We are grateful to Kris de Volder for many interesting
discussions related to the topic of this paper.

References

Eclipse. http://wuw.eclipse.org.
JQuery. http://wuw.cs.ubc.ca/labs/spl/projects/jquery/.
XSB. http://xsb.sourceforge.net/.
The TyRuBa metaprogramming system. http://tyruba.sourceforge.net/.
CodeQuest. http://progtools.comlab.ox.ac.uk/projects/codequest/.
Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.
7. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.
8. Leonor Abraido-Fandino. An overview of Refine 2.0. In Procs. of the Second Inter-
national Symposium on Knowledge Engineering and Software Engineering, 1987.
9. Krzysztof R. Apt and Roland N. Bol. Logic programming and negation: A survey.
Journal of Logic Programming, 19/20:9-71, 1994.
10. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhotdk, Ondfej Lhotak, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: An extensible AspectJ compiler. In Aspect-Oriented Soft-
ware Development (AOSD), pages 87-98. ACM Press, 2005.

S G oo

26

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

E. Hajiyev, M. Verbaere, and O. de Moor

Roland Backhouse and Paul Hoogendijk. Elements of a relational theory of
datatypes. In Bernhard Moller, Helmut Partsch, and Stephen Schuman, editors,
Formal Program Development, volume 755 of Lecture Notes in Computer Science,
pages 7—-42. Springer Verlag, 1993.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
sets and other strange ways to implement logic programs. In Proceedings of the Fifth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March
24-26, 1986, Cambridge, Massachusetts, pages 1-16. ACM, 1986.

Cast. Company website at: http://www.castsoftware.com.

Yih Chen, Michael Nishimoto, and C. V. Ramamoorthy. The C information ab-
straction system. I[EEE Transactions on Software Engineering, 16(3):325-334,
1990.

Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing and query-
ing software structures. In ICSE ’92: Proceedings of the 14th international con-
ference on Software engineering, pages 138-156, New York, NY, USA, 1992. ACM
Press.

Roger F. Crew. ASTLOG: A language for examining abstract syntax trees. In
USENIX Conference on Domain-Specific Languages, pages 229-242, 1997.
Stephen Dawson, C. R. Ramakrishnan, and David Scott Warren. Practical program
analysis using general purpose logic programming systems. In ACM Symposium on
Programming Language Design and Implementation, pages 117-126. ACM Press,
1996.

Henk Doornbos, Roland Carl Backhouse, and Jaap van der Woude. A calculational
approach to mathematical induction. Theoretical Computer Science, 179(1-2):103—
135, 1997.

Michael Eichberg, Michael Haupt, Mira Mezini, and Thorsten Schafer. Compre-
hensive software understanding with sextant. In ICSM ’05: Proceedings of the
21st IEEE International Conference on Software Maintenance (ICSM’05), pages
315-324, Washington, DC, USA, September 2005. IEEE Computer Society.
Hervé Gallaire and Jack Minker. Logic and Databases. Plenum Press, New York,
1978.

Stefan Hanenberg Giinter Kniesel, Tobias Rho. Evolvable pattern implementations
need generic aspects. In Proc. of ECOOP 2004 Workshop on Reflection, AOP and
Meta-Data for Software Evolution, pages 116-126. June 2004.

Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In 2nd International Conference on Aspect-oriented Soft-
ware Development, pages 60-69. ACM Press, 2003.

Elnar Hajiyev. CodeQuest: Source Code Querying with Datalog. MSc The-
sis, Oxford University Computing Laboratory, September 2005. Available at
http://progtools.comlab.ox.ac.uk/projects/codequest/.

Doug Janzen and Kris de Volder. Navigating and querying code without getting
lost. In 2nd International Conference on Aspect-Oriented Software Development,
pages 178-187, 2003.

Stan Jarzabek. Design of flexible static program analyzers with PQL. IEEE Trans-
actions on Software Engineering, 24(3):197-215, 1998.

Shahram Javey, Kin’ichi Mitsui, Hiroaki Nakamura, Tsuyoshi Ohira, Kazu Yasuda,
Kazushi Kuse, Tsutomu Kamimura, and Richard Helm. Architecture of the XL
C++ browser. In CASCON ’92: Proceedings of the 1992 conference of the Centre
for Advanced Studies on Collaborative research, pages 369-379. IBM Press, 1992.
Karel Jezek and Vladimir Toncar. Experimental deductive database. In Workshop
on Information Systems Modelling, pages 83-90, 1998.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

CodeQuest: Scalable Source Code Queries with Datalog 27

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen, editor, Fu-
ropean Conference on Object-oriented Programming, volume 2072 of Lecture Notes
in Computer Science, pages 327-353. Springer, 2001.

Bronislaw Knaster. Un théoréme sur les fonctions d’ensembles. Annales de la
Societé Polonaise de Mathematique, 6:133—-134, 1928.

Kemal Koymen. A datalog interface for SQL (abstract). In CSC ’90: Proceedings
of the 1990 ACM annual conference on Cooperation, page 422, New York, NY,
USA, 1990. ACM Press.

Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzin-
tars Avots, Michael Carbin, and Christopher Unkel. Context-sensitive program
analysis as database queries. In PODS ’05: Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
1-12, New York, NY, USA, 2005. ACM Press.

Mark A. Linton. Implementing relational views of programs. In Peter B. Hender-
son, editor, Software Development Environments (SDE), pages 132-140, 1984.
Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors
using PQL: a program query language. In Proceedings of the 20th annual ACM
SIGPLAN OOPSLA Conference, pages 365-383, 2005.

Edward McCormick and Kris De Volder. JQuery: finding your way through tangled
code. In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN OOPSLA
conference, pages 9-10, New York, NY, USA, 2004. ACM Press.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
extensible compiler framework for Java. In 12th International Conference on Com-
piler Construction, volume 2622 of Lecture Notes in Computer Science, pages 138—
152, 2003.

Santanu Paul and Atul Prakash. Querying source code using an algebraic query
language. IEEE Transactions on Software Engineering, 22(3):202-217, 1996.
Magellan Project. Web page at: http://www.st.informatik.tu-darmstadt.de/
static/pages/projects/Magellan/XIRC.html. 2005.

Thomas W. Reps. Demand interprocedural program analysis using logic databases.
In Workshop on Programming with Logic Databases, ILPS, pages 163-196, 1993.
Konstantinos Sagonas, Terrance Swift, and David S. Warren. XSB as an efficient
deductive database engine. In SIGMOD ’94: Proceedings of the 1994 ACM SIG-
MOD international conference on Management of data, pages 442-453, New York,
NY, USA, 1994. ACM Press.

Eric Sword. Create a root combinedplot interface. JFreeChart feature request:
http://sourceforge.net/tracker/index.php?func=detail&aid=1234995&
group_id=15494&atid=365494, 2005.

Peri Tarr, William Harrison, and Harold Ossher. Pervasive query support in the
concern manipulation environment. Technical Report RC23343, IBM Research
Division, Thomas J. Watson Research Center, 2004.

Michael Thompson. Bluephoenix: Application modernization technology audit.
Available at: http://www.bitpipe.com/detail/RES/1080665824_99.html., 2004.
John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using datalog
and binary decision diagrams for program analysis. In Kwangkeun Yi, editor,
Proceedings of the 3rd Asian Symposium on Programming Languages and Systems,
volume 3780, pages 97-118. Springer-Verlag, November 2005.

Efficient Object Querying for Java

Darren Willis, David J. Pearce, and James Noble

Computer Science, Victoria University of Wellington, NZ
{darren, djp, kjx}@mcs.vuw.ac.nz

Abstract. Modern programming languages have little or no support
for querying objects and collections. Programmers are forced to hand
code such queries using nested loops, which is both cumbersome and
inefficient. We demonstrate that first-class queries over objects and col-
lections improve program readability, provide good performance and are
applicable to a large number of common programming problems. We
have developed a prototype extension to Java which tracks all objects in
a program using AspectJ and allows first-class queries over them in the
program. Our experimental findings indicate that such queries can be
significantly faster than common programming idioms and within reach
of hand optimised queries.

1 Introduction

No object stands alone. The value and meaning of objects arise from their re-
lationships with other objects. These relationships can be made explicit in pro-
grams through the use of pointers, collection objects, algebraic data types or
other relationship constructs (e.g. [5,27,28,29]). This variety suggests that pro-
gramming languages provide good support for relationships. We believe this
is not entirely true — many relationships are implicit and, as such, are not
amenable to standard relationship constructs. This problem arises from the great
variety of ways in which relationships can manifest themselves. Consider a col-
lection of student objects. Students can be related by name, or student ID —
that is, distinct objects in our collection can have the same name or ID; or, they
might be related by age bracket or street address. In short, the abundance of
such implicit relationships is endless.

Most programming languages provide little support for such arbitrary and
often dynamic relationships. Consider the problem of querying our collection to
find all students with a given name. The simplest solution is to traverse the
collection on demand to find matches. If the query is executed frequently, we
can improve upon this by employing a hash map from names to students to
get fast lookup. This is really a view of the original collection optimised for our
query. Now, when students are added or removed from the main collection or
have their names changed, the hash map must be updated accordingly.

The two design choices outlined above (traversal versus hash map) present
a conundrum for the programmer: which should he/she choose? The answer, of
course, depends upon the ratio of queries to updates — something the program-
mer is unlikely to know beforehand (indeed, even if it is known, it is likely to

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 28-49, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Efficient Object Querying for Java 29

change). Modern OO languages compound this problem further by making it
difficult to move from one design to the other. For example, consider moving
from using the traversal approach to using a hash map view. The easiest way to
ensure both the collection and the hash map are always consistent is to encap-
sulate them together, so that changes to the collection can be intercepted. This
also means providing a method which returns the set of all students with a given
name by exploiting the hash map’s fast lookup. The problem is that we must
now replace the manual traversal code — which may be scattered throughout
the program — with calls to this new method and this is a non-trivial task.

In this paper, we present an extension to Java that supports efficient querying
of program objects. We allow queries to range over collection objects and also
the set of all instantiated objects. In this way, manual code for querying implicit
relationships can be replaced by simple query statements. This allows our query
evaluator to optimise their execution, leading to greater efficiency. In doing this,
we build upon a wealth of existing knowledge on query optimisation from the
database community. Our focus differs somewhat, however, as we are interested
in the value of querying as a programming construct in its own right. As such,
we are not concerned with issues of persistence, atomic transactions, roll-back
and I/0 efficient algorithms upon which the database community expends much
effort. Rather, our “database” is an object-oriented program that fits entirely
within RAM.

This paper makes the following contributions:

— We develop an elegant extension to the Java language which permits object
querying over the set of all program objects.

— We present experimental data looking at the performance of our query evalu-
ator, compared with good and bad hand-coded implementations. The results
demonstrate that our system is competitive with an optimised hand-coded
implementation.

— We present a technique which uses AspectJ to efficiently track object extent
sets.

— We present experimental data looking at the performance of our object track-
ing system on the SPECjvm98 benchmark suite. The results demonstrate
that our approach is practical.

2 Object Querying

Figure 1 shows the almost generic diagram of students attending courses. Ver-
sions of this diagram are found in many publications on relationships [5,6,11,31].
Many students attend many courses; Courses have a course code, a title string
and a teacher; students have IDs and (reluctantly, at least at our university’s
registry) names. A difficulty with this decomposition is representing students
who are also teachers. One solution is to have separate Student and Teacher
objects, which are related by name. The following code can then be used to
identify students who are teachers:

30 D. Willis, D.J. Pearce, and J. Noble

List<Tuple2<Faculty,Student>> matches = new ArrayList<..>();
for(Faculty f : allFaculty) {
for(Student s : allStudents) {
if (s.name.equals(f.name)) {
matches.add(new Tuple2<Faculty,Student>(f,s));
33

In database terms, this code is performing a join on the name field for the
allFaculty and allStudent collections. The code is cumbersome and can be
replaced with the following object query, which is more succinct and, potentially,
more efficient:

List<Tuple2<Faculty,Student>> matches;
matches = selectAll(Faculty f=allFaculty, Student s=allStudents
: f.name.equals(s.name));

This gives exactly the same set of results as the loop code. The selectAll prim-
itive returns a list of tuples containing all possible instantiations of the domain
variables (i.e. those declared before the colon) where the query expression holds
(i.e. that after the colon). The domain variables determine the set of objects
which the query ranges over: they can be initialised from a collection (as above);
or, left uninitialised to range over the entire extent set (i.e. the set of all instan-
tiated objects) of their type. Queries can define as many domain variables as
necessary and can make use of the usual array of expression constructs found
in Java. One difference from normal Java expressions is that boolean operators,
such as && and | |, do not imply an order of execution for their operands. This
allows flexibility in the order they are evaluated, potentially leading to greater
efficiency.

As well as its simplicity, there are other advantages to using this query in
place of the loop code. The query evaluator can apply well-known optimisations
which the programmer might have missed. By leaving the decision of which
optimisation to apply until runtime, it can make a more informed decision based
upon dynamic properties of the data itself (such as the relative size of input
sets) — something that is, at best, difficult for a programmer to do. A good
example, which applies in this case, is the so-called hash-join (see e.g. [26]). The
idea is to avoid enumerating all of allFaculty x allStudents when there are
few matches. A hash-map is constructed from the largest of the two collections
which maps the value being joined upon (in this case name) back to its objects.
This still requires O(sf) time in the worst-case, where s = |allStudents| and
f = |allFacultyl, but in practice is likely to be linear in the number of matches
(contrasting with a nested loop which always takes O(sf) time).

Figure 2 illustrates a hash-join implementation of the original loop. We be-
lieve it is highly unlikely a programmer would regularly apply this optimisation in
practice. This is because it is noticeably more complicated than the nested-loop
implementation and requires considerable insight, on behalf of the programmer,
to understand the benefits. Even if he/she had appreciated the value of using
a hash join, the optimal ordering (i.e. whether to map from names to Faculty

Efficient Object Querying for Java 31
Student Course Faculty
D Title * Office
Name Attends Code Teaches Name
class Student { String name; int ID; ... }
class Faculty { String name; String office; ... }

class Course {

String code, title;

Faculty teacher;

HashSet<Student> roster;

void enrol(Student s) { roster.add(s); }

void withdraw(Student s) { roster.remove(s); }

}

Fig.1. A simple UML diagram, describing students that attend courses and teach-
ers that teach them and a typical implementation. Protection specifiers on fields and
accessor methods are omitted for simplicity.

// selectAll(Faculty f=allFaculty, Student s=allStudents
// : f.name.equals(s.name));

HashMap<String,List<Faculty>> tmp = new HashMap<...>();
for(Faculty f : allFaculty) {

List<Faculty> fs = tmp.get(f.name);

if (fs == null) {

fs = new ArrayList<Faculty>();

tmp.put (f.name,fs);

}

fs.add(f);
}

List<Tuple2<Faculty,Student>> matches = new ArrayList<..>();
for(Student s : allStudents) {
List<Faculty> fs = tmp.get(s.name);
if(fs != null) {
for(Faculty £ : fs) {
matches.add(new Tuple2<Faculty,Student>(f,s));
}
}
}

Fig. 2. Tllustrating a hash-join implementation of the simple query (shown at the top)
from Section 2. The code first creates a map from Faculty names to Faculty objects.
Then, it iterates over the allStudents collection and looks up those Faculty members
with the same name.

32 D. Willis, D.J. Pearce, and J. Noble

or from names to Students) depends upon the relative number of students and
faculty (mapping to the smaller is generally the best choice [26]). Of course, a
clever programmer could still obtain optimal performance by manually enumer-
ating all possible orderings and including a runtime check to select the best one.
But, is this really likely to happen in practice? Certainly, for larger queries, it
becomes ridiculously impractical as the number of valid orderings grows expo-
nentially. Using a query in place of a manual implementation allows the query
evaluator to perform such optimisations. And, as we will see in Section 4, there
is a significant difference between a good hand-coded implementation and a poor
one — even for small queries.

2.1 Querying Object Extents

While object querying could be limited to collections alone, there is additional
benefit in allowing queries to range over the set of all instantiated objects. An
interesting example lies in expressing and enforcing class invariants. Class in-
variants are often captured using universal/existential quantifiers over object
extents (e.g. [3,30,34,35]). Queries provide a natural approach to checking these
invariants.

In a conventional OO language, such as Java, it is possible to express and
enforce some class invariants using simple assertions. For example:

class BinTree {

private BinTree left;
private BinTree right;
private Object value;

public BinTree(BinTree 1, BinTree r) {
left = 1; right = r;
assert left != right;

}

void setLeftTree(BinTree 1) {
left = 1;
assert left != right;

}

}

Here, the class invariant left!=right is enforced by asserting it after every
member function. This allows programmers to identify the exact point during
a program’s execution that an incorrect state is reached — thus preventing a
cause-effect gap [12].

A limitation of this approach is that it cannot easily express more wide-ranging
class invariants. The above tries (unsuccessfully) to enforce the invariant that
there is no aliasing between trees. In other words, that no BinTree object has
more than one parent and/or the same subtrees. The simple approach using

Efficient Object Querying for Java 33

assert can only partially express this because it is limited to a particular in-
stance of BinTree — there is no way to quantify over all instances. The program-
mer could rectify this by maintaining a collection of the class’s instances in a
static class variable. This requires a separate implementation for each class and,
once in place, is difficult to disable (e.g. for software release). Another option
is to maintain a back-pointer in each BinTree object, which points to its par-
ent. Then, before assigning a tree to be a subtree of another, we check whether
it already has a parent. Again, this approach suffers from being difficult to dis-
able and requiring non-trivial implementation. Indeed, properly maintaining this
parent-child relationship is a tricky task that could easily be implemented in-
correctly — potentially leading to a false impression that the class invariant
holds.

Using an object query offers a cleaner, more succinct and more manageable
solution:

assert null == selectA(BinTree a, BinTree b :
(a.left == b.left && a '= b) ||
(a.right == b.right & a != b) ||
(a.left == b.right));

This uses the selectA primitive which returns a matching tuple (if there is
one), or null (otherwise). Using selectA (when applicable) is more efficient
that selectAll because the query evaluator can stop as soon as the first match
is made. Notice that, in the query, a and b can refer to the same BinTree object,
hence the need to guard against this in the first two cases.

Other examples of interesting class invariants which can be enforced using
object queries include the singleton pattern [13]:

assert 1 == selectAll(Singleton x).size();
and, similarly, the fly-weight pattern [13]:
assert null == selectA(Value x, Value y : x.equals(y) && x != y);

The above ensures that flyweight objects (in this case Value objects) are not
duplicated, which is the essence of this pattern.

2.2 Dynamic Querying

So far, we have assumed that queries are statically compiled. This means they can
be checked for well-formedness at compile time. However, our query evaluator
maintains at runtime an Abstract Syntax Tree (AST) representation of the query
for the purposes of query optimisation. An AST can be constructed at runtime
by the program and passed directly to the query evaluator. This form of dynamic
query has the advantage of being more flexible, albeit at the cost of runtime type
checking. The syntax of a dynamic query is:

List<0bject[]> selectAll(Query stmt);

34 D. Willis, D.J. Pearce, and J. Noble

Since static typing information is not available for dynamic queries, we simply
implement the returned tuples as Object arrays. The Query object encapsulates
the domain variables and query expression (a simple AST) making up the query.
The following illustrates a simple dynamic query:

List<0bject[]> findEquivInstances(Class C, Object y) {
// build selectAll(C x : x.equals(y));

Query query = new Query(Q);

DomainVar x = query.newDomainVar (C) ;
query.addConjunct (new Equals(x,new ConstRef(y)));

// run query

return query.selectAl1();

}

This returns all instances, x, of class ¢ where x.equals(y) holds. This query
cannot be expressed statically, since the class ¢ is unknown at compile time.
Dynamic queries are more flexible: in particular, we can construct queries in
direct response to user input.

3 Implementation

We have prototyped a system, called the Java Query Language (JQL), which
permits queries over object extents and collections in Java. The implementation
consists of three main components: a compiler, a query evaluator and a runtime
system for tracking all active objects in the program. The latter enables the query
evaluator to range over the extent sets of all classes. Our purpose in doing this is
twofold: firstly, to assess the performance impact of such a system; secondly, to
provide a platform for experimenting with the idea of using queries as first-class
language constructs.

3.1 JQL Query Evaluator

The core component of the JQL system is the query evaluator. This is responsible
for applying whatever optimisations it can to evaluate queries efficiently. The
evaluator is called at runtime with a tree representation of the query (called the
query tree). The tree itself is either constructed by the JQL Compiler (for static
queries) or by the user (for dynamic queries).

Evaluation Pipeline. The JQL evaluator evaluates a query by pushing tuples
through a staged pipeline. Each stage, known as a join in the language of data-
bases, corresponds to a condition in the query. Only tuples matching a join’s
condition are allowed to pass through to the next. Those tuples which make it
through to the end are added to the result set. Each join accepts two lists of
tuples, L(eft) and R(ight), and combines them together producing a single list.
We enforce the restriction that, for each intermediate join, either both inputs
come from the previous stage or one comes directly from an input collection and

Efficient Object Querying for Java 35

allStudents allCourses

—~ —
‘ HHHHHHHH\i

LY w
o L e 111111
‘ W f Hash Join X’Lﬂﬂﬂw f Nested-Loop | :;3:

Fig. 3. Illustrating a query pipeline

the other comes from the previous stage. This is known as a linear processing
tree [19] and it simplifies the query evaluator, although it can lead to inefficiency
in some cases.

The way in which a join combines tuples depends upon its type and the
operation (e.g. ==, < etc) it represents. JQL currently supports two join types:
nested-loop join and hash join. A nested-loop join is a two-level nested loop which
iterates each of L X R and checks for a match. A hash join builds a temporary
hash table which it uses to check for matches. This provides the best perfor-
mance, but can be used only when the join operator is == or equals(). Future
implementations may take advantage of B-Trees, for scanning sorted ranges of
a collection.

Consider the following simple query for finding all students who teach a course
(presumably employed as an RA):

r = selectAll(Student s=allStudents, Faculty f=allFaculty,
Course c=allCourses : s.name.equals(f.name) &% c.taughtBy(f));

Figure 3 illustrates the corresponding query pipeline. Since the first join rep-
resents an equals() operation, it is implemented as a hash-join. The second
join, however, represents an arbitrary method call and must be implemented as
a nested-loop. The tuples which are produced from the first join have the form
(Student, Faculty) and are stored in a temporary location before being passed
into the second join.

Join Ordering. The ordering of joins in the pipeline can dramatically effect the
time needed to process the query. The cost of a single join is determined by its input
size, (i.e. |L| x |R|) while its selectivity affects the input size (hence, cost) of subse-
quent joins. Selectivity is the ratio of the number of tuples which do not match to
the input size'. Thus, highly selective joins produce relatively few matches com-
pared with the amount of input. To find a minimal cost ordering, we must search

! We follow Lencevicius [20] with our meaning of selectivity here. While this contrasts
with the database literature (where it means the opposite), we feel this is more intu-
itive.

36 D. Willis, D.J. Pearce, and J. Noble

every n! possible configurations and, in fact, this is known to be an NP-complete
problem [18]. A further difficulty is that we cannot know the true selectivity of a
given join without first running it. One approach is to use a fixed selectivity heuris-
tic for each operation (e.g. == is highly selective, while !=is not). Alternatively, we
can sample the join’s selectivity by testing a small number of tuples and seeing how
many are matched before evaluating the whole query [15,20].

The JQL evaluator supports both approaches for estimating selectivity. For
the fixed heuristic approach, the following selectivity values are used: 0.95 for
== and equals(); 0.5 for <, <=, >, >= and compare(); 0.2 for !=; finally, 0.1 for
arbitrary methods. The sampling approach passes 10 randomly selected tuples
from the input through each join and uses the number of matches as an estimator
of selectivity. We find that, even with a sample size of just 10 tuples, surprisingly
accurate results can be obtained.

We have implemented several join ordering strategies in an effort to assess
their suitability. We now briefly discuss each of these in turn:

— EXHAUSTIVE: This strategy enumerates each possible configuration, se-
lecting that with the lowest cost. To determine the overall cost of a pipeline,
we use essentially the same procedure as outlined above.

— MAX SELECTIVITY: This strategy orders joins based solely on their se-
lectivity, with the most selective coming first. This simple approach has the
advantage of avoiding an exponential search and, although it will not always
find the best ordering, we find it generally does well in practice. This is
essentially the same strategy as that used in the PTQL system [14].

Many other heuristics have been proposed in the literature (see e.g. [18,19,37,36])
and, in the future, we hope to implement more strategies to help determine which
is most suited to this domain.

3.2 JQL Compiler

The JQL compiler is a prototype source-to-source translator that replaces all
selectAll / selectA statements with equivalent Java code. When a query state-
ment is encountered the compiler converts the query expression into a sequence
of Java statements that construct a query tree and pass this to the query eval-
uator. The value of using a compiler, compared with simply writing dynamic
queries (as in Section 2.2), is twofold: firstly, the syntax is neater and more
compact; secondly, the compiler can check the query is well-formed, the value of
which has been noted elsewhere [4,9,10].

The query tree itself is a fairly straightforward Abstract Syntax Tree. For ease
of implementation, our prototype requires that queries be expressed in CNF.
This way the query can be represented as an array of expressions, where each is
ANDed together.

3.3 JQL Runtime System

To track the extent sets of all objects, we use AspectJ to intercept and record all
calls to new. The following example illustrates a simple aspect which does this:

Efficient Object Querying for Java 37

aspect MyAspect {

pointcut newObject() : call(* *.new(..)) &% !within(MyAspect);
after() : newObject() { System.out.println("new called"); }

}

This creates a pointcut, newObject (), which captures the act of calling new on
any class except MyAspect. This is then associated with advice which executes
whenever a join point captured by newObject () is triggered (i.e. whenever new
is called). Here, after () indicates the advice executes immediately after the join
point triggers. Notice that we must use !within(MyAspect) to protect against
an infinite loop which could arise if MyAspect allocates storage inside the advice,
resulting in the advice triggering itself.

Implementation. To track all program objects in the program we use an As-
pect (similar to above) which advises all calls to new() with code to record a
reference to the new object. This aspect is shown in Figure 4. One exception

public aspect TrackingAspect {
Hashtable<Class,ExtentSet> extentSets = new Hashtable<...>();

pointcut newObject() : call(*.new(..)) && !within(TrackingAspect.*);

after() returning(Object o) : newObject() {
Class C = o.getClass();
getExtentSet (C) .add(o);

ExtentSet getExtentSet(Class C) {
// Find extent set for C. If there is none, create one.
ExtentSet set;
synchronized(extentSets) {
set = extentSets.get(C);
if(set == null) {
set = new ExtentSet();
extentSets.put(C, set);
Class S = C.getSuperClass();
if (S !'= null) {

getExtentSet(S) .link(set); // Link superclass set
}
for(Class I : C.getInterfaces()) {
getExtentSet (I).link(set); // Link interface set
}
}
}

Fig. 4. An aspect for tracking all objects in the program

38 D. Willis, D.J. Pearce, and J. Noble

is the use of “returning(...)” which gives access to the object reference re-
turned by the new call. We use this aspect to provide a facility similar to the
‘allInstances’ message in Smalltalk, without having to produce a custom JVM.

The TrackingAspect maintains a map from classes to their ExtentSets. An
ExtentSet (code not shown) holds every object of its class using a weak refer-
ence. Weak references do not prevent the garbage collector from reclaiming the
object they refer to and, hence, an ExtentSet does not prevent its objects from
being reclaimed. In addition, an ExtentSet has a redirect list which holds the
ExtentSets of all its class’s subclasses. In the case of an interface, the redirect
list refers to the ExtentSet of all implementing classes and subinterfaces. The
reason for using redirect lists is to avoid storing multiple references for objects
whose class either implements some interface(s) or extends another class. Note
that only ExtentSets which correspond to concrete classes will actually contain
object references, as interfaces and abstract classes cannot be instantiated.

An important consideration is the effect of synchronisation. We must synchro-
nise on the Hashtable and, hence, we are essentially placing a lock around object
creation. In fact, the multi-level nature of the extent set map can help somewhat.
This is because new ExtentSets will only be added to the outer Hashtable in-
frequently. A more advanced data structure should be able to exploit this and
restrict the majority of synchronisation to within individual ExtentSets. This
way, synchronisation only occurs between object creations of the same class. We
have experimented with using ConcurrentHashmap for this purpose, although we
saw no performance improvements. We hope to investigate this further in the
future and expect it likely the two tier structure of the extent sets will obviate
most of the synchronisation penalty.

4 Performance

We consider that the performance of the JQL system is important in determining
whether it could gain widespread use. Ideally, the system should be capable of
evaluating queries as fast as the optimal hand-coded loop. This is difficult to
achieve in practice due to the additional overheads introduced by the pipeline
design, and in the necessary search for good join orders. However, we argue
that merely being competitive with the best hand-coded loops is a sufficient
indicator of success, since it is highly unlikely a programmer will often write
optimal hand-coded loops in large-scale programs.

Therefore, in this section we investigate the performance of the JQL system in
a number of ways. Firstly, we compare its performance against hand-coded loops
across three simple benchmarks to determine its competitiveness. Secondly, we
evaluate the overhead of the object tracking mechanism using the SPECjvm98
benchmarks [1].

In all experiments which follow, the experimental machine was an Intel Pen-
tium IV 2.5GHz, with 1GB RAM running NetBSD v3.99.11. In each case, Sun’s
Java 1.5.0 (J2SE 5.0) Runtime Environment and Aspect/J version 1.5M3 were
used. Timing was performed using the standard System.currentTimeMillis()

Efficient Object Querying for Java 39

method, which provides millisecond resolution (on NetBSD). The source code
for the JQL system and the three query benchmarks used below can be obtained
from http://www.mcs.vuw.ac.nz/~djp/JQL/.

4.1 Study 1 — Query Evaluation

The purpose of this study was to investigate the query evaluator’s performance,
compared with equivalent hand-coded implementations. We used three queries of
different sizes as benchmarks for comparison. Two hand-coded implementations
were written for each: HANDOPT and HANDPOOR. The former represents the
best implementation we could write. This always used hash-joins when possible
and employed the optimal join ordering. The HANDPOOR implementation was
the exact opposite, using only nested-loop joins and the worst join ordering pos-
sible — a pessimistic but nonetheless possible outcome for novice or distracted
programmers. Our purpose with these implementations was to determine the
range of performance that could be expected for hand-coded queries. This is
interesting for several reasons: firstly, the programmer is unlikely to apply all
the optimisations (e.g. hash-joins) that are possible; secondly; the programmer
is unlikely to select an optimal join order (indeed, the optimal may vary dy-
namically as the program executes). The question, then, was how close the JQL
evaluator performance was, compared with the HANDOPT implementation.

Table 1. Details of the three benchmark queries

Name Details
OneStage selectAll(Integer a=L1, Integer b=L2 : a == b);

This benchmark requires a single pipeline stage. Hence, there is only
one possible join ordering. The query can be optimised by using a
hash-join rather than a nested loop implementation.
TwoStage selectAll(Integer a=L1, Integer b=L2, Integer c=L3
ca=Db&& b !=c);

This benchmark requires two pipeline stages. The best join ordering
has the joins ordered as above (i.e. == being first). The query can
be further optimised by using a hash-join rather than a nested loop
implementation for the == join.
ThreeStage selectAll(Integer a=L1, Integer b=L2, Integer c=L3,
Integer d=L4 : a == b && b != c && c < d);

This benchmark requires three pipeline stages. The best join order-
ing has the joins ordered as above (i.e. == being first). The query is
interesting as it makes sense to evaluate b !'= c before ¢ < 4, even
though the former has lower selectivity. This query can be optimised
using a hash-join as before.

40 D. Willis, D.J. Pearce, and J. Noble

Experimental setup. The three query benchmarks are detailed in Table 1. The
queries range over the lists of Integers L1, ..., L4 which, for simplicity, were
always kept the same size. Let n be the size of each list. Then, each was generated
by initialising with each integer from {1,...,n} and randomly shuffling. Note,
the worst case time needed to evaluate StageOne, StageTwo and StageThree
queries is O(n?), O(n?) and O(n?), respectively.

For each query benchmark, four implementations were tested: the two hand-
coded implementations (HANDOPT, HANDPOOR); and, the JQL query evalu-
ator using the MAX SELECTIVITY and EXHAUSTIVE join ordering strategies.
For all JQL tests, join selectivity was estimated using the fixed heuristic outlined
in Section 3.1, but not the sampling approach. The reason for this is simply that,
for these queries, the two approaches to estimating selectivity produced very sim-
ilar results.

Each experiment consisted of measuring the average time taken for an im-
plementation to evaluate one of the query benchmarks for a given list size. The
average time was measured over 10 runs, with 5 ramp-up runs being performed
beforehand. These parameters were sufficient to generate data with a variation
coefficient (i.e. standard deviation over mean) of <0.15 — indicating low variance
between runs. Experiments were performed for each query and implementation
at different list sizes (i.e. n) to gain insight into how performance varied with n.

Discussion. The results of the experiments are shown in Figure 5. The main
observation is that there is a significant difference between the HANDOPT and
HANDPOOR implementations, even for the small OneStage query. Further-
more, while the performance of JQL is always marginally slower (regardless of
join ordering strategy) than HANDOPT, it is always much better than HAND-
POOR. We argue then, that the guaranteed performance offered by JQL is very
attractive, compared with the range of performance offered by hand-coded im-
plementations — especially as it’s unlikely a programmer will achieve anything
close to HANDOPT in practice.

The ThreeStage benchmark is the most complex of those studied and high-
lights a difference in performance between the MAX SELECTIVITY and EX-
HAUSTIVE join ordering strategies used by JQL. This difference arises because
the MAX SELECTIVITY heuristic does not obtain an optimal join ordering for
this benchmark, while the EXHAUSTIVE strategy does. In general, it seems
that the EXHAUSTIVE strategy is the more attractive. Indeed, for queries that
have relatively few joins, it is. It is also important to remember that it uses
an exponential search algorithm and, hence, for large queries this will certainly
require a prohibitive amount of time. In general, we believe that further work in-
vestigating other possible join ordering heuristics from the database community
would be valuable.

4.2 Study 2 — Object Extents Tracking

The purpose of this study was to investigate the performance impact of the JQL
object tracking system. This is necessary to permit querying over the object

OneStage Benchmark

JQL-MAXSEL —+—
14 | JQL-EXHAUSTIVE -3¢
HANDPOOR -
| HANDOPT -8
12
)
[}
E 10 |
g X
S 8 |
3 ¥
>
a6 f e
S
© K
2 M
2 L

0B B B £ =)
8000 8500 9000 9500 10000 10500 11000 11500 12000
List Size (Number of Objects)

TwoStage Benchmark

Efficient Object Querying for Java 41

OneStage Benchmark (CLOSE UP)

.2
° JQL-MAXSEL —+—
JQL-EXHAUSTIVE -3
HANDPOOR -
HANDOPT -
L 015+

Average Evaluation Time

0
8000 8500 9000 9500 10000 1050011000 11500 12000

List Size (Number of Objects)
TwoStage Benchmark (CLOSE UP)

60 3
JQL-MAXSEL —+— % JQL-MAXSEL —+—
JQL-EXHAUSTIVE —3¢-— : JOL-EXHAUSTIVE —3¢—
HANDPOOR - HANDPOOR -
50 ¢ HANDOPT -3 251 HANDOPT -3
z z
£ £
Edo | E 2
f = f =
S . S
EE % S5t
] -)
> . >
w w
[[
220 - 2 1r
g g
< X <
10 | ’
0 B 58 5 e £ 0 L L L L L L L
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
List Size (Number of Objects) List Size (Number of Objects)
ThreeStage Benchmark ThreeStage Benchmark (CLOSE UP)
8 1.6
JOL-MAXSEL —+— * ! JOL-MAXSEL —+—
JOL-EXHAUSTIVE —-3¢-— ; JQL-EXHAUSTIVE -~
7t HANDPOOR - 141 HANDPOOR -
HANDOPT & / HANDOPT &
Ze | ORPY
g * g
[L
e o1
8 S
S 4+ >< S 0.8
®© ®©
> >
i1} } i1}
231 ¥ g 06
o o
S, |)
z 2 K z 0.4
o = X 0.2
—— %
B = i
0 : ; . o
80 90 100 110 120 130 80 90 100 110 120 130

List Size (Number of Objects)

List Size (Number of Objects)

Fig. 5. Experimental results comparing the performance of JQL with different join

ordering strategies against the hand-coded implementations. Data for the OneStage,
TwoStage and ThreeStage benchmarks are shown at the Top, Middle and Bottom re-
spectively. The charts on the right give a close ups of the three fastest implementations
for each benchmark. Different object sizes are plotted to show the general trends.

42 D. Willis, D.J. Pearce, and J. Noble

Table 2. The benchmark suite. Size indicates the amount of bytecode making up the
benchmark, excluding harness code and standard libraries. Time and Heap give the
execution time and maximum heap usage for one run of the benchmark. # Objects
Created gives the total number of objects created by the benchmark during one run.

Benchmark Size # Objects Time Heap Multi-
(KB) Created (s) (MB) Threaded
_201_compress 17.4 601 6.4 55 N
_202_jess 387.2 5.3 x 10° 1.6 61 N
_205_raytrace 55.0 5.0 x 10° 1.6 60 N
_209_db 9.9 1.6 x 10° 11.5 63 N
_213_javac 548.3 11152 3.9 78 N
_222_mpegaudio 117.4 1084 6.0 26 N
_227_mtrt 56.0 5.2 x 10° 2.6 64 Y
_228_jack 127.8 6.9 x 10° 2.3 59 N

extent sets. However, each object creation causes, at least, both a hashtable
lookup and an insertion. Keeping an extra reference of every live object also
causes memory overhead. We have used the SPECjvm98 benchmark suite to
test the memory and execution overhead incurred.

Experimental setup. The benchmarks used for these experiments are de-
scribed in Table 2. To measure execution time, we averaged time taken by each
benchmark with and without the tracker enabled. These timings were taken over
10 runs with a 5-run rampup period. This was sufficient to generate data with
a variation coefficient of <0.1, again indicating very low variance between runs.
For memory overhead measurements, we monitored the resource usage of the
JVM process using top while running the benchmark and recorded the peak
measurement. For these experiments the JVM was run with a 512MB heap.

Discussion. The relative slowdowns for each benchmark’s execution time are
shown in Figure 6. The memory overhead incurred for each benchmark is shown
in Figure 7.

Both memory overhead and execution overhead are directly influenced by the
number of objects created. Execution overhead is linked to how much time is
spent creating objects, rather than operating on them. mpegaudio and compress,
for example, create relatively few objects and spend most of their runtime work-
ing with those objects. Hence, they show relatively minor slowdown. jess and
raytrace, on the other hand, create millions of objects in the space of a few
seconds. This leads to a fairly significant slowdown.

Memory overhead is also influenced by relative size of objects created. A
benchmark like raytrace creates hundreds of thousands of small Point objects,
likely smaller than the WeakReference objects necessary to track them. This
means the relative overhead of the tracker for each object is very large. db,
on the other hand, creates a hundred thousand-odd String instances, which
outweigh the WeakReferences. Compared to these bulky Strings, the tracker’s
overhead is minor.

Efficient Object Querying for Java 43

11

10

Evaluation Slowdown

.

compress jess raytrace db javac mpegaudio mtrt jack
(7.15s) (16.81s) (17.50s) (61.75s) (14.79s) (9.72s) (17.17s) (6.02s)

Spec Benchmark

Fig. 6. Slowdown factors for SPECjvm98 benchmark programs executed with object
tracking enabled. The execution time with tracking enabled is shown below each bench-
mark; the untracked execution times are given in Table 2. Slowdown factors are com-
puted as the division of the tracked time over the untracked time.

7

Memory Overhead
N

compress jess raytrace db javac mpegaudio mitrt jack

Spec Benchmark

Fig. 7. Memory overhead factors for SPECjvm98 benchmark programs executed with
object tracking enabled. Memory overhead is computed as the division of the tracked
memory usage over the untracked usage.

We consider these benchmarks show the object tracker is likely to be practical
for many Java programs. Certainly, using the system in development would offer
significant benefits, for example, if class invariants we used properly. We feel

44 D. Willis, D.J. Pearce, and J. Noble

performance data for using the object tracker with various ‘real-world’ Java
applications would be valuable, and plan to investigate this in the future.

5 Discussion

In this section, we discuss various issues with the JQL system and explore in-
teresting future directions.

5.1 Side Effecting Queries

One of the issues we have not addressed is that of side-effecting queries. That
is, queries using a method which mutates the objects it is called upon. While
this is possible in principle, we believe it would be difficult to use in a sensible
way. This is because the query evaluator is free to optimise queries as it sees
fit — there is no evaluation order which can be relied upon. Indeed, there is
no guarantee upon what combinations of the domain variable’s objects such a
method will be called. For example:

r = selectAl1(Object x, Object y : x.equals(y) && x.fn(y));

Even for this simple query, it is difficult to predict upon which objects fn () will
be called. The most likely scenario is that x.equals(y) will be the first join in
the pipeline — in which case x.fn(y) is only called on those x and y which are
equals(). However, if the JQL’s sampling strategy for estimating selectivity is
used, then fn() could be placed before equals() in the pipeline. In this case,
x.fn(y) is called for all possible x and y combinations.

We make the simplifying assumption that all methods used as part of a query
(such as fn() above) have no side effects. This applies to the use of equals()
and compare() as well as all other method calls. Since JQL cannot enforce this
requirement (at least, not without complex static analysis), it falls upon the
programmer to ensure all methods used are in fact side-effect free.

5.2 Incrementalisation

An interesting observation is that, to improve performance, the results of a query
can be cached and reused later. This approach, often called incrementalisation
[7,24], requires that the cached results are updated in line with changes to the
objects and collections they derive from.

Determining whether some change to an object/collection affects a cached
query result it is not without difficulty. We could imagine intercepting all field
reads/writes (perhaps using AspectJ’s field read/write pointcuts) and checking
whether it affects any cached query results. While this might be expensive if
there are a large number of cached queries, it could be lucrative if the cache is
restricted to a small number of frequently called queries. Alternatively, cached
queries could be restricted to those involving only final field values. This way,
we are guaranteed objects involved in a query cannot change, thereby simplifying
the problem.

Efficient Object Querying for Java 45

While incrementalisation can improve performance, its real power lies in an
ability to improve program structure by eliminating many uses of collections.
Consider the problem of recording which Students are enrolled in which Courses.
In Figure 1, this is achieved by storing a collection of Students in each Course
object. With incrementalisation we can imagine taking another route. Instead
of adding a Student to a Course’s collection, we construct a new Enroll ob-
ject which has fields referencing the Student and Course in question. To access
Students enrolled in a particular Course, we simply query for all Enroll objects
with a matching Course field. Incrementalisation ensures that, if the query is
executed frequently, the cached query result — which is equivalent to the collec-
tion in Course that was replaced — is maintained. This provides more flexibility
than the original design as, for example, it allows us to efficiently traverse the
relationship in either direction with ease. With the original design, we are lim-
ited to a single direction of traversal, unless we add a collection to Student that
holds enrolled Courses. In fact, this has many similarities with the approach
taken to implementing relationships in Rel/J [5].

Incrementalisation is not currently implemented in JQL, although we hope to
explore this direction in the future.

6 Related Work

An important work in this area is that of Lencevicius et al., who developed
a series of Query-Based Debuggers [20,21,22,23] to address the cause-effect gap
[12]. The effect of a bug (erroneous output, crash, etc) often occur some time
after the statement causing it was executed, making it hard to identify the real
culprit. Lencevicius et al. observed that typical debuggers provide only limited
support for this in the form of breakpoints that trigger when simple invari-
ants are broken. They extended this by allowing queries on the object graph to
trigger breakpoints — thereby providing a mechanism for identifying when com-
plex invariants are broken. Their query-based debuggers re-evaluate the query
whenever a program event occurs that could change the query’s result. Thus, a
breakpoint triggers whenever one or more objects match the query. To reduce
the performance impact of this, they employed a number of query optimisations
(such as operator selectivity and join ordering).

Several other systems have used querying to aid debugging. The Fox [32,33]
operates on heap dumps of the program generated using Sun’s Heap Analysis
Tool (HAT), allowing queries to range over the set of objects involved in a given
snapshot. The main focus of this was on checking that certain ownership con-
straints were being properly maintained by a given program. The Program Trace
Query Language (PTQL) permits relational queries over program traces with a
specific focus on the relationship between program events [14]. PTQL allows the
user to query over relations representing various aspects of program execution,
such as the set of all method invocations or object creations. The query evaluator
in PTQL supports nested-loop joins (but not hash-joins as we do) and performs
join ordering using something very similar to our MAX SELECTIVITY heuris-

46 D. Willis, D.J. Pearce, and J. Noble

tic. The Program Query Language (PQL) is a similar system which allows the
programmer to express queries capturing erroneous behaviour over the program
trace [25]. A key difference from other systems is that static analysis was used
in an effort to answer some queries without needing to run the program. As a
fallback, queries which could not be resolved statically are compiled into the
program’s bytecode and checked at runtime.

Hobatr and Malloy [16,17] present a query-based debugger for C++ that uses
the OpenC++ Meta-Object Protocol [8] and the Object Constraint Language
(OCL) [38]. This system consists of a frontend for compiling OCL queries to
C++, and a backend that uses OpenC++ to generate the instrumentation code
necessary for evaluating the queries. In some sense this is similar to our approach,
except that we use JQL to specify queries and AspectJ to add the necessary
instrumentation for resolving them. Like the others, their focus is primarily
on catching violations of class invariants and pre/post conditions, rather than
as a general purpose language extension. Unfortunately, no details are given
regarding what (if any) query optimisations are employed and/or how program
performance is affected by the added instrumentation code.

More recently, the Language INtegrated Query (LINQ) project has added
querying capabilities to the C! language. In many ways, this is similar to JQL
and, while LINQ does not support querying over object extent sets, its queries
can be used to directly access databases. At this stage, little is known about
the query evaluator employed in LINQ and the query optimisations it performs.
We hope that our work will motivate studies of this and it will be interesting
to see how the LINQ query evaluator performs in practice. The Cw language [4]
preceded LINQ and they have much in common as regards queries.

One feature of LINQ is the introduction of lambda expressions to Cf. Lambda
expressions can be used in place of iterators for manipulating / filtering collec-
tions [2]. In this way, they offer a form of querying where the lambda expression
represents the query expression. However, this is more simplistic than the ap-
proach we have taken as, by permitting queries over multiple collections, we can
exploit a number of important optimisations. Lambda expressions offer no help
in this regard as, to apply such optimisations, we must be able to break apart
and manipulate the query expression to find operators that support efficient
joins and to determine good join orderings.

Another related work is that of Liu et al. [24], who regard all programs as
a series of queries and updates. They use static program analysis to determine
which queries can be incrementalised to permit efficient evaluation. To do this,
they employ a cost model to determine which queries are expensive to compute
and, hence, which should be incrementalised. This incrementalisation can be
thought of as creating a view which represents the query results and automat-
ically updating when the underlying data is changed. This optimisation could
be implemented in JQL (albeit in a dynamic, rather than static setting) and we
wish to explore this in the future.

Cook and Rai [10] describe how building queries out of objects (rather than
using e.g. SQL strings) can ensure typesafety and prevent spoofing attacks. While

Efficient Object Querying for Java 47

these safe query objects have generally been used to generate database queries,
they could also act as a front-end to our query system. Similarly, the object
extents and query optimisations we describe in this paper could be applied in
the context of a safe query object system.

Finally, there are a number of APIs available for Java (e.g. SQLJ, JSQL,
etc.) which provide access to SQL databases. These are quite different from the
approach we have presented in this work, as they do not support querying over
collections and/or object extents. Furthermore, they do not perform any query
optimisations, instead relying on the database back end to do this.

7 Conclusion

In this paper, we have presented a language extension for Java (called JQL)
which permits queries over object collections and extent sets. We have motivated
this as a way of improving both program readability and flexibility and also
in providing a stronger guarantee of performance. The latter arises from the
query evaluator’s ability to perform complex optimisations — many of which
the programmer is unlike to do in practice. Through an experimental study we
have demonstrated there is a large difference in performance between a poor
hand-coded query and a good one. Furthermore, our prototype implementation
performs very well compared with optimised hand-coded implementations of
several queries. We have also demonstrated that the cost of tracking all objects in
the program is practical. We would expect that, with direct support for querying
from the JVM, the performance overhead of this would improve significantly.
The complete source for our prototype implementation is available for down-
load from http://www.mcs.vuw.ac.nz/~djp/JQL/ and we hope that it will mo-
tivate further study of object querying as a first-class language construct.

Acknowledgements

The authors would like to thank Stuart Marshall for some insightful comments on
an earlier draft of this paper. This work is supported by the University Research
Fund of Victoria University of Wellington, and the Royal Society of New Zealand
Marsden Fund.

References

1. The Standard Performance Corporation. SPEC JVM98 benchmarks,
http://www.spec.org/osg/jvm98, 1998.

2. H. G. Baker. Iterators: Signs of weakness in object-oriented languages. ACM OOPS
Messenger, 4(3), July 1993.

3. M. Barnett, R. DeLine, M. Fahndrich, K. Rustan, M. Leino, and W. Schulte. Veri-
fication of object-oriented programs with invariants. Journal of Object Technology,
3(6):27-56, 2004.

48

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Willis, D.J. Pearce, and J. Noble

G. Bierman, E. Meijer, and W. Schulte. The essence of data access in cw. In Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP),
volume 3586 of Lecture Notes in Computer Science, pages 287-311. Springer-
Verlag, 2005.

G. Bierman and A. Wren. First-class relationships in an object-oriented lan-
guage. In Proceedings of the Furopean Conference on Object-Oriented Programming
(ECOOP), volume 3586 of Lecture Notes in Computer Science, pages 262-282.
Springer-Verlag, 2005.

. G. Booch, 1. Jacobson, and J. Rumbaugh. The Unified Modeling Language User

Guide. Addison-Wesley, 1998.

. S. Ceri and J. Widom. Deriving production rules for incremental view maintenance.

In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 577-589. Morgan Kaufmann Publishers Inc., 1991.

. S. Chiba. A metaobject protocol for C++. In Proceedings of the ACM conference on

Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
pages 285-299. ACM Press, 1995.

. W. R. Cook and A. H. Ibrahim. Programming languages & databases: What’s the

problem? Technical report, Department of Computer Sciences, The University of
Texas at Austin, 2005.

W. R. Cook and S. Rai. Safe query objects: Statically typed objects as remotely
executable queries. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 97-106. IEEE Computer Society Press, 2005.

D. F. D’Souza and A. C. Wills. Objects, Components, and Frameworks with UML:
The Catalysis Approach. Addison-Wesley, 1998.

M. Eisenstadt. My hairiest bug war stories. Communications of the ACM, 40(4):30—
37, 1997.

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over program traces.
In Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 385-402. ACM Press, 2005.

P. J. Haas, J. F. Naughton, and A. N. Swami. On the relative cost of sampling
for join selectivity estimation. In Proceedings of the thirteenth ACM symposium on
Principles of Database Systems (PODS), pages 14-24. ACM Press, 1994.

C. Hobatr and B. A. Malloy. The design of an OCL query-based debugger for
C++. In Proceedings of the ACM Symposium on Applied Computing (SAC), pages
658-662. ACM Press, 2001.

C. Hobatr and B. A. Malloy. Using OCL-queries for debugging C++. In Proceedings
of the IEEE International Conference on Software Engineering (ICSE), pages 839—
840. IEEE Computer Society Press, 2001.

T. Ibaraki and T. Kameda. On the optimal nesting order for computing n-relational
joins. ACM Transactions on Database Systems., 9(3):482-502, 1984.

R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries.
In Proceedings of the ACM Conference on Very Large Data Bases (VLDB), pages
128-137. Morgan Kaufmann Publishers Inc., 1986.

R. Lencevicius. Query-Based Debugging. PhD thesis, University of California,
Santa Barbara, 1999. TR-1999-27.

R. Lencevicius. On-the-fly query-based debugging with examples. In Proceedings
of the Workshop on Automated and Algorithmic Debugging (AADEBUG), 2000.

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Efficient Object Querying for Java 49

R. Lencevicius, U. Holzle, and A. K. Singh. Query-based debugging of object-
oriented programs. In Proceedings of the ACM conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pages 304-317. ACM
Press, 1997.

R. Lencevicius, U. Holzle, and A. K. Singh. Dynamic query-based debug-
ging. In Proceedings of the Furopean Conference on Object-Oriented Programming
(ECOOP), volume 1628 of Lecture Notes in Computer Science, pages 135-160.
Springer-Verlag, 1999.

Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and Y. E. Liu. Incre-
mentalization across object abstraction. In Proceedings of the ACM conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
pages 473-486. ACM Press, 2005.

M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security
flaws using PQL: a program query language. In Proceedings of the ACM con-
ference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 365-383. ACM Press, 2005.

P. Mishra and M. H. Eich. Join processing in relational databases. ACM Computing
Surveys, 24(1):63-113, 1992.

J. Noble. Basic relationship patterns. In N. Harrison, B. Foote, and H. Rohnert,
editors, Pattern Languages of Program Design 4, chapter 6, pages 73-94. Addison-
Wesley, 2000.

J. Noble and J. Grundy. Explicit relationships in object-oriented development.
In Proceedings of the conference on Technology of Object-Oriented Languages and
Systems (TOOLS). Prentice-Hall, 1995.

D. J. Pearce and J. Noble. Relationship aspects. In Proceedings of the ACM
conference on Aspect-Oriented Software Development (AOSD), pages 75-86. ACM
Press, 2005.

C. Pierik, D. Clarke, and F. de Boer. Creational invariants. In Proceedings of the
Workshop on Formal Techniques for Java-like Programs (FTfJP), pages 78-85,
2004.

R. Pooley and P. Stevens. Using UML: Software Engineering with Objects and
Components. Addison-Wesley, 1999.

A. Potanin, J. Noble, and R. Biddle. Checking ownership and confinement. Con-
currency and Computation: Practice and Experience, 16(7):671-687, 2004.

A. Potanin, J. Noble, and R. Biddle. Snapshot query-based debugging. In Proceed-
ings of the IEEE Australian Software Engineering Conference (ASWEC), pages
251-261. IEEE Computer Society Press, 2004.

K. Rustan, M. Leino, and P. Miiller. Object invariants in dynamic contexts. In Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP),
volume 3086 of Lecture Notes in Computer Science, pages 491-516. Springer-
Verlag, 2004.

K. Rustan, M. Leino, and P. Miiller. Modular verification of static class invariants.
In Proceedings of the Formal Methods Conference (FM), volume 3582 of Lecture
Notes in Computer Science, pages 26—42, 2005.

M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized opti-
mization for the join ordering problem. The VLDB Journal, 6(3):191-208, 1997.
A. N. Swami and B. R. Iyer. A polynomial time algorithm for optimizing join
queries. In Proceedings of the International Conference on Data Engineering, pages
345-354, Washington, DC, USA, 1993. IEEE Computer Society.

J. Warmer and A. Kleppe. The Object Constraint Language: precise modeling with
UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Automatic Prefetching by Traversal
Profiling in Object Persistence Architectures*

Ali Ibrahim and William R. Cook

Department of Computer Sciences, University of Texas at Austin
{aibrahim, wcook}@cs.utexas.edu

Abstract. Object persistence architectures support transparent access
to persistent objects. For efficiency, many of these architectures support
queries that can prefetch associated objects as part of the query result.
While specifying prefetch manually in a query can significantly improve
performance, correct prefetch specifications are difficult to determine and
maintain, especially in modular programs. Incorrect prefetching is diffi-
cult to detect, because prefetch is only an optimization hint. This paper
presents AUTOFETCH, a technique for automatically generating prefetch
specifications using traversal profiling in object persistence architectures.
AUTOFETCH generates prefetch specifications based on previous execu-
tions of similar queries. In contrast to previous work, AUTOFETCH can
fetch arbitrary traversal patterns and can execute the optimal number of
queries. AUTOFETCH has been implemented as an extension of Hibernate.
We demonstrate that AUTOFETCH improves performance of traversals in
the OO7 benchmark and can automatically predict prefetches that are
equivalent to hand-coded queries, while supporting more modular pro-
gram designs.

1 Introduction

Object persistence architectures allow programs to create, access, and mod-
ify persistent objects, whose lifetime extends beyond the execution of a single
program. Examples of object persistence architectures include object-relational
mapping tools [10, 6, 28, 24], object-oriented databases [8,21], and orthogonally
persistent programming languages [25, 2, 19, 22].

For example, the Java program in Figure 1 uses Hibernate [6] to print the
names of employees, their managers, and the projects they work on. This code
is typical of industrial object-persistence models: a string representing a query
is passed to the database for execution, and a set of objects is returned. This
query returns a collection of employee objects whose first name is “John”. The
fetch keyword indicates that related objects should be loaded along with the
main result objects. In this query, both the manager and multiple projects are
prefetched for each employee.

* This work was supported by the National Science Foundation under Grant No.
0448128.

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 50-73, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Prefetching by Traversal Profiling 51

+ String query = "from Employee e

> left join fetch e.manager left join fetch e. projects
s where e.firstName = ’>John’ order by e.lastName”;

+ Query q = sess.createQuery(query);

s for (Employee emp : q.list ()) {

s print (emp.getName() + ": " + emp.getManager().getName());
7 for (Project proj : emp.getProjects()) {
s printProject (prog);

!
!

Fig. 1. Java code using fetch in a Hibernate query

While specifying prefetch manually in a query can significantly improve per-
formance, correct prefetch specifications are difficult to write and maintain man-
ually. The prefetch definitions (line 2) in the query must correspond exactly to
the code that uses the results of the query (lines 6 through 8).

It can be difficult to determine exactly what related objects should be pre-
fetched. Doing so requires knowing all the operations that will be performed on
the results of a query. Modularity can interfere with this analysis. For example, the
code in Figure 1 calls a printProject method which can cause additional naviga-
tions from the project object. It may not be possible to statically determine which
related objects are needed. This can happen if class factories are used to create
operation objects with unknown behavior, or if classes are loaded dynamically.

As a program evolves, the code that uses the results of a query may be changed
to include additional navigations, or remove navigations. As a result, the query
must be modified to prefetch the objects required by the modified program. This
significantly complicates evolution and maintenance of the system. If a common
query is reused in multiple contexts, it may need to be copied in order to specify
different prefetch behaviors in each case.

Since the prefetch annotations only affect performance, it is difficult to test
or validate that they are correct — the program will compute the same results
either way, although performance may differ significantly.

In this paper we present and evaluate AUTOFETCH, which uses traversal
profiling to automate prefetch in object persistence architectures. AUTOFETCH
records which associations are traversed when operating on the results of a query.
This information is aggregated to create a statistical profile of application behav-
ior. The statistics are used to automatically prefetch objects in future queries.

In contrast, previous work focused on profiling application behavior in the
context of a single query. While this allowed systems such as PrefetchGuide [13]
to prefetch objects on the initial execution of query, AUTOFETCH has several
advantages. AUTOFETCH can prefetch arbitrary traversal patterns in addition
to recursive and iterative patterns. AUTOFETCH can also execute fewer queries
once patterns across queries are detected. AUTOFETCH’s disadvantage of not
optimizing initial query executions can be eliminated by combining AUTOFETCH
with previous work.

52 A. Ibrahim and W.R. Cook

When applied to an unoptimized version of the Torpedo benchmark, AUT-
OFETCH performs as well as a hand-tuned version. For the OO7 benchmark,
AUTOFETCH eliminates up to 99.8% of queries and improves performance by up
t0 99.7%. We also examined the software engineering benefits of AUTOFETCH,
by showing that a modular version of a web-based resume application using
AUTOFETCH performs as well as a less-modular, hand-optimized version.

2 Background

The object persistence architectures examined in this paper combine elements of
orthogonal persistence [1] with the pragmatic approach of relational data access
libraries, also known as call level interfaces [30].

Orthogonal persistence states that persistence behavior is independent of (or-
thogonal to) all other aspects of a system. In particular, any object can be
persistent, whether an object is persistent does not affect its other behaviors,
and an object is persistent if it is reachable from a persistent root. Orthogo-
nal persistence has been implemented, to a degree, in a variety of programming
languages [25, 2,19, 22].

A key characteristic of orthogonal persistence is that objects are loaded when
needed. Using a reference in an object is called traversing the reference, or nav-
1gating between objects — such that the target object is loaded if necessary. We
use the term navigational query to refer to queries that are generated implicitly
as a result of navigation.

Relational data access libraries are a pragmatic approach to persistence: they
allow execution of arbitrary SQL queries, and the queries can return any com-
bination of data that can be selected, projected, or joined via SQL. Examples
include ODBC [15] and JDBC [12]. The client application determines how the
results of a query are used — each row of the query result may be used as is,
or it may be mapped to objects. Since data is never loaded automatically, the
programmer must specify in a query all data required for an operation — the
concept of prefetching data that might be loaded automatically does not apply.

The object persistence architectures considered in this paper are hybrids of
orthogonal persistence and data access libraries. Examples include EJB [24],
JDO [28], Hibernate [6], and Toplink [10]. They support automatic loading of
objects as needed. But they also include query languages and the ability to man-
ually prefetch related objects. While query languages can significantly increase
performance, they reduce orthogonality because they are special operations that
only apply to persistent data.

For example, in EJB 2.1, a query can return objects or a value:

select object(p) from Person p where p.firstName="John"

The set of objects loaded by a query are called root objects. Use of the root
objects may result in navigation to related objects, each of which will require an
additional query to load.

In client-server architectures, the cost of executing a query, which involves a
round-trip to a database, typically dominates other performance measures. This

Automatic Prefetching by Traversal Profiling 53

is because the latency cost of communicating with the database is significantly
greater than the cost of processing the query or producing results [4]. Other fac-
tors, like number of joins or subqueries, or the number of columns returned form
a query, are insignificant compared to latency. The relative impact of latency on
system performance is likely to increase, given that improvements in latency lag
improvements in bandwidth and processing power [27]. As a result, number of
queries will increasingly dominate all other concerns. In effect, overall response
time is directly related to the number of queries executed in a task.

Object persistence architectures have developed a variety of mechanisms for
avoiding navigational queries, by allowing programmers to manually specify
prefetch of related objects. Prefetch of related objects is especially important
in addressing the n + 1 select problem in which a related object is accessed for
each result of a query. Without prefetch, if there are n results for a query, then
there will be n 4+ 1 loads. Most JDO vendors extended the standard to allow
prefetch to be specified at the class level. Hibernate, and now EJB 3.0, allow
prefetch to be specified within each query using the fetch keyword. Using fetch,
a query can specify which related objects to load along with the root objects.
These related objects can be either single objects or collections of related objects,
depending on whether the association is single- or multi-valued. For example,
this EJB 3.0 query returns a collection of persons where the children have been
fetched as well:

select distinct p from Person p left join fetch p. children
where p.firstName=John

Previous versions of Hibernate only allowed one collection prefetch, however,
Hibernate 3.1 allows multiple collections prefetches. Hibernate executes a query
with a prefetch by augmenting the query with an appropriate join. This strat-
egy causes the data for the container object to be replicated when a collection
association is fetched. For a nested collection, the root container is replicated
once for each combination of subcollection and sub-subcollection items. Thus
replication is multiplied with each level of subcollection. Independent fetch col-
lections are especially expensive because they cause the result set to include the
cross-product of independent collection hierarchy elements. If Hibernate used a
different query strategy that allowed for multiple SQL queries to be executed,
while correlating the results in the client, then this problem could be eliminated.

Safe Query Objects are a type-safe alternative to string-based query interfaces
[7]. Safe queries use methods in standard object-oriented languages to specify
query criteria and sorting, so that a query is simply a class. Unlike string-based
query languages, there is no natural place to specify prefetch in a Safe Query.
Thus Safe Queries would benefit significantly from automatic prefetching.

3 Automating Prefetch

In this section we present AUTOFETCH, a solution to the problem of manual
prefetch in object persistence architectures. Instead of the programmer manually

54 A. Ibrahim and W.R. Cook

specifying prefetches, AUTOFETCH adds prefetch specifications automatically.
By profiling traversals on query results, AUTOFETCH determines the prefetches
that can help reduce the number of navigational queries, i.e. queries executed as
a program traverses an association.

To formalize this approach, we define type and object graphs as an abstract
representation of persistent data. A type graph represents the class model, or
structure of the database. Object graphs represent data. A complete database
is represented as an object graph. Queries are functions whose range is a set of
subgraphs of the database object graph.

Traversals represent the graph of objects and associations that are actually
used in processing each result of a query. These traversals are aggregated into
traversal profiles, which maintain statistics on the likelihood of traversing specific
associations. Queries are classified into query classes based on a heuristic that
groups queries that are likely to have similar traversals.

For each query executed, AUTOFETCH computes a prefetch specification based
on the traversal profile for the query class. The prefetch specification is incorpo-
rated into the query and executed by the underlying database.

3.1 Profiling Traversals

In this section we develop a model for profiling the traversals performed by
an object-oriented application. The concept of profiling is well known [3,11];
it involves collecting statistics about the behavior of a program. Profiling is
typically used to track control flow in an application — to find hot spots or
compute code coverage. In this paper, profiling is used to track data access
patterns — to identify what subset of a database is needed to perform a given
operation.

We develop a formal model for types, objects, queries, and traversals. The
type and object models are derived from work on adaptive programming [18].

Type Graph: Let T be the finite set of type names and F' be the finite set of
field names. A type graph is a directed graph Gp = (T, A).

— T is a set of types.

— A is a partial function T' x F 5T x {single, collection} representing a set
of associations between types. Given types ¢t and ¢’ and field f, if A(¢, f) =
(t',m) then there is an association from ¢ to ¢’ with name f and cardinality
m, where m indicates whether the association is a single- or multi-valued
association.

Inheritance is not modeled in our type graph because it is orthogonal to
prefetch. Bi-directional associations are supported through two uni-directional
associations. Figure 2 shows a sample type graph. There are three types: Em-
ployee, Department, and Company. Each company has a set of departments and
a CEOQO, each department has a set of employees, and each employee may have a
supervisor. The formal representation is:

Automatic Prefetching by Traversal Profiling 55

T = {Department, Employee, Company }

F = {employees, departments, CEO, supervisor}

A(Department, employees) — (Employee, collection)
(Company, departments) — (Department, collection)

(Company, CEO) — (Employee, single)

(Employee, supervisor) — (Employee, single)

A
A
A

pransenseeseansenea Department ----------ccoooemeeaseeacenees :
: departments '

employees |

L. CEO

-

Employee] _ Company
supervisor

Fig. 2. Simple Type Graph with three types: Employee, Department, and Company.
Solid lines represent single associations, while dashed lines represent collection associ-
ations.

*company

Object Graph: Let O be the finite set of object names. An object graph is a
directed graph Go = (O, E,Gr = (T, A), Type). G is a type graph and Type is
a unary function that maps objects to types. The following constraints must be
satisfied in the object graph Go:

— O represents a set of objects.
— Type : O — T. The type of each object in the object graph must exist in
the type graph.

E:OxF % powerset(O), the edges in the graph are a partial function from
an object and field to a set of target objects.
— VYo, f: E(o,f) =S

« A(Type(0), f) = (T",m)

o Vo' €S, Type(o') =T".

o if m = single, then |S| = 1.
Each edge in the object graph corresponds to an edge in the type graph,
single associations have exactly one target object.

An example object graph is shown in Figure 3 which is based on the type
graph in Figure 2. Edges that contain a dark oval represent collection associa-
tions. Null-valued single associations are not represented by edges in the object
graph, however, empty collection associations are represented as edges whose
target is an empty set. We chose this representation because most object persis-
tence architectures represent associations as a reference to a single target object
or collection. A null-valued association is usually represented as a special ref-
erence in the source object. This means that the persistence architecture can
tell if a single-valued association is null without querying the database. On the

56 A. Ibrahim and W.R. Cook

e

7
|

%\

:

=) o
@@

Fig. 3. An example of an object graph based on the type graph in Figure 2. Collection
associations contain an oval in the middle of the edge.

other hand, the persistence architecture will query the database if a collection
association reference is empty, because the collection reference does not have any
information on the cardinality of the collection. The ability to represent traver-
sals to empty collections is important when we discuss traversals in Section 3.1,
because it allows AUTOFETCH to represent navigational queries that load empty
collections.

Queries. A query is a function that returns a subgraph of the database object
graph. The subgraph consists of a set of connected object graphs each of which
has a distinguished root object. The definition of every query includes an extent
type and criteria. The extent type is the type of all the root objects. The criteria
are the conditions that an object satisfies to be returned as a root object.

Our approach to prefetching is independent of a particular query language,
however, the query language must support an object-oriented view of persistent
data, and the underlying persistence data store must allow prefetching associa-
tions of the extent type.

Queries are executed by the program to return their results. However, queries
are first-class values, because they can be dynamically constructed or passed
or returned from procedures. A single program point could execute different
queries, depending on the program flow.

Traversals. A traversal captures how the program navigates the object graphs
that the query returns. A program may traverse all the objects and associations
in the result of the query, or it may traverse more or less. Only program navi-
gations that would result in a database load for the query without prefetch are
included in the traversal.

Automatic Prefetching by Traversal Profiling 57

A traversal is represented as a forest where each tree’s root is a root object
in the result of a query and each tree is a subgraph of the entire object graph.
Let R denote a single tree from the traversal on the object graph Go = (O, E).

R =0 x (F — {R}) where (o, (f,r)) € R implies |E(o, f)| = |r|

If the program navigates to the same object multiple times in a traversal, only
the shortest path from the root of the traversal is included in R. Figure 4 shows
a sample traversal on the object graph in Figure 3 for a query which returned 3
departments: di, ds, ds. Edges with dark ovals represent collection associations.

If a program navigates an association, it may not be included in the traversal
if it would not result in database load. An association navigation does not result
in a database load in three cases:

— The association is a null-valued single association.

— The association is a single valued association whose target had already been
navigated to from the root object with a shorter path.

— The association’s target was cached by the program.

If a program navigates an empty collection association, there will be a data-
base query and the navigation will be included in the traversal. The last item
illustrates an interesting link between caching and query execution; AUTOFETCH
is able to adapt to the caching mechanism of the application by adjusting query
prefetch to ignore associations that are likely to be cached.

An important point is that a single query may be used in different contexts
that generate different traversals. This will commonly happen if a library func-
tion runs a query to load a set of objects, but this library function is called
from multiple transactions. Each transaction will have a different purpose and
therefore may traverse different associations.

Rogt Oblects

J— ! comp @

Fig. 4. An example of a traversal on the object graph in Figure 3. Collection associa-
tions contain an oval in the middle of the edge.

58 A. Ibrahim and W.R. Cook

Traversal Profiles. A traversal profile represents the aggregation of the tra-
versals for a set of queries. Each traversal profile is a tree representation of all
the previous traversals mapped to the type graph. Let P represent a traversal
profile for a type graph G = (T, A):

P=TxNxN x (F— P)
such that for all (¢, used, potential, (f,p)) € P

1. A(t, f) is defined
2. used < potential.

Each node in the tree contains statistics on the traversals to this node: the
number of times this node needed to be loaded from the database (used), and the
number of opportunities the program had to load this node from the database
(potential), i.e. the number of times the program had a direct reference to an
object representing this node.

Algorithm 1. combine((o, AO), (used, potential,t, AP))

for all (f, (used, potential,t, A)) € AO do

w(f) = (used, potential + 1,t, A)
end for
for all f,P € AP do

for all r € AO(f) do

w(f) = combine(r,w(f));

end for
end for
return (used + 1, potential, t, w)

The traversal, a forest of object trees R, is combined with a traversal profile by
combining each object tree R in the traversal with the profile using a function
combine (R x P — P). The combination algorithm is straightforward. Given
a traversal and traversal profile, combine increments the used statistic for the
root of the traversal profile and the potential statistic for all the children of
the root. The combine method is then recursively called for each child traversal
profile and its matching (same association) children of the root node in R. The
statistics for the root node of the traversal profile are ignored since they represent
the statistics for the root objects returned by a query and AUTOFETCH assumes
those objects should always be fetched. Figure 5 shows a traversal profile updated
from an empty traversal profile and the traversal in Figure 4. The traversal profile
statistics are given above each type as (used/potential).

3.2 Query Classification

Query classification determines a set of queries that share a traversal profile. The
aim of query classification is to group queries which are likely to have similar

Automatic Prefetching by Traversal Profiling 59

Department
EmployeeV Nn‘pany: 2/3
Employee Company
A/Supervisor: 2/3 CEO: O/Zl

Employee

Employee

L Supervisor: 1/2

Employee

¢ Supervisor: 0/1

Employee

Fig. 5. Traversal profile for query class after traversal in Figure 4. Statistics are repre-
sented as (used/potential).

traversals. A simple classification of queries is to group all queries that have the
same query string. There are several reasons why this is not effective.

First, a given query may be used to load data for several different operations.
Since the operations are different, the traversals for these operations may be dif-
ferent as well. This situation typically arises when query execution is centralized
in library functions that are called from many parts of a program. Classifying
based only on the criteria will not distinguish between these different uses of
a query, so that very different traversals may be classified as belonging to the
same class. This may lead to poor prediction of prefetch. The classification in
this case is too coarse.

A second problem is that query criteria are often constructed dynamically. If
each set of criteria is classified as a separate query, then commonality between
operations may not be identified. At the limit, every query may be different,
leading to a failure to gather sufficient data to predict prefetch.

Queries may also be classified by the program state when the query is executed.
This is motivated by the observation that traversals are determined by the control
flow of the program after query execution. Program state includes the current code
line, variable values, library bindings, etc. Classifying queries based on the entire
program state is infeasible as the program state may be very large and will likely
be different for every query. However, a set of salient features of the program state

60 A. Ibrahim and W.R. Cook

can be reasonable both in memory and computation. Computation refers to cost
of computing the program state features when a query is invoked.

The line number where a query is executed is a simple feature of the program
state to calculate and has a small constant memory size, however, it does not
capture enough of the program state to accurately determine the traversal of the
query results. Specifically the problem is that line number where the query is
executed does not provide enough information on how the results of the query
will be used outside of the invoking method.

The natural extension to the using the line number where the query is executed
is using the entire call stack when the query is executed. Our hypothesis is that
the call stack gives more information about the future control flow, because it
is highly likely that the control flow will return through the methods in the call
stack. The call stack as the salient program state feature is easy to compute and
bounded in size. In the programs we have considered, we have found that the
call stack classifies queries at an appropriate granularity for prefetch.

Unfortunately, a call stack with line numbers will classify 2 queries with differ-
ent extent types together if the 2 queries occur on the same line. To address this,
AUTOFETCH uses the pair of the query string and the call stack when the query
is executed to classify queries. This limits AUTOFETCH’s ability to prefetch for
dynamic queries. Optimally, the call stack would contain information on the
exact program statement being executed at each frame.

3.3 Predicting Traversals

Given that an operation typically traverses a similar collection of objects, it is
possible to predict future traversals based on the profiling of past traversals. The
predicted traversal provides a basis to compute the prefetch specification. The
goal of the prefetch specification is to minimize the time it will take to perform the
traversal. A program will be most efficient if each traversal is equal to the query
result object graph, because in this case only one round-trip to the database will
be required and the program will not load any more information from the database
than is needed. The heuristic used in AUTOFETCH is to prefetch any node in the
traversal profile for which the probability of traversal is above a certain threshold.

Before each query execution, AUTOFETCH finds the traversal profile associ-
ated with the query class. If no traversal profile is found, a new traversal profile
is created and no prefetches are added to the query. Otherwise, the existing
traversal profile is used to compute the prefetch specification.

First, the traversal profile is trimmed such that the remaining tree only con-
tains the associations that will be loaded with high probability (above a set
threshold) given that the root node of the traversal profile has been loaded. For
each node n and its parent node p(n) in the traversal profile, the probability that
the association between n and p(n) will be traversed given that p(n) has been
loaded can be estimated as used(n)/potential(n). Using the rules of conditional
probability, the probability that the association is navigated given that the root
node is loaded is:

F(n) = (used(n)/potential(n)) * f(p(n))

Automatic Prefetching by Traversal Profiling 61

The base case is that the f(root) in the traversal profile is 1. A depth first
traversal can calculate this probability for each node without recomputing any
values. This calculation ensures that traversal profile nodes are prefetched only
if their parent node is prefetched, because f(n) < f(p(n)).

Second, if there is more than one collection path in the remaining tree, an
arbitrary collection path is chosen and other collection paths are removed. Col-
lection paths are paths from the root node to a leaf node in the tree that contain
at least 1 collection association. This is to avoid creating a query which joins
multiple many-valued associations.

The prefetch specification is a set of prefetch directives. Each prefetch direc-
tive corresponds to a unique path in the remaining tree. For example, given the
traversal profile in Figure 5 and the prefetch threshold of 0.5, the prefetch spec-
ification would be: (employees, employees.supervisor, company). The query is
augmented with the calculated prefetch specification. Regardless of the prefetch
specification, profiling the query results remains the same.

4 Implementation

The implementation of AUTOFETCH is divided into a traversal profile module
and an extension to Hibernate 3.1, an open source Java ORM tool.

4.1 Traversal Profile Module

The traversal profile module maintains a 1-1 mapping from query class to tra-
versal profile. When the hibernate extension asks for the prefetch specification
for a query, the module computes the query class which is used to lookup the
traversal profile which is used to compute the prefetch specification. The module
computes the query class as the pair of the query string and the current program
stack trace and uses this as the key to lookup the traversal profile. To decrease
the memory requirements for maintaining the set of query classes, each stack
trace contains a maximum number of frames. If a stack trace is larger than this
limit, AUTOFETCH removes top-level frames until the stack trace is under the
limit. Each frame is a string containing the name of a method and a line number.
If a traversal profile does not exist for a query class, the module adds a mapping
from that query class to an empty traversal profile. Finally, the module computes
a prefetch specification for the query using the traversal prediction algorithm in
Section 3.3 applied to the traversal profile.

4.2 Hibernate

Hibernate was modified to incorporate prefetch specifications and to profile tra-
versals of its query results. The initial AUTOFETCH implementation used Hiber-
nate 3.0 which did not support multiple collection prefetches. Fortunately, Hi-
bernate 3.1 contains support for multiple collection prefetches and AUTOFETCH
was migrated to this version. Support for multiple collection prefetches turns out
to be critical for improving performance in some of the evaluation benchmarks.

62 A. Ibrahim and W.R. Cook

Original query
HQL:

from Department d where d.name = 'foo’
SQL:
select * from Department as d where d.name = 'foo’

Query with a single prefetch
HQL:

from Department d
left outer join fetch d.employees where x.name = 'foo’

SQL:

select x from Department as d
left outer join Employee as e on e.deptld = d.id
where d.name = 'foo’

Fig. 6. Augmenting queries with prefetch specifications

Hibernate obtains the prefetch specification for a query from the traversal
profile module. The code in Figure 6 illustrates how a HQL query is modified to
include prefetches and the SQL generated by Hibernate. Queries which already
contain a prefetch specification are not modified or profiled allowing the program-
mer to manually specify prefetch. The hibernate extensions profile traversals by
instrumenting each persistent object with a dynamically generated proxy. The
proxy intercepts all method calls to the object and if any object state is accessed
that will require a database load, the proxy increments the appropriate node in
the traversal profile for the query class. Hibernate represents single association
references with a key. Therefore, accessing the key is not considered as an object
access because it never requires a database query. Collections are instrumented
by modifying the existing Hibernate collection classes. Although there is a per-
formance penalty for this type of instrumentation, we found that this penalty
was not noticeable in executing queries in our benchmarks. This performance
penalty may be ameliorated through sampling, i.e. only instrumenting a certain
percentage of queries. The AUTOFETCH prototype does not support all of Hi-
bernate’s features. For example, AUTOFETCH does not support prefetching or
profiling for data models which contain weak entities or composite identifiers.
Support for these features was omitted for simplicity.

5 Evaluation

We evaluated AUTOFETCH using the Torpedo and OO7 benchmarks. The Torpedo
benchmark measures on the number of queries that an ORM tool executes in a
simple auction application, while the OO7 benchmark examines the performance

Automatic Prefetching by Traversal Profiling 63

of object-oriented persistence mechanisms for an idealized CAD (computer as-
sisted design) application. We also examined the software engineering benefits of
avoiding manual specification of prefetches in a resume application.

Both benchmarks were executed on an Intel®Pentium®4 2.8 GHz machine
with 1 Gb of RAM. The OO7 benchmark connects to a database on a separate
machine, an Intel®Pentium®4 2.4 Ghz machine with 885 Mb of RAM on the
same University of Texas Computer Science department local area network. The
AUTOFETCH parameters maximum extent level and stack frame limit were set
to 12 and 20 respectively unless otherwise noted. The benchmarks did not use
any caching across transactions.

5.1 Torpedo Benchmark

The Torpedo benchmark [23] measures the number of SQL statements executed
by an ORM tool over a set of test cases. The benchmark consists of a Java client
and a J2EE auction server. The client issues requests to the auction server,
such as placing a bid or retrieving information for a particular auction. There
are seven client test cases which were designed to test various aspects of the
mapping tool such as caching or prefetching. The number of SQL statements
executed is used as the measure of the performance of the mapping tool. The
benchmark can be configured to use different object-relational mapping tools
(EJB, JDO, Hibernate) as the persistence backend.

We created two versions of the Hibernate persistence backend, the original
tuned backend included with the benchmark and that same backend minus the
prefetch directives. The latter backend can be configured to have AUTOFETCH
enabled or disabled. We ran the Torpedo benchmark for each version and possible

100 —
90 — 7] 7
80 —
0
Q70
—
g 60 —
o 4 Unoptimized
-
50 -] Manually
8 optimized
w— 40 - [] Automatically
o optimized
o _
> 30
20
10 4
0

First Run Third Run

Fig. 7. Torpedo benchmark results. The y-axis represents the number of queries exe-
cuted. Maximum extent level is 12.

64 A. Ibrahim and W.R. Cook

options three times in succession. The results of the first and third iterations are
shown in Figure 7. The second run was omitted in the graph since the first and
second iterations produce the same results. A single set of iterations is sufficient,
because the benchmark is deterministic with respect to the number of queries.

As Figure 7 shows, the prefetch directives reduce the number of queries ex-
ecuted. Without either the prefetch directives nor AUTOFETCH enabled the
benchmark executed three times as many queries. Without prefetch directives
but with AUTOFETCH enabled, the benchmark executes many queries on the
first and second iterations; however, from the third iteration (and onward) it
executes as many queries as the version with programmer-specified prefetches.

A simple query classification method using the code line where the query
was executed as the query class would not have been sufficient to match the
performance of manually specified prefetches for this benchmark. For example,
the findAuction method is used to load both detailed and summary information
about an auction. The detailed auction information includes traversing several
associations for an auction such as the auction bids. The summary auction infor-
mation only includes fields of the auction object such as the auction id or date.
These different access patterns require different prefetches even though they use
the same backend function to load the auction.

5.2 007 Benchmark

The OO7 benchmark [5] was designed to measure the performance of OODB
management systems. It consists of a series of traversals, queries, and structural
modifications performed on databases of varying sizes and statistical properties.
We implemented a Java version of the OO7 benchmark based on code pub-
licly available from the benchmark’s authors. Following the lead in Han [13], we
omitted all structural modification tests as well as any traversals that included
updates, because updates have no effect on AUTOFETCH behavior and otherwise
these traversals were not qualitatively different from the included traversals. Q4
was omitted because it requires using the medium or large OO7 databases. Tra-
versal CU was omitted because caching and AUTOFETCH are orthogonal, and
the traversal’s performance is very sensitive to the exact caching policy.

Only a few of the OO7 operations involve object navigation, which can be
optimized by AUTOFETCH. Traversal T1 is a complete traversal of the OO7
object graph, both the assembly and part hierarchies. Traversal T6 traverses the
entire assembly hierarchy, but only accesses the composite and root atomic parts
in the part hierarchy. Traversal T1 has a depth of about 29 while Traversal T6
has a depth of about 10. Neither the queries nor traversals T8 or T9 perform
navigation; however, they are included to detect any performance penalties for
traversal profiling.

We added a reverse traversal, RT, which chooses atomic parts and finds their
root assembly, associated module, and associated manual. Such traversals were
omitted from the OO7 benchmark because they were considered not to add any-
thing to the results. They are significant in the context of prefetch, since single-
valued associations can be prefetched more easily than multi-valued associations.

Automatic Prefetching by Traversal Profiling 65

Table 1. Comparison with prefetch disabled and with AUTOFETCH. Maximum extent
level is 12. Small OO7 benchmark. Metrics for each query/traversal are average number
SQL queries and average time in milliseconds. Percentages are for percent improvement
of AUTOFETCH over baseline.

Query Iteration No Prefetch AUTOFETCH

queries ms queries % ms %

1 11 45 11 - 43 (4%)

Q1 2 11 44 11 - 43 (2%)
3 11 43 11 - 43 -

1 2 10 2 - 9 (10%)

Q2 2 2 10 2 - 10 -
3 2 11 2 - 10 (9%)

1 2 59 2 - 58 (2%)

Q3 2 2 89 2 - 59 (34%)
3 2 58 2 - 60 -(3%)

1 2 70 2 - 69 (1%)

Q6 2 2 66 2 - 65 (2%)
3 2 67 2 - 81 -(21%)

1 2 532 2 - 504 (5%)

Q7 2 2 472 2 - 508 -(8%)
3 2 498 2 - 471 (5%)

1 2 43 2 - 48 -(12%)

Q8 2 2 46 2 - 46 -
3 2 48 2 - 4 (8%)

1 3096 21750 2909 (6%) 20875 (4%)

T1 2 3096 22160 2907 (6%) 20694 (7T%)
3 3096 21009 38 (98.8%) 248 (98.8%)

1 1146 8080 1099 (4%) 8266 -(2%)

T6 2 1146 7900 1096 (4%) 8115 -(3%)
3 1146 7831 2 (99.8%) 21 (99.7%)

1 2 36 2 - 38 -(6%)

T8 2 2 46 2 - 36 (22%)
3 2 36 2 - 40 -(11%)

1 2 40 2 - 35 (13%)

T9 2 2 44 2 - 38 (14%)
3 2 40 2 - 36 (10%)

1 10 63 4 (60%) 43 (32%)

RT 2 10 63 3 (70%) 39 (38%)
3 10 61 3 (70%) 39 (36%)

Table 1 summarizes the results of the OO7 benchmark. Neither the queries
nor traversals T8 or T9 show any improvement with prefetch enabled. This is to
be expected since they do not perform any navigational queries. These queries

66 A. Ibrahim and W.R. Cook

Table 2. The number of queries executed by AUTOFETCH with Hibernate 3.0 and
AuTOoFETCH with Hibernate 3.0 for traversals T1, T6, and RT. Only 3rd iteration
shown. Maximum extent level is 12. Small OO7 benchmark.

AuTOoFETCH Version T1 T6 RT
AuTOFETCH with Hibernate 3.0 2171 415 3
AUuTOFETCH with Hibernate 3.1 38 2 3

are included for completeness, and to show that AUTOFETCH does not have high
overhead when not needed.

Both traversals T1 and T6 show a large improvement in the number of queries
and time to execute the traversal. T6 shows a larger improvement than T1 even
though T1 is a deeper traversal, because some of the time executing traversal
T1 is spent traversing the object graph in memory; repeatedly traversing the
part hierarchies. The number of queries and the time to execute a traversal
are tightly correlated as expected. Both T1 and T6 are top-down hierarchical
traversals which require multiple collection prefetches to execute few queries.
Table 2 shows a comparison of the number of queries executed by AUTOFETCH
with Hibernate 3.1 and AUTOFETCH with Hibernate 3.0 which was unable to
prefetch multiple collection associations. The ability to fetch multiple collection
associations had a greater effect on deep traversals such as T1 and T6 than on
shallow traversals such as RT.

Figure 8 shows that the maximum depth of the traversal profile is important
to the performance of prefetch system in the presence for deep traversals. The
tradeof! for increasing the maximum depth of the traversal profile is an increase in
the memory requirements to store traversal profiles. It should be noted that deep

10.0000
Q
C 1.0000 =t
o
0
©
G\J \ ’,Tl Queries
< 0.1000 N1 Time (ms)
.8 *,T6 Queries
L . \.T6 Time (ms)
o \ TR Queries
S 0.0100 \ 2 | TR Time (ms)
< &
&
0.0010 T T T T T T T T 1
5 6 7 8 9 10 11 12 13 14 15

Max. Extent Level

Fig. 8. Varying maximum extent level from 5 to 15. Only 3rd iteration shown. Small
OO07 database.

Automatic Prefetching by Traversal Profiling 67

traversals such as T1 and T6 in OO7 are relatively rare in enterprise business
applications.

5.3 Resume Application

In addition to the synthetic benchmarks, we applied AUTOFETCH to a resume
application that uses the AppFuse framework [29]. AppFuse is a template for a
model-view-controller (MVC) architecture that integrates many popular Java li-
braries and tools. AppFuse includes a flexible data layer which can be configured
to use one of several persistence providers. Users of the framework define inter-
faces for data access objects (DAQO) that are implemented using the persistence
provider.

Hibernate is used as the persistence provider in the sample resume application.
The resume application data model is centered around a Resume class. A Resume
contains basic resume data fields and associations to related objects, including ed-
ucation listings, work experiences, and references. The ResumeDAO class includes
methods to load and store resumes. A simple implementation of the ResumeDAQO
and Resume classes is shown in Fig 9. The ResumeDAO.getResume(Long) method
loads a resume without prefetching any of its associated objects. To load the work
experience in a resume, a programmer first uses ResumeDAO to load the resume,
and then getExperiences() to load the work experience.

interface ResumeDAO {
Resume getResume(Long resumeld);

}

class Resume {
List getEducations() { ... }
List getExperiences() { ... }
List getReferences() { ... }

Fig. 9. Struts resume code without any optimizations

Although this implementation is very natural, it is inefficient because the
resume application has several pages that display exactly one kind of associated
object; a page for work experience, a page for references, etc. For these pages,
the application would execute 2 queries: one to load the resume and another to
load the associated objects. There are several alternative implementations:

1. Modify the ResumeDAO.getResume(Long) method to prefetch all associa-
tions.

2. Add ResumeDAO methods which load a resume with different prefetch di-
rectives.

68 A. Ibrahim and W.R. Cook

3. Add ResumeDAO methods which directly load associated objects without
loading the resume first.

The actual implementation uses the third approach. The first alternative
always loads too much data and would be infeasible if the data model con-
tained cycles. The other two alternatives are fragile and redundant. For exam-
ple, if a new user interface page was added to the application that displayed
two resume associations, then a new method would have to be added to the
ResumeDAO class. The code is also redundant because we have to copy either the
ResumeDAO.getResume(Long) method in the second alternative or the Resume
getter methods in the third alternative. By incorporating AUTOFETCH, the sim-
ple code in Figure 9 should perform as well as the optimized code after some
initial iterations.

We tested the code in Figure 9 version with AUTOFETCH and found that
indeed it was able to execute a single query for all the controller layer methods
after the initial learning period. Our modified code has the advantage of being
smaller, because we eliminated redundant methods in ResumeDAO class. With
AuToFETCH, DAO methods are more general because the same method may
be used with different traversal patterns. AUTOFETCH also increases the inde-
pendence of the user interface or view layer from the business logic or controller
layer, because changes in the traversal pattern of the user interface on domain
objects do not require corresponding changes in the controller interface.

5.4 General Comments

In all of the evaluation benchmarks, the persistent data traversals were the same
given the query class. Consequently, AUTOFETCH never prefetched more data
than was needed, i.e. AUTOFETCH had perfect precision. While our intuition is
that persistent data traversals are usually independent of the program branching
behavior, it is an open question whether our benchmarks are truly representa-
tive in this respect. Similarly, it is difficult to draw general conclusions about the
parameters of the AUTOFETCH such as the maximum extent level or stack frame
limit without observing a larger class of persistent programs. The maximum ex-
tent level was set to 12, because this produced reasonable memory consumption
on our benchmarks. The stack frame limit was set to 20 to preserve enough in-
formation from the stack frame about control flow in the presence of the various
architectural layers in the Torpedo benchmark and the recursive traversals in
the OO7 benchmark.

6 Related Work

Han et al. [13] classify prefetching algorithms into five categories: page-based
prefetching, object-level/page-level access pattern prefetching, manually speci-
fied prefetches, context-based prefetches, and traversal/path-based prefetches.
Page-based prefetching has been explored in object-oriented databases such
as ObjectStore [17]. Page-based prefetching is effective when the access patterns

Automatic Prefetching by Traversal Profiling 69

of an application correspond to the clustering of the objects on disk. Since the
clustering is usually static, it cannot efficiently support multiple data access
patterns. Good clustering of objects is difficult to achieve and can be expensive
to maintain when objects are updated frequently. However, when it works it
provides very low-cost prefetching. Finally, if the amount of object data that
should be prefetched is larger than a page, than this prefetching algorithm will
be unable to prefetch all the objects needed.

Object-level or page-level access pattern prefetching relies on monitoring the
sequence of object or page requests to the database. Curewitz et al. [9] imple-
mented an access pattern prefetching algorithm using compression algorithms.
Palmer and Zdonik [26] implemented a prefetch system, Fido, that stores access
patterns and uses a nearest neighbor algorithm to detect similar patterns and
issue prefetch requests. Knafla [16] models object relationship accesses as dis-
crete time Markov chains and uses this model in addition to a sophisticated cost
model to issue prefetch requests. The main drawback to these approaches is that
they detect object-level patterns, i.e. they perform poorly if the same objects
are not repeatedly accessed. Repeated access to the same objects is not typical
of many enterprise applications with large databases.

Bernstein et al. [4] proposed a context-controlled prefetch system, which was
implemented as an extension of Microsoft Repository. Each persistent object in
memory is associated with a context. This context represents a set of related
objects, either objects that were loaded in the same query or objects that are
a member of the same collection association. For each attribute access of an
object O, the system prefetches the requested attribute for all objects in O’s
context. When iterating through the results of a query or collection associa-
tion, this prefetch strategy will avoid executing n + 1 queries where n is the
number of query results. A comparison of this strategy and AUTOFETCH is
given below. While AUTOFETCH only profiles associations, Bernstein et al. use
“MA prefetch” to prefetch scalar attributes for classes in which the attributes
reside in separate tables. MA prefetch improves the performance of the OO7
benchmark queries, which were not improved by AUTOFETCH, because OO7 at-
tributes and associations are separated into multiple tables. The implemented
system only supported single-level prefetches, although prefetching multiple lev-
els (path prefetch) is mentioned as an extension in the paper. The system also
makes extensive use of temporary tables, which are not needed by AUTOFETCH.

Han et al. [14, 13] extended the ideas of Bernstein et al. to maintain not only
the preceding traversal which led to an object, but the entire type-level path to
reach an object. Each query is associated with an attribute access log set which
contains all the type level paths used to access objects from the navigational root
set. The prefetch system then monitors the attribute access log and prefetches
objects if either an iterative or recursive pattern is detected. The prefetch system,
called PrefetchGuide, can prefetch multiple levels of objects in the object graph if
it observes multi-level iteration or recursive patterns. However, unlike the Bern-
stein prefetch implementation, there are no results on prefetching for arbitrary

70 A. Ibrahim and W.R. Cook

queries, instead only purely navigational queries are supported. PrefetchGuide
is implemented in a prototype ORDBMS.

While the systems created by Bernstein and Han prefetch data within the con-
text of a top-level query, AUTOFETCH uses previous query executions to predict
prefetch for future queries. Context-based prefetch always executes at least one
query for each distinct association path. AUTOFETCH, in contrast, can modify
the top-level query itself, so that only one query is needed. AUTOFETCH can also
detect traversal patterns across queries, e.g. if certain unrelated associations are
always accessed from a given query result, AUTOFETCH prefetches those objects
even though it would not constitute a recursive or iterative pattern within that
single query. One disadvantage of AUTOFETCH is that the initial queries are ex-
ecuted without any prefetch at all. The consequence of this disadvantage, is that
the performance on the initial program iteration is equivalent to a program with
unoptimized queries. However, it would be possible to combine AUTOFETCH
with a system such as PrefetchGuide. In such a combined system, PrefetchGuide
could handle prefetch in the first query, and also catch cases where the statistical
properties of past query executions do not allow AUTOFETCH to predict correct
prefetches. We believe that such a combination would provide the best of both
worlds for prefetch performance.

Automatic prefetch in object persistence architectures is similar to prefetching
memory blocks as a compiler optimization. Luk and Mowry[20] have looked
at optimizing recursive data structure access by predicting which parts of the
structure will be accessed in the future. One of their approaches, history pointers,
is similar in philosophy to our traversal profiles.

7 Future Work

We presented a simple query classification algorithm which only relies on the
call stack at the moment the query is executed. Although we found this to work
quite well in practice, a more complex classification algorithm could include other
features of program state: the exact control path where the query was executed,
or the value of program variables. This richer program state representation might
classify queries too finely. Unsupervised learning techniques could be applied to
richer program state representations to learn a classification that clusters the
queries according to the similarity of their traversals. Consider the following
program fragment, where findAllIFoos executes a query:

List results = findAllFoos ();
if (x >5)

doTraversall(results);
else

doTraversal2(results);

A learning algorithm could learn a better classification strategy than the one
described in this paper. In this case, the value of the variable x should be used
to distinguish two query classes.

Automatic Prefetching by Traversal Profiling 71

A cost model for database query execution is necessary for accurate optimiza-
tion of prefetching. AUTOFETCH currently uses the simple heuristic that it is al-
ways better to execute one query rather than two (or more) queries if the data
loaded by the second query is likely to be needed in the future. This heuristic re-
lies on the fact that database round-trips are expensive. However, there are other
factors that determine cost of prefetching a set objects: the cost of the modified
query, the expected size of the set of prefetched objects, the connection latency,
etc. A cost model that takes such factors into account will have better performance
and may even outperform manual prefetches since the system would be able to
take into account dynamic information about database and program execution.

8 Conclusion

Object prefetching is an important technique for improving performance of ap-
plications based on object persistence architectures. Current architectures rely
on the programmer to manually specify which objects to prefetch when execut-
ing a query. Correct prefetch specifications are difficult to write and maintain
as a program evolves, especially in modular programs. In this paper we pre-
sented AUTOFETCH, a novel technique for automatically computing prefetch
specifications. AUTOFETCH predicts which objects should be prefetched for a
given query based on previous query executions. AUTOFETCH classifies queries
executions based on the client state when the query is executed, and creates a
traversal profile to summarize which associations are traversed on the results of
the query. This information is used to predict prefetch for future queries. Be-
fore a new query is executed, a prefetch specification is generated based on the
classification of the query and its traversal profile. AUTOFETCH improves on pre-
vious approaches by collecting profile information across multiple queries, and
using client program state to help classify queries. We evaluated AUTOFETCH
using both sample applications and benchmarks and showed that we were able
to improve performance and/or simplify code.

References

1. M. P. Atkinson and O. P. Buneman. Types and persistence in database program-
ming languages. ACM Comput. Surv., 19(2):105-170, 1987.

2. M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence. An orthog-
onally persistent Java. SIGMOD Record, 25(4):68-75, 1996.

3. T. Ball and J. R. Larus. Efficient path profiling. In International Symposium on
Microarchitecture, pages 46-57, 1996.

4. P. A. Bernstein, S. Pal, and D. Shutt. Context-based prefetch for implementing
objects on relations. In Proceedings of the 25th VLDB Conference, 1999.

5. M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 007 benchmark. SIGMOD

Rec., 22(2):12-21, 1993.

D. Cengija. Hibernate your data. onJava.com, 2004.

7. W. R. Cook and S. Rai. Safe query objects: statically typed objects as remotely
executable queries. In ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 97-106. ACM Press, 2005.

2

72

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Ibrahim and W.R. Cook

G. Copeland and D. Maier. Making Smalltalk a database system. In Proceedings of
the 1984 ACM SIGMOD international conference on Management of data, pages
316-325. ACM Press, 1984.

. K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data

compression. In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’93), 1993.

J.-A. Dub, R. Sapir, and P. Purich. Oracle Application Server TopLink application
developers guide, 10g (9.0.4). Oracle Corporation, 2003.

J. A. Fisher and S. M. Freudenberger. Predicting conditional branch directions
from previous runs of a program. In ASPLOS-V: Proceedings of the fifth interna-
tional conference on Architectural support for programming languages and operating
systems, pages 85—95. ACM Press, 1992.

G. Hamilton and R. Cattell. JDBC™: A Java SQL API. Sun Microsystems, 1997.
W.-S. Han, Y.-S. Moon, and K.-Y. Whang. PrefetchGuide: capturing navigational
access patterns for prefetching in client/server object-oriented/object-relational
DBMSs. Information Sciences, 152(1):47-61, 2003.

W.-S. Han, Y.-S. Moon, K.-Y. Whang, and [.-Y. Song. Prefetching based on
type-level access pattern in object-relational DBMSs. In Proceedings of the 17th
International Conference on Data FEngineering, pages 651-660. IEEE Computer
Society, 2001.

ISO/IEC. Information technology - database languages - SQL - part 3: Call-level
interface (SQL/CLI). Technical Report 9075-3:2003, ISO/IEC, 2003.

N. Knafla. Analysing object relationships to predict page access for prefetching. In
FEighth International Workshop on Persistent Object Systems: Design, Implemen-
tation and Use, POS-8, 1998.

C. Lamb, G. Landis, J. A. Orenstein, and D. Weinreb. The ObjectStore database
system. Commun. ACM, 34(10):50-63, 1991.

K. J. Lieberherr, B. Patt-Shamir, and D. Orleans. Traversals of object structures:
Specification and efficient implementation. ACM Trans. Program. Lang. Syst.,
26(2):370-412, 2004.

B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari, A. C.
Myers, M. Day, and L. Shrira. Safe and efficient sharing of persistent objects
in Thor. In Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, pages 318-329. ACM Press, 1996.

C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data struc-
tures. In Architectural Support for Programming Languages and Operating Systems,
pages 222-233, 1996.

D. Maier, J. Stein, A. Otis, and A. Purdy. Developments of an object-oriented
DBMS. In Proc. of ACM Conf. on Object-Oriented Programming, Systems, Lan-
guages and Applications, pages 472-482, 1986.

A. Marquez, S. Blackburn, G. Mercer, and J. N. Zigman. Implementing orthogo-
nally persistent Java. In Proceedings of the Workshop on Persistent Object Systems
(POS), 2000.

B. E. Martin. Uncovering database access optimizations in the middle tier with
TORPEDO. In Proceedings of the 21st International Conference on Data Engi-
neering, pages 916-926. IEEE Computer Society, 2005.

V. Matena and M. Hapner. Enterprise Java Beans Specification 1.0. Sun Microsys-
tems, 1998.

R. Morrison, R. Connor, G. Kirby, D. Munro, M. Atkinson, Q. Cutts, A. Brown,
and A. Dearle. The Napier88 persistent programming language and environment.
In Fully Integrated Data Environments, pages 98-154. Springer, 1999.

26

27.
28.

29.

30.

Automatic Prefetching by Traversal Profiling 73

. M. Palmer and S. B. Zdonik. Fido: A cache that learns to fetch. In Proceedings of
the 17th International Conference on Very Large Data Bases, 1991.

D. A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71-75, 2004.

C. Russell. Java Data Objects (JDO) Specification JSR-12. Sun Microsystems,
2003.

Raible’s wiki: StrutsResume.

http://raibledesigns.com/wiki/Wiki. jsp?page=StrutsResume, March 2006.
M. Venkatrao and M. Pizzo. SQL/CLI — a new binding style for SQL. SIGMOD
Record, 24(4):72-77, 1995.

The Runtime Structure of Object Ownership

Nick Mitchell

IBM TJ Watson Research Center
19 Skyline Drive, Hawthorne NY 10532
nickm@us.ibm.com

Abstract. Object-oriented programs often require large heaps to run
properly or meet performance goals. They use high-overhead collections,
bulky data models, and large caches. Discovering this is quite challenging.
Manual browsing and flat summaries do not scale to complex graphs with
20 million objects. Context is crucial to understanding responsibility and
inefficient object connectivity.

We summarize memory footprint with help from the dominator re-
lation. Each dominator tree captures unique ownership. Edges between
trees capture responsibility. We introduce a set of ownership structures,
and quantify their abundance. We aggregate these structures, and use
thresholds to identify important aggregates. We introduce the ownership
graph to summarize responsibility, and backbone equivalence to aggre-
gate patterns within trees. Our implementation quickly generates concise
summaries. In two minutes, it generates a 14-node ownership graph from
29 million objects. Backbone equivalence identifies a handful of patterns
that account for 80% of a tree’s footprint.

1 Introduction

In this paper, we consider the problem excessive memory footprint in object-
oriented programs: for certain intervals of time, the live objects exceed available
or desired memory bounds. Excessive memory footprint has many root causes.
Some data structures impose a high per-element overhead, such as hash sets with
explicit chaining, or tree maps. Data models often include duplicate or unneces-
sary fields, or extend modeling frameworks with a high base-class memory cost.
There may be objects that, while no longer needed, remain live [34, 39], such as
when the memory for an Eclipse [17] plugin persists beyond its last use. Often,
to mask unresolved performance problems, applications aggressively cache data
(using inefficient data structures and bulky data models).

To isolate the root causes for large object graph size requires understanding
both responsibility and internal content: the program may hold on to objects
longer than expected, or may use data structures built up in inefficient ways. We
analyze this combination of ownership structures by summarizing the state of the
heap — at any moment in time within the interval of excessive footprint. In con-
trast, techniques such as heap [34, 35, 40, 43], space [36], shape [32], lexical [6], or
cost-center [37] profiling collect aggregate summaries of allocation sites. Profiling
dramatically slows down the program, gives no information about responsibility

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 74-98, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Runtime Structure of Object Ownership 75

30
27.59

2254

millions of objects in snapshot
[
L

0 T T T T T T T T T 1
Jan2002 Mar2002 Sep 2002 Jan2003 Mar2003 Jun2003 Aug 2003 Aug2003 Oct2003 Nov2003 May 2004

date heap snapshot was acquired

Fig. 1. Growth in the size of Java heaps in recent years

Table 1. A commonly used, but not especially useful, graph summary: aggregate
objects by data type, and then apply a threshold to show only the top few

type objects bytes
primitive arrays 3,657,979 223,858,288
java/lang/String 2,500,389 80,012,448
java/util/HashMap$Entry 2,307,577 73,842,464
java/util/HashMap$Entry[] 220,683 57,726,696
customer data type 338,601 48,758,544
java/lang/0Object[] 506,735 24,721,536

or internal content, and conflates the problem of excessive temporary creation
with the problem of excessive memory footprint.

The task of summarizing the state of the heap [12, 20,9, 29, 19, 32] at any mo-
ment in time [3, 31, 18, 25] is one of graph summarization. In this case, the graph’s
nodes are objects, and the edges are references between them. Summarizing the
responsibility and internal content of these graphs is, from our experience with
dozens of large-scale object-oriented programs, quite challenging. In part, this is
because these object graphs are very large. In Figure 1, we show typical object
graph sizes from a variety of large-scale applications. Over the years, this fig-
ure shows that the problem has grown worse. Contemporary server applications
commonly have tens of millions of live objects at any moment in time.

Furthermore, the way objects are linked together defeats easy summariza-
tion. A good summary would identify a small number of features that account
for much of the graph’s size. Achieving this 80/20 point, especially for large, com-
plex graphs, is challenging. Many commercial memory analysis tools [3, 31, 18]
aggregate by data type, and then chooses a threshold to show those biggest types.
This technique produces a table such as Table 1. Typically, generic data types
float to the top. Even for the customer-specific types, the table gives us no sense
of who is responsible, or how the instances are structured; e.g. are the instance of
these types part of a single large collection, or several smaller ones? These same

76 N. Mitchell

tools also provide filters to ignore third-party providers such as J2SE, AWT, and
database code. But, as the table shows, those third parties often form the bulk
of the graph’s size. In addition, they often provide the collections that (perhaps
inefficiently) glue together the graph’s objects.

Filters, aggregations, and thresholds are essential elements of summarization,
but must be applied carefully. Thresholds help to focus on the biggest con-
tributors, but the biggest contributors are not single data types, or even single
locations in the graph. As we will show in Section 4, those 3.6 million primitive
arrays in Table 1 are placed in many distinct locations. Thus, at first sight, they
appear to be scattered throughout the (18-million node) graph. However, we
will show that only two distinct patterns of locations that account for 80% of
the largest data structure’s size. This careful combination of aggregation and
thresholding can produce concise summaries of internal content.

The same care is necessary when summarizing responsibility. If the object
graph is tree-like (i.e. a diamond-free flow graph), the problem of summarizing
ownership structure reduces to that of summarizing content; responsibility is
clear when each object has a single owner. As we will quantify later, object
graphs are not at all tree-like. For example, in many cases two unrelated program
mechanisms share responsibility for the objects in a data structure; in turn, those
two mechanisms themselves are shared by higher-level mechanisms. The result is
a vast web of responsibility. We can not arbitrarily filter out edges that result in
sharing, even if it does have the desirable property of reducing the responsibility
structure to a tree [23].

This paper has four main contributions.

Analysis Methodology. We decompose the analysis of ownership structures
into two subproblems, by leveraging the dominator forest [22, 14, 33] of the graph.
We use the dominator relation for two reasons. First, it identifies the maximum
unique ownership within the graph. This aligns well with our distinction between
responsibility and content. The edges between trees in this forest capture respon-
sibility, and the elements of a dominator tree capture content. Second, a graph
has a single, well-defined dominator forest; a depth-first traversal, in contrast,
also produces a spanning tree, but one that depends on an arbitrary ordering of
graph roots.

Catalog of Ownership Structures. We develop a catalog of ownership struc-
tures, for both responsibility and for internal content. For example, for content
we introduce six categories of backbones, those structures that allow collections
to grow or shrink. We justify their importance by quantifying their prevalence
in large-scale applications; being common, they will serve as powerful units of
aggregation and filtering. In addition, we demonstrate that categorizing content
by backbone structure provides a powerful, if flat, summary of content.

Algorithm for Summarizing Responsibility in Graphs. Beyond flat sum-
maries, we provide summarization algorithms that use this catalog of structures.
The summary of responsibility is an ownership graph, itself a graph, where each

The Runtime Structure of Object Ownership 7

node is an aggregation of ownership structures. We show how the dominator re-
lation alone is a powerful tool for summarizing responsibility; e.g. in one server
application, it reduces 29 million nodes to 191 thousand dominator trees (a 99%
reduction). We also show how six other structures of responsibility allow us to
reduce that summary to a 14-node ownership graph. Our implementation gen-
erates that summary automatically in around two minutes.

Algorithm for Summarizing Content in Trees. We summarize the con-
tent of a tree by aggregating according to backbone equivalence. We introduce
two equivalence relations that group together the nodes that may be in widely
divergent tree locations, but should be considered as part of a single unit. For
example, in a hash set that contains hash sets of strings, there may be millions
of strings. All of the strings are backbone-equivalent. In Section 4.3, we demon-
strate that this enables a form of analysis that identifies the largest patterns in
the largest trees. For example, we show how to locate the set of distinct patterns
within a tree in which a dominant data type (such as those shown in Table 1)
occur. We demonstrate that a handful of patterns account for most of a hot
type’s footprint, despite it being in millions of distinct locations in the tree.
Section 3 covers the catalog and algorithms for responsibility, and Section 4
covers the issues of content. We begin with a short discussion of the input to our
analysis: seven snapshots from large-scale applications, and seven benchmarks.

2 Object Reference Graphs

To diagnose a memory footprint problem, we analyze a snapshot of its live objects
and the references between them.! We treat a snapshot as a directed graph,
commonly termed an object reference graph. The nodes of this graph represent
objects and the edges represent a field of one object referring to another. In
addition to objects and references, we assume only that the snapshot associates
a data type and an instance size with each object. Typically, object reference
graphs are neither connected, nor flow graphs (in the sense of [22], where the
graph is rooted); we will see more detail and quantifications in Section 3.

Table 2 introduces the applications and SPEC JVM98 benchmarks [41] we
study in this paper. Real applications frequently have ten or even twenty million
live objects; for this paper, we decided to present a spectrum of graph sizes from
real applications. Notice that even A2’ is large; it represents a web application
server just after server startup has completed. For all fourteen snapshots, the
numbers reflect only live objects. We use the JVM’s built-in support for gener-
ating snapshots, which halts all threads, forces a garbage collection, then writes
the snapshot to disk. In the case of the benchmarks, we use the maximally-sized
run, and take several dozen snapshots over the course of each benchmark’s run.
We document the largest of those snapshots.

! To manually trigger a heap snapshot with the IBM JVM, send a SIGQUIT signal
to the JVM process. In the rare case of a short spike in memory footprint, set the
heap size so as to cause an out of memory exception upon the spike. At this point,
the JVM automatically triggers a heap snapshot.

78 N. Mitchell

Table 2. The heap snapshots we analyze in this paper. They include both real appli-
cations and benchmarks, divided into the top and bottom half of this table.

application objects bytes description
Al 29,181,452 1,433,937,576 telecom transaction server
A2 20,952,120 1,041,348,768 multi-user collaboration server
A3 17,871,063 818,425,984 e-commerce transaction server
A2’ 4,391,183 241,631,368 A2 just after server startup
A4 4,289,704 232,742,536 catalog management server
A5 4,099,743 269,782,704 rich client
A6 3,757,828 99,909,500 an Eclipse-based rich client
mtrt 509,170 13,590,874
db 342,725 10,569,334
javac 316,857 10,593,467
jess 83,815 9,827,946 SPECjvm98 benchmarks
jack 37,949 4,193,140
mpegaudio 9,997 947,196
compress 7,696 808,741

3 Summarizing Responsibility Within Graphs

This section introduces a way to summarize the responsibility for the memory
footprint of an object reference graph. We first introduce important structural
and semantic graph properties, and quantify the extent to which these properties
occur in both real applications and benchmarks. We then present an algorithm
to compute an ownership graph, a new graph that succinctly summarizes the
ownership structures within a given graph.

3.1 Four Common Graph Structures

We identify four common graph properties of subgraphs within an object ref-
erence graph. They do not depend on features of the language, runtime envi-
ronment, or application. Figure 2 illustrates these four purely structural graph
properties: halos, unique ownership, shared ownership, and butterflies.

Halos. Many object reference graphs include structures such as illustrated in
Figure 2(a). This graph has two roots, one of which is a proper graph root (a
node with no parents). The three objects that form a cycle combine to make up
the second root. We term this cycle at the top of the graph a “halo”. A halo is
a strongly-connected component in which no constituent has a parent outside of
the component’s subgraph.?

2 Sometimes, the objects in a halo are garbage; e.g. HPROF [43] does not collect
garbage prior to writing a heap snapshot to disk. More often, non-Java mechanisms
reference members of a halo, but the snapshot does not report them; e.g. if the
garbage collector is not type accurate, this information may not be available.

The Runtime Structure of Object Ownership 79

(c) Shared ownership (d) Butterflies

Fig. 2. Four common structural properties of graphs

Dominator Trees. The dominator relation [22] applied to graphs of memory
describes the unique ownership of objects [7]. A relatively small set of nodes
often dominate large subsets of the graph. The immediate dominator relation
imposes a spanning forest over the graph. Figure 2(b) illustrates a graph whose
dominator forest consists of five trees: four single-node trees and one five-node
tree. We highlight the root of each dominator tree with a darker shade.

Shared Ownership. For those nodes that are roots of the dominator forest,
but not roots of the graph, the ownership responsibility is shared. Figure 2(c)
highlights the two dominator trees of Figure 2(b) with shared ownership. Table 3
shows how, among a number of real applications, more than 75% of the domi-
nator trees have shared ownership; we discuss this table in more detail below.

Butterflies. Mutually shared ownership arises when one node of a dominator
tree points to the root of another dominator tree, while a node of that other
dominator tree points back to the root of the first tree. Figure 2(d) illustrates
a case where two dominator trees mutually own each other; we refer to these
structures as “butterflies”. These structures are common in real applications,
where 7-54% of dominator trees are involved in butterflies.

80 N. Mitchell

Table 3. The structural properties of graphs; the fifth and sixth columns show the
fraction of the dominator trees that are shared and involved in butterflies

avg. objects shared domtrees in

application halos per domtree domtrees a butterfly
Al 152 153 81% 25%

A2 3,496 41 91% 24%

A3 1,064 310 87% 54%

A2’ 1,776 39 76% 9%

A4 3,828 27 78% 42%

A5 3,492 43 67% 7%

A6 826 103 2% 13%
mtrt 25 3 2% <1%

db 7 5 32% <1%
javac 27 8 49% 16%
jess 8 3 6% <1%
jack 27 3 24% <1%
mpegaudio 117 8 40% <1%
compress 26 6 45% <1%

Table 3 summarizes the structural properties for the applications and bench-
marks of Table 2. The real applications have many halos, large dominator trees,
and a great deal of shared and butterfly ownership. Only one benchmark, javac,
exhibits characteristics somewhat like the real applications.

3.2 Three Structures Derived from the Language and Data Types

We supplement structural information with three pieces of semantic information:
contingent ownership, the class loader frontier, and context-identical dominator
trees, as illustrated in Figure 3. The first two draw upon language features, and
the third takes object data types into account.

Contingent Ownership. Some language mechanisms reference objects, but
do not impact their lifetime. We choose to filter out these references, for the
purposes of summarizing the responsibility for graph nodes. Java applications
commonly use two such mechanisms: weak references, and the finalizer queue.
The constructor of a WeakReference creates a new object that references a
provided object; the garbage collector ignores this reference when determining
liveness. For example, in the situation illustrated by Figure 3(a), one of the
two referents to the bottom dominator tree is from a weak reference. From
structural perspective, the bottom tree has shared ownership; but it is more
natural to consider the weak ownership to be contingent upon the persistence of
the strong reference. Similarly, instances of a class with a finalize method will
be referenced by the finalizer queue; but, again, these references do not impact
liveness. In addition, we choose to filter references due to Java soft references.
These references informs the garbage collector that, in the absence of other
strong references, to free the object when memory becomes tight.

The Runtime Structure of Object Ownership 81

Weak D\
Reference™~

ClassLoader

(a) Contingent ownership (b) Class loader frontier (c) Context-identical trees

Fig. 3. Three common semantic properties of graphs

Definition 1 (Contingent Ownership). We say that an edge (n',n) offers
contingent ownership to n if n’ is weak, soft, or part of the finalizer queue, and
there exists at least one other edge (n”,n) such that n” is not weak, soft, or part
of the finalizer queue. We say that a reference (n,n’) offers strong contingent
ownership if there is exactly one such n'.

Table 4 shows the fraction of shared dominator trees that have this property. The
real applications all have thousands of dominator trees with contingent owner-
ship, and on average 52% of the contingent ownership is strong. The benchmarks
have a higher proportion of strong contingent ownership: 78%.

Class Loader Frontier. Real applications have a large boundary between dom-
inator trees headed by class loader mechanisms and trees of non-class loading
mechanisms. Figure 3(b) illustrates a case with four dominator trees located on
either side of this boundary. This boundary is large because real applications
make heavy use of class loaders, and they commonly have shared ownership.
Table 5 shows that real applications have as many as 38 thousand dominator
trees headed by class loader data types; on average, 29% of the class loader
dominator trees from these seven snapshots were shared. Further complicating
matters, these shared class loader dominator trees tend to reach nearly all ob-
jects. This is because, in real applications, the class objects very often reach
a substantial portion of the graph. Next, the class loader dominator trees are
usually reachable from a wide assortment of application, framework, and JVM
mechanisms. For example, to isolate plugins, the Eclipse IDE uses a separate
class loader for each plugin; its plugin system reaches the class loader mecha-
nism, which in turn reaches many of the objects. The result is a highly tangled
web of edges that connect the class loader and other trees.

We say that dominator trees that are headed by an instance of a class loader
data type, and that are on either side of the boundary between class loader

82 N. Mitchell

Table 4. The number of dominator trees that are contingently owned, and strongly
so, compared to the total number of shared dominator trees

shared

application domtrees
Al 155,069

A2 472,177

A3 502,534

A2’ 85,100

A4 121,623

A5 121,623

A6 26,430
mtrt 2,545

db 20,795
javac 19,830
jess 1,796
jack 3,103
mpegaudio 506
compress 542

contingently
owned
2,630
5,324
3,964
3,851
33,208
3,502
733

45

26
1,514
24

113

79

116

strongly
contingent
1,235
1,943
2,331
1,624
29,984
785

294

34

22

1,503

20

100

19

105

mechanisms and all others are said to be on the class loader frontier. The fourth
column of Table 5 shows the number of dominator trees that lie on this frontier.
All of the benchmarks have a small, and roughly equal number of shared class
loader dominator trees that are on this frontier; this, despite a widely varying
range of shared dominator trees across the benchmarks (as shown in the sec-
ond column of Table 4). The real applications have a varied, and much larger,
class loader frontier. This reflects a richer usage of the class loader mechanism,

compared to the benchmarks.

Table 5. The number of dominator trees headed by class loader mechanisms, the
number of those that have shared ownership, and the number of dominator trees that

are on the class loader frontier

class loader

application total
A 8,297

A2 26,676

A3 38,395

A2’ 19,080

A4 5,475

A5 5,410

A6 1,017
mtrt 51

db 46
javac 48
jess 135
jack 48
mpegaudio 47

compress 47

class loader
shared

1,032
1,008
133
959
396
363
120

Co 00 00 00 0O GO QO

class loader
frontier

4,550
3,030
3,768
2,449
1,127
1,259
522
29

21

22

23

29

23

22

The Runtime Structure of Object Ownership 83

Context Equality. Often, a large number of non-contingently owned domina-
tor trees are headed by nodes of the same type and have identical ownership.
Figure 3(c) illustrates a case of three context-identical dominator trees: all three
are headed by nodes of type A, and the set of dominator trees to which their
predecessors belong is the same. For example, in a server application, this kind
of structure occurs with the per-user session data. The session data structures
are often simultaneously stored in two collections, under two different roots.
Hence, each is shared, but in the same way. In another common situation, an
application allocates and manages Java data structures outside of Java. All that
is visible from a Java heap snapshot are many of those data structures with no
visible Java roots: the same type of data structures, all in the same (in this case,
empty) context. We can leverage this kind of similarity.

Definition 2 (Context-identical). Let n be a node in a graph, R(n) be the
root node of the dominator tree in which that node belongs, P(n) be the set of
predecessor nodes of n that do not have contingent ownership over n, and T(n)
be the type of a node n. Let I(n) = {T'(R(p)) : p € P(R(n))}, i.e. the types of
the root nodes of the predecessors of n’s dominator tree root. We say two nodes
ny and ny are part of context identical dominator trees if T(R(n1)) = T'(R(n2))
and I(nq) = I(n2).

Under this definition of equality, we can group dominator trees into equivalence
classes. Table 6 shows the number and average size of context-identical equiva-
lence classes for our suite of applications and benchmarks. In real applications,
there are typically many thousands of such classes, with a dozen or so dominator
trees per class.

Table 6. The number and average size of the context-identical equivalence classes from
a variety of applications and benchmarks

context-identical avg. domtrees

application equiv. classes per equiv. class
Al 4,420 13

A2 32,087 6

A3 36,464 9

A2’ 3,190 10

AL 1,837 31

A5 2,078 15

A6 2,011 5
mtrt 140 11

db 9 1,706
javac 438 16
jess 72 7
jack 71 14
mpegaudio 8 3

compress 5 21

84 N. Mitchell

3.3 The Ownership Graph

We demonstrate an algorithm that, given an object reference graph, produces a
new ownership graph that concisely summarizes responsibility within the input
graph. To compute the ownership graph, the algorithm performs a chain of graph
edits, each of which filters, aggregates, or applies thresholds to the nodes in an
object reference graph.

Definition 3 (Graph Edit). Given a graph G, a graph edit Eg is (C, Dy, De);
C is the collapsing relation, an N : 1 relation among the nodes of G; D,, and D,
are, respectively, the node and edge delete sets, and are subsets of the nodes and
edges of G, respectively. We term the range of the collapsing relation as the set
of canonical nodes of the edit. The deleted graph is the subgraph of G consisting
of edges either in D, or whose target is in D, ; its nodes are the nodes of G.

Applying a graph edit yields a new, reduced, graph that preserves the reacha-
bility of the input graph. When applying a chain of graph edits, each edit takes
as input the reduced graph generated by the previous graph edit.

Definition 4 (Reduced Graph). Given a graph edit Eg, define the reduced
graph of Eg to be the graph R whose nodes are the canonical nodes of Eq and
whose edges are the union of edges from G renamed according to the collapsing
relation, and edges from the transitive closure of the deleted graph of Eg.

Each node in a reduced graph represents an aggregation of nodes from previous
graphs. Since each collapsing relation is a tree relation (i.e. it is N : 1 from nodes
to nodes of the input graph), the correspondence between a node of a reduced
graph to the nodes of any previous reduced graph is just the transitive closure
of the inverse of the collapsing relations.

Definition 5 (Contained Nodes). Let R be a reduced graph derived, via a
chain of graph edits, from a graph G. Define the contained node set of r € R
relative to G to be the set of g € G encountered on a traversal, from r, of the

composition of the inverse of the collapsing relations of the chain of graph edits
that led to R.

Using a combination of five kinds graph edits, some applied multiple times, we
construct concise ownership graphs. We now define those five kinds of edits, and
subsequently describe an ownership graph construction algorithm.

Dominator Edit. Compute a representative for each halo of the input graph;
we find the set of representatives that, on any depth-first traversal of the input,
have only back edges incoming. The union of this set of halo representatives
with those nodes that have no incoming edges form the root set of the graph.
Given this root set, compute the dominator forest of the input graph.® From

3 The dominator algorithm we use [22] assumes that the input is a flow graph. In our
case, we use an implicit start vertex: one that points to the computed root set.

The Runtime Structure of Object Ownership 85

this forest, we define a graph edit (C, D., D,,). The collapsing relation C' maps
a node to its dominator forest root; the deleted edge set D. consists of edges
that cross the class loader frontier or that have only contingent ownership; the
deleted node set D,, is empty. This edit collapses the dominator trees into single
nodes. It will also remove the shared ownership from dominator trees that are
strongly contingently owned.

Context-identical Edit. For each node n of the input graph, compute a rep-
resentative type T),. In the case where each node is a dominator tree, we choose
this representative type to be the node type of the head of the dominator tree;
this will not necessarily be the case when this graph edit is applied subsequent
to graph edits other than the dominator edit. In the case where each node is
a collection of dominator trees whose heads are of uniform type, we choose the
representative type to be that type. Otherwise, we say the representative type is
undefined. Let the parent set of a node n, P,, be the set of predecessor nodes of
n. Group the nodes of the input graph according to equality, for each graph node
n, of the pair (P,, T,). For the remaining equivalence classes, choose an arbitrary
representative node. The context-identical collapsing relation maps each node to
that representative. The deleted edge set and deleted node set are empty.

Butterfly Edit. Compute the strongly connected components of the input
graph. Choose a representative node from each component. The collapsing rela-
tion maps each node to the representative of the component to which it belongs.
The deleted edge set and deleted node set are empty.

Reachable Edit. Given a reduced graph R, for each node r € R determine
the contained node set of R relative to the original input graph G. Recall from
Section 2 that we assume a heap snapshot associates an instance size attribute
with each node. Compute the uniquely-owned size for each r € R, which is the
sum over each node g € G in the contained set of r of the instance size of g.
Next, compute the shared-owned size for each node r € R, which is the sum over
all nodes 7’ reachable from 7 of uniquely-owned size of r’. Choose a threshold
of this shared-owned property, a size below which would not be worth the effort
of further study. We have found that a reasonable threshold is the maximum
of one megabyte and one standard deviation above the mean size of all shared-
owned sizes of the graph’s nodes. The collapsing relation of this graph edit is
the identity. The deleted edge set is empty. The deleted node set is those nodes
whose shared-owned size falls below the threshold.

Miscellaneous Edit. Given a reduced graph R, determine the subset of the
contained set of R relative to the original graph G that have been deleted; that is,
those union of the contained set, relative to GG, of nodes in a D,, of some reduced
graph on the chain between G and R. We term this the “miscellaneous” set.
Compute the sum M of the instance sizes of the members of the miscellaneous
set. Compute the shared-owned size, S, of each nodes r € R. Choose a fraction
e of M so that the deleted node set of this graph edit is the set of nodes of
r € R with S, — M < ¢; this isolates any node that is responsible for only a

86 N. Mitchell

A A A A
[Value [Token [Vector [Scene |
[eseamB | | [aseomB_ [aumsmB_| [paseamp | | [ToaseomB [cum1omB |
w25 =z i
(a) jess (b) db (¢) mtrt
v N »
AtrNSImpl class object [Cache | [Registry [SinglePathClassProvider |
cum 131MB [[baseaseke | wm708MB_| | basessmB_ [ewum1g6MB_ || | basesamB | wmiesmB |
| T X
CachedTargets
N A
InvoiceActionManager [Cache | [CategoryFactory class object |

[CbasoazamB [wm71oMB | [besetamB | wmosamB |

Casforyno |,
S | [eie [onzz0v6"
AR

s AN
istenerRepository | [CategoryImpl
base12 m143VB | IEXCHE =
-

miscellaneous
base131MB

(d) A3

Fig. 4. Our implementation automatically generates these ownership graphs

small amount of space, i.e. eM, on top of the miscellaneous size. The collapsing
relation is the identity, and the deleted edge set is empty.

The Ownership Graph Algorithm. The ownership graph is the reduced
graph resulting from the final edit in a chain of graph edits. We will need to
apply certain edits more than once, because one edit may reintroduce a structure
that another edit aggregates. Consider a variant of the graph of Figure 2(d),
where one node in each of the two dominator tree references a third dominator
tree. A dominator edit produces a graph of three nodes. A butterfly edit of
that graph aggregates the two butterfly-connected nodes into one. The resulting
two-node graph has a single edge between the former butterfly and that node
representing the third dominator tree. Reapplying the dominator edit produces
a single-node graph. The chain of graph edits we use to produce an ownership
graph is: dominator, context-identical, butterfly, dominator, reachable-threshold,
miscellaneous-threshold, context-identical, and finally dominator.

We have implemented this algorithm, and it consistently and quickly produces
small ownership graphs. Recall that the two threshold edits may populate a
pseudo-aggregate (miscellaneous) that represents the memory that falls below
the chosen threshold. When rendering an ownership graph, we introduce a second
pseudo-node (everything), to represent the entire snapshot; it refers to every

The Runtime Structure of Object Ownership 87

Table 7. The size and time to compute ownership graphs

nodes in nodes in seconds
application full graph ownership graph to construct
A1 29,181,452 14 148
A2 20,952,120 15 98
A3 17,871,063 11 82
A4 4,391,183 3 26
A2’ 4,289,704 19 24
A5 4,099,743 13 27
A6 3,757,828 3 18
mtrt 509,170 2 8
db 342,725 1 7
javac 316,857 8 8
jess 83,815 2 7
jack 37,949 1 7
mpegaudio 9,997 1 5
compress 7,696 1 6

root in the graph. Table 7 shows the size and time to compute® ownership graphs.
We do not count the two pseudo-nodes towards an ownership graph’s node count.
The computation time figures include the code to compute the graph halos, a
DFS spanning tree, the dominator tree, all of the graph edits, and the time to
render the graph to SVG (scalable vector graphics). For application A3, the full
graph has nearly 18 million nodes; the ownership graph, computed in 82 seconds,
consists of 11 nodes.

Figure 4 shows the output, generated automatically, from three of the bench-
marks and application A3. Our rendering code draws a stack of nodes whenever
an ownership graph node represents a context-identical aggregate. Each node
shows the uniquely-owned bytes (“base”) represented by that aggregate. Each
non-leaf node also show shared-owned bytes (“cum”). Finally, we color the nodes
based on the source package that primarily contributes to that aggregate’s base
size: dark gray for customer code, light gray for framework code (such as the
application server, servlet processing, XML parsing code), black for standard
Java library code, and white for everything else.

4 Summarizing Content Within Trees

This section shows how to summarize the nodes within a tree [12,9, 20, 21, 25],
using the concept of backbones. A backbone in a tree is a mechanism whereby
collections of objects grow or shrink. The backbone of a linked list is the chain of
“element” objects that store the inter-element linkage; in this case, the backbone
structure is recursive. Section 4.1 introduces a categorization of the contents
of a data structures based on how the objects contribute to backbones. This
categorization alone provides powerful, but flat summaries of a tree’s content.

4 On a 1.8GHz Opteron, using Sun’s Linux 1.5.0 06 64-bit JVM and the -server flag.

88 N. Mitchell
S

e m
dob-a-8-08 @

3 i &
i

Fig. 5. A categorization of the nodes in a tree according to backbone structure

To summarize the locations of excessive memory footprint, Section 4.2 shows
how to use a backbone categorization to aggregate backbones into equivalence
classes, based on two notions of equality. We show that the equivalence relations
successfully aggregate large number of backbones. Finally Section 4.3 shows how
applying thresholds after having aggregated by backbone equivalence provides
succinct summaries of tree content.

Note that, in some cases, a node in the ownership graph will be a dominator
tree, and the approach described in this section applies directly. In other cases,
it will be a collection of trees. To analyze a forest of trees, we take the union of
the summaries of each tree.

4.1 The Elements of a Backbone

We identify six elements of a backbone within a tree, as shown in Figure 5. Array
backbone types, those nodes labeled A, are responsible for horizontal growth or
shrinkage in a graph. Recursive backbone types, nodes labeled R, can change the
depth of a graph. We refer to the union of A and R types as backbone types. In
some cases, a recursive backbone includes nodes of a non-backbone type (R’) that
are sandwiched between the recursive backbone nodes. Above any backbone is
a node that represents the container (C) to which they belong. There are often
non-backbone nodes placed between one container and another, or between a
backbone and a nested container; these container sandwich nodes are labeled
C’. Underneath the backbone nodes, whether array or recursive, are the nodes
that dominate the true data of the container (D). These six groups of types cover
much of the structure within trees. We bundle any other structures not covered
by the main six groups into the D group.

For example, an XML document can grow by adding elements or by adding
attributes to an existing element. The elements grow recursively, but sometimes
a TextImpl node is sandwiched between two ElementImpl nodes. The attributes
grow along an array backbone, with data of type AttributeImpl under a con-
tainer of type Vector. Between an element’s recursive backbone and the Vector
container is a container sandwich of type AttributeMap.

We categorize node types into one of these six groups. From this categorization
of types, it is straightforward to categorize the nodes themselves. Array types

The Runtime Structure of Object Ownership 89

100%

0%+ — +— — — — —

%

g

=
|

0% — — — — —

=

3

=
[

40%

30%-

contribution to total memory footprint
3
=~

20%-

10% 7

0%

Fig. 6. The contribution of backbone overheads to total memory footprint

have instances that point to a number of nodes of the same type; the format of
heap snapshots usually distinguishes array types for us. We currently identify
only one-hop recursion, where nodes of a type point to nodes of the same type.
This simple rule is very effective. Even in the XML document example of the
previous paragraph, where there are recursive sandwich types, the recursive-
typed nodes still point to nodes of the same type. A container type is a non-
backbone type that has node instances that point to backbone types. Given a
subpath in the tree that begins and ends with a node from R, all nodes between
those endpoints are from R’. Given a subpath that begins with A, C, or R and
that ends with C, all nodes between the endpoints are from C’. Finally, there
will be a set of nodes that are pointed to by nodes of backbone type; the union
of the types of nodes dominated by them form D.

Categorizing objects in this way yields powerful summaries of content, such as
the ones shown in Figure 6. This figure includes five additional snapshots from
real server applications, A7-A11, that we do not otherwise study in this paper.
Each of the six categories in the figure represents the sum of the instance size
of each node. We split the array backbone overhead into two subcategories: the
memory devoted to unused slots in the array, and slots used for actual references.
We assume that a null reference value in an array is not meaningful data; in
our experience, this is nearly always the case. We also include the contribution
of the Java object header, assuming eight bytes per header. We include header
overhead, as its contribution varies for similar reasons as backbone overheads in
general: many small collections leads to a higher C overhead, but also a higher
object header overhead. We deduct this header cost from the costs associated
with the other backbone overheads.

90 N. Mitchell

The amount of storage in the D group varies from as much as 68% to as
little as 23%. On average, the data consumes 47% of the heap. This fraction is
not well correlated with snapshot size; e.g. the snapshot A4 has over 20 million
nodes, and yet has the highest fraction of data, while application A2’, with a
quarter the number of nodes, has a much lower fraction of data. Furthermore,
the distribution to the various overheads is not constant: there is no hard and
fast rule about how to impose a high backbone cost. It is certainly a property of
the application; e.g. A2 and A2’ , which represent the same application in steady
state, and just after server startup, have similar profiles. One application might
have a few large data structures, versus many small ones; another might use
an open-chained hashing implementation, rather than one with explicit chaining
(the former would avoid a high R cost). Appendix A describes the data models we
use in the implementations for this paper. Our layout nearly eliminates backbone
and object header overheads, which is one of the ways we achieve high scalability.

4.2 Aggregates of Backbone Equivalence

Most real applications have a tremendous number of backbone nodes. As the
second column of Table 8 shows, our real applications have anywhere from 67
thousand to 10 million distinct locations in their dominator trees that serve as
either array or recursive backbones. This is far too many for a human to com-
prehend. Fortunately, there is much commonality in those backbone locations.
We group the backbone nodes into equivalence classes, based on two equivalence
properties: one based on type equality of paths and the second based on a notion
of backbone-folding equality. While the second subsumes the first, to achieve a
well-performing implementation, it is important to apply them one after the
other, as computing context equality can be expensive.

Table 8. The number of backbone nodes and the number of root-type-path and
backbone-folding equivalence classes (summed over all dominator trees)

root-type-path ~ backbone-folding

application backbone nodes equiv. classes equiv. classes
Al 10,864,774 21,820 7,689

A2 4,704,630 23,561 10,381

A3 3,690,480 345,863 21,482

A2’ 772,299 13,855 6,550

A4 342,570 9,630 5,046

A5 630,784 14,847 7,793

A6 107,802 3,907 1,840
mtrt 78,153 3,092 448
db 17,173 91 50
javac 116,274 18,818 9,025
jess 15,069 148 101
jack 2,690 289 154
mpegaudio 2,017 117 7

compress 1,985 175 48

The Runtime Structure of Object Ownership 91

Fig. 7. A hash map of inner hash maps. There are two backbone types (Entry[] and
Entry), ten nodes of those two types, nine backbone equivalence classes under root
type path equality, and four backbone-folding equivalence classes.

Root-type-path Equality. Let the root path of a tree node be the list of nodes
from the tree root to that node, inclusive; the root type path is similarly the list
of those node types. We compute the A and R node types, and the instances of
those types in the tree under analysis. We then form equivalence classes of these
instances, using root type path equality.

It is often the case that a large number of backbone nodes in a tree have equal
root type paths. Forming equivalence classes based on this notion of equality can
therefore produce a more succinct summary of a tree’s content than an enumer-
ation of the backbone nodes. The third column in Table 8 shows the number of
root type path equivalence classes in a number of applications and benchmarks.

Consider the common case of root type path equality shown in Figure 7: a hash
map of inner hash maps, where all of maps use explicit chaining. There are two
backbone types (Entry[] and Entry) and ten backbone nodes. Of those ten, there
are nine distinct classes of backbone nodes under root type path equality. The
only non-singleton class has the two top-left Entry nodes. Every other backbone
node has a unique root type path. For example, the third Entry in the upper hash
map is located under an Entry object, a property that the other two Entry nodes
do not have. This difference skews every other node instance under that chained
Entry, rendering little root type equivalence. We chose this example for illustra-
tive purposes only. In practice, we see that from Table 8 that there are quite a
large number of backbone nodes with type-identical root type paths. The figures
in this table represent the sum over all dominator trees in each heap snapshot.

Backbone-folding Equality. Root type path equality identifies nine backbone
equivalence classes in the tree of Figure 7. We feel there should only be four
distinct classes. The upper Entry[] array is rightly in a singleton class, but
the three upper Entry instances, the two lower Entry[] instances, and the four
lower Entry instances should form a total of three classes, respectively. Imagine

92 N. Mitchell

that the lower hash maps contain values of type string: a hash map of hash
maps that map to string values. We feel that each of those strings should be the
same, despite being located in potentially thousands of separate (lower) hash
maps, and despite each lower hash map being under a wide variety of depths of
(upper) Entry recursion.

To capture this finer notion of equivalence, we observe that it is recursive
structures, through combinations of R and R’ nodes, that lead to the kind of
skew that foils root type path equality. We compute the set of A, R, and R’
nodes and, to each backbone node, associate a regular expression. The canonical
set of regular expressions form the equivalence classes (c.f. the RDS types and
instances of [32] and the DSGraphs of [20,21]). The regular expression of a
node is its root type path, except that any R’ node is optional and any R node
can occur one or more times in any position. For example, the two D nodes
from Figure 5 are backbone-folding equivalent, because they share the regular
expression CART (R'?)CARL™ (R'?), where + and ? have the standard meanings
of “one or more” and “optional”.

The fourth column in Table 8 shows the number of equivalence classes of
backbone nodes under backbone-folding equality. Even for graphs with tens of
millions of nodes, aggregation alone (i.e. without filters or thresholds) collapses
all dominator trees down to at most 21 thousand backbone equivalence classes.

4.3 Using Thresholds to Identify Large Patterns in Large Trees

Applying thresholds after having aggregated backbones can yield succinct sum-
maries of content. As a first threshold, we usually care to study only the largest
trees, or at least to study the largest trees first. Within a large tree, we consider
two useful thresholds of backbone aggregates: a biggest contributing pattern
analysis, and a suspect locator analysis.

A biggest contributing pattern analysis looks for the equivalence classes that
contribute most to a given tree. Table 9 shows the result of a biggest-contributor
analysis to the largest dominator tree in each application and benchmark. There
are often hundreds of equivalence classes within the largest tree. However, only
a few patterns summarize a substantial fraction of the footprint of the tree. The
third column in the table shows how many of those equivalence classes account
for 80% of the size of the tree (tabulating the largest equivalence classes first).
With just two exceptions, a small handful of classes account for most of the
footprint of the largest tree. Even for the two exceptions, A1 and javac, 80% of
the largest tree’s size is accounted for by 35 and 53 patterns.

Sometimes, it is helpful to know where certain suspicious data types are placed
in an expensive tree. A suspect locator analysis identifies the distinct classes of
locations in which a chosen data type occurs. There may be millions of instances
of this type, but they will not be in a million different equivalence classes. Fur-
thermore, as Table 10 shows, for all of our applications and benchmarks, a only
a handful of equivalence classes account for most of the contribution of that type
in any one tree. This is despite the fact that, in some cases, there are hundreds
of distinct patterns in which the largest data type is located. More generally,

The Runtime Structure of Object Ownership 93

Table 9. A biggest contributing pattern analysis shows that a few hot patterns account
for 80% of the largest dominator tree’s memory footprint

equiv. classes 80% contributors

application in largest tree in largest tree
Al 761 35

A2 20 10

A3 1 1

A2’ 11 2

A4 2 1

A5 1172 3

A6 77 3
mtrt 43 10

db 1 1
javac 566 53
jess 1 1
jack 22 1
mpegaudio 2 1
compress 2 1

this suspect locator analysis can apply to other notions of suspects, such as the
major contributors to backbone overhead: if my C overhead is so high, then tell
me the patterns that contribute most. We will explore this more general form of
analysis in future work.

5 Related Work

Techniques that summarize the internal structure of heap snapshots are rel-
atively uncommon. Recent work [27,29] introduces a system for counting, via
general queries, both aggregate and reachability properties of an object reference
graph. They have also done insightful characterization studies [28, 30]. Another
recent work [25], akin to [12], summarizes reachability properties for each root
in the graph. To our knowledge, these works do not aggregate the internal struc-
tural of the graphs according to context. Other related domains include:

Shape Analysis. Static shape analysis builds conservative models of the heap
at every line of code [12,9, 19,20, 21]. They often use abstract interpretation to
form type graphs (such as the RSRSG [9] or the DSGraph [20]); these summaries
capture recursive structures, somewhat analogous to the regular expressions we
form in Section 4.2. The work we discussed above [25] can be thought of as a
kind of dynamic shape analysis.

Heap Profiling. This phrase usually applies to techniques that track the
object allocations of an application for a period of time [6, 36, 34, 35, 37,40, 32].
Mostly, the allocation site profiles are used to populate aggregate call graphs,
and interpreted as one would a profile of execution time. Sometimes, the data
is used to help design garbage collectors [15]. Some works combine static shape
analysis with dynamic profile collection [32].

94 N. Mitchell

Table 10. A suspect locator analysis shows that a few hot patterns contain 80% of
the bytes due to instances of the dominant data type

equiv. classes 80% contributors classes

application in largest tree in largest tree
Al 427 14

A2 7 1

A3 33 2

A2’ 2 2

A4 1 1

A5 248 5

A6 6 3
mtrt 13 7
db 1 1
javac 1 1
jess 1 1
jack 1 1
mpegaudio 1 1
compress 1 1

Ownership Types. There is a large body of recent work on representing
the ownership of objects in the static type system [8,26,4,2,7,5,1,11,24]. Some
recent refinements have addressed issues such as sharing [26] and dominance [7].
The primary goal of this work is to enable better static analysis, such as less
conservative alias analysis, or catching deadlocks at compile time [4].

Leak Analysis. An application that leaks memory will eventually be found
to have an excessive memory footprint. Much of the prior work on memory
leak detection either focuses on identifying allocation sites [13,43,42, 38, 3, 18],
or on mostly-manual heap snapshot differencing [10, 31]. Our previous work [23]
analyzes a pair of heap snapshots, and automates the detection of the heads of
possibly leaking data structures. It neither address shared ownership, nor how
to summarize the content underneath the leaking structures.

Visualization. The work of [14] introduces the idea of using the dominator
tree to visualize object ownership. They also provide an clever composition of
trees that mirrors the stack of activation records. In a similar vein, [33] presents
an alternative visualization strategy that takes into account object references,
domination, and characteristics of object usage. Similar to our previous work [23],
they use heuristics to impose an ownership tree on a graph. None of these sum-
marize nodes; by using the dominator spanning tree, they do filter out edges.
Other tools require a human to browse what are essentially raw object reference
graphs [10, 31, 3]. In some cases, these tools aggregate, but only locally; e.g. [10]
aggregates outgoing edges by the referred-to type. Many tools also provide flat
summaries that aggregate graph nodes by type, size, etc. The work of [25] in-
cludes a visualization component that describes reachability-from-root and age
properties of objects in a heap snapshot, but concedes that it does not scale to
graphs much larger than several thousand nodes.

The Runtime Structure of Object Ownership 95
6 Future Work

We see three exciting areas of future work. First, Section 4.3 demonstrated how
to locate the patterns that explain the hottest elements of a flat summary by
type. This is a powerful style of analysis, and we can extend it to be driven
by a more general notion of suspects. For example, we can use it to locate the
few patterns that explain most of the Java object header overhead. We can also
introduce new kinds of suspects, such as large base class overhead.

Second, the ownership graph provides a visual representation of responsibility.
We feel that there is a need for schematic visual representations of content. The
backbone equivalence classes provide a good model for this summary. There is
much work to be done in finding the powerful, yet concise, visual metaphors that
will capture these patterns.

Third, we feel that the methodology employed in this paper, and the owner-
ship structures we have identified can be useful in understanding the structure
graphs from other domains. For example, many of the difficult aspects of graph
size (scale, scattering of suspects in disparate locations in a graph, sharing of
responsibility) have analogs in the performance realm. In performance, flat sum-
maries usually only point out leaf methods, and yet the structure of a call graph
is highly complex. We will explore this synergy.

7 Conclusion

It is common these days for large-scale object-oriented applications to be devel-
oped by integrating a number of existing frameworks. As beneficial as this may
be to the development process, it has negative implications on understanding
what happens at run time. These applications have very complicated policies
governing responsibility and object lifetime. From a snapshot of the heap, we
are left to reverse engineer those policies. On top of that, even uniquely-, non-
contingently-owned objects have complex structure. Data structures that are
essentially trees, like XML documents, are large, and represented with a multi-
tude of non-tree edges. The common data types within them may be scattered
in a million places; e.g. the attributes of an XML document’s elements occur
across the width and throughout the depth of the tree.

We have presented a methodology and algorithms for analyzing this web of
complex ownership structures. In addition to their usefulness for summarizing
memory footprint, we hope they are helpful as an exposition of the kinds of struc-
tures that occur in large-scale applications. Work that tackles object ownership
from