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Abstract. Assume that a set of imprecise points is given, where each
point is specified by a region in which the point may lie. We study the
problem of computing the smallest and largest possible tours and convex
hulls, measured by length, and in the latter case also by area. Generally
we assume the imprecision region to be a square, but we discuss the case
where it is a segment or circle as well. We give polynomial time algo-
rithms for several variants of this problem, ranging in running time from
O(n) to O(n13), and prove NP-hardness for some geometric problems on
imprecise points.

1 Introduction

In computational geometry, many fundamental problems take a point set as in-
put, on which some computation is done, such as the convex hull, the Voronoi di-
agram, or a traveling sales route. These problems have been studied for decades.
The vast majority of research assumes the locations of the input points to be
known exactly. In practice, however, this is often not the case. Coordinates of
the points may have been obtained from the real world, using equipment that
has some error interval, or they may have been stored as floating points with a
limited number of decimals. In real applications, it is important to be able to
deal with such imprecise points.

When considering imprecise points, various interesting questions arise. Some-
times it is sufficient to know just a possible solution, which can be achieved by
just applying existing algorithms to some point set that is possibly the true point
set. More information about the outcome can be obtained by computing a prob-
ability distribution over all possibilities, for example using Monte Carlo methods
and a probability distribution over the input points. In many applications it is
also important to know concrete lower and upper bounds on some measure on
the outcome, given concrete bounds on the input: every point is known to be
somewhere in a prescribed region.
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Related Work. A lot of research about imprecision in computational geometry
is directed at computational imprecision rather than data imprecision. Regarding
data imprecision, there is a fair amount of work that uses stochastic or fuzzy
models of imprecision. Alternatively, an exact model of imprecision can be used.

Nagai and Tokura [15] compute the union and intersection of all possible
convex hulls to obtain bounds on any possible solution. As imprecision regions
they use circles and convex polygons, and they give an O(n log n) time algorithm.

Espilon Geometry is a framework for robust computations on imprecise points.
Guibas et al. [11] define the notion of strongly convex polygons: polygons that
are certain to remain convex even if the input points are perturbed within a disc
of radius ε. A related concept is that of tolerance [1]; see also [12] and [2].

Boissonnat and Lazard [4] study the problem of finding the shortest convex
hull of bounded curvature that contains a set of points, and they show that
this is equivalent to finding the shortest convex hull of a set of imprecise points
modeled as circles that have the specified curvature. They give a polynomial
time approximation algorithm.

Goodrich and Snoeyink [10] study a problem where they are given a set of
parallel line segments, and must choose a point on each segment such that the
resulting point set is in convex position. Given a sequence of k polygons with
a total of n vertices, Dror et al. [7] study the problem of finding a tour that
touches all of them in order that is as short as possible. Higher dimensions are
considered in [17].

Fiala et al. [9] consider the problem of finding distant representatives in a
collection of subsets of a given space. Translated to our setting, they prove
that maximizing the smallest distance in a set of n imprecise points, modeled
as circles or squares, is NP-hard. Finally, we mention de Berg et al. [6] for a
problem with data imprecision motivated from computational metrology, Cai
and Keil [5] for visibility in an imprecise simple polygon, Sellen et al. [18] for
precision sensitivity, and Yap [19] for a survey on robustness, which deals with
computational imprecision rather than data imprecision.

Problem Definition. All in all there has been little structured research into
concrete bounds on the possible outcomes of geometric problems in the presence
of data imprecision. When placing a traditional problem that computes some
structure on a set of points in this context, two important questions arise:

The first question is what we are given. We model imprecise points by requir-
ing the points to be inside some fixed region, without any assumption on where
exactly in their regions the points are, but with absolute certainty that they
are not outside their regions. The question then arises what shape these regions
should be given. Some natural choices are the square and circular region. The
square model for example occurs when points have been stored as floating point
numbers, where both the x and y coordinates have an independent uncertainty
interval, or with raster to vector conversion. The circular model occurs when the
point coordinates have been determined by a scanner or by GPS, for example.
Another question is what kind of restrictions we impose on those regions. For
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example, all points can have the same kind of shape, but are they all of the same
size? Do they have the same orientation? Are they allowed to overlap?

The second question is what we actually want to know. Geometric problems
usually output some complex structure, not just a number, so a measure on this
structure is needed. For example, the convex hull of a set of points can be mea-
sured by area or perimeter, or maybe even other measures in some applications.
Once a measure has been established, the question is whether you want an upper
or a lower bound, or both, on it.

Table 1. Results

goal measure model restrictions running time
largest area line segments parallel O(n3)
largest area squares non-intersecting O(n7)
largest area squares non-intersecting, equal size O(n3)
largest area squares equal size O(n5)
largest perimeter line segments parallel O(n5)
largest perimeter squares non-intersecting O(n10)
largest perimeter squares equal size O(n13)
smallest area line segments parallel O(n log n)
smallest area squares - O(n2)
smallest perimeter line segments parallel O(n log n)
smallest perimeter squares - O(n log n)

Results. All these questions together lead to a large class of problems that
are all closely related to each other. This paper aims to find out how exactly
they are related, which variants are easy and which are hard, and to provide
algorithms for the problems that can be solved in polynomial time. Since this
type of problem has hardly been studied, we consider the classical planar convex
hull problem.

We studied various variants of this problem, and our results are summarized
in Table 1. These results are treated in detail in Sections 3, 4 and 5. First, in
the next section, some related issues are discussed.

2 Some Results on Spanning Trees and Tours

In this section we briefly discuss the impact of imprecision on another classical
geometric problem, the Minimum Spanning Tree. Then we discuss our results
on tours. Due to space limitations, we only give the results and very globally,
the ideas needed to obtain them. Details can be found in the full paper [14].

Minimum Spanning Tree. To get an idea of how imprecision affects the
complexity of geometric problems, consider the Minimum Spanning Tree (MST)
problem in an imprecise context. In this case, we have a collection of imprecise
points, and we want to determine the MST of, for example, minimal length. This
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(a) (b)

Fig. 1. (a) It is algebraically difficult to find the minimal MST. (b) It is combinatorially
difficult to find the minimal MST.

means that we want to choose the points in such a way that the MST of the
resulting point set is as small as possible. This problem is both algebraically and
combinatorially hard. In Figure 1(a), there are five fixed points and one imprecise
one (in the square model, but it could also be a circle). No matter where the point
is chosen in this square, the MST of the resulting set will connect all of the fixed
points to the imprecise one. Thus the problem reduces to minimizing the sum of
the distances from the imprecise point to the fixed points. This is algebraically
a hard problem [3]. Furthermore, we can prove NP-hardness of smallest MST by
reduction from the Steiner Minimal Tree problem. Given a set of n fixed points
P in the plane, we can compute its Steiner Minimal Tree using a solution to the
imprecise MST problem as follows. Take P as precise points, and add a set P ′

of n−2 imprecise points whose regions are squares or circles that contain P , see
Figure 1(b). The shortest MST of P ∪ P ′ is the Steiner Minimal Tree of P .

Longest Tour. We consider the problem of computing the longest tour that
visits a sequence of n axis-parallel squares in a given order. The tour may have
self-intersections, see Figure 2(a). We can prove that every vertex of the tour
will be at a corner of a square. Given an arbitrary starting square and some
vertex v of it, the longest tour up to some vertex w of the i-th square consists of
a longest tour to one of the four vertices of the (i − 1)-st square, and one more
segment to w. Hence, the longest tour can be constructed incrementally in O(1)
time for each next square. We obtain:

Theorem 1. Given an ordered set of n arbitrarily sized, axis-aligned squares,
the problem of choosing a point in each square such that the perimeter of the
resulting polygon is as long as possible can be solved in O(n) time.

Shortest Tour. Next we study the problem of computing the shortest tour that
visits a sequence of n axis-parallel squares in a given order. In this case, vertices
of the optimal tour can also be on edges of squares, see Figure 2(b). We can
show that the shortest tour can be seen as a combination of two shortest one-
dimensional tours, one in the x-projection and one in the y-projection. Therefore
we know where the shortest tour changes direction from top to bottom or vice
versa, and left to right or vice versa. The shortest tour also satisfies the principle
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(a) (b)

Fig. 2. (a) The longest perimeter solution. (b) The shortest perimeter solution.

of reflection, and therefore we can transform the shortest tour problem to a
geodesic shortest path problem in a simple polygon (ignoring some details and
complications that are handled in the full paper). We obtain:

Theorem 2. Given an ordered set of n arbitrarily sized, axis-aligned squares,
the problem of choosing a point in each square such that the perimeter of the
resulting polygon is as short as possible can be solved in O(n) time.

Largest or Smallest Area Simple Tour. If we require that the resulting
tour has no self-intersections, that is, it is a simple polygon, then we can also
minimize or maximize the enclosed area. We can show that this problem is NP-
hard. The reduction from planar 3-SAT is in the full paper. It is also NP-hard to
determine the longest simple tour, but the proof does not extend to the shortest
simple tour. We have:

Theorem 3. Given an ordered set of n arbitrarily oriented line segments, the
problem choosing a point on each segment such that the area of the resulting
polygon is as large as possible is NP-hard. The same problem for smallest area
and for largest perimeter is also NP-hard.

3 Largest Convex Hull

We now present our results on the imprecise convex hull problem. This section
deals with computing the largest possible convex hull, the smallest convex hull
is treated in the next section. We first use the line segment model, where every
point can be anywhere on a line segment. This problem does not have much
practical use, but it will be extended to the square model later.

Line Segments. The problem we discuss in this section is the following:

Problem 1. Given a set of parallel line segments, choose a point on each line
segment such that the area of the convex hull of the resulting point set is as large
as possible (see Figure 3(a)).
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Fig. 3. (a) The largest convex hull for a set of line segments. (b) The polygon pij .

Observations. First we will show that we can ignore the interiors of the seg-
ments in this problem, that is, we only have to consider the endpoints.

Lemma 1. There is an optimal solution to Problem 1 such that all points are
chosen at endpoints of the line segments.

Algorithm. Let L = {l1, l2, . . . , ln} be a set of n line segments, where li lies
to the left of lj if i < j. Let l+i denote the upper endpoint of li, and l−i denote
the lower endpoint of li. We use a dynamic programming algorithm that runs
in O(n3) time and O(n2) space. The key element of this algorithm is a polygon
which is defined for each pair of line segments. For i �= j, we consider the polygon
that starts at l+i and ends at l−j , and optimally solves the subproblem to the left
of these points, that is, contains only vertices l+k with k < i or l−k with k < j,
but not both for the same k, such that the area of the polygon is maximal, see
Figure 3(b). Note that pij will be convex.

Now, we will show how to compute all pij using dynamic programming. The
solution to the original problem will be either of the form pkn or pnk for some
0 < k < n, and can thus be computed in linear time once all pij are known.

When 1 < i < j, then we can write pij = maxk<j

(
pik + �l+i l−j l−k

)
. Of

course we maximize over the area of the polygons. In words, we choose one of
the lower points to the left of lj , and add the new point l−j to the polygon pik that
optimally solves everything to the left of the chosen point l−k . When 1 < j < i
the expression is symmetric, and i = 1 or j = 1 is a similar but simpler case.
The algorithm runs in O(n3) time and requires O(n2) space. We do not need to
worry about convexity, because a non-convex solution can never be optimal.

Theorem 4. Given a set of n arbitrarily sized, parallel line segments, the prob-
lem of choosing a point on each segment such that the area of the convex hull of
the resulting point set is as large as possible can be solved in O(n3) time.

Squares. The problem we discuss in this section is the following:

Problem 2. Given a set of axis-aligned squares, choose a point in each square
such that the area of the convex hull of the resulting point set is as large as
possible (see Figure 4(a)).
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Fig. 4. (a) The largest area convex hull for a set of squares. (b) The four extreme
points.

Observations. Once again we observe that the points will not have to be chosen
in the interior of the squares. In fact we only have to take the corners of the
squares into account.

Lemma 2. There is an optimal solution where all points lie at a corner of their
square.

First we define the four extreme points of the convex hull we are trying to
compute as the leftmost, topmost, rightmost and bottommost points. These
points divide the hull into four chains that connect them. The extreme points
and the triangles that surround the four chains are shown in Figure 4(b).

Lemma 3. All vertices on the top left chain are top left corners of their squares,
and similar for the other chains.

In general it is not easy to find the extreme points. For example, it could be
that none of the extreme points in the optimal solution is in one of the extreme
squares in the input, see for example Figure 5(a). Here the topmost and bot-
tommost squares are the large ones, and the leftmost and rightmost squares are
the medium ones. However, in the optimal solution the extreme points will all
be corners of the small squares.

Algorithm for Non-overlapping Squares. When we restrict the problem
to non-overlapping squares, we can solve this problem in O(n7) time. The idea
behind the solution is to divide the squares into groups of squares of which we
know that only two of their corners are feasible for an optimal solution, and then
to reuse the algorithm for Problem 1 on these groups. When the four extreme
points are known, we can use this information to solve the problem in O(n3)
time. However, how to find those points still remains a difficult problem, so we
try all possible combinations, hence the total of O(n7).

We call a corner of a square candidate if it is in the correct triangle to possibly
be part a chain, so for example the top left corner is candidate if it is in the top
left triangle, see Figure 4(b). If the squares do not overlap, there can be only two
squares that have more than two candidate corners. We ignore these squares (we
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Fig. 5. (a) The four extreme points need not be in the extreme squares. (b) The squares
can be divided into five groups of parallel line segments.

just try all possibilities), and note that the rest of the squares all have at most
two candidate corners, and can therefore be reduced to line segments. Further
note that there are only a limited number of orientations, and those of the same
kind are adjacent, as in Figure 5(b). There are six possible kinds of line segments,
of which only five may appear at the same time, which implies that we can divide
the segments into five groups. The figure is schematic since the segments cannot
be extended to non-overlapping squares, but it would require squares of very
different sizes to obtain a linear number in each group.

We will now solve the situation of Figure 5(b) in O(n3) time. Note that
any convex hull of a choice of points in this situation must follow these sets of
endpoints in the correct order. That is, it starts at the left extreme point, then
goes to a number of points of LB, then to a number of points of BL, then to the
bottom extreme point, and so on. It cannot, for example, go to a point of LB,
then to a point of BL, and then back to a point of LB.

The idea of the algorithm is to compute, for each pair of endpoints, the optimal
solution connecting them via the lower left side. This can be done by reusing the
algorithm for the parallel line segment problem, and distinguishing cases for in
which group the two points are. The details can be found in [13].

Theorem 5. Given a set of n arbitrarily sized, non-overlapping, axis-aligned
squares, the problem of choosing a point in each square such that the area of the
convex hull of the resulting point set is as large as possible can be solved in O(n7)
time.

Unit Size Squares. The extra O(n4) that comes from the fact that it is hard to
determine the extreme points, relies on situations where the size of the squares
differs greatly, such as in Figure 5(a). When the squares have equal size, we show
that there are only constantly many squares that can give the extreme points,
thus reducing the running time of the above algorithm to O(n3).

Lemma 4. In the largest area convex hull problem for axis-aligned unit squares,
an extreme square in the input set gives one of the extreme points of the optimal
solution.
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As a consequence of this lemma, the largest convex hull problem for non-
overlapping axis-aligned unit squares can be solved in O(n3) time, since now
there are only a constant number of possibilities for the extreme points.

Theorem 6. Given a set of n equal size, non-overlapping, axis-aligned squares,
the problem of choosing a point in each square such that the area of the convex
hull of the resulting point set is as large as possible can be solved in O(n3) time.

For overlapping squares, the problem remains open. However, for overlapping
squares of equal size, we can solve the problem in O(n5) time, see [13].

4 Smallest Convex Hull

In this section we will investigate the problem of finding the smallest area convex
hull of a set of imprecise points. As in the previous section we will first look into
the line segment model, and then move on to squares.

Line Segments. The problem we discuss in this section is the following:

Problem 3. Given a set of parallel line segments, choose a point on each line
segment such that the area of the convex hull of the resulting point set is as small
as possible.

Lemma 5. In the optimal solution, if a line segment defines a vertex of the
convex hull, and there are other vertices on the hull strictly on both sides of the
supporting line of this segment, then the point on this segment must be chosen
at one of the endpoints.

We denote the leftmost segment by sl and the rightmost segment by sr. We define
two chains, the top chain ct and the bottom chain cb of the set of segments. The
top chain is a polyline connecting the lower endpoint of sl to the lower endpoint
of sr, and is defined as the upper half of the convex hull of the set of all lower
endpoints of the input segments. Symmetrically, the bottom chain is the lower
half of the convex hull of the set of all upper endpoints of the input segments,
see Figure 6(a). If the top and bottom chains do not intersect, there is a zero

ct

cb

sl sr

(a) (b)

Fig. 6. (a) The top chain ct and bottom chain cb. (b) The optimal solution.
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area solution that can be found in linear time [8]. Therefore, we assume next
that they intersect.

For a point p on sl, there is a tangent point al(p) on the top chain such that
the line through p and al(p) does not go through the region below the top chain.
When there are more than one such points we choose the one that lies most to
the right. Similarly, we define bl(p) as the tangent point on the bottom chain,
and for q on sr we define two tangent points ar(q) and br(q) on the top and
bottom chains. All those tangent points are vertices of the chains.

Lemma 6. If the points p on sl and q on sr are known, the optimal solution
is the polygon that consists of p, al(p), the piece of the top chain between al(p)
and ar(q), ar(q), q, br(q), the piece of the bottom chain between br(q) and bl(p),
bl(p), and back to p, provided that this polygon is convex. If it is not, then p and
q will be connected by a straight line above the top chain or below the bottom
chain (see Figure 6(b)).

Algorithm. We will use these observations to construct an efficient algorithm.
First we note that the two chains can be computed in O(n log n) time using
conventional convex hull algorithms, and then we show that we can find the
optimal solution using the chains in O(n) time, yielding a total of O(n log n)
time.

To find the location of the points p on sl and q on sr, we use the fact that
they can be found independent of each other.

Lemma 7. The individual optimal locations for p and q, minimizing the area
of p and q respectively add to the intersection of the chains, are the same as the
location of p and q in the optimal solution.

The important point is that, in the optimal solution, p and q will never be con-
nected directly to each other, but always via the chain. The individual solutions
can be computed in linear time, after the chains are known. The computation
of the chains takes O(n log n) time.

Theorem 7. Given a set of n arbitrarily sized, parallel line segments, the prob-
lem of choosing a point on each segment such that the area of the convex hull of
the resulting point set is as small as possible can be solved in O(n log n) time.

Squares. The problem we discuss in this section is the following:

Problem 4. Given a set of axis-aligned squares, choose a point in each square
such that the area of the convex hull of the resulting point set is as small as
possible (see Figure 7(a)).

Lemma 8. In the optimal solution, only the leftmost, rightmost, topmost, and
bottommost vertices of the hull need not be corners of their squares.

The situation is similar to the line segment case. There are now four extreme
squares Sl, Sr, St and Sb, and for these four squares, the points must lie on
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the inner edge. We call the points pl, pr, pt and pb. We now have four chains of
corners that could be included in the convex hull, see Figure 7(b). The optimal
solution for fixed pl, pr, pt and pb connects these points to their tangent points
on the chains or directly to each other if the result would not be convex.

The critrical difference between the line segment case and the square case, is
that the locations of the four extreme points are no longer independent. It can
really happen that in the optimal solution two or more of the extreme points
are connected by straight line segments, rather than via the chains. This means
we need a different approach to solve the problem, and is the reason why this
variant cannot be easily solved in O(n log n). We describe a case distinguishing
algorithm that runs in O(n2) time in [13].

Theorem 8. Given a set of n arbitrarily sized, possibly overlapping, axis-aligned
squares, the problem of choosing a point in each square such that the area of the
convex hull of the resulting point set is as small as possible can be solved in O(n2)
time.

5 Perimeter Versus Area

Until now we have only considered area of the convex hull as the measure to
maximize or minimize, but there are other measures that can be used, such as
the perimeter. In this section we will briefly consider the relevant differences
between the two measures.

One important observation concerns the way the size of a polygon changes
when only one point is moving, while the rest remains fixed. The area of the
polygon will be a linear function of the moving point, while the perimeter is a
hyperbolic function with a minimum. In the case of convex hulls, this only applies
as long as the combinatorial structure of the hull does not change. Secondly, note
that when we want to maximize the area of a polygon, convexity is automatically
achieved. When we want to maximize the perimeter, however, convexity has to
be explicitly taken care of. When looking for minimal size, this works the other
way around. A minimal perimeter polygon will automatically be convex, while
a minimal area polygon is generally not.

(a) (b)

Fig. 7. (a) The smallest convex hull for a set of squares. (b) The top left, bottom left,
top right, and bottom right chains.
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We can adjust all of the above algorithms to the perimeter measure in a
more or less straightforward fashion. The time bounds for the largest convex
hull indeed become worse, O(n3) for line segments becomes O(n5), and O(n7)
for squares becomes O(n10). On the other hand, the time bounds for the small-
est convex hull become better; all problems considered can be solved in only
O(n log n) time. The details of the changed algorithms can be found in [13].

6 Conclusions

We studied the problem of computing the largest or smallest convex hull of a
set of imprecise points; our results are in Table 1. The problem of finding the
smallest convex hull seems to be easier than finding the largest convex hull: the
running times are better, and there are fewer restrictions. It also seems that for
the largest convex hull the area is easier to maximize than the perimeter, while
for the smallest convex hull the perimeter is easier to minimize than the area.

Many problems are open, and there are various directions of research to be
pursued. Most notably, what is the status of the problem of finding the largest
convex hull when the regions are allowed to intersect? Also, what results can
be obtained for the circle model? For the problems that do not have an effi-
cient solution, the study of approximation algorithms is interesting. Thirdly, for
many other problems in computational geometry, imprecision in the data and
the bounds on the effect on the outcome of an algorithm should be studied.
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