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Abstract. The simultaneous embedding problem is, given two planar
graphs G1 = (V, E1) and G2 = (V, E2), to find planar embeddings ϕ(G1)
and ϕ(G2) such that each vertex v ∈ V is mapped to the same point in
ϕ(G1) and in ϕ(G2). This article presents a linear-time algorithm for the
simultaneous embedding problem such that edges are drawn as polygonal
chains with at most two bends and all vertices and all bends of the edges
are placed on a grid of polynomial size. An extension of this problem
with so-called fixed edges is also considered.

A further linear-time algorithm of this article solves the following
problem: Given a planar graph G and a set of distinct points, find a
planar embedding for G that maps each vertex to one of the given points.
The solution presented also uses at most two bends per edge and a grid
whose size is polynomial in the size of the grid that includes all given
points. An example shows two bends per edge to be optimal.

1 Introduction

The visualization of information has become very important in recent years. The
information is often given in the form of graphs, which should at the same time
aesthetically please and convey some meaning. Many aesthetic criteria exist,
such as straight-line edges, few bends, a limited number of crossings, depiction
of symmetry and a small area of the drawing given, e.g., a minimal distance
between two vertices.

If graphs change over the course of time or if different relations among the
same objects are presented in graphs, it is often useful to recognize the features
of the graph that remain unchanged. If each graph is drawn in its own way, in
other words if the graphs are embedded independently, there is probably only
little correlation. Therefore, the embeddings of the graphs have to be constructed
simultaneously to achieve that all or at least some features of the graph are fixed.

A viewer of a graph quickly develops a mental map consisting basically in
the positions of the vertices. If k planar graphs with the same vertex set V are
presented, it is desirable that the positions of all vertices in V remain fixed. This
problem is called simultaneous embedding. An extension of the problem is the
so-called simultaneous embedding with fixed edges: In addition to the k graphs, a
set of edges F is given. A feasible solution is an embedding of the k graphs such
that all vertices and all edges in F have fixed embeddings. An algorithm for the
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simultaneous embedding problem for k planar graphs with few bends per edge
helps to find an embedding with few bends per edge for graphs of thickness k. The
thickness of a graph G is the minimum number of planar subgraphs into which
the edges of G can be partitioned. Since a graph of thickness k can be embedded
in k layers without any edge crossings, thickness is an important concept in VLSI
design. Additionally, an algorithm for the simultaneous embedding of k planar
graphs with fixed edges helps to find an embedding of a graph of thickness k
such that certain sets of edges are drawn straight-line as well as identically in
all layers.

Definition 1. A k-bend embedding of G = (V, E) is an embedding such that
each edge in E is drawn as a polygonal chain with ≤ k bends. Thus, an edge
with l bends consists of l + 1 straight-line segments.

Unless stated otherwise, the following embeddings place all vertices and all bends
on a grid of size polynomial in the number of vertices. According to results of
Pach and Wenger [9], for any number of planar graphs on the same vertex set of
size n, an O(n)-bend simultaneous embedding is possible. Erten and Kobourov
[6] show with a small example that a 0-bend simultaneous embedding does not
always exist for two planar graphs. They show that three bends suffice to embed
two planar graphs and that one bend is enough in the case of two trees. By using
a new algorithm presented in Section 3, this article shows in Section 2 that the
number of bends per edge in a simultaneous embedding of two planar graphs
can be reduced to two.

Erten and Kobourov also examine simultaneous embeddings with fixed edges
in the special case where one input graph is a tree and the other is a path. For
special kinds of graphs (caterpillar and outerplanar graphs), Brass et al. [2] show
how to embed simultaneously two of the special graphs such that all edges are
fixed. For general graphs, the simultaneous embedding problem with fixed edges
is considered in Section 4. However, if all edges are fixed, this problem is already
for almost all instances of two planar graphs not solvable (Section 5)—even if
the number of bends per edge is unbounded. Therefore, the algorithm presented
in Section 4 works only with sets of fixed edges with certain properties.

Another variation of the simultaneous embedding problem is described in [1]
by Bern and Gilbert: Given a straight-line planar embedding of a planar graph
with convex and 4-sided faces, find a suitable location for dual vertices such that
the edges of the dual graph are also straight-line segments and cross only their
corresponding primal edges.

Kaufmann and Wiese [7] present an algorithm for the vertices-to-points prob-
lem, which computes an embedding of a planar graph such that the vertices
are drawn on a grid at given points. If all vertices and all bends are placed on
a grid whose size is polynomial in the size of the grid that includes all given
points, their embedding requires up to three bends per edge, but via a similar
algorithm as for the simultaneous embedding problem, a 2-bend embedding can
be constructed (Sections 2 and 3). If an outer face is specified, Kaufmann and
Wiese show that an 1-bend embedding for the vertices-to-points problem is not
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possible in general. In Section 5, a very short proof of the same lower bound is
presented, but now no outer face must be specified.

2 Finding an Embedding

Since the same ideas as already described in [7, 2, 6] are used, these will only
be sketched. Many parts of these ideas help to find a 2-bend embedding for
both of the two problems below. Assume for the time being that for all planar
graphs G = (V, E) considered in the following, a Hamilton cycle C exists and
is known. Moreover, let fG be a bijective function that maps each vertex to
a number in {1, . . . , |V |} such that consecutive vertices in C have consecutive
numbers modulo |V |. The knowledge of the Hamilton cycle C is useful because
in a planar embedding of G, each edge not part of C is either completely inside
or completely outside C. In the following two problems are defined and their
solutions are presented subsequently.

Definition 2. The simultaneous embedding problem is, given two planar graphs
G1 = (V, E1) and G2 = (V, E2), to find planar embeddings ϕ(G1) and ϕ(G2)
such that all vertices are fixed, i.e. ∀v ∈ V : ϕ1(v) = ϕ2(v).

As a first step to find a simultaneous embedding for G1 and G2, associate each
vertex v with two numbers x, y, where x = fG1(v) and y = fG2(v). Use the two
numbers of each vertex as its coordinates. Embed the edges in G1 and G2 by
applying the procedure described below the following definition once for G1 with
direction = horizontal and once for G2 with direction = vertical.

Definition 3. Let G = (V, E) be a planar graph and let P be a set of distinct
points in the plane. The vertices-to-points problem is to find a planar embedding
ϕ such that ∀v ∈ V : ϕ (v) ∈ P .

For an embedding, sort the given points according to their x-coordinates. Map
the vertex v with number i = fG(v) to the point with the i’th smallest x-
coordinate. Continue the embedding of the edges with direction = horizontal.

In the following the procedure to embed the edges is described:

Denote the graph under consideration by G = (V, E) and the edge
{f−1

G (1), f−1
G (|V |)} by ê. W.l.o.g. assume that direction = horizontal. Oth-

erwise turn around the construction by 90 degree.
First, embed the edges of the Hamilton path P = C \ {ê} as straight lines.

For each edge e ∈ P let xe and ye be the absolute values of the differences of the
x- and y-coordinates of the endpoints of e. Set α = mine∈P tan (xe/ye). For each
vertex v, let lv be the vertical line through v. Using a combinatorial embedding
of G, partition the edges not part of C in linear time into two sets E1 and E2 such
that each set can be embedded inside (or outside) the Hamilton cycle without
edge intersections. Add the edge ê to E1, say. Embed each edge {u, v} in E1
below P and in E2 above P as part of two rays starting from vertex u to the
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right of lu and from vertex v to the left of lv, if fG(u) < fG(v). Draw each ray in
such a way that the angle between the ray and the corresponding vertical line is
α and cut off the two rays at their point of intersection. If a vertex has several
incident edges embedded on the same side of P or if the point of intersection is
not on the grid, modify the angle slightly such that planarity is preserved. This
yields a 1-bend embedding of G.

However one problem remains: How to find a Hamilton cycle and what to do
if no Hamilton cycle exists. The solution is to modify G. According to Chiba
and Nishizeki [3], G can be made 4-connected preserving planarity by repeated
applying

Operation 1: adding an auxiliary edge and
Operation 2: splitting an original edge of G once and adding a new vertex

between the two parts of the split edge.

Denote this modified graph by G′. In [4], Chiba et al. show that every 4-
connected graph has a Hamilton cycle that can be found in linear time. Use an
embedding for G′ to obtain an embedding for G by removing the new edges,
merging the embeddings of the two parts of each split edge and replacing each
new vertex by a bend for the corresponding edge.

Observe that an edge e = {v1, v2} in G corresponds to at most two split edges
e1 = {v1, vnew} and e2 = {vnew, v2} in G′. If both edges e1, e2 are embedded
with one bend and there is a further bend between the edges e1, e2 at vnew, the
edge e is embedded with three bends. As we see later, one part of the two split
edges is inside and the other part is outside the Hamilton cycle used. Thus, this
third bend at vnew exists only if vnew does not appear between v1 and v2 in the
Hamilton path used for the embedding.

To see this, consider the next two examples.
If vnew is behind v1 and v2 on the Hamilton path, the edge e is drawn from

v1 rightwards to vnew and then leftwards to v2. But if vnew is between v1 and v2,
the two rays at vnew are drawn as one line from the bend point of e1 through
vnew to the bend point of e2.

Using a shrinking angle during the process of embedding instead of an almost
fixed angle α, Kaufmann and Wiese described in [7] how to remove the bend
point at vnew, but this solution requires a grid of exponential size to place the
bends of the edges.

Since it is essential where the numbering along the Hamilton cycle starts, let us
consider the problem of finding a so-called closable Hamilton path. A Hamilton
path is closable if it is contained in a Hamilton cycle. A closable Hamilton cycle
makes it more explicit which part of the Hamilton cycle is used to number the
vertices.

Definition 4. An edge-extension of a planar graph G is a planar graph G+

obtained from G by adding auxiliary edges or by splitting edges, i.e. replacing
each such edge by a path of length two whose edges are split edges and whose
midpoint is a so-called new vertex of degree 2. Thus, each edge in G corresponds
to a unique path in G+ of arbitrary length.
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Given a planar graph, an edge-extension is constructed in linear-time in the next
section such that each edge in G corresponds to a path of length ≤ 2 in G+.
Moreover, a closable Hamilton path in G+ is found at the same time that has
the between property:

Definition 5. Let G+ be an edge-extension of G = (V, E) and let P be a Hamil-
ton path in G+. P has the between property (in G+ with respect to G) if each new
vertex that was inserted between the two split parts of an edge {u, v} is between
u and v on the Hamilton path P .

From the considerations, we can conclude the following.

Theorem 6. Given two planar graphs G1 and G2 based on the same vertex set
of size n, a 2-bend simultaneous embedding of G1 and G2 can be found in O(n)
time such that all vertices and all bends can be placed on a grid whose bounding
box is of size nO(1).

Theorem 7. Given a planar graph G = (V, E) and a set of at least |V | distinct
points P on a grid, a 2-bend embedding of G can be found in linear time such that
each vertex is embedded on a point in P and such that the area of the embedding
of G is polynomial in the size of the grid.

3 Finding a Closable Hamilton Path

An extension H of G is first constructed. Although H will not be planar, a
closable Hamilton path in H will help to construct a closable Hamilton path
in a planar extension of G. Obtain G′ = (V, E) by triangulating G. Denote by
ϕ(G′) a combinatorial embedding of G′ and choose an arbitrary face of ϕ to be
the outer face. Let G′

D = (W, F ) be the dual graph of G′, but without a vertex
(and its edges) for the outer face. For each vertex w ∈ W representing a face
A of ϕ(G′), denote by Δ(w) the set of the three vertices on the boundary of
A. Define D = {(u, v) | u ∈ W ∧ v ∈ Δ (u)} and H = (V ∪ W, E ∪ F ∪ D). See
Fig. 1 for an example, but for the time being ignore the distinction between
vertices inside and outside the set Ai−1. Define an area as the union of some
faces of ϕ(G′) and their boundaries. For an area A, let VA ⊆ V ∪W be the set of
vertices in A, let V −

A ⊆ V ∩VA be the set of vertices on the border of A adjacent
to a vertex in V \ VA, and let E−

A ⊆ E be the set of edges on the border of
A. Choose ê = {u1, u2} ∈ E as an arbitrary edge incident to the outer face of
ϕ(G′). W.l.o.g. assume that u1 is visited just before u2 on a clockwise travel on
the border of the outer face. Let w ∈ W be the vertex of the dual graph that
corresponds to the inner face of ϕ(G′) incident to ê. Moreover, denote the area
of this inner face by A0 and let u3 be the third vertex incident to this inner face
(i.e. Δ(w) = {u1, u2, u3}). Thus VA0 = {u1, u2, u3, w}, V −

A0
⊆ {u1, u2, u3} and

E−
A0

= {{u1, u2} , {u2, u3} , {u1, u3}}.
Using P0 = ({u2, u3}, {u3, w}, {w, u1}, {u1, u2}) as a first simple path in H

and A0 as the processed area, the aim is to extend P0 and A0 stepwise such that
the following invariants are true after each step i for the processed area Ai and
the current path Pi:
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Invariant 1: Pi is a simple path containing all vertices in VAi .
Invariant 2: For all edges {u, v} ∈ E that are crossed by a dual edge eD on Pi,

the subpath of Pi between u and v contains eD.
Invariant 3: The vertices in Pi occur in the same order in Pi and on the border

of Ai, starting with u2.
Invariant 4: For all edges (u, v) ∈ E−

Ai
one of the following is true:

Property a: (u, v) is part of the current path Pi.
Property b: Let w ∈ W be the dual vertex corresponding to the face of G′

that is incident to (u, v) and inside the processed area Ai. Then either
(u, w) or (v, w) is part of the current path Pi.

These invariants are all true for P0 and A0. Initially (i = 0) and in each step i, cal-
culate the sets VAi , V

−
Ai

, E−
Ai

and for each vertex v the list V v
Ai

= {u ∈ V |{v, u}
∈ E ∧ |{v, u} ∩ VAi | = 1} , ordered in counter clockwise order around v in ϕ(G′).
This list contains all vertices adjacent to v that are relative to v on the oppo-
site side of Ai. Begin each list with the vertex that is met first on a clockwise
travel on the border of Ai starting with u2. If step i adds a vertex s ∈ V to the
processed area, all these sets and lists can be updated in time O(degree of s).

Step i is carried out as follows: Choose s ∈ V v
Ai−1

for some vertex v ∈ V −
Ai−1

on
the border of Ai−1. While only one vertex of V is to be added to the processed
area, test if the processed area together with the edges from s to vertices in
V s

Ai−1
encloses additional vertices t ∈ V \

(
VAi−1 ∪ {s}

)
. If such a vertex t exists,

put s on a stack and process t first.
The test of whether such a vertex t exists is easy: Let v0, . . . , vk be the vertices

of the ordered list V s
Ai−1

. Consider also Fig. 1. These vertices are all adjacent to
s and they appear in clockwise order on the border of Ai−1. Consider in ϕ(G′)
the vertices adjacent to s in counter clockwise order from v0 to vk. If these
vertices are all in V s

Ai−1
, no such vertex t exists. Otherwise choose t as the first

vertex found that does not belong to V s
Ai−1

. After processing t, continue this
check for s.

If no such vertex t exists (any more), the k+1 vertices in V s
Ai−1

together with
s define k faces Ws = {w1, . . . wk}. Number these faces such that wj is incident

aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaa
a a a a a a a a a a a a a a

Fig. 1. Extended graph H of a graph G′ = (V, E)



Simultaneous Embedding with Two Bends per Edge in Polynomial Area 261

to vj−1 and vj . In other words, each vertex w ∈ Ws is adjacent in H to s and
to two vertices in V −

Ai−1
. Extend the processed area Ai−1 by the faces in Ws.

For calculating the simple path Pi, two cases are considered. Figures 2 and 3
illustrate the cases 1 and 2, respectively.

Case 1. For some j ∈ {1, . . . , k}, the edge {vj−1, vj} lies on Pi−1. Set

Pi = (Pi−1 \ {vj−1, vj})
∪ {{vj , wj+1} , {wj+1, wj+2} , . . . , {wk−1, wk} {wk, s}}
∪ {{s, w1} , {w1, w2} , . . . , {wj−1, wj} , {wj , vj−1}} .

Case 2. Otherwise. Let ŵ ∈ W ∩ VAi−1 be the vertex inside the
processed area Ai−1 adjacent to v0 and v1. Since property a of Invariant
4 does not hold, we know that {v0, ŵ} ∈ Pi−1 or {v1, ŵ} ∈ Pi−1. In the first
case set v̂ = v0 and P̂ = {{v̂, s} , {ŵ, w1} , {w1, w2}}; in the other case set
v̂ = v1 and P̂ = {{ŵ, w1} , {w1, s} , {v̂, w2}}. Then

Pi = (Pi−1 \ {ŵ, v̂}) ∪ P̂

∪ {{w2, w3} , . . . , {wk−1, wk} , {wk, s}} .

By the construction of Pi and since Invariant 3 held before the i’th step, In-
variants 1 and 2 are true after the i’th step. Since the border of Ai results from
the border of Ai−1 by a replacement of v1, . . . , vk−1 by s and since the simple

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
a a a a a a a a a a a a a a a

Fig. 2. Face w2 is incident to an edge in Pi−1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
a a a a a a a a a a a a a a a

Fig. 3. No face in Ws is incident to an edge in Pi−1
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path Pi is an extension of Pi−1 such that s is inserted between some vertices in
{v0, . . . , vk}, Invariant 3 is preserved.

Observe that for each new edge e on the boarder of the processed area (i.e.
e ∈ E−

Ai
\ E−

Ai−1
), either Property a or b of Invariant 4 is true. Furthermore, in

Case 1, the edge {vj−1, vj} ∈ Pi−1 \ Pi is not in E−
Ai

any more after step i. In
Case 2, let v−1 ∈ Δ(ŵ) \ {v0, v1}. If {v−1, v0} ∈ E−

Ai−1
, then v0 is adjacent to

only three vertices in Ai−1 and thus {v−1, v0} ∈ Pi−1. Altogether, Invariant 4 is
also true after the i’th step.

After |V |−3 steps, A|V |−3 equals to the whole internal area of G′. Because of
Invariant 1, a closable Hamilton path P|V |−3 in H is found. It remains to show
how to use the knowledge of a closable Hamilton path in H to find a closable
Hamilton path P in a planar extension of G′ that is also a planar extension of
G. Let vσ1 , . . . , vσ|V | be the order of the vertices of V as they appear on P|V |−3.

The closable Hamilton path P in an edge-extension of G is constructed by
connecting the vertices vσi and vσi+1 (1 ≤ i < |V |). If {vσi , vσi+1} ∈ E, add
{vσi , vσi+1} to P . Otherwise draw an edge p from vσi to vσi+1 such that only
the faces are visited that are also visited by P|V |−3 and such that each edge in
E crossed by p is also crossed by P|V |−3. Each time p crosses an edge e ∈ E,
break e into two split edges and add a new vertex between them. Also replace
p by a path of auxiliary edges that traverses all these new vertices and thus
connects vσi and vσi+1 . Add all these newly inserted auxiliary edges to P . Since
P|V |−3 is a simple path and each edge in E is crossed by only one edge in F ,
the construction of P breaks each edge {u, v} in E into at most two split edges
{u, vnew} and {vnew, v}. Additionally, because of Invariant 2, the new vertex vnew
is between u and v on P . Therefore P has the between property.

Definition 8. Call an edge-extension G+ of G a good edge-extension if each
new vertex is only incident to two auxiliary and to two split edges.

Theorem 9. A good edge-extension G+ of a planar graph G and a closable
Hamilton path P in G+ can be found in linear time such that each edge in G
corresponds to a path of length two in G+ and P has the between property.

As discussed in Section 2, this proves Theorems 6 and 7.

4 Simultaneous Embedding with Fixed Edges

Let G1 = (V, E1) and G2 = (V, E2) be two planar graphs and let F ⊂ E1 ∪ E2.
The goal is to find a simultaneous embedding of G1 and G2 such that the edges
in F can be drawn in both embeddings as straight lines; in particular, edges in
F ∩E1 ∩E2 are drawn identically in the two embeddings. However, F must have
some special properties. First, let F be a set such that no vertex is incident to
more than one fixed edge. Later, this restriction is relaxed. Iterate the following
once for G = G1 and once for G = G2.
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Find a Hamilton cycle C in a good edge-extension of G in which no fixed
edge is split, i.e. no fixed edge is crossed by C. Using a more difficult case
distinction we can use the algorithm of Section 3 to find a Hamilton cycle in
such an edge-extension. However, since we can later handle paths of fixed edges
that are crossed several times by the Hamilton cycle, in particular, since we
can handle a fixed edge crossed by C, details are omitted. Let ϕ be the used
combinatorial embedding of the algorithm in Section 3. The edges of F are added
now successively to C.

Consider the situation shown in Fig. 4. Let {û, v̂} ∈ F be an edge that is
not part of the Hamilton cycle. Since a Hamilton cycle contains all vertices, two
other edges incident to û and v̂, respectively, are part of the Hamilton cycle.
For each vertex v and an incident edge e, denote by Ee

v the sequence of edges
incident to v in clockwise order around v in ϕ starting with e. We add the edge
{û, v̂} to C in two steps.

Fig. 4. A fixed edge f (black) and a part of H (bold)

Let {u1, û} and {u2, û} be the first and second edge in E
{û,v̂}
û , respectively,

that is part of the Hamilton cycle. Replace successively each edge {ui, û} in the
list E

{u1,û}
û between {u1, û} and {u2, û}—but not equal to one of these—by a

new vertex unew
i and the split edges {ui, u

new
i } and {unew

i , û}. Let unew
1 , . . . , unew

k

be the new vertices of this step. Replace the part u1, û, u2 of the Hamilton cycle
by u1, unew

1 , . . . , unew
k , u2 by the use of new auxiliary edges. Let {v1, v̂} and

{v2, v̂} be the first and second edge in E
(û,v̂)
v̂ , respectively, that is part of the

Hamilton cycle. Replace successively each edge {vi, v̂} in the list E
(û,v̂)
v̂ between

{û, v̂} and {v1, v̂}—but not equal to one of these—by a new vertex vnew
i and the

split edges {vi, v
new
i } and {vnew

i , v̂}. Let vnew
1 , . . . , vnew

l be the new vertices of this
step. Replace the part v1, v̂, v2 of the Hamilton cycle by v1, vnew

1 , . . . , vnew
l , û, v̂,

v2 by the use of new auxiliary edges.
Now, the edge {û, v̂} is part of C. Observe that this edge is never removed by

the subsequent steps. Moreover, no edge in F and no auxiliary edge is ever split.
Calling the parts of a multiple split edge further on split edges, we can conclude
the following.

Corollary 10. Given a planar graph G and a set of fixed edges F such that
no vertex is incident to ≥ 2 fixed edges, a good edge-extension G+ of G and a
Hamilton cycle C in G+ can be found such that F ⊂ C.
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Property 11. We can always assume that both auxiliary edges of a new vertex
vnew are part of the Hamilton cycle C. Otherwise remove vnew, its auxiliary edges
and merge its split edges. Possibly reroute C.

We can use the ideas of Section 2 to obtain a simultaneous embedding and to
draw all edges in F as straight lines. However, we do not know how many bends
are necessary for an edge outside the Hamilton cycle. The following lemma helps
us to limit the number of bends per edge. Let V1 = V and let V2 be the set
of new vertices of G+. Use the following lemma iteratively for each path Q of
length > 3 in G+ corresponding to an edge in G. Observe that Q and C have no
edges in common and all edges of Q are split edges. Since the edge-extension G+

is good and because of Property 11, the application of the lemma below needs
no edge splitting and the obtained edge-extension remains good.

Lemma 12. Let H = (V1 ∪ V2, E) be a planar graph and let C be a cycle in H
that visits all vertices of V1. Additionally, let Q = (v1, v2, . . . , vk) be a path in H
whose endpoints belong to V1 and whose remaining vertices all belong to V2. H
can be modified by adding edges and splitting some edges e neither part of C nor
part of Q incident to an inner vertex at most two times such that a cycle Ĉ can
be found that visits all vertices of V1 and Ĉ crosses Q at most two times.

Due to space limitations, a proof of Lemma 12 is omitted. Figure 5 sketches one
iteration of the proof. Observe that a path Q that is crossed two times by C can
be reduced to a path of length 3 (Property 11).

Corollary 13. Let G be a planar graph, let F be a set of edges and let G+ be
a good edge-extension of G with a Hamilton cycle C ⊇ F . Another good edge-
extension G+

new of G with a Hamilton cycle Cnew can be constructed such that
Cnew also contains all edges in F and each edge in G corresponds to a path of
length ≤ 3 in G+

new.

In the following, we consider a generalized set of fixed edges. Moreover, the
following algorithm works directly with the algorithm of Section 3.

Definition 14 (star-free). For a given graph G = (V, E), a set of edges F ⊆ E
is star-free if F does not contain three edges with a common endpoint.

Definition 15 (cycle-free). For a given graph G = (V, E), a set of edges F ⊆
E is cycle-free if each cycle spanned by F is a Hamilton cycle.

Let G1 = (V, E1) and G2 = (V, E2) be two planar graphs and let F be a set
of edges that is star- and cycle-free with respect to G1 and G2. These graphs
are handled now one after another. The set F can contain several paths of fixed
edges. For the graph under consideration, let Q1, . . . , Qr denote the paths in
F that can not be extended. Again, using the ideas of Section 2, we need a
Hamilton cycle C in an edge-extension G+ that contains all fixed edges.

This can be done iteratively by adding complete paths Qi for i = 1, . . . , r to
the Hamilton cycle. Construct an arbitrary Hamilton cycle C0 with the algorithm
of Section 3 and let Ci be the Hamilton cycle after step i that contains Q1, . . . , Qi.
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It remains to show how to add one path Qi to Ci−1. First, use Lemma 12 to
reduce the crossings of Qi and Ci−1.

As shown in Fig. 6 by the dashed edges, reroute the ≤ 2 crossings of Qi and
Ci−1 around one of the endpoints of Qi. At the same time, handle the complete
path Qi of fixed edges similarly to one fixed edge: Add Qi to Ci−1 as shown in
Fig. 6 by the dotted edges.

Each edge incident to a vertex on Qi is split ≤ 2 times by Lemma 12, ≤ 2
times by the rerouting and ≤ 1 time by the step that adds Qi to Ci−1. Alto-
gether, such an edge is split ≤ 5 times. Since an edge in G can be incident only
to two inner vertices of paths Q1, . . . , Qr, an edge can be split ≤ 2 · 5 = 10
times after iterating over all Q1, . . . , Qr. Again, use Lemma 12 to reduce the
crossings of each edge and Cr to two without removing an edge of F from Cr.
Use the algorithm of Section 2 to find a 5-bend simultaneous embedding of
G1 and G2. With a similar argument as for Lemma 3.2 in [7], the number of
bends per edge can be reduced to 3 at the expense of exponential area for the
embedding.

Fig. 5. Three crossings of Q and C can be reduced to one crossing

Fig. 6. A path of fixed edges Q (black) and some edges of a Hamilton path (dashed
and dotted)

Corollary 16. A 5-bend simultaneous embedding of two planar graphs with a
star- and cycle-free set of fixed edges can be found in linear time. If the area may
be arbitrary, three bends suffice.

5 A Lower Bound and Other Restrictions

The graph shown in Fig. 7 clearly has no Hamilton path, since the white vertices
outnumber the black ones by two, but form an independent set.
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Lemma 17. No 1-bend embedding for the vertices-to-points problem is possible
in general.

Proof. Let G be a planar, triangulated graph without a Hamilton path and let
P be a set of vertices on a line. Since G has no Hamilton path, there must
be two vertices embedded to consecutive points being not adjacent. Since G
is triangulated, there is no face incident to these two vertices. Therefore, an
edge {u, v} with two bends has to exist that crosses the line between the two
consecutive points. See Fig. 8(a).

Fig. 7. A triangulated graph without a Hamilton path

(a) Vertices on a line (b) No sim. embedding

Fig. 8. Two counterexamples

The algorithm in the last section can only handle a star- and cycle-free set
of fixed edges. The question arises whether this restriction is necessary or not.
Consider first the case where two triangulated planar graphs and a not cycle-free
set of fixed edges are given. Denote the cycle of fixed edges by C ⊆ F . If there
are two vertices not part of C that are on the same side of the cycle in one of the
two graphs and on different sides in the other graph, no simultaneous embedding
is possible. Second, consider two triangulated planar graphs and two vertices u0
and v0 that are incident to at least three fixed edges {u0, u1} , {u0, u2} , {u0, u3}
and {v0, v1} , {v0, v2} , {u0, v3}, respectively. See Fig. 8(b). If in one graph the
pairs of vertices {u1, v1}, {u2, v2} and {u3, v3}, in the other graph the pairs of
vertices {u1, v1}, {u2, v3} and {u3, v2} are connected by vertex-disjoint paths,
respectively, again no simultaneous embedding is possible.
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