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Preface

This volume contains the papers presented at SWAT 2006, the 10th Scandinavian
Workshop on Algorithm Theory. The workshop, which is really a full-fledged
international conference, is intended as a forum for researchers in the area of
design and analysis of algorithms and data structures. Since 1988 SWAT has
been held biennially in the five Nordic countries; it has a loose association with
WADS (Workshop on Algorithms and Data Structures) that is held in odd-
numbered years in North America. This 10th SWAT was held in the neighboring
Baltic region. More precisely, it was held on July 6-8, 2006, at the Institute of
Mathematics and Computer Science in the University of Latvia in Riga.

The call for papers invited contributions in all areas of algorithms and data
structures, including approximation algorithms, computational biology, compu-
tational geometry, distributed algorithms, external-memory algorithms, graph
algorithms, online algorithms, optimization algorithms, parallel algorithms, ran-
domized algorithms, string algorithms and algorithmic game theory. A total of
154 papers were submitted, out of which the Program Committee selected 36
for presentation at the workshop. In addition, invited lectures were given by
Kazuo Iwama (Kyoto University), Raimund Seidel (Universität des Saarlandes)
and Robert E. Tarjan (Princeton University).

We would like to thank all the people who contributed to making SWAT
2006 a success. In particular, we thank the Program Committee and all of our
many colleagues who helped the committee evaluate the submissions. We also
thank Gerth S. Brodal for his invaluable help with the submission process and
the Program Committee software.

May 2006 Lars Arge and Rusins Freivalds
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Top-Down Analysis of Path Compression:
Deriving the Inverse-Ackermann Bound

Naturally (and Easily)

Raimund Seidel

Universität des Saarlandes, Fachrichtung Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany
rseidel@cs.uni-sb.de

Path compression is used in a number of algorithms, most notably in various very
natural solutions to the so-called Union-Find problem. This problem is basic and
important enough to be covered in most introductory courses and textbooks
on algorithms and data structures. However the performance analysis of the
solutions is more often than not at best incomplete if not omitted altogether.
Already the definition of the function α, the interesting constituent of the time
bound, as a quasi inverse of the Ackermann function is complicated and not easy
to understand.

All the previous analyses of path compression proceed in a bottom-up fashion,
employing rather intricate charging schemes, sometimes cloaked in the language
of potential functions for amortized analysis, and they need to introduce the
Ackermann function beforehand in order to be properly formulated.

I will present a new [1], rather easy way of analyzing the running times of
union-find algorithms. It is based on a relatively simple top-down approach and
naturally leads by itself to this famous ”Inverse Ackermann” function without
ever having to talk about the Ackermann function itself.

I will discuss how this top-down approach can also be made to work for
related procedures such as path compaction. Finally I will consider the case
of moderately sized instances and will derive some explicit, rather small upper
bounds on the number of pointer changes.

Reference

1. Seidel, R., Sharir, M.: Top-Down Analysis of Path Compression. SIAM J. Comput.
34 (2005) 515–525.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Results and Problems on Self-adjusting Search
Trees and Related Data Structures

Robert E. Tarjan

Department of Computer Science, Princeton University, Princeton, NJ
and

Hewlett Packard, Palo Alto, CA
ret@cs.princeton.edu

The splay tree is a form of self-adjusting search tree invented almost 25 years
ago. Splay trees are remarkably efficient in both theory and practice, but many
questions concerning splay trees and related data structures remain open. Fore-
most among these is the dynamic optimality conjecture, which states that the
amortized efficiency of splay trees is optimum to within a constant factor among
all kinds of binary search trees. That is, are splay trees constant-competitive?
A broader question is whether there is any form of binary search tree that is
constant-competitive. Recently, three different groups of researchers have de-
vised kinds of search trees that are loglog-competitive, improving on the log-
competitiveness of balanced trees. At least one of these data structures, the
multisplay tree, has many if not all of the nice asymptotic properties of splay
trees (even though it is more complicated than splay trees). We review this recent
work and look at remaining open problems, of which there are many, including
resolving the question of whether splay trees themselves are loglog-competitive.

We also look at a more complicated class of data structures that maintain
information about a dynamic collection of disjoint trees. We review various ver-
sions of the dynamic trees problem, describe efficient solutions (both worst-case
and amortized), and list open problems.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Classic and Quantum Network Coding�

Kazuo Iwama

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
iwama@kuis.kyoto-u.ac.jp

Ahlswede, Cai, Li, and Yeung (IEEE Trans. Inform. Theory, 2000) showed that
the fundamental law for network flow, the max-flow min-cut theorem, no longer
applies for “digital information flow.” The simple, nice example they gave is
called the Butterfly network illustrated in Fig. 1. The capacity of each directed
link is all one and there are two source-sink pairs s1 to t1 and s2 to t2. Notice that
both paths have to use the single link from s0 to t0 and hence the total amount
of (conventional commodity) flow in both paths is bounded by one, say, 1/2 for
each. In the case of digital information flow, however, the protocol shown in Fig. 2
allows us to transmit two bits, x and y, simultaneously. Thus, we can effectively
achieve larger channel capacity than can be achieved by simple routing. This is
known as network coding since this seminal paper and has been quite popular
as a mutual interest of theoretical computer science and information theory.

The natural question is whether such a capacity enhancement is also possible
for quantum information, more specifically, whether we can transmit two qubits
from s1 to t1 and s2 to t2 simultaneously, as with classical network coding.
Note that there are (at least) two tricks in the classical case. One is the EX-
OR (Exclusive-OR) operation at node s0; one can see that the bit y is encoded
by using x as a key which is sent directly from s1 to t2, and vise versa. The
other is the exact copy of one-bit information at node t0. Our answer to the
question obviously depends on if we can find quantum counterparts for these
key operations.

Neither seems easy: For the copy operation, there is the famous no-cloning
theorem. Also, there is no obvious way of encoding a quantum state by a quantum
state at s0. Consider, for example, a simple extension of the classical operation at
node s0, i.e., a controlled unitary transform U as illustrated in Fig. 3. (Note that
classical EX-OR is realized by setting U = X “bit-flip.”) Then, for any U , there
is a quantum state |φ〉 (actually an eigenvector of U) such that |φ〉 and U |φ〉 are
identical (up to a global phase). Namely, if |ψ2〉 = |φ〉, then the quantum state
at the output of U is exactly the same for |ψ1〉 = |0〉 and |ψ1〉 = |1〉. This means
their difference is completely lost at that position and hence is completely lost
at t1 also.

Nevertheless, we show that quantum network coding is possible if approxima-
tion is allowed. Our results for the Butterfly network include: (i) We can send
any quantum state |ψ1〉 from s1 to t1 and |ψ2〉 from s2 to t2 simultaneously with
a fidelity strictly greater than 1/2. (ii) If one of |ψ1〉 and |ψ2〉 is classical, then the

� Supported in part by Scientific Research Grant, Ministry of Japan, 1609211 and
16300003.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 3–4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 K. Iwama

fidelity can be improved to 2/3. (iii) Similar improvement is also possible if |ψ1〉
and |ψ2〉 are restricted to only a finite number of (previously known) states. (iv)
Several impossibility results including the general upper bound of the fidelity
are also given.

This is a joint work with Masahito Hayashi, Harumichi Nishimura, Rudy
Raymond, and Shigeru Yamashita.
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Multiplexing Packets with Arbitrary Deadlines
in Bounded Buffers

Yossi Azar1,� and Nir Levy

School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
azar@tau.ac.il, levynir@tau.ac.il

Abstract. We study the online problem of multiplexing packets with ar-
bitrary deadlines in bounded multi-buffer switch. In this model, a switch
consists of m input buffers each with bounded capacity B and one out-
put port. Each arriving packet is associated with a value and a deadline
that specifies the time limit till the packet can be transmitted. At each
time step the switch can select any non-empty buffer and transmit one
packet from that buffer. In the preemptive model, stored packets may be
preempted from their buffers due to lack of buffer space or discarded due
to the violation of the deadline constraints. If preemption is not allowed,
every packet accepted and stored in the buffer must be transmitted be-
fore its deadline has expired. The goal is to maximize the benefit of the
packets transmitted by their deadlines. To date, most models for packets
with deadlines assumed a single buffer. To the best of our knowledge
this is the first time a bounded multi-buffer switch is used with arbitrary
deadline constraints.

Our main result is a 9.82-competitive deterministic algorithm for
packets with arbitrary values and deadlines. Note that the greedy al-
gorithm is not competitive. For the non-preemptive model we present a
2-competitive deterministic algorithm for the unit value packets. For ar-
bitrary values we present a randomized algorithm whose competitiveness
is logarithmic in the ratio between the largest and the smallest value of
the packets in the sequence.

1 Introduction

In recent years, the growth of the IP-Based networks, especially the Internet,
and the growing number of services and applications that make use of those
networks, such as VoD and VoIP applications, have led to an explosively growth
in the number of end-users and appliances which make use of those services.
As a result, various institutions such as offices, schools and factories, cellular
providers and HotSpots (formatting private wireless cells), are providing access
points to several end-users at the same time. In general, those service providers
are equipped with switches in order to manage the incoming traffic, arriving
from different users and applications (sessions). Due to bandwidth limitation
� Research supported in part by the Israeli Ministry of Industry and Trade and by the

Israel Science Foundation.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 5–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



6 Y. Azar and N. Levy

of the outgoing link and due to the tendency of the incoming traffic to arrive
in bursts, data packets from various sessions are repeatedly multiplexed in the
switch with packets from other sessions that share the same outgoing link. This
process of multiplexing packets requires a temporary storage of the arriving
packets until the outgoing link is free and as a result, might cause delay in the
transmission of the packets. For many applications this delay reveals several
problems such as fluctuation in the arrival time of the packets at the target
session which may cause for example high-definition media to jitter and in severe
cases, when the incoming traffic is heavy, packet loss becomes unavoidable. These
problems become an even bigger issue when the IP-Based networks are equipped
with Quality of Service (QoS) capabilities. If this is the case and a benefit or
deadline attached to each of the packets in the incoming traffic or if a guaranteed
Quality of Service is given to the end-users, then, the management of the switch
needs to decide effectively which packet to store and which to discard. Hence,
during the past few years extensive research has been made in the area of packet
multiplexing (also called multi-buffer switch).

Within this paper, we study the problems of packet multiplexing assuming the
basic model of bounded multi-buffer switch. To date, most models for packets
with deadlines assumed a single buffer. To the best of our knowledge this is
the first time a bounded multi-buffer switch is used with arbitrary deadline
constraints. We found this model worthwhile to study for its simplicity and for
the reason that the simple greedy algorithm that achieves a good competitive
ratio in similar models fails to be competitive in our model.

Our results: Our main result applies to the preemptive model of the multi-
buffer switch. In this model we present a 9.82-competitive deterministic algo-
rithm for packets with values and arbitrary deadlines. Next, we consider the
non-preemptive model and present a 2-competitive deterministic algorithm for
the unit value packets with arbitrary deadlines. For arbitrary values we present
a O(logF )-competitive randomized algorithm where F is the ratio between the
largest and the smallest value of the packets in the sequence. This result is tight
up to a constant factor. We also present a lower bound of F for every determin-
istic algorithm in this model.

Since there are no results for multi-buffer switches with arbitrary deadlines
we view the results of multi-buffer switches without deadlines and the results for
a single buffer switch with deadlines separately.

Related results for throughput maximization for multi-buffer switches:
In the preemptive model for packets with values, a 2-competitive algorithm for
the multi-buffer model and a 4-competitive algorithm for the multi-queue model,
which consists of FIFO queues, are shown in [4]. For the multi-queue model the
ratio was improved to 3 by [5]. For the general non-preemptive model, using the
result of Andelman et al. [2], a (2e�lnF �)-competitive algorithm is given by [4].
For the multi-buffer switch with unit value packets, the competitive ratio can
get below 2. Albers and Schmidt [1] show a 17

9 ≈ 1.89-competitive deterministic
algorithm, for B ≥ 2. A 1.58-competitive for switches with large buffers is shown
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in [3]. For randomized online algorithms a 1.58-competitive algorithm is shown
in [4] and a 1.5-competitive is shown in [12] . A lower bound of 1.58 for the
competitive ratio of any deterministic online algorithm and a lower bound of
1.4659 on the performance of every randomized online algorithm, for any B and
large enough m is given by Albers and Schmidt [1].

Related results for throughput maximization for single buffer switches
with deadlines: When deadlines become an integral part of the model, all
models presented so far assume a single buffer. Note that when the buffers are
unbounded there is no difference between the single and the multi-buffer models.
For packets with general deadlines, Kesselman et al. [10] and Hajek [9] showed
that a simple greedy algorithm is 2-competitive. Later, Chrobak et al. [8] pre-
sented an algorithm with competitive ratio of 64

63 ≈ 1.939. For the general case a
lower bound of φ is known [7, 2, 9] where φ ≈ 1.618 is the Golden Ratio. Bartal et
al. [6] presented a 1.58-competitive randomized algorithm. For the special case
of δ-bounded delay i.e., the difference between the deadline and the arrival time
is at most δ, Bartal et al. [6] showed a 2 − 2/δ + o(1/δ)-competitive ratio algo-
rithm. Note that for 3-bounded instances this ratio is φ and it matches the lower
bound. For the agreeable-deadlines model i.e., earlier arriving packets have ear-
lier deadlines, Chrobak et al. [8] showed a competitive ratio algorithm of 1.838.
Recently, this ratio was improved by Fei et al. [11] presenting a competitive ratio
of φ.

1.1 Problem Definition and Notations

In this model, we are given a switch consists of m input buffers and one output
port. Each buffer has a limited capacity and can store up to B packets at a
time. Time is divided into discrete time steps. At each time step packets may
arrive to some of the buffers. All packets are of equal size. Each arriving packet
is associated with a value and a deadline. A packet can be stored in the buffer if
an empty space is available and arriving packets that are not being stored must
be discarded. At each time step the switch can select any non-empty buffer and
transmit one packet from that buffer. In the preemptive model, stored packets
may be preempted from their buffers due to lack of buffer space or discarded due
to the violation of the deadline constraints. If preemption is not allowed then,
every packet accepted and stored in the buffer must be transmitted before its
deadline has expired. The goal of this model is to maximize the benefit of the
packets transmitted by their deadlines.

We view the sequence σ as arrival and transmission events. For each packet p
we denote by d(p) the deadline of p and by v(p) the value of p. We let v(∅) = 0.
For any online algorithm A (respectively, the optimum algorithm OPT ), we de-
note by Bt (respectively, B∗

t ), the set of all packets residing in A (respectively,
OPT ) buffers at time step t. We denote by Bi,t (respectively, B∗

i,t) the packets
residing in buffer i of A (respectively, OPT ) at time step t. Let TRt (respectivly
TR∗

t ) denote the set of packets transmitted by A (respectivly, OPT ) until and
including time step t. When it is clear from the context we may abuse the
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notation and omit the subscript t. In addition, we denote by A(σ) (respec-
tively, OPT (σ)) the total gain achieved by algorithm A (respectively, OPT )
on the incoming sequence σ. We say that a deterministic online algorithm A is
c-competitive if for every incoming sequence of packets σ we have: OPT (σ) ≤
c · A(σ) (for randomized online algorithms we change A(σ) by E[A(σ)]).

2 Preemptive Algorithm for Packets with Values and
Deadlines

In this section, we present a deterministic online algorithm for the preemptive
multi-buffer switch for packets with values and arbitrary deadlines. The outline
of the algorithm is as follows. During the arrival phase each arriving packet p
that is accepted to one of the buffers is assigned to a tentative time slot t so
that t will be the last time step at which p will reside in the buffers. That is,
after time step t if p was not transmitted or preempted it will be discarded from
the buffers. In order to accept a packet we need to find an available place in the
buffer and a free time slot. If this requires preemption then the total value of
all preempted packets should be smaller by a constant factor α > 1 than the
accepted packet. In the transmission phase the packet in the current tentative
time slot (if exists) or the current heaviest packet in the buffers, is transmitted.
The decision is made by comparing their ratio to a constant factor β > 1.

To describe the algorithm we begin by introducing some additional notations.
A time slot t is called empty if it is not assigned to any of the packets in Bt.
For each packet p in ON buffers let S(p) denote the tentative time slot assigned
to p. We refer to S(∅) as the earliest empty tentative time slot. We denote by
S−1(t) the inverse function of S that maps for each tentative time slot t the
packet that is assigned to. Similary, we denote by S∗(p) the time slot to which
p is assigned for transmission by OPT . Let SCd

t = {p : p ∈ Bt and S(p) ≤ d}
be the set of packets residing in ON buffers at time step t and are scheduled
for transmission before or at time step d. Clearly |SC

d(p)
t | ≤ d(p). A detailed

description of the algorithm appears in figure 1.

Theorem 1. For an optimal choice of the parameters α and β algorithm ON
is 9.82-competitive.

In order to prove the theorem we present a load assignment LM that maintains,
at each time step t, an assignment of the value v(p) of every packet p ∈ B∗

t ∪TR∗
t

to the packets in Bt ∪ TRt such that each packet p ∈ Bt is assigned a load w(p)
of at most c′ times v(p) and each packet p ∈ TRt is assigned a load w(p) of at
most c times v(p) where w(p) is the total load assigned to packet p ∈ Bt ∪ TRt.
Moreover, in this assignment, no packet in TR∗

t assign its value to a packet in
Bt. This implies that every packet in TR∗

t assign its value only to packets in
TRt. This implies that∑

p∈TR∗

v(p) ≤
∑

p∈TR

w(p) ≤
∑

p∈TR

c · v(p)

which then yields a c-competitive algorithm.
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Algorithm [ON ]

Arrival:(a new packet p arrives to buffer i at time step t)

Let pmin be the packet with minimum value in Bi,t if Bi,t is full or ∅ if Bi,t is not
full.
Let psc be the packet with minimum value in SC

d(p)
t if |SC

d(p)
t | = d(p) or ∅ if

|SC
d(p)
t | < d(p).

– If S(pmin) ≤ d(p) and v(pmin) ≤ v(p) discard pmin, insert p and assign S(pmin)
to p. Else,

– If α · (v(pmin)+v(psc)) ≤ v(p) discard pmin and psc, insert p and assign S(psc)
to p. Else, discard p.

Transmission: (at time step t)

Let pe denote the packet assigned to the tentative time slot t, or ∅ if no such packet
exists.
Let ph denote a packet with maximum value in Bt.

– If v(pe) ≥ β · v(ph) transmit pe. Else, transmit ph and discard pe from its
buffer.

Fig. 1. Algorithm ON

The proof is partitioned into several steps. In the first step we introduce the
load assignment LM prove its validity and show that the complete value of every
packet p ∈ TR∗

t is assigned to the packets in TRt. In the second step we bound
the load assigned to each of the packets p ∈ Bt during any time step t. In the
third step we bound the load assigned to each transmitted packet p ∈ TRt by
showing that for every transmitted packet p ∈ TR, w(p) ≤ c · v(p). That will
complete the proof.

Step 1: The load assignment [LM ]
The load assignment follows the arrival and transmission phases of Algorithm
ON . We partition the arrival phase into two steps. In the first step the value
of a newly accepted packet p by OPT is divided between at most two packets
in Bt. In the second step the load, assigned to packets that are preempted due
to the acceptance of a new packet p by ON , is re-assigned to the packets in Bt

after the acceptance of p. In the transmission phase, we re-assign the value of
the packet transmitted by OPT which is assigned to packets in ON buffers to
the packet transmitted by ON .

We present the assignment of the value of the packets accepted by OPT
to the packets accepted and transmitted by ON as a directed bipartite graph
G = (V ∗ ∪ V, E) from V ∗ = B∗

t ∪ TR∗
t to V = Bt ∪ TRt. Packets arrive

on-line and each packet accepted by OPT or ON (or both) is added to Bt

or B∗
t respectivly. For every packet accepted by OPT the load assignment
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creates at most two emanating edges such that each emanating edge e is as-
signed a positive value v(e). Throughout the algorithm the load assignment is
described by the edges of the bipartite graph G. Note that every packet causes
the creation of up to two vertices in G, pv∗ ∈ V ∗ and pv ∈ V . When the context
is clear we slightly abuse the notation and refer to the vertex pv∗

as the packet
p and to the vertex pv as the packet p.

We say that a set of edges F implies a matching in a bipartite graph G =
(V ∗ ∪ V, F ) if the in-degree of every vertex v ∈ V and the out-degree of every
vertex v ∈ V ∗ are at most one.We say that a packet p ∈ Bt is unmatched in a
matching X if its in-degree is 0 with respect to X .

The load assignment consists of three types of edges M,Q and L and every
edge is immediately assigned a type at its creation time. The three types of edges
M,Q and L form the three subgraphs GM = (V ∗ ∪ V,M), GQ = (V ∗ ∪ V,Q)
and GL = (V ∗ ∪ V,L) respectivly, such that G = GM ∪ GQ ∪ GL . Throughout
the algorithm the load assignment maintains a matching in the subgraphs GM

and GQ such that every edge (p, p′) ∈ M induced by B∗
t ∪Bt is always between

packets of the same buffer i.e., p ∈ B∗
i,t and p′ ∈ Bi,t for some buffer i. In

addition, every edge (p, p′) ∈ Q induced by B∗
t ∪ Bt is always between packets

such that S∗(p) = S(p′). For the subgraph GL the load assignment maintains
an out-degree of at most two (the in-degree can be arbitrary).

For simplicity of notation we refer to (∅, p), (p′, ∅) and (∅, ∅) as ∅. We denote
by

(p, p′) ∈ X → (p, p′′) ∈ Y

the transition of the edge emanating from p and entering p′ to entering the
packet p′′ and the transition in the edge-type from type X to type Y . We denote
by

∀p (p, p′) ∈ X → (p, p′′) ∈ Y

the set transition

∀p s.t. (p, p′) ∈ X set (p, p′) ∈ X → (p, p′′) ∈ Y.

We denote by wm(p′), wq(p′) and wl(p′) the load assigned to a packet p′ as
the total value of the edges entering to p′ of type M,Q and L respectively. Note
that w(p′) = wm(p′)+wq(p′)+wl(p′). The load assignment is described in details
in figure 2.

Note that the packets pmin and psc as defined in algorithm ON and the
packets pb and ps as defined in the load assignment are functions of the arriving
packets. We omit the argument of the arriving packet when it is clear from the
context. We start with the following observations.

Observation 1. Let em and eq denote the edges emanating from the newly
accepted packet p at time step t and were set an edge type M and Q respectively.
Then, for every time step t′, t′ ≥ t if em and eq are entering to packets in Bt′

we have that:
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Load Assignment:LM

1. Let packet p arrive at time step t to buffer i.
(a) If p was accepted by OPT :

Let pb ∈ Bi,t be any unmatched packet in M if Bi,t is full or ∅ if Bi,t is
not full.
Let ps = S−1(S∗(p)) be the packet assigned to the same time slot as p.
– If p was accepted by ON :Add M ← M∪(pv∗

, pv) and assign
v(pv∗

, pv) = v(p).
– If p was rejected by ON :

- Add M ← M∪(p, pb) and assign v(p, pb) = v(p) · v(pb)
v(pb)+v(ps) .

- Add Q ← Q∪(p, ps) and assign v(p, ps) = v(p) · v(ps)
v(pb)+v(ps) .

(b) If p was accepted by ON :
Let pmin and psc be the packets as defined in the arrival phase.

i. Let p′ ∈ Bi,t ∪ {p} be any unmatched packet in M. Set ∀q (q, pmin) ∈
M →(q, p′) ∈ M.

ii. If S(pmin) ≤ d(p) set ∀q (q, pmin) ∈ Q →(q, p) ∈ Q.
iii. If S(pmin) > d(p) set ∀q (q, pmin) ∈ Q →(q, p) ∈ L.
iv. Set ∀q (q, pmin) ∈ L →(q, p) ∈ L
v. Set ∀q (q, psc) ∈ {M ∪ L} →(q, p) ∈ L
vi. Set (q, psc) ∈ Q →(q, p) ∈ Q

2. Let p denote the packet transmitted by OPT at time step t. Let ER ⊆ {M∪L}
denote a subset of edges (p, p′) such that S(p′) > t.
– If ON transmitted pe set ER →(p, pe) ∈ L.
– If ON transmitted ph set ∀q (q, pe) ∈ {M ∪ Q ∪ L} →(q, ph) ∈ L and

ER →(p, ph) ∈ L.

Fig. 2. Load Assignment :LM

1. em is never set a type Q.
2. eq is never set a type M.

Observation 2. The set of edges of type M or Q implies a matching on the
bipartite subgraphs GM and GQ respectively.

Observation 3. Let p′ be any packet preempted from ON buffers due to the
acceptance of a new packet p. Then the following properties holds:

1. ∀q the edge (q, p′) ∈ Q and the edges (q, p′) ∈ L are always re-assigned to
the preempting packet p.

2. The edges entering to p′ are always re-assigned to a packet p′′ such that
v(p′′) ≥ v(p′).

In the next lemma we show that the load assignment is feasible. Specifically, the
only place where it is not trivial is in step 1(a) where we assume an unmatched
packet in M if the buffer Bi is not full.
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Lemma 1. The definition of the load assignment LM is feasible. That is, when-
ever a packet is accepted by OPT to buffer i there is at least one packet p′ ∈ Bi

that is unmatched in M or Bi is not full.

Lemma 2. For every time step t, every edge emanating from a packet p ∈ TR∗
t

is entering to a packet in TRt.

Step 2: Bounding the load on the packets in Bt

In this step we bound the load assigned to the packet in ON buffers as the
following lemma states.

Lemma 3. For every time t and every packet p ∈ Bt the load w(p), satisfies
w(p) ≤ (2α + α

α−1 )v(p).

Proof. We first show that the value assigned to an edge is bounded by α times
the value of the packet it was first assigned to. Next, we bound separately each
of the loads wq(p′), wm(p′), and wl(p′) assigned to a packet p′ ∈ Bt as a factor
of v(p′) and conclude the bound in the lemma.

Lemma 4. Let p denote a packet accepted by OPT at time step t. Let p′ ∈ Bt

denote any packet assigned an edge emanating from p. Then the value assigned
to the edge (p, p′) at the arrival of p satisfies v(p, p′) ≤ αv(p′).

Lemma 5. For every time step t and every packet p ∈ Bt, wm(p) ≤ α ·v(p) and
wq(p) ≤ α · v(p).

Lemma 6. During any time step t and every packet p ∈ Bt, wl(p) ≤ α
α−1 ·v(p).

Proof. Let p′ be any packet in Bt. According to the load assignment the trans-
mission or the acceptance of packets by OPT cannot change the load assigned
to wl(p′). In addition, no load is assigned to wl(p′) after the arrival of p′. There-
fore, we prove the lemma by induction on the changes which occur to the load
assigned to wl(p′) only at the arrival time of p′.

First, observe that if there is no packet preempted due to the acceptance of
p′ then, no edges are re-assigned to p. For the initial state, the lemma clearly
holds. Next, let p′ denote a new packet accepted by ON to buffer i at time step
t and consider the edges of type L assigned to p′ on its arrival. We will consider
all possible cases in which a packet might be preempted from Bt, due to the
acceptance of p′, and change the load wl(p′). We consider the following cases:

1. pmin is preempted and S(pmin) ≤ d(p′):

If that is the case, then only pmin is preempted due to the acceptance of p′.
Therefore, according to the load assignment wl(p′) is assigned only the load
from the edges assigned to wl(pmin). Therefore,

wl(p′) = wl(pmin) ≤ α

α− 1
· v(pmin) ≤ α

α− 1
· v(p′)

Where the first inequality is due to the induction hypothesis and the second
inequality is due to the first condition in the arrival phase.
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2. pmin is preempted and S(pmin) > d(p′), and/or psc is preempted:

If that is the case, pmin and/or psc assign a load to wl(p′). Therefore,

wl(p′) ≤ wb(psc) + wl(psc) + ws(pmin) + wl(pmin)

≤ wb(psc) +
α

α− 1
· v(psc) + ws(pmin) +

α

α− 1
· v(pmin)

≤ α · v(psc) +
α

α− 1
· v(psc) + α · v(pmin) +

α

α− 1
· v(pmin)

= α · (v(psc) + v(pmin)) · (1 +
1

α− 1
) ≤ v(p′) · (1 +

1
α− 1

)

=
α

α− 1
· v(p′)

where the first inequality is due to the maximum load that can be assigned,
by the load assignment, to wl(p′) from the preempted packets psc and pmin.
The second inequality is due to the induction hypothesis and the third in-
equality is due to lemma 5. The fourth inequality is due to the second con-
dition of the arrival phase. �

We are now ready to complete the proof of lemma 3.
Since w(p) = wq(p) + wm(p) + wl(p) we conclude by lemma 5 and lemma 6

that w(p) ≤ (2α + α
α−1 )v(p). That completes the proof of lemma 3. �

Step 3: Bounding the load assigned to the transmitted packets
Before we can bound the load w assigned to the packets transmitted by ON we
need to bound the value of the edges emanating from the packet transmitted by
OPT and are re-assigned to the packet transmitted by ON . We first show that
there can be at most one such edge.

Lemma 7. Whenever a packet p is transmitted by OPT there is at most one
edge emanating from p such that (p, p′) ∈ {M ∪ L} and S(p′) > t for some
p′ ∈ Bt.

Corollary 1. Let p denote a packet transmitted by OPT at time step t and let
p′ ∈ Bt denote a packet such that e = (p, p′) ∈ {M∪ L} and S(p′) > t. Then,
only the edge (p, pb) ∈M created at the arrival of p can meet the conditions of e.

Lemma 8. Let p denote the packet transmitted by OPT at time step t. And let
ph be the heaviest packet in Bt. Let e

R
denote any edge in ER as defined in the

load assignment. Then, v(e
R
) ≤ αv(ph).

We are now ready to bound the load w assigned to the packet transmitted by
ON .

Lemma 9. For every packet p transmitted by ON w(p) ≤ 9.82v(p) for α = 1.55
and β = 2.51.
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Proof. Let pe and ph be the packets as defined in the transmission phase at
time step t. Let e

R
denote the edge in ER as defined in the load assignment. We

consider the following two cases:

1. If ON transmitted pe:
Then according to the load assignment, the load assigned to pe on its trans-
mission is:

w(pe) = w(pe) + v(e
R
) ≤ (2α +

α

α− 1
)v(pe) + v(e

R
)

≤ (2α +
α

α− 1
)v(pe) + αv(ph)

≤ (2α +
α

α− 1
)v(pe) +

α

β
v(pe)

=
(
(2α +

α

α− 1
) +

α

β

)
v(pe) ≤ 9.82v(pe)

where the first inequality is due to lemma 3. The second inequality is due to
lemma 8. The third inequality follows the transmission criteria of algorithm
ON such that v(pe) ≥ βv(ph). The forth inequality is by setting α = 1.55
and β = 2.51.

2. If ON transmitted ph:
Then according to the load assignment, the load assigned to ph on its trans-
mission is:

w(ph) = w(pe) + w(ph) + v(e
R
) ≤ (2α +

α

α− 1
)(v(pe) + v(ph)) + v(e

R
)

≤ (2α +
α

α− 1
)(v(pe) + v(ph)) + αv(ph)

≤ (2α +
α

α− 1
)(βv(ph) + v(ph)) + αv(ph)

=
(
(2α +

α

α− 1
)(β + 1) + α

)
v(ph) ≤ 9.82v(ph)

where the first inequality is due to lemma 3 . The second inequality is due to
lemma 8. The third inequality follows the transmission criteria of algorithm
ON such that v(pe) ≥ βv(ph). The forth inequality is by setting α = 1.55
and β = 2.51. �

That completes the proof of theorem 1.

3 Non-preemptive Algorithms

In this section, we introduce a non-preemptive deterministic online algorithm
for the multi-buffer switch with unit value packets and a non-preemptive ran-
domized online algorithm for the multi-buffer switch with packets with values.
Both models assume arbitrary deadlines on the packets.
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3.1 Algorithm for Unit Value Packets-Algorithm J F
In this section, we presents a non-preemptive deterministic algorithm for unit
value packets, denoted as JF . Algorithm JF transmits all packets accepted in
FIFO order and store newly arrived packets only if at the originated transmission
time they are not expired. A description of the algorithm appears in figure 3.

Algorithm [J F ]

– Arrival:(a new packet p arrives to buffer j at time step t)
If buffer j is full or d(p) ≤ |Bt| discard p else, insert p to buffer j.

– Transmission: Transmit the earliest packet that arrived and was stored in the
buffers.

Fig. 3. Algorithm J F

Theorem 2. Algorithm JF is 2-competitive.

3.2 Algorithm RJ F
In this section, we present a non-preemptive randomized algorithm, denoted as
RJF for packets with values. We assume the ratio F between the largest and the
smallest value of the packets in the sequence is known in advance. The RJF
algorithm is stated according to the “classify and randomly select” paradigm
and it makes use of the JF algorithm that was stated in the previous section.
Our result is O(logF ) and it is optimal up to a constant factor since, even for a
single buffer and without deadlines Andelman et al. [2] show a lower bound of
O(logF ).

Algorithm RJF classifies the input sequence into �logF �+ 1 classes. Then,
it randomly selects a class with probability 1

�logF�+1 . After a class is selected
RJF accepts only packets associated to the chosen class and exercise algorithm
JF on the accepted packets while ignoring their values .

A description of the RJF algorithm appears in figure 4.

Algorithm [RJ F]

– Randomly select class j uniformly from the �logF � + 1 available classes.

On the arrival of a new packet p to buffer i at time step t:
– If 2j−1 ≤ v(p) < 2j : Exercise algorithm J F on p ignoring its value. Else,

discard p.

Fig. 4. Algorithm RJ F

Theorem 3. Algorithm RJF is O(logF ) competitive.
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It is straightforward to show that randomization is necessary in order to achieve
a O(logF ) bound. Specifically, a lower bound of F for every deterministic non-
preemptive algorithm is shown.

Lemma 10. Every deterministic algorithm for the non-preemptive multi-buffer
switch is at least F -competitive where F is the ratio between the largest and the
smallest value of the packets in the sequence.
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Abstract. We study a new kind of on-line bin packing motivated by a
problem arising when scheduling jobs on the Grid. In this bin packing
problem, the set of items is given at the beginning, and variable-sized
bins arrive one by one. A closely related problem was introduced by
Zhang in 1997. Our main result answers a question posed in that paper
in the affirmative: we give an algorithm with a competitive ratio strictly
better than 2, for our problem as well as Zhang’s problem.

1 Introduction

We introduce a new on-line scheduling problem based on Grid computing, a
network model where access to computing resources is sold. The problem is to
schedule a given set of jobs with memory requirements on the Grid, where pro-
cessors will “arrive” over time, reporting that they are available and specifying
how much memory they have. In the specific bioinformatics application (blast-
ing genomes against each other) originally motivating this work, extremely large
jobs are divided into subtasks of varying size in a logical manner. These subtasks
are then the jobs with memory requirements.

Motivation. It is well-known that paging slows down computation drastically:
parallelizing jobs can result in better than linear speed-up by eliminating un-
necessary paging [6]. Therefore, the problem becomes to schedule jobs on each
processor such that the total memory requirement of jobs scheduled on the same
processor does not exceed the capacity of the given processor, thus eliminating
the need for paging after loading a job. On the other hand, the total memory
requirement of the jobs should not be too much smaller than the capacity of the
processor, or we would be wasting resources.

We view this as a bin packing problem, with the items and their sizes given
initially and variable sized bins arriving one by one. The items must be packed
in the bins, such that the total size of the items packed in a bin is no more than
the size of the bin. We say that a bin is used, if the algorithm packs at least one
item in it. Unused bins correspond to unused processors, which would not be
paid for. However, to avoid unnecessary waiting time, if a bin is large enough to
hold some as yet unpacked item, that bin must be used. For the same reason, an
� Supported in part by the Danish Natural Science Research Council (SNF).

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 17–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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algorithm is not allowed to close a bin as long as there are still unpacked items
that fit in it. The goal is to pack all items, minimizing the total size of the bins
used. In the scheduling scenario, this is assuming that the charge for using the
processor is proportional to the size of its available memory (which is generally
almost proportional to its speed). Since memory sizes are discrete, we let bins and
items have integer sizes between 1 and some maximum size M . The problem is
different from most on-line scheduling and (variable-sized) bin packing problems
in that the jobs/items are given initially and the processors/bins arrive one by
one, instead of the other way around.

The problem. To summarize, the Grid Scheduling Problem is defined in the
following way. It is a variant of bin packing where:

– The items and their sizes are given initially and variable sized bins arrive
one by one.

– The items must be packed in the bins, such that the total size of the items
packed in a bin is no more than the size of the bin.

– Whenever a bin arrives, the algorithm must keep packing items in it until
no as yet unpacked item fits in the bin.

– When packing a bin, the algorithm has no knowledge about possible future
bins, it knows only the current and earlier bins.

– The goal is to pack all items, minimizing the total size of bins used.
– Bins and items have integer sizes between 1 and some maximum size M .

Furthermore, we assume that sufficiently many sufficiently large bins arrive that
eventually any algorithm will have packed all items.

A similar problem. A closely related problem was previously studied by
Zhang [7]. However, he considered the continuous version, where items can have
any size in the range (0, 1]. Furthermore, Zhang used the restriction that the
largest item is no larger than the smallest bin. Thus, as long as there are still
unpacked items, the algorithm is “charged” for any bin arriving, whether the
bin is used or not. We call this similar problem Zhang’s Bin Packing Problem.

Results. We study the two problems using the competitive ratio [5, 4], which
is the worst-case ratio of the on-line performance to the optimal off-line perfor-
mance, up to an additive constant. More precisely, for a set S of items, a sequence
I of bins, and an algorithm A for the Grid Scheduling Problem, let A(S, I) de-
note the total size of the bins used by A when packing S in the sequence I of
bins. Then, the competitive ratio CRA of A is

CRA = inf
S,I
{c | ∃b : ∀S, I : A(S, I) ≤ c ·OPT(S, I) + b} ,

where OPT denotes an optimal off-line algorithm.
We propose a new algorithm, FFD2/3, with a competitive ratio of at most 13

7 ,
answering in the affirmative Zhang’s open problem [7] concerning the existence
of an algorithm with competitive ratio less than 2. For Grid Scheduling, the
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competitive ratio of this algorithm, FFD2/3, is at least 1.8. The algorithm is a
member of a family of algorithms, FFDα, with 1

2 < α ≤ 1. The lower and upper
bounds for FFDα are summarized in Figure 1 (p. 21).

Most results in this paper apply to both the Grid Scheduling Problem and
Zhang’s Bin Packing Problem. The upper bound proof for FFDα applies to
Zhang’s bin packing problem, since it does not use the fact that there are only a
fixed number of possible item and bin sizes. The general upper bound uses the
requirement that a bin cannot be closed if there are still items remaining which
fit and thus does not apply to Zhang’s bin packing problem in general, but all
specific algorithms considered have this property. Lower bound proofs for Grid
Scheduling apply to Zhang’s bin packing problem, unless bins smaller than the
largest items appear. Note that lower bound proofs that apply to both problems
often result in slightly stronger bounds for Zhang’s bin packing problem, because
item/bin sizes are not discrete. Thus, whenever a lower bound on the competitive
ratio includes a term which is a function of M only, this term can be ignored for
Zhang’s bin packing problem.

When a result only applies to Grid Scheduling, we specify this in the statement
of the theorem. The proof that a result also applies to Zhang’s Bin Packing
Problem is usually a trivial modification of the proof for the Grid Scheduling
Problem (translating item sizes between 1 and M to item sizes between 0 and 1),
so most of these proofs are not included. For some of the lower bound proofs, we
only give the adversarial instance. The full proofs are given in the full paper [1].

2 General Results

Zhang [7] proved that the algorithms First-Fit, First-Fit-Decreasing, Next-Fit,
and Next-Fit-Decreasing all have a competitive ratio of 2. The upper bound
proof holds for any algorithm for the Grid Scheduling Problem, since it uses
only the fact that no item placed in the ith bin fits in the i− 1st bin.

Theorem 1. Any Grid Scheduling algorithm, A, has CRA ≤ 2.

Proof. For completeness, we give the proof from [7]. For any instance of the
problem, let m be the number of bins used by A, let bi denote the size of the ith
of these bins to arrive, and let si denote the total size of items packed in the ith
bin by A, i = 1, . . . , m. Since no item placed by A in the i + 1st bin fits in the
ith bin, si + si+1 > bi, i = 1, . . . , m− 1. Thus,

A(I) =
m∑

i=1

bi <

m−1∑
i=1

(si + si+1) + bm < 2
m∑

i=1

si + bm ≤ 2 ·OPT(I) + M. �

The proof of the following lower bound does not hold for Zhang’s bin packing
problem, since the adversary may use bins that are smaller than the largest
items.

Theorem 2. Any Grid Scheduling algorithm, A, has CRA ≥ 5
4 .
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Proof. Let M ′ = �M
4 �. Consider the following instance of the problem.

Items: n items of size 2M ′ + 1 and 2n items of size M ′ + 1, for some even n.
Bins: First, n bins of size 2M ′ + 2. Let q, 0 ≤ q ≤ n, be the number of items of
size 2M ′ + 1 that the algorithm A packs in these bins. If q ≥ n

2 , the sequence
continues with 2n bins of size 2M ′ +1. If q < n

2 , the sequence continues with 2n
bins of size M ′ + 1 and then n− q bins of size 4M ′. �

3 First-Fit-Decreasing and a Better Variant

Since the item sizes are known in advance, one can use an algorithm based on
First-Fit-Decreasing for the standard off-line bin packing problem. The First-
Fit-Decreasing (FFD) algorithm for this problem is as follows: for each bin bi,
repeatedly take the largest item still unpacked which fits in the remaining space
in bi and pack it there, until no more unpacked items fit in bi.

This simple algorithm will intuitively do well, since it will tend to save the
smaller, easier to place, items for later bins. However, for Zhang’s bin packing
problem, FFD has a competitive ratio of 2 [7]. The proof of this is very similar
to our proof below in that the item sizes are decreasing, while the numbers of
items of each size is doubling. The differences between consecutive item sizes
decreases inverse exponentially in our case, and even faster in [7]. Thus, when
the item sizes in [7] are converted to integers, the largest bin size, M , must be
even larger than in ours to obtain the same lower bound.

Theorem 3. For the Grid Scheduling Problem, CRFFD ≥ 2−Θ
(

log M
M

)
.

Proof. Let k be the largest integer such that 2k+1 ≤ M , let M ′ = 2k, and let n
be a large integer. Consider the following instance of the problem:
Items: For 0 ≤ i ≤ k, 2in items of size xi = (1

2 + 2−i)M ′.
Bins: For 0 ≤ i ≤ k − 1, 2in bins of size bi = (1 + 2−i)M ′, then n bins of size
3
2M ′, and finally (M ′ − 2)n bins of size M ′ + 1.

FFD packs the items of size xi in the bins of size bi, 0 ≤ i ≤ k − 1. The last
2kn = M ′n items are packed, two by two, in the n bins of size 3

2M ′ and, one by
one, in the (M ′ − 2)n bins of size M ′ + 1. The empty space in each bin, except
the n bins of size 3

2M ′, will be exactly 1
2M ′.

The optimal strategy is to pack the 2in items of size xi, two by two, in the
2i−1n bins of size bi−1, 1 ≤ i ≤ k, and the n items of size 3

2M ′ in the n bins of
that same size, not using any of the last (M ′ − 2)n bins.

Using M ′ = 2k, we get that the total size of the bins used by an optimal
off-line algorithm is

OPT =
k−1∑
i=0

2in(1 + 2−i)M ′ +
3
2
nM ′ =

(
M ′ + k +

1
2

)
nM ′.

Furthermore, FFD > OPT + (M ′ − 2)nM ′. Thus,

FFD
OPT

> 1+
M ′ − 2

M ′ + k + 1
2

= 2−
k + 5

2

M ′ + k + 1
2

= 2−Θ

(
log M

M

)
. �



Scheduling Jobs on Grid Processors 21

3.1 A Variant of First-Fit-Decreasing

The family of algorithms, FFDα, uses the algorithm, FFD, described above.
FFDα is defined for 1

2 < α ≤ 1. When packing a bin, it considers the remaining
item sizes in decreasing order as starting sizes for applying FFD. More specifi-
cally, let L1 be the set of items currently unpacked. Assume that there are items
of k different sizes in L1 and let {s1, . . . , sk} be the set of these sizes, sorted such
that si > si+1. FFDα tries using FFD on L1, recording how full the bin gets. If
the bin gets filled to less than α full, FFD is used on the set L2 obtained from
L1 by deleting all items of size s1. If, again, the bin gets filled to less than α
full, the items of size s2 are deleted from L2 to obtain L3. This contiunes until
either a set Li is obtained for which FFD fills the bin to more than α full or the
empty set Lk+1 is reached. In the first case, FFD’s packing of Li is used. In the
latter case, among the k packings, the one that fills the bin the most is chosen.
In case of ties, the first of the candidate packings is chosen.

The idea is that, choosing α greater than 1
2 , the algorithm may consider more

possibilities than FFD when choosing the items to pack in a given bin. On
the other hand, α should probably not be too close to 1, since then we lose
the advantage of getting rid of large items early. Furthermore, with α < 1, the
algorithm considers fewer possibilities and thus is more time efficient.

Lower bounds. We give lower bounds that are valid for both problems (The-
orems 4, 5, and 7) and a tighter lower bound for the Grid Scheduling Problem
(Theorem 6). The bounds are summarized in Figure 1. The figure also shows an
upper bound (Theorem 8).

Theorem 4. For 1
2 < α ≤ 1− 3

M , CRFFDα
≥ 2+α

1+α −Θ
( 1

M

)
.

Proof. Consider the following input to the Grid Scheduling Problem:
Items: n items of size �αM� and 2n items of size �M/2�.
Bins: n bins of size M . Then n bins of size �αM�. Finally n bins of size M − 2.

�

 1.5
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 1.7

 1.8

 1.9

 2

 0.5  0.6  0.7  0.8  0.9  1

(a) Grid Scheduling
 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0.5  0.6  0.7  0.8  0.9  1

(b) Zhang’s bin packing problem

Fig. 1. Lower and upper bounds on the competitive ratio of FFDα as a fct. of α
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For α close to 1
2 , we use a slight modification of the proof of Theorem 3 to arrive

at the following stronger lower bound.

Theorem 5. For 1
2 < α ≤ m

2m−1 , CRFFDα ≥ 2−Θ
(
max

{
log m

m , log M
M

})
.

The following result is stronger than that in Theorem 4, but since the adversary
presents bins which are smaller than the largest item size, it only holds for the
Grid Scheduling Problem, not for Zhang’s Bin Packing Problem.

Theorem 6. For Grid Scheduling, CRFFDα
≥ 3r

2r−1 − Θ
(

r
M

)
, 1

2 < α ≤ r−1
r ,

r ≥ 3.

Proof. Let M ′ = �M/r�. Consider the following instance of the problem:
Items: n items of size (r − 1)M ′, rn items of size M ′ − 1.
Bins: n bins of size rM ′−2, rn bins of size 2M ′−3, n bins of size (r−1)M ′. �

Corollary 1. For Grid Scheduling, CRFFDα
≥ 1.8−Θ

( 1
M

)
, for 1

2 < α ≤ 2
3 .

Theorem 7. Even for identical bins of size M , CRFFDα ≥
∑�

i=1
1

2i−1 , where

	 = max{k ∈ N | α > 1 − 2−k + 2k−1

M , 22k ≤ M}. As 	 tends to infinity, this
ratio tends to approximately 1.607.

Proof. Assume that 2� divides M . We use the following well-known instance.
Items: For i = 1, . . . , 	, n items of size 2−iM + 1.
Bins:

∑�
i=1

n
2i−1 bins of size M .

Since it is possible to pack one item of each size in one bin, OPT will use n
bins.

Using FFD starting with the items of size 2−iM + 1, the algorithm will first
pack 2i − 1 items of size 2−iM + 1. This leaves an empty space of size 2−iM −
(2i − 1). Since M ≥ 22k, this will leave space for exactly one item of each size
2−jM + 1, j = i + 1, . . . , 	. Thus, the bin gets filled to (1 − 2−�)M + ε, where
ε = (2i − 1) + (	− i) is the number of items packed in the bin. This number is
increasing with i, and starting with the second smallest items, the bin gets filled
to (1− 2−�)M + 2�−1. Thus, since 1− 2−� + 2�−1

M < α, FFDα will start with the
smallest items, using

∑�
i=1

n
2i−1 bins. �

The (nonpolynomial) algorithm, Knapsack, that simply fills each bin as much as
possible (considering all possible combinations of items) will behave as FFDα on
the sequences of the proof of Theorem 7. Thus, for M ≥ 216, CRKnapsack > 1.6.
More generally (as mentioned in several papers, e.g., [2], [3]):

Corollary 2. Even for identical bins of size M , CRKnapsack ≥
∑�

i=1
1

2i−1 ,
where 	 ∈ N, 22� ≤ M . This ratio tends to approximately 1.607 as M tends to
infinity.
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3.2 An Upper Bound

In this section we prove an upper bound on the competitive ratio of FFDα for
1
2 < α ≤ 2

3 . The bound is smaller than 2 throughout the interval (1
2 , 2

3 ] and, at
α = 2

3 , the bound attains its minimum value of 13
7 ≈ 1.857.

The size of a bin, b, will be denoted by |b|, and the size of an item, x, by |x|.
For any algorithm, A, and any set B of bins, sA(B) denotes the total size of
the items packed by A in B. Whenever the algorithm considered is FFDα, we
omit the subscript for convenience. Furthermore, e(B) (E(B)) denotes the total
empty space left by FFDα (OPT) in a bin or set of bins, B.

We first prove four small technical lemmas.

Lemma 1. Suppose an algorithm, A, fills k of its bins, bi1 , bi2 , . . . , bik
, such that

sA(bij+1) > |bij |, 1 ≤ j ≤ k−1. Then, if none of these bins is filled to more than
a fraction β,

k∑
j=1

|bij | <
M

1− β
and, for Grid Scheduling, k ≤ log1/β M.

Proof. By assumption, β|bij+1 | ≥ sA(bij+1) > |bij |. Thus, βk−j |bik
| > |bij |, so

βk−1|bik
| > |bi1 | giving the bound on k. The total size of these k bins is thus

k∑
j=1

|bij | <

k∑
j=1

βk−j |bik
| = |bik

|
k−1∑
l=0

βl < |bik
|

∞∑
l=0

βl = M
1

1− β
. �

Lemma 2. For any set B of nonempty bins in FFDα’s packing, e(B) < s(B)+M .

Proof. The result clearly holds if at most one bin in B is less than half full. Let
B< = {b1, b2, . . . , bm} denote the set of bins in B that are less than half full, in
the order they appear in the input sequence, and assume that m ≥ 2. By the
definition of the algorithm, s(bi+1) > e(bi), 1 ≤ i ≤ m− 1. Thus,

e(B)− s(B) ≤ e(B<)− s(B<) =
m∑

i=1

(
e(bi)− s(bi)

)
<
(
e(bm)− s(bm)

)
+

m−1∑
i=1

(
s(bi+1)− s(bi)

)
=
(
e(bm)− s(bm)

)
+
(
s(bm)− s(b1)

)
= e(bm)− s(b1) < M

�

Lemma 3. Let 1
2 < α ≤ 2

3 . If FFDα fills a bin b to less than α|b|, then no two
items which FFDα places in later bins would fit together in bin b.

Proof. Assume b is filled to 	 < α|b|. Then, when FFDα was filling bin b, FFD
was applied starting with every item size remaining, and the best packing was
chosen. Consider any two items x and y packed later than b, with |x| ≥ |y|.
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If |x| + |y| ≤ 	, then |y| ≤ �
2 . But since 	 + �

2 < 3
2α|b| ≤ |b|, y would fit in b

together with the items packed there, which contradicts the definition of FFDα.
If 	 < |x|+ |y| ≤ |b|, we also get a contradiction with the definition of FFDα:

when using |x| as the starting size, FFD will pack x together with y or some
item z, |x| ≥ |z| ≥ |y|, filling b to more than 	.

Thus, we are left with the case |x|+ |y| > |b|, proving the lemma. �

Lemma 4. Let 1
2 < α ≤ 2

3 . Consider an instance (S, I) and let F< be the set of
bins used by FFDα, but filled to less than α full, and not used by OPT. If there
are bins in F< with more than one item, there is another instance (S, I ′) with
FFDα(S, I ′) = FFDα(S, I) and OPT(S, I ′) ≤ OPT(S, I), such that all bins used
only by FFDα and filled to less than α contain only one item each.

Proof. Consider a bin b ∈ F< with items y1, y2, . . . , yn, n ≥ 2, such that |y1| ≤
|y2| ≤ . . . ≤ |yn|. Consider the sequence I ′ obtained from I by replacing b by
n bins with sizes |bi| = |yi|, 1 ≤ i ≤ n − 1, and |bn| = |yn| + e(b). Note that
the sizes of the new bins sum up to exactly |b|. The n bins arrive in the order
b1, b2, . . . , bn. Since OPT did not use b, OPT(S, I ′) ≤ OPT(S, I). Clearly, FFDα

will pack yi in bi, 1 ≤ i ≤ n− 1, so to complete the proof we just need to prove
that yn will be packed in bn.

Let U denote the set of items that are still unpacked after FFDα has packed
the prefix of I ending with b. By Lemma 3, no two items in U could be combined
in b. Since bn is smaller than b the same is clearly true of bn. Furthermore, each
item in U is larger than e(b), so no item in U can be combined with yn in bn.
Thus, to prove that FFDα will place yn in bn, we just need to prove that there is
no item x ∈ U with |yn| < |x| ≤ |yn|+e(b). Assume for the sake of contradiction
that such an item, x, exists. If |yn| ≥ 1

3 |b|, |x|+ |yn| > 2
3 |b|, and this combination

would be tried when packing b, unless an even better combination were found.
But this is a contradiction, since b is filled to less than α full. If |yn| < 1

3 |b|, all
items packed in b are smaller than 1

3 |b|, and hence when FFDα tries out FFD
starting with size |x|, it will stop only when all items yn, yn−1, . . . , y1 have been
used, in which case a better packing of b has been found, or b will be filled to
more than 2

3 full. Both cases are contradictions. �

Theorem 8. FFDα has a competitive ratio of CRFFDα
< 2α+3

2α+1 , for 1
2 < α ≤ 2

3 .

This is minimum at α = 2
3 , where it gives CRFFD2/3 < 13

7 ≈ 1.857.

Proof. Consider a worst case instance (S, I). For a bin b (or a set of bins B),
the notation x ∈ b (or x ∈ B) will refer to an item FFDα places in b (or B).
Furthermore, for an item, x ∈ S, we use the notation

bo(x): the bin where OPT places x
b(x): bin where FFDα places x.

We consider the following sets of bins, A and F< ⊆ F< ⊆ F .

A: the set of bins which both FFDα and OPT use.
F : the set of bins used by FFDα only.
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F<: the bins in F which FFDα fills to less than α full. By Lemma 4, we can
assume that FFDα packs exactly one item in each bin in F<.

F<: a subset of F< with the following property. When FFDα packs a bin b ∈ F<

with some item, x, there is at least one other item, x′, still available that
could have fit in b. Clearly, |x′| ≤ |x|, since FFDα does not pack x′ in b.

For each x ∈ F<, define a chain C(x) as follows: Let x0 = x. If, in FFDα’s
packing, the bin bo(xj) contains only one item and is filled to less than α full, let
xj+1 be the item FFDα places in bo(xj). Let x0, . . . , x� denote the sequence of
items defined in this way. We let C(x) denote x0, . . . , x� as well as the sequence
b(x0), . . . , b(x�) of bins. For any chain of items, x0, x1, . . . , x�, we let b�(x0) =
bo(x�) denote the bin where OPT places the last item of the chain. Note that
b�(x0) is not part of the chain. We now define one more set of bins:

L: the set of bins which are b�(x) for some x ∈ F<.

The main ideas of the proof are that all chains are well defined, the total
size of bins in F< \ F< is small, the items packed in F< all fit in L, and most
bins in L are filled to at least α full. For this purpose it is useful to show that,
for any chain C(x), b(x) is given after all other bins in C(x) and no item in
C(x) is smaller than x. The bins in F \ F< can essentially be ignored, since the
competitive ratio we are trying to prove is so large.

For any chain C(x0), b(x0) arrives later than any other bin in C(x0): Note that
for any chain, bo(x0) = b(x1) is an earlier bin than b(x0), since x0 fits in
both bins and OPT did not use b(x0).

Recall that when FFDα packs x, there is still an unpacked item x′ no larger
than x. Suppose for the sake of contradiction that there exists an xi, i ≥ 1, in
C(x0), where bo(xi) is after b(x0). Let i be the first index where this occurs,
i.e., b(xi) = bo(xi−1) occurs before b(x0). We find that |x0| > α|b(x0)|,
contradicting that x0 ∈ F<: By Lemma 3, 2|x0| ≥ |x0| + |x′| > |b(xi)|.
Furthermore, |xi| < α|b(xi)|, by the definition of a chain. Since bo(xi) is
after b(x0) and OPT did not use b(x0), |xi| > |b(x0)|. Combining these
inequalities, we get |x0| > 1

2 |b(xi)| > 1
2α |xi| > 1

2α |b(x0)| > α|b(x0)|, where
the last inequality follows from 1

2 < α ≤ 2
3 .

Using Lemma 3 and the fact that b(x0) arrives last, we get that x0 and x′

cannot be packed together in any bin b(xi), i ≥ 1, in the chain. Combining
with the fact that x0 is packed alone in b(x0), we arrive at

Fact 1. For any chain C(x0), 2|x0| > |b|, for any bin b ∈ C(x0).

The first item in a chain C is no larger than any other item in C: Let xi be an
item in C. We use induction on i. The base case, i = 0, is trivial. For
i ≥ 1, xi−1 fits in b(xi) (OPT put it there). By the induction hypothesis,
|x0| ≤ |xi−1|, so x0 also fits there. Thus, since FFDα did not place x0 in
b(xi) when that bin was requested, |x0| ≤ |xi|. This also shows that bo(xi)
is never a bin which FFDα left empty, i.e., L ⊆ A. Furthermore, combining
with Fact 1, we get
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Fact 2. For any chain C and any item xi ∈ C, 2|xi| > |b|, for any bin
b ∈ C.

The total size of bins in F< \ F< is small: Note that the set F< \ F< of bins
satisfies the conditions of Lemma 1, with β = α. Thus,∑

b∈F <\F<

|b| < 3M. (1)

Chains do not contain cycles: Assume for the sake of contradiction that a chain
C(x) contains two distinct items xi and xj that are packed in the same
bin, b, by OPT, i.e., bo(xi) = bo(xj) = b. Then clearly, |xi| + |xj | ≤ |b|,
contradicting Fact 2.

Chains do not intersect: Assume for the sake of contradiction that there is a bin
b contained in two chains C(x) and C(y), x �= y. Then b contains two items
xi ∈ C(x) and yj ∈ C(y). Assume |xi| ≤ |yj |. Then 2|xi| ≤ |b|, contradicting
Fact 2.

The items packed in F< all fit in the bins in L: Consider a bin, b� ∈ L. Obvi-
ously, all items y, such that bo(y) = b�, fit in the bin b�. For any two chains,
x0, . . . , x� and y0, . . . , ym, x� �= ym, since no two chains intersect. In addi-
tion, all items on a chain from some x are at least as large as x. Hence, for
any b ∈ L, |b| ≥

∑
x | b�(x)=b |x| and thus,

e(L) + s(L) ≥ s(F<). (2)

Most bins in L are filled to at least α: Consider two bins, b, b′ ∈ L, where b oc-
curs before b′ and FFDα fills both with at least two items, but to less than
α full. Let x and y be two items in b′. Neither one fit in b after b was packed,
so each is larger 1

3 |b|. Hence |x|+ |y| > 2
3 |b|, so together they are larger than

the total contents of b. Thus, FFDα would have put them there (or some
others which filled b to even more than 2

3 full) if they fit there. This means
that the contents of b′ are too large to fit in b, so the set of bins in L which
are filled to less than α satisfy the conditions of Lemma 1, and their total
size is less than 1

1−αM ≤ 3M . Thus,

3M +
1
α

s(L) > e(L) + s(L)
(2)
≥ s(F<). (3)

Rearranging, we get

s(L)− e(L) >

(
2− 1

α

)
s(L)− 3M. (4)

Finally, we derive a few more useful inequalities. First, since e(A) − E(A) ≤
s(F ) and e(A \ L) = e(A)− e(L), we get

e(A \ L) ≤ s(F ) + E(A)− e(L). (5)

Since, by (1), all bins in F \ F<, except possibly some with total size less than
3M , are filled to at least α,

e(F \ F<) <
1− α

α
s(F \ F<) + 3M. (6)
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The total size of the items in S is s(A)+s(F ), the total size of empty space in
FFDα’s packing is e(A) + e(F ), and in OPT’s packing it is at least E(A). Thus,
OPT(S, I) ≥ s(A) + s(F ) + E(A) and

FFDα(S, I) = s(A) + e(A) + s(F ) + e(F )
Lemma 2, (6)

< s(A) + e(A) + 2s(F<) +
1
α

s(F \ F<) + 4M.

Hence,

FFDα(S, I)
OPT(S, I)

<
s(A) + e(A) + 2s(F<) + 1

αs(F \ F<) + 4M

s(A) + s(F ) + E(A)
Lemma 2

<
s(L) + e(L) + 2e(A \ L) + 2s(F<) + 1

αs(F \ F<) + 3M

s(L) + e(A \ L)−M + s(F ) + E(A)

Thus, since FFDα(S,I)
OPT(S,I) ≤ 2 + M

OPT (by the proof of Theorem 1),

FFDα(S, I)
OPT(S, I)

(5)
<

s(L) + 4s(F<) + (2 + 1
α )s(F \ F<)− e(L) + 2E(A) + 4M

s(L) + 2s(F )− e(L) + 2E(A)−M

≤
s(L) + 4s(F<) + (2 + 1

α )s(F \ F<)− e(L) + 4M

s(L) + 2s(F )− e(L)−M

If this ratio is smaller than 1+ 1
2α , we are done, since 1+ 1

2α < 2α+3
2α+1 . Otherwise,

we can subtract (1 + 1
2α )2s(F \ F<) from the numerator and 2s(F \ F<) from

the denominator, arriving at

FFDα(S, I)
OPT(S, I)

<
s(L) + 4s(F<)− e(L) + 4M

s(L) + 2s(F<)− e(L)−M

(3)
<

s(L) + 4( 1
αs(L) + 3M)− e(L) + 4M

s(L) + 2( 1
αs(L) + 3M)− e(L)−M

(4)
<

(2 − 1
α )s(L)− 3M + 4

αs(L) + 16M

(2− 1
α )s(L)− 3M + 2

αs(L) + 5M

=
(2α + 3)s(L) + 13αM

(2α + 1)s(L) + 2αM

As s(L) tends to infinity, this ratio tends to 2α+3
2α+1 . If s(L) does not tend to

infinity, we can essentially ignore the bins in F which are filled to less than α,
since by Equations (1) and (3), s(L) > α

(
s(F<)−3M

)
> α(s(F<)−6M

)
. Thus,

as the total size of the items in the input tends to infinity, FFDα(S, I)/OPT(S, I)
tends to at most

sb(A) + 1
αs(F )

sb(A) + sb(O)
≤

sb(A) + 1
α (e(A) + sb(O))

sb(A) + sb(O)
,
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where sb(A) and sb(O) denote the total size of the bins in A and in the bins used
only by OPT, respectively. If this ratio is at most 1

α , we are done. Otherwise, it
is bounded by

sb(A) + 1
αe(A)

sb(A)

Lemma 2
≤

sb(A) + 1
2α (sb(A) + M)
sb(A)

= 1+
1
2α

+
M

2αsb(A)
. �

Thus, for 1
2 < α ≤ 2

3 , the algorithm FFDα has a competitive ratio better than
2, with the minimum value being 13

7 for α = 2
3 , and this also applies to Zhang’s

Bin Packing Problem. It leaves open the problem of how much better than 13
7

can be achieved. Note that for α > 2
3 , the above proof fails in more than one

place.

4 Conclusion

We have introduced a new scheduling problem, the Grid Scheduling Problem,
that can be formulated as a bin packing problem. The main result is a new algo-
rithm with a competitive ratio better than 2, answering an open question in [7].
There are many open problems remaining, the most interesting being finding
the optimal competitive ratio for the Grid Scheduling Problem. Determining
the best value of α for FFDα and finding the exact competitive ratio of FFDα

for all α would be very interesting progress on this problem.
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Abstract. We consider online coloring of intervals with bandwidth in
a setting where colors have variable capacities. Whenever the algorithm
opens a new color, it must choose the capacity for that color and cannot
change it later. The goal is to minimize the total capacity of all the
colors used. We consider the bounded model, where all capacities must be
chosen in the range (0, 1], and the unbounded model, where the algorithm
may use colors of any positive capacity. For the absolute competitive
ratio, we give an upper bound of 14 and a lower bound of 4.59 for the
bounded model, and an upper bound of 4 and a matching lower bound of
4 for the unbounded model. We also consider the offline version of these
problems and show that the unbounded model is polynomially solvable,
while the bounded model is NP-hard in the strong sense and admits a
3.6-approximation algorithm.

1 Introduction

Online interval coloring has received much attention recently. In the basic prob-
lem, the nodes of an interval graph arrive online, one by one, together with the
interval representation. The goal is to find a proper vertex coloring (i.e., each
pair of adjacent vertices, i.e. intersecting intervals, are assigned distinct colors)
with a minimum number of colors. The coloring has to be determined online,
i.e., each new interval must be assigned a color upon arrival.

This standard problem was studied by Kierstead and Trotter [14]. They con-
structed an online algorithm that uses at most 3ω − 2 colors where ω is the
maximum clique size of the interval graph. They also presented a matching
lower bound of 3ω − 2 on the number of colors in a coloring of an arbitrary
online algorithm. Note that the chromatic number of interval graphs equals the
size of a maximum clique, which is equivalent in the case of interval graphs to
the largest number of intervals that intersect any point (see [11]). Many papers
studied the competitive ratio of First-Fit for this problem [12, 13, 17, 4]. The lat-
ter reference shows that the competitive ratio of First-Fit is strictly worse than
the competitive ratio of the algorithm from [14].

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 29–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Adamy and Erlebach [1] introduced the interval coloring with bandwidth
problem and presented a 195-competitive algorithm. In this problem each in-
terval has a bandwidth requirement in (0, 1]. The intervals are to be colored so
that at each point, the sum of bandwidths of intervals colored by a certain color
does not exceed 1. This problem was also studied in [16], giving an improved
competitive ratio of 10, and in [8], showing a lower bound of 3.2609.

We study a variant of this problem, where colors are not necessarily of capacity
1 as in [1]. The input arrives as in this model, but an algorithm may use colors of
arbitrary capacity. In an online environment, the capacity of a color is determined
when the color is first used. The coloring is valid if for every color a that is used
with capacity Ca, at each point the sum of bandwidths of intervals colored by
a does not exceed Ca. The cost of a coloring is the sum of the capacities of the
colors used. We study the unbounded model, with no restriction on the capacities
of colors, and the bounded model, where capacities cannot exceed 1.

The interval coloring problem with bandwidth of [1] is a generalization of the
well known bin packing problem (see e.g. [7, 5, 19]). Our problem is related to
variable sized bin packing (see [15, 10, 6, 18, 20]), but does not generalize it. In
the bin packing problem, allowing the usage of bins of any size (even if the sizes
are bounded by 1) leads to a simple 1-competitive algorithm, which assigns every
item a bin of the same size. In the variable sized bin packing problem, a set of
allowed bin sizes is set in advance.

As mentioned in [1], the interval coloring problem with bandwidth arises in
many applications, often from the field of communication networks. Consider a
network with a line topology that consists of links, where each link has channels
of constant capacity. A connection request is from one network node a to another
node b and has a bandwidth associated with it. The set of requests assigned to
a channel must not exceed the capacity of the channel on any of the links on
the path [a, b]. The goal is to minimize the number of channels (colors) used. In
our problem, we can choose the capacity of the channel, and therefore we pay a
cost proportional to the capacity of the channel, rather than a fixed cost as in
the case of unit capacity channels. A connection request from a to b corresponds
to an interval [a, b] with the respective bandwidth requirement and the goal is
to minimize the sum of capacities of the channels used to serve all requests. We
allow different capacities since not all channels are necessarily identical.

Another important application comes from scheduling. A requested job has a
starting time, a duration, and a resource requirement during its execution. Jobs
(intervals) arrive online and must be assigned to a machine (color) immediately.
It is possible to pick a machine of any capability, which is fixed when the machine
is ordered. The cost of the machine is proportional to its resource capacity. The
objective is to minimize the sum of the costs of the machines used.

For an algorithm A, we denote its cost by A as well. The cost of an op-
timal offline algorithm that knows the complete sequence of intervals is de-
noted by OPT. We consider the absolute competitive ratio and the absolute
approximation ratio criteria. For an online algorithm we use the term competi-
tive ratio whereas for an offline algorithm we use the term approximation ratio.
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The competitive ratio of A is the infimum R such that for any input, A ≤
R · OPT. If the competitive ratio of an online algorithm is at most C we say
that it is C-competitive. The approximation ratio of a polynomial time offline
algorithm is defined similarly to be the infimum R such that for any input,
A ≤ R ·OPT. If the approximation ratio of a polynomial time offline algorithm
is at most R we say that it is an R-approximation algorithm.

We first consider the online problem. We give tight bounds for the unbounded
model, showing that the competitive ratio achieved by applying doubling is 4,
and this is best possible. For the bounded model, we show that an adaptation of
the algorithm in [16] combined with doubling is 14-competitive. We prove that
no algorithm has competitive ratio better than 4.59.

We further show that the offline unbounded problem can be solved optimally
using a simple polynomial algorithm, while the bounded problem is NP-hard in
the strong sense. For that problem we design an approximation algorithm with
ratio 18

5 = 3.6. Some proofs are omitted due to space restrictions.

2 Preliminaries

The following KT�b algorithm for the online interval coloring with bandwidth
problem was studied by Epstein and Levy [8, 9] (see also [16]). We are given
an upper bound b on the maximum bandwidth request and a parameter 	. The
algorithm partitions the requests into classes and then colors each class using
the First-Fit algorithm. The partition of the requests is performed online so that
a request j is allocated to class m, where m is the minimum value so that the
maximum load of the requests that were allocated to classes 1, 2, . . . , m with the
additional new request is at most m	. For an interval vi that was allocated to
class m a critical point of vi is a point q in vi so that the set of all the intervals
that were allocated to classes 1, 2, . . . , m− 1 prior to the arrival of vi, together
with vi, has total load strictly larger than (m − 1)	 in q (i.e., q prevents the
allocation of vi to class m− 1). They proved the following lemmas.

Lemma 1. Given an interval vi that was allocated class m. For the set Am of
intervals that were allocated to class m, and for every critical point q of vi the
total load of Am in q is at most b + 	. If all intervals have the same bandwidth
b, and 	 is divisible by b, this total load is at most 	.

Lemma 2. For every m, the set Am of intervals that were allocated to class m
has a maximum load of at most 2(b+	). If all intervals have the same bandwidth,
b, and 	 is divisible by b, the set Am of intervals that were allocated to class m
has a maximum load of at most 2	.

Lemma 3. The number of classes used by the algorithm is at most �ω∗

� �, where
ω∗ is the maximum load.
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3 Online Algorithms

3.1 The Unbounded Model

Our algorithm for the unbounded model simply uses standard doubling (see
[3, 2]). I.e., we keep a current “guess” of the maximum load of the complete
sequence, which is actually a lower bound on the load, and a single active color.
On the arrival of the first interval, we initialize the guess to be the smallest
(negative) power of 2 that is not larger than the bandwidth requirement of the
interval. We open the first color with capacity which is twice the guess. Each
time an interval arrives we color it with the active (i.e., last opened) color if
possible. If a new interval arrives that cannot be colored with the active color,
this means that the maximum load is at least twice larger than the current guess.
We therefore update the guess to equal twice the current guess, and open a new
color with its capacity equal to twice the new value of the guess. Repeat this
process until the interval can be colored with the most recently opened color.
This color becomes active.

Theorem 1. The competitive ratio of the above algorithm is 4.

Proof. If there is a single color used by the algorithm, then its capacity is at most
twice the largest load, and the competitive ratio is bounded by 2. Otherwise,
consider the last time a new color was opened by the algorithm. The value L
that is the current guess of the maximum load at this time is a lower bound on
OPT. The new color has capacity 2L, and since each time a new color is opened
its capacity is at least twice the previous capacity, we conclude that the total
cost of the algorithm is at most 2L + L + L

2 + · · ·+ L
2i + · · · ≤ 4L ≤ 4OPT. �

Given a non-negative small value 0 < ε < 1
6 , we next describe a modified proce-

dure whose asymptotic competitive ratio is 2 + ε. The algorithm runs the KT�b

algorithm with “unit” capacity that is set to 1
ε . In order to use the algorithm

with unit capacities, we multiply the bandwidth of all input intervals by ε. In
this way we get b = ε and therefore we can use 	 = 1

2 − ε, so that each class of
the algorithm can be packed using one color. Using Lemma 3, we can show that
the algorithm has the following performance guarantee:

Theorem 2. There is an online algorithm that for each input sequence provides
a solution with cost at most (2 + ε)OPT + O(1

ε ).

3.2 The Bounded Model

Our algorithm for this case is the following adaptation of the algorithm of
Narayanaswamy [16] for the online interval coloring problem with bandwidth.
We partition the requests into three groups. Large requests are requests with
bandwidth in the interval

( 1
2 , 1
]
, medium requests are requests with bandwidth

in the interval
( 1

4 , 1
2

]
, and small requests are requests with bandwidth at most

1
4 . We use disjoint colors for coloring requests of distinct groups. Our algorithm
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is different from the algorithm of [16] mainly in the procedure for coloring the
small requests.

For packing large requests we use unit capacity colors, and pack these requests
using Kierstead and Trotter’s algorithm [14] for online interval coloring (without
bandwidth). This is equivalent to using the algorithm in Section 2 with 	 = 1
and ignoring bandwidth requirements. In this case the total load of a class is at
most two requests at each point, and as explained in [14], each class requires at
most three colors.

Lemma 4. The total cost of the colors used for large requests is at most 6·OPT.

For packing medium requests we again use unit capacity colors, and pack these
requests using the algorithm in Section 2, giving each interval bandwidth of 1

2 .
This is similar to using Kierstead and Trotter’s algorithm for online interval
coloring (without bandwidth). Each class is packed using one color (and not
three colors). This packing of each class is feasible by Lemma 2, since we use
b = 	 = 1

2 .

Lemma 5. The total cost of the colors for medium requests is at most 4 ·OPT.

It remains to describe the packing of the small requests. We partition the small
requests into type 1 requests and type 2 requests. A type 1 request is a request
such that upon its arrival, for each point within the request the total load of
previously presented type 1 requests, plus the load of the new request, is at most
1
2 . A type 2 (small) request is a small request that is not a type 1 request.

We use separate sets of colors for type 1 small requests and type 2 small
requests. The type 1 small requests are packed using the doubling procedure
(described in the unbounded model). Recall that in that procedure, the capacity
of each color that we use is an integer power of 2. Therefore, the last opened
color that we use for small requests of type 1 has a capacity of at most 1

2 .
The packing of type 2 small requests uses only colors with unit capacity and is

carried out by applying algorithm KT�b for 	 = 1
4 and b = 1

4 . More precisely, we
apply algorithm KT�b to all small requests, but the requests that are assigned
to the first two classes by KT�b are actually the type 1 small requests that are
handled as explained above.

The purpose of this partition into types is that if the load caused by the
small intervals is very low, then opening a color of capacity 1 right away might
be an overkill for the small intervals. Specifically, we want to show an absolute
competitive ratio of 4, which would be impossible if a unit capacity color was
opened immediately.

Lemma 6. The total cost of the colors used for small requests is at most 4·OPT.

Proof. If there is no type 2 small request, then the claim holds since the doubling
procedure is a 4-competitive algorithm. Thus, we can assume that there is at
least one type 2 small request. Note that in this case all colors that we use to
color type 1 small requests have a total cost that is at most 1. Consider the
execution of the algorithm KT�b for 	 = 1

4 and b = 1
4 on the complete input
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(i.e., already starting at the first interval). All intervals of the first two classes
that would have been opened by KT�b are colored in our algorithm by the set of
colors which are given capacities smaller than 1. To see this last property note
that by the definition of KT�b, the first two classes of the algorithm contain only
intervals whose total load is at most 2	 = 1

2 . All these intervals are by definition
type 1 small requests. Therefore, if we denote by ω∗ the maximum total load
of the small requests, then OPT ≥ ω∗ and the number of unit capacity colors
that the algorithm uses in order to pack the type 2 small requests is at most⌈

ω∗

�

⌉
−2 ≤ 4ω∗+1−2 = 4ω∗−1. Since the total cost of the type 1 small requests

is 1, we conclude that the algorithm packs the small requests using colors with
total cost that is at most 4ω∗ ≤ 4 ·OPT. �

Using Lemmas 4, 5 and 6, we establish the following theorem.

Theorem 3. There is a 14-competitive online algorithm for the bounded model.

4 Lower Bounds

4.1 The Unbounded Model

We next show that the competitive ratio of our algorithm for the unbounded
model is best possible. In the proof we again apply methods similar to [3].

Theorem 4. Any online algorithm for the unbounded model has a competitive
ratio of at least 4.

Proof. Before we construct the lower bound we note that we assume for ease of
presentation that bandwidth requirements can be numbers larger than 1. Clearly,
the unbounded model is equivalent to any model where the bandwidths are
bounded by some constant (not necessarily 1). Before presenting the sequence,
we can compute a bound on the largest bandwidth needed for the proof, and
thus our lower bound satisfies the model.

Our construction of the lower bound for the unbounded model is based on
instances in which OPT equals the maximum load, whereas the algorithm tries to
guess an upper bound on the maximum load, and pays the sum of all its guesses.
We consider input sequences with the following structure. The first interval is
[0, 1] with a unit bandwidth request. Given an arbitrary prefix of intervals for
which the algorithm opened the set of colors with capacities c1 ≤ c2 ≤ · · · ≤ ck

the next interval is disjoint to all the previous intervals with bandwidth request
ck+ε for a sufficiently small value of ε. Then, the algorithm needs to open another
color with capacity at least ck+1 ≥ ck + ε. Note that at this step OPT = ck + ε
as all the intervals are disjoint and therefore they all fit into a common color
with capacity ck + ε, whereas the algorithm pays

∑k+1
j=1 cj .

Given a fixed value of ρ that is strictly smaller than 4, we will show that if our
input sequence is long enough an online algorithm cannot pay at each step k at
most ρ times the cost of OPT at this step (the sequence can be stopped at any
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point, preventing all future intervals from arriving). Assume that this does not
hold, and that there is a ρ-competitive online algorithm with ρ = 4− δ for some
δ > 0. Denote this algorithm by A. Assume that given the above input sequence
for the value of ε that satisfies 1

1+ε = 1 − δ2, A opens colors with capacities
c1 < c2 < · · · < ck < · · ·. Then, since A is ρ-competitive, the inequalities c1 ≤ ρ

and
∑k+1

j=1 cj ≤ ρ(ck + ε) must hold. Let rk+1 = 4− δ −
∑k

j=1 cj

ck+ε , for k ≥ 1. The
inequality above implies ck+1

ck+ε ≤ rk+1. Note that if rk+1 < 1, A cannot open a
color of sufficient capacity in step k + 1 without violating the assumption that
its competitive ratio is ρ. We will show that the values rk+1 for k = 1, 2, . . . form
a decreasing sequence so that rk+1 must be strictly less than 1 for some large
enough value of k (depending only on ε). This is a contradiction to rk+1 ≥ 1 and
shows that such a sequence of ck’s cannot exist, hence no algorithm can achieve
competitive ratio 4− δ for any δ > 0.

First, we observe that r2 = 4 − δ − c1
c1+ε ≤ 4 − δ. Next, we will show that

rk+2 ≤ rk+1/(1+γ) for all k ≥ 1 (as long as rk+1 ≥ 1), where γ > 0 is a constant
chosen in such a way that 4

1+γ ≥ 4− δ2 is satisfied. Assuming that rk+1 ≤ 4− δ
was shown by induction, we can use elementary calculations to bound rk+2 as
follows:

rk+2 = 4− δ −
∑k+1

j=1 cj

ck+1 + ε
≤ 5− δ − 1

1 + ε
− 4− δ

rk+1(1 + ε)

This expression can be shown to be bounded by rk+1/(1 + γ). �

4.2 The Bounded Model

In order to construct the lower bound, we use as a black box the lower bound
of Kierstead and Trotter [14] given originally for the standard online interval
coloring problem. They designed for any integer k a lower bound sequence where
the clique size is at most k, whereas any online algorithm is forced to use 3k− 2
colors. In [8] it was shown that this construction can be adapted to the case
where the value k or bounds on it are known in advance to the algorithm.

Theorem 5. Any online algorithm for the bounded model has a competitive
ratio of at least 4.5.

Proof. Let k be a large enough integer. We are going to have at most two such
constructions, where there is no overlap between the intervals of the two con-
structions. Let ε > 0 be a small value, such that P = 1

2ε is an integer. We start
with such a construction where all intervals have bandwidth 1

2 + ε. Since the
largest possible capacity of a color is 1, no two overlapping intervals can receive
the same color, and therefore the algorithm is forced to use 3k−2 colors, whereas
an optimal offline algorithm can use at most k colors, each of capacity 1

2 + ε.
The second construction will use intervals of bandwidth 1

2 + jε for some 2 ≤
j ≤ P . In this construction as well the algorithm is forced to use 3k − 2 colors
of capacity at least 1

2 + jε, whereas the construction is k-colorable. An optimal
offline algorithm uses k colors of capacity 1

2 + jε each, and these colors are used
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to color all intervals of the first construction as well. Consider the 3k − 2 colors
with largest capacity opened by the algorithm for the first construction. Let s be
the number of colors out of these colors whose capacity is strictly smaller than
1
2 + jε. The algorithm has to open at least s new colors of capacity 1

2 + jε.
Already in the first construction, the algorithm only needs to open colors

whose capacities are in the set { 1
2 + ε, 1

2 + 2ε, . . . , 1
2 + Pε = 1}. Consider only

the 3k − 2 colors of largest capacities that are opened for the first construction.
Let Xj for 1 ≤ j ≤ P be the number of colors of capacity 1

2 + jε.
Let C be the competitive ratio. The cost of the algorithm for the first con-

struction is at least
∑P

j=1(
1
2 + jε)Xj . Note that according to the definition of

the values Xj ,
∑P

j=1 Xj = 3k − 2, therefore we can write this lower bound on
the cost as 3k

2 − 1 + ε
∑P

j=1 jXj . Since the optimal cost is (1
2 + ε)k, we get

3k
2 − 1 + ε

∑P
j=1 jXj ≤ C(1

2 + ε)k. This is equivalent to

P∑
j=1

jXj ≤ CP (1 + 2ε)k − 3kP + 2P. (1)

For every 2 ≤ j ≤ P we get a lower bound on the cost of the algorithm
for the second construction of

∑P
i=1(

1
2 + iε)Xi + (3k − 2−

∑P
i=j Xi)(1

2 + jε) =
(3k−2)(1+ jε)+ ε

∑j−1
i=1 iXi + ε

∑P
i=j(i− j)Xi− 1

2

∑P
i=j Xi. As this value must

be at most Ck(1
2 + jε), we get

j−1∑
i=1

iXi +
P∑

i=j

(i− j)Xi − P

P∑
i=j

Xi ≤ P (C − 6)k + 4P + j(C − 3)k + 2j. (2)

For each 1 ≤ j ≤ P , we multiply the inequality for j by aj , and add up the
resulting inequalities. The coefficients are a1 = P+1

2 (for equation (1)), and for
j > 1, aj = 1. Next, we compute the coefficient of each value Xi, 1 ≤ i ≤ P , in
the resulting inequality. Given a value Xi, its coefficient in the inequality (1) is
i. Its coefficient in the inequality (2) for j > i is i and for j ≤ i is i − j − P .
Thus, we get

P + 1
2

i +
i∑

j=2

(i− j − P ) +
P∑

j=i+1

i = i

(
3P − 1

2

)
− P (i− 1)−

(
i(i + 1)

2
− 1
)

=
iP

2
+

i

2
+ iP − i− Pi + P − i2

2
− i

2
+ 1 ≥ (P − i) · i + 2

2
≥ 0.

Therefore the left hand side of the resulting inequality is non-negative. Next,
consider the right hand side. It is equal to P+1

2 (CP (1 + 2ε)k − 3kP + 2P ) +∑P
j=2(P (C − 6)k + 4P + j(C − 3)k + 2j) = P+1

2 (CP (1 + 2ε)k − 3kP + 2P ) +

(P −1)(P (C−6)k+4P )+((C−3)k+2)(P (P+1)
2 −1). Letting k tend to infinity,

we get the following inequality on C.

0 ≤ (P 2 + P )(C(
1
2

+ ε)− 3
2
) + (P 2 − P )(C − 6) + (C − 3)

P 2 + P − 2
2
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Next, we let P tend to infinity and get 0 ≤ C−3
2 +(C− 6)+ C−3

2 = 2C− 9. This
gives a lower bound of 4.5 on C. �

Remark 1. Running a linear program using Matlab for P = 400 we can get a
lower bound of 4.591 on C.

5 Offline Problems

5.1 The Unbounded Model

The offline problem is clearly polynomially solvable for the unbounded model.
The algorithm computes the maximum load, and then opens a single color with
capacity equal to the maximum load. Clearly all the intervals can be colored
using this color, and we obtain a feasible solution whose cost equals the maximum
load, which is a lower bound on the optimal cost. Hence, we can conclude the
following.

Proposition 1. The offline problem of the unbounded model is polynomially
solvable.

5.2 The Bounded Model

First, we can show that the resulting offline problem for the bounded model is
NP-hard, using a reduction from the 3-Partition problem.

Theorem 6. The offline problem of the bounded model is NP-hard in the strong
sense.

Because of the fact that the bounded model problem is NP-hard, we turn our
focus to designing an approximation algorithm for this problem. We define a
small request to be a request with bandwidth that is at most 1

2 , and a large
request to be a request whose bandwidth is strictly larger than 1

2 . Our algorithm
uses disjoint sets of colors to color the small requests and the large requests.

For small requests we sort the intervals in non-decreasing order of their left
end-point. Then, we use colors with maximum capacity 1 and color the intervals
according to the First-Fit algorithm. After we color all the small requests, we
compute the maximum load of the last color that is opened and we change its
capacity to be this value of the maximum load.

Lemma 7. The cost of colors that our algorithm uses to color the small requests
is at most 2 ·OPT.

It remains to consider the large requests. Before presenting our algorithm, we
consider the following algorithm. We sort the large requests in non-decreasing
order of their left end-point. Then, we use colors with capacity 1 and color
the intervals according to the First-Fit algorithm. We note that using First-Fit
minimizes the number of colors that are used to color the large requests (when
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the intervals are sorted) and since the capacity of each color is 1 whereas in the
optimal solution the capacity of each color is at least 1

2 , we conclude that this
algorithm uses colors with total cost of at most 2 ·OPT.

Let ε > 0 be a given constant such that k = 1
2ε −1 is an integer to be selected

afterwards. Our algorithm for the large requests computes k + 1 solutions and
picks the cheapest solution among these. The first solution is to pack all the large
requests with a minimum number of unit capacity colors (using First-Fit on the
sorted list of large requests). For each j = 1, 2, . . . , k we define aj = 1

2 + jε and
our (j + 1)-th solution is constructed as follows. We partition the large requests
into two classes: the first class consists of all large requests with bandwidth at
most aj , and the second class consists of all the remaining large requests. Each
class is packed separately using its own set of colors. The capacity of the colors
that are used for the first class is aj , whereas the capacity of the colors that are
used for the second class is 1. Each class is packed optimally using the minimum
number of colors (using First-Fit on the sorted list of intervals from this class).
We next show that the cheapest solution among the k + 1 solutions has a cost
of at most

( 8
5 + O(ε)

)
·OPT.

Lemma 8. The cheapest solution among the k + 1 solutions has a cost of at
most

(
8

5−2ε

)
·OPT.

Proof. We prove that the algorithm colors the large requests with total cost of
at most 8

5−2ε · OPT and the approximation ratio of the algorithm is at most
8

5−2ε . Let a0 = 1
2 and ak+1 = 1. Let ρ be the competitive ratio of the algorithm,

we prove that ρ ≤ 8
5−2ε . Denote by Xj the number of colors that OPT opens

with capacity in the interval (aj , aj+1], for j = 0, 1, 2, . . . , k. Then, OPT ≥∑k
j=0 aj ·Xj . We assume that the cheapest solution among the k + 1 solutions

costs at least ρ ·OPT.
Since two intersecting large requests cannot be colored by the same color in

any solution, we can compute upper bounds on the number of colors of each
capacity used by the algorithm in each one of the cases. Note that our first solu-
tion can pack all the large requests using at most

∑k
j=0 Xj colors, and therefore

the cost of this solution is at most
∑k

j=0 Xj . Since we assume that the cheap-
est solution among the k + 1 solutions costs at least ρ ·OPT, we conclude that∑k

j=0 Xj ≥ ρ·OPT. Next, consider the (j+1)-th solution for j ≥ 1. The intervals
of the first class can be colored using at most

∑k
i=0 Xi colors each with capacity

aj (since this amount of colors suffices to color all the large requests). The inter-
vals of the second class can be colored using at most

∑k
i=j Xi unit capacity colors.

Therefore, the cost of the (j+1)-th solution is at most aj ·
(∑k

i=0 Xi

)
+
∑k

i=j Xi.
Since we assume that the cheapest solution among the k + 1 solutions costs at
least ρ ·OPT, we conclude that aj ·

(∑k
i=0 Xi

)
+
∑k

i=j Xi ≥ ρ ·OPT.
We next consider the following set of inequalities (these inequalities hold by

our assumption):
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OPT ≥
k∑

j=0

aj ·Xj (3)

k∑
j=0

Xj ≥ ρ ·OPT (4)

aj ·
(

k∑
i=0

Xi

)
+

k∑
i=j

Xi ≥ ρ ·OPT ∀j = 1, 2, . . . , k. (5)

We construct the following inequality: we multiply (4) by y0 = a0 −
∑k

i=1(ai −
ai−1) · ai, and for each j = 1, 2, . . . , k we multiply the j-th constraint of (5) by
yj = aj − aj−1 = ε, and we add up all the resulting inequalities. The left hand
side of the resulting inequality is exactly

∑k
j=0 aj · Xj. This is so because the

coefficient of Xj in the resulting inequality is y0+
∑j

i=1 yi(ai+1)+
∑k

i=j+1 yiai =
a0−

∑k
i=1(ai−ai−1) ·ai +

∑k
i=1(ai−ai−1)ai +

∑j
i=1(ai−ai−1) = aj . By (3), we

conclude that the left hand side of the resulting inequality is at most OPT. The
right hand side of the resulting inequality is ρ ·OPT ·

∑k
i=0 yi. We note also that

the coefficients yj are non-negative. To see this last claim note that for j ≥ 1,
yj = ε > 0 and for j = 0, y0 = a0−

∑k
i=1(ai−ai−1) ·ai = 1

2−
∑k

i=1 ε ·
( 1

2 + iε
)

=
1−kε

2 − ε2∑k
i=1 i = 1−kε

2 − ε2 · k(k+1)
2 ≥ 1− 1

2ε ε

2 − ε2 · 1
8ε2 = 1

8 > 0. Therefore, the
inequality OPT ≥

∑k
j=0 aj ·Xj ≥ ρ ·OPT ·

∑k
i=0 yi holds and we get

ρ ≤ 1∑k
i=0 yi

=
1

1−kε
2 − ε2 · k(k+1)

2 + kε
=

8
5− 2ε

.

This completes the proof. �

By Lemma 8, we obtain a solution for the large requests with colors of total
cost at most

( 8
5 + O(ε)

)
·OPT. We would like to argue that by picking ε as an

infinitesimally small positive number we obtain an 8
5 approximation algorithm.

However, picking such a value of ε will increase dramatically the time complexity
of our algorithm. To avoid these bad consequences we note the following lemma.

Lemma 9. There is a polynomial time algorithm that emulates the solution
returned by our previous algorithm for infinitesimally small value of ε.

The following corollary is a direct consequence of Lemmas 8 and 9.

Corollary 1. There is a polynomial time algorithm that colors the large requests
with colors of total cost that is at most 8

5 ·OPT.

Finally we combine the results for small requests and large requests.

Theorem 7. There is an approximation algorithm with ratio 18
5 = 3.6 for the

variable sized interval coloring problem in the bounded model.
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Abstract. We give a linear time recognition algorithm for circular-arc
graphs. Our algorithm is much simpler than the linear time recognition
algorithm of McConnell [10] (which is the only linear time recognition
algorithm previously known). Our algorithm is a new and careful imple-
mentation of the algorithm of Eschen and Spinrad [4, 5]. We also tighten
the analysis of Eschen and Spinrad.

1 Introduction

A Circular-arc graph is an intersection graph of arcs on the circle. That is, every
vertex is represented by an arc, such that two vertices are adjacent if and only
if the corresponding arcs intersect. Many subclasses of circular-arc graphs have
also been studied such as proper circular-arc graphs [3], and unit circular-arc
graphs [8]. An extensive overview of circular-arc graphs can be found at the
book by Spinrad [13]. Recent applications of circular-arc graphs are in modeling
ring networks [15] and item graphs of combinatorial auctions [2].

The first polynomial time algorithm for circular-arc recognition was given by
Tucker [16]. This algorithm splits into one of two cases according to whether Ḡ is
bipartite (G is co-bipartite). In case Ḡ is not bipartite the algorithm finds an odd
length induced cycle in Ḡ, and further splits into one of two subcases according
to whether the cycle it found is of length 3 or of length at least 5. Using Tucker’s
terminology we refer to the first case where G is co-bipartite as Case I. We refer
to the subcase where we found in Ḡ a cycle of length 3, and therefore we found
in G an independent set of size 3, as Subcase IIa. We refer to the case where we
found in Ḡ an induced cycle of length at least 5 as Subcase IIb.

Tucker showed how to implement his algorithm in O(n3) time. One of the bot-
tlenecks in Tucker’s implementation is a preprocessing phase where we identify
containment relations between the neighborhoods of the vertices. Specifically,
for every pair of vertices v and w we determine whether the neighborhood of v
is contained in the neighborhood of w or vice versa. Furthermore, Tucker runs
his algorithm recursively on particular graphs and this recursive structure also
leads to cubic running time.

Spinrad [12] simplified Case I in Tucker’s algorithm – the case where G is
co-bipartite. Spinrad reduced this case to the problem of recognizing two dimen-
sional posets [14]. We construct the poset using particular relations between the

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 41–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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vertices of G. Two vertices are related in the poset if their corresponding arcs are
either disjoint, one is contained in the other, or together they cover the circle.
The relations between the arcs are determined from the relations between the
neighborhoods of the vertices. In case G is a circular-arc graph then from any
two total orders that represent the poset we can construct a representation for
G. Spinrad showed that this algorithm runs in O(n3) time.

Eschen and Spinrad [4, 5] gave an O(n2) algorithm for recognizing circular-arc
graphs by addressing the two bottlenecks in Tucker’s implementation. Eschen
and Spinrad show how to compute neighborhood containment relations in O(n2)
time. Specifically, they construct four graphs such that if G is indeed circular-
arc graph then each of the four graphs is either an interval graph or a chordal
bipartite graph. These graphs are constructed such that the neighborhood of
v contains the neighborhood of w in G, if and only if the neighborhood of v
contains the neighborhood of w in each of these graphs. The quadratic time
bound follows since one can compute neighborhood containment relations in
interval graphs and chordal bipartite graphs in quadratic time [4, 5, 9].

Eschen and Spinrad also showed that in Case I of the algorithm, when G is
co-bipartite, we can use the same reduction to determine all pair of arcs that can
cover circle in a model of G in O(n2) time. Since this was the only bottleneck in
Spinrad’s algorithm for this case, we obtain an O(n2) implementation of Case I.
To implement Subcases IIa and IIb in O(n2) time, they changed the recursive
structure of Tucker’s algorithm. They show how to implement the algorithm
such that each recursive call is on a co-bipartite graph (Case I) and therefore
does not trigger further recursion. Since the sum of the sizes of the graphs in all
recursive calls is proportional to the size of G, the quadratic bound follows.

Recently, McConnell [10] presented the first recognition algorithm for circu-
lar-arc graphs that runs in linear time. The algorithm reduced the problem to an
interval graph recognition problem where specific intersection types between the
intervals are specified. McConnell’s algorithm uses the same preprocessing stage
of Eschen and Spinrad where it computes neighborhood containment relations.
To establish the linear time bound, McConnell tightens the analysis of Eschen
and Spinrad’s preprocessing stage. He shows that this preprocessing stage can be
implemented in linear time since we are interested only in neighborhood contain-
ment relations between adjacent vertices, and the associated chordal bipartite
graphs cannot be too large.

McConnell’s algorithm is quite involved. Its most complicated computation is
to find a partition of a graph into a particular kind of modules called Δ modules.
Those Δ modules are used to turn the input circular-arc graph into an interval
graph with specific types of intersections between the intervals, and to find a rep-
resentation for this interval graph. McConnell first presents an implementation
that runs in O(m + n log n) time. To get the linear time bound a more compli-
cated partitioning procedure has to be adapted from the linear time transitive
orientation algorithm [11] which is by itself quite involved. This algorithm also
uses probe interval graphs to find pairs of arcs that can cover the circle in linear
time.
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Hsu [6] presented a different recognition algorithm for circular-arc graphs that
runs in O(mn) time and reduces the problem to recognition of circle graphs.

1.1 Our Contribution

We give a careful implementation of the recognition algorithm of Eschen and
Spinrad that in fact runs in linear time. Our implementation first either finds
an independent set of size 3, and then we can apply Subcase IIa of the algo-
rithm, or it concludes that the graph has Θ(n2) edges. In the latter case the
implementation of Eschen and Spinrad in fact runs in linear time.

Eschen and Spinrad find in Subcase IIa a particular maximal independent set
and place the corresponding arcs one the circle. We show how to find the inde-
pendent set and place its arcs on the circle in linear time. Our implementation
then continues as the implementation of Eschen and Spinrad, but we tighten
their analysis to show that the running time is linear. Our main new insight
is that each subgraph considered by the algorithm while placing and ordering
the arcs on the circle is dense. That is, the number of edges that each subgraph
contains is quadratic in the size of its vertex set. Furthermore, the total size of
these subgraphs is linear in the size of the input graph.

Our algorithm also performs a preprocessing phase where neighborhood con-
tainment relations are computed. As proved by McConnell [10] this can be done
in linear time. As all previous algorithms, we also require a postprocessing veri-
fication step where we check that the representation we obtain is indeed a repre-
sentation of G. McConnell [10] gave a straightforward linear time implementation
of this postprocessing step, which traverse the circular-arc model and extract all
the pairs of intersecting arcs from it. The model correspondes to the graph G,
only if the intersections of arcs fit the adjacencies of vertices.

We describe a linear time implementation of Subcase IIa. Subcase IIb can
also be implemented in linear time in a similar way. We do not describe it here
since we apply Subcase IIb only when we are sure that G has Θ(n2) edges. Our
implementation is much simpler than McConnell’s algorithm.

2 Preliminaries

We consider a finite simple graph G = (V, E), Where |V | = n and |E| = m. We
represent graphs using adjacency-lists. For a vertex v in a graph, the (closed)
neighborhood of v, denoted by N [v] is the set of all vertices adjacent to v together
with v itself. For a set of vertices U we define NU [v] to be N [v] ∩ U .

A circular-arc model of a graph G is a mapping from the vertices of G to arcs
on the circle, such that two vertices are adjacent if and only if the corresponding
arcs intersect. A graph G is a circular-arc graph if it has a circular-arc model.
Note that a circular-arc graph may have more than one model.

We represent a single arc in a circular-arc model by its clockwise and counter-
clockwise endpoints. We assume that no arc covers the entire circle. We represent
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a circular-arc model by an ordered cyclic list of the endpoints of its arcs. To
simplify we refer to the clockwise direction as right and to the counterclockwise
direction as left, as we view them if we stand at the center of the circle.

There are three possible types of intersections between arcs x and y [6, 16].
Arcs x and y cross if each contains a single endpoint of the other. Arcs x and y
cover the circle if each contains both endpoints of the other. One of the arcs x, y
may contain the other. If x and y either cross or cover the circle, we say that x
and y overlap.

For convenience, we refer to the vertices of G as arcs even before we decide
if G is a circular-arc graph and find a model for it. We would say that two
adjacent vertices intersect even before we have a model, because the arcs of
adjacent vertices must intersect in every model. Hsu [6] showed that if G is a
circular-arc graph then it has a model M such that for every pair of vertices v
and u, the arc representing v in M contains the arc representing u in M if and
only if N [u] ⊆ N [v]. So we would say that v contains u when N [u] ⊆ N [v], even
before we have found a model. This relation between u and v is the neighborhood
containment relation. Additionally we would say that two vertices overlap when
they intersect but do not contain each other.

A graph that can be partitioned into two independent sets is called bipartite.
If G is not bipartite then it must have an odd-length induced cycle. If Ḡ, the
complement of G, is bipartite then G is co-bipartite, and is covered by two cliques.

A (0,1)-matrix is said to have the circular-ones property if its columns can be
ordered such that the 1’s in each row are circularly consecutive. Circular-ones
arrangement can be found in O(m + n + r) time [1, 7] where m is the number of
columns, n is the number of rows, and r is the number of 1’s.

3 Preprocessing

An arc representing a universal vertex can be placed on the circle in O(1) time
by placing its right endpoint anywhere on the circle and its left endpoint im-
mediately to the right side of it. It is easy to find all universal vertices of G in
linear time. Thus, we may assume that G does not have any universal vertices.

Let x be an arc that have the same neighborhood as another arc y that was
already placed on the circle. The arc x can be placed on the circle by placing
its endpoints next to the endpoints of y, in O(1) time. McConnell [10] showed
how to find vertices with the same neighborhood in linear time using a simple
process called radix partitioning, which is similar to radix sort. Thus, we may
assume that there are no two vertices in G that have the same neighborhood.

Before running our algorithm we preprocess the graph and for every pair of
adjacent vertices v and u we check whether v contains u or u contains v, that
is whether N [v] ⊆ N [u] or N [u] ⊆ N [v]. Recall that Eschen and Spinrad [4, 5]
showed how to compute neighborhood containment relations in O(n2) time, and
McConnell [10] tighten the analysis to show that this can be done in linear time.
For more details of this part, which are not complicated, see [10].
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4 Splitting into Cases

Recall that the algorithms of Tucker [16] and Eschen and Spinrad [4, 5] split into
one of three cases. Case I where G is co-bipartite, and Case II where Ḡ has an
odd-length induced cycle. Case II splits further into two non-exclusive subcases.
Subcase IIa in which we find three independent vertices in G, and Subcase IIb
in which we find in Ḡ an induced cycle of odd length 5 or more. Our algorithm
splits into one of these three cases as well. But we decide on the case to apply
more carefully.

Let a1 be a vertex of minimum degree in G. If |N [a1]| > n
2 then every vertex

of G has an edge to at least n
2 other vertices, so m = Θ(n2). Otherwise, let Y

be the set of arcs nonadjacent to a1. We look for a pair of nonadjacent vertices
in Y . For every vertex y ∈ Y we traverse its adjacency list, and construct its
restriction to Y . The time to traverse all the adjacency lists is O(n + m). If for
every y ∈ Y we found that NY [y] = Y then m = Θ(n2) since we know that
|Y | ≥ n

2 . Otherwise, we find nonadjacent pair of arcs a2, a3 ∈ Y .
So either we concluded that m = Θ(n2), and therefore the O(n2) time bound

of Eschen and Spinrad [5] is linear, or we found three independent vertices
a1, a2, a3, and we can apply Subcase IIa. In the rest of the paper we describe a
linear time implementation of Subcase IIa.

The algorithm for Subcase IIa consists of the three stages of Tucker’s algo-
rithm. In Stage 1, we find a set of arcs that can be ordered around the circle
and divide it into sections, such that no arc has its both endpoints in the same
section. In Stage 2, we place every endpoint of every other arc in its section.
And in Stage 3, we order the endpoints within each section. We describe each of
these stages in the following three sections.

5 Stage 1: Dividing the Circle into Sections

The algorithm begins by finding an independent set of arcs, I, that can be
embedded around the circle, in an order consistent with some model of G. This
set of arcs divides the circle into sections, such that no arc has its two endpoints
in the same section.

5.1 Finding a Maximal Independent Set

The algorithm of Tucker uses maximal independent set of arcs I of size at least 3
that obeys two requirements. First, no arc of I contains any other arc of G. Sec-
ond, there is no arc x ∈ I that has two nonadjacent arcs y, z /∈ I such that y and z
overlap x and do not overlap any other arc in I. We begin by constructing a max-
imal independent set I ′ greedily, which satisfies the first requirement, and then
change it to an independent set I that satisfies the second requirement as well.

Before constructing I ′, we eliminate any arc that contains another arc from
G, since those arcs cannot be in I. Let G′ be the subgraph of G without these
arcs. Every pair of intersecting arcs in G′ overlaps, since no arc of G′ contains
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another. In order to construct I ′ we maintain a set J consisting of every arc in
G′ that is nonadjacent to any arc already in I ′. For every arc in G′ we maintain
a counter of the number of arcs in I ′ that intersect it.

Let {a1, a2, a3} be the independent set that we found in Sect. 4. We initialize
I ′ to consist of arcs {a′

1, a
′
2, a

′
3} where a′

i is an arc from G′ and may be either ai

or a minimal arc contained in ai. The set I ′ is an independent set in G′, since
{a1, a2, a3} is an independent set in G. For every a′

i ∈ I ′, we remove N [a′
i] from

J and increase the counters of the members of N [a′
i].

As long as J is not empty, we pick an arbitrary arc x ∈ J and add x to I ′. We
increase the counter of every arc y that overlaps x, and set J = J \ {y}. When
J is empty, I ′ is a maximal independent set.

Next we construct I from I ′. For every arc x ∈ I ′ such that there are two
nonadjacent arcs y1 and y2 in G′ which overlaps only x in I ′, we add y1 and
y2 to I. If such y1 and y2 do not exist, we add x to I. To do so in linear time,
we find all arcs in G′ that overlaps only x by scanning N [x], and identifying
all neighbors of x whose counter equals to one. Let Y ⊂ N [x] consist of these
neighbors. For every y ∈ Y we scan N [y] and construct NY [y], if NY [y] �= Y
then we find y′ ∈ Y \NY [y] which is nonadjacent to y.

The following lemma proves that I satisfies the requirements stated above.
Lemma 1. If G is a circular-arc graph then I is a maximal independent set in
G and we cannot get a larger independent set by replacing an arc y1 ∈ I with
two nonadjacent arcs z1, z2 /∈ I that intersect y1.

Proof. First note that I ′ is a maximal independent set in G, since it is a maximal
independent set in G′, and every arc in G which is not in G′ contains an arc in G′.

We now prove that I is a maximal independent set in G. Assume otherwise,
then there is an arc z /∈ I which is nonadjacent to every arc of I. We may assume
that z is in G′, as otherwise we can replace z by an arc which z contains. The
arc z cannot be in I ′ because otherwise z or an adjacent arc would be inserted
to I. Then, since I ′ is maximal independent set, z must overlap some x ∈ I ′,
such that x /∈ I and x was replaced by y1, y2 in I. It follows that {y1, y2, z} is an
independent set of three arcs that overlap x, but this is impossible since each of
them should cover an endpoint of x, and x has only two endpoints.

We next prove that we cannot get a larger independent set by replacing an
arc y1 ∈ I with two nonadjacent arcs z1, z2 /∈ I that overlap y1. Assume that
y1 ∈ I can be replaced by two nonadjacent arcs z1, z2 /∈ I that overlap y1 but
do not overlap any other arc in I. The arc y1 cannot be a member of I ′, since
otherwise we would add z1, z2 to I instead of y1. Therefore there are arcs x ∈ I ′

and y2 ∈ I such that y1 and y2 are nonadjacent and overlap x. Arcs z1 and z2
do not overlap any arc x′ �= x, x′ ∈ I ′, because if they do, they must overlap
some arc different from y1 in I. Since I ′ is maximal, the two arcs z1 and z2 must
be adjacent to x. Again, we got independent set of three arcs {y2, z1, z2}, that
should overlap x, but x has only two endpoints. �
Note that if G is not a circular-arc graph, I might not satisfy the requirements
stated in Lemma 1. In this case our algorithm continues and will detect that G
is not a circular-arc graph later on.
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In Sect. 5.2 we show how to place the arcs of I on the circle. We label the arcs
of I by a1, . . . , a|I| according to their cyclic order around the circle, where a1 is
some arbitrary arc in I. The endpoints of the arcs split the circle into sections.
Each section is either an arc of I or a gap between two consecutive arcs of I. Let
S be a section. The two endpoints of the arcs of I that define S are called the
endpoints of S. We assume that a section contains its left endpoint, but does not
contain its right endpoint. We denote by S2i the section of arc ai. We denote by
S2i+1 the section which is the gap between S2i and S2(i+1). Subscripts of arcs
are modulo |I| and subscripts of sections are modulo 2|I|.

Let Ic bet the set of arcs of G not in I. For every x ∈ Ic, the arc x cannot be
contained in an arc of I and is not universal. Furthermore, since I is a maximal
independent set, the following lemma holds.

Lemma 2. [16] Let x ∈ Ic. In a model of G consistent with the placement of I,
the endpoints of x are in different sections.

5.2 Placing the Independent Set Around the Circle

We now place the arcs of I around the circle. Tucker showed how to order the
arcs of I around the circle, using the adjacencies between arcs in I and arcs in
Ic, such that there exist a circular-arc model of G consistent with this order.

Lemma 3. [16] If G is a circular-arc graph then there exists a model of G con-
sistent with every cyclic order of I that satisfies the following two requirements:
(1) For each arc x ∈ Ic, the neighborhood of x in I, NI [x], is consecutive around
the circle, with the arcs that are contained in x in the middle and the arcs that
overlap x in the ends. (2) For each pair of adjacent arcs x, y ∈ Ic, the union of
their neighborhoods in I, NI [x] ∪NI [y] is consecutive around the circle.

Let x ∈ Ic. We define D(x) to be the set consisting of every arc y ∈ NIc [x] such
that NI [x]∩NI [y] = ∅. Let Dm(x) be the subset of D(x) consisting of every arc
y ∈ D(x) such that there is no y′ ∈ D(x) for which NI [y′] ⊂ NI [y] (see Fig. 1).
Eschen and Spinrad [5] proved the following.

Lemma 4. [5] Assume that G is a circular-arc graph. Let P be an order of I
that satisfies the second requirement of Lemma 3 with respect to every pair of
arcs x, y ∈ Ic such that y ∈ Dm(x) and x ∈ Dm(y). Then, P satisfies the second
requirement of Lemma 3 with respect to every pair of adjacent arcs in Ic.

We construct a matrix M such that from a circular-ones arrangement of M
we can define the order of I. Every arc of I corresponds to a column of M and
every requirement of Lemma 3 corresponds to a row. We arrange the matrix such
that the ones in every row are cyclically consecutive. The order of the columns
will give us an order of I that is consistent with the requirements of Lemma 3.
Any arc x ∈ Ic with NI [x] = I cannot affect the order of I according to the
requirements of Lemma 3, so we ignore those arcs.

For each arc x ∈ Ic we create a row that have 1’s in the columns of the arcs in
NI [x]. This row forces the consecutiveness of NI [x]. If G is a circular-arc graph



48 H. Kaplan and Y. Nussbaum

then there are at most two arcs in I that x overlaps. For each such arc, z, we
create a row that have 1’s only in the columns of NI [x]\{z}. These rows will force
NI [x] to be ordered so that the arcs that x contains are in the middle and the
arcs that x overlaps are at the ends. If for some x there are more than two arcs
in I that it overlaps then we halt since G is not a circular-arc graph. We created
at most three rows for each arc, and a total of at most 3n rows with 3m ones.

In order to find D(x) and neighborhood containment relations with respect
to I, we decide for each pair of arcs x, y ∈ Ic whether NI [x] ∩ NI [y] = ∅ or
NI [x] ⊆ NI [y]. To do so, we find a circular-ones arrangement [1, 7] of M . This
arrangement gives us a preliminary cyclic order of the arcs of I. If such an
arrangement does not exist then G is not a circular-arc graph, and we halt. For
each pair of adjacent arcs in Ic we can detect if their neighborhoods in I do not
intersect or one contains the other by looking at the first and last neighbors of
both arcs in the cyclic order of I. We find the last neighbor of all arcs of Ic in
the cyclic order by scanning the arcs of I starting from an arbitrary arc in the
cyclic order. An arc z ∈ I is the last neighbor of x ∈ Ic if it is a neighbor of x,
but the arc z′ following z in the cyclic order is nonadjacent to x. We find the
first neighbor in I of each x ∈ Ic symmetrically.

Let x ∈ Ic and consider the neighborhood containment relation restricted to
I of the arcs in D(x). In any circular-arc model of G, every y ∈ D(x) covers one
endpoint of x and stretches away from x. So NI [y] consists of a member of I next
to x in the model, followed by zero or more members of I consecutively after it,
in the direction in which y stretches. Therefore, the arcs of D(x) form at most
two chains with respect to the neighborhood containment relation restricted to
I, each chain consisting of arcs that cover the same endpoint of x. So, there are
at most two distinct neighborhoods in I for arcs in Dm(x). For example, in the
illustration of Fig. 1, NI [b] and NI [c] are the two distinct neighborhoods in I for
arcs in Dm(x).

For each arc of x, we go through D(x) to find Dm(x). We find Dm(x) parti-
tioned into two sets, each consisting of arcs with the same neighborhood in I. We
consider the elements in D(x) one by one, in an arbitrary order. While scanning
D(x) we maintain at most two sets of minimal elements with respect to the neigh-
borhood containment relation restricted to I. We denote these sets by M1(x) and
M2(x). If for the next arc y ∈ D(x), we have that NI [y] = NI [mi] for mi ∈ Mi(x)
we add y to Mi(x). If NI [y] ⊂ NI [mi] for mi ∈Mi(x), we replace Mi(x) by {y}.
If NI [mi] ⊂ NI [y] for mi ∈ Mi(x), we skip y. Otherwise, the relation does not
form two chains and thus G is not a circular-arc graph and we halt. When we
finish scanning D(x), we have identified Dm(x) partitioned into two sets M1(x)
and M2(x), each set consist of all elements with the same neighborhood in I.

According to Lemma 4, for every pair of arcs x, y ∈ Ic such that x ∈ Dm(y)
and y ∈ Dm(x), we should add a row to M with 1’s in the columns of NI [x] ∪
NI [y]. Although there could be Ω(n2) pairs x, y ∈ Ic such that x ∈ Dm(y)
and y ∈ Dm(x), the number of distinct sets NI [x] ∪NI [y] is at most n. This is
because for every arc x ∈ Ic, the members of Dm(x) have at most two distinct
neighborhoods in I. We identify these distinct rows to add to M as follows.
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d

Fig. 1. D(x) and Dm(x). Arcs of I are
drawn in boldface. b, c, d ∈ D(x). Also,
b, c ∈ Dm(x) but d /∈ Dm(x), since
NI [b] ⊂ NI [d].

b

c

d

e

ai

Fig. 2. Ui, Wi, A
e
i and Ac

i . Arcs of I
are drawn in boldface. b ∈ Ui, c ∈
Wi, d ∈ Ae

i and e ∈ Ac
i .

For every x ∈ Ic, we traverse every set Mi(x) which is not empty. For each
y ∈Mi(x) we check if x ∈ Dm(y). If indeed x ∈ Dm(y), we add a row to M with
1’s in the columns of NI [x] ∪NI [y]. In this case we also set Mi(x) to be empty
and stop the traversal, since all other arcs in Mi(x) have the same neighborhood
in I as y. To check if x ∈ Dm(y) in constant time, we pick an arbitrary arc zi

from each Mi(y) that is not empty, and check if NI [x] = NI [zi].
Since we use the neighborhood of each arc to define at most two rows, we

add to M at most n rows containing at most 2m ones. We can find circular-ones
arrangement for M in O(n + m) time. If such an order does not exist then G is
not a circular-arc graph. Otherwise, we place the arcs of I in this order clockwise
on the circle. We keep the section S1, . . . , S2|I| that are formed by the endpoints
of arcs of I in an ordered cyclic list.

6 Stage 2: Placing the Endpoints of the Arcs in the
Sections

Consider the order of I found in Sect. 5.2. For every arc x ∈ Ic, the members of
NI [x] are consecutive on the circle. Since there are no universal arcs in G, and
I is a maximal independent set, x cannot contain all arcs of I and NI [x] �= ∅.
Also, x overlaps at most two arcs of I, since otherwise G is not a circular-arc
graph and we should have detected it in Stage 1.

Let x ∈ Ic, the way we place the endpoints of x into their sections depends on
the relation between x and the arcs of I. In most cases these relations suffice to
determine the sections, and in the other cases we apply the algorithm recursively
on an appropriate graph. The arc x satisfies one of the following cases (see Fig. 2).

– Arc x contains arc ai ∈ I and does not intersect any other arc in I. In this
case the left endpoint of x is placed in S2i−1 and the right endpoint is placed
in S2i+1. For every ai ∈ I we accumulate all arcs that contain it and does
not intersect any other arc of I in a set which we call Ae

i .
– Arc x overlaps ai ∈ I and does not intersect any other arc in I. For every

ai ∈ I we accumulate these arcs in a set which we call Ui.
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– Arc x intersects at least two arcs of I and does not intersect at least one.
For all these arcs we identify in NI [x] the leftmost arc ai, and the rightmost
arc aj. We do that as we identified the first and last neighbor of every arc in
the preliminary order of I in Sect. 5.2. If x contains ai then the left endpoint
of x is in S2i−1, if x overlaps ai then this endpoint is in S2i. Similarly, if x
contains aj then the right endpoint of x is in S2j+1, if x overlaps aj then this
endpoint in S2j . For every arc ai ∈ I we accumulate every arc that contains
all arcs in I except ai in a set which we call Ac

i .
– Arc x overlaps two consecutive arcs ai, ai+1 ∈ I and contains all other arcs

of I. In this case, we place the left endpoint of x in S2(i+1) and the right
endpoint of x in S2i

– Arc x overlaps one arc ai ∈ I and contains all other arcs of I. For each ai ∈ I
we accumulate these arcs in a set Wi.

At this point we placed the endpoints of all arcs in Ic into their sections except
arcs in Ui and Wi for i = 1, . . . , |I|. Consider any arc ai ∈ I and the associated
sets Ui and Wi. Each arc in Ui ∪Wi has one endpoint in S2i and the other in
S2i−1 or in S2i+1. Furthermore, all arcs of Ui must form a clique, as otherwise
we can get from I a larger independent set by replacing ai by two nonadjacent
arcs in Ui, contradicting Lemma 1.

We place the endpoints of the arcs of Ui ∪Wi in the sections S2i−1, S2i and
S2i+1 for each ai ∈ I separately, by solving a new problem recursively on a
graph Gi. The graph Gi which we construct is identical to the graph that Es-
chen [4] constructs1. This graph is co-bipartite and therefore when we apply
the algorithm to Gi, Case I applies and there would not be further recursion.
We contribute the following observations. If G is a circular-arc graph then the
recursive application of the algorithm on Gi takes time linear in the size of Gi.
Furthermore, the sum of the sizes of all Gi’s is proportional to the size of G.

Let Ca
i be the set of arcs {ai} ∪ Ae

i ∪ Ui. The set Ca
i forms a clique in G,

since Ui forms a clique and all Ae
i arcs intersect every arc that ai intersects. The

clique Ca
i consists of all arcs contained in the union of the sections S2i−1, S2i

and S2i+1. Let Qi be the set of arcs adjacent to some but not all arcs in Ca
i .

To define Gi we first define a subgraph of G which we denote by G′
i. The

graph G′
i will also be a subgraph of Gi. The graph G′

i is the subgraph induced
by Ca

i ∪Qi ∪Ac
i ∪Wi. Note that Qi is not necessarily disjoint from Wi and Ac

i .
We find Qi by scanning the adjacency list of each x ∈ Ca

i . We maintain a set Y
of arcs encountered during the scan. For each arc y ∈ Y , we also keep a counter
that counts the number of neighbors of y in Ca

i . When we finish scanning the
adjacency list of every x ∈ Ca

i , the arcs of Qi are exactly those arcs y ∈ Y whose
counters are smaller than |Ca

i |. We construct G′
i by scanning the adjacency list

of each arc in it and restricting the list to contain only arcs inside G′
i.

The following lemma proves that all G′
i’s are constructed in linear time.

Lemma 5. [4] Every arc x participates in a constant number of graphs G′
i.

1 Note that this graph is different to the one from [5] which seems to have an error.
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Proof. From the definition of the sets Ui, Wi, A
e
i , A

c
i , it follows that an arc x

can belong to at most one such set. If x ∈ Qi for some i, then one of the arcs
ai−1, ai, ai+1 must be the leftmost or the rightmost arc of NI [x] in the cyclic
order of I. So, x can belong to at most constant number of sets Qi. �
Let n′

i be the number of vertices in G′
i, and let m′

i be the number of edges in G′
i.

Every arc in G′
i covers at least one of the four endpoints of the three consecutive

sections S2i−1, S2i, S2i+1. Therefore, the arcs of G′
i are covered by four cliques,

one for each endpoint. One of these cliques should have at least n′
i

4 vertices and

therefore has at least n′
i

4 (n′
i

4 − 1) edges. So we check if m′
i ≥

n′
i

4 (n′
i

4 − 1). If
this inequality does not hold then G is not a circular-arc graph and we halt.
Otherwise, we know that m′

i = Θ(n′2
i ).

We construct Gi from G′
i by adding a constant number of vertices and

O(n′2
i ) = O(m′

i) edges. The vertices guarantee that any model of Gi can be
embedded into a model of G, and the edges make all the vertices which are not
in Ca

i a second clique. So if ni and mi denote the number of vertices and edges
in Gi respectively, then we also have that mi = Θ(m′

i) = Θ(n′2
i ) = Θ(n2

i ). The
details of the construction of Gi are as in Eschen [4].

Since mi = Θ(n2
i ), the recursive application of our algorithm to Gi takes

O(mi) time. Since each arc of G belong to at most a constant number of graphs
Gi, then each edge of G must belong to at most constant number of graphs Gi.
And therefore,

∑
mi = O(m) and the linear time bound for Stage 2 follows.

7 Stage 3: Arranging the Endpoints in Each Section

We now know which sections contain the endpoints of every arc. Next we would
arrange the endpoints inside each section. We follow Eschen and Spinrad’s algo-
rithm [4, 5], but provide a tighter analysis of it.

Our algorithm goes through the sections and tries to split each section S into
ordered list of subsections. If S is split into subsections, then these subsections
replace S in the cyclic order of sections. When we cannot split sections anymore
then each section S has a corresponding section S′ such that all arcs that have
one endpoint in S have their other endpoint in S′ and vice versa. We then
use recursion to order the endpoints inside sections containing more than one
endpoint.

Our initial list of sections, S1, . . . , S2|I|, are the sections of Stage 2. Let ni be
the number of arcs that have an endpoint in Si, and let mi be the number of
edges in G between these arcs. If G is a circular-arc graph then the arcs that
have their right endpoint in Si form a clique in G, since they all cover the left
endpoint of Si. Similarly, the arcs that have their left endpoint in Si also form a
clique in G. So for each of the initial sections mi should be at least ni

2 (ni

2 − 1).
We check for all i = 1, . . . , 2|I| that indeed mi ≥ ni

2 (ni

2 − 1), and if it does not
hold for some i, then G is not a circular-arc graph. Note that since each arc has
endpoints in two sections,

∑
mi = O(m).

We split sections in the same way as Eschen and Spinrad [4, 5]. Intuitively,
since the order of the endpoints inside a particular section S is not affected by
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any arc that does not have an endpoint in S, it suffices to determine the order
between pairs of endpoints in the same section. Therefore the time it takes to
split the sections is O(

∑
n2

i ). Since O(
∑

n2
i ) = O(

∑
mi) = O(m) this time is

linear in the size of G. Details of this stage can be found in [4, 16].
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An O(n2.75) Algorithm for Online
Topological Ordering�

Deepak Ajwani, Tobias Friedrich, and Ulrich Meyer

Max-Planck-Institut für Informatik,
Saarbrücken, Germany

Abstract. We present a simple algorithm which maintains the
topological order of a directed acyclic graph with n nodes under an on-
line edge insertion sequence in O(n2.75) time, independent of the number
of edges m inserted. For dense DAGs, this is an improvement over the
previous best result of O(min{m

3
2 log n, m

3
2 + n2 log n}) by Katriel and

Bodlaender. We also provide an empirical comparison of our algorithm
with other algorithms for online topological sorting.

1 Introduction

A topological order T of a given directed acyclic graph (DAG) G = (V, E) (with
n := |V | and m := |E|) is a linear ordering of its nodes such that for all directed
paths from x ∈ V to y ∈ V (x �= y), it holds that T (x) < T (y). There exist well
known algorithms for computing the topological ordering of a DAG in O(m+n)
in an offline setting (see e.g. [3]).

In the online variant of this problem, the edges of the DAG are not known in
advance but are given one at a time. Each time an edge is added to the DAG,
we are required to update the bijective mapping T .

The online topological ordering has been studied in the following contexts

• As an online cycle detection routine in pointer analysis [10].
• Incremental evaluation of computational circuits [2].
• Compilation [5, 7] where dependencies between modules are maintained to

reduce the amount of recompilation performed when an update occurs.

The näıve way of maintaining an online topological order, i.e., to compute
it each time from scratch with the offline algorithm, takes O(m2 + mn) time.
Marchetti-Spaccamela et al. [6] (MNR) gave an algorithm that can insert m
edges in O(mn) time. Alpern et al. proposed a different algorithm [2] (AHRSZ)
which runs in O(‖δ‖ log ‖δ‖) time per edge insertion with ‖δ‖ measuring the
number of edges of the minimal node subgraph that needs to be updated.
Note that not all edges of this subgraph need to be visited and hence even
O(‖δ‖) time per insertion is not optimal. Katriel and Bodlaender (KB) [4] an-
alyzed a variant of the AHRSZ algorithm and obtained an upper bound of
O(min{m 3

2 log n, m
3
2 + n2 log n}) for a general DAG. In addition, they show
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that their algorithm runs in time O(m · k · log2 n) for a DAG for which the
underlying undirected graph has a treewidth k. Also, they give an O(n log n)
algorithm for DAGs whose underlying undirected graph is a tree. The algo-
rithm by Pearce and Kelly [9] (PK) empirically outperforms the other algo-
rithms for sparse random DAGs, although its worst-case runtime is inferior
to KB.

We propose a simple algorithm that works in O(n2.75√log n) time and O(n2)
space, thereby improving upon the results of Katriel and Bodlaender for dense
DAGs. With some simple modifications in our data structure, we can getO(n2.75)
time with O(n2.25) space or O(n2.75) expected time with O(n2) space. We also
demonstrate empirically that this algorithm clearly outperforms MNR, AHRSZ,
and PK on a certain class of hard sequences of edge insertions, while being
competitive on random edge sequences leading to complete DAGs.

Our algorithm is dynamic, as it also supports deletion. However, our analy-
sis holds only for a sequence of insertions. Our algorithm can also be used for
online cycle detection in graphs, as well. Moreover, it permits an arbitrary start-
ing point, which makes a hybrid approach possible, i.e., using the PK or KB
algorithm for sparse graphs and ours for dense graphs.

The rest of this paper is organized as follows. In Section 2, we describe the
algorithm and the data structures involved. In Section 3, we give the correctness
argument for our algorithm, followed by an analysis of its runtime in Sections 4
and 5. An empirical comparison with other algorithms follows in Section 6.

2 Algorithm

We keep the current topological order as a bijective function, T : V → [1..n]. If
we start with an empty graph, we can initialize T with an arbitrary permutation,
otherwise T is the topological order of the starting graph, computed offline. In
this and the subsequent sections, we will use the following notations: d(u, v)
denotes |T (u)− T (v)|, u < v is a short form of T (u) < T (v), u → v denotes an
edge from u to v, and u � v expresses that v is reachable from u. Note that
u � u, but not u → u.

Figure 1 gives the pseudo code of our algorithm. Throughout the process of
inserting new edges, we maintain some data structures which are dependent
on the current topological order. Inserting a new edge (u, v) is done by calling
Insert(u, v). If v > u, we do not change anything in the current topological
order and simply insert the edge into the graph data structure. Otherwise, we
call Reorder to update the topological order as well as the data structures
dependent on it. As we will prove in Theorem 2, detecting v = u indicates a
cycle. If v < u, we first collect sorted sets A and B as defined in the code. If both
A and B are empty, we swap the topological order of the two nodes and update
the data structures. The query and the update operations are described in more
detail along with our data structures in Section 2.1. Otherwise, we recursively
call Reorder until everything inside is topologically ordered. To make these
recursive calls efficient, we first merge the sorted sets {v} ∪A and B ∪ {u} and
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using this merged list, compute the set {u′ : (u′ ∈ B ∪ {u})∧ (u′ > v′)} for each
node v′ ∈ {v} ∪A.

Insert(u, v)
� Insert edge (u, v) and calculate new topological order

1 if v ≤ u then Reorder(u,v)
2 insert edge (u, v) in graph

Reorder(u, v)
� Reorder nodes between u and v such that v ≤ u

1 if u = v then report detected cycle and quit
2 A := {w : v → w and w ≤ u}
3 B := {w : w → u and v ≤ w}
4 if A = ∅ and B = ∅

then � Correct the topological order
5 swap u and v
6 update the data structure

else � Reorder node pairs between u and v
7 for v′ ∈ {v} ∪ A in decreasing topological order
8 for u′ ∈ B ∪ {u} ∧ u′ ≥ v′ in increasing topological order
9 Reorder(u′,v′)

Fig. 1. Our algorithm

2.1 Data Structure

We store the current topological order, as a set of two arrays, storing the bijec-
tive mapping T and its inverse. This ensures that finding T (i) and T−1(u) are
constant time operations.

The graph itself is stored as an array of vertices. For each vertex we maintain
two adjacency lists, which keep the incoming and outgoing edges separately. Each
adjacency list is stored as an array of buckets of vertices. Each bucket contains
at most t nodes for a fixed t. Depending on the concrete implementation of
the buckets, the parameter t is later chosen to be approximately n0.75 so as
to balance the number of inserts and deletes from the buckets and the extra
edges touched by the algorithm. The i-th bucket (i ≥ 0) of a node u contains
all adjacent nodes v with i · t < d(u, v) ≤ (i + 1) · t. The nodes of a bucket are
stored with node index (and not topological order) as their key. The bucket can
be kept as a balanced binary tree or as an array of n-bits or as a hash-table of
a universal hashing function. The bucket data structure should provide efficient
support for the following three operations:

1. Insert: Inserting an element in a given bucket.
2. Delete: Given an element and a bucket, find out if that element exists in that

bucket. If yes, delete the element from there and return 1. Else, return 0.
3. Collect-all: Copying all the elements from the bucket to some vector.
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Depending on how we choose to implement the buckets, we get different run-
times. This will be discussed in Section 5. We will now discuss how we do the
insertion of an edge, computation of A and B, and updating the data-structure
under swapping of nodes in terms of the above three basic operations.

Inserting an edge (u, v) means, inserting node v to the forward adjacency list
of u and u to the backward adjacency list of v. This requires O(1) bucket inserts.

For given u and v, the set A := {w : v → w and w < u} sorted according
to the current topological order can be computed from the adjacency list of v
by sorting all nodes of the first

⌈
d(u, v)/t

⌉
outgoing buckets and choosing all w

with w < u. This can be done by O
(
d(u, v)/t

)
collect-all operations on buckets

collecting a total of O(|A|+ t) elements. These elements are integers in the range
{1 . . n} and can be sorted in O(|A| + t +

√
n) time using a two-pass radix sort

algorithm. The set B is computed likewise from the incoming edges.
When we swap two nodes u and v, we need to update the adjacency lists of

u and v as well as that of all nodes w that are adjacent to u and/or v. First,
we show how to update the adjacency lists of u and v. If d(u, v) > t, we have to
build their adjacency lists from scratch. Otherwise, the new bucket boundaries
will differ from the old boundaries by d(u, v) and at most d(u, v) nodes will need
to be transferred between any pair of consecutive buckets. The total number
of transfers are therefore bounded by d(u, v)�n/t�. Determining whether a node
should be transferred can be done in O(1) using the inverse mapping T−1 and as
noted above, a transfer can be done in O(1) bucket inserts and deletes. Hence,
updating the adjacency lists of u and v needs min{n, d(u, v)�n/t�} bucket inserts
and deletes.

Let w be a node which is adjacent to u or v. Its adjacency list needs to be
updated only if u and v are in different buckets. This corresponds to w being
in different buckets of the adjacency lists of u and v. Therefore, the number of
nodes to be transferred between different buckets for maintaining the adjacency
lists of all w’s is the same as the number of nodes that need to be transferred
for maintaining the adjacency lists of u and v, i.e., min{n, d(u, v)�n/t�}.

Updating the mappings T and T−1 after such a swap is trivial and can be
done in constant time. Thus, we conclude that swapping nodes u and v can be
done by O(d(u, v)�n/t�) bucket inserts and deletes.

3 Correctness

Theorem 1. The above algorithm returns a valid topological order after each
edge insertion.

Proof. For a graph with no edges, any ordering is a correct topological order,
and therefore, the theorem is trivially correct. Assuming that we have a valid
topological order of a graph G, we show that when inserting a new edge (u, v)
using Insert(u, v), our algorithm maintains the correct topological order of
G′ := G ∪ {(u, v)}. If u < v, this is trivial.

We need to prove that x < y for all nodes x, y of G′ with x � y. If there was
a path x � y in G, Lemma 1 gives x < y. Otherwise (if there is no x � y in G),
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the path x � y must have been introduced to G′ by the new edge (u, v). Hence
x < y in G′ by Lemma 2 since there is x � u → v � y in G′. �

Lemma 1. Given a DAG G and a valid topological order. If u � v and u < v,
then all subsequent calls to Reorder will maintain u < v.

Proof. Let us assume the contrary. Consider the first call of Reorder which
leads to u > v. Either this call led to swapping u and w with v ≤ w or it
caused swapping w and v with w ≤ u. Note that in our algorithm, a call of
Reorder(u, v) leads to a swapping only if A = ∅ and B = ∅. Assuming that
it was the first case (swapping u and w) caused by the call to Reorder(u, w),
A = ∅. However, x ∈ A for an x with u → x � v, leading to a contradiction.
The other case is proved similarly. �

Lemma 2. Given a DAG G with v � y and x � u, a call of Reorder(u, v)
will ensure that x < y.

Proof. The proof follows by induction on the recursion depth of Reorder(u, v).
For leaf nodes of the recursion tree, A = B = ∅. If x < y before this call happens,
Lemma 1 ensures that x < y will continue. Otherwise, y := v and x := u. The
swapping of u and v in line 5 gives x < y.

We assume this lemma to be true for calls of Reorder up to a certain tree
level. If A �= ∅, then there is a ṽ such that v → ṽ � y, otherwise ṽ := v = y.
If B �= ∅, then there is a ũ such that x � ũ → u, otherwise ũ := u = x. Hence
ṽ � y < x � ũ. The for-loops of lines 7 and 8 will call Reorder(ũ, ṽ). By
the inductive hypothesis, this will ensure x < y. According to Lemma 1, further
calls to Reorder will maintain x < y. �

Theorem 2. The algorithm detects a cycle if and only if there is a cycle in the
given edge sequence.

Proof. “⇒”: First, we show that within a call to Insert(u, v), there are paths
v � v′ and u′ � u for each recursive call to Reorder(u′, v′). This is triv-
ial for the first call to Reorder and follows immediately by the definition of
A and B for all subsequent recursive calls to Reorder. This implies that if
the algorithm indicates a cycle in line 1 of Reorder, there is indeed a cycle
u→ v � v′ = u′ � u. In fact, the cycle itself can be computed using the recur-
sion stack of the current call to Reorder.

“⇐”: Consider the edge (u, v) of the cycle v � u → v inserted last. Since
v � u before the insertion of this edge, the topological order computed will
have v < u (Theorem 1) and therefore, Reorder(u, v) would be called. In
fact, all edges in the path v � u will obey the current topological ordering
and by Lemma 1, it will remain so for all subsequent calls of Reorder. We
prove by induction on the number of nodes in the path v � u (including u and
v) that whenever v � u and Reorder(u, v) is called, it detects the cycle. A
call of Reorder(u′, v′) with u′ = v′ or Reorder(u′, v′) with v′ → u′ clearly
reports a cycle. Consider a path v → x � y → u of length k > 2 and the
call of Reorder(u, v). As noted before, v < x ≤ y < u before the call to



58 D. Ajwani, T. Friedrich, and U. Meyer

Reorder(u, v). Hence x ∈ A and y ∈ B and a call to Reorder(y, x) will be
made in the for loop of lines 7 and 8. As y � x has k− 2 nodes in the path, the
call to Reorder(y, x) (by our inductive hypothesis) will detect the cycle. �

4 Runtime

Theorem 3. Online topological ordering can be computed using O(n3.5/t)
bucket inserts and deletes, O(n3/t) bucket collect-all operations collecting O(n2t)
elements, and O(n2.5 + n2t) operations.

Proof. Lemma 4 shows that Reorder is called O(n2) times. Lemma 6 shows
that the calculation of the sets A and B over all calls of Reorder can be done by
O(n3/t) bucket collect-all operations touching O(n2t) edges, and O(n2.5 + n2t)
operations. In Lemma 9, we prove that all the updates can be done by O(n3.5/t)
bucket inserts and deletes.

As for lines 7 and 8, we first merge the two sorted sets A and B, which
takes O(|A| + |B|) operations. For a particular node v′ ∈ {v} ∪A, we can com-
pute the set V ′ = {u′ : (u′ ∈ B ∪ {u}) ∧ (u′ > v′)} (as required by line 8)
using this merged set in complexity O(1 + |V ′|), which is also the number of
calls of Reorder emanating for this particular node. Summing over the en-
tire for loop of line 7, the total complexity of lines 7 and 8 is O(|A| + |B| +
#(calls of Reorder emanating from here)). Since by Lemma 5, the summation
of |A|+ |B| over all calls of Reorder is O(n2) and by Lemma 4, the total num-
ber of calls to Reorder is also O(n2), we get a total of O(n2) operations for
lines 7 and 8. Putting everything together, the theorem follows. �

Lemma 3. Reorder is local, i.e., a call to Reorder(u, v) does not affect the
topological ordering of nodes w such that either w < v or w > u just before the
call was made.

Proof. This theorem can be proved by induction on the level of recursion tree of
the call to Reorder(u, v). For the leaf node of the recursion tree, |A| = |B| = 0
and the topological order of u and v is swapped, not affecting the topological
ordering of any other node.

We assume this lemma to be true up to a certain tree level. To see that it is
valid even for a level higher, note that the arrays A and B contain elements w
such that v < w < u. Since each call of Reorder in the for-loop of line 7 and 8
is from an element of A to an element of B and all of these calls are themselves
local by our induction hypothesis, this call of Reorder is also local. �

Lemma 4. Reorder is called O(n2) times.

Proof. Let u and v be arbitrary nodes. Let us consider the first time, Re-
order(u, v) is called. If A = B = ∅, u and v will be swapped. Otherwise,
Reorder(u′, v′) is called recursively for all v′ ∈ {v} ∪ A and u′ ∈ B ∪ {u}
with u′ > v′. The order in which we make these recursive calls and the fact
that Reorder is local (Lemma 3) ensures that Reorder(u, v) is not called



An O(n2.75) Algorithm for Online Topological Ordering 59

except as the last of these recursive calls. In this second call to Reorder(u, v),
A = B = ∅. To see this consider all v′ ∈ A and u′ ∈ B (A and B from the first
call of Reorder(u, v)). Reorder(u, v′) and Reorder(u′, v) must have been
called within the for-loop of the first execution of Reorder(u, v) before this
second call was made. Therefore it follows from Lemma 2 and Lemma 1 that
before the second call, u < v′ and u′ < v for all v′ ∈ A and u′ ∈ B. Hence u
and v will be swapped at the latest in the second call of Reorder(u, v). Since
Reorder(u, v) is only called if v < u, Reorder(u, v) will not be called again.
Hence, Reorder(u, v) is called at most two times for each node pair (u, v). �

Lemma 5. The summation of |A|+ |B| over all calls of Reorder is O(n2).

Proof. Consider arbitrary nodes u and v′. We prove that for all v ∈ V , v′ ∈ A
happens only once over all calls of Reorder(u, v). This proves that

∑
|A| ≤

n, for all such calls of Reorder(u, v). Therefore summing up for all u ∈ V ,∑
|A| ≤ n2 over all calls of Reorder.
In order to see that for all v ∈ V , v′ ∈ A happens only once over all calls of

Reorder(u, v), observe that v′ ∈ A implies that v′ < u before Reorder(u, v)
was called. In particular, v′ < u before the call of Reorder(u, v′) in the for-loop
of Reorder(u, v) (follows from the order of recursive calls) and by Lemma 2,
u < v′ after this call. Therefore, v′ /∈ A for a call of Reorder(u, w) for any node
w after this call. The same is true for all calls of Reorder(u, w) before this call as
otherwise u < v′ even before the beginning of the current call of Reorder(u, v)
and v′ /∈ A for the current call. Also, v′ /∈ A for any of the recursive calls of
this call to Reorder(u, v′). This follows from the order in which we make the
recursive calls and the fact that Reorder is local (Lemma 3).

Analogously, it can be proved that for arbitrary nodes v and v′ and for all
u ∈ V , v′ ∈ B happens only once over all calls of Reorder(u, v). The proof for∑
|B| ≤ n2 follows similarly and it completes the proof for this lemma. �

Lemma 6. Calculating the sorted sets A and B over all calls of Reorder
can be done by O(n3/t) bucket collect-all operations touching a total of O(n2t)
elements and O(n2.5 + n2t) operations for sorting these elements.

Proof. Consider the calculation of set A in a call of Reorder(u, v). As discussed
before in Section 2.1, we look at the out adjacency list of u, stored in the form
of buckets. In particular, we will need O(d(u, v)/t) bucket collect-all operations
touching O(|A| + t) elements to calculate A. The additional worst-case factor
of t stems from the last bucket visited. Summing up over all calls of Reorder,
we get O

(∑
d(u, v)/t

)
collect-alls touching

∑
(|A| + |B| + t) elements. Since

d(u, v) ≤ n for every call of Reorder(u, v) and there are O(n2) calls of Re-
order (Lemma 4), there are O(n3/t) bucket collect-all operations. Also, since∑

(|A|+ |B|) = O(n2) by Lemma 5, the total number of elements touched is
O(n2 +

∑
t) = O(n2t). Since the keys are in the range {1 . . n}, we can use a two-

pass radix sort to sort the elements collected from the buckets. The total sorting
time over all calls of Reorder is

∑
(2(|A|+ t) +

√
n) +

∑
(2(|B|+ t) +

√
n) =

O(n2.5 + n2t). �
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Lemma 7. Each node-pair is swapped at most once.

Proof. Reorder(u, v) is called only when v < u. Once a swapping happens,
u < v. By Lemma 1, it will remain so for all calls of Reorder thereafter.
Therefore, Reorder(u, v) is never called again and u and v will not be swapped
again. �

Lemma 8.
∑

d(u, v) = O(n5/2) where the summation is taken over all calls of
Reorder(u,v) in which u and v are swapped.

Proof. Let T ∗ denote the final topological ordering and

X(T ∗(u), T ∗(v)) :=

{
d(u, v) if and when Reorder(u, v) leads to a swapping
0 otherwise

Since by Lemma 7 any node-pair is swapped at most once, the variable X(i, j) is
clearly defined. Next, we model a few linear constraints on X(i, j), formulate it as
the linear program and use this LP to prove that max{

∑
i,j X(i, j)} = O(n5/2).

By definition of d(u, v) and X(i, j),

0 ≤ X(i, j) ≤ n for all i, j ∈ [1 . . n].

For j ≤ i, the corresponding edges (T ∗ −1(i), T ∗ −1(j)) go backwards and thus
are never inserted at all. Consequently,

X(i, j) = 0 for all j ≤ i.

Now consider an arbitrary node u, which is finally at position i, i.e., T ∗(u) = i.
Over the insertion of all edges, this node has been moved left and right via
swapping with several other nodes. Strictly speaking, it has been swapped right
with nodes at final positions j > i and has been swapped left with nodes at final
positions j < i. Hence, the overall movement to the right is

∑
j>i X(i, j) and to

left is
∑

j<i X(j, i). Since the net movement (difference between the final and
the initial position) must be less than n,∑

j>i

X(i, j)−
∑
j<i

X(j, i) ≤ n for all 1 ≤ i ≤ n.

Putting all the constraints together, we aim to solve the following linear program.

max
∑

1≤i≤n
1≤j≤n

X(i, j) such that

(i) X(i, j) = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ i
(ii) 0 ≤ X(i, j) ≤ n for all 1 ≤ i ≤ n and i < j ≤ n
(iii)

∑
j>i X(i, j)−

∑
j<i X(j, i) ≤ n− 1 for all 1 ≤ i ≤ n
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Note that these are necessary constraints, but not sufficient. But this is enough
for our purpose as an upper bound to the solution of this LP will give an upper
bound for the

∑
X(i, j) in our algorithm. In order to prove the upper bound on

the solution to this LP, we consider the dual problem

min

[
n
∑

0≤i<n
i<j<n

Yi·n+j + n
∑

0≤i<n

Yn2+i

]
such that

(i) Yi·n+j ≥ 1 for all 0 ≤ i < n and for all j ≤ i
(ii) Yi·n+j +Yn2+i−Yn2+j ≥ 1 for all 0 ≤ i < n and for all j > i
(iii) Yi ≥ 0 for all 0 ≤ i < n2 + n

and the following feasible solution for the dual:

Yi·n+j = 1 for all 0 ≤ i < n and for all 0 ≤ j ≤ i
Yi·n+j = 1 for all 0 ≤ i < n and for all i < j ≤ i + 1 + 2

√
n

Yi·n+j = 0 for all 0 ≤ i < n and for all j > i + 1 + 2
√

n

Yn2+i =
√

n− i for all 0 ≤ i < n.

This solution has a value of n2 + 2 n
5
2 + n

∑n
i=1

√
i = O(n

5
2 ), which by the

primal-dual theorem is a bound on the solution of the original LP.
In fact, it can be shown that there is a solution to primal LP whose value is

O(n
5
2 ), namely

X(i, j) = 0 for all 0 ≤ i < n and for all 0 ≤ j ≤ i

X(i, j) = n for all 0 ≤ i < n and for all i < j ≤ i + �
√

1+8i−1
2 �

X(i, j) = 0 for all 0 ≤ i < n and for all j > i + �
√

1+8i−1
2 �. �

Lemma 9. Updating the data structure over all calls of Reorder requires
O(n3.5/t) bucket inserts and deletes.

Proof. Our data structure requires O(d(u, v)n/t) bucket inserts and deletes
to swap two nodes u and v. Each node pair is swapped at most once (cf.
Lemma 7). Hence, summing up over all calls of Reorder(u, v) where u and v are
swapped, we need O(

∑
d(u, v)n/t) = O(n3.5/t) bucket inserts and deletes using

Lemma 8. �

5 Bucket Data Structure

We get different runtimes and space requirements of our algorithm depending
on the data structures of the buckets used:

(a) Balanced binary trees: Balanced binary trees give us O(1+log τ) time insert
and delete and O(1 + τ) time collect-all operation, where τ is the number of
elements in the bucket. Therefore, by Theorem 3, the total time required will
be O(n2t + n3.5 log n/t). Substituting t = n0.75√log n, we get a total time
of O(n2.75√log n). The total space requirement will be O(n2) as a balanced
binary tree needs O(t) nodes for storing at most t elements.
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(b) n-bit array: A bucket that stores at most t elements can be kept as an n-bit
array, where each bit is 0 or 1 depending on whether or not the element is
present in the bucket. Also, we can keep a list of all elements in the bucket.
To insert, we just flip the appropriate bit and insert at the end of the list. To
delete, we just flip the appropriate bit. To collect all, we go through the list
and for each element in the list, we check if the corresponding bit is 1 or 0.
If it is 0, we also remove it from the list. This gives us constant-time insert
and delete and the time for collect-all operation will be the total output size
plus the total number of delete. Each delete is counted once in collect-all as
we remove the corresponding element from the list after the first collect-all.
By Theorem 3, the total time required will be O(n2t + n3.5/t), giving us
O(n2.75) for t = n0.75. The total space requirement will be O(n) for each
bucket, leading to a total of O(n2.25) for O(n2/t) buckets.

(c) Uniform Hashing [8]: A data structure based on uniform hashing coupled
with a list of elements in the bucket operated in the same way as the n-bit
array will give an expected constant-time insert and delete and the same
bound for collect-all as for the n-bit array. This gives an expected total time
of O(n2t + n3.5/t). With t = n0.75 this yields an expected time of O(n2.75).
Since the hashing based data structure as described in [8] takes only linear
space, the total space requirement is O(n2).

6 Empirical Comparison

In addition to the achieved worst-case bounds, we also implemented our algo-
rithm (AFM) and compared it to David J. Pearce’s [9] implementation of PK,
MNR, and AHRSZ. The experiments were conducted on a 2.4 GHz Opteron
machine with 8GB of main memory running Debian GNU/Linux.

On a random edge sequence, all the algorithms are quite fast and none of them
encounters its worst-case behavior. Therefore, we consider a particular sequence
of edges which we believe is a hard instance of the problem. This edge sequence
is similar to the worst-case sequence given by Katriel and Bodlaender for their
algorithm. On this sequence, PK, MNR and AHRSZ (the variant choosing the
smallest permitted priority) face their worst-case of Ω(n3) operations, while
our algorithm (using n-bit array and quick sort) takes Õ(n2.5) time complexity.
This sequence of edges is depicted in Fig. 2. For an example with n nodes, we

Fig. 2. Our hard-case graph

divide the set of nodes into four
blocks of different sizes: block 1
consist of nodes [0 . . n/3), block 2 of
nodes [n/3 . . n/2), block 3 of nodes
[n/2 . .2n/3), and block 4 of nodes
[2n/3 . . n). First, we insert n − 4
edges such that within each block,
the vertices form a directed path
from left to right. Then we insert
the following edges,
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Fig. 3. Experimental data on a class of hard instances with varying n

(a)
→
∀ j ∈ [0..n/3)

←
∀ k ∈ [0..n/6) : add edge(j, k + n/2),

(b)
→
∀ j ∈ [0..n/6) : add edge(2j, j + n/3) and edge(2j + 1, j + n/3),

(c)
→
∀ j ∈ [0..n/6)

←
∀ k ∈ [0..n/3) : add edge(j + n/3, k + 2n/3),

(d)
→
∀ j ∈ [0..n/6)

←
∀ k ∈ [0..n/6) : add edge(j + n/2, k + n/3),

where
→
∀ denotes going from left to right in the for -loop and

←
∀ the other

way around. Similar sequences, which force AHRSZ to encounter its asymptotic
worst-case complexity, can be chosen for all variants of AHRSZ.

Fig. 3 shows the runtimes of the four algorithms in consideration on the graphs
described before. The discussed difference in the asymptotic behaviour is clearly
visible. For n = 8000, AFM is 2 times faster than MNR, 3.6 times faster than
PK, and 30 times faster than AHRSZ. Due to the more involved data structures,
our implementation of AFM is a constant factor of 2-4 away from AHRSZ, MNR
and PK on the random edge sequences that we tested [1]. For practical purposes,
we believe that a hybrid approach would perform best. That is, one inserts the
first O(n log n) edges with either PK or KB and then inserts the remaining edges
with our algorithm.

7 Discussion

We have presented the first o(n3) algorithm for online topological ordering.
We also implemented this new algorithm and compared it with previous ap-
proaches, showing that for certain hard examples, it outperforms PK, MNR,
and AHRSZ, while it is still competitive on random edge sequences leading to
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complete DAGs. The only non-trivial lower bound for this problem is by Ra-
malingam and Reps [11], who show that an adversary can force any algorithm
maintaining explicit labels to need Ω(n log n) time complexity for inserting n−1
edges. There is still a large gap between this, the trivial lower bound of Ω(m),
and the upper bound of O(min{m1.5 + n2 log n, m1.5 log n, n2.75}). Bridging this
gap remains an open problem.
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Abstract. We consider a matching market, in which the aim is to main-
tain a popular matching between a set of applicants and a set of posts,
where each applicant has a preference list that ranks some subset of ac-
ceptable posts. The setting is dynamic: applicants and posts can enter
and leave the market, and applicants can also change their preferences
arbitrarily. After any change, the current matching may no longer be
popular, in which case, we are required to update it. However, our model
demands that we can switch from one matching to another only if there
is consensus among the applicants to agree to the switch. Hence, we need
to update via a voting path, which is a sequence of matchings, each more
popular than its predecessor, that ends in a popular matching. In this
paper, we show that, as long as some popular matching exists, there is
a 2-step voting path from any given matching to some popular match-
ing. Furthermore, given any popular matching, we show how to find a
shortest-length such voting path in linear time.

1 Introduction

An instance of the popular matching problem consists of a bipartite graph G =
(A ∪ P , E), together with a partition E1∪̇E2 . . . ∪̇Er of the edge set E. We call
A the set of applicants, P the set of posts, and Ei the set of edges with rank i.
If (a, p) ∈ Ei and (a, p′) ∈ Ej with i < j, we say that a prefers p to p′. If i = j,
then a is indifferent between p and p′. The ordering of posts adjacent to a is
called a’s preference list. We say that preference lists are strictly ordered if no
applicant is indifferent between any two posts in its preference list.

A matching M of G is a subset of E, such that no two edges of M share a
common endpoint. A node u ∈ A ∪ P is either unmatched in M , or matched to
some node denoted by M(u). We say an applicant a prefers matching M ′ to M
if (i) a is matched in M ′ and unmatched in M , or (ii) a is matched in both M ′

and M , and a prefers M ′(a) to M(a).
Matching M ′ is more popular than matching M , denoted by M ′ � M , if

the number of applicants preferring M ′ to M is greater than the number of
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applicants preferring M to M ′. A matching M is popular if there is no matching
M ′ that is more popular than M .

It turns out that a popular matching may not always exist (see [3] for an
example) - the reason being, of course, that the more popular than relation is
not acyclic. The popular matching problem is to determine if a given instance
admits a popular matching, and to find such a matching, if one exists. The first
polynomial-time algorithms for this problem were given in [3]: when preference
lists are strictly ordered, the problem can be solved in O(n + m) time, where
n = |A ∪ P| and m = |E|, and more generally, the problem can be solved in
O(m

√
n) time. Note that when E = E1, a matching is popular if and only if it

has maximum cardinality. Hence, the popular matching problem is at least as
hard as the problem of finding a maximum matching in a bipartite graph.

Problem Definition. In this paper, we consider a matching market where
the aim is to maintain a popular matching. The setting is dynamic: applicants
and posts can enter and leave the matching market, and applicants can change
their preferences arbitrarily. More precisely, an instance of the dynamic popular
matching problem consists of an instance G of the popular matching problem,
together with an existing (possibly empty) matching M0.

It turns out that we cannot ignore M0 and simply compute a popular matching
in G from scratch after each change, since any particular popular matching we
find may not be more popular than M0, and furthermore, it is possible that
no popular matching is more popular than the existing matching M0. Hence,
in general, there may be no consensus amongst the applicants to move directly
from M0 to a popular matching. We show such an example below.

Consider Fig. 1. Let M0 = {(a1, p5), (a2, p2), (a3, p3), (a4, p1)}. First note
that M0 is not popular, since it is less popular than M1 = {(a1, p2), (a2, p3),
(a4, p1)} (even with a3 unmatched). We can show using Lemma 2 from Section 2
that the only popular matchings are M∗ = {(a1, p1), (a2, p2), (a3, p3), (a4, p4)}
and N∗ = {(a1, p1), (a2, p3), (a3, p2), (a4, p4)}. However, it is clear that neither
M∗ nor N∗ is more popular than M0.

a1 : p1 p2 p5; a2 : p3 p2;
a3 : p3 p2; a4 : p1 p4.

Fig. 1. Instance that motivates the voting-path approach

In order to arrive at a popular matching by consensus, [3] introduced the
following generalization of the more popular than relation: A matching Mk is
reachable from M0 if there is a sequence of matchings 〈M0, M1, . . . , Mk〉, such
that each matching is more popular than its predecessor. Such a sequence is
called a length-k voting path from M0 to Mk. (Note that the instance above has
a length-2 voting path from M0 to a popular matching, namely 〈M0, M1, N

∗〉.)
There is no a priori reason to expect that such a voting path must exist:

the more popular than relation is not acyclic, and so perhaps there are some
matchings from which we cannot avoid cycling. Even if such a path does exist, it
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may have length exponential in the size of G, since there can be an exponential
number of matchings. In this paper, we show the following result.

Theorem 1. Let 〈G, M0〉 be an instance of the dynamic popular matching prob-
lem, where G admits a popular matching. Then G admits a voting path of length
at most 2 from M0 to some popular matching. Additionally, given any popular
matching, we can find a shortest-length such voting path in only linear time.

Hence, by using the popular matching algorithms in [3], we can solve the dy-
namic popular matching problem in O(m + n) time when preference lists are
strictly ordered, and more generally in O(m

√
n) time. This solves the problem

of efficiently computing a shortest-length voting path to a popular matching,
which was posed in [3]. We have also shown that such paths have length at most
2. A bound of 3 was claimed (without proof) in [3].

Interestingly, the improvement from 3 to 2 implies a connection to the famous
result in graph theory that every tournament has a king [13]. The more popular
than relation is a directed graph on an exponential number of vertices. This
graph is not a tournament though, since for any pair of matchings, there is
no guarantee that one is more popular than the other. However, even without
these edges, the set of popular matchings collectively acts as a king, since every
unpopular matching has a voting path of length at most 2 into this set.

Related Previous Work. The bipartite matching problem with a graded edge
set is well-studied in both economics and computer science, see for example
[1, 17, 21] and [5, 11, 2]. It models some important real-world problems, including
the allocation of graduates to training positions [9], families to government-
owned housing [20], and customers to rental DVDs [16].

Gardenfors [7] first introduced the notion of a popular matching in the context
of the stable marriage problem. Of course, the more popular than concept can
be traced back even further to the Condorcet voting protocol.

One drawback of the popularity criterion is that a popular matching may not
always exist. However, in a recent work, Mahdian [14] showed that a popular
matching exists with high probability, when (i) preference lists are randomly con-
structed, and (ii) the number of posts is a small multiplicative factor larger than
of the number of applicants. Other recent work on popular matchings includes
Mestre’s [15] generalization of the efficient popular matching characterization in
[3] to the case where each applicant vote carries a weight.

We remark that the result in our paper is analogous to a series of papers
[12, 18, 19, 4] on decentralized mechanisms in the stable matching literature. The
well-known mechanisms for stable matching, due to Gale/Shapley [6] and Irving
[10], require a central body to collect preferences and dictate the final matching.
Alternatively, in a decentralized setting, a blocking pair (i.e. a man and woman
who prefer each other to their current partners) will act locally by divorcing
their current partners and marrying each other. Knuth [12] showed that if the
divorced partners also marry each other, this process may cycle. However, when
divorced partners are not required to marry each other, and every blocking pair
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has some probability of acting next, Roth and Vande Vate [18] show by way of
a potential argument that there is always a path to a stable matching.

In our setting, the analogue of a blocking pair is a coalition of applicants
who prefer some matching M ′ to the current matching M , and have sufficient
numbers to win a vote between M ′ and M . Although it is not too difficult to
prove the existence of voting paths via a potential argument (at least for the
restriction to strictly-ordered preference lists), in this paper we use more powerful
techniques from matching theory, which also give the surprising length-2 bound.
As with the result in [18], this means as long as every matching more popular
than the current one has some probability of an up-or-down vote, then in the
limit, a decentralized mechanism will lead to a popular matching.

2 Preliminaries: Length-0 Voting Paths

In this section, we review the algorithmic characterization of popular matchings
given in [3]. This characterization can be used to determine if a given instance
〈G, M0〉 admits a length-0 voting path to a popular matching.

For exposition purposes, we create a unique strictly-least-preferred post l(a)
for each applicant a. In this way, we can assume that every applicant is matched,
since any unmatched applicant a can be paired with l(a). From now on then,
matchings are A-perfect. Also, without loss of generality, we assume that pref-
erence lists contain no gaps, i.e., if a is incident to an edge of rank i, then a is
incident to an edge of rank i− 1, for all i > 1.

Let G1 = (A ∪ P , E1) be the graph containing only rank-one edges. Then
[3, Lemma 3.1] shows that a matching M is popular in G only if M ∩ E1 is a
maximum matching of G1. Maximum matchings have the following important
properties, which we use throughout the rest of the paper.

M ∩E1 defines a partition of A∪P into three disjoint sets: a node u ∈ A∪P
is even (resp. odd) if there is an even (resp. odd) length alternating path in G1
(w.r.t. M ∩E1) from an unmatched node to u. Similarly, a node u is unreachable
if there is no alternating path from an unmatched node to u. Denote by E , O
and U the sets of even, odd, and unreachable nodes, respectively.

Lemma 1 (Gallai-Edmonds Decomposition). Let E, O and U be the sets
of nodes defined by G1 and M ∩ E1 above. Then

(a) E, O and U are pairwise disjoint, and independent of the maximum matching
M ∩ E1.

(b) In any maximum matching of G1, every node in O is matched with a node
in E, and every node in U is matched with another node in U . The size of a
maximum matching is |O|+ |U|/2.

(c) No maximum matching of G1 contains an edge between a node in O and a
node in O ∪ U . Also, G1 contains no edge between a node in E and a node
in E ∪ U .
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Using this node partition, we make the following definitions: for each applicant a,
f(a) is the set odd/unreachable posts amongst a’s most-preferred posts1. Also,
s(a) is the set of a’s most-preferred posts amongst all even posts. We refer to
posts in ∪a∈Af(a) as f -posts and posts in ∪a∈As(a) as s-posts. Note that f -posts
and s-posts are disjoint, and that s(a) �= ∅ for any a, since l(a) is always even.
Also note that there may be posts in P that are neither f -posts nor s-posts. The
next lemma characterizes the set of all popular matchings.

Lemma 2 ([3]). A matching M is popular in G iff (i) M ∩ E1 is a maximum
matching of G1 = (A∪P , E1), and (ii) for each applicant a, M(a) ∈ f(a)∪s(a).

Using this lemma, we check if M0 is a popular matching in G or equivalently,
if 〈G, M0〉 admits a length-0 voting path to a popular matching: M0 ∩ E1 is a
maximum matching of G1 iff G1 admits no augmenting path. Also, given that
M0 ∩ E1 is a maximum matching of G1, it is trivial to compute the Gallai-
Edmonds decomposition and then to check that each applicant a is matched
to M(a) ∈ f(a) ∪ s(a). These checks can clearly be performed in linear time.
Henceforth, we assume then that M0 is not popular, for otherwise 〈G, M0〉 admits
a length-0 voting path, and we are done. We also assume that G admits a popular
matching, for otherwise no voting path can end in a popular matching.

We conclude this section with Fig. 2, which contains the algorithm from [3],
based on Lemma 2, for solving the popular matching problem.

Popular-Matching(G = (A ∪ P , E))

Construct the graph G′ = (A ∪ P , E′), where E′ = {(a, p) : a ∈ A and
p ∈ f(a) ∪ s(a)}.

Construct a maximum matching M of G1 = (A ∪ P , E1).
//Note that M is also a matching in G′.

Remove any edge in G′ between a node in O and a node in O ∪ U .
//No maximum matching of G1 contains such an edge.

Augment M in G′ until it is a maximum matching of G′.
Return M if it is A-perfect, otherwise return “no popular matching”.

Fig. 2. An O(
√

nm)-time algorithm for the popular matching problem (from [3])

3 Length-1 Voting Paths

In this section, we show that, given any popular matching of G, the problem of
finding a length-1 voting path from M0 to a popular matching, or proving that
no such path exists, can be solved in linear time. First though, we work towards
characterizing the set of all popular matchings that are more popular than M0.

Let ra(p) be the rank of edge (a, p) ∈ E. Also, let ra(s(a)) be the rank of
any edge (a, p), where p ∈ s(a). We define the signature of a matching M as the
4-tuple (|AM

f |, |AM
m |, |AM

s |, |AM
l |) 2, where:

1 In [3], f(a) is defined as the set of rank-1 posts in a’s preference list. We find the
definition above more suitable.

2 The subscripts f, m, s, and l stand for first, middle, second, and last, respectively.
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(i) AM
f = {a ∈ A|ra(M(a)) = 1, and a is even/unreachable, i.e. a ∈ E ∪ U}.

(ii) AM
m = {a ∈ A|1 < ra(M(a)) < ra(s(a))}.

(iii) AM
s = {a ∈ A|ra(M(a)) = ra(s(a))}.

(iv) AM
l = {a ∈ A|ra(M(a)) > ra(s(a))}.

Note that an odd applicant a ∈ O can only belong to AM
s ∪ AM

l , even if
ra(M(a)) = 1, since a /∈ AM

f by definition, and a /∈ AM
m , since ra(s(a)) = 1.

Also note that for any even/unreachable applicant a ∈ A \ O, ra(s(a)) �= 1.
Hence AM

f , AM
m , AM

s , and AM
l are pairwise disjoint and partition A. So |AM

f |+
|AM

m |+ |AM
s |+ |AM

l | = |A|. Finally, note that AM
f = {a ∈ A : M(a) ∈ f(a)}. The

partition ofA by M into these four sets will guide us towards a popular matching
that is more popular than M . Our first observation is that all popular matchings
have the same signature, as shown by Lemma 3, where F = ∪a∈Af(a).

Lemma 3. A matching M is popular iff its signature is (|F|, 0, |A| − |F|, 0).

Proof. Suppose M is popular. Then by Lemma 2, |AM
m | = |AM

l | = 0, and
so |AM

f | + |AM
s | = |A|. Now, |AM

f | ≤ |F|, since every applicant in AM
f is

matched with some post in F . But since M ∩E1 is a maximum matching of G1,
Lemma 1(b) requires that every post in F is matched with some applicant in AM

f .
Hence, |AM

f | = |F|, |AM
s | = |A| − |F|, and M has signature (|F|, 0, |A| − |F|, 0).

Conversely, suppose M has signature (|F|, 0, |A| − |F|, 0). Then |AM
m | =

|AM
l | = 0, and so for every a ∈ A, M(a) ∈ f(a) ∪ s(a). It remains to prove that

M ∩E1 is a maximum matching of G1. We have |M ∩E1| = |AM
f |+ |{a ∈ AM

s : a

is odd}|. Since |AM
f | = |F|, |M ∩E1| = |F|+ |{a ∈ A : a is odd}|. So, |M ∩E1| =

|{v ∈ A ∪ P : v is odd}| + |{p ∈ P : p is unreachable}|, and the result follows
from Lemma 1(b). �

Lemma 4. For any matching M , |AM
f |+ |AM

m | ≤ |F|.

Proof. For each a ∈ AM
f , M(a) is odd/unreachable (i.e. belongs to O ∪ U), for

otherwise, G1 contains an edge contradicting Lemma 1(c). Also, for each a ∈ AM
m ,

M(a) is odd/unreachable, since s(a) contains a’s most preferred even posts, and
by definition of AM

m , a prefers M(a) to posts in s(a) (i.e. ra(M(a)) > ra(s(a))).
Hence, |AM

f |+ |AM
m | ≤ |F|. �

Finally, we come to the main technical lemma in this section, which characterizes
popular matchings that are more popular than a given matching M .

Lemma 5. Let M∗ be a popular matching. Then M∗ is more popular than M
iff (i) |AM

f |+ |AM
m | < |F|, or (ii) |AM

m ∩AM∗

f | > 0, or (iii) |AM
l ∩AM∗

s | > 0.

Proof. Let Δ(M∗, M) be the difference between the number of applicants who
prefer M∗ to M , and the number of applicants who prefer M to M∗. That is,
Δ(M∗, M) = |(AM

m ∪AM
s ∪AM

l ) ∩AM∗

f |+ |AM
l ∩AM∗

s | − |(AM
f ∪ AM

m ) ∩AM∗

s |.
Now, since M∗ is popular, by Lemma 3 we have:

|AM∗

f | = |(AM
f ∪AM

m ∪AM
s ∪AM

l ) ∩AM∗

f | = |F|
= (|F| − |AM

f | − |AM
m |) + |(AM

f ∪AM
m ) ∩ (AM∗

f ∪AM∗

s )| .



Dynamic Matching Markets and Voting Paths 71

Rearranging, we get |(AM
f ∪AM

m )∩AM∗

s | = |(AM
s ∪AM

l )∩AM∗

f |− (|F|− |AM
f |−

|AM
m |). Hence Δ(M∗, M) = (|F| − |AM

f | − |AM
m |) + |AM

m ∩ AM∗

f |+ |AM
l ∩AM∗

s |.
The theorem follows immediately, since |AM

m ∩AM∗

f | and |AM
l ∩ AM∗

s | are both
non-negative, while |F| − |AM

f | − |AM
m | ≥ 0 by Lemma 4. �

Given 〈G, M0〉 and some popular matching M∗, we don’t need Lemma 5 to
determine if M∗ is more popular than M0 - instead, we can just count the number
of applicants that prefer one matching to the other. Suppose, however, that M∗

is not more popular than M0 so that |AM0
f |+ |AM0

m | = |F|, |AM0
l ∩AM∗

s | = 0, and
|AM0

m ∩ AM∗

f | = 0. Our aim is to use Lemma 5 as a guide in finding a popular
matching that is more popular than M0, or proving that no such matching exists.

First we remark that |AM0
f |+ |AM0

m | = |F|, for otherwise, any popular match-
ing, including M∗, is more popular than M0 by Lemma 5. It follows that AM0

m �= ∅
or AM0

l �= ∅, for otherwise, M0 has signature (|F|, 0, |A| − |F|, 0), contradicting
the assumption from the previous section that M0 is not popular.

Suppose AM0
m �= ∅, so that there is an applicant a ∈ AM0

m ∩AM∗

s . Since a ∈ AM0
m ,

a is even/unreachable. If a popular matching pairs a with a post in f(a), then
it must be more popular than M0 by condition (ii) of Lemma 5. In order to test
if there exists such a popular matching, we proceed as follows.

Let G′ be the subgraph of G defined in Fig. 2 after step 3. So, G′ contains all
edges between applicants and their f -posts and s-posts, except those between
nodes in O and nodes in O ∪ U . Now, modify G′ and M∗ by removing all
edges between this particular applicant a and posts in s(a). Call the resulting
structures G′

a and M∗
a respectively.

Lemma 6. There exists a popular matching which pairs a with some post in
f(a) iff G′

a admits an augmenting path with respect to M∗
a .

Proof. Suppose G′
a admits an augmenting path Qa with respect to M∗

a . Since
M∗ is popular, the only unmatched applicant in M∗

a is a, and so M∗
a ⊕ Qa

matches a with some post in f(a). We want to claim that M∗
a ⊕Qa is popular.

First note that its signature is of the form (k, 0, |A| − k, 0) for some k ≥ 0,
since it is a matching in a subgraph of G′, and G′ only contains edges between
applicants and their f -posts and s-posts. Now, M∗

a ⊕Qa matches all posts in F ,
since every post matched in M∗

a is also matched in M∗
a⊕Qa. Recall that posts in

F are incident in G′ to rank-1 edges only, and furthermore, odd posts in F are
only adjacent to even applicants, while unreachable posts in F are only adjacent
to unreachable applicants. Hence, k = |F|, and so by Lemma 3, M∗

a ⊕ Qa is
popular, since its signature is (|F|, 0, |A| − |F|, 0).

Conversely, suppose that G′
a admits no augmenting path with respect to M∗

a .
Then, M∗

a is a maximum matching in G′
a, which, since a is unmatched in M∗

a ,
means that there is no A-perfect matching in G′

a. But by Lemma 2(b), every
popular matching is anA-perfect matching in G′. Hence, every popular matching
must contain an edge in G′ \G′

a = {(a, p) : p ∈ s(a)}. �

We now make use of Lemma 6. Begin by looking for an augmenting path in G′
a

with respect to M∗
a by using depth-first search to construct the Hungarian tree
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Ta (which is a tree consisting of alternating paths with respect to M∗
a ) rooted

at a. If we find such a path Qa, then by Lemma 5, 〈M0, M
∗
a ⊕Qa〉 is a length-1

voting path to a popular matching. Otherwise, we repeat this process with some
other a′ ∈ AM

m ∩AM∗

s , if any.
Suppose we find an augmenting path Qa′ such that M∗

a′ ⊕Qa′ is popular. We
claim that Qa′ is edge disjoint from the set of edges in Ta, where a �= a′.

For suppose otherwise. Then let e be the first edge in Qa′ that is also in Ta.
Now, G′

a admits an alternating path from a through e. However, since Qa does
not exist, this path cannot be extended in G′

a to end in some unmatched post.
Hence, Qa′ must contain an alternating path from e through the edge (M∗(a), a)
(this edge is missing in G′

a). But M∗(a) is unmatched in G′
a, and hence if we

join the two alternating paths above, we get an augmenting path Qa (from a to
M∗(a) through the edge e) in G′

a. This gives the required contradiction.
Since we only need to examine each edge a constant number of times, it is

clear that we can determine in linear time if there is a popular matching that
pairs some applicant in AM0

m ∩AM∗

s with one of its f -posts.
If there is no such applicant, we repeat this procedure with applicants a ∈

AM0
l ∩AM∗

f , who must by definition be even/unreachable. Here, though our aim
is to find a popular matching that satisfies Lemma 5(iii) by pairing a with a post
in s(a). For this to occur, a must be even, since by Lemmas 1 and 2(i), every
unreachable applicant is matched by any popular matching to a post in f(a).

Suppose we find such a matching M∗
a ⊕ Qa. Since a is even, M∗(a) is odd,

and so any popular matching must match M∗(a) along a rank-1 edge to an even
applicant. However, M∗(a) may be unmatched in M∗

a ⊕Qa, as we removed all
edges between a and posts in f(a) from G′ (including (a, M∗(a))). Hence we
may need to augment M∗

a ⊕ Qa in G1. But every odd node M∗(a) is adjacent
to at least one other even applicant along a rank-1 edge, namely its predecessor
in the odd length alternating path from a vertex unmatched w.r.t. M∗ ∩ E1 to
M∗(a) in G1). Hence, such an augmentation always exists. And it is easy to see
that here too we only examine each edge a constant number of times.

By Lemmas 5 and 6, the above algorithm finds a length-1 voting path from
M0 to some popular matching, or proves that no such path exists. Also, given a
popular matching, we have just shown that the algorithm runs in linear time.

4 Length-2 Voting Paths

In this section, we show that, given any popular matching M∗ of G, we can
find a length-2 voting path from M0 to some popular matching in linear time.
We will assume that M0 admits no shorter such voting path. In particular, this
means M∗ is not more popular than M0, and AM0

m �= ∅ or AM0
l �= ∅.

Suppose AM0
m �= ∅. Let a ∈ AM0

m and let Ta be the Hungarian tree associated
with a, as described in Section 3. In the next lemma, we give a sufficient condition
for the existence of a length-2 voting path from M0 to M∗.

Lemma 7. Suppose there exists an applicant a′ ∈ Ta such that M0(a′) /∈ s(a′)
and M∗(a′) ∈ s(a′). Then there exists a length-2 voting path from M0 to M∗.



Dynamic Matching Markets and Voting Paths 73

Proof. Our aim is to find a matching M1 such that (i) M1 is more popular than
M0, and (ii) a′ ∈ AM1

l . This last condition guarantees that M∗ is more popular
than M1 by Lemma 5(iii), giving us the length-2 voting path 〈M0, M1, M

∗〉.
Before constructing M1, we first need to show that a′ ∈ AM0

f ∪AM0
m . We have

a′ /∈ AM0
l , for otherwise a′ ∈ AM0

l ∩ AM∗

s and M∗ is more popular than M0 by
Lemma 5(iii) - a contradiction. Suppose then a′ ∈ AM0

s . By definition we have
M0(a′) /∈ s(a′), and so M0(a′) must be odd/unreachable and belongs to F . But
M0 matches all posts in F to applicants in AM0

f ∪AM0
m , for otherwise M∗ is more

popular than M0 by Lemma 5(i) - a contradiction. Hence, a′ ∈ AM0
f ∪AM0

m .
Now we need to show that G′

a contains no edge between a′ and l(a′). Suppose
it does. Then since l(a′) is strictly the least preferred post of a′, we have s(a′) =
{l(a′)}. By definition, no other applicant is adjacent to l(a′), and so l(a′) is a
leaf node in Ta with parent a′. It follows from the construction of Ta that l(a′)
is unmatched in M∗

a , and hence M∗
a admits an augmenting path from a through

a′ to l(a′). This contradicts our assumption that M0 admits no length-1 voting
path to a popular matching. So, G′

a contains no edge between a′ and l(a′).
Finally, we describe how to construct M1. Add an edge between a′ and l(a′)

to G′
a. From above, we know G′

a admits an augmenting path Qa from a through
a′ and ending in l(a′). Let M1 = M∗

a ⊕Qa. The signature of M1 is (|F|, 0, |A| −
|F| − 1, 1) by an argument similar to Lemma 6, except that here we have one
applicant a′ ∈ AM1

l . We now show M1 is more popular than M0.

Δ(M1, M0) = |(AM0
m ∪AM0

s ∪AM0
l ) ∩AM1

f |+ |AM0
l ∩AM1

s | − |(AM0
f ∪AM0

m )

∩ (AM1
s ∪AM1

l )| {NB: |AM0
s ∩AM1

l | = 0, since a′ /∈ AM0
s }

≥ |(AM0
m ∪AM0

s ∪AM0
l ) ∩AM1

f | − |(AM0
f ∪AM0

m ) ∩ (AM1
s ∪AM1

l )|
= |(AM0

f ∪AM0
m ∪AM0

s ∪AM0
l ) ∩AM1

f |
− |AM0

f ∩ (AM1
f ∪AM1

s ∪AM1
l )| − |AM0

m ∩ (AM1
s ∪AM1

l )|
= |F| − |AM0

f | − |AM0
m ∩ (AM1

s ∪AM1
l )| {since |AM1

f | = |F|}
= |AM0

m | − |AM0
m ∩ (AM1

s ∪AM1
l )| {by Lemmas 4 and 5(i)}

= |AM0
m ∩AM1

f | > 0 {since a ∈ AM0
m ∩AM1

f } �

In linear time, we can check if there exists an applicant a′ ∈ Ta such that
M0(a′) /∈ s(a′) and M∗(a′) ∈ s(a′), and if so, we construct the matching M1.

Suppose there is no such applicant in Ta. Our aim then is to find a different
popular matching in which such an applicant exists. We will find such a matching
by searching for a particular type of alternating cycle C in G′

a with respect to
M∗. First though, we make some observations about Ta and G′

a.
By construction, posts in Ta are discovered along unmatched edges. Also, no

post p is a leaf node in Ta, since then p would be unmatched in M∗
a , and M∗

a

would admit an augmenting path, contradicting our assumption that M0 admits
no length-1 voting path to a popular matching. So, posts in Ta have degree 2.

By construction, an applicant a′′ ∈ Ta \ {a} is discovered along a matched
edge. If a′′ is even or unreachable, then a′′ is incident to at least one unmatched
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child edge in G′
a, since f(a′′) and s(a′′) are non-empty and disjoint. If a′′ is odd,

then a′′ must also be incident to at least one unmatched child edge in G′
a - since

a′′ is odd, G1 admits an odd-length alternating path from an unmatched vertex
to a′′, and the last edge e(a′′) ∈ E1 on this path is unmatched by M∗.

Since every node in Ta \ {a} is incident to at least one matching edge and
one non-matching edge (w.r.t. M∗) in G′

a, we can build the following alternating
path Q. Begin with an edge (a, p) where p ∈ f(a). Let the successor of any post
p in Q be its matched partner M∗(p). The successor of any even/unreachable
applicant a′′ is any post in f(a′′) if M∗(a′′) ∈ s(a′′), or any post in s(a′′) if
M∗(a′′) ∈ f(a′′). Finally, the successor of any odd applicant a′′ is the post
incident to e(a′′). Since |Ta| is finite, this alternating path must form a cycle C
by adding a post that is already in the path. This procedure takes linear time.

It is clear from Lemma 2 that M∗ ⊕ C is a popular matching. Now, if we can
show that M∗⊕C has some applicant a′ ∈ Ta \{a} such that M0(a′) /∈ s(a′) and
(M∗ ⊕ C)(a′) ∈ s(a′), we can use M∗ ⊕ C as the popular matching in Lemma 7.

First, we prove that C contains at least one applicant a′ such that M∗(a′) ∈
f(a′). Since M∗⊕C matches a′ with s(a′) by construction, the final step will be
to show that M0(a′) /∈ s(a′).

Lemma 8. C contains at least one applicant a′ such that M∗(a′) ∈ f(a′).

Proof. Note that the length of C is at least 4, since the predecessor and suc-
cessor of each applicant are always distinct. Also note that if C contains an
even/unreachable applicant, then either its predecessor or its successor is an f -
post, whose partner in M∗ is the required applicant. The only way that that C
may not contain an f -post is if all the applicants in C are odd. We show this
cannot happen.

Let a′′ be the first odd applicant in Q that is in C. By construction, C contains
a subpath from a′′ through e(a′′) to some post p that is unmatched in M∗ ∩E1.
It follows that p is even, since odd/unreachable posts are matched in M∗ ∩ E1
by Lemmas 1(b) and 2(i). Since p is matched in M∗, its partner M∗(p) must be
even (again by Lemmas 1(b) and 2(i)), and so C contains an even applicant. �

Lemma 9. Suppose there exists no applicant a′ ∈ Ta such that M0(a′) /∈ s(a′)
and M∗(a′) ∈ s(a′). Then for each a′∈Ta\{a}, M0(a′) /∈ s(a′) iff M∗(a′)∈f(a′).

Proof. Let a′ be any applicant in Ta \ {a} such that M0(a′) /∈ s(a′). Then by
the assumption in the statement of the lemma, we have M∗(a′) /∈ s(a′), and so
M∗(a′) ∈ f(a′) ⊆ F , since M∗ is popular. Hence, |Ta \ {a} ∩ (A − AM0

s )| is at
most the number of f -posts in Ta, i.e., (1) |Ta \ {a} ∩ (A−AM0

s )| ≤ |Ta ∩ F|.
Now, since there is no augmenting path in Ta, we have that |Ta \ {a} ∩ A| =

|Ta ∩P|. Partitioning A into A\AM0
s and AM0

s and posts in Ta into Ta ∩F and
Ta ∩S, where S is the set of all s-posts, we get |Ta \ {a}∩ ((A\AM0

s )∪AM0
s )| =

|Ta ∩F|+ |Ta ∩S|. Note that no applicant in AM0
s can be matched by M0 to an

odd/unreachable post, otherwise |AM0
f |+ |AM0

m | < |F| and M∗ would have been
more popular than M0 by Lemma 5(i). Hence each applicant in AM0

s has to be
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Voting-Path(G = (A ∪ P ,E), M0)

if M0 has signature (|F|, 0, |A| − |F|, 0) then
return 〈M0〉

Let M∗ be any popular matching of G
if M∗ is more popular than M0 then

return 〈M0, M
∗〉

for each applicant a ∈ AM0
m ∩ AM∗

s and each even applicant a ∈ AM0
l ∩ AM∗

f

Construct the Hungarian tree Ta with respect to M∗
a , including only un-

marked edges
Mark all edges in Ta

if Ta contains an augmenting path Qa then
Augment M∗

a ⊕ Qa in G1 from M∗(a) // applies only when
a ∈ AM0

l ∩ AM∗
f

return 〈M0, M
∗
a ⊕ Qa〉

Let Ta be the first Hungarian tree constructed for any a ∈ AM0
m ∩ AM∗

s or
even a ∈ AM0

l ∩ AM∗
f

if � ∃ a′ ∈ Ta \ {a} such that M0(a′) /∈ s(a′) and M∗(a′) ∈ s(a′) then
Construct C in G′

a as described in Section 4
Let M∗ = M∗ ⊕ C
Let Ta be the Hungarian tree associated with a and the new M∗

Add (a′, l(a′)) to Ta, and find the augmenting path Qa in Ta

Let M1 = M∗
a ⊕ Qa

Augment M1 in G1 from M∗(a) // applies only when a ∈ AM0
l ∩ AM∗

f

return 〈M0, M1, M
∗〉

Fig. 3. Our algorithm for finding a shortest-length voting path

matched by M0 to one of its most preferred even posts, i.e., one of its s-posts,
so |Ta \ {a}∩AM0

s | ≤ |Ta∩S|. We thus get, (2) |Ta \ {a}∩ (A\AM0
s )| ≥ |Ta∩F|.

Combining (1) and (2), we have |Ta \{a}∩(A−AM0
s )| = |Ta∩F| = |Ta\{a}∩

AM∗

f |. That is, the number of applicants a′ in Ta\{a} that satisfy M∗(a′) ∈ f(a′)
is equal to the number of applicants in Ta \ {a} that satisfy M0(a′) /∈ s(a′). But
each applicant in Ta \ {a} that satisfies M0(a′) /∈ s(a′) has to satisfy M∗(a′) ∈
f(a′) by the statement of the lemma. So the equivalence follows immediately. �

By Lemma 8, C contains at least one applicant a′ such that M∗(a′) ∈ f(a′). By
Lemma 9, we have that M0(a′) /∈ s(a′). Since M∗ ⊕ C matches a′ with s(a′),
M∗⊕C satisfies the sufficient condition in Lemma 7. Hence there exists a length-2
voting path from M0 to the popular matching M∗ ⊕ C.

As in Section 3, if AM0
m = ∅, then AM0

l �= ∅, and we perform an analogous
procedure on the Hungarian tree associated with some a ∈ AM0

l . This finishes
the proof of Theorem 1 (from Section 1). The overall algorithm is given in Fig. 3.

5 Conclusions

In this paper, we proved that whenever a popular matching exists, there is a
voting path of length at most 2 from any matching to some popular matching.
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We also gave a linear-time algorithm for finding a shortest-length such path,
given any popular matching M∗ in G. These results solve the dynamic matching
market problem given in [3], and prove that a decentralized market can converge
to a popular matching, when such a matching exists.
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Abstract. In the comparison model the only operations allowed on in-
put elements are comparisons and moves to empty cells of memory. We
prove the existence of an algorithm that, for any set of s ≤ n sorted
sequences containing a total of n elements, computes the whole sorted
sequence using O(n log s) comparisons, O(n) data moves and O(1) aux-
iliary cells of memory besides the ones necessary for the n input ele-
ments. The best known algorithms with these same bounds are limited
to the particular case s = O(1). From a more intuitive point of view,
our result shows that it is possible to pass from merging to sorting in
a seamless fashion, without losing the optimality with respect to any
of the three main complexity measures of the comparison model. Our
main statement has an implication in the field of adaptive sorting al-
gorithms and improves [Franceschini and Geffert, Journal of the ACM,
52], showing that it is possible to exploit some form of pre-sortedness to
lower the number of comparisons while still maintaining the optimality
for space and data moves. More precisely, let us denote with OptM (X)
the cost for sorting a sequence X with an algorithm that is optimal
with respect to a pre-sortedness measure M . To the best of our knowl-
edge, so far, for any pre-sortedness measure M , no full-optimal adaptive
sorting algorithms were known (see [Estivill-Castro and Wood, ACM
Comp. Surveys, 24], page 472). The best that could be obtained were
algorithms sorting a sequence X using O(1) space, O(OptM (X)) com-
parisons and O(OptM (X)) moves. Hence, the move complexity seemed
bound to be a function of M(X) (as for the comparison complexity). We
prove that there exists a pre-sortedness measure for which that is false:
the pre-sortedness measure Runs, defined as the number of ascending
contiguous subsequences in a sequence. That follows directly from our
main statement, since OptM (X) = O(|X| log Runs(X)).

1 Introduction

Sorting and merging have always been fundamental problems in computation.
In this paper we prove a property that blurs the boundary between these two
problems and seems to contradict the usual hierarchical relation that sees merg-
ing as a mere subproblem of sorting. Furthermore, as a consequence of our main
statement we will improve the result in [1], showing that it is possible to ex-
ploit some form of pre-sortedness to lower the number of comparisons while still
maintaining the optimality for space and data moves.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 77–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The problem. We are given a total order (U ,≤), with a possibly infinite universe
U . The input element are drawn from U and they are considered atomic (no bit
manipulation, hashing etc. . . ). The only operations allowed on input elements
are comparisons between two elements and moves to empty cells of memory.
Hence, the complexity of an algorithm will be measured by the usual three met-
rics: the number of comparisons, the number of moves and the number of cells
of memory used, besides the ones necessary to store the input elements. For any
such metric, we will refer to the optimality of an algorithm with the usual mean-
ing of asymptotic optimality up to a constant factor. We will call an algorithm
full-optimal if it is optimal with respect to the three metrics simultaneously.

In the sorting problem, we are given a set of n elements from U and they have
to be disposed in the ordered permutation induced by the relation ≤. We will
deal with the following, related problems:

Problem 1 (Multiway Merging Problems). In the balanced merging problem, we
are given s ≤ n sorted sequences of n/s elements each drawn from U and they
have to be fused into a single sorted sequence. In the unbalanced merging problem
the total number of input elements is still n but the s sorted subsequences to be
fused can differ in their lengths.

An algorithm solving the two merging problems is supposed to exploit the pre-
sortedness of the input elements in order to arrive to the final sorted sequence
with less computational effort.

Seeing the parametric definition of the merging problems, natural questions
arise: How far can we push the parameter s? How much marked is the boundary
between merging and sorting problems? Is there a full-optimal solution for the
merging problems for any value of s?

Let us enter more deeply into this matter trying to solve the balanced merging
problem dropping the full-optimality constraint.

If we do not care about the number of moves performed, a space-optimal and
comparison-optimal solution to the balanced merging problem for any value of
s follows immediately by the existence of a full-optimal solution for the case
s = 2. As we will see later, the research around the existence of an algorithm
that could fuse two sequences of m elements each, using O(m) comparisons,
O(m) moves and O(1) auxiliary cells has been active and successful since the
late sixties [2]. Given that fact, a space-optimal and comparison-optimal solution
to the merging problem for any value of s is a simple variation of the Mergesort.
It employs any full-optimal merging algorithm for s = 2 and starts the execution
merging pairs of sorted sequences instead of pairs of elements. That approach
performs O(n log s) comparisons and uses O(1) auxiliary memory cells but we
have to pay O(n log s) data moves.

If we give up on the number of comparisons, we can just use the recent full-
optimal algorithm for the sorting problem in [1]. With that algorithm, we can
just ignore the sorted sequences, and sort the whole sequence using O(n) moves
and O(1) auxiliary cells plus the inevitable O(n log n) comparisons.

Finally, if we can exploit a linear auxiliary space, a solution for any value of
s performing O(n log s) comparisons and O(n) moves can be obtained using a
dictionary that is searchable in O(log m) comparisons (when it contains O(m)
elements) and updatable in O(1) moves, either amortized or in the worst case
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(e.g. [3, 4, 5]. . . ). Any such dictionary can be simply used as a priority queue
containing, at any time during the process, the smallest s elements among the
ones still in the sorted sequences in input.

Previous work. As we said before, the research focusing on the existence of a
full-optimal solution for the merging problems has been fervent since the sixties,
bringing a lot of results for the special case where s = O(1). To the best of our
knowledge, so far, even the existence of a full-optimal solution for the merging
problems covering any range of values larger than s = O(1) was unknown (that
is if we exclude the range nε ≤ s ≤ n, for any real constant ε < 1, because in that
case a solution can be obtained with a plain application of the sorting algorithm
in [1]). Perhaps the “nearest relative” of a full-optimal solution for the merging
problems when s = O(polylog(n)) can be found in [6]. In this paper the authors
present the first in-place sorting algorithm performing O(n log n) comparisons
and o(n log n) data moves. Some of their techniques are suitable for the merging
problem when s = O(polylog(n)) but unfortunately they use an internal buffer
(see Section 2) of size O(n) that disrupts irremediably the pre-sortedness of the
input sequence (see Sections 2 and 3.2).

As a further witness of the intrinsic difficulty of finding full-optimal solutions
for the merging problems, even for the particular case with s = 2, we will briefly
review the main known results. The first solution was proposed in [2], in that
seminal paper fundamental tools for space-optimality, like the internal buffering
technique (see Section 2), were introduced. Unfortunately, the two-way merging
algorithm of Kronrod contained an insidious error that ruins the correctness of
the algorithm in the general case of input with repeated elements. After Kron-
rod, Horvath [7] devised a stable (i.e. the initial relative order of equal elements
is maintained after the process) merging algorithm assuming that input elements
could be modified. Subsequently, Trabb Pardo [8] removed this requirement. The
error in Kronrod’s work went undiscovered until [9], when a simpler way to sta-
ble merging was devised. In [10] an unstable modification of Kronrod algorithm
is given. Later on, the same authors gave a stable algorithm in [11]. When s = 2,
the lower bound for the number of comparisons in case of sequences of two dif-
ferent lengths m and n, with m < n, is O(m log(n/m)). Symvonis achieved that
lower bound in [12]. Subsequently, stable and unstable algorithms with the same
asymptotic bound but better constant factors were proposed in [13] and [14].

As we will see, a direct consequence of our main statement pertains to the
field of adaptive sorting algorithms (see [15] for a survey on the subject) and im-
prove the result in [1]. In the adaptive sorting problem the complexity measures
for the sorting algorithms are expressed as a function of a chosen pre-sortedness
measure of the input sequence. With the development of this field, many pre-
sortedness measures have been introduced together with a concept of optimality
for any such measure. For example, the measure Runs is defined as the number
of ascending contiguous subsequences of the input sequence. Using any in-place
merging algorithm as the one in [9], it is possible to achieve adaptive sorting
algorithms that are space-optimal, Runs-optimal and with a number of moves
of the same order of the number of comparisons. Similar results can be ob-
tained with other measures but, to the best of our knowledge, so far, for any
pre-sortedness measure, no adaptive sorting algorithm has been proven to be full-
optimal.
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Our contribution. In this paper, we prove the following theorem:

Theorem 1. There exists an algorithm A with the following property: For any
1 ≤ s ≤ n and for any set of s sorted sequences containing a total of n ele-
ments (drawn from U), A computes the whole sorted sequence with O(n log s)
comparisons, O(n) moves and O(1) auxiliary cells of memory.

Obviously any solution for the balanced merging problem performs Ω(n) data
moves. In the balanced merging problem the sorted subsequences are assumed
to be of equal length. Hence, it is straightforward to prove that any solution for
that problem performs Ω(n log s) comparisons. Therefore, by Theorem 1, the
following holds:

Corollary 1 (Full-optimal merging). There exists a full-optimal solution for
the balanced merging problem for any value of s.

Concerning the unbalanced merging problem, if the lengths of the sorted subse-
quences are not considered in the complexity measures, that is if we aim to give
complexity bounds that depend only on parameters n and s (as the definition of
the problem implies), then the algorithm of Theorem 1 is a full-optimal solution
for that problem too. Instead, if we are interested in evaluating the complexity
of the unbalanced merging problem taking into account also the lengths of the
sorted subsequences, let them be n1, n2 . . . ns, then simple approaches using less
comparisons come immediately in mind. For example, a simple merging strategy
performing at any time a binary merging operation between the two shortest runs
at that time, would use O (Σi=1...sni log(n/ni)) comparisons. Unfortunately, an
approach like this seems to require a number of data moves of the same order.

Our main statement has a consequence involving the field of adaptive sort-
ing algorithms. We will improve the result in [1], showing that it is possible to
exploit some form of pre-sortedness to lower the number of comparisons while
still maintaining the optimality for space and data moves. More precisely, let us
denote with OptM (X) the cost for sorting a sequence X with an algorithm that
is optimal with respect to a pre-sortedness measure M . To the best of our knowl-
edge, so far, for any pre-sortedness measure M , no full-optimal adaptive sorting
algorithms were known (see [15], page 472). The best that could be obtained
were algorithms sorting a sequence X using O(1) space, O(OptM (X)) compar-
isons and O(OptM (X)) moves. Hence, the move complexity seemed bound to
be a function of M(X) (as for the comparison complexity). We prove that there
exists a pre-sortedness measure for which that is false.

Corollary 2 (Full-optimal adaptive sorting). There exists a pre-sortedeness
measure M and an algorithm AM such that, for any sequence X of n elements,
AM sorts X with O(OptM (X)) comparisons, O(n) moves and O(1) auxiliary
cells of memory.

Consider the pre-sortedness measure Runs, defined as the number of ascending
contiguous subsequences in a sequence. We know that OptM (X) =
O(|X | log Runs(X)), therefore Corollary 2 follows from Theorem 1.

Finally, let us explain our contribution from a more intuitive point of view.
In this paper we prove that it is possible to pass from merging to sorting in a
seamless fashion, without losing the optimality with respect to any of the three
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main complexity measures. In light of this fact, we could say that merging is not
a mere subroutine with limited power as in the well known sorting by merging
approach. Instead, as we will see, a sorting algorithm is a basic subroutine for
our full-optimal merging algorithm.

In Section 2, we will first make some assumptions for the sake of this prelim-
inary presentation. Then, we will introduce some known tools that will be used
in the algorithm. Finally, we will give a brief description of some of the obsta-
cles posed by the problem and the basic, high level ideas to overcome them. In
Section 3, we will describe our full-optimal merging by sorting algorithm.

2 Assumptions, Tools, Obstacles and Basic Ideas

Assumptions. In order to make this brief exposition more readable, we do not
stress on formal details (we usually avoid the use of ceilings and floors). Moreover,
let us assume that the n elements in input are distinct. Considering the case of
repeated elements when the stability of the algorithm (that is the capability of
maintaining in the output sequence the initial relative order of equal elements)
is not a concern would fill the presentation with technicalities without adding
anything valuable from a theoretical point of view. On the other hand, the
problem of stability seems to be very insidious and some of the techniques used
in our solution are particularly prone to destabilize the input during the merging
process. A complete exposition will be given in the full version of this paper.

Tools. The first tool we use is the internal buffering technique [2]. Essentially,
some of the elements are used as placeholders to simulate a working area in
which the other input elements can be permuted efficiently. Usually, a set A
of input elements is divided into two subsets A′ and B, where the latter is the
buffer set and has cardinality o(|A|). Then, A′ is processed efficiently with the
aid of B that can be subsequently processed with a sub-optimal method. Finally,
a last merging step brings us the final sorted sequence.

The second tool we use is the bit stealing technique [16]. This technique is very
common and very simple: the value of a bit is encoded in the relative order of two
distinct elements (e.g. the increasing order for 0). Stolen bits can be used pretty
much as the normal ones. The important difference is that the costs of their
use have to be carefully accounted in the comparison complexity (e.g. reading a
word of stolen bits costs O(log n) comparisons in the worst case) and the move
complexity (e.g. modifying a word of stolen bits could costs O(log n) moves in
the worst case or O(1) in amortized sense if the word is used as a binary counter
[17]). The elements that back up the stolen bits and the other elements are
divided and conquered with the same simple process used for the internal buffer.

The third tool we use is an in-place linear time two-way merging, any al-
gorithm among the ones we briefly reviewed in Section 1 will be good for our
purposes.

The fourth tool is the sorting algorithm in [1]. Following our new approach
of merging by sorting we will use this algorithm to solve proper sub-problems of
the main one.

The fifth tool is the well-known, basic technique for space-efficient block ex-
change. From a block X = x1 . . . xt of t consecutive elements we can obtain the



82 G. Franceschini

reverse XR = xt . . . x1 in linear time and in-place simply exchanging x1 with xt,
x2 with xt−1 and so forth. Two consecutive blocks X and Y , possibly of different
sizes, can be exchanged in-place and in linear time with three block reversals,
since Y X = (XRY R)R.

Some of the obstacles posed by the problem. At first sight, we could think that
the main technique used in [1] could be used also with this problem. In that
paper, the authors essentially used a dictionary that is searchable in O(log n)
comparisons and updatable in O(1) data moves in amortized sense. There were
two major obstacles. First, encoding the auxiliary data used by the dictionary
using stolen bits so that the decoding did not penalize the search. Second, em-
bedding the dictionary into a large pool of buffer elements in order to achieve the
space-optimality while maintaining the update in O(1) data moves. Using those
techniques to overcome the space inefficiency of the third sub-optimal approach
we mentioned in Section 1 might seem to be the right way.

Unfortunately, that approach requires that any element inserted in the dic-
tionary is coupled with the index of the sorted sequence it belonged to. That
is unavoidable: when the minimum element x is removed from the dictionary,
the new inserted element has to be the successor of x in the original sorted se-
quence. In the general case there is no way to predict which sorted subsequence
the extracted element came from or in what position of the dictionary the new
element will be inserted. Therefore, any element passing through the dictionary
would have to be charged with O(log s) moves for the encoding of the index of
its subsequence of origin.

There is another aspect of the solution in [1] that is not suitable for a direct
use in the merging problem. Both the set of pairs of distinct elements for the bit
stealing and the set of buffer elements are collected using selection and partition-
ing algorithms. Those algorithms disrupt the s sorted sequences in input, thereby
nullifying any effort to exploit the pre-sortedness of the elements. As we will see,
we are forced to use a smaller amount of buffer elements (O(n/polylog(n)) el-
ements against the O(n) elements used in [1]) in order not to compromise the
pre-sortedness of the input. In the full version of this paper we will adapt the
solution for the case of repeated elements. In that case we will have to use O(nε)
stolen bits against the O(n/ log n) used in [1].

Basic ideas. The starting intuition is that there has to be a different way to
accomplish the task for anyone of three particular cases: (i) when s is O(nε) and
Ω(polylog(n)); (ii) when s is very small, that is s = O(polylog(n)); (iii) when s
is very large, that is s = Ω(nε).

The way we will solve the first case is just what the approach merging by
sorting is all about: breaking the merging problem into sub-problems that can
be easily solved with sorting algorithms. The merging problem will be divided
into

(i) one sorting sub-problem of size O(n/s) but with macro-elements of size s,
(ii) n

s2 sorting sub-problems of size s2 each and
(iii) n

s2 binary merging sub-problems again of size s2.
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The details will be given in Section 3.1.
In the second case, it would be reasonable to think that the solution could be

found extending the usual approach of two-way merging to the case of polylog(n)-
way merging. The major obstacle to overcome consists in the fact that when
s = ω(1) there does not seem to be a way to use less than O(n) buffer elements.
As we mentioned in Section 1, that is what prevents the sorting algorithm in
[6] from being also a full-optimal solution for the merging problem when s =
O(polylog(n)). As we will see, a way to solve the problem in this second range
of values of s consists in breaking the sorted subsequences into pieces as if they
were linked lists. That kind of technique could have also been used to make the
algorithm in [6] stable.

The third case can be seen as the simple base case of the merging by sorting
approach, The natural intuition is that s is so large that the solution for the
problem has to be more similar to a sorting algorithm than a classical merg-
ing algorithm in which, at any step, the currently smallest element among the
sorted subsequences is selected. As a matter of fact, since we are interested in
asymptotic optimality up to a constant factor, for any fixed constant ε this base
case can be solved simply applying the full-optimal sorting algorithm in [1].

3 Merging by Sorting

Let R be the input sequence of n elements and R1, R2, R3 . . . Rs−2, Rs−1, Rs

be the s sorted sequences composing R. We will distinguish among three main
ranges of values for the parameter s and the solutions for these three cases will
be given in the next sections.

For the sake of simplicity, in any of these sub-sections we will first describe
the solution assuming s sorted sequences of the same length. After that, we
will point out in the proof the necessary changes for sorted sequences of generic
lengths. As we will see, these changes are very simple for the second range of
values of s and almost null for the first and last ones.

3.1 What if log2 n ≤ s ≤ nε?

As we will see soon, we are going to need some “simulated resources”. We need
O(n

s log n) = O( n
log n ) stolen bits. We can collect the O(n

s log n) pairs of distinct
elements simply taking the first O(log n) sorted subsequences R1, R2, . . .. We
need also O(n

s ) buffer elements that can be collected in the same way.
Let t be the index of the first remaining sorted subsequence. Since s−t = Θ(s),

for the sake of simplicity we are going to pretend that, after collecting stolen bits
and buffer elements, we are left with two new objects. These are the sequences
B and E containing the wanted buffer elements and pairs of encoding elements,
respectively. All the objects so far introduced are initially laid out in memory in
the following way: EBR1R2R3 . . . Rs−2Rs−1Rs.

Let us consider each sorted subsequence as logically divided into n/s2 blocks
of s contiguous elements each. We have four main phases.

(i) We sort all the blocks according to their first elements (since any block is
already sorted internally, its first element is also its smallest one). We can
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use the mergesort with the in-place linear time two-way merging algorithm
we chose in Section 2. However, in order to stay within our resource bounds,
we must sort only the set of the first elements of the blocks. Hence, we collect
this set exchanging each one of its members with one buffer element in B.
Finally, to maintain the connection between the set of the first elements
of the blocks and the remaining parts of the blocks, we associate a pair of
back and forward encoded pointers (of O(log n) stolen bits each) to each pair
[first element, remaining elements of the block]. This encoded information
can be easily maintained up to date during the execution of mergesort and
subsequently used to bring the blocks in sorted order in only O(n

s ) “block
moves”.

(ii) Let B1B2 . . . Bn
s
−1Bn

s
be the sorted sequence of the blocks after the first

step. Let us logically form n
s2 groups G1, G2, . . . , G n

s2
of s contiguous blocks

each. In this phase we sort each group Gi using the algorithm in [1].
(iii) Let G′

1G
′
2 . . . G′

n
s2

be the sequence of sorted groups we obtained after the
second phase. In this phase, we apply the in-place two-way merging algo-
rithm we chose in Section 2 in a left-to-right “chained” fashion starting with
the two first sorted groups G′

1, G
′
2 then with G′

2, G
′
3, G′

3, G
′
4. . . and so forth

until the pair G′
n
s2 −1, G

′
n
s2

is merged.
(iv) We sort the buffer elements and the elements used to steal bits. Then we

merge that sorted sequence with the one obtained after the execution of the
third phase.

Lemma 1. For any log2 n ≤ s ≤ nε and for any set of s sorted sequences
containing a total of n elements (drawn from U), we can compute the whole
sorted sequence with O(n log s) comparisons, O(n) moves and O(1) auxiliary
cells of memory.

Proof sketch: In the first phase, we use the normal in-place binary mergesort over
the set of the first elements of the blocks. That alone would cost O(n/s) = o(n)
comparisons and moves. However, at any basic step of the binary mergesort
we have to decode and re-encode a constant number of pointers with O(log n)
stolen bits each, for a total cost of O((n/s) log n) moves and comparisons. That
is O(n) by the hypothesis over the values of s. The final permutation of the
blocks costs O(n) moves and O((n/s) log n) = o(n) comparisons. In the second
phase O( n

s2 ) groups of s2 elements each are internally sorted using the full-
optimal sorting algorithm in [1]. For each group, O(s2 log s) comparisons and
O(s2) moves are spent, for a total of O(n log s) comparisons and O(n) moves.
The third phase exploits a combinatorial property that is a generalization of
the one introduced in [2]. Basically, after the second phase, any element in the
sequence G′

1G
′
2 . . .G′

n
s2

may be at most one group (excluding its own one) above
its final position in the corresponding sorting sequence. Therefore, the “chained”,
left-to-right application of the binary in-place merging yields the sorted sequence
in O(n) moves and comparisons. Finally, the fourth phase easily conquers the
sub-problem for the elements used to simulate the resources. If the s sorted
subsequences have generic lengths, we have to add a simple pre-processing phase
executed before the four phases we described. This additional phase is needed in
order to ensure the initial assumption about the presence of n/s sorted blocks
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of s contiguous elements each. The additional phase is a scan of the sequence
in input. Starting from the left end of the sequence we consider s contiguous
elements at a time. If they are in sorted order we go to the next s, otherwise we
sort them. Since the input sequence is composed by s sorted subsequences, it is
straightforward to prove that the pre-processing phase performs O(n + s2 log s)
comparisons and moves. The constant ε can be chosen so that the cost of the pre-
processing phase is O(n). After the pre-processing phase the algorithm continues
with the remaining four phases unchanged.

3.2 What if s < log2 n?

We are going to show how to solve the problem just for the case s ≤ log n
log log n .

When log n
log log n < s < log2 n, we can solve the problem simply applying iteratively

the solution for the case s = log n
log log n as if we were sorting the sequence by

mergesort (a log n
log log n -way mergesort algorithm). Let g = log n

log log n . The g-way
mergesort would scan the n elements O(log s/ log g) times, performing a total of
O((log s/ log g)n log g)) = O(n log s) comparisons and O((log s/ log g)n) = O(n)
moves.

Breaking the subsequences. Let us divide any sorted subsequence Ri into p con-
tiguous blocks of size log2 n. The jth block of Ri will be denoted by Rj

i . Block R1
i

contains the smallest log2 n elements of Ri, block R2
i the second smallest log2 n

elements and so forth. Initially the blocks of Ri are laid out contiguously and in
sorted order, (i.e. Ri = R1

i R
2
i . . . Rp−1

i Rp
i ).

The blocked subsequences can be naturally seen as s doubly-linked lists of p
macro-elements each (the blocks). In the following we will freely refer to a generic
Ri as a list or as a sorted subsequence. As we will see, the introduction of those
simple lists will be of great help. By allowing the possibility of merging s linked
lists of sorted elements instead of s unbreakable sorted sequences, the need for
buffer elements drops from O(s × n/s) = O(n) units to O(s × block-size) =
O(s log2 n) only.

As in the previous case, some (o(n)) elements will be devoted to placeholding
or encoding duties. However, this time the numbers are slightly different, espe-
cially for what concern the buffer elements. The quantities of stolen bits and
buffer elements we have to collect depend on the lists:

– Since the blocks are part of doubly-linked lists that will be scattered in the
n locations of memory, they are going to need succ and pred pointers of
O(log n) bits each.

– We are going to iteratively extract the smallest elements of lists. We will
need log2 n buffer elements for any list so that the extraction can be reduced
to an exchange with a buffer element.

Therefore, we need O( n
log n ) stolen bits and s log2 n buffer elements. The corre-

sponding elements can be collected in the same way we did in Section 3.1. As we
already did in that section, we are going to pretend for the sake of presentation
that the number of sorted subsequences to be processed is still s and that we are
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Blocks First blocks

E︷ ︸︸ ︷ S︷ ︸︸ ︷ B︷ ︸︸ ︷ R︷ ︸︸ ︷ L︷ ︸︸ ︷

Fig. 1. The memory layout

left with two new objects: the sequences B and E containing the wanted buffer
elements and the encoded bits. All the objects so far introduced are initially laid
out in memory in the following way: EBR1R2R3 . . . Rs−2Rs−1Rs.

Zones and their invariants. Now we will describe the layout of the memory
right before the merging phase begins and the invariants defined over the layout
that will be maintained during the computation. During the merging phase, the
n cells of memory are partitioned into five zones. We will list them from the
leftmost to the rightmost one (see Fig. 1).

The encoding zone E . It contains the elements for stealing bits. This zone
is static. During the merging phase there will be a lot of activity here, due to
the continuous execution of encoding/decoding-related comparisons and moves.
However, the boundaries of that zone will never change.

The sorted zone S . At any time during the merging phase, it contains the
|S | smallest elements (with the exception of buffer elements and the ones for
stealing bits, of course) in sorted order.

The buffer zone B. At any time of the merging phase, it contains a subset of
the collected buffer elements. Initially B contains all the buffer elements but the
extractions from the lists will make its size shrink or enlarge during the merging
phase. Moreover, that zone will move toward the right end of the memory during
the whole merging phase, because of the “pressure” by the ever-growing zone
S . At the end of the computation B will have regained all the buffer elements
and will end up at the right end of the memory.

The block zone R. At any time of the merging phase and for any list Ri, it will
contain the currently remaining blocks of Ri with the exception of the first (the
one with the smallest elements). Since the merging process will continuously take
away batches of elements from the tops of the lists, the meaning of “currently
remaining blocks” of a list should be clear. The left boundary of R will move
toward right. At the end of the computation, this zone will be empty, given
that the objective of the merging phase is to have all the elements of the lists
transferred into S in sorted order.

The leading zone L . This zone has fixed boundaries and comprises s log2 n
locations. At any time during the merging phase, the remaining elements of the
first block of any list Ri are stored contiguously, in sorted order and padded
with a sufficient number of buffer elements (i.e. if l is the number of the re-
maining elements of the first block of list Ri then the elements are laid out as
f1f2 . . . flog2 n−lr1r2 . . . rl, where the ris are the element of Ri). The leading zone
will be at the center of the merging process since it is in that zone that the s-way
choices will be made.
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Merging phase. We have the problem of how to keep track of the position of the
smallest element of any list. We are treating the case s ≤ log n

log log n and therefore
we cannot count on a lower bound for s. That excludes completely any solution
involving encoding by bit stealing the value of any such pointer (the decod-
ing would cost more than the wanted O(log s) comparisons). Since we want to
maintain all these elements trapped into the leading zone L , each pointer to
one of them needs only O(log |L |) = O(log(s log2 n)) = O(log log n) bits. Since
s ≤ log n

log log n , we can maintain a small balanced tree of such small pointers into
a constant number of auxiliary cells of memory (which we are allowed to use).
For any 1 ≤ i ≤ s, together with the small pointer to the smallest element be-
longing to the list Ri, we are going to maintain also a small integer with the
value of the number of buffer elements in the block of Ri currently contained in
L (O(log log n) bits are needed in that case too). A similar approach has been
used also in [6] and is the combination of two classic basic techniques: integer
packing and merging by selection tree.

The tree will be used to guide the iterative selection of the currently smallest
element. In the merging phase the following steps will be executed until all the
elements of the lists end up in sorted order in zone S .

1. Find the smallest element among the ones contained into the leading zone
L .

2. Exchange this element with the first (leftmost) element of the buffer zone
B. (This implicitly enlarge and shrink by one position the sorted zone S

and the buffer zone B, respectively)
3. If the block in L corresponding to the just exchanged element, now contains

only buffer elements, we load into L the next block in its list.

Lemma 2. For any s < log2 n and for any set of s sorted sequences containing
a total of n elements (drawn from U), we can compute the whole sorted sequence
with O(n log s) comparisons, O(n) moves and O(1) auxiliary cells of memory.

Proof sketch: The costs of bringing the zones in their initial state before the
merging phase are within our target bounds. Basically, we have to do s block
exchanges to move R1

1, R
1
2 . . . , R1

s−1, R
1
s into the last s log2 n locations (that is

into the leading zone L ). The total cost is O(s log2 n) moves for the block
exchanges plus O(s log n) moves for updating the succ and pred pointers of any
block involved in the exchange.

Now we have to consider the costs of the merging phase. In step 1 we use the
small tree to find the smallest element in L . The small tree has s nodes, its
pointers are completely contained into a constant number of auxiliary locations
and is fully balanced. Therefore searching and updating tre tree costs O(log s)
comparisons. Step 2 is a mere exchange of elements (we can maintain the starting
location of the five zones into as many auxiliary locations). Finally, step 3 consists
in an access to the small tree, two block exchanges (we first exchange the block
b in L with the next one in its list, then we exchange again the block b, now in
R, with the first block in R, thus enlarging and shrinking of log2 n positions the
sizes, respectively, of B and R) and the update of O(log n) stolen bits (linked
lists informations). Since this operation can be charged on Ω(log2 n) steps gone
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without block transfers, the amortized costs of step 3 is O(1) comparisons and
moves for any moved element.

The changes for the case of sorted subsequences of generic lengths are minimal
and straightforward. That is because the algorithm is already capable to manage
the fact that during the evolution of the merging process the remainders of the
sorted subsequences are going to differ in length. Therefore, starting from an
initial input sequence with sorted subsequences of generic length is just a special
case of the common situations managed during the merging process.

3.3 What if s > nε?

For any fixed real constant ε < 1, if s > nε then the problem can be easily
solved by applying the sorting algorithm in [1] to the whole input sequence R,
completely ignoring its pre-sortedness. We would like to point out that this can
be seen as a base case of the merging by sorting approach in which the sorting
subroutine can solve the main problem of merging by itself. Similarly, for the
dual companion of the sorting by merging approach, the particular case in which
there are only a constant number of sorted sub-sequences in the input sequence
can be solved directly by the merging subroutine.

Lemma 3. For any nε < s ≤ n and for any set of s sorted sequences containing
a total of n elements (drawn from U), we can compute the whole sorted sequence
with O(n log s) comparisons, O(n) moves and O(1) auxiliary cells of memory.

Proof. In [1], it has been proven that there exists a full-optimal solution for the
sorting problem using O(n log n) comparisons, O(n) moves and O(1) auxiliary
cells. If s > nε, for a fixed real constant ε, that solution is also a full-optimal
solution for the balanced merging problem. Since we care about the parameter s
only, the case of sorted subsequences with generic lengths has the same solution.

Finally, we can conclude that Theorem 1 is proven by Lemmas 1, 2 and 3.
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Abstract. Given a pattern P , a text T , and an integer k, we want to
find for every position j of T , the index of the k-mismatch of P with the
suffix of T starting at position j. We give an algorithm that finds the
exact index for each j, and algorithms that approximate it. We use these
algorithms to get an efficient solution for an approximate version of the
tandem repeats problem with k-mismatches.

1 Introduction

Let P be a pattern of length m and let T be a text of length n. Let T (i, 	) denote
the substring of T of length 	 starting at position i.1 In the k-mismatch problem
we determine for every 1 ≤ j ≤ n −m + 1, if T (j, m) matches P with at most
k mismatches. In case T (j, m) does not match P with at most k mismatches
we compute the position k(j) in P of the k-mismatch. In case T (j, m) matches
P with at most k mismatches we compute the position of the last mismatch if
there is at least one mismatch.

Several classical results are related to the k-mismatch problem. Abrahamson
[1], gave an algorithm that finds for each 1 ≤ j ≤ n−m +1, the number of mis-
matches between T (j, m) and P . The running time of Abrahamson’s algorithm is
O(n

√
m log m). Amir et. al. [2], gave an algorithm that for each 1 ≤ j ≤ n−m+1,

determines if the number of mismatches between T (j, m) and P is at most k.
running time of this algorithm is O(n

√
k log k). Both of these algorithms do not

give any information regarding the position of the last mismatch or the posi-
tion of the k-mismatch. This information is useful for applications that want
to know not only if the pattern matches with at most k-mismatches, but also
want to know how long is the prefix of the pattern that matches with at most
k-mismatches.

The major technique used by the algorithms of Abrahamson and of Amir et.
al. is convolution. Lets fix a particular character x ∈ Σ. Suppose we want to
compute for every 1 ≤ j ≤ n − m + 1, the number of places in which an x
in P does not coincide with an x in T when we align P with T (j, m). We can

1 We always assume that i ≤ n − m + 1 when we use this notation.
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perform this task by computing a convolution of a binary vector P (x) of length
m, and a binary vector T (x) of length n as follows. The vector P (x) contains 1
in every position where P contains the character x and 0 in all other positions.
The vector T (x) contains 1 in every position where T does not contains x and 0
in every position where T contains x. We can perform the convolution between
P (x) and T (x) in O(n log m) time using the Fast Fourier Transform. So if P
contains only |Σ| different characters we can count for each 1 ≤ j ≤ n−m + 1,
the number of mismatches between T (j, m) and P in O(|Σ|n log m). We do that
by performing |Σ| convolutions as described above, one for each character in P ,
and add up the mismatch counts.

There is a simple deterministic algorithm for the k-mismatch problem that
runs in O(nk) time and O(n) space of Landau and Vishkin [8]. They construct a
suffix tree for the text and the pattern, with a data structure for lowest common
ancestor (LCA) queries, to allow constant-time jumps over equal substrings in
the text and pattern. The algorithm of Landau and Vishkin finds for each j
the position of the k-mismatch (or the last mismatch if there are less than k
mismatches) between T (j, m) and P in O(k) time. It does that by performing at
most k LCA queries on the appropriate substrings of the text and the pattern.
We give an alternative algorithm that runs in O(nk

2
3 log1/3 m log k) time and

linear space.
To see why the bound of O(nk

2
3 log1/3 m), may be natural, consider a pattern

of length m = O(k). In this case, we can solve the problem using the method of
Abrahamson [1]. We divide the pattern into k

1
3 / log1/3 k blocks, each block of

size z = O(k
2
3 log1/3 k). By applying the algorithm of Abrahamson with the

first block as the pattern, we determine in O(n
√

z log z) = O(nk
1
3 log2/3 k) time,

the number of mismatches of each text location with the first block. Similarly,
by applying the method of Abrahamson to each of the subsequent k

1
3 / log1/3 k

blocks of the pattern, and accumulating the number of mismatches for each
text position, we know in O(nk

2
3 log1/3 k) time for each text position, which

block contains the k-mismatch. Moreover we also know for each text position
the number of mismatches in the blocks preceding the one that contains the
k-mismatch. With this information, we can find for each text position the k-
mismatch in the relevant block in O(k

2
3 log1/3 k) time by scanning the block

character by character looking for the appropriate mismatch. It is not clear how
to get a better bound even for this simple example.

We also define the approximate k-mismatch problem. This problem have an
additional accuracy parameter ε. The task is to determine for every 1 ≤ j ≤
n − m + 1 a position k(j) in P such that the number of mismatches between
T (j, k(j)) and P (1, k(j)) is at least (1− ε)k and at most (1 + ε)k, or report that
there is no such position.

We give a deterministic and randomized algorithms for the approximate
k-mismatch problem. We describe the deterministic algorithm in Section 3. The
running time of this algorithm is O((n/ε3)

√
k log3 m). In Sect. 4, we give a ran-

domized algorithm with running time of O( n
ε2 log n log3 m log k). The random-

ized algorithm guarantees that for each j the number of mismatches between
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T (j, k(j)) and P (1, k(j)) is at least (1 − ε)k and at most (1 + ε)k with high
probability.2

A position k(j) computed by our algorithms for the approximate k-mismatch
problem may not contain an actual mismatch. That is, the character k(j) of P
may in fact be the same as character j + k(j) − 1 of T . We can change both
algorithms such that k(j) would always be a position of a mismatch in O(n) time
as follows. For a string S we denote by SR the string obtained by reversing S.
We build a suffix tree for T R and PR, with a data structure for lowest common
ancestor (LCA) queries in constant time. For each position j in T we perform an
LCA query for the suffixes (P (1, k(j)))R of PR and (T (1, j + k(j)− 1))R of T R.
Let h be the string depth of the resulting node. Clearly h is the length of the
longest common prefix of (P (1, k(j)))R and (T (1, j +k(j)−1))R, and k(j)−h is
the position of the last mismatch between P and T (j, m) prior to position k(j).
We change k(j) to k(j)− h.

In Sect. 5, we use our algorithms for the k-mismatch problem to solve an ap-
proximate version of the k-mismatch tandem repeats problem. The exact tandem
repeats problem is defined as follows. Given a string S of length n, find all sub-
strings of S of the form uu. Main and Lorentz [9] gave an algorithm that solves
this problem in O(n log n + z) time, where z is the number of tandem repeats
in S. Repeats occur frequently in biological sequences, but they are usually not
exact. Therefore algorithms for finding approximate tandem repeats were de-
veloped. The k-mismatch tandem repeats problem is defined as follows. Given a
string S and a parameter k find all substrings uv of S such that |u| = |v| > k
and the number of mismatches between u and v is at most k. The best known
algorithm for this problem is due to Landau, Schmidt and Sokol [7] and it runs in
O(nk log(n/k) + z) time, where z is the number of k-mismatch tandem repeats.

We define the approximate k-mismatch tandem repeats problem which is a
relaxation of the k-mismatch tandem repeats problem. In this relaxation we
require that the algorithm will find all substrings uv of S such that |u| = |v| > k
and the number of mismatches between u and v is at most k, but we also allow the
algorithm to report substrings uv such that the number of mismatches between
u and v is at most (1 + ε)k. Using our algorithm for the k-mismatch problem
we get an algorithm for approximate k-mismatch tandem repeats that runs in
O((n/ε)k

2
3 log1/3 n log k log(n/k) + z) time. Using our deterministic algorithm

for the approximate k-mismatch problem we get an algorithm for approximate
k-mismatch tandem repeats that runs in O((n/ε4)

√
k log3 n log(n/k) + z) time.

We can also use the randomized algorithm of Sect. 4 and get an algorithm
that reports all k-mismatch tandem repeats with high probability, and possibly
tandem repeats with up to (1+ ε)k mismatches in O( n

ε3 log3 n log k log(n/k)+ z)
time.

Preliminaries: A string s is periodic with period u, if s = ujw, where j ≥ 2 and
w is a prefix of u. The period of s is the shortest substring u such that s = ujw
and w is a prefix of u.

2 By high probability we mean probability that is polynomially small in n.
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A break of s is an aperiodic substring of s. An 	-break is a break of length
	. We choose a parameter 	 < k (the value of 	 will be decided later). We use
the method of [3] to find a partition of the pattern into 	-breaks separated by
substrings shorter than 	, or periodic substrings with period of length at most
	/2. We call the substrings that separate the breaks periodic stretches.

In Sect. 2, we show how to solve the k-mismatch problem when the pattern
P contains at most 2k 	-breaks in the time and space bounds mentioned above.
In case the pattern P contains more than 2k 	-breaks, we reduce it to the case
where P contains 2k 	-breaks as follows.

Assume P contains more than 2k 	-breaks and let P ′ be the prefix of P
with exactly 2k 	-breaks. We run our algorithm using P ′ rather than P . Our
algorithm also finds all positions in T that match P ′ with at most k mismatches.
Amir et. al. [2] proved that at most n/	 positions of the text T match P ′ with
at most k mismatches. After running our algorithm and finding these positions
we use the algorithm of Landau and Vishkin [8] to check whether each of these
positions matches the original pattern P with at most k mismatches, and to find
the location of the k-mismatch in case it does not. The total time it takes to
check all of these positions is O(nk/	). Therefore we assume from now on that
the pattern P contains at most 2k 	-breaks, and that the running time of our
algorithm is Ω(nk/	).

2 Finding the Position of the k-Mismatch

We describe an algorithm that solves the problem in O(nk
3
4 log1/4 m) time and

O(n) space. In the full version of this paper we show how to add another
level of recursion to this algorithm and get an algorithm whose running time
is O(nk

2
3 log1/3 m log k) and uses O(n) space.

Recall that we assume that the pattern contains O(k) breaks, which are sub-
strings of length at most 	, and at most 2k periodic stretches. Let A be a periodic
stretch let x be its period, |x| ≤ 	/2. Let x′ be the lexicographically first cyclic
rotation of x. We call x′ the canonical period of A. We can write A = yx′iz, i ≥ 0,
where y is a prefix of x, (y may be empty), and z is a prefix of x′ which may be
empty. Let A′ = x′i. We add y and z to the set of breaks. We redefine the term
break to include also the above substrings. The string A′ is the new periodic
stretch. We added to the set of breaks a total of O(k) substrings each of length
at most 	. After this preprocessing, the set of all different periods of the peri-
odic stretches of the pattern contains only canonical periods, and thus it doesn’t
contain two periods that are cyclic rotations one of the other. In addition, all
periodic stretches with period u are of the form ui, i > 0.

Choosing a prefix of the pattern: We now show how to choose a prefix S of
the pattern for which we can find the position of the k-mismatch with T (j, |S|)
or determine that S matches T (j, |S|) with less than k-mismatches. We also
prove that S cannot match T (j, |S|) with at most k-mismatches in too many
positions j. We assume that P contains O(k) breaks, which are substrings of
length at most 	, and at most 2k periodic stretches. All periodic stretches are of
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the form ui, where u is a canonical period. We partition each periodic stretch
into segments of length 	. We ignore the segments that are not fully contained
in a periodic stretch.

Let S be the shortest prefix of P that satisfies at least one of the following
criteria, or P itself if no prefix of P satisfies at least one of these criteria.

1. S contains a multiset A of 2k segments of periodic stretches, such that at
most k/	 are of the same canonical period.

2. S contains a multiset of 2k characters in which each character appears at
most k/	 times.

We use the following definitions. Let C be the set of canonical periods of the
periodic stretches in S. We define a period u ∈ C to be to frequent in S, if there
are more than k/	 segments in the above partition with period u and rare other-
wise. Similarly, we define a character to be frequent in S, if it appears more than
k/	 times in S, and rare otherwise. The prefix S has the following properties.

1. C contains at most 2	 frequent periods. If C contains more than 2	 frequent
periods, then we can obtain a shorter S satisfying (1) by taking the shortest
prefix that contains k/	 segments of each of exactly 2	 frequent periods. By
a similar argument, the total number of segments of periodic stretches that
belong to rare periods in S is at most 2k.

2. S contains at most 2	 frequent characters. Furthermore, the total number of
occurrences of rare characters in S is at most 2k.

We add to the set of breaks all rare periodic stretches. By property 1 we added
O(k) breaks of length at most 	. Following these changes, S contains O(k) breaks.
The set C of periods of the periodic stretches is of size O(	).

Finding the position of the k-mismatch in S: Next we show how to find
the position of the k-mismatch of each location of the text T with a prefix S of
the pattern chosen as in Sect. 2. Recall that S contains O(k) breaks and at most
2k periodic stretches, and satisfies Properties 1 and 2.

We partition the pattern into at most O(k/y) substrings each contains at
most y breaks, at most y rare characters and at most y periodic stretches. First
we compute for each text position j the substring W (j) of P that contains the
k-mismatch of P with T (j, m), or determine that P matches T (j, m) with less
than k-mismatches.

To do that we process the substrings sequentially from left to right, main-
taining for each text position j the cumulative number of mismatches of the
text starting at position j with the substrings processed so far. We denote this
cumulative mismatch count of position j by r(j). Let the next substring W of
P that we process start at position i of the pattern. For each text position j,
we compute the number of mismatches of T (j, |W |) with W and denote it by
c(j). (We show below how to do that.) Then, for each text position j for which
we haven’t yet found the substring that contains the k-mismatch, we update
the information as follows. If r(j) + c(j + i) < k, we set r(j) = r(j) + c(j + i).
Otherwise, r(j) + c(j + i) ≥ k, and we set W (j) to be W .
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We now show how to find the number of mismatches between a substring W of
S and T (j, |W |) for every 1 ≤ j ≤ n−|W |+1. We do that by separately counting
the number of mismatches between occurrences of frequent characters in W
and the corresponding characters of T (j, |W |), and the number of mismatches
between occurrences of rare characters in W and the corresponding characters
of T (j, |W |). Then we add these two counts.

By Property 2, W contains at most 2	 frequent characters. For each frequent
character x we find the number of mismatches of the occurrences of x in W
with the corresponding characters in T (j, |W |) for all j, by performing a con-
volution as described in the introduction. We perform O(	) convolutions for
each of the O(k/y) substrings, so the total time to perform all convolutions is
O((k/y)	n log m).

It remains to find the number of mismatches of rare characters in W with
the corresponding characters in T (j, |W |). We do that using the algorithm of
Amir et. al. [2]. This algorithm counts the number of mismatches of a pattern
which may contain don’t care symbols with each text position. The running time
of this algorithm is O(n

√
g log m), where g is the number of characters in the

pattern that are not don’t cares. We run this algorithm with a pattern which we
obtain from W by replacing each occurrence of a frequent character by a don’t
care symbol, and the text T . We obtain for each j the number of mismatches
between rare characters in W and the corresponding characters in T (j, |W |).
Since W contains at most y rare characters, the running time of this application
of the algorithm of Abrahamson is O(n

√
y log m). So for all O(k/y) substrings

this takes O((k/y)n
√

y log m) = O(n(k/y1/2)
√

log m) time.
We now show how to find the position of the k-mismatch within the substring

W (j) that contains it for each text position j. We assume that each substring
contains y breaks and y periodic stretches. Each periodic stretch is of the form
ui, where u ∈ C, and |C| ≤ 2	.

We begin by finding for each text position which periodic stretch or break con-
tains the k-mismatch. We find it by performing a binary search on the periodic
stretches and breaks in W (j). We do the binary search simultaneously for all
text positions j. After iteration h of the binary search, for each text position we
focus on an interval of y/2h consecutive breaks and periodic stretches in W (j)
that contain the k-mismatch between W (j) and the corresponding substring of
T (j, m). In particular after log y iterations, we know for each text position which
periodic stretch or break contains the k-mismatch.

At the first iteration of the binary search we compute the number of mis-
matches in the first y/2 of the periodic stretches and breaks of W (j). From
this number we know if the k-mismatch is in the first y/2 breaks and periodic
stretches or in the last y/2 breaks and periodic stretches of W (j). In iteration
h, let I(j) be the interval of y/2h consecutive breaks and periodic stretches in
W (j) that contains the k-mismatch between W (j) and the corresponding piece of
T (j, m). We compute the number of mismatches between the first y/2h+1 breaks
and periodic stretches in I(j) and the corresponding part of T (j, m). Using this
count we know if to proceed with the first half of I(j) or the second half of I(j).
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We describe the first iteration of the binary search. Subsequent iterations are
similar. We count the number of mismatches in each of the first y/2 breaks in
W (j) and T (j, m) by comparing them character by character in y	/2 time for
a specific j, and ny	/2 total time. To count the number of mismatches in each
of the first y/2 periodic stretches we process the different periods in C one by
one. For each period u ∈ C and each text position j we count the number of
mismatches in periodic stretches of u among the first y/2 periodic stretches of
W (j). The sum of these mismatch counts over all periods u ∈ C gives us the total
number of mismatches in the first y/2 periodic stretches of W (j) and T (j, m)
for every text position j.

Let u ∈ C. We compute the number of mismatches of u with each text location
using the algorithm of Abrahamson [1] in O(n

√
	 log 	) time. We build a data

structure that consists of |u| prefix sums arrays Ai, i = 1, · · · , |u|, each of size
n/|u|. We use these arrays to find the number of mismatches of periodic stretches
of u among the first y/2 periodic stretches of W (j) for all text positions j. The
total size of the arrays is O(n).

The entries of array Ai correspond to the text characters at positions β such
that β modulo |u| = i modulo |u|. The first entry of array Ai contains the number
of mismatches between T (i, |u|) to u that was computed by the algorithm of
Abrahamson. Entry j in Ai contains the number of mismatches between T (i, j|u|)
and uj. It is easy to see that based on entry j−1, entry j in Ai can be computed in
O(1) time. Suppose we need to find the number of mismatches of T (i+j|u|, r|u|)
with a periodic stretch ur. The number of mismatches can be computed in O(1)
time given Ai. If j = 0, then the number of mismatches is Ai[r]. If j > 0, then
the number of mismatches is Ai[j + r]−Ai[j].

In each iteration of the binary search we repeat the procedure above for
every u ∈ C. Since |C| = O(	) we compute the number of mismatches of
all periodic stretches in the first y/2 periodic stretches of W (j) for all j, in
O(n	3/2√log 	) time. Summing up over all iterations the time of counting the
number of mismatches within breaks and the time of counting the number of
mismatches within periodic stretches, we obtain that the binary search takes
O(n	3/2√log 	 log y) + O(ny	) time.

We now know for each text position which periodic stretch or break contains
the position of the k-mismatch. If the k-mismatch is contained within a break
we find it in O(	) time by scanning the break character by character. If the k-
mismatch is contained in a periodic stretch, then we find it as follows. For each
u ∈ C we build the n/|u| prefix sum arrays Ai, as described above. We then
compute the position of the k-mismatch, for all text position for which the k-
mismatch occurs with a periodic stretch of period u. Given such text position, we
perform a binary search on the appropriate prefix sum array to locate a segment
of length |u|within the periodic stretch that contains the k-mismatch. The binary
search is performed on a sub-array of length at most m/|u| in O(log m) time.
At the end of the binary search, we found the segment of length |u| < 	 that
contains the k-mismatch, we search in this segment sequentially in O(	) time to
find the k-mismatch. We repeat this process for all the periods in C.
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Summing over all stages we obtain that the total running time of the algorithm
is O((k/y)n	 log m)+O(n(k/y1/2)

√
log m)+O(n	3/2√log 	 log y)+O(ny	). The

space used by the algorithm is O(n).
To complete the analysis we prove in the full version of this paper that if S is

not equal to P , then T contains at most n/	 positions that match S with at most
k mismatches. In these cases we use the algorithm of Landau and Vishkin [8] to
find the position of the k-mismatch (or the last mismatch if there are less than
k-mismatches) of each of these positions with the pattern in O(nk/	) time. We
also recall that we have to take into account the overhead of O(nk/	) time of the
reduction in Sect. 1 to a pattern with at most O(k) breaks and periodic stretches.

So if we add the extra O(nk/	) overhead to the overall running time and
choose 	 and y to balance the expressions (and thereby minimize the run-
ning time) we get that 	 = k1/4/log1/4 m, y =

√
k log m and a running time

of O(nk3/4 log1/4 m).

3 Approximate k-Mismatch

In this section we sketch how to obtain an algorithm for the approximate k-
mismatch problem whose running time is O(n(1/ε3)

√
k log3 m). The algorithm

is similar to the algorithm of Sect. 2. The main difference is that instead of
using convolutions or the algorithm of Abrahamson [1] (that uses convolutions),
to count the number of mismatches of various parts of the pattern and the text,
we use the algorithm of Karloff [6]. Given a pattern P and a text T , the algorithm
of Karloff [6], finds for every text position 1 ≤ j ≤ n−m+1, a number g(j) such
that m(j) ≤ g(j) ≤ (1 + ε)m(j), where m(j) is the exact number of mismatches
between P and T (j, m).

We choose a prefix S to satisfy the first of the two criteria of Sect. 2. We
partition S into O((1/ε)k/y) substrings each containing at most εy breaks and at
most εy periodic stretches. We use the algorithm of Karloff [6] to approximately
count the number of mismatches of each text position and each substring of P
in O(n/ε2 log3 m) time. Then we know for each j which substring of P contains
the k-mismatch with T (j, m). We then search within the substring by a binary
search as in Section 2. Here we set 	 =

√
k/ log k, and y =

√
k, so y	 = k/ log k,

and therefore the total length of the breaks within each substring is at most
εy	 = εk/ logk. This allows us to ignore the breaks when looking for the position
within a substring.

4 A Randomized Algorithm for Approximate k-Mismatch

We assume w.l.o.g. that the alphabet Σ consists of the integers {1, · · · , |Σ|}.
The algorithm computes signatures for substrings of the pattern and the text.
These signatures are designed such that from the signatures of two strings we
can quickly approximate the number of mismatches between the two strings. We
construct a random string R of sparsity k by setting R[i] to 0 with probability
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(1 − 1
k ), and setting R[i] to be a random integer with probability 1

k , for every
i = 1, · · · , |R|. We choose a random integer from a space Π of size polynomial in
n. For a string W and a random string R with sparsity k, we define the signature
of W with respect to R as Sigk(W, R) =

∑|W |
i=1 W [i]R[i].

Let W1 and W2 be two strings of the same length. If W1 and W2 agree in
all positions where R[i] �= 0, then Sigk(W1, R) = Sigk(W2, R). On the other
hand, if W1 and W2 disagree in at least one position i where R[i] �= 0, then
Sigk(W1, R) = Sigk(W2, R) with probability at most 1

|Π| . Let us call the latter
event a bad event . Our algorithm compares sub-quadratic number of signatures
so by choosing Π large enough, we can make the probability that a bad event
ever happens polynomially small. Therefore, we assume in the rest of the section
that such event does not happen.

For k ≥ 2 we define an algorithm Ak as follows. The input to Ak consists of
a substring S of T and a substring W of P such that S and W are of the same
length. Let y be the true number of mismatches between S and W . The algorithm
Ak either detects that y > 2k, or detects that y < k, or returns an estimate y′

of y. The algorithm Ak works as follows. Let q = c
ε2 log n for some large enough

constant c that we determine later, and let b = |W | = |S|. Algorithm Ak takes q
random strings R1, · · · , Rq of length b and sparsity k and compares Sigk(W, Ri)
and Sigk(S, Ri) for i = 1, . . . , q. Let z be the number of equal pairs of signatures.
If z ≥ (1−ε)q(1− 1

k )k/2 then Ak reports that the number of mismatches between
S and W is smaller than k. If z ≤ (1 + ε)q(1 − 1

k )3k then Ak reports that the
number of mismatches between S and W is greater than 2k. Otherwise let y′ be
the largest integer such that z ≤ q(1− 1

k )y′
. We then return y′ as our estimate of y.

Using standard Chernoff bounds we establish that Ak satisfies the following
properties with high probability. (Proof omitted from this abstract.)

1. If y ≤ k/2 then Ak reports that the number of mismatches is smaller than
k.

2. If y ≥ 3k then Ak reports that the number of mismatches is larger than 2k.
3. If k ≤ y ≤ 2k then Ak gives an estimate y′ to y.
4. Whenever Ak gives an estimate y′ of y then (1−ε)y ≤ y′ ≤ (1+ε)y. (This can

happen if k/2 < y < 3k and happens with high probability if k ≤ y ≤ 2k.)

For k < 2 we build a generalized suffix tree for P and T . We use this suffix
tree to check whether the number of mismatches between a substring of P and a
substring of T is at most 2, and if so to find it exactly, by the method of Landau
and Vishkin. We shall refer to this procedure as A0.

We are now ready to describe the algorithm. To simplify the presentation, we
assume that k is a power of 2. Our algorithm compares substrings of P and T ,
by comparing their signatures using the algorithm Aj , for some j ≤ k which is
a power of two, and we always compare substrings of length which is a power
of two. We prepare all signatures required by for these applications of Aj in a
preprocessing phase using convolutions as follows.

For any 2j , 0 ≤ j ≤ �log m�, and for any 2i, 0 ≤ i ≤ log k, we generate
independently at random q = c

ε2 log n strings R1, · · · , Rq, of sparsity 2i and
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length 2j . For each random string Rl of length 2j, we compute the signature
of every substring of T of length 2j with Rl by a convolution of T and Rl.
We compute the signature of every substring of P of length 2j with Rl by a
convolution of P and Rl. We compute a total of c

ε2 log n log m log k signatures in
O( n

ε2 log n log2 m log k) time.
We find the approximated location of the k-mismatch of T (j, m) with P by

a binary search as follows. To simplify the presentation we assume that m is
a power of 2 and we show in the full version of the paper how to handle pat-
terns whose length is not a power of 2. We compute the approximate number of
mismatches y′, between P (1, m/2) and T (j, m/2). We find y′ by performing a
binary search on Aj(P (1, m/2), T (j, m/2)), for j = 0, 2, 4, · · · , k. We first apply
A√

k(P (1, m/2), T (j, m/2)), if A√
k reports that the number of mismatches is

smaller than
√

k/2 we repeat the process for j = 0, 2, 4, · · ·
√

k/2. If A√
k reports

that the number of mismatches is larger than 2
√

k, we repeat the process for
j = 2

√
k, · · · , k. Otherwise the algorithm gave us a good estimation y′ of the

number of mismatches between P (1, m/2), and T (j, m/2). Once we find y′ we
proceed as follows. If y′ > (1 + ε)k we search recursively for the position of the
k-mismatch in P (1, m/2). If y′ < (1 − ε)k we search recursively for the k − y′-
mismatch in P (m/2 + 1, m/2). If (1 − ε)k ≤ y′ ≤ (1 + ε)k, the approximated
k-mismatch is at position m/2 of the pattern and we are done.

It is easy to see that the running time of the search is O( n
ε2 log n log m log logk).

The total running time of the algorithm is O( n
ε2 log n log2 m log k).

5 Approximate Tandem Repeats

We first describe the algorithm for exact tandem repeats. Then we describe the
algorithm for the k-mismatch tandem repeats that runs in O(nk log(n/k) + z).
Finally we show how to change this algorithm to get our algorithm. Let S be
the input string of length n. Let S[i · · · j] be the substring of S that starts at
position i and ends at position j, and recall that S[i · · · j]R is the string obtained
by reversing S[i · · · j]. Let S[i] be the character at position i.

We now describe the exact algorithm of Main and Lorentz [9]. Let h = �n/2�.
Let u = S[1 · · ·h] be the first half of S, and let v = S[h + 1 · · ·n] be the second
half of S. The algorithm finds all tandem repeats that contain S[h] and S[h+1].
That is repeats that are not fully contained in u and are not fully contained in
v, and then calls itself recursively on u to find all tandem repeats contained in
the first half of S, and calls itself recursively on v to find all tandem repeats
contained in the second half of S.

The repeats that contain S[h] and S[h + 1] are classified into left repeats and
right repeats . Left repeats are all tandem repeats zz where the first copy of z
contains h. Right repeats are all tandem repeats zz where the second copy of
z contains h. We describe how to find all left repeats. Right repeats are found
similarly. We build a suffix tree that supports LCA queries in O(1) time for S
and SR. The algorithm for finding left repeats in S has n/2 iterations. In the
i-th iteration, we find all left repeats of length 2i as follows.
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1. Let j = h + i.
2. Find the longest common prefix of S[h · · ·n] and of S[j · · ·n]. Let 	1 be the

length of this prefix.
3. Find the longest common prefix of S[1 · · ·h− 1]R and of S[1 · · · j − 1]R. Let

	2 be the length of this prefix.
4. If 	1 + 	2 ≥ i there is at least one tandem repeat of length 2i. All left repeats

of length 2i, begin at positions max(h− 	2, h− i + 1), · · · , min(h + 	1− i, h).

Using the suffix tree we can find each longest common prefix in O(1) time. There-
fore, we can find an implicit representation of all left repeats of length 2i in O(1)
time. The total time it takes to find all left and right repeats for h = �n/2� is
O(n), and the total running time of the algorithm is O(n log n + z).

The algorithm of [7] for finding k-mismatch tandem repeats is an extension
of the algorithm of Main and Lorentz [9]. Here we stop the recursion when the
length of the string is at most 2k, and in each iteration we compute only repeats
of length greater than 2k. Given h = �n/2� and i > k the algorithm for finding
all k-mismatch left repeats of size 2i is as follows.

1. Let j = h + i.
2. We find the positions of the first k +1 mismatches of S[h · · ·n] and S[j · · ·n]

by performing k + 1 successive LCA queries on the suffix tree of S. Let 	1
be the position of the (k + 1)-mismatch of the two strings.

3. Similarly, we find the positions of the first k+1 mismatches of S[1 · · ·h−1]R

and S[1 · · · j − 1]R by performing k + 1 successive LCA queries on a suffix
tree of SR. Let 	2 be the position of the (k +1)-mismatch of the two strings.

4. If 	1 + 	2 ≥ i, the k-mismatch tandem repeats will be those at positions
max(h− 	2, h− i + 1) · · ·min(h + 	1− i, h) that have at most k mismatches.
We can find all these positions in O(k) time by merging the sorted list of
item 2 containing the positions of the mismatches that are in [h · · ·h+i] with
the sorted list of item 3 containing the positions of the mismatches that are
in [h · · ·h+ i]. All positions in a segment between two successive elements in
the merged list either all correspond to tandem repeats or none does. (See
[7, 5] for more details).

The time it takes to find all left and right k-mismatch tandem repeats for h =
�n/2� is O(nk), and the total running time of the algorithm is O(nk log(n/k)+z).

We are now ready to describe our approximate tandem repeats algorithm
for ε and k. We use the algorithm of Sect. 2 (with minor modifications and
with different scaling of ε we can also use the algorithms of Sect. 3, and Sect.
4 instead). The algorithm has the same steps as the algorithm of [7]. The only
difference is in the way left (and right) tandem repeats are computed. Let h =
�n/2�. Let the string Ph = S[h · · ·n] and let Th = S[h · · ·n]$n/2 be the string
which is the catenation of Ph and the string $n/2, where $ is a new character that
doesn’t appear in S. The string $n/2 is used to make sure that the text is always
longer than the pattern, we ignore mismatches that are caused by it. Let PR

h−1 =
S[1 · · ·h− 1]R and let T R = S[1 · · ·n]R. We compute the left repeats as follows.
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1. Compute the position of the i-mismatch between the text Th and the pattern
Ph, for i = εk, 2εk, · · · , k − εk, k. We do that by running the algorithm of
Sect. 2 once for every i = εk, 2εk, · · · , k − εk, k. Let Bi be the vector that
contains these positions. That is Bi[r], r ≥ h contains the position of the
i-mismatch between S[r · · ·n] and S[h · · ·n].

2. Compute the position of the i-mismatch between the text T R and the pat-
tern PR

h−1, for i = εk, 2εk, · · · , k − εk, k with the algorithm of Sect. 2. Let
BR

i , i ∈ {εk, 2εk, · · · , k} be the vector that contains these positions. That is
BR

i [r], r ≥ h contains the position of the i-mismatch between S[1 · · · r]R and
S[1 · · ·h− 1]R.

3. For each r > k we find all approximate tandem repeats of length 2r whose
first half contains h as follows. The qth element in the sequence Bεk[h +
r], · · · , Bk[h+r] contains the position of the qεk-mismatch between S[h · · ·n]
and S[h+r · · ·n]. The qth element in the sequence BR

εk[h+r−1], · · · , BR
k [h+

r− 1] contains the position of the qεk-mismatch between S[1 · · ·h− 1]R and
S[1 · · ·h + r − 1]R. We activate the procedure of [7] that we described in
item 4 of the previous algorithm, on these sequences of O(1/ε) positions of
mismatches in O(1/ε) time. It is easy to see that this algorithm produces all
tandem repeats with at most k mismatches. The algorithm may also report
tandem reports with at most (1 + 2ε)k-mismatches.

Items 1 and 2 that take O((1/ε)nk2/3 log1/3 n log k) time dominated the running
time of each recursive call.
Therefore the total time is O((1/ε)nk2/3 log1/3 n log k log(n/k) + z).

Acknowledgements. We thank Uri Zwick for suggesting to use prefix sum
arrays in Sect. 2.

References

1. Karl Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–
1051, 1987.

2. Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string
matching with k mismatches. J. Algorithms, 50(2):257–275, 2004.

3. Richard Cole and Ramesh Hariharan. Approximate string matching: A simpler
faster algorithm. SIAM J. Comput., 31(6):1761–1782, 2002.

4. M. Crochemore and W. Rytter. Text Algorithms. Oxford Univ. Press, New-York,
1994. pp. 27-31.

5. Dan Gusfield. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge Univ. Press, 1997.

6. Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf.
Process. Lett., 48(2):53–60, 1993.

7. Gad M. Landau, Jeanette P. Schmidt, and Dina Sokol. An algorithm for approximate
tandem repeats. Journal of Computational Biology, 8(1):1–18, 2001.

8. G.M. Landau and U. Vishkin. Efficient string matching in the presence of errors. In
Proc. 26th IEEE Symposium on Foundations of Computer Science, pages 126–136,
Los Alamitos CA, USA, 1985. IEEE Computer Society.

9. Michael G. Main and Richard J. Lorentz. An o(n log n) algorithm for finding all
repetitions in a string. J. Algorithms, 5(3):422–432, 1984.



Unbiased Matrix Rounding

Benjamin Doerr, Tobias Friedrich, Christian Klein, and Ralf Osbild

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We show several ways to round a real matrix to an integer
one such that the rounding errors in all rows and columns as well as
the whole matrix are less than one. This is a classical problem with
applications in many fields, in particular, statistics.

We improve earlier solutions of different authors in two ways. For
rounding matrices of size m × n, we reduce the runtime from O((mn)2)
to O(mn log(mn)). Second, our roundings also have a rounding error of
less than one in all initial intervals of rows and columns. Consequently,
arbitrary intervals have an error of at most two. This is particularly
useful in the statistics application of controlled rounding.

The same result can be obtained via (dependent) randomized round-
ing. This has the additional advantage that the rounding is unbiased,
that is, for all entries yij of our rounding, we have E(yij) = xij , where
xij is the corresponding entry of the input matrix.

1 Introduction

In this paper, we analyze a rounding problem with strong connections to statis-
tics, but also to different areas in discrete mathematics, computer science, and
operations research. We show how to round a matrix to an integer one such that
rounding errors in intervals of rows and columns are small.

Let m, n be positive integers. For some set S, we write Sm×n to denote the
set of m × n matrices with entries in S. For real numbers a, b let [a..b] := {z ∈
Z | a ≤ z ≤ b}. We show the following.

Theorem 1. For all X ∈ [0, 1)m×n a rounding Y ∈ {0, 1}m×n such that

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣ < 1,

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣∣ b∑

i=1

(xij − yij)
∣∣∣∣ < 1,

∣∣∣∣ m∑
i=1

n∑
j=1

(xij − yij)
∣∣∣∣ < 1

can be computed in time O(mn log(mn)).

This result extends the famous rounding lemma of Baranyai [3] and several
results on controlled rounding in statistics by Bacharach [2] and Causey, Cox
and Ernst [7].

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 102–112, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Unbiased Matrix Rounding 103

1.1 Baranyai’s Rounding Lemma and Applications in Statistics

Baranyai [3] used a weaker version of Theorem 1 to obtain his well-known results
on coloring and partitioning complete uniform hypergraphs. He showed that any
matrix can be rounded such that the errors in all rows, all columns and the
whole matrix are less than one. He used a formulation as flow problem to prove
this statement. This yields an inferior runtime than the bound in Theorem 1.
However, algorithmic issues were not his focus.

In statistics, Baranyai’s result was independently obtained by Bacharach [2]
(in a slightly weaker form) and again independently by Causey, Cox and
Ernst [7]. There are two statistical applications for such rounding results. Note
first that instead of rounding to integers, our result also applies to rounding to
multiples of any other base (e.g., multiples of 10). Such a rounding can be used
to improve the readability of data tables.

The main reason, however, to apply such a rounding procedure is confidential-
ity protection. Frequency counts that directly or indirectly disclose small counts
may permit the identification of individual respondents. There are various meth-
ods to prevent this [25], one of which is controlled rounding [9]. Here, one tries
to round an (m + 1)× (n + 1)-table X̃ given by

(xij) i=1...m
j=1...n

(∑n
j=1 xij

)
i=1...m

(
∑m

i=1 xij)j=1...n

∑m
i=1
∑n

j=1 xij

to an (m + 1) × (n + 1)-table Ỹ such that additivity is preserved, i.e., the last
row and column of Ỹ contain the associated totals of Ỹ . In our setting we round
the m × n-matrix X defined by the mn inner cells of the table X̃ to obtain a
controlled rounding.

The additivity in the rounded table allows to derive information on the row
and column totals of the original table. In contrast to other rounding algorithms,
our result also permits to retrieve further reliable information from the rounded
matrix, namely on the sums of consecutive elements in rows or columns. Such
queries may occur if there is a linear ordering on statistical attributes. Here an
example. Let xij be the number of people in country i that are j years old. Say
Y is such that 1

1000Y is a rounding of 1
1000X as in Theorem 1. Now

∑40
j=20 yij is

the number of people in country i that are between 20 and 40 years old, apart
from an error of less than 2000. Note that such guarantees are not provided by
the results of Baranyai [3], Bacharach [2], and Causey, Cox and Ernst [7].

1.2 Unbiased Rounding

Section 4, we present a randomized algorithm computing roundings as in
Theorem 1. It has the additional property that each matrix entry is rounded
up with probability equal to its fractional value. This is known as randomized
rounding [20] in computer science and as unbiased controlled rounding [8, 15]
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in statistics. Here, a controlled rounding is computed such that the expected
values of each table entry (including the totals) equals its fractional value in the
original table.

To state our result more precisely, we introduce the following notation. For
x ∈ R write �x� := max{z ∈ Z | z ≤ r}, �x� := min{z ∈ Z | z ≥ r} and
{x} := x− �x�.
Definition 1. Let x ∈ R. A random variable y is called randomized rounding
of x, denoted y ≈ x, if Pr(y = �x� + 1) = {x} and Pr(y = �x�) = 1 − {x}.
For a matrix X ∈ Rm×n, we call an m× n matrix-valued random variable Y
randomized rounding of X if yij ≈ xij for all i ∈ [1..m], j ∈ [1..n].

We then get the following randomized version of Theorem 1.

Theorem 2. Let X ∈ [0, 1)m×n be a matrix having entries of binary length at
most 	. Then a randomized rounding Y fulfilling the additional constraints that

∀b ∈ [1..n], i ∈ [1..m] :
b∑

j=1

xij ≈
b∑

j=1

yij ,

∀b ∈ [1..m], j ∈ [1..n] :
b∑

i=1

xij ≈
b∑

i=1

yij ,

m∑
i=1

n∑
j=1

xij ≈
m∑

i=1

n∑
j=1

yij

can be computed in time O(mn	).

For a matrix with arbitrary entries xij :=
∑�

d=1 x
(d)
ij 2−d + x′

ij where x′
ij < 2−�

and x
(d)
ij ∈ {0, 1} for i ∈ [1..m], j ∈ [1..n], d ∈ [1..	], we may use the 	 highest bits

to get an approximate randomized rounding. If (before doing so) we round the
remaining part x′

ij of each entry to 2−� with probability 2�x′
ij and to 0 otherwise,

we still have that Y ≈ X , but we introduce an additional error of at most 2−�mn
in the constraints of Theorem 2.

1.3 Other Applications

One of the most basic rounding results states that any sequence x1, . . . , xn of num-
bers can be rounded to an integer one y1, . . . , yn such that the rounding errors
|
∑b

j=a(xj − yj)| are less than one for all a, b ∈ [1..n]. Such roundings can be
computed efficiently in linear time by a one-pass algorithm resembling Kadane’s
scanning algorithm (described in Bentley’s Programming Pearls [5]). Extensions in
different directions have been obtained in [11, 12, 17, 21, 23]. This rounding prob-
lem has found a number of applications, among others in image processing [1, 22].

Theorem 1 extends this result to two-dimensional sequences. Here the round-
ing error in arbitrary intervals of a row or column is less than two. In [14] a lower
bound of 1.5 is shown for this problem. Thus an error of less than one as in the
one-dimensional case cannot be achieved.
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Rounding a matrix while considering the errors in column sums and partial
row sums also arises in scheduling [6, 18, 19, 24]. For this, however, one does
not need our result in full generality. It suffices to use the linear-time one-pass
algorithm given in [14]. This algorithm rounds a matrix having unit column sums
and can be extend to compute a quasi rounding for arbitrary matrices. While
this algorithm keeps the error in all initial row intervals small, for columns only
the error over the whole column is considered.

1.4 Knuth’s Two-Way Rounding

In [17], Knuth showed how to round a sequence of n real numbers xi to yi ∈
{�xi�, �xi�} such that for two given permutations σ1, σ2 ∈ Sn, we have both
|
∑k

i=1(xσ1(i) − yσ1(i))| ≤ n/(n + 1) and |
∑k

i=1(xσ2(i) − yσ2(i))| ≤ n/(n + 1) for
all k. Knuth’s proof uses integer flows in a certain network [16]. On account of
this his worst-case runtime is quadratic.

One application Knuth mentioned in [17] is that of matrix rounding. For this,
simply choose a permutation σ1 that enumerates the xij row by row, and a
permutation σ2 that enumerates the xij column by column. Applying Knuth’s
algorithm to these permutations gives a rounding with errors smaller than one
in all initial row and column intervals.

2 Preliminaries

In this section, we provide two easy extensions of the result stated in the in-
troduction. First, we immediately obtain rounding errors of less than two in
arbitrary intervals in rows and columns. This is supplied by the following lemma.

Lemma 1. Let Y be a rounding of a matrix X such that the errors |
∑b

j=1(xij−
yij)| in all initial intervals of rows are at most d. Then the errors in arbitrary
intervals of rows are at most 2d, that is, for all i ∈ [1..m] and all 1 ≤ a ≤ b ≤ n,∣∣∣∣ b∑

j=a

(xij − yij)
∣∣∣∣ ≤ 2d.

This also holds for column intervals, i.e., if the errors |
∑b

i=1(xij − yij)| in all
initial intervals of columns are at most d′, then the errors |

∑b
i=a(xij − yij)| in

arbitrary intervals of columns are at most 2d′.

Proof. Let i ∈ [1..m] and 1 ≤ a ≤ b ≤ n. Then∣∣∣∣ b∑
j=a

(xij − yij)
∣∣∣∣ = ∣∣∣∣ b∑

j=1

(xij − yij)−
a−1∑
j=1

(xij − yij)
∣∣∣∣

≤
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣+ ∣∣∣∣ a−1∑

j=1

(xij − yij)
∣∣∣∣ ≤ 2d. �

From now on, we will only consider matrices having integral row and column
sums. This is justified by the following lemma.
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Lemma 2. Assume that for any X ∈ Rm×n with integral column and row sums
a rounding Y ∈ Zm×n such that

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣ < 1, (1)

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣∣ b∑

i=1

(xij − yij)
∣∣∣∣ < 1 (2)

can be computed in time T(m,n). Then for all X̃ ∈ Rm×n with arbitrary column
and row sums a rounding Ỹ ∈ Zm×n satisfying (1), (2) and∣∣∣∣ m∑

i=1

n∑
j=1

(xij − yij)
∣∣∣∣ < 1 (3)

can be computed in time T (m + 1, n + 1) + O(mn).

Proof. Given an arbitrary matrix X̃ ∈ Rm×n, we add an extra row taking what
is missing towards integral column sums and add an extra column taking
what is missing towards integral row sums. Hence, let X ∈ R(m+1)×(n+1) be
such that

xij = x̃ij for all i ∈ [1..m], j ∈ [1..n],

xm+1,j =
⌈ m∑

i=1

x̃ij

⌉
−

m∑
i=1

x̃ij for all j ∈ [1..n],

xi,n+1 =
⌈ n∑

j=1

x̃ij

⌉
−

n∑
j=1

x̃ij for all i ∈ [1..m],

xm+1,n+1 =
⌈ m∑

i=1

x̃i,n+1

⌉
−

m∑
i=1

x̃i,n+1 =
⌈ n∑

j=1

x̃m+1,j

⌉
−

n∑
j=1

x̃m+1,j .

Clearly, X has integral row and column sums. Therefore it can be rounded to
Y ∈ Z(m+1)×(n+1) satisfying (1) and (2) in time T (m + 1, n + 1).

For (3), observe that if a row (resp. column) sum is integral, the rounding error
in the row (resp. column) is 0. Then the rounding error in the whole matrix is also
0, if all row and column sums are integral. Using this and the triangle inequality,
we get inequality (3) as follows.∣∣∣∣ m∑

i=1

n∑
j=1

(xij − yij)
∣∣∣∣ = ∣∣∣∣m+1∑

i=1

n+1∑
j=1

(xij − yij)−
m+1∑
i=1

(xi,n+1 − yi,n+1)

−
n+1∑
j=1

(xm+1,j − ym+1,j) + (xm+1,n+1 − ym+1,n+1)
∣∣∣∣

≤ 0 + 0 + 0 + |xm+1,n+1 − ym+1,n+1| < 1.

By setting ỹij = yij for all i ∈ [1..m] and j ∈ [1..n], we obtain the desired
rounding Ỹ ∈ Zm×n. �
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3 Bitwise Rounding

In this section, we present an alternative approach which will lead to a superior
runtime. It uses a classical result on rounding problems, namely, that the problem
of rounding arbitrary numbers can be reduced to the one of rounding half-integral
numbers. For X ∈ {0, 1

2}m×n, our rounding problem turns out to be much
simpler. In fact, it can be solved in linear time.

3.1 The Binary Rounding Method

The following rounding method was introduced by Beck and Spencer [4] in 1984.
They used it to prove the existence of two-colorings of N having small discrepancy
in all arithmetic progressions of arbitrary length and bounded difference.

Given arbitrary numbers that have to be rounded, they use their binary ex-
pansion and (assuming all of them to be finite) round ‘digit by digit’. To do the
latter, they only need to understand the corresponding rounding problem for
half-integral numbers. That is, an 	-bit number x = x′ + 1

2x′′, x′ ∈ {0, 1
2} can be

recursively rounded by rounding the (	 − 1)-bit number x′′ to y′′ ∈ {0, 1} and
then rounding x′ + 1

2y′′ ∈ {0, 1
2 , 1} to y ∈ {0, 1}. The resulting rounding errors

are at most twice the ones incurred by the half-integral roundings.
If some numbers do not have a finite binary expansion, one can use a suffi-

ciently large finite length approximation. To get rid of additional errors caused
by this, we invoke a slight refinement of the binary rounding method. In [10]
it was proven that the extra factor of two can be reduced to an extra factor of
2(1− 1

2r ), where r is the number of rounding errors we want to keep small.
In our setting, the number of rounding errors is the number of all initial row

and column intervals, i.e., r = 2mn. In summary, we have the following.

Lemma 3. Assume that for any X ∈ {0, 1
2}m×n a rounding Y ∈ {0, 1}m×n can

be computed in time T that satisfies

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣ ≤ D,

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣∣ b∑

i=1

(xij − yij)
∣∣∣∣ ≤ D.

Then for all 	 ∈ N and X ∈ [0, 1)m×n a rounding Y ∈ {0, 1}m×n such that

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣ ≤ 2(1− 1

4mn )D + 2−�b,

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣∣ b∑

i=1

(xij − yij)
∣∣∣∣ ≤ 2(1− 1

4mn )D + 2−�b

can be computed in time O(	 T ).
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3.2 Rounding Half-Integral Matrices

It remains to show how to solve the rounding problem for half-integral matrices.
Based on Lemma 2, we can assume integrality of row and column sums.

Here is an outline of our approach. For each row and column, we consider
the sequence of its 1

2–entries and partition them into disjoint pairs of neighbors.
From the two 1

2 s forming such a pair, exactly one is rounded to 1 and the other
to 0. Thus, if such a pair is contained in an initial interval, it does not contribute
to the rounding error.

To make the idea precise, assume some row contains exactly 2K entries of
value 1

2 . We call the (2k− 1)–th and (2k)–th 1
2–entry of this row a row pair, for

all 1 ≤ k ≤ K. The 1
2 s of a row pair are mutually referred to as row neighbors.

Similarly, we define column pairs and column neighbors. Figure 1(a) shows a half-
integral matrix together with row and column pairs marked by boxes. Since each
1
2 belongs to a row pair and a column pair, the task of rounding is non-trivial.

Our solution makes use of an auxiliary graph GX which contains the necessary
information about row and column neighbors. Each 1

2–entry is represented by
a vertex that is labeled with the corresponding matrix indices. Each pair is
represented by an edge connecting the vertices that correspond to the paired 1

2 s.
Figure 1(b) shows the auxiliary graph that belongs to the matrix of Figure 1(a).

We collect some properties of this auxiliary graph.

(a) (b)

Fig. 1. Example for the construction of an auxiliary graph. (a) Input matrix X with
its row and column pairs. (b) Auxiliary graph GX . Vertices are labeled with matrix
indices and edges connect vertices of row and column pairs. GX is a disjoint union of
even cycles.

Lemma 4. Let X ∈ {0, 1
2}m×n be a matrix with integral row and column sums.

(a) Every vertex of GX has degree 2.
(b) GX is a disjoint union of even cycles.
(c) GX is bipartite.

Proof. (a) Because of the integrality of the row and column sums, the number of
1
2–entries in each row and column is even. Hence each 1

2–entry has a row and a
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column neighbor. In consequence, each vertex is incident with exactly two edges.
(b) The edge sequence of a path in GX corresponds to an alternating sequence
of row and column pairs. Therefore any cycle in GX consists of an even number
of edges. Since each vertex has degree two, GX is a disjoint union of cycles. (c)
Clearly, every even cycle is bipartite. �
With this result, we are able to find the desired roundings.

Lemma 5. Let X ∈ {0, 1
2}m×n and let V0∪̇V1 be a bipartition of GX . Define

Y = (yij) ∈ {0, 1}m×n by

yij =

⎧⎪⎨⎪⎩
0, if xij = 0
0, if xij = 1

2 and (i, j) ∈ V0

1, if xij = 1
2 and (i, j) ∈ V1.

Then Y has the property that

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣ ≤ 1

2 , (4)

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣∣ b∑

i=1

(xij − yij)
∣∣∣∣ ≤ 1

2 . (5)

Proof. Because 0s of X are maintained in Y , it suffices to consider 1
2–entries to

determine the rounding error in initial intervals. Since the rounded values for
the (2k − 1)-th and (2k)-th 1

2–entry sum up to 1 by construction, there is no
error in initial intervals that contain an even number of 1

2 s, and an error of 1
2 if

they contain an odd number of 1
2 s. �

After these considerations, we are able to present an algorithm that solves the
problem in two steps: first we compute the auxiliary graph and afterwards the
output matrix. To construct GX , we transform the input matrix X column by
column from left to right. Of course, generating the labeled vertices is trivial.
The column neighbors are detected just by numbering the 1

2–entries within a
column from top to bottom. When there are 2k such entries, we insert an edge
between the vertices with number 2i − 1 and 2i with 1 ≤ i ≤ k. The strategy
to detect row neighbors is the same but we need more information. Therefore
we store for each row the parity of its 1

2–entries so far and, if the parity is odd,
further a pointer to the last occurrence of 1

2 in this row. Then, if the current 1
2 is

an even occurrence, we have a pointer to the preceding 1
2 , and are able to insert

an edge between the corresponding vertices in GX .
The output matrix Y can be computed from X as follows. Every 0 in X is

kept and every 1
2–sequence that corresponds to a cycle in GX is substituted by

an alternating 0–1–sequence. By Lemma 4, this is always possible. It does not
matter which of the two alternating 0–1 sequences we choose.

The graph GX can be realized with adjacency lists (the vertex degree is always
2). The additional information per row can be realized by a simple pointer–array
of length m (a special nil–value indicates even parity).
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Since the runtime of each step is bounded by the size of the input matrix, the
entire algorithm takes time O(mn). In addition to the constant amount of space
we need for each of the m rows, we store all k entries of value 1

2 in the auxiliary
graph. This leads to a total space consumption of O(m + k). Summarizing the
above, we obtain the following lemma.

Lemma 6. Let X ∈ {0, 1
2}m×n. Then a rounding Y ∈ {0, 1}m×n satisfying the

inequalities (4) and (5) can be computed in time O(mn).

3.3 Final Result

By combining Lemma 3 and 6, we obtain the following result.

Theorem 3. For all 	 ∈ N and X ∈ [0, 1)m×n a rounding Y ∈ {0, 1}m×n such
that

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣ ≤ 1− 1

4mn + 2−�b,

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣∣ b∑

i=1

(xij − yij)
∣∣∣∣ ≤ 1− 1

4mn + 2−�b

can be computed in time O(	mn).

For 	 > log2(4mn max{m, n}) the above theorem together with Lemma 2 yields
Theorem 1 in the introduction.

4 Unbiased Rounding

In this section we give a randomized algorithm that computes a randomized
rounding satisfying Theorem 2. First observe, that the {0, 1

2} case has a very
simple randomized solution. Whenever it has to round a cycle, it chooses one
of the two alternating 0–1–sequences for each cycle uniformly at random. Then,
each xij = 1

2 is rounded up with probability 1
2 .

Now consider the output of the bitwise rounding algorithm using the ran-
domized rounding algorithm for the half-integral case as subroutine. We adapt
the proofs of [13] to show that this algorithm computes an unbiased controlled
rounding.

Theorem 4. Let X ∈ [0, 1)m×n be a matrix containing entries with binary rep-
resentation of length at most 	. Let Y be a random variable modeling the output
of the randomized algorithm. Then Y ≈ X and

∀b ∈ [1..n], i ∈ [1..m] :
b∑

j=1

yij ≈
b∑

j=1

xij , (6)

∀b ∈ [1..m], j ∈ [1..n] :
b∑

i=1

yij ≈
b∑

i=1

xij . (7)
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Proof. We prove Y ≈ X by induction. For 	 = 1 it is clear that Pr(yij = 1) = xij .
If 	 > 1, write xij = x′

ij + 1
2x′′

ij , where x′
ij ∈ {0, 1

2} and x′′
ij ∈ [0, 1) has bit-length

	 − 1. Let y′′
ij be the rounding computed for x′′

ij . Then Pr(y′′
ij = 1) = x′′

ij by
induction. Now the algorithm will round x̃ij := x′

ij + 1
2y′′

ij ∈ {0, 1
2 , 1} to yij . If

y′′
ij = 1, then x̃ij will be rounded up with probability 1 if x′

ij = 1
2 and with

probability 1
2 otherwise. If, on the other hand, y′′

ij = 0, then x̃ij will be rounded
up with probability x′

ij . Thus

Pr(yij = 1) = x′′
ij(

1
2 + x′

ij) + (1− x′′
ij)x

′
ij = x′

ij + 1
2x′′

ij = xij .

To prove equation (6), observe that sy :=
∑b

j=1 yij is a rounding of sx :=∑b
j=1 xij by Lemma 3. We also have E(sy) =

∑b
j=1 E(yij) = sx by linearity of

expectation. But also E(sy) = Pr(sy = �sx�)�sx�+ Pr(sy = �sx�+ 1)(�sx�+ 1),
which is only possible if sy ≈ sx. The proof of (7) is analogous. �
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Abstract. We consider the non-preemptive scheduling of two identi-
cal machines for jobs with equal processing times yet arbitrary release
dates and deadlines. Our objective is to maximize the number of jobs
completed by their deadlines. Using standard nomenclature, this prob-
lem is denoted as P2 | pj = p, rj | U j . The problem is known to be
polynomially solvable in an offline setting.

In an online variant of the problem, a job’s existence and parame-
ters are revealed to the scheduler only upon that job’s release date. We
present an online, deterministic algorithm for the problem and prove that
it is 3

2 -competitive. A simple lower bound shows that this is the optimal
deterministic competitiveness.

Keywords: Algorithms, Online, Scheduling.

1 Introduction

We present an online, non-preemptive, deterministic algorithm for scheduling
two machines in the following setting. Each job j is specified by three non-
negative integer parameters, with rj denoting its release time, pj its processing
time, and dj its deadline. For this paper, we assume all processing times are
equal, thus pj = p for a fixed constant p. In order to successfully complete a
job j, the scheduler must devote a machine to it for p consecutive units of time
during the interval [rj , dj).

We examine an online model for the problem, in which the scheduler is obliv-
ious to a job’s existence and characteristics until that job’s release time. We use
competitive analysis to measure the performance of an algorithm A by compar-
ing the quality of the schedule it produces to that of an optimal offline scheduler
that has a priori knowledge of the entire instance [3]. Our main result is the pre-
sentation of a 3

2 -competitive, deterministic online algorithm for the two-machine
problem. A simple lower bound shows that this is the best possible result.

Preliminaries and Notations. We let xj = dj − p denote a job’s expiration time,
namely the last possible time it can be started, and we fix a canonical linear
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ordering of jobs, ≺, such that i ≺ j implies xi ≤ xj . As all job parameters
are presumed to be integral, we consider time as a series of discrete steps. Our
algorithm provides what has been termed immediate notification [8]. At the
moment a job is released, the scheduler must either accept or reject that job. An
accepted job need not be scheduled precisely at that moment, but the scheduler
must guarantee that it will be successfully completed by its deadline. In the case
where several jobs are released at a time t, we assume that they are considered
in arbitrary order with the scheduler providing notification to each in turn.

We introduce notation Feasible(J , t1, t2) to represent a combinatorial
boolean property, namely whether a set J of released jobs can be achieved
on two machines, given that one of the machines cannot be used prior to time t1
nor the other prior to time t2. We do not make any assumption about the re-
lationship between t1 and t2, though conventionally we will order them with
t1 ≤ t2 when known. A further discussion of this feasibility property is provided
in Section 3.

Related Work. In recent independent work, a different algorithm and analy-
sis has been presented claiming the same 3

2 -competitive upper bound [5]. The
single machine version of this problem is well studied. A deterministic, non-
preemptive greedy algorithm is known to be 2-competitive with equal-length
jobs, and this is the best possible deterministic result [2, 6]. If each job satisfies a
patience requirement, namely that dj − rj ≥ (1+κ) ·pj for some constant κ > 0,
then the deterministic greedy algorithm is (1 + 1

�κ�+1 )-competitive [7]. A simi-
lar algorithm achieves the same competitiveness while also providing immediate
notification [8]. When considering randomized online algorithms, there exists a
5
3 -competitive algorithm [4] versus a 4

3 -competitive lower bound [6].
In the offline setting, checking the feasibility of a set of equal-length jobs

with release dates and deadlines is polynomially solvable, even for an arbi-
trary number of identical machines [10, 11]. The optimization problem is poly-
nomially solvable for any fixed number of machines, even with weighted utility
(Pm | pj = p, rj |

∑
wjUj) [1], yet open with arbitrary number of machines,

even when unweighted (P | pj = p, j |
∑

Uj).

2 Algorithm Definition

The algorithm, A, maintains a queue of jobs which have been accepted but not
yet started. As the composition of the queue changes over time, we introduce
the following notation. We let QA

t denote the queue as it exists at the onset
of time step t. For each job j released at time t, we let QA

rj
denote the queue

as it exists when j’s release was considered (thus QA
rj
⊇ QA

t may contain newly
accepted jobs which were considered prior to j). Job j is accepted into the system
precisely if it is feasible to do so. Specifically, we check Feasible(QA

rj
∪ {j}, c, ċ),

where c (resp. ċ) represents the time until which the first (resp. second) machine
is committed to a currently running job. In the case where a machine is not
running a job, we considered it trivially committed until time t.
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17 42 52

e g i j c

d f h k b

Fig. 1. The schedule produced by A on an instance with p = 10 and jobs: a = 〈0, 60〉,
b = 〈0, 71〉, c = 〈0, 71〉, d = 〈3, 30〉, e = 〈3, 31〉, f = 〈3, 33〉, g = 〈3, 37〉, h = 〈3, 45〉,
i = 〈3, 52〉, j = 〈3, 56〉, k = 〈38, 55〉

After considering all newly released jobs at time t, the scheduling policy is as
follows. If neither machine is currently committed to a job and the queue is non-
empty, the ≺-minimal job is started on an arbitrary machine. If one machine is
committed to a job, yet the other is uncommitted (including the case when a job
was just started by the preceding rule), a decision is made as to whether or not
to start a job on the other machine. For the sake of analysis, we will refer to this
as a secondary decision. Specifically, let Q̇A

t denote the queue at the point this
decision is made and let c > t denote the time until which the running machine
is committed. We begin the ≺-minimal job of Q̇A

t on the available machine if the
test Feasible(Q̇A

t , c, t + p + 1) fails. Intuitively, if there is enough flexibility, the
algorithm prefers to idle for the moment, leaving open the possibility of starting
a more urgent job should one soon arrive. Figure 1 shows the schedule produced
by this algorithm on an example.

3 A Supplemental Feasibility Test

In this section, we discuss the feasibility test, Feasible(J , t1, t2). Such a feasi-
bility condition is satisfied if and only if it can be achieved by scheduling jobs
according to an earliest deadline first (EDF) rule.

A classic result of Jackson proves this for a single machine and a set of jobs
with arbitrary processing times and deadlines [9]. With arbitrary job lengths and
two or more machines, that argument no longer applies. However with equal-
length jobs, the EDF schedule suffices. Since all jobs of J are presumed to have
been released, any idleness in a feasible schedule beyond ti on a machine Mi

can be removed. Furthermore, if any job j ∈ J is started before some other job
with earlier deadline, those two jobs of equal length can be transposed while
still guaranteeing a feasible schedule. Based on this structure, we provide the
following lemmas, specifically in the context of Feasible(J , t1, t2).

Lemma 1. For arbitrary set J , t1 ≤ t′1 and t2 ≤ t′2, Feasible(J , t′1, t
′
2) implies

Feasible(J , t1, t2).

Lemma 2. For arbitrary set J and t1 ≤ t2, let job f be ≺-minimal of J .
Feasible(J , t1, t2) if and only if xf ≥ t and Feasible(J \ {f}, t1 + p, t2).

Lemma 3. Assume Feasible(J , t1, t2) for t1 ≤ t2. Let h ∈ J be an element
for which there are i other elements of J which precede it as per ≺-order. Then
xh ≥ t1 + � i

2� · p.
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Lemma 4. For arbitrary J and t, if Feasible(J , t, t + p + 1) yet not
Feasible(J , t + 1, t + p), then there must exist a job f ∈ J with xf = t.

4 Competitive Analysis

We fix an arbitrary instance I and an optimal schedule, Opt, for that instance.
For a job j achieved by Opt, we let sOpt

j denote the time at which it is started;
we similarly define sA

j for jobs achieved by A. Though Opt is not constructed
in online fashion, we introduce a formal notation of QOpt

t to be symmetric to
that of QA

t . Namely QOpt
t consists of all jobs which are released strictly before

time t yet started by Opt on or after time t. Our analysis is based upon a form
of a potential argument. Specifically, we will soon define functions ΦA

t and ΦOpt
t

which measure the quality of the schedules being developed as of time t, byA and
Opt respectively. We will view these two potential functions as payment to the
respective schedules, with a handicap given to the online algorithm. Specifically,
A will receive 3 units for each job it starts whereas Opt receives 2 units for each
job. To prove a 3

2 -competitive ratio in the end, we must show that A collects at
least as much payment as Opt. To properly compare the merits of the schedules
at interim times, our potential functions contain full payment for jobs which
have been started and a partial payment to account for the inherit potential of
each queue.

Before defining the exact potential functions, we introduce some additional
notations. We let F A

t (resp. F Opt
t ) designate the set of jobs started strictly before

time t by A (resp. Opt). We define W A
t = QA

t \QOpt
t and symmetrically, W Opt

t =
QOpt

t \QA
t , to denote jobs which are currently waiting in one queue but not the

other (presumably because they were never accepted or were already started).
Intuitively, our potential functions ignore jobs which are common to the two
queues but account for the difference between those queues. However there is
one more anomaly which may arise.

If we identify a job waiting in W A which has an expiration time at least as
large as some other job waiting in W Opt, we choose not to let either job effect
the potential functions. Intuitively, such a pairing can only be to the advantage
of the algorithm. Therefore, for each time t we maintain a partial matching
Mt : W A

t → W Opt
t (the precise rule for establishing a match is omitted from

this version due to space limitations). We introduce notation P A
t and P Opt

t to
identify respective subsets of the waiting jobs which do not participate in the
matching.

Namely, we let P A
t = {j ∈W A

t : Mt(j) is undefined}. Similarly, we let P Opt
t =

{j ∈ W Opt
t : M−1

t (j) is undefined}. A typical Venn diagram of the various sets
we have defined is shown in Figure 2. We now define two potential functions as
follows:

ΦA
t =

{
3 · |F A

t | if P A
t = ∅

3 · |F A
t |+ 1 · |P A

t |+ 1 if P A
t �= ∅

ΦOpt
t = 2 · (|F Opt

t ∪ P Opt
t |)
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F Opt

F A

W Opt W A

P A

P Opt

Fig. 2. Relationship among the sets used in analysis at a given time. The dashed lines
represents matches between pairs of items from W A \ P A to W Opt \ P Opt respectively.

In effect, we take an advance credit of two for the first job in P A
t , and an advanced

credit of one for each additional such job. This means that when these jobs are
later scheduled, most provide a balance of two additional credits. The last job
of P Opt only provides a balance of one credit, yet we will see that an adversary
cannot as readily exploit the existence of that last job. Looking at ΦOpt

t , we make
full payment for jobs which Opt has started as well as for unmatched jobs which
Opt holds in P Opt

t .
Our end goal is to show that ΦOpt

∞ ≤ ΦA
∞. This inequality suffices to prove the

3
2 -competitiveness, since P A

∞ = P Opt
∞ = ∅. Ideally, we would like to show that

ΦOpt
t ≤ ΦOpt

t for all times t; unfortunately this cannot be assured.
Instead we break the overall time period into distinct regions, [s, t), such that

ΦOpt
t ≤ ΦA

t at the end of each such region. We consider two types of regions: in an
idle region both machines of A are idle, in a busy region at least one machine of
A is at work throughout. If both machines of A are idle at a time s, we consider
idle region [s, t) where t is the next time at which either machine starts a job, if
any.

Lemma 5. For an idle region [s, t), ΦA
t = ΦA

s and ΦOpt
t = ΦOpt

s .

Proof. As both machines idle at time s, QA
s = ∅, and as they remain idle, no

further jobs are released prior to time t. Thus QA
t = ∅ as well. With the empty

queue, sets W A
s , P A

s , W A
t and P A

t must be empty and the matchings Ms(·) and
Mt(·) trivially empty. As no jobs are completed, F A

t = F A
s and so we conclude

that ΦA
t = ΦA

s . Because no new jobs are released throughout the region and no
matches exist, the only jobs which Opt can schedule are those in QOpt

s = P Opt
s .

This implies that F Opt
t ∪ P Opt

t = F Opt
s ∪ P Opt

s . �

For a time s at which A starts executing a job, we define a busy region [s, t) as
follows. We define t > s as the first subsequent time when either both machines
are idle, or when one machine starts a job yet the other remains idle (that is, for
at least one unit). A trivial consequence of this definition is that there is never



118 M.H. Goldwasser and M. Pedigo

ts

a

sT

z

y

sAy

t − p

Fig. 3. Typical configuration of algorithm’s two machines during a region [s, t). In this
example, |R| = 11 and |T | = 5.

a time when both machines are idle within such a region. For ease of exposition
throughout the analysis of region [s, t), we let R denote the set of jobs started
by A during the region. We let a denote the first job of R to be started, namely
at time s. We let z denote the last job of R to be started, namely at time t− p.

In the case where |R| = 1, the region is composed trivially of job a = z. For
|R| ≥ 2, we further let y denote the second-to-last job of R to be started. We
note that y must run on the opposite machine as z and be executing at the time
that z is started, as otherwise z would be starting at a time when the other
machine is idle, contradicting our definition of t. Thus, sA

y ≤ sA
z = t−p < sA

y +p.
For |R| ≥ 2, we define the tail of the region, denoted as T , as follows. Let sT

be the latest time at which A starts a job of R following a time step [sT − 1, sT )
at which a machine was idle. We note that sT is well defined as at least one job
of R must follow such an idle time step. In particular, if the second job of the
region is started strictly after time s, then it suffices. Alternatively, the region
begins with two jobs starting precisely at time s. Such a region could only follow
an idle region, as a previous busy region could not have ended at such a time s.
Having defined sT , tail T ⊆ R is the set of jobs started by A during the interval
[sT , t). Figure 3 demonstrates a typical region.

Structural Properties of Busy Regions Produced by A
Lemma 6. If there exists a time t at which at least one machine is idle in A
and a job j such that rj ≤ t ≤ xj, then j cannot be rejected by A.

Proof. By the algorithm definition, a machine is left idle at time t only if it
is feasible to achieve its current queue even when that machine is left idle until
time t+p+1 or later. Since j could be feasibly achieved over the interval [t, t+p]
without disrupting the completion of any other jobs in the system at that time,
it must be accepted. �

Lemma 7. For busy region [s, t), Feasible(QA
t , t, t + p + 1).

Proof. By the definition of a region, neither machine was committed to a job
at the onset of time t, and at least one remains idle during the time [t, t + 1).
If both machines remain idle at time t, then QA

t = ∅ and thus the lemma triv-
ially true. Alternatively some job, f , starts on one machine at t, while the sec-
ondary decision is to remain idle. Based on the algorithm definition, it must
be that the test Feasible(Q̇A

t , t + p, t + p + 1) succeeded, and by Lemma 2,
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Feasible(Q̇A
t ∪ {f}, t, t + p + 1). Since QA

t ⊆ {f} ∪ Q̇A
t , this implies

Feasible(QA
t , t, t + p + 1). �

Lemma 8. For busy region [s, t) and arbitrary time t′, assume j �= a is the latest
job of R to be started by A such that xj ≥ t′. In this case, j must start due to a
secondary decision at some time sj, and further it must be that Q̇A

sj
\ {j} ⊆ QA

t .

Lemma 9. For any j �= a started by A during busy region [s, t), xj ≤ t.

Proof. For contradiction, let j with xj ≥ t + 1 be the latest such job to be
started by A. By Lemma 8, j is started through a secondary decision at a
time sj , and Q̇A

sj
\ {j} ⊆ QA

t . By Lemma 7, Feasible(QA
t , t, t + p + 1) and thus

Feasible(Q̇A
sj
\ {j}, t, t + p + 1). Since xj ≥ t + 1, we can schedule j over the

interval [t+1, t+p+1] while still achieving Q̇A
sj
\{j} starting the machines respec-

tively at t and t + p + 1. Therefore Feasible(Q̇A
sj

, t, t + 1). Since t ≥ sj + p and
t ≥ c where c denotes the time until which the opposite machine was committed
as j started, this demonstrates the feasibility of Feasible(Q̇A

sj
, c, sj + p + 1).

This contradicts the fact that A starts j with a secondary decision at sj . �

Lemma 10. For busy region [s, t), if ∃j ∈ R with j �= a and xj ≥ sA
y + p, then

xz ≥ sA
y + p.

Lemma 11. For busy region [s, t) with |R| ≥ 2, we consider the tail T . If all
jobs of T are released on or before time sT − 1, then xz ≥ sA

y + p.

Lemma 12. For busy region [s, t) with |R| ≥ 2, if xz ≥ sA
y +p, then each of the

following are true.

(A) Any job k with rk ≤ t− p ≤ xk must have been accepted by A.
(B) There exist job f ∈ QA

t such that sA
f = xf = t.

Comparing Progress of A Versus Opt over a Busy Region

For ease of exposition in the analysis of busy region [s, t), we let set G =
(F Opt

t ∪P Opt
t )\ (F Opt

s ∪P Opt
s ) denote those jobs which contribute to ΦOpt during the

region [s, t). We let G+ (resp. G−) denote those jobs of G which were accepted
(resp. rejected) by A. We further let j̃t represent the element with which j is
matched at time t, if such element exists, and j otherwise. An element’s match
often serves as a substitute in our analysis.

Lemma 13. Each j ∈ G satisfies precisely one of the following conditions

(A) s ≤ sOpt
j < t and j �∈ P Opt

s ;
(B) sOpt

j = t, j̃s ∈ F A
t \ F A

s and j̃s �= a;
(C) sOpt

j ≥ t and j̃s = a.
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Based upon the three conditions of Lemma 13, we can define another partition of
the set G into sets GA, GB and GC . We can superimpose this partition together
with our partition of G+ and G− to denote sets such as GA+ ≡ GA ∩ G+ and
GA− ≡ GA∩G−. Though we might use similar notations for GB and GC , the next
lemma shows that this is unnecessary.

Lemma 14. All jobs of GB and GC are accepted by A.

Proof. For j ∈ G , rj < t, yet for j ∈ GB ∪GC , xj ≥ sOpt
j ≥ t. By the definition of

the region, at least one machine of A is idle at time t. Therefore, we may apply
Lemma 6 to assure the acceptance of j by A. �

Our next lemma specifically examines sets GA+ and GA− . We can further parti-
tion each of these sets based upon which machine Opt uses to achieve such a
job. For machine m, we let Gm

A+ denote the number of jobs of GA+ which are run
by Opt, and Gm

A− the corresponding number from GA− .

Lemma 15. For busy region [s, t) and arbitrary machine m,

(A) |Gm
B |+ |Gm

A+ |+ 2 · |Gm
A− | ≤ |R|.

(B) Furthermore, if inequality (A) is tight and |R| ≥ 2, both of the following
are true.
(1) Either m starts a job of Gm

A− at t− p or is processing a job of Gm
A ∪Gm

B

during [t, t + 1).
(2) No job of Gm

A+ can be started during the interval [sT , sA
y + p).

Proof (part A only). We use a basic counting argument to establish the lemma.
We initially consider all elements of R to be unmarked. For each job j ∈ GA

started on m by Opt, we mark those jobs of R which are currently being
processed at the time j starts. Because jobs have equal length, it is impossi-
ble for Opt to start two jobs on a single machine, both of which are started
while a single job of A executes. Therefore, each job of A is marked at most
once. By Lemma 6, if j were rejected by A, two distinct jobs of A must be run-
ning at time sOpt

j . Therefore two jobs of R are marked in association with j and
2 · |Gm

A− | jobs are marked overall in association with rejected jobs. Any job of
Gm

A+ must mark at least one further job of R, since there is never a time during
[s, t) when both machines of A are idle. Therefore |Gm

A+ | ≤ |R| − 2 · |Gm
A− | and

thus |Gm
A+ |+ 2 · |Gm

A− | ≤ |R|.
This establishes condition (A) in the case where Gm

B = ∅. If Gm
B �= ∅, then by

definition j̃s ∈ F A
t \ F A

s and j̃s �= a for any j ∈ Gm
B . Since j �= a, this already

requires that |R| ≥ 2. By Lemma 9, xj̃s
≤ t and thus xj ≤ t, as j ≺ j̃s in the

case when j ∈ W Opt
t \ P Opt

t . Such a job must then be started precisely at time t
on m and so set Gm

B must consist of a single such element, if non-empty. Notice
that if z was not marked by an element of Gm

A , then |Gm
A+ |+ 2 · |Gm

A− | ≤ |R| − 1
and so |Gm

B |+ |Gm
A+ |+ 2 · |Gm

A− | ≤ |R|. If z is marked, the only way this can be
accomplished is by a job which starts precisely at time t− p, given that j̃s must
be started at time t. As xj̃s

≥ t ≥ sA
y + p, by combining Lemmas 10 and 12, we

have that such a job starting at t−p must have been a job accepted by A. As this
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accepted job marks both y and z, again we find that |Gm
A+ |+ 2 · |Gm

A− | ≤ |R| − 1
and so |Gm

B |+ |Gm
A+ |+ 2 · |Gm

A− | ≤ |R|. This establishes part (A) in general. �

Lemma 16. For u ∈ G+, ũs ∈ (F A
t ∪ P A

t ) \ (F A
s ∪ P A

s ).

Lemma 17. For distinct u, v ∈ G , ũs and ṽs are distinct.

Lemma 18. If ãs ∈ QOpt
t for region [s, t), then ãs ∈ W Opt

t and a �∈ P A
s .

Lemma 19. For busy region [s, t), assume that ãs ∈ QOpt
t and there exists some

b ∈ P A
s ∪W A

t . We may legally establish a match, Mt(b) = ãs.

Lemma 20. If ΦOpt
s ≤ ΦA

s for busy region [s, t), then ΦOpt
t ≤ ΦA

t .

Proof (sketch). For ease of exposition, we introduce notation ΦA
[s,t) to denote

(ΦA
t − ΦA

s ), and likewise ΦOpt
[s,t) = (ΦOpt

t − ΦOpt
s ). Our goal is to show that ΦOpt

[s,t) ≤
ΦA

[s,t). In accordance with Lemmas 13 and 14, we rewrite ΦOpt
[s,t) as,

ΦOpt
[s,t) = 2 · |G| = 2 · |Gm1

A+ ∪ Gm2
A+ ∪ Gm1

A− ∪ Gm2
A− ∪ Gm1

B ∪ Gm2
B ∪ GC |

= (|Gm1
B |+ |Gm1

A+ |+ 2 · |Gm1
A− |) + (|Gm2

B |+ |Gm2
A+ |+ 2 · |Gm2

A− |) + |GC |
+ |Gm1

A+ ∪ Gm2
A+ ∪ Gm1

B ∪ Gm2
B ∪ GC |

= (|Gm1
B |+ |Gm1

A+ |+ 2 · |Gm1
A− |) + (|Gm2

B |+ |Gm2
A+ |+ 2 · |Gm2

A− |) + |GC |+ |G+|

By applying Lemma 15(A) to each of the two machines of Opt, we conclude that
ΦOpt

[s,t) ≤ 2 · |R|+ |GC |+ |G+|. In contrast, we claim that ΦA
[s,t) ≥ 2 · |R|+ δ + |G+|,

where δ is defined as

δ =

⎧⎨⎩
1 if P A

s = ∅ and P A
t �= ∅

−1 if P A
s �= ∅ and P A

t = ∅
0 otherwise

The δ term adjusts for the discontinuity inherent in our definition of ΦA, based
upon whether or not set P A is empty. With that aside, each job of R results in
a relative contribution of at least 2, as such job is added to F A though perhaps
removed from P A. The only other way in which a job can be removed from
P A is if it becomes matched. We consider the creation of a new match in one
particular case. If ãs ∈ QOpt

t and there exists some b ∈ P A
s ∪ W A

t , we create
a match, Mt(b) = ãs, with the validity of such a match established as per
Lemma 19. In this special case there is indeed a relative loss of one unit due to
job b. However as ãs ∈ W Opt

t , we show that a �∈ P A
s . If it were, then a would

be unmatched at time s, thus ãs = a, yet since a ∈ QOpt
t it is not possible that

a ∈ P A
s ⊆ W A

s = QA
s \ QOpt

t . Given that a �∈ P A
s , its presence in R results in a

profit of 3 rather than the minimally assumed profit of 2 and so this offsets the
loss of 1 due to the matching of b.

Next, we consider the impact of set G+ on ΦA
[s,t). By Lemma 16, for any u ∈ G+

there exists ũs ∈ (F A
t ∪P A

t )\ (F A
s ∪P A

s ) and by Lemma 17, those associated jobs
are distinct. Each such job provides an additional point towards ΦA

[s,t) beyond
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the presumed 2 · |R|, either providing 1 if in P A
t , or providing 3 rather than

2 if in F A
t . It is important to note that these |G+| additional points are also

distinct from the possible point associated with a in the preceding paragraph,
as in that case neither a nor ãs can lie in G+. We have thus far established that
ΦA

[s,t) ≥ 2 · |R|+ δ + |G+|.
For the remainder of the proof, we focus on the expression (δ−|GC |), recalling

that |GC | is either 0 or 1. In the case that (δ− |GC |) ≥ 0 the theorem follows, as
ΦOpt

[s,t) ≤ 2 · |R|+ |GC |+ |G+| ≤ 2 · |R|+ δ + |G+| ≤ ΦA
[s,t).

If (δ − |GC |) < 0 we undertake a detailed case analysis to counterbalance
this deficit either by showing a gap in our upper bound on ΦOpt

[s,t) due to a strict
inequality when applying Lemma 15(A) to one or both of the two machines of
Opt, or by showing a gap in our lower bound on ΦA

[s,t). Details are omitted
here. �

Theorem 1. Algorithm A is 3
2 -competitive.

Proof. We show that ΦOpt
t ≤ ΦA

t by induction. Initially, ΦOpt
0 = ΦA

0 = 0. Neither
potential function changes during regions for which A remains completely idle,
as per Lemma 5. The times during which A uses one or more machines can be
partitioned into regions [s, t), for which Lemma 20 applies, thereby extending
the induction from time s to time t for each such region. We conclude that
ΦOpt
∞ ≤ ΦA

∞. Since the queues of both A and Opt are presumed to be empty at
t = ∞, P A

∞ = P Opt
∞ = ∅. Therefore, ΦOpt

∞ ≤ ΦA
∞ is equivalent to 2 · |F Opt

∞ | ≤ 3 · |F A
∞|,

thus |Opt|
|A| ≤ 3

2 . �

Theorem 2. For m = 2, no non-preemptive, deterministic algorithm can be
better than 3

2 -competitive.

Proof. Consider the release of a single job j = 〈0, 3p − 1〉. A deterministic al-
gorithm must start j at some time 0 ≤ t ≤ 2p − 1, or else have unbounded
competitiveness. Yet if two identical jobs with parameters 〈t + 1, t + 1 + p〉 are
subsequently released, one must be rejected. It is easy to verify that Opt can
achieve all three jobs. �
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Abstract. A generalized paging problem is considered. Each request is
expressed as a set of u pages. In order to satisfy the request, at least
one of these pages must be in the cache. Therefore, on a page fault, the
algorithm must load into the cache at least one page out of the u pages
given in the request. The problem arises in systems in which requests
can be serviced by various utilities (e.g., a request for a data that lies in
various web-pages) and a single utility can service many requests (e.g., a
web-page containing various data). The server has the freedom to select
the utility that will service the next request and hopefully additional
requests in the future.

The case u = 1 is simply the classical paging problem, which is known
to be polynomially solvable. We show that for any u > 1 the offline
problem is NP-hard and hard to approximate if the cache size k is part
of the input, but solvable in polynomial time for constant values of k. We
consider mainly online algorithms, and design competitive algorithms for
arbitrary values of k, u. We study in more detail the cases where u and k
are small. We also give an algorithm which uses resource augmentation
and which is asymptotically optimal for u = 2.

1 Introduction

Modern operating systems have multiple memory levels. In simple structures, a
memory is organized in equally sized pages. The basic paging model is defined
as follows. The system has a slow but large memory (e.g. disk) where all pages
are stored. The second level is a small, fast memory (cache) where the system
brings a page in order to use it. If a page which is not in the faster memory level
is requested, a page fault occurs, and a page must be evicted in order to make
room to bring in the new page. The processor must slow down until the page is
brought into memory, and in practice, for many applications, the performance
of the system depends almost entirely on the number of page caching (uploads
to the cache). We define the cost of an algorithm as simply the total number of
page uploads.
� Research supported by Alexander von Humboldt Foundation.
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Traditional paging problems assume that at every step of a request sequence,
there exists a unique page that can fulfill the needs of the system. This page must
be loaded into the cache if it does not reside there already. Such a situation is
plausible, however, often the need for a very specific page is not acute and the
need is for a certain piece of information rather than a certain page.

For instance, on the world wide web, information is often mirrored across many
websites (e.g. currency exchange rates). In such a situation, it makes sense to
make a list of several places where the information can be found, and allow
the system to conveniently choose from them. Another application is a media
broadcasting system. In such a system, media files, which are the smallest media
units that can be loaded into the system, are kept on disks. Media files are
replicated and each is stored on several, not necessarily uniform, disks. The
content of each disk is known. A broadcast is defined by a list of required media
in some specific order (for example, list of songs to be transmitted). The goal is
to broadcast all media while minimizing the number of disks loadings.

Let Uj denote the j-th request, that is, Uj is the set of pages containing the
information required in the j-th request. In order to keep the running times of
paging algorithms low, we fix the number of options given to the algorithm in
every request to be a parameter u. Formally, for all j, we assume that |Uj| = u.
The size of the cache is denoted by k. The request sequence is denoted by σ,
and n denotes the total number of different pages that occur in σ. Given a set
of requests {U1, . . . , Uj}, we say that a set S covers this set of requests if for all
i, 1 ≤ i ≤ j, it holds that S ∩ Ui �= ∅. In online paging problems, each element
in the request sequence arrives after the previous request was serviced (i.e. the
decision on the eviction of another page was made). The competitive ratio is the
asymptotic worst case ratio between the cost of an online algorithm and the cost
of an optimal offline algorithm optwhich knows all requests in advance.

Related Work. For the classical offline problem, there exists a polynomial simple
optimal algorithm lfd (Longest Forward Distance) designed by Belady [2]. lfd
always evicts the page for which the time until the next request to it is maximal.
Two common paging algorithms for the classical paging problem are lru (Least
Recently Used) and fifo (First In First Out). lru computes for each page which
is present in the cache the last time it was used and evicts the page for which
this time is minimum. fifo acts like a queue, evicting the page that has spent
the longest time in the cache. Variants of both are common in real systems.
Although lru outperforms fifo in practice, lru and fifo are known to have
the same competitive ratio of k. Further this ratio is known to be the best
possible, see [14, 10]. Randomized algorithms were studied by [7, 1, 12]. See [9]
for a survey on online paging problems.

One generalization of paging was studied by Fiat and Ricklin [8]. They studied
the weighted paging problem (i.e., where each slot in the cache may have a
distinct cost of replacing the page stored in it), and gave algorithms with a
doubly exponential upper bound in k. They showed that the competitive ratio
of any algorithm for this problem is at least k Ω(k). For the special case where
only two weights are allowed they have a k O(k)-competitive algorithm.
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As explained in Section 2, paging with request sets captures other well-studied
problems such as set cover and hypergraph vertex cover [6]. The online problem
captures dynamic versions of the above problems such as online vertex cover.
However, in the studied version of online vertex cover (see e.g., [5]), the input
graph is revealed vertex by vertex, while our problem induces a problem in which
the graph is revealed edge after edge. Both our results and the results in [5] imply
that the online problem is significantly harder than the offline one.

The online version of our problem is a special case of metrical task systems
and specifically of their sub-class, metrical service systems (also called forcing
tasks systems). For details, see [3, 11, 4].

Our Results. We show that unlike the classical paging problem, paging with
request sets is NP-hard and in fact hard to approximate within a factor of
Ω(u) unless P = NP. If k is fixed, then the problem can be solved via dynamic
programming.

We further study the online problem. We show that natural extensions of lru
and fifo are not competitive. We present competitive algorithms for all values
of u and k. We consider the paging model described above as well as the same
paging model with bypassing. Note that even though the competitive ratios of
our algorithms are quite high for most variants (i.e. exponential in k), we show
that in many of the cases this is unavoidable. This is similar to the generalization
of paging considered in [8] that also results in high competitive ratios.

Finally, we present a simple online algorithm which uses resource augmenta-
tion. Here the offline algorithm that it is compared to is restricted to a cache size
of h < k. This generalization was considered already by Sleator and Tarjan in
[14]. We show that the competitive ratio of our algorithm tends to the optimal
value of 2 for u = 2 and large values of k/h.

2 The Offline Problem

We begin by describing a dynamic program (DP) for the problem. For a set S of
size exactly k, let Pj,S denote the cost of servicing the first j requests of σ in a
way that the cache content after the jth request is S. Since the jth request is the
last to be serviced, Pj,S is defined only for S ∩Uj �= ∅ (or defined to be ∞ when
this does not hold). An optimal solution can be obtained using the following
dynamic program. Here we assume the optimal total cost is at least k.1

Initialization. For j ≤ k, set Pj,S = k if S covers U1, . . . , Uj. Else, set Pj,S = ∞.
In the initialization, we consider all possible ways to fill the cache. This re-

quires k loads and therefore has the cost k. We assume that no page replacements
are done as long as the cache has space to load pages, thus, we ignore these sets
that do not cover the first j requests (by setting their price to ∞).

1 This assumption can be removed by considering also sets of size smaller than k. We
skip this technical extension.
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Step. For j > k, if S ∩ Uj = ∅, set Pj,S =∞. Else set

Pj,S = min {Pj−1,S , 1 + min{Pj−1,S′ |S = S′ ∪ {x} \ {y} for some x ∈ Uj}} .

For j > k, when calculating Pj,S for S ∩ Uj �= ∅ there are two cases. The
first is when no upload is done for servicing the jth request, that is, the current
content of the cache covers Uj. In this case the total cost of servicing the first j
requests is equal to the cost of servicing the first j− 1 requests. The second case
is when an upload is essential. If the content of the cache, S′, does not cover Uj

then some page y ∈ S′ is removed and a page x ∈ Uj is inserted. The cost in
this case is one for the current upload plus the cost of servicing the first j − 1
requests in a way that the cache content before the jth request is S′. Therefore,
the minimal cost of servicing the first j requests is determined by the optimal
S′. To calculate Pj,S , the minimum cost out of these two cases is considered.

The optimal cost for the whole sequence is the minimal value of P|σ|,S for
some set S. The size of the DP table is polynomial in n: there are nk possible
sets S, for each such set the value Pj,S is calculated for |σ| different values of j.
Each entry is calculated in time O(uk).

Corollary 1. Paging with request sets can be solved in time O(|σ|uknk).

Clearly, the above DP algorithm is polynomial only for constant k. While the
offline traditional paging problem is known to be optimally solved for arbitrary
k, this is not the case for the generalized problem. In particular, we show that
our problem is NP-hard even for request sets of size 2.

Theorem 1. Offline paging with request sets and an arbitrary cache size k is
NP-hard even for u = 2.

Proof. Reduction from Vertex Cover (VC). Given an instance for VC, G =
(V, E), and the question whether G has a vertex cover of size k, construct the
following instance for paging with request sets. The sequence σ consists of |E|
requests; the jth request is Uj = {vj1, vj2}, where (vj1, vj2) is the jth edge (in
arbitrary order) of E. It is easy to verify that it is possible to service all the
requests at a total cost of k if and only if G has a vertex cover of size k. �

This reduction can be generalized to show that for arbitrary sizes of sets the
problem is as hard as set-cover. Thus, it cannot be approximated within factor
Ω(log n) [13]. The reduction from vertex cover can be extended for any instance
with uniform size request sets, that is, when |Uj | = u for all u.

Theorem 2. Assuming P �= NP , the optimal cost of paging with request sets
for instances having request set of size u cannot be approximated in polynomial
time within factor (u− 1− ε).

Proof. We show an L-reduction from hypergraph vertex cover, for which this
hardness result is known [6]. Let S be an instance of hypergraph vertex cover
(HVC) with k nodes, and let opt be a minimal size vertex cover of S. Build an
instance σs for our paging problem by listing the hyperedges of S in some order.
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Consider a cache of size k. An optimal algorithm can service σs at cost |opt|
by placing the nodes of the vertex cover in the cache. Consider any algorithm
that services σs. The set of vertices that are inserted into the cache along the
whole sequence form an HVC. The cache size is selected to be k so no deletions
are required. Therefore, the cost of servicing σs is the size of the HVC found by
the algorithm. �

3 The Online Problem

3.1 The Performance of Standard Algorithms

In this section we show that several reasonable versions of lru and fifo, adapted
for paging with request sets, are not competitive. To generalize the algorithms,
we need to define the behavior on a page fault. Specifically, we not only need to
define the method of page eviction but also the method of choosing a page of
the new request to be inserted to the cache.

The page eviction method of fifo is identical to the original algorithm, that
is, remove from the cache the page that was inserted first. For lru, we say that
a page is used if it appears in a request (but not necessarily downloaded), thus,
lru removes from the cache a page that appeared least recently in a request. Ties
are broken arbitrarily. We mention that our non-competitiveness proof below is
suitable also for other eviction methods of lru, like removing the page that was
least recently “essential”, that is, loaded or serviced a request.

For analyzing the loading page method, we first consider a situation where
the choice of a new page is arbitrary. In particular, it might be that the page
inserted to the cache is the one that has been out of the cache the longest time
(i.e., has never been in the cache, or has been evicted least recently). The same
example is applicable to both lru and fifo.

Lemma 1. The above versions of lru and fifo are not competitive for paging
with request sets.

Proof. Given k ≥ 2, and u ≥ 2, let {a0, . . . , au+k−1} denote u + k designated
pages. For convenience of notation, define aj for j ≥ u + k to be aj mod (u+k).

The sequence of requests repeats the following subsequence σ0, . . . , σu+k−1.
Request σi is defined to be {ai, . . . , ai+u−1}. Both lru and fifo have the cache
contents {ai+u, . . . , ai+u+k−1} before this request, where pages are listed in the
order in which they will be evicted. The page that has been out of the cache for
the longest time is ai = ai+u+k. Clearly each request is a fault.

However, opt keeps in its cache the pages au·� for all 	 ≥ 0 such that u · 	 <
u + k. The number of such pages is � k

u� + 1. Since u ≥ 2, it is clear that this
number never exceeds k. Thus, after loading these pages in its cache, opt never
makes another fault. This proves the lemma. �

Next, consider versions of lru and fifo that prefer to insert into the cache a
page that was evicted most recently. In this case we use a set of k + 1 pages
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{a0, . . . , ak}, and u− 1 additional pages {b1, . . . , bu−1}. Similar to the previous
example, we let aj for j ≥ k + 1 to be ajmod(k+1). The sequence repeats the
sub-sequence of requests τ0, . . . , τk where τi = {ai, b1, . . . , bu−1}. The requests
bj are never inserted into the cache. Before τi arrives, the cache contains pages
{ai+1, ai+2, . . . , ai−1} (listed in the order in which they are to be evicted). lru
and fifo fault on every request, whereas opt keeps the pages {b1, a1, . . . , ak−1}
in its cache. We may conclude that lru and fifo are not competitive.

Since the standard algorithms fail, in the next subsections we design very
different algorithms for our problem. These algorithms try to track the configu-
ration of opt in order to remain competitive.

3.2 A Competitive Algorithm

Our algorithm works in phases. A phase ends when it must be the case that opt
had a fault. Consider a single phase. Let C be a collection of sets S1, S2, . . . each
of size at most k (cache size) such that each set Si covers the requests presented
so far in the phase. If C is empty then opt must miss and a new phase begins.
Otherwise try to make the cache of the online algorithm onl as similar to the
sets of C as possible. Specifically, onl knows the set C. In every step (miss) onl
tries to exclude a set from C.

We use the following assumptions. Algorithms silently ignore requests which
do not cause faults. In the analysis we may assume that each request is indeed a
fault: requests which are not faults can only increase the optimal cost. Thus we
simply remove non-fault requests from the request sequence before starting our
analysis. Note that our algorithms may replace more than one page on a fault.

Our construction will lead to the following general theorem.

Theorem 3. For paging with request sets of size u and a cache of size k, there
exists an algorithm algu(k) which has a competitive ratio of uk+1−u

u−1 . Moreover,
for any constant k, the competitive ratio of any online algorithm is Ω(uk).

We first describe a competitive online algorithm for the case u = k = 2. Below,
we will show how to use this algorithm as a subroutine in more general cases.

The algorithm alg works in phases. A phase is a subsequence of requests,
where it can be proved that opt has made a fault either on one of the requests
of this phase (excluding the very first one) or on the first page of the next phase.
In the sequel, we analyze the contents of the cache of opt in the case that it did
not make a fault in the current phase (except, possibly, on the first request). We
denote the (pages of the) first request of a phase by {a, b}. Our algorithm will
insert b in the cache. Throughout the phase, alg always keeps one page out of
{a, b} in its cache. The situation of opt is similar if it did not have a fault yet.

The phase continues until we know that opt has a fault, or will have a fault
on the current request. This request will start a new phase. We assume that
opt does not make a fault, until this leads to a contradiction. The easiest and
most important case is the case where three independent (non-overlapping) sets
are requested. This clearly implies a fault of opt, and the request for the third
independent set starts a new phase. There are two cases for the second request.
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Request 2 is for an independent set. Denote request 2 by {c, d}. The algorithm
loads c into the cache and has {b, c} in the cache. From now on, alg also
keeps one page from {c, d} in its cache during this phase. Thus, the remaining
requests are serviced by loading a matching page (if possible). Since we assume
that opt does not make a fault, opt now has one page from {a, b} and one page
from {c, d} in its cache.

If a new independent set is requested ({e, f}), then opt must have a fault and
this request starts a new phase. As long as this does not happen, requests always
have exactly one page in common with at least one of the first two requested
pairs. The algorithm always loads such a page. Thus in this phase, it never loads
a page outside of the set {a, b, c, d}. We analyze the options for the next requests.

Case A. If request 3 consists of one page from {a, b, c, d} and one other page,
then opt must have that page from {a, b, c, d} in its cache or make a fault.
When this happens, alg fixes this page in its cache and does not evict it anymore.
Thus it mimics opt in the case that opt has not made a fault yet.

Suppose a is fixed (as a result of request {a, e}). Then a is not requested
anymore in this phase (because alg keeps it in its cache). We have two cases for
request 4. If b is requested with an outside page, we have a third independent set
unless this page is e. However, in this particular case opt must have two pages
out of {a, b, e} to cover them and one page from {c, d} which is not possible. So
a new phase starts with this request (phase length is 3).

The other case is when request 4 contains c or d, together with b or an
outside page. In this case, this page (c or d) is fixed in the cache. The entire
cache is now fixed and therefore request 5 can start a new phase. Consequently,
if Case A occurs, we defined a phase which consisted of at most four requests.

Case B. If request 3 consists of one page from {a, b} and one page from {c, d},
then alg has a choice which page to evict. In this case it initially evicts an
arbitrary page, but keeps track of these type of requests, which are called bridges.
If two bridges overlap in a page, say a, then opt must either have a or make
a fault – since it cannot have all of b, c and d in its cache. In such a case alg
fixes that page in its cache. It can be seen that if two bridges are requested in
sequence, they must overlap in a page. From the first bridge, alg only loads
one page and so its state does not match the bridge. This means that the only
non-overlapping bridge cannot be requested immediately afterwards.

Consider request 4. If it contains one request to an outside page, this brings
us back to case 1, and we get a phase which consists of at most five requests.
Otherwise, there are two bridges in succession, and therefore again alg has
one page fixed. This means that after at most four requests in a phase, at
least one page in the cache is fixed, and the next request fixes the other page.
Thus the maximum length of a phase is 5. alg makes at most five uploads per
at least one upload of opt and therefore it is a most 5-competitive.

Request 2 is not independent. The proof goes along the lines of the previous case.
Due to space constraints, it is omitted. In both cases, alg makes at most five
uploads per at least one uploads of opt, so it is at most 5-competitive.
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Generalization for Arbitrary Values of k, u. We first build an algorithm for u = 2
and k > 2, using induction on k. We denote the algorithm which works on a
cache of size k by alg(k).

For k = 3, denote the first request in a phase by {a, b} as before. Assume first
that opt has a in its cache. Then it has two ‘free’ places in its cache. For these
places we can run the algorithm for k = 2. alg(3) loads a in its cache and calls a
modified version of alg(2). This modified version runs for only one phase. When
it returns, we know that opt has made a fault (or is going to make a fault in
the next step), or opt did not load a after all. Now, alg(3) loads b and again
calls alg(2). This time when it returns, we know that opt has made a fault at
some point, and we can start a new phase.

To improve the competitive ratio slightly, we can modify alg(2) further so
that it indicates whether the next phase should start with the last request that
it processed (in case that this request was for a third independent set) or with
the next request after that (in case that this last request fixes the contents of
the cache of alg in the last possible way such that opt does not have a fault
yet). We then get a phase cost of at most 12 = 1+5+1+5. These costs are the
cost for loading a, the first call to alg(2), the cost for loading b and the second
call to alg(2), respectively.

Generally, we find that R(alg(k)) = 2+2 ·R(alg(k−1)), where we can take
as base case R(alg(2)) = 5.2 We find R(alg(k)) = 7 · 2k−2 − 2 for k ≥ 2.

We can use a similar construction for u > 2. For the base case, we now do
consider k = 1. The algorithm for this case loads the first page from the first
request, say a1 from request {a1, a2, . . . , au}. On each fault after this, it loads
the lowest-numbered page which is also in the new request, if possible. Note that
a request which does not contain a certain page ai immediately implies that opt
cannot have loaded ai on the first request (unless it has a fault after this). Thus,
as soon as we run out of pages from the first request in this way, we know that
OPT must make (or has made) a fault and a new phase starts. This gives a
u-competitive algorithm algu(1).

For the induction (on k), we call modified versions of simpler algorithms
as before. In each induction step, we need to handle one request immediately
(u times) before calling the simpler algorithm. Thus we find R(algu(k)) =
u + u · R(algu(k − 1)) = uk+1−u

u−1 since R(algu(1)) = u. This proves the first
half of Theorem 3.

3.3 Lower Bounds

In this section, we describe three different lower bounds for online algorithms.
All lower bounds that we show use u + k different pages. The request sequence
is generated such that the online algorithm has a fault for every request, i.e.,

2 It is easy to give an algorithm of competitive ratio 2 for the case k = 1. This
algorithm also works in phases, trying to guess the choice of opt, that can be one
of two pages in each phase. However, using k = 1 as a base case gives a ratio of 6
(instead of 5) for k = 2.
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each request contains exactly the u pages that are absent from the cache of the
algorithm.

Our lower bounds differ in the way that we define offline algorithms for this
sequence. We begin by considering perhaps the simplest offline algorithm, which
we will denote by off1. off1 checks which subset of u pages is least requested
(in an arbitrarily long sequence of requests) and has the complement of this
subset fixed in its cache. Each time the subset in question is requested anyway,
it generates a cost of 2 for off1: a cost of 1 to move to a different configuration
(it is enough to replace one page) and again 1 to move back (on the next request).
Since there are (k + u)!/(k!u!) possible subsets, this gives us a lower bound of
(k + u)!/(2k!u!). This gives a lower bound of 3 for u = k = 2 (we improve
this specific value later). Note also that if k is constant and u grows without
bound, this lower bound becomes Ω(uk). This proves the second statement of
Theorem 3, and shows that our algorithm from the previous section is optimal
(up to a constant factor) for constant k.

For small u however, this lower bound can be improved. We first consider the
case u = 2 in more detail. In this case, we use k+2 pages to construct the request
sequence. We use a different offline algorithm off2, and define phases in such a
way that off2 has only one upload per phase. Given a configuration of off2,
that it has just before a phase starts, we now define a phase as a consecutive
subsequence of requests that fixes the configuration to which off2 moves in the
beginning of this phase, paying 1 or 0 (in case it does not move). We make sure
that off2 does not need to change its configuration until the beginning of the
next phase. It is possible to show that it takes at least 2k requests before the
configuration of off2 is fixed. At this point, immediately after the phase, off2
can move to a new configuration, determined by the requests of the next phase.

This gives a lower bound of 2k on the competitiveness of any online algorithm
(which fails on every request, by our design). In particular, for the case u = k = 2,
we find a lower bound of 4, only 1 less than our upper bound.

For u = 2 and k > 2, it is possible to improve on this further. We use a
third type of offline algorithm off3. Instead of continuing a phase until only one
option for off3 is left, we maintain two options for off3 throughout and only
fix off3 after all phases have been defined. We define the very first phase to
have only 2k−1 requests, so that after this, off3 still has (at least) two choices.
Each later phase has 3k−2 requests. It is possible to show that we can maintain
the invariant that off3 has two choices.

The state to which off3 should move at the beginning of each phase is de-
termined scanning the sequence of phases starting from the end, choosing each
time a configuration for off3 out of the two possible ones, which is a function
of the next configuration chosen for it. We find a lower bound of 3k − 2.

We summarize some of the results obtained in the current section for u = 2
in the following table.

k 1 2 3 4 5
Lower bound 2 4 7 10 13
Upper bound 2 5 12 26 54
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4 Paging with Bypassing

When bypassing is allowed, an algorithm is not forced to have in its cache a
page from a request that it is going to service. Bypassing means that a page is
used without loading it into the cache. The cost charged for this option is the
same as for loading a page. Clearly, if a page is going to be used several times,
it makes sense to load it into the cache. However, if a page is used only once, it
is sometimes better to bypass it, so that the current contents of the cache can
remain there. It is well known that for the standard problem, allowing bypassing
increases the best competitive ratio by 1, i.e. it is k + 1 for a cache of size k.
Note that the best algorithms for this problem are marking algorithms, such as
lru, and fifo (which is not a marking algorithm), and that their competitive
ratio increases by 1. Thus the best online algorithms do not actually make use
of the bypassing option.

Consider first the first lower bound presented in section 3.3. We can construct
the lower bound sequence in the same manner. This means that if an online
algorithm bypasses a certain request, that request is repeated until it is no
longer bypassed. Having the option of bypassing, opt does not need to pay 2
each time the request is the exact complement set, but just 1, to bypass on it (or
more specifically, to bypass one page of this request). This gives a lower bound
of (k + u)!/(k!u!).

Interestingly, despite the recursive construction that we use, here it is also
possible to design an algorithm with a competitive ratio which is only 1 higher
than for the case without bypassing for any k. Here, in order to complete a phase,
we must make sure that opt had either a fault or one bypass during this phase
(the phases are not shifted as in the proof of the algorithm without bypassing).

For some fixed value of k, consider the outer phase of the recursion. There are
three cases. If opt bypasses the very first request, it has a fault in the current
(outer) phase and we are done for this phase. If opt loads page i from this request
(i = 1, . . . , k − 1), then by construction we know that it has a fault during the
ith recursive call from the outer phase, or on the request which immediately
follows it, which is also a part of the same outer phase. Finally, if opt loads the
kth page from this request, it can happen that it does not have a fault during
the kth recursive call but instead on the very next request.

Therefore, we now construct the outer phase as before, but add one final
request (without loading some page between the last recursive call and this
request). This ensures that opt has a fault in every outer phase. The inner
phases can remain unchanged (we apply the old algorithm). This implies that
the competitive ratio for any value of k increases by only 1.

This gives the following results for u = 2.

k 1 2 3 4 5
Lower bound 3 6 10 15 21
Upper bound 3 6 13 27 55

Thus for the case of bypassing, our algorithm is optimal for u = k = 2.
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5 Resource Augmentation

Already in [14] the classical paging problem was studied in terms of resource aug-
mentation. That is an extension of the usual competitive analysis, which allows
an online algorithm to use greater resources than the optimal offline algorithm it
is compared to. In this section, let h be the size of the cache used by an optimal
offline algorithm and let k > h be the size of cache used by an online algorithm.
For standard online paging, the competitive ratio becomes constant if h = αk
for fixed values of α < 1 [14]. More precisely, it was shown in [14] that the best
competitive ratio for this case is k

k−h+1 .
In this section we focus on the case u = 2. We define a very simple algorithm

which works in phases as before. The algorithm is defined for even values of
k. The first k/2 requests are inserted completely into the cache. Note that this
means that these first requests are independent. The next request starts a new
phase (the cache contents are unmarked and all pages may be deleted). Let
α = k/h. We prove that for α > 2, the algorithm has constant competitive ratio.

Theorem 4. The competitive ratio of the above algorithm is at most 2α
α−2 for

even values of k. The competitive ratio tends to 2 as α grows.

Proof. The sequence for a phase, including the first request of the next phase
but not the first request of the current phase, contains k distinct pages. This
holds since inside the phase at least k − 2 new pages are requested and kept in
the cache, and two additional pages are the first request of the next phase. The
two pages of the first request are not equal to any of the other pages, therefore
we have a total of k+2 pages. Out of this amount, opt can have at most h in its
cache after the first request. One spot in the cache is taken by a page of the very
first request. It needs to service k/2 additional requests upto and including the
first request of the next phase. This means that it has at least k/2− h uploads.
However, the algorithm has k uploads in each phase. �

For odd k, we need to define the algorithm slightly more carefully. In this case
the first k−1

2 requests are inserted completely into the cache. On the request
number k+1

2 of the phase, which is denoted {a, b}, only one page a is inserted
into the cache. On the next request, if it contains page b, the algorithm evicts a
and inserts b, and starts a new phase on the next request. If b does not belong
to the next request, this request already starts a new phase. Using a proof very
similar to the one above, it can be shown that the competitive ratio of this
algorithm is 2α′/(α′ − 2) where α′ = (k + 1)/h.

Proposition 1. No online algorithm has a competitive ratio below 2 for any
k > 1, even if h = 1.

Proof. The sequence consists of requests as follows. The first request has two
pages {a, b}. If the algorithm inserts both of them into the cache, the next
request consists of two other pages. Otherwise, if only one page a is inserted into
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the cache, the next request is for the other page b together with a new page.
This process is repeated. In the first option, opt inserts one of the pages into its
cache and in the second option it inserts b. In both cases the algorithm inserts
two pages. �

Next, we focus on the smallest not trivial case, h = 2, k = 3. We can show that
this algorithm improves on our algorithm for h = k = 2. We also design a lower
bound.

Proposition 2. The competitive ratio of the above algorithm for the case h =
2, k = 3 is at most 4. Any algorithm for h = 2, k = 3 has competitive ratio at
least 5/2.
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Abstract. We study the online version of the classical parallel machine
scheduling problem to minimize the total weighted completion time from
a new perspective: We assume that the data of each job, namely its re-
lease date rj , its processing time pj and its weight wj is only known to
the job itself, but not to the system. Furthermore, we assume a decen-
tralized setting where jobs choose the machine on which they want to
be processed themselves. We study this problem from the perspective
of algorithmic mechanism design. We introduce the concept of a myopic
best response equilibrium, a concept weaker than the dominant strategy
equilibrium, but appropriate for online problems. We present a polyno-
mial time, online scheduling mechanism that, assuming rational behavior
of jobs, results in an equilibrium schedule that is 3.281-competitive. The
mechanism deploys an online payment scheme that induces rational jobs
to truthfully report their private data. We also show that the underly-
ing local scheduling policy cannot be extended to a mechanism where
truthful reports constitute a dominant strategy equilibrium.

1 Introduction

We study the online version of the classical parallel machine scheduling prob-
lem to minimize the total weighted completion time – P | rj |

∑
wj Cj in the

notation of Graham et al. [1] – from a new perspective: We assume a strategic
setting, where the data of each job, namely its release date rj , its processing
time pj and its weight wj is only known to the job itself, but not to the system.
Any job j is interested in being finished as early as possible, and the weight wj

represents its indifference cost for spending one additional unit of time waiting.
While jobs may strategically report false values (r̃j , p̃j , w̃j) in order to be sched-
uled earlier, the total social welfare is maximized whenever the weighted sum
of completion times

∑
wj Cj is minimized. Furthermore, we assume a restricted

communication paradigm, referred to as decentralization: Jobs may communi-
cate with machines, but neither do jobs communicate with each other, nor do
machines communicate with each other. In particular, there is no central coor-
dination authority hosting all the data of the problem. This leads to a setting
� Supported by NWO grant 2004/03545/MaGW ‘Local Decisions in Decentralised
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where the jobs themselves must select the machine to be processed on, and any
machine sequences the jobs according to a (known) local sequencing policy.

The problem P | rj |
∑

wj Cj is well-understood in the non-strategic setting
with centralized coordination. First, scheduling to minimize the weighted sum
of completion times with release dates is NP-hard, even in the off-line case [2].
Second, no online algorithm for the single machine problem can be better than
2-competitive [3] regardless of the question whether or not P=NP, and lower
bounds exist for parallel machines, too [4]. The best possible algorithm for the
single machine case is 2-competitive [5]. For the parallel machine setting, the
currently best known online algorithm is 2.61-competitive [6].

In the strategic setting, selfish agents trying to maximize their own benefit
can do so by reporting strategically about their private information, thus ma-
nipulating the resulting schedule. In the model we propose, a job can report
an arbitrary weight, an elongated processing time (e.g. by adding unnecessary
work), and it can artificially delay its true release date rj . We do not allow a job
to report a processing time shorter than pj , as this can easily be discovered and
punished by the system, e.g. by preempting the job after the declared processing
time p̃j before it is actually finished. Furthermore, as we assume that any job j
comes into existence only at its release date rj , it obviously does not make sense
that a job reports a release date smaller than the true value rj .

Our goal is to set up a mechanism that yields a reasonable overall perfor-
mance with respect to the objective function

∑
wj Cj . To that end, the mecha-

nism needs to motivate the jobs to reveal their private information truthfully. In
addition, as we require decentralization, each machine must be equipped with a
local sequencing policy that is publicly known, and jobs must be induced to se-
lect the machines in such a way that

∑
wj Cj is not too large. Known algorithms

with the best competitive ratio, e.g. [6, 7], crucially require central coordination
to distribute jobs over machines. An approach by Megow et al. [8], developed for
an online setting with release dates and stochastic job durations, however, turns
out to be appropriate for being adopted to the decentralized, strategic setting.

Related Work and Contribution. Mechanism design in combination with the
design of approximation algorithms for scheduling problems has been studied,
e.g., by Nisan and Ronen [10], Archer and Tardos [11], and Kovacs [12]. In
those papers, not the jobs but the machines are the selfishly behaving parts of
the system, and their private information is the time they need to process the
jobs. A scheduling model where the jobs are the selfish agents of the system has
been studied by Porter [13]. He addresses a single machine scheduling problem,
where the private data of each job consists of a release date, its processing
time, its weight, and a deadline. In all mentioned papers, the only action of an
agent (machine or job, respectively) is to reveal its private data; the resulting
mechanisms are also called direct mechanisms. The model suggested in this paper
does not give rise to a direct mechanism, since in addition to the revelation of
private data, jobs must select the machine to be processed on.

In the algorithm of Megow et al. [8], jobs are locally sequenced according
to an online variant of the well known WSPT rule [9], and arriving jobs are
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assigned to machines in order to minimize an expression that approximates the
(expected) increase of the objective value. This algorithm achieves a competi-
tive ratio of 3.281. The mechanism we propose develops their idea further. We
present a polynomial time, decentralized online mechanism, called Decentral-
ized LocalGreedyMechanism. Thereby we provide also a new algorithm for
the non-strategic, centralized setting, inspired by the MinIncrease Algorithm
of [8], but improving upon the latter in terms of simplicity. We show that the De-
centralized LocalGreedy Mechanism is 3.281-competitive. This coincides
with the bound that is known for the non-strategic, centralized setting [7, 8]. The
currently best known bound for the non-strategic setting, however, is 2.61 [6].

As usual in mechanism design, the Decentralized LocalGreedy Mech-
anism defines payments that have to be made by the jobs for being processed.
Naturally, we require from an online mechanism that also the payments are
computed online. Hence they can be completely settled by the time at which a
job leaves the system. We also show that the payments result in a balanced bud-
get. The payments induce the jobs to select ‘the right’ machines. Intuitively, the
mechanism uses the payments to mimic a corresponding LocalGreedy online
algorithm in the classical (non-strategic, centralized) parallel machine setting
P | rj |

∑
wj Cj . Moreover, the payments induce rational jobs to truthfully re-

port about their private data. With respect to release dates and processing times,
we can show that truthfulness is a dominant strategy equilibrium. With respect
to the weights, however, we can only show that truthful reports are myopic best
responses (in a sense to be made precise later). In addition, we show that there
does not exist a payment scheme extending the allocation rule of the Decen-
tralized LocalGreedy Mechanism to a mechanism where truthful reporting
of all private information is a dominant strategy equilibrium.

This extended abstract is organized as follows. We formalize the model and
introduce the required notation in Section 2. In Section 3 the LocalGreedy
algorithm is defined. In Section 4, this algorithm is adapted to the strategic set-
ting and extended by a payment scheme, yielding the Decentralized Local-
GreedyMechanism. Moreover, our main results are presented in that section.
We analyze the performance of the mechanism in Section 5, mention a negative
result in Section 6, and conclude with a short discussion in Section 7.

2 Model and Notation

The considered problem is online parallel machine scheduling with non-trivial
release dates, with the objective to minimize the weighted sum of completion
times, P | rj |

∑
wj Cj . We are given a set of jobs J = {1, . . . , n}, where each

job needs to be processed on any of the parallel, identical machines from the
set M = {1, . . . , m}. The processing of each job must not be preempted, and
each machine can process at most one job at a time. Each job j is viewed as a
selfish agent and has the following private information: a release date rj ≥ 0, a
processing time pj > 0, and an indifference cost, or weight, denoted by wj ≥ 0.
The release date denotes the time when the job comes into existence, whereas
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the weight represents the cost to a job for one additional unit of time spent
waiting. Without loss of generality, we assume that the jobs are numbered in
order of their release dates, i.e., j < k ⇒ rj ≤ rk. The triple (rj , pj , wj) is also
denoted as the type of a job, and we use the shortcut notation tj = (rj , pj , wj).
By T = R+

0 × R+ × R+
0 we denote the space of possible types of each job.

Definition 1. A decentralized online scheduling mechanism is a procedure that
works as follows

1. Each job j has a release date rj , but may pretend to come into existence at
any time r̃j ≥ rj. At that chosen release date, the job communicates to every
machine reports w̃j and p̃j (which may differ from the true wj and pj )1.

2. Machines communicate on the basis of that information a (tentative) com-
pletion time Ĉj and a (tentative) payment π̂j to the job. This information is
tentative due to the online situation. The values Ĉj and π̂j can only change
if later another job chooses the same machine.

3. Based on this response, the job chooses a machine. This choice is binding.
The entire communication takes place at one point in time, namely r̃j.

4. There is no communication between machines or between jobs.
5. Depending on later arrivals of jobs, machines may revise Ĉj and π̂j. Even-

tually, the mechanism leads to an (ex-post ) completion time Cj and an (ex-
post ) payment πj of each job.

Hereby, we assume that jobs with equal reported release date arrive in some
given order and communicate to machines in that order. Next, we define an
online property of the payment scheme.

Definition 2. If in a decentralized online scheduling mechanism for every job
j payments to and from j are only made between time r̃j and time Cj, then we
call the payment scheme of the mechanism an online payment scheme

We assume that each job j prefers a lower completion time to a higher one
and model this by the valuation vj(Cj | tj) = −wj Cj . We assume quasi-linear
utilities, that is, the utility of job j equals uj(Cj , πj | tj) = vj(Cj | tj)−πj , which is
equal to −wj Cj −πj . In this model, the utility uj is always negative. Therefore,
we assume that a job has a constant and sufficiently large utility for ‘being
processed at all’. Note that the total social welfare is maximized whenever the
weighted sum of completion times

∑
j∈J wj Cj is minimum, which is independent

of whether we do or do not carry these constants with us.
The communication with machines, and the decision for a particular machine

are called actions of the jobs; they constitute the strategic actions jobs can take
in the non-cooperative game induced by the mechanism. A strategy sj of a job
j maps a type tj to an action for every possible state of the system in which
the job is required to take some action. A strategy profile is a vector (s1, . . . , sn)
of strategies, one for each job. Given a mechanism, a strategy profile, and a
realization of types t, we denote by uj(s, t) the utility that agent j receives.
1 A job could even report different values to different machines. However, we prove

existence of equilibria where the jobs do not make use of that option.
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Definition 3. A strategy profile s = (s1, . . . , sn) is called a dominant strategy
equilibrium if for all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the
other jobs, and all strategies s̃j that j could play instead of sj,

uj((sj , s̃−j), t) ≥ uj((s̃j , s̃−j), t) .

We could simplify notation if we restricted ourselves to direct mechanisms, that
is mechanisms in which the only action of a job is to report its type. However, a
decentralized online scheduling mechanism requires that jobs decide themselves
on which machine they are scheduled. Since these decisions are likely to influence
the utility of the jobs, they have to be modelled as actions in the game. Therefore,
it is not sufficient to restrict oneself to direct mechanisms.

We will see that the mechanism proposed in this paper does not have a domi-
nant strategy equilibrium, whatever modification we might apply to the payment
scheme. However, a weaker equilibrium concept applies, which we define next.
That definition uses the concept of the tentative utility, i.e., the utility a job
would have if it was the last to be accepted on its machine.

Definition 4. Given a decentralized, online scheduling mechanism as in Def-
inition 1, a strategy profile s, and type profile t. Let Ĉj and π̂j denote the
tentative completion time and the tentative payment of job j at time r̃j. Then
ûj(s, t) := Ĉwj − π̂j denotes j’s tentative utility at time r̃j

If s and t are clear from the context, we will use ûj as short notation.

Definition 5. A strategy profile (s1, . . . , sn) is called a myopic best response
equilibrium, if for all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the
other jobs and all strategies s̃j that j could play instead of sj,

ûj((sj , s̃−j), t) ≥ ûj((s̃j , s̃−j), t).

2.1 Critical Jobs

For convenience of presentation, we make the following assumption for the main
part of the paper. Fix some constant 0 < α ≤ 1 that will be discussed later.
Let us call jobs critical if rj < αpj . Intuitively, a job is critical if it is long and
appears comparably early in the system. The assumption we make is that such
critical jobs do not exist, that is

rj ≥ α pj for all jobs j ∈ J.

This assumption is a tribute to the desired performance guarantee, and in fact, it
is well known that critical jobs must not be scheduled early to achieve constant
competitive ratios [5, 7]. However, this assumption is only made due to cosmetic
reasons. In Section 5.1, we show how to relax this assumption, and we discuss
how critical jobs can be dealt with.
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3 The LocalGreedy Algorithm

We next formulate an online scheduling algorithm that is inspired by the Min-
Increase Algorithm from Megow et al. [8]. For the time being, we assume that
the job characteristics such as release date rj , processing time pj and indifference
cost wj are given. In the next section, we discuss how to turn this algorithm into
a mechanism for the strategic, decentralized setting that we aim at.

The idea of the algorithm is that each machine uses (an online version of)
the well known WSPT rule [9] locally. More precisely, each machine implements
a priority queue containing the not yet scheduled jobs that have been assigned
to the machine. The queue is organized according to WSPT, that is, jobs with
higher ratio wj/pj have higher priority. In case of ties, jobs with lower index
have higher priority. As soon as the machine falls idle, the currently first job
from this priority queue is scheduled (if any). Given this local scheduling policy
on each of the machines, any arriving job is assigned to that machine were the
increase in the objective

∑
wj Cj is minimal.

Algorithm 1. LocalGreedy algorithm

Local Sequencing Policy:
Whenever a machine becomes idle, it starts processing the job with highest
(WSPT) priority among all jobs assigned to it.
Assignment:
(1) At time rj job j arrives; the immediate increase of the objective

∑
wj Cj ,

given that j is assigned to machine i, is

z(j, i) := wj

[
rj + bi(rj) +

∑
k∈H(j)

k→i
k<j

Sk≥rj

pk + pj

]
+ pj

∑
k∈L(j)

k→i
k<j

Sk>rj

wk.

(2) Job j is assigned to machine ij ∈ argmini∈M z(j, i) with minimum index.

In the formulation of the algorithm, we utilize some shortcut notation. We let
j → i denote the fact that job j is assigned to machine i. Let Sj be the time
when job j eventually starts being processed. For any job j, H(j) denotes the set
of jobs that have higher priority than j, H(j) = {k ∈ J |wkpj > wjpk} ∪ {k ≤
j |wkpj = wjpk}. Note that H(j) includes j, too. Similarly, L(j) = J \ H(j)
denotes the set of jobs with lower priority. At a given point t in time, machine
i might be busy processing a job. We let bi(t) denote the remaining processing
time of that job at time t, i.e., at time t machine i will be blocked during bi(t)
units of time for new jobs. If machine i is idle at time t, we let bi(t) = 0.

Clearly, the LocalGreedy algorithm still makes use of central coordination
in Step (2). In the sequel we will introduce payments that allow to transform
the algorithm into a decentralized online scheduling mechanism.

4 Payments for Myopic Rational Jobs

The payments we introduce can be motivated as follows: A job j pays at the
moment of its placement on one of the machines an amount that compensates
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the decrease in utility of the other jobs. The final payment of each job j re-
sulting from this mechanism will then consist of the immediate payment j has
to make when selecting a machine and of the payments j receives when be-
ing displaced by other jobs. We will prove that utility maximizing jobs have
an incentive to report truthfully and to choose the machine that the Local-
GreedyAlgorithm would have selected, too. Furthermore, the WSPT rule can
be run locally on every machine and does not require communication between
the machines. We will see in the next section that this yields a constant-factor
approximation of the off-line optimum, given that the jobs behave rationally.
The algorithm including the payments is displayed below as the Decentral-
ized LocalGreedyMechanism. Let the indices of the jobs be defined according
to the reported release dates, i.e. j < k ⇒ r̃j ≤ r̃k. Let H̃(j) and L̃(j) be defined
analogously to H(j) and L(j) on the basis of the reported weights.

Algorithm 2. DecentralizedLocalGreedyMechanism

Local Sequencing Policy:
Whenever a machine becomes idle, it starts processing the job with highest
(WSPT) priority among all available jobs queuing at this machine.
Assignment:
(1) At time r̃j job j arrives and reports a weight w̃j and a processing time p̃j

to all machines.
(2) Every machine i computes

Ĉj(i) = r̃j + bi(r̃j) +
∑

k∈H̃(j)
k→i
k<j

Sk≥r̃j

p̃k + p̃j and π̂j(i) = p̃j

∑
k∈L̃(j)

k→i
k<j

Sk>r̃j

w̃k.

and informs j about both Ĉj(i) and π̂j(i).
(3) Job j chooses a machine ij ∈ M . Its tentative utility for being queued at
machine i is ûj(i) := −wjĈj(i) − π̂j(i).
(4) The job is queued at ij according to WSPT among all currently available
jobs on ij whose processing has not started yet. The payment π̂j(ij) has to
be paid by j.
(5) The (tentative) completion time for every job k with k ∈ L̃(j), k → ij ,
k < j, Sk > r̃j increases by p̃j due to j ’s presence. As compensation, k

receives a payment of w̃kp̃j .

The DecentralizedLocalGreedy Mechanism together with the stated
payments results in a balanced budget for the scheduler. That is, the payments
paid and received by the jobs sum up to zero, since every arriving job imme-
diately makes its payment to the jobs that are displaced by it. Notice that the
payments are made online in the sense of Definition 2.

Theorem 1. Regard any type vector t, any strategy profile s and any job j
such that j reports (r̃j , p̃j , w̃j) and chooses machine m̃ ∈M . Then changing the
report to (r̃j , p̃j , wj) and choosing a machine that maximizes its tentative utility
at time r̃j does not decrease j’s tentative utility under the Decentralized
LocalGreedyMechanism.
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Proof. We only give the idea here. For the single machine case, an arriving job
j gains tentative utility p̃kwj − p̃jw̃k from displacing an already present job k.
WSPT assigns j in front of k if and only if p̃kw̃j − p̃jw̃k > 0. Thus, w̃j = wj

maximizes j’s tentative utility. For m > 1, the theorem follows from the fact
that j can select a machine itself. �

Lemma 1. Consider any job j ∈ J . Then, under the Decentralized Local-
GreedyMechanism, for all reports of all other agents as well as all choices of
machines of the other agents, the following is true:
(a) If j reports w̃j = wj , then the tentative utility when queued at any of the
machines will be preserved over time, i.e. it equals j’s ex-post utility.
(b) If j reports w̃j = wj , then selecting the machine that the LocalGreedy
Algorithm would have selected maximizes j’s ex-post utility.

Proof. See full version of the paper. �

Theorem 2. Consider the restricted strategy space where all j ∈ J report w̃j =
wj. Then the strategy profile where all jobs j truthfully report r̃j = rj, p̃j = pj

and choose a machine that maximizes ûj is a dominant strategy equilibrium
under the Decentralized LocalGreedyMechanism.

Proof. Let us start with m = 1. Suppose w̃j = wj , fix any pretended release date
r̃j and regard any p̃j > pj . Let uj denote j’s (ex-post) utility when reporting
pj truthfully and let ũj be its (ex-post) utility for reporting p̃j . As w̃j = wj ,
the ex-post utility equals in both cases the tentative utility at decision point r̃j

according to Lemma 1(a). Let us therefore regard the latter utilities. Clearly,
according to the WSPT-priorities, j’s position in the queue at the machine for
report pj will not be behind its position for report p̃j . Let us divide the jobs
already queuing at the machine upon j’s arrival into three sets: Let J1 = {k ∈
J | k < j, Sk > r̃j , w̃k/p̃k ≥ wj/pj}, J2 = {k ∈ J | k < j, Sk > r̃j , wj/pj >
w̃k/p̃k ≥ wj/p̃j} and J3 = {k ∈ J | k < j, Sk > r̃j , wj/p̃j > w̃k/p̃k}. That is,
J1 comprises the jobs that are in front of j in the queue for both reports, J2
consists of the jobs that are only in front of j when reporting p̃j and J3 includes
only jobs that queue behind j for both reports. Therefore, ũj − uj equals

−
∑

k∈J1∪J2

wj p̃k −
∑
k∈J3

p̃jw̃k − wj p̃j −
(
−
∑
k∈J1

wj p̃k −
∑

k∈J2∪J3

pjw̃k − wjpj

)
=
∑
k∈J2

(pjw̃k − wj p̃k)−
∑
k∈J3

(p̃j − pj)w̃k − wj(p̃j − pj).

According to the definition of J2, the first term is smaller than or equal to zero.
As p̃j > pj , the whole right hand side becomes non-positive. Therefore ũj ≤ uj ,
i.e. truthfully reporting pj maximizes j’s ex-post utility on a single machine.

Let us now fix w̃j = wj and any p̃j ≥ pj and regard any false release date
r̃j > rj . There are two effects that can occur when arriving later than rj . Firstly,
jobs queued at the machine already at time rj may have been processed or may
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have started receiving service by time r̃j . But either j would have had to wait for
those jobs anyway or it would have increased its immediate utility at decision
point rj by displacing a job and paying the compensation. So, j cannot gain
from this effect by lying. The second effect is that new jobs have arrived at the
machine between rj and r̃j . Those jobs either delay j’s completion time and j
looses the payment it could have received from those jobs by arriving earlier.
Or the jobs do not delay j’s completion time, but j has to pay the jobs for
displacing them when arriving at r̃j . If j arrived at time rj , it would not have to
pay for displacing such a job. Hence, j cannot gain from this effect either. Thus
the immediate utility at time rj will be at least as large as its immediate utility
at time r̃j . Therefore, j maximizes its immediate utility at time r̃j by choosing
r̃j = rj . As w̃j = wj , it follows from Lemma 1(a) that choosing r̃j = rj also
maximizes the job’s ex-post utility on a single machine.

For m > 1, note that on every machine, the immediate utility of job j at deci-
sion point r̃j is equal to its ex-post utility and that j can select a machine itself
that maximizes its immediate utility and therefore its ex-post utility. Therefore,
given that w̃j = wj , a job’s ex-post utility is maximized by choosing r̃j = rj ,
p̃j = pj and, according to Lemma 1(b), by choosing a machine that minimizes
the immediate increase in the objective function. �

Theorem 3. Given the types of all jobs, the strategy profile where each job j
reports (r̃j , p̃j , w̃j) = (rj , pj, wj) and chooses a machine maximizing its tenta-
tive utility ûj is a myopic best response equilibrium under the Decentralized
LocalGreedyMechanism.

Proof. Regard job j. According to the proof of Theorem 1, ûj on any machine
is maximized by reporting w̃j = wj for any r̃j and p̃j . According to Theorem 2
and Lemma 1(b), p̃j = pj, r̃j = rj and choosing a machine that maximizes j’s
tentative utility at time r̃j maximize j’s ex-post utility if j truthfully reports
w̃j = wj . According to Lemma 1(a) this ex-post utility is equal to ûj if j reports
w̃j = wj . Therefore, any job j maximizes ûj by truthful reports and choosing
the machine as claimed. �

Given the restricted communication paradigm, jobs do not know at their arrival
which jobs are already queuing at the machines and what reports the already
present jobs have made. Therefore it is easy to see that for any non-truthful
report of an arriving job about its weight, instances can be constructed in which
this report yields a strictly lower utility for the job than a truthful report would
have given. With arguments similar to those in the proof of Theorem 2, the same
holds for false reports about the processing time and the release date.

5 Performance of the Mechanism

As shown in Section 4, jobs have a motivation to report truthfully about their
data: According to Theorem 1, it is a myopic best response for a job j to report
the true weight wj , no matter what the other jobs do and no matter which
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p̃j and r̃j are reported by j itself. Given a true report of wj , it was proven in
Theorem 2 that reporting the true processing time and release date as well as
choosing a machine maximizing the tentative utility at arrival maximizes the
job’s ex-post utility. Therefore we will call a job rational if it truthfully reports
wj , pj and rj and chooses a machine maximizing its tentative utility ûj . In this
section, we will show that if all jobs are rational, then the Decentralized
LocalGreedyMechanism is 3.281-competitive.

5.1 Handling Critical Jobs

Recall that from Section 2.1 on, we assumed that no critical jobs exist, i.e.
that rj ≥ α pj for all jobs j ∈ J . We will now relax this assumption. With-
out the assumption, the DecentralizedLocalGreedyMechanism as stated
above does not yet yield a constant approximation factor; simple examples can
be constructed in the same flavor as in [7]. In fact, it is well known that early
arriving jobs with large processing times have to be delayed [5, 7, 8]. In order to
achieve a constant competitive ratio, we also adopt this idea and use modified
release dates as [7, 8]. To this end, we define the modified release date of every job
j ∈ J as r′j = max{rj , αpj}, where α ∈ (0, 1] will later be chosen appropriately.
For our decentralized setting, this means that a machine will not admit any job j
to its priority queue before time max{r̃j , αp̃j} if j arrives at time r̃j and reports
processing time p̃j . Moreover, machines refuse to provide information about the
tentative completion time and payment to a job before its modified release date
(with respect to the job’s reported data). Note that this modification is part
of the local scheduling policy of every machine and therefore does not restrict
the required decentralization. Note further that any myopic rational job j still
reports w̃j = wj according to Theorem 1 and that a rational job reports p̃j = pj

as well as communicates to machines at the earliest opportunity, i.e. at time
max{rj , αpj}, according to the arguments in the proof of Theorem 2. Moreover,
the aforementioned properties concerning the balanced budget, the conservation
of utility in the case of a truthfully reported weight, and the online property of
the payments still apply to the algorithm with modified release dates.

5.2 Proof of the Competitive Ratio

It is not a goal in itself to have a truthful mechanism, but to use the truthfulness
in order to achieve a reasonable overall performance in terms of the social wel-
fare

∑
wj Cj . We derive a constant competitive ratio for the Decentralized

LocalGreedyMechanism by the following theorem:

Theorem 4. Suppose every job is rational in the sense that it reports rj, pj, wj

and selects a machine that maximizes its tentative utility at arrival. Then the
Decentralized LocalGreedyMechanism is �-competitive, with � = 3.281.

Proof. A rational job communicates to the machines at time r′j = max{rj , αpj}
and chooses a machine ij that maximizes its utility upon arrival ûj(ij).



146 B. Heydenreich, R. Müller, and M. Uetz

That is, it selects a machine i that minimizes

−ûj(i) = wjĈj(i) + π̂j(i) = wj

[
r′j + bi(r′j) +

∑
k∈H(j)

k→i
k<j

Sk≥r′
j

pk + pj

]
+ pj

∑
k∈L(j)

k→i
k<j

Sk>r′
j

wk.

This, however, exactly equals the immediate increase of the objective value∑
wj Cj that is due to the addition of job j to the schedule. We now claim that we

can express the objective value Z of the resulting schedule as Z =
∑

j∈J −ûj(ij),
where ij is the machine selected by job j. Here, it is important to note that
−ûj(ij) does not express the total (ex-post) contribution of job j to

∑
wj Cj ,

but only the increase upon arrival of j on machine ij . However, further contri-
butions of job j to

∑
wj Cj only appear when job j is displaced by some later

arriving job with higher priority, say k. This contribution by job j to
∑

wj Cj ,
however, will be accounted for when adding −ûk(ik).

Next, since we assume that any job maximizes its utility upon arrival, or
equivalently minimizes −ûj(i) when selecting a machine i, we can apply an
averaging argument over the number of machines, like in [8], to obtain:

Z ≤
∑
i∈J

1
m

m∑
i=1

−ûj(i) .

The remainder of the proof utilizes the definitions of ûj(i) and particulary the
fact that, upon arrival of job j on any of the machines i (at time r′j), machine i
is blocked for time bi(r′j), which is upper bounded by r′j/α. This upper bound
is machine-independent, and follows from the definition of r′j , since any job k in
process at time r′j fulfills αpk ≤ r′k ≤ r′j . Furthermore, the proof utilizes a lower
bound on any (off-line) optimum schedule from Eastman et al. [14, Thm. 1].
For details, we refer to the full version of the paper. The resulting performance
bound 3.281 is identical to the one of [8] (for deterministic processing times),
when α is (

√
17m2 − 2m + 1−m + 1)/(4m). �

6 Negative Result

Theorem 5. There does not exist a payment scheme that extends the Local-
Greedy algorithm to a truthful mechanism. Therefore, it is not possible to turn
the Decentralized LocalGreedyMechanism into a mechanism with a dom-
inant strategy equilibrium in which all jobs report truthfully by only modifying
the payment scheme.

Proof. If the Decentralized LocalGreedyMechanism can be turned into
a truthful mechanism by only modifying the payment scheme, then the Lo-
calGreedy algorithm can be completed by a payment scheme to a truthful
mechanism. Furthermore, we can show that a necessary condition for truthful-
ness, called weak monotonicity, is not satisfied by the LocalGreedy algorithm.
Weak monotonicity has been introduced in [15]. �
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7 Discussion

It would be interesting to find a constant competitive decentralized online
scheduling mechanism such that there is a dominant strategy equilibrium in
which the jobs report all data truthfully. As we have seen in Section 6, the
LocalGreedyAlgorithm cannot be extended by a payment scheme such that
the resulting mechanism has the described properties. Furthermore, recall that
the currently best known performance bound for the non-strategic, centralized
setting is 2.61 [6]. This algorithm crucially requires a centralized distribution of
jobs over machines, and therefore does not seem to be suited for decentralization.
Nevertheless, it remains an interesting question to identify general rules for the
transformation of centralized algorithms to decentralized mechanisms.

Acknowledgements. We thank the referees for some helpful remarks.
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Abstract. The Minimum Dominating Set problem remains NP-hard
when restricted to chordal graphs, circle graphs and c-dense graphs (i.e.
|E| ≥ cn2 for a constant c, 0 < c < 1/2). For each of these three
graph classes we present an exponential time algorithm solving the Min-
imum Dominating Set problem. The running times of those algorithms
are O(1.4173n) for chordal graphs, O(1.4956n) for circle graphs, and
O(1.2303(1+

√
1−2c)n) for c-dense graphs.

1 Introduction

During the last years there has been a growing interest in the design of exact
exponential time algorithms. Woeginger has written a nice survey on the subject
[19] emphasizing the major techniques used to design exact exponential time
algorithms. We also refer the reader to the recent survey of Fomin et al. [9]
discussing some new techniques in the design of exponential time algorithms.
In particular they discuss treewidth based techniques, Measure & Conquer and
memorization.

Known Results. A set D ⊆ V of a graph G = (V, E) is dominating if every ver-
tex of V \D has a neighbor in D. The Minimum Dominating Set problem (MDS)
asks to compute a dominating set of the input graph of minimum cardinality.

Exact exponential time algorithms for the Minimum Dominating Set problem
have not been studied until recently. By now there is a large interest in this
particular problem. In 2004 three papers with exact algorithms for MDS have
been published. In [10] Fomin et al. presented an O(1.9379n) time algorithm for
general graphs and algorithms for split graphs, bipartite graphs and graphs of
maximum degree three with running time O(1.4143n), O(1.7321n), O(1.5144n),
respectively. Exact algorithms for MDS on general graphs have also been given
by Randerath and Schiermeyer [16] and by Grandoni [12]. Their running times
are O(1.8899n) and O(1.8026n), respectively.

These algorithms have been significantly improved by Fomin et al. in [8] where
the authors obtain the currently fastest exact algorithm for MDS. Their search
tree algorithm is based on the so-called Measure & Conquer approach, and the
upper bounds on the worst case running times are established by the use of non
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standard measures. The MDS algorithm has running time O(1.5263n) and needs
polynomial space. Using memorization one can speed up the running time to
O(1.5137n) needing exponential space then. Both variants are based on algo-
rithms for the minimum set cover problem where the input consists of a uni-
verse U and a collection S of subsets of U . These algorithms need running time
O(1.2354|U|+|S|) and polynomial space, or running time O(1.2303|U|+|S|) and
exponential space [8].

Finally, Fomin and Høie used a treewidth based approach to establish an
algorithm to compute a minimum dominating set for graphs of maximum degree
three [7] with running time O(1.2010n).

It is known that the problem MDS is NP-hard when restricted to chordal graphs
[5], and circle graphs [13]. Furthermore it is not hard to show that MDS is NP-hard
for c-dense graphs.

Our Results. In this paper we study the Minimum Dominating Set problem on
three graph classes and we obtain algorithms with a running time O(αn) better
than the best known running time for an algorithm solving MDS on general graphs,
i.e. O(1.5137n).

In Section 3 we present an exact algorithm solving the MDS problem on chordal
graphs in time O(1.4173n). In Section 4 an O(1.4956n) time algorithm to com-
pute a minimum dominating set for circle graphs is established. In Section 5
we give an O(1.2303n(1+

√
1−2c)) time algorithm for c-dense graphs, i.e. for all

graphs with at least cn2 edges, where c is a constant with 0 < c < 1/2.
Our algorithms rely heavily on the minimum set cover algorithms of Fomin

et al. [8]. Furthermore the algorithms for chordal graphs and for circle graphs
are treewidth based. Both of them use different algorithms for graphs of small
treewidth, i.e. at most tn, and for graphs of large treewidth, i.e. larger than tn,
where t is chosen to balance the running times of those two algorithms.

The algorithm for circle graphs relies on an upper bound of the treewidth of
circle graphs in terms of the maximum degree which is interesting in its own. A
related result for graphs of small chordality is provided in [4]. We are not aware
of any previous result of this type for circle graphs.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph. For a vertex v ∈ V we
denote by N(v) the neighborhood of v and by N [v] = N(v) ∪ {v} the closed
neighborhood of v. For a given subset of vertices S ⊆ V , G[S] denotes the
subgraph of G induced by S. The maximum degree of a graph G is denoted by
Δ(G) or by Δ if it is clear from the context which graph is meant.

A clique is a set C ⊆ V of pairwise adjacent vertices. The maximum cardi-
nality of a clique in a graph G is denoted by ω(G). A dominating set D of a
graph G = (V, E) is a subset of vertices such that every vertex of V −D has at
least one neighbor in D. The minimum cardinality of a dominating set of G is
the domination number of G, and it is denoted by γ(G).
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Major tools of our paper are tree decompositions and treewidth of graphs.
The notions have been introduced by Robertson and Seymour in [17].

Definition 1 (Tree decomposition). Let G = (V, E) be a graph. A tree de-
composition of G is a pair ({Xi : i ∈ I}, T ) where each Xi, i ∈ I, is a subset of
V and T is a tree with elements of I as nodes such that we have the following
properties :

1. ∪i∈IXi = V ;
2. ∀{u, v} ∈ E, ∃i ∈ I s.t. {u, v} ⊆ Xi;
3. ∀i, j, k ∈ I, if j is on the path from i to k in T then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is equal to maxi∈I |Xi| − 1.

Definition 2 (Treewidth). The treewidth of a graph G is the minimum width
over all its tree decompositions and it is denoted by tw(G).

A tree decomposition is called optimal if its width is tw(G).

Definition 3 (Nice tree decomposition). A nice tree decomposition ({Xi :
i ∈ I}, T ) is a tree decomposition satisfying the following properties:

1. every node of T has at most two children;
2. If a node i has two children j and k, then Xi = Xj = Xk (i is a Join Node);
3. If a node i has one child j, then either

(a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi (i is a Insert Node);
(b) |Xi| = |Xj | − 1 and Xi ⊂ Xj (i is a Forget Node).

Lemma 1 ([14]). For a constant k, given a tree decomposition of a graph G of
width k and O(n) nodes, where n is the number of vertices of G, one can find
a nice tree decomposition of G of width k and with at most 4n = O(n) nodes in
O(n) time.

Structural and algorithmic properties of graph classes will be mentioned in the
corresponding sections. For definitions and properties of graph classes not given
in this paper we refer to [6, 11].

3 Domination on Chordal Graphs

In this section we present an exponential time algorithm for the minimum dom-
inating set problem on chordal graphs.

A graph is chordal if it has no chordless cycle of length greater than 3. Chordal
graphs are a well-known graph class with its own chapter in Golumbic’s mono-
graph [11]. Split graphs, strongly chordal graphs and undirected path graphs are
well-studied subclasses of chordal graphs.

We shall use the clique tree representation of chordal graphs that we view as
a tree decomposition of the graph. A tree T is as clique tree of a chordal graph
G = (V, E) if there is a bijection between the maximal cliques of G and the
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nodes of T such that for each v ∈ V the cliques containing v induce a subtree
of T . It is well-known that tw(G) ≥ ω(G) − 1 for all graphs. Furthermore the
clique tree of a chordal graph G is an optimal tree decomposition of G, i.e. its
width is ω(G)− 1.

Lemma 2. There is an O∗(3tw(G)) time algorithm to compute a minimum dom-
inating set on chordal graphs.1

Proof. Alber et al. have shown in [1] that a minimum dominating set of a graph
can be computed in time O(4ln) if a tree decomposition of width l of the input
graph is known. Their algorithm uses a nice tree decomposition of the input
graph and a standard bottom up dynamic programming on the tree decompo-
sition. The crucial idea is to assign three different “colors” to the vertices of a
bag:

– “black”, meaning that the vertex belongs to the dominating set,
– “white”, meaning that the vertex is already dominated,
– “gray”, meaning that the vertex is not yet dominated.

Now let us assume that the input graph is chordal. A clique tree T of G can be
computed in linear time [3]. By Lemma 1, a nice optimal tree decomposition of G
can be computed from the optimal tree decomposition T in time O(n) and it has
at most 4n nodes. Since G is chordal every bag in the nice tree decomposition is
a clique. Therefore no bag can have both a black vertex and a gray vertex. Due
to this restriction there are at most 2|X| possible so-called vector colorings of a
bag X (instead of 3|X| for general graphs).

Consequently the running time of a modification of the algorithm of Alber
et al. to chordal graphs is O∗(3tw(G)), where the only modification is to restrict
allowed vector colorings of a bag such that black and gray vertices simultaneously
are forbidden. �

The following theorem shows that graphs with sufficiently many vertices of high
degree allow to speed up the MDS algorithm for general graphs.

Theorem 1. Let t > 0 be a fixed integer. Then there is a O(1.23032n−t) time
algorithm to solve the MDS problem if the input graph fulfills the condition |{v ∈
V : d(v) ≥ t− 2}| ≥ t.

Proof. Let t > 0 be an integer and G = (V, E) a graph fulfilling the conditions
of the theorem. Let T = {v ∈ V : d(v) ≥ t − 2}; thus |T | ≥ t. Notice that for
each minimum dominating set D of G either at least one vertex of T belongs to
D, or T ∩D = ∅.

This allows to find a minimum dominating set of G by the following branching
in two types of subproblems: “v ∈ D” for all v ∈ T , and “T ∩ D = ∅”. In
both cases we shall apply the minimum set cover algorithm of [8] to solve the
subproblem. Recall that the minimum set cover instance corresponding to the

1 Modified big-Oh notation suppresses polynomially bounded factors.
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MDS problem for G has universe U = V and S = {N [u] : u ∈ V }, and thus
|U| + |S| = 2n [8]. Consequently the running time for a subproblem will be
O(1.23032n−x), where x is the number of vertices plus the number of subsets
eliminated from the original minimum set cover problem for the graph G.

Now let us consider the two types of subproblems. For every vertex v ∈ T , we
choose v in the minimum dominating set and we execute the Minimum Set Cover
algorithm presented in [8] on an instance of size at most 2n−(d(v)+1)−1 ≤ 2n−t.
Indeed, we remove from the universe U the elements of N [v] and we remove from
S the set corresponding to v. And we branch in the case “discard T ”: In this
case we have an instance of set cover of size at most 2n− |T | = 2n− t since for
every v ∈ T we remove from S the set corresponding to each v. �

Corollary 1. There is an algorithm taking as input a graph G and a clique C
of G and solving the MDS problem in time O(1.23032n−|C|).

Proof. Note that every vertex in C has degree at least |C| − 1. �

Our algorithm on chordal graphs works as follow: If the graph has a large
treewidth then it necessarily has a large clique and we apply Corollary 1. Oth-
erwise the graph has a small treewidth and we use Lemma 2.

Theorem 2. There is an O(1.4173n) time algorithm to solve the MDS problem
on chordal graphs.

Proof. If tw(G) ≤ 0.3174n, by Lemma 2, MDS is solvable in time
O(30.3174n) = O(1.4173n). Otherwise, tw(G) > 0.3174n and using Corollary 1
we obtain an O(1.23032n−0.3174n) = O(1.4173n) time algorithm. �

4 Domination on Circle Graphs

In this section, we present an exponential time algorithm for MDS on circle graphs
in a treewidth based approach. For a survey on treewidth based exponential time
algorithms we refer to [9].

Definition 4. A circle graph is an intersection graph of chords in a circle. More
precisely, G is a circle graph, if there is a circle with a collection of chords, such
that one can associate in a one-to-one manner to each vertex a chord such that
two vertices are adjacent if and only if the corresponding chords have a nonempty
intersection. The circle and all its chords are called a circle model of the graph.

Our algorithm heavily relies on a linear upper bound on the treewidth of circle
graphs in terms of the maximum degree: tw(G) ≤ 4Δ(G) − 1. This bound is
interesting in its own and it is likely that such bounds for circle graphs or other
graph classes can be used to construct exponential time algorithms for NP-hard
problems on special graph classes in a way similar to our approach for domination
on circle graphs.

The algorithm uses the treewidth to branch into two different approaches: one
for “small treewidth” and one for “high treewidth”. If there are many vertices
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of high degree in the input graph, Theorem 1 is used to continue, and if not, the
treewidth is “small” and we use an O∗(4tw(G)) algorithm to compute a minimum
dominating set.

Theorem 3 ([1]). Suppose the graph G = (V, E) and a tree decomposition of
width 	 of G are given. Then there is an O(4�N) time algorithm to compute
a minimum dominating set of G, where N is the number of nodes of the tree
decomposition.

We start with a brief summary of Kloks’ algorithm to compute the treewidth of
a circle graph [15]. Consider the circle model of a circle graph G. Go around the
circle and place a new point (so-called scanpoints) between every two consecu-
tive end points of chords. The treewidth of a circle graph can be computed by
considering all possible triangulations of the polygon P formed by the convex
hull of these scanpoints. The weight of a triangle in this triangulation is the
number of chords in the circle model that cross this triangle. The weight of the
triangulation T is the maximum weight of the triangles in T . The treewidth of
the graph is the minimum weight minus one over all triangulations of P .

Theorem 4 ([15]). There exists an O(n3) algorithm to compute the treewidth
of circle graphs, that also computes an optimal tree-decomposition.

We rely on the following technical definitions in our construction of a tree-
decomposition of width at most 4Δ(G) − 1 for each circle graph G. The con-
struction will be given in the proof of Theorem 5.

Definition 5. A scanline s̃ = 〈ã, b̃〉 is a line segment connecting two scanpoints
ã and b̃.

To emphasize the difference between scanlines and chords we use different no-
tations: A chord v connecting two end points c and d in the circle model of the
graph is denoted v = [c, d]. We also use the following convention: two scanlines
with empty intersection or intersecting in exactly one scanpoint are said to be
non-crossing.

Definition 6. Let s̃1 and s̃2 be two non-crossing scanlines. A scanline s̃ is be-
tween s̃1 and s̃2 if every path from a scanpoint of s̃1 to a scanpoint of s̃2 along
the circle passes through a scanpoint of s̃.

Definition 7. A set S of parallel scanlines is a set of scanlines respecting

(i) |S| ≤ 2 and the scanlines of S are non-crossing, or
(ii) |S| > 2 and for every subset of three scanlines in S, one of these scanlines

is between the other two.

The following theorem is one of the main results of this paper. It shows that the
treewidth tw(G) of circle graphs can be upper bounded by a linear function of
the maximum degree Δ(G) of the graph G. Surprisingly, no linear bound seems
to have been known prior to our work.
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Theorem 5. For every circle graph G holds tw(G) ≤ 4Δ(G)− 1.

Proof. We construct a triangulation of the polygon P such that every triangle
has weight at most 4Δ, i.e. it intersects at most 4Δ chords, and therefore the
corresponding tree-decomposition has width at most 4Δ− 1.

Notice that by the definition of a circle graph, every chord intersects at most Δ
other chords. The triangulation of the polygon P is obtained by constructing the
corresponding set of scanlines S which is explained by the following procedures.
Having described our algorithm, we will analyze the number of chords that cross
each triangle and show that it is less than or equal to 4Δ.

1. Description of the algorithm
• FirstCut(). Start with S = ∅. Choose a chord v in the circle model of the
graph G. Call ScanChord(S, v). Call ParaCuts(S).
• ScanChord(S, v = [a, b]). Let c̃ and c̃′ (resp. d̃ and d̃′) be the two scanpoints
closest to a (resp. b) on the circle such that the order of the points on the circle
is c̃, a, c̃′, d̃′, b and d̃. Now the algorithm adds the following three scanlines to S:
s̃1 = 〈c̃, d̃〉, s̃2 = 〈c̃′, d̃′〉 and s̃3 = 〈c̃, d̃′〉. If c̃ = d̃ (or c̃′ = d̃′) then we add only
the scanline s̃2 (or s̃1).
• ParaCuts(S). While S is not a maximal (by inclusion) parallel set of scan-
lines in P , choose a chord v such that S remains parallel when calling Scan-
Chord(S, v). Call ScanChord(S, v). If S is maximal parallel, every polygon
inside P is delimited by one or two scanlines. We call the polygons that are de-
limited by one scanline outer polygons, and those that are delimited by two scan-
lines inner polygons (see Fig. 1). There are exactly two outer polygons now, one
delimited by s̃1 and the other one by s̃2. Call TriangOuter(S, s̃1) and Triang-
Outer(S, s̃2). For every inner polygon, call TriangInner(S, t̃1, t̃2) where t̃1 and
t̃2 are the two scanlines delimiting this polygon.
• TriangOuter(S, s̃ = 〈ã, b̃〉). The scanline s̃ divides the polygon P into two
parts. Call Ps̃ the polygon delimited by s̃ and the part of P that does not contain
any scanlines. Add a scanline between ã and every scanpoint of Ps̃ except ã and
b̃ to S.

outer polygon

inner polygon

Fig. 1. ParaCuts
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• TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉). Let the end points of s̃1 and s̃2
be ordered ã1, b̃1, b̃2, ã2 around the circle. W.l.o.g. assume that fewer chords cross
the line ã1, ã2 than the line b̃1, b̃2. Now add a new scanline t̃ = 〈ã1, ã2〉 to S.
Call OuterParaCuts(S, t̃). Go around the circle from b̃1 to b̃2 (without passing
through ã1 and ã2). Every time one passes through an end point ei, i = 1, ..., k,
(where k is the number of chords that cross s̃1 and b̃1, b̃2) of a chord vi that
crosses s̃1, add the following scanlines to S:

– s̃′i = 〈ã1, d̃i〉 with d̃i being the scanpoint immediately following ei

– s̃′′i = 〈d̃i, d̃i−1〉 with d̃0 = b̃1
– s̃′′′i = 〈d̃i−1, d̃

′
i〉 with d̃′i being the scanpoint just before d̃i.

To triangulate the part of the polygon P delimited by s̃′′′i that does not intersect
any scanlines, execute OuterParaCuts(S, s̃′′′i ). Finally, add the scanlines s̃3 =
〈d̃k, b̃2〉 and s̃4 = 〈b̃2, ã1〉 to S (see Fig. 2). Execute OuterParaCuts(S, s̃3).
• OuterParaCuts(S, s̃ = 〈ã, b̃〉). This procedure is similar to ParaCuts on
the outer polygon delimited by s̃. Call Ps̃ the polygon delimited by s̃ that does
not contain any scanlines. Create a new set of scanlines S′ = {s̃}. While S′ is
not a maximal (by inclusion) parallel set of scanlines for Ps̃, choose a chord v
in Ps̃ such that S′ remains parallel when calling ScanChord(S′, v). Call Scan-
Chord(S′, v). After that there is exactly one outer polygon in Ps̃, delimited
by a scanline t̃. Call TriangOuter(S′, t̃). For every inner polygon in Ps̃, call
TriangInner(S′, t̃1, t̃2) where t̃1 and t̃2 are the two scanlines delimiting this
polygon. Add the set of new scanlines S′ to S.

2. Analysis of the algorithm
In the main procedure, FirstCut, no scanlines are directly added to S.

Every time ScanChord is executed, one or three scanlines are added to S.
They form at most two triangles: c̃, d̃, d̃′ and c̃, d̃′, c̃′. Each of them intersects at
most Δ + 1 chords: v and the chords crossing v. Furthermore, at most Δ chords
cross s̃′ and s̃′′, precisely the chords that cross v.

In the procedure ParaCuts, no scanlines are directly added to S. Moreover,
when it calls the procedures TriangOuter and TriangInner, the set S is max-
imal parallel, which is a necessary condition for these procedures.

When TriangOuter is called, two conditions are always respected:

(i) S is maximal parallel by inclusion, and
(ii) at most 2Δ chords cross s̃.

The condition (i) implies that every chord that intersects Ps̃ crosses s̃. To-
gether with condition (ii) we obtain that at most 2Δ chords intersect Ps̃. So any
triangulation of Ps̃ produces triangles with weight at most 2Δ.

When TriangInner is called, three conditions are always respected:

(i) S is a maximal parallel set of scanlines, and
(ii) at most Δ chords cross one of the scanlines; suppose this is s̃2
(iii) at most 2Δ chords cross s̃1.
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There are at most 3Δ chords inside the quadrilateral ã1, b̃1, b̃2, ã2 since there is
no chord crossing both the lines ã1, ã2 and b̃1, b̃2 (because S is maximal parallel).
As fewer chords cross ã1, ã2 than b̃1, b̃2, at most 3/2Δ chords cross the new
scanline t̃ = 〈ã1, ã2〉. So, when we call OuterParaCuts(S, t̃) the condition that
t̃ intersects at most 2Δ chords is respected. For every end point ei of a chord
vi that crosses s̃1, we create two triangles: ã1, d̃i−1, d̃i and d̃i, d̃i−1, d̃

′
i. The first

triangle intersects at most 4Δ chords: at most 2Δ chords that cross s̃1 (but
neither vi nor vi−1), at most Δ chords that cross vi−1 and at most Δ chords
that cross vi. Moreover, there are at most 2Δ + 1 chords that intersect s̃′′i and
at most 2Δ chords intersect s̃′′′i . So, the weight of the triangle d̃i, d̃i−1, d̃

′
i is at

most 2Δ+1 and when we call OuterParaCuts(S, s̃′′′i ) we respect the condition
that the second parameter of the procedure is a scanline that crosses at most
2Δ chords.

After adding the scanlines s̃3 and s̃4 we obtain two more triangles: ã1, d̃k, b̃2
and ã1, b̃2, ã2. The first one intersects at most 7/2Δ chords: at most 2Δ that
cross s̃1, at most Δ that cross vk and at most Δ that cross s̃2 of which we have
already counted 1/2Δ crossing s̃1. At most 5/2Δ chords intersect the triangle
ã1, b̃2, ã2: at most 2Δ that intersect s̃1 and at most Δ that intersect s̃2 of which
we have already counted 1/2Δ crossing s̃1. Moreover at most 2Δ chords cross
s̃3, so OuterParaCuts(S, s̃3) has valid parameters.

In the procedure OuterParaCuts, no scanlines are directly added to S. The
following condition is always respected:
(i) at most 2Δ chords cross s̃.
During this procedure, we consider only the polygon Ps̃. A new set of scanlines
S′ = {s̃} is created and is made maximal parallel by inclusion by calling Scan-
Chord. If {s̃} is already maximal parallel, then TriangOuter(S′, s̃) is called
and the two conditions of that procedure are respected. If other scanlines had to
be added to S′ to make it maximal parallel, the procedure TriangOuter(S′, t̃)
is called for the outer polygon where t̃ is a scanline intersecting at most Δ chords.
Moreover, the procedure TriangInner(S, t̃1, t̃2) is called for the inner polygons.
Every scanline delimiting the inner polygons intersects at most Δ chords, except
s̃ that can intersect up to 2Δ chords. So, we respect the condition for Triang-
Inner that one scanline intersects at most Δ chords and the other one at most
2Δ chords. Finally, S′ is added to S which does not create any new triangles.

We have provided a recursive algorithm to triangulate the polygon P and have
shown that the obtained triangulation does not contain triangles intersecting
more than 4Δ chords. Thus the corresponding tree-decomposition of G has width
at most 4Δ− 1. �
Linear upper bounds for the treewidth in terms of the maximum degree seem to
have an immediate use in the design of treewidth based exact algorithms. Using
Theorem 6 we obtain an algorithm to compute a minimum dominating set for
circle graphs in time O(1.4956n). The algorithm DS-circle is simple and also
based on the algorithms of Theorem 3 and Theorem 1.

Theorem 6. Given a circle graph G = (V, E), algorithm DS-circle computes
a minimum dominating set of G in time O(1.4956n).
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Algorithm DS-circle(circle graph G = (V, E); circle model of G)
Input: A circle graph G and its circle model.
Output: The domination number γ(G) of G.

λ ← 0.2322
X ← ∅
Compute the treewidth tw(G) of G using theorem 4
while tw(G − X) ≥ λn do

X ← X ∪ {u} where u is a vertex of G − X of highest degree

if |X| ≥ λn/4 then
use the algorithm of Theorem 1 and return the result

else
use the algorithm of Theorem 3 and return the result

Proof. The algorithm constructs a vertex set X = {x1, x2, ..., xk} starting from
an empty set by adding maximum degree vertices of the remaining graph to the
set X until tw(G −X) < λn.
When the vertex xi is added to X = {x1, x2, ..., xi−1}, we have tw(G−X) ≥ λn.
The vertex xi ∈ V − X is of highest degree in G −X , i.e. d(xi) = Δ(G −X).
We have d(xi) > tw(G − X)/4 by Theorem 5. Now, d(xi) > λn/4 because
tw(G −X) ≥ λn. So, ∀xi ∈ X, d(xi) > λn/4.

In the case |X | ≥ λn/4, we have a subset X ⊆ V such that ∀v ∈ X, d(v) >
λn/4. So, according to Theorem 1, a minimum dominating set can be found in
time O(1.23032n−λn/4) = O(1.4956n).

In the other case, |X | < λn/4 and tw(G − X) < λn. As adding one vertex
to a graph increases its treewidth at most by one, tw(G) < λn + λn/4. Using
the algorithm of Theorem 3, a minimum dominating set is determined in time
O∗(4tw(G)) = O(4(5λ/4)n) = O(1.4956n). �

5 Domination on Dense Graphs

It is known that problems like Independent Set, Hamiltonian Circuit and Hamil-
tonian Path remain NP-complete when restricted to graphs having a large num-
ber of edges [18]. An easy way to show that a graph problem remains NP-
complete for c-dense graphs, for any c with 0 < c < 1/2, is to construct the
graph G′ by adding a sufficiently large complete graph as new component to the
original graph G such that G′ is c-dense. It is not hard to show that the MDS
problem on c-dense graph is also NP-complete. A proof will be given in the full
version of this paper. In this section we present an exponential time algorithm
for MDS problem on c-dense graphs.

Definition 8. A graph G = (V, E) is said to be c-dense (or simply dense if
there is no ambiguity), if |E| ≥ cn2 where c is a constant with 0 < c < 1/2.

The main idea of our algorithm is to find a large subset of vertices of large
degree. Despite the approach of the previous sections, neither clique trees nor
tree decompositions will be used here.
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Lemma 3. For some fixed 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, any graph G = (V, E)

with |E| ≥ 1 +
(t− 1)(n− 1) + (n− t + 1)(t′ − 1)

2
has a subset T ⊆ V such that

(i) |T | ≥ t,
(ii) ∀v ∈ T , d(v) ≥ t′.

Proof. Let 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, and a graph G = (V, E) such that there
is no subset T with the previous properties. Then for any subset T ⊆ V of size
at least t, ∃v ∈ T such that d(v) < t′. Then a such graph can only have at most
k = k1+k2 edges where : k1 = (t−1)(n−1)/2 which corresponds to t−1 vertices
of degree n − 1 and k2 = (n − t + 1)(t′ − 1) which corresponds to n − (t − 1)
vertices of degree t′−1. Observe that if one of the n−(t−1) vertices has a degree
greater than t′ − 1 then the graph has a subset T with the required properties,
a contradiction. �

Lemma 4. Every c-dense graph G = (V, E) has a set T ⊆ V fulfilling

(i) |T | ≥ n−
√

9− 4n + 4n2 − 8cn2 − 3
2

,

(ii) ∀v ∈ T , d(v) ≥ n−
√

9− 4n + 4n2 − 8cn2 + 1
2

.

Proof. We apply Lemma 3 with t′ = t−2. Since we have a dense graph, |E| ≥ cn2.
Using inequality 1 + ((t− 1)(n− 1) + (n− t + 1)(t− 3))/2 ≥ cn2 we obtain that
in a dense graph the value of t in Lemma 3 is such that n+ 3−

√
9−4n+4n2−8cn2

2 ≤
t ≤ n ≤ n + 3+

√
9−4n+4n2−8cn2

2 . �

Theorem 7. For any c with 0 < c < 1/2, there is a O(1.2303n(1+
√

1−2c)) time
algorithm to solve the MDS problem on c-dense graphs.

Proof. Combining Theorem 1 and Lemma 4 we obtain an algorithm for solving
the Minimum Dominating Set problem in time

1.23032n−(n−
√

9−4n+4n2−8cn2−3
2 ) = O(1.2303n(1+

√
1−2c)). �

6 Conclusions

In this paper we presented several exponential time algorithms to solve the Min-
imum Dominating Set problem on graph classes for which this problem remains
NP-hard. All these algorithms are faster than the best known algorithm to solve
MDS on general graphs. We would like to mention that any faster algorithm for the
Minimum Set Cover problem, i.e. of running time O(α|U|+|S|) with α < 1.2303,
could immediately be used to speed up all our algorithms.

Besides classes of sparse graphs (see e.g. [7]) two more classes are of great
interest in this respect: split and bipartite graphs. For split graphs, combining
ideas of [10] and [8] one easily obtains an O(1.2303n) algorithm. Unfortunately,
despite our efforts we could not construct an exponential time algorithm to solve
MDS on bipartite graphs beating the best known algorithm for general graphs.
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Exact Computation of Maximum Induced Forest

Igor Razgon�

Computer Science Department, University College Cork, Ireland
i.razgon@cs.ucc.ie

Abstract. We propose a backtrack algorithm that solves a general-
ized version of the Maximum Induced Forest problem (MIF) in time
O∗(1.8899n). The MIF problem is complementary to finding a minimum
Feedback Vertex Set (FVS), a well-known intractable problem. There-
fore the proposed algorithm can find a minimum FVS as well. To the
best of our knowledge, this is the first algorithm that breaks the O∗(2n)
barrier for the general case of FVS. Doing the analysis, we apply a more
sophisticated measure of the problem size than the number of nodes of
the underlying graph.

1 Introduction

Exact exponential algorithms are techniques for solving intractable problems
with better complexity than trivial brute-force exploring of all the possible
combinations. Examples of such algorithms include: [9] for maximum indepen-
dent set, [1] for chromatic number, [3] for 3-COLORABILITY, [2] for 3-SAT,
[4] for dominating set, and others. A recent overview of exact algorithms is
provided in [10].

In this paper we propose an O∗(1.8899n) exact algorithm for solving the
following problem. Given a graph G and a subset K of its vertices, find a largest
superset S of K such that the subgraph of G induced by S is acyclic. If K =
∅ then S is a Maximum Induced Forest (MIF) of G. The complement of S,
V (G)\S, is a minimum Feedback Vertex Set (FVS) of G, i.e. a set of vertices that
participate in all the cycles of G. Computing a minimum FVS is a “canonical”
intractable optimization problem, whose NP-complete version is mentioned in
[7]. To the best of our knowledge, the proposed algorithm is the first that breaks
the O∗(2n) barrier for the general case of FVS. Previous studies [6, 8] describe
exact algorithms only for special cases of FVS.

The proposed algorithm computes MIF using the “branch-and-prune” strat-
egy ([10], Section 4). Using this strategy for computing of MIF is not straightfor-
ward. The reason is that selection of a new vertex for MIF does not necessarily
cause additional pruning: a vertex can be pruned only if it induces a cycle with
the “already selected” vertices. For graphs with a large girth, many vertices must
be selected before at least one can be discarded.
� I would like to thank Fedor Fomin, who inspired me to investigate the problem, and

an anonymous reviewer who suggested me a way of improving the result reported in
the first version of the paper.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 160–171, 2006.
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To overcome this difficulty, we analyze complexity of the algorithm by ap-
plying a more sophisticated measure than the number of vertices of the residual
graph, a strategy suggested in [5]. In particular, we observe that all the “remain-
ing” vertices can be partitioned into the vertices that have neighbours with the
already selected vertices and the vertices that do not have them. We associate the
vertices of the former class with weight 1 and the vertices of the latter class with
weight 1.565, a constant guessed by a computational procedure. The proposed
measure is the sum of weights of all the vertices of the residual graph. Further
analysis yields an upper bound O∗(1.50189m), where m is the value of the ap-
plied measure for the input graph G. We then demonstrate that m ≤ 1.565n,
where n is the number of vertices of G, which results in an upper bound of
O∗((1.501891.565)n). Taking into account that 1.8898 < 1.501891.565 < 1.8899,
this bound is transformed to O∗(1.8899n) by rounding.

The rest of the paper is organized as follows. Section 2 introduces the neces-
sary terminology. Section 3 presents the proposed algorithm. Section 4 proves
correctness of the algorithm and provides complexity analysis 1.

2 Preliminaries

A simple undirected graph is referred in this paper as a graph. A set of vertices of
a graph G is denoted by V (G). Given S ⊆ V (G), we denote by G[S] the subgraph
of G induced by S and by G \ S the subgraph of G induced by V (G) \ S. If S
consists of a single vertex v, we write G\v rather than G\{v}. Two vertices v and
w of G are S-connected if they are adjacent or if there is a path v, p1, . . . , pm, w,
where {p1, . . . pm} ⊆ S.

The set S is a maximum induced forest (MIF) if G[S] is acyclic and S is the
largest set subject to this property 2. In addition, we introduce the notion of a
T -MIF.

Definition 1. Let T ⊆ V (G). A T -MIF of G is a largest superset S of T such
that G[S] is acyclic.

Clearly, the definition makes sense only when G[T ] is acyclic. Observe that a
∅-MIF of G is an ordinary MIF.

To present complexity of algorithms, we use the O∗ notation [10], which sup-
presses the polynomial factor. For example, O(n22n) is written as O∗(2n).

3 The Algorithm

In this section we present an algorithm for computing a MIF of a given graph.
We start with extending our notation.

Let G be a graph and let T be a subset of its vertices. We recognize the
following classes of vertices of G \ T .
1 Due to space constraints, proofs of some technical lemmas are omitted.
2 It is more convenient for us to represent a MIF as a set of vertices rather than a

subgraph of G.
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– Boundary vertices denoted by Bnd(G, T ). The set Bnd(G, T ) contains all
vertices v ∈ V (G \ T ) such that v is adjacent to exactly one vertex of T .

– Conflicting vertices denoted by Cnf(G, T ). The set Cnf(G, T ) contains all
vertices v ∈ V (G \ T ) such that v is adjacent to at least two vertices of the
same connected component of G[T ].

– Free vertices denoted by Free(G, T ). The set Free(G, T ) contains all vertices
v ∈ V (G \ T ) such that v is not adjacent to any vertex of T .

Now we are ready to introduce the algorithm Main MIF (Algorithm 1). It
gets as input a graph G and a subset K of V (G). The algorithm returns (as we
will prove further) a K-MIF of G. Clearly, setting K to ∅ will make the algorithm
to return a MIF of G.

The algorithm Main MIF starts with checking whether G[K] is acyclic. If
not, FAIL is returned immediately (line 1 of Algorithm 1) because no K-MIF
of G exists in this case. Otherwise, the function Find MIF runs (line 2 of
Algorithm 1).

Function Find MIF is the main “search engine” of Main MIF . It is de-
scribed in lines 3-31 of Algorithm 1. The function gets as input a graph G1, and
subsets T1 and K1 of V (G1). The function is supposed to return a T1 ∪K1-MIF
of G1 (provided that G1[T1 ∪K1] is acyclic).

If T1 ∪K1 = V (G1), Find MIF returns T1 ∪K1 (lines 4 and 5 of Algorithm
1). Otherwise, the execution can be divided into four stages: selecting a vertex
v of V (G1) \ (T1 ∪ K1), a recursive call processing the case when v is added
to T1 ∪ K1, a recursive call processing the case when v is eliminated from G1,
and returning the maximum-size set among the ones returned by the above two
recursive calls.

Selection of a vertex v is described in lines 7-11 of Algorithm 1. The vertex is
taken from Bnd(G1, T1) unless the set is empty. In this case, the function selects
an arbitrary vertex that does not belong to T1 ∪K1.

Having selected a vertex v, the function adds it to T1 ∪ K1 (line 12 of
Algorithm 1). The addition is performed by function T Update (Algorithm
2). Applying of T Update in line 12 returns a triplet (G2, T2, K2), in which
T2 ∪K2 = T1 ∪K1 ∪ {v}, v itself and all vertices of K1 that are K1-connected
to v are “moved” to T2, G2 is obtained from G1 by removing all vertices of
Cnf(G1, T2) because every one of them induces cycles being added to T2. Func-
tion Find MIF is applied recursively to (G2, T2, K2) in line 13 and returns a
set S2.

The way a vertex v is selected and then added to T2 ∪K2 ensures that the
inputs (G′, T ′, K ′) of all recursive applications of FindIndep have a number of
invariant properties which are crucial for our analysis (Section 4). Two most
important properties are that any connected component of G′ contains at most
one connected component of G′[T ′], and that there are no edges between vertices
of T ′ and vertices of K ′.

Processing the case, where v is eliminated from G1 (lines 14-29 of Algorithm 1),
depends on the number of vertices of V (G1) \ (T1 ∪ K1 ∪ {v}) that are K1-
connected to v. If there is at most one such vertex, the function decides that S2
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is a T1∪K1-MIF of G1 and returns it (lines 15-16 of Algorithm 1). The case when
there are exactly 2 such vertices is processed in lines 17-25. The set W of these
two vertices is added to T1∪K1 by function K Update (Algorith 3). This function
returns FAIL if G1[T1 ∪ K1 ∪ W ] contains cycles. In this case, Find MIF
returns S2. Otherwise, Find MIF is applied recursively to the triplet returned
by K Update, returns a set S3, and the largest set among S2 and S3 is returned in
line 22. If the number of vertices of V (G1)\(T1∪K1∪{v}) that are K1-connected
to v is at least 3, Find MIF returns the largest set among S2 and S3, where S3
is returned by the recursive application of Find MIF to (G1 \ v, T1, K1) (lines
26-28 of Algorithm 1).

Consider the intuition behind the decisions made by the algorithm in lines 15-
25. For this purpose, assume that K1 = ∅. That is, we consider the cases where v
have 1 or 2 neighbours that are not in T1. In the former case, let w ∈ V (G1)\T1
be the considered neighbour of v. Observe that it is safe to add v to T2. Really,
any T1-MIF S of G1 that does not contain v has to contain w (otherwise, we get
contradiction to the maximality of S). In this case replacing w by v in S, we get
another T1-MIF of G1.

Assume now that v is adjacent to vertices w1, w2 ∈ V (G1)\T1 and that v does
not belong to any T1-MIF of G1. Then, any T1-MIF of G1 contains both w1 and
w2, otherwise, arguing as for the previous case, we get a contradiction with our
assumption. A subtle question is where to add w1 and w2. The point is that the
invariant property that every component of G1 contains at most one component
of G1[T1] should not be violated for the inputs of the subsequent recursive calls of
the Find MIF function. To satisfy this requirement, for example, when none of
w1 and w2 have neighbours in T1, the function K Update adds them to K2, not
to T2. That is, even if K = ∅ in the original input, it can be transformed to a non-
empty set in one of subsequent recursive calls of Find MIF . Thus the necessity
to handle the case when v is adjacent to exactly two “remaining” vertices is
what caused the author to consider a generalized version of the MIF-problem.

4 Analysis

The analysis of the Main MIF algorithm is organized as follows. In Section 4.1
we introduce the notion of a Fair Configuration (FC) and prove a number of
properties of FCs. In Section 4.2 we define a search tree generated by function
Find MIF with the nodes corresponding to the inputs of the recursive calls of
Find MIF . We prove that all these inputs are FCs. Then, based on properties of
FCs, we prove correctness of Main MIF (section 4.3) and analyze its complexity
(section 4.4). Due to space constraints, proofs of some technical lemmas are
omitted.

4.1 Fair Configurations and Their Properties

Definition 2. Let G be a graph and let T and K be subsets of V (G). A triplet
(G, T, K) is a Fair Configuration (FC) if the following conditions hold:
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Algorithm 1. Main MIF(G,K)

1: if G[K] contains cycles then Return FAIL
2: Return Find MIF (G \ Cnf(G, K), ∅, K)
3: function Find MIF (G1, T1, K1)
4: if T1 ∪ K1 = V (G1) then
5: Return T1 ∪ K1

6: else
7: if Bnd(G1, T1) is not empty then
8: Select a vertex v ∈ Bnd(G1, T1)
9: else

10: Select an arbitrary vertex v ∈ G1 \ (T1 ∪ K1)
11: end if
12: (G2, T2, K2) ← T Update(G1, T1, K1, v)
13: S2 ← Find MIF (G2, T2, K2)
14: switch The number of vertices of V (G1) \ (T1 ∪ K1 ∪ {v})

that are K1-connected to v
15: case ≤ 1
16: Return S2

17: case 2
18: Let W be the set of vertices of V (G1) \ (T1 ∪ K1 ∪ {v})

that are K1-connected to v
19: if K Update(G1 \ v, T1, K1, W ) does not return FAIL then
20: (G3, T3, K3) ← K Update(G1 \ v, T1, K1, W )
21: S3 ← Find MIF (G3, T3, K3)
22: Return the largest set of S2 and S3

23: else
24: Return S2

25: endif
26: case ≥ 3
27: S3 ← Find MIF (G1 \ v, T1, K1)
28: Return the largest set of S2 and S3

29: end switch
30: end if
31: end function

Algorithm 2. T Update(G,T,K,v)

1: Let S be the subset of vertices of K that are K-connected to v
2: T ′ ← T ∪ {v} ∪ S
3: K′ ← K \ ({v} ∪ S)
4: G′ ← G \ Cnf(G, T ′)
5: Return (G′, K′, T ′)
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Algorithm 3. K Update(G,T,K,W)

1: if G[T ∪ K ∪ W ] contains cycles then Return FAIL
2: if W ∩ Bnd(G, T ) = ∅ then
3: Return (G \ Cnf(G, K ∪ W ), T, K ∪ W )
4: else
5: Let v1 be a vertex of W that belongs to Bnd(G, T )
6: (G′, T ′, K′) ← T Update(G,T, K, v1)
7: {v2} ← W \ {v1}
8: if v2 ∈ Bnd(G′, T ′) then
9: Return T Update(G′, T ′, K′, v2)

10: else
11: Return (G′ \ Cnf(G′, K′ ∪ {v2}), T ′, K′ ∪ {v2})
12: end if
13: end if

– K ⊆ Free(G, T );
– G[T ] and G[K] are acyclic;
– Cnf(G, T ) = Cnf(G, K) = ∅;
– every connected component of G contains at most one connected component

of G[T ].

Due to importance of the notion for the proposed analysis, we demonstrate it
on an example.

Let G be the graph shown in Figure 1, the black circles represent the vertices
of T , the crossed circles represent the vertices of K, the other vertices are repre-
sented by the white circles. Observe that (G, T, K) is a FC. Indeed, there are no
edges between the vertices of T and K, both T and K induce acyclic subgraphs
of G, no single vertex of V (G) \ (T ∪K) makes cycles with T and K. Finally,
every connected component of G contains at most one connected component of
G[T ]. Note that by definition of a FC, the last requirement is not necessary for
G[K]. In our example, the component induced by vertices v9 to v12 contains two
components of G[K].

Lemma 1. Let (G, T, K) be a FC. Then T ∪Bnd(G, T ) ∪ Free(G, T )=V (G).3

Lemma 2. Let (G, T, K) be a FC and let v ∈ V (G) \ (T ∪K). Assume that one
of the following properties holds:

– v ∈ Bnd(G, T );
– Bnd(G, T ) = ∅.

Then (G′, T ′, K ′) = T Update(G, T, K, v) is a FC.

As a result of application of T Update, some vertices change their “roles”. This
statement is described precisely in the following lemma.
3 In other words, any vertex of V (G) \ T is adjacent to at most one vertex of T .
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Fig. 1. A Fair Configuration (FC)

Lemma 3. Let (G, T, K) be a FC and let v ∈ V (G) be a vertex such that
(G′, T ′, K ′) = T Update(G, T, K, v) is a FC.

Let w ∈ V (G) \ (T ∪K ∪ {v}) be a vertex, which is K-connected to v. Then

– w /∈ Free(G′, T ′);
– in addition, if w ∈ Bnd(G, T ) then w /∈ V (G′).

Lemma 4. Let (G, T, K) be a FC. Let S ⊆ V (G)\(T∪K) and W ⊆ Free(G, T )\
K be two disjoint sets. Then (G \ S \ Cnf(G \ S, K ∪W ), T, K ∪W ) is a FC.

4.2 The Search Tree ST

In this section we define a search tree ST explored by Main MIF . The root of
the tree is associated with a triplet (G\Cnf(G, K), ∅, K), where G and K consti-
tute the input of Main MIF . Assume that a node x of ST is associated with a
triplet (G1, T1, K1). The structure of the subtree rooted by x depends on the exe-
cution of Find MIF (G1, T1, K1). If T1∪K1 = V (G1) then x is a leaf. Otherwise,
x has a child associated with the triplet returned by T Update(G1, T1, K1, v),
where v is the vertex selected by Find MIF (G1, T1, K1) in lines 7-11 of Al-
gorithm 1. It is the only child if Find MIF (G1, T1, K1) executes line 16 or
line 24. If line 22 is executed then x has the additional child associated with
K Update(G1 \ v, T1, K1, {v1, v2}); if line 28 is executed, the additional child is
associated with the triplet (G1 \ v, T1, K1).

Lemma 5. ST is of finite size.



Exact Computation of Maximum Induced Forest 167

Lemma 6. The triplet associated with every node of ST is a FC.

4.3 Correctness Proof

In this section we will prove correctness of Main MIF by demonstrating that
Main MIF (G, K) returns a K-MIF of G.

Lemma 7. Let (G, T, K) be a FC and let v ∈ V (G) \ (T ∪ K). Let S be a
T ∪K-MIF of G. Then either v ∈ S or any cycle in G[S ∪{v}] involves a vertex
w ∈ V (G) \ (T ∪K ∪ {v}), which is K-connected to v.

Proof. Assume that v /∈ S and let v, v1, . . . vm be a cycle of G[S ∪ {v}] (clearly,
v participates in any cycle of G[S ∪ {v}] because G[S] is acyclic). If either v1 or
vm belongs to V (G) \ (T ∪K), we are done. Otherwise, note that {v1, vm} � T
because v cannot be connected to more than one vertex of T , by Lemma 1.
It follows also that {v1, . . . , vm} � K because the opposite would mean that
v ∈ Cnf(G, K). Assume without loss of generality that v1 ∈ K. Let i be the
smallest index such that vi /∈ K, while vi−1 ∈ K. Note that by definition of a FC
vi /∈ T (because existence of an edge between K and T would follow otherwise).
Thus vi ∈ V (G) \ (T ∪K) and the path v, v1, . . . , vi, all intermediate vertices of
which belong to K, certifies that vi is K-connected to v. �

Lemma 8. Let G be a graph, T ⊂ V (G) such that G[T ] is acyclic, and U ⊆
V (G) \ T . Assume that no T -MIF of G intersects with U . Then any T -MIF of
G \ U is a T -MIF of G.

Lemma 9. Let (G, T, K) be a FC and let v ∈ V (G)\(T ∪K). Let (G′, T ′, K ′) =
T Update(G, T, K, v). Assume that at least one T∪K-MIF of G contains v. Then
any T ′ ∪K ′-MIF of G′ is a T ∪K-MIF of G.

Lemma 10. Let (G, T, K) be a FC. Let v ∈ V (G) \ (T ∪K) be a vertex, which
is K-connected to at most one vertex of G \ (T ∪K ∪ {v}). Let (G′, T ′, K ′) =
T Update(G, T, K, v). Then any T ′ ∪K ′-MIF of G′ is a T ∪K-MIF of G.

Proof. If at least one T ∪K-MIF of G contains v, the statement follows from
Lemma 9. Otherwise, let S be a T ∪ K-MIF of G. By Lemma 7, every cycle
of G[S ∪ {v}] contains a vertex of V (G) \ (T ∪K ∪ {v}), which is K-connected
to v. By the condition of the lemma, there is at most one such a vertex, say,
w. Therefore w participates in all the cycles of G[S ∪ {v}], and removing of w
breaks all the cycles. Clearly, S ∪ {v} \ {w} is a T ∪K-MIF of G containing v,
in contradiction to our assumption. �

Lemma 11. Let (G, T, K) be a FC. Let v ∈ V (G) \ (T ∪K) be a vertex, which
is K-connected to exactly two vertices v1 and v2 of G \ (T ∪K ∪ {v}). Then at
least one of the following two statements is true.

– Let (G1, T1, K1) = T Update(G, T, K, v). Then any T1 ∪K1-MIF of G1 is a
T ∪K-MIF of G.
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– K Update(G \ v, T, K, {v1, v2}) does not return FAIL. Moreover, let
(G2, T2, K2) = K Update(G \ {v}, T, K, {v1, v2}).
Then any T2 ∪K2-MIF of G2 is a T ∪K-MIF of G.

Proof. Assume that the first statement does not hold. By Lemma 9, no T ∪K-
MIF of G contains v. Let S be a T ∪K-MIF of G. According to Lemma 7, any
cycle in G[S ∪ {v}] involves a vertex of G \ (T ∪K ∪ {v}), which is K-connected
to v. If S contains only one such vertex, say, v1, then removing v1 breaks all
the cycles and S ∪ {v} \ {v1} is a T ∪ K-MIF of G in contradiction to our
assumption. It follows that {v1, v2} ⊆ S. Clearly, S is a T ∪ K ∪ {v1, v2}-MIF
of G because otherwise we get a contradiction with being S a T ∪K-MIF of G.
It follows that any T ∪K ∪ {v1, v2}-MIF of G is a T ∪K-MIF of G. Then, by
Lemma 8, any T ∪K ∪{v1, v2}-MIF of G \ v is a T ∪K-MIF of G. Consequently
(G \ v)[T ∪K ∪ {v1, v2}] is acyclic and hence K Update(G, T, K, {v1, v2}) does
not return FAIL. Furthermore, it follows from the description of K Update that
T2 ∪K2 = T ∪K ∪ {v1, v2} and G2 is obtained from G \ v by removing vertices
that make cycles with T ∪K ∪ {v1, v2} in G \ v. Thus, any T2 ∪K2-MIF of G2
is a T ∪K-MIF of G by Lemma 8 and the above reasoning. �

Theorem 1. For any triplet (G1, T1, K1) associated with a node of ST ,
Find MIF (G1, T1, K1) returns a T1 ∪K1-MIF of G1.

Proof. Let x1, x2, . . . be an order of nodes of ST such that children are ordered
before their parents; existence of such an order follows from Lemma 5. The proof
is by induction on the sequence. We also use the fact that the triplet associated
with every node x of ST is a FC (Lemma 6).

Clearly, the statement holds for all leaves of ST and, in particular, for x1.
Consider a non-leaf node xi, assuming validity of the theorem for all nodes placed
before, and denote the FC associated with xi by (G1, T1, K1). The FCs associated
with the children of xi are exactly the inputs of the recursive calls performed
by Find MIF (G1, T1, K1). By the induction assumption, these recursive calls
work properly.

If the vertex v picked by Find MIF (G1, T1, K1) is K1-connected to exactly
one vertex of V (G1) \ (T1 ∪K1 ∪ {v}), the correctness follows from Lemma 10;
in the case of two vertices, the correctness follows from Lemma 11; in the case
of three or more vertices, the correctness follows from Lemmas 8 and 9. �

Corollary 1. Let G be a graph and K ⊆ V (G). If G[K] is acyclic,
Main MIF (G, K) returns a K-MIF of G.

4.4 Complexity Analysis

In this section we analyse the complexity of Main MIF by deriving the upper
bound on the number of nodes of ST . For the complexity analysis, we asso-
ciate with every node x of ST the measure Y (x) = c|Free(G1, T1) \ K1| +
|Bnd(G1, T1)|, where (G1, T1, K1) is the triplet associated with x, c = 1.565. In
other words, the elements of Free(G1, T1) \K1 are assigned with weight c, the
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elements of Bnd(G1, T1) are assigned with weight 1, Y (x) is the sum of all the
weights. The complexity analysis is structured as follows. For a given two nodes
x and z such that x is the parent of z, we evaluate Y (x) − Y (z). Based on the
evaluation, we obtain an upper bound on the number of nodes of the subtree
rooted at x. This upper bound is O∗(α(c)Y (x)), where α(c) is the constant de-
pending on c. For c = 1.565, α(c) = 1.50189. Then we notice that for the root
node r, the value of Y (r) is at most cn, where n is the number of vertices of the
original graph. Thus we obtain the upper bound O∗(1.501891.565n). Taking into
account that 1.8898 < 1.501891.565 < 1.8899, the upper bound obtained after
rounding the base of the exponent is O∗(1.8899n).

The constant c = 1.565 was guessed by a binary search computational pro-
cedure that explored the range from 1.005 to 2 by steps of 0.005 and for every
considered constant c computed α(c)c. The smallest value of this expression was
obtained for c = 1.565.

Lemma 12. Let x be a non-leaf node of ST associated with a triplet(G1, T1, K1),
let a node z associated with a triplet (G2, T2, K2) be a child of x, and let v ∈
V (G1) \ (T1 ∪K1). Then the following statements hold.

1. If (G2, T2, K2) = T Update(G1, T1, K1, v) then Y (z) ≤ Y (x)− ((c− 1)|W |+
1), where W is the set of vertices of V (G1) \ (T1 ∪K1 ∪ {v}) that are K1-
connected to v.

2. If (G2, T2, K2) = K Update(G1\v, T1, K1, {v1, v2}), where{v1, v2} ⊆ V (G1)\
(T1 ∪K1 ∪ {v}), then Y (z) ≤ Y (x) − 3.

3. If (G2, T2, K2) = (G1 \ v, T1, K1) then Y (z) ≤ Y (x) − 1.

Proof. Let z be a child of x associated with (G2, T2, K2) and assume that
(G2, T2, K2) = T Update(G1, T1, K1, v). Recall that all the triplets associated
with the nodes of ST are FCs (Lemma 6). By definition of W and Lemma 1,
the vertices of W can be partitioned into two subsets, W1 ⊆ Free(G1, T1) \K1
and W2 ⊆ Bnd(G1, T1).

Observe that |Free(G2, T2) \ K2| ≤ |Free(G1, T1) \ K1| − |W1|. Really,
Free(G2, T2) \ K2 are the vertices of V (G2) \ (T2 ∪ K2) that do not have
neighbors in T2. Taking into account that T1 ⊂ T2, T1 ∪ K1 ⊂ T2 ∪ K2, and
V (G2) ⊆ V (G1), it is clear that Free(G2, T2)\K2 ⊆ Free(G1, T1)\K1. Further,
applying Lemma 3, we obtain that Free(G2, T2)\K2 ⊆ (Free(G1, T1)\K1)\W1.
Considering that W1 ⊆ Free(G1, T1)\K1, we get the desired inequality. A vertex
of W1 can be either removed from G2 or added to Bnd(G2, T2). In the former
case the value of Y (z) is decreased by c with respect to Y (x), in the second case
Y (z) is decreased only by c − 1, because the weight of the vertex is changed
from c to 1. We evaluate the maximal possible weight of Y (z), hence we can
assume that all vertices of W1 are moved to Bnd(G2, T2), decreasing Y (z) by
(c− 1)|W1|.

The vertices of W2 are removed from G2 by Lemma 3 and vertex v is moved
from Bnd(G1, T1) to T2. These transformations decrease the value of Y (z) with
respect to Y (x) by |W2| + 1. Combining the above argumentation, and taking
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into account that c = 1.565, we see that Y (z) ≤ Y (x)−((c−1)∗|W1 |+|W2|+1) ≤
Y (x)− ((c− 1)|W |+ 1), proving the first statement.

If the condition of the second statement holds then |Free(G2, T2) \ K2| +
|Bnd(G2, T2)| ≤ |Free(G1, T1) \K1| + |Bnd(G1, T1)| − 3 because v is removed
from G2, v1 and v2 are moved to T2 ∪K2. Removing of anyone of these vertices
decreases Y (z) by at least 1. The second statement immediately follows.

The last statement is immediate when we observe that |Free(G2, T2) \K2|+
|Bnd(G2, T2)| ≤ |Free(G1, T1) \K1|+ |Bnd(G1, T1)| − 1 if the condition of the
last statement holds. �

Let m be an integer such that there is a node x of ST with Y (x) = m. We
denote by F (m) the maximum possible number of nodes of the subtree rooted
at x.

Lemma 13. For any node x of ST , F (Y (x)) is bounded by O∗(1.50189Y (x)).

Proof. Let (G1, T1, K1) be the triplet associated with x. Recall that Y (x) =
c|Free(G1, T1) \K1|+ |Bnd(G1, T1)|. Clearly, Y (x) ≥ 0.

Assume that Y (x) = 0. It is only possible when V (G1) = T1 ∪K1. According
to Algorithm 1, x is a leaf, hence the lemma holds for this case.

Assume now that Y (x) > 0. Clearly, x is a non-leaf. If x has only one child
z then z is necessarily associated with T Update(G1, T1, K1, v) for some v ∈
V (G1) \ (T1 ∪ K1). By Lemma 12, Y (z) ≤ Y (x) − 1 (the equality holds when
v is not K1-connected to any vertex of V (G1) \ (T1 ∪ K1 ∪ {v})). In this case,
F (Y (x)) = F (Y (z)) + 1 = F (Y (x) − l) + 1, where l ≥ 1.

If x has two children, z1 and z2, one of them, say z1, is necessary associated
with the triplet returned by T Update(G1, T1, K1, v). The node z2 is associated
either with K Update(G1 \ v, T1, K1, {v1, v2}) or with (G1 \ v, T1, K1).

In the former case, {v1, v2} is the set of vertices of V (G1)\(T1∪K1∪{v}) that
are K1-connected to v. By the first part of Lemma 12, Y (z1) ≤ Y (x) − (2(c −
1) + 1), by the second part of the same lemma, Y (z2) ≤ Y (x)− 3. Substituting
c = 1.565, we obtain F (Y (x)) = F (Y (z1)) + F (Y (z2)) + 1 = F (Y (x) − l1) +
F (Y (x)− l2) + 1, where l1 ≥ 2.13, l2 ≥ 3.

In the latter case, it follows from the description of Algorithm 1 that v is
K1-connected to at least 3 vertices of V (G1) \ (T1 ∪ K1 ∪ {v}). Consequently,
Y (z1) ≤ Y (x) − (3(c − 1) + 1) and Y (z2) ≤ Y (x) − 1 by the first and the last
parts of Lemma 12. Arguing as for the previous two cases, we obtain F (Y (x)) =
F ((Y (x)− l1) + F (Y (x) − l2) + 1, where l1 ≥ 2.695, l2 ≥ 1.

The last recursive relation for F (Y (x)) yields the worst upper bound. Taking
into account that the upper bound is exponential, we can ignore the additive con-
stant because it contributes only a polynomial factor to the resulting bound. The
upper bound following from the expression F (Y (x)) = F (Y (x)− 1)+ F (Y (x)−
2.695) is O∗(βY (x)), where β is the largest root of the equation β2.695 = β1.695+1.
A simple computation shows that 1.50188 < β < 1.50189. �

Theorem 2. The Main MIF algorithm, applied to a graph G with n vertices,
takes O∗(1.8899n) time and a polynomial space.
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Proof. Let x be the root node of ST . It is associated with the triplet (G, ∅, K).
Then Y (x) = c|Free(G, ∅) \K| + |Bnd(G, ∅)| = c|Free(G, ∅) \K| ≤ cn, where
c = 1.565. It follows that ST has O∗(1.501891.565n) < O∗(1.8899n) nodes. The
upper bound on the time-complexity of Main MIF can be obtained by summing
up the bounds on the processing time spent to every node of ST . Observe that
processing of a node includes all the operations performed by Find MIF except
the recursive calls (whose processing time is related to other nodes of ST ).
The total time of these operations can be bounded by a polynomial multiplied
to a number of nodes of ST . The resulting polynomial is suppressed by the
O∗ notation, hence O∗(1.8899n) is an upper bound on the time complexity of
Main MIF .

Observe that Find MIF has a polynomial space complexity because it is a
backtrack-like procedure without explicit recording of results related to interme-
diate recursive calls. �
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Abstract. We give a general technique for designing fast subexponen-
tial algorithms for several graph problems whose instances are restricted
to graphs of bounded genus. We use it to obtain time 2O(

√
n) algo-

rithms for a wide family of problems such as Hamiltonian Cycle, Σ-
embedded Graph Travelling Salesman Problem, Longest Cycle,
and Max Leaf Tree. For our results, we combine planarizing techniques
with dynamic programming on special type branch decompositions. Our
techniques can also be used to solve parameterized problems. Thus, for
example, we show how to find a cycle of length p (or to conclude that
there is no such a cycle) on graphs of bounded genus in time 2O(

√
p)·nO(1).

1 Introduction

Many common computational problems are NP-hard and therefore do not seem
to be solvable by efficient (polynomial time) algorithms. However, while NP-
hardness is a good evidence for the intractability of a problem, in many cases,
there is a real need for exact solutions. Consequently, an interesting and emerging
question is to develop techniques for designing fast exponential or, when possible,
sub-exponential algorithms for hard problems (see [15]).

The algorithmic study of graphs that can be embedded on a surface of small
genus, and planar graphs in particular, has a long history. The first powerful tool
for the design of sub-exponential algorithms on such graphs was the celebrated
Lipton-Tarjan planar separator theorem [9, 10] and its generalization on graphs
of bounded genus [7]. According to these theorems, an n-vertex graph of fixed
genus can be “separated” into two roughly equal parts by a separator of size
O(
√

n). This approach permits the use of a “divide and conquer” technique that
provides subexponential algorithms of running time 2O(

√
n) for a wide range of

combinatorial problems.
A similar approach is based on graph decompositions [6]. Here instead of

separators one uses decompositions of small width, and instead of “divide and
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conquer” techniques, dynamic programming (here we refer to tree or branch
decompositions – see Section 2 for details). The main idea behind this approach
is very simple: Suppose that for a problem P we are able to prove that for every
n-vertex graph G of branchwidth at most 	, the problem P can be solved in time
2O(�(G)) · nO(1). Since the branchwidth of an n-vertex graph of a fixed genus is
O(
√

n), we have that P is solvable on G in time 2O(
√

n) · nO(1).
For some problems like Minimum Vertex Cover or Minimum Dominating

Set, such an approach yields directly algorithms of running time 2O(
√

n) · nO(1)

on graphs of bounded genus. However, for some problems, like Hamiltonian
Cycle, Σ-embedded Graph TSP, Max Leaf Tree, and Steiner Tree,
branchwidth arguments do not provide us with time 2O(

√
n) · nO(1) algorithms.

The reason is that all these problems are “non-local” and despite many at-
tempts, no time 2o(�(G) log �) · nO(1) algorithm solving these problems on graphs
of branchwidth at most 	 is known.

Recently, it was observed by several authors that if a graph G is not only
of branchwidth at most 	 but is also planar, then for a number of “non-local”
problems the log 	 overhead can be removed [3, 5], resulting in time 2O(

√
n) ·nO(1)

algorithms on planar graphs. Similar result can be obtained by making use of
separators [1].

It is a common belief that almost every technique working on planar graphs
can be extended on graphs embedded on a surface of bounded genus. How-
ever, this is not always a straightforward task. The main difficulty in gener-
alizing planar graph techniques [1, 3, 5] to graphs of bounded genus is that all
these techniques are based on partitioning a graph embedded on a plane by a
closed curve into smaller pieces. Deineko et al. use cyclic separators of trian-
gulations [1], Demaine and Hajiaghayi use layers of k-outerplanar graphs [3],
and Dorn et al. sphere cut decompositions [5]. But the essence of all these tech-
niques is that, roughly speaking, the situation occurring in the “inner” part of
the graph bounded by the closed curve can be represented in a compact way
by Catalan structures. None of these tools works for graphs of bounded genus—
separators are not cyclic anymore, nor are there sphere cut decompositions and
k-outerplanarity in non-planar graphs.

In this paper we provide a method to design fast subexponential algorithms
for graphs of bounded genus for a wide class of combinatorial problems. Our
algorithms are “fast” in the sense that they avoid the log n overhead and also
because the constants hidden in the big-Oh of the exponents are reasonable. The
technique we use is based on reduction of the bounded genus instances of the
problem to planar instances of a more general graph problem on planar graphs
where Catalan structure arguments are still possible. Such a reduction employs
several results from topological graph theory concerning graph structure and
noncontractible cycles of non-planar embeddings.

Our techniques, combined with the excluded grid theorem for graphs of
bounded genus and bidimensionality arguments [2] provide also faster parame-
terized algorithms. For example we introduce the first time 2O(

√
p) · nO(1) algo-

rithm for parameterized p-Cycle which asks, given a positive integer p and a
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n-vertex graph G, whether G has a cycle of length at least p. Similar results can
be obtained for other parameterized versions of non-local problems.

This paper is organized as follows. Towards simplifying the presentation of
our results we decided to demonstrate how our approach works for the Hamil-
tonian Cycle problem. Later, at the end of Section 4, we will explain how it
can be applied to other combinatorial problems. We start with some basic def-
initions in Section 2 and some results from topological graph theory. Section 3
is devoted to the solution of Hamiltonian Cycle problem (which asks if a
given graph G has a cycle containing all its vertices) on torus-embedded graphs.
These graphs already inherit all “nasty” properties of non-planar graphs and all
difficulties arising on surfaces of higher genus appear for torus-embedded graphs.
However, the case of torus-embedded graphs is still sufficiently simple to exem-
plify the minimization technique used to obtained reasonable constants in the
exponent. In Section 4, we explain how the results on torus-embedded graphs
can be extended for any graphs embedded in a surface of fixed genus. Also in this
section we discuss briefly applications of our results to parameterized algorithms
on graphs of bounded genus.

2 Definitions and Preliminary Results

In this section we will give a series of definitions and results that will be useful
for the presentation of the algorithms in Sections 3 and 4.

Surface embeddible graphs. We use the notation V (G) and E(G), for the
set of the vertices and edges of G. A surface Σ is a compact 2-manifold without
boundary (we always consider connected surfaces). We denote by S0 the sphere
(x, y, z | x2 + y2 + z2 = 1) and by S1 the torus (x, y, z | z2 = 1/4− (

√
x2 + y2 −

1)2). A line in Σ is subset homeomorphic to [0, 1]. An O-arc is a subset of Σ
homeomorphic to a circle. Whenever we refer to a Σ-embedded graph G we con-
sider a 2-cell embedding of G in Σ. To simplify notations we do not distinguish
between a vertex of G and the point of Σ used in the drawing to represent the
vertex or between an edge and the line representing it. We also consider G as
the union of the points corresponding to its vertices and edges. That way, a
subgraph H of G can be seen as a graph H where H ⊆ G. We call by region of G
any connected component of (Σ \E(G))\V (G). (Every region is an open set.) A
subset of Σ meeting the drawing only in vertices of G is called G-normal. If an
O-arc is G-normal then we call it noose. The length of a noose N is the number
of its vertices and we denote it by |N |. Representativity [12] is the measure how
dense a graph is embedded on a surface. The representativity (or face-width)
rep(G) of a graph G embedded in surface Σ �= S0 is the smallest length of a
noncontractible noose in Σ. In other words, rep(G) is the smallest number k
such that Σ contains a noncontractible (non null-homotopic in Σ) closed curve
that intersects G in k points. Given a Σ-embedded graph G, its radial graph
(also known as vertex-face graph) is defined as the the graph RG that has as
vertex set the vertices and the faces of G and where an edge exists iff it connects
a face and a vertex incident to it in G (RG is also a σ-embedded graph). If the



Fast Subexponential Algorithm for Non-local Problems 175

intersection of a noose with any region results into a connected subset, then we
call such a noose tight. Notice that each tight noose N in a Σ-embedded graph
G, corresponds to some cycle C of its radial graph RG (notice that the length
of such a cycle is 2 · |N |). Also any cycle C of RG is a tight noose in G. As it
was shown by Thomassen in [14] (see also Theorem 4.3.2 of [11]) a shortest non-
contractible cycle in a graph embedded on a surface can be found in polynomial
time. By Proposition 5.5.4 of [11]) a noncontractible noose of minimum size is
always a tight noose, i.e. corresponds to a cycle of the radial graph. Thus we
have the following proposition.

Proposition 1. There exists a polynomial time algorithm that for a given Σ-
embedded graph G, where Σ �= S0, finds a noncontractible tight noose of mini-
mum size.

The Euler genus of a surface Σ is eg(Σ) = min{2g(Σ), g̃(Σ)} where g is the
orientable genus and g̃ the nonorientable genus. We need to define the graph
obtained by cutting along a noncontractible tight noose N . We suppose that
for any v ∈ N ∩ V (G), there exists an open disk Δ containing v and such
that for every edge e adjacent to v, e ∩ Δ is connected. We also assume that
Δ \N has two connected components Δ1 and Δ2. Thus we can define partition
of N(v) = N1(v) ∪ N2(v), where N1(v) = {u ∈ N(v): {u, v} ∩ Δ1 �= ∅} and
N2(v) = {u ∈ N(v): {u, v} ∩Δ2 �= ∅}. Now for each v ∈ N ∩ V (G) we duplicate
v: (a) remove v and its incident edges (b) introduce two new vertices v1, v2 and
(c) connect vi with the vertices in Ni, i = 1, 2. v1 and v2 are vertices of the
new G-normal O-arcs NX and NY that border Δ1 and Δ2, respectively. We call
NX and NY cut-nooses. Note that cut-nooses are not necessarily tight (In other
words, a cut-noose can enter and leave a region of G several times.) The following
lemma is very useful in proofs by induction on the genus. The first part of the
lemma follows from Proposition 4.2.1 (corresponding to surface separating cycle)
and the second part follows from Lemma 4.2.4 (corresponding to non-separating
cycle) in [11].

Proposition 2. Let G be a Σ-embedded graph where Σ �= S0 and let G′ be a
graph obtained from G by cutting along a noncontractible tight noose N on G.
One of the following holds

• G′ can be embedded in a surface with Euler genus strictly smaller than eg(Σ).
• G′ is the disjoint union of graphs G1 and G2 that can be embedded in surfaces
Σ1 and Σ2 such that eg(Σ) = eg(Σ1) + eg(Σ2) and eg(Σi) > 0, i = 1, 2.

Branchwidth. A branch decomposition of a graph G is a pair 〈T, μ〉, where
T is a tree with vertices of degree one or three and μ is a bijection from the
set of leaves of T to E(G). For a subset of edges X ⊆ E(G) let δG(X) be the
set of all vertices incident to edges in X and E(G) \ X . For each edge e of T ,
let T1(e) and T2(e) be the sets of leaves in two components of T \ e. For any
edge e ∈ E(T ) we define the middle set as mid(e) =

⋃
v∈T1(e) δG(μ(v)). The

width of 〈T, μ〉 is the maximum size of a middle set over all edges of T , and the
branch-width of G, bw(G), is the minimum width over all branch decompositions
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of G. For a S0-embedded graph G, we define a sphere cut decomposition or sc-
decomposition 〈T, μ, π〉 as a branch decomposition such that for every edge e
of T and the two subgraphs G1 and G2 induced by the edges in μ(T1(e)) and
μ(T2(e)), there exists a tight noose Oe bounding two open discs Δ1 and Δ2
such that Gi ⊆ Δi ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e) and
its length is |mid(e)|. Clockwise traversing of Oe in the drawing G defines the
cyclic ordering π of mid(e). We always assume that in an sc-decomposition the
vertices of every middle set mid(e) = V (G1)∩V (G2) are enumerated according
to π. The following result follows from the celebrated ratcatcher algorithm due
to Seymour and Thomas [13] (the running time of the algorithm was recently
improved in [8]; see also [5]).

Proposition 3. Let G be a connected S0-embedded graph without vertices of
degree one. There exists an sc-decomposition of G of width bw(G). Moreover,
such a branch decomposition can be constructed in time O(n3).

3 Hamiltonicity on Torus-Embedded Graphs

The idea behind solving the Hamiltonian cycle problem on S1-embedded
graphs is to suitably modify the graph G in such a way that the new graph G′

is S0-embedded (i.e. planar) and restate the problem to an equivalent problem
on G′ that can be solved by dynamic programming on a sc-decomposition of G′.
As we will see in Section 4, this procedure is extendable to graphs embedded on
surfaces of higher genus.

Let G be an S1-embedded graph (i.e. a graph embedded in the torus). By
Proposition 1, it is possible to find in polynomial time a shortest noncontractible
(tight) noose N of G. Let G′ be the graph obtained by cutting along N on G.
By Proposition 2, G′ is S0-embeddible.

Definition 1. A cut of a Hamiltonian cycle C in G along a tight noose N is
the set of disjoint paths in G′ resulting by cutting G along N .

Each cut-noose NX and NY borders an open disk ΔX and ΔY , respectively,
with ΔX ∪ΔY = ∅. Let xi ∈ NX and yi ∈ NY be duplicated vertices of the same
vertex in N .

Definition 2. A set of disjoint paths P in G′ is relaxed Hamiltonian if:

(P1) Every path has its endpoints in NX and NY .
(P2) Vertex xi is an endpoint of some path P if and only if yi is an endpoint of
a path P ′ �= P .
(P3) For xi and yi: one is an inner vertex of a path if and only if the other is
not in any path.
(P4) Every vertex of G′ \ (NX ∪NY ) is in some path.

A cut of a Hamiltonian cycle in G is a relaxed Hamiltonian set in G′, but not
every relaxed Hamiltonian set in G′ forms a Hamiltonian cycle in G. However,
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given a relaxed Hamiltonian set P one can check in linear time (by identifying
the corresponding vertices of NX and NY ) if P is a cut of Hamiltonian path
in G. Two sets of disjoint paths P = (P1, P2, . . . , Pk) and P′ = (P ′

1, P
′
2, . . . , P

′
k)

are equivalent if for every i ∈ {1, 2, . . . , k}, the paths Pi and P ′
i have the same

endpoints and an inner vertex in one set is also an inner vertex in the other set.

Lemma 1. Let G′ be a S0-embedded graph obtained from a S1-embedded graph
G by cutting along a tight noose N . The number of different equivalence classes of
relaxed Hamiltonian sets in G′ is O(k2

2 23k−2 + 23k), where k is the
length of N .

Proof. In [5] it is argued that the number of non-crossing paths with its endpoints
in one noose corresponds to a number of algebraic terms, namely the Catalan
numbers. Here we deal with two cut-nooses and our intention is to transform
them into one cut-noose. For this, assume two vertices xi ∈ NX and yj ∈ NY

being two fixed endpoints of a path Pi,j in a relaxed Hamiltonian set P. We look
at all possible residual paths in P\Pi,j and we observe that no path crosses Pi,j

in the S0-embedded graph G′ . So we are able to ’cut’ the sphere S0 along Pi,j

and, that way, create a “tunnel” between ΔX and ΔY unifying them to a single
disk ΔXY . Take the counter-clockwise order of the vertices of NX beginning with
xi and concatenate NY in clockwise order with yj the last vertex. We denote the
new cyclic ordering by πXY (see Figure 1 for an example) . In πXY , let a, b, c, d

ΔX

yjyj

xi xi

ΔY

Fig. 1. Cut-nooses. In the left diagram, one equivalence class of relaxed Hamiltonian
sets is illustrated. All paths have endpoints in NX and NY . Fix one path with endpoints
xi and yi. In the right diagram we create a tunnel along this path. The empty disks ΔX

and ΔY are united to a single empty disk. Thus, we can order the vertices bordering
the disk to πXY .

be four vertices where xi < a < b < c < d < yj . Notice that if there is a path
Pa,c between a and c, then there is no path between b and d since such a path
either crosses Pa,c or Pi,j . This means that we can encode the endpoints of each
path with two symbols, one for the beginning and one for the ending of a path.
The encoding corresponds to the brackets of an algebraic term. The number of
algebraic terms is defined by the Catalan numbers. We say that P has a Catalan
structure. With k = |NX | = |NY | and xi, yj ∈ Pi,j fixed, there are O(22k−2) sets
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of paths having different endpoints and non-crossing Pi,j . An upper bound for
the overall number of sets of paths satisfying (P1) is then O(k2

2 22k−2 + 22k)
with the first summand counting all sets of paths for each fixed pair of endpoints
xi, yj . The second summand counts the number of sets of paths when NX and
NY are not connected by any path. That is, each path has both endpoints in
either only NX or only NY . We now count the number of equivalent relaxed
Hamiltonian sets P . Apparently, in a feasible solution, if a vertex xh ∈ NX is
an inner vertex of a path, then yh ∈ NY does not belong to any path and vice
versa. With (P3), there are two more possibilities for the pair of vertices xh, yh

to correlate with a path. With |NX | = |NY | = k, the overall upper bound of
equivalent sets of paths is O(k2

2 23k−2 + 23k).

We call a candidate C of an equivalence class of relaxed Hamiltonian sets to be a
set of paths with vertices only in NX∪NY satisfying conditions (P1)–(P3). Thus
for each candidate we fix a path between NX and NY and define the ordering
πXY . By making use of dynamic programming on sc-decompositions we check
for each candidate C if there is a spanning subgraph of the planar graph G′

isomorphic to a relaxed Hamiltonian set P such that P is equivalent to C.
Instead of looking at the Hamiltonian cycle problem on G we solve the re-

laxed Hamiltonian set problem on the S0-embedded graph G′ obtained from
G. Given a candidate C: a set of vertex tuples T = {(s1, t1), (s2, t2), . . . , (sk, tk)}
with si, ti ∈ NX ∪ NY , i = 1, . . . , k and a vertex set I ⊂ NX ∪NY . Does there
exist a relaxed Hamiltonian set P such that every (si, ti) marks the endpoints
of a path and the vertices of I are inner vertices of some paths? Our algorithm
works as follows: first encode the vertices of NX ∪NY according to C by making
use of the Catalan structure of C as it follows from the proof of Lemma 1. We
may encode the vertices si as the ’beginning’ and ti as the ’ending’ of a path of
C. Using order πXY , we ensure that the beginning is always connected to the
next free ending. This allows us to design a dynamic programming algorithm
using a small constant number of states. We call the encoding of the vertices
of NX ∪ NY base encoding to differ from the encoding of the sets of disjoint
paths in the graph. We proceed with dynamic programming over middle sets
of a rooted sc-decomposition 〈T, μ, π〉 in order to check whether G′ contains a
relaxed Hamiltonian set P equivalent to candidate C. As T is a rooted tree, this
defines an orientation of its edges towards its root. Let e be an edge of T and let
Oe be the corresponding tight noose in S0. Recall that the tight noose Oe parti-
tions S0 into two discs which, in turn, induces a partition of the edges of G into
two sets. We define as Ge the graph induced by the edge set that corresponds to
the “lower side” of e it its orientation towards the root. All paths of P∩Ge start
and end in Oe and Ge ∩ (NX ∪ NY ). For each Ge, we encode the equivalence
classes of sets of disjoint paths with endpoints in Oe. From the leaves to the root
for a parent edge and its two children, we update the encodings of the parent
middle set with those of the children (for an example of dynamic programming
on sc-decompositions, see also [5]). We obtain the algorithm in Figure 2.

In the proof of the following lemma we show how to apply the dynamic pro-
gramming step of HamilTor. The proof is technical, and can be found in the
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Algorithm HamilTor
Input: S1-embedded graph G.
Output: Decision/Construction of the Hamiltonian cycle problem on G.

Preliminary Step: Cut G along a shortest noncontractible (tight) noose N and
output the S0-embedded graph G′ and the cut-nooses NX ,NY .

Main step: For all candidates C of relaxed Hamiltonian sets in G′ {
Identify the duplicated vertices in NX ,NY .
If C is equivalent to a Hamiltonian cycle {

Determine the endpoints (si, ti) that build the first and last vertex in πXY .
Make a base encoding of the vertices of NX and NY ,
marking the intersection of C and NX ∪ NY .
Compute a rooted sc-decomposition 〈T, μ, π〉 of G′.
From the leaves to the root on each middle set Oe of T bordering Ge {

Do dynamic programming — find all equivalence classes of sets of
disjoint paths in Ge with endpoints in Oe and in Ge ∩ (NX ∪ NY )
with respect to the base encoding of NX ,NY .}

If there exists a relaxed Hamiltonian set P in G′ equivalent to C, then {
Reconstruct P from the root to the leaves of T and
output corresponding Hamiltonian cycle.} } }

Output “No Hamiltonian Cycle exists”.

Fig. 2. Algorithm HamilTor

long version of this paper [4]. But we sketch the main idea here: For a dy-
namic programming step we need the information on how a tight noose Oe and
NX ∪ NY intersect and which parts of NX ∪ NY are a subset of the subgraph
Ge. Define the vertex set X = (Ge \Oe)∩ (NX ∪NY ). Ge is bordered by Oe and
X . Ge is partitioned into several edge-disjoint components that we call partial
components. Each partial component is bordered by a noose that is the union of
subsets of Oe and X . Let us remark that this noose is not necessarily tight. The
partial components intersect pairwise only in vertices of X that we shall define
as connectors. In each partial component we encode a collection of paths with
endpoints in the bordering noose using Catalan structures. The union of these
collections over all partial components must form a collection of paths in Ge

with endpoints in Oe and in X . We ensure that the encoding of the connectors
of each two components fit. During the dynamic programming we need to keep
track of the base encoding of X . We do so by only encoding the vertices of Oe

without explicitely memorizing with which vertices of X they form a path. With
several technical tricks we can encode Oe such that two paths with an endpoint
in Oe and the other in X can be connected to a path of P only if both endpoints
in X are the endpoints of a common path in C.

Lemma 2. For a given a sc-decomposition 〈T, μ, π〉 of G′ of width 	 and a
candidate C = (T, I) the running time of the main step of HamilTor on C is
O(25.433� · |V (G′)|O(1)).

To finish the estimation of the running time we need some combinatorial results.
The proof of the following two lemmata can be found in [4].
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Lemma 3. Let G be a S1-embedded graph on n vertices and G′ the planar graph
after cutting along a noncontractible tight noose.Then bw(G′) ≤

√
4.5 ·

√
n + 2.

Lemma 4. Let G be a S1-embedded graph. Then rep(G) ≤
√

4.5 ·
√

n + 2.

Putting all together we obtain the following theorem.

Theorem 1. Let G be a graph on n vertices embedded on a torus S1. The
Hamiltonian cycle problem on G can be solved in time O(217.893

√
n · nO(1)).

Proof. We run the algorithm HamilTor on G. The algorithm terminates pos-
itively when the dynamic programming is successful for some candidate of an
equivalence class of relaxed Hamiltonian sets and this candidate is a cut of a
Hamiltonian cycle. By Propositions 1, Step 0 can be performed in polynomial
time. Let k be the minimum length of a noncontractible noose N , and let G′

be the graph obtained from G by cutting along N . By Lemma 1, the number of
all candidates of relaxed Hamiltonian sets in G′ is O(23k) · nO(1). So the main
step of the algorithm is called O(23k) · nO(1) times. By Proposition 3, an opti-
mal branch decomposition of G′ of width 	 can be constructed in polynomial
time. By Lemma 2, dynamic programming takes time O(25.433�) · nO(1). Thus
the total running time of HamilTor is O(25.433� · 23k) · nO(1). By Lemma 4,
k ≤

√
4.5 ·

√
n + 2 and by Lemma 3, 	 ≤

√
4.5 ·

√
n + 2, and the theorem follows.

4 Hamiltonicity on Graphs of Bounded Genus

Now we extend our algorithm to graphs of higher genus. For this, we use the
following kind of planarization: We apply Proposition 2 and cut iteratively along
shortest noncontractible nooses until we obtain a planar graph G′. If at some
step G′ is the disjoint union of two graphs G1 and G2, we apply Proposition 2
on G1 and G2 separately. The proof of the following lemma is in [4].

Lemma 5. There exists a polynomial time algorithm that given a Σ-embed-
ded graph G where Σ �= S0, returns a minimum size noncontractible noose.
Moreover, the length of such a noose, rep(G), is at most bw(G) ≤ (

√
4.5 + 2 ·√

2 · eg(Σ))
√

n.

We examine how a shortest noncontractible noose affects the cut-nooses:

Definition 3. Let K be a family of cycles in G. We say that K satisfies the
3-path-condition if it has the following property. If x, y are vertices of G and
P1, P2, P3 are internally disjoint paths joining x and y, and if two of the three
cycles Ci,j = Pi ∪ Pj , (1 ≤ i < j ≤ 3) are not in K, then also the third cycle is
not in K.

Proposition 4. (Mohar and Thomassen [11]) The family of Σ-noncontractible
cycles of a Σ-embedded graph G satisfies the 3-path-condition.
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Proposition 4 is useful to restrict the number of ways not only on how a shortest
noncontractible tight noose may intersect a face but as well on how it may
intersect the vertices incident to a face. The proof of the following lemma can
be found in [4].

Lemma 6. Let G be Σ-embedded and F a face of G bordered by V1 ⊆ V (G).
Let F := V1 ∪ F . Let Ns be a shortest noncontractible (tight) noose of G. Then
one of the following holds

1) Ns ∩ F = ∅.
2.1) Ns ∩ F = ∅ and |Ns ∩ V1| = 1.
2.2) Ns ∩ F = ∅, Ns ∩ V1 = {x, y}, and x and y are both incident to one more

face different than F which is intersected by Ns.
3) Ns ∩ F �= ∅ and |Ns ∩ V1| = 2.

We use Lemma 6 to extend the process of cutting along noncontractible tight
nooses such that we obtain a planar graph with a small number of disjoint cut-
nooses of small lengths. Let g ≤ eg(Σ) be the number of iterations needed to
cut along shortest noncontractible nooses such that they turn a Σ-embedded
graph G into a planar graph G′. However, these cut-nooses may not be disjoint.
In our dynamic programming approach we need pairwise disjoint cut-nooses.
Thus, whenever we cut along a noose, we manipulate the cut-nooses found so
far. After g iterations, we obtain the set of cut-nooses N that is a set of disjoint
cut-nooses bounding empty open disks in the embedding of G′. Let L(N) be the
length of N as the sum over the lengths of all cut-nooses in N. The proof of the
following proposition can be found in [4].

Proposition 5. It is possible to find, in polynomial time, a set of cut-nooses N
that contains at most 2g disjoint cut-nooses. L(N) is at most 2g rep(G).

We extend the definition of relaxed Hamiltonian sets from graphs embedded on
a torus to graphs embedded on higher genus, i.e. from two cut-nooses NX and
NY to the set of cut-nooses N. For each vertex v in the vertex set V (G) of graph
G we define the vertex set Dv that contains all duplicated vertices v1, . . . , vf of
v in N along with v. Set D =

⋃
v∈V (G) Dv.

Definition 4. A set of disjoint paths P in G′ is relaxed Hamiltonian if:

(P1) Every path has its endpoints in N.
(P2) If a vertex vi ∈ Dv ∈ D is an endpoint of path P , then there is one vj ∈ Dv

that is also an endpoint of a path P ′ �= P . All vh ∈ Dv \ {vi, vj} do not belong
to any path.
(P3) vi ∈ Dv is an inner path vertex if and only if all vh ∈ Dv \ {vi} are not in
any path.
(P4) Every vertex of the residual part of G′ is in some path.

Similar to torus-embedded graphs, we order the vertices of N for later encoding
in a counterclockwise order πL depending on the fixed paths between the cut-
nooses of N. The proof of the following can be found in [4].
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Lemma 7. Let G′ be the planar graph after cutting along g ≤ eg(Σ) tight
nooses of G along with its set of disjoint cut-nooses N. The number of different
equivalence classes of relaxed Hamiltonian sets in G′ is 2O(g·(log g+rep(G)).

Given the order πL of the vertices N in the encoding of a candidate C of a
relaxed Hamiltonian set. As in the previous section, we preprocess the graph
G′ and encode the vertices of N with the base values. We extend the dynamic
porgramming approach by analysing how the tight noose Oe can intersect several
cut-nooses. The proofs of the next two statements can be found in [4].

Lemma 8. Let G′ be the planar graph after cutting along g ≤ eg(Σ) shortest
noncontractible nooses of G. For a given sc-decomposition 〈T, μ, π〉 of G′ of
width 	 and a candidate C the Relaxed Hamiltonian Set problem on G′ can
be solved in time 2O(g2 log �) · 2O(�) · nO(1).

Lemma 9. Let G be a Σ-embedded graph with n vertices and G′ the planar
graph obtained after cutting along g ≤ eg(Σ) tight nooses. Then, bw(G′) ≤√

4.5 ·
√

n + 2g.

Lemmata 5, 7, 8 and 9 imply the following:

Theorem 2. Given a Σ-embedded graph G on n vertices and g ≤ eg(Σ). The
Hamiltonian cycle problem on G can be solved in time nO(g2) · 2O(g

√
g·n).

Our dynamic programming technique can be used to design faster parameterized
algorithms as well. For example, the parameterized p-Cycle on Σ-embedded
Graphs problem asks for a given Σ-embedded graph G, to check for the exis-
tence of a cycle of length at least a parameter p. First, our technique can be used
to find the longest cycle of G with g ≤ eg(Σ) in time nO(g2) · 2O(g

√
g·n). (On

torus -embedded graphs this can be done in time O(217.957
√

nn3).) By combining
this running time with bidimensionality arguments from [2] we arrive at a time
2O(g2 log p) · 2O(g

√
g·p) · nO(1) algorithm solving the parameterized p-Cycle on

Σ-embedded Graphs.

5 Conclusive Remarks

In this paper we have introduced a new approach for solving non-local problems
on graphs of bounded genus. With some sophisticated modifications, this generic
approach can be used to design time 2O(

√
n) algorithms for many other problems

including Σ-embedded Graph TSP (TSP with the shortest path metric of a
Σ-embedded graph as the distance metric for TSP), Max Leaf Tree, and
Steiner Tree, among others. Clearly, the ultimate step in this line of research
is to prove the existence of time 2O(

√
n) algorithms for non-local problems on

any graph class that is closed under taking of minors. Recently, we were able to
complete a proof of such a general result, using results from the Graph Minor
series. One of the steps of our proof is strongly based on the results and the
ideas of this paper.
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Abstract. The aim of this paper is to investigate the approximability
of some generalized versions of TSP which typically arise in practical
applications. The most important generalization is TSP with time win-
dows, where some vertices have to be visited after some specified opening
time, but before some deadline. Our main results are as follows (assuming
P �= NP ).
1. In contrast to the constant approximability of metric TSP, there is

no polynomial-time o(|V |)-approximation algorithm for metric TSP
with time windows.

2. Metric TSP with as few as two time windows is not approximable
within ratio 2 − ε.

3. There is no polynomial-time o(|V |)-approximation algorithm for
TSP with a single time window and arbitrarily small violations of
the triangle inequality.

4. Metric TSP with a prescribed linear order on some vertices can be
solved in polynomial time with a constant approximation guarantee,
even if the triangle inequality is violated by a constant factor.

Keywords: TSP with time windows, approximation, inapproximability.

1 Introduction

The traveling salesperson problem (TSP) is one of the most prominent optimiza-
tion problems with numerous practical applications. Worst-case analyses show
that it is indeed one of the hardest problems with respect to approximability
because, provided that P �= NP , there is no polynomial-time approximation
algorithm for TSP with an approximation ratio bounded by a polynomial in the
problem instance size.
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Our goal in this paper is to investigate the approximability of some general-
izations of TSP. The most important of these generalizations is TSP with time
windows, where for each vertex of the input graph, an opening and a closing
point of time for a window is given, and the respective vertex must be visited
while the window is open. This generalized problem naturally and frequently ap-
pears in a number of applications, the most prominent of which may be vehicle
routing.

This importance has of course been recognized in operations research, and a
multitude of both exact (yet exponential-time) algorithms and heuristics (yet
without performance guarantee) have been proposed; for a survey, see [11]. It
is due to the hardness of TSP with time windows that so far, it has not been
possible to establish (reasonable) performance guarantees. Unaltered TSP being
already one of the hardest known problems according to its worst-case approx-
imability, there is no hope for (decent) approximability results regarding TSP
with extensions. Beyond doubt, any extended TSP is at least as hard as unal-
tered TSP.

But it is a somewhat surprising fact that TSP is sometimes not quite as
hard as it looks like, not only from a practical point of view, but also in worst-
case analyses. Indeed, metric TSP (ΔTSP) can be solved efficiently with an
approximation guarantee of 1.5 [10] and, using the concept of approximation
stability [15, 6], quite a few papers have shown that even for a relaxation of the
metricity constraint by relaxing the triangle inequality to the so-called β-triangle
inequality for some β > 1, i. e.,

c({vi, vj}) ≤ β ·
(
c({vi, vz}) + c({vz, vj})

)
for any three vertices vi, vj , vz, a constant approximation ratio can be achieved
in polynomial time [2, 1, 4, 6]. More precisely, TSP on input instances satisfy-
ing a relaxed β-triangle inequality, ΔβTSP for short, can be approximated in
polynomial time within min{β2 + β, 3

2β2, 4β}.
Now, not only can we study TSP in the metric and the aforementioned“near-

metric” case, but also the TSP generalizations which we will propose. We will
give evidence that shifting step-by-step from ordinary TSP to TSP with different
kinds of time windows results in an increase of hardness of the according metric
and near-metric problems. The main generalizations we will consider are

1. k-OTSP, where up to k vertices are special in that they have to appear in
a prescribed linear order in any feasible solution;

2. TSP with deadlines, where some vertices hold prescribed deadlines, i. e.,
points of time before which these vertices have to be visited (in other words,
this is TSP with time windows, but all the windows open instantly when a
tour begins and close independently).

A variation on TSP with deadlines was investigated in [3]. Here, the goal was
to find a tour which obeys a maximum number of deadlines. In contrast, we will
only look for such solutions that obey every given deadline.

We will also examine several generalizations of OTSP where the precedence
constraints on the vertices are given by a set of paths or cycles rather than
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by one linear ordering. One of the most general cases is the one where prece-
dence constraints are given by an arbitrary partial order on the vertices. Strong
inapproximability results were given for this case in [9].

The main results of our paper are as follows:

1. There is no polynomial-time o(|V |)-approximation algorithm for metric TSP
with deadlines.

2. Metric TSP with just two deadlines is not approximable within 2− ε.
3. There is no polynomial-time o(|V |)-approximation algorithm even for TSP

with just one deadline in the case where β > 1, i. e., for arbitrarily small
violations of the triangle inequality.

4. Metric TSP with a prescribed linear order on some vertices can be solved in
polynomial time with a constant approximation guarantee, even for β > 1,
i. e., if the triangle inequality is violated by a constant factor.

Please note that the inapproximability results directly carry over to the respec-
tive variations of TSP with time windows.

The paper is organized as follows: In Section 2, we will present our results for
OTSP; Section 3 deals with TSP with deadlines and contains a parameterized
approximation algorithm and the inapproximability results mentioned above,
and Section 4 is devoted to TSP with generalized precedence constraints.

2 TSP with Prescribed Order on Some Vertices

In this section, we will present approximation algorithms for a generalization of
ΔβTSP, where a linear order on some of the vertices is prescribed and has to
be obeyed by any feasible solution.

We start with a lemma describing the change in the cost of a path, in a graph
satisfying the relaxed triangle inequality, when a subpath is replaced by the
direct edge between its endpoints.

Lemma 1. Let G = (V, E) be a complete graph with edge weights c : E → +

satisfying the Δβ-inequality. Let P := (v1, . . . , vk+1) be a (simple) path in G.
Then c({v1, vk+1}) ≤ βlog2 k · cost(P ), where cost(P ) denotes the sum of edge
weights along the path. �

A formal definition of the TSP variation to be investigated here follows.

Definition 1. The input for the k-ordered TSP, or k-OTSP for short, consists
of a complete graph G = (V, E) with edge weights c : E → + and an ordered
sequence of (distinct) vertices v1, . . . , vk ∈ V , which we will call special vertices
in what follows. The goal is now to find a Hamiltonian tour of minimum cost in
G that contains the special vertices in their given order, i. e., if one edge were
removed from this cycle, a path would result which contains the special vertices
in their given order.

If the given input graph obeys the triangle inequality, we denote the resulting
problem by k-ΔOTSP; if it obeys the relaxed β-triangle inequality, we denote
the problem by k-ΔβOTSP.
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The more general version of the problem, where also the number of special
vertices is part of the input, will be denoted by ΔOTSP or ΔβOTSP, resp.

Note that for k ≤ 3, the order on the special vertices does not impose any
constraint on the choice of the Hamiltonian tour, and such instances can be
viewed as normal TSP instances. This implies that ΔOTSP in general is at
least as hard as normal ΔTSP, and thus not approximable within 220

219 unless
P = NP [16]. But in what follows, we will show that k-ΔβOTSP admits a
polynomial-time approximation algorithm with constant approximation ratio for
any k and any β ≥ 1.

Let us first show that k-ΔOTSP can easily be approximated within 5
2 .

Theorem 1. For k > 3, Algorithm 1 is a polynomial-time 5
2 -approximation

algorithm for k-ΔOTSP.

Proof. Obviously, Algorithm 1 runs in polynomial time and outputs a feasible
solution for k-ΔOTSP. Since any optimal solution Hopt respects the order given
by the special vertices, the cost of C can be estimated as cost(C) ≤ cost(Hopt),
due to Lemma 1. Besides, cost(D) ≤ 3

2 · cost(Hopt) since Christofides’ algorithm
achieves an approximation ratio of 3

2 on any metric input graph, and the cost of
an optimal Hamiltonian tour in the graph induced by Ṽ is, due to the triangle
inequality, at most as much as cost(Hopt). �

Remark 1. Algorithm 1 relies on Christofides’ algorithm to solve ΔTSP as it has
the best known approximation guarantee for ΔTSP. Note that Theorem 1 can be
generalized to arbitrary algorithms for ΔTSP. In fact, for any α-approximation
algorithm for ΔTSP, we have a (1 + α)-approximation algorithm for ΔOTSP.

It is possible to improve on this result for k-ΔOTSP if k ≤ 5:

Theorem 2 ([5]). There exist a polynomial-time 2-approximation algorithm
for the 4-ΔOTSP and a polynomial-time 2.3-approximation algorithm for the
5-ΔOTSP. �

Algorithm 1
Input: A complete graph G = (V, E) with edge weights c : E → + and an ordered

sequence of special vertices v1, . . . , vk ∈ V .

1. Let Ṽ := V \ {v2, . . . , vk}, and, using Christofides’ algorithm, construct a Hamil-
tonian tour D on the subgraph of G induced by Ṽ . Let w be one of the neighbors
of v1 in D.

2. Combine the two cycles C = (v1, v2, . . . , vk, v1) and D to one Hamiltonian cycle H
of G by replacing the edges {vk, v1} in C and {v1, w} in D by the edge {vk, w}.

Output: The Hamiltonian tour H .
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We will now analyze the approximability of k-ΔβOTSP. Since ΔβTSP is a spe-
cial case of ΔβOTSP, the lower bounds from [8] carry over directly to ΔβOTSP.
However, applying the approach of simply concatenating the cycle C on the spe-
cial vertices with an approximate TSP solution on the remaining vertices as
used in Algorithm 1 to k-ΔβOTSP does not lead to a constant approximation
guarantee. These are the reasons why: First of all, direct edges from C might be
too expensive as shown in Lemma 1. In order to overcome this difficulty, it would
be possible to connect pairs of (adjacent) special vertices using the shortest path
between them, but notice that these paths need not be vertex-disjoint. But even
if we manage to “thin out” the paths (e.g., we might choose to always skip over
a constant number of vertices in order not to have to use vertices more than
once), the fact remains that shortest paths between special vertices will include
some of the non-special vertices. Using paths between special vertices would thus
make any approximate (non-ordered) TSP solution on the remaining non-special
vertices more expensive than necessary.

Therefore, let us describe a slightly different approach. After computing an
approximate TSP solution without respect to the order of special vertices, we
will use k + 1 copies of this cycle, both to reach every vertex in the input graph
and to arrange special vertices properly. Formally, we have Algorithm 2. Observe
that it computes (disjoint) paths H0, . . . , Hk, all of which share the property
that they result from a subpath of P by removing some vertices, but there is a
bound on the number of contiguous vertices removed.

More precisely, Hi−1 is a path from vi to vi+1 such that two neighbors in
it have a distance of at most 2k − 1 edges in P because in the most adverse

Algorithm 2
Input: A complete graph G = (V, E) with edge weights c : E → + that satisfy the

Δβ-inequality, and an ordered sequence of special vertices v1, . . . , vk ∈ V .

1. Using some constant approximation guarantee algorithm, construct an approxi-
mate TSP solution C on (G, c), disregarding the order on v1, . . . , vk.

2. Let P be one of the two paths which may be obtained by removing one of the edges
incident with v1 in C, and let S = (w1, . . . , wn−k) be the sequence of non-special
vertices in P , beginning with the non-special vertex closest to v1 in P .
Now, let f : V → {−1, 0, . . . , k} be the function defined by f(vi) := −1 for all
1 ≤ i ≤ k and f(wi+1) := i mod (k + 1) for all 0 ≤ i < n − k, i. e., f is a cyclic
(k + 1)-coloring of the non-special vertices.

3. For all i ∈ {1, . . . , k − 1}, let Hi−1 be the subpath in P from vi to vi+1, restricted
to vertex vi itself plus all vertices w (in this subpath) that have f(w) = i − 1.

4. Let Hk−1 be the suffix of P that starts from vk, restricted to vk itself plus all
vertices w (in this suffix) that have f(w) = k − 1, and let Hk be the reverse
sequence of P , stripped of all vertices that appear in any of the Hi, 0 ≤ i < k.

5. Let H be the concatenation of paths H0, . . . , Hk.

Output: The Hamiltonian tour H .
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situation, Hi−1 can only skip k − 2 special vertices (i. e., all special vertices but
vi and vi+1) plus k non-special vertices v with f(v) �= i− 1.

This observation, together with Lemma 1, yields the following estimation.

Lemma 2. Let H, H0, . . . , Hk, and C denote the symbols from Algorithm 2.
Then, cost(Hi) ≤ cost(C) · β1+log2(k−1) for all i ∈ {0, . . . , k} and cost(H) ≤
(k + 1) · cost(C) · β1+log2(k−1). �

Consequently, if in Step 1 of Algorithm 2, we use an algorithm for ΔβTSP
that guarantees an approximation ratio of at most α, Algorithm 2 is an (α(k +
1)β1+log2(k−1))-approximation algorithm, i. e., a constant approximation algo-
rithm whenever we fix both k and β. Substituting the approximation ratios
from [2, 1, 4, 6] for α gives us our last result in this section.

Theorem 3. The problem k-ΔβOTSP admits a
(
(k + 1) · min{4β2+log2(k−1),

3
2β3+log2(k−1), (β + 1)β2+log2(k−1)}

)
-approximation algorithm. �

3 Deadline TSP

In this section, we will analyze the approximability of TSP with deadlines. We
start with the formal definition of this problem.

Definition 2. Let G = (V, E) be a complete graph with edge weights c : E →
+. We call (s, D, d) a deadline set for G if s ∈ V, D ⊆ V \{s} and d : D → +.

A vertex v ∈ D is called deadline. A path (v0, v1, . . . , vn) satisfies the deadlines
iff s = v0 and for all vi ∈ D, we have

∑i
j=1 c({vj−1, vj}) ≤ d(vi). A cycle

(v0, v1, . . . , vn, v0) satisfies the deadlines iff it contains a path (v0, v1, . . . , vn)
satisfying the deadlines.

Definition 3. The problem ΔβDlTSP is defined as follows: For a given com-
plete graph G = (V, E) with edge weights c : E → + satisfying the Δβ-inequality
and deadlines (s, D, d) for G, find a minimum-weight Hamiltonian cycle satisfy-
ing all deadlines.

If the number |D| of deadline vertices is a constant k, we denote the resulting
subproblem by k-ΔβDlTSP. If β = 1, we omit β from the notation and obtain
the problems ΔDlTSP and k-ΔDlTSP, respectively.

3.1 Algorithm

If only we knew the order in which the deadlines are visited in an optimal solu-
tion, we could try to start with this order and somehow insert the remaining ver-
tices. As k is a constant, we can exhaustively try every permutation of deadlines
to obtain this information. Unfortunately, inserting the remaining vertices into
this sequence in an optimal way is still a hard problem. Therefore, Algorithm 3
just inserts them after the last deadline. This results in a 2.5-approximation.

Theorem 4. Algorithm 3 solves k-ΔDlTSP with approximation ratio 2.5 in
time O(k! · p(|G|)) for some polynomial p where G is the input graph. �
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Algorithm 3
Input: A complete weighted graph G = (V, E, c) and deadline set (s, D, d) for G.

for every linear order π of all vertices in D ∪ {s} do
if π satisfies the deadlines then

Solve ΔOTSP with input G and π using Algorithm 1.

Output: The cheapest of all computed Hamiltonian cycles satisfying all deadlines, if
one exists; an error message, otherwise.

Note that this algorithm only works if the Δ-inequality holds. If just the Δβ-
inequality holds, visiting the deadlines first does not guarantee that all of the
deadlines are reached in time, since direct edges between the deadline vertices
may be much more expensive than longer paths (cf. Lemma 1).

3.2 Lower Bounds for k-ΔβDLTSP

At first sight, Algorithm 3 seems to have three major problems. First, it has
running time exponential in the number of deadlines. Second, it only works if
the Δ-inequality holds, i. e., for β > 1, it does not necessarily find a feasible
solution, let alone a good one. And finally, its approximation ratio is only 2.5.
We discuss whether polynomial time is possible in Section 3.3, the other problems
are both handled here. First, we show that for all β > 1, no algorithm exists
which would solve 1-ΔβDlTSP with good approximation ratio.

Theorem 5. Let β > 1.There is no polynomial-time algorithm for 1-ΔβDlTSP
with approximation ratio 1

4βlog2(h|V |) for any 0 < h < 1.

Proof. By means of a reduction, we will show that such an approximation algo-
rithm could be used to solve the Hamiltonian Path problem, i. e., the problem
of deciding whether a given undirected graph contains a Hamiltonian path or
not, which is NP-complete [13].

Let β > 1 and 0 < h < 1, and let G′ = (V ′, E′) be an input instance for
the Hamiltonian Path problem with |V ′| = n. We construct a complete graph
G = (V, E, c) for the ΔβDlTSP as follows:

s v′
1 v′

p−1
v1 vp−1 vp

a1 a2p+1

Gγ γ γ γ

γ γ

Fig. 1. Construction for 1-ΔβDlTSP (Theorem 5)
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Let V := V ′ ∪ {v1, . . . , vp} ∪ {s, v′1, . . . , v′p−1} ∪ {a1, . . . , a2p+1} for a suitable
p ≥ 1 such that βlog2(p) > βlog2(h|V |), and assign to every e ∈ E the cost

c(e) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ E′

2 if e ∈ (E′)�

γ if e ∈ {{v′i, v′i+1} | i = 1, . . . , p− 2} ∪ {{v′p−1, v} | v ∈ V ′}
∪ {{v, v1} | v ∈ V ′} ∪ {{vi, vi+1} | i = 1, . . . , p− 1}
∪ {{s, v′1}, {s, a1}, {vp, a2p+1}} ∪ {{ai, ai+1} | i = 1, . . . , 2p}

All other edges have maximal possible costs such that the Δβ-inequality is sat-
isfied. Here, γ may be chosen arbitrarily, provided

γ > max
{⌈

n + 1
2(β − 1)

⌉
,

n− 1
4p− 1

}
.

Hence, we obtain 4pγ > γ + n− 1, which will be useful later in this proof. This
graph satisfies the Δβ-inequality. Here, we set d(vp) := 2pγ + n− 1.

Let W ′ be some path in V ′ and W := (v′1, . . . , v′p−1, W
′, v1, . . . , vp). Obviously,

W reaches vp in time iff it spends at most time n−1 in V ′, thus cost(W ′) ≤ n−1.
The shortest path from s to vp is (s, v′1, v′2, . . . , v′p−1, v, v1, v2, . . . , vp) for some
v ∈ V ′ and costs exactly 2pγ.

A path that visits some v′i or vj after vp cannot reach this deadline because

it causes an additional cost of at least (β − 1)2γ ≥ (β − 1)2
⌈

n+1
2(β−1)

⌉
> n− 1 as

compared to the shortest path from s to vp. If a path costs n or more in V before
visiting any vertex in {v1, . . . , vp}, the deadline will also be missed, regardless of
the path to vp. Finally, a path that visits some ai before vp will also violate this
deadline.

Assume G′ contains a Hamiltonian path P . Then, an optimal solution for
k-ΔβDlTSP is (s, v′1, . . . , v′p−1, P, v1, . . . , vp, a2p+1, . . . , a1, s). This cycle costs
exactly 4pγ + γ + n− 1.

Otherwise, an optimal solution cannot visit all vertices in V ′ before reaching
vp. Furthermore, it must visit all vertices vi, v

′
i for i = 1, . . . , p − 1 before vp.

Therefore, it must visit some vertex in V ′ after vp. To do so, it must use some
edge from a vertex in {vp} ∪ {ai | i ∈ {1, . . . , 2p + 1}} to some vertex v ∈ V ′. It
is not hard to see that such an edge costs at least βlog2(p)pγ. In order to leave
V ′ again, another expensive edge must be used. Thus, an optimal solution costs
at least 2βlog2(p)pγ + 4pγ + γ + n− 2 if G does not contain a Hamiltonian path.

This leads to the ratio

2βlog2(p)pγ + 4pγ + γ + n− 2
4pγ + γ + n− 1

=
2βlog2(p)pγ

4pγ + γ + n− 1
+ 1− 1

4pγ + γ + n− 1

>
βlog2(p)

4
>

1
4
βlog2(h|V |).

Therefore, a polynomial-time algorithm for the 1-ΔβDlTSP with approximation
ratio 1

4βlog2(h|V |) could be used to solve the Hamiltonian Path problem in
polynomial-time. �
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Corollary 1. Let β > 1. For k-ΔβDlTSP, there is no polynomial-time algo-
rithm with approximation ratio 1

4 (βlog2(h) · |V |log2(β)) for any 0 < h < 1 and any
k ∈ . �

We can use a similar construction to obtain a lower bound of 3
2 − ε on the

approximation ratio for 1-ΔDlTSP. As compared to the ratio 5
2 of Algorithm 3,

this leaves a rather large gap. The next theorem shows that for 2-ΔDlTSP we
can raise the lower bound to 2− ε. Note that any bound larger than 2 + 1

219 + ε
would directly imply a lower bound of 220

219 +ε for ΔTSP, improving the currently
best known lower bound from [16].

Theorem 6. There is no polynomial-time algorithm for 2-ΔDlTSP with ap-
proximation ratio 2− ε for any ε > 0. �

Corollary 2. There is no polynomial-time algorithm for the k-ΔDlTSP with
approximation ratio 2− ε for any ε > 0 and any k ≥ 2. �

3.3 Lower Bounds for ΔDLTSP

In the previous sections, we have seen that k-ΔDlTSP can be approximated
within a factor of 2.5 and established a lower bound of 2−ε on the approximation
ratio. Now, we will show that the restriction of bounding the number of deadlines
by a constant k is crucial to obtaining a constant approximation ratio.

In contrast to the situation where the number of deadlines is bounded, an
unbounded number of them can make it hard to even find feasible solutions
at all. In fact, if we assign to all the vertices of a (metric) graph the same
deadline, namely the minimum length (which we now interpret as duration) of
a Hamiltonian path, finding feasible solutions means solving the Hamiltonian
Path problem. Let us therefore say that ΔDlTSP′ is the same problem as
ΔDlTSP, except that—as an additional part of the input—we are given one
feasible solution. Obviously, ΔDlTSP′∈NPO. This is what makes the following
theorem a strong inapproximability result.

s

D1

D2 D3

G′

n

n

n
n n

2n

F1
F3F5

Fk−3

Fk−1

F2F4F6Fk−2Fk

(k/2 − 1)n
n

n

γ

nn

nnn

γγγγγ γγγ

Fig. 2. Construction for ΔDlTSP′
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Theorem 7. There is no polynomial-time algorithm for ΔDlTSP′ with an ap-
proximation ratio (1−ε)

2 |V |, for any 0 < ε < 1.

Proof idea. The Hamiltonian Path problem can be reduced to ΔDlTSP′ by
a construction as outlined in Figure 2. We set the deadlines d(v) := 3n for all
v ∈ V ′, d(D1) := 4n, d(D2) := 5n, d(D3) := 7n, d(F1) := 7n + (k

2 − 1)n, and
d(Fi) := d(Fi−1) + γ for all i ∈ {1, . . . , k − 1}.

Depending on whether a feasible solution contains a Hamiltonian path in G′,
it may visit Fk−1, Fk−3, . . . , F3, F1 and thus avoid to run the zig-zag path F1,
F2, . . . , Fk−1, Fk. A full proof can be found in [7]. �

4 Multiple Structure-Constrained TSP

In this section, we will consider generalizations of OTSP where instead of a
single linear order constraint on a subset of vertices, multiple disjoint paths
or cycles in the graph are given as precedence constraints. In the case that
every vertex of the graph is contained in one of the constraints, i. e., if the
constraints constitute a path or cycle cover of the graph, we will present an
exact parameterized algorithm with running time polynomial in the size of the
graph, but exponential in the number of paths or cycles in the cover. For the
more general case where the path or cycle constraints do not cover the whole
graph, we will propose a heuristic algorithm, which we conjecture to achieve a
constant approximation ratio.

A useful application scenario for these problems may be, for example, routing
of a vehicle which is supposed to transport commodities from several source
vertices to several destination vertices: Here, it does not matter in which order
transportation requests are serviced, but it does matter that sources need to be
visited before destinations.

We will start with a formal definition of the cycle versions of these problems.

Definition 4. Let G = (V, E) be a complete graph with edge weights c : E → +

and let (V, F ) be a subgraph of G satisfying either of the following conditions.

Cycle cover constraint. Every vertex v ∈ V is incident with some edge f ∈ F ,
and (V, F ) is a collection of vertex-disjoint cycles, i. e., (V, F ) is a cycle
cover, that is, we have dF (v) = 2 for all v ∈ V .

Multiple cycle constraint. (V, F ) is a collection of vertex-disjoint cycles.
(Isolated vertices may be treated as cycles of exactly one zero-cost loop, but
we ordinarily do not count them in the number of cycles in F .)

The respective multiple structure-constrained TSP is, given (G, c, F ), to find
a minimum-cost cycle T of all vertices in V such that T has the property that its
restriction to each component of F (where shortcut edges are introduced in order
to skip vertices from other components) is this component itself. We denote these
problems by CycCovTSP and MCycTSP, respectively.
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Algorithm 4
Let there be k′ cycles in F . For the sake of notation, assume that there are cycles of
length one, all consisting in a single zero cost loop for every vertex uncovered by F .
Counting these, let there be k cycles.

while k > 1 do
find the pair of cycles {C1, C2} which minimizes

cost(cycle-merge(C1, C2)) − cost(C1) − cost(C2)
merge C1 and C2

recompute k

Note that in the case where F contains exactly one cycle, MCycTSP coincides
with OTSP. Indeed, MCycTSP may offer a better intuition even for OTSP
because it does not hide the fact that cyclically shifting the prescribed order on
vertices does not actually alter a given problem instance.

Due to space constraints, we are not able to present the algorithms and proofs
in detail in this extended abstract. Instead, we will just present the main results
and give a short overview of the proof ideas.

Theorem 8. CycCovTSP can be solved exactly in time O((2n)k · k2) where k
is the number of cycles in F . �

Theorem 9. For a constant number of constraining structures, MCycTSP on
metric graphs can be solved approximately in polynomial time with an approxi-
mation guarantee of 5

2 . �

Note that in contrast to Theorem 9 and virtually all of our other results, Theo-
rem 8 also applies to the general (i. e., non-metric) case. In proving Theorem 8,
two more algorithms which are based on the idea of dynamic programming will
be presented in the full version of this paper. In fact, they exploit the fact that
CycCovTSP shares properties with problems like DNA alignment and longest
common subsequence in words [14]. The basic idea is thus to cut the given cycles
open, to give the resulting paths an orientation, and to align their vertices opti-
mally with respect to the cost of the resulting path and cycle (which is yielded
by closing the path).

Concludingly, this gives us an algorithm, cycle-merge, which motivates the
heuristic approach of Algorithm 4 for (single or multiple) cycle-constrained met-
ric TSP. (Bear in mind that the single cycle-constrained metric TSP is ΔOTSP.)

We have found no input instances where Algorithm 4 would yield an ap-
proximation ratio worse than 2. However, it seems to be difficult to prove an
appropriate approximation guarantee.
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Abstract. In this paper, reoptimization versions of the traveling sales-
man problem (TSP) are addressed. Assume that an optimum solution of
an instance is given and the goal is to determine if one can maintain a
good solution when the instance is subject to minor modifications. We
study the case where nodes are inserted in, or deleted from, the graph.
When inserting a node, we show that the reoptimization problem for
MinTSP is approximable within ratio 4/3 if the distance matrix is met-
ric. We show that, dealing with metric MaxTSP, a simple heuristic is
asymptotically optimum when a constant number of nodes are inserted.
In the general case, we propose a 4/5-approximation algorithm for the
reoptimization version of MaxTSP.

1 Introduction

The traveling salesman problem (TSP) is one of the most interesting and paradig-
matic optimization problems. In both minimization and maximization versions,
TSP has been widely studied and a large bibliography is available (see, for exam-
ple, the books [7, 11, 12]). As it is well known, both versions of TSP are NP-hard
but although in the case of MaxTSP the problem is approximable within con-
stant ratio for all kinds of graphs [4, 9], in the case of MinTSP approximation
algorithms are known only for the metric case [5], i.e., when the graph distances
satisfy the triangle inequality.

In this paper, we address the reoptimization issue. We consider the case where
instances of a given optimization problem are subject to minor modifications.
The problem we are interested in consists, given an optimum solution on the ini-
tial instance, of trying to maintain efficiently a good solution when the instance
is slightly modified. This issue has already been studied for other optimization
problems such as scheduling problems (see [17, 2], or [3] for practical applica-
tions) and classical polynomial problems where the goal is to recompute the
optimum solution as fast as possible ([6, 10]). It has been recently considered for
MinTSP in [1]. The modifications for TSP consists in adding a new node to the
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initial graph (we have a new city to visit), or removing one node from this graph
(a city is dropped from the tour).

More precisely, we suppose that an n node graph G is given and an optimum
solution of MinTSP for G has already been computed. In the problem-version
we deal with, denoted MinTSP+ in the sequel, G is transformed into a graph G′

by adding a new node vn+1 together with all edges connecting vn+1 to any node
of G. How can we reuse the known optimum solution of MinTSP for G in order
to compute a good approximate solution for G′? An analogous problem denoted
MinTSP- consists of reoptimizing MinTSP when a node v in G is deleted together
with all edges incident to it. In [1], Archetti, Bertazzi and Speranza show that
both MinTSP+ and MinTSP- are NP-hard. Moreover they prove that if the
simple best insertion rule is used for updating the previously known optimum
tour, a (tight) 3/2 approximate tour for MinTSP+ in metric case can be obtained
whereas in the general case, they propose some instances leading to the claim
that best insertion rule does not lead to a constant approximation; the same
(tight) 3/2 approximation ratio is obtained for MinTSP- in the metric case. In
their paper, the authors of [1] were mainly motivated by the situation where
a short amount of time is available for the reoptimization. However, another
interesting question is to know if the knowledge of an optimum solution for a
part of the input graph leads to strictly better approximation ratios for the whole
of the graph than those achieved in the classical approximation framework.

In this paper we provide new insights for the reoptimization of MinTSP (for
metric graphs), both in the case of a single update and in the case where k
new nodes are inserted (denoted MinTSP+k). For MinTSP+ in metric case we
show that by combining the best insertion heuristics with Christofides’ algorithm
the result of [1] can be outperformed, by achieving approximation ratio 4/3.
Moreover, it is possible to show that, for any k, MinTSP+k can be approximated
asymptotically better than 3/2, although, for large values of k, the approximation
ratio converges to Christofides’ bound. On the other hand, dealing with the
general case, we prove that MinTSP+ is not constant approximable. We also
study reoptimization of MaxTSP, by considering the problems MaxTSP+ and
MaxTSP+k for the first time, both in the metric and in the general case (note
that these problems are obviously NP-hard). In particular we show that, in the
metric case, for any k, the best insertion rule is asymptotically optimum; in fact,
for any k, MaxTSP+k can be approximated with ratio

(
1− O(k)√

n

)
. In the general

case we can exhibit a 4/5-approximation algorithm, an improvement over the
approximation ratio 61/81, achieved in [4] (under the classical approximation
paradigm).

The paper is organized as follows. In the next section, we provide basic def-
initions and notation. In Section 3, we address the reoptimization of MinTSP
under single and multiple node insertions. Next, in Section 4, we consider the
reoptimization of MaxTSP, first under single node insertion (both in the metric
and in the general case) and subsequently under multiple insertions (in the met-
ric case). Finally, in Section 5, some results concerning MinTSP- and MaxTSP-
are provided. Concluding remarks are contained in Section 6.
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2 Preliminaries

In this section we provide the formal definitions of the problems addressed in
the paper, namely Min and MaxTSP+k, Min and MaxTSP-k. Then, we intro-
duce three heuristics, Best Insertion, Longest Insertion, and Nearest Insertion,
classically studied in the literature (see for instance [15, 7]) because they give
rise to fast algorithms to solve TSP, and particularly suitable when dealing with
reoptimization.

Definition 1 (MinTSP+k, MaxTSP+k). We are given an instance
(In+k, T ∗

n) where In+k = (Kn+k, d), Kn+k is a complete graph on n + k nodes
{v1, · · · , vn+k}, with nonnegative weights d on the edges, and T ∗

n is an optimum
solution of MinTSP (resp. MaxTSP) on In = (Kn, d), sub-instance of In+k in-
duced by the nodes {v1, · · · , vn}.

Question : find a shortest (resp. longest) tour for the whole instance In+k.

Definition 2 (MinTSP-k, MaxTSP-k). We are given an instance
(In+k, T ∗

n+k) where In+k = (Kn+k, d), Kn+k is a complete graph on n + k nodes
{v1, · · · , vn+k}, with nonnegative weights d on the edges, and T ∗

n+k is an optimum
solution of MinTSP (resp. MaxTSP) on In+k.

Question : find a shortest (resp. longest) tour on In = (Kn, d), sub-instance
of In+k induced by the nodes {v1, · · · , vn}.

For the case k = 1, we simply denote the problems MinTSP+, MaxTSP+, Min
TSP- and MaxTSP-.

For TSP, a particular rapid way to get a tour is to iteratively insert nodes
according to given rules, as the following classical ones.

Definition 3 (Nearest, Longest and Best Insertion rules). Given a tour
T on a graph G = [V, E], and a node v �∈ V , we insert v in the sequence of nodes
of T as follows:

– Nearest Insertion: we find a node v∗ minimizing d(u, v) for u ∈ V , and insert
v before or after v∗ (choosing the best solution) in the tour;

– Longest Insertion: we find a node v∗ maximizing d(u, v) for u ∈ V , and
insert v before or after v∗ (choosing the best solution) in the tour;

– Best Insertion: we find an edge (u∗, v∗) ∈ T optimizing (d(v, u) + d(v, w) −
d(u, w)) for (u, v) ∈ T , and insert v between u∗ and v∗.

Concerning polynomial approximation of MinTSP in the metric case, it is shown
in [15] that the behavior of Nearest and Best Insertions are quite different since
the algorithms based on these two rules are a 2 and a O(log n) -approximation
respectively.

Finally, when nodes are deleted, the most natural way to get a solution from
a tour on the initial instance consists in taking the shortcut.

Definition 4 (Deletion). Given a tour T on a graph G = [V, E], and a node
v ∈ V , Deletion consists in building a tour by deleting v in T (removing (u, v)
and (v, w) from T and adding (u, w)).
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3 Reoptimizing Minimum TSP Under Node Insertions

In this section, we study the reoptimization problems where one node is in-
serted (MinTSP+) and several nodes are inserted (MinTSP+k). We show that
we can improve the result of [1] proving that, in the metric case, MinTSP+ is
approximable within ratio 4/3.

On the contrary, if the distance is not assumed to be metric, then the knowl-
edge of an optimum solution in the initial instance is not useful at all in order
to find an approximate solution of the final instance since MinTSP+ (and con-
sequently MinTSP+k) is not constant approximable (unless P�=NP).

Finally, we generalize the result in the metric case by showing that when k
nodes are inserted we get a (3/2− 1/(4k + 2))-approximation algorithm.

3.1 One Node Insertion

When dealing with metric instances of MinTSP+, it is proved in [1] that Best
Insertion gives a 3/2-approximate solution. Actually, we can show that Nearest
Insertion also provides this bound. Of course, running Christofides’ algorithm
on the final instance gives directly also a 3/2-approximate solution. Here we
show that a simple combination of Nearest (or Best) Insertion and Christofides’
algorithm leads to a better approximation ratio.

Theorem 1. In the metric case, MinTSP+ is approximable within ratio 4/3.

Proof. Consider an optimum solution T ∗
n+1 on the whole instance In+1, and the

solution T ∗
n given to us on the sub-instance In.

Let vi and vj be the 2 neighbors of vn+1 in T ∗
n+1, and let T1 be the tour

obtained from T ∗
n with the Nearest Insertion rule.

Using the triangle inequality, we easily get d(T1) ≤ d(T ∗
n+1) + 2d(v∗n+1, vn+1)

where we recall that d(v∗n+1, vn+1) = min{d(vi, vn+1) : i = 1, · · · , n}. Thus

d(T1) ≤ d(T ∗
n+1) + 2 max{d(vi, vn+1), d(vj , vn+1)} (1)

Now, consider the algorithm of Christofides ([5]) applied on In+1. This gives
a tour T2 of length at most 1/2d(T ∗

n+1)+MST (In+1), where MST (In+1) is the
value of a minimum spanning tree on In+1. Note that MST (In+1) ≤ d(T ∗

n+1)−
max(d(vi, vn+1), d(vj , vn+1)). Hence :

d(T2) ≤
3
2
d(T ∗

n+1)−max(d(vi, vn+1), d(vj , vn+1)) (2)

We take the best solution between T1 and T2. A combination of equations (1)
and (2) with coefficients 1 and 2 gives the expected result.

Obviously, if we apply Best Insertion instead of Nearest Insertion, the same
result holds. Note that the running time of this algorithm is dominated by the
one of Christofides’ algorithm. �
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In [1], it is shown that if the distance is not assumed to be metric, then Best
Insertion is not constant approximate for MinTSP+. We strengthen this result
by proving that this holds for any polynomial algorithm.

To do this, we need an intermediate result. Given a graph G = [V, E] where
a, b, s, t ∈ V , and an hamiltonian path of G from a to b, we consider the problem
of determining if there exists an hamiltonian path from s to t. Using a slight
modification of the result of [13], we can show that this problem, denoted by
SHPa,b,s,t in the sequel, is NP-complete (proof omitted).

Lemma 1. SHPa,b,s,t is NP-complete.

This lemma leads to the following inapproximability result.

Theorem 2. In the general case, MinTSP+ is not 2p(n)-approximable,
if P�=NP, for any polynomial p.

Proof. We apply the general method described in [16]. Let ρ > 1. We start
from an instance of SHPa,b,s,t, i.e. a graph Gn = [V, E] with n nodes, four
nodes a, b, s, t, and an hamiltonian path P from a to b. We construct an instance
(In+1, T

∗
n) in the following way:

• If (vi, vj) ∈ E, then d(vi, vj) = 1.
• d(a, b) = 1 and d(vn+1, s) = d(vn+1, t) = 1.
• All the other edges have a weight ρ(n + 1) + 1.

It is clear that T ∗
n = P ∪ {(a, b)} is an optimum solution of In = (Kn, d)

with cost d(T ∗
n) = n. Thus, (In+1, T

∗
n) is an instance of MinTSP+. Let T ∗

n+1
be an optimum solution of (Kn+1, d). Remark that any ρ-approximate solution
allows us to decide if d(T ∗

n+1) = n + 1. However d(T ∗
n+1) = n + 1 iff there is a

hamiltonian path from s to t in Gn. Setting ρ = 2p(n), we obtain the claimed
result. �

3.2 k Node Insertions

When k nodes are inserted, we can generalize the result of Theorem 1 in the
following way.

Theorem 3. In the metric case, MinTSP+k is approximable within ratio 3/2−
1/(4k + 2).

Proof. Consider the given optimum solution T ∗
n . We apply Nearest Insertion

with a priority rule. In a first step, we sort the vertices to be inserted (and
relabel them) in such a way that for all p > n, there exists vj , j < p such that
d(vp, vj) = min{d(vi, vl) : i ≥ p, l < p}. Note that d(vp, vj) ≤ dmax(T ∗

n+k), where
dmax(T ∗

n+k) is a maximal weighted edge in T ∗
n+k.

Then we insert the k vertices using Nearest Insertion.
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For the analysis, note that when inserting node vp, we increase the distance
by Δp ≤ 2d(vp, vj) ≤ 2dmax(T ∗

n+k). We finally get an approximate solution T1
such that

d(T1) ≤ d(T ∗
n) + 2kdmax(T ∗

n+k) ≤ d(T ∗
n+k) + 2kdmax(T ∗

n+k) (3)

Christofides’ algorithm gives a solution T2 such that

d(T2) ≤
3
2
d(T ∗

n+k)− dmax(T ∗
n+k) (4)

We take the best solution between T1 and T2. A combination of equations (3)
and (4) with coefficients 1 and 2k gives d(T ) ≤

(
3
2 −

1
4k+2

)
d(T ∗

n+k).
Note that the computation time of T1 is O(k(n + k)), hence the global com-

plexity is dominated by running Christofides’ algorithm. �

4 Reoptimizing Maximum TSP Under Node Insertions

In this section, we consider the reoptimization of the maximization version of
TSP. In the metric case, Best Insertion is a very good strategy since it is asymp-
totically optimum. Note that the usual MaxTSP problem in the metric case
does not admit a PTAS (using [14]) and that the best algorithms for it are
asymptotically 17/20 (deterministic, [4]) and 7/8 (randomized, [9]).

If the distance is not assumed to be metric, the situation is a bit more compli-
cated. Longest and Best Insertion are only a 1/2-approximation. This situation
is quite disappointing since we can easily prove that iterating Longest Insertion
(from the empty graph) with a priority rule is already a 1/2-approximation for
MaxTSP; however, we can get a polynomial algorithm achieving a ratio of 4/5.
This shows that the knowledge of an optimum solution on the initial instance is
useful since the best algorithm for the usual MaxTSP achieves an approximation
ratio of 61/81 ([4]).

Finally, in section 4.2, we generalize the result in the metric case showing that
if we insert a constant number of nodes, then iterating Best Insertion is also an
asymptotically optimum strategy.

Note that the NP-hardness of all these problems is obvious since otherwise,
starting from the empty graph, we could solve polynomially MaxTSP.

4.1 One Node Insertion

The central result of this section is the asymptotic optimality of Best Insertion.
It is interesting to note that the behavior of Best and Longest Insertion are quite
different for MaxTSP+ since Longest Insertion is only a 2/3-approximation, even
asymptotically (proof omitted).

Proposition 1. For MaxTSP+, in the metric case, Longest Insertion gives a
2/3-approximation, and this bound is tight (even if the graph has an arbitrary
large number of nodes).
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Theorem 4. In the metric case, Best Insertion is asymptotically optimum.
More precisely, if the graph has n nodes, then Best Insertion is (1− O(1/

√
n))-

approximate.

Proof (Sketch). Let T ∗
n be an optimum solution on the initial instance In, T ∗

n+1
an optimum solution on the final instance In+1, and T the solution obtained by
applying Best Insertion on T ∗

n . Let K =
√

n and 1 ≤ k ≤ K.
Consider the following subsequence of nodes (ak, · · · , a1, vn+1, b1, · · · , bk) in

T ∗
n+1. Let Jk be the sub-instance of In+1 induced by all the nodes but vn+1,

a1, a2, · · · , ak−1 and b1, b2, · · · , bk−1 (in particular J1 is (Kn, d), the initial graph).
We have :

d(T ∗
n+1) ≤ d(vn+1, a1) + d(vn+1, b1) +

k−1∑
i=1

d(ai, ai+1) +
k−1∑
i=1

d(bi, bi+1) + opt(Jk)

where opt(Jk) is the value of an optimum solution on Jk. Indeed, there is an
hamiltonian path in T ∗

n+1 between ak and bk, the value of which is at most
opt(Jk).

Let dk
m(v) be the medium distance between a node v and the nodes in Jk, i.e.,

dk
m(v) = 1

|Jk|
∑

vi∈Jk
d(v, vi). Using the triangle inequality, we get that for any

pair (u, v) of nodes (and for any k), d(u, v) ≤ dk
m(u) + dk

m(v). Hence we get an
upper bound on d(T ∗

n+1):

d(T ∗
n+1) ≤ 2

(
dk

m(n + 1) +
k−1∑
i=1

dk
m(ai) +

k−1∑
i=1

dk
m(bi)

)
+dk

m(ak)+dk
m(bk)+opt(Jk)

(5)
Now, our goal is to lower bound first d(T ∗

n) and then d(T ) in order to get the
following inequality :

d(T ) ≥
(

1− O(k)
n

)
(d(T ∗

n+1)− dk
m(ak)− dk

m(bk)) (6)

To achieve this, first consider an optimum solution T ∗(Jk) (of value opt(Jk))
of Jk. Considering a particular subsequence (v1, · · · , v2k−1) of T ∗(Jk), we insert
the 2(k− 1) nodes a1, a2, · · · , ak−1 and b1, b2, · · · , bk−1 in T ∗(Jk) in order to get
the sequence (v1, a1, v2, · · · , ak−1, vk, b1, vk+1, · · · , bk−1, v2k−1). Considering each
node of Jk as v1, we get with these insertions n− 2(k − 1) tours on In. After a
careful counting of the edges appearing in these tours, one can show that:

d(T ∗
n) ≥ 2

(
k−1∑
i=1

dk
m(ai) +

k−1∑
i=1

dk
m(bi)

)
+
(

1− O(k)
n

)
opt(Jk) (7)

Now, we relate d(T ) and d(T ∗
n). Consider each of the n possible insertions of

vn+1 in T ∗
n . Since each edge of T ∗

n is removed exactly once, we get that nd(T ) ≥
(n− 1)d(T ∗

n)+2
∑n

i=1 d(vn+1, vi). Using
∑n

i=1 d(vn+1, vi) ≥
∑

v∈Jk
d(vn+1, v) =

(n− 2(k − 1))dk
m(n + 1), we get:

d(T ) ≥
(

1− 1
n

)
d(T ∗

n) + 2
(

1− 2(k − 1)
n

)
dk

m(n + 1) (8)
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From inequalities (5), (7) and (8), we can derive (6).

Inequality (6) is valid for any k. Let us write it for k = 1, · · · , K, and consider
the two following cases :

1. If, for some k, dk
m(ak) + dk

m(bk) ≤ 1
K d(T ∗

n+1), then we get

d(T ) ≥
(

1− O(k)
n

)(
1− 1

K

)
d(T ∗

n+1)

Since k ≤ K =
√

n, we get d(T ) ≥
(
1−O

(
1√
n

))
d(T ∗

n+1).

2. In the other case, for any k, dk
m(ak) + dk

m(bk) ≥ 1
K d(T ∗

n+1). However, this
is impossible. Indeed, by making the sum, we get

∑K
k=1 dk

m(ak) + dk
m(bk) ≥

d(T ∗
n+1). But (details are omitted here), one can show that this would lead

to d(T ∗
n) ≥ 2

(
1− O(K)

n

)
d(T ∗

n+1), which is impossible for n large enough.

�

From Theorem 4, we get the following corollary.

Corollary 1. MaxTSP+ admits a PTAS in the metric case.

Proof. Let ε > 0. To get a (1 − ε)-approximation algorithm, we just have to
apply Best Insertion on graphs with roughly n ≥ O(1/ε2) nodes, and to solve
optimally the other instances. �

Unfortunately, if the triangle inequality is not assumed, Best Insertion has a
much worse behavior (proof omitted).

Proposition 2. For MaxTSP+, in the general case, Best Insertion and Longest
Insertion give a 1/2-approximation, and this bound is tight (even if the graph
has an arbitrary large number of nodes).

However, we can use a more sophisticated algorithm to get a better approxima-
tion ratio.

Theorem 5. MaxTSP+ is asymptotically approximable within ratio 4/5.

Proof (Sketch). Assume n even; thus T ∗
n is the sum of two perfect matchings M1

and M2 (if n is odd we can add the remaining edge to each matching. Details
are omitted). Suppose d(M1) ≥ d(M2). We get:

d(M1) ≥
1
2
d(T ∗

n) (9)

Let vi and vj be the neighbors of vn+1 in T ∗
n+1. Consider M∗ = M1 ∪

{(vi, vn+1), (vn+1, vj)}. Obviously, M∗ can be found in polynomial time by guess-
ing nodes vi and vj . Wlog., we can assume that M∗ does not contain any cycle
(otherwise, (vi, vj) ∈ T ∗

n and thus Best Insertion gives an optimum tour).
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Now, consider C = {C1, · · · , Cp} a 2-matching (i.e., a partition of
{v1, · · · , vn+1} into node disjoint cycles) of maximum weight among the
2-matchings satisfying (i) {(vi, vn+1), (vn+1, vj)} ⊂ C1 and (ii) |C1| ≥ 6. Such
a 2-matching can be found in polynomial time by testing all the possible sub-
sequences of nodes (vi′′ , vi′ , vi, vn+1, vj , vj′) (and thanks to the polynomiality of
finding a maximum weight 2-matching, [8]). Obviously, we deduce:

d(C) ≥ d(T ∗
n+1) (10)

Applying the method of Serdyukov [18], we can iteratively for i = 1, · · · , p,
delete an edge ei ∈ Ci, and add this edge to M∗ in such a way that M∗ does not
contain any cycle. Note that in this method we can chose in C1 a deleted edge
not in M∗ that does not create a cycle in P1 (thanks to the length of C1).

At the end, P1 = ∪p
i=1(Ci \ {ei}) and P2 = M∗ ∪p

i=1 {ei} are two collection of
node disjoint paths. Finally, we build two tours T1 and T2 by adding some edges
to P1 and P2 respectively. Taking the best tour, and using inequalities (9) and
(10), we get a tour T3 with:

d(T3) ≥
3
4
d(T ∗

n+1) +
1
4
(d(vi, vn+1) + d(vn+1, vj)) (11)

On the other hand, the Best Insertion gives a tour T4 verifying:

d(T4) ≥
n− 1

n
d(T ∗

n) ≥ n− 1
n

d(T ∗
n+1)−

n− 1
n

(d(vi, vn+1) + d(vn+1, vj)) (12)

Adding inequality (11) with coefficient (n − 1)/n and inequality (12) with
coefficient 1/4 we obtain a tour satisfying d(T ) ≥ 4n−4

5n−4d(T ∗
n+1). �

4.2 k Node Insertions

When several nodes are inserted, we can iteratively use the Best Insertion rule to
obtain an asymptotically optimum solution. This result is based on the following
lemma.

Lemma 2. If Tn is a ρ-approximation on the initial instance on n nodes Gn,
then Best Insertion applied on Tn gives a ρ

(
1− O(1)√

n

)
-approximate solution (in

the metric case) on the instance Gn+1 on n + 1 nodes.

Proof (Sketch). This is an easy generalization of the proof of theorem 4. Note
that equation (5) and (7) still hold. Then, by taking into account that Tn is a
ρ-approximation, we get, instead of equation (6):

d(T ) ≥ ρ

(
1− O(k)

n

)
(d(T ∗

n+1)− dk
m(ak)− dk

m(bk)) (13)

The end of the proof is analogous, up to the factor ρ. �
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Theorem 6. Iterated Best Insertion is a
(
1− O(k)√

n

)
-approximation algorithm

for MaxTSP+k in the metric case.

Proof. Using proposition 2, we get, after k steps, a solution Tk such that:

d(Tk) ≥
(

1− O(1)√
n

)k

d(T ∗
n+k) ≥

(
1− O(k)√

n

)
d(T ∗

n+k)

�

Using a similar proof as in corollary 1, we easily get the following result.

Corollary 2. For any constant k (and even for any k = o(
√

n)), MaxTSP+k
admits a PTAS in the metric case.

5 Node Deletions

Now, we give a few results concerning the reoptimization problems when nodes
are deleted from the initial graph. Recall that in [1] it is shown that MinTSP-
is NP-hard, even if distances are only 1 and 2, and that Deletion is a tight
3/2-approximation in the metric case. Here, we show that MinTSP- is very hard
to approximate if the triangle inequality doesn’t not hold.

Dealing with MaxTSP-, we show that the problem is NP-hard, and that
Deletion is a tight 1/2-approximation algorithm (general and metric cases).

Proposition 3. In the general case, MinTSP- is not 2p(n)-approximable, for
any polynomial p, if P�=NP.

Proof. The proof is a direct adaptation of the one of [1] showing that this prob-
lem is NP-hard. We consider the following problem, shown to be NP -complete
in [13]: given a graph G = [V, E] and an hamiltonian path P between two nodes
a and b in G, determine if there’s an hamiltonian cycle in G.

Given such an instance, we construct an instance on MinTSP-. The node set
of the graph Kn+1 is V ∪ {vn+1}, and the distances are:

– d(vi, vj) = 1 if (vi, vj) ∈ E;
– d(vn+1, a) = d(vn+1, b) = 1;
– Other distances are ρn + 1.

The tour T ∗
n+1 = P ∪ {(vn+1, a), (vn+1, b)} is an optimum solution on In+1 =

(Kn+1, d). Let T ∗
n be an optimum solution on the instance In. Then d(T ∗

n) = n
iff G has an hamiltonian cycle, and a ρ approximate solution allows to decide if
d(T ∗

n) = n. We get the lower bound setting ρ = 2p(n). �

Proposition 4. MaxTSP- is NP -hard, even if distances are only 1 and 2.

Proof. In [1], it is shown that MinTSP- is NP -hard, even if distances are only
1 and 2. We have a trivial reduction from MinTSP- to MaxTSP- if distances
are only 1 and 2: we just have to flip the distances between 1 and 2. Solving
MinTSP- is equivalent to solve MaxTSP- with the new distances. �
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As a final result, let us remark that the deletion strategy has the same behavior
in the metric case and in the general one.

Proposition 5. For MaxTSP-, Deletion gives a 1/2-approximation, and this
bound is tight (even if the graph has an arbitrary large number of nodes). These
results hold in the general case as well as in the metric case.

These results might be strengthened, but they seem to indicate that the knowl-
edge of an optimum solution in the initial instance may not be really helpful to
get good approximation ratios when nodes are deleted.

6 Conclusion

In this article we have proposed some complexity and approximability results
for reoptimization versions of TSP. We have exhibited an interesting asymme-
try between the maximization and the minimization versions: while we get an
almost optimum tour by simply inserting the new node in the right position for
MaxTSP+ (in the metric case), this is not true when dealing with the minimiza-
tion version. One can even show that in order to get an almost optimum solution
for MinTSP+, we need, on some instances, to change n − o(n) edges from the
initial optimum solution. This leads us to conjecture that MinTSP+ does not
admit a PTAS.

Following our approach, an interesting generalization would be to consider
TSP in a fully dynamic situation. Starting from a given solution (optimum
or approximate) on an initial graph, the graph evolves (nodes are added and
deleted), and the goal is to maintain efficiently, along this process, an approxi-
mate solution as good as possible. Some of our results can be easily generalized
when starting from an approximate (instead of optimum) solution, and can be
useful in such approach.
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Abstract. In this paper we study a variant of the Node-Weighted
Steiner Tree problem in which the weights (costs) of vertices are re-
stricted, in the sense that the ratio of the maximum node weight to the
minimum node weight is bounded by a quantity α. This problem has
applications in multicast routing where the cost of participating routers
must be taken into consideration and the network is relatively homoge-
nous in terms of the cost of the routers.

We consider both online and offline versions of the problem. For the
offline version we show an upper bound of O(min{log α, log k}) on the
approximation ratio of deterministic algorithms (where k is the number
of terminals). We also prove that the bound is tight unless P = NP . For
the online version we show a tight bound of Θ(max{min{α, k}, log k}),
which applies to both deterministic and randomized algorithms. We also
show how to apply (and extend to node-weighted graphs) recent work
of Alon et al. so as to obtain a randomized online algorithm with com-
petitive ratio O(log m log k), where m is the number of the edges in the
graph, independently of the value of α. All our bounds also hold for the
Generalized Node-Weighted Steiner Problem, in which only connectivity
between pairs of vertices must be guaranteed.

1 Introduction

1.1 Problem Definition

The Node-Weighted Steiner Tree problem (NWS) is defined as follows. Given an
undirected graph G = (V, E) (|V | = n, |E| = m) with a cost function c on the
edges and vertices, and a subset of vertices K ⊆ V with |K| = k, (also called
terminals), the goal is to find a minimum-cost tree which spans all vertices in K.
The cost of the tree is defined as the sum of the costs of its edges and vertices.
The Generalized Node-Weighted Steiner problem (GNWS) is defined along the
same lines, with the exception that instead of a set of terminals, we are given a
requirements function r : V × V → {0, 1}. The objective is to find a minimum-
cost subgraph of G which provides connectivity for all pairs of vertices in the
set K = {(v, u) with r(v, u) = 1}. For uniformity, we call K the set of terminal
pairs. Clearly, GNWS generalizes NWS.

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 208–219, 2006.
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Depending on whether K is known in advance, we distinguish between the
offline and online versions of the problem. In the latter version, every time a
new request appears (i.e., a terminal, or a pair of terminals) the algorithm must
guarantee connectivity for the new request by buying irrevocably, if necessary,
certain edges and vertices.

Both the offline and online version of this problem are variants of the well-
known Steiner Tree Problem and Generalized Steiner Problem (GSP) which have
been studied extensively in the literature (c.f. section 1.2 for some representative
results on this problem).

In this paper we are interested in the variant of node-weighted Steiner prob-
lems in which some restriction is placed on the node weights. Specifically, let α
denote the quantity maxv,u∈V c(v)/c(u) (we assume non-negative edge and ver-
tex costs). We call α the asymmetry of the graph, since it provides an indication
of the variance of the vertex costs. Our aim is to provide upper and lower bounds
for both the approximation ratio and the competitive ratio as functions of α.

The (classic) Steiner problem has wide applications in multicast routing and
network design (see e.g., [7]). On the other hand, NWS captures situations where
the cost considerations include not only network links but also network nodes
(e.g., routers), and the cost of the node simply reflects how much we must pay to
have it included in the connectivity network. A network of relatively homogenous
routers, in terms of their cost, is then modelled by a graph of small asymmetry.
Our setting is largely motivated by the work of Faloutsos et al. [8]; in their
work, the asymmetry is defined in the context of a directed graph, with only
an edge-cost function, as the maximum ratio of the costs of the two directed
edges between any two vertices in the graph, and reflects network homogeneity
in terms of the edge costs of antiparallel links.

Summary of Our Results. We first show that unless P=NP, offline NWS
cannot be approximated within a factor better than O(min{log α, log k}) (Theo-
rem 1). The proof uses ideas from Berman’s reduction (see section 1.2), however
we reduce from Set Cover of Bounded Set Size; the result then follows from
Trevisan’s inapproximability result [19]. Theorem 2 shows that the hardness
bound is asymptotically tight, by presenting an algorithm which is a combina-
tion of Ravi and Klein’s algorithm for GNWS and the constant-factor approxi-
mation algorithm of Goemans and Williamson for GSP. In Theorem 3 we show
an asymptotically tight bound of Θ(max{min{α, k}, log k}) on the competitive
ratio of (deterministic or randomized) online algorithms. Last, section 3.1 builds
upon ideas found in the work of Alon et al. [3] which provides a general frame-
work applicable to several online network optimization problems with edge cost
functions. We show how a key lemma in their work can be extended to node-
weighted problems which translates to a O(log m log k)-competitive randomized
algorithm regardless of the asymmetry of the input graph. The bound is almost
tight since the lower bound of Ω( log m log k

log log m+log log k ) shown for online Set Cover
in [2] applies to online NWS as well.
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1.2 Related Work

Berman (see ref. in [14]) showed an approximation-preserving reduction from Set
Cover to NWS, which implies, using results of [9] and [15], that NWS cannot
be approximated within a factor of o(log k) unless P=NP. We emphasize that
the hardness result holds only when α is unbounded, in particular, it is required
that α is as big as Ω(n). Klein and Ravi [14] presented an asymptotically op-
timal algorithm which guarantees an approximation ratio of 2 lnk. Guha and
Khuller [11] improved the upper bound to 1.35 lnk (approximately).

Concerning the classic Steiner Tree problem (where w(v) = 0, for all v ∈ V ),
Karp [13] showed very early that it is NP-hard, and is in fact APX-hard [5] [18].
Currently, the best upper bound for general graphs is 1.55 and is due to Robins
and Zelikovsky [16]. For the Generalized Steiner Problem, the corresponding
bound is 2 [10],[1]. In terms of online algorithms, Imase and Waxman [12] showed
a tight bound of Θ(log k) on the competitive ratio of online Steiner Tree, a result
which Berman and Coulston [4] showed extends to the online GSP.

Faloutsos et al. [8] considered a somewhat related problem to ours, namely
the online Steiner tree problem on directed graphs of bounded edge asymmetry.
They showed that a simple greedy algorithm is O(min{k, β log k}) competitive,
and they also proved a lower bound on the competitive ratio of every deter-
ministic algorithm (which one can show extends to randomized algorithms) of
Ω(min{k, β log k/ log β}). Here β denotes the edge asymmetry, as defined ear-
lier in this section. Their results are related to this work not only because they
provide some motivation for our definition of node asymmetry, but also because
NWS can be reduced to Steiner tree in directed graphs, as shown by Segev [17].
Note however, that applying this reduction by itself only cannot yield good
bounds: in particular for offline NWS with asymmetry α, the reduction creates
a directed graph of edge asymmetry β which can be as high as α (depending
on the edge costs) and for such graphs it is not known how to approximate the
Steiner Tree problem to a o(β) factor (note that an obvious upper bound on the
approximation ratio using this technique is O(β)).

1.3 Preliminaries

Given a (simple) path P between two vertices v, u in G, the cost of P is the
sum of the costs of all vertices and edges in P , excluding the end vertices v and
u. Note that a path of minimum cost can be computed in polynomial time, by
constructing a directed graph G′ = (V, E′) in which only edges have a cost, such
that for every edge e = (v, u) ∈ E, e′ = (v, u) ∈ E′, and c(e′) = c(e) + c(v). It is
easy to see that a shortest path from v to u in G′ translates to a minimum-cost
path from v to u in G.

Given graph G, with edge and vertex weights, define the shortest path com-
pletion of G (or simply path completion), as the complete graph Gp = (V, E′)
in which every vertex has the same cost as in V , and the cost of an edge
e = (v, u) ∈ E′ is the cost of a minimum-cost path between v and u in G.
Note that the path completion can be computed in polynomial time. Following
a standard practice in the study of Steiner trees we observe that, when we need
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so, we can restrict our attention to the path completion of G, in the sense that a
solution to NWS in Gp can be transformed in polynomial time to a solution to
NWS in G without any increase to the solution’s cost, and without affecting the
approximation ratio (see, e.g., Theorem 3.2 in [20] which is cast in the context
of the metric completion of the graph, but also can be applied in the case of the
path completion, even though the latter does not necessarily give rise to met-
ric distances). We can also use the following property, which is a folklore result
for the classic Steiner Tree problem but applies to the node-weighted version
as well: Let (Gp, K) be the input to NWS, then we can transform any solution
(Steiner tree) T to a a tree T ′ which has total cost at most that of T , and for
which the number of Steiner nodes (i.e., vertices which are not terminals) is at
most |K| − 2. This follows from the observation that we can assume that all
Steiner nodes have degree at least three, since Steiner nodes of degree two can
be replaced by a single edge in the path completion of G.

Throughout this paper we assume that α is an integer, since we can always
scale it to the nearest integer without affecting, asymptotically, the bounds. We
assume that G is connected, since otherwise we can restrict the problem to the
connected components of G. We will denote by cmin, cmax the minimum and
maximum costs of vertices in V , respectively. Because G is part of the input in
both the online and offline versions of the problem, we assume that α is known
to the algorithm. Last, we note that all our lower bounds will be presented in
terms of NWS, while all our algorithms will be described in the context of the
more general GNWS problem.

2 Offline Algorithms

Theorem 1. Any polynomial-time algorithm for NWS in graphs of asymmetry
α has approximation ratio Ω(min{logk, logα}), unless P = NP .

Proof. We present a polynomial-time reduction of a variation of the set cover
problem in which all sets have bounded size, to NWS of bounded asymmetry.
Consider an instance I of set cover which consists of a universe of elements,
denoted by U and a collection C of sets, each containing at most B elements in
U . The objective is to find a collection C ⊆ C of minimum cardinality such that
for every e ∈ U there exists S ∈ C such that e ∈ U . The reduction is as follows:
G is defined as a graph with a vertex vS for each set S ∈ C, and a vertex ve

for every element e ∈ U . Each ve vertex has weight equal to 1 and each vertex
vs has weight B. All pairs of vertices of the form vS , vS′ are pairwise adjacent;
furthermore, vS and ve are adjacent if and only if e ∈ S. All edge weights are
zero. Last, we define the set of terminals K as the set of all ve vertices in G
(hence k = |K| = |U |). Note that this transformation gives rise to an instance
I ′ of NWS in a graph of asymmetry B.

Denote by OPT (I ′), A′(I ′) the cost of the optimal algorithm and the cost of
an approximation algorithm A′ for NWS on the above instance I ′, respectively.
Also denote by C′

opt, C′ the set of vertices of the form vs in (any fixed) optimal
solution and the solution of A′, on input I ′, respectively. It is easy to see that
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a Steiner tree for K in G corresponds to a set cover for the instance (U, C), in
that the set of vertices C′ corresponds to a collection of sets (which we denote
by C) which cover U . Define A as the set cover algorithm which, on instance I,
selects all sets in C. Since all edges in G have zero weight,

A′(I ′) = k + B · |C′| and A(I) = |C| = |C′|. (1)

Likewise, we have

OPT (I ′) = k + B · |C′
opt| and OPT (I) = |Copt| = |C′

opt|. (2)

where OPT (I) is the optimal cost for the instance I of set cover. Since both C
and Copt are solutions for I, we have

B|C′
opt| = B|Copt| ≥ k and B|C′| = B|C| ≥ k (3)

Suppose that NWS is approximable within a factor of o(log α) = o(log B), then
using (2) and (3) we get

A′(I ′) = o(log B)OPT (I ′) = o(log B)(k + B · |C′
opt|)

= o(log B)B · |C′
opt|,

hence from (1) and (2) we get that |C| = o(logB)|Copt|, which means that
bounded-size set cover is approximable within a factor of o(log B), which implies
that P=NP, by the inapproximability result of Trevisan [19], namely that set
cover on instances with sets of size at most B is hard to approximate within a
factor of lnB −O(ln lnB) unless P = NP . Since B ≤ k the result follows. �

We now present an algorithm which has approximation ratio O(min(log k,
log α)), thereby matching the lower bound of Theorem 1. We will assume that
k > α, since otherwise the lower bound of Theorem 1 is already known to be
tight. The algorithm is a combination of the Klein-Ravi (KR) and Goemans-
Williamson (GW) algorithms. The former works in iterations; in each iteration,
a subset of currently active trees is merged into a single tree (i.e., a single con-
nected component) by buying a vertex of smallest cost-efficiency, and minimum-
cost paths from the vertex to the active trees in question. Here the term “active”
reflects the fact that the tree contains terminals for which the requirement func-
tion is not satisfied by the current partial solution. More formally, a tree T is
active iff there exist vertices u, u ∈ V , with u ∈ T , v /∈ T such that r(v, u) = 1.
In addition, the cost-efficiency of a vertex v is defined as the minimum ratio, over
all subsets of active trees, of the cost of v as well as the cost of the minimum-cost
paths from v to each active tree in the subset, over the cardinality of the subset.
In other words, the cost-efficiency is the minimum average cost paid so as to
connect active subtrees by means of paths originating at v.

We emphasize that for the GSP instance (G′
p, r

′) we treat the graph as if the
weights of the vertices do not exist, and that G′

p is the path completion of G′.
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Algorithm Offline GNWS on input (G, r)

1 Execute the KR algorithm until at most k/α active trees remain
2 Create a new graph G′ by contracting each tree in the partial solution

to a single “supernode”. Each supernode gets vertex weight zero.
3 Define a new requirements function r′ on G′ and solve GSP on

instance (G′
p, r

′) using the GW algorithm

The requirement function r′ is defined in the “natural” way. In particular, at
the end of step 1, the set of edges and vertices which have been bought induces
a forest F , with each tree T in the forest corresponding to a supernode vT in
the vertex set of G′. We define r′ for supernodes u, v ∈ G′ to be r′(u, v) = 1
if and only if there exist vertices ũ, ṽ ∈ G which belong in trees T1, T2 in F ,
respectively, with T1 �= T2 , such that r(ũ, ṽ) = 1. Informally, r′ is determined by
all vertices whose connectivity requirement has not been satisfied by the end of
step 1. Let OPT denote the optimal solution cost for instance (G, r) of GNWS.

Theorem 2. Algorithm Offline GNWS has approximation ratio O(min(log k,
log α)).

Proof. Consider the penultimate iteration of the KR algorithm in step 1. Since
at least k/α active trees remain, the cost of the partial solution maintained up
to that iteration, i,e edges and vertices bought by KR excluding terminals1 is
upper bounded by

2 ln
k

k/a
OPT = O(ln α)OPT.

The above follows by the analysis of the KR algorithm (see Section 4 in [14], in
particular the inequality following (4)).

The KR algorithm has the property that in every iteration it connects q ≥ 2
active trees in a new component at an average cost of at most OPT/q, which
implies that the cost of the last iteration in step 1 is bounded by OPT .

It remains to bound the cost due to step 3. Denote by F = {T1, . . . , Tl} the
forest of trees returned by Offline GNWS. First, note that the cost of edges in
the optimal solution to the GSP problem on instance (G′

p, r
′) is bounded by

OPT. Since GW is a 2-approximation algorithm for GSP, the cost of the edges
in the forest F is at most 2OPT. Next, let ki denote the number of terminal
pairs in tree Ti (here, we stress that the term terminal refers to the instance
(G′

p, r
′), namely a supernode which corresponds to an active tree at the end of

step 1 is considered a single terminal). By the argument in section 1.3 we can
assume that the number of Steiner nodes in Ti is bounded by 2ki − 2 ≤ 2ki.

1 The analysis of the KR algorithm in [14] makes wlog the assumption that all terminal
costs are zero. For this purpose our analysis for step 1 of Offline GNWS does not
take into account the cost of terminals; instead we simply add their contribution
later in the proof.
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Therefore the total weight of Steiner nodes in F is at most

l∑
i=1

2ki · cmax ≤
k

α
cmax ≤ k · cmin ≤ OPT.

Therefore the total node-weight of the forest F is at most 2OPT, and its total
weight at most 4OPT.

Putting everything together, the cost of the solution returned by the algorithm
is O(log α)OPT . �

We note that the above algorithm is applicable, with the same performance
guarantees, to a wider class of network design problems which can be formulated
as cut-covering problems in which the family of cuts is defined by proper functions
(see e.g., [10]). This follows from the following two facts: i) for such problems
the KR algorithm upholds the properties we used in the proof of Theorem 2 ;
and ii) the GW algorithm is still 2-approximation for the edge-weighted version
of this problem.

3 Online Algorithms

Theorem 3. The competitive ratio of deterministic online GNWS is
Θ(max{min{α, k}, log k}).

Proof. For the lower bound, we consider the online NWS problem (the lower
bound carries over to online GNWS). If α < log k, a lower bound of Ω(log k)
follows by the construction of Imase and Waxman [12]. Otherwise the adversary
presents a graph G which is defined as follows: The vertex set of G consists of
(disjoint) sets V1 and V2, with |V2| = k(k+1)/2. Partition V2 into

( k(k+1)
2
k

)
sets of

size k each, and for each set define a vertex which is adjacent to those k vertices:
this gives rise to the set V1. No more vertices or edges exist in G. The weight of
each vertex in V1 is α, and each vertex in V2 has unit weight, whereas the weight
of all edges is zero. The adversary will present a nemesis sequence consisting of
vertices in V2, determined by a game against the algorithm. In the first round of
the game, the adversary picks any two vertices in V2 as the first two terminals
in the sequence; the algorithm buys a vertex in V1 to guarantee connectivity. In
each subsequent round, the adversary presents a new terminal, namely a vertex
in V2, which is not adjacent to vertices bought in earlier rounds. The algorithm
then must buy a new vertex in V1 and the adversary repeats the game. Clearly,
the game can go on for k − 1 rounds. At the end of the game, k terminals have
been presented all of which are adjacent to a vertex in V1, hence OPT = α + k.
On the other hand, the algorithm has bought k− 1 vertices in V1, hence its cost
is at least α(k − 1), and in this case the competitive ratio is Ω(min{α, k}).

For the upper bound, we propose an algorithm, denoted by A, which works
in two phases. Let k denote the number of pairs presented by the adversary thus
far, and k the total number of pairs that will be presented eventually (A does not
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know k). The first phase is a greedy phase and lasts for as long as α > k: namely,
the algorithm connects the two terminals in the pair by means of a minimum-
cost path. The second phase begins at the point where k exceeds α, at which
point the algorithm switches to the Berman and Coulston [4] (BC) algorithm
for (edge-weighted) GSP. More precisely, the algorithm treats all edges bought
during the greedy phase as having weight zero (meaning that it already paid for
them). In addition, it ignores vertex weights (or alternatively, treats vertices as
if they have zero weight). We remind the reader that once again, we work on the
path completion graph.

The total cost due to the first phase is clearly min{α, k}OPT . For the second
phase, since the BC algorithm is O(log k)-competitive for GSP, it follows that
the cost of the edges it buys is O(log k)OPT . Observe also that since BC returns
a forest of at most k trees, from the discussion in section 1.3 it follows that at
most 2k vertices of the forest are Steiner vertices. Therefore the total node-cost
of the forest is bounded by the quantity C = 3k ·cmax ≤ 3αk ·cmin. However, the
latter contribution to the cost is in effect only when k ≥ α. Given that in such
case OPT ≥ kcmin ≥ αcmin, we have that C ≤ 3α · OPT = 3 min{α, k} ·OPT
Therefore, the total cost of A is

O(log k ·OPT + min{α, k} ·OPT ) = O(max{min{α, k}, log k} ·OPT ). �

Note: The lower bound of Theorem 3 can be extended to randomized algorithms,
using a somewhat larger graph as part of the adversarial input. We sketch the
proof (and omit certain details). Again, the adversarial input consists of a graph
on vertices V1 ∪ V2, |V1| =

(|V2|
k

)
and for every set S of k vertices in V2 there

is exactly one vertex in V1 adjacent to S (and only S). We require that |V2| ≥
2k2. The edge and vertex weights remain the same. We define a probability
distribution D on the sequence of terminals presented to any fixed deterministic
online algorithm; from Yao’s principle [21], the ratio of the average cost of the
algorithm over the average optimal cost is a lower bound on the competitive ratio
of every randomized algorithm against an oblivious adversary. In particular D
chooses uniformly at random a subset of V2 of cardinality k, in any order. It
follows that every time the deterministic algorithm considers a terminal (except
for the very first one), the probability it has already bought a vertex in V1 which
can guarantee connectivity is at most k

2k2−k2 = 1
k , and hence the probability

that for each of the k − 1 terminals the algorithm must buy a new vertex in V1
is bounded by (1 − 1/k)k−1, thus the average cost of the algorithm is Ω(αk),
while the average optimal cost is still α + k.

3.1 Randomized Online Algorithms for the General Case
(Unbounded Asymmetry)

Theorem 3 suggests that in the case of large asymmetry, namely when α ∈ Ω(k),
the competitive ratio of any deterministic or randomized algorithm is disappoint-
ingly bad. However, the lower bound requires a construction of a graph with a
large number of vertices. In fact, in this section we will show how to achieve a
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better upper bound when the number of vertices in the graph is subexponential
on the total number of terminals. In particular, we present and analyze a ran-
domized algorithm based on the framework of Alon et al. [3], which addresses
broad classes of (edge-weighted) connectivity and cut problems2. We show how
their approach can be extended to a variant of such problems in which nodes as
well as edges are associated with a cost function. In this section we omit proofs
due to space limitations, and only focus on how to adapt/modify the ideas of [3].

We will create an online algorithm for GNWS which consists of two distinct
components. The first component maintains a fractional solution to the problem,
i.e., a feasible weight assignment w for nodes and edges in the graph. Here, a
feasible assignment is such that for any request, i.e., a pair of terminals (ti, tj)
there is a flow from ti to tj of value at least 1, assuming that we treat the weights
of both edges and vertices as capacities3. Note that nodes, and not only edges,
are assigned capacities, in the sense that in any feasible flow the in-flow for
any node cannot exceed the capacity (weight) of the node. When the algorithm
receives a new request, the algorithm will update the weight assignments, by
performing an appropriate weight augmentation. In particular, the algorithm
may increase the weights of certain vertices and/or edges, but it will certainly not
decrease any of the currently assigned weights. This guarantees that after each
request is processed, a feasible fractional solution can be maintained; moreover
this computation is accomplished in an online fashion. Naturally, one seeks a
fractional solution of small cost (c.f., Lemma 2).

The second component of the algorithm is responsible for rounding the frac-
tional solution to an integral one, and is performed during each step (i.e., after
each request appears). This component is largely orthogonal to the first one,
and as demonstrated in [3], randomized rounding can be applied successfully in
a variety of connectivity/cut problems. We show how randomized rounding can
yield an integral solution of cost within a factor of O(log k) from the cost of
the fractional solution maintained by the first component of the algorithm (c.f.,
Lemma 3).

We start by describing the first component of the algorithm. Following [3], we
can assume that all edges and vertices have costs in the interval [1, m2] (here we
are also using the assumption that the graph is connected and hence m ≥ n−1).
Initially the algorithm gives each edge and vertex a fractional weight of 1/m3.
Suppose that a new request (t1, t2) arrives; the algorithm will then update the
weight assignment (potentially increasing certain weights, but not decreasing
any of them). More specifically, if the maximum flow from t1 to t2 is at least
1, we do nothing; otherwise we perform a weight augmentation step as follows.
Find a minimum-weight t1 − t2 cut C, defined as a partition of V in sets S and
V \S which separates t1 and t2. For clarity, we emphasize that the weight of C is

2 [3] is focused on edge-weighted graphs, and the authors claim that the techniques
can be extended to the vertex counterparts of the problems in which only vertices
have costs. Here, we extend their major result to the case where both vertices and
edges are associated with costs.

3 The weights w should not be confused with the costs c of edges and vertices.
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the sum of weights of edges in the cut. Denote by S1 and S2 the subsets of V and
V \S, respectively, for which each vertex in S1 (resp. S2) is incident with at least
one edge in C. For every edge e = (v, u) ∈ C let δe = w(e)/ max{c(e), c(v), c(u)}.
We increase w(e) by δ(e). In addition, for every vertex v ∈ S1 (resp. u ∈ S2) we
increase w(v) (resp. w(u)) by

∑
e=(v,u):e∈C δe (resp.

∑
e=(v,u):e∈C δe). We repeat

the process, with a new weight augmentation step, until the maximum flow from
t1 to t2 is at least 1. At an intuitive level, the augmentation is “balanced” in
the sense that we increase the weights of certain vertices only as much as it is
needed, and a vertex weight is increased proportionally to the weight increase
of incident edges in the cut.

Note that at the end of the weight augmentation step associated with C the
total edge-weight of C does not exceed the total vertex-weight of either S1 or S2.
This guarantees that when the algorithm terminates, all connectivity demands
are satisfied.
Lemma 1. The number of weight augmentations steps performed by the algo-
rithm is O(log m) ·OPTf , where OPTf denotes the cost of the optimal fractional
solution.

Lemma 2. The algorithm is O(log m) competitive for fractional node-weighted
connectivity problems.

The second part of the algorithm involves rounding the feasible fractional solu-
tion (which is maintained at each step) in an online fashion. Recall that when
a request (t1, t2) appears we first compute a fractional, O(log m)-competitive
solution using the algorithm described earlier. The rounding method is simple
and is based on the rounding employed in the context of the multicast problem
in [3]. More specifically, the rounding method involves keeping 2�log(k′ +1)� in-
dependent random variables Xi distributed uniformly in the interval [0, 1]. Here,
k′ denotes the number of terminal pairs served by the online algorithm up to
the current point, which implies that the number of the random variables in-
creases as the algorithm serves more and more requests. Define the threshold θ

as min2�log(k′+1)�
j=1 {Xj}. The algorithm will then update its current integral solu-

tion I by adding in I all edges e and vertices v of the graph with the property
that w(e) ≥ θ and w(v) ≥ θ, i.e., all vertices and edges whose weight exceeds
the current value of the threshold (initially I = ∅).

The following Lemma follows easily using the ideas of Lemma 4.1 in [3]. The
only change in the proof is that we have to account for the cost of the vertices
added in the solution (and not only the edges), but essentially the proof remains
the same.
Lemma 3. Throughout the execution of the algorithm, the expected cost of the
solution which the algorithm maintains is O(log k′ log mOPT ), where OPT is
the cost of the optimal integral solution so far. Furthermore, for any terminal
pair T = (t1, t2) the probability that the algorithm does not allocate a path that
connects t1 and t2 is small, namely 1/k′2.

Lemma 2 and Lemma 3 imply that the randomized algorithm is O(log k
log m)-competitive (for integral solutions), with the condition that if the
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algorithm fails to allocate a path, a path has to be bought explicitly (since
this happens infrequently, the overhead to the total cost is negligible).

4 Concluding Remarks

In this paper we studied the Steiner Tree Problem and Generalized Steiner Prob-
lem at the presence of node and edge weights, and presented upper and lower
bounds on the performance of online and offline algorithms as a function of the
node asymmetry α. Of course, as one may suggest, there are several possible
ways to capture the variation of node weights in the graph; for instance, one
may instead define α as maxv,u∈V {|c(v)− c(u)|}. Or rather we could insists that
the cost of a vertex v is within a factor of at most α from the cost of vertices
adjacent to it, as well as edges incident with it. The latter definition takes into
account, at least in a certain limited way, the cost of edges and is not biased
towards the cost of nodes. It is easy to show that the upper and lower bounds
shown in sections 2 and 3 carry over to the above definitions of asymmetry4.

As argued in the introduction, GNWS reduces to a related variant of the
directed Steiner problem, in which the asymmetry β of edge costs, as defined
in [8], does not exceed α. Thus it would be very interesting to derive better
upper bounds for the edge-asymmetric Steiner tree problem. In particular, can
we show that the sublinear (in terms of k) upper bound of [6] for offline Steiner
trees and forests in directed graphs can be improved assuming a known bound
on the edge asymmetry? Can we get o(β) approximation algorithms? The online
version of this problem has been the topic of [8], but there still exists a gap
between the known upper and lower bounds on the competitive ratio.

Last, since the asymmetric node-weighted and directed Steiner problems are
related, we would like to study the combination of the two, namely the prob-
lem in which bounds on both vertex and edge asymmetry are known. Such a
model would probably capture in a more realistic way practical network design
problems.
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Abstract. We prove that guarding the vertices of a rectilinear polygon
P , whether by guards lying at vertices of P , or by guards lying on the
boundary of P , or by guards lying anywhere in P , is NP-hard. For the
first two proofs (i.e., vertex guards and boundary guards), we construct
a reduction from minimum piercing of 2-intervals. The third proof is
somewhat simpler; it is obtained by adapting a known reduction from
minimum line cover.

We also consider the problem of guarding the vertices of a 1.5D rec-
tilinear terrain by vertex guards. We establish an interesting connection
between this problem and the problem of computing a minimum clique
cover in chordal graphs. This connection yields a 2-approximation algo-
rithm for the guarding problem.

1 Introduction

Problems dealing with visibility coverage are often called art-gallery problems.
The “classical” art-gallery problem is to place guards in a polygonal region, such
that every point in the region is visible to one (or more) of the guards. More
formally, given a domain P , one needs to find a set G of points in P , of minimum
cardinality, such that every point in P is seen by at least one of the points, called
guards, in G. Often there are some restrictions on the location of the guards; e.g.,
guards may lie only at vertices (in which case they are called vertex guards).

The classical art-gallery problem, where guards may lie anywhere in the poly-
gon or only at vertices, is known to be NP-hard, even if the underlying domain is
a simple polygon [24, 19, 1]. Moreover, Eidenbenz et al. [11, 12] have shown that
these problems are APX-hard. Schuchardt and Hecker [26] proved that these
problems remain NP-hard if we restrict our attention to (simple) rectilinear
polygons. Their proof is based on a reduction from 3SAT.

In this paper we study two art-gallery problems. The first is the problem of
guarding the vertices of a rectilinear polygon (gvrp) P . We consider three ver-
sions of this problem. In the first version guards may lie anywhere on the bound-
ary of P but not in the interior of P , in the second version guards may lie only at
vertices of P , and in the third version guards may lie anywhere in P . We prove
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that all three versions remain NP-hard. For the first two proofs (i.e., boundary
guards and vertex guards), we construct a reduction from minimum piercing of
2-intervals, where a 2-interval is the union of two disjoint line-segments on the
real line. For the third proof, we construct a reduction from minimum line cover.
(Note that minimum line cover has been used previously in hardness proofs for
art-gallery problems by, e.g., Brodén et al. [4] and Joseph Mitchell. However, in
order to use it in our setting, one needs sophisticated gadgets.)

The second problem that we study is that of guarding the vertices of a 1.5D
rectilinear terrain by vertex guards. (A 1.5D rectilinear terrain is defined by an
x-monotone chain T of horizontal and vertical line segments; two vertices u, v of
T see each other, if the line segment uv does not pass below T .) This problem
arises when one wants, e.g., to place security cameras along a wall. We establish
an interesting connection between this problem and the problem of computing a
minimum clique cover in chordal graphs (see below for the definition of chordal
graph). This connection yields a 2-approximation algorithm for the guarding
problem.

Recently Ben-Moshe et al. [2] presented a constant-factor approximation al-
gorithm for computing a set of vertex guards for a 1.5D terrain that is defined
by a strictly x-monotone polygonal chain. Their algorithm, however, cannot be
applied (at least not immediately) to a 1.5D rectilinear terrain, since strict x-
monotonicity is necessary at several places in their work. Moreover, the constant
of approximation of their algorithm, as well as of the subsequent, purely theo-
retical, algorithm of Clarkson and Varadarajan [8], is big. We also note that the
idea of using perfect graph theory in the context of guarding is not new; see,
e.g., [21].

More Related Work. Combinatorial art-gallery problems have been studied
for three decades; see, e.g., [23, 17, 25, 27] for surveys. The classical combinatorial
result, the “art gallery theorem”, states that �n/3� guards are sufficient and
sometimes necessary to guard an n-vertex simple polygon [7]. Combinatorial
results on the number of guards needed for various forms of guarding on terrains
are given in [3].

Researches have mostly concentrated on obtaining good approximations.
Ghosh [15] gave an O(log n)-approximation for optimal guarding of a polygon by
vertex guards, based on standard set cover results. Recent work [10, 16] has fo-
cused on methods that efficiently apply the Brönnimann-Goodrich technique [5].
Efrat and Har-Peled [10] obtain an O(log k∗)-approximation algorithm for sim-
ple polygon guarding with vertex guards, using time O(n(k∗)2 log4 n), where k∗

is the optimal number of vertex guards. Their technique can be applied to non-
vertex guards, lying at points of a dense grid, adding a factor polylogarithmic
in the grid density to the time bound. (No approximation algorithm is known if
the guards are completely unrestricted and every point in the polygon must be
guarded.) Their results apply also to polygons with holes and to 2.5D terrains,
still with polylogarithmic approximation factors.

Very recently, Nilsson [22] presented a constant-factor approximation algo-
rithm for guarding a monotone polygon. Using this algorithm, he also obtains
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an O((c∗)2)-algorithm for guarding a rectilinear polygon, where c∗ is the size of
an optimal guarding set.

Finally, for 1.5D terrains (i.e., for an x-monotone polygonal chain), Chen et
al. [6] claim that by modifying the hardness proof of [24] one can show that the
problem is NP-hard; details are omitted and are still to be verified.

2 gvrp Is NP-Hard

In this section we show that all three versions of gvrp are NP-Hard. We begin
with the version where guards may lie only on the boundary of the polygon.

2.1 Guards May Lie Only on the Boundary

We show that if the guards are restricted to lie on the boundary of the polygon,
then gvrp is NP-hard. We construct a reduction from minimum piercing of
2-intervals.

The 2-Interval Piercing Problem. A 2-interval o is the union of two line-
segments ta and tb on the x-axis, that can be separated by a vertical slab of
constant width c0. The minimum 2-interval piercing problem is defined as follows.
Let O be a set of n 2-intervals. Find a set P of points on the x-axis, such that
(i) for each 2-interval o ∈ O there exists a point p ∈ P that pierces o (i.e., that
lies in o), and (ii) P is as small as possible. Let D2IP denote the corresponding
decision problem, that is, given O and an integer k > 0, decide whether there
exists a piercing set for O of cardinality k. In the full version of this paper we
show that D2IP is NP-hard, although we suspect that it is well known.

Reduction from D2IP. We first present the gadget that we shall use. We
call it d-gadget (short for double gadget), see Fig. 1. Any guard below the line
l is local. Some of the vertices of a d-gadget can only be guarded by a local
guard (e.g., vertices x,y, and z). It is easy to see that in order to guard all
these vertices one needs at least 3 local guards. However, any 3 local guards that

w

ab

vu

x

z

y

l

P

Fig. 1. A d-gadget
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guard all these vertices cannot see both a and b. Moreover, one can locate 3 local
guards on the boundary of a d-gadget, such that all the vertices of the d-gadget
are guarded except for either a or b. (E.g., locate 3 guards at the vertices u, v,
and w, respectively.) Thus, another guard is required in order to guard all the
vertices of a d-gadget. This guard does not have to be local; it can lie anywhere
on the portion of the boundary of the polygon that is seen from the unguarded
vertex a or b.

t

b a
l

at bt

Fig. 2. The rectilinear polygon P . Each of the “holes” on the bottom represents a
d-gadget.

We define a reduction function f from D2IP to gvrp with boundary guards.
Given an instance {O, k} of D2IP, f constructs a rectilinear polygon P , such
that the vertices of P can be guarded by 3|O|+ k boundary guards if and only
if there is a piercing set for O of size k. In particular, f constructs a rectilinear
polygon P with |O| d-gadgets (see Fig. 2). The length of the top edge t of P is
determined by the 2-intervals in O. For each 2-interval o ∈ O, o = {ta, tb}, f

a b
rlrl

ab

a abt b
t

Fig. 3. The portion of t visible from a (resp. b) can be adjusted by setting the auxiliary
lines al and ar (resp. bl and br)
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constructs a d-gadget g below the line l. f locates g and adjusts it, so that the
vertex a (resp. b) is (boundary) seen from outside of g by any point on ta (resp.
tb) and only by these points. Figure 3 shows such a construction. The portion of
t that is visible from vertex a (resp. b) can be controlled by setting the auxiliary
lines al and ar (resp. bl and br). (Recall that the distance between ta and tb is
at least c0.)

Lemma 1. The rectilinear polygon P that is obtained can be guarded by 3|O|+k
boundary guards if and only if there exists a piercing set for O of size k.

Proof. Assume first that there exists a piercing set for O of size k. We describe
how to guard the vertices of P with 3|O| + k boundary guards. For each point
p in the piercing set, we locate a guard at p (which is of course on t). By the
construction above, these k guards see at least one of the vertices ga,gb in each
of the |O| d-gadgets. In addition, these guards see all vertices of P that are
not below the line l. Finally, as explained above, one can locate, in each of the
d-gadgets, 3 local (boundary) guards that see all the rest of the vertices of this
d-gadget. Hence, the total number of guards is 3|O|+ k.

Assume now that the vertices of P can be guarded by 3|O| + k boundary
guards. We show a piercing set for O of size k. As we argued above, each d-
gadget requires at least 3 local guards. For each d-gadget g that is guarded by
more than 3 local guards, we replace these local guards by 3 local boundary
guards that see all the vertices of g except for the vertex ga, and by a guard in
ta. Hence, we have at most k guards that are located on the top edge t. These
guards constitute a piercing set for O, since, for each d-gadget g, at least one
of the vertices ga, gb is seen by a guard on t. In other words, for each 2-interval
o ∈ O, there is a guard on t that lies in o.

The following theorem summarizes the result of this subsection.

Theorem 1. gvrp with boundary vertices is NP-hard.

2.2 Guards May Lie Only at Vertices

We show that if the guards are restricted to lie at vertices of the polygon, then
gvrp remains NP-hard. As in the previous subsection (boundary guards), we
construct a reduction from D2IP.

Reduction form D2IP. In addition to d-gadgets, we shall also use ear gadgets,
see Fig. 4. The vertices of an ear gadget can be guarded by a single guard that is
located in the shaded rectangle (e.g., by a guard that lies at one of the vertices
u or v). Moreover, any set of guards that sees all the vertices of an ear gadget
must include a guard in the shaded rectangle.

We define a reduction function f from D2IP to gvrp with vertex guards.
Given an instance {O, k} of D2IP, f constructs a rectilinear polygon P , such
that the vertices of P can be guarded by m + 3|O|+ k vertex guards if and only
if there is a piercing set for O of size k, where m ≤ 2|O| is the number of different
right endpoints of the line segments corresponding to the 2-intervals in O.
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v

u

x

t

Fig. 4. An ear gadget

t

Fig. 5. An ear gadget is attached at each right endpoint of a segment on t

f constructs a rectilinear polygon with |O| d-gadgets, as in Sect. 2.1. In ad-
dition (see Fig. 5), f attaches an ear gadget at each right endpoint of a line
segment on t (i.e., at each right endpoint of a line segment of a 2-interval in O).

Observation. Let x be any point on t that pierces a subset of the line segments
(corresponding to a subset of O). Then, we may move x to the first vertex to its
right (which is a vertex of an ear gadget), without exiting any of the segments
in the subset.

Lemma 2. The rectilinear polygon P that is obtained can be guarded by m +
3|O|+ k vertex guards if and only if there exists a piercing set for O of size k.

Proof. Assume first that there exists a piercing set for O of size k. One can
locate 3|O| + k guards, as described in the proof of Lemma 1, such that these
guards see all vertices of P except for two or more vertices in each of the ear
gadgets. The 3|O| local guards can be placed at vertices. Let p be one of the k
guards. According to the observation above, we can move p to the first vertex to
its right without “losing” any of the vertices ga,gb that it sees. Thus, by placing
m additional guards, one per ear gadget, we obtain a set of vertex guards that
sees all the vertices of P .

Assume now that the vertices of P can be guarded by m + 3|O| + k vertex
guards. We have at least one guard in each ear gadget that cannot see any vertex
below the line l. Hence, as explained in Lemma 1, we have a piercing set for O
of size k.

The following theorem summarizes the result of this subsection.

Theorem 2. gvrp with vertex guards is NP-hard.
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2.3 Guards May Lie Anywhere

We show that if the guards may lie anywhere in the polygon, i.e., both in the
interior and on the boundary, then gvrp is NP-hard. We construct a reduction
from the minimum line cover problem (MLCP).

The Minimum Line Cover Problem. The minimum line cover problem is
defined as follows. Let L = {l1, ..., ln} be a set of n lines in the plane. Find a set
P of points, such that for each line l ∈ L there is a point in P that lies on l, and
P is as small as possible. Let DLCP denote the corresponding decision problem,
that is, given L and an integer k > 0, decide whether there exists a cover of
size k. DLCP is known to be NP-hard [20]. Moreover, MLCP was shown to be
APX-hard [4, 18].

Reduction from DLCP. We first present the gadget that we shall use. We
call it s-gadget (short for single gadget), see Fig. 6. Some of the vertices of a
s-gadget (e.g., vertices x and y) can only be guarded by a local guard (i.e., by a
guard below the line l through the two top vertices in Fig. 6). It is easy to see
that in order to guard all these vertices one needs at least one local guard, and
any single local guard that sees all these vertices cannot see a.

We define a reduction function f from DLCP to gvrp with guards anywhere.
Given an instance {L, k} of DLCP, f constructs a rectilinear polygon P , such
that the vertices of P can be guarded by n + k guards if and only if there is a
cover for L of size k. Let R be a large enough rectangle, such that all the vertices
of the arrangement of L lie in the interior of R. For each line l ∈ L, f constructs
a s-gadget g at one of the endpoints of the line segment l∩R, in such a way that
the vertex a of g can be guarded from outside g only from points on l ∩ R, see
Fig. 7. Let P be the rectilinear polygon that is obtained.

Lemma 3. The rectilinear polygon P that is obtained can be guarded by n + k
guards if and only if there is a cover for L of size k.

l

v

ax

y

Fig. 6. A s-gadget
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Fig. 7. The rectilinear polygon P . Each of the “holes” on the bottom and on the right
represents a s-gadget.

Proof. Follows immediately from the construction above.

The following theorem summarizes the result of this subsection.

Theorem 3. gvrp (with guards anywhere) is NP-hard.

3 Guarding the Vertices of a 1.5D Rectilinear Terrain

A 1.5D terrain (or simply, a terrain) T is a polygonal chain specified by n
vertices V (T ) = {v1, . . . , vi = (xi, yi), . . . , vn}, such that xi ≤ xi+1 (often strict
monotonicity is assumed). The vertices induce n− 1 edges E(T ) = {e1, . . . , ei =
(vi, vi+1), . . . , en−1}. Let p = (px, py) and q = (qx, qy) be two points on T . We
say that p sees q (and q sees p) if the line segment pq lies above T , or, more
precisely, does not intersect the open region that is bounded from above by T
and from the left and right by the downwards vertical rays emanating from v1
and vn.

A terrain T is a 1.5D rectilinear terrain (or in short, a r-terrain) if each edge
e ∈ E(T ) is either horizontal or vertical. A vertex vi of a r-terrain T is convex
(resp. reflex ) if the angle formed by the edges ei−1 and ei above T is of 90 (resp.
270) degrees. In r-terrains, we distinguish between two types of convex vertices
— left convex and right convex. A convex vertex is left (resp. right) convex if

b

c

a

Fig. 8. A r-terrain; a is reflex, b is left convex, and c is right convex; a and c see each
other, but b and c do not
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ei−1 (resp. ei) is vertical. We denote the set of left convex vertices by Vlc(T )
and the set of right convex vertices by Vrc(T ). For example, in Fig. 8 vertex a
is reflex, vertex b is left convex, and c is right convex.

A subset of vertices G ⊆ V (T ) guards a subset of vertices V ′ ⊆ V (T ) if each
of the vertices in V ′ is seen by at least of one the vertices (guards) in G.

3.1 Some Properties of Terrains and r-Terrains

In this section we explore some of the geometric properties of terrains and r-
terrains. The following claim was stated and proved in [2].

Claim 1. Let a,b,c and d be four points on a terrain T , such that ax < bx <
cx < dx, where qx is the x-coordinate of point q. If a sees c and b sees d, then a
sees d.

One of the main differences between terrains and r-terrains is presented in the
following trivial claim.

Claim 2. Let T be a r-terrain, v ∈ Vrc(T ), and p a point on T . If p sees v, then
px ≤ vx.

Clearly this is false for general terrains. Other unique properties of r-terrains are
stated below.

Claim 3. If G ⊆ V (T ) guards a subset V ′ ⊆ V (T ), then there exists a subset
Ĝ ⊆ V (T ) of reflex vertices, such that Ĝ guards V ′ and |Ĝ| ≤ |G|.
Proof. Replace each left convex vertex in G by the vertex immediately preceding
it in V (T ), and replace each right convex vertex in G by the vertex immediately
succeeding it in V (T ).

Claim 4. If G ⊆ V (T ) guards all the convex vertices of a r-terrain T (i.e., G
guards the set Vlc(T ) ∪ Vrc(T )), then G guards all the vertices of T (and all the
vertical edges of T ).

Proof. Let v ∈ V (T ) be a reflex vertex. Then, at least one of its two neighboring
vertices u must be convex. It is easy to see that the guard in G that sees u must
also see v (and the vertical edge (u, v)).

Lemma 4. Let u, v and w be three right convex vertices of a r-terrain T , such
that ux < vx < wx. If there exist two vertices g1, g2 ∈ V (T ), such that g1 sees
both u and v and g2 sees both u and w, then there exists a vertex that sees all
three vertices u,v and w. Moreover, the one between g1 and g2 that precedes the
other in the sequence of vertices defining T is such a vertex.

Proof. We first show that if g1 lies to the left of g2, then g1 sees w. Consider the
four vertices g1, g2, v and w. We know that g1x < g2x < vx < wx. Since g1 sees v
and g2 sees w, we conclude by Claim 1 that g1 also sees w. Assume now that g2
lies to the left of g1. If g1 lies to the left of u, then we may conclude that g2 also
sees v, again by Claim 1. If, however, g1 lies directly above u, then the vertices
u, g1, and v are necessarily consecutive in the sequence of vertices defining T ,
and it is easy to see that in this case g2 must also see v. Finally, if g1x = g2x,
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then the higher of the two (that is also the one that precedes the other in the
sequence of vertices defining T ) also sees the third vertex.

3.2 Guarding the Vertices of a r-Terrain

Let T be a r-terrain. We present an algorithm that computes a set of (vertex)
guards G ⊆ V (T ) for V (T ) (i.e., each vertex in V (T ) is seen by a guard in G),
and prove that G is a 2-approximation, that is, |G| ≤ 2m, where m is the size of
an optimal set of (vertex) guards for V (T ).

The algorithm computes optimal guard sets Gr for Vrc(T ) and Gl for Vlc(T ),
and then outputs the set G = Gr ∪Gl. According to Claim 4, G is a guard set for
V (T ). Moreover, since |Gr |, |Gl| ≤ m, G is a 2-approximation.

It remains to describe how to compute an optimal guard set for Vrc(T ) (alter-
natively, Vlc(T )). Although the final algorithm for computing such a guard set is
simple and reminiscent of one of the base-case algorithms in [2], it is interesting,
since it is the product of a connection that we discover between the problem
of computing an optimal guard set for Vrc(T ) and the problem of computing a
minimum clique cover for an appropriate chordal graph.

Several definitions are needed before we can proceed. A graph G = (V, E)
is chordal if every cycle of length four or more has a chord, that is, an edge
that joins two non-consecutive vertices of the cycle. A clique cover of G is a
collection V1, . . . , Vk of subsets of V , such that each of them induces a complete
subgraph of G (i.e., a clique) and V1 ∪ · · · ∪ Vk = V . In general, the minimum
clique cover problem (i.e., compute a clique cover of minimum cardinality) is
NP-hard [13]. However, if G is chordal, then a minimum clique cover can be
found in polynomial time [14].

We now construct a graph Gr over the vertex set Vrc(T ). Draw an edge
between two vertices u, v ∈ Vrc(T ) if and only if there exists a vertex g ∈ V (T )
that sees both u and v. Next we claim that Gr is chordal.
Lemma 5. Gr is chordal.

Proof. Let C = {vi1 , . . . , vik
} be a cycle of length at least four in Gr. Let v be

the leftmost vertex in C and let v′, v′′ ∈ C be its two adjacent vertices in the
cycle. We know that there exists a vertex guard g1 that sees both v and v′, and
a vertex guard g2 that sees both v and v′′. Moreover, since v is right convex (see
Claim 2), g1 and g2 cannot lie to the right of v. Therefore, by Lemma 4, there
exists a vertex guard g that sees all three vertices v, v′, v′′, implying that C has
a chord, namely, there exists an edge in Gr between v′ and v′′.

The following lemma, together with the fact that a minimum clique cover of Gr

can be computed in polynomial time, implies a polynomial time algorithm for
computing an optimal guard set for Vrc(T ).

Lemma 6. A subset V̂ of Vrc(T ) induces a clique of Gr if and only if there
exists a vertex guard in V (T ) that sees all the vertices in V̂ .

Proof. If u ∈ V (T ) sees all the vertices in a subset V̂ of Vrc(T ), then, by the
definition of Gr, V̂ induces a clique of Gr. Assume now that V̂ ⊆ Vrc(T ) induces
a clique of Gr. If |V̂ | = 2, then, by definition, there exists a vertex in V (T ) that
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sees both vertices in V̂ . Assume therefore that |V̂ | ≥ 3. Let u be the leftmost
vertex, in the sequence of vertices defining T , that sees both the leftmost vertex
v1 in V̂ and another vertex vi in V̂ . Let vj be any other vertex in V̂ . Then since
V̂ induces a clique, there must be a vertex u′ ∈ V (T ) that sees both v1 and vj .
According to Lemma 4 u must also see vj .

A Direct Algorithm for Computing Gr. The algorithm for computing a
minimum clique cover of a chordal graph [14], is based on the following two
properties of chordal graphs. (i) Every chordal graph has a simplicial vertex ;
i.e., a vertex v whose set of adjacent vertices forms a clique in the graph [9].
(ii) An induced subgraph of a chordal graph is chordal. Thus, given a chordal
graph G, one can compute a minimum clique cover by repeating the following
step until done: Find a simplicial vertex in the current subgraph (initially G),
and remove it and its adjacent vertices from the subgraph.

Let S be the set of simplicial vertices that were found during the execution
of the algorithm. On the one hand, S is an independent set of vertices, hence,
a minimum clique cover of G is of size at least |S|. On the other hand, each of
the |S| subsets that were removed during the execution of the algorithm forms
a clique in G. Thus, these subsets constitute a minimum clique cover of G.

We now describe a direct algorithm for computing Gr, an optimal guard set
for Vrc(T ). Let v be the leftmost vertex in Vrc(T ), and let Cv ⊂ Vrc(T ) be the
subset of vertices w for which there exists a guard in V (T ) that sees both v and
w. It follows (similar to the proof of Lemma 6) that there exists a single guard
in V (T ) that sees all the vertices in {v} ∪Cv. We thus find such a guard u, and
repeat the above step for the remaining unguarded vertices in Vrc(T ). Let L be
the set of left vertices that were found during the execution of the algorithm.
Then, as in the algorithm for computing a minimum clique cover, at least |L|
guards are required to guard Vrc(T ), and since the algorithm finds exactly |L|
guards, it is optimal.

Finally, it is easy to implement the above guarding algorithm in O(n2) time.
The following theorem summarizes the result of this subsection.

Theorem 4. Let T be a 1.5D rectilinear terrain. One can compute in O(n2)
time a set of vertex guards G for V (T ) (and for all vertical edges of T ), such
that |G| ≤ 2m, where m is the size of an optimal set of vertex guards for V (T ).

References

1. A. Aggarwal. The Art Gallery Theorem: Its Variations, Applications and Algorith-
mic Aspects. Ph.D. thesis, Johns Hopkins University, 1984.

2. B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A constant-factor approximation
algorithm for optimal terrain guarding. In Proc. 16th ACM-SIAM Sympos. on
Discrete Algorithms, pages 515–524, 2005.

3. P. Bose, T. Shermer, G. Toussaint, and B. Zhu. Guarding polyhedral terrains.
Comput. Geom. Theory Appl., 7:173–185, 1997.

4. B. Brodén, M. Hammar, and B. J. Nilsson. Guarding lines and 2-link polygons is
APX-hard. In Proc. 13th Canad. Conf. Comput. Geom., pages 45–48, 2001.



On Guarding Rectilinear Domains 231
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Abstract. We present two algorithms that compute constant factor ap-
proximations of a minimum convex partition of a set P of n points in the
plane. The first algorithm is very simple and computes a 3-approximation
in O(n log n) time. The second algorithm improves the approximation
factor to 30

11 < 2.7273 but it is more complex and a straight forward im-
plementation will run in O(n2) time. The claimed approximation factors
are proved under the assumption that no three points in P are collinear.
As a byproduct we obtain an improved combinatorial bound: there is
always a convex partition of P with at most 15

11n − 24
11 convex regions.

1 Introduction

Let P denote a set of n points in the plane such that no three points in P are
collinear. By CH(P ) we denote the convex hull of P . A convex partition of P is a
set E of straight line segments with endpoints in P , called edges, such that edges
do not cross each other and partition CH(P ) into a set R(E) of empty convex
regions. A region is empty if it does not contain a point of P in its interior. An
example of a convex partition is given in Figure 1. The points in the input point
set are drawn as solid disks. Note that the edges of CH(P ) are contained in
every convex partition of P .

The Minimum Convex Partition problem (MCP) is to compute a convex par-
tition E of P such that the number of regions inR(E) is minimum. This problem
appears in the following context. We want to set up a network connecting the
points in P . If the edges used as links in the network form a convex partition
of P then a simple randomized algorithm for oblivious routing can be used as
shown by Bose et al. [2]. If we want to minimize the number of links used to
form the network on P but still be able to use the simple routing algorithm we
could build the network according to a minimum convex partition of P .

There are a number of exact algorithms for MCP. Fevens et al. have shown
that this problem can be solved in O(n3h+3) time if the points in P lie on h
nested convex hulls [4]. Grantson and Levcopoulos presented a fixed-parameter
algorithm for MCP running in O(k6k−5216kn) time [5]. There is also a fixed-
parameter algorithm for this problem running in O(2kk3n3 + n log n) time [9].
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(a) (b)

Fig. 1. A point set and a convex partition of this point set

The parameter k in both algorithms is the number of inner points in P , which
are the points in P lying in the interior of CH(P ).

We are neither aware of a polynomial time exact algorithm nor of a proof of
NP-hardness for MCP. However, Lingas [7] has shown that the related problem
of partitioning a polygon with n vertices by diagonals into a minimum number
of convex pieces is NP-hard for polygons with holes. For polygons without holes
Keil and Snoeyink give an O(n3) time algorithm [6].

We are also not aware of any approximation algorithms for MCP. It seems the
only result into this direction is a combinatorial bound derived by Neumann-Lara
et al. [8]: there is always a convex partition of P with at most 10

7 n− 18
7 convex

regions. Their inductive proof can be turned into an O(n2) time algorithm to
find such a convex partition but it is not analyzed with respect to its properties
as a possible approximation of a minimum convex partition of P .

We will present two approximation algorithms for MCP. Note that the exact
algorithms mentioned above can all deal with input point sets containing three
or more collinear points. Our algorithms will also compute a convex partition
for such point sets. But the number of convex regions in the resulting partition
might fail to be within the claimed approximation factor. Our paper is structured
as follows. In Section 2 we give a lower bound on the number of convex regions
in a minimum convex partition. In Section 3 we show that MCP admits a simple
3-approximation algorithm running in O(n log n) time. In Section 4 we show
that building on the ideas of Neumann-Lara et al. [8] it is possible to give a
30
11 -approximation algorithm running in O(n2) time. We conclude in Section 5.

2 A Lower Bound

In this section we want to bound the number of convex regions in a minimum
convex partition of P from below. We will refer to the vertices of CH(P ) also
as outer points. Note that there are n− k outer points in P where k, as before,
is the number of inner points in P . We will assume that k ≥ 3. For k ∈ {0, 1, 2}
the problem is easy and the algorithm to be presented in Section 3 will compute
a minimum convex partition of P .

Let CHin(P ) denote the convex hull of the inner points in P . First we classify
the vertices of CHin(P ). Let v be a vertex of CHin(P ) and u and w its neighbor-
vertices. Let Hw be the half plane that is bounded by the straight line through
u and v and that does not contain w. Similarly, let Hu be the half plane that
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u
v

w

q

u

v
w

(a) (b)

Fig. 2. Types of vertices of the convex hull of the inner points

is bounded by the straight line through v and w and that does not contain u.
Vertex v is of type (a) iff Hu ∩Hw contains an outer point q of P . An example
is given in Figure 2(a). Vertex v is of type (b) iff Hu ∩Hw does not contain any
outer point of P . An example is given in Figure 2(b). Note that if vertex v is of
type (a) then there is at least one edge connecting v to an outer point in every
convex partition of P . Similarly, if vertex v is of type (b) then there are at least
two edges connecting v to outer points in every convex partition of P . Let a and
b denote the number of vertices of CHin(P ) of type (a) and (b), respectively.

Lemma 1. For every convex partition E of P holds k
2 + b + a

2 + 1 ≤ |R(E)|.

Proof. Let E be a convex partition of P . We count the number of edges in E
incident to each point in P . Every outer point has at least two incident edges
in E that are part of the boundary of CH(P ). In addition there are in total at
least a + 2b edges incident to outer points that connect them to inner points
that are vertices of CHin(P ). Since every region in R(E) is convex and no three
points in P are collinear every inner point has at least three incident edges
in E. Thus, the sum of the number of incident edges in E over all points in
P is at least 2(n − k) + 3k + a + 2b = 2n + k + a + 2b. This gives us |E| ≥
n+a/2+ b+k/2. Plugging this into the Eulerian relation 1 = |P |− |E|+ |R(E)|
we obtain 1 + a/2 + b + k/2 ≤ |R(E)|. �

Note that in the proof we used the assumption that no three points in P are
collinear. Collinear points can decrease the number of convex regions in a min-
imum convex partition below the bound in Lemma 1. In Figure 3(a) we give
an example. Furthermore our lower bound is almost tight. This can be seen by
arranging n points on a slightly perturbed (to avoid collinearities) hexagonal

(a) (b)

Fig. 3. Examples illustrating the remarks after Lemma 1
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grid. This is indicated in Figure 3(b). As the number of points grows, k/n tends
to 1 and every inner point has exactly three incident edges.

3 A Simple 3-Approximation Algorithm

We first give a tight combinatorial upper bound on the number of convex regions
in a minimum convex partition of P . What we need in order to relate it to the
lower bound in Lemma 1 is an upper bound in terms of k. The next lemma
states such an upper bound.

Lemma 2. There is a convex partition E of P such that |R(E)| ≤ 3
2k + 3

2 .

Proof. The proof is by induction on the number k of inner points in P .
If k = 0 then the set of edges of CH(P ) is a convex partition of P and it has

one convex region. Thus the upper bound holds for k = 0.
If k = 1 let q denote the single inner point in P . We triangulate the set of

outer points P \{q} arbitrarily. There is a unique triangle D in this triangulation
that contains the point q in its interior. We obtain a convex partition E of P
by adding to the set of edges of CH(P ) the three edges connecting q with the
vertices of triangle D. This is indicated in Figure 4(a). Since |R(E)| = 3 the
upper bound holds for k = 1.

Now we consider the case k ≥ 2 and suppose the upper bound holds for every
set of points with less than k inner points. As before, let CHin(P ) denote the
convex hull of the inner points in P . We consider an arbitrary edge e of CHin(P ).
Without loss of generality we can assume that edge e is horizontal. Then let p1
denote the left endpoint of e and p2 the right endpoint of e. Let L(e) denote the
horizontal straight line that contains e. Again without loss of generality we can
assume that CHin(P ) is contained in the half plane above L(e). The straight
line L(e) intersects one edge f1 of CH(P ) to the left of point p1 and another
edge f2 of CH(P ) to the right of p2. The endpoint of edge fi lying above L(e) is
denoted by qi, the endpoint below L(e) by ri, i ∈ {1, 2}. The situation is shown
in Figure 4(b) where CHin(P ) is indicated by shading.

Now we consider a ray R emanating from point q1 and containing edge f1. We
rotate R counterclockwise around q1 until it is tangent to CHin(P ) at a point
t1. Similarly we obtain a point t2: A ray emanating from point q2 and containing
edge f2 is rotated clockwise around q2 until it is tangent to CHin(P ). Now we
have a convex chain C that goes from q1 to t1 then follows the boundary of

q
D

(a)

e

q1

q2

r1

r2

t1 t2p1 p2
e

f2

f1
L(e)

q1

q2

r1

r2

p1 p2

(b) (c)

Fig. 4. Proof of the upper bound
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(a) (b)

Fig. 5. Tightness of the upper bound

CHin(P ) from t1 over p1 and p2 to t2 and from there it goes to q2. This convex
chain C together with the part of the boundary of CH(P ) that we traverse by
walking from q2 back to q1 avoiding edges f1 and f2 forms a convex polygon
Q. The situation is indicated in Figure 4(c). The convex polygon Q is drawn
shaded.

Now suppose there are l inner points in P that lie on the convex chain C.
Then there lie k − l points of P in the interior of Q. Since l ≥ 2 we can use the
induction hypothesis and conclude that there exists a convex partition for the
vertices of Q and the points of P in the interior of Q with at most 3

2 (k − l) + 3
2

convex regions. By connecting every inner point on C from t1 to p1 with r1
and similarly every inner point on C from p2 to t2 with r2 we obtain a convex
partition of P with at most 3

2 (k− l)+ 3
2 + l+1 = 3

2k+ 3
2 −

1
2 l+1 convex regions.

Since l ≥ 2 this is at most 3
2k + 3

2 . �

Note that the upper bound in Lemma 2 is almost tight in the sense that there
are point sets with k inner points such that every convex partition of this point
set has at least 3

2k + 1 convex regions. To see this we consider a convex polygon
T with k edges. Then we place one point very close to the midpoint of each edge
of T in the interior of T . The construction is indicated in Figure 5(a). Now the
vertices of T and the points placed close to the edges of T form a point set with
n = 2k points and k of these points are inner points. All the inner points are
vertices of the convex hull of the inner points. If we place each inner point close
enough to the corresponding edge of T then every vertex of the convex hull of
the inner points will be of type (b). Hence, by Lemma 1 every convex partition
of the constructed set of points will have at least k/2 + k + 1 = 3

2k + 1 convex
regions.

Note that Arkin et al. [1] used a similar construction to show that their
combinatorial bound in terms of k on the so called reflexivity of P is tight. It
seems that tight bounds in terms of n are much more difficult to prove both for
convex partitions and the reflexivity of P . The inductive proof of Lemma 2 can
easily be turned into an algorithm.

Corollary 1. We can compute a 3-approximation of a minimum convex parti-
tion of P in O(n log n) time.

Proof. By Lemma 1, since a ≥ 0 and b ≥ 0, we have that every convex partition
of P induces at least k

2 +1 convex regions. According to Lemma 2 there is always
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a convex partition E of P with |R(E)| ≤ 3
2k + 3

2 . Now 3(k
2 + 1) ≥ 3

2k + 3
2 and

hence E is a 3-approximation.
In order to achieve O(n log n) running time we first compute the nested convex

hulls of P . This can be done in O(n log n) time with an algorithm by Chazelle
[3]. Having computed the nested convex hulls of P all the computation in one
recursive step of the algorithm, except computing the edges of the partition
found in this step, can be done in O(log n) time based on binary search. Since
each edge of the convex partition computed is output only once, the total time
needed for output is in O(n). This yields a total running time in O(n log n). �

4 Improving the Approximation Factor

As in Section 3 we start with a combinatorial upper bound on the number of
convex regions in a minimum convex partition of P . To exploit the full power of
the lower bound in Lemma 1 we tried to find an upper bound that in addition
to k also brings a and b into play. We will assume k ≥ 3.

Lemma 3. There is a convex partition E of P such that |R(E)| ≤ a + 2b +
15
11k − 24

11 .

Proof. The basic idea is to first find a good convex partition for the inner points
in P and then to partition the region A between the boundary of the convex
hull of the inner points and the boundary of the convex hull of P . In Figure 6(a)
we have a convex partition of the inner points. It is not hard to see that we can
partition the region A into a + 2b convex regions by adding one or two suitable
edges incident to each vertex of type (a) and b, respectively. An example is given
in Figure 6(b). Hence, it remains to find a convex partition for the inner points
with at most 15

11k − 24
11 convex regions. This can be done according to Lemma

4. Plugging in the upper bound of Neumann-Lara et al. would yield at most
10
7 k − 18

7 convex regions. �

Lemma 4. For every set P of n points in the plane there is a convex partition
E such that |R(E)| ≤ 15

11n− 24
11 .

Proof. Our general approach is to show an upper bound of the form αn − β
with α ≥ 1 and β ≥ 0. We will use induction on n. The best values for α and
β, namely α = 15

11 and β = 24
11 , are determined by a set of inequalities derived

(a) (b)

A

Fig. 6. The basic idea for the proof of the upper bound
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Fig. 7. The general idea of our construction

in the subsequent argumentation. For 3 ≤ n ≤ 8 we use the upper bound of
Neumann-Lara et al. and obtain the following inequalities. This forms the basis
of our inductive proof.

3α− β ≥ 1 4α− β ≥ 3 5α− β ≥ 4
6α− β ≥ 6 7α− β ≥ 7 8α− β ≥ 8 (1)

Now suppose that n ≥ 9. If the convex hull of P has more than three vertices
we employ the same argument as Neumann-Lara et al. [8]: We split the point set
by a diagonal d into two subsets P1 and P2 as shown in Figure 7(a). Let ni denote
the number of points in Pi. Then by the induction hypothesis we have a convex
partition for Pi with at most αni−β convex regions. We glue them together along
diagonal d and obtain a convex partition of P . Note that n1+n2 = n+2 and that
d can be removed from the set of edges in the resulting partition. Hence, we have
a convex partition of P with at most α(n1 +n2)−2β−1 = αn−β +(2α−β−1)
regions. Thus, α and β must satisfy:

2α− β − 1 ≤ 0 (2)

It remains to consider the case that the convex hull of P has exactly three
vertices. So let v1, v2 and v3 denote the vertices of the convex hull of P as
shown in Figure 7(b). We sort the inner points in P according to its clockwise
angular order around vertex v2. Let w1, w2, . . . , wn−3 denote the resulting sorted
sequence. We now consider the convex hull H of {v1, w1, w2, . . . , wl, v2} for some
l ∈ {1, . . . , n − 3}. Let u1, . . . , uj−1 denote the subsequence of those points in
w1, . . . , wl that are vertices of H . An example is shown in Figure 7(c). When we
connect each of the vertices u1, . . . , uj−1 with v3 by an edge we obtain a partition
of the convex hull of P into j triangles D1, . . . , Dj and a convex polygon Q with
j + 1 vertices. This is shown in Figure 8(a).

In order to describe our idea more precisely we introduce a little more nota-
tion. The edge that is shared by triangle Di and Q we denote by ei. Furthermore,
the edge shared by Di and Di+1 we denote by fi. An example is given in Figure
8(b).

The idea is to partition each of the triangles D1, . . . , Dj by using the induction
hypothesis. The convex polygon Q contains only l−j+1 points of P in its interior.
If l is not too large (we will use l = 6) then we can partition Q directly, which
might save us some convex regions compared to a call to the induction hypothesis
for Q. Finally, we glue the partitions for the triangles and for Q together along
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Fig. 8. Partition each piece and then glue them together

the edges e1, . . . , ej and f1, . . . , fj−1. Depending on the structure of the convex
partition for D1, . . . , Dj and Q some of these edges might be removed when
forming the resulting partition of P .

Our first goal is to give a general formula for an upper bound on the number
of convex regions in the convex partition we obtain by following the strategy
outlined above. We call a triangle Di empty iff Di does not contain a point
of P in its interior. Let s denote the number of non-empty triangles among
D1, . . . , Dj . Furthermore, let μ(Q) denote an upper bound on the number of
convex regions in the partition of Q.

Claim. The resulting convex partition of P has at most

ρ(n, l, j, s) = [αn− β] + [j − αl + (3α− β − 2)s− 3α + β + 1 + μ(Q)]

regions. For s ∈ {0, 1} the bound can be improved to ρ(n, l, j, s)− 1.

Let ni denote the number of points in P that are contained in triangle Di

including the three vertices of Di. Suppose the triangles Di1 , . . . , Dis are non-
empty. Then by simply glueing together the convex partitions for the triangles
D1, . . . , Dj and for Q we obtain a convex partition of P with at most α(ni1 +· · ·+
nis)−sβ+(j−s)+μ(Q) regions. By counting we obtain ni1 +· · ·+nis +3(j−s) =
n+2(j−1)−(l−j+1). This gives us ni1+· · ·+nis = n−l+3s−3. We substitute this
into the bound above and obtain [αn−β]+[j−αl+(3α−β−1)s−3α+β+μ(Q)].

Now by our construction if triangle Di, i ∈ {1, . . . , j − 1}, is non-empty then
edge fi can be removed. This is because the lower part of each such triangle is
empty. This is indicated in the example in Figure 8(c) by shading. There triangle
D3 is non-empty and thus edge f3 can be removed.

Hence, if there are s non-empty triangles we can remove at least s − 1 of
the edges f1, . . . , fj−1. So we obtain the desired bound ρ(n, l, j, s). Finally, if
s = 0 than subtracting s − 1 unnecessarily adds 1. And if s = 1 then we can
remove at least one edge: If the single non-empty triangle is one of the Di with
i ∈ {1, . . . , j − 1} then we can remove fi. If only Dj is non-empty then we can
remove one of the edges fj−1 or ej . This finishes the proof of Claim 4.

We can simplify (and thereby weaken) the bound ρ(n, l, j, s) by requiring that

3α− β − 2 ≤ 0. (3)

Note that the values of α and β we are aiming at satisfy this inequality with some
slack. Hence, this requirement eases our argumentation but it is not the reason



240 C. Knauer and A. Spillner

Table 1. Overview of the values of ρ1(6, j) and ρ2(6, j)

j μ(Q) ρ1(6, j) ρ2(6, j)
2 8 −9α + β + 10 −3α − β + 7
3 7 −9α + β + 10 −3α − β + 7
4 6 −9α + β + 10 −3α − β + 7
5 4 −9α + β + 9 −3α − β + 6
6 3 −9α + β + 9 −3α − β + 6
7 1 −9α + β + 8 −3α − β + 5

that we obtain those particular values for α and β. Now with (3), if s ∈ {0, 1},
we have

ρ(n, l, j, s) ≤ [αn− β] + [j − αl − 3α + β + μ(Q)].

And if s ∈ {2, . . . , j}, we have

ρ(n, l, j, s) ≤ [αn− β] + [j − αl + (3α− β − 2)2− 3α + β + 1 + μ(Q)]
= [αn− β] + [j − αl + 3α− β − 3 + μ(Q)].

Thus, we need that

ρ1(l, j) = [j − αl − 3α + β + μ(Q)] ≤ 0 and
ρ2(l, j) = [j − αl + 3α− β − 3 + μ(Q)] ≤ 0.

As mentioned above we will use the value l = 6. Smaller values do not seem
to lead to the desired value of α. For larger values our argumentation becomes
more complicated and it is not sure that it gives us a better bound. In Table 1
we have computed ρ1(6, j) and ρ2(6, j) for j ∈ {2, . . . , l + 1} = {2, . . . , 7}. The
bound on μ(Q) is obtained as

min{
⌊

3
2
(l − j + 1) +

3
2

⌋
,

⌊
10
7

(l + 2)− 18
7

⌋
}.

Recall that l− j +1 is the number of points in the interior of Q. So the first term
is the bound from Lemma 2. The second term is the bound of Neumann-Lara
et al.

Hence, if s ∈ {0, 1} then α and β must satisfy

−9α + β + 10 ≤ 0. (4)

This is okay with respect to the desired values of α and β. If s ∈ {2, . . . , j} then
this is only true for j ∈ {5, 6, 7}, i.e., the desired values of α and β will satisfy

−3α− β + 6 ≤ 0. (5)

So the only cases we have to discuss in detail are s ∈ {2, . . . , j} and j ∈
{2, 3, 4}. The details can be found in the full version of the paper. The result of
this case analysis is that α and β must also satisfy

α− 2β + 3 ≤ 0. (6)
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The inequalities (1)-(6) form the constraints of a linear program. Solving this
linear program gives the desired constants α = 15

11 and β = 24
11 . �

Corollary 2. We can compute in O(n2) time a 30
11 -approximation of a minimum

convex partition of P .

Proof. According to Lemma 1 every convex partition of P induces at least k
2 +

a
2 +b+1 convex regions. In Lemma 3 we have shown that there is always a convex
partition E of P with |R(E)| ≤ a + 2b + 15

11k − 24
11 . Since 30

11 (k
2 + a

2 + b + 1) ≥
a + 2b + 15

11k − 24
11 this partition E is a 30

11 -approximation. It is straight forward
to turn the proof of Lemma 3 into an O(n2) time algorithm. �

5 Concluding Remarks

It would be desirable to have an algorithm computing a constant-factor approx-
imation even for point sets with many collinear points. Furthermore a substan-
tially smaller approximation factor would also be nice. However, it seems to us
that both goals can only be achieved by exploiting geometric properties more
specific to the particular input point set P . How this can be done remains an
open question.

Acknowledgments. We would like to thank Thomas Fevens for pointing out
the application to oblivious routing mentioned in Section 1.
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Abstract. The novel octilinear routing paradigm (X-architecture) in
VLSI design requires new approaches for the construction of Steiner
trees. In this paper, we consider two versions of the shortest octilinear
Steiner tree problem for a given point set K of terminals in the plane: (1)
a version in the presence of hard octilinear obstacles, and (2) a version
with rectangular soft obstacles.

The interior of hard obstacles has to be avoided completely by the
Steiner tree. In contrast, the Steiner tree is allowed to run over soft
obstacles. But if the Steiner tree intersects some soft obstacle, then no
connected component of the induced subtree may be longer than a given
fixed length L. This kind of length restriction is motivated by its appli-
cation in VLSI design where a large Steiner tree requires the insertion of
buffers (or inverters) which must not be placed on top of obstacles.

For both problem types, we provide reductions to the Steiner tree
problem in graphs of polynomial size with the following approximation
guarantees. Our main results are (1) a 2–approximation of the octilinear
Steiner tree problem in the presence of hard rectilinear or octilinear ob-
stacles which can be computed in O(n log2 n) time, where n denotes the
number of obstacle vertices plus the number of terminals, (2) a (2 + ε)–
approximation of the octilinear Steiner tree problem in the presence of
soft rectangular obstacles which runs in O(n3) time, and (3) a (1.55+ε)–
approximation of the octilinear Steiner tree problem in the presence of
soft rectangular obstacles.

Keywords: Approximation algorithms, Steiner trees, octilinear routing,
obstacles, VLSI design.

1 Introduction

Background and Motivation. Octilinear routing is a novel routing paradigm
in VLSI design, the so-called X-architecture [1], which has recently been in-
troduced. In addition to vertical and horizontal wires, octilinear routing allows
wiring in 45- and 135-degree directions. Compared to traditional and state-of-
the-art rectilinear (Manhattan) routing, such a technology promises clear ad-
vantages in wire length but also in via reduction. As a consequence a significant
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chip performance improvement and power reduction can be obtained (with es-
timations being in the range of 10% to 20% improvement) [2, 3, 4]. To enable
such a technology, novel algorithmic approaches for the construction of octilin-
ear Steiner trees are needed.

An octilinear Steiner tree is a tree that interconnects a set of points (ter-
minals) in the plane with minimum length such that every line segment uses
one of the four given orientations. Even more general routing architectures are
obtained if a fixed set of uniformly oriented directions is allowed. For an integer
parameter λ ≥ 2, consecutive orientations are separated by a fixed angle of π/λ.
A λ-geometry is a routing environment in which every line segment uses one of
the given orientations. Manhattan routing can then be seen as the special case
λ = 2 and the X-architecture as the case λ = 4. In this paper we focus on the oc-
tilinear case (although most of our results can be generalized to arbitrary λ ≥ 2).
We study approximation algorithms for the octilinear Steiner tree problem with
different types of obstacles.

Hard and Soft Obstacles. In VLSI design preplaced macros or other circuits
are obstacles. Throughout this paper, an obstacle is a connected region in the
plane bounded by a simple polygon such that all obstacle edges lie within the
4–geometry (octilinear obstacle). If all boundary edges of an obstacle are recti-
linear, we call such an obstacle a rectilinear obstacle. For a given set of obstacles
O we require that the obstacles be disjoint, except for possibly a finite num-
ber of common points. In practice, obstacles can be assumed to be axis-parallel
rectangles. An obstacle which prohibits wiring and therefore has to be avoided
completely will be referred to as a hard obstacle. Due to the availability of several
routing layers, most obstacles usually do not block wires, but it is impossible to
place a buffer (or inverter) on top of an obstacle. A large Steiner tree requires
the insertion of buffers (or inverters) in such a way that no induced subtree with-
out any buffers becomes too large. This application in VLSI design motivates
and translates into our model of soft obstacles. In this case the Steiner tree is
allowed to run over obstacles; however, if we intersect the Steiner tree with some
obstacle, then no connected component of the induced subtree may be longer
than a given fixed length L.

Related Work. The rectilinear and the Euclidean Steiner tree problem have
been shown to be NP-Hard in [5] and [6], respectively. Quite recently, we have
been able to prove that the octilinear Steiner tree problem is also NP-hard in
the strong sense [7]. Most previous work on the octilinear Steiner tree problem
considered the problem without obstacles. Exact approaches to the octilinear
Steiner tree problem have been developed by Nielsen, Winter and Zachariasen [8]
and Coulston [9]. Nielsen et al. report the exact solution to a large instance with
10000 terminals within two days of computation time. An exact algorithm for
obstacle-avoiding Steiner trees in the Euclidean metric has been developed by
Zachariasen and Winter [10].

For rectilinear Steiner tree problems for point sets in the plane, the most
successful approaches are based on transformations to the related Steiner tree
problem in graphs. Given a connected graph G = (V, E), a length function 	, and
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a set of terminals K ⊆ V , a Steiner tree is a tree which contains all vertices of K
and is a subgraph of G. A Steiner tree T is a Steiner minimum tree of G if the
length of T is minimum among all Steiner trees. An implementation by Althaus,
Polzin and Daneshmand [11] is the currently strongest available exact approach
for both the Steiner tree problem in graphs and the rectilinear Steiner tree
problem. The best available approximation guarantee for the Steiner problem in
general graphs is α = 1 + ln 3

2 ≈ 1.55, obtained by Robins and Zelikovsky [12].
Unfortunately, in the octilinear case, the only known transformation to the

Steiner tree problem in graphs is based on a generalization of the Hanan-grid
and requires O(n2O(n)

) many vertices [13, 14, 15]. Hence, this transformation is
not polynomial. Müller-Hannemann and Schulze [7] recently constructed a graph
of size O(n2/ε2) which contains for every ε > 0 a (1 + ε)-approximation for the
case without obstacles and with hard obstacles.

We would like to point out that the well-known approximation schemes of
Arora [16] and Mitchell [17] are only applicable to the octilinear Steiner tree
problem without obstacles. For the octilinear Steiner tree problem without ob-
stacles heuristics have been proposed by Kahng et al. [18] and Zhu et al. [19].

Müller-Hannemann and Peyer [20] showed that the rectilinear Steiner tree
problem in the presence of soft obstacles can be 2-approximated in O(n2 log n)
time, where n denotes the number of terminals plus the number of obstacle ver-
tices. They also presented a (1.55 + ε)-approximation for rectangular obstacles.
In this paper we generalize these results to the octilinear Steiner tree problem.
However, it will turn out that the problem becomes substantially more com-
plicated and requires novel techniques both in design and analysis. We are not
aware of any other exact approaches or heuristics in the presence of obstacles.

Our Methodology. We provide transformations from the octilinear Steiner
tree problem in the plane with obstacles to the Steiner tree problem in graphs
which contain approximate solutions. To achieve a 2–approximation our aim
is to construct a path preserving graph, i.e., a graph which contains a shortest
octilinear path between any pair of terminals. With respect to obstacles, the
graph should only contain feasible paths and only feasible Steiner trees. (Note
that for soft obstacles the latter does not follow from the feasibility of all paths.)
These properties ensure that any approximation algorithm based on this graph
for the Steiner tree problem will produce a feasible Steiner tree. In particular,
we may use Mehlhorn’s [21] implementation of a minimum spanning tree based
approximation which runs in time O(m + n log n) on a graph with n nodes and
m edges. This approach yields a 2–approximation, and we can show that the
analysis is asymptotically tight.

Heading for a good running time, our secondary goal is to construct small path
preserving graphs. Shortest paths in the presence of polygonal obstacles have
already been studied intensively. See the surveys of Mitchell [22] and Lee, Yang,
and Wong [23]. Our construction of small path preserving graphs generalizes
techniques in previous work of Wu et al. [24] and Clarkson et al. [25].

To achieve a (1 + ε)-approximation we develop a different technique based on
t-restricted Steiner trees. A Steiner tree is a full Steiner tree if all its terminals
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are leaves. Any Steiner tree can be decomposed into its full components. A t-
restricted Steiner tree is a Steiner tree where all full components have at most
t terminals. The boundary of each obstacle is discretized by auxiliary vertices
with a distance of at most Δ between neighboring vertices. (Δ can be chosen
so that we obtain a polynomial number of auxiliary vertices and still achieve
the desired accuracy.) Inside obstacles, we approximate an optimal tree with the
help of t-restricted Steiner trees for some constant t. Each of these trees respects
the length restriction L for the obstacle. Outside obstacles, a grid-like graph
through the terminals and obstacle vertices is refined by additional lines so that
it contains a sufficiently close approximation. These ideas will be made precise
in Section 4.

Our Contribution. We summarize the main results of this paper:

– There is a 2–approximation of the octilinear Steiner tree problem in the
presence of hard octilinear obstacles which can be computed in O(n log2 n)
time, where n denotes the number of obstacle vertices plus the number of
terminals.

– For any integer k, we obtain a (2+ 1
k )–approximation which runs in O(k2n3)

time for the octilinear Steiner tree problem with soft rectangular obstacles.
– We construct a graph of polynomial size containing a (1 + ε)-approximation

of the octilinear Steiner tree problem with rectangular soft obstacles. Hence,
the currently strongest approximation guarantee by Robins and Zelikovsky
for the Steiner tree problem in graphs implies a (1.55 + ε)-approximation
for this problem. This matches the best known guarantees for the rectilinear
case [20].

Overview. The remaining part of the paper is organized as follows. In Section 2,
we describe how to construct shortest path preserving graphs for hard obstacles
of size O(n log n). The more complicated construction of shortest paths for soft
obstacles will be explained in Section 3. Finally, we show how to construct a
graph of polynomial size which contains a (1+ ε)-approximation for rectangular
soft obstacles. Due to strict page limitations, all proofs will appear only in the
journal version which can be downloaded from http://www.algo.informatik.
tu-darmstadt.de/muellerh/approx octilinear.pdf.

2 Octilinear Shortest Paths Amidst Hard Obstacles

Throughout this section, let K be a set of points (terminals) in the plane and
O be a set of octilinear obstacles. Denote by VO the set of obstacle vertices.
Let n = |K|+ |VO|. In this section we will show how to construct shortest path
preserving graphs.

Octilinear Track Graphs. As a first step we construct a path preserving graph
based on visibility. Our construction may be viewed as a generalization of that of
Wu et al. [24], which was designed for rectilinear polygons and rectilinear paths.
To simplify our discussion we add to our scene a bounding box containing all
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obstacles and all terminals. Clearly all desired paths will run within this bound-
ing box. A track tr generated by a point t and an orientation is a line segment
that starts at t and ends when it first hits an obstacle edge or the bounding
box. The generated endpoints of tracks are called track-induced Steiner points.
For each terminal t and each feasible orientation we construct a track in both
directions from t. Similarly, we introduce tracks for each convex obstacle vertex
v. More precisely, if e1 = (v1, v) and e2 = (v, v2) are polygon edges incident with
v in clockwise order of the polygon, denote by r1 the ray in direction from v1
to v, and by r2 the ray in direction from v2 to v. We construct a track gener-
ated by v for all feasible directions which do neither go through the interior of
the obstacle nor through the interior of the sector spanned by ray r1 and r2 in
counter-clockwise order. See Fig. 1. The intersections among all tracks and their
endpoints are made the vertices of the track graph. The edges are the track
segments between the intersections. The construction is completed by adding
edges connecting two consecutive track-induced Steiner points or polygon ver-
tices along the boundary of each obstacle. The length of an edge in the track
graph is simply the octilinear distance between its endpoints. See the middle
part of Fig. 1 for a small example which illustrates this construction. The track
graph consists of O(n) many tracks which induce O(n2) many vertices and edges.

Sparser Path-Preserving Graphs. To improve upon the quadratic space
bound of the track graph we use an idea of Clarkson et al. [25] and extend their
approach to the octilinear case. We construct a sparser path-preserving graph
G = (V, E) as follows. The vertex set is constructed in two rounds. In the first
round, we create V1 as the union of

1. the set of all terminals K,
2. the set of all obstacle vertices VO, and
3. the set of track-induced Steiner points for tracks induced by K and VO.

v

v
2

r

r

1

2

v
1

Fig. 1. Illustration of the graph construction. Left: The tracks around a convex vertex
v of some obstacle. There is no track inside the shaded area. Middle: The track graph
for an instance with three terminals (black dots) and two hard octilinear obstacles.
Right: The first vertical cut line construction.
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With respect to V1 we create the set V2 recursively by adding more Steiner
points along vertical, horizontal and diagonal so-called cut lines. We explain the
construction for vertical cut lines. A vertical cut line is placed at the median
of the x-coordinates of all vertices. Vertices in V1 generate projection points
on the line. Projections are performed in all feasible orientations so that we
may get up to three projections points on the line for each vertex in V1 (in the
rectilinear setting, Clarkson et al. need to project only orthogonally onto the cut
line). Two points are mutually visible to each other if the straight line segment
between them contains no obstacle point in its interior. All those projection
points on a cut line which are visible from some inducing point in V1 are put
into a vertex set V2. Moreover, we add the intersection points of the cut line with
obstacle vertices or with non-parallel obstacle edges to V2. The following edges
are inserted into E. Two consecutive Steiner points on the line are connected by
an edge if these points are visible to each other. We also add edges from each
vertex in V1 to its corresponding projection points.

This procedure is repeated recursively with the vertices respectively on the left
and right sides of the cut line. The union of all these vertices yields V = V1∪V2.
See Fig. 1 for a vertical cut line on the highest level. There are O(log n) many
levels of recursion, and in each level we will create O(n) many vertices and edges.
This gives in total O(n log n) vertices and edges. Finally, for each obstacle we
have edges between consecutive vertices from V on its boundary.

Correctness of the Construction. We now sketch the proof that the graph
G has the desired properties.

Theorem 2.1. For any two vertices from K the constructed graph G contains
a shortest octilinear path.

The validity of this theorem is based on the following three lemmas. A segment S
of a path P is a subpath with the property that all its edges have the same
orientation. Hence, any path can be thought of as composed by a sequence of
inclusion-maximal segments, i.e. longest subpaths with the same orientation.

Lemma 2.2. The track graph contains a shortest octilinear path for any two
vertices from K.

Proof. (Sketch) For arbitrary s, t ∈ K choose a shortest octilinear path which
has the fewest number k of inclusion-maximal segments which do not lie in the
track graph. If k = 0, the path is completely contained in the track graph and the
lemma holds. Otherwise, one obtains a contradiction by showing how to modify
the path such that it remains length-minimal but contains fewer segments not
lying in the track graph. �

Lemma 2.3. For any two vertices p, q ∈ K there is a shortest octilinear path
(in the plane, not restricted to G) which visits a sequence of vertices p = v0, v1,
v2, . . . , vk = q from V1 and for each two subsequent vertices vi and vi+1, i =
0, . . . , k− 1, these vertices are connected as short as possible in 4-geometry (i.e.
with the same distance as if there were no obstacles).
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Lemma 2.4. Let p and q be two vertices of V1 such that a shortest octilinear
path between p and q in the track graph does not contain any other vertex of V1.
Then the graph G contains a path from p to q of minimum length in 4-geometry.

Our construction yields a graph with O(n log n) vertices and edges.

Lemma 2.5. Given a set of terminals and a set of octilinear obstacles with
n vertices in total, there is a graph with O(n log n) vertices and edges which
contains for every pair of terminals a shortest octilinear path.

By Lemma 2.5, we can apply Mehlhorn’s implementation of the spanning tree
heuristic to a graph with O(n log n) vertices and edges. This immediately implies
the following theorem.

Theorem 2.6. There is a 2-approximation of the octilinear Steiner tree prob-
lem with hard octilinear obstacles. Such an approximation can be computed in
O(n log2 n) time.

3 Soft Obstacles

For soft obstacles we introduce length restrictions for those portions of a tree T
which run over obstacles. Namely, for a given parameter L ∈ R+

0 we require
the following for each obstacle O ∈ O and for each strictly interior connected
component TO of (T ∩ O) \ ∂O: the length 	(TO) of such a component must
not be longer than the given length restriction L. Note that the intersection of
a Steiner minimum tree with an obstacle may consist of more than one con-
nected component and that our length restriction applies individually for each
connected component. For ease of exposition, we restrict our presentation of soft
obstacles to (axis-parallel) rectangular obstacles. Generalizations to rectilinear
and octilinear soft obstacles are possible and do not change the asymptotic size
of the resulting graphs.

Track Graph Construction. For soft obstacles, an analogous construction
of the track graph is substantially more complicated than for hard obstacles.
(This is in sharp contrast to the rectilinear case). We obtain the track graph
by applying the following rules inductively. See Fig. 2 for an illustration of each
rule.

1. We generate track lines for all terminals and all feasible orientations. But
in contrast to hard obstacles, a track does not end as soon as it hits an
obstacle. It only ends at an obstacle if the intersection of the track line with
the obstacle exceeds the given length restriction L. Hence, we distinguish
between Steiner points which are endpoints of a track due to a length re-
striction, called L-Steiner points, and all other Steiner points generated as
intersections of a track line and obstacles. The latter type of Steiner points
will still be called track-induced Steiner points.
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2. Similarly, we introduce track lines through all edges of rectangular polygons.
This yields O(n) track lines and may cause O(n2) many track-induced Steiner
points. This already implies that the number of track-induced Steiner points
will be one order of magnitude larger than for hard obstacles.

3. Additional tracks are needed to make shortcuts when an obstacle causes a
deviation due to the length restriction L.

For each edge e = (p1, p2) of an obstacle with length 	(e) > L/
√

2 we do
the following. At the points on e with distance L/

√
2 from the corners p1 and

p2 we respectively generate tracks which have an angle of 45 and 135 degrees
with e and run through the obstacle but do not exceed the length restriction.
This yields another O(n) track lines and O(n2) track-induced Steiner points.

4. Next suppose that a track tr ends at a point p of an edge e of some obstacle
due to the length restriction and hits e with an angle of 45 degrees. If the
edge f which is opposite to e in such a rectangle has a distance not exceeding
L from e, we let the track continue inside the rectangle up to a certain point
q. At q the track bends by an angle of 135 degrees and continues until it hits
edge f , say at r. The point q is chosen in such a way that length of the two
segments pq and qr together equals the length restriction L. Finally, at r a
new track parallel to tr is created. Note that tracks generated for this item
do not increase the asymptotic complexity.

5. Now consider the following situation. A track tr enters an obstacle O at some
point p on edge a in an angle of 45 degrees and leaves the obstacle at some
point q on an edge b of O which is adjacent to a. Furthermore, we assume
that the length of b exceeds L. Then we start a new track tr2 at q which
runs orthogonally to tr through the obstacle, provided that 	(tr2 ∩ O) < L
(i.e., the intersection of tr2 with O does not exceed L; if equality holds this
track has already been inserted). As a track may cross many obstacles each
of which potentially induces a new track of the just described kind, and
newly generated tracks in turn may induce further tracks of this kind, we
have to be careful not to generate infinitely many new tracks. Therefore, the
generation process is done in rounds for each track generated in Items 1-4.
In each round, we create a tree of new tracks, called track tree. The root
r of such a track tree is one of the tracks generated by Items 1-4. Every
induced new track is made an immediate successor of its inducing track. A
round ends if no new track is induced. To make each round finite, we add the
following rule. Consider a fixed round and suppose that we have generated
in step i of this round a track tri from a Steiner point on rectangle side e.
If in a later step j > i we would have to insert a further track trj from the
very same rectangle side e due to Item 5 and this track would have track
tri as a predecessor in the track tree, such a track is not necessary. This
is because in such a scenario the generated tracks would form a full cycle
around a rectangle, and clearly no cycle can be in a shortest path. Hence,
our rule is not to generate a further track in such cases. By applying this
rule, we have a finite number of tracks.

6. Suppose that a track tr ends at an obstacle O due to the length restriction
and hits edge e of O orthogonally at some point q. Moreover, suppose q has
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4. 6.

3.

5.

Fig. 2. The different types of tracks for
soft obstacles

Fig. 3. The extra tracks inserted at a
corner of some obstacle to approximate
shortest paths (left). Clearly, the “thick”
path is only slightly longer than an ap-
proximation using one of the extra tracks
(right).

a distance of less than L/
√

2 from some obstacle corner v on e. Then we add
a segment and a new track to shortcut the way around O (the latter only if
its intersection with O does not exceed L). See again Fig. 2. We handle such
tracks as in the previous item.

This completes the construction of our track graph. In the same way as for
hard obstacles we can prove the correctness of this construction.

Lemma 3.1. The constructed track graph contains a shortest length-restricted
path between every pair of terminals.

Approximate Shortest Paths. The track graph as described above may have
exponential size. With a smarter construction one can bound the size of the
track graph by O(n3) (but the proof then becomes quite complicated). In this
paper, we therefore prefer a simpler construction which uses approximate short-
est paths. For any integer k, we obtain (1+ 1

k )–approximate shortest paths. The
idea is to leave out Items 5 and 6 of the track graph construction (which are
responsible for the blow up in the graph size). Instead, we insert k−1 additional
tracks for each corner of an obstacle. These tracks “cut off” the corner and are
placed in distance j·L√

2·k from the corner for j = 1, . . . , k − 1. See Fig. 3.
This construction induces O(kn) many new tracks which are responsible for

O(kn) new track-induced Steiner points per obstacle. Next we apply the same
sparsification technique as for hard obstacles and make sure that every path
in our graph is feasible with respect to our length restriction. We do this in
two steps. In the first step, we regard all obstacles as hard obstacles and use
the modified cut line approach on the set of original vertices, terminals and
all track-induced Steiner points. The overall number of Steiner points is O(kn2).
Hence, the sparsification technique outside obstacles yields O(kn2 log(kn)) many
vertices and edges.

In the second step, we add connections between vertices and Steiner points
on the boundary of obstacles. In the previous discussion we observed that we
may have O(kn) many track-induced Steiner points lying on the boundary of
an obstacle O. Locally these Steiner points can be regarded as terminals which
have to be connected pairwise without violating the length bound L.
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Lemma 3.2. Let O be a rectilinear obstacle with t terminals on its boundary.
Then we need O(t2) many edges for a graph which has (1) to represent shortest
paths between any pair of terminals respecting the length restriction L, and (2)
does not contain any path exceeding the length restriction L inside some obstacle.

Thus, we can now apply Lemma 3.2 with t = O(kn) and get O(k2n2) edges
inside a single obstacle, for a total of O(k2n3) edges inside all obstacles. It is
easy to see that shortest paths between terminals in this modified graph will be
at most a factor of (1 + 1

k ) longer than shortest paths.

Lemma 3.3. There is a graph for soft rectangular obstacles with O(kn2 log(kn))
many vertices and O(k2n3) many edges which contains a (1 + 1

k )–approximative
shortest path between any pair of terminals for any integer k. Moreover, all paths
in this graph respect the length restriction L inside obstacles. The graph can be
constructed in time proportional to its size.

As the obtained graph contains only length-feasible paths, we can apply
Mehlhorn’s implementation of the minimum spanning tree heuristic to construct
a Steiner tree. We finally obtain:

Theorem 3.4. For any fixed k, we can find a (2 + 1
k )-approximation of the

octilinear Steiner tree problem with soft rectangular obstacles in time O(n3).

We conclude by mentioning that our analysis is tight. It is possible to construct a
class of instances for which our approximation algorithm asymptotically achieves
a performance guarantee of 2.

4 Improved Approximation Guarantee

As outlined in the Introduction, we can construct a graph of polynomial size
which contains a (1 + ε)-approximation for the octilinear Steiner tree problem
with soft rectangular obstacles. Next we give a detailed description of this con-
struction. For the analysis, however, we have to refer to the full version of this
paper. The graph construction requires the following five steps:

Step 1: The very first step is to compute an axis-parallel box which contains an
optimal Steiner tree. Everything outside such a box can then be safely ignored
in the subsequent steps. For the analysis it is important that the side length b
of this box can be bounded by a constant times the length of an optimal Steiner
tree Topt. To achieve this goal, we can run the minimum spanning tree based
approximation. Let us assume that this approximation yields a tree of length
	(TMST ). Denote by BB(K) the bounding box of the given terminal set, that
is, the smallest axis-parallel rectangle which includes all terminals. Let bb be the
maximal side length of BB(K). Now we can define b := bb + 2	(TMST ). Clearly,
an axis-parallel box B of side length b centered at the barycenter of BB(K) is
large enough to contain an optimal Steiner tree. Since the minimum spanning
tree yields a 2-approximation and bb ≤ 	(Topt), we also have

b ≤ 5 · 	(Topt). (1)
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Step 2: We build a refinement of a Hanan-like grid graph restricted to the area
of B. This refinement is parameterized by some parameter k (to be determined
later). More specifically, we subdivide the boundary of box B equidistantly with
k points into k + 1 segments and add for each subdivision point additional lines
in all four feasible orientations of the octilinear geometry. To this set of lines we
add lines through each terminal and each vertex of an obstacle in all feasible
directions. Let G be the graph induced by intersections of these lines restricted
to the area inside B (including the boundary of B).

Step 3: The resulting graph may allow subtrees inside obstacles which violate
the length restriction L. Therefore, we delete all nodes and edges which lie strictly
inside some obstacle.

Step 4: Let t ∈ N be another parameter which will be chosen as a constant
depending on ε but independent from the given instance. For each obstacle O
and for each subset S of at most t vertices on the boundary of O compute an
optimal Steiner tree for S which respects the length restriction L inside O. We
add each such Steiner tree to the current graph and identify common boundary
vertices. Since t is a constant, there is only a polynomial number of these small
Steiner tree instances and each of these trees can be computed in constant time
(basically by enumerating over all possible tree topologies).

Step 5: Finally, we want that our graph contains a feasible almost shortest
octilinear path between any pair of vertices on the boundary of obstacles. More
specifically, we require that these paths approximate the true shortest paths
by a factor of 1 + 1/(k + 1). We can compute these paths and their lengths
by the methods from Section 3 and add them to the graph. On the resulting
graph G = G(k, t), parameterized by k and t, we can then solve the Steiner tree
problem for the given terminal set K.

Choosing k = �cn/ε� for some constant c = 374, we obtain

Theorem 4.1. Let α denote the approximation guarantee for an algorithm solv-
ing the Steiner tree problem in graphs. Given a terminal set K, a set of rectan-
gular soft obstacles O with length restriction L, and some ε > 0, there is an
(α + ε)-approximation of the octilinear Steiner tree problem with length restric-
tion L inside obstacles.
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Abstract. The simultaneous embedding problem is, given two planar
graphs G1 = (V, E1) and G2 = (V, E2), to find planar embeddings ϕ(G1)
and ϕ(G2) such that each vertex v ∈ V is mapped to the same point in
ϕ(G1) and in ϕ(G2). This article presents a linear-time algorithm for the
simultaneous embedding problem such that edges are drawn as polygonal
chains with at most two bends and all vertices and all bends of the edges
are placed on a grid of polynomial size. An extension of this problem
with so-called fixed edges is also considered.

A further linear-time algorithm of this article solves the following
problem: Given a planar graph G and a set of distinct points, find a
planar embedding for G that maps each vertex to one of the given points.
The solution presented also uses at most two bends per edge and a grid
whose size is polynomial in the size of the grid that includes all given
points. An example shows two bends per edge to be optimal.

1 Introduction

The visualization of information has become very important in recent years. The
information is often given in the form of graphs, which should at the same time
aesthetically please and convey some meaning. Many aesthetic criteria exist,
such as straight-line edges, few bends, a limited number of crossings, depiction
of symmetry and a small area of the drawing given, e.g., a minimal distance
between two vertices.

If graphs change over the course of time or if different relations among the
same objects are presented in graphs, it is often useful to recognize the features
of the graph that remain unchanged. If each graph is drawn in its own way, in
other words if the graphs are embedded independently, there is probably only
little correlation. Therefore, the embeddings of the graphs have to be constructed
simultaneously to achieve that all or at least some features of the graph are fixed.

A viewer of a graph quickly develops a mental map consisting basically in
the positions of the vertices. If k planar graphs with the same vertex set V are
presented, it is desirable that the positions of all vertices in V remain fixed. This
problem is called simultaneous embedding. An extension of the problem is the
so-called simultaneous embedding with fixed edges: In addition to the k graphs, a
set of edges F is given. A feasible solution is an embedding of the k graphs such
that all vertices and all edges in F have fixed embeddings. An algorithm for the

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 255–267, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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simultaneous embedding problem for k planar graphs with few bends per edge
helps to find an embedding with few bends per edge for graphs of thickness k. The
thickness of a graph G is the minimum number of planar subgraphs into which
the edges of G can be partitioned. Since a graph of thickness k can be embedded
in k layers without any edge crossings, thickness is an important concept in VLSI
design. Additionally, an algorithm for the simultaneous embedding of k planar
graphs with fixed edges helps to find an embedding of a graph of thickness k
such that certain sets of edges are drawn straight-line as well as identically in
all layers.

Definition 1. A k-bend embedding of G = (V, E) is an embedding such that
each edge in E is drawn as a polygonal chain with ≤ k bends. Thus, an edge
with l bends consists of l + 1 straight-line segments.

Unless stated otherwise, the following embeddings place all vertices and all bends
on a grid of size polynomial in the number of vertices. According to results of
Pach and Wenger [9], for any number of planar graphs on the same vertex set of
size n, an O(n)-bend simultaneous embedding is possible. Erten and Kobourov
[6] show with a small example that a 0-bend simultaneous embedding does not
always exist for two planar graphs. They show that three bends suffice to embed
two planar graphs and that one bend is enough in the case of two trees. By using
a new algorithm presented in Section 3, this article shows in Section 2 that the
number of bends per edge in a simultaneous embedding of two planar graphs
can be reduced to two.

Erten and Kobourov also examine simultaneous embeddings with fixed edges
in the special case where one input graph is a tree and the other is a path. For
special kinds of graphs (caterpillar and outerplanar graphs), Brass et al. [2] show
how to embed simultaneously two of the special graphs such that all edges are
fixed. For general graphs, the simultaneous embedding problem with fixed edges
is considered in Section 4. However, if all edges are fixed, this problem is already
for almost all instances of two planar graphs not solvable (Section 5)—even if
the number of bends per edge is unbounded. Therefore, the algorithm presented
in Section 4 works only with sets of fixed edges with certain properties.

Another variation of the simultaneous embedding problem is described in [1]
by Bern and Gilbert: Given a straight-line planar embedding of a planar graph
with convex and 4-sided faces, find a suitable location for dual vertices such that
the edges of the dual graph are also straight-line segments and cross only their
corresponding primal edges.

Kaufmann and Wiese [7] present an algorithm for the vertices-to-points prob-
lem, which computes an embedding of a planar graph such that the vertices
are drawn on a grid at given points. If all vertices and all bends are placed on
a grid whose size is polynomial in the size of the grid that includes all given
points, their embedding requires up to three bends per edge, but via a similar
algorithm as for the simultaneous embedding problem, a 2-bend embedding can
be constructed (Sections 2 and 3). If an outer face is specified, Kaufmann and
Wiese show that an 1-bend embedding for the vertices-to-points problem is not
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possible in general. In Section 5, a very short proof of the same lower bound is
presented, but now no outer face must be specified.

2 Finding an Embedding

Since the same ideas as already described in [7, 2, 6] are used, these will only
be sketched. Many parts of these ideas help to find a 2-bend embedding for
both of the two problems below. Assume for the time being that for all planar
graphs G = (V, E) considered in the following, a Hamilton cycle C exists and
is known. Moreover, let fG be a bijective function that maps each vertex to
a number in {1, . . . , |V |} such that consecutive vertices in C have consecutive
numbers modulo |V |. The knowledge of the Hamilton cycle C is useful because
in a planar embedding of G, each edge not part of C is either completely inside
or completely outside C. In the following two problems are defined and their
solutions are presented subsequently.

Definition 2. The simultaneous embedding problem is, given two planar graphs
G1 = (V, E1) and G2 = (V, E2), to find planar embeddings ϕ(G1) and ϕ(G2)
such that all vertices are fixed, i.e. ∀v ∈ V : ϕ1(v) = ϕ2(v).

As a first step to find a simultaneous embedding for G1 and G2, associate each
vertex v with two numbers x, y, where x = fG1(v) and y = fG2(v). Use the two
numbers of each vertex as its coordinates. Embed the edges in G1 and G2 by
applying the procedure described below the following definition once for G1 with
direction = horizontal and once for G2 with direction = vertical.

Definition 3. Let G = (V, E) be a planar graph and let P be a set of distinct
points in the plane. The vertices-to-points problem is to find a planar embedding
ϕ such that ∀v ∈ V : ϕ (v) ∈ P .

For an embedding, sort the given points according to their x-coordinates. Map
the vertex v with number i = fG(v) to the point with the i’th smallest x-
coordinate. Continue the embedding of the edges with direction = horizontal.

In the following the procedure to embed the edges is described:

Denote the graph under consideration by G = (V, E) and the edge
{f−1

G (1), f−1
G (|V |)} by ê. W.l.o.g. assume that direction = horizontal. Oth-

erwise turn around the construction by 90 degree.
First, embed the edges of the Hamilton path P = C \ {ê} as straight lines.

For each edge e ∈ P let xe and ye be the absolute values of the differences of the
x- and y-coordinates of the endpoints of e. Set α = mine∈P tan (xe/ye). For each
vertex v, let lv be the vertical line through v. Using a combinatorial embedding
of G, partition the edges not part of C in linear time into two sets E1 and E2 such
that each set can be embedded inside (or outside) the Hamilton cycle without
edge intersections. Add the edge ê to E1, say. Embed each edge {u, v} in E1
below P and in E2 above P as part of two rays starting from vertex u to the
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right of lu and from vertex v to the left of lv, if fG(u) < fG(v). Draw each ray in
such a way that the angle between the ray and the corresponding vertical line is
α and cut off the two rays at their point of intersection. If a vertex has several
incident edges embedded on the same side of P or if the point of intersection is
not on the grid, modify the angle slightly such that planarity is preserved. This
yields a 1-bend embedding of G.

However one problem remains: How to find a Hamilton cycle and what to do
if no Hamilton cycle exists. The solution is to modify G. According to Chiba
and Nishizeki [3], G can be made 4-connected preserving planarity by repeated
applying

Operation 1: adding an auxiliary edge and
Operation 2: splitting an original edge of G once and adding a new vertex

between the two parts of the split edge.

Denote this modified graph by G′. In [4], Chiba et al. show that every 4-
connected graph has a Hamilton cycle that can be found in linear time. Use an
embedding for G′ to obtain an embedding for G by removing the new edges,
merging the embeddings of the two parts of each split edge and replacing each
new vertex by a bend for the corresponding edge.

Observe that an edge e = {v1, v2} in G corresponds to at most two split edges
e1 = {v1, vnew} and e2 = {vnew, v2} in G′. If both edges e1, e2 are embedded
with one bend and there is a further bend between the edges e1, e2 at vnew, the
edge e is embedded with three bends. As we see later, one part of the two split
edges is inside and the other part is outside the Hamilton cycle used. Thus, this
third bend at vnew exists only if vnew does not appear between v1 and v2 in the
Hamilton path used for the embedding.

To see this, consider the next two examples.
If vnew is behind v1 and v2 on the Hamilton path, the edge e is drawn from

v1 rightwards to vnew and then leftwards to v2. But if vnew is between v1 and v2,
the two rays at vnew are drawn as one line from the bend point of e1 through
vnew to the bend point of e2.

Using a shrinking angle during the process of embedding instead of an almost
fixed angle α, Kaufmann and Wiese described in [7] how to remove the bend
point at vnew, but this solution requires a grid of exponential size to place the
bends of the edges.

Since it is essential where the numbering along the Hamilton cycle starts, let us
consider the problem of finding a so-called closable Hamilton path. A Hamilton
path is closable if it is contained in a Hamilton cycle. A closable Hamilton cycle
makes it more explicit which part of the Hamilton cycle is used to number the
vertices.

Definition 4. An edge-extension of a planar graph G is a planar graph G+

obtained from G by adding auxiliary edges or by splitting edges, i.e. replacing
each such edge by a path of length two whose edges are split edges and whose
midpoint is a so-called new vertex of degree 2. Thus, each edge in G corresponds
to a unique path in G+ of arbitrary length.
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Given a planar graph, an edge-extension is constructed in linear-time in the next
section such that each edge in G corresponds to a path of length ≤ 2 in G+.
Moreover, a closable Hamilton path in G+ is found at the same time that has
the between property:

Definition 5. Let G+ be an edge-extension of G = (V, E) and let P be a Hamil-
ton path in G+. P has the between property (in G+ with respect to G) if each new
vertex that was inserted between the two split parts of an edge {u, v} is between
u and v on the Hamilton path P .

From the considerations, we can conclude the following.

Theorem 6. Given two planar graphs G1 and G2 based on the same vertex set
of size n, a 2-bend simultaneous embedding of G1 and G2 can be found in O(n)
time such that all vertices and all bends can be placed on a grid whose bounding
box is of size nO(1).

Theorem 7. Given a planar graph G = (V, E) and a set of at least |V | distinct
points P on a grid, a 2-bend embedding of G can be found in linear time such that
each vertex is embedded on a point in P and such that the area of the embedding
of G is polynomial in the size of the grid.

3 Finding a Closable Hamilton Path

An extension H of G is first constructed. Although H will not be planar, a
closable Hamilton path in H will help to construct a closable Hamilton path
in a planar extension of G. Obtain G′ = (V, E) by triangulating G. Denote by
ϕ(G′) a combinatorial embedding of G′ and choose an arbitrary face of ϕ to be
the outer face. Let G′

D = (W, F ) be the dual graph of G′, but without a vertex
(and its edges) for the outer face. For each vertex w ∈ W representing a face
A of ϕ(G′), denote by Δ(w) the set of the three vertices on the boundary of
A. Define D = {(u, v) | u ∈W ∧ v ∈ Δ (u)} and H = (V ∪W, E ∪ F ∪D). See
Fig. 1 for an example, but for the time being ignore the distinction between
vertices inside and outside the set Ai−1. Define an area as the union of some
faces of ϕ(G′) and their boundaries. For an area A, let VA ⊆ V ∪W be the set of
vertices in A, let V −

A ⊆ V ∩VA be the set of vertices on the border of A adjacent
to a vertex in V \ VA, and let E−

A ⊆ E be the set of edges on the border of
A. Choose ê = {u1, u2} ∈ E as an arbitrary edge incident to the outer face of
ϕ(G′). W.l.o.g. assume that u1 is visited just before u2 on a clockwise travel on
the border of the outer face. Let w ∈ W be the vertex of the dual graph that
corresponds to the inner face of ϕ(G′) incident to ê. Moreover, denote the area
of this inner face by A0 and let u3 be the third vertex incident to this inner face
(i.e. Δ(w) = {u1, u2, u3}). Thus VA0 = {u1, u2, u3, w}, V −

A0
⊆ {u1, u2, u3} and

E−
A0

= {{u1, u2} , {u2, u3} , {u1, u3}}.
Using P0 = ({u2, u3}, {u3, w}, {w, u1}, {u1, u2}) as a first simple path in H

and A0 as the processed area, the aim is to extend P0 and A0 stepwise such that
the following invariants are true after each step i for the processed area Ai and
the current path Pi:



260 F. Kammer

Invariant 1: Pi is a simple path containing all vertices in VAi .
Invariant 2: For all edges {u, v} ∈ E that are crossed by a dual edge eD on Pi,

the subpath of Pi between u and v contains eD.
Invariant 3: The vertices in Pi occur in the same order in Pi and on the border

of Ai, starting with u2.
Invariant 4: For all edges (u, v) ∈ E−

Ai
one of the following is true:

Property a: (u, v) is part of the current path Pi.
Property b: Let w ∈W be the dual vertex corresponding to the face of G′

that is incident to (u, v) and inside the processed area Ai. Then either
(u, w) or (v, w) is part of the current path Pi.

These invariants are all true for P0 and A0. Initially (i = 0) and in each step i, cal-
culate the sets VAi , V

−
Ai

, E−
Ai

and for each vertex v the list V v
Ai

= {u ∈ V |{v, u}
∈ E ∧ |{v, u} ∩ VAi | = 1} , ordered in counter clockwise order around v in ϕ(G′).
This list contains all vertices adjacent to v that are relative to v on the oppo-
site side of Ai. Begin each list with the vertex that is met first on a clockwise
travel on the border of Ai starting with u2. If step i adds a vertex s ∈ V to the
processed area, all these sets and lists can be updated in time O(degree of s).

Step i is carried out as follows: Choose s ∈ V v
Ai−1

for some vertex v ∈ V −
Ai−1

on
the border of Ai−1. While only one vertex of V is to be added to the processed
area, test if the processed area together with the edges from s to vertices in
V s

Ai−1
encloses additional vertices t ∈ V \

(
VAi−1 ∪ {s}

)
. If such a vertex t exists,

put s on a stack and process t first.
The test of whether such a vertex t exists is easy: Let v0, . . . , vk be the vertices

of the ordered list V s
Ai−1

. Consider also Fig. 1. These vertices are all adjacent to
s and they appear in clockwise order on the border of Ai−1. Consider in ϕ(G′)
the vertices adjacent to s in counter clockwise order from v0 to vk. If these
vertices are all in V s

Ai−1
, no such vertex t exists. Otherwise choose t as the first

vertex found that does not belong to V s
Ai−1

. After processing t, continue this
check for s.

If no such vertex t exists (any more), the k+1 vertices in V s
Ai−1

together with
s define k faces Ws = {w1, . . . wk}. Number these faces such that wj is incident

Fig. 1. Extended graph H of a graph G′ = (V, E)
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to vj−1 and vj . In other words, each vertex w ∈ Ws is adjacent in H to s and
to two vertices in V −

Ai−1
. Extend the processed area Ai−1 by the faces in Ws.

For calculating the simple path Pi, two cases are considered. Figures 2 and 3
illustrate the cases 1 and 2, respectively.

Case 1. For some j ∈ {1, . . . , k}, the edge {vj−1, vj} lies on Pi−1. Set

Pi = (Pi−1 \ {vj−1, vj})
∪ {{vj , wj+1} , {wj+1, wj+2} , . . . , {wk−1, wk} {wk, s}}
∪ {{s, w1} , {w1, w2} , . . . , {wj−1, wj} , {wj , vj−1}} .

Case 2. Otherwise. Let ŵ ∈ W ∩ VAi−1 be the vertex inside the
processed area Ai−1 adjacent to v0 and v1. Since property a of Invariant
4 does not hold, we know that {v0, ŵ} ∈ Pi−1 or {v1, ŵ} ∈ Pi−1. In the first
case set v̂ = v0 and P̂ = {{v̂, s} , {ŵ, w1} , {w1, w2}}; in the other case set
v̂ = v1 and P̂ = {{ŵ, w1} , {w1, s} , {v̂, w2}}. Then

Pi = (Pi−1 \ {ŵ, v̂}) ∪ P̂

∪ {{w2, w3} , . . . , {wk−1, wk} , {wk, s}} .

By the construction of Pi and since Invariant 3 held before the i’th step, In-
variants 1 and 2 are true after the i’th step. Since the border of Ai results from
the border of Ai−1 by a replacement of v1, . . . , vk−1 by s and since the simple

Fig. 2. Face w2 is incident to an edge in Pi−1

Fig. 3. No face in Ws is incident to an edge in Pi−1
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path Pi is an extension of Pi−1 such that s is inserted between some vertices in
{v0, . . . , vk}, Invariant 3 is preserved.

Observe that for each new edge e on the boarder of the processed area (i.e.
e ∈ E−

Ai
\ E−

Ai−1
), either Property a or b of Invariant 4 is true. Furthermore, in

Case 1, the edge {vj−1, vj} ∈ Pi−1 \ Pi is not in E−
Ai

any more after step i. In
Case 2, let v−1 ∈ Δ(ŵ) \ {v0, v1}. If {v−1, v0} ∈ E−

Ai−1
, then v0 is adjacent to

only three vertices in Ai−1 and thus {v−1, v0} ∈ Pi−1. Altogether, Invariant 4 is
also true after the i’th step.

After |V |−3 steps, A|V |−3 equals to the whole internal area of G′. Because of
Invariant 1, a closable Hamilton path P|V |−3 in H is found. It remains to show
how to use the knowledge of a closable Hamilton path in H to find a closable
Hamilton path P in a planar extension of G′ that is also a planar extension of
G. Let vσ1 , . . . , vσ|V | be the order of the vertices of V as they appear on P|V |−3.

The closable Hamilton path P in an edge-extension of G is constructed by
connecting the vertices vσi and vσi+1 (1 ≤ i < |V |). If {vσi , vσi+1} ∈ E, add
{vσi , vσi+1} to P . Otherwise draw an edge p from vσi to vσi+1 such that only
the faces are visited that are also visited by P|V |−3 and such that each edge in
E crossed by p is also crossed by P|V |−3. Each time p crosses an edge e ∈ E,
break e into two split edges and add a new vertex between them. Also replace
p by a path of auxiliary edges that traverses all these new vertices and thus
connects vσi and vσi+1 . Add all these newly inserted auxiliary edges to P . Since
P|V |−3 is a simple path and each edge in E is crossed by only one edge in F ,
the construction of P breaks each edge {u, v} in E into at most two split edges
{u, vnew} and {vnew, v}. Additionally, because of Invariant 2, the new vertex vnew
is between u and v on P . Therefore P has the between property.

Definition 8. Call an edge-extension G+ of G a good edge-extension if each
new vertex is only incident to two auxiliary and to two split edges.

Theorem 9. A good edge-extension G+ of a planar graph G and a closable
Hamilton path P in G+ can be found in linear time such that each edge in G
corresponds to a path of length two in G+ and P has the between property.

As discussed in Section 2, this proves Theorems 6 and 7.

4 Simultaneous Embedding with Fixed Edges

Let G1 = (V, E1) and G2 = (V, E2) be two planar graphs and let F ⊂ E1 ∪ E2.
The goal is to find a simultaneous embedding of G1 and G2 such that the edges
in F can be drawn in both embeddings as straight lines; in particular, edges in
F ∩E1 ∩E2 are drawn identically in the two embeddings. However, F must have
some special properties. First, let F be a set such that no vertex is incident to
more than one fixed edge. Later, this restriction is relaxed. Iterate the following
once for G = G1 and once for G = G2.
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Find a Hamilton cycle C in a good edge-extension of G in which no fixed
edge is split, i.e. no fixed edge is crossed by C. Using a more difficult case
distinction we can use the algorithm of Section 3 to find a Hamilton cycle in
such an edge-extension. However, since we can later handle paths of fixed edges
that are crossed several times by the Hamilton cycle, in particular, since we
can handle a fixed edge crossed by C, details are omitted. Let ϕ be the used
combinatorial embedding of the algorithm in Section 3. The edges of F are added
now successively to C.

Consider the situation shown in Fig. 4. Let {û, v̂} ∈ F be an edge that is
not part of the Hamilton cycle. Since a Hamilton cycle contains all vertices, two
other edges incident to û and v̂, respectively, are part of the Hamilton cycle.
For each vertex v and an incident edge e, denote by Ee

v the sequence of edges
incident to v in clockwise order around v in ϕ starting with e. We add the edge
{û, v̂} to C in two steps.

Fig. 4. A fixed edge f (black) and a part of H (bold)

Let {u1, û} and {u2, û} be the first and second edge in E
{û,v̂}
û , respectively,

that is part of the Hamilton cycle. Replace successively each edge {ui, û} in the
list E

{u1,û}
û between {u1, û} and {u2, û}—but not equal to one of these—by a

new vertex unew
i and the split edges {ui, u

new
i } and {unew

i , û}. Let unew
1 , . . . , unew

k

be the new vertices of this step. Replace the part u1, û, u2 of the Hamilton cycle
by u1, unew

1 , . . . , unew
k , u2 by the use of new auxiliary edges. Let {v1, v̂} and

{v2, v̂} be the first and second edge in E
(û,v̂)
v̂ , respectively, that is part of the

Hamilton cycle. Replace successively each edge {vi, v̂} in the list E
(û,v̂)
v̂ between

{û, v̂} and {v1, v̂}—but not equal to one of these—by a new vertex vnew
i and the

split edges {vi, v
new
i } and {vnew

i , v̂}. Let vnew
1 , . . . , vnew

l be the new vertices of this
step. Replace the part v1, v̂, v2 of the Hamilton cycle by v1, vnew

1 , . . . , vnew
l , û, v̂,

v2 by the use of new auxiliary edges.
Now, the edge {û, v̂} is part of C. Observe that this edge is never removed by

the subsequent steps. Moreover, no edge in F and no auxiliary edge is ever split.
Calling the parts of a multiple split edge further on split edges, we can conclude
the following.

Corollary 10. Given a planar graph G and a set of fixed edges F such that
no vertex is incident to ≥ 2 fixed edges, a good edge-extension G+ of G and a
Hamilton cycle C in G+ can be found such that F ⊂ C.
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Property 11. We can always assume that both auxiliary edges of a new vertex
vnew are part of the Hamilton cycle C. Otherwise remove vnew, its auxiliary edges
and merge its split edges. Possibly reroute C.

We can use the ideas of Section 2 to obtain a simultaneous embedding and to
draw all edges in F as straight lines. However, we do not know how many bends
are necessary for an edge outside the Hamilton cycle. The following lemma helps
us to limit the number of bends per edge. Let V1 = V and let V2 be the set
of new vertices of G+. Use the following lemma iteratively for each path Q of
length > 3 in G+ corresponding to an edge in G. Observe that Q and C have no
edges in common and all edges of Q are split edges. Since the edge-extension G+

is good and because of Property 11, the application of the lemma below needs
no edge splitting and the obtained edge-extension remains good.

Lemma 12. Let H = (V1 ∪ V2, E) be a planar graph and let C be a cycle in H
that visits all vertices of V1. Additionally, let Q = (v1, v2, . . . , vk) be a path in H
whose endpoints belong to V1 and whose remaining vertices all belong to V2. H
can be modified by adding edges and splitting some edges e neither part of C nor
part of Q incident to an inner vertex at most two times such that a cycle Ĉ can
be found that visits all vertices of V1 and Ĉ crosses Q at most two times.

Due to space limitations, a proof of Lemma 12 is omitted. Figure 5 sketches one
iteration of the proof. Observe that a path Q that is crossed two times by C can
be reduced to a path of length 3 (Property 11).

Corollary 13. Let G be a planar graph, let F be a set of edges and let G+ be
a good edge-extension of G with a Hamilton cycle C ⊇ F . Another good edge-
extension G+

new of G with a Hamilton cycle Cnew can be constructed such that
Cnew also contains all edges in F and each edge in G corresponds to a path of
length ≤ 3 in G+

new.

In the following, we consider a generalized set of fixed edges. Moreover, the
following algorithm works directly with the algorithm of Section 3.

Definition 14 (star-free). For a given graph G = (V, E), a set of edges F ⊆ E
is star-free if F does not contain three edges with a common endpoint.

Definition 15 (cycle-free). For a given graph G = (V, E), a set of edges F ⊆
E is cycle-free if each cycle spanned by F is a Hamilton cycle.

Let G1 = (V, E1) and G2 = (V, E2) be two planar graphs and let F be a set
of edges that is star- and cycle-free with respect to G1 and G2. These graphs
are handled now one after another. The set F can contain several paths of fixed
edges. For the graph under consideration, let Q1, . . . , Qr denote the paths in
F that can not be extended. Again, using the ideas of Section 2, we need a
Hamilton cycle C in an edge-extension G+ that contains all fixed edges.

This can be done iteratively by adding complete paths Qi for i = 1, . . . , r to
the Hamilton cycle. Construct an arbitrary Hamilton cycle C0 with the algorithm
of Section 3 and let Ci be the Hamilton cycle after step i that contains Q1, . . . , Qi.
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It remains to show how to add one path Qi to Ci−1. First, use Lemma 12 to
reduce the crossings of Qi and Ci−1.

As shown in Fig. 6 by the dashed edges, reroute the ≤ 2 crossings of Qi and
Ci−1 around one of the endpoints of Qi. At the same time, handle the complete
path Qi of fixed edges similarly to one fixed edge: Add Qi to Ci−1 as shown in
Fig. 6 by the dotted edges.

Each edge incident to a vertex on Qi is split ≤ 2 times by Lemma 12, ≤ 2
times by the rerouting and ≤ 1 time by the step that adds Qi to Ci−1. Alto-
gether, such an edge is split ≤ 5 times. Since an edge in G can be incident only
to two inner vertices of paths Q1, . . . , Qr, an edge can be split ≤ 2 · 5 = 10
times after iterating over all Q1, . . . , Qr. Again, use Lemma 12 to reduce the
crossings of each edge and Cr to two without removing an edge of F from Cr.
Use the algorithm of Section 2 to find a 5-bend simultaneous embedding of
G1 and G2. With a similar argument as for Lemma 3.2 in [7], the number of
bends per edge can be reduced to 3 at the expense of exponential area for the
embedding.

Fig. 5. Three crossings of Q and C can be reduced to one crossing

Fig. 6. A path of fixed edges Q (black) and some edges of a Hamilton path (dashed
and dotted)

Corollary 16. A 5-bend simultaneous embedding of two planar graphs with a
star- and cycle-free set of fixed edges can be found in linear time. If the area may
be arbitrary, three bends suffice.

5 A Lower Bound and Other Restrictions

The graph shown in Fig. 7 clearly has no Hamilton path, since the white vertices
outnumber the black ones by two, but form an independent set.
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Lemma 17. No 1-bend embedding for the vertices-to-points problem is possible
in general.

Proof. Let G be a planar, triangulated graph without a Hamilton path and let
P be a set of vertices on a line. Since G has no Hamilton path, there must
be two vertices embedded to consecutive points being not adjacent. Since G
is triangulated, there is no face incident to these two vertices. Therefore, an
edge {u, v} with two bends has to exist that crosses the line between the two
consecutive points. See Fig. 8(a).

Fig. 7. A triangulated graph without a Hamilton path

(a) Vertices on a line (b) No sim. embedding

Fig. 8. Two counterexamples

The algorithm in the last section can only handle a star- and cycle-free set
of fixed edges. The question arises whether this restriction is necessary or not.
Consider first the case where two triangulated planar graphs and a not cycle-free
set of fixed edges are given. Denote the cycle of fixed edges by C ⊆ F . If there
are two vertices not part of C that are on the same side of the cycle in one of the
two graphs and on different sides in the other graph, no simultaneous embedding
is possible. Second, consider two triangulated planar graphs and two vertices u0
and v0 that are incident to at least three fixed edges {u0, u1} , {u0, u2} , {u0, u3}
and {v0, v1} , {v0, v2} , {u0, v3}, respectively. See Fig. 8(b). If in one graph the
pairs of vertices {u1, v1}, {u2, v2} and {u3, v3}, in the other graph the pairs of
vertices {u1, v1}, {u2, v3} and {u3, v2} are connected by vertex-disjoint paths,
respectively, again no simultaneous embedding is possible.
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Abstract. Given a set of curves in the plane or a topological graph, we
ask for an orientation of the curves or edges which induces an acyclic ori-
entation on the corresponding planar map. Depending on the maximum
number of crossings on a curve or an edge, we provide algorithms and
hardness proofs for this problem.

1 Introduction

Let G be a topological graph, that is, a graph drawn in the plane such that its
vertices are distinct points and its edges are Jordan arcs, each connecting two
vertices and containing no other vertex. In this work we further assume that G
is a simple topological graph, i.e., every pair of edges intersects at most once,
either at a common vertex or at a crossing point.

An orientation of (the edges of) a graph is an assignment of a direction to
every edge in the graph. For a given undirected (abstract) graph an orientation
with no directed cycle can be easily computed in linear time by performing a
depth-first search on the graph and then orienting every edge from the ancestor
to the descendent. However, is it always possible to find an orientation of the
edges of a topological graph, such that a traveller on that graph will not be able
to return to his starting position even if allowed to move from one edge to the
other at their crossing point? Such an orientation is called an acyclic orientation.
Rephrasing it in a more formal way, let M(G) be the planar map induced by
G, that is, the map obtained by adding the crossing points of G as vertices, and
subdividing the edges of G accordingly. Then we ask for an orientation of the
edges of G such that the induced directed planar map M(G) is acyclic.

Clearly, if the topological graph is x-monotone, that is, every vertical line
crosses every edge at most once, then one can orient each edge from left to
right. Travelling on the graph under such an orientation, one always increases
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Fig. 1. A non-orientable topological graph

the x-coordinate and therefore there can be no directed cycle. Fig. 1(a) provides
an example for a topological graph which has no acyclic orientation: The edges
e1, e2, e3 cannot be all oriented clockwise or counter-clockwise, so assume w.l.o.g.
that e1 and e2 are oriented clockwise, while e3 is oriented counter-clockwise as
in Fig. 1(b). To prevent a cycle with e1 and e3, e6 must be oriented downwards.
Similarly, e5 must be directed leftwards to prevent a cycle with e2 and e3 (see
Fig. 1(c)). However, this yields the cycle shown in Fig. 1(d). The degree of every
vertex in this example is one, i.e. it consists of a set of curves embedded in the
plane with distinct endpoints. We will consider the case of curves separately.

It turns out that determining whether a topological graph (resp., a set of
curves) has an acyclic orientation depends crucially on the maximum number
of times an edge in the graph (resp., a curve) can be crossed. Given a (simple)
topological graph G on n vertices, such that each edge in G is crossed at most
once, we show that one can find an acyclic orientation of G in O(n) time. When
four crossings per edge are allowed, deciding whether there exists an acyclic
orientation becomes NP-complete. Topological graphs with few crossings per
edge were considered in several works in the literature [1, 2, 3]. For a set of n
curves with distinct endpoints in which each pair of curves intersects at most once
and every curve is crossed at most k times, we describe an O(n)-time orientation
algorithm for the case k ≤ 3. When k ≥ 5 finding an acyclic orientation of the
set of curves is NP-complete.

The rest of this paper is organized as follows. In Sect. 2 we study the problem
of finding an acyclic orientation for a set of curves. Then, in Sect. 3 we consider
the more general case where the input is a topological graph. Finally, we give
some concluding remarks in Sect. 4, and mention a few related open problems.

2 Acyclic Orientation of a Set of Curves in the Plane

Throughout this paper we assume the intersections between the curves are known
in advance. Given a set of curves C, the vertices of the planar map M(C) induced
by C are the crossing points between the curves, while the edges of M(C) are
segments of the curves that connect two consecutive crossing points on a curve.
Note that in contrast to the “classical” planar map, we do not consider the pieces
that terminate at the endpoints because they cannot contribute to a cycle. As
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we have mentioned above, the maximum number of crossings per curve plays an
important role when we ask for an acyclic orientation of a set of curves. If every
curve is crossed at most once, then M(C) contains no edges, and therefore any
orientation of C is acyclic. If C is a set of curves with at most two crossing points
per curve, then M(C) is a union of cycles and paths and thus finding an acyclic
orientation of C is also easy in this case. Hence, the first non-trivial case is where
each curve is crossed at most three times. In this case we have:

Theorem 1. Let C be a set of n curves in the plane, such that every pair of
curves intersects at most once and each curve has at most three crossings. Then
one can find an acyclic orientation of C in O(n) time.

This result is proved in Sect. 2.1, while in Sect. 2.2 we show:

Theorem 2. Consider the class of sets of curves in the plane with the following
properties: every pair of curves intersects at most once and each curve has at
most five crossings. Deciding whether a set of curves from this class has an
acyclic orientation is NP-complete.

2.1 Curves with at Most Three Crossings per Curve

Let C be a set of n curves in the plane, such that every pair of curves intersect at
most once and each curve has at most three crossings. In this section we describe
an algorithm for obtaining an acyclic orientation of C. We start by constructing
M(C), the planar map induced by C. Clearly, an (acyclic) orientation of C induces
an (acyclic) orientation of the edges in M(C).

Every connected component of M(C) can be oriented independently, therefore
we describe the algorithm assuming M(C) is connected. Suppose C contains a
curve c which is crossed less than 3 times. By removing c we obtain a set of
n− 1 curves in which there must be at least two curves (the ones crossed by c)
which are crossed at most twice. We continue removing the curves, until none is
left. Then we reinsert the curves in reverse order. During the insertion process
we reconstruct M(C) and define a total order of its vertices. For this we store
the vertices of M(C) in a data structure suggested by Dietz and Sleator [4]. This
data structure supports the following operations, both in O(1) worst-case time:

1. INSERT(X ,Y ): Insert a new element Y immediately after the element X .
2. ORDER(X ,Y ): Compare X and Y .

By inserting Y after X and then switching their labels we can also use this
data structure to insert a new element immediately before an existing element
in constant time. We also keep a record of the maximal element in the order,
MAX (that is, we update MAX when a new element is added after it).

We now describe the way a curve c is reinserted. For every curve c′ that has
already been added and is crossed by c (there are at most two such curves)
we take the following actions. Let x be the crossing point of c and c′. If c′ has
no other crossing points, then x is inserted after MAX. In case c′ has exactly
one crossing point x′, we insert x after x′ when c′ is oriented from x′ to x, and
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before x′ otherwise. Otherwise, suppose c′ has two crossing points x′
1 and x′

2,
such that x′

1 < x′
2. Then we insert x before x′

1 if x′
1 is the middle point on c′

among the three points; after x′
1 if x is the middle point; and after x′

2 if x′
2 is the

middle point. In this way, if c′ has now three crossing points, they are ordered
consistently. Finally we orient c arbitrarily if it has less than two crossings, or
from the smaller crossing to the larger one, in case it has two crossings. We refer
to the algorithm described above as Algorithm 1.

Lemma 1. Let C be a set of n curves such that every curve is crossed at most
three times and there is a curve that is crossed at most twice. Then Algorithm 1
finds an acyclic orientation of C in O(n) time.

Proof. Since a total order is defined on the vertices of M(C) and it is easy to
verify that every edge is oriented from its smaller vertex to its larger one, it
follows that there is no directed cycle in M(C). Computing the connected com-
ponents of M(C) requires O(n) time. Removing and adding a curve is performed
in constant time, therefore the overall time complexity is O(n). �

The more complicated case is when all the curves in C are crossed exactly three
times. The general idea in this case is to:

1. find a set of curves S that form an undirected cycle in M(C);
2. orient C \ S using Algorithm 1;
3. orient S such that:

(a) the curves in S do not form a directed cycle; and
(b) it is impossible to ‘hop’ on S from C \S, ‘travel’ on S, and ‘hop’ off back

to C \ S.

Henceforth, we assume that every curve in C is crossed three times. We tackle
the orientation problem based on whether or not there is a crossing point x
whose degree in M(C) is 3. Suppose x0 is a crossing point of degree 3, that is, it
is the crossing point of two curves, c0 and c, such that x0 is an extreme crossing
point on c and the middle crossing point on c0. Denote by a0 and a1 (resp.,
a and b) the other crossing points on c0 (resp., c) (see Fig. 2(a), the edges of the
planar map are drawn in thick).

x0b
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Fig. 2. Orienting the curves where there is a degree 3 crossing point
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We proceed by temporarily removing x0 and looking for an undirected path
in M(C) between a0 and a1. If there is no such path, then suppose that there
is no path from a1 to a (the case there is no path from a0 to a is handled in
a similar way). We can solve the orientation problem of C by solving two sub-
problems: first orienting the curves reachable from a1 (without going through
x0), then orienting the rest of the curves. Both sub-problems can be solved using
Algorithm 1.

Now assume we have found a simple path p between a1 and a0. Denote by
c1, c2, . . . , ck the curves on this path from a1 to a0. Let C be the cycle formed
by p, (a0, x0) and (x0, a1), and let S = {c0, c1, . . . , ck}. Our algorithm proceeds
by finding an acyclic orientation of C \S (using Algorithm 1) and then orienting
the curves in S. If c /∈ S and the direction of c in the acyclic orientation of C \S
is from x0 to a, then we switch the direction of every curve in C \ S. It is easy
to see that the curves in C \ S still do not form a directed cycle.

Next we provide the details of the orientation of the curves in S. Denote by ai

the crossing point of ci−1 and ci, i = 1, . . . , k−1, and let a0 = ak be the crossing
point of c0 and ck. If we traverse C starting at x0 along the curves c0, c1, . . . , ck,
then the curve ci is traversed from the point ai to the point ai+1, i = 1, . . . , k.
Every curve has a third crossing point, that we denote by xi, and refer to as
the connection point of ci. Note that xi may or may not be on C, and that it is
possible that xi = xj for i �= j. We say that xi is a before-connection point if ai

is between xi and ai+1 on ci; xi is an after -connection point if ai+1 is between
xi and ai on ci; and we say that xi is a middle-connection point if it is not an
extreme crossing point on ci.

We will orient the curves in S such that there will be no directed path between
two connection points through S (apart from some cases that will be discussed
later on). We start by orienting c1 from x1 to a1 (see Fig. 2(b)), thus making it
impossible to “walk” from x0 to x1 using c0 and c1. Next, we assign an orientation
to c2. The orientation of c1 already prevents walking on c1 and c2 either from
x1 to x2, or the other direction. We assign an orientation to c2 such that both
directions are impossible (see Fig. 2(c) for an example). We continue orienting
the curves c3, . . . , ck in a similar way, making it impossible to reach xi from xi+1
and the other way around, by using the curves ci and ci+1, for i = 1, 2, . . . , k−1.
Finally, we set an orientation to c0 as follows: In case xk is already unreachable
from x0 (using the curves c0 and ck), we set the orientation of c0 such that x0
is unreachable from xk. Otherwise, we make sure xk is unreachable from x0.
Orienting S this way guarantees that for i = 1, . . . , k− 1 one cannot go from xi

to xi+1 or vice versa, using ci and ci+1. It also guarantees that x1 is unreachable
from x0 using c0 and c1, and that xk is unreachable from x0 using c0 and ck.

Observation 1. For every i = 1, . . . , k there is no connection point xj �= xi

such that there is a directed path on the curves in S from xj to xi.

Proof. We prove the claim by induction on number of curves in the path between
the two connection points. If the two connection points are on two crossing (that
is, adjacent) curves, then the algorithm guarantees that there is no path from xj

to xi (note that xi �= x0). Suppose that there are xi and xj such that there is a
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directed path from xj to xi on S, and assume w.l.o.g. that cj+1 is the next curve
on that path. Note that cj+1 �= c0, for otherwise there is path from x0 to xi

which is shorter than the path from xj to xi. xj+1 must be a before-connection
point, since otherwise there is a path from xj to xj+1 using cj and cj+1. However,
it follows that there is a path from xj+1 to xi which is shorter than the path
from xj to xi. �
Observation 2. C is not a directed cycle.

Proof. Assume our orientation results in a directed cycle a0 → a1 → · · · → ak =
a0 (for a directed cycle in the other direction the proof is similar). According to
the rules by which c0 is oriented, it follows that xk is an after-connection point
(otherwise one can walk from xk to x0 on ck and c0). Considering the orientation
of ck and ck−1 and the fact there is no path using them from xk−1 to xk or vice
versa, one concludes that xk−1 is also an after-connection point. Proceeding in
a similar manner implies that x1 is also an after-connection point. However, in
this case c1 should have been oriented in the reverse direction in order to prevent
a path from x0 to x1 using c0 and c1. �
Since C is not a directed cycle and Algorithm 1 finds an acyclic orientation of
the curves in C \S, it remains to verify that there is no cycle that involves curves
from S and from C \S. If there is such a cycle then when traversing it one must
‘hop’ on S at some connection point, ‘travel’ on S for a while, and then ‘hop’ off
S. However, it follows from Observation 1 that one can ‘hop’ off S only at x0.
Since c is directed from a to x0 and x0 is an extreme crossing point on c, the
way from x0 on c leads to a “dead-end” and cannot be part of a directed cycle.

Finally, we have to consider the case where every curve in C is crossed exactly
three times, but there is no crossing point whose degree is three (see Fig. 3
for an example). This means that all degrees are 2 and 4, and the endpoints
of each edge have different degrees. In this case we first look for an undirected
cycle (there must be one as the degree of every vertex in M(C) is at least 2).
During our search, after arriving at a vertex v through one of the two curves
defining v, we leave through the other curve. Let C be the undirected cycle
found, and denote by c1, c2, . . . , ck the curves forming C (in that order). Again,
we first orient the curves in C\{c1, c2, . . . , ck} using Algorithm 1, and then assign
orientations to the curves c1, c2, . . . , ck. Let a1, a2, . . . , ak be the vertices of C,
and let x1, x2, . . . , xk be the connection point of c1, c2, . . . , ck, respectively. Thus,
the degree of the points a1, a2, . . . , ak must alternate between 2 and 4, and k must
be even. It also follows from the way we search for a cycle, that the connection
points x1, x2, . . . , xk are alternating ‘before’ and ‘after’-connection points. By
orienting the curves c1, c2, . . . , ck in an alternating manner (see Fig. 3) we make
sure that C is not a directed cycle, and that it is impossible to ‘hop’ on C at
some connection point and then ‘hop’ off at another connection point. Therefore,
the resulting orientation is acyclic. Let us refer to the algorithm describe above
for the case every curve is crossed exactly three times as Algorithm 2.

Lemma 2. Let C be a set of n curves such that every curve is crossed exactly
three times. Then Algorithm 2 finds an acyclic orientation of C in O(n) time.
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Fig. 4. A reduction from NAE-k-SAT to orienta-
tion of curves with at most 5 crossings per curve.
(a) a variable, (b) a gadget for handling negation
and extra-crossings, (c) a clause.

Proof. It follows from the correctness of Algorithm 1 and from the discussion
above that Algorithm 2 finds an acyclic orientation of C. A cycle is removed
only once, and then it is guarantied that there will be some curves with less
than three crossings (in each connected component), and therefore we can apply
Algorithm 1 on the remaining curves. All the operations concerning finding the
cycle, removing it, and orienting the involved curves can be performed in O(n).
Thus the overall time complexity is linear in the number of curves. �

Combining lemmata 1 and 2 completes the proof of Theorem 1.

2.2 Curves with at Most Five Crossings per Curve

In this section we show that deciding whether there exists an acyclic orientation
of a set of curves with at most 5 crossings per curve is intractable. We will
reduce this problem from the following NP-complete variant of the satisfiability
problem [5]:

Definition 1. An instance of Not-All-Equal-k-SAT (k ≥ 3) is given by a
collection of clauses, each containing exactly k literals. The problem is to deter-
mine whether there exists a truth assignment such that each clause has at least
one true and one false literal.

Proof (Theorem 2). The problem is clearly in NP. The problem is shown to be
NP-hard by reduction from Not-All-Equal-k-SAT to the acyclic orientation
problem for k ≥ 3.

We will have gadgets to represent variables and clauses and we will connect
variables to clauses in which they appear by wires. Drawing the NAE problem in
the plane introduces crossings between the wires. We call these crossings extra-
crossings in order to distinguish them from the crossings between the curves.
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A variable is encoded as shown in Fig. 4(a) where orientations correspond
to Boolean signals. In any acyclic orientation all the curves drawn as arrows
either have the orientation depicted or the opposite. The thick curves are used
as wires and can have three further crossings. The construction uses 4+3k curves
to generate k wires. Fig. 4(b) shows the encoding of a NOT gate. It uses two
wires from one variable and one from the other. The latter is used to propagate
the signal across an extra-crossing without introducing a sixth crossing on a
curve (this wire has only four crossings). Using this gadget a signal is negated
before and after the extra-crossing, thus preventing the introduction of new
cycles through the extra-crossing point. The encoding of a clause with k literals
is done by k curves forming a k-gon, as shown in Fig. 4(c) for k = 5. A wire
enters at the plus or at the minus sign depending on whether its corresponding
literal in the clause is negated. The edges of the k-gon form a directed cycle if
and only if all the literals of the clause are true or all are false. A solution to
the Not-All-Equal-k-SAT problem will therefore yield an acyclic orientation
of the curves. Conversely, if there is no solution, any orientation will either have
a cycle at a clause encoding, or have outgoing edges at a variable encoding with
different orientations, forcing a cycle within the variable. �

3 Acyclic Orientation of Topological Graphs

Given a topological graph in which no edge is crossed, one can use the simple
algorithm for abstract graphs described in the Introduction to find an acyclic
orientation. Thus, the first non-trivial case is when every edge is crossed at most
once. In Sect. 3.1 we show that in this case we have:

Theorem 3. Let G be a simple topological graph on n vertices in which every
edge is crossed at most once. Then G has an acyclic orientation. Moreover, such
an orientation can be found in O(n) time.

In Sect. 3.2 we show:

Theorem 4. Consider the class of simple topological graphs on n vertices in
which every pair of edges crosses at most once and each edge has at most four
crossings. Deciding whether a graph of this class has an acyclic orientation is
NP-complete.

3.1 Topological Graphs with at Most One Crossing per Edge

Before proving Theorem 3 we recall some basic terms and facts from graph
theory.

Definition 2. An undirected graph G = (V, E) is biconnected if there is no
vertex v ∈ V such that G \ {v} is not connected. A biconnected component
of a connected graph G is a maximal set of vertices that induce a biconnected
subgraph.
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Observation 3. Let G be an undirected graph and let C be a simple cycle in G.
Denote by B the biconnected component containing C, and let e /∈ C be an edge
connecting two vertices of C. Then B is a biconnected component of G \ {e}.

Definition 3. Given a biconnected graph G = (V, E) and an edge {s, t} ∈ E,
an st-numbering (or st-ordering) of G is a bijection 	 : V → {1, 2, . . . , |V |} such
that: (a) 	(s) = 1; (b) 	(t) = |V |; and (c) for every vertex v ∈ V \ {s, t} there
are two edges {v, u}, {v, w} ∈ E such that 	(v) < 	(u) and 	(v) > 	(w).

Given an st-numbering we will not make a distinction between a vertex and its
st-number. An st-numbering of a graph G naturally defines an orientation of
the edges of G: direct every edge {u, v} from u to v if u < v and from v to u
otherwise.

Lemma 3 (Tamassia, Tollis [6]). Let G = (V, E) be a plane biconnected
multi-graph such that |V | > 2, and denote by G′ the directed plane graph induced
by some st-numbering of G. Let f be a face of G, and denote by G′

f the graph
induced by the edges of G′ bounding f . Then G′

f has exactly one source and one
sink and consists of two directed paths from the source to the sink.

Algorithm 3. Acyclic orientation of a topological graph with at most one cross-
ing per edge
Input: A topological graph G with at most one crossing per edge.
Output: An acyclic orientation of G.
1: for each pair of crossing edges {a, b} and {c, d} do
2: add each of the edges {a, c}, {a, d}, {b, c}, and {b, d};
3: end for
4: compute the biconnected components of the new (multi-)graph;
5: for each biconnected component C do
6: temporarily delete all pairs of crossing edges in C;
7: compute an st-numbering of the remaining subgraph;
8: reinsert all pairs of crossing edges in C;
9: orient each edge of C according to the st-numbering;

10: end for
11: remove the edges added in line 2;

Proof (Theorem 3). Let G be a simple topological graph with n vertices and
m edges in which every edge is crossed at most once. We will show that Algo-
rithm 3 computes an acyclic orientation of G. Denote by G′ the graph obtained
after adding the edges in lines 1–3. It is always possible to add the edges in line
2 without introducing new crossings. We add them close to the edges {a, b} and
{c, d}, such that when these edges are deleted in line 6, the new edges form a
face. It may happen that some new edges are parallel to existing edges, and thus
the graph may become a multigraph. After this step the vertices of each crossing
pair of edges lie on a simple 4-cycle. It is enough to verify that each biconnected



Acyclic Orientation of Drawings 277

component of G′ is acyclically oriented, since (a) every simple cycle in the under-
lying abstract graph is contained entirely in some biconnected component, and
(b) the crossings do not introduce any interaction between different biconnected
components, as all the vertices of a crossing pair of edges lie on a simple 4-cycle
in G′ and therefore are in the same biconnected component. Thus, let us look
at a biconnected component C of G′. We denote by C′′ the graph obtained by
removing all pairs of crossing edges from C. Since we only remove edges which
are chords of a cycle C′′ is biconnected, therefore, in line (7) an st-numbering of
C′′ is indeed computed.

Clearly, one can obtain an acyclic orientation of an abstract graph by number-
ing the vertices of the graph and directing every edge from its endpoint with the
smaller number to its endpoint with the larger number. Therefore, it is enough
to verify that the crossing points do not introduce a bad “shortcut”, that is a
path from a vertex u to a vertex v such that v < u. Let (a, b), (c, d) be a pair
of crossing edges. Denote by f the 4-face a− c− b − d− a of C′′. According to
Lemma 3 the digraph induced by f and the computed st-numbering has only one
source and sink. Therefore, we have to consider only two cases based on whether
the sink and the source are adjacent in f . One can easily verify by inspection
that in both cases no bad shortcut is formed. Thus Algorithm 3 produces an
acyclic orientation.

Algorithm 3 can be implemented to run in time linear in the number of ver-
tices: Finding the biconnected components of a graph takes O(n + m) time [7],
as does the computation of an st-numbering [8]. Therefore the overall running
time is O(n+m). However the maximum number of edges in a topological graph
in which every edge is crossed at most once is 4n−8 [3], thus the time and space
complexity of Algorithm 3 is O(n). �

3.2 Topological Graphs with at Most Four Crossings per Edge

In this section we show that deciding whether there exists an acyclic orientation
of a topological graph with at most four crossings per edge is NP-complete.

(a) (b) (c) (d)

Fig. 5. A reduction from NAE-k-SAT to acyclic orientation of a topological graph with
at most 4 crossings per edge. (a) a variable, (b) a NOT gate, (c) an edge (wire) with
only one crossing so far, (d) a clause gate.
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Proof (Theorem 4). An acyclic orientation can be verified in polynomial time,
therefore the problem is in NP. As for the case of a set of curves, the reduction
is done from Not-All-Equal-k-SAT.

The encoding of a variable is shown in Fig. 5(a). A clause can be encoded
as in the case of curves, however the slightly more complex encoding shown
in Fig. 5(d) uses only one crossing per ingoing wire instead of two. The NOT
gate shown in Fig. 5(b) can again be used to split wires. It is not suitable for
handling extra-crossings, since the arc connecting a literal and its negation uses
all its four crossings for negation. Instead, an edge with only one crossing can
be constructed as shown in Fig. 5(c). This edge can then be used to propagate
the signal across an extra-crossing, ending in the same construction on the other
side. Extra-crossings cannot introduce new cycles, since the arcs at a variable or
its negation are again all ingoing or outgoing. �

4 Discussion

For topological graphs with at most one crossing per edge we showed that an
acyclic orientation always exists (and can be found in linear time). When the
maximum number of crossings per edge is at least four, deciding whether an
acyclic orientation of the graph exists is NP-complete. An obvious open question
is what happens when the maximum number of crossings per edge is two or three.

Observation 4. There is a simple topological graph G with at most three cross-
ings on each curve, which has no acyclic orientation.

Proof. Such a graph can be constructed with the gadgets of the NP-hardness
proof in the case of at most four crossings per edge. The encoding of a variable
(Fig. 5(a)) with only three outgoing wires uses at most three crossings per edge
and two crossings for the outgoing edges. The outgoing edges all have the same
orientation. The encoding of a clause (Fig. 5(d)) with three literals has at most
three crossings per edge, and at most one crossing per outgoing wire. In an acyclic
orientation of the clause gadget it is impossible for all three outgoing wires to be
oriented all inwards or all outwards. Combining a variable and a clause yields a
graph with at most three crossings per edge and no acyclic orientation. �

We do not know whether it can be decided in polynomial time whether a topo-
logical graph with at most three crossings per edge has an acyclic orientation.
The situation is worse for topological graphs with at most two crossings per
edge: So far we were unable to find an example which has no acyclic orientation,
or to prove that every such graph is acyclic-orientable.

A special case is where all the vertices in the graph have degree 1. This case
corresponds to asking the acyclic orientation question for a set of curves. Clearly,
if the problem can be solved (or decided) for topological graphs with at most k
crossings per edge, then it can be solved for curves with at most k crossings per
curve. It would be interesting to determine whether there is a construction that
provides a reduction from topological graphs with at most k crossings per edge
to a set of curves with at most k′ crossings per curve for some k.
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For curves with at most three crossings per curve we provided a linear time al-
gorithm that finds an acyclic orientation. For five crossings per curve we showed
that the problem becomes NP-complete. A set of curves with at most four cross-
ings per curve does not always have an acyclic orientation, as Fig. 1 implies.
However, the complexity status of the decision problem for such sets of curves
is also open. Two other interesting open questions are: (1) What happens if we
only require acyclic faces? and (2) What happens if we look for an orientation
such that for every pair of vertices, u, v, in the induced planar map there is a
directed path from u to v or vice versa?

Our original motivation for considering the acyclic orientation of curves does
not concern curves in the plane but in surfaces. An important property [9, The-
orem 1] of arrangements of double pseudolines in the Möbius band can be for-
mulated in terms of the acyclicity of the 1-skeleton of a certain arrangement of
oriented curves in a cylinder. It would be interesting to obtain results concerning
acyclic orientations of curves on other surfaces. Also it would be interesting to
study acyclic orientations of graphs with more general dependencies between or
constraints on the orientation of edges.
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Abstract. The oracle identification problem (OIP) was introduced by
Ambainis et al. [3]. It is given as a set S of M oracles and a blackbox
oracle f . Our task is to figure out which oracle in S is equal to the black-
box f by making queries to f . OIP includes several problems such as the
Grover Search as special cases. In this paper, we improve the algorithms
in [3] by providing a mostly optimal upper bound of query complexity
for this problem: (i) For any oracle set S such that |S| ≤ 2Nd

(d < 1),
we design an algorithm whose query complexity is O(

√
N log M/ log N),

matching the lower bound proved in [3]. (ii) Our algorithm also works for
the range between 2Nd

and 2N/ log N (where the bound becomes O(N)),
but the gap between the upper and lower bounds worsens gradually.
(iii) Our algorithm is robust, namely, it exhibits the same performance
(up to a constant factor) against the noisy oracles as also shown in the
literatures [2, 11, 18] for special cases of OIP.

1 Introduction

We study the following problem, called the Oracle Identification Problem (OIP):
Given a hidden N -bit vector f = (a1, . . . , aN ) ∈ {0, 1}N , called an oracle,
and a candidate set S ⊆ {0, 1}N , OIP requires us to find which oracle in S
is equal to f . OIP has been especially popular since the emergence of quan-
tum computation, e.g., [7, 8, 9, 11, 13, 18]. For example, suppose that we set
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S = {(a1, . . . , aN )| exactly one ai = 1}. Then this OIP is essentially the same
as Grover search [17]. In [3], Ambainis et al. extended the problem to a general
S. They proved that the total cost of any OIP with |S| = N is O(

√
N), which is

optimal within a constant factor since this includes the Grover search as a special
case and for the latter an Ω(

√
N) lower bound is known (e.g., [9]). For a larger

S, they obtain nontrivial upper and lower bounds, O(
√

N log M log N log log M)
and Ω(

√
N log M/ log N), respectively, but unfortunately, there is a fairly large

gap between them.

Our Result. Let M = |S|. (i) If M ≤ 2Nd

for a constant d (< 1), then the cost
of our new algorithm is O(

√
N log M/ log N) which matches the lower bound

obtained in [3]. (Previously we have an optimal upper bound only for M = N).
(ii) For the range between 2Nd

and 2N/ log N , our algorithm works without any
modification and the (gradually growing) gap to the lower bound is at most a
factor of O(

√
log N log log N). (iii) Our algorithm is robust, namely, it exhibits

the same performance (up to a constant factor) against the noisy oracles as
shown in the literatures [2, 11, 18] for special cases of OIP.

Our algorithms use two operations: (i) The first one is a simple query (S-
query) to the hidden oracle, i.e., to obtain the value (0 or 1) of ai by specifying
the log N -bit index i. The cost for this query is one per each. (ii) The second one
is called a G-query to the oracle: By specifying a set T = {i1, . . . , ir} of indices,
we can obtain, if any, an index ij ∈ T s.t. aij = 1 and nill otherwise. If there
are two or more such ij’s then one of them is chosen at random. The cost for
this query is O(

√
|T |/K) where K =

∣∣{ij| ij ∈ T and aij = 1}
∣∣+ 1. This query

is stochastic, i.e., the answer is correct with a constant probability. Obviously
our goal is to minimize the cost for solving the OIP with a constant success
probability. Note that we incur the cost for only S- and G-queries (i.e., the cost
for any other computation is zero), and it turns out that our query model is
equivalent to the standard query complexity one, e.g., [6].

If we use the two queries as blackbox subroutines together with their cost rule,
then any knowledge about quantum computation is not needed in the design and
analysis of our algorithms. Since S is a set of M 0/1-vectors of length N , it is
naturally given as a 0/1 matrix Z of N columns and M rows. For a given Z,
our basic strategy is quite simple: if there is a column which includes a balanced
number of 0’s and 1’s, then we ask the value of the oracle at that position by
using an S-query. This reduces the number of candidates by a constant factor.
Otherwise, i.e., if every column has, say, a small fraction of 1’s, then S-queries
may seldom reduce the candidates. In such a situation, the idea is that it is
better to use a G-query by selecting a certain number of columns in T than re-
peating S-queries. In order to optimize this strategy, our new algorithm controls
the size of T very carefully. This contrasts with the previous method [3] that
uses G-queries always with T = {1, . . . , N}.

Previous Work. Suppose that we wish to solve some problem over input data
of N bits. Presumably, we need all the values of these N bits to obtain a correct
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answer, which in turn requires N (simple) queries to the data. In a certain
situation, we do not need all the values, which allows us to design a variety
of sublinear-time (classical) algorithms, e.g., [12, 16, 20]. This is also true when
the input is given with some premise, for which giving a candidate set as in
this paper is the most general method. Quickly approaching to the hidden data
using the premise information is the basis of algorithmic learning theory. In
fact, Atici et al. in [5] independently use techniques similar to ours in the con-
text of quantum learning theory. One of their results, which states the exis-
tence of a quantum algorithm for learning a concept class S whose parameter
is γS with O(log |S| log log |S|/√γS) queries, almost establishes a conjecture of
O(log |S|/√γS) queries in [19].

2 S-Queries, G-Queries and Robustness

Recall that an instance of OIP is given as a set S = {f1, . . . , fM} of oracles, each
fi = (fi(1), . . . , fi(N)) ∈ {0, 1}N , and a hidden oracle f ∈ S which is not known
in advance. We are asked to find the index i such that f = fi. We can access
the hidden oracle f through a unitary transformation Uf , which is referred to
as an oracle call, such that Uf |x〉 |0〉 = |x〉 |f(x)〉 , where 1 ≤ x ≤ N denotes
the bit-position of f whose value (0 or 1) we wish to know. This bit-position
might be a superposition of two or more bit-positions, i.e.,

∑
i αi |xi〉. Then the

result of the oracle call is also a superposition, i.e.,
∑

i αi |xi〉 |f(xi)〉. The query
complexity counts the number of oracle calls being necessary to obtain a correct
answer i with a constant probability.

In this paper we will not use oracle calls directly but through two subrou-
tines, S-queries and G-queries. (Both can be viewed as classical subroutines
when used.) An S-query, SQ(i), is simply a single oracle call with the index i
plus observation. It returns f(i) with probability one and its query complexity
is obviously one. A G-query, GQ(T ), where T ⊆ {1, . . . , N}, returns 1 ≤ i ≤ N
such that i ∈ T and f(i) = 1 if such i exists and nill otherwise. We admit an
error, namely, the answer may be incorrect but should be correct with a constant
probability, say, 2/3. Although details are omitted, it is easy to see that GQ(T )
can be implemented by applying Grover Search only to the selected positions T .
Its query complexity is given by the following lemma.

Lemma 1 ([10]). GQ(T ) needs O(
√
|T |/K) oracle calls, where

K = |{j| j ∈ T and f(j) = 1}|+ 1.

If f is a noisy oracle, then its unitary transformation is given as follows [2]:
Ũf |x〉 |0〉 |0〉 =

√
px |x〉 |φx〉 |f(x)〉+

√
1− px |x〉 |ψx〉 |¬f(x)〉 , where 2/3 ≤ px ≤

1, |φx〉 and |ψx〉 (the states of working registers) may depend on x. As before
|x〉 (and hence the result also) may be a superposition of bit-positions. Since an
oracle call itself includes an error, an S-query should also be stochastic. S̃Q(i) re-
turns f(i) with probability at least 2/3 (and ¬f(i) with at most 1/3). G-queries,
G̃Q(T ), are already stochastic, i.e., succeed to find an answer with probability
at least 2/3 if there exists one, and they do not need modification.
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Lemma 2 ([18]). Let K and T be as before. Then G̃Q(T ) needs O(
√
|T |/K)

noisy oracle calls.

In this paper our oracle mode is almost always noisy. Therefore we simply use
the notation SQ and GQ instead of S̃Q and G̃Q.

3 Algorithms for Small Candidate Sets

3.1 Overview of the Algorithm

Recall that the candidate set S (|S| = M) is given as an M×N matrix Z. Before
we give our main result in the next section, we discuss the case that Z is small,
i.e., M = poly(N) in this section, which we need in the main algorithm and also
will be nice to understand the basic idea. Since our goal is to find a single row
from the M ones, a natural strategy is to reduce the number of candidate rows
(a subset of rows denoted by S) step by step. This can be done easily if there
is a column, say, j which is “balanced,” i.e., which has an approximately equal
number of 0’s and 1’s in Z(S), where Z(S) denotes the matrix obtained from
Z by deleting all rows not in S. Then by asking the value of f(j) by an SQ(j),
we can reduce the size of S (i.e., the number of oracle candidates) by a constant
factor. Suppose otherwise, that there are no such good columns in Z(S). Then
we gather a certain number of columns such that the set T of these columns is
“balanced,” namely, such that the number of rows which has 1 somewhere in T
is a constant fraction of |S|. (See Fig. 1 where the columns in T are shifted to
the left.) Now we execute GQ(T ) and we can reduce the size of S by a constant
fraction according to whether GQ(T ) returns nill (S is reduced to S2 in Fig. 1)
or not (S is reduced to S1 in Fig. 1). Then we move to the next iteration until
|S| becomes one.

The merit of using GQ(T ) is obvious since it needs at most O(
√
|T |) queries

while we may need roughly |T | queries if asking each position by S-queries.
Even so, if |T | is too large, we cannot tolerate the cost for GQ(T ). So, the key
issue here is to set a carefully chosen upper bound for the size of T . If we can
select T within this upper bound, then we are happy. Otherwise, we just give up
constructing T and use another strategy which takes advantage of the sparseness
of the current matrix Z(S). (Obviously Z(S) is sparse since we could not select
a T of small size.)

It should be also noted that in each iteration the matrix Z(S) should be one-
sensitive, namely the number of 1’s is less than or equal to the number of 0’s in
every column. (The reason is obvious since it does not make sense to try to find
1 if almost all entries are 1.) For this purpose we implicitly apply the column-
flipping procedure in each iteration. Suppose that some column, say j, of Z(S)
has more 1’s than 0’s. Then this procedure “flips” the value of f(j) by adding
an extra circuit to the oracle (but without any oracle call). Let this oracle be
f(j) and Z(S(j)) be the matrix obtained by flipping the column j of Z(S). Then
obviously f ∈ S iff the matrix Z(S(j)) contains the row f(j), i.e., the problem
does not change essentially. Note that the column-flipping is the same as that
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in [3], where the OIP matrix was written as a N ×M (number of columns ×
number of rows) 0-1 matrix instead of the more common M ×N one.

3.2 Procedure RowReduction(T, l) for Reducing Oracles Candidates

This procedure narrows S in each iteration, where T is a set of columns and l is
an integer ≥ 1 necessary for error control. See Procedure 1 for its pseudocode.
Case 1: If f has one or more 1’s in T like f1 in Fig. 1, then k = GQ(T ) gives us
one of the positions of these 1’s, say the circled one in the figure. The procedure
returns with the set S′

1 of rows in the figure, i.e., the rows having a 1 in the
position selected by the GQ(T ). Case 2: If f has no 1’s in T like f2 in the figure,
then k = nill (i.e., GQ(T ) correctly answered). Even if k �= nill (GQ(T ) failed)
then Majority(k, l, f), i.e., the majority of 60l samples of f(k), is 0 with high
probability regardless of the value of k. Therefore the procedure returns with
the set S2 of rows, i.e., the rows having no 1’s in T . The parameter l guarantees
the success probability of this procedure as follows.

Lemma 3. The success probability and the number of oracle calls in the proce-
dure RowReduction(T, l) are 1−O(l/3l) and l(O(

√
|T |) + l), respectively.

The success probability can be derived from an ordinary argument by Chernoff
bound, and the rigorous proof can be found in [4].

3.3 Procedure RowCover(S, r) for Collecting Position of Queries

As mentioned in Sec. 3.1, we need to make a set T of columns being balanced
as a whole. This procedure is used for this purpose where Z(S) is the current
matrix and 0 < r ≤ 1 controls the size of T . See Procedure 2 for its pseudocode.
As shown in Fig. 2, the procedure adds columns t1, t2, . . . , to T as long as a
new addition ti increases the number of covered rows (= |PositiveRow(T, Z)|)
by a factor of r or until the number of covered rows becomes |S|/4. We say
that RowCover succeeds if it finishes with S′ such that |S′| ≤ 3|S|

4 and fails
otherwise. Suppose that we choose a smaller r. Then this guarantees that the
resulting Z(S) when RowCover fails is more sparse, which is desirable for us as
described later. However since |T | ≤ 1/r, a smaller r means a larger T when the
procedure succeeds, which costs more for G-queries in RowReduction. Thus, we
should choose the minimum r such that the query complexity for the case that
RowCover keeps succeeding as long as the total cost does not exceed the total
limit (= O(

√
N)).

3.4 Analysis of the Whole Algorithm

Now we are ready to prove our first theorem:

Theorem 1. The M ×N OIP can be solved with a constant success probability
by querying the blackbox oracle O(

√
N) times if M = poly(N).
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Proof. See Procedure 5 for the pseudocode of the algorithm ROIPS(S, Z) (Ro-
bust OIP algorithm for Small Z). We call this procedure with S = {1, . . . , M}
(we need this parameter since ROIPS is also used in the later algorithm) and the
given matrix Z. As described in Sec. 3.1, we narrow the candidate set S at lines
2 and 3. If RowCover at line 2 succeeds, then |S| is sufficiently reduced. Even if
RowCover fails, |S| is also reduced similarly if RowReduction at line 3 can find a
1 by G-queries. Otherwise line 7 is executed where the current oracle looks like
f2 in Fig. 1. In this case, by finding a 1 in the positions {1, . . . , N} \ T by the
G-query at line 7, |S| is reduced to |S| log4 N/N , because we set r = log4 N/N
at line 2. Since the original size of S is N c for a constant c, line 7 is executed at
most c + 1 times.

Note that the selection of the value of r at line 2 follows the rule described
in Sec. 3.3: Since r = log4 N/N , the size of T at line 3 is at most N/ log4 N .
This implies that the number of oracle calls at line 3 is O(log N ·

√
N/ log2 N) =

O(
√

N/ logN). Since line 3 is repeated at most O(log N) times, the total number
of oracle calls at line 3 is at most O(

√
N). Line 7 needs O(

√
N) oracle calls, but

the number of its repetitions is O(1) as mentioned above. Thus the total number
of oracle calls is O(

√
N).

Also by Lemma 1, the error probability of line 3 is at most O(log N/N). Since
the number of repetitions is O(log N), this error probability is obviously small
enough. The error probability of line 7 is constant but again this is not harmful
since it is repeated only O(1) times, and thus the error probability can be made
as small as it is needed at constant cost.

4 Algorithms for Large Candidate Sets

4.1 Overview of the Algorithm

In this section, our M ×N input matrix Z is large, i.e., M is superpolynomial.
We first observe how the previous algorithm, ROIPS, would work for such a
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large Z. Due to the rule given in Sec. 3.3, the value of r at line 2 should be
β = log M(log log M)2 log N/(2N). The calculation is not hard: Since we need
log M repetitions for the main loop, we should assign roughly log log M to l
of RowReduction for a sufficiently small error in each round. Then the cost
of RowReduction will be

√
1/β · log log M . Furthermore, we have to multiply

the number of repetitions by log M factor, which gives us
√

N log M/ logN ,
the desired complexity. Thus it would be nice if RowCover keeps succeeding.
However, once RowCover fails, each column can still include as many as Mβ 1’s
which obviously needs too many repetitions of RowReduction at line 7 of ROIPS.

Recall that the basic idea of ROIPS is to reduce the number of candidates
in the candidate set S by halving (the first phase) while the matrix is dense
and to use the more direct method (the second phase) after the matrix becomes
sufficiently sparse. If the original matrix is large, this strategy fails because,
as mentioned above, the matrix does not become sufficiently sparse after the
first phase. Now our idea is to introduce an ”intermediate” procedure which
reduces the number of the candidates more efficiently than the first phase. For
this purpose, we use RowReductionExpire MTGS, which tries to find a position
of ”1” in the oracle with multi-target Grover Search (K > 1 in Lemma 5)
by assuming that the portion of such position, K/N , is sufficiently larger than
1/β. If the assumption is indeed true then we apply RowReduction as before and
moreover the number of G-queries in the main loop of RowReduction is repeated
for a constant time of

√
N/K on average.

However, it is of course possible that the actual number of repetitions is far
different from the expected value. That is why we limit the maximum number of
oracle calls spent in G-queries by MAX QUERIES(N, M), a properly adjusted
number which depends on the size of the OIP matrix, and will be referred in the
hereafter without its arguments for simplicity. If the value of COUNT gets this
value, then the procedure expires (just stops) with no answer, but this probability
is negligibly small by selecting MAX QUERIES appropriately. Notice also that
because of the failure of phase 1, it is guaranteed that the number of 1’s in
each column is ”fairly” small, which in turn guarantees that the degree of row
reduction is satisfactory for us. See Procedure 8 for our new algorithm ROIPL.

Finally, when the assumption is false, RowReductionExpire MTGS finishes
after log log(log M/ logN) iterations of its main loop. In this case, we can prove
that the matrix of the remaining candidates is very sparse and the number
of its rows decreases exponentially by a single execution of RowReductionEx-
pire MTGS. Thus one can achieve our upper bound also (details are given in the
next section).

4.2 Justification of the Algorithm

One can see that in ROIPL, oracle calls take place only at lines 6 and 11. As
described in the previous overview, the total number of oracle calls in RowRe-
duction at line 6 is O(

√
N log M/ logN), and the whole execution of this part

successfully ends up with high probability. For the cost of line 11, we can prove
the following lemma.
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Lemma 4. The main loop (line 4 to 13) of ROIPL finishes with high probability
before the value of COUNT reaches MAX QUERIES(N, M).

Proof. Note that there are two types of oracle calls in RowReductionExpire
MTGS at lines 11. The first type, Type A, is when portion of ”1” in the hidden
oracle is at least 1/4(log |S|/(N log N)), and the other type, Type B, is when
the portion of ”1” is smaller. Let W = WA + WB be the expected number
of oracle calls, where WA is the expected number of Type A calls and WB ,
that of Type B calls. It is enough to prove that WA ≤ 2

3MAX QUERIES and
WB < 1

3MAX QUERIES. Here we give the following more simple averaging
argument on the bounds of WA and WB . (The rigorous proof can be found
in [4].)

We first prove that WA ≤ 2
3MAX QUERIES. First, note that RowReduction-

Expire MTGS for Type A should require an O(1) expected number of iterations
of GQ, each of which requires O(

√
N log N/ log |S|) queries. Now, since phase

1 has failed, the number of rows having a ”1” at some position in T = {1..N}
is at most β|S|. Thus, after the above O(

√
N log N/ log |S|) queries the number

of candidates is reduced by a factor of β = (1
2 )log(1/β). Therefore, intuitively, to

reduce the number of candidates by half, the number of queries spent in GQ(T )
is O( 1

log(1/β)

√
N log N/ log |S|).

Thus we have the following recurrence relation:

WA(|S|) ≤ max(WA(1), WA(2), · · · , WA(|S|/2))+O( 1
log(1/β)

√
N log N/ log |S|),

where WA(|S|) is the number of Type A queries to distinguish the candidate
set S. Since ROIPL starts with |S| = M and ends with |S| ≈ N10 (note that
β|S| > 2 if |S| ≈ N10), the above recurrence relation resolves to the following:

WA(M) ≤WA(M/2) + σ
log(1/β)

√
N log N/ logM

≤ σ
√

N log N
log(1/β)

(
1√

log M
+ 1√

log(M/2)
+ . . . + 1√

10 log N

)
≤ σ

√
N log N

log(1/β)

(
1√

log M
+ 1√

log M−1 + . . . + 1
)

≤ 2σ ·
√

N log M log N
log (1/β) ,

where σ is a sufficiently large constant. Therefore, the total number of queries
is O(

√
N log M/ log N) since log(1/β) = Ω(log N) if M ≤ 2Nd

. Note that if the
above averaging argument is correct then |S| can be reduced into a constant by
just repeating line 11. However, this is not exactly true for ROIPL since |S| can
only be reduced until becoming poly(N) in order to obtain the desired number of
query complexity (see the proof of Lemma 6 in [4]). Fortunately, in this case we
can resort to ROIPS for identifying the hidden oracle out of poly(N) candidates
with just O(

√
N) queries as in line 16, and thus achieve a similar result with the

averaging argument.
For technical details of ROIPL, note that 1/3MAX QUERIES is ten times the

expected total number of queries supposing all queries are at line 11, i.e., the case
with the biggest number of Type A queries. By Markov bound, the probability
that the number of queries exceeds this amount is negligible (at most 1/10). We
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summarize the property of RowReductionExpire MTGS in the following lemma
which can be proven similarly as Lemma 3.

Lemma 5. The success probability and the number of oracle calls of the
procedure RowReductionExpire MTGS(T, l,COUNT, r) are 1 − O(l/3l) and
l(O(

√
1/r) + l), respectively. Moreover, if there are more than r fraction of 1’s

in the current oracle, then the average number of queries is O(
√

1/r + l).

We next prove that WB < 1
3MAX QUERIES. In this case, MultiTargetGQ fails

and therefore the density of ”1” at every row of the candidates is less than
γ = 1

4 log |S|/(N log N). Note that any two rows in S′′ (the new S at the left-
hand side of line 11) must be different, i.e., we have to generate |S′′| different
rows by using at most γN 1’s for each row. Let W be the number of rows
in S′′ which include at most 2γN 1’s. Then |S′′| − W rows include at least
2γN 1’s, and hence the number of such rows must be at most |S|/2. Thus
we have |S′′| −W ≤ |S|/2 and it follows that |S′′| ≤ 2W ≤ 2

∑λ=�2γN�
k=0

(
N
k

)
.

The right-hand side is at most 2 · 2NH(λ/N) (see e.g., [14], page 33), which is
then bounded by 2|S|1/2 since H(x) ≈ x log(1/x) for a small x. Thus, we have
|S′′| ≤ 2|S|1/2. Hence, the number of candidates decreases doubly exponentially,
which means we need only O(log(log M/ logN)) iterations of RowReductionEx-
pire MTGS to reduce the number of the candidates from M to N10. Note that we
let l = log log(log M/ logN) at line 11 and therefore the error probability of its
single iteration is at most O(1/ log(log M/ log N)). Considering the number of it-
erations mentioned above, this is enough to claim that WB < 1

3MAX QUERIES
(see [4] for the proof in detail, where the actual bound of WB is shown to be
much smaller).

Now here is our main theorem in this paper.

Theorem 2. The M ×N OIP can be solved with a constant success probability
by querying the blackbox oracle O(

√
N log M

log N ) times if poly(N) ≤ M ≤ 2Nd

for
some constant d (0 < d < 1).

Proof. The total number of oracle calls at line 6 is within the bound as described
in Sec. 4.1 and the total number of oracle calls at line 11 is bounded by Lemma 4.
As for the success probability, we have already proved that there is no problem
for the total success probability of line 6 (Sec. 4.1) and lines 11 (Lemma 4). Thus
the theorem has been proved.

4.3 OIP with o(N) Queries

Next, we consider the case when M > 2Nd

. Note that when M = 2d′N , for
a constant d′ ≤ 1, the lower bound of the number of queries is Ω(N) instead
of Ω(

√
N log M/ log N). Therefore, it is natural to expect that the number of

queries exceeds our bound as M approaches 2N . Indeed, when 2Nd

< M <
2N/ log N , the number of queries of ROIPL is bigger than O(

√
N log M/ log N)

but still better than O(N), as shown in the following theorem.
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Theorem 3. For 2Nd ≤ M < 2N/ log N , the M × N OIP can be solved with
a constant success probability by querying the blackbox oracle O(

√
N log N log M

log(1/β) )

times for β = min( log M(log log M)2 log N
2N , 1

4 ).

Proof. The algorithm is the same as ROIPL excepting the following: At line 1, we
set β as before if M < 2N/ log3 N . Otherwise, i.e., if 2N/ log3 N ≤M ≤ 2N/ log N , we
set β = 1/4. Then, we can use almost the same argument to prove the theorem,
which may be omitted.

5 Concluding Remarks

As mentioned above, our upper bound becomes trivial O(N) when M= 2N/ log N ,
while for bigger M [11] has already given a nice robust algorithm which can be
used for OIP with O(N) queries. A challenging question is whether or not there
exists an OIP algorithm whose upper bound is o(N) for M > 2N/ log N , say, for
M = 2N/ log log N . Even more challenging is to design an OIP algorithm which is
optimal in the whole range of M . There are two possible scenarios: The one is
that the lower bound becomes Ω(N) for some M = 2o(N). The other is that there
is no such case, i.e., the bound is always o(N) if M = 2o(N). At this moment,
we do not have any conjecture about which scenario is more likely.

Procedure 1. RowReduction(T, l)
Require: T ⊆ {1, . . . , N} and l ∈ N
1: for j ← 1 to l do
2: k ← GQ(T )
3: if Majority(k, min(l, log N), f) = 1 then
4: return PositiveRow({k}, Z)
5: end if
6: end for
7: return {1, . . . , M} \ PositiveRow(T, Z)

Procedure 2. RowCover(S, r)
Require: S ⊆ {1, . . . , M} and 0 < r < 1
1: T ← {}
2: S′ ← S
3: while ∃i s.t. |PositiveRow({i}, Z(S′))| ≥ r|S| and |PositiveRow(T, Z(S))| < |S|/4

do
4: T ← T ∪ {i}
5: S′ ← S \ PositiveRow(T, Z(S))
6: end while
7: return T //by one-sensitivity |PositiveRow(T, Z(S))| < 3|S|/4
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Procedure 3. PositiveRow(T, Z)
return {i| j ∈ T and Z(i, j) = 1}

Procedure 4. Majority(k, l, f)
return the majority of 60l samples of f(k) if k �= nill, else 0.

Procedure 5. ROIPS(S, Z)
1: repeat
2: T ← RowCover(S, log4 N/N)
3: S′ ← S ∩ RowReduction(T, log N)
4: if |S′| ≤ 3

4 |S| then
5: S ← S′

6: else
7: S ← S′ ∩ RowReduction({1, . . . , N} \ T, 1)
8: end if
9: until |S| ≤ 1

10: return S

Procedure 6. RowReductionExpire MTGS(T, l, COUNT, r)
the same as RowReduction(T, l) except that we add the folowing two: (i) the number
of queries is added to COUNT and the empty set is returned when COUNT exceeds
MAX QUERIES(N,M) (defined in ROIPL) (ii) For r > 0: GQ(T ) is replaced by
MultiTargetGQ(T, r), a G-query on T assuming that there are more than r fraction
of 1’s in the current oracle, and at line 7 the set of all rows that have at most r
fraction of 1’s is returned instead.

Procedure 7. ROIPL(Z)

Require: Z : M × N 0-1 matrix and poly(N) ≤ M ≤ 2N/ log N

1: β ← log M(log log M)2 log N
2N

; S = {1, . . . , M}
2: MAX QUERIES(N,M) ← 45σ

√
N log M log N

log 1/β
//σ: a constant factor of Robust

Quantum Search in [18]
3: COUNT ← 0 //Increased in RowReductionExpire
4: repeat
5: T ← RowCover(S, β)
6: S′ ← S ∩ RowReduction(T, log log M)
7: if |S′| ≤ 3/4|S| then
8: S ← S′

9: else
10: S ← S′

11: S ← S∩RowReductionExpire MTGS({1 . . . N}, log log( log M
log N

), COUNT, log |S|
4(N log N) ))

12: end if
13: until |S| ≤ N10

14: Z′ ← Z(S)
15: relabel S and Z′ so that the answer to OIP of Z can be deduced from that of Z′

16: return ROIPS(S, Z′)
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Abstract. Given a set of monomials, the Minimum-AND-Circuit prob-
lem asks for a circuit that computes these monomials using AND-gates
of fan-in two and being of minimum size. We prove that the problem
is not polynomial time approximable within a factor of less than 1.0051
unless P = NP, even if the monomials are restricted to be of degree at
most three. For the latter case, we devise several efficient approximation
algorithms, yielding an approximation ratio of 1.278. For the general
problem, we achieve an approximation ratio of d − 3/2, where d is the
degree of the largest monomial. In addition, we prove that the problem
is fixed parameter tractable with the number of monomials as parame-
ter. Finally, we reveal connections between the Minimum AND-Circuit
problem and several problems from different areas.

1 Introduction

Given a set of Boolean monomials, the Minimum-AND-Circuit problem asks for
a circuit that consists solely of logical AND-gates with fan-in two and that
computes these monomials. The monomials may for example arise in the DNF-
representation of a Boolean function or in some decomposed or factored form.
Thus, the Minimum-AND-Circuit problem is of fundamental interest for auto-
mated circuit design, see Charikar et al. [3, Sect. VII.B] and references therein.
In this paper, we assume that all variables always occur positively; no negations
are permitted. The investigation of minimum AND-circuits from a complexity
theoretic standpoint was proposed by Charikar et al. [3]. According to them, no
approximation guarantees have been proved at all yet.

We give the first positive and negative approximability results for the Mini-
mum-AND-Circuit problem. Specifically, we show that the problem is not approx-
imable within a factor of less than 983

978 unless P = NP, even if the monomials are
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restricted to be of maximum degree three (Sect. 3). For the latter variant, we
present several algorithms and prove an upper bound of 1.278 on its approxima-
tion ratio (Sect. 4). If the number of occurrences of each submonomial of size
two in the input instance, called the multiplicity, is bounded from above by a
constant μ ≥ 3, similar hardness results are achieved (Sect. 3) and the upper
bounds are slightly improved (Sect. 4.4). For μ = 2, the problem is even in P
(Sect. 4.2). However, if we allow the monomials to be of degree four, it remains
open whether the case μ = 2 is solvable in polynomial time. We prove that the
general problem with multiplicity bounded by μ is approximable within a factor
of μ (Sect. 6.2).

In general, restricting the monomials to be of degree at most d admits a
straightforward approximation within a factor of d−1, which we improve to d−
3/2 (Sect. 6.1). If the degrees are required to be exactly d and in addition, the
multiplicity is bounded by μ, we prove an upper bound on the approximation
ratio of μ(d− 1)/(μ + d− 2) (Sect. 6.2).

Besides from fixing the maximum degree or the multiplicity of the input mono-
mials, we consider fixing the number of monomials (Sect. 5). We show that
Minimum-AND-Circuit instances have small problem kernels, yielding a fixed pa-
rameter tractable algorithm (for terminology, see Downey and Fellows [6]). In
other words, the Minimum-AND-Circuit problem restricted to instances with a
fixed number of monomials is in P.

There are two evident generalizations of AND-circuits. The first one is to ask
for a minimum Boolean circuit (with AND-, OR-, and NOT-gates) that computes
a given function. This problem has, for example, been investigated by Kabanets
and Cai [7]; its complexity is still open. Even if the functions to be computed
consist solely of positive monomials, allowing the circuit to contain AND- and
OR-gates can reduce the circuit size, as has been shown by Tarjan [11] (see also
Wegener [13]).

The second one is to consider monomials over other structures such as the ad-
ditive group of integers or the monoid of finite words over some alphabet (see also
Sect. 6.3). While the former structure leads to addition chains [9, Sect. 4.6.3],
the latter yields the smallest grammar problem which has attracted much atten-
tion in the past few years; a summary of recent results has been provided by
Charikar et al. [3, Sect. I and II]. In fact, Charikar et al.’s suggestion to inves-
tigate minimum AND-circuits was motivated by the lack of understanding the
hierarchical structure of grammar-based compression. In particular, there is a
bunch of so-called global algorithms for the smallest grammar problem which are
believed to achieve quite good approximation ratios, but no one has yet managed
to prove this.

2 Preliminaries

2.1 Monomials and Circuits

We study the design of small circuits that simultaneously compute given mono-
mials M1, . . . , Mk over a set of Boolean variables X = {x1, . . . , xn}. More
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precisely, a (Boolean) monomial is an AND-product of variables of a subset
of X , and by an AND-circuit, we mean a circuit consisting solely of AND-gates
with fan-in two. We identify a monomial M = xi1 ∧ . . . ∧ xid

with the subset
{xi1 , . . . , xid

}, which we denote by M again. Since we only use one type of op-
eration, we often omit the ∧ signs and simply write xi1 . . . xid

. The degree of M
is |M |.

An (AND-)circuit C over X is a directed acyclic graph with node set G(C)
(gates) and edge set W (C) (wires) satisfying the following properties:

1. To each input variable x ∈ X is associated exactly one input gate gx ∈ G(C)
that has indegree zero and arbitrary outdegree.

2. All nodes that are not input nodes have indegree exactly two and arbitrary
outdegree. These nodes are called computation gates.

We denote the set of computation gates of C by G∗(C), i.e., G∗(C) = G(C)\{gx |
x ∈ X}. The circuit size of C is equal to the number of computation gates of C,
i.e., size(C) = |G∗(C)|. A gate g computes the monomial val(g), which is defined
as follows:

1. val(gx) = x.
2. For a computation gate g with predecessors g1 and g2, val(g) = val(g1) ∧

val(g2).

The circuit C computes a Boolean monomial M if some gate in C computes M .
It computes a set M of monomials if it computes all monomials in M. Such a
circuit is called a circuit for M. The gates that compute the monomials inM are
referred to as the output gates. Output gates, unless they are input gates at the
same time, are computation gates, too, and hence contribute to the circuit size.
This makes sense since in a physical realization of the circuit, such gates have
to perform an AND-operation—in the same way as all non-output computation
gates.

A subcircuit C′ of a circuit C is a subgraph of C that is again a circuit. In
particular, C′ contains all “induced” input gates. For g ∈ G(C), let Cg be the
minimal subcircuit of C containing g. Since Cg is a circuit, it contains all input
gates gx with x ∈ val(g). Moreover, Cg contains at least | val(g)|−1 computation
gates. Let M be a set of monomials and C be a circuit for M. For each M ∈M,
denote the gate that computes M by gM and write CM for CgM .

A gate is called strict if its predecessors compute disjoint monomials. A circuit
is called strict if all of its gates are strict. Any non-strict circuit for a Min-AC
instance M of maximum degree at most four can be turned into a strict circuit
for M of the same size. This is not true if the monomials are allowed to be of
degree five or more (Sect. 6.1).

Let S ⊆ X . The multiplicity of S in M is the number of occurrences of S in
M as a submonomial, i.e.,

multM(S) = |{M ∈ M | S ⊆ M}| .
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The maximum multiplicity of M is defined by

mult(M) = max
|S|≥2

multM(S) .

It is equal to the number of occurrences of the most frequent pair of variables
in M.

2.2 Optimization Problems

For an introduction to the approximation theory of combinatorial optimization
problems, we refer to Ausiello et al. [2]. For an optimization problem P and an
instance I for P , we write optP (I) for the measure of an optimum solution for I.

Let A be an approximation algorithm for P , i.e., an algorithm, that on an
instance I of P , outputs an admissible solution A(I). The approximation ratio
ρA(I) of A at I is the ratio between the measure m(A(I)) of a solution A(I)
output by A and the size of an optimal solution, i.e., ρA(I) = m(A(I))

optP (I) . The
approximation ratio ρA of A is the worst-case ratio of all ratios ρA(I), i.e.,
ρA = maxI ρA(I).

The Minimum-AND-Circuit problem, abbreviated Min-AC, is defined as fol-
lows: Given a set of monomials M = {M1, . . . , Mk} over a set of Boolean input
variables X = {x1, . . . , xn}, find a circuit C of minimum size that computes M.

Throughout the paper, k denotes the number of monomials, n denotes the
number of input variables, and N =

∑
M∈M |M | denotes the total input size. In

addition, we always assume that X =
⋃

M∈M M .
We denote by Min-d-AC the Minimum-AND-Circuit problem with instances

restricted to monomials of degree at most d. The problem where the degrees are
required to be exactly d is denoted by Min-Ed-AC.

A vertex cover of a graph G is a subset Ṽ ⊆ V such that every edge has at
least one endpoint in Ṽ . This definition also applies to hypergraphs. Aside from
Min-AC, we will encounter the following optimization problems: The vertex cover
problem, denoted by Min-VC, is defined as follows: Given an undirected graph
G, find a vertex cover of G of minimum size.

The restriction of Min-VC to graphs of maximum degree d is denoted by
Min-d-VC. A hypergraph is called r-uniform if all of its edges have size exactly r.
The vertex cover problem for r-uniform hypergraphs, denoted by Min-r-UVC, is:
Given an r-uniform hypergraph G, find a vertex cover of G of minimum size.

Finally, Maximum-Coverage is the following optimization problem: Given a
hypergraph G and a number r ∈ N, find r edges e1, . . . , er ∈ E such that

⋃r
i=1 ei

is of maximum cardinality.

3 Hardness

We show that Minimum-AND-Circuit is NP-complete and that there is no poly-
nomial-time approximation algorithm that achieves an approximation ratio of
less than 983

978 unless P = NP. To do this, we reduce Min-VC to Min-AC.
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1 2
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a

b c d

(a) Graph with vertex
cover {2, 3}.

x0 x1 x2 x3 x4

x0x2 x0x3

x0x1x2 x0x1x3 x0x2x3 x0x2x4

(b) Circuit for the Min-3-AC instance {Ma, Mb, Mc, Md}
with Ma = x0x1x2, Mb = x0x1x3, Mc = x0x2x3, and
Md = x0x2x4.

Fig. 1. A graph with a vertex cover and the corresponding circuit as constructed in
Section 3

Let G = (V, E) be an undirected graph with n = |V | vertices and m = |E|
edges. We construct an instance of Min-AC as follows. For each node v ∈ V ,
we have a variable xv. In addition, there is an extra variable x0. For each edge
e = {v, w} ∈ E, we construct the monomial Me = x0xvxw. Our instance of Min-
AC is then MG = {Me | e ∈ E}. Note that |M | = 3 for all M ∈MG. Moreover,
if G has maximum degree Δ, then MG has maximum multiplicity Δ. Clearly,
MG can be constructed in polynomial time. An example is shown in Figure 1.

There is a one-to-one correspondence between the sizes of the vertex cover and
the circuit: We have optMin-AC(MG) = |E|+ 	, where 	 = optMin-VC(G). Further-
more, given a circuit C of size |E|+ 	′ for MG, we can compute a vertex cover Ṽ
of G with |Ṽ | ≤ 	′ in polynomial time. This together with recent inapproxima-
bility results by Chleb́ık and Chleb́ıková [4] yields the following theorems.

Theorem 1. Min-AC is NP-complete, APX-hard and cannot be approximated in
polynomial time within a factor of less than 983

978 > 1.0051 unless P = NP. This
holds even for Min-3-AC restricted to instances with maximum multiplicity six.

Theorem 2. Min-3-AC restricted to instances of maximum multiplicity three
is NP-complete, APX-complete, and cannot be approximated in polynomial time
within a factor of less than 269

268 > 1.0037 unless P = NP.

4 Approximation Algorithms for Min-3-AC

In this section, we provide several polynomial-time approximation algorithms
for Min-3-AC, the problem of computing minimum AND-circuits for monomials
of degree at most three. Note that the lower bounds proved in Section 3 hold
already for Min-E3-AC.

Without loss of generality, we may assume that all monomials have degree
exactly three for the following reasons. Firstly, we do not need any computation
gates to compute monomials of degree one, so we can delete such monomials
from the input. Secondly, for each input monomial of size two, we are forced to
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construct an output gate. On the other hand, we should use this gate wherever
we can for other input monomials, so we can delete all monomials of degree two
from the input and substitute all occurrences of such monomials in the other
monomials by extra variables. We repeat this process until no more monomials
of size two are in the input. As we have already mentioned in Section 2, we
can assume without loss of generality that circuits for Min-3-AC instances are
strict. Moreover, if all monomials are of degree exactly three, then a circuit can
be assumed to consist of two layers of computation gates. The gates of the first
layer compute monomials of size two, and the gates of the second layer are the
output gates.

Since each monomial M of degree at most three can be computed by a circuit
of size two, we can construct a trivial circuit Ctriv for a Min-3-AC instance M of
size 2k, where k is the number of monomials. On the other hand, the computation
of k monomials obviously requires at least k gates. Thus, we obtain an upper
bound of 2 on the polynomial-time approximation ratio for Min-3-AC. In the
following, we show how to improve this bound.

4.1 Algorithm “Cover”

We first reduce Min-3-AC to Min-3-UVC, the problem of finding a vertex cover
in three-uniform hypergraphs. Subsequently, we will present our algorithms.

Let M be a Min-3-AC instance. We introduce some notation that will be used
throughout this paper. For M ∈ M, let

pairs(M) = {S ⊆ X | |S| = 2 ∧ S ⊆M}
be the set of pairs contained in M . Note that | pairs(M)| = 3. Furthermore, let
pairs(M) =

⋃
M∈M pairs(M) be the set of all pairs of variables appearing inM.

Let C be a circuit for M. Then C consists of two layers, the second one
containing the k = |M| output gates. In the first layer, certain monomials of
size two are computed: for each monomial M ∈M, one of the pairs S ∈ pairs(M)
has to be computed at the first level of C. The task is thus to find a minimum
set of pairs S ∈ pairs(M) such that each monomial M ∈ M contains one
such pair. This corresponds to finding a minimum vertex cover of the three-
uniform hypergraph H(M) = (V, E) described in the following. The node set
is the set of pairs appearing in M, i.e., V = pairs(M), and for each monomial
M ∈ M, there is a hyperedge containing the pairs that appear in M , i.e.,
E = {pairs(M) | M ∈ M}. A circuit C for M with gates computing the pairs
S1, . . . , S� at its first level corresponds to the vertex cover of H(M) given by
{Si | 1 ≤ i ≤ 	} and vice versa. We denote the circuit corresponding to a vertex
cover Ṽ by CṼ .

Our first polynomial-time approximation algorithm for Min-3-AC is based on
the reduction we have just presented (Algorithm 1). The set Ṽ consists of all
nodes that are incident with the matching Ẽ. Thus the size of Ṽ equals 3 · |Ẽ|. Ṽ
is a vertex cover since Ẽ cannot be enlarged. On the other hand, any vertex cover
of H(M) must include at least one vertex from each hyperedge of the maximum
matching Ẽ, so any vertex cover of IG(M) must be of size at least |Ẽ|. In
conclusion, we have |Ṽ | ≤ 3 · optMin-3-UVC(H(M)).
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x1x3

x0x1 x0x3

x1x2 x0x2 x2x3

x0x4 x2x4

Fig. 2. The hypergraph H(M) associated with the Min-AC instance M introduced in
Figure 1. Each triangle represents a hyperedge. The two bold monomials constitute a
vertex cover.

Algorithm 1. Algorithm Cover for Min-3-AC.
Input M = {M1, . . . , Mk}.

1: Compute the hypergraph H = H(M).
2: Compute greedily an inclusion-maximal matching Ẽ in H , i.e., a collection of dis-

joint hyperedges that cannot be enlarged.
3: Let Ṽ =

⋃
e∈Ẽ e.

4: Compute C = CṼ .
5: Output C.

Overall, Cover achieves the following approximation performance.

Lemma 1. Let optMin-3-AC(M) = k + 	. Then Cover outputs a circuit CCover
for M of size at most k + 3 · 	.

In case that 	 ≥ 1
3k, Cover outputs a circuit that is larger than the trivial

one. Choosing to output the trivial circuit instead, yields an algorithm with
an approximation ratio of 3/2. Thus, we have already found an algorithm that
achieves a non-trivial approximation ratio. In the course of this paper, we will
improve this ratio to below 1.3.

4.2 Algorithm “Match”

Before we present our next algorithm, we introduce another technical utility.
Associate withM the intersection graph IG(M) defined as follows: the nodes of
IG(M) are the monomials ofM, and two monomials M, M ′ ∈M are connected
by an edge iff |M ∩M ′| = 2. An example is shown in Figure 3.

Match (Algorithm 2) is a polynomial-time algorithm; in particular, a maxi-
mum matching in IG(M) can be computed in time O(n2.5) [1]. The approxima-
tion performance of Match is stated in the following



Approximability of Minimum AND-Circuits 299

Ma Mb

Mc Md

x0x1

x0x2
x 0x

2 x
0 x

3

x0x2

Fig. 3. Intersection graph IG(M) associated with the Min-AC instance M introduced
in Figure 1. The edges are labeled by the pairs that their endpoints have in common.
The bold edges constitute a maximal matching.

Algorithm 2. Algorithm Match for Min-3-AC.
Input M = {M1, . . . , Mk}.

1: Compute G = IG(M).
2: Compute a matching Ẽ of G of maximum cardinality.
3: For each {M, M ′} ∈ Ẽ:
4: Add a gate computing M ∩ M ′ to C.
5: Add subcircuits computing M and M ′ to C, using two additional gates.
6: For each M ∈ M \

⋃
e∈Ẽ e (not incident with Ẽ):

7: Add a subcircuit computing M , using |M | − 1 gates.
8: Output C.

Lemma 2. Let optMin-3-AC(M) = k + 	. Then Match outputs a circuit CMatch
for M of size at most 3

2 · k + 1
2 · 	.

Although the analysis of Match is not needed for our best upper bound result
for Min-3-AC, the algorithm is the only one for which we can prove a non-trivial
approximation ratio for Min-d-AC in case that d ≥ 4.

For Min-3-AC with instances restricted to a multiplicity of at most two,
Match computes an optimum solution. Thus, Min-3-AC restricted to instances
with a maximum multiplicity of at most two can be solved in polynomial time.

4.3 Algorithm “Greedy”

Our last algorithm Greedy (Algorithm 3) greedily constructs gates for pairs
that occur most frequently in the input instance M until each remaining pair
is shared by at most two monomials. At that point, instead of proceeding in an
arbitrary order, an optimal solution is computed for the remaining monomials.
The latter task is achieved by Match, as we have stated in Section 4.2.

Lemma 3. Let M = {M1, M2, . . . , Mk} be an instance for Min-3-AC such that
optMin-3-AC(M) = k + 	. Then Greedy outputs a circuit CGreedy for M of size
at most

min
{

4
3
· k + 	,

(
1 +

1
e2

)
k + 2	

}
.

It does not make much sense to reiterate the last step of the analysis since this
would give us a circuit of size larger than k + 3	, the size achieved by Cover.
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Algorithm 3. Algorithm Greedy for Min-3-AC.
Input M = {M1, . . . , Mk}.

1: While there exists an S ∈
(

X
2

)
such that |{M ∈ M | S ⊆ M}| ≥ 3:

2: Arbitrarily select S ∈
(

X
2

)
with maximum |{M ∈ M | S ⊆ M}|.

3: Add a gate computing S to C.
4: For each M ∈ M with S ⊆ M :
5: Add subcircuit computing M to C, using at most |M | − 2 additional gates.
6: M ← M \ {M}.
7: C′ ← Match(M).
8: C ← C ∪ C′.
9: Output C.

Corollary 1. The approximation ratio achieved by Greedy for Min-3-AC is at
most 5e2−3

4e2−3 ≈ 1.278.

The best lower bound that we are able to show for the approximation ratio of
Greedy is 10/9.

4.4 Summary of Approximation Ratios

In this subsection, we summarize the approximation ratios of the algorithms
presented in the preceding subsections and present some improvements for Min-
3-AC instances with bounded multiplicity. So far, we have found the following
bounds for the approximation ratios of the Min-3-AC algorithms:

ρCover ≤ k+3�
k+� increasing in 	 ,

ρGreedy ≤ (1+e−2)k+2�
k+� increasing in 	 ,

ρGreedy ≤
4
3 k+�

k+� decreasing in 	 ,

ρMatch ≤
3
2 k+ 1

2 �

k+� decreasing in 	 .

These approximation ratios are presented in Figure 4. Concerning restricted
multiplicity, we can show the following result.

Theorem 3. The Min-3-AC problem restricted to instances of maximum multi-
plicity μ, μ ∈ {3, 4, 5}, is approximable within a factor of

– 5/4 = 1.25 if μ = 3,
– 19/15 = 1.26 if μ = 4, and
– 23/18 = 1.27 if μ = 5.

5 Fixing the Number of Monomials

Min-AC is fixed parameter tractable with respect to the number k of monomials
in the input instance. For more details on fixed parameter tractability, we refer
to Downey and Fellows [6].
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(a) Upper bounds for Greedy, Cover,
and Match.
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(b) Upper bounds for Greedy given by
Lemma 3.

Fig. 4. Approximation ratios of the Min-3-AC algorithms dependent on the ratio �/k

Theorem 4. Min-AC, parameterized by the number of input monomials, is fixed
parameter tractable. This means that there are a function f : N → N and a
polynomial p : N → N such that Min-AC can be solved deterministically in time
f(k) + p(N).

6 Concluding Remarks and Future Research

6.1 Approximation Algorithms for Min-d-AC, d ≥ 4

Obviously, the approximation ratio of Min-d-AC is at most d − 1 since on the
one hand, every monomial of degree at most d can be computed by at most
d − 1 separate gates and on the other hand, any circuit contains at least one
gate per monomial of the input instance. It is easy to see that Match achieves
the slightly better approximation ratio d− 3

2 (which is tight).
We are particularly curious about whether Min-d-AC is approximable within

a factor of o(d) or whether it is possible to show an Ω(d) hardness result.
For d ≥ 4, there are several possibilities of generalizing the greedy algorithm,

which coincide for d = 3.
The algorithms Greedy and Match produce strict circuits. Already for d =

5, we can construct Min-AC instances M of maximum degree d such that any
strict circuit forM is roughly 4/3 times larger than a minimum non-strict circuit.

Corollary 2. Any approximation algorithm for Min-AC (or even Min-5-AC)
that produces only strict circuits does not achieve an approximation ratio bet-
ter than 4/3.

6.2 Approximation of Instances with Bounded Multiplicity

In Section 4.2, we showed that Min-3-AC instances with maximum multiplic-
ity two are optimally solvable in polynomial time. In contrast, Min-3-AC with
instances restricted to maximum multiplicity three is hard to solve, as we saw
in Section 3. We leave it as an open problem whether Min-d-AC instances with
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d ≥ 4 are polynomial time solvable. Nonetheless we can provide a positive ap-
proximability result for general Min-AC instances with bounded multiplicity.

Theorem 5. Min-AC with instances restricted to be of maximum multiplicity μ
is polynomial-time approximable within a factor of μ.

Theorem 5 also follows from a more general result by Wegener [13, Sect. 6.6]
about Boolean sums, which are collections of disjunctions of (positive) Boolean
variables, and thus are dual to collections of monomials. Wegener [13, Def. 6.1]
defines such a collection to be (h, k)-disjoint if h + 1 disjunctions have at most
k common summands. In particular, sets of monomials of multiplicity μ corre-
spond to (μ, 1)-disjoint collections. The claim then follows from [13, Lem. 6.1] by
plugging in h = μ and k = 1. Although the lemma is only stated for collections
in which the number of input variables equals the number of disjunctions, it also
holds if these numbers differ.

We can improve the result of Theorem 5 for Min-Ed-AC restricted to instances
with bounded multiplicity using the fact that for these instances, all output gates
have frequency one.

Theorem 6. The Min-Ed-AC problem with instances restricted to be of maxi-
mum multiplicity μ is polynomial-time approximable within a factor of μ(d−1)

μ+d−2 .

This implies an improved approximation ratio of 3/2 compared to the ratio of
5/2 achieved by Match for general Min-4-AC instances.

6.3 Generalizations and Related Problems

Let us first mention some applications that arise as alternative interpretations
of the problem in this paper. Viewing monomials M over X as subsets of X
(see also Sect. 2), an AND-gate computes the union of the sets computed by
its predecessors. Thus, AND-circuits may be interpreted as compact representa-
tions of set systems. Since each gate has to be evaluated only once, the circuit
may be considered as a straight-line program that generates the set system.
Furthermore, in a Boolean matrix-vector product, each entry of the result is a
disjunction (or a parity, depending on which type of “sum” is considered) of the
vector entries corresponding to the positions of 1s in the matrix rows. Thus, if
many vectors have to be multiplied by the same matrix, it may be useful to
preprocess the matrix by constructing a circuit that computes all disjunctions
(with indeterminates) first.

Table 1. The circuit problem for several semigroup structures and parameters

S ◦ k n Description Remark
{0, 1} ∧ arb. arb. Boolean monomials, Min-AC

Z + 1 1 Addition chains [9, 12] complexity unknown
Z + arb. 1 Extended addition chains NP-complete [5]

Σ∗ concat. 1 arb. Grammar-based compression [8] NP-complete for n ≥ 3 [10],
of strings over alphabets of size n complexity unknown for n ≤ 2
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Beside Boolean variables and monomials, it is natural to consider monomials
over other structures. In general, the variables x ∈ X take values from some semi-
group (S, ◦) (note that we assume the structure to be associative since otherwise
it makes no sense to design small circuits). In case that S is non-commutative,
the predecessors of a gate have to be ordered. Table 1 shows several examples of
semigroups and other parameters with their corresponding circuit problem. As
one can see, many seemingly different problems turn out to be instantiations of
a general semigroup circuit problem.
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Abstract. We show that several problems that are hard for various
parameterized complexity classes on general graphs, become fixed pa-
rameter tractable on graphs with no small cycles.

More specifically, we give fixed parameter algorithms for Dominating
Set, t-Vertex Cover (where we need to cover at least t edges) and
several of their variants on graphs that have no triangles or cycles of
length 4. These problems are known to be W [i]-hard for some i in general
graphs. We also show that the Dominating Set problem is W [2]-hard in
bipartite graphs and hence on triangle free graphs.

In the case of Independent Set and several of its variants, we show
them fixed parameter tractable even in triangle free graphs. In contrast,
we show that the Dense Subgraph problem (related to the Clique
problem) is W [1]-hard on graphs with no cycles of length at most 5.

1 Introduction

Parameterized Complexity is a recent approach to deal with intractable compu-
tational problems. For decision problems with input size n, and a parameter k
(which typically, and in all the problems we consider in this paper, is the solution
size), the goal here is to design an algorithm with runtime f(k)nO(1) where f is
a function of k alone, against a trivial nk+O(1) algorithm. Problems having such
an algorithm is said to be fixed parameter tractable (FPT), and such algorithms
are practical when small parameters cover practical ranges. There is also a the-
ory of parameterized intractability using which one can identify parameterized
problems that are unlikely to admit fixed parameter tractable algorithms. The
book by Downey and Fellows [3] provides a good introduction to the topic of pa-
rameterized complexity. For recent developments see books by Flum and Grohe
[4] and Niedermeier [6].

Vertex Cover is a celebrated fixed parameter problem where the problem
is well solved for parameter size up to 100. Similarly Independent Set and
Dominating Set are problems that are known to be hard for different levels
of W-hierarchy. Our main contribution in the paper is to show that these two
problems and several of their variants become fixed parameter tractable if the
input graph has no short cycles.
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In Section 2, we look at the Dominating Set problem and show that the
problem is W [2]-complete even in bipartite graphs. As far as we know this wasn’t
known before. Our observation means that the problem is W [2]-complete in
triangle free graphs. Then we show that the problem is FPT if the input graph
has no 3 or 4-cycles. It turns out that this result can be generalized to several
(more than half a dozen) variants of the Dominating Set problem.

In Section 3, we look at t-Vertex Cover and t-Dominating Set problems.
These are generalizations of Vertex Cover and Dominating Set problems:
In the t-Vertex Cover problem, we are interested in finding a set of at most
k vertices covering at least k edges and in the t-Dominating Set problem
the objective is to find a set of at most k vertices that dominates at least t
vertices. Both these problems are parameterized in two different ways: by k alone
and by both k and t. Both these problems are fixed parameter tractable when
parameterized by both k and t. Blas̈er[1] gave O(2O(t)nO(1)) algorithm for both
the problems using color coding technique. Recently, Guo et. al. [7] have shown
that t-Vertex Cover is W [1]-hard when parameterized by k alone. It is easy
to see that the t-Dominating Set is W [2]-hard by a reduction from dominating
set. We show that both these problems are fixed parameter tractable in graphs
with no cycles of length less than 5, when parameterized by k alone.

In Section 4, we look at Independent Set problem and several of its variants.
We show that these problems are fixed parameter tractable even in triangle free
graphs.

While Sections 2, 3 and 4 show that several problems that are W [i] hard
for some i, become fixed parameter tractable in graphs with no small cycles,
in Section 5, we exhibit a problem that is W [1]-hard in graphs with no small
cycles. This is the ‘dense subgraph problem’. Here, given a graph G = (V, E)
and positive integers k and l, the problem is to determine whether there exists
a set of at most k vertices C ⊆ V such that the induced subgraph on C has at
least l edges; here k is the parameter.

Section 6 gives some concluding remarks and open problems.
In the rest of the paper, we assume that all our graphs are simple and undi-

rected. Given a graph G = (V, E), n represents number of vertices, and m
represents the number of edges. For a subset V ′ ⊆ V , by G[V ′] we mean the
subgraph of G induced on V ′. By N(u) we represent all vertices (excluding u)
that are adjacent to u, and by N [u], we refer to N(u) ∪ {u}. Similarly, for a
subset D ⊆ V , we define N [D] = ∪v∈DN [v]. By the girth of a graph, we mean
the length of the shortest cycle in the graph. We say that a graph is a Gi graph if
the girth of the graph is at least i. A vertex is said to dominate all its neighbors.

2 Dominating Set and Its Variants

In this section we look at the Dominating Set problem and its variants.

Dominating Set: Given a graph G = (V, E) and an integer k ≥ 0, deter-
mine whether there exists a set of at most k vertices D ⊆ V such that for
every vertex u ∈ V , N [u] ∩D �= ∅.
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We say that the set D ‘dominates’ the vertices of G. We first show that Domi-
nating Set problem is W[2]-complete in bipartite graphs by a reduction from
the same problem in general undirected graphs. Then we give a fixed parameter
tractable algorithm for the problem in graphs without cycles of length 3 or 4.

2.1 W-Hardness of Dominating Set Problem in Bipartite Graphs

Theorem 1. Dominating Set problem is W [2]-complete in bipartite graphs.

Proof. We prove this by giving a reduction from the Dominating Set problem
in general undirected graphs. Given an instance (G = (V, E), k) of Dominating
Set, we construct a bipartite graph H = (V ′, E′). We create two copies of V
namely V1 = {u1 | u ∈ V } and V2 = {u2 | u ∈ V }. If there is an edge (u, v) in
E then we draw the edges (u1, v2) and (v1, u2). We also draw edges of the form
(u1, u2) for every u ∈ V . We create two new vertices z1 and z2, with z1 in V1
and z2 in V2. We add an edge from every vertex in V1 to z2. This completes the
construction of H .

We show that G has a dominating set of size k if and only if H has a domi-
nating set of size k + 1. Let D be a dominating set of size k in G. Then clearly
D′ = {u1 | u ∈ D} ∪ {z2} is a dominating set of size k + 1 in H . Conversely,
let K be a dominating set in H of size k + 1. Observe that either z1 or z2
must be part of K as z2 is the unique neighbor of z1. Without loss of gener-
ality, we can assume that z2 ∈ K, as otherwise we could delete z1 and include
z2 in K and still have a dominating set of size at most k + 1 in H . Now take
D = {u | u ∈ V, u1 or u2 ∈ K}. Clearly D is of size k. We show that D is a
dominating set in G. For any u /∈ D, u2 /∈ K and hence there exists some v1 ∈ K
such that v1 dominates u2 in H . But this implies v ∈ D and (v, u) ∈ E, which
shows that v dominates u. This proves that D is a dominating set of size k for
G and establishes the theorem. �

2.2 FPT Algorithm for Dominating Set in G5 Graphs

We give a fixed parameter tractable algorithm for the Dominating Set problem
in graphs with girth at least 5 (G5 graphs) and also observe that various other
W -hard problems become tractable in G5 graphs.

Our algorithm follows a branching strategy where at every iteration we find a
vertex that needs to be included in the Dominating Set which we are trying to
construct. Once a vertex is included, we can at best delete that vertex. Though
the neighbors of the vertex are dominated, we can not remove these vertices
from further consideration as they can be useful to dominate other vertices.

Hence we resort to a coloring scheme for the vertices. At any point of time of
the algorithm, the vertices are colored as below:
1. Red - The vertex is included in the the dominating set D which we are trying

to construct.
2. White - The vertex is not in the set D, but it is dominated by some vertex

in D.
3. Black - The vertex is not dominated by any vertex of D.
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Now we define the dominating set problem on the graph with vertices colored
with White, Black or Red as above. We call a graph colored red, white and black
as above, as a rwb-graph.

RWB-Dominating Set: Let G be a G5 graph (graph with girth at least
5) with vertices colored with Red, White or Black satisfying the following
conditions, and let k be a positive integer parameter. Let R, W and B be
the set of vertices colored red, white and black respectively.
1. Every white vertex is a neighbor of a red vertex.
2. Black vertices have no red neighbors.
3. |R| ≤ k

Does G have at most k − |R| vertices that dominate all the black vertices?

It is easy to verify that if we start with a general G5 graph with all vertices
colored black, and color all vertices we want to include in the dominating set
as red, and their neighbors as white, the graph we obtain at every intermediate
step is a rwb-graph, and the problem we will have at the intermediate steps is
the RWB-Dominating Set problem.

The following lemma essentially shows that if the rwb-graph has a black or
white vertex dominating more than k black vertices, then such a vertex must be
part of every solution of size at most k, if exists.

Lemma 1. Let (G(R∪W ∪B, E), k) be an instance of the RWB-Dominating
Set problem where G is a G5 graph and k a positive integer. Let v be a black or
white vertex with more than k − |R| black neighbors. Then if G has a set of size
at most k − |R| that dominates all black vertices, then v must be part of every
such set.

Proof. Let D be a set of size k− |R| that dominates all black vertices in G, and
suppose v /∈ D. Let X be the set of black neighbors of v which are not in D and
Y be the set of black neighbors of v in D. So |X |+ |Y | > k−|R|. Observe that for
every vx ∈ X we have a neighbor ux ∈ D which is not in Y (otherwise v, vx, ux is
a 3 length cycle). Similarly, for x, y ∈ X, x �= y ⇒ ux �= uy. Otherwise v, x, ux, y
will form a cycle of length 4. This means that |D| ≥ |X |+ |Y | > k − |R| which
is a contradiction. �

Given a rwb-graph, Lemma 1 suggests the following simple reduction rules.

(R1) If there is a white or a black vertex v having more than k − |R| black
neighbors, then color v red and color its neighbors white.

(R2) If a white vertex is not adjacent to a black vertex, delete the white vertex.
(R3) If there is an edge between two white vertices, delete the edge.
(R4) If |R| > k, then stop and return NO.

The following Lemma follows from Lemma 1.

Lemma 2. Let G = (R∪W ∪B, E) be an instance of RWB-Dominating Set
and let G′ = (R′ ∪W ′ ∪B′, E′) be the reduced instance after applying rules (R1)
to (R4) once. Let k be an integer parameter. Then G is an yes instance if and
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only if G′ is an yes instance. I.e. G has a set of size at most k− |R| dominating
all vertices in B if and only G′ has a set of size at most k− |R′| dominating all
vertices in B′.

Let G be an instance of RWB-Dominating Set and let G′ be the reduced
instance after applying the reduction rules (R1)− (R4) until no longer possible.
Then we show that if G′ is an yes instance (and hence G is an yes instance), the
number of vertices in G′ is bounded by polynomial in k. More precisely we show
the following lemma.

Lemma 3. Let (G, k) be an yes instance of RWB-Dominating Set and
(G′, k′) be the reduced instance of (G, k) after applying the rules (R1) − R(4)
until no longer possible. Then, the number of vertices in G′ is bounded by a
polynomial function of k.

Proof. Let R′, B′ and W ′ be the set of vertices colored red, black and white
respectively in G′. We argue that each of |R′|, |B′| and |W ′| is bounded by a
function of k.

Because of (R4) (and the fact that G′ is an yes instance), |R′| ≤ k.
Because of (R1), every vertex colored white or black has at most k−|R′| black

neighbors. Also we know that no red vertex has a black neighbor. Since G′ is an
yes instance, there are at most k (k − |R′| to be more precise) black or white
vertices dominating all black vertices. Since each of them can dominate at most
k black vertices, we conclude that |B′| can be at most k2.

We argue that |W ′| ≤ k3. Towards this end, we just show that every black
vertex has at most k white neighbors. Since |B′| ≤ k2, and every white vertex
is adjacent to some black neighbor (because of (R2) and (R3)), the conclusion
will follow.

Note that every white vertex has a red neighbor. Observe that the white
neighbors of any black vertex (any vertex for that matter) will have all distinct
red neighbors. I.e. if w1 and w2 are white neighbors of a black vertex b, then
there is no overlap between the red neighbors of w1 and the red neighbors of w2.
This is because if w1 and w2 have a common red neighbor r, then we will have
a 4-cycle b, w1, r, w2, b. Since |R′| ≤ k, it follows that a black vertex can have at
most k white neighbors.

This proves the required claim. �

Thus we have the following theorem.

Theorem 2. RWB-Dominating Set problem can be solved in O(kk+O(1) +
nO(1)) time in G5 graphs.

Proof. It is easy to see that the reduction rules (R1) to (R4) take polynomial
time to execute. When none of these rules can be executed, by Lemma 3, we have
that the number of vertices in the resulting graph is O(k3), and each vertex has
at most k black neighbors. We can just try all possible subsets of size at most
k of the vertex set of the reduced graph, to see whether that subset dominates
all the black vertices. If any of them does, then we say YES and NO otherwise.
This will take O(k3k+O(1)) time.
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Alternatively, we can apply a branching technique on the black vertices, by
selecting a black vertex or any of its neighbors in the dominating set. More
precisely, let v be a black vertex. Then we branch on N [v] by including w ∈ N [v]
in the possible dominating set D we are constructing and look for a solution of
size k − 1 in G − {w} where w is colored red and all its neighbors are colored
white for every w ∈ N [v]. Details are easy and omitted. This will result in an
O((k + 1)k+O(1)) time algorithm. �

Now to solve the general Dominating Set problem in G5 graphs, simply color
all vertices black and solve the resulting RWB-Dominating Set problem using
Theorem 2. Thus we have

Theorem 3. Parameterized Dominating Set problem can be solved in
O(kk+O(1) + nO(1)) time in G5 graphs.

Other variants of dominating set problem which are W[2]-hard can be shown
to be fixed parameter tractable in a similar way. We state the theorem without
giving the proof. The reader can refer [3, 2] for the definitions of these problems.

Theorem 4. Parameterized versions of Constraint Dominating Set, Irre-
dundant Set, Exact Even Set, Exact Odd Set, Odd Set, Dominating
Threshold Set, Independent Dominating Set, Maximal Irredundant
set, Red Blue Dominating Set problems are fixed parameter tractable in G5
graphs.

3 t-Vertex Cover and t-Dominating Set Problems

t-Vertex Cover and t-Dominating Set problems are respectively, general-
izations of classical Vertex Cover and Dominating Set problems. Here the
objective is not to cover all the edges or to dominate all the vertices but to cover
at least t edges or to dominate at least t vertices with at most k vertices. More
precisely they are defined as follows:

t-Vertex Cover: Given a graph G = (V, E) and positive integers k and t,
does there exist a set of at most k vertices C ⊆ V such that |{e = (u, v) ∈
E | C ∩ {u, v} �= ∅}| ≥ t.
t-Dominating Set: Given a graph G = (V, E) and positive integers k and
t, does there exist a set of at most k vertices D ⊆ V such that |N [D]| ≥ t.

The t-Vertex Cover and t-Dominating Set problems are parameterized
in two ways. They are either parameterized by k or by t and k. Both these
problems are FPT when parameterized by both k and t [1] and are hard for
different level of W -hierarchy when parameterized by k alone [7].

Here, we first give a simple algorithm for t-Vertex Cover when parameter-
ized by both t and k and then show that this problem is FPT even when param-
eterized by k alone in G5 graphs. We then extend this result for t-Dominating
Set problem in G5 graphs when parameterized by k alone.

Our algorithms for t-Vertex Cover depend on the following lemma.
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Lemma 4. Let (G = (V, E), k, t) be an yes instance of t-Vertex Cover and v
be a vertex of maximum degree in G. Then there exists a t-vertex cover C whose
intersection with N [v] is non empty, i.e. N [v] ∩ C �= ∅.

Proof. Since G is an yes instance of the problem there exists a t-vertex cover
C of size at most k and covering at least t edges. If N [v] ∩ C = ∅ then choose
C′ = C − {u} + {v} where u is any vertex in C. Since v is a vertex of highest
degree and none of its neighbors is in C, C′ also covers at least t edges and is of
size at most k. �

Suppose that the given graph has maximum degree bounded by d. Since there
exists a t-vertex cover with some neighbour of the maximum degree vertex, we
can branch on one of the (at most) d neighbours of the maximum degree vertex
giving raise to a d-way branching. The following theorem is immediate from this.

Theorem 5. Let G be a graph with maximum degree d. Then t-Vertex Cover
can be solved in O(dkn) time.

Given a graph G = (V, E) and positive integer parameters t and k, if there exists
a vertex of degree at least t then we get a t-vertex cover by chosing the vertex.
So without loss of generality, we can assume that every vertex has degree at
most t− 1. Then from Theorem 5, we have

Corollary 1. t-Vertex Cover can be solved in O(tkn) in general graphs.

Suppose, instead of trying to cover at least t edges, we want to cover all but t
edges (where t is a parameter). That is, we want an induced subgraph on n− k
vertices with at most t edges. We call it as the (m − t)-Vertex Cover prob-
lem. Such a parameterization is known as dual parameterization and dual prob-
lems are, in general, natural and equally interesting[3, 10]. For example Vertex
Cover is fixed parameter tractable whereas the dual of Vertex Cover is the
Independent Set problem (which is the same as choosing n − k vertices to
cover all edges) and is W[1] complete.

The (m− t)-Vertex Cover problem can also be parameterized in two ways,
by k alone and by k and t. When we have both t and k as parameters then
we solve this problem by branching on an edge e = (u, v). Here we branch by
choosing either the vertex u or the vertex v or e which means that we are looking
for a solution which contains either u or v or does not cover e. So we get the
following branching recurrence:

T (k, t) ≤ 2T (k − 1, t) + T (k, t− 1).

This immediately gives us the following theorem

Theorem 6. (m− t)-Vertex Cover can be solved in O(3t+kn+m) time. I.e.
(m− t) Vertex Cover is fixed parameter tractable if parameterized by t and k.

Now we show that the t-Vertex Cover problem is FPT in G5 graphs when
parameterized by k alone. We will see that this result also applies to (m − t)-
Vertex Cover problem when parameterized by k alone.
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Theorem 7. t-Vertex Cover is fixed parameter tractable in G5 graphs when
parameterized by k alone. The algorithm runs in O(2O(k log k)n + m) time.

Proof. Without loss of generality we can assume that the maximum degree of
this graph is not bounded by a function of k, otherwise the problem is fixed
parameter tractable by Theorem 5. Let v0 be a vertex of highest degree and let
v1, v2, . . . , vr be its neighbors. Further assume that

deg(v1) ≥ deg(v2) ≥ · · · deg(vk) ≥ · · · ≥ deg(vr).

Let A = {v0, v1, · · · , vk}. We show that v0 or one of its k highest degree neighbors
must be in some t-vertex cover. More precisely, we prove the following claim:

Claim: There exists a t-vertex cover C such that A ∩ C �= ∅.
The claim says that there exist a t-vertex cover C containing at least one vertex
of A. We then branch on the vertices of the set A, and look for a solution of size
k − 1, covering t − deg(vi) edges in G − {vi}, where 0 ≤ i ≤ k and recursively
use this claim on the respective subgraphs. Hence the claim proves that t-vertex
cover is fixed parameter tractable.

Now we are left with proving the claim. We show the claim by contradiction.
Assume to the contrary that no t-vertex cover intersects A. By Lemma 4 we know
that there exists a t-vertex cover C containing one of v0’s neighbors. Let vl be a
neighbor of v0 in C. Because of our assumption l > k. Suppose for some vi, 1 ≤
i ≤ k, N(vi)∩C = ∅. Then we can obtain a t-vertex cover C′ = C −{vl}+ {vi}
of size at most k and covering at least t edges as deg(vi) ≥ deg(vl). So we
now assume that for each vi, 1 ≤ i ≤ k, N(vi) ∩ C �= ∅. Let Bi = N(vi) ∩ C.
Observe that for each i, Bi does not contain vl otherwise that will imply v0, vi, vl

is a triangle. Suppose for some i �= j, u ∈ Bi ∩ Bj then v0, vi, u, vj is a cycle
of length 4. Hence Bi ∩ Bj = ∅ for all i, j such that i �= j. So this implies that∑k

i=1 |Bi| ≥ k. So we have Bi �= ∅, Bi ⊆ C−{vl} and their pairwise intersections
are empty. But this implies

∑k
i=1 |Bi| ≤ |C − {vl}| ≤ k − 1 which contradicts

that
∑k

i=1 |Bi| ≥ k. This in turn proves the claim.
Since we branch on the vertices of A whose size is bounded by k + 1, we get

an algorithm of time complexity O((k + 1)kn). �
Since the runtime in Theorem 7 was independent of t, we get

Theorem 8. (m− t)-Vertex Cover can be solved in O(2O(k log k)n+m) time
in G5 graphs when parameterized by only k.

By arguments similar to those used in Theorem 7, we can show the following:

Theorem 9. t-Dominating Set can be solved in O(2O(k log k)nO(1)) time in
G5 graphs when parameterized by only k.

4 Independent Set and Its Variants in G4 Graphs

Independent Set problem asks for an induced subgraph on k vertices which
only contains isolated vertices. More precisely:
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Independent Set : Given a graph G = (V, E) and an integer k ≥ 0,
determine whether there exists a set of at most k vertices I ⊆ V such that
the subgraph induced by I does not contain any edges.

Independent Set problem is W[1]-hard in general graphs. We show that Inde-
pendent Set and some of its variants are fixed parameter tractable in triangle
free graphs. We use Ramsey theory to get a kernel of size O(k2) for these
problems.

Theorem 10. Parameterized Independent Set problem can be solved in O(kn+
2O(k log k)) in G4 graphs (triangle free graphs).

Proof. Given any two integers p and q, there exists a number R(p, q) such that
any graph on at least R(p, q) vertices contains an independent set of size p or
a clique of size q. R(p, q), for various values of p and q are known as Ramsey
Numbers. It is well known that R(p, q) ≤

(
p+q−2

q−1

)
[8]. And if n > R(p, q) then

either an independent set of size p or a clique of size q can be found in O((p+q)n)
time by transforming the inductive arguments used in the proof of Theorem 27.3
in [9] for the upper bound of R(p, q) to a constructive algorithm.

If k ≤ 2, then we can check in linear time whether the graph has an indepen-
dent set of size 2 or not. So let us assume that k ≥ 3. If the number of vertices
n > k2 ≥ R(k, 3) then we know that this graph has either an independent set of
size k or a clique of size 3. But since the input graph is triangle free, we know it
must have an independent set of size k and can be found in O(kn) time. Other-
wise we know that n ≤ k2. In this case, we try all possible subsets to see whether
the graph has an independent set of size k or not. If any of them does, then we
answer YES and answer NO otherwise. This will take O(kO(k)) or O(2O(k log k))
time. This completes the proof. �
Theorem 10 can be extended to a larger class of problems where one is interested
in finding a subset inducing a “hereditary property”. A graph property Π is a
collection of graphs. A graph property Π is non-trivial if Π has at least one graph
and does not include all graphs. A non-trivial property is said to be hereditary
if a graph G is in property Π implies that every induced subgraph of G is also in
Π . Given any property Π , let P (G, k, Π) be the problem defined below:

P(G, k, Π): Given a graph G = (V, E) and a positive integer k, determine
whether there exists a set of k vertices V ′ ⊆ V such that G[V ′] is in Π .

Khot et al. [10] studied this problem and showed the following theorem.

Theorem 11. [10](Khot and Raman) Let Π be a hereditary property that in-
cludes all independent sets but not all cliques (or vice versa). Then the problem
P (G, k, Π) is W [1] hard.

We state fixed parameter tractable version of this theorem in G4 graphs. The
proof of this theorem follows along the same line as of Theorem 10.

Theorem 12. Let Π be a hereditary property that includes all independent sets
but not all cliques. Then the problem P (G, k, Π) restricted to G4 graphs is fixed
parameter tractable and can be solved in O(kn + 2O(k log k)nO(1)) time.
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Given a graph G = (V, E) and a positive integer k ≥ 0, Acyclic Subgraph,
Bipartite Subgraph and Planar Subgraph problems ask whether there
exists a subset V ′ ⊆ V , such that |V ′| ≥ k and G[V ′] is acyclic, bipartite or
planar respectively. We refer [8] for definitions of these terms. All these problems
are known to be W[1]-hard [3, 10] in general graphs. As a corollary to Theorem
12 we have following:

Corollary 2. Acyclic, Bipartite and Planar Subgraph problems are fixed
parameter tractable with time complexity O(kn + 2O(k log k)nO(1)) in G4 graphs.

Corollary 2 shows that Acyclic and Planar Subgraph problems are fixed
parameter tractable in bipartite graphs. In fact we can easily get much improved
FPT algorithms for these problems in bipartite graphs. Observe that bipartite
graph has an independent set (and hence a planar subgraph) on n/2 vertices.
So, if k ≤ n/2 then for both these problems the answer is YES and otherwise
k > n/2 or n < 2k and hence we get a kernel of size at most 2k for both
Acyclic and Planar Subgraph problems in bipartite graphs. Now we check
all k sized subsets of the vertex set to see whether the subset induces an acyclic
subgraph or planar subgraph. Since

(
n
k

)
≤
(2k

k

)
≤ 22k = 4k, we get O(4knO(1))

time algorithm for both these problems in bipartite graphs.
Fomin et al. [5] has shown that thee minimum feedback vertex set can be found

in O(1.8621nnO(1)) time in bipartite graphs. Minimum feedback vertex set is a
complement of the vertex set of the maximum Acyclic Subgraph problem,
where the objective is to find the minimum number of vertices whose removal
results in an acyclic subgraph. So together with this result and kernel of size
2k we get O(1.86212knO(1)) = O(3.47knO(1)) time algorithm for the Acyclic
Subgraph problem. Putting together everything we get the following theorem.

Theorem 13. Parameterized Acyclic Subgraph and Planar Subgraph
problems can be solved in O(3.47kkO(1) + n3) and O(4kkO(1) + n3) time respec-
tively in bipartite graphs.

5 Is Everything Easy ?

In contrast to the results presented in the previous sections, here we show a
problem to be W [1]-hard even in bipartite graphs with girth at least 6 (G6
graphs). Observe that in graphs with large girth the Clique problem is trivial.
We look at Dense Subgraph problem [11] which is a generalization of the
Clique problem.

Dense Subgraph: Given a graph G = (V, E) and positive integers k and l,
determine whether there exists a set of at most k vertices C ⊆ V such that
G[C] has at least l edges, i.e. the induced subgraph on C has at least l edges.
(Note that l is at most

(
k
2

)
.)

Dense Subgraph is clearly W[1]-hard when parameterized by k. But we give
a reduction from Clique to Dense Subgraph problem parameterized by k
which shows that the problem is W[1]-hard even in bipartite graphs with girth
at least 6.
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Theorem 14. Dense Subgraph is W [1]-hard in bipartite graphs with girth at
least 6 when parameterized by k.

Proof. We give a reduction from Clique. Let (G, k) be an instance of Clique.
We make graph G = (V, E) bipartite by subdividing every edge. Let G′ =
(V ′, E′) be the resulting subgraph. Here, V ′ = V ∪W where W = {wuv | (u, v) ∈
E} and E′, the set of edges, consists of (u, wuv) and (v, wuv) for every wuv ∈ W .
Take k′ = k +

(
k
2

)
and l = 2

(
k
2

)
. We claim that G has a clique of size k if and

only if G′ has a subgraph on k′ vertices with at least l edges.
Observe that G′ is a bipartite graph as every cycle is of even length and the

girth is at least 6 as girth of G is at least 3. Also note that every vertex in W
has degree 2 as they represent edges in the original graph. Now suppose G has a
clique of size k on vertex set C = {v1, v2, · · · , vk}. Then C′ = C∪{wuv | u, v ∈ C}
is a vertex set of dense subgraph in G′ having k′ vertices and l edges as G[C]
has at least

(
k
2

)
edges.

Conversely, let C′ be a set of k′ vertices such that G′[C′] has at least l edges.
Since G′ is a bipartite graph, G′[C′] is also bipartite. Let O = V (G)∩C′. Suppose
|O| > k. Now G′[C′] is a bipartite graph with O in one part and N = C′ − O
in other part and every vertex in N has degree at most 2. Since the number of
edges is strictly less than l, |O| ≤ k. Now we show that |O| ≥ k. We show this by
counting the degree of vertices in N . Let n1 and n2 be the degree 1 and degree
2 vertices in N respectively. Then the number of edges in G[C′] is :

|E(G[C′])| = 2n2 + n1 ≤ 2
(
|O|
2

)
+ (k +

(
k

2

)
−
(
|O|
2

)
− |O|) < l = 2

(
k

2

)
.

This is because n2 ≤
(|O|

2

)
(as there are n2 edges in G[O]) and |O| ≤ k. This

implies that |O| ≥ k and hence |O| = k. As a result of this, |N | =
(
k
2

)
and every

vertex in N has degree 2. Every vertex of degree 2 in N represents an edge in
G[O]. This shows that the vertices of O form a clique in the original graph. �

6 Conclusion and Discussions

In this paper we showed that if the input graphs do not possess short cycles
then the neighborhood problems like dominating set, independent set and their
variants are fixed parameter tractable. We have also shown that the restriction
on girth is optimal if we do not put further restriction on the graph classes.
This is the first time, to our knowledge, the complexity of graph problems are
classified by girth.

Most of the algorithms given here are just parameterized complexity classifica-
tion algorithms. We believe that the vast literature known for these problems can
be applied to obtain more efficient FPT algorithms. Obtaining a O(cknO(1)), c a
constant, algorithm for all these problems remain an open problem. We conclude
with the following conjecture:
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Conjecture 1. t-Vertex Cover problem is W[2]-hard in undirected graphs and
remains hard even for bipartite graphs when parameterized by k alone.

Currently, it is known to be W [1]-hard [7] when parameterized by k.
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Abstract. We consider Maximum Independent Set and Minimum Ver-
tex Cover on disk graphs. We propose an asymptotic FPTAS for Mini-
mum Vertex Cover on disk graphs of bounded ply. This scheme can be
extended to an EPTAS on arbitrary disk graphs, improving on the previ-
ously known PTAS [8]. We introduce the notion of level density for disk
graphs, which is a generalization of the notion of ply. We give an asymp-
totic FPTAS for Maximum Independent Set on disk graphs of bounded
level density, which is also a PTAS on arbitrary disk graphs. The schemes
are a geometric generalization of Baker’s EPTASs for planar graphs [3].

1 Introduction

With the ever decreasing size of communication and computing devices, mobility
is a key word at the start of the 21st century. Using wireless connections, mobile
devices can join local or global communication networks. In trying to understand
the properties of such wireless networks, the (unit) disk graph model is frequently
used. A disk graph is the intersection graph of a set of disks in the plane. This
means that each disk corresponds to a vertex of the graph and there is an edge
between two vertices if the corresponding disks intersect. The set of disks is called
a disk representation of the graph. A unit disk graph has a disk representation
where all disks have the same radius. Besides their practical purposes, (unit)
disk graphs have interesting theoretical properties as well.

In a previous paper [21], we considered unit disk graphs of bounded density,
leading to new approximation schemes for several optimization problems. Here
we extend these ideas to disk graphs and introduce the notion of bounded level
density. We give an asymptotic FPTAS for Maximum Independent Set on disk
graphs of bounded level density, which is also a PTAS on arbitrary disk graphs.
Furthermore, we show there exists an EPTAS for Minimum Vertex Cover on
arbitrary disk graphs, improving results of Erlebach, Jansen, and Seidel [8].
As each planar graph is a 1-ply disk graph [11], these results are a geometric
generalization of the EPTASs for planar graphs by Baker [3].

2 Preliminaries

An independent set I ⊆ V of a graph G = (V, E) contains only non-adjacent
vertices (i.e. u, v ∈ I ⇒ (u, v) �∈ E). A set C ⊆ V covers V ′ ⊆ V if u ∈ C or
� This research was supported by the Bsik project BRICKS.
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c© Springer-Verlag Berlin Heidelberg 2006



Better Approximation Schemes for Disk Graphs 317

v ∈ C for each (u, v) ∈ E ∩ (V ′ × V ′). If C covers V , then S is a vertex cover.
We seek independent sets of maximum size and vertex covers of minimum size.

For each instance x of a maximization (minimization) problem and any ε > 0,
a polynomial-time approximation scheme (PTAS) delivers in time polynomial in
|x| (for fixed ε) a feasible solution of value within a factor (1− ε) (respectively
(1+ ε)) of the optimum. An efficient PTAS (EPTAS) delivers such a solution in
time polynomial in |x| and f(1

ε ) for some function f only dependent on 1
ε , while a

fully polynomial-time approximation scheme (FPTAS) delivers such a solution in
time polynomial in |x| and 1

ε . An asymptotic FPTAS (FPTASω) gives a feasible
solution in time |x| and 1

ε and attains the approximation factor if |x| > cε, for
some constant cε only dependent on ε.

A path decomposition of a graph G = (V, E) is a sequence (X1, X2, . . . , Xp)
of subsets of V (called bags) such that 1)

⋃
1≤i≤p Xi = V , 2) for all (v, w) ∈ E,

there is an i (1 ≤ i ≤ p) such that v, w ∈ Xi, and 3) Xi ∩Xk ⊆ Xj for all i, j, k
with 1 ≤ i < j < k ≤ p. The width of a path decomposition (X1, X2, . . . , Xp) is
max1≤i≤p |Xi| − 1. The pathwidth of a graph G = (V, E) is the minimum width
of any path decomposition of G [18].

3 Previous Work

Clark, Colbourn, and Johnson [6] showed that Maximum Independent Set and
Minimum Vertex Cover are NP-hard for (unit) disk graphs. The problems remain
NP-hard under the assumption of bounded (level) density [20].

On unit disk graphs, Marathe et al. [13] give constant factor approximation
algorithms. Different PTASs are presented by Hunt et al. [10] and Matsui [15]
and PTASs exist even if no disk representation is known [17]. On λ-precision
disk graphs of bounded radius ratio, Hunt et al. [10] show FPTASωs exist. In a
λ-precision disk graph, the distance between any two disk centers is at least λ.
Marx [14] gives an EPTAS for Minimum Vertex Cover on unit disk graphs.

Alber and Fiala [2] show that Maximum Independent Set is fixed-parameter
tractable for λ-precision disk graphs of bounded radius ratio. Marx [14] recently
showed that Maximum Independent Set is W[1]-hard for general (unit) disk
graphs. However, O(nO(

√
k))-time fixed-parameter algorithms are known [1, 2].

On disk graphs, Malesińska [12] and Marathe et al. [13] give constant fac-
tor approximation algorithms. Erlebach, Jansen, and Seidel [8] give a PTAS for
Maximum Independent Set and Minimum Vertex Cover. Chan [4] proposes a dif-
ferent PTAS for Maximum Independent Set on intersection graphs of fat objects
(a set of disks is considered to be fat). Chan [5] also gives a PTAS for Maximum
Independent Set on unit-height rectangle intersection graphs of bounded ply.

4 The Ply of Disk Graphs

Let D = {Di | i = 1, . . . , n} be a set of disks in the plane and G = (V, E)
the corresponding disk graph. Scale the disks by a factor 2w for some integer w,
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such that each disk has radius at least 1
2 . In the following, we will not distinguish

between a set of disks and the graph they induce.
Previously [21], we showed that an FPTASω exists for Maximum Independent

Set, Minimum Vertex Cover, and Minimum (Connected) Dominating Set on unit
disk graphs of bounded density. The density of a unit disk graph is the maximum
number of disk centers in any 1× 1 square. A careful examination of the proof
of these schemes shows that they can be extended to disk graphs of bounded
density and constant maximum radius. Observe that while scaling can make the
maximum radius arbitrarily small, this can increase the density quadratically.
Therefore these schemes do not generalize to disk graphs of arbitrary radius.
Hence another approach is needed.

The ply of a point p in the plane with respect to D is the number of disks of D
containing p (i.e. having p inside the disk). Then the ply of D is the maximum ply
of any point in the plane [16]. Observe that disk graphs of bounded ply are more
general than disk graphs of bounded density and bounded maximum radius.
Hence an FPTASω for disk graphs of bounded ply would generalize previous
results. Below we give such an approximation scheme for Minimum Vertex Cover.
This scheme uses the following properties of disk graphs of bounded ply.

Lemma 1. Given a set D of disks of ply γ, the number of disks of radius at
least r intersecting

– a line of length k is at most 4
rπ (k + 4r)γ,

– the boundary of a k × k square (k ≥ 4r) is at most 16
rπkγ,

– a k × k square is at most (k+4r)2

r2π γ,
– two perpendicular, intersecting lines of length k is at most 8

rπ (k + 2r)γ.

This lemma implies the following pathwidth upper bound.

Lemma 2. Given a set D of disks of ply γ, there exists a path decomposition
of the disks of radius at least r intersecting a k × k square of width at most
4

rπ (k + 4r)γ − 1 and consisting of at most (k+4r)2

r2π γ bags.

5 Approximating Minimum Vertex Cover

To approximate the minimum vertex cover problem, we use the shifting technique
introduced by Baker [3] and Hochbaum and Maass [9]. To apply this technique,
a decomposition of the minimum vertex cover problem into smaller subproblems
is needed. Here we use a decomposition of the disks similar to the ones proposed
by Hochbaum and Maass [9], Erlebach, Jansen, and Seidel [8], and Chan [4].
Combining the shifting technique with this decomposition yields the desired
approximation factor (see Section 7).

First partition the disks into levels. A disk Di has level j ∈ ZZ≥0 if its radius
ri satisfies 2j−1 ≤ ri < 2j . Since each disk has radius at least 1

2 , each disk is
indeed assigned a level. The level of the largest disk is denoted by l. For a set
of disks D, let D=j denote those disks in D of level j. Similarly, we define D≥j
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as the set of disks of level at least j, D>j,<j′ as the set of disks of level greater
than j, but smaller than j′, and so on.

Now let k ≥ 5 be an odd positive integer. For each level j, we decompose
the plane into k2j × k2j squares such that these squares induce a quadtree.
Formally, for each level j, we consider the horizontal lines y = hk2j and vertical
lines x = vk2j (h, v ∈ ZZ). The squares induced by these lines are called level j
squares, or simply j-squares.

Note that each j-square is completely contained in some (j + 1)-square. Con-
versely, each (j+1)-square S contains exactly 4 j-squares, denoted by S1 through
S4. The squares S1, . . . , S4 are siblings of each other. We let DS denote the set
of disks intersecting S and Db(S) denotes the set of disks which intersect the
boundary of S. Furthermore, we define Di(S) = DS −Db(S) (i.e. the set of disks
fully contained in the interior of S) and let D+(S) =

⋃4
i=1 Db(Si) − Db(S) (i.e.

the set of disks intersecting the boundary of at least one of the four children of
S, but not the boundary of S itself). The meaning of combinations like D

b(S)
≤j

should be self-explaining. We use j(S) to denote the level of a square S.

6 A Close to Optimal Vertex Cover

We prove the following theorem, which will be auxiliary to our main theorem.

Theorem 1. Let D be a set of disks of ply γ, k ≥ 5 an odd positive integer, and
OPT a minimum vertex cover for D. Then in time O(k2n2 2

48
π kγ), we can find

a vertex cover VC for D such that |VC | ≤
∑

S

∣∣∣OPTS
=j(S)

∣∣∣, where the sum is
over all squares S.

We can obtain a vertex cover with the required size by applying bottom-up
dynamic programming to the j-squares. Roughly speaking, for each j-square S,
we consider all subsets of D

b(S)
>j (the disks of level greater than j intersecting

the boundary of S). For each such subset, we compute a close to optimal vertex
cover for DS containing this subset. Formally, we define for each j-square S and
each W ⊆ D

b(S)
>j a function size(S, W ). This function is defined recursively on j.

size(S, W ) =

⎧⎪⎨⎪⎩
min

{
|T |
∣∣ T ⊆ DS

=j ∪D
i(S)
>j ; T ∪W covers DS

}
if j = 0;

min
U⊆D

+(S)
>j−1∪D

b(S)
=j

{
|U |+

4∑
i=1

size
(
Si, (U ∪W )b(Si)

)}
if j > 0.

Let sol(S, W ) be the subfamily of D attaining size(S, W ) or ∅ if size(S, W ) is ∞.

6.1 Properties of the size- and sol-Functions

We first show that the sum of size(S, ∅) over all level l squares S attains the
value mentioned in Thm. 1. Let OPT again be a minimum vertex cover for D.

Lemma 3.
∑

S; j(S)=l size(S, ∅) ≤
∑

S

∣∣∣OPTS
=j(S)

∣∣∣.
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Proof. Apply induction on j. We prove that the following invariant holds:

size(S,OPT b(S)
>j ) ≤

∑
S′⊆S

∣∣∣OPTS′

=j(S′)

∣∣∣+ ∣∣∣OPT i(S)
>j

∣∣∣ .
Here S is some j-square. For j = 0, the correctness of the invariant follows from
the definition of size. So assume j > 0 and the invariant holds for all j′-squares
with j′ < j. Then from the description of size and by applying induction,

size(S,OPTb(S)
>j ) ≤

4∑
i=1

size(Si,OPTb(Si)
>j−1) +

∣∣∣OPT+(S)
>j−1

∣∣∣+ ∣∣∣OPT b(S)
=j

∣∣∣
≤

4∑
i=1

∑
S′

i⊆Si

∣∣∣OPTS′
i

=j(S′
i)

∣∣∣+ 4∑
i=1

∣∣∣OPT i(Si)
>j−1

∣∣∣
+
∣∣∣OPT+(S)

>j−1

∣∣∣+ ∣∣∣OPT b(S)
=j

∣∣∣
=

4∑
i=1

∑
S′

i⊆Si

∣∣∣OPTS′
i

=j(S′
i)

∣∣∣+ ∣∣∣OPT i(S)
>j−1

∣∣∣− ∣∣∣OPT+(S)
>j−1

∣∣∣
+
∣∣∣OPT+(S)

>j−1

∣∣∣+ ∣∣∣OPT b(S)
=j

∣∣∣
=

4∑
i=1

∑
S′

i⊆Si

∣∣∣OPTS′
i

=j(S′
i)

∣∣∣+ ∣∣OPTS
=j

∣∣+ ∣∣∣OPT i(S)
>j

∣∣∣
=
∑

S′⊆S

∣∣∣OPTS′

=j(S′)

∣∣∣+ ∣∣∣OPT i(S)
>j

∣∣∣ .
Since l is the level of the largest disk, OPT i(S)

>j = ∅ and OPT b(S)
>j = ∅ for all

j-squares S with j ≥ l. Hence∑
S; j(S)=l

size(S, ∅) ≤
∑

S; j(S)=l

∑
S′⊆S

∣∣∣OPTS′

=j(S′)

∣∣∣ ≤∑
S

∣∣∣OPTS
=j(S)

∣∣∣ .
This proves the lemma. �

We prove the union of sol(S, ∅) over all level l squares S is a vertex cover of D.

Lemma 4.
⋃

S; j(S)=l sol(S, ∅) is a vertex cover of D.

Proof. We again apply induction on j. For each j-square S and W ⊆ D
b(S)
>j , we

claim that size(S, W ) �= ∞ if and only if there exists a subset of DS
≤j∪D

i(S)
>j such

that this subset and W cover DS . For j = 0, this follows from the definition of
size and sol. So assume j > 0 and the claim holds for all j′-squares with j′ < j.

Let S be an arbitrary j-square and let W be an arbitrary subset of D
b(S)
>j .

Suppose there is no subset of DS
≤j ∪ D

i(S)
>j such that this subset and W cover
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DS . Then W does not cover D
b(S)
>j , or DS

≤j ∪D
i(S)
>j ∪W would cover DS . This

implies that, for any U ⊆ D
+(S)
>j−1 ∪D

b(S)
=j and for any i = 1, . . . , 4, there is no

subset of DSi

≤j−1 ∪ D
i(Si)
>j−1 such that this subset and U ∪W cover DSi . As the

claim holds for the (j − 1)-square Si, size(Si, U ∪W ) = ∞. Hence size(S, W ) =
min

U⊆D
+(S)
>j−1∪D

b(S)
=j

{
|U |+

∑4
i=1 size

(
Si, (U ∪W )b(Si)

)}
= ∞.

Conversely, suppose there exists a subset C of DS
≤j ∪D

i(S)
>j such that C ∪W

covers DS . Let U = C∩(D+(S)
>j−1∪D

b(S)
=j ). Then for each i = 1, . . . , 4, there exists a

subset of DSi

≤j−1∪D
i(Si)
>j−1 such that this subset and U∪W cover DSi (simply take

(C−U)∩DSi). As the claim holds for the (j−1)-square Si, size(Si, U∪W ) �= ∞.
Hence size(S, W ) = min

U⊆D
+(S)
>j−1∪D

b(S)
=j

{
|U |+

∑4
i=1 size

(
Si, (U ∪W )b(Si)

)}
�=

∞. This proves the claim.
Since l is the level of the largest disk, D

b(S)
>j = ∅ for all j-squares S with j ≥ l.

Hence for each l-square S, DS
≤j ∪D

i(S)
>j = DS . As DS covers DS , it follows from

the claim that size(S, ∅) �= ∞. By the definition of sol, sol(S, ∅) covers DS . Since
each edge is contained in DS for some l-square S,

⋃
S; j(S)=l sol(S, ∅) is indeed a

vertex cover of D. �

6.2 Computing the size- and sol-Functions

We show that it is sufficient to compute size and sol for a limited number of
j-squares. This can be done in the time stated in Thm. 1.

Call a j-square non-empty if it is intersected by a level j disk and empty
otherwise. A j-square S is relevant if one of its three siblings is non-empty or
there is a non-empty square S′ containing S, such that S′ has level at most
j + �log k� (so each non-empty j-square is relevant). Note that this definition
induces O(k2n) relevant squares. A relevant square S is said to be a relevant
child of another relevant square S′ if S ⊂ S′ and there is no third relevant
square S′′, such that S ⊂ S′′ ⊂ S′. Conversely, if S is a relevant child of S′, S′

is a relevant parent of S.

Lemma 5. For each relevant 0-square S, all size- and sol-values for S can be
computed in O(k2γ 2( 24

π k+ 16
π )γ) time.

Proof. From Lem. 1,
∣∣∣Db(S)

>0

∣∣∣ is bounded by 16
π kγ. Hence all subsets W of D

b(S)
>0

can be enumerated in O(2
16
π kγ) time. For a fixed set W , size(S, W ) is defined

as the size of a minimum size subset of DS
=0 ∪D

i(S)
>0 , such that this subset and

W cover DS . We may assume W covers D
b(S)
>0 , otherwise such a subset does

not exist and size(S, W ) is ∞. Then the requested subset is simply a minimum
vertex cover for DS −W . Following Lem. 2, there exists a path decomposition
of DS of width at most 8

π (k + 2)γ and using O(k2γ) bags. By adapting the
algorithm by Telle and Proskurowski [19], the requested cover can be computed
in O(k2γ 2

8
π (k+2)γ) time. Therefore all size- and sol-values for S can be computed

in O(k2γ 2( 24
π k+ 16

π )γ) time. �
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Assume that the size- and sol-values of all relevant children of S are known.

Lemma 6. For each relevant j-square S (j > 0) with relevant (j − 1)-square
children, all size- and sol-values for S can be computed in O(2

48
π kγ) time.

Proof. If one of the children S1, . . . , S4 of S is relevant, then, by the definition of
relevant, all children of S must be relevant. Following the definition of size, we
need to enumerate all subsets W of D

b(S)
>j and for each such W all subsets U of

D
+(S)
>j−1 ∪D

b(S)
=j . This is equivalent to enumerating all subsets of D

b(S)
>j−1 ∪D

+(S)
>j−1.

Following Lem. 1, the number of disks in D
b(S)
>j−1 is bounded by 32

π kγ. Since disks

intersecting the boundary of S are not in D
+(S)
>j−1, we can adapt the proof of Lem.

1 to show that
∣∣∣D+(S)

>j−1

∣∣∣ is at most 16
π kγ. But then enumerating all subsets of

D
b(S)
>j−1 ∪D

+(S)
>j−1 can be done in O(2

48
π kγ) time. Since size and sol of all relevant

children of S are known and assuming that for a given W and U we can compute
the sum in constant time, the running time of O(2

48
π kγ) follows. �

Lemma 7. For each relevant j-square S (j > 0) with no relevant children of
level j − 1, all size- and sol-values for S can be computed in O(n2

32
π γ) time.

Proof. Since S has no relevant children of level j − 1, S must be empty. By
the definition of relevant, the nearest non-empty ancestor of S (if it exists)
has level at least j + �log k�. Hence DS

>j−1 = DS
≥j+�log k�. As any disk of

level at least j + �log k� has radius at least 1
2k, DS

≥j+�log k� = D
b(S)
≥j+�log k� and

thus DS
>j−1 = D

b(S)
≥j+�log k�. In particular, D

b(S)
>j = D

b(S)
≥j+�log k�. Using Lem. 1,∣∣∣Db(S)

>j

∣∣∣ =
∣∣∣Db(S)

≥j+�log k�

∣∣∣ ≤ 32
π γ and thus all subsets W of D

b(S)
>j can be enumer-

ated in O(2
32
π γ) time.

Consider a j′-square S′ ⊂ S for which there is no relevant j′′-square S′′ such
that S′ ⊆ S′′. Using similar arguments as above, we can show that DS′

>j′−1 =

DS′

≥j+�log k� = D
b(S′)
≥j+�log k�. In particular, this implies that D

i(S′)
>j′−1 and D

b(S′)
=j′

are empty. If j′ > 0, then D
+(S′)
>j′−1 is also empty. This simplifies the definition of

size(S′, W ′) for some W ′ ⊆ D
b(S′)
>j′ to

size(S′, W ′)=

⎧⎪⎪⎨⎪⎪⎩
0 if j′ = 0 and W ′ covers D

b(S′)
>j′ ;

∞ if j′ = 0 and W ′ does not cover D
b(S′)
>j′ ;∑4

i=1 size
(
S′

i, W
′b(S′

i)
)

if j′ > 0.

Now let W be a subset of D
b(S)
>j . We may assume W covers D

b(S)
>j , otherwise

size(S, W ) = ∞. Note that D
b(S′)
>j′ ⊆ D

b(S)
>j for any j′-square S′ as above. By re-

peatedly applying the above simplification of the definition of size, it follows that
size(S, W ) is simply

∑
S′′ size

(
S′′, W b(S′′)

)
, where the sum is over all relevant

children S′′ of S. As j(S′′) < j(S)−1 for any such relevant child S′′, S′′ must be
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non-empty or the sibling of a non-empty square. Since the number of non-empty
squares is O(n) and a square has precisely three siblings, the number of relevant
children of S is O(n). Hence this sum can be computed in O(n) time. �

Lemma 8.
∑

S; j(S)=l size(S, ∅) can be computed in O(k2n2 2
48
π kγ) time.

Proof. As observed before, there are O(k2n) relevant squares. Let S be a rele-
vant j-square without a relevant parent. Following Lemmas 5, 6, and 7, we can
compute size(S, ∅) for all such squares S in O(k2n2 2

48
π kγ) time.

Now consider any level l square S. If S is relevant, then it cannot have a
relevant parent. Hence by the preceding argument, size(S, ∅) is known. If S is
not relevant, then we can use the same arguments as in Lem. 7 to show that
size(S, ∅) =

∑
S′′ size

(
S′′, W b(S′′)

)
, where the sum is over all relevant j′′-squares

S′′ ⊂ S without a relevant parent. It follows that
∑

S; j(S)=l size(S, ∅) can be

computed in O(k2n2 2
48
π kγ) time. �

Proof (of Thm. 1). Follows directly from Lemmas 3, 4, and 8. �

7 An EPTAS for Minimum Vertex Cover

We now apply the shifting technique to obtain a (1 + ε) approximation of the
optimum. For some integer a (0 ≤ a ≤ k − 1), define the decomposition as
follows. We call a line of level j active if it is of the form y = (hk + a2l−j)2j

or x = (vk + a2l−j)2j (h, v ∈ ZZ). The active lines partition the plane into j-
squares as before, except that they are now shifted by the shifting parameter
a. The structure however remains the same, and thus we can apply Thm. 1 to
compute a close to optimal vertex cover.

Let VC a denote the set returned by the algorithm for some value of a (0 ≤
a ≤ k − 1) and let VCmin be a smallest such set.

Lemma 9. |VCmin| ≤ (1 + 12
k ) |OPT |.

Proof. We claim a line of level j (i.e. of the form y = h′2j or x = v′2j) is active
for precisely one value of a. A horizontal line y = h′2j is active if h′ = hk+a2l−j

for some h and a, i.e. if h′ ≡ a2l−j mod k. As gcd(k, 2l−j) = 1, such a value of
a exists. Hence the line is active for at least one value of a.

Suppose a horizontal line of level j is active for two values of a. Then hk +
a2l−j = h′k + a′2l−j for some choice of h, h′, a, and a′. Simplifying gives (h −
h′)k = (a′−a)2l−j , or k|(a′−a)2l−j . Since k is odd, k|(a′−a), which is impossible
as 1 ≤ |a′ − a| ≤ k − 1. Therefore each horizontal line of level j is active for
precisely one value of a. The same proof holds for vertical lines of level j.

Define the set Da as those disks intersecting the boundary of a j-square S at
their level, i.e. Da =

⋃
S D

b(S)
=j(S). A level j disk is in Da if and only if it intersects

an active line of level j. Since each line of level j is active for precisely one value
of a and disks of level j have radius strictly less than 2j , a level j disk can be in
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Da for at most 4 different values of a. Hence there exists a value of a (say a∗)
for which

∣∣OPT ∩Da∗
∣∣ ≤ 4

k |OPT |.
From Lem. 3, we know that |VC a∗ | ≤

∑
S

∣∣∣OPTS
=j(S)

∣∣∣. Observe that for a
fixed value of a, any disk can intersect at most 4 squares at its level. Then

|VC a∗ | ≤
∑
S

∣∣∣OPTS
=j(S)

∣∣∣
=
∑
S

∣∣∣OPTS
=j(S) −OPTb(S)

=j(S)

∣∣∣+∑
S

∣∣∣OPT b(S)
=j(S)

∣∣∣
≤ |OPT | −

∣∣OPT ∩Da∗
∣∣+ 4

∣∣OPT ∩Da∗
∣∣

≤ |OPT |+ 12
k
|OPT | .

Hence |VCmin| ≤ |VC a∗ | ≤ (1 + 12
k ) |OPT | and the lemma follows. �

Combining Thm. 1 and Lem. 9, we obtain the following result.

Theorem 2. There exists an FPTASω for Minimum Vertex Cover on disk
graphs of bounded ply, i.e. of ply γ = γ(n) = o(log n).

Proof. Consider any ε > 0. Choose k as the largest odd integer such that 48
π kγ ≤

δ log n for some constant δ > 0. If k < 5, output D. Otherwise, using Thm. 1 and
the choice of k, compute and output VCmin in O(n2+δ log3 n) time. Hence in
time polynomial in n and 1

ε , a feasible solution is computed. Furthermore, there
exists an nε such that k ≥ 12

ε and k ≥ 5 for all n > nε. Therefore if n > nε, it
follows from Lem. 9 that VCmin is a (1 + ε) approximation of the optimum. �

This approximation scheme can actually be extended to a scheme for Minimum
Vertex Cover on arbitrary disk graphs.

Theorem 3. There exists an EPTAS for Minimum Vertex Cover on disk
graphs.

Proof. Consider a point p in the plane of ply more than 1
ε . Note that the set

of disks Dp containing p form a clique. Marx [14] observed that Dp is actually
a (1 + ε)-approximation of a minimum vertex cover for Dp. Hence we remove
Dp from D and repeat until the ply is bounded by 1

ε . Using the algorithm by
Eppstein, Miller, and Teng [7] to determine the ply of a set of disks, this can be
done in O(n3 log n) time.

Let D0 denote the remaining set of disks. We use the above approximation
scheme to compute a (1 + ε)-approximation of a minimum vertex cover of D0 in
O(ε−3n2 2

576
π ε−2

) time. Combining the different approximations gives a (1 + ε)-
approximation of a minimum vertex cover of D. �

This result improves the nO(ε−2)-time PTAS for Minimum Vertex Cover on disk
graphs by Erlebach, Jansen, and Seidel [8].
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8 Approximating Maximum Independent Set

We introduce the notion of level density. Partition the disks into levels as before.
For each level j, let dj denote the maximum number of level j disks in any 2j×2j

square. Then the level density, denoted by d, is the maximum dj over all levels
j. Observe that disk graphs of bounded level density are more general than disk
graphs of bounded ply, as they can contain arbitrary size cliques.

To simplify the notation ahead, we use Do to refer to the original set of disks.
Assume the level density of Do is bounded by d. Let k ≥ 5 be an odd positive
integer to be determined later and let the plane be partitioned into j-squares
as before. For each j, remove all level j disks intersecting the boundary of a
j-square and denote the set of remaining disks by D. Now compute a maximum
independent set of D. For each j-square S and each W ⊆ D

b(S)
>j , define size(S, W )

as ⎧⎪⎨⎪⎩
max

{
|T |
∣∣ T ⊆ DS

=j ∪D
i(S)
>j ; T ∪W is an independent set

}
if j = 0;

max
U⊆D

+(S)
>j−1

{
|U |+

4∑
i=1

size
(
Si, (U ∪W )b(Si)

)}
if j > 0.

Let sol(S, W ) be the subset of D attaining size(S, W ) or ∅ if size(S, W ) is −∞.

Lemma 10.
∑

S; j(S)=l size(S, ∅) ≤
∑

S

∣∣∣OPT i(S)
=j(S)

∣∣∣, where OPT is a maximum
independent set of Do.

Lemma 11.
⋃

S; j(S)=l sol(S, ∅) is a maximum independent set of Do.

These two lemmas follow straightforwardly from the definition of size, sol, and
D. To compute

∑
S; j(S)=l size(S, ∅), it is again sufficient to consider only relevant

j-squares, where the definition of relevant is the same as before. In the analysis,
we will apply the following theorem.

Theorem 4. The maximum number of disjoint unit disks intersecting a unit
square is 7.

For lack of space, a proof is omitted. We also use the following proposition.

Proposition 1. A set of size c · s has at most cses distinct subsets of size s.

Lemma 12. For each relevant 0-square S, all size- and sol-values can be com-
puted in O(n7k2d (d3

4πe)
24
π k) time.

Proof. As disks in D
b(S)
≥�log k� have radius at least 1

2k, we can use Thm. 4 to bound

the maximum size of any independent set in D
b(S)
≥�log k� by 7. Hence all possible

independent sets in D
b(S)
≥�log k� can be enumerated in O(n7) time.

Using the assumption of bounded level density, we can bound
∣∣∣Db(S)

>0,<�log k�

∣∣∣
by 12kd. As an independent set of disks has ply 1, it follows from Lem. 1 that
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any independent subset of D
b(S)
>0,<�log k� has size at most 16

π k. Then, following

Prop. 1, all independent sets of disks in D
b(S)
>0,<�log k� can be enumerated in

O((d3
4πe)

16
π k) time. Hence all independent subsets W of DS

>0 can be enumerated
in O(n7(d3

4πe)
16
π k) time. Using a path decomposition, size(S, W ) for a fixed W

can be computed in O(k2d (d3
4πe)

8
π k) time. �

Lemma 13. For each relevant j-square S with relevant (j− 1)-square children,
all size- and sol-values can be computed in O(n7(d3

4πe)
32
π k) time.

For relevant j-squares with relevant children of level less than j−1, we can show
that the size- and sol-values can be computed in O(n8) time.

Lemma 14.
∑

S; j(S)=l size(S, ∅) can be computed in O(k2n9 (d3
4πe)

32
π k) time.

Let a (0 ≤ a ≤ k−1) be an integer. Shift the decomposition as before. Let ISa be
the independent set returned by the algorithm for some value of a (0 ≤ a ≤ k−1)
and let ISmax be a largest such set. Using similar ideas as in Lem. 9 and Thm.
2, we obtain the following.

Lemma 15. |ISmax| ≥ (1− 4
k ) |OPT |.

Theorem 5. There exists an FPTASω for Maximum Independent Set on disk
graphs of bounded level density, i.e. of level density d = d(n) = O(polylog n).

Here polylogn is any polynomial in log n. Now observe that d is bounded by n.
Hence the worst case running time of the scheme is O(k3n9(n 3

4πe)
32
π k).

Theorem 6. There exists a PTAS for Maximum Independent Set on disk
graphs.

This PTAS improves on the nO(k2)-time PTAS by Erlebach, Jansen, and Seidel
[8] and matches the nO(k)-time PTAS by Chan [4].

9 Minimum Vertex Cover Revisited

In Lemmas 5, 6, and 7, instead of for instance enumerating all subsets of D
b(S)
>j ,

it suffices to enumerate those subsets covering D
b(S)
>j . Observe that the comple-

ment of a cover for D
b(S)
>j is an independent set. Applying upper bounds on the

size of independent sets in this way, we can improve the running time of the EP-
TAS for Minimum Vertex Cover on disk graphs to O(ε−3n2 (e/ε)

576
π ε−1

+n3 log n).
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Abstract. The Wireless Gathering Problem is to find a schedule for
data gathering in a wireless static network. The problem is to gather a
set of messages from the nodes in the network at which they originate
to a central node, representing a powerful base station. The objective
is to minimize the time to gather all messages. The sending pattern or
schedule should avoid interference of radio signals, which distinguishes
the problem from wired networks.

We study the Wireless Gathering Problem from a combinatorial op-
timization point of view in a centralized setting. This problem is known
to be NP-hard when messages have no release time. We consider the
more general case in which messages may be released over time. For this
problem we present a polynomial-time on-line algorithm which gives a
4-approximation. We also show that within the class of shortest path
following algorithms no algorithm can have approximation ratio better
than 4. We also formulate some challenging open problems concerning
complexity and approximability for variations of the problem.

1 Introduction

The last decade has seen a broad research focus on wireless networks [9, 10].
Mobile phones, Bluetooth data communication and ad hoc laptop networks are
testimony of the wide range of applications for wireless networks. Current in-
terest on wireless sensor networks further emphasizes the importance of wireless
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networks in the future [8]. One of the main issues concerning wireless networks
is data communication. Much research is focused on finding efficient communi-
cation protocols, i.e. protocols which minimize energy consumption or maximize
throughput of the network.

In wireless networks stations communicate with each other through radio
signals. A radio signal has a transmission radius, the distance over which the
signal is strong enough to send data and an interference radius, the distance over
which the radio signal is strong enough to interfere with other radio signals.

Interference, also called collision, and fading of radio signals are severe prob-
lems in wireless networks and the main features that distinguish communication
in wireless networks from communication in wired networks. Interference is the
effect of radio signal loss due to the fact that multiple stations located within
interference radius of each other try to communicate simultaneously. Fading is
the effect of radio signal loss due to physical circumstances. Interference and
fading cause data loss which results in lower throughput or equivalently higher
completion times [12]. Furthermore, it causes higher energy consumption as data
has to be resent.

Communication protocols can be divided into five different layers [11]: the
application layer, the transport layer, the network layer, the data link layer and
the physical layer. The transport layer is used to provide a data delivery proto-
col between the stations. The network layer is concerned with routing of data
supplied by the transport layer. In order to route data, stations need to have
information on the structure of the wireless network. See [10] for an overview
of routing protocols which provide such information. The data link layer is con-
cerned with finding medium access (MAC) schemes; such a scheme determines
which nodes send data at a certain time.

MAC schemes can be characterized as either fixed assignment schemes or
contention schemes [9]. A fixed assignment scheme provides an allocation of
medium access resources; these resources are time and frequency. This leads to
Time Division Multiple Access (TDMA) schemes where each station is allocated
a time slot to send data. Similarly there are Frequency Division Multiple Access
(FDMA) schemes where each station is allocated a frequency range to send data
and Code Division Multiple Access (CDMA) schemes which is a combination of
both time and frequency allocation. As resource allocation requires coordination
fixed assignment schemes are common in a centralized setting.

Contention schemes are schemes where stations compete for medium access.
In a contention scheme stations access the medium independently of other sta-
tions. The most common contention schemes are Carrier Sense Multiple Access
(CSMA) schemes. Because stations compete to access the medium there is the
possibility of collision. There are several techniques for collision detection (CD)
or collision avoidance (CA). The 802.11 protocol [7], a widely used standard for
Wireless Local Area Networks describes both a fixed assignment scheme and
a contention scheme: the point coordination function (PCF) in a centralized
setting and the distributed coordination function (DCF).
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In this paper we consider the Wireless Gathering Problem (WGP). The WGP
is to find a schedule for data gathering at a base station of a wireless static net-
work which minimizes gathering time of messages. Gathering data at some base
station is a well known process in wireless networks and is sometimes referred to
as many-to-one communication. Typically, base stations are powerful stations
which are able to process the data and act as gateways to other networks [6].

The Wireless Gathering Problem is the following: given is a static wireless
network which consists of several stations (nodes) and one base station (the sink).
Some stations contain a set of packets (messages) which have to be gathered at
the base station. Wireless communication enables stations to communicate data
packets to each other. We assume that time is discrete and that stations have a
common clock, hence time can be divided into rounds. In our model a node may
either send or receive a single packet during a round. Typically, not all nodes
in the network can communicate with each other, hence packets have to be sent
through several nodes before they can be gathered at the sink; this is called multi-
hop routing. The problem consists of constructing a schedule without interference
which determines for each packet both route and times at which it is sent. The
objective of the problem is to find a schedule which minimizes a function of the
completion times of the packets, i.e., the times at which the packets arrive at
the sink. We consider minimization of maximum completion time.

The WGP combines the problem of data routing at the network layer and
scheduling at the data link layer. We assume that the stations are provided
with the necessary information on the graph structure, such as path distances.
Thus we study the problem in a centralized setting. We also assume perfect
radio signals, i.e. no signal loss due to fading. We consider both a version where
messages have no release time, i.e. are released at time zero, and a version in
which messages are released over time.

Much research has been devoted to the design of communication protocols,
but most models do not consider interference. See [5] for a general overview of
communication protocols. In the centralized setting without release times, the
many-to-one gathering problem is closely related to the one-to-all personalized
broadcast, where the base station wants to communicate a unique message to
each station in the network. In [1] and [2] the authors study the one-to-all (non-
personalized) broadcast on arbitrary graphs in a model similar to ours, for the
case where both transmission radius and interference radius are unit distance.
In the second paper the authors consider the WGP as a subproblem. For this
problem they give a distributed randomized algorithm with expected completion
time of O((n+δ) log d), where n is the number of messages, δ the diameter of the
graph and d the maximum degree. In [4] the authors give an optimal centralized
greedy algorithm for the gathering problem without interference on a tree.

The Wireless Gathering Problem with arbitrary integral transmission and
interference radius was formulated as a combinatorial optimization problem by
Bermond et al. [3]. In this paper the authors prove that WGP is NP-hard even
without release times (or equivalently, when all messages are released at time
zero). For this case they present an approximation algorithm and sketch a proof
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that it gives an asymptotic 4-approximation and an asymptotic 3-approximation
if transmission radius is equal to interference radius. Their algorithm partitions
the nodes into layers and areas such that any set of nodes whose elements are in
the same area but distinct layers may send simultaneously. Using this result and
by choosing layers in a round-robin fashion the algorithm may pipeline messages
over some shortest path towards the sink. The authors do not consider the case
in which messages are released over time. In Section 2 we formulate the problem
precisely.

In Section 3 we present an on-line polynomial-time greedy algorithm which for
arbitrary release times gives a 4-approximation in general and a 3-approximation
when transmission radius and interference radius are equal. Our results improve
over those of Bermond et al. [3] only slightly in case all messages are released
at time zero. However, our algorithm is simple, and the approximation ratio
indeed holds for arbitrary release times. Both our algorithm and that of Bermond
et al. send all messages along the shortest path to the sink. We prove that
within the class of shortest path following algorithms no algorithm can have
approximation ratio better than 4. Thus, within this class our algorithm is best
possible. Furthermore, we prove that our algorithm is optimal on a chain with
unit transmission radius and without release times when the sink is at one end
of the chain. The complexity of all other variations of the problem on a chain
and on a tree is to the best of our knowledge still open. These and some other
challenging research opportunities on the Wireless Gathering Problem conclude
the paper in Section 4.

2 Mathematical Formulation

We formulate the WGP as a graph optimization problem. Given is a graph
G = (V, E) with |V | = n, sink s ∈ V , and a set of messages (data packets)
M = {1, 2, . . . , m}. We assume that each edge has unit length. For each pair of
nodes u, v ∈ V we define the distance between u and v, denoted by d(u, v), as the
length of a shortest path from u to v in G. We introduce dI as the interference
radius and dT as the transmission radius. Each message j ∈ M has an origin
vj ∈ V .

We assume that time is discrete, say {0, 1, . . .}; we call a time unit a round.
The rounds are numbered 0, 1, . . .. During each round a node may either be
sending a message, be receiving a message or be inactive. If d(u, v) ≤ dT then u
can send some message j to v during a round. If node u sends a message j to v in
some round, then the pair (u, v) is called a call of message j during that round.
Two calls (u, v) and (u′, v′) interfere if d(u′, v) ≤ dI or d(u, v′) ≤ dI ; otherwise
the calls are compatible.

The solution of the WGP is a schedule of compatible calls such that all mes-
sages are sent to the sink. Given a schedule, let vt

j be the node of message j at
time t. Cj = min{t : vt

j = s} is called the completion time of message j. We
consider the minimization of maxj Cj (makespan). We assume that messages
cannot be aggregated. Every message j has a release time rj ∈ Z+ at which it
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enters the network. We consider the case in which all messages are released at
the same time, i.e. rj = 0 for all j, as a special case. In the off-line version all
message information is known at time 0, in the on-line version information about
a message becomes known only at its release time. The off-line WGP is equiva-
lent to a one-to-many personalized broadcast problem: a time reverse gathering
schedule provides a one-to-many personalized broadcast schedule.

3 A Greedy Algorithm

We present a greedy algorithm which assigns messages to calls according to
some priority ordering. Each message is assigned to a call of maximum distance
without causing interference. Let φ(j) =

⌈d(vj ,s)
dT

⌉
, the minimum number of calls

required for j to reach s.

Priority Greedy (PG). Given messages j and k, we say that j has higher
priority than k if rj + φ(j) is smaller than rk + φ(k), ties broken arbitrarily. In
every round, consider the available messages in order of decreasing priority, and
send each next message as far as possible along a (possibly prefixed) shortest
path from its current node to s, without creating interference with any higher-
priority message.

Notice that PG is an on-line, polynomial-time algorithm. To analyze the worst-
case approximation ratio of PG we first derive upper bounds on the completion
time of each message in a PG solution.

Given a message j, we say that j is blocked in round t if, in round t, j cannot
be sent over a shortest path towards s over distance dT (or it cannot be sent to
s if d(vt

j , s) ≤ dT ) because of interference with some higher-priority message in
PG.

We define the following blocking relation on a PG schedule: k ≺ j if in the
last round in which j is blocked, k is the message closest to j that is sent in that
round and has a priority higher than j (ties broken arbitrarily). The blocking
relation induces a directed graph F = (M, A) on the message set M with an arc
(k, j) for each k, j ∈ M such that k ≺ j. Observe that for any PG schedule F
is a directed forest and the root of each tree of F is a message which is never
blocked. For each j let T (j) ⊆ F be the tree of F containing j, b(j) ∈ M be the
root of T (j), and P (j) the path in F from b(j) to j. Let h(j) be the length of
P (j). Finally, define γ = 1 +

⌈
dI+1
dT

⌉
and let Cj denote the completion time of

message j in a PG schedule.

Lemma 1. For each message j ∈ M ,

Cj ≤ rb(j) + φ(b(j)) +
∑

i∈P (j),i�=b(j)

min{φ(i), γ}.

Proof. The proof is by induction on h(j). Any message j with h(j) = 0 is never
blocked, hence b(j) = j, and the lemma is obviously true.
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Otherwise, let t be the last round in which j is blocked by some message k,
k ≺ j. By definition of the blocking relation we have d(vt

j , v
t
k) ≤ dT + dI and if

d(vt
j , v

t
k) > dI + 1 then j, although blocked, is sent to vt+1

j with d(vt+1
j , vt

k) =
dI + 1. Also, d(vt

k, s) ≤ (Ck − t)dT , otherwise k would not reach s by time Ck.
From time t + 1 on, j is forwarded to s over distance dT each round, reaching s
at

Cj ≤ t + 1 +
⌈

d(vt
k, s) + d(vt+1

j , vt
k)

dT

⌉
≤ t + 1 + Ck − t +

⌈
dI + 1

dT

⌉
= Ck + 1 +

⌈
dI + 1

dT

⌉
= Ck + γ.

Also, Cj ≤ Ck + φ(j), since after k reaches s, j will need no more than φ(j)
rounds to reach s. Thus Cj ≤ Ck + min{φ(j), γ} and the lemma follows by
applying the induction hypothesis to Ck. �

Now we derive lower bounds on the optimal cost. We define the critical radius
R∗ as the greatest integer R such that no two nodes at distance at most R from s
can receive a message in the same round. Notice that R∗ ≥

⌊
dI−dT

2

⌋
. The critical

region is the set of nodes at distance at most R∗ from s. Define γ∗ =
⌈

R∗+1
dT

⌉
.

Let C∗
j denote the completion time of message j in an optimal solution.

Lemma 2. Let S ⊆ M be a nonempty set of messages. Then there is k ∈ S
such that

max
j∈S

C∗
j ≥ rk + φ(k) +

∑
j∈S,j �=k

min{φ(j), γ∗}.

Proof. Define pj = min{φ(j), γ∗} and r′j = rj + φ(j) − pj . Since in every round
at most one message can move inside the critical region, any feasible solution to
the Wireless Gathering Problem gives a feasible solution to a preemptive single
machine scheduling problem in which the release time of job j (corresponding to
message j) is r′j and its processing time is pj . By ignoring interference outside
the critical region we can only decrease the optimum cost, thus a lower bound
on the scheduling cost is also a lower bound on the gathering cost.

Now let k be the first message in S entering or being released in the critical
region in the optimal schedule. In the scheduling relaxation, the makespan is
at least the time at which the first job starts processing plus the sum of the
processing times:

max
j∈S

C∗
j ≥ r′k +

∑
j∈S

pj

= rk + φ(k) +
∑

j∈S,j �=k

pj. �



334 V. Bonifaci et al.

Theorem 1. Priority Greedy gives a max{2, γ/γ∗}-approximation to the
Wireless Gathering Problem with release times. When rj = 0 for all j ∈ M ,
Priority Greedy gives a γ/γ∗-approximation.

Proof. Let j be the message having maximum Cj , and consider T (j), the tree
containing j in the forest induced by the blocking relation. We can apply Lemma
2 with S = T (j) to obtain

max
i∈T (j)

C∗
i ≥ rk + φ(k) +

∑
i∈T (j),i�=k

min{φ(i), γ∗} (1)

where k is some message in T (j). On the other hand, by using Lemma 1,

Cj ≤ rb(j) + φ(b(j)) +
∑

i∈P (j),i�=b(j)

min{φ(i), γ} (2)

≤ rb(j) + φ(b(j)) + min{φ(k), γ}+
∑

i∈P (j),i�=b(j),i�=k

min{φ(i), γ}

≤ 2(rk + φ(k)) +
γ

γ∗

∑
i∈T (j),i�=k

min{φ(i), γ∗}

where we used the fact that b(j), being the root of T (j), minimizes ri + φ(i)
in T (j). Now let α ≥ 0 be such that

∑
i∈T (j),i�=k min{φ(i), γ∗} = α(rk + φ(k)).

Then
Cj

maxi∈T (j) C∗
i

≤
2 + γ

γ∗ α

1 + α
≤ max{2, γ/γ∗}.

For the case in which rj = 0 for all j ∈ M , we proceed similarly, but also
notice that since now b(j) ∈ argmini∈T (j){φ(i)}, we have φ(b(j)) ≤ φ(k) and the
claim follows by directly comparing (1) with (2). �

Corollary 1. Priority Greedy is 3-approximate if dI = dT and 4-
approximate in general for WGP with release times.

Proof. We distinguish several cases:
Case 1 If dI ≤ 2dT−1 then γ = 3, which in particular proves the 3-approximation
in case dI = dT .
Case 2: dI ≤ 3dT − 1. Then γ ≤ 4.
Case 3: ldT ≤ dI ≤ (l+2)dT −1 for any odd integer l ≥ 3. Then γ ≤ l+3 and as
r∗ ≥ �dI−dT

2 � it follows that γ∗ ≥ (l+1)/2, hence γ/γ∗ ≤ 2(l+3)/(l+1) ≤ 3. �

The analysis shows that the ratio γ/γ∗ = 4 only if dI/dT ∈ [2, 3) and the ratio
approaches 2 if dI/dT tends to infinity.

Corollary 2. When rj = 0 for all j ∈ M , Priority Greedy is optimal if G
is a chain with s as an extreme and dT = 1.

Proof. If G is a chain and s an extreme, then the critical radius is dI + 1. Thus,
for dT = 1 we have γ∗ = dI + 2. The claim follows since γ = dI + 2 for dT = 1
and without release times the approximation ratio is γ/γ∗. �
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PG sends messages over shortest paths. We show that no algorithm which
sends each message j over a shortest path from vj to s can be better than
3-approximate if dI = dT and 4-approximate if dI > dT . This means that to
find algorithms with lower approximation ratios than PG, messages need to be
diverged from their shortest path to the sink if this path becomes congested.

First, consider the example of Figure 1 with dI = dT = 1. Nodes u1, u2, u3
have m/3 messages each. Any shortest paths following algorithm sends all mes-
sages via u, yielding maxj Cj = 3m. On the other hand there is a solution
with no message passing u that implies maxj C∗

j ≤ 3 + m. The example can
easily be extended for arbitrary dI = dT such that Priority Greedy is a
3-approximation.

su

u1

u2

u3

Fig. 1. Any shortest paths following algorithm is no better than a 3-approximation for
dI = dT = 1

In case dI > dT consider Figure 2. The nodes u1, . . . , um each have 1 message.
Let dI = 2 and dT = 1. Any shortest paths following algorithm sends all messages
via u, yielding maxj Cj = 4m. There is a solution with no message passing u
that implies maxj C∗

j ≤ 4+m. The example can easily be extended for arbitrary
dI = 2dT such that Priority Greedy is a 4-approximation.

u s

u1

. . .

um

Fig. 2. Any shortest paths following algorithm is no better than a 4-approximation for
dI = 2, dT = 1

In these examples the optimal schedule sends each message over a path of
length exceeding the length of its shortest path by at most 1. This may suggest
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to consider algorithms which send messages over paths whose length does not
exceed their shortest path length by some constant k. However, as can easily
be verified, for each constant k we could change the length of the paths in the
examples above, such that the optimal schedule sends each message over a path
whose length exceeds the shortest path length by k + 1.

Improvement on the approximation ratio should come from algorithms that
avoid congested paths. One such an idea is to use not only the shortest path
but the k shortest paths, whichever of them is least congested. By adapting
Figure 1, the example in Figure 3 is obtained, showing for k = 2 that even if
we choose the 2 shortest internally vertex disjoint paths, the lower bound on
the approximation ratio for dI = dT remains unchanged. The example can be
extended to any fixed k. Similarly the example of Figure 2 can be adapted to
show that in case dI > dT choosing any of k shortest paths, for fixed k, leaves
the lower bound of 4 on the ratio unchanged.

s

u1

u2

u3

Fig. 3. Any shortest paths following algorithm using 2 internally vertex disjoint short-
est paths is no better than a 3-approximation for dI = dT = 1

s u1u2u3 u′

3

Fig. 4. PG is not optimal on a chain if the sink is not at an extreme

PG can be non-optimal on a chain if the sink is not at an extreme node of
the chain. Consider the instance given by the graph in Figure 4. Let dT = 1 and
dI = 2 and assume messages are released in u1, u2 and u3 at time zero. PG would
first send the message in u1 to the sink, and then send the message in u2 to the
sink, resulting in a makespan of 7, while in an optimal solution the messages
in u2 and u3 are forwarded until the message of u2 reach the sink at time 2,
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then the messages of u3 and u1 are forwarded simultaneously, yielding a cost of
6. However, if the third message would have been released at node u′

3 instead
of at node u3 then PG would have been optimal. This shows that any optimal
algorithm for the problem on a chain should take into account the position of
the other messages when deciding which of the two messages nearest to the sink
to send first. The complexity of the problem on a chain remains open.

4 Challenging Future Research Problems

In this paper we designed and analyzed algorithms for a basic centralized gather-
ing problem (WGP) on a wireless static network with unit edge lengths. Specifi-
cally, we proved that a greedy algorithm has approximation ratio 4 for this WGP
when minimizing maximum completion time. We also showed that our greedy
algorithm yields the best possible approximation ratio within the class of algo-
rithms in which each message is sent over a shortest path to the sink. It is a
beautiful challenge to design algorithms that avoid congested paths, which have
approximation ratios strictly less than 4 (or 3 if dI = dT ). Our examples at the
end of the previous section show that this is not so trivial. For instance selecting
among k shortest paths (even disjoint) will not give lower ratios. On the other
hand, from the proof of Corollary 1, one could concentrate on the subclass of
problems with dI/dT ∈ [2, 3) to improve on the ratio of 4, since in all other cases
greedy has ratio at most 3.

All our results apply to general graphs; we have not considered specific graphs
in depth. Specifically, the complexity of WGP on chains or trees is open, apart
from the restricted case in Corollary 2. Our suspicion is that these problems are
easy as well, but the greedy algorithm is not optimal on a chain for dT = 1
and dI = 2 as we have shown at the end of the previous section. The example
can easily be extended to any combination of dI and dT , except dI = dT , for
which greedy might be optimal. Also, our attempts to formulate the problem on
a chain as a dynamic programming problem have failed so far.

It is interesting to study variations of the problem. An evident generalization
would be to use an arbitrary distance function, instead of unit distances. We
strongly believe that our algorithm is a constant approximation algorithm for
arbitrary distance functions, though the approximation ratio may be worse. Al-
though we did not prove it here, we have shown by similar arguments as used in
this paper that for the problem without release times our algorithm also gives
a 4-approximation when the objective function is the sum of completion times,
and that this ratio is best possible among shortest path following algorithms.
We will report on this result in a research report version of the paper.

A real challenge is to study a much more realistic version of the problem:
the real problem is on-line with distributed algorithms at each of the nodes. In
on-line WGP a message becomes known only at its release time and the sending
schedules have to be adapted to newly released messages in an on-line fashion.
In fact, our greedy algorithm is an on-line algorithm, though centralized, and
thus gives a competitive ratio of 4. However, there is a significant gap between
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this upper bound and a simple lower bound on the competitive ratio of any
deterministic centralized algorithm: we have constructed rather simple examples
which give lower bounds of 7/5 for dI > dT and 4/3 for dI = dT .

In distributed WGP coordination of communication is very limited. As in-
terference can not always be detected a priori in this model, algorithms should
be able to accommodate for retransmissions of lost data. Bar-Yehuda et al.
[2] designed distributed randomized algorithms that do this for WGP with
dT = dI = 1 without release times (thus in an off-line setting). They derive
bounds on the expected number of rounds required to gather all messages at the
sink. It would be interesting to exploit ideas in this paper to design (randomized)
distributed on-line algorithms and obtain satisfactory competitive ratios. It may
very well be that constant competitive ratios are not achievable.
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Abstract. The Minimum Membership Set Cover problem has re-
cently been introduced and studied in the context of interference re-
duction in cellular networks. It has been proven to be notoriously hard
in several aspects. Here, we investigate how natural generalizations and
variations of this problem behave in terms of the consecutive ones prop-
erty: While it is well-known that classical set covering problems become
polynomial-time solvable when restricted to instances obeying the con-
secutive ones property, we experience a significantly more intricate com-
plexity behavior in the case of Minimum Membership Set Cover. We
provide polynomial-time solvability, NP-completeness, and approxima-
bility results for various cases here. In addition, a number of interesting
challenges for future research is exhibited.

1 Introduction

Set Cover (and, equivalently, Hitting Set [1]) is a core problem of algorith-
mics and combinatorial optimization [2, 3]. The basic task is, given a collection C
of subsets of a base set S, to select as few sets in C as possible such that their
union is the base set. This models many resource allocation problems and gen-
eralizes fundamental graph problems such as Vertex Cover and Dominat-
ing Set. Set Cover is NP-complete and only allows for a logarithmic-factor
polynomial-time approximation [7]. It is parameterized intractable (that is, W[2]-
complete) with respect to the parameter “solution size” [5, 14].

Numerous variants of set covering are known and have been studied
[2, 4, 8, 9, 11, 16]. Motivated by applications concerning interference reduction in
cellular networks, Kuhn et al. [10] very recently introduced and investigated the
Minimum Membership Set Cover problem.

Minimum Membership Set Cover (MMSC)
Input: A set S, a collection C of subsets of S, and a nonnegative inte-
ger k.
Task: Determine if there exists a subset C′ ⊆ C such that

⋃
C∈C′ = S

and maxs∈S |{C ∈ C′ | s ∈ C}| ≤ k.
� Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
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In this natural variant again a base set S has to be covered with sets from a
collection C. By way of contrast to the classical Set Cover problem, however,
the goal is not to minimize the number of sets from C required to do this, but the
maximum number of occurrences each element from S has in the cover. Kuhn
et al. [10] showed that MMSC is NP-complete and has similar approximation
properties as the classical Set Cover problem.

A well-known line of attack against the hardness of Set Cover is to study
special cases of practical interest. Perhaps the most famous one of these cases
is Set Cover obeying the consecutive ones property (c.o.p.) [11, 12, 13, 16, 17].
Herein, the elements of S have the property that they can be ordered in a linear
arrangement such that each set in the collection C contains only whole “chunks”
of that arrangement, that is, without any gaps.1 Set Cover instances with
c.o.p. are solvable in polynomial time, a fact which is made use of in many
practical applications [11, 13, 16, 17]. Thus, the question naturally arises whether
such results can be transferred to MMSC. This is what we study here, arriving
at a much more colorful scenario than in the classical case.

In order to thoroughly study MMSC, in particular with respect to the c.o.p.,
it is fruitful to consider the following generalization.

Red-Blue Hitting Set (RBHS)
Input: An n-element set S, two collections Cred and Cblue of subsets of S,
and a nonnegative integer k.
Task: Determine if there exists a subset S′ ⊆ S such that each set in Cred
contains at least one element from S′ and each set in Cblue contains at
most k elements from S′.

MMSC is the same as RBHS for the case Cred = Cblue. However, the RBHS
formulation now opens a wide field of natural investigations concerning the c.o.p.,
the point being that the c.o.p. may apply to either Cred, Cblue, both, or none of
them. The c.o.p. in connection with RBHS leads to a number of different results
concerning the computational complexity. This is what we explore here, Table 1
providing a general overview of known and new results.

The main messages from Table 1 (and this work) are:

– In case of only “partial” or even no consecutive ones properties (first three
columns), the problem mostly remains NP-complete.

– In the case that both Cred and Cblue obey the c.o.p., only simple cases are
known to be polynomial-time solvable but the general case remains open.

– The case that both Cred and Cblue obey the c.o.p. allows for a simple and
efficient approximation which is only by additive term one worse than an
optimal solution. Surprisingly, an optimal solution seems harder to achieve.

1 The name “consecutive ones” refers to the fact that one may think of a Set Cover
instance as a coefficient matrix M where the elements of S correspond to columns
and the sets in C correspond to rows; An entry is 1 if the respective element is
contained in the respective set and 0 otherwise. If the Set Cover instance has the
c.o.p., then the columns of M can be permuted in such a way that the ones in each
row appear consecutively.
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Table 1. An overview of previously known results, new results presented in this paper,
and open questions for future research regarding the computational complexity of the
Red-Blue Hitting Set problem

no c.o.p. Cred Cblue Cred and Cblue

requirement has c.o.p. has c.o.p. have c.o.p.

No restrictions NP-c [10]
NP-c
(Thm. 5)

NP-c
(Thm. 7)

+1-approx.
(Thm. 9)

Fixed max. overlap k
NP-c
(Thm. 5)

poly.-time
(Thm. 11)

Fixed elem. occ. in Cblue

Fixed elem. occ. in Cred ?

Card.-2 sets Cred or Cblue NP-c (Thms. 5, 6, 7, and 8)
trivial

Card.-2 sets Cred and Cblue linear-time (Cor. 4)

Fix. card. sets Cred ?

Fix. card. sets Cblue

NP-c [10] NP-c (Thms. 5, 7, and 8) poly.-time
(Thm. 11)

Cblue contains one set NP-c
(Thm. 2)

poly.-time
(Cor. 12)

NP-c
(Thm. 2)

poly.-time
(Cor. 12)

Fix. num. sets in Cblue ?

Preliminaries. Formally, the consecutive ones property is defined as follows.

Definition 1. Given a set S = {s1, . . . , sn} and a collection C of subsets of S,
the collection C is said to have the consecutive ones property (c.o.p.) if there
exists an order ≺ on S such that for every set C ∈ C and si ≺ sk ≺ sj, it holds
that si ∈ C ∧ sj ∈ C ⇒ sk ∈ C.

The following simple observation is useful for our NP-completeness proofs.

Observation 1. Given a set S = {s1, . . . , sn} and a collection C of subsets of S
such that all sets in C are mutually disjoint, the collection C has the c.o.p..

In order to simplify the study of Red-Blue Hitting Set, for a given in-
stance (S, Cred, Cblue, k) we will call k the maximum overlap and say that a set S′

has the minimum overlap property if each set in Cred contains at least one ele-
ment from S′. The set S′ has the maximum overlap property if each set in Cblue
contains at most k elements from S′. Thus, a set S′ that has both the minimum
and maximum overlap property constitutes a valid solution to the given instance
of Red-Blue Hitting Set.

2 Red-Blue Hitting Set Without C.O.P.

This section deals with the general RBHS problem, meaning that we make no
requirement for Cred and Cblue concerning the c.o.p.. Being a generalization of
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MMSC, RBHS is of course NP-complete in general. This even holds for some
rather strongly restricted variants, as the next theorem shows.

Theorem 2. RBHS is NP-complete even if the following restrictions apply:

1. The collection Cblue contains exactly one set, and
2. each set in Cred has cardinality 2.

Proof. We show the theorem by a reduction from the NP-complete Vertex
Cover problem. Given a graph G = (V, E) and a nonnegative integer k, this
problem asks to find a size-k subset V ′ ⊆ V such that for every edge in E, at
least one of its endpoints is in V ′. Given an instance (G, k) of Vertex Cover,
construct an instance of RBHS by setting S := V , Cred := E, Cblue := {V }
(that is, the collection Cblue consists of one set containing all elements of S), and
setting the maximum overlap equal to k. It is easy to see that this instance of
RBHS directly corresponds to the original vertex cover instance: We may choose
at most k elements from S to be in the solution set S′ such that at least one
element from every set in Cred is contained in S′. �
As shown in the next theorem, polynomial-time solvable instances of RBHS
arise when the cardinalities of all sets in the collection Cred are restricted to 2
and the maximum overlap k = 1.

Theorem 3. RBHS can be solved in polynomial time if the maximum over-
lap k = 1 and all sets in Cred have cardinality at most 2.

Proof. We prove the theorem by showing how the restricted RBHS instance can
equivalently be stated as a 2-Sat problem; 2-Sat is well-known to be solvable
in linear time [6].

For our reduction, we construct the following instance F of 2-Sat for a given
instance (S, Cred, Cblue, 1) of RBHS:

– For each element si ∈ S, where 1 ≤ i ≤ n, F contains the variable xi.
– For each set {si1 , si2} ∈ Cred, F contains the clause (xi1 ∨ xi2 ).
– For each set {si1 , . . . , sid

} ∈ Cblue, F contains d(d−1)/2 clauses (¬xia ∨¬xib
)

with 1 ≤ a < b ≤ d.

If the resulting Boolean formula F has a satisfying truth assignment T ,
then S′ := {si ∈ S : T (xi) = true} is a solution to the RBHS instance
(S, Cred, Cblue, 1): By construction, for each set in Cred at least one element must
have been chosen in order to satisfy the corresponding clause. Hence, S′ has
the minimum overlap property. Also, no two elements sia , sib

from a set in Cblue
can have been chosen because this would imply that the corresponding clause
(¬xia ∨¬xib

) in F is not satisfied by T . Hence, S′ also has the maximum overlap
property and thus is a valid solution to the RBHS instance.

Omitting a formal proof here, it is easy to see that a solution set S′ for
(S, Cred, Cblue, 1) can be used to construct a satisfying truth assignment T for F :
For all 1 ≤ i ≤ n, set T (xi) = true if si ∈ S′ and T (xi) = false otherwise. �
Corollary 4. RBHS can be solved in linear time if all sets in Cred and Cblue
have cardinality at most 2. �
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3 Red-Blue Hitting Set with Partial C.O.P.

In this section, we prove that RBHS remains NP-complete even under the re-
quirement that either Cred or Cblue is to have the c.o.p.. To this end, we give
reductions from the following restricted variant of the Satisfiability problem:

Restricted 3-Sat (R3-Sat)
Input: An n-variable Boolean formula F in conjunctive normal form
where each variable xi, 1 ≤ i ≤ n, appears at most three times, each
literal appears at most twice, and each clause contains at most three
literals.
Task: Determine if there exists a satisfying truth assignment T for F .

It is well-known that R3-Sat is NP-complete (e.g., see [15, p. 183]).2

3.1 Consecutive Ones Property for Cred

The following two theorems (Theorems 5 and 6) show that the requirement
of Cred obeying the c.o.p. does not make RBHS tractable. The theorems com-
plement each other in the sense that they impose different restrictions on the
cardinalities of the sets Cred and Cblue; Theorem 5 allows for size-3 sets in Cred and
size-2 sets in Cblue (the reduction encodes clauses of a given R3-Sat instance
in Cred) while the converse holds true for Theorem 6 (the reduction encodes
variables in Cred).

Theorem 5. RBHS is NP-complete even if all the following restrictions apply:

1. The collection Cred has the consecutive ones property.
2. The maximum overlap k is equal to one.
3. Each set in Cred has cardinality 3 and each set in Cblue has cardinality 2.
4. Each element from S occurs in exactly one set in Cred and each element

from S occurs in at most two sets in Cblue.

Proof. We prove the theorem by a reduction from R3-Sat. Given an m-clause
Boolean formula F that is an instance of R3-Sat, construct the following in-
stance (S, Cred, Cblue, k) of RBHS:

– The set S consists of elements s1
1, s

2
1, s

3
1, . . . , s

1
m, s2

m, s3
m. The element si

j cor-
responds to the i-th literal in the j-th clause of F . If the j-th clause has only
two literals, then S contains only s1

j and s2
j .

– Each set in Cred corresponds to a clause in F , that is, for the i-th clause
in F , we add {s1

i , s
2
i , s

3
i } to Cred if it contains three literals and {s1

i , s
2
i } if it

contains two literals.
– For each variable x in F and for all pairs of literals l1 = x, l2 = ¬x in F :

If l1 is the i-th literal in the j-th clause and l2 is the p-th literal in the q-th
clause of F , Cblue contains the set {si

j, s
p
q}.

– The maximum overlap k is set to one.

2 Note that it is essential for the NP-completeness of R3-Sat that the Boolean for-
mula F may contain size-2 clauses, otherwise, the problem is in P [15].
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The construction is illustrated in Figure 1.
It is easy to see that, by the definition of R3-Sat, the constructed instance

satisfies the restrictions claimed in the theorem; note that Cred has the consecu-
tive ones property due to Observation 1. It remains to show that the constructed
instance of RBHS has a solution iff F has a satisfying truth assignment T .

“⇒” Assume that the constructed instance of RBHS has a solution set S′.
Let T be a truth assignment such that, for every si

j ∈ S′, the variable represented
by si

j is set to true if the literal represented by si
j is positive, and false otherwise.

This truth assignment is well defined because S′ must have the maximum overlap
property—it therefore cannot happen that two elements si

j, s
p
q ∈ S′ correspond

to different literals of the same variable.

F = ( x1 ∨ x2 ∨ ¬x3 )∧
( ¬x2 ∨ x3 ∨ x4 )∧
( ¬x1 ∨ ¬x2 ∨ ¬x4 )∧
( ¬x1 ∨ x3 ∨ ¬x4 )

s2
1s1

1 s3
1

Cblue

s2
2s1

2 s3
2 s2

3s1
3 s3

3 s2
4s1

4 s3
4

s2
1s1

1 s3
1 s2

2s1
2 s3
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3s1
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4 s3
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}
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Fig. 1. Example of encoding an instance of R3-Sat into an instance of RBHS (proof of
Theorem 5). Each clause of the Boolean formula F is represented by a three-element set
in Cred. The sets in Cblue and the maximum overlap k = 1 ensure that no two elements
from S can be chosen into a solution that correspond to conflicting truth assignments
of the same variable. Observe how S′ = {s2

1, s
3
1, s

3
2, s

1
3, s

1
4} (grey columns) constitutes a

valid solution to the RBHS instance; accordingly, a truth assignment T which makes
all the corresponding literals evaluate to true satisfies F .

To show that T constitutes a satisfying truth assignment for F , observe that,
for each clause of F , at least one element from S′ must correspond to a literal in
this clause because S′ has the minimum overlap property. On the one hand, if
this element corresponds to a positive literal xi, then T (xi) = true, satisfying the
clause. On the other hand, if the element corresponds to a negative literal ¬xi,
then T (xi) = false, satisfying the clause.

“⇐” Let T be a satisfying truth assignment for F . Let S′ be the set of elements
in S that correspond to literals that evaluate to true under T . Then, S′ has the
minimum overlap property because at least one literal in every clause of F must
evaluate to true under T and each set in Cred represents exactly one clause of F .
Also, S′ has the maximum overlap property because T is uniquely defined for
every variable that occurs in F . Since S′ has both the minimum and maximum
overlap property, it is a valid solution to the RBHS instance. �

The following theorem can be proven in a similar way as Theorem 5.
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Theorem 6. RBHS is NP-complete even if all the following restrictions apply:

1. The collection Cred has the consecutive ones property.
2. The maximum overlap k is equal to two.
3. Each set in Cred has cardinality 2 and each set in Cblue has cardinality 3.
4. Each element from S occurs in exactly one set in Cred and each element

from S occurs in at most two sets in Cblue. �

3.2 Consecutive Ones Property for Cblue

Note that by the proof of Theorem 2, RBHS is NP-complete already if Cblue
contains just a single set and has the c.o.p.. However, this requires a non-fixed
maximum overlap k and unrestricted cardinality of the sets contained in Cblue.
Therefore, if we want to show the NP-hardness of RBHS with the additional
restriction that the maximum overlap k is fixed and the sets in Cred and Cblue have
small cardinality, another reduction is needed. Analogously to Theorems 5 and 6,
the following two theorems impose different restrictions on the cardinalities of
the sets in Cred and Cblue.

Theorem 7. RBHS is NP-complete even if all the following restrictions apply:

1. The collection Cblue has the consecutive ones property.
2. The maximum overlap k is equal to one.
3. Each set in Cred has cardinality 3 and each set in Cblue has cardinality 2.
4. Each element from S occurs in at most two sets in Cred and each element

from S occurs in exactly one set in Cblue.

Proof. Again, we give a reduction from R3-Sat. For a given n-variable Boolean
formula F that is an instance of R3-Sat, construct the following instance
(S, Cred, Cblue, k) of RBHS:

– The set S consists of 2n elements s1, s̄1, . . . , sn, s̄n, that is, for each variable xi

in F , S contains an element si representing the literal x and an element s̄i

representing the literal ¬x.
– For each clause in F , Cred contains a set of those elements from S that

represent the literals of that clause.
– Cblue =

⋃
1≤i≤n{{si, s̄i}}.

– The maximum overlap k is one.

Observe that this instance satisfies all restrictions claimed in the theorem; Cblue
has the c.o.p. due to Observation 1. The reduction is illustrated by an example
in Figure 2. It remains to show that the constructed instance has a solution iff F
has a satisfying truth assignment T . We omit the details. �

The proof of the following theorem is similar to the one of Theorem 7.
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F = ( x1 ∨ x2 ∨ ¬x3 )∧
( ¬x2 ∨ x3 ∨ x4 )∧
( ¬x1 ∨ ¬x2 ∨ ¬x4 )∧
( ¬x1 ∨ x3 ∨ ¬x4 )

s̄1s1 s̄2s2 s̄3s3 s̄4s4

{
{

{
{

s1

s̄1

s̄1

s̄2

s̄2

s2 s̄3

s3 s4

s̄4

s3 s̄4

}
}

}
}

, ,

, ,

, ,

, ,

s̄4s4s̄3s3s̄2s2s̄1s1 },{ },{ },{ },{

Cred

Cblue

S
=⇒
=⇒
=⇒
=⇒

Fig. 2. Example of encoding an instance of R3-Sat into an instance of RBHS (proof of
Theorem 7). Each clause of the Boolean Formula F is encoded into one set of Cred. The
sets in Cblue and the maximum overlap k = 1 ensure that no two elements from S can
be chosen into a solution that correspond to conflicting truth assignments of the same
variable. Observe how S′ = {s̄1, s2, s3, s4} (grey columns) constitutes a valid solution
to the RBHS instance; accordingly, a truth assignment T with T (xi) = true iff si ∈ S′

satisfies F .

Theorem 8. RBHS is NP-complete even if all the following restrictions apply:

1. The collection Cblue has the consecutive ones property.
2. The maximum overlap k is equal to two.
3. Each set in Cred has cardinality 2 and each set in Cblue has cardinality 3.
4. Each element from S occurs in at most two sets in Cred and each element

from S occurs in at exactly one set in Cblue. �
Note that if k is restricted to k = 1 instead of k = 2 in the instances dis-
cussed in the above theorem, they become polynomial-time solvable according
to Theorem 3.

4 Red-Blue Hitting Set with C.O.P.

In this section, we make the requirement that both Cred and Cblue in a given
instance (S, Cred, Cblue, k) of RBHS obey the c.o.p. and call the resulting problem
“RBHS with c.o.p..” We present an approximation algorithm (Section 4.1) and
show, among others, that for fixed k RBHS with c.o.p. is solvable in polynomial
time (Section 4.2). This leads to the following observation.

Observation 2. RBHS with c.o.p. is equivalent to MMSC with c.o.p..

To see this observation, note that on the one hand, MMSC is obviously the
special case of RBHS with identical red and blue subset collections. On the
other hand, an RBHS instance (S, Cred, Cblue, k) with c.o.p. can be transformed
into an MMSC instance with c.o.p. by observing that for an optimal solution S′

of RBHS, for any set Cb ∈ Cblue that contains no set from Cred as a subset
we have |Cb ∩ S′| ≤ 2. Thus, if k > 2, then we can safely remove such blue
subsets from Cblue. Then, solving RBHS on the resulting instance is equivalent
to solving MMSC on the instance (S, Cred ∪ Cblue, k). If k ≤ 2 then both RBHS
and MMSC with c.o.p. are solvable in polynomial time as it will be shown in
Section 4.2.
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To simplify the discussion in this section, we assume that the elements in
S = {s1, . . . , sn} are sorted such that all subsets in Cred and Cblue have the
c.o.p., that is, for every 1 ≤ i ≤ k ≤ j ≤ n and every set C ∈ Cblue∪Cred it holds
that si ∈ C ∧ sj ∈ C ⇒ sk ∈ C. For each subset C ⊆ S, its left index l(C) is
defined as min{i | si ∈ C} and its right index r(C) is defined as max{i | si ∈ C}.

4.1 Approximation Algorithm

Here, we describe a polynomial-time approximation algorithm for RBHS with
c.o.p. that has a guaranteed additive term of one compared to an optimal solu-
tion. To this end, we rephrase RBHS as an optimization problem:

Input: A set S and two collections Cred and Cblue of subsets of S.
Task: Find a subset S′ ⊆ S with S′ ∩ C �= ∅ for all C ∈ Cred which
minimizes maxC′∈Cblue{|C′ ∩ S′|}.

Our greedy approximation algorithm works as follows:

01 S′ ← ∅, C′red ← Cred
02 while C′red �= ∅
03 C ← set from C′red with minimum right index
04 S′ ← S′ ∪ sr(C), C′red ← C′red \ {C ∈ C′red : C ∩ S′ �= ∅}
05 return S′

Theorem 9. For RBHS with c.o.p., the greedy algorithm polynomial-time ap-
proximates an optimum solution within an additive term of one.

Proof. Obviously, the output S′ of the greedy algorithm has the minimum over-
lap property since S′∩C �= ∅ for all C ∈ Cred. It is also clear that the algorithms
runs in O(|S| · |Cred|) time. It remains to show the additive term.

Let C denote one subset in Cblue with |C ∩ S′| = maxC′∈Cblue{|C′ ∩ S′|}. It
is easy to observe that C contains at least |C ∩ S′| − 1 mutually disjoint sets
from Cred as subsets, implying that any solution for this instance has to contain
at least |C ∩ S′| − 1 elements from C in order to satisfy the minimum overlap
property for these sets. Therefore, |C ∩ S′

opt| ≥ |C ∩ S′| − 1 for any optimal
solution S′

opt. �

4.2 Dynamic Programming

We now present a dynamic programming algorithm that solves Red-Blue Hit-
ting Set with c.o.p. in polynomial time provided that either the maximum
overlap is a fixed constant k, the maximum cardinality of the sets in Cblue is
a fixed constant ccard, or the maximum number of occurrences of an element
in Cblue is a fixed constant cocc.

We assume that the sets C ∈ Cred are ordered according to l(C) and denote
them with R1, . . . , R|Cred|; the sets of Cblue are ordered analogously and denoted
with B1, . . . , B|Cblue|. If a set in Cred is a superset of another set in Cred it can
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be removed, and, therefore, for any two sets Ri, Rj ∈ Cred it holds that l(Ri) <
l(Rj) ⇔ r(Ri) < r(Rj). For an analogous reason we have l(Bi) < l(Bj) ⇔
r(Bi) < r(Bj) for all Bi, Bj ∈ Cblue. We call this property the monotonicity of
the sets in Cred and Cblue.

The idea of the dynamic programming algorithm is to build collections D(i, j)
of so-called partial solutions; each partial solution in a collection D(i, j) covers all
sets R1, . . . , Rj with a minimal subset of {s1, . . . , si} that fulfills the maximum
overlap property. To this end, the algorithm uses a two-dimensional table D(i, j)
with 1 ≤ i ≤ n (where n := |S|) and 1 ≤ j ≤ |Cred|; to fill this table, two nested
loops are used, the outer one iterating over i and the inner one iterating over j.
Every entry of D(i, j) that already has been processed contains a collection
of tuples (Sh, vh), 1 ≤ h ≤ |D(i, j)|, where each tuple (Sh, vh) consists of a
set Sh ⊆ {s1, . . . , si} and a vector vh = (v1

h, . . . , v
|Cblue|
h ). The sets Sh are called

partial solutions and have the following properties:

1. Each Sh contains at least one element of every set R1, . . . , Rj ∈ Cred.
2. No proper subset of a partial solution Sh covers all sets R1, . . . , Rj .
3. For 1 ≤ q ≤ |Cblue|, we have vq

h = |Sh ∩Bq| ≤ k.

It is obvious that if the entry D(n, |Cred|) is not empty, each partial solution
in D(n, |Cred|) is a solution for the RBHS instance.

The first step for filling the table is to compute all entries D(i, j) with i = 1,
a trivial task. All other entries D(i, j) are computed as follows: If l(Rj) > i
then D(i, j) is empty. Otherwise, the partial solutions that have to be generated
can be divided in two categories: Partial solutions not containing the element si

and partial solutions containing si. The partial solutions not containing si can
only contain elements from {s1, . . . , si−1} and, therefore, are exactly the partial
solutions of D(i− 1, j).

The partial solutions in D(i, j) that do contain si are computed as follows: By
selecting si to be member of such a partial solution in D(i, j), all sets in Cred that
contain si are covered. Therefore, the other elements in the partial solution only
have to cover those sets Rp ∈ {R1, . . . , Rj} with r(Rp) < i. Hence, these elements
form a partial solution in a collection D(i − 1, j′) where j′ is the maximum
possible index such that r(Rj′ ) < i. More formally, an entry D(i, j) with i > 1
and l(Rj) ≤ i is computed as follows:

01 if D(i− 1, j) �= ∅ then D(i, j)← D(i− 1, j).
02 j′ ← max{p ∈ {1, . . . , j} | r(Rp) < i}
03 if D(i− 1, j′) �= ∅ then for each (Sh, vh) ∈ D(i− 1, j′) do
04 Insert a copy (S̃h, ṽh) of (Sh, vh) into D(i, j)
05 S̃h ← S̃h ∪ {si}
06 for each q ∈ {1, . . . , |Cblue| : si ∈ Bq} do
07 ṽq

h ← ṽq
h + 1

08 if ṽq
h > k then delete (S̃h, ṽh) from D(i, j)
and continue with the next tuple in D(i− 1, j′)
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In order to shrink the table size by eliminating redundant tuples, we per-
form the following data reduction step directly after the computation of an en-
try D(i, j):

09 q′ ← max{q ∈ {1, . . . , |Cblue|} : r(Bq) ≤ i}
10 if D(i, j) contains tuples (Sh1 , vh1) and (Sh2 , vh2) such that

r(Sh1) ≥ r(Sh2 ) and ∀ q > q′ : vq
h1
≤ vq

h2
then

11 Delete (Sh2 , vh2) from D(i, j)

The data reduction step step does not affect the correctness of the algorithm: If
there is a solution S′ for the RBHS instance with S′ = Sh2∪Ŝ such that l(Ŝ) > i,
then Ŝ ∪ Sh1 is obviously also a solution.

The following lemma helps us to give an upper bound for the number of
tuples (Sh, vh) in a collection D(i, j). We omit the proof.

Lemma 10. For a collection D(i, j) �= ∅, let Dx(i, j) be the tuples (Sh, vh) ∈
D(i, j) with r(Sh) = x. Then the number of tuples in Dx(i, j) is bounded from
above by min{(k + 1)cocc ,

(
cocc+k

k

)
}. �

Theorem 11. RBHS with c.o.p. can be solved in polynomial time provided that
either the maximum overlap k is a fixed constant, the maximum cardinality of
the sets in Cblue is a fixed constant ccard, or the maximum number of occurrences
of an element in Cblue is a fixed constant cocc. More precisely, RBHS is solvable
either in |S|O(k) time or in |S|O(cocc) time or in |S|O(1) · cO(ccard)

card time.

Proof. The correctness of the algorithm follows from its above description. It
remains to show the running time, which basically depends on the size of the
table (that is, the number of collections D(i, j)) and the number of tuples that
have to be compared during the data reduction step.

The table size is |S| · |Cred| ≤ |S|2. An upper bound for the number of tuples
in each collection can be derived from Lemma 10. The claimed running times
follow, because ccard is bounded from above by |S|, k is bounded from above
by ccard − 1, and cocc is bounded from above by |Cblue| and by ccard. �

Corollary 12. RBHS with c.o.p. can be solved in polynomial time if |Cblue| is
a constant. �

5 Conclusion

In this work, we initiated a study of Minimum Membership Set Cover and,
more generally, Red-Blue Hitting Set with respect to instances (partially)
obeying the consecutive ones property. Many natural challenges for future work
arise from our results. For instance, it is desirable to find out more about the
polynomial-time approximability and the parameterized complexity [5, 14] of the
variants of Red-Blue Hitting Set proven to be NP-complete (see Table 1).
Moreover, in three cases Table 1 exhibits unsettled questions concerning the
computational complexity of the respective problems.
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Abstract. In the late seventies, Megiddo proposed a way to use an al-
gorithm for the problem of minimizing a linear function a0 +a1x1 + · · ·+
anxn subject to certain constraints to solve the problem of minimizing a
rational function of the form (a0 + a1x1 + · · · + anxn)/(b0 + b1x1 + · · · +
bnxn) subject to the same set of constraints, assuming that the denomi-
nator is always positive. Using a rather strong assumption, Hashizume et
al. extended Megiddo’s result to include approximation algorithms. Their
assumption essentially asks for the existence of good approximation al-
gorithms for optimization problems with possibly negative coefficients in
the (linear) objective function, which is rather unusual for most combi-
natorial problems. In this paper, we present an alternative extension of
Megiddo’s result for approximations that avoids this issue and applies to
a large class of optimization problems. Specifically, we show that, if there
is an α-approximation for the problem of minimizing a nonnegative linear
function subject to constraints satisfying a certain increasing property
then there is an α-approximation (1/α-approximation) for the problem
of minimizing (maximizing) a nonnegative rational function subject to
the same constraints. Our framework applies to covering problems and
network design problems, among others.

1 Introduction

We address the problem of finding approximate solutions for a class of combi-
natorial optimization problems with rational objectives. Our starting point is
the seminal work of Megiddo [19] who showed that, for a large class of prob-
lems, optimizing a rational objective can be done in polynomial time, as long
as there is an efficient algorithm to optimize a linear objective. The class of
problems we address has a natural motivation in particular in network design
problems. Suppose we want to build a network where each link has a construc-
tion cost, as well as a profit. The profit could measure some overall social benefit
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associated to the corresponding link or, for example, could be inversely related
to the environmental damage its construction causes. The goal then would be
to find a network (satisfying some connectivity requirements) that minimizes
the cost-benefit ratio. In general, whenever we are faced with problems where
cost-to-profit relations have to be optimized, we are in this situation.

Fractional programming has attracted attention since the sixties in the con-
tinuous optimization community [2, 8, 12]. Optimizing rational objectives is a
particular case of fractional programming in which both the denominator and
the numerator of the fraction to be optimized are linear functions, and sev-
eral combinatorial optimization problems have been studied in this context. For
instance, minimum or maximum average cost problems [3, 6, 10, 20], minimum
cost-to-time ratio problems [5, 7, 18], minimum cost-reliability problems [15],
fractional knapsack problems [1], fractional assignment problems [22], among
others [17, 21]. A concrete example of this class of problems, that was considered
recently, is the one studied by Gubbala and Raghavachari [10]: given a weighted
k-connected graph G, find a k-connected spanning subgraph of G with minimum
average weight. They looked at the edge and vertex connectivity versions of the
problem. Besides proving that these problems are NP-hard, they presented a
3-approximation algorithm for the edge-connectivity version, and an O(log k)-
approximation algorithm for the vertex-connectivity version.

Although Megiddo’s paper has motivated mostly works on exact algorithms,
some works on approximation algorithms have also been carried out. The lat-
ter include the work of Hashizume, Fukushima, Katoh and Ibaraki [11] who
extended Megiddo’s approach to take into account approximation algorithms
for a class of optimization problems under some assumptions. The result of
Hashizume et al. [11] is of similar flavor to what we do here. They proved that
an α-approximation to a combinatorial problem with a rational objective can
be derived from an α-approximation for its linear counterpart. However, they
need a rather strong assumption, namely, the existence of a polynomial-time
algorithm for the linear version of the combinatorial problem that gives an α-
approximate solution even if negative weights are allowed. As they show, this
holds for the knapsack problem, allowing them to deduce approximation results
for the fractional knapsack problem. Note however that this does not hold for
most optimization problems, in particular, for the ones we consider here. For
instance, for the problems considered by Gubbala and Raghavachari [10] with
k = 2, there is no constant factor approximation algorithm, unless P = NP, if we
allow the weights to be arbitrary (there is a reduction from Hamiltonian path
using negative weights). Therefore, the results by Hashizume et al. cannot be
applied to those problems (among others).

In this paper, we build on Megiddo’s work to derive approximation algo-
rithms for a class of combinatorial problems that contains many covering and
network connectivity problems, including the ones considered by Gubbala and
Raghavachari. Our approach guarantees that, if there is an α-approximation for
a problem with a linear objective function with nonnegative coefficients, then
there is an α-approximation for its (nonnegative) “rational” version.
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A natural approach to solve a problem of the form minimize ax/bx subject to
x ∈ X , is to repeatedly solve the problem of minimizing ax subject to x ∈ X and
bx ≥ B, where B is a guess for the denominator. Unfortunately, it is not clear
that this idea works in general because adding one more linear constraint may
turn the linear problem (minimize ax subject to x ∈ X) into a harder problem.
For instance if X = {0, 1}n then minimize ax subject to x ∈ X is a trivial
problem. However, minimize ax subject to x ∈ X and

∑n
i=1 aixi ≥

∑n
i=1 ai/2 is

equivalent to the partition problem [9, SP12]. In terms of approximability, adding
a linear constraint to a combinatorial problem may also turn it into a harder
problem. An example is given by the standard IP formulation of minimum 2-edge
connected spanning subgraph. Adding a linear constraint (

∑
i xi ≤ n, where n

is the number of vertices in the given graph) turns it into the TSP (although, in
this case the constraint is not a “covering” one).

1.1 The Setting

Our goal is to derive a general approximation technique for a class of NP-hard
combinatorial problems that, besides the connectivity problems just mentioned,
includes many well-known graph problems such as minimum vertex cover, min-
imum feedback arc and vertex set, minimum dominating set, minimum multi-
way cut, and also some general covering problems such as minimum set cover
and minimum hitting set. Our results apply to rational functions of the form
(a0 + a1x1 + · · · + anxn)/(b0 + b1x1 + · · · + bnxn), where the ai’s and bi’s are
nonnegative integers and xi ∈ {0, 1} for each i.

The class of problems to which our framework applies can be described as
follows. Let U = {e1, . . . , en} be a finite ground set, and f be a binary (i.e.,
{0, 1}-valued) function defined on the subsets of U . We say f is increasing if
f(U) = 1 and f(S) ≤ f(S′) for all supersets S′ of S. Our framework applies
to any problem that seeks for a set S ⊆ U satisfying f(S) = 1 such that its
corresponding characteristic vector minimizes a rational objective as above. It is
straightforward to verify that this class of problems contains all rational versions
of the problems mentioned in the previous paragraph. Moreover, it contains the
following class of integer programming problems (which are covering problems):

min
{
aT x/bT x : Ax ≥ d, x ∈ {0, 1}n

}
where all entries of A, a, b and d are nonnegative rationals. Indeed, in this setting,
the ground set will be U = {1, . . . , n} and the binary function f(S) will be 1 if
and only if the characteristic vector of S is a feasible solution for Ax ≥ d. Since
the entries of A and d are nonnegative, f is increasing (as long as the problem
is not infeasible, that is, as long as f(U) = 1).

1.2 Main Result

Our main result states that if f is increasing and there is an α-approximation
algorithm for the problem of finding a set S ⊆ U such that f(S) = 1 minimizing
a linear function with nonnegative coefficients, then there is an α-approximation
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algorithm to find a set S ⊆ U such that f(S) = 1 minimizing a nonnegative
rational function. Thus, this framework allows the “rational” version of several
problems to inherit the approximation results for their standard versions.

For instance, we can improve upon the results obtained by Gubbala and
Raghavachari [10]. They showed a 3-approximation (resp. a (1+2

√
2Hk +2Hk)-

approximation) for the problem of finding a minimum average weight k-edge
(resp. vertex) connected subgraph, where Hk is the kth harmonic number. In-
deed, we obtain a 2-approximation algorithm for the edge-connectivity version,
and a 2Hk-approximation algorithm for the vertex-connectivity version. The
former follows by using the algorithm by Khuller and Vishkin [16] for the prob-
lem of finding a minimum weight k-edge connected spanning subgraph, while
the latter follows by using the 2Hk-approximation for the problem of finding
a k-vertex connected spanning subgraph of minimum weight of Jain, Măndoiu,
Vazirani, and Williamson [14]. We can also derive a 2-approximation algorithm
for the “rational” version of the more general edge-connectivity problem studied
by Jain [13].

The scheme can be adapted for maximizing rational objectives, however the
result is not exactly symmetric. What we get in this case is the following. For
the same class of problems (given by an increasing property), if we have an
α-approximation for minimizing a nonnegative linear objective, we obtain a
1/α-approximation for maximizing a nonnegative rational objective. (This cor-
responds to applying the scheme above to minimize the inverted fraction.) This
asymmetry is somehow expected. Indeed, the maximization of a linear function
on domains given by an increasing property is trivial (the ground set is opti-
mum). However it is not obvious how to maximize a rational function on the
same domain. For instance, it is trivial to find a set cover of maximum weight
(when all weights are nonnegative) but how do we find a set cover of maximum
average weight?

The main idea behind our algorithm is to use a transformed cost function
which depends on a, b and a certain parameter (which is nothing but a guess of
the optimal value), and then search for the parameter that gives a “right” answer.
Although this trick is fairly standard in parametric optimization, we want to
avoid negative costs, so we need to “truncate” the costs. Another difficulty here is
that we are dealing with approximate solutions. Therefore we need to prove that
if the parameter is sufficiently close to the optimal value, then the approximate
solution is close as well (up to a certain factor). Unfortunately, because of the
truncated costs, we can only prove a one-sided result (Lemma 1), which makes
the search part of the algorithm harder. Nevertheless there is a way around this
issue with essentially no extra computational effort as we show in Theorem 1
and Theorem 2.

It is important to mention that although the algorithm we present in Section 2
is very efficient in most cases (in particular if the coefficients are not too large),
it does not run in strongly polynomial time. Thus, in Section 3 we quickly show
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how to adapt Megiddo’s technique to derive a strongly polynomial-time version
of our algorithm.

In what follows, if S is a subset of a set U and w is a function that assigns a
number to each element of U , we let w(S) denote the sum of we for all e in S.
Also, given an increasing binary function f , we will say that S ⊆ U is feasible if
and only if f(S) = 1.

2 Approximating Rational Objectives

Let f be an increasing binary function defined on all subsets of a finite set U .
Recall that f is increasing if and only if f(U) = 1 and f(B) ≤ f(A), for all
B ⊆ A ⊆ U . Also, we will assume that f is polynomially computable, i.e., there
is a polynomial-time algorithm that, given a subset S of U , computes f(S). We
are interested in the following problems:

minlin (U, w, f): Given a finite set U , a nonnegative rational we for each e
in U , and a polynomially computable increasing function f : 2U → {0, 1}
(usually given implicitly), find a subset S of U such that f(S) = 1 and w(S)
is minimum.
minrational (U, a, b, f): Given a finite set U , nonnegative integers a0, b0
and ae and be for each e in U , and a polynomially computable increasing
function f : 2U → {0, 1} (usually given implicitly), find a subset S of U such
that f(S) = 1 and (a0 + a(S))/(b0 + b(S)) is minimum. (To avoid divisions
by zero, we assume that b0 + b(S) > 0 for all feasible S.)

For instance, the problem of, given a weighted k-edge-connected graph G, finding
a k-edge-connected spanning subgraph of G with minimum average weight is an
example of minrational (U, a, b, f). The set U in this case is the set of edges
of G and ae is the weight of edge e in G while be = 1 for each edge e of G. Of
course, a0 = b0 = 0. The function f is such that f(S) = 1 if and only if the
subgraph of G induced by the edge set S is spanning and k-edge-connected.

We now describe how an α-approximation algorithm for minlin (U, w, f) can
be turned into an α-approximation algorithm for minrational (U, a, b, f). To
this end let minweightα(U, w, f) denote an α-approximation algorithm for min-
lin (U, w, f). Note that α may depend on the input. It is easy to see that we can
assume α ≤ |U |. Indeed, consider the following algorithm for minlin (U, w, f):
trivial (U, w, f)
1 sort the elements in U in nondecreasing order of w, obtaining we1 ≤ · · · ≤ we|U|
2 find the smallest index i such that f({e1, . . . , ei}) = 1
3 return {e1, . . . , ei}
Clearly,

∑i
j=1 wej

≤ i wei
≤ |U |wei

. Moreover, it is immediate that trivial
finds a feasible set S minimizing max{we : e ∈ S}. Thus, any optimal solution to
minlin(U, w, f) contains an element of U of weight at least wei

, which implies
that trivial achieves a ratio of at most |U |. In summary, we can always run
both minweightα and trivial and therefore assume that α ≤ |U |.
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2.1 The Algorithm

The core of our transformation is given by the following routine, which we call
auxiliarα. Observe that it applies the traditional trick used, for instance, by
Megiddo [19] and by Hashizume et al. [11], adapted to avoid negative entries in
the derived weight function.
auxiliarα (U, a, b, f, c)
1 L ← {e : ae ≤ c be}
2 for each element e in U do
3 we ← max{0, ae − c be}
4 S ← minweightα (U, w, f)
5 return S ∪ L.

In what follows, auxiliarα is used to find an α-approximate solution to min-
rational. Algorithm minfracα consists of two phases: an “approximate” trun-
cated binary search and an extra step needed to assure the ratio α. After the
truncated binary search, either the algorithm found a feasible solution within
ratio α or the search interval contains the optimum value. The search interval in
the end, scaled by α, is small enough (choice of ε) to contain at most one feasible
solution. If the best solution found so far (St in line 13) is not within ratio α,
the second phase finds a better feasible solution that will be within ratio α.

Let ratio(S) denote the ratio (a0 + a(S))/(b0 + b(S)) for any feasible set S.
Below, α might be in fact α(|U |), if α is a function, not simply a constant.
minfracα (U, a, b, f)
1 ε ← 1/((b0 + b(U))2α) � First phase
2 i ← 1
3 S0 ← U
4 left ← 0
5 right ← ratio(U)
6 while right − left > ε do
7 middle ← (left + right)/2
8 Si ← auxiliarα (U, a, b, f, middle)
9 if ratio(Si) ≤ αmiddle

10 then right ← middle
11 else left ← middle
12 i ← i + 1
13 St ← argmin{ratio(Sj) : 0 ≤ j < i}
14 c′ ← ratio(St)/α � Second phase
15 S′ ← auxiliarα (U, a, b, f, c′)
16 S ← argmin{ratio(St), ratio(S′)}
17 return S.

2.2 Analysis of the Running Time

Let us show that the above algorithm is polynomial in the size of its input.

Theorem 1. Algorithm minfracα(U, a, b, f) runs in polynomial time. More
precisely, it runs in time O(log(amax) + log(bmax) + log |U |) times the run-
ning time of minweightα(U, w, f), where amax = max{ae : e ∈ U ∪ {0}} and
bmax = max{be : e ∈ U ∪ {0}}.
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Proof. First observe that the number of iterations of the while in line 6 is

�log(ratio(U)/ε))� = �log((a0 + a(U))(b0 + b(U))α)�
= O(log(a0 + a(U)) + log(b0 + b(U)) + log |U |)
= O(log(amax) + log(bmax) + log |U |).

Here, the second equality comes from α ≤ |U |. Now, the most time consuming
operation within each iteration of the while is the call to auxiliarα. Clearly
auxiliarα runs in polynomial time in the size of its input. Moreover, its running
time is exactly that of minweightα. Therefore, it is enough to verify that, in
each call at line 8 of minfracα, the parameter middle has size polynomially
bounded by the size of (U, a, b, f). Indeed, in the ith call of auxiliarα, we have
that middle = ratio(U)/2i, where i = O(log(amax) + log(bmax) + log |U |) (as
the number of iterations of the while). Therefore each auxiliarα call runs in
polynomial time in the size of (U, a, b, f). �

Observe that, if we are given a PTAS (resp. FPTAS) for minlin, then we have a
PTAS (resp. FPTAS) for minrational. Unfortunately, if we are given a strongly
polynomial algorithm for minlin, we only obtain a polynomial algorithm for min-
rational this way. But in Section 3 we will show that, under some assumptions,
we can get a strongly polynomial algorithm for minrational from a strongly
polynomial one for minlin.

2.3 Analysis of the Approximation Ratio

First observe that as minweightα returns a subset S of U such that f(S) = 1,
auxiliarα also returns a subset S of U such that f(S) = 1 (so b0 + b(S) > 0).
Therefore, minfracα returns a subset S of U such that f(S) = 1, i.e., a feasible
solution. Now we focus on the approximation ratio. To this end, we need to
establish a key lemma.

Proposition 1. Let c ≥ 0 and we = max{0, ae − c be} for all e ∈ U . Consider
the set L = {e ∈ U : ae ≤ c be} and define the quantity D =

∑
e∈L(ae − c be) =

a(L)− c b(L). Then, if R ⊆ U ,

w(R) ≤ a(R)− c b(R)−D.

Moreover, if L ⊆ R, then equality holds.

Proof. We have that,

w(R) = a(R \ L)− c b(R \ L)
= a(R)− a(R ∩ L)− c b(R) + c b(R ∩ L)
= a(R)− c b(R)− (a(R ∩ L)− c b(R ∩ L))
≤ a(R)− c b(R)−D. (1)

The last inequality holds because each term in the sum that defines D is negative
or zero. Note also that, if L ⊆ R, then equality holds in (1). �
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Lemma 1. Let c∗ be the optimal value of minrational(U, a, b, f). For any
c ≥ c∗, if Ŝ is the output of auxiliarα(U, a, b, f, c), then

ratio(Ŝ) =
a0 + a(Ŝ)
b0 + b(Ŝ)

≤ α c. (2)

Moreover, the previous inequality is strict whenever c > c∗.

Proof. We want to prove (2), which is equivalent to

a(Ŝ)− α c b(Ŝ) ≤ α c b0 − a0.

Let L = {e ∈ U : ae ≤ c be} and D = a(L) − c b(L). We start showing
that w(Ŝ) + α D ≤ α c b0 − a0, where we = max{0, ae − c be} as defined in
lines 2–3 of the auxiliarα routine. Indeed, since minweightα(U, w, f) is an
α-approximation algorithm for minlin(U, w, f), we have that w(Ŝ) = w(S) ≤
α opt(minlin(U, w, f)) ≤ α w(S∗), where S denotes the set defined in line 4
of the auxiliarα routine and S∗ denotes an optimum solution for minra-
tional(U, a, b, f). This implies that

w(Ŝ) + α D ≤ α w(S∗) + α D = α(w(S∗) + D).

Also, from Proposition 1 we have that α(w(S∗) + D) ≤ α(a(S∗) − c b(S∗)). By
noting that c ≥ c∗ = ratio(S∗) = (a0 + a(S∗))/(b0 + b(S∗)), we can conclude
that

w(Ŝ) + α D ≤ α(a(S∗)− c b(S∗)) ≤ α(c b0 − a0) ≤ α c b0 − a0.

Furthermore, the middle inequality is strict if c > c∗.
With the previous inequality in hand, we turn to finish the proof. Note that

a(Ŝ)− α c b(Ŝ) = w(Ŝ) + c b(Ŝ) + D − α c b(Ŝ) (3)
= w(Ŝ) + D + (α− 1)(−c b(Ŝ))
≤ w(Ŝ) + D + (α− 1)D (4)
= w(Ŝ) + α D

≤ α c b0 − a0. (5)

As Ŝ contains L, equality (3) holds by Proposition 1. Inequality (4) holds because
D = a(L) − c b(L) ≥ −c b(L) ≥ −c b(Ŝ) (again since Ŝ contains L). Finally,
inequality (5) follows by the previous argument, and it is strict if c > c∗. The
proof is complete. �

Unfortunately, we do not have any guarantee on ratio(Ŝ) = (a0 + a(Ŝ))/(b0 +
b(Ŝ)) for c < c∗. Nevertheless, minfracα gets around this and still provides an
α-approximation for minrational, as we show next.

Theorem 2. Let S be the output of algorithm minfracα(U, a, b, f) and S∗ be
an optimal solution to problem minrational(U, a, b, f). We have that

ratio(S) ≤ α ratio(S∗).
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Proof. Let c∗ = ratio(S∗). Suppose that at some iteration, say iteration i, of
minfracα(U, a, b, f) step 10 was executed and at that point we had middle ≤ c∗.
Clearly, in this case we are done as this implies that ratio(Si) ≤ αmiddle ≤
αc∗, and moreover ratio(S) ≤ ratio(Sj) for all j. Thus, we may assume that
whenever step 10 was executed, we had that middle > c∗. On the other hand, if
at some iteration i step 11 was executed, we had that middle < c∗. Otherwise,
Lemma 1 would imply that auxiliarα(U, a, b, f,middle) returns a set Si such
that ratio(Si) ≤ α middle , contradicting the fact that step 11 was executed.

Thus it remains to analyze the case in which, at each iteration, either step
10 is executed and middle > c∗, or step 11 is executed and middle < c∗. In this
case, at step 13 we have that left ≤ c∗ ≤ right and right − left ≤ ε. Note that
this is enough to justify that minfracα(U, a, b, f) is an (α + δ)-approximation,
for some δ > 0. (Indeed, ratio(St) ≤ α right ≤ α(c∗+ε) ≤ (α+1/(b0+b(U)))c∗.)
Steps 14–16 are what we need to get rid of the additive term δ.

So, suppose that at step 13 we have ratio(St) > αc∗. Now, consider k, the last
iteration of minfracα(U, a, b, f) at which step 10 was executed (if step 10 was
never executed, we let k = 0). It is straightforward to see that

α left ≤ αc∗ < ratio(St) ≤ ratio(Sk) ≤ α right ,

where right denotes the final value of this variable in the execution of the algo-
rithm (or its value after iteration k). Thus, we can conclude that c′ defined in
step 14 is strictly greater than c∗. But then Lemma 1 implies that the set S′

defined in step 15 is such that

ratio(S′) < αc′ = α
ratio(St)

α
= ratio(St).

Now, observe that, for any two feasible solutions F , G ⊆ U of different values,
we have that |ratio(F )− ratio(G)| > 1/(b0 + b(U))2. Thus, in particular

ratio(S′) < ratio(St)−
1

(b0 + b(U))2

≤ α right − 1
(b0 + b(U))2

≤ α(right − ε)
≤ α left
≤ αc∗.

This concludes the proof of the theorem. �

3 Applying Megiddo’s Technique

In this section we outline how to turn minfracα into a strongly polynomial-time
algorithm using the approach of Megiddo [19].
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Recall that Megiddo showed how to derive a polynomial-time algorithm for
minrational (without the increasing assumption) from a polynomial-time al-
gorithm for minlin. Assuming that comparisons and additions are the only op-
erations the algorithm for minlin(U, w, f) does on w, Megiddo’s scheme leads
to a strongly polynomial-time algorithm for minrational as long as the al-
gorithm for minlin is also strongly polynomial. Algorithm minfracα in Sec-
tion 2 shows how to get an α-approximation algorithm for minrational from
an α-approximation algorithm for minlin. Nevertheless, in the description given
in Section 2, even if minweightα(U, w, f) runs in strongly polynomial time,
minfracα(U, a, b, f) will not be strongly polynomial. In what follows, we de-
scribe how to get a strongly polynomial-time α-approximation algorithm for
minrational if, as in Megiddo’s, comparisons and additions are the only oper-
ations minweightα(U, w, f) does on w. The idea is that of Megiddo with a few
adjustments to accommodate the non-negativity of the w function as well as the
approximation goal.

megiddo approxα (U, a, b, f)
� First phase

1 n ← |U |
2 c0 ← 0
3 S0 ← U
4 let c1, . . . , cn+1 be the ratios in {ae/be : e ∈ U ∪ {0}} sorted in increasing order
5 k ← 0
6 for j ← 1 to n + 1 do � This could be a binary search instead.
7 Sj ← auxiliarα(U, a, b, f, cj)
8 if ratio(Sj) > α cj

9 then k ← j
� Second phase

10 i ← n + 2
11 left ← ck

12 right ← ck+1

13 for each element e in U do � Observe that w is linear in [left . . right ].
14 we(c) ← max{0, ae − c be} for c in [left . . right ]
15 finished ← false
16 while not finished do
17 follow minweightα(U, w(c), f) for all c in [left . . right ] simultaneously,

from the start or from the recent point of resumption, to the next comparison
18 if there are no more comparisons and minweightα(U, w(c), f) terminates
19 then finished ← true
20 else let g1(c) and g2(c) be the functions to be compared over [left . . right ]
21 if there is no unique solution of g1(c) = g2(c) in [left . . right ]
22 then resume algorithm minweightα(U, w(c), f)
23 else let c′ be the unique solution of g1(c) = g2(c) in [left . . right ]
24 Si ← auxiliarα(U, a, b, f, c′)
25 if ratio(Si) ≤ α c′

26 then right ← c′

27 else left ← c′

28 i ← i + 1
29 S ← argmin{ratio(Sj) : 0 ≤ j < i}
30 return S.
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We start with a general description of the algorithm. It consists of two phases.
In the first phase, we sort the ratios in {ae/be : e ∈ U ∪ {0}} in increasing order
(consider ae/be = ∞ if be = 0) and let c1, . . . , cn+1 be the result of this sorting,
where n = |U |. Let c0 = 0 and Sj be the output of auxiliarα(U, a, b, f, cj) for
j = 0, . . . , n + 1. Also, let k be the largest j such that ratio(Sj) > α cj. Note
that k < n + 1. (Indeed, Sn+1 = U and ratio(U) ≤ cn+1.) For c in the interval
[ck . . ck+1], function w defined in lines 2–3 of the auxiliarα routine is linear.
The idea now is to follow Megiddo’s strategy starting from interval [ck . . ck+1].
(Observe that the addition of two linear functions is a linear function, so ad-
ditions do not affect the algorithm.) Below, we show the resulting algorithm in
pseudo-code. The description of the second phase follows the one of algorithm B
of Megiddo [19, p. 416].

Observe that we could also have used the first phase of the above algorithm in
minfracα. After this first phase, we would apply the “truncated” binary search
as before, but starting with the interval [ck . . ck+1]. The worst-case running time
of this modification however is the same.

Due to the lack of space, the analysis of the algorithm and its approximation
guarantee is left to the full version of the paper

4 Final Remarks

There is a way to convert the scheme proposed in this paper so that it applies to
optimizing rational objectives for problems described by a decreasing property.
This class of problems would for example include most packing problems. The
scheme would depend on the existence of an approximation algorithm for the
maximization of linear objectives for this class of problems. However, for this
class, the scheme of Hashizume et al. [11] already implies the same results. In
other words, avoiding negative coefficients in the linear objective function is not
necessary for this class of problems: elements with negative weight can be ignored
without any loss.

Recently, a related class of problems appeared in the literature. In these
problems, the objective is to minimize (or maximize) the sum of rational func-
tions [4, 23]. Maybe one can apply an idea similar to the one proposed here to
derive approximation algorithms for this class of problems based on approxima-
tion algorithms for their linear counterpart.
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Abstract. We describe space-efficient algorithms for solving problems
related to finding maxima among points in two and three dimensions.
Our algorithms run in optimal O(n log n) time and occupy only constant
extra space in addition to the space needed for representing the input.

1 Introduction

Space-efficient solutions for fundamental algorithmic problems such as merg-
ing, sorting, and partitioning have been studied over a long period of time;
see [11, 12, 14, 21]. The advent of small-scale, handheld computing devices and
an increasing interest in utilizing fast but limited-size memory, e.g., caches, re-
cently led to a renaissance of space-efficient computing with a focus on processing
geometric data. Brönnimann et al. [7] were the first to consider space-efficient
geometric algorithms and showed how to optimally compute 2d-convex hulls us-
ing constant extra space. Subsequently, a number of space-efficient geometric
algorithms, e.g., for computing 3d-convex hulls and its relatives, as well as for
solving intersection and proximity problems, have been presented [4, 5, 6, 9, 23].

In this paper, we consider the fundamental geometric problems of computing
the maxima of point sets in two and three dimensions and of computing the layers
of maxima in two dimensions. Given two points p and q, the point p is said to
dominate the point q iff the coordinates of p are larger than the coordinates of q
in all dimensions. A point p is said to be a maximal point (or: a maximum) of P
iff it is not dominated by any other point in P . The union MAX(P) of all points
in P that are maximal is called the set of maxima of P . This notion can be
extended in a natural way to compute layers of maxima [8]. After MAX(P) has
been identified, the computation is repeated for P := P \ MAX(P), i.e., the next
layer of maxima is computed. This process is iterated until P becomes empty.

Related Work. The problem of finding maxima of a set of n points has a va-
riety of applications in statistics, economics, and operations research (as noted
by Preparata and Shamos [20]), and thus was among the first problems having
been studied in Computational Geometry: In two and three dimensions, the best
known algorithm which has been developed by Kung, Luccio, and Preparata [16]
identifies the set of maxima in O(n log n) time which is optimal since the problem
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exhibits a sorting lower bound [16, 20]. For constant dimensionality d ≥ 4, their
divide-and-conquer approach yields an algorithm with O(n logd−2 n) running
time [1, 16], and Matoušek [17] gave an O(n2.688) algorithm for the case d = n.
The problem has also been studied for dynamically changing point sets in two di-
mensions [13] and under assumptions about the distribution of the input points in
higher dimensions [2, 10]. Buchsbaum and Goodrich [8] presented an O(n log n)
algorithm for computing the layers of maxima for point sets in three dimen-
sions. Their approach is based on the plane-sweeping paradigm and relies on
dynamic fractional cascading to maintain a point-location structure for dynam-
ically changing two-dimensional layers of maxima.

The maxima problem has been actively investigated in the database com-
munity following Börzsönyi, Kossmann, and Stocker’s [3] definition of the SQL
“skyline” operator. Such an operator producing the set of maxima1 is needed
in queries that, e.g., ask for hotels that are both close to the beach and have
low room rates. A number of results have been presented that use spatial in-
dexes to produce the “skyline”, e.g., the set of maxima, practically efficient
and/or in a progressive way, that is outputting results while the algorithm is
running [15, 19, 22]. For none of these approaches non-trivial upper bounds are
known.

The Model. The goal of investigating space-efficient algorithms is to design al-
gorithms that use very little extra space in addition to the space used for rep-
resenting the input. The input is assumed to be stored in an array A of size n,
thereby allowing random access. We assume that a constant-sized memory can
hold a constant number of words. Each word can hold one pointer, or anO(log n)
bit integer, and a constant number of words can hold one element of the input
array. The extra memory used by an algorithm is measured in terms of the
number of extra words; an in-place algorithm uses O(1) extra words of memory.
It has been shown that some fundamental geometric problems such as com-
puting 2D convex hulls and closest pairs can be solved in-place and in optimal
time [4, 5, 7]. More involved problems (range searching, line-segment intersection)
can be (currently) solved in-place only if one is willing to accept near-optimal
running time [6, 23], and 3D convex hulls and related problems seem to require
both (poly-)logarithmic extra space and time [6].

Our Contribution. The main issue in designing in-place algorithms is that most
powerful algorithmic tools (unbalanced recursion, sweeping, multi-level data
structures, fractional cascading) require at least logarithmic extra space, e.g.,
for the recursion stack or pointer-based structures. This raises the question
of whether there exists a time-space tradeoff for geometric algorithms besides
range-searching. In this paper, we demonstrate that O(1) extra space is sufficient
to obtain optimal O(n log n) algorithms for computing skylines in two and three
dimensions and two-dimensional layers of maxima. The solution to the latter

1 Technically speaking, the operator returns the set of minima. To unify the presen-
tation, we do not distinguish between these two variants of the same problem.
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problem is of particular interest since it is the first optimal in-place algorithm
for a geometric problem that is not amenable to a solution based on balanced
divide-and-conquer or Graham’s scan.

2 Computing the Skyline in IR2 and IR3

A point p from a point set P is said to be maximal if no other point from P has
larger coordinates in all dimensions; ties are broken using a standard shearing
technique. This definition has been transferred by Kung et al. [16] into a two-
dimensional plane-sweeping algorithm and into a divide-and-conquer approach
for the higher-dimensional case. The output of our algorithm consists of a per-
mutation of the input array A and an index k such that k points constituting the
set of maxima are stored sorted by decreasing y-coordinates in A[0, . . . , k − 1].

The algorithm for computing the skyline, i.e., the set of maxima, in two di-
mensions is a straightforward selection algorithm. We discuss it in some more
detail to introduce an important algorithmic template, called SortedSubset-
Selection(A, 	b, 	e, π) which processes a sorted (sub)array A[	b, . . . , 	e−1] from
left to right. While doing so, the algorithm evaluates a given predicate π for each
of the elements and stably moves all elements for which π evaluates to true to
the front of A[	b, . . . , 	e − 1]. This algorithm, presented by Bose et al. [4], runs
in linear time provided that π can be evaluated in constant time.

To compute the set of maxima in two dimensions, the algorithm of Kung
et al. [16] sweeps the point set in decreasing y-direction keeping track of the bot-
tommost point m of the skyline seen so far. For each point p encountered during
the sweep, the algorithm checks whether p is dominated by m. The sweeping di-
rection ensures p.y ≤ m.y, thus, it is sufficient to check whether also p.x < m.x.

The space-efficient implementation of this algorithm thus first presorts A using
an optimal O(n log n) in-place sorting algorithm, e.g., heapsort [11]. The algo-
rithm then runs an instantiation of the linear-time SortedSubsetSelection
template where the predicate π evaluates to true iff the x-coordinate of the
current point A[i] is at least as large as the x-coordinate of the point m, i.e, iff
A[i] is a maximal point. The algorithm then moves A[i] to the front of the array
and updates m to refer to (the new position of) A[i].

Lemma 1. The skyline, i.e., the set of maxima of a set P of n points in two
dimensions can be computed in-place and in optimal time O(n log n). If P is
sorted according to <y, the running time is in O(n).

For the case of a three-dimensional input, we implement Kung et al.’s [16] divide-
and-conquer algorithm using an in-place divide-and-conquer scheme we have
proposed earlier [4]; this scheme is based on in-place routines for median-finding,
partitioning, and merging. Since we cannot explicitly keep track of the number
of maxima in each subproblem, we have to recover them algorithmically during
each merging step. The details are given in the full version of this paper.

Theorem 1. The skyline, i.e., the set of maxima of an n-element point set in
three dimensions can be computed in-place and in optimal time O(n log n).
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3 Computing the Layers of Maxima in Two Dimensions

An obvious way of computing the layers of maxima is to iteratively compute
(and remove) the maximal points of the given point set P using, e.g., the in-
place algorithm described in Section 2. Since a point set may exhibit a linear
number of layers, this leads to an O(n2 log n) worst-case running time. In this
section, we show that we can simultaneously peel off multiple layers such that
the resulting algorithm runs in optimal O(n log n) time; its goal is to rearrange
the input such that the points are grouped by layers and each layer is sorted by
decreasing y-coordinate.

3.1 Computing the Number of Layers of Maxima

As an introductory example of our approach, we extend the algorithm discussed
in Section 2 to compute the number of layers of maxima for a given point set.
This algorithm builds upon the fact that a layer of points is monotone in both
x- and y-direction: a layer Li extends vertically to y = −∞ from the point on Li

that has maximal x-coordinate. This in turn implies that, during the sweep, the
x-coordinate of the intersection of Li with the sweepline is the x-coordinate of
its “tail” point τi, i.e., of the last point that has been classified as belonging
to Li (see Figure 1).

p
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direction

L
j-1

L
j

L
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τ
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k-1 ...

...

τ
j-1 τ0 . . . τk−1 p
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Fig. 1. Classification of a point by binary search (left) and array representation (right)

As usual, we assume that the point set P to be processed is stored in an array
A[0, . . . , n − 1]. During the sweep, we ensure that the following invariant holds
after having processed a point p:

Invariant (TAILS): Let k ∈ {1, . . . , n} be the number of layers intersected by
the sweepline at y = p.y where p is the point that has just been processed.
Then the tail points τ0, . . . , τk−1 of the layers L0, . . . ,Lk−1 are stored in
decreasing x-order in A[0, . . . , k − 1].

Invariant (TAILS) is certainly true after having processed the first point p =
A[0] encountered during the sweep. This point is the y-maximal point of the
point set and thus part of the skyline, i.e., of the topmost layer L0. We thus
inductively assume that the invariant holds prior to processing the next point
p := A[i]. To determine which layer p is part of, we perform a binary search for
p w.r.t. the x-coordinate among the points in A[0, . . . , k − 1]. If p has a smaller
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x-coordinate than τk−1 = A[k − 1], p is dominated by this point, and thus p is
the first point of a new layer Lk (see pi1 in Figure 1). We then swap p = A[i] to
A[k] (note that i ≥ k trivially holds) and increment k by one. If, on the other
hand, p lies right of τj but left of τj−1 then p replaces τj as the tail point of Lj

(see pi2 in Figure 1), that is, we swap p = A[i] to A[j]; similarly, p replaces τ0 if
it lies right of τ0.

The above in-place algorithm maintains Invariant (TAILS) in O(log n) time
per point processed. Thus after having processed the last point, the index k gives
the total number of layers.

Lemma 2. The number of layers of maxima exhibited by an n-element point set
in two dimensions can be compute in-place and in O(n log n) time.

The above algorithm can also be modified to output, i.e., to print to a write-only
stream, in O(n log n) time each point processed together with the number of its
containing layer.

3.2 Counting the Number of Points on the Topmost κ Layers

The algorithm of Section 3.1 can be modified to count the number of points on
each of the κ topmost layers. For the simplicity of exposition, we assume that
we have access to O(κ) extra space that holds a counter ci for each layer Li. In
Section 3.4, we will get rid of this assumption, which—in an in-place setting—is
prohibitive for non-constant κ.

To compute the number of points on each of the topmost κ layers, we simply
increment the counter ci for layer Li whenever we update the value of τi. We
also stop updating the counter k denoting the number of layers being kept track
of at k = κ. Afterwards, we can determine for each point in O(1) time whether
it lies left of τκ−1 (and thus below Lκ−1). If so, we simply ignore it, and for all
other points, we perform a binary search in A[0, . . . , κ− 1] as described above.

Lemma 3. The cardinality ci of each of the topmost κ layers of A[0, . . . , n− 1]
can be computed in O(n log n) time. If the points are presorted, the complexity
is in O(n + ξ log κ) where ξ =

∑κ−1
i=0 ci.

3.3 Extracting the Topmost κ Layers in Sorted Order

As mentioned above, a naive iterative approach to computing all layers of max-
ima leads to an O(n2 log n) worst-case running time for points sets with a linear
number of layers. The algorithm we describe in this section processes several
layers at a time to reduce the number of iterations.

Extracting the Points on the Topmost κ Layers. Our algorithm imitates
counting-sort, i.e., prior to actually partitioning the points into layers, it first
computes the number of points for each of the layers. To illustrate the algorithm,
let us assume that we have already peeled off some layers and stored the result
in A[0, . . . , 	b − 1]. Inductively, we maintain the following invariant which, prior
to the first iteration, can be established by sorting A and setting 	b := 0:
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Invariant (SORT): The points in A[0, . . . , n − 1] that have not yet been as-
signed to a layer are stored in A[	b, . . . , n− 1] and are sorted by decreasing
y-coordinate.

Let us further assume that the total number of points on the topmost κ layers
L0 through Lκ−1 of the remaining points stored in A[	b, . . . , n− 1] is ξ and that
	b + 2ξ ≤ n. The first step of the algorithm is to stably extract the ξ points on
the topmost κ layers and move them to A[	b, . . . , 	b + ξ − 1] while maintaining
the sorted y-order in A[	b + ξ, . . . , n− 1]:

. . . Points on L0 through Lκ−1 Points below Lκ−1

�b �b + ξ n − 1

This partition is obtained as follows: We run a variant of the algorithm de-
scribed in Section 3.2 that is combined with SortedSubsetSelection. This
algorithm maintains the invariant that the tail points τ0 through τκ−1 are stored
in A[	b, . . . , 	b + κ − 1] and stably moves all points that are below Lκ−1 to the
subarray starting at A[	b + κ]; thus, it keeps all points below Lκ−1 in sorted
order. At the same time, we also maintain a counter ci for the size of each layer
Li—as mentioned in Section 3.2, we will later discuss how to do this in-place.
The correctness of this algorithm follows from the observation that none of the
first κ points in A[	b, . . . , 	b +κ−1] can lie below Lκ−1 (there have to be at least
κ points on κ layers).

The algorithm maintains the invariant that, when processing point A[j], all
points that already have been identified as “below Lκ−1” are stored in decreasing
y-order in A[	b + κ, . . . , i− 1].

. . . τ0. . . τκ−1 Points below Lκ−1 Points on L0. . .Lκ−1

�b �b + κ i j n − 1

The point A[j] now either is classified as “below Lκ−1” or replaces the tail
τh of some layer Lh. In the first situation, A[j] is stably moved directly behind
A[	b + κ, . . . , i− 1], i.e., it is swapped with A[i] and i is then incremented by one,
and in the second situation, A[j] is swapped with τh, i.e., with A[	b + h]. When
we have reached the end of the array, we inductively see that A[	b + κ, . . . , i− 1]
contains the points below Lκ−1 in sorted order. Furthermore, by the definition
of ξ, we know that the two subarrays A[	b, . . . , 	b + κ− 1] (containing the tails)
and A[i, . . . , n − 1] (containing the remaining points on the layers L0 through
Lκ−1) together consist of exactly ξ points. We then swap (in linear time) A[	b +
κ, . . . , i− 1] (containing the elements below Lκ−1) and A[i, . . . , n− 1] such that
the ξ elements on the layers L0 through Lκ−1 (tails and non-tails) are blocked
in A[	b, . . . , 	b + ξ − 1]. To re-establish the y-order of these ξ points, we sort
them in O(ξ log ξ) ⊂ O(ξ log n) time, that is, we establish Invariant (SORT)
for A[	b, . . . , ξ − 1]. Thus, the overall running time for counting the number of
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points on the topmost κ layers and for re-establishing Invariant (SORT) is in
O(n + ξ log n) where ξ =

∑κ−1
i=0 ci.

Sorting the Points by Layer. Using the counters ci computed during the previous
step, we now run a variant of counting sort to extract the layers L0 through Lκ−1
in sorted y-order. To do this in-place, we use the subarray A[	b+ξ, . . . , 	b+2ξ−1]
as scratch space that will hold the layers to be constructed (note that we assume
	b + 2ξ ≤ n and that ξ =

∑κ−1
i=0 ci holds by definition). We traverse the subarray

A[	b, . . . , 	b + ξ − 1] maintaining the tails of all layers in A[	b, . . . , 	b + κ− 1] as
before, but whenever we update the tail τi of a layer Li, we swap the old tail
to the next available position in the subarray of A[	b + ξ, . . . , 	b + 2ξ − 1] that is
reserved to hold Li.

. . . τ0 . . . τκ−1 L0 . . . Lκ−1 . . .

�b �b + ξ �b + 2ξ

After having constructed a sorted representation of the layers L0 through
Lκ−1, the two subarrays A[	b, . . . , 	b + ξ − 1] and A[	b + ξ, . . . , 	b + 2ξ − 1] are
swapped in-place:

. . . L0 . . . Lκ−1 Points below Lκ−1 . . .

�b �b + ξ �b + 2ξ

To re-establish Invariant (SORT), we finally sort A[	b + ξ, . . . , 	b + 2ξ − 1]
(note that the points A[	b + 2ξ, . . . , n− 1] have not been touched and thus still
are sorted) and update 	b := 	b + ξ. The running time for sorted extraction of
the ξ points on the topmost κ layers and for re-establishing Invariant (SORT)
for A[	b + ξ, . . . , n− 1] is in O(n + ξ log n).

3.4 Extracting All Layers in Sorted Order

The exposition of the algorithm presented in the previous section was build
on two major assumptions: (1) the algorithm had to have access to κ counters
and (2) the subarray A[	b, . . . , n − 1] had to be large enough to accommodate
two subarrays of size ξ. In this section, we demonstrate how to maintain both
assumptions in an in-place setting.

The first issue to be resolved is how to maintain a non-constant number κ
of counters without using Θ(κ) extra space. Each such counter ci is required
to represent values up to n, and thus has to consist of log2 n bits. We resort
to a standard technique in the design of space-efficient algorithms, namely to
encode a single bit by a permutation of two distinct (but comparable) elements
q and r: assuming q < r, the permutation rq encodes a binary zero, and the
permutation qr encodes a binary one [18]. As the elements in our case are



370 H. Blunck and J. Vahrenhold

two-dimensional points, we use the (lexicographical) y-order for deciding whether
two points encode a binary zero or a binary one.2

If we reserve a block of 1
3n elements, we can encode 1

6n bits, i.e., 1
6n/ log2 n

counters that may be used to represent values less than n, and this in turn
implies that the maximum number of layers for which we can run the algorithms
described in Sections 3.2 and 3.3 is bounded by κ = 1

6n/ log2 n. The analyses at
the end of the respective sections gave an O(n + ξ log n) bound for each run of
the algorithms, and thus we have to make sure that maintaining the counters
and the second invariant does not interfere with keeping the overall number of
iterations in O(log n).

The Case �b < 1
3n. If, prior to the current iteration, 	b < 1

3n holds, we
maintain the counters in A[23n, . . . , n− 1].

. . . Counter representation

�b
2
3n n − 1

Counting the Points on the Topmost κ Layers. By Invariant (SORT), A[	b, . . . ,
n−1] is sorted by decreasing y-coordinate, so all counters encode the value zero.
We set κ := 1

6n/ log2 n and run the algorithm for counting the elements on each
of the topmost κ layers. We maintain each of the counters ci in its fixed-size rep-
resentation by exchanging adjacent elements as needed to implement changing a
binary digit, and using the standard analysis for incrementing a binary counter,
we observe that all counters can be maintained in O(ξ) time where ξ :=

∑κ−1
i=0 ci.

Note that, since the algorithm processes all points in A[	b, . . . , n− 1], any point
q in A[23n, . . . , n − 1] may be swapped to the front of the array since it may
become the tail τi of some layer Li. Using a more careful implementation of
the approach given in Section 3.2, we can compute all counters and re-establish
Invariant (SORT) in O(n + ξ log n) time. After we have computed the values of
all counters ci—but prior to re-establishing Invariant (SORT)—we compute the
prefix sums of c0 through cκ−1, i.e., we replace cj by ĉj :=

∑j
i=0 ci. This can be

done in-place spending O(log n) time per counter, and thus in O(n) overall time.
While doing so, we maintain the maximal index κ′ such that 	b + 2ĉκ′ < 2

3n.

Extracting and Sorting the Points on the Topmost κ Layers. If the index κ′

described above exists, we run (a slightly modified implementation of) the algo-
rithm for extracting the ξ′ := ĉκ′ points on the κ′ topmost layers as described in
Section 3.3. Because of the way κ′ was chosen, we can guarantee that the scratch
space of size ĉκ′ needed for the counting-sort-like partitioning does not interfere
2 We point out that a set of elements cannot contain duplicates; hence the relative

order of two points is unique. Furthermore, the set of maxima of a multiset M
consists of the same points as the set of maxima of the set that is obtained by
removing the duplicates from M . Duplicate removal can be done in-place and in
O(n log n) time by first sorting M according to <y and then stably selecting exactly
one occurrence of each point.
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with the space A[23n, . . . , n− 1] reserved for representing the counters. Also, by
Invariant (SORT), A[23n, . . . , n − 1] is guaranteed to be sorted by decreasing y-
coordinate. Both conditions imply that, once we have extracted all ξ′ points, we
can “reset” the counters in O(n) time (thus re-establishing Invariant (SORT)
for A[23n, . . . , n − 1]) by scanning through A[23n, . . . , n − 1] and swapping only
adjacent points.

The counters ci used during the following counting-sort-like partitioning are
initialized with c0 := 0 and cj := ĉj−1 for 0 < j ≤ κ′; these counters are stored
in A[23n, . . . , n− 1]. Whenever a tail τi is updated, the old point p representing
τi is swapped to A[	b + ξ′ + ci] and then ci is incremented by one. Decoding
and incrementing ci can be done in O(log n) time, and this cost is charged
to the point p moved to its containing layer. The total cost for extracting ξ′

points is in O(n + ξ′ log n); this also includes the cost for sorting the scratch
space A[	b +ξ′, . . . , 	b +2ξ′−1] and re-establishing Invariant (SORT) by merging
A[	b + ξ′, . . . , 	b + 2ξ′ − 1] with the (sorted) subarray A[	b + 2ξ′, . . . , n − 1] (see
Section 3.3).

If κ′ < κ, i.e., if we extract some but not all κ = 1
6n/ log2 n layers, we addition-

ally run theO(n) skyline computation algorithm described in Section 2 to extract
the points on the next topmost layer, regardless of its size. Similarly, if the index
κ′ does not exist at all, we extract the topmost layer L0 using the O(n) skyline
computation algorithm on A[	b, . . . , n − 1]—note that in this case the topmost
layer L0 contains c0 > 1

2

( 2
3n− 	b

)
> 1

2

( 2
3n− 1

3n
)
∈ Θ(n) points. In any case,

we spend another O(n log n) time to re-establish Invariant (SORT) by sorting.

Analysis. Our analysis classifies each iteration according to whether or not all
ξ points on the topmost κ = 1

6n/ log2 n layers are moved to their final position
in the array. If all ξ points are moved, we know that ξ ≥ 1

6n/ log2 n, and thus
only a logarithmic number of such iterations can exist. Also, we can distribute
the O(n + ξ log n) time spent per iteration such that each iteration gets charged
O(n) time and that each of the ξ points moved to its final position gets charged
O(log n) time, so the overall cost for all such iterations is in O(n log n).

If less than κ layers can be processed in the iteration in question (this also
includes the case that κ′ does not exist), the O(n+ξ log n) cost for counting the ξ
points on the topmost κ layers and the O(n+ξ′ log n) cost for extracting ξ′ points
on the topmost κ′ layers is dominated by the O(n log n) cost for the successive
skyline computation and re-establishing Invariant (SORT). The definition of
κ′ guarantees that, after we have performed the skyline computation, we have
advanced the index 	b by at least 1

2

( 2
3n− 	b

)
steps. Combining this with the

fact that 	b < 1
3n, we see that there may exist only a constant number of such

iterations, and hence their overall cost is in O(n log n).

The Case �b ≥ 1
3n. If, prior to the current iteration, 	b ≥ 1

3n holds, we
maintain the counters in A[0, . . . , 1

3n− 1]:

Counter representation

0 1
3n �b n − 1



372 H. Blunck and J. Vahrenhold

Note that this subarray contains (part of) the layers that have been computed
already. Since maintaining a counter involves swapping some of the elements
in A[0, . . . , 1

3n − 1], this disturbs the y-order of (some of) the layers already
computed, and we have to make sure that we can reconstruct the layer order.
We will discuss this at the end of this section.

Counting the Points on the Topmost κ Layers. The algorithm for counting the
points on the topmost κ layer proceeds exactly as described above, i.e., starting
with κ := 1

6n/ log2 n and updating the κ counters (which now are represented
in A[0, . . . , 1

3n− 1]). The only difference is that the algorithm’s selection process
will not touch the space reserved for the counters, and thus, when computing the
prefix sums, the algorithm finds the maximal index κ′ such that 	b + 2ĉκ′ < n
(instead of 	b + 2ĉκ′ < 2

3n). Then, we can run (a simplified version of) the
algorithm we used for the case 	b < 1

3n. Thus we spend O(n + ξ log n) time per
iteration including the cost for re-establishing Invariant (SORT).

Extracting and Sorting the Points on the Topmost κ Layers. As for the case
	b < 1

3n we either extract all ξ points on the topmost κ layers in O(n + ξ log n)
time or extract less than κ layers followed by a skyline computation in O(ν log ν)
time where ν := n − 	b. In both cases, the complexity given also includes the
cost for re-establishing Invariant (SORT).

Analysis. To estimate the overall running time for the case 	b > 1
3n, we again

classify the iterations according to whether or not all ξ points on the topmost
κ := 1

6n/ log2 n layers can be moved to their final destination. If this is the case,
we know that we have moved ξ ≥ κ = 1

6n/ log2 n points and can charge O(log n)
time to each point moved and the remaining O(n) time to the iteration. Moving
ξ ≥ 1

6n/ log2 n points also implies that the total number of such iterations is
bounded by O(log n), and hence the global cost incurred by assigning O(n) cost
to such an iteration is in O(n log n).

If we move κ′ < κ layers, the next step of the algorithm is a skyline compu-
tation (or the algorithm terminates), and we analyze these steps together. After
we have performed these steps, we know (by the definition of κ′) that we have
advanced 	b by at least 1

2 (n− 	b). Thus, the next time, this situation occurs, it
will occur for a subarray of at most half the size. This geometrically decreasing
series implies that the cost for all iterations in which κ′ < κ layers are moved is
dominated by the cost of the first such iteration (if any), i.e., it is in O(n log n).

Restoring the Layers Stored in A[0, . . . , 1
3n − 1]. After the last iteration of the

algorithm, we need to restore the y-order of the layers stored in A[0, . . . , 1
3n− 1].

The main problem when doing this is that we have no memory of the size of each
layer, and thus we cannot simply sort the points. However, we know that each
point (having been used for bit encoding) can only be one position off its correct
location. Our algorithm for reconstructing the layers exploits this and iterates
over pairs of “bit-neighbors” in A[0, . . . , 1

3n− 1] while maintaining the invariant
that, when processing q := A[2i] and r := A[2i + 1], all points in A[0, . . . , 2i− 1]
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have been restored to their correct order using the algorithm described in the
rest of this section.

If one of the two points q and r dominates the other point, the two points
cannot be part of the same layer. Thus the point with larger y-coordinate is the
last point of the current layer, and the other point is the first point of the next
layer—see the left part of Figure 2. The situation that no point dominates the
other is further detailed in the right part of Figure 2; in order to bring q and r
in their correct order, we need to access the point p := A[2i− 1]. If i = 0, p does
not exist, but then q and r are the first two points and thus their y-order gives
their correct and final position. If p exists, it is (by the invariant) the right-
and bottommost point of its containing layer in A[0, . . . , 2i − 1], and thus no
point left of p can belong to the same layer. A careful analysis (omitted due to
space constraints) shows that each point of r and q that is right of p belongs to
the same layer as p. Also, if both r and q are left of p, we can show that (due
to their relative y-order) they have to be part of the same layer. We conclude
that either one point dominates the other or that a simple, constant-time test,
namely comparing the relative x-order of p, q, and r is sufficient to reconstruct
the correct layer order of q and r. Consequently, the algorithm for reconstructing
the layer order runs in linear time.

r|q

q|r

q

rr

r r

(see figure to the right)

(see figure to the right,
 with q and r exchanged)

q|r rqor

r|q qror

q := A[2i]
r := A[2i + 1]

Also (if needed):
p := A[2i − 1]

pq|r
prq

p|rq
q

r
p

p

p

p

p∅

∅

Fig. 2. Restoring the layer order for q and r. A ”|” represents a break between layers.

Conclusions. Summing up, the cost for all iterations in which 	b < 1
3n and for

all iterations in which 	b ≥ 1
3n is O(n log n). Combining this with the fact that

each point gets charged O(log n) cost for the iteration in which it is moved to
its final location, we obtain our main result:

Theorem 2. All layers of maxima of an n-element point set in two dimensions
can be computed in-place and in optimal time O(n log n) such that the points in
each layer are sorted by decreasing y-coordinate.
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Abstract. Assume that a set of imprecise points is given, where each
point is specified by a region in which the point may lie. We study the
problem of computing the smallest and largest possible tours and convex
hulls, measured by length, and in the latter case also by area. Generally
we assume the imprecision region to be a square, but we discuss the case
where it is a segment or circle as well. We give polynomial time algo-
rithms for several variants of this problem, ranging in running time from
O(n) to O(n13), and prove NP-hardness for some geometric problems on
imprecise points.

1 Introduction

In computational geometry, many fundamental problems take a point set as in-
put, on which some computation is done, such as the convex hull, the Voronoi di-
agram, or a traveling sales route. These problems have been studied for decades.
The vast majority of research assumes the locations of the input points to be
known exactly. In practice, however, this is often not the case. Coordinates of
the points may have been obtained from the real world, using equipment that
has some error interval, or they may have been stored as floating points with a
limited number of decimals. In real applications, it is important to be able to
deal with such imprecise points.

When considering imprecise points, various interesting questions arise. Some-
times it is sufficient to know just a possible solution, which can be achieved by
just applying existing algorithms to some point set that is possibly the true point
set. More information about the outcome can be obtained by computing a prob-
ability distribution over all possibilities, for example using Monte Carlo methods
and a probability distribution over the input points. In many applications it is
also important to know concrete lower and upper bounds on some measure on
the outcome, given concrete bounds on the input: every point is known to be
somewhere in a prescribed region.
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376 M. Löffler and M. van Kreveld

Related Work. A lot of research about imprecision in computational geometry
is directed at computational imprecision rather than data imprecision. Regarding
data imprecision, there is a fair amount of work that uses stochastic or fuzzy
models of imprecision. Alternatively, an exact model of imprecision can be used.

Nagai and Tokura [15] compute the union and intersection of all possible
convex hulls to obtain bounds on any possible solution. As imprecision regions
they use circles and convex polygons, and they give an O(n log n) time algorithm.

Espilon Geometry is a framework for robust computations on imprecise points.
Guibas et al. [11] define the notion of strongly convex polygons: polygons that
are certain to remain convex even if the input points are perturbed within a disc
of radius ε. A related concept is that of tolerance [1]; see also [12] and [2].

Boissonnat and Lazard [4] study the problem of finding the shortest convex
hull of bounded curvature that contains a set of points, and they show that
this is equivalent to finding the shortest convex hull of a set of imprecise points
modeled as circles that have the specified curvature. They give a polynomial
time approximation algorithm.

Goodrich and Snoeyink [10] study a problem where they are given a set of
parallel line segments, and must choose a point on each segment such that the
resulting point set is in convex position. Given a sequence of k polygons with
a total of n vertices, Dror et al. [7] study the problem of finding a tour that
touches all of them in order that is as short as possible. Higher dimensions are
considered in [17].

Fiala et al. [9] consider the problem of finding distant representatives in a
collection of subsets of a given space. Translated to our setting, they prove
that maximizing the smallest distance in a set of n imprecise points, modeled
as circles or squares, is NP-hard. Finally, we mention de Berg et al. [6] for a
problem with data imprecision motivated from computational metrology, Cai
and Keil [5] for visibility in an imprecise simple polygon, Sellen et al. [18] for
precision sensitivity, and Yap [19] for a survey on robustness, which deals with
computational imprecision rather than data imprecision.

Problem Definition. All in all there has been little structured research into
concrete bounds on the possible outcomes of geometric problems in the presence
of data imprecision. When placing a traditional problem that computes some
structure on a set of points in this context, two important questions arise:

The first question is what we are given. We model imprecise points by requir-
ing the points to be inside some fixed region, without any assumption on where
exactly in their regions the points are, but with absolute certainty that they
are not outside their regions. The question then arises what shape these regions
should be given. Some natural choices are the square and circular region. The
square model for example occurs when points have been stored as floating point
numbers, where both the x and y coordinates have an independent uncertainty
interval, or with raster to vector conversion. The circular model occurs when the
point coordinates have been determined by a scanner or by GPS, for example.
Another question is what kind of restrictions we impose on those regions. For
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example, all points can have the same kind of shape, but are they all of the same
size? Do they have the same orientation? Are they allowed to overlap?

The second question is what we actually want to know. Geometric problems
usually output some complex structure, not just a number, so a measure on this
structure is needed. For example, the convex hull of a set of points can be mea-
sured by area or perimeter, or maybe even other measures in some applications.
Once a measure has been established, the question is whether you want an upper
or a lower bound, or both, on it.

Table 1. Results

goal measure model restrictions running time
largest area line segments parallel O(n3)
largest area squares non-intersecting O(n7)
largest area squares non-intersecting, equal size O(n3)
largest area squares equal size O(n5)
largest perimeter line segments parallel O(n5)
largest perimeter squares non-intersecting O(n10)
largest perimeter squares equal size O(n13)
smallest area line segments parallel O(n log n)
smallest area squares - O(n2)
smallest perimeter line segments parallel O(n log n)
smallest perimeter squares - O(n log n)

Results. All these questions together lead to a large class of problems that
are all closely related to each other. This paper aims to find out how exactly
they are related, which variants are easy and which are hard, and to provide
algorithms for the problems that can be solved in polynomial time. Since this
type of problem has hardly been studied, we consider the classical planar convex
hull problem.

We studied various variants of this problem, and our results are summarized
in Table 1. These results are treated in detail in Sections 3, 4 and 5. First, in
the next section, some related issues are discussed.

2 Some Results on Spanning Trees and Tours

In this section we briefly discuss the impact of imprecision on another classical
geometric problem, the Minimum Spanning Tree. Then we discuss our results
on tours. Due to space limitations, we only give the results and very globally,
the ideas needed to obtain them. Details can be found in the full paper [14].

Minimum Spanning Tree. To get an idea of how imprecision affects the
complexity of geometric problems, consider the Minimum Spanning Tree (MST)
problem in an imprecise context. In this case, we have a collection of imprecise
points, and we want to determine the MST of, for example, minimal length. This
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(a) (b)

Fig. 1. (a) It is algebraically difficult to find the minimal MST. (b) It is combinatorially
difficult to find the minimal MST.

means that we want to choose the points in such a way that the MST of the
resulting point set is as small as possible. This problem is both algebraically and
combinatorially hard. In Figure 1(a), there are five fixed points and one imprecise
one (in the square model, but it could also be a circle). No matter where the point
is chosen in this square, the MST of the resulting set will connect all of the fixed
points to the imprecise one. Thus the problem reduces to minimizing the sum of
the distances from the imprecise point to the fixed points. This is algebraically
a hard problem [3]. Furthermore, we can prove NP-hardness of smallest MST by
reduction from the Steiner Minimal Tree problem. Given a set of n fixed points
P in the plane, we can compute its Steiner Minimal Tree using a solution to the
imprecise MST problem as follows. Take P as precise points, and add a set P ′

of n−2 imprecise points whose regions are squares or circles that contain P , see
Figure 1(b). The shortest MST of P ∪ P ′ is the Steiner Minimal Tree of P .

Longest Tour. We consider the problem of computing the longest tour that
visits a sequence of n axis-parallel squares in a given order. The tour may have
self-intersections, see Figure 2(a). We can prove that every vertex of the tour
will be at a corner of a square. Given an arbitrary starting square and some
vertex v of it, the longest tour up to some vertex w of the i-th square consists of
a longest tour to one of the four vertices of the (i− 1)-st square, and one more
segment to w. Hence, the longest tour can be constructed incrementally in O(1)
time for each next square. We obtain:

Theorem 1. Given an ordered set of n arbitrarily sized, axis-aligned squares,
the problem of choosing a point in each square such that the perimeter of the
resulting polygon is as long as possible can be solved in O(n) time.

Shortest Tour. Next we study the problem of computing the shortest tour that
visits a sequence of n axis-parallel squares in a given order. In this case, vertices
of the optimal tour can also be on edges of squares, see Figure 2(b). We can
show that the shortest tour can be seen as a combination of two shortest one-
dimensional tours, one in the x-projection and one in the y-projection. Therefore
we know where the shortest tour changes direction from top to bottom or vice
versa, and left to right or vice versa. The shortest tour also satisfies the principle
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(a) (b)

Fig. 2. (a) The longest perimeter solution. (b) The shortest perimeter solution.

of reflection, and therefore we can transform the shortest tour problem to a
geodesic shortest path problem in a simple polygon (ignoring some details and
complications that are handled in the full paper). We obtain:

Theorem 2. Given an ordered set of n arbitrarily sized, axis-aligned squares,
the problem of choosing a point in each square such that the perimeter of the
resulting polygon is as short as possible can be solved in O(n) time.

Largest or Smallest Area Simple Tour. If we require that the resulting
tour has no self-intersections, that is, it is a simple polygon, then we can also
minimize or maximize the enclosed area. We can show that this problem is NP-
hard. The reduction from planar 3-SAT is in the full paper. It is also NP-hard to
determine the longest simple tour, but the proof does not extend to the shortest
simple tour. We have:

Theorem 3. Given an ordered set of n arbitrarily oriented line segments, the
problem choosing a point on each segment such that the area of the resulting
polygon is as large as possible is NP-hard. The same problem for smallest area
and for largest perimeter is also NP-hard.

3 Largest Convex Hull

We now present our results on the imprecise convex hull problem. This section
deals with computing the largest possible convex hull, the smallest convex hull
is treated in the next section. We first use the line segment model, where every
point can be anywhere on a line segment. This problem does not have much
practical use, but it will be extended to the square model later.

Line Segments. The problem we discuss in this section is the following:

Problem 1. Given a set of parallel line segments, choose a point on each line
segment such that the area of the convex hull of the resulting point set is as large
as possible (see Figure 3(a)).
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(a)

li

lj

(b)

Fig. 3. (a) The largest convex hull for a set of line segments. (b) The polygon pij .

Observations. First we will show that we can ignore the interiors of the seg-
ments in this problem, that is, we only have to consider the endpoints.

Lemma 1. There is an optimal solution to Problem 1 such that all points are
chosen at endpoints of the line segments.

Algorithm. Let L = {l1, l2, . . . , ln} be a set of n line segments, where li lies
to the left of lj if i < j. Let l+i denote the upper endpoint of li, and l−i denote
the lower endpoint of li. We use a dynamic programming algorithm that runs
in O(n3) time and O(n2) space. The key element of this algorithm is a polygon
which is defined for each pair of line segments. For i �= j, we consider the polygon
that starts at l+i and ends at l−j , and optimally solves the subproblem to the left
of these points, that is, contains only vertices l+k with k < i or l−k with k < j,
but not both for the same k, such that the area of the polygon is maximal, see
Figure 3(b). Note that pij will be convex.

Now, we will show how to compute all pij using dynamic programming. The
solution to the original problem will be either of the form pkn or pnk for some
0 < k < n, and can thus be computed in linear time once all pij are known.

When 1 < i < j, then we can write pij = maxk<j

(
pik +'l+i l−j l−k

)
. Of

course we maximize over the area of the polygons. In words, we choose one of
the lower points to the left of lj , and add the new point l−j to the polygon pik that
optimally solves everything to the left of the chosen point l−k . When 1 < j < i
the expression is symmetric, and i = 1 or j = 1 is a similar but simpler case.
The algorithm runs in O(n3) time and requires O(n2) space. We do not need to
worry about convexity, because a non-convex solution can never be optimal.

Theorem 4. Given a set of n arbitrarily sized, parallel line segments, the prob-
lem of choosing a point on each segment such that the area of the convex hull of
the resulting point set is as large as possible can be solved in O(n3) time.

Squares. The problem we discuss in this section is the following:

Problem 2. Given a set of axis-aligned squares, choose a point in each square
such that the area of the convex hull of the resulting point set is as large as
possible (see Figure 4(a)).
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(a)

pl

pr

pt

pb

(b)

Fig. 4. (a) The largest area convex hull for a set of squares. (b) The four extreme
points.

Observations. Once again we observe that the points will not have to be chosen
in the interior of the squares. In fact we only have to take the corners of the
squares into account.

Lemma 2. There is an optimal solution where all points lie at a corner of their
square.

First we define the four extreme points of the convex hull we are trying to
compute as the leftmost, topmost, rightmost and bottommost points. These
points divide the hull into four chains that connect them. The extreme points
and the triangles that surround the four chains are shown in Figure 4(b).

Lemma 3. All vertices on the top left chain are top left corners of their squares,
and similar for the other chains.

In general it is not easy to find the extreme points. For example, it could be
that none of the extreme points in the optimal solution is in one of the extreme
squares in the input, see for example Figure 5(a). Here the topmost and bot-
tommost squares are the large ones, and the leftmost and rightmost squares are
the medium ones. However, in the optimal solution the extreme points will all
be corners of the small squares.

Algorithm for Non-overlapping Squares. When we restrict the problem
to non-overlapping squares, we can solve this problem in O(n7) time. The idea
behind the solution is to divide the squares into groups of squares of which we
know that only two of their corners are feasible for an optimal solution, and then
to reuse the algorithm for Problem 1 on these groups. When the four extreme
points are known, we can use this information to solve the problem in O(n3)
time. However, how to find those points still remains a difficult problem, so we
try all possible combinations, hence the total of O(n7).

We call a corner of a square candidate if it is in the correct triangle to possibly
be part a chain, so for example the top left corner is candidate if it is in the top
left triangle, see Figure 4(b). If the squares do not overlap, there can be only two
squares that have more than two candidate corners. We ignore these squares (we
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Fig. 5. (a) The four extreme points need not be in the extreme squares. (b) The squares
can be divided into five groups of parallel line segments.

just try all possibilities), and note that the rest of the squares all have at most
two candidate corners, and can therefore be reduced to line segments. Further
note that there are only a limited number of orientations, and those of the same
kind are adjacent, as in Figure 5(b). There are six possible kinds of line segments,
of which only five may appear at the same time, which implies that we can divide
the segments into five groups. The figure is schematic since the segments cannot
be extended to non-overlapping squares, but it would require squares of very
different sizes to obtain a linear number in each group.

We will now solve the situation of Figure 5(b) in O(n3) time. Note that
any convex hull of a choice of points in this situation must follow these sets of
endpoints in the correct order. That is, it starts at the left extreme point, then
goes to a number of points of LB, then to a number of points of BL, then to the
bottom extreme point, and so on. It cannot, for example, go to a point of LB,
then to a point of BL, and then back to a point of LB.

The idea of the algorithm is to compute, for each pair of endpoints, the optimal
solution connecting them via the lower left side. This can be done by reusing the
algorithm for the parallel line segment problem, and distinguishing cases for in
which group the two points are. The details can be found in [13].

Theorem 5. Given a set of n arbitrarily sized, non-overlapping, axis-aligned
squares, the problem of choosing a point in each square such that the area of the
convex hull of the resulting point set is as large as possible can be solved in O(n7)
time.

Unit Size Squares. The extra O(n4) that comes from the fact that it is hard to
determine the extreme points, relies on situations where the size of the squares
differs greatly, such as in Figure 5(a). When the squares have equal size, we show
that there are only constantly many squares that can give the extreme points,
thus reducing the running time of the above algorithm to O(n3).

Lemma 4. In the largest area convex hull problem for axis-aligned unit squares,
an extreme square in the input set gives one of the extreme points of the optimal
solution.
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As a consequence of this lemma, the largest convex hull problem for non-
overlapping axis-aligned unit squares can be solved in O(n3) time, since now
there are only a constant number of possibilities for the extreme points.

Theorem 6. Given a set of n equal size, non-overlapping, axis-aligned squares,
the problem of choosing a point in each square such that the area of the convex
hull of the resulting point set is as large as possible can be solved in O(n3) time.

For overlapping squares, the problem remains open. However, for overlapping
squares of equal size, we can solve the problem in O(n5) time, see [13].

4 Smallest Convex Hull

In this section we will investigate the problem of finding the smallest area convex
hull of a set of imprecise points. As in the previous section we will first look into
the line segment model, and then move on to squares.

Line Segments. The problem we discuss in this section is the following:

Problem 3. Given a set of parallel line segments, choose a point on each line
segment such that the area of the convex hull of the resulting point set is as small
as possible.

Lemma 5. In the optimal solution, if a line segment defines a vertex of the
convex hull, and there are other vertices on the hull strictly on both sides of the
supporting line of this segment, then the point on this segment must be chosen
at one of the endpoints.

We denote the leftmost segment by sl and the rightmost segment by sr. We define
two chains, the top chain ct and the bottom chain cb of the set of segments. The
top chain is a polyline connecting the lower endpoint of sl to the lower endpoint
of sr, and is defined as the upper half of the convex hull of the set of all lower
endpoints of the input segments. Symmetrically, the bottom chain is the lower
half of the convex hull of the set of all upper endpoints of the input segments,
see Figure 6(a). If the top and bottom chains do not intersect, there is a zero

ct

cb

sl sr

(a) (b)

Fig. 6. (a) The top chain ct and bottom chain cb. (b) The optimal solution.
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area solution that can be found in linear time [8]. Therefore, we assume next
that they intersect.

For a point p on sl, there is a tangent point al(p) on the top chain such that
the line through p and al(p) does not go through the region below the top chain.
When there are more than one such points we choose the one that lies most to
the right. Similarly, we define bl(p) as the tangent point on the bottom chain,
and for q on sr we define two tangent points ar(q) and br(q) on the top and
bottom chains. All those tangent points are vertices of the chains.

Lemma 6. If the points p on sl and q on sr are known, the optimal solution
is the polygon that consists of p, al(p), the piece of the top chain between al(p)
and ar(q), ar(q), q, br(q), the piece of the bottom chain between br(q) and bl(p),
bl(p), and back to p, provided that this polygon is convex. If it is not, then p and
q will be connected by a straight line above the top chain or below the bottom
chain (see Figure 6(b)).

Algorithm. We will use these observations to construct an efficient algorithm.
First we note that the two chains can be computed in O(n log n) time using
conventional convex hull algorithms, and then we show that we can find the
optimal solution using the chains in O(n) time, yielding a total of O(n log n)
time.

To find the location of the points p on sl and q on sr, we use the fact that
they can be found independent of each other.

Lemma 7. The individual optimal locations for p and q, minimizing the area
of p and q respectively add to the intersection of the chains, are the same as the
location of p and q in the optimal solution.

The important point is that, in the optimal solution, p and q will never be con-
nected directly to each other, but always via the chain. The individual solutions
can be computed in linear time, after the chains are known. The computation
of the chains takes O(n log n) time.

Theorem 7. Given a set of n arbitrarily sized, parallel line segments, the prob-
lem of choosing a point on each segment such that the area of the convex hull of
the resulting point set is as small as possible can be solved in O(n log n) time.

Squares. The problem we discuss in this section is the following:

Problem 4. Given a set of axis-aligned squares, choose a point in each square
such that the area of the convex hull of the resulting point set is as small as
possible (see Figure 7(a)).

Lemma 8. In the optimal solution, only the leftmost, rightmost, topmost, and
bottommost vertices of the hull need not be corners of their squares.

The situation is similar to the line segment case. There are now four extreme
squares Sl, Sr, St and Sb, and for these four squares, the points must lie on
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the inner edge. We call the points pl, pr, pt and pb. We now have four chains of
corners that could be included in the convex hull, see Figure 7(b). The optimal
solution for fixed pl, pr, pt and pb connects these points to their tangent points
on the chains or directly to each other if the result would not be convex.

The critrical difference between the line segment case and the square case, is
that the locations of the four extreme points are no longer independent. It can
really happen that in the optimal solution two or more of the extreme points
are connected by straight line segments, rather than via the chains. This means
we need a different approach to solve the problem, and is the reason why this
variant cannot be easily solved in O(n log n). We describe a case distinguishing
algorithm that runs in O(n2) time in [13].

Theorem 8. Given a set of n arbitrarily sized, possibly overlapping, axis-aligned
squares, the problem of choosing a point in each square such that the area of the
convex hull of the resulting point set is as small as possible can be solved in O(n2)
time.

5 Perimeter Versus Area

Until now we have only considered area of the convex hull as the measure to
maximize or minimize, but there are other measures that can be used, such as
the perimeter. In this section we will briefly consider the relevant differences
between the two measures.

One important observation concerns the way the size of a polygon changes
when only one point is moving, while the rest remains fixed. The area of the
polygon will be a linear function of the moving point, while the perimeter is a
hyperbolic function with a minimum. In the case of convex hulls, this only applies
as long as the combinatorial structure of the hull does not change. Secondly, note
that when we want to maximize the area of a polygon, convexity is automatically
achieved. When we want to maximize the perimeter, however, convexity has to
be explicitly taken care of. When looking for minimal size, this works the other
way around. A minimal perimeter polygon will automatically be convex, while
a minimal area polygon is generally not.

(a) (b)

Fig. 7. (a) The smallest convex hull for a set of squares. (b) The top left, bottom left,
top right, and bottom right chains.
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We can adjust all of the above algorithms to the perimeter measure in a
more or less straightforward fashion. The time bounds for the largest convex
hull indeed become worse, O(n3) for line segments becomes O(n5), and O(n7)
for squares becomes O(n10). On the other hand, the time bounds for the small-
est convex hull become better; all problems considered can be solved in only
O(n log n) time. The details of the changed algorithms can be found in [13].

6 Conclusions

We studied the problem of computing the largest or smallest convex hull of a
set of imprecise points; our results are in Table 1. The problem of finding the
smallest convex hull seems to be easier than finding the largest convex hull: the
running times are better, and there are fewer restrictions. It also seems that for
the largest convex hull the area is easier to maximize than the perimeter, while
for the smallest convex hull the perimeter is easier to minimize than the area.

Many problems are open, and there are various directions of research to be
pursued. Most notably, what is the status of the problem of finding the largest
convex hull when the regions are allowed to intersect? Also, what results can
be obtained for the circle model? For the problems that do not have an effi-
cient solution, the study of approximation algorithms is interesting. Thirdly, for
many other problems in computational geometry, imprecision in the data and
the bounds on the effect on the outcome of an algorithm should be studied.
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Abstract. Given a connected geometric graph G, we consider the prob-
lem of constructing a t-spanner of G having the minimum number of
edges. We prove that for every t with 1 < t < 1

4 log n, there exists a con-
nected geometric graph G with n vertices, such that every t-spanner of G
contains Ω(n1+1/t) edges. This bound almost matches the known upper
bound, which states that every connected weighted graph with n ver-
tices contains a t-spanner with O(tn1+2/(t+1)) edges. We also prove that
the problem of deciding whether a given geometric graph contains a t-
spanner with at most K edges is NP-hard. Previously, this NP-hardness
result was only known for non-geometric graphs.

1 Introduction

Let G = (V, E) be a connected undirected graph in which every edge e has a
positive weight ω(e). We define the weight of a path in G to be the sum of the
weights of the edges on this path. For any two vertices u and v of G, we denote
the weight of a shortest path in G between u and v by δG(u, v). For a given
subgraph G′ = (V, E′) of G (hence, E′ ⊆ E), we define the dilation of G′ with
respect to G to be the maximum value δG′(u, v)/δG(u, v), over all u, v ∈ V with
u �= v. For a given real number t > 1, we say that G′ is a t-spanner of G, if the
dilation of G′ with respect to G is at most t.

The following problem has been studied extensively in the literature: Given a
connected weighted graph G, and given a real number t > 1, does G contain a
t-spanner having “few” edges?

Althöfer et al. [1] showed that, for every connected weighted graph G with
n vertices, and for every real number t > 3, there exists a t-spanner of G that
consists of O(n1+2/(t−1)) edges. This result was improved by Baswana and Sen [2]
and Roditty et al. [16], who showed that for every integer t ≥ 3, any connected
weighted graph with n vertices contains a t-spanner with O(tn1+2/(t+1)) edges.

The following lower bound was proved by Althöfer et al. [1]: For every real
number t > 1, there exists a connected weighted graph G with n vertices, such
that every t-spanner of G contains Ω(n1+4/(3(t+2))) edges.
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We remark that the corresponding problem for unweighted graphs has been
considered before by Peleg and Schäffer [15]; see also the book by Peleg [14].

In this paper, we consider the above spanner problem for geometric graphs. A
graph G = (S, E) is called a geometric graph, if the vertex set S of G is a set of
points in Rd, and the weight of every edge {u, v} in E is equal to the Euclidean
distance |uv| between u and v.

Since the upper bounds in [1, 2, 16] mentioned above are valid for arbitrary
connected weighted graphs, they also hold for geometric graphs. The graph con-
structed in the proof of the lower bound in [1], however, is not a geometric graph.
The difficulty is in mapping the vertices to points in the plane, such that the
weight of each edge {u, v} is exactly equal to the Euclidean distance |uv|. In
Section 2, we prove the following theorem, which states that the lower bound of
Althöfer et al. can almost be achieved by geometric graphs:

Theorem 1. For every sufficiently large integer n, and for every real number t
with 1 < t < 1

4 log n, there exists a connected geometric graph G with 2n vertices,
such that every t-spanner of G contains Ω(n1+1/t) edges.

The proof of Theorem 1 uses an n × n connected bipartite graph with Ω(kn)
edges and whose girth is Ω(log n/ log k). The probabilistic method has been used
to prove the existence of a dense (not necessarily bipartite) graph with high girth;
see, for example, Mitzenmacher and Upfal [13]. This existence proof can easily
be extended to bipartite graphs. Lazebnik and Ustimenko [12] used algebraic
methods to give an explicit construction of a dense bipartite graph with high
girth. Chandran [7] used a purely combinatorial approach to construct such a
graph, which is, however, not bipartite. In Section 3, we modify Chandran’s con-
struction and obtain a simple deterministic algorithm that produces the bipartite
graph that is needed to prove Theorem 1.

The spanner problem naturally leads to the following optimization problem:
Given a connected weighted graph G with n vertices, and given a real number
t > 1, compute a t-spanner of G, having the minimum number of edges.

Cai [4] proved that, for any fixed t ≥ 2, this optimization problem is NP-hard
for unweighted graphs. Cai and Corneil [5] considered the problem for weighted
graphs, and showed it to be NP-hard for any fixed t > 1. The problem has
also been shown to be NP-hard for restricted classes of graphs, such as planar
graphs (see Brandes and Handke [3]), chordal graphs, and bipartite graphs (see
Venkatesan et al. [20]). However, the complexity of the optimization problem has
not been considered for geometric graphs. In Section 4, we prove this version
of the problem to be NP-hard as well. Our proof consists of generalizing the
approach of Cai [4]: We show that any Boolean formula ϕ in 3-conjunctive normal
form can be transformed, in polynomial time, to a geometric graph G and an
integer K, such that ϕ is satisfiable if and only if G contains a t-spanner with
at most K edges. Again, the main difficulty is in defining G in such a way that
its vertices are points in the plane and the weight of each edge {u, v} is exactly
equal to the Euclidean distance |uv|. Recall that the transformation from ϕ to
the pair (G, K) has to be done on a Turing machine. Since Turing machines can
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only deal with finite strings, we take care that the vertices of G are points in the
plane having rational coordinates. Thus, the optimization problem for geometric
graphs is formally defined as follows, for any fixed rational number t > 1:

Problem GeomMinSpanner(t):
Instance: A connected geometric graph G = (S, E), where S ⊆ Q2, and a

positive integer K.
Question: Does G contain a t-spanner with at most K edges?

In Section 4, we prove the following result:

Theorem 2. For any fixed rational number t > 1, GeomMinSpanner(t) is
NP-hard.

1.1 Related Work

The problem of constructing geometric spanners with few edges has been con-
sidered for point sets. A graph G′, whose vertex set is a set S of points in Rd, is
said to be a t-spanner for S, if G′ is a t-spanner of the complete geometric graph
on S. Salowe [17], Vaidya [19], and Callahan and Kosaraju [6] have shown that,
for any set S of n points in Rd, and for any real constant t > 1, a t-spanner
for S with O(n) edges can be computed in O(n log n) time. See also the survey
papers by Eppstein [8], Smid [18], and Gudmundsson and Knauer [9].

Gudmundsson et al. [10] (see also [11]) have shown that if S is a set of n
points in Rd, t > 1 is a real number, and G is a (1 + ε)-spanner for S, then G
contains a t-spanner with O(n) edges.

Thus, the problem of constructing sparse spanners of geometric graphs G has
been considered for the cases when G is the complete geometric graph or when
G itself is a spanner of its vertex set. The problem has not been considered for
arbitrary geometric graphs G.

2 A Geometric Graph That Contains Only Dense
Spanners

In this section, we will prove Theorem 1. Consider a connected (not necessarily
geometric) graph G, in which every edge e has a positive weight ω(e). Recall
that the girth of G is the minimum number of edges on any cycle in G. We
denote by ω(C) the weight of any cycle C in G. Thus, ω(C) is equal to the sum
of the weights of the edges on C. We define the weighted girth gω of G to be
the minimum value of ω(C)/ω(e), where C is any cycle in G and e is an edge of
maximum weight on C. The following lemma relates the dilation of every proper
subgraph of G to the weighted girth of G.

Lemma 1. Let f = {u, v} be an arbitrary edge of G, and let G′ be the graph
obtained by deleting f from G. Then the dilation t of G′ with respect to G satisfies
t ≥ gω − 1.

The next lemma shows that any connected bipartite graph with girth g can be
transformed to a connected geometric graph whose weighted girth is Ω(g).
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We say that a graph G is an n × n bipartite graph, if its vertex set can be
partitioned into two sets L and R, each having size n, such that every edge of
G is between a vertex in L and a vertex in R.

Lemma 2. Let G be a connected n× n bipartite graph with m edges and girth
g. Then for every real number ε with 0 < ε < 1, there exists a set S of 2n points
in the plane and a connected geometric graph with vertex set S that consists of
m edges and whose weighted girth is at least (1− ε)g.

Proof. Let 	1 be the vertical line segment with endpoints (0, 0) and (0, ε/2), and
let 	2 be the vertical line segment with endpoints (1 − ε, 0) and (1 − ε, ε/2).
We embed the graph G in the plane, by mapping the vertices of L to a set SL

of n points on 	1, and mapping the vertices of R to a set SR of n points on
	2. Let S = SL ∪ SR, and let G′ denote the embedded geometric graph. The
lemma follows from the fact that the length of each edge of G′ is in the interval
[1− ε, 1]. �

The previous lemmas imply that we can prove Theorem 1, by constructing a
dense bipartite graph whose girth is large. The following lemma states that such
a graph exists; the proof will be given in Section 3.

Lemma 3. Let n and k be positive integers with n ≥ 3k + 4 and k ≥ 2. There
exists a connected n × n bipartite graph with kn edges, in which the degrees of
all vertices are in {k − 1, k, k + 1}, and whose girth is at least

log(3n/8)
log(k + 1)

+ 1 = logk n−O(1).

Consider the bipartite graph of Lemma 3, and denote its girth by g. By Lemma 2,
we can transform this graph to a geometric graph G, whose weighted girth is
at least (1 − ε)g. Then, Lemma 1 implies that every proper subgraph of G has
dilation at least (1− ε)g − 1. Thus, we obtain the following result.

Lemma 4. Let n and k be positive integers with n ≥ 3k + 4 and k ≥ 2, and let
ε be a real number with 0 < ε < 1. There exists a connected geometric graph G
with 2n vertices and kn edges, such that for every proper subgraph G′ of G, the
dilation of G′ with respect to G is at least

(1− ε)
log(3n/8)
log(k + 1)

− ε = (1− ε) logk n−O(1).

We are now ready to prove Theorem 1. Let n be a sufficiently large integer, and
let t be a real number with 1 < t < 1

4 log n. Let k = (n/4)(1−ε)/(t+ε) − 1, where
ε = 2t/ logn. Let G be the geometric graph in Lemma 4. We claim that this
graph has the properties stated in Theorem 1. Indeed, let G′ be an arbitrary
t-spanner of G. Our choice of k implies that

t = (1 − ε)
log(n/4)
log(k + 1)

− ε < (1− ε)
log(3n/8)
log(k + 1)

− ε.
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Algorithm. BipartiteHighGirth(n, k)
Input: Integers n and k, such that n ≥ 3k + 4 and k ≥ 2.
Output: A connected n × n bipartite graph G with kn edges and girth at
least logk n − O(1), such that the degree of each vertex is in {k − 1, k, k + 1}.

let L and R be two disjoint sets, each having size n;
let V = L ∪ R;
initialize G to be a Hamiltonian cycle in the complete bipartite graph on L ∪ R;
for i = 2n + 1 to kn
do let M be the set of all vertices in V having minimum degree in G;

let P = ((M ∩ L) × R) ∪ ((M ∩ R) × L);
let T be the set of all ordered pairs (u, v) in P , such that {u, v} is not an
edge in G and degG(v) ≤ �i/n�;
let (u, v) be any pair in T , such that δG(u, v) is maximum;
add the edge {u, v} to G

endfor;
return the graph G

Fig. 1. The algorithm that constructs a dense bipartite graph with high girth

However, if G′ is a proper subgraph of G, then Lemma 4 states that t must be at
least the quantity on the right-hand side. Thus, G′ is equal to G and, therefore,
the number of edges of G′ is equal to

kn = Ω
(
n1+(1−ε)/(t+ε)

)
= Ω

(
n1+(1−2ε)/t

)
= Ω

(
n1+1/t

)
.

3 Constructing a Dense Bipartite Graph with High Girth

In this section, we prove Lemma 3. Our construction is a modification of a
construction due to Chandran [7], who proved the same result for general, i.e.,
non-bipartite, graphs. In this section, δG(u, v) denotes the minimum number of
edges on any path in G between u and v. The algorithm is given in Figure 1.

3.1 Analyzing the Size and the Degree

We number the iterations of the for-loop according to the value of the variable
i. In other words, the iterations are numbered 2n + 1, 2n + 2, . . . , kn. Iteration
j denotes the iteration in which the value of the variable i is equal to j. In this
section, we will prove the following lemma.

Lemma 5. Let d be an integer with 2 ≤ d ≤ k. At the moment when iteration
dn of the for-loop is completed, the following are true:

1. The graph G consists of dn edges.
2. The degree in G of every vertex of V is in {d− 1, d, d + 1}.
3. Let X and Z be the sets of vertices of V , whose degrees in G are equal to

d− 1 and d + 1, respectively. Then, |X | = |Z|.
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Thus, for d = k, this lemma implies the claims in Lemma 3 about the number
of edges and the degrees of the vertices. The proof of Lemma 5 is by induction
on d. The lemma obviously holds for d = 2.

We choose an integer d such that 2 ≤ d < k, and assume that Lemma 5
holds for d. We will prove in Lemmas 6–9 below that the lemma then also holds
for d + 1. To prove this, we consider iterations dn + 1, dn + 2, . . . , (d + 1)n of
the for-loop. We will refer to this sequence of n iterations as the current batch.
Observe that during the current batch, the value of �i/n� is equal to d + 1.

Lemma 6. At the end of the current batch, all degrees are at most d + 2.

Proof. Let x be an arbitrary vertex in V . Consider any edge {u, v}, where v = x,
that is added to G during the current batch, because the algorithm chooses the
pair (u, v) in T . Then, prior to the moment this edge is added, degG(v) ≤ d + 1.
Therefore, the addition of edges of this type cannot lead to a degree of x that is
larger than d + 2.

Consider any edge {u, v}, where u = x, that is added to G during the current
batch, because the algorithm chooses the pair (u, v) in T . Assume that this
addition makes the degree of x to be at least d+3. It follows from the algorithm
that, prior to the addition of {u, v}, x has minimum degree in G. Therefore, the
degree of v is at least d + 2 at that moment. But this implies that the ordered
pair (u, v) is not in the set T . �

Lemma 7. In each iteration of the current batch, exactly one edge is added.

Proof. By the induction hypothesis, the graph G consists of dn edges at the
beginning of the current batch. During this batch, at most n edges are added to
G. It follows that, at any moment during the current batch,∑

v∈V

degG(v) ≤ 2(d + 1)n. (1)

Consider one iteration of the current batch, and let G′ be the graph G at the
start of this iteration. Let u be a vertex of V , whose degree in G′ is minimum.
We may assume without loss of generality that u ∈ L.

We claim that, at the start of this iteration, there exists a vertex v in R, such
that {u, v} is not an edge in G′ and degG′(v) ≤ d+1. Assuming this claim is true,
it follows from the algorithm that, during this iteration, the set T is non-empty
and, therefore, an edge is added to G′.

It remains to prove the claim. Let d′ be the degree of u in G′, and let
v1, v2, . . . , vd′ be all vertices of R that are connected to u by an edge of G′.
It follows from the induction hypothesis that

∑d′

j=1 degG′(vj) ≥ d′(d− 1). More-
over, by (1), we have

∑
v∈R

degG′(v) =
1
2

∑
v∈V

degG′(v) ≤ (d + 1)n. (2)



394 J. Gudmundsson and M. Smid

Assume that the claim does not hold. Then, we have degG′(v) ≥ d + 2 for
each v ∈ R \ {v1, v2, . . . , vd′}. It follows that∑

v∈R

degG′(v) ≥ d′(d− 1) + (n− d′)(d + 2). (3)

By combining (2) and (3), we obtain d′(d−1)+(n−d′)(d+2) ≤ (d+1)n, which
can be rewritten as n ≤ 3d′. By Lemma 6, we have d′ ≤ d + 2 ≤ k + 1, which
implies that n ≤ 3k + 3, contradicting our assumption that n ≥ 3k + 4. �

Lemma 8. At the end of the current batch, every vertex has degree at least d.

Proof. Consider the sets X and Z of vertices of V , whose degrees in G, at the
beginning of the current batch, are equal to d− 1 and d + 1, respectively. Since
|X | = |Z|, we have |X | ≤ n. In each iteration of the current batch, one edge
{u, v}, where u has minimum degree in the current graph G, is added to G. The
induction hypothesis implies that, after this edge has been added, the degree of
u is at least d. Therefore, after the first |X | iterations of the current batch, G
does not contain any vertex of degree at most d− 1. �

Lemma 9. Let X ′, Y ′, and Z ′ be the sets of vertices of V , whose degrees in G
are equal to d, d + 1, and d + 2, respectively, at the end of the current batch.
Then, |X ′| = |Z ′|.

Proof. By Lemmas 6–8, we have |X ′|+ |Y ′|+ |Z ′| = 2n and d|X ′|+(d+1)|Y ′|+
(d+2)|Z ′| = 2(d+1)n. By multiplying the first equation by d+1, and subtracting
the result from the second equation, the lemma follows. �

3.2 A Lower Bound on the Girth

Consider the graph G that is returned by algorithm BipartiteHighGirth(n, k),
and let g be its girth. In this section, we prove the lower bound on g as stated
in Lemma 3. Let C be a cycle in G consisting of g edges, and let {u, v} be
the last edge of C that is added to G. Let j be the integer such that {u, v} is
added to G during iteration j of the for-loop. We may assume that j ≥ 2n + 1,
because otherwise, g = 2n. Let d = �j/n�, and let Gj be the graph G at the
start of iteration j. Consider the ordered pair (u, v) in T that corresponds to the
edge {u, v}. We observe that δGj (u, v) ≤ g − 1. We may assume without loss of
generality that u ∈ L. Define B = {x ∈ R : δGj (u, x) ≥ g}. Let x be an arbitrary
element in B. Then {u, x} is not an edge in Gj and δGj(u, x) > δGj(u, v). Since
the edge {u, v} is added to Gj in iteration j, it follows that (u, x) �∈ T and,
therefore, degGj

(x) ≥ d + 1. In fact, by Lemma 5, we have degGj
(x) = d + 1.

Hence, B ⊆ {x ∈ R : degGj
(x) = d + 1}. Let G′ be the graph G at the end of

iteration dn, and define ZR = {x ∈ R : degG′(x) = d+1}. Since dn ≥ j, and using
Lemma 5, we obtain B ⊆ ZR. Define XR = {x ∈ R : degG′(x) = d − 1}. Then,
as in the proof of Lemma 9, it can be shown that |XR| = |ZR|, implying that
|ZR| ≤ n/2. Thus, since B ⊆ ZR, we have |B| ≤ n/2 and, hence, |R \B| ≥ n/2.
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Since R \ B = {x ∈ R : δGj (u, x) ≤ g − 1}, and since, by Lemma 5, the degree
of every vertex of Gj is at most d + 1 ≤ k + 1, it follows that

|R \B| ≤ (k + 1) + (k + 1)3 + (k + 1)5 + . . . + (k + 1)g−1 ≤ 4
3
(k + 1)g−1.

By combining the lower and upper bounds on the size of R \ B, we obtain the
lower bound on g as stated in Lemma 3.

4 The NP-Hardness Proof

We now prove Theorem 2, i.e., the decision problem GeomMinSpanner(t)
is NP-hard. Throughout this section, we fix a rational number t > 1. Re-
call that 3SAT is the NP-complete problem of deciding whether or not any
given Boolean formula in 3-conjunctive normal form is satisfiable. To prove
Theorem 2, it suffices to design a polynomial-time reduction from 3SAT to
GeomMinSpanner(t). Note that time refers to the number of bit operations
made in the reduction. In Section 4.2, we present such a reduction. Our approach
is to extend Cai’s reduction in [4], which shows that constructing a t-spanner
with the minimum number of edges in any unweighted graph is NP-hard. First,
in Section 4.1, we introduce so-called forced paths, which are paths in a geometric
graph G that must be in any t-spanner of G.

4.1 Forced Paths

We fix a rational number t > 1 and an even integer k, such that k ≥ 4 and
k ≥ t+1. Let 	 > 0 be a rational number, and let x = (x1, x2) and y = (y1, y2) be
two points in Q2. Let μ be a rational number, such that 1/|xy| ≤ μ ≤ 1/|xy|+1/	,
and define the rational number λ as λ = 	μ/k. Let v be the point in Q2 defined
as v = (λ(y2 − x2), λ(x1 − y1)). Observe that the vector from the origin to v is
orthogonal to the line segment joining x and y. For i = 0, 1, . . . , k/2, we define
the points ai and bi in Q2 as ai = x + iv and bi = y + iv. Finally, we define P
to be the path consisting of the edges

{a0, a1}, . . . , {ak/2−1, ak/2}, {ak/2, bk/2}, {bk/2, bk/2−1}, . . . , {b1, b0}.

We will refer to the path P as the forced path of x and y (with respect to 	),
and denote it by FP(x, y; 	). Lemma 11 explains this terminology.

Lemma 10. The length |P | of the forced path P = FP(x, y; 	) satisfies

	 ≤ |P | ≤ 	 + 2|xy|.

Lemma 11. Let G be a connected geometric graph, whose vertices are points
in Q2, and let x and y be two distinct vertices of G that are not connected by
an edge, such that |xy| ≤ 	/(t − 1). Assume that G contains the forced path
P = FP(x, y; 	). Also, assume that each vertex of P \ {x, y} has degree two in
G. Then, every t-spanner of G contains the path P .
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Proof. Let G′ be an arbitrary t-spanner of G. Let 0 ≤ i < k/2, and assume
that the edge {ai, ai+1} of P is not an edge in G′. Then, δG′(ai, ai+1) > |P | −
|aiai+1| > (k−1)|aiai+1|. Since k ≥ t+1, it follows that δG′(ai, ai+1) > t|aiai+1|,
contradicting the fact that G′ is a t-spanner of G. By a symmetric argument, all
edges {bi, bi+1}, with 0 ≤ i < k/2, are contained in G′. Assume that the edge
{ak/2, bk/2} of P is not an edge in G′. Then, δG′(ak/2, bk/2) > |P | = (	μ+1)|xy| ≥
(	/|xy|+ 1) |xy|. Since |xy| ≤ 	/(t− 1), it follows that δG′(ak/2, bk/2) > t|xy| =
t|ak/2bk/2|, which is again a contradiction. �
Lemma 12. Assume that 	 > 0 is a rational constant. Given the points x and
y in Q2, the path FP(x, y; 	) can be constructed in time that is polynomial in L,
where L is the total number of bits in the binary representations of the numera-
tors and denominators of the coordinates of x and y.

4.2 The Reduction

We are now ready to give the reduction from 3SAT to GeomMinSpanner(t).
Recall that t > 1 is a rational number, and k is an even integer, such that k ≥ 4
and k ≥ t + 1. We define the rational number 	 as 	 = 2(t − 1)/3. We consider
t, k, and 	 to be constants. We need the following lemma, which will be used
to obtain points on the unit-circle that have rational coordinates and that are
close together.

Lemma 13. Let ρ = min(2/3, 	/4), let C be the circle of radius ρ/2 centered at
the point (1, 0), let i be an integer, such that i ≥ 4/ρ, and let Q(i) ∈ Q2 be the
point Q(i) = ((i2 − 1)/(i2 + 1), 2i/(i2 + 1)). Then, Q(i) is on the unit-circle and
in the interior of C.

Let ϕ be a Boolean formula in 3-conjunctive normal form, with variables x1, x2,
. . . , xN , consisting of M clauses c1, c2, . . . , cM . Thus, for each j with 1 ≤ j ≤ M ,
the clause cj is of the form cj = y1 ∨ y2 ∨ y3, where each of y1, y2, and y3 is
either a variable or the negation of a variable.

Our task is to map ϕ to an instance of GeomMinSpanner(t), i.e., a connected
geometric graph G, whose vertex set is a set of points in Q2, and an integer K,
such that ϕ is satisfiable if and only if G contains a t-spanner having at most K
edges.

Let z denote the origin in R2, and define i∗ = �4/ρ�. For each i with 1 ≤ i ≤ N ,
we define the following geometric graph Gi:

1. Let pi = Q(i∗ + 4i), p′i = Q(i∗ + 4i + 1), qi = Q(i∗ + 4i + 2), and q′i =
Q(i∗ + 4i + 3).

2. Gi contains the four edges {z, pi}, {z, p′i}, {z, qi}, and {z, q′i}.
3. Gi contains the five forced paths FP(pi, p

′
i; 	), FP(pi, qi; 	), FP(pi, q

′
i; 	),

FP(p′i, qi; 	), and FP(p′i, q
′
i; 	).

For each clause cj = (y1 ∨ y2 ∨ y3), 1 ≤ j ≤ M , we define the following
geometric graph Gj :

1. Let rj = Q(i∗ + 4N + 3 + j).
2. The graph Gj contains the edge {z, rj}.



On Spanners of Geometric Graphs 397

3. For each m with 1 ≤ m ≤ 3, if ym is equal to the variable, say, xi, then
Gj contains the forced path FP(rj , pi; 	). On the other hand, if ym is equal
to the negation of the variable, say, xi, then Gj contains the forced path
FP(rj , p

′
i; 	).

We define G to be the union of the graphs Gi (1 ≤ i ≤ N) and the graphs Gj

(1 ≤ j ≤ M). Observe that G is a connected geometric graph, whose vertices
are points in Q2. Recall that each forced path consists of k +1 edges. The graph
G consists of 1 + (5k + 4)N + (3k + 1)M vertices and (5k + 9)N + (3k + 4)M
edges. We define K = (5k + 6)N + (3k + 3)M .

If L denotes the number of bits in the representation of the Boolean formula
ϕ, then it follows from Lemma 12 that the graph G can be constructed in time
that is polynomial in L.

In the rest of this section, we will prove that the Boolean formula ϕ is satisfi-
able if and only if the graph G contains a t-spanner with at most K edges. The
following lemma follows from Lemmas 10 and 13.

Lemma 14. The length of each forced path in the graph G is in the interval
[	, 3	/2].

The next lemma explains our choice for the integer K.

Lemma 15. Let G′ be an arbitrary t-spanner of G. Then, the following two
claims are true:
1. G′ contains at least K edges.
2. If G′ consists of exactly K edges, then, for each i with 1 ≤ i ≤ N , exactly

one of the edges {z, pi} and {z, p′i} is in G′.

Proof. We first observe that, by Lemmas 11 and 13, all forced paths in G are
contained in G′. The total number of edges in these forced paths is equal to
(5N + 3M)(k + 1) = K − N . We will prove below that, for each 1 ≤ i ≤ N ,
the graph G′ contains at least one of the four edges {z, pi}, {z, p′i}, {z, qi}, and
{z, q′i}. This will imply that G′ contains at least K edges and, thus, prove the
first claim.

Let 1 ≤ i ≤ N , and assume that none of the edges {z, pi}, {z, p′i}, {z, qi}, and
{z, q′i} is contained in G′. Then, any path in G′ between z and qi contains at least
one edge of length one and at least two forced paths. Thus, using Lemma 14, we
have

δG′(z, qi) ≥ 1 + 2	 = 1 + 2 · 2(t− 1)/3 > t = t · δG(z, qi),
contradicting the fact that G′ is a t-spanner of G.

To prove the second claim, assume that G′ consists of exactly K edges. Let
1 ≤ i ≤ N . It follows from the argument above that G′ contains exactly one of
the edges {z, pi}, {z, p′i}, {z, qi}, and {z, q′i}. If G′ contains {z, q′i}, then, by the
same argument as above, we must have δG′(z, qi) > t · δG(z, qi), contradicting
our assumption that G′ is a t-spanner of G. Similarly, if G′ contains {z, qi}, then
δG′(z, q′i) > t · δG(z, q′i), which is also a contradiction. �
Lemma 16. If G contains a t-spanner with at most K edges, then the Boolean
formula ϕ is satisfiable.
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Proof. Let G′ be a t-spanner of G consisting of at most K edges. Then, by
Lemma 15, G′ contains exactly K edges and, for each 1 ≤ i ≤ N , G′ contains
exactly one of the edges {z, pi} and {z, p′i}.

For each 1 ≤ i ≤ N , if {z, pi} is an edge of G′, then we give the variable xi

the value true, otherwise, we give the variable xi the value false. We claim that
for this assignment of truth values, the Boolean formula ϕ evaluates to true. To
prove this, let 1 ≤ j ≤ M , and consider the clause cj in ϕ. For ease of notation,
let us assume that cj = x1 ∨ x2 ∨ x3. To prove that cj evaluates to true, we
have to show that at least one of the edges {z, p1}, {z, p′2}, and {z, p′3} is in G′.
Assume that neither of these edges is in G′. Observe that {z, rj} is not an edge
in G′, because otherwise, G′ contains more than K edges. Thus, every path in G′

between z and rj contains at least one edge of length one and at least two forced
paths. Therefore, we have δG′(z, rj) ≥ 1+ 2	 > t · δG(z, rj). This contradicts our
assumption that G′ is a t-spanner of G. �

Lemma 17. If the Boolean formula ϕ is satisfiable, then G contains a t-spanner
with at most K edges.

Proof. Assume that ϕ is satisfiable. We fix an assignment of truth values for
the variables x1, x2, . . . , xN for which ϕ evaluates to true. Define the following
subgraph G′ of G: First, G′ contains all forced paths in G. Second, for each
1 ≤ i ≤ N , if xi = true, then G′ contains the edge {z, pi}, otherwise, G′ contains
the edge {z, p′i}. The graph G′ contains exactly K edges. To show that G′ is a
t-spanner of G, it suffices to prove the following claim: For each edge {a, b} of G
that is not in G′, we have δG′(a, b) ≤ t|ab|.

Let 1 ≤ i ≤ N . We may assume without loss of generality that {z, p′i} is an
edge in G′. Consider the edge {z, pi} of G, which is not an edge in G′. The edge
{z, p′i} and the forced path FP(pi, p

′
i; 	) form a path in G′ between z and pi.

Thus, using Lemma 14, we have δG′(z, pi) ≤ 1 + 3	/2 = t = t|zpi|. In a similar
way, it can be shown that δG′(z, qi) ≤ t = t|zqi| and δG′(z, q′i) ≤ t = t|zq′i|.

Let 1 ≤ j ≤ M . Write the clause cj as cj = y1∨y2∨y3, and consider the edge
{z, rj} of G, which is not an edge in G′. Since cj evaluates to true, at least one
of the literals in cj is true. We may assume without loss of generality that y1
is true. If y1 = xi, for some i, then G′ contains the edge {z, pi} and the forced
path FP(rj , pi; 	). It follows that δG′(z, rj) ≤ 1+3	/2 = t = t|zrj |. On the other
hand, if y1 = xi, for some i, then G′ contains the edge {z, p′i} and the forced
path FP(rj , p

′
i; 	). Thus, in this case, we have δG′(z, rj) ≤ 1 + 3	/2 = t = t|zrj |.

Hence, we have shown that G′ is a t-spanner of G. �
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Abstract. We consider problems where we are given a rooted tree as
input, and must find a subtree with the same root, optimizing some
objective function of the nodes in the subtree. When the objective is the
sum of linear function weights of a parameter, we show how to list all
optima for all parameter values in O(n log n) time. This can be used to
solve many bicriterion optimizations problems in which each node has
two values xi and yi associated with it, and the objective function is a
bivariate function f(

∑
xi,
∑

yi) of the sums of these two values. When
f is the ratio of the two sums, we have the Weighted Maximum-Mean
Subtree Problem, or equivalently the Fractional Prize-Collecting Steiner
Tree Problem on Trees; we provide a linear time algorithm when all
values are positive, improving a previous O(n log n) solution, and prove
NP-completeness when certain negative values are allowed.

1 Introduction

Suppose we are given a rooted tree, in which each node i has two quantities xi

and yi associated with it, and a bivariate objective function f . For any subtree S,
let XS =

∑
i∈S xi and YS =

∑
i∈S yi. We wish to find the subtree S, having the

same root as the input tree, that maximizes f(XS , YS). (We note that finding
the tree minimizing or maximizing

∑
xi is a simple variant of the Open Pit

Mining problem on DAGs [2], and can be easily solved in O(n) time [7].)
For instance, if f(X, Y ) = X/Y , we can interpret xi as the profit of a node,

and yi as the cost of a node; the optimal subtree is the one that maximizes
the return on investment. This problem, which we call the Weighted Maximum-
Mean Subtree Problem (WMMSTP), can also be viewed as a special case of the
Fractional Prize-Collecting Steiner Tree Problem (FPCSTP); in the FPCSTP,
one is given a graph, with costs on the edges and profits on the vertices, a
starting vertex v0, and a starting cost c0, and must find a tree rooted at v0 that
maximizes the total profit divided by the total cost. It is easy to see that the
WMMSTP is equivalent to a special case of the FPCSTP in which the input is
a rooted tree, v0 is the root of the tree, c0 is the cost of the root node, and each
additional tree node has a cost in the WMMSTP that is equal to the cost in the
FPCSTP of the edge connecting the node to its parent. For this special case of
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FPCSTP on Trees (or equivalently WMMSTP), when all costs are positive, an
O(n log n) time algorithm is known [7].

The Weighted Maximum-Mean Subtree Problem (and equivalently the FPC-
STT problem) can be applied to maximizing return on investment for adding
services to a preexisting tree structured utility networks. An example of this lies
within the development of DSL services over preexisting telephone networks, as
has been in construction in recent years. The costs associated with adding such a
service involve additional equipment (repeaters, hubs, switches, filters, and line
upgrades) placed along the standard wired telephone services, and profits are
gained from providing such a service to homes and businesses connected to the
upgraded network. In running the algorithm we present, a telephone company
that desires to upgrade their lines would discover where they should offer such
services to maximize the percent return on their service upgrade investment.
More generally this problem applies to situations where return on investment is
optimized among hierarchical sets of business opportunities.

More generally let g(X, Y ) = X + λY , and consider the sequence of subtrees
that maximize g(XS, YS) as the parameter λ varies from −∞ to +∞. We call the
problem of computing this sequence the Parametric Linear Maximum Subtree
Problem. This sequence of parametric optimal subtrees can be viewed as forming
the upper convex hull of the planar point set formed by taking one point (XS , YS)
for each possible subtree S of the input tree, and the lower convex hull can be
formed similarly as the sequence of trees minimizing g(XS , YS) as λ varies.

As seen for related bicriterion spanning tree problems [1, 5, 6], many bicri-
terion optimal subtree problems can be solved by this parametric approach. If
f(X, Y ) is any convex or quasiconvex function, its maximum over the set of
points (XS , YS) is achieved at a vertex of the convex hull, so by computing
and testing all parametric optima we can be certain to find the subtree that
maximizes a convex or quasiconvex f(X, Y ) or equivalently that minimizes a
concave or quasiconcave f(X, Y ). The following problems can be solved with
this parametric formulation:

– The Weighted Maximum-Mean Subtree Problem can be viewed as a special
case of this formulation where f(X, Y ) = X/Y ; this function is convex on the
upper halfplane (positive costs) but not on the whole plane (where costs may
be negative). We supply a more efficient algorithm for this problem when
weights are positive, but the parametric approach succeeds more generally
when weights may be negative but all subtrees containing the tree root have
positive total weight.

– Suppose node i may fail with probability pi and has a cost xi, and let yi =
− ln(1−pi). Then the reliability probability of the overall subtree is eY , and
the subtree that minimizes the ratio of cost to reliability can be found by
minimizing f(X, Y ) = XeY .

– If nodes have weights that are unknown random variables with known mean
and variance, the stochastic programming problem of finding a subtree with
high probability of having low weight can be expressed as minimizing
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f(X, Y ) = X +
√

Y , and the problem of finding a subtree minimizing the
variance in weight can be expressed as minimizing f(X, Y ) = X − Y 2.

As we will show, this parametric approach leads to efficient algorithms for
these and many other bicriterion optimal subtree problems.

Our algorithms assume that the values xi and yi associated with tree nodes
are real-valued, and that any single arithmetic operation or comparison on two
real values can be performed in constant time.

2 New Results

We provide the following results:

– A linear time algorithm for solving the Weighted Maximum-Mean Subtree
Problem with positive weights, improving a previous O(n log n) time solu-
tion [7].

– A proof that the Weighted Maximum-Mean Subtree Problem is NP-complete
when the weights are allowed to be negative.

– An optimal O(n log n) time algorithm for listing all solutions, in order by
parameter value, to the Parametric Linear Maximum Subtree Problem.

– An O(n log n) time algorithm for solving any bicriterion optimal subtree
problem that maximizes a convex function f(X, Y ) or minimizes a concave
function f(X, Y ) of the sums X and Y of the two node values.

3 The Weighted Maximum-Mean Subtree Problem

We are given a rooted tree of nodes such that each node i has a real valued profit
xi, and we produce a subtree that maximizes the average profit of the remaining
nodes. By pruning a node we mean removing it and all of its descendants from
the input; our task then becomes finding an optimal set of nodes to prune.

A generalization of this problem gives each node a positive real valued cost
yi; the original problem can be viewed as assigning each node a unit cost. The
overall average of a tree is the sum of the profits divided by the sum of the
costs, including only unpruned nodes. In this section we show the problem to
be NP-complete when the costs can be negative, and present an algorithm that
solves the generalization with both profits and positive costs per node in time
O(n).

We assume that our input consists of a rooted tree T , whose nodes each have
positive or negative real valued profits and positive real valued costs. The output
should be a pruned subtree P (T ) and an average profit

OPTAV G = AV G(P (T )) =
∑
x∈U

profit(x)/
∑
x∈U

cost(x),

where U denotes the set of unpruned nodes in P (T ), and where this average
profit is at least as large as that of any other subtree of T having the same root.
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def HasAverageAtLeast(tree, cutoff):
tree.subprofit = tree.profit
tree.subcost = tree.cost

for child in tree.children:
if HasAverageAtLeast(child, cutoff):

tree.subprofit += child.subprofit
tree.subcost += child.subcost

unpruned = tree.subprofit/tree.subcost >= cutoff
tree.pruned = not unpruned
return unpruned

Listing 1: Testing whether OPTAV G is at least a given cutoff.

Theorem 1. The Weighted Maximum-Mean Subtree Problem with negative cost
nodes is NP-complete.

Proof. Given an instance of Integer Subset-Sum with a set S of values, and a
desired total U , we create a rooted tree with a root node and |S| leaf nodes
hanging from the root. Set the root’s profit to one, the root’s cost to U , and all
leaf profits to zero. Assign each leaf’s cost as the negation of one of the values
from S. The maximum mean for such a tree is ∞, if and only if the Subset Sum
instance has a subset of values summing to U , where in this case the optimal
subtree includes only those leaf nodes whose costs sum to U .

By slightly adjusting the root cost in this reduction we can avoid the issue
of division by zero while still preserving the computational complexity of the
problem. Due to this result, in the rest of the section we restrict costs to being
strictly positive. However, our algorithm correctly finds the maximum mean
subtree even when profits are allowed to be negative.

We first define the algorithm provided in Listing 1 which tells us whether or
not some tree has a pruning with average greater than or equal to some provided
cutoff. Essentially, the algorithm traverses the tree bottom-up, pruning any node
when the average of it and its unpruned descendants falls below the cutoff.

Lemma 1. Suppose that there exists a tree T with average value at least cutoff.
Then the tree U that HasAverageAtLeast forms by pruning the input tree also
has average value at least cutoff.

Proof. T and U may differ, by the inclusion of some subtrees and the exclusion
of others. For each subtree s that is included in U and excluded from T , s must
have average value at least cutoff (otherwise, HasAverageAtLeast would have
pruned it) so combining its value from that of T can not bring the average below
cutoff. For each subtree s that is excluded from U and included in T , s must
have average value below cutoff (by an inductive application of the lemma to the
subtree rooted at the root of s) so removing its value from that of T can only
increase the overall value.
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Corollary 1. HasAverageAtLeast returns True if and only if there exists a
tree with average value at least cutoff.

A very similar subroutine, which we call HasAverageGreaterThan, replaces
the greater-or-equal test in the assignment to unpruned by a strict inequality.
A suitably modified version of Lemma 1 and its proof would also prove its
correctness. Note that tree.subprofit, tree.subcost, and tree.pruned variables
provided above are implementation details.

Klau et al. [7] provide three algorithms which solve the Maximum-Mean Sub-
tree problem. The first is a binary search, based on the linear time decision
algorithms presented above, which runs in O(nk) time, where k is the desired
precision of the answer in bits, and n is the number of nodes in the input tree.
A second algorithm, which they present as a form of Newton’s Method, runs
in worst-case O(n2). Their third algorithm, which they present as their main
result, is based on Megiddo’s Parametric Search and runs in O(n log n) time.

We briefly describe this third algorithm, as our linear time algorithm is closely
related to it. It performs a sequence of iterations, each of which performs a binary
search among the profit/cost ratios of the remaining tree nodes to determine their
relation to the optimal solution value. Once all of these values are known, their
algorithm uses this information to reduce the input tree to a smaller tree with
the same final solution value, continuing recursively on that tree. Pruning and
merging steps are introduced which further reduce the remaining tree nodes.

The basic difference between Klau et al.’s third algorithm and ours, is that
where Klau et al. binary search from among a set of node profit/cost ratios to
constrain the range of solution values, we choose the median from the set and
perform a single call to the decision algorithm to constrain our range. We prove
that our method is sufficient to reduce a potential function related to the size of
the tree by a constant fraction every pass. When the tree has been reduced to
a single node, we are done. Because each pass only calls the decision algorithm
once, the time per pass is reduced from O(n log n) to O(n), and the running time
of our algorithm reduces to O(n) via geometric sum. An outline for our algorithm
with pseudocode for merge and prune are provided in Listing 2. Our provided al-
gorithm returns the optimal average, but by calling HasAverageAtLeast on the
original input tree with the optimal average and obeying the pruning decisions
it makes, we can produce P (T ).

Lemma 2. The merge decisions made in the algorithm are correct.

Proof. The only way merge decisions could be incorrect would be if the optimal
pruning cuts between x and y (x being the parent of y); we show that cannot
happen. First suppose x has value below the low bound. If a pruning were made
between x and y, the remaining subtree rooted at x would consist of x itself,
which has a low value, so pruning x could only improve the tree. Suppose y is
above the high bound, and suppose that a tree includes x but does not include
y. Then y could be included with no other nodes, increasing the average, so the
tree excluding y could not be optimal.
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Our Algorithm:

1. Set low and high to be outside the range of all node values.
2. While the root of the tree has children, repeat the following steps:

(a) Find the set of tree nodes whose values are within the range between low and
high, call them in-range nodes.

(b) Reduce the range by applying the decision algorithm to the median value of
these tree nodes.

(c) For each node in a post-order traversal of the tree:
i. Prune any leaf node whose value is below low, calling them low nodes.
ii. Merge any node whose value is above high with its parent, calling them

high nodes.
iii. Merge with its child any node that has a single child and that has value

below low, also calling them low nodes.

To merge a child ch with its parent pa:

1. Remove ch from pa’s list of children.
2. Merge ch’s list of children with pa’s list of children.
3. Increment the profit of pa with the profit of ch.
4. Increment the cost of pa with the cost of ch.

To prune a child ch from its parent pa:

1. Remove ch from pa’s list of chilren.

Listing 2: Outline for our algorithm with merge and prune subprocedures.

Lemma 3. If there are m nodes remaining in the tree after any iteration of the
algorithm, then at least m/2 of these nodes are in range (low, high).

Proof. Let T be a tree in which no further cutting or merging steps can be
performed, which minimizes the fraction of nodes in range (low, high). The root
may be low (with more than 1 child), in range, or high. All leaves must be in
range. All internal nodes with 1 child must be in range. All remaining nodes
must have at least two children, and must be low or in range. Because there are
at least m/2 nodes with 0 or 1 children, and all such nodes are in range, then at
least m/2 of the nodes must be in range.

Theorem 2. Our algorithm solves the Weighted Maximum Mean Subtree Prob-
lem for inputs with positive node costs in time O(n).

Proof. Let Φ be the number of tree nodes plus the number of nodes in range
(low, high). Initially Φ is 2n; it is reduced by each step where we cut nodes
or shrink the range, and reduced or unchanged by each step where we merge
nodes. By Lemma 3, in each iteration of the algorithm there are at least Φ/3
nodes in range, half of which become low or high by the range-shrinking step of
the iteration, so Φ is reduced by a factor of 5/6 or better per iteration. The time
per iteration is O(Φ), so the total time adds in a geometric series to O(n).
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4 The Parametric Linear Maximum Subtree Problem

We now consider the Parametric Linear Maximum Subtree Problem. As dis-
cussed in the introduction, the solution can be used to solve many bicriterion
optimal subtree problems.

We are given as input a tree T , each node i of T has two values ai and bi, which
defines the weight of the node as a linear function ai λ + bi with slope ai and
y-intercept bi. We wish to produce as output a function F , which describes the
weight of the maximum weight subtree of T for each parameter value 0 ≤ λ < ∞.
We note that F is the pointwise maximum of a set of linear functions (one per
subtree of T ); therefore, F is convex and piecewise linear, and can be described
by the breakpoints, slopes, and y-intercepts of each linear segment of F .

We do not output the sequence of optimal subtrees explicitly; the output size
would dwarf the time complexity of our algorithms. When using the parametric
problem to solve bicriterion optimization problems, all we need is the function
F , as the value of the optimal tree can be determined from the slope and y-
intercept of one of the pieces of F ; once that piece is found, the optimal tree
itself can be determined by fixing λ to a value within the range over which that
piece determines the value of F , and solving a maximum weight subtree problem
for that fixed value of λ. If the sequence of trees is needed, it can be represented
concisely by a sequence of O(n) prune and unprune events on edges of T .

For any node i, let Fi(λ) denote the output for the Parametric Linear Maxi-
mum Subtree Problem restricted to the subtree of T rooted at i; then (if i is not
itself the root of T ) we will prune node i and its descendents for exactly those
values of λ for which Fi(λ) < 0.

Lemma 4. The function F has at most 2n breakpoints.

Proof. Each breakpoint in F occurs when some node i becomes or ceases being
pruned, when Fi(λ) = 0. Since each Fi is convex, Fi(λ) = 0 can only occur for
two values of λ per node i, and the node contributes at most two breakpoints
to F .

Let Fi(λ) = max(0, Gi(λ)). Gi measures the contribution of node i and its
descendants of the tree rooted at i’s parent; it is negative or zero when the node
is pruned, and otherwise sums the weights of the unpruned descendants of i. We
compute Fi and Gi recursively with the formula

Gi(λ) = ai λ + bi +
∑

c∈children(i)

Fc(λ).

We have seen above a formula with which we can compute the desired function
F , by computing similar functions bottom-up through the input tree T . To show
how to implement this formula efficiently, we adapt an algorithm of Shah and
Farach-Colton [8] which uses a similar computation of piecewise linear functions
to solve tree partitioning problems.

The execution of our algorithm is as follows. During a post order traversal of
the tree, we generate a piecewise linear function for each node i by adding the
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1. For tree node j in postorderTraversal(T ):
(a) Set fcn = create(0, j.a, j.b)
(b) For tree node k in j.children:

i. Set fcn = add(fcn, k.fcn)
(c) Set j.fcn = trim(fcn)

2. Return T.fcn

Listing 3: Outline for algorithm solving the Parametric Linear Maximum Subtree
Problem.

function defined by ai and bi with the functions defined by the subtrees rooted
at the i’s children. We then set the function for node i to be the maximum of
this sum and zero, handling the case if or when the value of node i drops below
zero and must be pruned.

As in the algorithm of Shah and Farach-Colton [8], we manipulate objects
representing piecewise linear functions, with operations that create new func-
tions, add two functions, and take the maximum of one such function with the
constant zero function. A detailed API for these objects is provided in Listing 4,
and an outline of our overall algorithm that uses this API to compute Fi and
Gi can be seen in Listing 3.

In more detail, we represent each piecewise linear function as an AVL tree,
sorted by keys which are the x-coordinates of the left endpoints of each linear
segment of the function. Each tree node in stores values deltaA and deltaB which
represent the change in slope and intercept of the piecewise linear function at
that breakpoint. We further store in each node the total sums daTotal and
dbTotal of all values contained in the subtree rooted at that node, maintained
during rotation in a fashion identical to that of Order Statistic Trees as described
by Cormen et al. [4], extended to support tree merging [3].

To add two piecewise linear functions, as described in Listing 5, we merge the
two AVL trees representing the two functions, then recompute the sums daTotal
and dbTotal at all ancestors of nodes changed by the merge. In this way, adding
a tree with n1 breakpoints to a tree with n2 breakpoints can be performed in
time

O
(
n1 log

(n1 + n2

n1

)
+ n2 log

(n1 + n2

n2

))
.

To take the maximum of a convex piecewise linear function f with the zero
function, we use the binary search tree structure to search for the values of λ for
which f(λ) = 0, add breakpoints at these two points, and remove all breakpoints
between these points, as described in Listing 6. This operation takes O(log n)
amortized time per call.

Theorem 3. The algorithm described above solves the Parametric Linear Max-
imum Subtree Problem in time O(n log n).

Proof. The time is dominated by add and trim operations used to maintain
piecewise linear functions. There is one trim call per node, taking O(log n) time
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1. create(z, a, b) - creates a function starting at x-offset z, with slope a and y-intercept
b.

2. add(f, g) - adds function g to the function f , merging their contents using the
Brown and Tarjan algorithm [3] with our total updating procedure given in List-
ing 5 . In this process, the larger of f or g being modified in place and returned.

3. delete(f, i) - deletes the node i from the function tree defined by f using the
standard AVL tree deletion methods.

4. functionAt(f, z) - discovers the slope a and y-intercept b at x-offset z of the
function f , using an algorithm similar to order discovery in Order Statistic Trees
as described by Cormen et al. [4], not provided here.

5. trim(f) - trims the function f such that for all x ≥ 0, f(x) ≥ 0, outlined in
Listing 6.

Listing 4: API for data structure representing piecewise linear functions, used
by our algorithm.

When adding two functions F and G:

1. Keep an auxillary list of all nodes that have been inserted or changed during the
merge.

2. Generate a secondary tree that contains those nodes from the auxillary list and
their ancestors, with structure identical to the current tree with links back to the
function tree nodes.

3. For each node j in the postorder traversal of the secondary tree:
(a) i = j.link
(b) i.daTotal = i.left.daTotal + i.right.daTotal + i.deltaA
(c) i.dbTotal = i.left.dbTotal + i.right.dbTotal + i.deltaB

Listing 5: Details of data structure operations for adding two piecewise linear
functions.

to discover the range of breakpoints that must be removed, giving us O(n log n)
total time. If we charge a breakpoint’s possible removal to its insertion, removal
is ammortized free within each trim call.

By Lemma 4 there are O(n) breakpoints active during algorithm execution. If
a breakpoint is active within a sequence of piecewise linear functions of size n0,
n1, n2, . . . then the amount it contributes to the time bounds for adding these
functions is log(n0), log(n1/n0), log(n2/n1), . . . These times add to O(log n), so
the total time for adding piecewise linear functions is O(n log n).

Corollary 2. We can solve any bicriterion optimal subtree problem in which we
attempt to maximize a convex function f(X, Y ) or minimize a concave function
f(X, Y ), where X and Y are respectively the sums of values xi and yi associated
with each tree node in the subtree, in time O(n log n).

Proof. Let ai = xi and bi = yi. Then any subtree S with sums XS and YS (as
defined in the introduction) corresponds to a line XS λ + YS = 0, and the upper
convex hull of the points (XS , YS) for the set of all subtrees S is projectively dual
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1. Follow the slopes of the function downwards via a binary search to discover a node
that is, or is adjacent to, the minimum of the function.

2. Check successor and predecessor nodes for the true function minimum.
3. Given a, b = functionAt(f, minnode.x), if minnode.x ∗ a + b ≥ 0, return.
4. Discover left crossing point lcx > 0 where the function crosses the x-axis if one

exists, via binary search, else lcx = 0.
5. Discover right crossing point rcx where the function crosses the x-axis if one exists,

via binary search, else rcx = ∞.
6. If lcx == 0 and rcx == ∞, then f = create(0, 0, 0), return.
7. saveda, savedb = functionAt(f, rcx)
8. For each node where lcx ≤ node.x ≤ rcx

(a) f = add(f, create(node.x,−node.a, −node.b))
(b) delete(f, node)

9. a, b = functionAt(f, lcx)
10. f = add(f, create(lcx,−a, −b))
11. If rcx < ∞

(a) a, b = functionAt(f, rcx)
(b) f = add(f, create(rcx, saveda − a, savedb − b))

Listing 6: Details of data structure operations for taking the maximum of a
piecewise linear function with the constant zero function.

to the upper envelope of all such lines, which is our Parametric Linear Maximum
Subtree Problem. That is, if we solve the Parametric Linear Maximum Subtree
Problem, and an equivalent Parametric Linear Minimum Subtree Problem, the
slopes and y-intercepts of the segments of the output functions from these prob-
lems give us the points (XS , YS) belonging to the convex hull of the set of such
points for all trees. The optimal pair (X, Y ) can be found by testing these O(n)
points and choosing the best of them. The optimal tree itself can be then found
by letting λ be a parameter value contained in the function segment with slope
X and y-intercept Y , and finding the maximum weight subtree for the weights
given by that value of λ.

To see that our O(n log n) time bound for the Parametric Linear Maximum
Subtree problem is optimal, consider the following simple reduction from sorting.
Given n values xi to sort, create a tree with a root that is the parent of n leaves,
one leaf having ai = 1 and bi = xi. Then, for each leaf i, the function Gi will
have a breakpoint exactly at x-coordinate xi, so the sequence of breakpoints of
the output F (or equivalently the sequence of prune and unprune operations
generating the sequence of optimal subtrees) is exactly the sorted sequence of
the input values.

However, this lower bound does not apply to the bicriterion optimal subtree
problems that we solve by our parametric approach, and we have seen that
for one such problem (the Weighted Maximum-Mean Subtree Problem) a faster
linear time algorithm is possible. It would be interesting to determine for what
other bicriterion optimal subtree problems such speedups are possible.
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Abstract. Let T be a tree on a set V of nodes. The p-th power T p of T
is the graph on V such that any two nodes u and w of V are adjacent in
T p if and only if the distance of u and w in T is at most p. Given an n-
node m-edge graph G and a positive integer p, the p-th tree root problem
asks for a tree T , if any, such that G = T p. Given a graph G, the tree
root problem asks for a positive integer p and a tree T , if any, such that
G = T p. Kearney and Corneil gave the best previously known algorithms
for both problems. Their algorithm for the former (respectively, latter)
problem runs in O(n3) (respectively, O(n4)) time. In this paper, we give
O(n + m)-time algorithms for both problems.

1 Introduction

Let H be a graph on a set V of nodes. The p-th power Hp of H is the graph on
V such that any two nodes u and w of V are adjacent in Hp if and only if the
distance of u and w in H is at most p. If G = Hp, then we say that graph H is
a p-th root of graph G or, equivalently, G is the p-th power of H . Determining
whether the input graph is a power of some other graph is the graph root prob-
lem. Graph roots and powers have been extensively studied in the literature.
Motwani and Sudan [12] proved the NP-completeness of recognizing squares of
graphs. Lau [9] showed that squares of bipartite graphs can be recognized in
polynomial time and proved the NP-completeness of recognizing cubes of bi-
partite graphs. Lau and Corneil [10] also studied the tractability of recognizing
powers of proper interval, split, and chordal graphs. Lin and Skiena [11] gave a
linear-time algorithm to find square roots of planar graphs.

If G = T p for some tree T and number p, we call such a tree T a p-th tree
root of G. Given a graph G and a positive integer p, the p-th tree root problem
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asks for a tree T , if any, with G = T p. Given a graph G, the tree root problem
asks for a tree T and a number p, if any, with G = T p. Ross and Harary [14]
characterized squares of trees and showed that square tree roots, when they
exist, are unique up to isomorphism. Lin and Skiena [11] gave a linear-time
algorithm to recognize squares of trees. Kearney and Corneil [7] gave the best
previously known algorithms for the p-th tree root problem and the tree root
problem. Their algorithm for the p-th tree root problem runs in O(n3) time for
any n-node graph, leading to an O(n4)-time algorithm for the tree root problem.
Gupta and Singh [4] gave a characterization of graphs which are the p-th powers
of trees and proposed a heuristic algorithm to construct a p-th tree root. The
running time of their algorithm is O(n3), but they did not prove the correctness
of their algorithm. It was unknown whether the p-th tree root problem can be
solved in o(n3) time [7, 9].

In this paper we improve Kearney and Corneil’s result [7] by giving linear
time algorithms, in the size of the input graph, for the tree root problem as well
as the p-th tree root problem for any given p. For the p-th tree root problem, our
linear-time algorithm processes the input graph in two different but analogous
ways, depending on whether p is even. If p is even, our algorithm is based upon a
new observation that the p-th power T p of a tree T is a chordal graph admitting
a unique clique tree which is isomorphic to the p

2 -centroid T (p
2 ) of T . Since it

takes linear time to compute a clique tree for a chordal graph, T (p
2 ) can thus

be obtained efficiently. To determine the remaining topology of T , we resort to
a linear-time computable clique-position function for all nodes. We also prove
that the existence of clique-position function is a new characterization for graphs
admitting tree roots. To be more specific, there is a one-to-one mapping between
the nodes of T (p

2 ) and the maximal cliques of T p. The clique-position for a node
u of T can be used to determine the distance between u and the node w in T (p

2 )
that is closest to u in T . Having determined the clique positions of all nodes,
we grow the remaining tree topology from the outermost layer to the innermost
layer. As for the case that p is odd, our algorithm works in an analogous way. In
particular, the minimal node separators of T p plays the role of maximal cliques of
T p for the case that p is even. The separator tree of T p is unique and isomorphic
to the p+1

2 -centroid T (p+1
2 ) of T . The remaining topology of T can be determined

by a linear-time computable separator-position function of T p.
Our linear-time algorithm for the p-th tree root problem immediately yields

a quadratic-time algorithm for the tree root problem. Deriving from (1) the
diameters of the clique tree and separator tree of the input graph and (2) the
clique positions and separator positions of nodes in the input graph, we also
show a linear-time algorithm for finding the minimum p, if any, such that the
input graph admits a p-th tree root. As a result, we have a linear-time algorithm
for the tree root problem.

Due to space limit, the case for odd p is omitted in this extended abstract.
The rest of the paper is organized as follows. Section 2 gives the preliminaries.
Section 3 gives our linear-time algorithm for the p-th tree root problem for the
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case that p is even. Section 4 gives our linear-time algorithm for finding the
smallest even number p such that the input graph admits a p-th tree root.

2 Preliminaries

For any set S, let |S| denote the cardinality of S. All graphs in this paper
are undirected, simple, and have no self-loops. Let V (G) (respectively, E(G))
consist of the nodes (respectively, edges) of graph G. For any subset U of V (G),
let G[U ] denote the subgraph of G induced by U . A node is dominating in G
if it is adjacent to all other nodes in G. Let Dom(G) consist of the dominating
nodes of G, which can be computed from G in linear time.

2.1 Notation for Trees

Let T be a tree. Let PathT (u, w) denote the path of T between u and w.
Let dT (u, w) denote the distance of nodes u and w in T . Define dT (u) =
maxw∈V (T ) dT (u, w). The diameter dT of a tree T is maxu∈V (T ) dT (u). Let
ΓT (u, i) consist of the nodes w with dT (u, w) ≤ i.

Define the i-centroid T (i) of T as follows. Let T (0) = T . For each i with
1 ≤ i ≤ dT

2 , let T (i) be the tree obtained by deleting the leaf nodes of T (i− 1).
If i > dT

2 , then T (i) is the empty graph. The centroid Cent(T ) of T is T (�dT

2 �),
which is either a single node or a single edge. The centroid of T can be computed
from T in O(|V (T )|) time.

v7

v27

v31

v2

v3

v8

v4

v26

v9 v5

v30

v23 v11

v32

v13

v18

v14

v15

v12

v10

v16

v20

v6

v21

v24
v28

v22v25

v19 v17

v29

v1

(a) (c)

K26
K30

K23K24

K29K27

v27

v26
v30

v23v24

v29

(b)

Fig. 1. (a) A tree T . (b) The 3-centroid T (3) of T . (c) The clique tree of T 6, where
Ki = ΓT (vi, 3).

We use the tree T shown in Figure 1(a), which also appeared in [7], to illustrate
the aforementioned notation: ΓT (v10, 3) = {v1, v2, v10, v12, v15, v24, v27}. The 3-
centroid T (3) of T , as shown in Figure 1(b), is the subtree of T induced by
{v24, v27, v30, v29, v26, v23},
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2.2 Chordal Graphs

A graph G is chordal if it contains no induced subgraph which is a cycle of
size greater than three. Chordal graphs, which can be recognized in linear time
[15, 13], have been extensively studied in the literature. It is well known that any
tree power is chordal (see, e.g., [7]).

A subset S of V (G) is a separator of a connected graph G if G[V (G) \ S] has
at least two connected components. A separator S of G is minimal if any proper
subset of S is not a separator of G. A separator S of G is a (u, w)-separator of G
if nodes u and w are in different connected components of G[V (G)\S]. A (u, w)-
separator S is minimal if any proper subset of S is not a (u, w)-separator of G.
A minimal node separator is a minimal (u, w)-separator for some nodes u and
w. Note that a minimal node separator is not necessarily a minimal separator,
as the minimal (u, w)-separator may contain the minimal (x, y)-separator for
some other nodes x and y. Graph G is chordal if and only if every minimal node
separator of G induces a clique in G [2].

Let G be a chordal graph. Let KG consist of the maximal cliques of G. For
each node u of G, let KG(u) consist of the maximal cliques of G containing
u. A clique tree of a chordal graph G is a tree T with V (T ) = KG such that
each KG(u) with u ∈ V (G) induces a subtree of T . Gavril [3] and Buneman [1]
ensured that graph G is chordal if and only if G has a clique tree. Moreover,
a clique tree of any chordal graph G can be computed in O(|V (G)| + |E(G)|)
time [6]. A chordal graph may have more than one clique tree [5]. A chordal
graph is uniquely representable [8] if it admits a unique clique tree.

Lemma 1. Let T be a clique tree of a chordal graph G. Then, S is a minimal
node separator of G if and only if S = K1 ∩K2 for some edge (K1, K2) of T .

Proof. For each edge e of T , let Se consist of the nodes u of G such that e
belongs to the subtree of T induced by KG(u). That is, Se = {u ∈ V (G) | e ∈
E(T [KG(u)])}. Ho and Lee [5] ensured that S is a minimal node separator of
G if and only if S = Se for some e ∈ E(T ). Therefore, it remains to ensure
S(K1,K2) = K1 ∩ K2 by verifying that (K1, K2) is an edge of T [KG(u)] if and
only if {K1, K2} ⊆ KG(u) if and only if u ∈ K1 ∩K2.

3 The p-th Tree Root Problem for any Given Even p

This section assumes that the given positive number p ≤ n is even. Let h = p
2 .

3.1 Unique Representability

This subsection shows that if T is a tree, then T p has a unique clique tree, which
has to be isomorphic to T (h).

Lemma 2. For any tree T , we have that G = T p if and only if KG = {ΓT (u, h) |
u ∈ V (T (h))}.
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Proof. Observe that nodes u and w are adjacent in G if and only if there exists
a maximal clique K of G that contains both u and w. Therefore, for any graphs
G and H , we have that G = H if and only if KG = KH . Gupta and Singh [4]
proved that K is a maximal clique of T p if and only if there exists a node u of
T (h) with ΓT (u, h) = K. The lemma is proved.

Theorem 1. If T is a tree, then T p has a unique clique tree. Moreover, the
clique tree of T p is isomorphic to T (h).

Proof. Let T be the tree with

V (T ) = {ΓT (u, h) | u ∈ V (T (h))};
E(T ) = {(ΓT (u, h), ΓT (w, h)) | (u, w) ∈ E(T (h))}.

It is not hard to verify that T (h) and T are isomorphic. We first show that T is
a clique tree of T p. Observe that by Lemma 2, we have

KT p(u) = {ΓT (w, h) | w ∈ V (T (h)), dT (u, w) ≤ h}
= {ΓT (w, h) | w ∈ V (T (h)) ∩ ΓT (u, h)}.

Since T [V (T (h)) ∩ ΓT (u, h)] is a subtree of T (h), T [KT p(u)] is a subtree of T .
Therefore, T is a clique tree of T p.

To show that T p has no other clique tree, we resort to an observation of Kumar
and Madhavan [8] stating that a chordal graph G is uniquely representable if
(and only if) every minimal node separator of G is contained in exactly two
maximal cliques of G. By Lemmas 1 and 2, each minimal node separator of
T p has the form ΓT (u, h) ∩ ΓT (w, h) for some nodes u and w adjacent in T (h).
Observe that ΓT (u, h) ∩ ΓT (w, h) �⊆ ΓT (x, h) for any node x of T (h) other than
u and w. The theorem is proved.

3.2 Clique-Position Function

Let G be a uniquely representable chordal graph. Let T be the clique tree of
G. We say that (K, i) is a clique position of u in G if KG(u) = ΓT (K, i), i.e.,
the maximal cliques containing u are exactly those nodes in the clique tree T
that are at a distance up to i from K. For notational brevity, we also write
u ∈ ΠG(K, i) to signify that (K, i) is a clique position of u in G, where the
subscript G may be omitted when it is clear from the context. Let us use Figure 1
to explain this crucial concept of the paper. For each index i with vi ∈ V (T (3)),
let Ki = ΓT (vi, 3). By Lemma 2, we know that these Ki are the maximal cliques
of T 6. Observe that

KG(v14) = {K24, K27, K30} = ΓT (K27, 1) = ΓT (K24, 2).

Therefore, both (K27, 1) and (K24, 2) are clique positions of v14 in T 6. One can
also verify that v15 ∈ ΠT 6(K27, 1) ∩ΠT 6(K24, 2).

A clique-position function of G with respect to p is a function Φ : V (G) →
KG × {0, 1, . . . , h} that satisfies the following conditions.
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Condition C1: For each u ∈ V (G), Φ(u) is a clique position of u in G.
Condition C2: For each K ∈ KG, there exists a unique node u of G with Φ(u) =

(K, h).
Condition C3: If Φ(u) = (K, i) for some K ∈ KG and i < h, then there is a

node w of G with Φ(w) = (K, i + 1).

Given a chordal graph T p, an integer p, and the clique tree T of T p, the rest
of the subsection shows how to compute a clique-position function of T p with
respect to p. Note that our algorithm does not know T .

For each node u ∈ V (T ) \ V (T (h)), define 	(u) to be the largest index i with
i ≤ h − 1 such that u belongs to Π(K, i) for some maximal clique K of T p.
If u ∈ V (T ) \ V (T (h)), then u ∈ Π(κ(w), h − dT (u, w)), where w is the node
of T (h) that is closest to u in T . Therefore, 	(u) is well defined for each node
u ∈ V (T ) \ V (T (h)). To simplify the description of our algorithm, each node u
of T p is initially white, signifying that Φ(u) is still undefined. If Φ(u) is defined
but may be changed later, then u is gray. If Φ(u) is defined and will not be
changed later, then u is black. Our algorithm is as shown in Algorithm 1, whose
correctness is ensured by the following lemma.

Input: A positive even number p, and a graph T p and its clique tree T .
Output: A clique-position function Φ of T p with respect to p.

1: For each node u of T p, compute the clique positions of u in T p and let u be white.
2: For each K ∈ KT p , choose a white node u ∈ Π(K, h), let Φ(u) = (K, h), and let u

be black.
3: Let K∗ be a maximal clique of T p in V (Cent(T )).
4: For each white node u ∈ Dom(T p), let Φ(u) = (K∗, h − 1) and let u be gray.
5: For each white node u ∈ V (T p) \ Dom(T p), compute �(u).
6: while there are still white nodes in V (T p) \ Dom(T p) do
7: Let u be a white node in V (T p) \ Dom(T p) with the smallest �(u).
8: Let κ(u) be a maximal clique of T p with u ∈ Π(κ(u), �(u)).
9: Let Φ(u) = (κ(u), �(u)) and let u be black.

10: For each white node w ∈ Π(κ(u), �(u)), let Φ(w) = (κ(u), �(u)) and let w be
gray.

11: for j = �(u) + 1 to h − 1 do
12: Choose a non-black node w ∈ Π(κ(u), j). Let Φ(w) = (κ(u), j) and let w be

black.
13: For each white node w ∈ Π(κ(u), j), let Φ(w) = (κ(u), j) and let w be gray.
14: end for
15: end while

Algorithm 1: Computing a clique-position function of T p with respect to p

Lemma 3. Algorithm 1 correctly computes a clique-position function of T p with
respect to p.

Proof. Our proof is based upon the facts that T is one of the p-th tree roots of
T p and the clique tree T of T p is isomorphic to T (h). As we will see, the challenge
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of the proof lies in showing that the algorithm does not abort at Steps 2 and 12.
Let us first assume that the algorithm does not abort at Steps 2 and 12, and
show that the function Φ computed by the algorithm has to be a clique-position
function of T p.

– Condition C1. One can verify that the algorithm assigns Φ(u) = (K, i) only
if u ∈ Π(K, i). It is also easy to see that Φ(u) is defined for every node of
T , i.e., no white nodes left, at the end of the algorithm. Thus, Condition C1
holds for the function Φ computed by the algorithm.

– Condition C2. Since the algorithm does not abort at Step 2, the algorithm
successfully assigns clique positions for |KT p | nodes at the end of Step 2.
Since the rest of the algorithm never assigns (K, h) to any Φ(u), Condition C2
holds for the function Φ computed by the algorithm.

– Condition C3. By Condition C2 of Φ, we know that Condition C3 holds for
each node processed at Step 4. For each iteration of the while-loop (Steps 6–
15), we first let Φ(u) = (κ(u), 	(u)) and turn u into black. Then, in the
for-loop (Steps 11–14), for each index j with 	(u) < j < h, the algorithm
assigns Φ(w) = (κ(u), j) for some non-black node w and turns w into black.
Therefore, as long as the algorithm does not abort at Step 12, one can see
that Condition C3 holds for each node not processed at Step 4.

We then show that the algorithm does not abort at Step 2. Observe that each
node u of T (h) belongs to Π(ΓT (u, h), h). By Lemma 2, for each maximal clique
K of T p, the number of maximal cliques K ′ of T p with ΓT (K ′, h) = ΓT (K, h) is
no more than |Π(K, h)|. Therefore, Step 2 successfully assigns clique positions
for |KT p | nodes.

It remains to prove that the algorithm does not abort at Step 12. We first
show that if an iteration of the while-loop enters the for-loop, then the node u of
the iteration has a unique clique position in T p. We can focus only on the case
with 1 ≤ 	(u) ≤ h−2, because (1) if 	(u) = 0, then u has a unique clique position
in T p, and (2) if 	(u) ≥ h−1, then the algorithm does not enter the for-loop. We
also observe that κ(u) cannot be a leaf of T . The reason is that if κ(u) is a leaf
of T , then T has at least one leaf whose unique clique position in T p is (κ(u), 0).
Since the while-loop processes nodes u in non-decreasing order of 	(u), 	(u) ≥ 1
implies that u cannot be white at the beginning of the iteration of the while-loop.
Let v be the node of T (h) such that κ(u) = ΓT (v, h). Since κ(u) is not a leaf
of T , node v is not a leaf of T (h). See Figure 2 for an illustration for the proof.
Let S = ΓT (h)(v, 	(u)). Since 	(u) ≥ 1 and u is not a dominating node of T p,
there is an edge (x, y) of T (h) such that y ∈ S −{v} and x /∈ S. Since v is not a
leaf of T (h), there has to be a neighbor w of v in T (h) such that PathT (h)(w, y)
contains v. Since 	(u) ≤ h− 2, we know ΓT (h)(w, 	(u) + 1) �= S. There has to be
an edge (x′, y′) of T (h) such that y′ ∈ S, x′ /∈ S, and PathT (h)(x′, x) contains
y, y′, w, and v. By the existence of edges (x, y) and (x′, y′) of T (h), we know
that S = ΓT (h)(z, j) implies z = v and j = 	(u). Thus, (κ(u), 	(u)) is the unique
clique position of u in T p.

Let ui be the node u for the i-th iteration of the while-loop that enters the
for-loop. We already showed that (κ(ui), 	(ui)) is the unique clique position of ui
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in T p. Let vi be the node with κ(ui) = ΓT (vi, h). By definition of our algorithm,
all the maximal cliques κ(ui) have to be distinct. Thus, all paths PathT (ui, vi)
are disjoint. Therefore, the number of indices i such that PathT (ui, vi) contains
nodes in any Π(κ, 	) is no more than the cardinality of Π(κ, 	). It follows that
our algorithm does not abort at Step 12.

3.3 A New Characterization for Tree Powers

Theorem 2. A graph G has a p-th tree root if and only if G is a uniquely
representable chordal graph admitting a clique-position function with respect to p.

Proof. Lemma 3 ensures the only-if direction. The rest of the proof shows the
other direction. Let T be the clique tree of G. Let Φ be a clique-position function
of G with respect to p. We construct a tree T with V (T ) = V (G) as follows.

– Let S consist of the nodes u of G with Φ(u) = (K, h) for some maximal
clique K of G. By Condition C2 of Φ, we know that Φ provides a one-to-one
mapping between S and KG. Let T [S] be the tree isomorphic to T via this
isomorphism.

– As for each node u of G not in S, we know that Φ(u) = (K, i) for some
maximal clique K of G and some index i with 0 ≤ i < h. We simply add
an edge between u and an arbitrary node w with Φ(w) = (K, i + 1). By
Condition C3 of Φ, such a node w always exists.

One can see that the resulting T is a tree. It is also clear that the path of T
attached to T [S] has length no more than h.

We first prove T (h) = T [S] by showing that each leaf of T [S] is attached by
a length-h path in T . By definition of T , it suffices to ensure that for each leaf
K of T , there exists a node v of G with Φ(v) = (K, 0): Let K ′ be the maximal
clique of G with (K, K ′) ∈ E(T ). By the maximality of K, there exists a node
u in K \ K ′. By definition of clique tree, KG(u) induces a subtree of T . Since
K is a leaf of T , it follows that KG(u) = {K}, i.e., (K, 0) is the unique clique
position of u in G. By Condition C1 of Φ, we have Φ(u) = (K, 0).

Next we show that Φ(v) = (K, h) implies ΓT (v, h) = K.

– To show K ⊆ ΓT (v, h), let u be a node in K, where Φ(u) = (K ′, i). Observe
that dT (K, K ′) ≤ i. Let w be the node of S with Φ(w) = (K ′, h). Since
T [S] is isomorphic to T , we know dT (v, w) ≤ i. By Condition C1 of Φ,
u ∈ K ′. By the definition of T , dT (u, w) = h− i. It follows that dT (v, u) =
dT (v, w) + dT (w, u) ≤ h. Thus, u ∈ ΓT (v, h).

�(u)

w y′ x′yx

�(u)

v

Fig. 2. An illustration for showing that u has only one clique position in T p
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– To show ΓT (v, h) ⊆ K, let u be a node in ΓT (v, h), where Φ(u) = (K ′, i).
Let w be the node with Φ(w) = (K ′, h). By the definition of T , dT (u, v) =
dT (u, w)+dT (w, v) = h−i+dT (w, v). Since dT (u, v) ≤ h, we have dT (w, v) ≤
i. Since T [S] is isomorphic to T , we have that dT (K, K ′) ≤ i. By Condi-
tion C1 of Φ, u ∈ Π(K ′, i). Hence KG(u) = ΓT (K ′, i). Since dT (K, K ′) ≤ i,
we have u ∈ K.

Since Φ(v) = (K, h) implies ΓT (v, h) = K, we have that KG = {ΓT (v, h) | v ∈ S}
by Condition C2 of Φ. By T [S] = T (h), we know that KG = {ΓT (v, h) | v ∈
V (T (h))}. By (the “if” direction of) Lemma 2, G = T p.

3.4 A Linear-Time Algorithm

Theorem 3. The p-th tree root problem for any n-node m-edge graph G and
any even number p can be solved in O(n + m) time.

Proof. The constructive proof for the “if” direction of Theorem 2 can be
implemented to run in O(n) time. Since chordal graphs can be recognized in
linear time [13, 15] and a clique tree T of the input chordal graph G can be
obtained in linear time [6], the remaining task for solving the p-th tree root
problem for G in O(n + m) time is to compute a clique-position function, if
any, of G with respect to p. Although Algorithm 1 is designed for computing a
clique-position function for T p, we can still run it on any chordal graph G. If the
execution of the algorithm aborts at Step 2 or 12, Lemma 3 ensures that G does
not admit any p-th tree root. If the algorithm does not abort at Step 12 and
successfully outputs a function Φ, it takes O(n) time to determine whether Φ is
indeed a clique-position function of G, thereby figuring out whether G admits a
p-th tree root.

It suffices to show that Step 1 of Algorithm 1, i.e., determining the clique
positions of all nodes in G, can be implemented to run in O(n+m) time. Observe
that

∑
K∈KG

|V (K)| = O(n + m). All clique positions of all nodes in G can
be computed in time linear in the size of G as follows. For each node u ∈
V (G) \ Dom(G), let Xu consist of the nodes X of KG(u) such that the degree
of X in T [KG(u)] is less than the degree of X in T . Observe that u ∈ V (G) \
Dom(G) implies that Xu is non-empty. The sets KG(u) and Xu for all nodes
u ∈ V (G)\Dom(G) can be computed in O(n+m) time. It remains to show how
to solve the following problem.

Let τ be a tree, some of whose leaves are marked. A node u of τ is a
center of τ if u has the same distance δ to all marked leaves of τ and
the distance between u and any node of τ is no more than δ. Under the
assumption that τ has a center, the problem is to identify all centers of
τ in O(V (τ)) time.

Let y be an arbitrary marked leaf of τ . If |V (Cent(τ))| = 1, then let x be the
single node in Cent(τ). If |V (Cent(τ))| = 2, then let x be the node of Cent(τ)
whose distance to y in τ is larger. If τ has centers, then x has to be one of them.
Let z be a node of V (τ) \ {x}. Let Z be the connected component of τ − x that
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contains z. One can verify that Z contains a marked leaf of τ if and only if z is
not a center of τ . Therefore, the above problem can be solved in O(|V (τ)|) time.
The theorem is proved.

4 The p-th Tree Root Problem for Unknown Even p

Theorem 4. Let G be an n-node m-edge graph. Then, it takes O(n + m) time
to determine the smallest even number p, if any, such that G admits a p-th tree
root.

Proof. Since tree powers are chordal and chordal graphs can be recognized in
linear time, we may assume without loss of generality that G is chordal, thereby
admitting a clique tree T . Let K∗ be a node in Cent(T ). Let J consist of the
even numbers j such that Π(K∗, j/2) is non-empty. Let

p∗ =

⎧⎨⎩
maxJ if |Dom(G)| = 0;
dT + |Dom(G)| − 1 if 1 ≤ |Dom(G)| ≤ 2;
2�dT /2�+ 2 if |Dom(G)| ≥ 3.

Let P consist of the positive numbers p such that the input graph admits a
p-tree root. We first show that if P is non-empty, then p∗ = min P . For brevity
of proof, we regard T as being rooted at K∗: For any maximal clique K of G
other than K∗, the parent of K in T , denote π(K), is the maximal clique K ′ of
G such that (K, K ′) is an edge of PathT (K, K∗). We say that K is a child of
π(K) in T .

Case 1: |Dom(G)| = 0. By Condition C2 of any clique-position function of G
with respect to p, we have P ⊆ J . We show P = {maxJ} by proving that that
j ≤ p holds for any even numbers j ∈ J and p ∈ P . Assume for a contradiction
that j > p holds for some even numbers j ∈ J and p ∈ P . Let T be a p-th tree
root of G. Let v(·) be an isomorphism between T and T (p/2). That is, v(K) is
the node in V (T (p/2)) such that ΓT (v(K), p/2) = K.

Since Dom(G) = ∅, we know dT > 2p. Therefore, dT = dT (p/2) > p. It follows
from dT > p and j > p that

ΓT (K∗, p/2) � ΓT (K∗, j/2).

Let w be a node in Π(K∗, j/2), implying KG(w) = ΓT (K∗, j/2). Let u∗ = v(K∗).
We know u∗ ∈ Π(K∗, p/2), implying KG(u∗) = ΓT (K∗, p/2). It follows that

KG(u∗) � KG(w),

thereby u∗ �= w. Since K∗ is a centroid of T , u∗ is also a centroid of T (p/2). By
dT (p/2) > p and u∗ �= w, there is a node u in V (T (p/2)) such that dT (u, u∗) = p/2
and dT (u, w) > p/2. Let K = ΓT (u, h). We have u∗ ∈ V (K) and w /∈ V (K).
Thus, K is a maximal clique in KG(u∗)\KG(w), contradicting KG(u∗) � KG(w).
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Case 2: 1 ≤ |Dom(G)| ≤ 2. We show that P consists of the single number
dT − |Dom(G)|+1 as follows. Let p be a number in P . Let T be a p-th tree root
of G. By 1 ≤ |Dom(G)| ≤ 2, it is not hard to see that Dom(G) consists of the
centroids of T . If |Dom(G)| = 1, then dT = 2p. It follows that dT (p/2) = dT = p.
If |Dom(G)| = 2, then dT = 2p − 1. It follows that dT (p/2) = dT = p − 1. For
either case, we have p = dT + |Dom(G)| − 1. Since G has exactly one clique tree
T , the diameter of T is fixed. We have |P | = 1.

Case 3: |Dom(G)| ≥ 3. We show that min P = 2�dT /2�+ 2. Let p be an index
in P . Let T be a p-th tree root of G. By |Dom(G)| ≥ 3, one can verify that
dT ≤ 2p − 2. Therefore, dT = dT (p/2) ≤ p − 2, implying that minP ≥ dT + 2.
Observe that 2�dT /2� + 2 is the smallest even number that is no less than
dT +2. We prove the equality by showing that if p ≥ dT +4, then G also admits
a (p− 2)-nd tree root.

The rest of the proof assumes dT ≤ p− 4, which directly implies that

ΓT (K∗, p/2− 2) = KG. (1)

For any maximal clique K of G other than K∗, observe that dT ≤ p − 4 also
implies

Π(K, p/2) ⊆ Π(π(K), p/2− 1); (2)
Π(K, p/2− 1) ⊆ Π(π(K), p/2− 2). (3)

Let Φ be a clique-position function of G with respect to p. Let Φ1(u) (respec-
tively, Φ2(u)) denote the first (respectively, second) component of Φ(u). Let Φ′

be obtained from Φ by the following steps.

1. For each node u with Φ2(u) ≤ p/2− 2, we simply let Φ′(u) = Φ(u).
2. For the node u with Φ(u) = (K∗, p/2), i.e., u = v(K∗), let Φ′(u) = (K∗, p/2−

1). For each node u of G with Φ(u) = (K∗, p/2−1), let Φ′(u) = (K∗, p/2−2).
3. For each maximal clique K �= K∗ of G that is not a leaf of T , we do the

following:
(a) Choose an arbitrary child K1 of K in T and let Φ′(v(K1)) = (K, p/2−1).
(b) For each child K2 of K other than K1, let Φ′(v(K2)) = (π(K), p/2− 2).
(c) For each node u of G with Φ(u) = (K, p/2−1), let Φ′(u) = (π(K), p/2−

2).
4. For each maximal clique K �= K∗ of G that is a leaf of T , we do the following:

(a) Choose an arbitrary node u with Φ(u) = (K, p/2 − 1) and let Φ′(u) =
(K, p/2− 1).

(b) For each node w �= u with Φ(w) = (K, p/2−1), let Φ′(w) = (π(K), p/2−
2).

5. Let u be the node with Φ(u) = (K∗, p/2). Let Φ′(u) = (K∗, p/2−1). For each
node w with Φ(w) = (K, p/2) and π(K) = K∗, let Φ′(w) = (K∗, p/2− 2).

We show that Φ′ is a clique-position function of G with respect to p− 2.
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– Condition C1: One can verify that Φ′(u) is well defined for each node u of
G. Moreover, by Condition C1 of Φ and Equations (1), (2), and (3), one can
also verify that Φ′(u) is a clique position of u in G.

– Condition C2: By Condition C2 of Φ and Steps 2, 3(a), 4(a), and 5, one can
see that for each maximal clique K of G, there exists a unique node u of G
with Φ′(u) = (K, p/2− 1).

– Condition C3: Condition C2 of Φ′ ensures that if u is a node with Φ′
2(u) =

p/2− 2, then there is a node w with Φ′
1(w) = Φ′

1(u) and Φ′
2(w) = Φ′

2(u) + 1.
Condition C3 of Φ and Step 1 ensures that if u is a node with Φ′

2(u) < p/2−2,
then there is a node w with Φ′

1(w) = Φ′
1(u) and Φ′

2(w) = Φ′
2(u) + 1.

Observe that whether P is empty or not, p∗ can always be computed from G in
linear time. (This includes the case that J = Dom(G) = ∅, i.e., p∗ is undefined.)
Thus, the above proof reduces the tree root problem G to the p∗-th tree root
problem for G, which by Theorem 3 can be solved in linear time.
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Abstract. Motivated by the frequency assignment problem in hetero-
geneous multihop radio networks, where different radio stations may
have different transmission ranges, we introduce two new types of col-
oring of graphs, which generalize the well-known Distance-k-Coloring.
Let G = (V, E) be a graph modeling a radio network, and assume
that each vertex v of G has its own transmission radius r(v), a non-
negative integer. We define r-coloring (r+-coloring) of G as an assign-
ment Φ : V �→ {0, 1, 2, . . .} of colors to vertices such that Φ(u) = Φ(v)
implies dG(u, v) > r(v) + r(u) (dG(u, v) > r(v) + r(u) + 1, respectively).
The r-Coloring problem (the r+-Coloring problem) asks for a given graph
G and a radius-function r : V �→ N ∪ {0}, to find an r-coloring (an r+-
coloring, respectively) of G with minimum number of colors. Using a new
notion of generalized powers of graphs, we investigate the complexity of
the r-Coloring and r+-Coloring problems on several families of graphs.

1 Introduction

The Frequency Assignment Problem (FAP) in multihop radio networks is the
problem of assigning frequencies to transmitters exploiting frequency reuse while
keeping signal interference to acceptable levels. The FAP is usually modeled
by variations of the graph coloring problem. The L(δ1, δ2, . . . , δk)-coloring of a
graph G = (V, E), where δis are positive integers, is an assignment function
Φ : V (→ N ∪ {0} such that |Φ(u) − Φ(v)| ≥ δi when the distance between u
and v in G is equal to i (i ∈ {1, 2, . . . , k}). The aim is to minimize the range of
the frequencies used, i.e., we search for the minimum λ such that G admits a
L(δ1, δ2, . . . , δk)-coloring with frequencies between 0 and λ. Let us denote that
minimum by λδ1,δ2,...,δk

(G). Unfortunately, already a restricted version of this
problem, the L(2, 1)-coloring problem (called also the Radiocoloring problem), is
NP-complete even for planar graphs, bipartite graphs, chordal graphs and split
graphs [5, 21], the classes of graphs where the ordinary graph coloring problem
is easily (polynomial time) solvable. Polynomial time algorithms for optimal
L(2, 1)-coloring are known only for trees [11, 24], cographs [11], k-almost trees
[19] and for very regular graphs such as triangular grids, rectangular grids and
hexagonal grids (see [4, 10] and papers cited therein).
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c© Springer-Verlag Berlin Heidelberg 2006



424 A. Brandstädt et al.

Another variation of FAP considers k-powers, Gk (k = 1, 2, 3, . . .), of a given
graph G. The kth power Gk of G = (V, E) has the same vertex set V but two
vertices v and u are adjacent in Gk if and only if their distance in G is at most
k. The problem is to color the kth power of G with minimum number of colors,
denoted by χ(Gk). This problem is extensively studied in literature and often
called Distance-k-Coloring. Again, the problem is NP-complete even for chordal
graphs [1] and for planar graphs and k = 2 [31]. Moreover, it is computationally
hard to approximately color the even powers of n-vertex chordal graphs within
an n

1
2−ε factor, for any ε > 0 [1]. Exact polynomial time algorithms are known

only for some special graph classes: for graphs with bounded tree-width [24], for
graphs with bounded clique-width [33], and for interval, strongly chordal, doubly
chordal, trapezoid, d-trapezoid, and cocomparability graphs as those families
of graphs are closed under taking powers [7, 14, 15, 16, 20, 32] and the ordinary
coloring problem on them is polynomial time solvable [23, 26, 30]. Approximation
algorithms for coloring powers of chordal graphs and squares of planar graphs
are presented in [2, 28].

The L(δ1, δ2, . . . , δk)-coloring problem and the Distance-k-Coloring problem
are related. Clearly, χ(Gk)−1 = λ1, 1, . . . , 1︸ ︷︷ ︸

k

(G) ≤ λδ1,δ2,...,δk
(G) and, since from

a valid coloring of Gk we can always get a valid L(δ1, δ2, . . . , δk)-coloring of G
by multiplying by t := max1≤i≤k{δi} the assigned color of each vertex, we have
also λδ1,δ2,...,δk

(G) ≤ t(χ(Gk)− 1). Hence, an algorithm solving the Distance-k-
Coloring problem for a class of graphs also provides a (max1≤i≤k{δi})-approxi-
mation for the L(δ1, δ2, . . . , δk)-coloring problem. So, it is natural to investigate
graph classes for which powers Gk are easy to color.

In this paper, we extend the second variant of the Frequency Assignment
Problem to the so-called heterogeneous multihop radio networks where different
radio stations may have different transmission ranges. In this model, two radio
stations x and y must not receive the same frequency if there is a third radio
station z which is within the transmission ranges of both x and y (to avoid
collisions at z). In a more restricted model, we may forbid even two radio stations
to have the same frequency if their transmission areas are very close. More
formally, let G = (V, E) be a graph modeling a radio network, and assume that
each vertex v of G has its own transmission radius r(v), a non-negative integer.
We define r-coloring of G as an assignment Φ : V (→ {0, 1, 2, . . .} of colors to
vertices such that Φ(u) = Φ(v) implies dG(u, v) > r(v) + r(u), and r+-coloring
of G as an assignment Φ : V (→ {0, 1, 2, . . .} of colors to vertices such that
Φ(u) = Φ(v) implies dG(u, v) > r(v) + r(u) + 1. Here, dG(u, v) is the shortest
path distance between u and v in G. The r-Coloring problem (the r+-Coloring
problem) asks for a given graph G and a radius-function r : V (→ N ∪ {0}, to
find an r-coloring (an r+-coloring, respectively) of G with minimum number of
colors. Clearly, if r(v) = l (l is a fixed integer) for each v ∈ V , then r-coloring is
just an ordinary coloring of G2l and r+-coloring is just an ordinary coloring of
G2l+1. Hence, the r-Coloring and r+-Coloring problems generalize the Distance-
k-Coloring.



Generalized Powers of Graphs and Their Algorithmic Use 425

(a)

a d

b c

e

(0) (0)

(0)(1) (1)

(1)

(0)

f

g

(b)

a d

b c

g

f

e

(c)

a d

b c

e

g

f

Fig. 1. A graph G with a radius-function r : V �→ N ∪ {0} (a), and the corresponding
graphs L(D(G, r)) (b) and Γ (D(G, r)) (c).

For a graph G = (V, E) with a radius-function r : V (→ N ∪{0}, we can define
two new graphs Γ (D(G, r)) and L(D(G, r)) (and call them generalized powers
of G) as follows. Both Γ (D(G, r)) and L(D(G, r)) have the same vertex set V as
G has, and vertices u, v ∈ V form an edge in Γ (D(G, r)) (in L(D(G, r))) if and
only if dG(u, v) ≤ r(v)+ r(u)+1 (dG(u, v) ≤ r(v)+ r(u), respectively). Figure 1
shows a graph G with a radius-function r : V (→ N ∪{0}, and the corresponding
graphs Γ (D(G, r)) and L(D(G, r)). It is easy to see that an r-coloring of G is
nothing else than an ordinary coloring of L(D(G, r)) and an r+-coloring of G is
nothing else than an ordinary coloring of Γ (D(G, r)).

In this paper, we investigate the r-Coloring and r+-Coloring problems on
special graph classes. We are interested in determining large families of graphs
G for which the graphs L(D(G, r)) and/or Γ (D(G, r)) have enough structure to
exploit algorithmically and to solve the r-Coloring and/or r+-Coloring problems
on G efficiently. Among other results we show that

– if G is a chordal (interval, circular-arc, cocomparability, weakly chordal)
graph, then for any radius-function r : V (→ N ∪ {0}, the graph Γ (D(G, r))
is chordal (resp., interval, circular-arc, cocomparability, weakly chordal);

– if G is a chordal graph with chordal square G2 (a so called power-chordal
graph), then for any radius-function r : V (→ N ∪{0}, the graphs Γ (D(G, r))
and L(D(G, r)) are chordal;

– if G is a weakly chordal graph with weakly chordal square G2, then for any
radius-function r : V (→ N ∪ {0}, the graphs Γ (D(G, r)) and L(D(G, r)) are
weakly chordal;

– if G is a distance-hereditary graph, then for any radius-function r : V (→
N ∪ {0}, the graph Γ (D(G, r)) is weakly chordal and the graph L(D(G, r))
is chordal;

– if G is an AT-free graph, then for any radius-function r : V (→ N , the graphs
Γ (D(G, r)) and L(D(G, r)) are cocomparability graphs (note that r(v) = 0
is not allowed here);

– if G is a cocomparability (interval, circular-arc) graph, then for any radius-
function r : V (→ N , the graph L(D(G, r)) is cocomparability (resp., interval,
circular-arc).
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Since the (ordinary) coloring problem on chordal graphs, weakly chordal
graphs, interval graphs and cocomparability graphs are polynomial time solvable
(see [23, 26, 30]), we immediately obtain polynomial time solvability of the cor-
responding r-Coloring and/or r+-Coloring problems on those graphs. Unfortu-
nately, coloring of circular-arc graphs is an NP-complete problem [22]. However,
one can use the circular-arc graph coloring approximation algorithm of [27] with
a performance ratio of 3/2 to get an approximate solution for the corresponding
r-Coloring and/or r+-Coloring problems on circular-arc graphs.

2 Notations and Preliminaries

Let G = (V, E) be a finite, undirected, connected and simple (i.e. without loops
and multiple edges) graph. For two vertices x, y ∈ V , the distance dG(x, y)
is the length (i.e. number of edges) of a shortest path connecting x and y.
By NG(v) = {u : uv ∈ E} and NG[v] = NG(v) ∪ {v} we denote the open
neighborhood and the closed neighborhood of v, respectively. If no confusion can
arise we will omit the index G. Let N (G) = {N [v] : v ∈ V } be the family of
closed neighborhoods of G. The disk centered at v with radius k is the set of all
vertices having distance at most k to v: Nk[v] = {u : u ∈ V and d(u, v) ≤ k}.
Denote by D(G) = {N r[v] : v ∈ V , r a non-negative integer} the family of all
disks of G and by N k(G) = {Nk[v] : v ∈ V }, where k is a fixed non-negative
integer, the family of all disks of radius k of G. The kth power of a graph
G = (V, E) is the graph Gk = (V, U), where two vertices x, y ∈ V are adjacent
in Gk if and only if dG(x, y) ≤ k.

For a graph G, consider a family S = {S1, . . . , Sl} of subsets of V , i.e., Si ⊆ V ,
i = 1, . . . , l. The intersection graph L(S) of S is defined as follows. The sets from
S are the vertices of L(S) and two vertices of L(S) are joined by an edge if and
only if the corresponding sets intersect. The visibility graph Γ (S) of S is defined
as follows. The sets from S are the vertices of Γ (S) and two vertices of Γ (S) are
joined by an edge if and only if the corresponding sets are visible to each other.
We say that sets Si and Sj are visible to each other if Si ∩ Sj �= ∅ or there is an
edge of G with one end in Si and the other end in Sj .

It is easy to see, from the definitions, that

– two disks Np[v] and N q[u] of G are intersecting if and only if dG(u, v) ≤ p+q
and are visible to each other if and only if dG(u, v) ≤ p + q + 1,

– L(N k(G)) is isomorphic to G2k (k ≥ 1), i.e., G2k ) L(N k(G)),
– Γ (N k(G)) is isomorphic to G2k+1 (k ≥ 0), i.e., G2k+1 ) Γ (N k(G)).

Definitions of graph classes considered are given in appropriate sections.

3 c-Chordal Graphs

In this section we consider the generalized powers of c-chordal graphs. A graph
is called chordal if it has no induced cycles of size greater than 3 and is called
c-chordal if it has no induced cycles of size greater than c (c ≥ 3).
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Let a maximal induced cycle of G be an induced cycle of G with maximum
number of edges. Denote by l(G) the number of edges of a maximal induced
cycle of G. The parameter l(G) of a graph G is often called the chordality of G.
Clearly, the chordal graphs are exactly the graphs of chordality 3 and c-chordal
graphs are exactly the graphs of chordality c. In [7], an important lemma is
proven which connects the chordality of L(D(G)) with the chordality of G2.

Lemma 1. [7] For any graph G, l(L(D(G))) = l(G2).

One can prove a similar result for graphs G and Γ (D(G)) (proof is omitted).

Lemma 2. For any graph G with l(G) ≥ 3, l(Γ (D(G))) = l(G).

From Lemma 1 and Lemma 2 we conclude.

Theorem 1. For a graph G,

1) Γ (D(G)) is c-chordal if and only if G is c-chordal,
2) L(D(G)) is c-chordal if and only if G2 is c-chordal.

Let now G = (V, E) be a graph and r : V (→ N ∪{0} be a non–negative integer–
valued radius-function defined on V . For a graph G with a radius-function r :
V (→ N ∪{0}, define a subfamily D(G, r) of the family of all disks D(G) of G as
follows: D(G, r) = {N r(v)[v] : v ∈ V }.

Clearly, graphs L(D(G, r)) and Γ (D(G, r)) are induced subgraphs of the
graphs L(D(G))) and Γ (D(G)), respectively. Furthermore, the graph L(D(G, r))
can be viewed (by identifying every disk with its center) as a graph on the ver-
tex set V , where two vertices u, v ∈ V are adjacent in L(D(G, r)) if and only if
dG(u, v) ≤ r(u)+r(v). Similarly, the graph Γ (D(G, r)) can be viewed as a graph
on the vertex set V , where two vertices u, v ∈ V are adjacent in Γ (D(G, r)) if
and only if dG(u, v) ≤ r(u) + r(v) + 1. Thus, graphs Γ (D(G, r)) and L(D(G, r))
are generalizations of odd and even, respectively, powers of G.

Since induced subgraphs of c-chordal graphs are c-chordal, we can state the
following corollaries from Lemma 1 and Lemma 2.

Corollary 1. For any c-chordal graph G and any radius-function r : V (→
N ∪ {0} defined on the vertex set of G, the graph Γ (D(G, r)) is c-chordal. In
particular, odd powers G2k+1 (k = 1, 2, . . .) of a c-chordal graph G are c-chordal.

Corollary 2. Let G be a graph having c-chordal square G2. Then, for any
radius-function r : V (→ N ∪ {0} defined on the vertex set of G, the graph
L(D(G, r)) is c-chordal. In particular, if the square G2 of some graph G is c-
chordal, then all even powers G2k (k = 1, 2, . . .) of G are c-chordal.

Note that, Corollary 1 generalizes the known fact that odd powers of chordal
graphs are chordal [1, 18, 29]. Corollary 2 generalizes the known fact that even
powers of square-chordal graphs are chordal [7, 18]. Here, a graph G is square-
chordal if its square G2 is a chordal graph. Note also that the class of square-
chordal graphs comprises such known families of graphs as trees, interval graphs,
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directed path graphs, strongly chordal graphs, doubly chordal graphs, distance-
hereditary graphs, dually chordal graphs, homogeneous graphs, homogeneously
orderable graphs and others (see, for example, [7, 8, 9] and papers cited therein).
But, it still remains an open question to give a complete characterization of
the whole family of square-chordal graphs. As it was shown in [29], squares of
chordal graphs are not necessarily chordal; in fact, a square of a chordal graph
can have arbitrarily large chordality [29].

In [7], we defined power-chordal graphs as graphs G all powers Gk (k ≥ 1)
of which are chordal (or, equivalently, if both G and G2 are chordal). For this
family of graphs we have.

Corollary 3. For a power-chordal graph G, graphs Γ (D(G, r)), L(D( G, r)) are
chordal for any radius-function r : V (→ N ∪ {0} defined on the vertex set of G.

Notice that the class of power-chordal graphs comprises such known families of
graphs as trees, interval graphs, directed path graphs, strongly chordal graphs
and doubly chordal graphs [7].

4 Weakly Chordal Graphs

In this section we consider the generalized powers of weakly chordal graphs. In
what follows, the complement of a graph G is denoted by G, Ck is an induced
cycle on k vertices and Ck is the complement of Ck. A graph G is weakly chordal
if both G and G are 4-chordal, i.e., G has neither Ck nor Ck, k > 4, as an induced
subgraph.

Lemma 3. Let G be a graph such that L(N (G)) ) G2 is a 4-chordal graph
and L(D(G)) has no induced subgraphs isomorphic to C5. Then, L(D(G)) is a
4-chordal graph, too.

Proof. Assume that the graph L(D(G)) is not 4-chordal. Then, there must exist
an induced cycle Ck+1 in L(D(G)) such that k + 1 > 4. In fact, k + 1 is larger
than 5 since L(D(G)) cannot have an induced subgraph isomorphic to C5 (notice
that an induced cycle on 5 vertices is self-complementary). We will assume that
k is minimal, i.e., any cycle of L(D(G)) of length t (4 < t ≤ k) has a chord. Let
Ck+1 be formed by disks N r0 [x0], N r1 [x1], . . . , Nrk−1 [xk−1], N rk [xk] of G, i.e., in
G we have N ri [xi] ∩ N rj [xj ] = ∅ if and only if i = j ± 1(mod(k + 1)). Among
all such induced cycles Ck+1 of L(D(G)) we will choose one with minimum
sum σ := r0 + r1 + · · · + rk. Clearly, ri > 0 for each i. We will show that
r0 = r1 = · · · = rk = 1 holds.

Assume, without loss of generality, that r0 > 1. Consider a neighbor y of x0
on a shortest path of G from x0 to x2 and a neighbor z of x0 on a shortest path
of G from x0 to x3. Since L(D(G)) has no induced subgraphs isomorphic to C5, a
cycle of L(D(G)) formed by disks N r0−1[y], N r0−1[z], N r2 [x2], N r3 [x3], N rk [xk]
cannot be induced. Therefore, as N r0 [x0]∩N rk [xk] = ∅, we must have N r0−1[y]∩
N r3 [x3] �= ∅ or N r0−1[z]∩N r2[x2] �= ∅. Let, without loss of generality, N r0−1[y]∩
N r3 [x3] �= ∅.
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Thus, there is a neighbor y of x0 such that N r0−1[y] ∩ N r2 [x2] �= ∅ and
N r0−1[y] ∩ N r3 [x3] �= ∅. Next we claim that N r0−1[y] ∩ N ri [xi] �= ∅ for every
i = 4, . . . , k − 1. Let i0 (3 < i0 < k) be the minimal index such that N r0−1[y] ∩
N ri0 [xi0 ] = ∅. Then, it is easy to see that the disks N r0−1[y], N r1 [x1], N r2 [x2],
N r3 [x3], . . . , Nri0 [xi0 ] form an induced cycle in L(D(G)) of length t := i0 + 1
with 4 < t ≤ k, and a contradiction with the choice of k arises.

Now, disks N r0−1[y] and N ri [xi] intersect if and only if i ∈ {2, 3, . . . , k
−2, k − 1}, i.e., i �= 1, k. But, then the disks N r0−1[y], N r1 [x1], N r2 [x2], N r3

[x3], . . . , Nrk−1 [xk−1], N rk [xk] of G induce a cycle in L(D(G)) of length k + 1
and, since the sum of radiuses of these disks is σ − 1, a contradiction with the
minimality of σ := r0 + r1 + · · ·+ rk occurs.

Consequently, r0 = r1 = · · · = rk = 1 must hold, implying that Ck+1 with
k + 1 > 4 is also an induced cycle of L(N (G)). The latter contradicts now
with L(N (G)) ) G2 being a 4-chordal graph. Obtained contradictions prove the
lemma. �

Combining Lemma 1 with Lemma 3 we obtain the following results. Notice that
induced subgraphs of weakly chordal graphs are weakly chordal, too.

Theorem 2. For a graph G, L(D(G)) is weakly chordal if and only if G2 is
weakly chordal.

Proof. By Lemma 1, L(D(G)) is 4-chordal if and only if G2 is so. Assuming now
that L(D(G)) is 4-chordal, by Lemma 3, L(D(G)) is 4-chordal if and only if G2 is
4-chordal (notice that G2 is an induced subgraph of L(D(G))). Hence, L(D(G))
is weakly chordal if and only if G2 is weakly chordal. �

Corollary 4. Let G be a graph having weakly chordal square G2. Then, for any
radius-function r : V (→ N ∪ {0} defined on the vertex set of G, the graph
L(D(G, r)) is weakly chordal. In particular, if the square G2 of some graph G is
weakly chordal, then all even powers G2k (k = 1, 2, . . .) of G are weakly chordal.

Lemma 4. Let G be the complement of a 4-chordal graph and Γ (D(G)) has no
induced subgraphs isomorphic to C5, C6. Then, Γ (D(G)) is a 4-chordal graph.

Proof of this lemma is omitted. Combining Lemma 2 with Lemma 4 we obtain
the following results.

Theorem 3. For a graph G, Γ (D(G)) is weakly chordal if and only if G is
weakly chordal.

Corollary 5. For any weakly chordal graph G and any radius-function r : V (→
N ∪ {0} defined on the vertex set of G, the graph Γ (D(G, r)) is weakly chordal.
In particular, odd powers G2k+1 (k = 1, 2, . . .) of a weakly chordal graph G are
weakly chordal.

Recall (see, e.g., [9]) that a graph G is distance-hereditary if each induced path
of G is shortest. It is known that any distance-hereditary graph G is weakly
chordal and its square G2 is even chordal [3, 8]. Hence the following result holds.
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Corollary 6. For any distance-hereditary graph G and any radius-function r :
V (→ N ∪ {0} defined on the vertex set of G, the graph Γ (D(G, r)) is weakly
chordal and the graph L(D(G, r)) is chordal. In particular [3, 8], odd powers
G2k+1 (k = 1, 2, . . .) of a distance-hereditary graph G are weakly chordal, while
its even powers G2k (k = 1, 2, . . .) are chordal.

5 AT-Free Graphs and Cocomparability Graphs

In this section we consider the generalized powers of AT-free graphs, cocompa-
rability graphs and interval graphs.

In a graph G, an asteroidal triple is a triple of vertices such that between any
two there is a path of G that avoids the neighbourhood of the third. A graph G
is asteroidal triple-free (AT-free) if it has no asteroidal triples. It is shown in [12]
that any AT-free graph G = (V, E) admits a so-called strong 2-cocomparability
ordering, i.e., an ordering σ := [v1, v2, . . . , vn] of vertices of G such that for any
three vertices x, y, z, if x ≺ y ≺ z (x precedes y and y precedes z in the ordering)
and dG(x, z) ≤ 2 then dG(x, y) = 1 or dG(y, z) ≤ 2 must hold. Moreover, such
an ordering of vertices of an AT-free graph G = (V, E) can be found in time
O(|V |+ |E|) [13].

Our next lemma shows that a strong 2-cocomparability ordering of an AT-free
graph satisfies a useful distance property (proof is omitted).

Lemma 5. Let G be an AT-free graph and σ be a strong 2-cocomparability or-
dering of vertices of G. If x ≺ y ≺ z and dG(y, z) > 2, then dG(x, y)+dG(y, z) ≤
dG(x, z) + 3.

It is well known (see, e.g., [16]) that a graph is cocomparability if and only
if it admits a cocomparability ordering, i.e., an ordering σ := [v1, v2, . . . , vn] of
its vertices such that if x ≺ y ≺ z in σ and xz ∈ E(G) then xy ∈ E(G) or
yz ∈ E(G) must hold. Lemma 5 is essential to proving the following result.

Theorem 4. Let G = (V, E) be an AT-free graph and r : V (→ N be a radius-
function defined on V . Then, both L(D(G, r)) and Γ (D(G, r)) are cocomparabil-
ity graphs.

Proof. Using Lemma 5, we will show that any strong 2-cocomparability ordering
σ of vertices of G gives a cocomparability ordering for both L(D(G, r)) and
Γ (D(G, r)). In what follows, we will identify a vertex N r(v)[v] of L(D(G, r))
(and Γ (D(G, r))) with v.

Assume, by way of contradiction, that there exist three vertices x, y, z in
L(D(G, r)) such that x ≺ y ≺ z in σ, xz ∈ E(L(D(G, r))) but neither xy nor yz is
in E(L(D(G, r))). We know that two vertices u, v ∈ V are adjacent in L(D(G, r))
if and only if dG(u, v) ≤ r(u) + r(v). Hence, we have d(x, y) ≥ r(x) + r(y) + 1,
d(y, z) ≥ r(y) + r(z) + 1 and d(x, z) ≤ r(x) + r(z), i.e., d(x, y) + d(y, z) ≥
d(x, z) + 2r(y) + 2. Since, by the theorem assumption, r(v) ≥ 1 for any v ∈ V ,
we obtain d(x, y)+d(y, z) ≥ d(x, z)+4, which is in a contradiction with Lemma 5
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(note that d(y, z) ≥ r(y) + r(z) + 1 ≥ 3 > 2). Thus, a strong 2-cocomparability
ordering σ of vertices of G must be a cocomparability ordering for L(D(G, r)),
i.e., L(D(G, r)) is a cocomparability graph.

Assume now, by way of contradiction, that there exist three vertices x, y, z
in Γ (D(G, r)) such that x ≺ y ≺ z in σ, xz ∈ E(Γ (D(G, r))) but neither xy
nor yz is in E(Γ (D(G, r))). We know that two vertices u, v ∈ V are adjacent in
Γ (D(G, r)) if and only if dG(u, v) ≤ r(u) + r(v)+1. Hence, we have d(x, y) ≥
r(x) + r(y) + 2, d(y, z) ≥ r(y) + r(z) + 2 and d(x, z) ≤ r(x) + r(z) + 1, i.e.,
d(x, y)+d(y, z) ≥ d(x, z)+2r(y)+3. Since, by the theorem assumption, r(v) ≥ 1
for any v ∈ V , we obtain d(x, y)+d(y, z) ≥ d(x, z)+5, which is in a contradiction
with Lemma 5 (note that d(y, z) ≥ r(y) + r(z) + 2 ≥ 4 > 2). Thus, a strong 2-
cocomparability ordering σ of vertices of G must be a cocomparability ordering
for Γ (D(G, r)), i.e., Γ (D(G, r)) is a cocomparability graph, too. �

Notice that Theorem 4 is not true if we allow r(v) = 0 for some vertices v of G.
An induced cycle C5 on five vertices is an AT-free graph, however Γ (D(C5, r)),
where r(v) = 0 for each vertex v of C5, is not a cocomparability graph (since
Γ (D(C5, r)) ) C5 and C5 is not a cocomparability graph). The graph G shown
in Figure 1 is an AT-free graph (even an interval graph), however the graph
L(D(G, r)) shown in that figure contains an asteroidal triple b, c, g.

As a corollary, we obtain the following result known from [12].

Corollary 7. [12] If G is an AT-free graph, then Gk is a cocomparability graph
for any k ≥ 2.

Recall (see, e.g., [9]) that any cocomparability graph is AT-free. Therefore, Theo-
rem 4 holds for any cocomparability graph, too. However, for the class of cocom-
parability graphs a slightly stronger result can be proven. In [16], it was shown
that if G is a cocomparability graph and σ is its cocomparability ordering, then
x ≺ y ≺ z implies dG(x, y) + dG(y, z) ≤ dG(x, z)+ 2. Using this stronger version
of Lemma 5, similar to the proof of Theorem 4, one can prove the following.

Theorem 5. Let G = (V, E) be a cocomparability graph. Then, for any radius-
function r : V (→ N , L(D(G, r)) is a cocomparability graph, and for any radius-
function r : V (→ N ∪ {0}, Γ (D(G, r)) is a cocomparability graph.

Corollary 8. [16] All powers Gk (k ≥ 1) of a cocomparability graph G are
cocomparability, too.

Note that the class of cocomparability graphs contains such known families of
graphs as interval graphs, permutation graphs, trapezoid graphs and m-trapezoid
graphs. Hence, the graphs L(D(G, r)) and Γ (D(G, r)) for a graph G from those
families are cocomparability, too. For interval graphs the result can be further
strengthened. An interval graph is the intersection graph of intervals of a line.

Theorem 6. Let G = (V, E) be an interval graph. Then, for any radius-function
r : V (→ N , L(D(G, r)) is an interval graph, and for any radius-function r : V (→
N ∪ {0}, Γ (D(G, r)) is an interval graph.
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Corollary 9. [14] All powers Gk (k ≥ 1) of an interval graph G are interval.

Due to space limitation, we omit results on circular-arc graphs. In the full version
of this paper, we show that for any circular-arc graph G and any radius-function
r : V (→ N , both graphs L(D(G, r)) and Γ (D(G, r)) are circular-arc.

6 Algorithmic Use of the Generalized Powers of Graphs

Based on the results obtained in the previous sections and known results on
ordinary coloring, we deduce the following complexity results for the r-Coloring
and r+-Coloring Problems on the graph families considered in this paper (see
Table 1).

Table 1. Complexity results for the r-Coloring and r+-Coloring Problems on the graph
families considered in this paper. (∗) marking means that r(v) = 0 is not allowed.
Here we define the power-4-chordal (the power-weakly-chordal) graphs as graphs G for
which both G and G2 (equivalently, all powers of G) are 4-chordal (respectively, weakly
chordal) graphs. If for a graph G, only G2 is 4-chordal (is weakly chordal), then we say
that G is a square-4-chordal (respectively, a square-weakly-chordal) graph.

Graph Complexity of the Complexity of the
class r-Coloring problem r+-Coloring problem

chordal hard to approximate O(nm)
4-chordal hard to approximate P

weakly chordal hard to approximate O(n3)
square-chordal O(nm) hard to approximate

square-4-chordal P hard to approximate
square-weakly-chordal O(n3) hard to approximate

power-chordal O(nm) O(nm)
power-4-chordal P P

power-weakly-chordal O(n3) O(n3)
distance-hereditary O(n2) O(n3)

AT-free (∗) O(n3) (∗) O(n3)
cocomparability (∗) O(n3) O(n3)

interval (∗) O(n2) O(n2)
circular-arc (∗) ? and 3/2-approximation NPc and 3/2-approximation

For a given graph G with n vertices and m edges, we first find the distance
matrix of G, then construct the graphs L(D(G, r)) and Γ (D(G, r)) using that
matrix in O(n2) time, and finally color L(D(G, r)) and/or Γ (D(G, r)) using
some known algorithm (depending on what graph family the graph G is from).
Note that graphs L(D(G, r)) and Γ (D(G, r)) may have now O(n2) edges. To
compute the distance matrix, for distance-hereditary graphs and interval graphs
we can use O(n2) time algorithms presented in [17], for other graph families we
use general O(nm) time algorithm. To color chordal graphs (as well as interval
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graphs), we can use a linear (in the size of the constructed graph) time algo-
rithm from [23]. To color weakly chordal graphs, we use an algorithm from [26]
which will color L(D(G, r)) and/or Γ (D(G, r)) in O(n3) time. To color 4-chordal
graphs, we can use general polynomial time coloring algorithm designed in [25]
for all perfect graphs (4-chordal graphs are perfect). To color cocomparability
graphs, we can use O(n3) time algorithm from [30]. According to [1], it is com-
putationally hard to approximately color the even powers of n-vertex chordal
graphs within an n

1
2−ε factor, for any ε > 0. Consequently, it is computationally

hard to approximately r-color any chordal (hence, any weakly chordal, any 4-
chordal) graph within the same n

1
2−ε factor. According to [6], to (approximately)

color a dually chordal graph is as hard as to (approximately) color any graph.
Since dually chordal graphs are square-chordal, it is computationally hard to
approximately r+-color any square-chordal (hence, any square-weakly-chordal,
any square-4-chordal) graph. We know [22] that coloring of circular-arc graphs
is an NP-complete problem. Since Γ (D(G, r)) ) G when r(v) = 0 for every
v ∈ V , the general r+-Coloring problem is also NP-complete on circular-arc
graphs. However, we do not know the complexity of the r-Coloring problem on
circular-arc graphs G as the graphs L(D(G, r)) may represent only a subclass of
circular-arc graphs. One can use the circular-arc graph coloring approximation
algorithm of [27] with a performance ratio of 3/2 to get an approximate solution
for the corresponding r-Coloring and/or r+-Coloring problems on circular-arc
graphs with the same performance ratio.

In the full version of this paper, other applications of the generalized powers
of graphs (e.g., to r-packing, q-dispersion, k-domination, p-centers, r-clustering,
etc.) are discussed.
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6. A. Brandstädt, V. Chepoi and F. Dragan, The algorithmic use of hypertree struc-
ture and maximum neighborhood orderings, Disc. Appl. Math. 82 (1998), 43-77.
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