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Abstract. In this paper, the idea of adaptive potential active hypercon-
tours (APAH) as a new method of construction of an optimal classifier
is presented. The idea of active hypercontours generalizes the traditional
active contour methods, which are extensively developed in image anal-
ysis, and allows the application of their concepts in other classification
tasks. In the presented implementation of APAH the evolution of the po-
tential hypercontour is controlled by simulated annealing algorithm (SA).
The method has been evaluated on the IRIS and MNIST databases and
compared with traditional classification techniques.

1 Introduction

The concept of active hypercontours (AH) was first introduced in [17] as a gener-
alization of the active contour (AC) techniques ([1,2,3,4,5]) which are used in the
image analysis. As shown in [16], active contour techniques can be in fact consid-
ered as search methods of an optimal classifier of pixels (it is usually a contextual
classifier). The main advantage of active contours methods, in comparison with
traditional segmentation techniques, is the possibility of an arbitrary choice of
energy function which makes those techniques much more intuitive and allows
an easier use of experts’ knowledge than other classification methods (e.g. k-
NN, neural networks NN ([6,7,10,13]), etc.). The concept of AH was proposed
to enable an exchange of experience between those so far separately developed
methodologies. In this article, a practical realization of AH is presented.

The paper is organized as follows: in section 2 the basic concepts of active
hypercontours are described and their relationship with traditional classifiers is
revealed, section 3 focuses on the description of the proposed APAH algorithm,
section 4 presents obtained results comparing them to results achieved by means
of traditional classification methods and finally the last section is devoted to
conclusions and main ideas for future research directions.

2 Active Hypercontours and Classifiers

2.1 Hypercontours and Classifiers

In AC methods the contour of the object is sought in an optimization process
of energy function E : C → R, where C is the space of acceptable contours. The
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a) b)

Fig. 1. Sample hypercontours generated by traditional classifiers (IRIS database, fea-
tures 1 − 2): (a) - k-NN method with Euclidean metric and k = 1 (70), (b) NN (MLP)
with 10 neurons in one hidden layer (74)

construction of a classifier is very similar. To find an optimal classifier every
method bases on some a priori knowledge (e.g. on a training set of correctly
labeled objects). That knowledge can be expressed in the form of performance
index Q : K → R capable of the evaluation of the usefulness of each function
k ∈ K (where K represents the space of all admissible classifiers). It is further
assumed that k : X → L where X ⊆ Rn denotes a feature space and L =
{1, . . . , L} denotes the set of labels. The performance index plays here a similar
role to the energy function.

To exchange the experience between those groups of methods, the relation-
ship between them was presented in [16] and further developed to the general
definition of hypercontour in [17]. The hypercontour (contour is a special case of
hypercontour for n = 2 and L = 2) can be defined in the following way:

Definition 1. Let ρ denote any metric (e.g. Euclidean metric) in Rn, L =
{1, . . . , L} denote the set of labels and let K(x0, ε) = {x ∈ Rn : ρ(x0,x) < ε}
denote the sphere with center x0 ∈ Rn and radius ε > 0. The set h ⊆ Rn

together with information about labels of regions it surrounds is called a hyper-
contour if and only if there exists a function f : Rn → R and p0 = −∞, p1 ∈
R, . . . , pL−1 ∈ R, pL = ∞ (p1 < p2 < . . . < pL−1) such that:

h = {x ∈ Rn : ∃l1,l2∈L,l1 �=l2 ∀ε>0 ∃x1,x2∈K(x,ε)
pl1−1 ≤ f(x1) < pl1 ∧ pl2−1 ≤ f(x2) < pl2}

(1)

and the region {x ∈ Rn : pl−1 ≤ f(x1) < pl} represents class l ∈ L.

In [17] it has been proved that hypercontours are equivalent to classifiers. Each
classifier generates a hypercontour in every feature space which has a sufficient
discriminative power to distinguish classified objects:
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p0 = −∞, ∀l∈{1,...,L−1} pl = l + 1
2 , pL = ∞

∀x∈Rn f(x) = k(x) (2)

Similarly, each hypercontour unambiguously generates the corresponding classi-
fication function:

∀x∈Rn k(x) = l if pl−1 ≤ f(x) < pl (3)

The name hypercontour is used to emphasize the relationship of the proposed
technique with active contour methods.

Having the hypercontour defined as a generalization of contour, it is easy
to generalize the AC technique for other classification problems than image
segmentation. Only the energy function E : H → R must be properly defined
to evaluate the usefulness of hypercontours h ∈ H (where H is the space of all
the available hypercontours) and the optimization technique must be chosen to
be able to find an optimal classifier. That leads to the formulation of the AH
technique and thanks to that all the advantages of AC can be used not only in
image analysis tasks but also in other classification problems.

2.2 Traditional Classifiers as Hypercontours

As stated in the previous section, each classifier generates a corresponding hy-
percontour in the proper feature space. Two typical classifiers: k-NN and NN
(multilayer perceptron MLP) can be considered as examples of that fact. Each
classifier assigns labels to vectors from the feature space and divides it into L
regions of different topology. The boundaries of those regions are in fact a visual
representation of hypercontour. In Fig. 1, sample hypercontours for the above
mentioned two types of classifiers are presented.

In the case of NN, the similarity to AH is even more evident. The process of
neural network learning is in fact a search for the optimal classifier basing on
knowledge contained in the training set. Each iteration of the back propagation
algorithm actually creates a new classifier (encoded in weights of neural net-
work) and, in consequence, a new hypercontour. Thus, the adaptation of weights
of neurons is in fact an evolution process controlled by the objective function
(performance index, energy) which evaluates the progress of learning.

3 Potential Active Hypercontours

3.1 Potential Hypercontour

In this article potential hypercontour as a method of practical realization of
hypercontour is introduced. For given values of n (the number of features) and L
(the number of classes), the potential hypercontour is defined by means of a set
of labeled control points: Dc = {〈xc

1, l
c
1〉 , . . . , 〈xc

Nc , lcNc〉} where xc
i ∈ X ⊆ Rn

and lci ∈ L for i = 1, . . . , N c. Each point is a source of potential the value of
which decreases with the increase of distance from the source point (that concept
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Fig. 2. (a) The method of potential hypercontour adaptation (M = 4). In the presented
situation (n = 2, L = 3) new control points should be added in centers of regions
(1, 3), (3, 2), (4, 2). (b) The method of the extraction of features for MNIST database:
1 - sample object from MNIST database, 2 - the smallest region containing the whole
digit, 3 - subregions where the number of pixels with intensity above given threshold
is calculated.

is similar to the electric potential field). The classifier (and consequently the
corresponding hypercontour (2)) is defined as follows:

∀x∈X k(x) = arg maxl∈L
∑Nc

i=1 PQiμi(xc
i ,x)δ(lci , l) (4)

where δ : L × L → {0, 1}, l1 �= l2 ⇒ δ(l1, l2) = 0, l1 = l2 ⇒ δ(l1, l2) = 1 and
P : Rn × Rn → R is a potential function e.g. exponential potential function:

PQμ(x0,x) = Qe−μρ2(x0,x) (5)

or inverse potential function:

PQμ(x0,x) = Q
1+μρ2(x0,x) (6)

In both cases Q and μ are parameters characterizing the potential field and ρ
denotes a metric (e.g. Euclidean metric) ([6]). The potential hypercontour defined
in this way is able to describe almost each division of feature space (its shape
depends both on the distribution of control points and on parameters of potential
functions) and at the same time is very simple and intuitive in use.

3.2 Evolution of Potential Hypercontour

The shape of the potential hypercontour and its classification ability depend on
the position of control points in the feature space and on the parameters char-
acterizing potential functions. The search for the optimal distribution of control
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a) b)

Fig. 3. The influence of the parameter Q of potential functions on the results of PAH
algorithm (IRIS database, inverse potential, μ = 1, features 1− 2): (a) - the parameter
Q was not modified during optimization (76), (b) - the parameter Q was modified by
simulated annealing algorithm (the search space contains more elements - the hyper-
contours are more flexible) (80)

points only appeared, after first experiments, to be sometimes unsatisfactory (the
hypecontours are less flexible and its harder to achieve a desired shape especially
if the initial configuration is far from the optimal one) (Fig. 3). Because of that
reason also the optimal value of the parameter Q for each source of potential is
sought (parameter μ is assumed to be constant during the optimization). In the
proposed implementation of potential active hypercontour PAH the simulated
annealing (SA), as an optimization algorithm, was used ([18]). That method on
the one hand does not require any gradient information about objective function
(only its values) and, on the other hand, it allows avoiding the local minima.
Any other optimization techniques (e.g. genetic algorithm etc.) can also be used
here.

3.3 Energy of Hypercontour

The main advantage of AH is its ability to define energy (objective function) in
an almost arbitrary way. In this paper the a priori knowledge about the problem
is hidden in a training set. In general, however, the energy can use any other
information obtained from an expert as well as it can put any arbitrary chosen
constraints on the shape of the desired hypercontour.

Let Dtr = {〈xtr
1 , ltr1 〉 , . . . , 〈xtr

Ntr , ltrNtr〉} where xtr
i ∈ X ⊆ Rn and ltri ∈ L for

i = 1, . . . , N tr denote a sample training set of correctly labeled vectors. The
energy of potential hypercontour h described by means of control points Dc can
be defined as:

∀h∈H E(h) =
∑Ntr

i=1 (1 − δ(ltri , arg maxl∈L
∑Nc

i=1 PQiμi(xc
i ,x

tr
i )δ(lci , l))) (7)
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3.4 Adaptive Potential Active Hypercontour

Experimental results revealed that in some situations the initial large number of
random control points can cause some problems during the optimization process
i.e. it can be hard to get out of the local minima. (especially when there is no
a priori information about some fragments of feature space). Moreover, at the
beginning of the hypercontour evolution it is usually not known how many control
points are needed for a satisfactory description of a desired classifier. Too many
control points can reduce its generalizing abilities. Due to those reasons and to
improve the performance of the proposed algorithm, an adaptation mechanism
can be added to PAH. This adaptation allows in APAH to start the optimization
phase several times. After each phase additional control points can be added to
Dc in those areas of features space where the number of incorrect classifications
is the largest. Thus, the evolution can begin with a smaller number of control
points and can be finished when the classification results are satisfactory.

In the presented implementation each adaptation step adds either one or L
control points, one for each class. To choose the points that should be added,
the smallest n-dimensional cube containing all the points from the training set
is considered. After each optimization phase that cube is divided into Mn iden-
tical but smaller n-dimensional cubes (in every dimension the smallest interval
containing all the possible values of the feature is divided into M equal subinter-
vals) (Fig. 2). Next, in all of those cubes the number of incorrect classifications
of objects from Dtr is calculated and a new control point, for a given class
l ∈ L, is placed in the center of that cube where the highest number of wrong
classifications of objects from that class was observed.

4 Results

The method was tested on the IRIS and MNIST databases. In both cases the
training set Dtr and test set Dte = {〈xte

1 , lte1 〉 , . . . , 〈xte
Nte , lteNte〉} ⊆ Rn × L were

considered. The latter was used to evaluate the results of classification (the
percent of correct classifications in that set was used as a measure of the quality
of the classifier).

The first data set contains L = 3 classes referring to 3 types of iris plants
(iris setosa, iris versicolour and iris virginica) ([19]). Each class is represented
by 50 objects and each object is described using n = 4 features (sepal length,
sepal width, petal length and petal width). For evaluation purposes the whole set
was randomly divided into training set Dtr (100 instances) and test set Dte (50
instances). The achieved results of classification for traditional methods as well
as for PAH and APAH are presented in Table 1 and in Fig. 3, Fig. 4.

The second database contains a set of images with handwritten digits (L = 10)
([20]). One image contains one digit only. This set was divided into training set
Dtr and test set Dte with 6000 and 1000 instances respectively. In this case
to conduct experiments, the features had to be first extracted. The method of
extraction proposed here first finds the smallest region containing the whole
digit and then divides it into a given number (here 16) of identical subregions
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Table 1. Sample classification results (percent of correctly labeled objects from Dte)
for each combination of features (IRIS database). Each column corresponds to one clas-
sifier: (a), (b) k-NN method with Euclidean metric and k = 1 and k = 7, respectively;
(c), (d) - NN with one hidden layer containing 5 and 10 neurons, respectively; (e), (f),
(g) - PAH method with inverse potential where μ = 1 and the number of control points
in each class is equal to 1, 2, 10 respectively; (h), (i) - APAH with inverse potential,
μ = 1, M = 8 and 1, 9 adaptation steps respectively, (j), (k), (l), (m), (n) - the same
as (e), (f), (g), (h), (i) but with μ = 15.

Features (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) Best
1 68 68 74 68 72 74 72 72 72 76 72 72 72 72 PAH
2 46 50 50 50 52 52 52 52 52 52 52 52 52 54 APAH
3 92 94 92 92 92 92 92 92 92 92 92 92 92 94 k-NN, APAH
4 92 92 94 92 94 92 92 92 92 92 96 96 92 96 APAH
1 − 2 70 76 74 82 76 76 74 78 80 78 76 78 78 84 APAH
1 − 3 94 92 92 94 94 94 94 94 94 94 94 94 94 96 APAH
1 − 4 94 96 94 94 94 94 94 94 94 94 94 96 94 94 k-NN, PAH
2 − 3 90 94 92 92 90 92 92 92 92 92 92 92 92 92 k-NN
2 − 4 92 92 94 92 92 94 92 94 94 92 92 92 90 94 NN, APAH
3 − 4 96 96 96 96 96 96 96 96 96 96 96 96 96 96 ALL
2 − 3 − 4 98 94 94 94 94 94 96 94 96 94 94 94 94 98 k-NN, APAH
1 − 3 − 4 96 98 96 94 96 96 96 98 96 94 94 98 96 98 k-NN, APAH
1 − 2 − 4 94 98 92 94 92 90 94 94 96 94 94 94 98 98 k-NN, APAH
1 − 2 − 3 92 90 94 96 94 96 94 94 94 94 94 96 94 96 NN, APAH
1 − 2 − 3 − 4 96 96 94 94 94 96 94 96 98 96 96 96 94 96 APAH

Table 2. The influence of the adaptation process on the classification. Comparison
of the achieved results (percent of correctly labeled objects from Dte) with results
obtained by means of traditional techniques (MNIST database). Each column corre-
sponds to one classifier: (a), (b), (c) - k-NN method with Euclidean metric and k = 1
and k = 7, respectively; (d), (e), (f), (g) - NN with one hidden layer containing 10,
20, 50 and 100 neurons, respectively; (h), (i), (j), (k), (l) - APAH method with inverse
potential, μ = 1 and M = 2 after 0, 4, 8, 12, 16 adaptation steps, respectively.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
78.1 80.5 78.9 65.0 72.8 76.4 79.2 19.2 48.4 62.2 66.8 75.2

(Fig. 2). The feature vector is composed of the ratios of pixels with intensity
above the given threshold (e.g. 128) to the whole number of pixels in every
subregion (consequently n = 16). In spite of the fact that in the literature the
better features can be found, those proposed here are sufficient for comparison
of classifiers. The obtained results are gathered in Table 2.

It is worth mentioning that the choice of a potential function and its param-
eters affects the character of the potential hypercontour and consequently the
classification results. For the potential functions considered here, the parameter
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a) b)

c) d)

e) f)

Fig. 4. The influence of parameters of APAH (IRIS database, features 1 − 2, M = 8):
(a), (c), (e) - μ = 1, results after 0 (76), 4 (76), 7 (78) adaptations steps, respectively;
(b), (d), (f) - μ = 15, results after 0 (78), 4 (80), 7 (82) adaptations steps, respectively
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μ affects the flexibility of the APAH (Fig. 4). Thus μ can be used to control the
ability of a classifier to generalize the available knowledge.

5 Conclusions

The presented APAH method is a new approach to an optimal classifier con-
struction. It allows (even in its basic form presented here) to obtain classifiers
which give similar and in some situations even better results than traditional
methods. The main advantage of APAH, however, is its ability to straightfor-
wardly use any experts’ knowledge. Here, the knowledge was gathered in the
form of a training set, but sometimes experts, basing on their experience, can
add a heuristic information which can improve the classification significantly
(e.g. fuzzy information). This method allows also to take into account any ad-
ditional constraints that can be put on the shape of desired hypercontour (as
for example in support vector machines SVM) which is not always possible in
traditional techniques. In the APAH approach all of that can be simply encoded
in the energy function. Moreover, it is also possible to consider the potential ac-
tive contour (PAC) method as a new method for image segmentation. It is worth
mentioning that there are some analogies between this approach and other meth-
ods known from pattern recognition to call RBF neural networks as an example.
All these aspects are presently under further, practical investigation.
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