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Abstract. This paper is concerned with the issue of design and analysis
of fuzzy decision systems, basing on recorded process data. A concept of
fuzzy flow graphs is proposed to allow representation of decision tables
with fuzzy attributes. Basic notions of the crisp flow graph approach
are generalized. Satisfaction of flow graph properties, with respect to
fuzzy connectives used in calculations, is taken into account. Alternative
definitions of the path’s certainty and strength are introduced. In an
illustrative example a decision table with fuzzy attributes is analyzed
and interpreted in terms of flow graphs.

1 Introduction

An appropriate utilization of recorded process data and decision examples, for
creating a set of relevant fuzzy decision rules, is an important problem in ap-
plications of fuzzy inference systems [3,9]. The used data can be conveniently
represented in the form of a decision table with fuzzy attributes. It might be
advantageous to carry out an analysis of this kind of decision table, by applying
the fuzzy rough set model [4].

A hybrid approach to decision algorithms, proposed by Pawlak [5,6,7], com-
bines the idea of flow graphs with the crisp rough set model. Greco, Pawlak and
S�lowiński [1] proved that relaxation of mutual exclusion of decision rules does
not violate basic properties of flow graphs, and every decision algorithm can be
associated with a flow graph.

The main goal of this paper consists in developing a fuzzy flow graph approach,
which is suitable for representing and analyzing fuzzy decision systems. First of
all, we want to address crucial issues of the generalized flow graph approach,
concerning especially its connection to fuzzy inference systems. We concentrate
on the aspect of representing and selecting fuzzy decision rules with the help of
flow graphs. The problem of a correct choice of fuzzy connectives is considered
with the aim to retain the flow conservation equations. Furthermore, we give new
definitions of the path’s certainty and strength, by respecting only the relevant
part of the flow, i.e by disregarding the flow components which come from other
paths.
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2 Decision Tables with Fuzzy Attributes

In further discussion, we apply fuzzy decision tables in the form introduced in [4].
We consider a finite universe U with N elements: U = {x1, x2, . . . , xN}. Every
element x of the universe U will be described with the help of fuzzy attributes,
which are divided into a subset of n condition attributes C = {c1, c2, . . . , cn},
and a subset of m decision attributes D = {d1, d2, . . . , dm}.

We assign a set of linguistic values to every fuzzy attribute. Let us denote by
Vi = {Vi1, Vi2, . . . , Vini} the family of linguistic values of the condition attribute
ci, and by Wj = {Wj1, Wj2, . . . , Wjmj} the family of linguistic values of the
decision attribute dj , where ni and mj is the number of the linguistic values of
the i-th condition and the j-th decision attribute, respectively, i = 1, 2, . . . , n
and j = 1, 2, . . . , m.

For any element x ∈ U , its membership degrees in all linguistic values of the
condition attribute ci (or decision attribute dj) should be determined. This is
accomplished during the fuzzification stage, basing on the recorded crisp value
of a particular attribute of x. The value of an attribute for a given element x is
a fuzzy set on the domain of all linguistic values of that attribute.

We denote by Vi(x) the fuzzy value of the condition attribute ci for any x, as
a fuzzy set on the domain of the linguistic values of ci

Vi(x) = {μVi1(x)/Vi1, μVi2(x)/Vi2, . . . , μVini
(x)/Vini} . (1)

Wj(x) denotes the fuzzy value of the decision attribute dj for any x, as a fuzzy
set on the domain of the linguistic values of dj

Wj(x) = {μWj1 (x)/Wj1, μWj2 (x)/Wj2, . . . , μWjmj
(x)/Wjmj} . (2)

If the linguistic values of an attribute have the form of singletons or disjoint
intervals, with membership degree equal to 1 on the original domain of the
attribute, then only one linguistic value can be assigned to that attribute. In
that case we get a classical crisp decision table. In general, we obtain a non-zero
membership of x to more than one linguistic value of an attribute.

Table 1. Decision table with fuzzy attributes

c1 c2 · · · cn d1 d2 · · · dm

x1 V1(x1) V2(x1) · · · Vn(x1) W1(x1) W2(x1) · · · Wm(x1)
x2 V1(x2) V2(x2) · · · Vn(x2) W1(x2) W2(x2) · · · Wm(x2)

· · ·
xN V1(xN) V2(xN) · · · Vn(xN) W1(xN) W2(xN) · · · Wm(xN)

Furthermore, we assume that for any element x ∈ U , all linguistic values Vi(x)
and Wj(x) (i = 1, 2, . . . , n , j = 1, 2, . . .m) satisfy the requirments

power(Vi(x)) =
ni∑

k=1

μVik
(x) = 1 , power(Wj(x)) =

mj∑

k=1

μWjk
(x) = 1 . (3)



270 A. Mieszkowicz-Rolka and L. Rolka

This assumption allows us to generalize the flow graph approach and use it for
analysis of fuzzy information system.

Decision tables with fuzzy values of attributes will be applied for examining
all possible decision rules generated by using the Cartesian product of sets of
the linguistic values.

Let us denote by Rk the k-th decision rule from the set consisting of r possible
decision rules (r =

∏n
i=1 ni

∏m
j=1 mj)

Rk: IF c1 is V k
1 AND c2 is V k

2 . . . AND cn is V k
n

THEN d1 is W k
1 AND d2 is W k

2 . . . AND dm is W k
m

(4)

where k = 1, 2, . . . , r , V k
i ∈ Vi , i = 1, 2, . . . n , W k

j ∈ Wj , j = 1, 2, . . . , m.
When we use the fuzzy Cartesian products Ck = V k

1 × V k
2 . . . × V k

n and
Dk = W k

1 × W k
2 . . . × W k

m , the k-th decision rule can be written in the form of
a fuzzy implication Ck → Dk.

We need to select a subset of those decision rules which are relevant to the con-
sidered decision process. To this end, we determine to what degree any element
x ∈ U , corresponding to a single row of the decision table, confirms particular
decision rules. We should calculate the truth value of the decision rule’s an-
tecedent and the truth value of the decision rule’s consequent, by determining
the conjunction of the respective membership degrees of x in the linguistic values
of attributes.

In the case of a decision table with crisp attributes, a decision rule is con-
firmed for some x, if the result of conjunction is equal to 1, both for the rule’s
premise and the rule’s conclusion. Otherwise, the element x does not confirm
the considered decision rule. The set of those elements x ∈ U , which confirm a
decision rule, is called the support of the decision rule.

In order to determine the confirmation degree of fuzzy decision rules, in the
case of decision tables with fuzzy attributes, we need to apply a T-norm operator.
By cd(x, k), we denote the confirmation degree of the k-th decision rule by the
element x ∈ U

cd(x, k) = T(cda(x, k), cdc(x, k)) , (5)

where cda(x, k) denotes the confirmation degree of the decision rule’s antecedent

cda(x, k) = T(μV k
1

(x), μV k
2

(x), . . . , μV k
n

(x)) , (6)

and cdc(x, k) the confirmation degree of the decision rule’s consequent

cdc(x, k) = T(μW k
1

(x), μW k
2

(x), . . . , μW k
m

(x)) . (7)

By determining the confirmation degrees (6), (7) and (5), we get the following
fuzzy sets on the domain U :
the support of the decision rule’s antecedent

support(cda(x, k)) = {cda(x1, k)/x1, cda(x2, k)/x2, . . . , cda(xN , k)/xN} , (8)
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the support of the decision rule’s consequent

support(cdc(x, k)) = {cdc(x1, k)/x1, cdc(x2, k)/x2, . . . , cda(xN , k)/xN} , (9)

and the support of the decision rule Rk, respectively

support(Rk) = {cd(x1, k)/x1, cd(x2, k)/x2, . . . , cd(xN , k)/xN} . (10)

The introduced notions will be used in the next section to define strength,
certainty, and coverage factors of a decision rule.

3 Flow Graphs

The idea of using flow graphs in the framework of rough sets, for discovering
the statistical properties of crisp decision algorithms, was proposed by Pawlak
[5,6,7]. We want to utilize and extend this concept with the aim of applying flow
graphs to analysis of fuzzy information systems. First, we recall basic notions of
the crisp flow graph approach.

A flow graph is given in the form of directed acyclic final graph G = (N ,B, ϕ),
where N is a set of nodes, B ⊆ N ×N , is a set of directed branches, ϕ: B → R+

is a flow function with values in the set of non-negative reals R+.
For any (X, Y ) ∈ B, X is an input of Y and Y is an output of X . The quantity

ϕ(X, Y ) is called the throughflow from X to Y .
I(X) and O(X) denote an input and an output of X , respectively. The input

I(G) and output O(G) of a graph G are defined by

I(G) = {X ∈ N : I(X) = ∅} , O(G) = {X ∈ N : O(X) = ∅} . (11)

Every node X ∈ N of a flow graph G is characterized by its inflow

ϕ+(X) =
∑

Y ∈I(X)

ϕ(Y, X) , (12)

and by its outflow
ϕ−(X) =

∑

Y ∈O(X)

ϕ(X, Y ) . (13)

For any internal node X , the equality ϕ+(X) = ϕ−(X) = ϕ(X) is satisfied. The
quantity ϕ(X) is called the flow of the node X .

The flow for the whole graph G is defined by

ϕ(G) =
∑

x∈I(G)

ϕ−(X) =
∑

x∈O(G)

ϕ+(X) . (14)

By using the flow ϕ(G), the normalized troughflow σ(X, Y ) and the normal-
ized flow σ(X) are determined as follows

σ(X, Y ) =
ϕ(X, Y )
ϕ(G)

, σ(X) =
ϕ(X)
ϕ(G)

. (15)
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For every branch of a flow graph G the certainty factor is defined by

cer(X, Y ) =
σ(X, Y )
σ(X)

. (16)

The coverage factor for every branch of a flow graph G is defined by

cov(X, Y ) =
σ(X, Y )
σ(Y )

. (17)

The certainty and coverage factors satisfy the following properties
∑

Y ∈O(X)

cer(X, Y ) = 1 ,
∑

X∈I(Y )

cov(X, Y ) = 1 . (18)

The measures (16) and (17) are useful for analysis of decision algorithms [2].
Let us now consider the possibility of applying flow graphs in the case of

fuzzy decision algorithms. Any decision table with fuzzy attributes can be con-
veniently expressed as a flow graph. We can assume, without losing the generality
of consideration, that only one decision attribute will be used. Each attribute
is represented by a layer of nodes. The nodes of the input and hidden layers
correspond to linguistic values of the condition attributes, whereas the output
layer nodes correspond to linguistic values of the decision attribute.

Let us denote by X̃ a fuzzy set on the universe U , which describes membership
degree of particular elements x ∈ U in the linguistic value represented by X . The
membership degrees of all x in the set X̃ can be found in a respective column of
the considered decision table.

The flow ϕ(X, Y ) for the branch (X, Y ) is equal to power (fuzzy cardinality) of
the product of fuzzy sets X̃ and Ỹ . However, the T-norm operator prod should
be used for determining the product of sets, in order to satisfy the following
equation for the input and internal layer nodes

ϕ−(X) = power(X̃) =
∑

Y ∈O(X)

ϕ(X, Y ) =
∑

Y ∈O(X)

power(X̃ ∩ Ỹ ) . (19)

An analogous equation can be given for the output and internal layer nodes

ϕ+(X) = power(X̃) =
∑

Y ∈I(X)

ϕ(Y, X) =
∑

Y ∈I(X)

power(X̃ ∩ Ỹ ) . (20)

Similarly, the equality ϕ+(X) = ϕ−(X) = ϕ(X) is satisfied for any internal
node X , when the T-norm operator prod is used. The above equations do not
hold in general, if we use another T-norm operator, e.g. min. This is because
the total normalized inflow (outflow) of each layer does depend on the form
of T-norm operator used in calculations. In order to satisfy (19) and (20), the
total normalized inflow (outflow) of a layer should be equal to 1. By applying
the property (3), we can show that this is fulfilled, when we choose the T-norm
operator prod.
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In the special case of crisp decision tables, the formulae (19) and (20) become
equivalent to (12) and (13).

The input and hidden layers of the flow graph can be merged into a single
layer, which contains nodes representing all possible combinations of linguistic
values of the condition attributes. Let us denote by X∗ a node of the resulting
layer. The node X∗ corresponds to antecedent of a certain decision rule Rk.
Support of the antecedent of the decision rule Rk is determined by using (8).

The decision rule Rk is represented by a branch (X∗,Y ), where Y denotes a
node of the output layer.

Power of the support of the rule Rk, defined by (10), is equal to the flow
between the nodes X∗ and Y

ϕ(X∗, Y ) = power(support(Rk)) . (21)

By using the formulae (8), (9) and (10), we can determine, for every deci-
sion rule Rk, the certainty factor cer(X∗, Y ), coverage factor cov(X∗, Y ), and
strength of the rule σ(X∗, Y )

cer(X∗, Y ) = cer(Rk) =
power(support(Rk))

power(support(cda(x, k)))
, (22)

cov(X∗, Y ) = cov(Rk) =
power(support(Rk))

power(support(cdc(x, k)))
, (23)

σ(X∗, Y ) = strength(Rk) =
power(support(Rk))

card(U)
. (24)

Every decision rule can be represented by a sequence of nodes [X1 . . . Xn], i.e.
by a path from the 1-th to the n-th layer of the flow graph G. For a given path
[X1 . . .Xn], the resulting certainty and strength can be defined. In contrast to
the definitions presented in [5,6,7], in which the statistical properties of flow are
taken into account, we introduce an alternative form of the path’s certainty and
strength

cer[X1 . . . Xn] =
n−1∏

i=1

cer(X1 . . . Xi, Xi+1) , (25)

σ[X1 . . . Xn] = σ(X1) cer[X1 . . .Xn] , (26)

where

cer(X1 . . . Xi, Xi+1) =
power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i+1)
power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i)

. (27)

With the help of equation (25), we can determine what part of the flow of
the starting node X1 reaches the final node Xn, passing through all nodes of the
path [X1 . . . Xn].
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4 Example

We consider a decision table with fuzzy attributes (Table 2). There are two
condition attributes A and B, and one decision attribute D. All attributes have
three linguistic values. We use the same labels for both the linguistic values of
the attributes and the corresponding nodes of the flow graph. As we stated in
previous section, we use the T-norm operator prod in our calculations.

Table 2. Decision table with fuzzy attributes

A B D

A1 A2 A3 B1 B2 B3 D1 D2 D3

x1 0.2 0.8 0.0 0.0 0.9 0.1 0.0 0.9 0.1
x2 0.9 0.1 0.0 1.0 0.0 0.0 0.0 0.1 0.9
x3 0.0 0.2 0.8 0.0 0.1 0.9 0.9 0.1 0.0
x4 0.2 0.8 0.0 0.0 0.8 0.2 0.0 1.0 0.0
x5 0.0 0.8 0.2 0.9 0.1 0.0 0.0 0.1 0.9
x6 0.9 0.1 0.0 0.0 0.2 0.8 1.0 0.0 0.0
x7 0.1 0.9 0.0 0.0 0.9 0.1 0.1 0.9 0.0
x8 0.0 0.1 0.9 0.8 0.2 0.0 0.0 0.0 1.0
x9 0.0 0.1 0.9 0.0 0.1 0.9 0.9 0.1 0.0
x10 0.1 0.9 0.0 0.2 0.8 0.0 0.0 1.0 0.0

The values of normalized flow, for nodes representing condition attributes, are
given in Table 3. We can easy check that the flow conservation equations (19)
and (20) are satisfied, for example,

σ−(A1) =
power(Ã1)

card(U)
=

3∑

i=1

σ(A1, Bi) = 0.240 ,

σ+(B1) =
power(B̃1)

card(U)
=

3∑

i=1

σ(Ai, B1) = 0.290 .

In the next step, we merge the layers corresponding to condition attributes
into a resulting layer, which represents all possible linguistic values in the an-
tecedences of decision rules. We determine the degrees of satisfaction of the rules’
antecedences for particular elements x ∈ U . For the antecedence represented by
A1B1, we get:

Ã1B1 = Ã1 ∩ B̃1 = { 0.00/x1, 0.90/x2, 0.00/x3, 0.00/x4, 0.00/x5, 0.00/x6,
0.00/x7, 0.00/x8, 0.00/x9, 0.02/x10},

ϕ(A1, B1) = power(Ã1B1) = 0.92, σ(A1, B1) = ϕ(A1,B1)
cardU = 0.092.
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Table 3. Normalized flow between nodes of condition attributes’ layers

σ(Ai, Bj)

B1 B2 B3 Σ

A1 0.092 0.069 0.079 0.240
A2 0.108 0.304 0.068 0.480
A3 0.090 0.037 0.153 0.280
Σ 0.290 0.410 0.300 1.000

Table 4. Normalized flow between resulting and output layer

σ(AiBj , Dk)

D1 D2 D3 Σ

A1B1 0.0000 0.0110 0.0810 0.0920
A1B2 0.0189 0.0483 0.0018 0.0690
A1B3 0.0721 0.0067 0.0002 0.0790
A2B1 0.0000 0.0262 0.0818 0.1080
A2B2 0.0128 0.2748 0.0164 0.3040
A2B3 0.0332 0.0340 0.0008 0.0680
A3B1 0.0000 0.0018 0.0882 0.0900
A3B2 0.0153 0.0019 0.0198 0.0370
A3B3 0.1377 0.0153 0.0000 0.1530

Σ 0.2900 0.4200 0.2900 1.0000

Table 5. Certainty factor for branches between resulting and output layer

cer(AiBj , Dk)

D1 D2 D3 Σ

A1B1 0.0000 0.1196 0.8804 1.00
A1B2 0.2740 0.7000 0.0260 1.00
A1B3 0.9127 0.0848 0.0025 1.00
A2B1 0.0000 0.2426 0.7574 1.00
A2B2 0.0421 0.9039 0.0539 1.00
A2B3 0.4882 0.5000 0.0118 1.00
A3B1 0.0000 0.0200 0.9800 1.00
A3B2 0.4140 0.0510 0.5350 1.00
A3B3 0.9000 0.1000 0.0000 1.00

The results of calculation of normalized flow between nodes of the resulting
layer and nodes of the output layer are given in Table 4. The values of normalized
outflow σ−(AiBj), i, j ∈ {1, 2, 3}, (column

∑
in Table 4) are equal to the

respective values of normalized troughflow σ(Ai, Bj), given in Table 3, e.g.,
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Table 6. Coverage factor for branches between resulting and output layer

cov(AiBj , Dk)

D1 D2 D3

A1B1 0.0000 0.0262 0.2793
A1B2 0.0652 0.1150 0.0062
A1B3 0.2486 0.0159 0.0007
A2B1 0.0000 0.0624 0.2821
A2B2 0.0441 0.6543 0.0566
A2B3 0.1145 0.0810 0.0028
A3B1 0.0000 0.0043 0.3040
A3B2 0.0528 0.0045 0.0683
A3B3 0.4748 0.0364 0.0000

Σ 1.0000 1.0000 1.0000

Table 7. Decision rules with the largest value of certainty factor

decision rule certainty coverage strength [%]

A1B1 → D3 0.8804 0.2793 8.10
A1B2 → D2 0.7000 0.1150 4.83
A1B3 → D1 0.9127 0.2486 7.21
A2B1 → D3 0.7574 0.2821 8.18
A2B2 → D2 0.9039 0.6543 27.48
A3B1 → D3 0.9800 0.3040 8.82
A3B3 → D1 0.9000 0.4748 13.77

σ−(A1B1) = σ(A1, B1) =
3∑

j=1

σ(A1B1, Dj) = 0.0920 .

Thus, the flow conservation equations are satisfied. This is due to applying the
T-norm operator prod.

For branches connecting the resulting and output layers, the certainty and
coverage factors are determined according to (16) and (17). The results are
given in Tables 5 and 6. They correspond to certainty and coverage factors of the
decision rules AiBj → Dk, i, j, k ∈ {1, 2, 3}, expressed by the formulae (22) and
(23). For example, cer(A1B1, D3) = 0.8804 means that 88.04% of outflow from
the node A1B1 reaches the decision node D3, cov(A1B1, D3) = 0.2793 means
that 27.93% of inflow to the decision node D3 comes from the node A1B1.

Another important measure is the strength of decision rule expressed by (24).
For example, the strength of the rule A1B1 → D3 is equal to 8.1%. We can
say that the troughflow (A1B1, D3) constitutes 8.1% of the total flow of the
considered graph.
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Fuzzy decision rules with the largest values of certainty factor (Table 7) can
be included in the final fuzzy inference system. The respective values of coverage
factor are useful for explaining these decision rules.

5 Conclusions

The proposed approach to fuzzy flow graphs is suitable for representing and
analyzing decision tables with fuzzy attributes. Every layer of a flow graph cor-
responds to a particular attribute, and all nodes of a layer correspond to linguis-
tic values of the attribute. For calculating the flow between nodes, the T-norm
operator prod was chosen in order to satisfy the flow conservation equations.
New definitions of the path’s certainty and strength were given with the aim to
correctly determine the change of the original flow along the paths. Future work
should consider the problem of generating optimal flow graphs, by taking into
account the properties of crisp or fuzzy decision tables (e.g. significance of at-
tributes). This can be done by applying the methods of the rough sets theory. In
particular, the variable precision fuzzy rough sets model seems to be a promising
tool for reduction of fuzzy flow graphs.
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1. Greco, S., Pawlak, Z., S�lowiński, R.: Generalized Decision Algorithms, Rough Infer-
ence Rules, and Flow Graphs. In: Alpigini, J., Peters, J.F., Skowron, A., Zhong, N.,
(eds.): Rough Sets and Current Trends in Computing. Lecture Notes in Artificial
Intelligence, Vol. 2475. Springer-Verlag, Berlin Heidelberg New York (2002) 93–104
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