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Abstract. In the paper we develop a new method for designing and
reduction of flexible neuro-fuzzy systems. The method allows to reduce
number of discretization points in the defuzzifier, number of rules, num-
ber of inputs, and number of antecedents. The performance of our ap-
proach is illustrated on a typical benchmark.

1 Introduction

In the last decade various neuro-fuzzy systems have been developed (see e.g.
[3], [5], [7], [12], [13]). They are characterized by natural language description
and learning abilities. Typical applications include identification, pattern classi-
fication, prediction and control. Most of neuro-fuzzy systems are based on the
Mamdani type reasoning described by a t-norm, e.g. product or min, applied
to connect antecedents and consequences in the individual rules. Another ap-
proach is based on the logical method, e.g. an S-implication (see, e.g. [4], [6])
used to connect antecedents and consequences in the rule base. Flexible neuro-
fuzzy systems have been developed in [1], [2], [8]-[10]. Such systems are char-
acterized by various flexibility parameters incorporated into their construction.
Moreover, they allow to combine the Mamdani type reasoning with the logical
approach and to find a fuzzy reasoning (Mamdani or logical) in the process of
learning. In this paper we continue to investigate flexible neuro-fuzzy systems
and the goal is to develop a new method for their designing and complexity
reduction.

In this paper we consider multi-input, single-output neuro-fuzzy system map-
ping X → Y, where X ⊂ Rn and Y ⊂ R. The fuzzy rule base of these systems
consists of a collection of N fuzzy IF-THEN rules in the form

R(k) : IF x is Ak THEN y is Bk, (1)

where x = [x1, . . . , xn] ∈ X, y ∈ Y, Ak
1 , Ak

2 , . . . , Ak
n are fuzzy sets characterized

by membership functions μAk
i
(xi), Ak = Ak

1 × Ak
2 × . . . × Ak

n, and Bk are fuzzy
sets characterized by membership functions μBk (y), respectively, k = 1, . . . , N .

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 212–219, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Method for Designing Flexible Neuro-fuzzy Systems 213

Defuzzification in these systems is realised for example by COA (centre of area)
method defined by the following formula

ȳ =

N∑

r=1
ȳr · μB′ (ȳr)

N∑

r=1
μB′ (ȳr)

(2)

where B′ is the fuzzy set obtained from the linguistic model (1), using an ap-
propriate fuzzy reasoning, and ȳr denotes centres of the output membership
functions μBr (y), i.e. for r = 1, . . . , N ,

μBr (ȳr) = max
y∈Y

{μBr (y)} . (3)

2 New Flexible Neuro-fuzzy Systems

Neuro-fuzzy architectures developed so far in the literature are based on the
formula (2) with the assumption that number of terms in both sums is equal
to the number of rules N . In this paper we relax that assumption and replace
formula (2) by

ȳ =

R∑

r=1
ȳr · μB′ (ȳr)

R∑

r=1
μB′ (ȳr)

, (4)

where R ≥ 1. A great advantage of formula (4) over formula (2) is that an
elimination of a single rule in (4) has no effect on number of discretization
points.

For further investigations we choose flexible neuro-fuzzy systems of a logical
type with an S-implication given by (for details see e.g. [8]-[10])

ȳ =

R∑

r=1
ȳr · agrr (x̄, ȳr)

R∑

r=1
agrr (x̄, ȳr)

, (5)

where

agrr (x̄, ȳr) =

⎛

⎝
(1 − αagr) avg (I1,r (x̄, ȳr) , . . . , IN,r (x̄, ȳr))+

+αagrT ∗
{

I1,r (x̄, ȳr) , . . . , IN,r (x̄, ȳr) ;
wagr

1 , . . . , wagr
N

}
⎞

⎠ , (6)

Ik,r (x̄, ȳr) =
( (

1 − αI
k

)
avg (1 − τk (x̄) , μBk (ȳr))+

+αI
kS {1 − τk (x̄) , μBk (ȳr)}

)

, (7)
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and

τk (x̄) =

⎛

⎜
⎝

(1 − ατ
k) avg

(
μAk

1
(x̄1) , . . . , μAk

n
(x̄n)

)
+

+ατ
kT ∗

{
μAk

1
(x̄1) , . . . , μAk

n
(x̄n) ;

wτ
1,k, . . . , wτ

n,k

}

⎞

⎟
⎠ . (8)

In formulas (6) and (8) we apply the weighted t-norm [8] defined by

T ∗ {a1, . . . , an; w1, . . . , wn} =
n

T
i=1

{1 − wi (1 − ai)} (9)

to connect the antecedents in each rule, k = 1, . . . , N , and to aggregate the
individual rules in the logical models, respectively. Observe that if w1 = 0
then T ∗ {a1, a2; 0, w2} = T {1, 1 − w2 (1 − a2)} = 1 − w2 (1 − a2). Therefore,
antecedent a1 is discarded since its certainty is equal to 0.

We incorporate flexibility parameters [10] into construction of new neuro-fuzzy
systems. These parameters have the following interpretation:

– weights in antecedents of the rules wτ
i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N ,

– weights in aggregation of the rules wagr
k ∈ [0, 1], k = 1, . . . , N ,

– soft strength of firing controlled by parameter ατ
k, k = 1, . . . , N ,

– soft implication controlled by parameter αI
k, k = 1, . . . , N ,

– soft aggregation of rules controlled by parameter αagr.

The general architecture (see e.g. [8]) of the above system is depicted in Fig. 1.
It is easily seen that system (4) contains N (3n + 5) + R + 1 parameters to be
determined in the process of learning.

Fig. 1. The scheme of neuro-fuzzy system
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3 Algorithm of Reduction of Neuro-fuzzy Systems

In this section we present an algorithm of reduction of neuro-fuzzy systems. The
flowchart of the algorithm is depicted in Fig. 2.

It is assumed that the system under consideration works satisfactory after the
learning process is finished. We apply the reduction procedure to that system in
the following way:

– The initial system (structure and parameters) is saved before the reduction
process starts.

– One parameter (discretization point in the defuzzifier, r = 1, . . . , R, the
whole rule, k = 1, . . . , N , input, i = 1, . . . , n, or antecedent, i = 1, . . . , n,
k = 1, . . . , N) of the system is deleted.

– Learning by a single epoch is performed. Remaining parameters take over
activity of the eliminated parameter.

– Performance of a reduced system is determined. If it is acceptable the reduced
system is saved. Otherwise, the initial system is restored.

4 Simulation Results

The neuro-fuzzy system is simulated on Glass Identification problem [11]. The
Glass Identification problem contains 214 instances and each instance is de-
scribed by nine attributes (RI: refractive index, Na: sodium, Mg: magnesium,
Al: aluminium, Si: silicon, K: potassium, Ca: calcium, Ba: barium, Fe: iron). All
attributes are continuous. There are two classes: the window glass and the non-
window glass. In our experiments, all sets are divided into a learning sequence
(171 sets) and a testing sequence (43 sets). The study of the classification of the
types of glass was motivated by criminological investigation. At the scene of the
crime, the glass left can be used as evidence if it is correctly identified.

The experimental results for the Glass Identification problem are depicted in
tables 1, 2, 3, 4, 5 and figures 3, 4. In Table 1 we show the percentage of mistakes
in the learning and testing sequences before and after reduction, e.g. for N = 2
and R = 3 we have 3.51%/2.34% for the learning sequence before and after
reduction and 2.33%/2.33% for the testing sequence before and after reduction.
In Table 2 we present number of inputs, number of rules, number of discretization
points in the defuzzifier, number of antecedents and number of parameters before
and after reduction. In Table 3 we show degree of learning time reduction [%] for
a reduced system. In Table 4 we present reduced inputs, antecedents, rules and
discretization points in the defuzzifier. In Table 5 we depict percentage of neuro-
fuzzy systems having a particular input (attribute) after the reduction process
and percentage of inputs (attributes) corresponding to a particular neuro-fuzzy
system after the reduction process. In Fig. 3a we show degree of parameter
number reduction [%], in Fig. 3b degree of learning time reduction [%], in Fig.
4a percentage of neuro-fuzzy systems having a particular input (attribute) after
the reduction process, in Fig. 4b percentage of inputs (attributes) corresponding
to a particular neuro-fuzzy system after the reduction process.
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Fig. 2. The algorithm for reduction of flexible neuro-fuzzy systems
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Table 1. Simulation results

Glass identification problem
R N

1 2 3 4
2 6.43%/5.85% 2.34%/2.34% 2.92%/2.92% 2.34%/2.34%

9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00%
3 6.43%/5.85% 3.51%/2.34% 2.34%/2.34% 2.34%/2.34%

9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00%
4 6.43%/6.43% 2.34%/2.34% 2.34%/2.34% 2.34%/2.34%

9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00%

Table 2. Simulation results

Glass identification problem
R N

1 2 3 4
2 9/1/2/9/35 9/2/2/18/67 9/3/2/27/99 9/4/2/36/131

2/1/2/2/14 5/2/2/8/37 5/3/2/13/57 6/3/2/16/66
3 9/1/3/9/36 9/2/3/18/68 9/3/3/27/100 9/4/3/36/132

2/1/2/2/14 4/2/2/4/25 6/3/3/10/49 6/4/3/13/63
4 9/1/4/9/37 9/2/4/18/69 9/3/4/27/101 9/4/4/36/133

2/1/2/2/14 6/2/4/12/51 7/3/4/17/71 4/3/3/11/52

Table 3. Simulation results

Glass identification problem
R N

1 2 3 4
2 61% 58% 57% 57%
3 65% 70% 51% 48%
4 87% 50% 52% 67%

Fig. 3. Degree of a) parameter number reduction [%], b) learning time reduction [%]
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Table 4. Simulation results

Glass identification problem
R N

1 2 3 4
2 x̄1, x̄2, x̄4, x̄5, x̄6,

x̄7, x̄9

x̄1, x̄2, x̄4, x̄5, A1
3,

A2
6

x̄1, x̄5, x̄6, x̄7, A1
2,

A2
3

x̄2, x̄6, x̄7, A1
1,

A2
5, rule4

3 x̄1, x̄2, x̄4, x̄5,
x̄64, x̄7, x̄9, ȳ1

x̄1, x̄2, x̄4, x̄5, x̄6,
A1

3, A1
9, A2

7, A2
8,

ȳ1

x̄2, x̄5, x̄8, A1
1,

A1
4, A1

9, A2
3, A2

9,
A3

3, A3
4, A3

6

x̄2, x̄5, x̄7, A1
1,

A1
4, A1

9, A2
1, A2

3,
A2

4, A2
6, A2

9, A3
3,

A3
8, A4

1

4 x̄1, x̄2, x̄4, x̄5, x̄6,
x̄7, x̄9, ȳ1, ȳ2

x̄1, x̄5, x̄7 x̄2, x̄4, A1
1, A1

5,
A1

9, A2
1

x̄1, x̄2, x̄4, x̄5, x̄6,
A1

7, rule4

Table 5. Simulation results

Glass identification problem
N
R

1
2

1
3

1
4

2
2

2
3

2
4

3
2

3
3

3
4

4
2

4
3

4
4

x̄1 v v v v 33%
x̄2 v v 17%
x̄3 v v v v v v v v v v v v 100%
x̄4 v v v v v 42%
x̄5 v v 17%
x̄6 v v v v v 42%
x̄7 v v v v v 42%
x̄8 v v v v v v v v v v v 92%
x̄9 v v v v v v v v v 75%

22% 22% 22% 56% 44% 67% 56% 67% 78% 67% 67% 44%

Fig. 4. Percentage of a) neuro-fuzzy systems having a particular input (attribute) after
the reduction process, b) inputs (attributes) corresponding to a particular neuro-fuzzy
system after the reduction process
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5 Conclusions

In the paper we described a new method for designing and reduction of flexi-
ble neuro-fuzzy systems. From simulations it follows that the reduction process
of neuro-fuzzy structures based on weighted triangular norms do not worsen
the performance of these structures. The method allows to reduce number of
discretization points in the defuzzifier, number of rules, number of inputs, and
number of antecedents. It should be noted that our method allows to the decrease
the learning time and to detect important features.
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