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Abstract. We propose a new radial basis function (RBF) neural net-
work for probability density function estimation. This network is used
for detecting changes in multivariate processes. The performance of the
proposed model is tested in terms of the average run lengths (ARL),
i.e., the average time delays of the change detection. The network allows
the processing of large streams of data, memorizing only a small part
of them. The advantage of the proposed approach is in the short and
reliable net training phase.

1 Introduction

Statistical control charts are designed in order to detect abnormalities (out-of
control states) in the process under consideration. The most common abnormal-
ities are mean shifts, variance changes and trends.

Suppose X7, Xs,... are independent random vectors observed sequentially
and X; to X, have a distribution function with probability density fo while
Xg¢, Xg+1, ... have a distribution function with probability density f1 # fo.

q is unknown and some action should be taken after undesirable change in
the process. One has to decide, on the basis of given observations

Xt - (mtlu"'vxtd) )

whether X, is r.v. with pdf fy , i.e., process is ”in-control” or if X; is another r.v.
- process is ”out-of-control”, i.e., changes in the process occurred. We assume,
that probability densities fy and f; exist but are unknown.

There is extensive literature on statistical methods for statistical process con-
trol (SPC) and control charts, see [14] and the bibliography cited therein.

Classical control charts require prior assumptions about the probability den-
sity distribution of the observed process variables. Typically it is assumed that
monitored data follow univariate or multivariate Gaussian (or sometimes other
known) distribution. For multivariate statistical process control with individual
observations, the Hotelling 72 control chart or charts (based on Mahalanobis
distance) are usually recommended.
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A neural network based approach to statistical process control and out-of
control state detection allows in-control data density distribution to be non-
Gaussian. Most of the neural network models designed for detecting changes in
(mostly univariate) statistical process work in pattern recognition settings, i.e.
on the assumption that also abnormal observation (out-of control states) are
available and their class-membership ( in-control and out-of control labels) are
known [8], [3], [7], [6], [10], [9], [4], [5], [2], [12].

A neural network-based approach used when only in-control data is available
has been considered in only a few papers ( see [18] and [22]).

In the former paper the author proposes a vector quantization neural net-
work with Kohonen'‘s type learning algorithm to define the acceptance region.
The multi-variate data is transformed onto unit interval using quasi-inverse of a
space-filling curve [19], [20]. The method uses only one current vector observa-
tion to decide about the state of the process and for normal (Gaussian) data it
is comparable to the Hotelling T2 control chart [18], [13]. Zorriassatine et al.[22]
uses a novelty detection method [1] for bivariate time series.

When constructing a control chart it is desirable to have a long average run
length (ARL) in the in-control state, since this means a low level rate of false
alarms. On the other hand, a short out-of control ARL is desired, which guar-
antees that any unacceptable changes will be identified as soon as possible.

Here we propose a new, easy to learn, radial basis function (RBF) neural
network model for detecting changes in a multivariate process. The detection is
based on one vector observation as in the classical T control chart. Furthermore,
we assume that the a‘priori probabilities of in-control and out of control process
states are not given.

In this paper the possibilities of detecting changes in the process mean vector
(mean shifts) are investigated in terms of in-control and out-of-control ARL's.

2 RBF Neural Network Model for Detection of Changes

The radial basis function networks have been extensively applied to pattern
recognition, function approximation or regression function estimation.

A basic radial-basis function (RBF) network consists of three layers having
entirely different roles: an input layer, a hidden layer, which applies a nonlinear
transformation from the input space to the hidden space and a linear output
layer. Hence,

N
fn(z) = ZwiG(Hx —aill) (1)

where € R?, ¢; € R?, are tunable vectors, w; are tunable weights, and N is a
number of neurons.

Usually [|z|| is the Euclidean norm, however also generalized weighted norm
|||, , defined by the quadratic form ||z||3, = 2" Q] Q;x can be used, where Q;
are (usually tunable) d x d matrices.
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The most popular are Gausssian RBF nets:

G(r) = exp (- r

202

There are three groups of parameters in the RBF networks which may be
learnable or arbitrarily chosen: the weights w;, the centers ¢; and some parame-
ters of radial basis functions, for example o or Q; matrices.

RBF networks can be related to Parzen window estimators of a probability
density [16] or to Nadaraya-Watson regression estimators [21], [1], [15]. Similari-
ties between the RBF network structure and kernel regression estimators lead to
RBF networks with the centers chosen to be a subset of the training input vectors
and associated weights which directly correspond to Y;‘s [21]. Other approaches
related to Nadaraya-Watson regression estimators were proposed in [17] and [11]

Usually, parameters of the network (1) are obtained from an n-sample obser-
vation data set (learning sequence) L, = ((X1,Y1),...,(Xn, Ya).

As regards our problem, labels Y;, ¢ = 1,...,n are set as ”in-control” and
do not carry any information. Thus, we need a net which will self-organize and
generalize information about distribution of the in-control states.

In this context, we choose RBF neural networks related to Parzen kernel esti-
mators. Bishop [1] discusses a number of heuristics for learning RBF parameters
in such a way, that the basis functions approximate the distribution of the input
data.

The Parzen window estimator [16], [1] with Gaussian kernel functions takes

the form:
1 - X — X4
n(2mo2)d/? Zexp (_ 252 ’ (2)
i=1

where d is the dimensionality of the input data.

Let N be a number of centers. Assuming that the centers should be distributed
according the same probability distribution as the learning data, the centers are
simply a subset of the training input vectors. One can take, for example, N first
elements from the leaning sequence (X7, ..., X,).

Note that if X; is close to a center C, then

G(IX = Xil)) - G([X = Cl) =0

) for some o >0andr € R .

So, we can replace each X; in the sum (2) by its nearest neighbor among a
set of centers {C1,Cs,...,Cn} breaking ties at random. Note, that the same
C; can be the nearest neighbor for several X;’s and that each C; has at least
one point from the learning sequence (namely itself) as a neighbor, since every
center is taken from the learning set.

Let n; stands for the number of points closest to the center Cj, i.e.,

n; = card[{X; : || X; — Cj|| < [|Xs — Cil[}] -
Thus, we obtain the approximate version of (2):

1 ol X - G|
y(X):n(27T02)d/22njeXp(_| o I ) . 3)

—1
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Observe, that this kind of the probability density approximation appears in
[17], where it is used as a common denominator in the RBF neural network
mimicking the Nadaraya-Watson regression estimators.

The decision about in-control or out of control state of the current vector
observation X is made according to the estimate of the probability density y(X).

If y(X) < A, where X is chosen acceptance level, then classify X as abnormal
(out of control) state of the process. Otherwise, accept X as an in-control state.
The set y(X) > X forms the confidence region.

2.1 Algorithm for Tuning RBF Net

Step 1. Choose centers C;, j = 1, N at random from the learning sequence
{X1,Xo,..., X}
Step 2. Set n; =0, j=1,N.
Step 3. For i = 1,n perform the following steps.
1. Find j* = arg mini<j<n || X; — C}|
2. Update the corresponding weight:n - = n - + 1.
Step 4. Form the net

N
1 X —C:|?
y(X) nj exp (—' il I) :
=1

- n(2who?)d/2 ‘ 202

Step 5. Choose the acceptance level (threshold) A. If y(X) is greater than A
accept vector observation as in-control, otherwise alarm, since an out-of-
control state is detected.

This algorithm should be accompanied by a method of selecting the bandwidth
o > 0 and threshold parameter A. One can choose any known method, e.g., the
cross-validation for selecting ho. Having selected centers and using a formula (3)
one can considerably reduce the computational burden needed for selecting o in
a data-driven way.

Furthermore, reducing the number of kernels (to the number of centers) leads
to the formula less sensitive to the o choice. The threshold level A governs the
false alarm probability .. The average run length to the false alarm (the in-control
ARL) equals to 1/a[14], but the distribution function of in-control states is usually
not (fully) known. Thus, as in classical control charts, the value of the threshold,
which guarantees desired in-control ARL should be chosen experimentally.

3 Experimental Results

In the following sections we present the results of applying the RBF control chart
to a series of simulated data sets. We have tested the proposed method using
three different data sets:

A. A 2-D normal distribution with (0,0) mean and covariance matrix [
B. A mixture of two equiprobable 2-D normal distributions with vector means:
(0,0) and (2,0) and the same 1.
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C. A mixture of three equiprobable 2-D normal distributions with vector means:
(0,0), (2,0) and (0,0 — 2) and the same I (see Figure 1).

We compared the performance of the proposed RBF control chart with the
results given by the classical T? chart based on the Hotelling statistic (also
known as the squared Mahalanobis distance) [14], [13]:

T*(z) = (z —m)" 27z —m) ,

where z is a given observation vector, m is a mean vector and X' the covariance
matrix. Both of them, m and X, are estimated from the learning data. If T%(z) >
t, where t is an experimentally chosen value, it is assumed that the observation
x is rejected as out-of-control data. Thus, the region of acceptance of T2 control
chart form an ellipsoid with the center m and the other parameters defined by
the covariance matrix 3.

In two cases (A and B) the neural network model was tuned using 10° in-
control learning samples. We examined the changes in the process caused by the
following mean shifts ||Am|| = 0.5, 1,2, and 3. The number of centers was equal
to 100.

The in-control ARL‘s were obtained from 10% examples and out-of-control
ARL's were estimated from 10° repetitions. The results were averages over four
different shift directions. The comparisons for examples A and B are given in
Table 1.

Table 1. Comparison of RBF neural network chart with 72 chart, d = 2

Example A Example B
l|[Am|| T2 RBF net 72  RBF net
t=10.6 A =0.00049 t =9.8 X = 0.0003

0.0  200.0 199.0 200.4 198.2
0.5 116.0 117.6 124.0 118.2
1.0 42.0 44.5 53.3 48.1
2.0 6.9 7.7 10.1 8.7
3.0 2.2 2.3 3.2 2.9

The second column of Table 1 contains analytically obtained ARL‘s for T2
Hotelling chart applied to multivariate normal data (see for example [13]). The
RBF net based control chart attains almost the same ARL times, however the
knowledge about probability density distribution is not used in the process of de-
signing the RBF net chart. The value of parameter \ was chosen experimentally
on test data in such a way as to obtain ARL0=200.

The third column consists of empirically determined ARL‘s for T? Hotelling
chart applied to multivariate non-normal data (example B). This time, the RBF
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Fig. 1. Learning data - example C

net chart leads to shorter average detection times (smaller out-of-control ARL's),
than the T2 chart.

Experiments on the third example (the mixture of three normals — C) were
performed on 300, 000 learning samples (see Figure 1). In this case the changes in
the process were introduced by the mean shifts || Am)||/ (detXc)Y/* = 0.5, 1,2,3,
where X¢ is the empirical covariance matrix obtained for the distribution C (es-
timated on the basis of all 300000 learning samples). The results for every shift’s
length were averages over eight different shift directions. The same empirical
covariance matrix X was used in T2 calculations. The number of centers of the
RBF network was equal to 200. The value of parameter A was chosen experi-
mentally on test data in such a way as to obtain ARL0=200. The comparisons
for the example C are given in Table 2.

Table 2. Comparison of RBF neural network chart with 72 chart for mixture of three
normals d = 2

Example C
|Am||/detzl*|  T? RBF net
t=41.5 X =0.00029

0.0 201.6 200.0
0.5 137.1 97.6
1.0 85.8 29.3
2.0 21.8 4.64
3.0 3.76 1.82

The RBF control chart proposed here gave this time evidently better results
than that obtained with 72 control chart. The ARL times estimated for 72 chart
are even worse than relative ARL‘s computed for examples A and B, since the
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Fig. 3. Probability density function of data from example C estimated by RBF net

Fig. 4. Error of probability density estimation for example C

mixture of three normals distributions is not similar to any two-dimensional nor-
mal distribution. Figure 2 shows the true density function of data from example
C. Figure 3 presents the probability density function of data under considera-
tions estimated using the RBF neural network (obtained by formula 3). Error of
this probability density estimation is given in Figure 4. The acceptance region
obtained during experiments with in-control data is illustrated in Figure 5 as a
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Fig. 5. Acceptance region obtained using a RBF net with A = 0.00029

white shape. This is a set of points where the value of parameter \ is smaller
than the probability density value estimated in those points by RBF network.

4 Concluding Remarks

The crucial problem faced in this paper is in designing the simple and robust
nonparametric probability density function estimator for time independent mul-
tivariate processes. A new version of a RBF neural network allows the processing
of large streams of data, memorizing only a small part of them. The network
was successfully applied to the detection of changes in multivariate processes.
The advantage of the proposed approach is in the short and reliable net training
phase.
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