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Abstract. This paper proposes a new heuristic approach based on the
Particle Swarm Optimization (PSO) for the Multidimensional Knapsack
Problem (MKP). Instead of the penalty function technique usually used
to deal with the constrained problem, a heuristic repair operator utilizing
problem-specific knowledge is incorporated into the modified algorithm.
Computational results show that the new PSO based algorithm is ca-
pable of quickly obtaining high-quality solutions for problems of various
characteristics.

1 Introduction

Particle Swarm Optimization (PSO) is a recently developed meta-heuristic for
NP-hard optimization problems. Based on the simulation of both the movement
of individual of bird flocks or fish schools and their collective behavior as a swarm,
Kennedy and Eberhart[5] introduced the method of PSO in 1995. Applications
to various nonlinear optimization problems have shown the success of PSO[7]. To
solve constrained problems, PSO usually makes use of penalty function technique
in order to reduce the constrained problem to an unconstrained problem by
penalizing the objective function despite ill-conditioning[4,9].

This paper deals with the application of PSO in the field of combinatorial op-
timization (CO) problems, which is a quite rare field tackled by PSO. The con-
strained problem discussed in this paper is the well-known NP-hard CO problem,
the multidimensional knapsack problem (MKP), which can be formulated as:

maximize f =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

rijxj ≤ bi, i = 1, ..., m (2)

xj ∈ {0, 1}, j = 1, ..., n (3)

Equation (1) describes the objective function for the MKP. Each of the m con-
straints described in condition (2) is called a knapsack constraint, so the MKP
is also called the m-dimensional knapsack problem. Let I = {1, 2, ..., m} and
J = {1, 2, ..., n}, with bi > 0 for all i ∈ I and rij ≥ 0 for all i ∈ I, j ∈ J , a well-
stated MKP assumes that pj > 0 and rij ≤ bi <

∑n
j=1 rij for all i ∈ I, j ∈ J .
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MKP can be regarded as a resource allocation problem of m resources and n
objects. Each resource i ∈ I has a burget bi, each object j ∈ J has a profit pj

and consumes rij of resource i. The problem is to maximize the profit within a
limited budget.

MKP is one of the most intensively studied discrete programming problems,
mainly because its simple structure which, on the one hand allows exploitation
of a number of combinatorial properties and, on the other, more complex opti-
mization problems to be solved through a series of knapsack-type subproblems.
Meanwhile, many practical problems can be formulated as a MKP, such as the
capital budgeting problem, allocating processors and databases in a distributed
computer system, project selection and cargo loading, and cutting stock prob-
lems.

This paper utilizes the structure of the binary PSO[6] and combines this
method with a problem-specific repair operator instead of the penalty function
technique to avoid the violations to problem constraints. Experimental results
show that the modified PSO is good at dealing with the specific CO problem.

This paper is organized as follows, the binary PSO algorithm to MKP is
briefly introduced in Section 2. In section 3, the modified PSO algorithm applied
to MKP is proposed, experimental results are shown in the following Section 4,
and a short discussion is presented in Section 5. We end with some conclusions
in Section 6.

2 The Binary PSO Model

2.1 Solution Representation and Fitness Function

In the binary PSO model[6], a potential solution to a problem is represented
as a particle having binary coordinates x = {x1, . . . , xn}, xj ∈ {0, 1} in a
n-dimensional space as illustrated in Fig.1.

j 1 2 3 4 5 . . . n−1 n

xj 0 1 0 0 1 . . . 0 1

Fig. 1. Solution Struction of the Binary PSO

For the application to MKP, xj = 0 means that object j is not selected,
while xj = 1 means that the object is selected. By this solution representation,
we can see that such a solution might not be feasible for MKP. An infeasible
solution is one for which at least one of the knapsack constraints is violated, i.e.∑n

j=1 rijxj > bi for some i ∈ I.
A penalty function technique is normally incorporated to solve the constrained

problem in PSO. For the MKP problem, the fitness function is modified as:

f =
n∑

j=1

pjxj −
m∑

i=1

poslin

⎛

⎝Mi

⎛

⎝
n∑

j=1

rijxj − bi

⎞

⎠

⎞

⎠ (4)
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where Mi are some big penalty parameters and poslin is a positive linear trans-
form function, which is defined as:

poslin(s) =
{

s s > 0
0 s ≤ 0 (5)

2.2 The Standard PSO with Penalty Function Technique

The standard PSO with penalty function technique (denoted as PSO-P) does
not take care of the feasibility of the solutions generated during the iterations.
The knapsack constraints are totally manifested by the penalty function. By
automatically moving to the coordinates with bigger objective function value
during the iterations, PSO-P is able to find good solutions observing the knap-
sack constraints.

In PSO-P, a number of particles move stochastically among the binary solution
space by flipping various numbers of bits. The position of each particle forms
a solution to MKP, which can be represented as a n-dimensional binary string:
xi = {xi1, . . . , xin}. The velocity of the movement of each particle is defined
as the changes of probabilities that a bit will be in one state or the other,
which is represented as vi = {vi1, . . . , vin}, where vid represents the probability
for particle i to select 1 at bit d. The velocity of each particle is determined
by three kinds of information. One is its velocity value at last iteration, the
second is the record of the position of its previous best performance, denoted as
pi = {pi1, . . . , pin}, which represents the experience of the particle during the
search, the last is the record of the position of the best performance among its
topological neighborhood, denoted as gi = {gi1, . . . , gin}, which represents the
social experiences of the particles during the search. In conclusion, the velocity
for particle i at bit d can be summarized as:

vn+1
id = vn

id + ϕ1r1(pn
id − xn

id) + ϕ2r2(gn
id − xn

id) (6)

where the superscript represents the number of iterations, ϕ1 and ϕ2 are two
positive parameters, r1 and r2 are two randomly generated numbers uniformly
distributed in [0, 1]. Normally, a bound limit Vmax is incorporated to guarantee
the value of the velocity be forced into a boundary [−Vmax, Vmax] for the purpose
of divergence avoidance.

To represent the velocity as the probability for selection of 1, a sigmoid trans-
form function is incorporated to transform the velocity to the range of (0, 1):

S(vid) =
1

1 + exp(−vid)
(7)

The resulting change in position of a particle then is defined by the following
rule:

if rand() < S(vid) then xid = 1
else xid = 0 (8)

The algorithm skeleton of PSO-P is described in Fig.2. An iteration of PSO-P
comprises evaluation of each particle using the modified fitness function of (4),
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and calculations of the pi and gi for every particle, then the velocity is derived
from (6) and particles move to their new positions according to (7) and (8). The
iteration repeated until some termination condition is met, such as a maximum
amount of cycles performed or a satisfied solution is found.

Procedure PSO-P
/*Initialization*/

Input data
Randomly generate initial particles positions and their velocities
Parameter setting

/*Main Iteration Loop*/
While (end condition not met) do

Solution evaluation according to (4)
Calculate pid and gid for every particle
Calculate velocities for every particle according to (6)
Generate new particle positions according to (7) and (8)

End

Fig. 2. Algorithm Skeleton of PSO-P

3 The Modified PSO with Repair Operator

Although penalty function technique works well for most of the applications of
PSO to the constrained problems, it contains some parameter setting problem. If
the penalty parameter values are too high, the optimization algorithms usually
get trapped in local minima. On the other hand, if penalty values are too low,
they can hardly detect feasible optimal solutions. Furthermore, since the penalty
function technique does not use the problem specific information, the final results
are often not satisfied in dealing with CO problems.

This paper proposes a modified PSO with repair operator specially designed
for MKP. The modified algorithm, denoted as PSO-R, is based on the structure
of the binary PSO model described in the previous section, in combination with
a problem-specific repair operator to guarantee feasible solutions. Fig.3 describes
the pseudo code of PSO-R.

Instead of using the penalty function technique, PSO-R incorporates a repair
operator to repair the solutions found by the particles. This idea comes from Chu
and Beasley[1]. The general idea behind this method is described very briefly as
follows.

The repair operator utilizes the notion of the pseudo-utility ratios derived
from the surrogate duality approach. The surrogate relaxation problem of the
MKP can be defined as:

maximize f =
n∑

j=1

pjxj (9)
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Procedure PSO-R
/*Initialization*/

Input data
Calculate surrogate multipliers and pseudo-utility
Sort and renumber data according to decreasing order of pseudo-utility
Generate initial particles positions and their velocities
Parameter setting

/*Main Iteration Loop*/
While (end condition not met) do

Solution repair
Solution evaluation
Calculate pid and gid for every particle
Calculate velocities for every particle
Generate new particle positions

End

Fig. 3. Algorithm Skeleton of PSO-R

subject to
n∑

j=1

(
m∑

i=1

ωirij)xj ≤
m∑

i=1

ωibi (10)

xj ∈ {0, 1}, j = 1, 2, ..., n (11)

where ω = {ω1, . . . , ωm} is a set of surrogate multipliers (or weights) of some
positive real numbers. One of the simplest methods to obtain reasonably good
surrogate weights is to solve the LP relaxation of the original MKP and to use
the values of the dual variables as the weights. In other words, ωi is set equal to
the shadow price of the ith constraint in the LP relaxation of the MKP.

After calculating the surrogate weights, the pseudo-utility is then defined as:

uj =
pj

m∑
i=1

ωirij

(12)

The repair operator consists of two phases that is based on the value of uj .
The first phase, which is called DROP phase, examines each bit of the solution
in increasing order of uj and changes the value of the bit from one to zero if
feasibility is violated. The second phase, which is called ADD phase, reverses the
process by examining each bit in decreasing order of uj and changes the value
of the bit from zero to one as long as feasibility is not violated. To achieve an
efficient implementation of the repair operator, at the initialization step, we sort
and renumber variables of the original MKP problem according to the decreasing
order of their uj ’s. The pseudo-code for the repair operator is given in fig.4.

Although the repair operator takes some extra time at each iteration, from
the description of the procedure of PSO-R, we can see that the computational
complexity of the repair operator, as well as each iteration of PSO-R, is O(mn),
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Repair Operator for PSO-R
Let: Ri = the accumulated resources of constraint i in S
Initialize Ri =

∑n
j=1 rijS[j], ∀i ∈ I

j = n
While (Ri > bi, for any i ∈ I) do /* DROP phase */
if S[j] = 1 then
S[j] = 0; Ri = Ri − rij , ∀i ∈ I
endif
j = j − 1;
endwhile
for j = 1 to n do /* ADD phase */
if S[j] = 0 and Ri + rij < bi, ∀i ∈ I then
S[j] = 1; Ri = Ri + rij , ∀i ∈ I;
endif
end for

Fig. 4. Pseudo Code of the Repair Operator

which is the same as that of PSO-P. So, PSO-R takes just a little computational
time over PSO-P.

4 Experimental Results

Since we have not found any literature concerning the PSO algorithm applied
to the MKP problems, we select some benchmarks of MKP from OR-Library to
test PSO-R, and we compare the results of PSO-R with that of PSO-P.

To make a fair comparison, we set the same parameter values for both the
PSO-R and PSO-P: ϕ1 = ϕ2 = 2, vmax = 2, the number of particles is set
equal to the number of objects of the problem, and we use the ring topology as
the neighborhood structure with number of neighbors set to 2. These parameter
settings are regarded as optimal to the standard PSO algorithms [7].

Fig.5 describes the typical performance of PSO-P and PSO-R on a MKP
instance with 50 objects and 5 resource constraints. The x-axis describes the
number of executed cycles, while the y-axis describes the best fitness value that
is averaged over 30 runs. From this diagram, we can see clearly that PSO-R
outperforms PSO-P with quick convergence to satisfied solution, and with better
solution quality.

Tab.1 shows the experimental results of PSO-R and PSO-P over 7 benchmarks
named mknap1 in OR-Library. All the tests are ran with 500 executed cycles.
The first column indicates the problem index, the next two columns describe
the problem dimension, where n is the number of objects and m is the number
of constraints. The next column is the best-known solutions from OR-Library.
The final 4 columns report the best and average solutions over 30 runs of PSO-
P and PSO-R respectively. For all the 7 instances of mknap1 that we tested,
both PSO-R and PSO-P are able to find good solutions, but PSO-R finds better
solutions than that of PSO-P as the size of the problem increases.
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Fig. 5. Typical Performance of PSO-R and PSO-P

Table 1. Experimental Results of mknap1

No n m
Best PSO-P PSO-R
known Best Avg. Best Avg.

1 6 10 3800 3800 3800 3800 3800

2 10 10 8706.1 8706.1 8570.7 8706.1 8706.1

3 15 10 4015 4015 4014.7 4015 4015

4 20 10 6120 6120 6118 6120 6119.3

5 28 10 12400 12400 12394 12400 12395

6 39 5 10618 10618 10572 10618 10592

7 50 5 16537 16491 16389 16537 16510

We also compare the PSO-R with PSO-P on some bigger size MKP instances
in OR-Library, which are considered to be rather difficult for optimization ap-
proaches. The tested sets are 5.100 and 10.100, which has 5 constraints, 100
objects and 10 constraints, 100 objects respectively. We test first 5 instances of
each set with maximum number of cycles of 2000, and Tab.2 reports the test
results.

The first column of Tab.2 indicates the instance name, the second column is
the best-known solutions from the OR-Library, and the next 4 columns record
the best and average solutions over 30 runs of PSO-P and PSO-R respectively.

From Tab.2 we can see that PSO-R clearly outperforms PSO-P in all the
tested instances. While PSO-P meets some difficulties in dealing with large size
MKP problems, PSO-R is still able to find good solutions. Actually, PSO-R has
found 5 best solutions out of 10 instances.
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Table 2. Experimental Results of 5.100 and 10.100

Instance Best PSO-P PSO-R
Name known Best Avg. Best Avg.

5.100.00 24381 22525 22013 24381 24356

5.100.01 24274 22244 21719 24258 24036

5.100.02 23551 21822 21050 23551 23523

5.100.03 23534 22057 21413 23527 23481

5.100.04 23991 22167 21677 23966 23966

10.100.00 23064 20895 20458 23057 23050

10.100.01 22801 20663 20089 22781 22668

10.100.02 22131 20058 19582 22131 22029

10.100.03 22772 20908 20446 22772 22733

10.100.04 22751 20488 20025 22751 22632

5 Discussion

5.1 PSO Applied to CO

PSO has gained reputation in the field of function optimization problems, but
few encouraging applications are recorded in the field of combinatorial optimiza-
tion problems. The main reason is that the PSO is famous for its robustness
regardless of the type of the fitness function, most of PSO rarely use the char-
acteristic information of the problem instance, which is quite critical in tacking
the combinatorial optimization problems.

Up to our knowledge, there has been no literature available concerning the
application of PSO to MKP. The main purpose of this paper is to propose that
the PSO technique is also effective in dealing with combinatorial optimization
problems, rather than showing that PSO-R is the best algorithm overcoming
MKP. The algorithm methodology, as well as the parameter setting in PSO-
R, is quite normal method directly get from results of other PSO literature,
however, the results presented in previous section are quite promising, indicating
the potential of PSO in dealing with such kind of combinatorial optimization
problems.

5.2 Role of the Repair Operator

The repair operator incorporated in PSO-R plays a critical role in quickly finding
good solutions, this lies in two sides:

First, the repair operator itself improves the solution quality. Although the
repair operator alone acts as a problem-specific greedy search method that can
only find rather poor solutions, in cooperation with standard PSO, the repair
operator acts as a local search to the solutions found by the standard PSO,
which greatly improves the solution quality.

Secondly, the repair operator acts as a filter that makes all the solutions
generated in the iteration being transferred to the feasible solution domain,
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which makes the algorithm search around the quite promising area comparing
to the normal penalty incorporated method.

The utility of a repair operator is important in applying the PSO to MKP.
A good repair operator is critical in quick convergence. To find a good repair
operator in other combinatorial optimization problems will be helpful for the
PSO implementations.

6 Conclusions

This paper proposes a first implementation of Particle Swarm Optimization to
the well-known multidimensional knapsack problem. Instead of the incorporation
of the penalty function technique usually used for the constrained problems, we
utilize a problem-specific repair operator to guarantee feasible solutions at each
iteration cycle.

Computational results show that the modified PSO algorithm outperforms
the standard PSO in MKP problems of various characteristics. Although the
computational results of the modified algorithm are still not as good as the state-
of-art algorithm proposed by Vasquez and Hao [11], the fact of its simplicity,
quickness and that it is able to deal with large size MKP problems indicates its
potential in dealing with such combinatorial optimization problems.

The repair operator technique plays a critical role in finding better solutions
quickly. The procedure of our modified PSO algorithm indicates that this tech-
nique can be implemented in other combinatorial optimization problems. Further
works will be on applying this technique in constrained integer programming
with focus on how to apply the problem-specific information into some repair
operators.
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