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Abstract. In this paper, a new version of the Fuzzy-ID3 algorithm is
presented. The new algorithm allows to construct decision trees with
smaller number of nodes. This is because of the modification that many
different attributes and their values can be assigned to single leaves of
the tree. The performance of the algorithm was checked on three typical
benchmarks data available on the Internet.

1 Introduction

Decision trees are commonly used as knowledge representation and an approach
to classification. They are appreciated for their clarity and high accuracy. Many
algorithms designed for buiding decision trees have been proposed. The most
popular are ID3 (Interactive Dichotimizer 3) introduced by Quinlan in 1986 [8],
and its modifications, e.g. C4.5 [9]. Those algorithms allow to create decision
trees from symbolic data, in an easy and effective way. Numerical data, when
applied, must be splitted into limited number of disjoint intervals. The data
present values of the attributes, i.e. features of objects to be classified.

In some classification problems, determination of crisp values of attributes
is not possible or not fully correct. The solution of that problem is the use of
the theory of fuzzy sets and fuzzy logic, introduced in 1965 by Lofti Zadeh [12].
Fuzzy sets may describe uncertain or imprecise phenomenona. The Fuzzy-ID3
algorithm [6],[7], created by Janikow in 1995, combines simplicity and clarity of
decision trees with fuzzy sets which can define linguistic values and allow to use
fuzzy intervals.

There are two main problems related to decisions trees and fuzzy decision
trees. The first is the large size of the tree (number of nodes) in high dimensional
classification tasks. The second problem concerns the structure of the tree. The
tree created according to the ID3 or Fuzzy-ID3 algorithm is a proper structure
for the data representation. However, it is not always the best solution. The main
reason of these two problems is the manner in which the attribute (represented
by a node) to be the best split is chosen; see Fig.1.

In this paper, a modified Fuzzy-ID3 algorithm is presented. According to
this modification, more than one attribute, and more than one linguistic value
of these attributes, may be assigned to single leaves (decision nodes). This
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modification results in obtaining trees with smaller number of nodes. An ex-
ample of such a tree is illustrated in Fig. 4.

The paper is organized as follows. Section 2 presents the ID3 and Fuzzy-
ID3 algorithms. The modified version of the Fuzzy-ID3 algorithm is proposed
in Section 3. Experimantal results are illustrated in Section 4. Final conclusions
are included in Section 5.

In this paper, capital letters denote sets, for instance A, C, E - sets of at-
tributes, classes, and examples, respectively. Cardinalities of the sets are denoted
as |A|, |C|, |E|. Specific attributes, for k = 1, . . . , |A|, are denoted as Ak, and Ak

is a set of values of attribute Ak, so Ak = {ak
l }, for l = 1, . . . , |Ak|, and Ak ∈ A.

Specific classes are denoted as cj , for j = 1, . . . , |C|, and cj ∈ C. Examples are
denoted as ei, for i = 1, . . . , |E| and ei ∈ E. Thus, every example is described as
ei = [a1

i , . . . , a
|A|
i , cj

i ], where cj
i ∈ C is the class associated with ei.

2 ID3 and Fuzzy-ID3 Algorithms

This section presents classical and fuzzy versions of the ID3 algorithm introduced
in [8] and [6], respectively. Decision trees are techniques for partitioning examples
into sets corresponding to decision rules.

2.1 ID3 Algorithm

The purpose of the ID3 algorithm is to create a tree structure from an example
set, E, which contains values of attributes, Ak, for k = 1, . . . , |A|, that charac-
terize objects to be classified. In addition, every example includes the class, cj ,
to which the object belongs. These examples are called training examples, and
E is a training set. The tree structure can further be used for classification, data
analysis or knowledge representation.

This algorithm employs the entrophy for determining the discriminatory
power of each attribute. This is applied in order to determine the attribute
that should be chosen to split the node associated with this attribute. The ID3
algorithm is based on the following assumptions [8]:

(1) The root node of the decision tree contains all training examples. Each node
is reqursively split by partitioning its examples.

(2) Every training example belongs to class cj with probability (the relative
frequency):

pj =

∣
∣EN

j

∣
∣

|EN | (1)

where EN - set of examples in node N , and EN
j - set of examples that belong

to class cj in node N ; EN
j ⊂ EN ⊂ E.

(3) For the data set in current node, N , we compute the information content:

IN = −
|C|
∑

j=1

pj log2 pj (2)



1062 �L. Bartczuk and D. Rutkowska

(4) If an attribute, Ak, is chosen as a node, N , of the decision tree, the informa-
tion to be supplied to the subtree corresponding to the node’s branch, i.e.
the path from parent (root) node N ,Ak = ak

l , to a child node, is denoted as
IN |ak

l . The expected information required for the subtree with the attribute
Ak in node N is determined as follows:

IN |Ak

=
|Ak|
∑

l=1

∣
∣
∣EN

ak
l

∣
∣
∣

|EN | IN |ak
l (3)

where IN |Ak

is called the weighted entrophy, EN
ak

l

denotes the set of examples

whose attribute value ak
l corresponds to the node’s branch.

(5) The information gained by branching on the attribute Ak at node N is:

G = IN − IN |Ak

(4)

The node is split using the most discriminatory attribute, whose information
gain, determined using (4), is maximal.

The process of splitting tree nodes starts from the root node (as node N), then
repeats, and the algorithm ends when all attributes appear on the path from the
root node to the current node or when all examples in the node come from a
unique class. The fulfillment of the second criterion can leads to overlearning
effect. The threshold τ ∈ [0, 1] can be used to prevent that situation. If the ratio
of the number of examples with the same class to all examples in node N is
equal or greater than this threshold, the node became a leaf. The ID3 algorithm
is presented, in many publications, e.g in [5],[6],[8],[9].

2.2 Fuzzy-ID3 Algorithm

In classical decision trees, created by the ID3 algorithm, atrributes can have only
symbolic or discrete numerical values. In case of fuzzy decision trees attributes
can also have linguistic values (eg. small, warm, low) represented by fuzzy sets.
Fuzzy decision trees have been obtained as a generalisation of classical decision
trees through application of fuzzy sets and fuzzy logic. The Fuzzy-ID3 algorithm
is an extension of ID3 algorithm. The difference between these two algorithms
is in the method of computing the example count in node N . In the Fuzzy-ID3
algorithm the total examples count, PN , in node N are expressed as [6]:

PN =
|DC |
∑

j=1

PN
j (5)

where: DC - set of linguistic values for the decision attribute, xi and yi are input
vector and output value, which correspond to attributes and class, respectively,
and the examples count, PN

j , for decision j (class cj) is determined as follows:

PN
j =

|EN |
∑

i=1

f (μs(xi), μj(ci)) (6)
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where: f - function employed to compute the value of fuzzy relation (e.g. min,
prod) [2],[10],[11],[13], μs - membership function of Cartesian product of fuzzy
sets that appear on the path from the root node to node N , and μj - membership
function of fuzzy set that determines class cj , for j = 1 . . . , |C|.

Equations (2) and (3) in the Fuzzy-ID3 algorithm takes the forms:

IN = −
|DC |
∑

j=1

PN
j

PN
log2

PN
j

PN
(7)

IN |Ak

=

|Ak|∑

l=1
PN |ak

l IN |ak
l

|Ak|∑

l=1
PN |ak

l

(8)

where: PN |ak
l - total examples count in node N containing value ak

l , assuming
that attribute Ak is used to split the node N . Stopping criteria are the same as
in the ID3 algorithm.

2.3 Illustration of Fuzzy Decision Trees

Suppose we want to build a tree to solve a binary classification task with two
attributes (attr1 and attr2 ), and three fuzzy sets (low, medium, high) defined
for each attribute. We know that attribute attr2 is relevant for the solution of
this problem because all examples with value low for this atrribute belong to
class 0 and with value hi belong to class 1 ; see Fig. 1b.

Suppose also that the proportion of examples with these values in the data
set is small. When we compute examples count for each class and total examples
count, for each fuzzy set (attribute value) that can be associated with the child
node of the Root node, we get the values shown in Table 1, where lv stands for
”linguistic value” that is the attribute value.

If we compute the weighted entrophy (8) and information gain (4), for each
attribute, we see that according to the algorithm the best attribute to split is
attr1. The result is a correct representation of the data set, but this is not the

a)
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attr2
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attr2
med

attr2
hi

attr1
med

attr2
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attr2
med

attr2
hi

attr1
hi

attr2
low

attr2
med

attr2
hi b)

attr2
low

attr1

low

attr1

med

attr1
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Root

attr2
low

attr2
hi

Fig. 1. Two possible trees: a) created by Fuzzy-ID3 algorithm, b) the better tree that
can be created for the same problem
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Table 1. The examples count for each class and total examples count in each fuzzy
set that can be associated with the child node of the Root node

lv P
Root|lv
0 P

Root|lv
1 P Root|lv

aattr1
low 14.55 4.20 18.75

aattr1
med 19.27 3.98 23.25

aattr1
hi 4.58 49.95 54.53

aattr2
low 13.23 0 13.23

aattr2
med 23.39 49.85 73.24

aattr2
hi 0 9.24 9.24

best solution that can be achieved for this problem. This is because the algorithm
chooses the best split on average.

The tree created according to the Fuzzy-ID3 algorithm contains thirteen nodes
and is depicted in Fig. 1a. The better tree that can be created for the same
problem contains only seven nodes and is shown in Fig. 1b.

The solution of the problem mentioned above for the crisp ID3 algorithm has
been presented by Friedman et. al.[4]. This algorithm, which is called the Lazy
Decision Tree is very interesting for symbolic or numerical values of attributes,
but it requires a process of creating of a new decision tree for every new example.
In case of fuzzy values, many branches of the tree can be activated. This causes
that number of computations that have to be performed may be too big to build
a new tree for every new example. Therefore, this solution can be inefficient for
fuzzy decision trees.

3 Fuzzy Decision Trees with Multi-Attribute Leaves

In this section, a new version of Fuzzy ID3 algorithm is proposed. The classical
algorithms, described in Section 2 have been designed to create decision trees
with nodes that represent only one attribute value. This algorithm allows to use
more than one attribute value in leaves, so the decision trees contain less number
of the nodes. This algorithm can be called MAL Fuzzy ID3, or MAL FID3, for
short, where MAL stands for Multi-Attribute Leaves.

3.1 MAL Fuzzy ID3 Algorithm

The proposed algorithm introduces some modifications to the tree structure and
to the procedure of creating the tree. We assume that there can be more than one
linguistic value in the leaves of the tree, and also that there can be values of dif-
ferent attributes. This modification allows the use of all values of attributes that
give unambiguous classification as a child of the current node. The membership
of the example, in such a node, can be computed as the maximum values of the
membership functions describing fuzzy sets in this node. We can also use other
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s-norms [10],[11],[2],[13], than the maximum. However, we will achieve better re-
sults when we apply an arithmetic mean value of membership functions.

Let FN denotes a set of values of attributes which can be used to split node N ,
and EN - set of examples that have nonzero membership in node N .

The proposed algorithm is shown below:

Step 1 : In the root of the tree, assume: FN = A and EN = E
Step 2 : From set FN choose these linguistic values that give unambiguous

classification, i.e. for ak
l ∈ FN ; let us define

ΘN
j =

⎧

⎪⎪⎨

⎪⎪⎩

ak
l :

P
ak

l
j

∑

m=1,..,|C|
P

ak
l

m

> τ

⎫

⎪⎪⎬

⎪⎪⎭

for j = 1, . . . , |C| (9)

where P
ak

l

j - total example count for class cj , and attribute value
ak

l . For each nonempty set ΘN
j create a new node. Linguistic val-

ues from sets ΘN will not be taken into consideration for further
spliting of the nodes.

Step 3 : From set EN , choose those examples, ei ∈ EN for which the arith-
metic mean value of membership of fuzzy sets describing linguistic
values from ΘN

j is smaller than threshold σ ∈ [0, 1], that is

ΨN =

⎧

⎪⎪⎨

⎪⎪⎩

ei :

∑

ak
l ∈ΘN

j

μak
l
(ei)

|ΘN
j | < σ

⎫

⎪⎪⎬

⎪⎪⎭

for j = 1, . . . , |C| (10)

Step 4 : For examples from set ΨN , compute information content accord-
ing to (7).

Step 5 : Compute weighted entrophy (8) for all attributes from FN , and
theirs values which are not included in ΘN

j ; j = 1, . . . , |C|.
Step 6 : Select the attribute maximizing the information gain, G, and split

the node N , using this attribute.
Step 7 : For the nodes created in step 6, set FN+1 = FN \

⋃

j=1,...,|C|
ΘN

j

and EN+1 = ΨN

Step 8 : Repeat steps from 2 to 8 until the stopping criteria are not fulfilled.

3.2 Illustration of MAL FID3 Algorithm on IRIS Data

The application of this algorithm will be presented on the Iris classification
problem [1],[3]. We have to split the iris flowers into three classes representing
iris spieces. Each example is described by four attributes (width and length of
petal and width and length of sepal).

The data set E consists of 150 examples spliting into three classes: Setosa,
Versicolour and Virginica (50 examples from each class). Distribution of the
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Fig. 2. Distribution of examples for Iris classification problem; for attributes: Sepal
length and Petal length
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Fig. 3. Distribution of examples for Iris classification problem; for attributes: Sepal
width and Petal width

examples in the attribute space is presented in Figs. 2 and 3. For each attribute,
three fuzzy sets (representing values: small, medium, large) are defined.

In the begining the set of attribute values contains the following elements:

FRoot =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

aPL
small; aPL

medium; aPL
large;

aPW
small; aPW

medium; aPW
large;

aSL
small; aSL

medium; aSL
large;

aSW
small; aSW

medium; aSW
large;

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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where PL, PW , SL, SW stands for petal length, petal width, sepal lenght, sepal
width, respectively.

Set ERoot includes all 150 examples from set E. According to equations (5)
and (6), we compute the ratio of examples count for each class to total exam-
ples count, for fuzzy sets describing liguistic values from FRoot. The results are
presented in Table 2.

Table 2. The ratio of examples count from each class to total examples count for
all linguistic values

Sepal length (SL) Sepal width (SW)
Value Setosa Versicolour Virginica Value Setosa Versicolour Virginica
small 0.704 0.2432 0.0523 small 0.0766 0.5457 0.3775

medium 0.070 0.5053 0.4239 medium 0.3695 0.2705 0.3599
large 0 0.2405 0.7594 large 0.8231 0.0204 0.1564

Petal length (PL) Petal width (PW)
Value Setosa Versicolour Virginica Value Setosa Versicolour Virginica
small 0.948 0.0520 0 small 0.9036 0.0964 0

medium 0 0.8616 0.1384 medium 0 0.8849 0.1151
large 0 0.2293 0.7707 large 0 0.1424 0.8576

Assuming the threshold τ = 0.87 (values for which the ratio exceed this
threshold are marked as bold in Table 2.), we can create the following sets:

ΘRoot
Setosa =

{

aPL
small; a

PW
small

}

, ΘRoot
V ersicolour =

{

aPW
medium

}

For σ = 0.5, set ΨN contains 102 examples. By executing steps 4 and 5, the
algorithm chooses attribute petal width for splitting the root node. Repeating
the algorithm for each new nonleaf node, we obtain the tree shown in Fig. 4.

Root

Petal length - small
Petal width - small
Class: Setosa

Petal width - medium
Class: Versicolour Petal width - large

Sepal length - small
Sepal length - medium
Sepal length - large
Sepal width - small
Sepal width - medium
Sepal width - large
Petal length - large
Class: Virginica

Petal length - medium
Class: Versicolour or
Virginica

Fig. 4. Decision tree created by MAL FID3 algorithm, for Iris classification problem
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It contains 6 nodes and gives 96% correct classifications. The tree created by
the classical Fuzzy-ID3 algorithm contains 26 nodes and reaches 93% correct
classifications.

4 Other Experimental Results

Three popular data sets, which are available at the UCI Machine Learning Repos-
itory [1], were used in the experiments. Every experiment was repeated twenty
times to get the error ratio, shown in Tables 3-5. These tables present results for
the classical Fuzzy-ID3 algorithm and the MAL FID3. Table 3 concerns the wine
classification problem, with 13 attributes, 3 classes, 128 examples in the training
set and 32 examples in the testing set. Table 4 includes results for the glass
classification problem with 9 attributes, 6 classes, 174 examples in the training
set and 40 examples in the testing set. Table 5 presents results for the heart
desease (medical diagnosis problem), with 10 attributes, 2 classes, 221 examples
in the training set and 40 examples in the testing set. The threshold value, τ ,
and the average number of nodes obtained from 20 experiments are included in
the tables.

As can be noticed for all presented problems, the trees obtained by the MAL
FID3 algorithm, proposed in this paper, are smaller (less number of nodes)
than those obtained by the classical Fuzzy-ID3 algorithm. The error ratios are
comparable for both kinds of the trees.

Table 3. Results for the wine classification problem

Fuzzy-ID3 MAL FID3
τ Average number of nodes Error[%] Average number of nodes Error[%]

0.65 13.1 22.81 9 11.40
0.7 44.85 17.65 13.4 9.68
0.75 111.45 12.50 13.8 8.75
0.8 251.15 10.78 17.2 9.37
0.85 502.55 8.59 33.65 7.03
0.9 974 8.75 80.9 5.31

Table 4. Results for the glass classification problem

Fuzzy-ID3 MAL FID3
τ Average number of nodes Error[%] Average number of nodes Error[%]

0.65 280.45 41 98.95 42.62
0.7 342.95 40.87 192.55 41.25
0.75 386.35 40.87 203.35 40.87
0.8 443.9 41.25 291.6 40.62
0.85 515.6 41.12 313.65 40.12
0.9 591.25 40.62 354.35 41.50
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Table 5. Results for the heart classification problem

Fuzzy-ID3 MAL FID3
τ Average number of nodes Error[%] Average number of nodes Error[%]

0.65 4.57 25 3 17.3
0.7 64.92 23.05 3 18.75
0.75 122.85 22.67 6.78 18.75
0.8 240.14 22.67 39.28 20.70
0.85 374.78 20.52 84 21.77
0.9 477 20.70 167.28 23.92

5 Conclusions

In this paper, a new version of the Fuzzy-ID3 algorithm, called MAL FID3,
is presented. The modification, introduced to the classical Fuzzy-ID3, makes
possible the use of many values of different attributes in the leaves of a tree.
The trees build according to the proposed algorithm are smaller (less number of
nodes) than those created by the classical Fuzzy-ID3 method. For some problems
these trees can produce better classification results.

The purpose of the future works is a further reduction of the size of fuzzy
decision trees and elimination of those fuzzy sets from the leaves that have no
influence on the classification process.
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