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Preface

This volume constitutes the proceedings of the 8th Conference on Artificial In-
telligence and Soft Computing, ICAISC 2006, held in Zakopane, Poland in June
25-29, 2006. The conference was organized by the Polish Neural Network Soci-
ety in cooperation with the Academy of Humanities and Economics in �Lódź,
the Department of Computer Engineering at the Czestochowa University of
Technology, and the IEEE Computational Intelligence Society – Poland Chap-
ter. The previous conferences took place in Kule (1994), Szczyrk (1996), Kule
(1997) and Zakopane (1999, 2000, 2002, 2004) and attracted a large number
of papers and internationally recognized speakers: Lotfi A. Zadeh, Shun-ichi
Amari, Daniel Amit, Piero P. Bonissone, Zdzislaw Bubnicki, Andrzej Cichocki,
Wlodzislaw Duch, Jerzy Grzymala-Busse, Kaoru Hirota, Janusz Kacprzyk, Las-
zlo T. Koczy, Soo-Young Lee, Robert Marks, Evangelia Micheli-Tzanakou, Erkki
Oja, Witold Pedrycz, Sarunas Raudys, Enrique Ruspini, Jorg Siekman, Roman
Slowinski, Ryszard Tadeusiewicz, Shiro Usui, Ronald Y. Yager, Syozo Yasui and
Jacek Zurada. The aim of this conference is to build a bridge between tradi-
tional artificial intelligence techniques and recently developed soft computing
techniques. It was pointed out by Lotfi A. Zadeh that “Soft Computing (SC) is
a coalition of methodologies which are oriented toward the conception and design
of information/intelligent systems. The principal members of the coalition are:
fuzzy logic (FL), neurocomputing (NC), evolutionary computing (EC), proba-
bilistic computing (PC), chaotic computing (CC), and machine learning (ML).
The constituent methodologies of SC are, for the most part, complementary and
synergistic rather than competitive”. This volume presents both traditional ar-
tificial intelligence methods and soft computing techniques. Our goal is to bring
together scientists representing both traditional artificial intelligence approaches
and soft computing techniques. The volume is divided into eight parts:

– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Evolutionary Algorithms and Their Applications
– Rough Sets
– Classification and Clustering
– Image Analysis and Robotics
– Bioinformatics and Medical Applications
– Various Problems of Artificial Intelligence

The conference attracted a total of 400 submissions from 41 countries and after
the review process, 128 papers were accepted for publication in this volume. I
would like to thank our participants, invited speakers and reviewers of the papers
for their scientific and personal contribution to the conference. I also thank
Alfred Hofmann editor-in-chief of Lecture Notes in Computer Science/Artificial
Intelligence and the rest of Springer’s LNCS team for their cooperation in the
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preparation of this volume. Finally I thank my co-workers �Lukasz Bartczuk,
Piotr Dziwiński, Marcin Gabryel, Marcin Korytkowski and Rafa�l Scherer for
their enormous efforts to make the conference a very successful event.

June 2006 Leszek Rutkowski
President of the Polish Neural Network Society
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Jacek Kluska
Leonid Kompanets
Przemys�law Korohoda
Jacek Koronacki
Witold Kosiński
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Abstract. Principles of separable aggregation of multichannel (multi-
source) data sets by parallel layers of formal neurons are considered in the
paper. Each data set contains such feature vectors which represent ob-
jects assigned to one of a few categories.The term multichannel data sets
means that each single object is characterised by data obtained through
different information channels and represented by feature vectors in a
different feature space. Feature vectors from particular feature spaces
are transformed by layers of formal neurons what results in the aggre-
gation of some feature vectors. The postulate of separable aggregation
is aimed at the minimization of the number of different feature vectors
under the condition of preserving the categories separabilty.

1 Introduction

The processing and aggregation of multichannel (multisource) data sets by hier-
achical networks of formal neurons is considered in the paper. This problem could
be related to modelling of information processing and aggregation by different
sensor modules in a nervous system such as vision, hearing, smell or touch.

The neural networks similar to multilayer perceptrons with a hierarchical
structure of parallel sublayers are taken into consideration ([1], [2]). Designing
hierarchical networks for the purpose of multichannel data aggregation is ana-
lysed in the paper. The term designing a neural network means here a choice of a
neural network structure (e.g. the number of layers and the number of elements
in particular layers) and the weights of connections from elements of a lower
layer to the elements of a next, higher layer.

Data sets are often divided into subsets (learning subsets) related to particular
classes. A basic principle of optimising the neural structure could be based on
the postulate of separable data aggregation [3]. Transformation of the learning
subsets by the separable layer of formal neurons allows one to decrease number
of different feature vectors while preserving the class separability. The ranked
and the dipolar strategies of designing separable layers of formal neurons have
been proposed ([3], [4]). These strategies have been implemented through the
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minimisation of the convex and piecewise linear (CPL) criterion functions. In this
paper the general principles of separable processing in parallel neural structures
or in a family of fetaure subspaces are analysed.

2 Separable Learning Sets

Let us assume that each of the m analysed objects Oj (j = 1, . . . ,m) can be
represented as the so called feature vector xj = [xj1, . . . , xjn]T , or as a point
in the n-dimensional feature space F [n] (xj ∈ F [n]). The components (features)
xi of the vector x are numerical results of a variety of examinations of a given
object O. The feature vectors x can be of mixed, qualitative-quantitative type
(xi ∈ {0, 1} or xi ∈ R).

We assume that the database contains the descriptions xj(k) of m objects
Oj(k) (j = 1, . . . ,m) labelled in accordance with their category (class) ωk (k =
1, . . . ,K). The learning set C(k) contains mk feature vectors xj(k) assigned to
the k-th category ωk

Ck = {xj(k)} (j ∈ Jk) (1)

where Jk is the set of indices j of the feature vectors xj(k) belonging to the
class ωk.

Definition 1. The learning sets Ck (1) are separable in the feature space F [n],
if they are disjoined in this space (Ck ∩ Ck = ∅, if k �= k′).

It means that the feature vectors xj(k) and xj′(k′) belonging to different learning
sets Ck and Ck′ cannot be equal:

(k �= k′) ⇒ (∀j ∈ Jk) and (∀j′ ∈ Jk′)) xj(k) �= xj′ (k′) (2)

We are also considering the separation of the sets Ck (1) by the hyperplanes
H(wk, θk) in the n-dimensional feature space F [n]

H(wk, θk) = {x : wT
k x = θk} (3)

where wk = [wk1, . . . , wkn]T ∈ Rn is the weight vector, θk ∈ R1 is the threshold,
and wT

k x is the inner product.

Definition 2. The learning sets (1) are linearly separable in the feature space
F [n] if each of the sets Ck can be fully separated from the sum of the remaining
sets Ci by some hyperplane H(wk, θk) (3):

(∀k ∈ {1, . . . ,K}) (∃wk, θk) (∀xj(k) ∈ Ck) wT
k xj(k) ≥ θk

and (∀xj(k) ∈ Ci), i �= k) wkxj(k) < θk
(4)

In accordance with the relation (4), all vectors xj(k) belonging to the learning set
Ck are situated on the positive side (wT

k xj(k) ≥ θk) of the hyperplane H(wk, θk)
(3) and all feature vectors xj(i) from the remaining sets Ci are situated on the
negative side ((wT

k xj(k) < θk) of this hyperplane.
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3 Data Processing by a Layer of Formal Neurons

The formal neuronNF (w, θ) can be defined by the activation function rt(w, θ; x)

r = rt(w, θ; x) =
{

1 if wT x ≥ θ
0 if wT x < θ

(5)

where w = [w1, . . . , wn]T ∈ Rn is the weight vector, θ is the positive threshold
(θ > 0), and r is the output signal.

The formal neuron NF (w, θ) is activated (r = 1) by the vector x if and only
if this vector is situated on the positive side of the hyperplane H(w, θ) (3). It
means that the relation wT x ≥ θ holds.

The layer of L formal neurons NF (wk, θk) transforms feature vectors x into
the output vectors r = [r1, . . . , rL]T with L binary components ri ∈ {0, 1} which
are determined by the equation r = rt(wi, θi; x) (8):

r = r(W ; x) = [rt(w1, θ1; x), . . . , rt(wL, θL; x)]T (6)

where W = [wT
1 , θ1, . . . ,w

T
L , θL]T is the vector of the layer parameters.

The transformed learning sets Ck (1) are obtained from the vectors rj(k) =
r(W ; xj(k))

Ck = {rj(k)} (j ∈ Jk) (7)

We are examining such properties of the transformation (6) by a neural layer
which assure the separability (2) or the linear separability (4) of the sets Ck

(10). This property can linked to the concept of mixed dipole separation [3].

Definition 3. A pair of feature vectors (xj(k),xj′(k′)) (xj(k) �= xj′(k′), j <
j′) constitutes a mixed dipole if and only if the vectors xj(k) and xj′(k′) belong
to different classes ωk (k �= k′). Similarly, a pair of different feature vectors from
the same class ωk constitutes a clear dipole (xj(k),xj′(k)).

Definition 4. The formal neuron NF (wk, θk) (5) separates (divides) the dipole
(xj(k),xj′(k′)) if only one feature vector from this pair activates the neuron
(r = 1).

Lemma 1. The transformed sets Ck (7) are separable (2) if and only if each
mixed dipole (xj(k),xj′ (k′)) constituted by elements xj(k) of the sets Ck (1) is
divided by at least one neuron NF (wl, θl) (5) of the neural layer (6).

The proof of this Lemma can be found in the reference [3].

Definition 5. The layer of formal neurons NF (wk, θk) (5) performs the sep-
arable aggregation of the learning sets Ck if and only if the sets Ck (7) are
separable (2) and each of transformed vectors rj(k) = r(W ; xj(k)) (6) is differ-
ent from zero (rj(k) �= 0).

(∀k ∈ {1, . . . ,K}) (∀xj(k) ∈ Ck) r(W ; xj(k)) �= 0 (8)
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Lemma 2. The condition (8) is fulfilled if and only if each element xj(k) of the
sets Ck (1) activates (r = 1) at least one neuron NF (wk, θk) (5) of the layer.

In accordance with the lemma assumption each feature vector xj(k) (1) should
be situated on the positive side of at least one hyperplane H(wk, θk) (3). The
thesis of the lemma can be proved directly on the base of the relations (5), (6)
and (8).

4 Convex and Piecewise Linear Criterion Function (CPL)

The procedure of the separable layer design can be based on a sequence of
minimisation of the of the convex and piecewise linear (CPL) criterion functions
Ψl(w, θ) [3], [4]. It is convenient to define the functions Ψl(w, θ) by using the
positive G+

l and the negative G−
l sets of the feature vectors xj (1).

G+
l = {xj} (j ∈ J+

l ) and G−
l = {xj} (j ∈ J−

l ) (9)

Each element xj of the set G+
l defines the positive penalty function ϕ+

j (w, θ)

ϕ+
j (w, θ) =

{
1−wT xj + θ if wT xj − θ ≤ 1

0 if wT xj − θ > 1 (10)

Similarly, each element xj of the set G−
l defines the negative penalty function

ϕ−
j (w, θ)

ϕ−
j (w, θ) =

{
1 + wT xj − θ if wT xj − θ ≤ −1

0 if wT xj − θ > −1 (11)

The penalty function ϕ+
j (w, θ) is aimed at situating the vector xj (xj ∈

G+
l ) on the positive side of the hyperplane H(w, θ) (3). Similarly, the function

ϕ−
j (w, θ) should situate the vector xj (xj ∈ G−

l ) on the negative side of this
hyperplane.

The criterion function Ψl(w, θ) is the weighted sum of the above penalty
functions

Ψl(w, θ) =
∑

j∈J+
l

α+
j ϕ

+
j (w, θ) +

∑
j∈J−

l

α−
j ϕ

−
j (w, θ) (12)

where α+
j (α+

j > 0) and α−
j (α−

j > 0) are positive parameters (prices).
The criterion function Ψl(w, θ) belongs to the family of the convex and piece-

wise linear (CPL) criterion functions. Minimization of the function Ψl(w, θ)
allows one to find paramerters (w∗

l , θ
∗
l ) which define the l-th optimal neuron

NF (w∗
l , θ

∗
l ) (5).

Ψ∗
l = Ψl(w∗

l , θ
∗
l ) = minΨl(w, θ) ≥ 0 (13)

The basis exchange algorithms which are similar to linear programming allow
one to find the minimum of the criterion function Ψl(w, θ) efficiently even in a
case of large, multidimensional data sets G+

l and G−
l (8) [5].
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5 Designing Separable Layers of Formal Neurons

The separable layer of formal neurons NF (wl, θl) (5) preserves the separability
(2) of the learning sets Ck (1) during the transformation (6). In accordance
with the Lemma 1, the necessary condition for the separability of the neural
layer is the division of each mixed dipole (xj(k),xj′(k′)) by at least one element
NF (wl, θl) of this layer. Another necessary condition (8) for the separability of
the neural layer is specified in the Lemma 2. In accordance with this lemma each
feature vector xj(k) should activate at least one neuron NF (wk, θk) (5) of the
layer.

The multistage procedures of separable layer designing has been proposed
[3],[4], [5]. One of these procedures has been called the dipolar and is based on the
successive divisions of all mixed dipoles. During the l-th stage of this procedure
the l-th neuron NF (wl, θl) (5) is designed in such a manner that as many as
possible mixed and undivided yet dipoles (xj(k),xj′ (k′)) become divided. The
l-th neuron NF (wl, θl) (5) is designed for dipole division by minimisation of the
criterion function Ψl(w, θ) (17) defined on special data sets G+

l and G−
l (8). The

procedure is stopped when all mixed dipoles (xj(k),xj′ (k′)) are divided.
The choice of the positive G+

l and the negative G−
l sets (9) of the feature

vectors xj (1) is crucial for the implementation of the dipolar procedure. Let us
introduce for this purpose the below symbols, which allow for definition of the
positive and negative sets separately for each category ωk :

G+
l (k) = {xj(k)} (j ∈ J+

l (k)) and
G−

l (k) = {xj′ (k′)} (j′ ∈ J−
l (k), k′ �= k)

(14)

where G+
l (k) is the set of such feature vectors xj(k) from the k-th set Ck (1)

(category ωk) that are supposed to be situated on the positive side of the hy-
perplane H(wl(k), θl(k)) (3) during the l-th stage. Similarly, G−

l (k) is a set of
such feature vectors xj′(k′) from other sets Ck′(k′ �= k) which are supposed to
be located on the negative side of H(wl(k), θl(k)).

We are assuming here that each category ωk has its own sublayer Sk of the for-
mal neurons NF (wl(k), θl(k)) (5). The positive G+

l (k) and the negative G−
l (k)

sets (14) are expected to contain elements xj(k) and xj′ (k′) of such mixed
dipoles (xj(k),xj′(k′)) which have not yet been divided by the first elements
NF (wl′(k), θl′(k)) (0 < l′ < l) of the k-th sublayer Sk related to the category
ωk.

Example 1. (dipolar layer): Let us choose the sets G+
l (k) and G−

l (k) (14) related
during first stage (l = 1) to the k-th category ωk and the sets Ck (1) in the
manner below:

G+
1 (k) = Ck and G−

1 (k) =
⋃

k �=k′
Ck′ (15)

The minimization (13) of the criterion function Ψ1(w, θ) (12) allows one to find
the first neuron NF (w∗

1(k), θ∗1(k)) (5) of the k-th sublayer Sk and the separating
hyperplane H(w∗

1(k), θ
∗
1(k)) (3).
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The sets G+
l+1(k) and G−

l+1(k) (14) during the (l + 1)-th stage are defined in
an iterative manner

G+
l+1(k) = G+

l (k)−R+
k (w∗

l (k), θ
∗
l (k)) and

G−
l+1(k) = G−

l (k)−R−
k′ (w∗

l (k), θ
∗
l (k))

(16)

whereR+
k (w∗

l (k), θ
∗
l (k)) is the set of such elements xj(k) ofG+

l (k) which are situ-
ated on the positive side of the hyperpalane H(w∗

l (k), θ
∗
l (k)) i.e. w∗

l (k)
T xj(k) >

θ∗l (k). Similarly, R−
k′(w∗

l (k), θ
∗
l (k)) is the set of such elements xj(k′) of G−

l (k)
which are situated on the negative side of H(w∗

l (k), θ
∗
l (k)) i.e. w∗

l (k)
T xj(k′) <

θ∗l (k). ��

The choice of the sets G+
l+1(k) and G−

l+1(k) in accordance with the rule (16)
realizes the principle that such mixed dipoles (xj(k),xj′ (k′)) which have been
divided in the sublayer Sk are omitted from further consideration and the rule
(8) is reinforced. One can see that after a finite number of stages all mixed
dipoles (xj(k),xj′ (k′)) will be divided in this way.

6 Multichannel Data Sets

Let us consider now the situation when the same objects Oj are characterised by
data obtained from L different channels. Such a situation may exist for example
in modelling the nervous system, when a given object is perceived simultaneously
through the vision, hearing and touch sensors.

Models of such a situation could include the decomposition of the n - dimen-
sional feature space F [n] into L feature subspaces (channels) Fl[nl] (l = 1, . . . , L)

F [n] = F [nl] ∪ F [n2] ∪ . . . ∪ F [nL] (17)

where Fl[nl] ∩ Fl′ [nl′ ] = ∅ if l′ �= l.
Feature vectors xj [nl] in the nl - dimensional subspace Fl[nl] are obtained

from xj [n] (1) in the result of the feature reduction (selection):

xj [nl] = [xj1, . . . , xjnl
]T where xj [nl] ∈ Fl[nl] (18)

In the result of the feature space F [n] reduction to the nl - dimensional subspace
Fl[nl] (one channel), each learning set Ck (1) is replaced by the set C′

kl[nl]

C′
kl[nl] = {xj [nl]} (j ∈ Jk) (19)

The set C′
kl[nl] contains such reduced vectors xj [nl] (18) (xj [nl] ∈ Fl[nl]) which

belong to the class ωk.
The feature space reduction to one channel Fl[nl] can result in a loss of the

sets Ck (1) separabilty (2). It means that the sets C′
kl[nl] (19) can overlap in the

nl - dimensional subspace Fl[nl] :

(∃l ∈ {1, . . . , L}) (∃k �= k′) C′
kl[nl] ∩ C′

k′l[nl] �= ∅ (20)
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This property results from the equality of some reduced vectors xj [nl] (18)
(xj [nl] ∈ Fl[nl])

(∃l ∈ {1, . . . , L}) (∃k �= k′) (∃j �= j′) xj [nl] = xj′ [nl] (21)

where xj [nl] ∈ ωk and xj′ [nl] ∈ k′.
Data aggregation could be performed in accordance with rule (21). It means

that, in the result of the feature space reduction to one channel Fl[nl], some
different feature vectors xj(k) and xj′(k′) are equalized and treated as a single
one. Feature vectors xj(k) and xj′(k′) can also be made equal as a result of their
transformations (6) by layers of formal neurons NF (wm(k), θm(k)) (5).

Designing postulate: We are interested in designing such a layer of formal
neurons NF (wm(k), θm(k)) (5) operating in a particular feature subspace Fl[nl]
(l = 1, . . . , L) which allows one to preserve the separability (2) of the learning
sets Ck (1) during data aggregation.

Example 2. Let us consider designing a dipolar layer in the l-th feature subspace
Fl[nl] in a manner similar to one described in Example 1. In order to take into
account the possible equality (21) of the vectors xj [nl] in the feature space Fl[nl],
the sets G+

1 (k) and G−
1 (k) (15) are defined in the manner below:

G+
1 (k) = {xj [nl] : j ∈ Jk (1)} (22)

G−
1 (k) = {xj′ [nl] : (∀xj [nl] ∈ G+

1 (k)) xj′ [nl] �= xj [nl]} (23)

The negative set G−
1 (k) (23) contains only such vectors xj′ [nl] (xj′ [nl] ∈ Fl[nl])

which are different from any element xj [nl] of the positive set G+
1 (k) (22).

The minimization (13) of the criterion function Ψ(w, θ) (12) with the sets
G+

1 (k) (22) and G−
1 (k) (23) allows one to find the first neuron NF (w∗

1(k), θ∗1(k))
(5) of the k-th sublayer Sk and the separating hyperplane H(w∗

1(k), θ
∗
1(k)) (3)

in the l-th feature subspace Fl[nl].
The sets G+

l+1(k) and G−
l+1(k) during the (l + 1)-th stage can be defined in

an iterative manner by the rules (16). The sets G+
l+1(k) and G−

l+1(k) allows one
to find the next separating hyperplanes H(w∗

l (k), θ
∗
l (k)) (3) and the succesive

neurons NF (w∗
l (k), θ

∗
l (k)) (5) of the k-th sublayer Sk.

One can see that after a finite number of such stages all mixed dipoles
(xj [nl],xj′ [nl]) constituted from different elements xj [nl] and xj′ [nl] (xj [nl] �=
xj′ [nl])) will be divided. The separable sublayer Sk is designed in this way. ��

The sublayer Sk in the l-th feature subspace Fl[nl] transforms the learning sets
Ck (1) into the sets Ck′ (7). It can be proved that the separable sublayer Sk

allows one to preserve the learning sets Ck (1) separability (2). Designing a
postulate can be fulfilled through the procedure described in Example 2.

7 Concluding Remarks

Separable aggregation of the learning sets Ck (1) can be realized through their
transformations by layers of formal neurons NF (wm(k), θm(k)) (5) operating
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in particular feature subspaces Fl[nl] (l = 1, . . . , L). Separable transformations
allow one to decrease number of different feature vectors in particular learning
sets Ck under the condition of preserving the separability (2) of these sets. The
dipolar strategy of the separable layers design has been described in the paper.
Particular attention has been paid to applications of the dipolar strategy to
designing separable layers in feature subspaces Fl[nl].

The decomposition (17) of the feature space F [n] into subspaces Fl[nl] can
be implicated not only by a multichannel sensor structure but also by the high
dimensionality of the problem. The dimensionality of the feature space F [n] can
be so high (e.q. millions of pixels in graphical objects xj(k) (1)) that imple-
mentation of computational procedures becomes practically impossible. There
are still open problems both theoretical as well as implementational, related to
decomposition (17) of the feature space F [n] and to the designing of separable
neural layers in particular feature subspaces Fl[nl].
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Abstract. An Intrusion Detection System (IDS) is a program that an-
alyzes what happens or has happened during an execution and tries to
find indications that the computer has been misused. An IDS does not
eliminate the use of preventive mechanism but it works as the last defen-
sive mechanism in securing the system. This paper evaluates the perfor-
mances of Estimation of Distribution Algorithm (EDA) to train a feed-
forward neural network classifier for detecting intrusions in a network.
Results are then compared with Particle Swarm Optimization (PSO)
based neural classifier and Decision Trees (DT). Empirical results clearly
show that evolutionary computing techniques could play an important
role in designing real time intrusion detection systems.

1 Introduction

Attacks on the nation’s computer infrastructures are becoming an increasingly
serious problem. Computer security is defined as the protection of computing
systems against threats to confidentiality, integrity, and availability [1]. Con-
fidentiality (or secrecy) means that information is disclosed only according to
policy, integrity means that information is not destroyed or corrupted and that
the system performs correctly, availability means that system services are avail-
able when they are needed. Computing system refers to computers, computer
networks, and the information they handle. Security threats come from different
sources such as natural forces (such as flood), accidents (such as fire), failure
of services (such as power) and people known as intruders. There are two types
of intruders: the external intruders who are unauthorized users of the machines
they attack, and internal intruders, who have permission to access the system
with some restrictions. The traditional prevention techniques such as user au-
thentication, data encryption, avoiding programming errors and firewalls are

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 9–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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used as the first line of defense for computer security. If a password is weak and
is compromised, user authentication cannot prevent unauthorized use, firewalls
are vulnerable to errors in configuration and ambiguous or undefined security
policies. They are generally unable to protect against malicious mobile code,
insider attacks and unsecured modems. Programming errors cannot be avoided
as the complexity of the system and application software is changing rapidly
leaving behind some exploitable weaknesses. Intrusion detection is therefore re-
quired as an additional wall for protecting systems. Intrusion detection is useful
not only in detecting successful intrusions, but also provides important informa-
tion for timely countermeasures. Intrusion detection is classified into two types:
misuse intrusion detection and anomaly intrusion detection. Misuse intrusion de-
tection uses well-defined patterns of the attack that exploit weaknesses in system
and application software to identify the intrusions. Anomaly intrusion detection
identifies deviations from the normal usage behavior patterns to identify the
intrusion.

We have two options to secure the system completely, either prevent the
threats and vulnerabilities which come from flaws in the operating system as
well as in the application programs or detect them and take some action to
prevent them in future and also repair the damage. It is impossible in practice,
and even if possible, extremely difficult and expensive, to write a completely
secure system. Transition to such a system for use in the entire world would
be an equally difficult task. Cryptographic methods can be compromised if the
passwords and keys are stolen. No matter how secure a system is, it is vulnerable
to insiders who abuse their privileges. There is an inverse relationship between
the level of access control and efficiency. More access controls make a system less
user-friendly and more likely of not being used. An Intrusion Detection system
is a program (or set of programs) that analyzes what happens or has happened
during an execution and tries to find indications that the computer has been
misused. An Intrusion detection system does not eliminate the use of preven-
tive mechanism but it works as the last defensive mechanism in securing the
system. Data mining approaches are a relatively new technique for intrusion de-
tection. There are a wide variety of data mining algorithms drawn from the fields
of statistics, pattern recognition, machine learning, and databases. Previous re-
search of data mining approaches for intrusion detection model identified several
types of algorithms as useful techniques. Classification is one of the data min-
ing algorithms, which have been investigated as a useful technique for intrusion
detection models.

Various intelligent paradigms namely Neural Networks [2], Support Vector
Machine [3], Neuro-Fuzzy systems [4], Linear Genetic Programming [5], Flexi-
ble Neural Tree [6][7][8], ensemble of intelligent paradigms [22][23] and Decision
Trees [10] have been used for intrusion detection. Various data mining techniques
have been applied to intrusion detection because it has the advantage of discov-
ering useful knowledge that describes a user’s or program’s behavior from large
audit data sets.
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This paper proposes an EDA based evolutionary neural network classifier for
detecting intrusions. The weights, bias and flexible activation function parame-
ters are optimized by EDA algorithm. Results are then compared with Particle
Swarm Optimization (PSO) based neural classifier and Decision Trees (DT).
The rest of paper is organized as follows. A simple introduction to neural net-
works is given in Section 2. The EDA and PSO based neural networks training
algorithms are presented in Section 3. Some simulation results and comparisons
are provided in Sections 4. Finally in Section 5 we present some conclusions and
future works.

2 Neural Networks

A typical three-layer feedforward neural network consists of an input layer, a
hidden layer and an output layer. The nodes are connected by weights and output
signals, which are a function of the sum of the inputs to the node modified by a
simple nonlinear activation function. The usually used activation function is the
sigmoid function with threshold defined as

f(
n∑

i=1

wixi − θ) =
1

1 + exp(−(
∑n

i=1 wixi − θ))
(1)

where xi is the input to the node and wi is the corresponding input weight, θ
is a value which is usually called the threshold, n is the number of the inputs
to the node. In this study, an flexible activation functions at hidden and output
layers is selected. Some flexible activation functions shown in Table 1.

The output of a node is scaled by the connecting weight and is fed forward as
an input to the nodes in the next layer of the network. The input layer plays no
computational role but merely serves to pass the input vector to the network.
The input layer and the hidden layer are connected by weights and likewise the
hidden layer and output layer also have connection weights. The network has the
ability to learn through training. The training requires a set of training data, i.e.,
a series of input and associated output vectors. During the training, the network
is repeatedly presented with the training data and the weights and thresholds
in the network are adjusted from time to time till the desired inputCoutput
mapping occurs.

Table 1. The flexible activation functions

Gaussian Function f(x, a, b) = exp(− (x−a)2

b2
)

Unipolar sigmoid function f(x, a) = 2|a|
1+e−2|a|x

Bipolar sigmoid function f(x, a) = 1−e−2xa

a(1+e−2xa)

Nonlocal radial coordinates f(x, a, b) = (b2 + ‖x − a‖2)−α(α > 0)

General multi quadratics f(x, a, b) = (b2 + ‖x − a‖2)β(0 < β < 1)

Thin-plate s-spline function f(x, a, b) = (b‖x − a‖)2 ln(b‖x − a‖)
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3 Neural Network Training by EDA and PSO

3.1 Estimation of Distribution Algorithm (EDA)

(EDA) [16][17][18][19][20][21] is anew classofEAs.EDAdirectly extracts the global
statistical information about the search space from the search so far and builds
a probabilistic model of promising solutions. New solutions are sampled from the
model thus built. Several EDAs [18][19][20][21] have been proposed for the global
continuous optimization problem. These algorithms are very promising, but much
work needs to be done to improve their performances. An efficient evolutionary al-
gorithm should make use of both the local information of solutions found so far and
the global information about the search space. The local information of solutions
found so far can be helpful for exploitation, while the global information can guide
the search for exploring promising areas. The search in EDAs is mainly based on
the global information, but DE on the distance and direction information which is
a kind of local information. Therefore, it is worthwhile investigating whether com-
biningDEwithEDA could improve theperformanceof theDEalgorithmandEDA.

One of the major issues in EDAs is how to select parents. A widely-used
selection method in EDA is the truncation selection. In the truncation selection,
individuals are sorted according to their objective function values. Only the best
individuals are selected as parents.

Another major issue in EDAs is how to build a probability distribution model
p(x). In EDAs for the global continuous optimization problem, the probabilistic
model p(x) can be a Gaussian distribution [11], a Gaussian mixture [12][13],
a histogram [14], or a Gaussian model with diagonal covariance matrix (GM/
DCM) [12].

GM/DCM is used in our algorithm. In GM/DCM, the joint density function
of the k-th generation is written as follows:

pk(x) =
n∏

i=1

N(xi;μk
i , σ

k
i ) (2)

where

N(xi;μk
i , σ

k
i ) =

1√
2πσi

exp(−1
2
(
xi − μi

σi
)2) (3)

In (2), the n-dimensional joint probability distribution is factorized as a product
of n univariate and independent normal distributions. There are two parameters
for each variable required to be estimated in the k-th generation: the mean, μk

i ,
and the standard deviation, σk

i . They can be estimated as follows:

μ̂k
i = x̄k

i =
1
M

M∑
j=1

xk
ji (4)

σ̂k
i =

√√√√ 1
M

M∑
j=1

(xk
ji − x̄k

i )2 (5)
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Implementation of EDA for NN classifier. Before describing the details of
EDA for training NN classifier, the issue of coding is presented. Coding concerns
the way the weights, bias and the flexible activation function parameters of NN
are represented by individuals. A float point coding scheme is adopted here. For
NN coding, suppose there are M nodes in hidden layer and one node in output
layer and n input variables, then the number of total weights is n ∗M +M ∗ 1,
the number of thresholds is M +1 and the number of flexible activation function
parameters is M+1, therefore the total number of free parameters in a NN to be
coded is n ∗M +M + 2(M + 1). These parameters are coded into an individual
or particle orderly.

Let Pop(t) be the population of solutions at generation t. EDAs work in the
following iterative way.

S1 Selection. Select M promising solutions from Pop(t) to form the parent set
Q(t) by truncation selection method;

S2 Modeling. Build a probabilistic model p(x) based on the statistical informa-
tion extracted from the solutions in Q(t);

S3 Sampling. Sample new solutions according to the constructed probabilistic
model p(x);

S4 Replacement. Partly replace solutions in Pop(t) by the sampled new solu-
tions to form a new population Pop(t + 1).

3.2 Parameter Optimization with PSO

The Particle Swarm Optimization (PSO) conducts searches using a population of
particles which correspond to individuals in evolutionary algorithm (EA). A pop-
ulation of particles is randomly generated initially. Each particle represents a po-
tential solution and has a position represented by a position vector xi. A swarm of
particles moves through the problem space, with the moving velocity of each parti-
cle representedby a velocity vectorvi. At each time step, a function fi representing
a quality measure is calculated by using xi as input. Each particle keeps track of
its own best position, which is associated with the best fitness it has achieved so
far in a vector pi. Furthermore, the best position among all the particles obtained
so far in the population is kept track of as pg. In addition to this global version,
another version of PSO keeps track of the best position among all the topological
neighbors of a particle. At each time step t, by using the individual best position,
pi, and the global best position, pg(t), a new velocity for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pg(t)− xi(t)) (6)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (7)
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A neural network classifier trained by PSO algorithm with flexible bipolar
sigmoid activation functions at hidden layer were constructed for the breast-
cancer data set. The issue of coding is similar with the one used in EDA-NN
discussed above.

The simple loop of the proposed training algorithm for neural network is as
follows.

S1 Initialization. Initial population is generated randomly. The learning param-
eters c1 and c2 in PSO should be assigned in advance.

S2 Evaluation. The objective function value is calculated for each particle.
S3 Modification of search point. The current search point of each particle is

changed using Eqn.(2) and Eqn.(1).
S4 if maximum number of generations is reached or no better parameter vector

is found for a significantly long time (100 steps), then stop, otherwise goto
step S2;

3.3 Decision Tree Classification

For comparison purpose, a Decision tree induction is one of the classification
algorithms in data mining. The Classification algorithm is inductively learned
to construct a model from the pre-classified data set. Each data item is defined
by values of the attributes. Classification may be viewed as mapping from a set
of attributes to a particular class. The Decision tree classifies the given data item
using the values of its attributes. The decision tree is initially constructed from
a set of pre-classified data. The main approach is to select the attributes, which
best divides the data items into their classes. According to the values of these
attributes the data items are partitioned. This process is recursively applied to
each partitioned subset of the data items. The process terminates when all the
data items in current subset belongs to the same class. A node of a decision tree
specifies an attribute by which the data is to be partitioned. Each node has a
number of edges, which are labeled according to a possible value of the attribute
in the parent node. An edge connects either two nodes or a node and a leaf.
Leaves are labeled with a decision value for categorization of the data.

Induction of the decision tree uses the training data, which is described in
terms of the attributes. The main problem here is deciding the attribute, which
will best partition the data into various classes. The ID3 algorithm [12] uses the
information theoretic approach to solve this problem. Information theory uses
the concept of entropy, which measures the impurity of a data items. The value
of entropy is small when the class distribution is uneven, that is when all the data
items belong to one class. The entropy value is higher when the class distribution
is more even, that is when the data items have more classes. Information gain
is a measure on the utility of each attribute in classifying the data items. It
is measured using the entropy value. Information gain measures the decrease
of the weighted average impurity (entropy) of the attributes compared with
the impurity of the complete set of data items. Therefore, the attributes with
the largest information gain are considered as the most useful for classifying the
data items.
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To classify an unknown object, one starts at the root of the decision tree and fol-
lows the branch indicated by the outcome of each test until a leaf node is reached.
The name of the class at the leaf node is the resulting classification. Decision tree
induction has been implemented with several algorithms. Some of them are ID3
[12] and later on it was extended into C4.5 [13] and C5.0. Another algorithm for
decision trees is CART [14]. Of particular interest to this work is the C4.5 decision
tree algorithm. C4.5 avoids over fitting the data by determining a decision tree,
it handles continuous attributes, is able to choose an appropriate attribute selec-
tion measure, handles training data with missing attribute values and improves
computation efficiency. C4.5 builds the tree from a set of data items using the best
attribute to test in order to divide the data item into subsets and then it uses the
same procedure on each sub set recursively. The best attribute to divide the subset
at each stage is selected using the information gain of the attributes.

4 Simulation Studies

4.1 The Data Set

The data for our experiments was prepared by the 1998 DARPA intrusion detec-
tion evaluation program by MIT Lincoln Lab. The data set contains 24 attack
types that could be classified into four main categories namely Denial of Service
(DOS), Remote to User (R2L), User to Root (U2R) and Probing. The original
data contains 744 MB data with 4,940,000 records. The data set has 41 attributes
for each connection connection record plus one class label. Some features are de-
rived features, which are useful in distinguishing normal from attacks. These
features are either nominal or numeric. Some features examine only the connec-
tion in the past two seconds that have the same destination host as the current
connection, and calculate statistics related to protocol behavior, service, etc.
These called same host features. Some features examine only the connections
in the past two seconds that have same service as the current connection and
called same service features. Some other connection records were also stored by
destination host, and features were constructed using a window of 100 connec-
tions to the same host instead of a time window. These called host-based traffic
features. R2L and U2R attacks don’t have any sequential patterns like DOS
and Probe because the former attacks have the attacks embedded in the data
packets whereas the later attacks have many connections in a short amount of
time. So some features that look for suspicious behavior in the data packets like
number of failed logins are constructed and these are called contents features.
The data for our experiments contains randomly generated 11982 records having
41 features [9].

This data set has five different classes namely Normal DOS, R2L, U2R and
Probe. The training and test comprises of 5092 and 6890 records respectively.
All the IDS models were trained and tested with the same set of data. As the
data set has five different classes we performed a 5-class binary classification.
The normal data belongs to class 1, Probe belongs to class 2, DOS belongs to
class 3, U2R belongs to class 4 and R2L belongs to class 5.
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4.2 Intrusion Detection by EDA-NN

A neural network classifier with structure {41-8-1} trained by EDA with flexible
bipolar sigmoid activation functions were constructed using the training data sets
and then the neural network classifier was used on the test data set to detect the
different types of attacks. All the input variables were used for the experiments.
Table 2 depicts the detection performance of EDA-NN for test data set.

4.3 Intrusion Detection by PSO-NN

For comparison purpose, a neural network classifier with structure {41-8-1}
trained by PSO and with flexible bipolar sigmoid activation functions were also
constructed using the same training data sets and then the neural network clas-
sifier was used on the test data set to detect the different types of attacks. All
the input variables were used for the experiments. Table 2 depicts the detection
performance of PSO-NN for test data set.

4.4 Intrusion Detection by DT

The important variables were also decided by their contribution to the construc-
tion of the decision tree. Variable rankings were generated in terms of percent-
ages. We eliminated the variables that had 0.00% rankings and considered only
the primary splitters or surrogates. This resulted in a reduced 12 variable data

Table 2. Detection performance using EDA-NN, PSO-NN and DT classification mod-

els for test data set

Attack Class EDA-NN PSO-NN DT

Normal 97.58% 95.69% 82.32%

Probe 95.57% 95.53% 94.83%

DOS 97.76% 90.41% 77.10%

U2R 99.90% 100% 99.83%

R2L 98.90% 98.10% 94.33%

Table 3. Comparison of false positive rate (fp) and true positive rate (tp) for EDA-NN,

PSO-NN and DT classifiers for test data set

Attack EDA-NN PSO-NN DT

Class fp(%) tp(%) fp(%) tp(%) fp(%) tp(%)

Normal 0.29 99.64 4.3 88.70 29.66 99.60

Probe 0.02 56.57 0.40 37.15 0.24 31.00

DOS 3.94 98.86 3.68 89.38 72.10 97.63

U2R 0.01 52.00 0.05 55.81 0.022 59.26

R2L 0.08 87.39 0.17 86.63 0.022 30.73
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set with x2, x4, x5, x11, x22, x23, x24, x27, x30, x31, x32, x34 as variables. The
detection performance of the DT by using the original 41 variable data set is
shown in Table 2.

The achieved true positive and false positive rates using 41 input variables by
the EDA-NN, PSO-NN and DT algorithms are depicted in Table 3.

5 Conclusions

In this paper, we have illustrated the importance of evolutionary algorithm
and neural networks based techniques for modeling intrusion detection systems.
EDA-NN classification accuracy is grater than 95% for all the considered attack
types (classes) and achieved good true positive and false positive rates. It is to be
noted that for real time intrusion detection systems EDA and neural networks
would be the ideal candidates because of its simplified implementation.
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Abstract. In the present paper an implementation of multilayer per-
ceptron (MLP) in a new generation SRAM-FPGA device is discussed.
The presented solution enables easy realization of MLP with arbitrary
structure and calculation accuracy. The solution is based on utilization
of the structural parallelism of the FPGA device and economical real-
ization of individual neurons. A flexible and effective method has been
applied for approximation of the nonlinear activation function by a series
of linear segments. Selection mechanisms have been also introduced for
a compromise between the amount of logical resources used and the net-
work operation speed. Therefore the presented solution can be applied
both for implementation of big networks in small FPGA devices and for
implementation working in real time, for which high operation speed is
required.

1 Introduction

The implementation of artificial neural networks in FPGA devices has been the
subject of many research papers. In principle two groups of solutions can be dis-
tinguished: universal type realizations [6], [7] and dedicated neural networks for
specific applications [1], [2], [3]. Several solutions are concentrated on the neu-
ron model [8]. Other publications discuss the network implementations providing
the possibility of network’s learning by making use of dynamic reconfiguration
of the FPGA device [4], [5]. The proposed solutions mostly exhibit the scientific
research features, with limited prospects for mass (large-scale) realization. The
decreasing prices of FPGA devices with constantly increasing capacities stim-
ulates the search for economically effective solutions for applications in home
appliances. Depending on the specific nature of the application the networks
with specific geometries are applied (understood as the number of layers and the
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number of neurons in particular layers). The requirements regarding the preci-
sion and speed of the calculations may vary, and so may the available hardware
resources.

Therefore universal solutions are required, which offer arbitrary choice of ge-
ometry for the implemented network and the arbitrary calculation precision, still
preserving the required efficiency. It should be taken into account that in some ap-
plications high operation speed is expected, which should be ensured by parallel
operation of considerable hardware resources, while in some other it is quite the
opposite - limited resources are used even if it compromises the operation speed.

In the present paper a method is presented for implementation of multilayer
perceptron (MLP) in FPGA devices of the Virtex and Spartan-II series (Xilinx),
which fulfils the above-mentioned requirements.

The proposed solution is scalable. This means that starting from simple, repli-
cable elements one can choose arbitrary geometry and calculation precision as
well as the amount of resources that are available for a that specific implemen-
tation. At the same time the attention has been also focused on achieving the
highest possible efficiency, independent of the choice of the above-mentioned pa-
rameters. The efficiency is regarded as the relation of the speed and precision
of the calculations to the number of logical resources used (measured by the
number of blocks in the FPGA matrix). The calculation speed has been taken
as the number of synaptic connections realized in a given time unit.

2 Data Format in Reconfigurable Computing Systems

Reconfigurable Computing Systems based on reprogrammable FPGA devices,
allow for designing of hundreds processing elements working in parallel, so they
are particularly useful for neural nets implementation. However in FPGA’s the
fixed-point data format is preferred. A floating-point unit consumes huge number
of logical resources and considerably reduces computation speed. In most cases
the involved function, e.g. sigmoidal function, contains an exponential element,
the calculation of which usually requires quite a developed system. Taking into
account the neural net implementation in a reprogrammable device one should
consider simplified model of a neuron and apply fixed-point algorithm. On the
other hand a coarse approximation by simpler functions, easier to implement,
may disturb the correct operation of the network. For a given application, mini-
mal fixed-point data representation is required, which preserves a recognition
level similar to the one achieved in floating-point algorithm. In consequence some
approximations of the nonlinear activation function have to be investigated.

In the presented neural processor an intermediate solution has been applied,
lying between the simple arithmetic and the function tabulation. The activation
function has been approximated as a series of maximum 64 linear segments. In
practice quite limited number of segments (approx. 10-100) leads to sufficiently
accurate approximation. As an example a net consisting of 2 layers has been
implemented for handwritten digit recognition. The original sigmoidal function
has been approximated by three linear segments.
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An attempt has been made to determine how the recognition effectiveness will
be depend on the representation of the weight coefficients and what slope value
of the central section of the sigmoidal function, responsible for the active part
of the activation function, will ensure the recognition rate value similar to one
achieved with real sigmoidal function.

The results listed in Table 1 show, that there is a critical resolution of weight
coefficients, below which the network rapidly decreases its recognition quality,
while the sensitivity to the slope angle of the central section is negligible (with
the exception of the 1/16 value, for which the function is almost flat and it
actually never works in the saturation region).

Table 1. Recognition rates (in %) as a function of resolution of the weight coefficients

and slope of the central section of activatioin function (the nearest: 1/4 ; 6)

Activation function approx Bit resolution of weight coefficients

Slope of the central section 3 4 5 6 7 8 9 10 11 12 13 14

Threshold (∞) 10 54 81 91 94 94 92 91 91 91 91 91

4 10 58 81 93 95 95 93 92 92 92 92 92

2 12 62 82 93 95 94 93 93 93 93 93 93

1 11 69 83 95 96 95 95 93 93 93 93 93

1/2 10 75 87 96 96 95 94 93 93 93 93 93

1/4 (nearest) 19 84 95 96 96 95 95 95 95 95 95 95

1/8 36 81 97 96 97 96 95 95 95 95 95 95

1/(16) 30 33 26 28 29 29 28 30 32 32 32 32

The realized numerical experiment, in spite of the simplicity of its assump-
tions, definitely shows that the fixed-point hardware implementation, can rela-
tively well substitute for the floating-point network model.

3 Implementation of Numerical Tasks

From the mathematical point of view MLP is a function mapping one vector
space into another vector space. Such a function is a composition of transforma-
tions realized by individual layers i.e. simple perceptrons. Therefore there are
two most important numerical tasks. First - called a synaptic function - con-
sists of summation of series of products. In the algebraic sense it is a matrix
multiplication by a vector. The second task consists of calculation of the acti-
vation function values for the obtained sums. For an M -layer perceptron the
tasks should be realized interchangeably M times. The results obtained in one
stage are used in the next stage. In typical applications MLP is used as a tool
for classification. Finding the number of the recognized class and checking the
reliability of the recognition are treated as a separate, third numerical task.
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The proposed MLP implementation method is based - generally speaking - on
the application of specialized subsystems for realization of particular, elemen-
tary tasks of the system. The main goal of the design was to enable independent,
parallel and thus fluent operation of individual subsystems, without any forced
halts. Therefore a pipelined data flow organization and proper buffering of in-
termediate results has been introduced. The internal BlockRAM memories -
available in Virtex/Spartan series devices - have been used as data buffers. The
BlockRAM memories are very fast, two-gate static memories of relatively large
capacities. Because of the fast and easy access the application of that memory
resulted in an efficient data flow between individual subsystems - and what fol-
lows - high calculation efficiency of the whole system. BlockRAM memories are
particularly well fit for application as data buffers, which can be at the same
time being written by one block and being read by another block.

In the designed system each of the three numerical tasks mentioned above are
realized by a separate, specialized subsystem - as shown in Figure 1:

– synaptic function,
– activation function,
– analysis of the output vectors.

Fig. 1. Block diagram of calculation system

Computations for a following layers are performed sequentially on the same
hardware structure (the loop and the multiplexer M1 – Figure 1). Descriptors of
activations functions and layers’ descriptors are stored in the BRAM memories,
and are loaded during FPGA configuration. The synaptic block is connected to
an external SRAM memory, from which the weight values are fetched. Layer’s
pointer and counters are responsible for system synchronization.
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Fig. 2. Synaptic block: a) connection of the serial register with the set of accumulators,

b) structure of an individual accumulator

Implementation of the Synaptic Function. Architecture of the Accumula-
tion Block is presented on Figure 2a, and the architecture of single accumulator
on Figure 2b.

For a layer consisting of N neurons, to which K inputs are connected, the
realization of synaptic function requires the calculation of N sums h1, . . . , hN of
the product sequence of length K

hn =
∑

k

wn,kξk (1)

where ξk is the element of the vector subject to transformation (input layer)
and wn,k are values of the weight coefficients. The realization of the synaptic
function consists of repeated operations of multiplication and accumulation. In
the presented solution serial multiplication has been applied, which includes
addition of properly weighted multiples of one factor controlled by the values
of individual bits in the second factor. That both the multiplication of input
values by the weight coefficients and the accumulation of consecutive products
are realized by the same element - adder coupled to a register. The system
consists of a shift register SR and a set of accumulator registers A1, . . . , AN .
The number of accumulators is equal to the number of neurons in a layer and
it determines the level of parallelization of the calculations. The accumulator
implementation requires the number of logic cells (LC) equal to its resolution.
Because each LC contains only one register further reduction of the accumulator
size is not possible. Thus a kind of minimal hardware representation for a single
neuron has been achieved.

Implementation of the Activation Function. As has been explained in the
Chapter 2 the activation function is approximated by a series of linear segments.
It’s shape is determined by the table of records defining individual segments.
The individual i-th record contains the following information:

- hi – the h coordinate of the segment’s start point
- Oi – the O coordinate of the segment’s start point
- ai – the slope of the segment.
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Because the set of intervals covers the whole h domain in a continuous way,
therefore the i-th segment of the set covers the interval 〈hi, hi+1). The realized
approximation of the activation function can be formally written as:

O(h) = Oi + ai

(
Δh

)
, Δh = h− hi (2)

where i satisfies the following inequality:

hi ≤ h < hi+1 . (3)

The relations (2) and (3) define the calculation tasks of the activation block.
The first task consists of finding the segment covering the interval containing the
h value - i.e. the solution of inequality (3) with respect to i. The second tasks
comprises the reading data from the record describing the required i-th segment
and executing the calculations according to (2).

The search for the proper segment is realized by a method similar to the suc-
cessive approximation used in AD converters. It has been assumed that the total
number of segments is an integer power of 2. Individual bits of the required i
value are determined in succession, starting from the MSB bit, in consecutive
clock cycles. The whole procedure looks as follows. Let’s assume that the ap-
proximation uses 64 segments. In the first cycle the h value is compared with
h32. If it is smaller it has been determined that i ∈ [0, 31], otherwise i ∈ [32, 63].
Thus the MSB bit of the number i has been determined. In the next cycle the
h value is compared - depending on the previous result - with h16 or h48, and
as a result the next bit is determined. The total number of clock cycles required
for determination of the number i satisfying the inequality (3) is given by the
base-2 logarithm of the total number of segments.

As has been mentioned at the beginning of the present chapter the h values
are signed numbers, encoded in a shifted binary code (the 100 . . .0 binary value
denote zero). Such encoding allows the comparison of unsigned numbers, what
makes the comparator design much simpler. It is obvious that the hi parameters
must be encoded in the same way.

The second task - defined by the (2) - is realized as a serial multiplication:

O(Δh) = Oi +
Q−1∑
j=0

2−jziΔh
ej−j (4)

where
ai = 2−ej zi . (5)

The Δhn symbol denotes the n-th bit of the Δh value. The slope coefficient for
a given segment is stored in the table of records as a floating point number - its
value is defined by two integer numbers: zi, ei. The Δh value can not be greater
than the width of the interval. Therefore the calculations realized according to
(4) will be correct if the ei value will be not less than the number of the most
significant bit in Δh, which can takes the value 1:

ei > log2(hi+1 − h)− 1 . (6)
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It is obvious that in order to obtain the most accurate representation of the ai

coefficient the lowest value of ei, satisfying the (6), should be taken.
The resolution of Oi and zi parameters should be the same as the resolu-

tion of the calculated output value O (therefore the same as for the ξ values).
However the resolution of the sum values h can be much higher, because of the
resolution excess in the accumulators, resulting from addition of many numbers
with resolution of ξ values. If a layer is connected to, let’s say, 1000 inputs than
the resolution of accumulators should be by 10 bits higher than the resolution
of ξ values. In a typical activation function the dominant part of the h domain
lies in the saturation region. The width of the active region (near zero or near
the middle of the interval) is rather small compared to the width of the whole
interval. In the active region one should expect a great number of short segments
with high slope coefficients, while in the saturation region small number of seg-
ments with slope coefficients sometimes several orders of magnitude smaller. The
chosen realization of the calculations determined by (4) ensures the preservation
of constant multiplication accuracy, independent of the slope coefficient values.
The multiplication resolution Q should obviously correspond with the resolu-
tion of the calculated output value O. The calculation time - when the single
accumulator implementation is used - is equal to Q+ 1 clock cycles.

The separate subsystems realizing the two tasks of the activation block operate
in complete independence. The total calculation time for one value is equal to
the sum of the operation times of both subsystems. However because of the
pipelined data flow the throughput is limited only by the operation time of the
slower one. Higher throughput of the activation block is the necessary condition
for ensuring a continuous operation of the synaptic block - as has been shown
in the previous chapter.

An arbitrary number of segments can be taken, accordingly to the required
approximation accuracy and the size of available memory. The search for the
required segment record is realized in logarithmic time. Because of the typical
shape of the activation function - steep active region and flat saturation regions
- a special mechanism has been introduced, which preserves constant calcula-
tion accuracy for wide variation of segment slope coefficients. There is also a
possibility to apply various shapes of the activation function for individual per-
ceptron layers. The only modification required are separate tables describing the
individual function shapes.

Implementation of the Output Vector Analysis. As mentioned finding the
number of the recognized class and checking the reliability of the recognition are
treated as a separate numerical task. Formally it consists of finding the number c
of the greatest element of the y vector, according to (7) and testing the condition
(8) - its fulfillment informs that the classification is reliable. In the (7) and (8)
the C symbol denotes the size of vector y, or the number of classes recognized.

c : yc = max
n∈〈1,C〉

yn (7)

n ∈ 〈1, C〉 ∧ n �= c⇒ yc ≥ yn +Δ . (8)
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The first phase described by (7) starts when the activation block writes the first
element of the y vector in the B2 memory (Fig. 1) and it lasts until the activation
block finishes its work. In the second phase the elements of the y vector are read
once again from the B2 memory and compared to the determined maximum
value, in order to check whether the condition (8) has been satisfied.

4 System Configuration

According to what has been declared in the introduction the presented solution
should enable the MLP implementations of arbitrary geometry. Additionally
depending on the required calculation speed it should allow the attribution of
various amounts of hardware resources for a given implementation. In the present
chapter different versions of the system are discussed in the context of the above-
mentioned problems.

In Chapter 3 the synaptic block has been described under the assumption that
the number of accumulators is equal to number of neurons. However sometimes
a situation may occur that the number of neurons is so high that the respective
number of accumulators can not be fitted in the attributed FPGA part. In such
a situation the calculations for such layer can be divided into several stages. If
the synaptic block contains P accumulators and the layer includes N neurons
(N > P ) in the first stage the sums h1. . .hP are calculated, then in the second
stage hP+1. . .h2P etc., until all the sums are done. Each of the stages consists of
the accumulation phase and the writing phase, during which the calculated group
of sums is being written to the proper location in the buffer memory B1 (Fig.1).
If the number of neurons is not integer multiple of the accumulators number
then in the last stage some of the accumulators are not employed. During each
stage the synaptic block reads from the B2 (Fig.1) memory the full set of values
x1. . .xk. Therefore the contents of that memory cannot be modified before the
last accumulation phase is completed. Only after its completion the activation
block can start its operation.

If the number of accumulators is equal to the number of neurons, the total time
of synaptic calculations (the accumulation phase) is equal to (K + 1) ∗R clock cy-
cles (K denotes the number of inputs andR the weight values resolution). In some
cases, particularly for small layers with great number of inputs, it turns out that
such calculation time is too long and the implemented accumulators do not exhaust
all the resources available. Thus the situation is quite opposite to the one described
above. Then several accumulators can be attributed to work to one neuron. Each
of the neurons calculates a partial sum of a given hn sum. During the writing phase
these partial results are added and then the final result is written to the memory.
Synaptic block with two accumulators attributed to one neuron requires the appli-
cation of two shift registers SR instead of one and an additional adder for adding
the partial sums in the writing phase. Synaptic block with a multiplicated accumu-
lator number fetches not one but several xi values everyR cycles. However it may
turn out that the capacity of a single activation block is not sufficient and several
such blocks, working in parallel, have to be applied.
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In Chapter 3 it was assumed that one synaptic block and one activation block
realize in sequence the calculations for consecutive MLP layers. An alternative
way of implementation is to attribute separate blocks for each layer. In that
concept the individual layers work in pipelined mode. When a given layer com-
pletes the calculations it transfers the results to the next layer and fetches new
input data.

The first method - with single synaptic and activation blocks - is optimal in
situations when a short response time is expected but the data sent for processing
do not arrive with high frequency. The basic problem is related to the fact that
each layer may have a different number of neurons while the synaptic block
contains always the same number of accumulators. Therefore for the bigger layers
the process should be divided into stages while for the smaller layers - on the
contrary - each sum should be distributed onto several accumulators.

The second method of MLP implementation - with separate blocks for each
layer - requires much more hardware resources, but it offers proportionally higher
throughput of the system. The method may be very useful in situations when the
data for processing arrive at thewell-known andconstant frequency.Then thenum-
ber of accumulators in individual synaptic blocks should by chosen in a way which
results in processing times matched to the actual frequency of data arrival.

5 Results and Conclusion

As a results of the realization of implementation with 10 neurons (with 32-bit
wide accumulation elements) in a medium-sized Virtex FPGA device, only 598
LC has been used, what comprises 10% of the whole device resources. The anal-
ysis of time reports of the implementation has shown, that the maximum clock
rate of the FPGA device was 50 MHz. It has been estimated that the maximum
total number of accumulators, that can be implemented in the XCV1000 device
is 759.

The environment of reconfigurable devices is well suited for implementation
of neural networks. The presented solution provides an example of the universal
method of multi-layer perceptron (MLP) implementation. The possibility of free
choice of the number of accumulators allows both the implementations of very
large networks in relatively small devices or the application of large hardware
resources for achievement of high calculation speed by their massive paralleliza-
tion. The method used for activation function calculations allows the selection of
its practically arbitrary shape and approximation accuracy. The universality of
the solution is also supported by the fact that a decrease in the calculation accu-
racy is directly translated to an increase of the operation speed and smaller con-
sumption of resources. The above statement concerns both the synaptic function,
where serial multiplication has been applied with operation time proportional
to the weight values resolution, and the activation function, where the number
of segments and multiplication precision - thus the approximation accuracy -
directly translates to the calculation time and the amount of memory occupied.
That fact allows the full utilization of calculation capabilities of the implemented
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logic for achieving the calculation accuracy, which is actually required in a given
application. At the present stage such a solution is applied to networks trained
in advance (i.e. networks with fixed and known values of synaptic weights), thus
the learning algorithm is not implemented.

Thus the presented method can provide a good starting point for many prac-
tical applications of neural networks and also provide a good basis for algorithms
for automated generation of the system structure starting from the set of neural
network parameters provided by the user.
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Abstract. Regularization and finding optimal solution for the classifi-
cation problems are well known issue in the machine learning, but most
of researches have been separately studied or considered as a same prob-
lem about these two issues. However, it is obvious that these approaches
are not always possible because the evaluation of the performance in clas-
sification problems is mostly based on the data distribution and learning
methods; therefore this paper suggests a new approach to simultaneously
deal with finding optimal regularization parameter and solution in classi-
fication and regression problems by introducing dynamically rescheduled
momentum with modified SVM in kernel space.

1 Introduction

Regularization were introduced to solve ill-posed problems[9], and now days many
researches show that regularization is one of the useful method for finding op-
timal solution in classification[2,3,4,6,11]. However, it is not always true that well
regularized problems results optimal solution for the given problems because the
theoretical base of regularization is for reorganizing the program into the well-
posed problem. This means it cannot always guarantee to find optimal solution,
but it can give high possibility to get the best result of the given ill-posed prob-
lem. Conversely, the best regularization must result from the optimal solution
of a given ill-posed problem because the optimal solution is what most studies
finally want from the regularization.

From this point of view, this paper introduces a new method to get an optimal
solution with an optimal regularization parameter by learning dynamically sched-
uled momentum. To apply the new method, the modified Support Vector Machine
(SVM)[4,11], which was basicallybased on the StructuralRisk Minimization princi-
ple and guarantees the lowest true error[9,10], has been introduced, and Generalize
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Cross-Validation(GCV) and L-Curve are used for comparing performances. GCV
and L-Curvewere introduced as a method of finding the well defined regularization
parameter[2]. Although these methods have an excellent algorithm and high effi-
ciency to solve given problems, both methods have an unrecoverable defect that
these algorithms need more than two processing steps to solve problems. This is
the reason why GCV and L-Curve rarely used in practical classification problems;
therefore the Bias Learning(BL)method[4,11] has been introduce to solve this prob-
lem in GCV and L-Curve algorithm. BL is using the kernel method[4,11] which is
modified from sequential learning method and Mercer’s theorem[3], and this can
overcome the defect in GCV and L-Curve by simultaneously learning regulariza-
tion parameter within the learning process of pattern weights[4,11].

However, the bias learning method is based on RBF neural networks; therefore,
this method also has a potential possibility to be exposed to the classical machine
learning problems such as, the stagnation in local optimum and over fitting; there-
fore, this paper shows that dynamic momentum can effectively solve those prob-
lems that the bias learningmethodhas. Thedynamicmomentum is definedbyboth
learning performance and epoch which are related with limited reciprocal propor-
tion, and the momentum value is actively changed by a learning rate.

In short, the dynamic momentum method is a well scheduled momentum
which reflects its learned feature vectors into the present learning state with
preventing the convergence oscillation effect. This paper is dealing with two
different types of data set to evaluate the dynamic momentum and compare
the performance of classification and regression among GCV, L-Curve and the
dynamic momentum.

In the first phase, the experiment shows the results of the comparing error
scales between classification and regression problems. The second experiment is
conducted under artificially composed ill-posed problem by Gaussian distribu-
tion. Finally this paper proves that the suggested dynamic momentum finds the
regularization parameter more precisely than others.

2 Modified SVM

The original SVM[3,4,7,10,11] is defined as followed by

L(α) = b
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjdidjxT
i xj

subject to (1)
N∑

i=1
αidi = 0 (2) 0 ≤ αi ≤ C

(1)

Where b is margin, is weighting vector, d is the destination of training data,
which is used to expressed with positive class and negative class, and x is input
vector.

The modified SVM[4,11] is defined as followed by

L(α) = b
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjdidjyT
i yj subject to 0 ≤ αi ≤ C (2)
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As shown above the equation is almost same except above equation changed
original vector x into augmented input vector y, which is composed by input
vector and the bias in the RBF neural networks and the second restriction in the
equation (1) has been omitted. This is very important because the omitted equa-
tion condition makes possible that SMV can be applied to sequential learning
methods by substituting kernel K[3,4,11] for inner product pattern yT

i yj .

3 Regularization

The cost function of the regularization to solve an ill-posed problem is defined
by following equations [3,4,11].

J(α, λ) =
1
2
ε2 + λ

1
2
αtKα ε = d−Ktα (3)

Where α is weight vector, λ is regularization parameter, ε is error, and K is the
kernel K which is from yT

i yj .
To get minimized cost value, the Lagrange multiplier is defined as followed by

L(α, ε;β) = 1
2ε2 + λ1

2α
tKα +

N∑
i=1

βi[di −K(i, :)α−εi]

∂L
∂α = λKα−

N∑
i=1

βiK(i, :) = 0, λα = β

∂L
∂εi

= ε +
∑

βi(−1) = 0, ε = β = λα
∂L
∂α = −λ(λα−Kα + d) = 0, (K + λI)α = d

(4)

Where K(i,:) indicates the vector of i row’s every column in kernel K, and the
regularization parameter has to be big enough to make possible to get the inverse
matrix of (K + λI). Therefore, above equation can be rewritten as followed by

αreg = (K + λI)−1d, d = gk(y) = Kαreg. (5)

4 Bias Learning

The structure of regularization RBF network is under-determined nonlinear
system[3].

(K + λI)α = d (6)

The relationship among the bias, a regularization parameter, and weight α,
is defined as followed by. b

d = Kα+ λα = Kα + ξ = Kα+ ξ̄ + (ξ − ξ̄) = Kα + α0 + ε

α0 = ξ̄ ≡ ξi

N = λ αi

N , λ = α0
αi
N

(7)

The solution for the problem of the pure regularization networks is following
as[3].

Fλ(y) = αt
regK(:,y) (8)
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The solution of the modified regularization networks is as follows.

Fλ(y) = αt
regK(:,y) + α0 (9)

The weight vector and the bias are simultaneously learning using augmented
kernel in the algorithm. The pattern matrix is augmented to learn the bias as
follows.

Htω = d, H ≡ [K ones(N, 1)], ω ≡
[
α
α0

]
(10)

Where [K ones(N, 1)] is augmented matrix with initializing the last column with
1s. Therefore, the BL is sequential learning method with augmented kernel and
weight matrix, so the regularization parameter, which is used to externally set by
the user, can be learned while the weight vectors are learning by input patterns.

5 Dynamic Momentum

The basic concept of dynamic momentum scheduling is that the size of momen-
tum value is getting decreased from initial state to convergence state. To apply
this concept in the algorithm, the momentum has to be satisfied with certain
conditions that the scale of the value of the momentum cannot exceed initialized
momentum value, and the momentum value has to be regulated with smaller
value than initial value[4,11].

M =
m(k + 1)

τ
if M > m then M = 0; τ = τ2; (11)

In (11), dynamic momentum M is automatically initialized, and reorganizes
next epoch tolerance τ as changing its value to τ2 when the value M is bigger
than the upper bound m; therefore, M is continuously learning its momentum
value under given conditions. In conclusion, compared with existing static mo-
mentum scheduling which choose its momentum value by user externally, and it
cannot be changed during its learning time, dynamic momentum can find mo-
mentum value actively as to be affected by learning epoch into given scheduling
method[4,6,7,8,11].

6 Experiment Environment

This experiment is conducted by two steps with using different data set. At
the first step, we use IRIS data which is widely known as standard data for
classification problem. Second, the gauss data which is a model of the singular
matrix is used for exposing suggested method into ill-posed and more complex
problems. The IRIS data is composed of three classes, Setosa, Versicolour, and
Virginica. The Setosa can be completely separated from other two classes, so
complete linear classification is possible, but the Versicolour and Virginica cannot
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completely separate each other with either linear or nonlinear classification. The
number of data of each class is 50, and each data is organized with four attributes,
sepal length, sepal width, petal length, petal width. For this experiment, we used
the Versicolour and Virginica in which the linear classification is impossible. At
the second phase, Gaussian distribution data which is composed by 500 training
data and 1000 testing data. This experiment prove that the GCV, L-Curve,
and kernel method can be applied to big enough and general problems with
performing good regularization and shows that regularization is essential on ill-
posed problem or singular system. From now on, we attach K, BL and DM at the
end of the name of kernel learning method which is applied to Kernel method,
Bias Learning, and Dynamic Momentum respectively. In addition RMS indicates
Root Mean Square error. For instance, KLMSBL is that Least Mean Squared
(LMS) procedure is applied into Bias Learning in Kernel methods[1,4,6,11], and
KLMSBLDM is applied into both Bias Learning and Dynamic Momentum. The
learning weight vector in the classical LMS procedure in sequential learning is
followed by[1,4,11]:

α(i + 1) = α(i) + η(·)dib− αtK(:, i)
‖K(:, i)‖2

K(:, i). (12)

RMS error are calculated as followed by

RMS Error =
√

‖d−Kα‖2

N , RMS Error with Bias =
√

‖d−(Kα+α0)‖2

N .

7 Experiment Results

At the first phase experiment using Iris data, each kernel method is learning its
regularization parameter. A word, Inverse, is added next to the name of kernel
method to distinguish between the value from pure learning methods and from
regularization parameters.

Fig. 1. L-Curve(Iris) Fig. 2. GCV(Iris)
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Fig. 3. KLMSBLDM(training) Fig. 4. KLMSBL(training)

Fig. 5. KLMSBLDM(testing) Fig. 6. KLMSBL(testing)

Fig.3 shows the graph which describes RMS errors under KLMSBLDM that
applied dynamic momentum with changing the number of training data, and
Fig.4 shows KLMSBL which does not apply dynamic momentum.

In Fig.3, although the values of both RMSE, which does not include a bias
term, and RMSEB, which includes a bias term within learning weight vectors,
are similar, RMS errors in the method using matrix inverse with regularization
parameter are mostly lower than those of other methods.

In Fig.4, RMS errors in RMSE and RMSEB are similar each other, but com-
pared with these values, InvRMSE and InvRMSEB have large values. These
results show that the learning methods which do not include DM found lo-
cal optimum value upon typical patterns or overly fitted in training data, but
KLMSBLDM found globally optimized value. Therefore, the learning methods
are ineffective without dynamic momentum although those methods are applied
in the BL which is learning a regularization parameter. As a result, dynamic
momentum is necessary to improve the precision of a regularization parameter.

Fig.5 shows that the RMS errors in learning methods and Regularization
method are proportionally increased or decreased, but in Fig.6, those errors
of KLMSBL appears big differences between the RMS errors in the learning
methods and those values in Regularization methods. This results re same as
what training data appeared.
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Fig. 7. RMS Error(training) Fig. 8. Inverse RMS Error(training)

In short, compared with the Fig.5, the Fig.6 shows that the results of the
given learning methods and the using regularization parameters are rarely re-
lated; therefore, these results also prove that learning regularization parameter
is ineffectively adapted with learning weight vectors without DM.

Fig.7 and 8 which show the graph about RMS errors under learning KLMS-
BLDM and KLMSBL that separately learned weight vectors and regularization
parameters by training data and testing data, also verify that this relationship
between the RMS error in pure learning methods and those results in using the
regularization parameter.

The result of KLMSBLDM shows that the methods using the regularization
parameter with matrix inverse have proportionally similar graph shape with
the graph patterns of RMS errors which resulted from learning methods under
training and testing data, but those results appeared on KLMSBL have less
relation than those of KLMSBLDM.

The second experiment with Gaussian distribution data, which represents
complex and ill-posed system, shows every algorithm has equivalent performance
both classification and regression problem except KLMSBL and KLMSBL In-
verse[6].

Same as the result of the first experiment, the second experiment also shows
that both RMS errors of KLMSBL between the result of pure learning and In-
verse using regularization parameter are very different from those of other meth-
ods; therefore, this experiment proves that KLMSBL is overly treated against
training data same as previous experiment did. Namely although the results of
the classification problems seems to be stable with 82.6% and 83% same as oth-
ers, it is just because of the condition of the applied data set. In fact, compared
with the RMS error of pure learning, the inverse method using regularization
parameter has a bigger error than other methods; therefore, this situation also
shows that KLMSBL is overly treated against training data set. In summary,
this second experiment proves that KLMSBL has been overly learned against in-
put patterns, and also shows that the suggested dynamic momentum is stable to
help both improving the classification performance and reducing the regression
error rate.
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8 Conclusions

Upon two experiments to evaluate classification performance and regression pre-
cision using L-Curve, GCV, and KLMS which is one of the kernel methods, the
first and second experiment using Iris data and gauss data respectively proved
that KLMS has potential problems of classical Neural Networks, which is well
known for the convergence of the local value and over fitting, by compared two re-
sults between pure learning performance and calculating Inverse with regulariza-
tion parameter. In addition, the experiments prove that the suggested dynamic
moment effectively help to improve both classification performance and reducing
the regression errors when KLMSBL is applied into dynamic momentum. The
second experiment especially shows that the dynamic momentum helps to find
more optimized regularization parameter than KLMSBL does upon a generalized
problem.
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Abstract. A new type of dynamics of Hopfiled model - the domain dynamics - 
is proposed for using in optimization tasks. It is shown that this kind of 
dynamic allows one to find more deep minima of the energy than the standard 
asynchronous dynamics. It is important that the number of calculation does not 
rise when we replace standard spin dynamics by the domain one. 

1   Introduction 

The dynamics of well-known spin models of neural networks [1-9] consists in 
aligning of each spin along the direction of the local field.  

In paper [10] we proposed a new type of neural network, which was called the 
domain neural network. Its dynamics is defined by overturns of domains. Each 
domain is a group of strongly coupled spins. Overturn of a domain means the 
simultaneous changing of orientations of all the k spins constituting the domain. In 
this paper we want to show that the domain dynamics can be efficiently used in 
optimization problems. The point is that this model allows us to find minima on the 
energy surface that are deeper than the ones obtained with the aid of the Hopfield 
model.  

2   Domain Dynamics 

Let us examine a system of N spins, which take the values 1±=is , where 

Ni ,...,2,1= . The behavior of the system is described by the energy function  

=

−=
N

i
jiij ssJE

1
2
1  (1) 

where ijJ  is the Hebbian matrix [2], 

=

−=
M

jiijij ssJ
1

)()()1(
μ

μμδ  (2) 

based on the set of randomized binary patterns )...,,,( )()(
2

)(
1

μμμ
μ NsssS = , 

M,...,1=μ . The local field acting on the ith spin is calculated according to the usual 

rule: ii sEh ∂−∂= /  . 
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Let us define the domain neural network. We suppose that the system of N spins 
is divided into groups each of which contains k spins. Each group is a domain. In 
the domain the spins are strongly coupled, and when the domain turns over, all the 
spins in the domain change their signs simultaneously. Thus, our system consists of 

kN /  domains. When the state of the system is changing due to overturns of 
domains only, its dynamics is called the domain dynamics. From physical point of 
view the behavior of the domain network is determined by stability of domains in 
the local field. The given domain turns over, if as a result the energy of the system 
decreases. For example, let us examine the first domain, i.e. the group of coupled 
spins whose numbers are kr ≤≤1 . To define the domain stability, let us write 
down its energy (the sum of the energies of all k spins constituting the domain) in 
the form of two terms. The first term is the intrinsic energy of the domain that is the 
energy of interaction of the spins of the domain. The second term is the energy of 
interaction of the given domain with other domains of the system ( intE ) , i.e. the 

energy of interaction of the spins belonging to the given domain with spins of all 
other domains: 

= +=

−=
k

r

N

kj
jrrj ssJE

1 1
int  (3) 

Evidently, the domain stability is defined completely by the sign of the interaction 
energy intE . The value and the sign of the intrinsic energy of the domain are of no 

importance, since they do not change when the domain turns over. Consequently, the 
domain dynamics of the network is defined as follows. If at the time t inequality  

0)(int >tE  is fulfilled, then the domain turns over at the next step, i.e. it transforms to 

the state krtsts rr ,...,1),()1( =∀−=+ , with the negative interaction energy 

0)1(int <+tE . If  0)(int <tE , then the domain is stable and at the next step its state 

is the same: krtsts rr ,...,1),()1( =∀=+ . Under the described dynamics the 

energy of the system as a whole decreases, and, consequently, the algorithm 
converges after finite number of steps. It should be stressed that a domain can 
overturn even if each of its spins is in the stable state, i.e. each spin is directed along 
the its own local field. 

3   Efficiency of the Domain Algorithm 

The properties of the domain neural network are described in [10]. In particular, the 
memory capacity of this type of neural network is shown to be k  times greater than 
that of the conventional Hopfield network. We will not dwell on these properties 
because they have to do with the use of the domain network in an associative 
memory system rather than optimization algorithms. Instead, we will show that the 

efficiency of the domain algorithm is 2k  times higher than in the conventional spin 
dynamics. 
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Using the double indexing of spins, we can rewrite (1) as: 

= = = =
−=

D DN

n

N

m

k k

mnmn ssJE
1 1 1 1

,2
1

α β
βαβα  (4) 

where mn,  are the domain numbers, and βα ,  are the spin numbers in these 

domains. The new indices are related to the indices of expression (1) as 
α+−= )1(nki , β+−= )1(mkj . 

Redirection of a domain means a simultaneous change of direction of all 
constituent spins. Therefore, all k  spin variables of the n-th domain can be 

represented as 0
αα nnn sds = , k,...,1=∀α , DNn ,...,1=∀ . Here )( 00 == tss nn αα  is the 

original direction of a spin, and )(tdd nn =  is the domain variable that characterizes 

the behavior of a domain with time (the initial value of the variable is 10 == )(tdn ). 

With these variables expression (5) takes the form: 
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where 
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We see that introduction of domain variable )(tdn  allowed us to reduce the problem 

to the Hopfield model with matrix nmA . The new notation brings the above-described 

domain behavior to the following: local field n
A
n dEh ∂−∂= /  is computed and the 

domain is directed along this field )sgn( A
nn hd = . It can easily be found that 

A
nnhdE =int . This algorithm allows a 2k  times reduction in computations because the 

dimensionality of matrix nmA  is k  times smaller than that of the origin matrix ijJ . 

4   Optimization Capabilities of the Domain Neural Network 

Replacement of the spin dynamics by the domain behavior implies an increased 
spacing of landscape traversal. The increase makes it possible to bypass minor local 
minima, which usually block the Hopfield network. By way of example a dotted line 
is used in Figure 1 to depict a landscape. The initial state of the neural network is 
point A. When the domain dynamics is used, the neural network converges to point B, 
skipping small local minima. 

The conventional spin dynamics of the Hopfield model is usually compared to the 
travel of a material point across a landscape. In these terms, the domain network 
dynamics can be regarded as movement of a large object which does not react to 
small surface imperfections. Following up the analogy, one can expect the object to 
perceive the surface trend and travel towards deepest minima. 



40 B. Kryzhanovsky and B. Magomedov 

 

Fig. 1. Travel across a landscape. The dotted line represent the spin dynamics, and the solid line 
the domain descent. It is seen from the example that after redirection of 5 domain, the neural 
network converges from point A to B, skipping small local minima. 

4.1   Experiment 

Below a few experiments are described that we carried out to prove that the domain 
network dynamics helps a system to reach deeper minima with higher probability. As 
optimization capabilities of a neural network are strongly dependent on what kind of 
the interconnection matrix is used, matrices that had different spectral density of 
minima (from sparsely scattered minima to almost continuous spectrum) spectrum 
were investigated (see Figures 2 to 4). To model such spectra, we used Hebbian rule 
with different load parameters ( 1,5.0,2.0,1.0,05.0/ =NM ) to form the matrices. 

Patterns are generated in a random way: the vector components are either +1 or -1 
with probability ½. Besides, we used generalized Hebbian rule 

=
=

M

jiij sswJ
1

)()(

μ

μμ
μ  (7) 

to build the matrix and generate an energy surface with pronounced minima. Here 
)1,0(∈μw  are the random statistical weights of the patterns obeying a uniform 

distribution. With such interconnection matrices, the energy relief (1) becomes more 
complex: different vectors embedded in the matrix correspond to local minima with 
different minima. 

We used a two-stage optimization process. At first we generated a random 
configurational vector whose components were grouped in domains of size 2≥k . 
Then the network converged to a local minimum with the help of the domain 
dynamics algorithm. Next, the network was deprived of rigid interconnects that 
grouped spins in domains, that is to say, parameter k  was set to 1, and the descent 
continued using conventional spin dynamics of the Hopfield network. The fact that 
the domain neural net usually held unsatisfied spins after reaching a local minimum 
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necessitated the use of the method that combined domain and spin dynamics. By 
orienting these spins along the local field direction, we were able to significantly 
decrease the energy. Further, term “domain dynamics” will be used to denote just this 
kind of combined behavior. 

Optimization efficiency of four types of algorithms (domain algorithms with 
1052 ,,=k  and spin behavior with 1=k ) was determined. The interconnection matrix 

and initial states of the network were the same for all algorithms. 
A few various parameters were observed to evaluate the optimization efficiency of 

the domain dynamics. Firstly, we recorded the energy of the minima that the system 
reached as a result of domain ( dE ) and spin ( sE ) dynamics. Secondly, we computed 

the probability of a) the domain dynamics bringing the system to a deeper minimum 

( +W ), b) the domain and spin dynamics leading the system to the same minimum 

( 0W ), c) the domain dynamics bringing the system in a shallower minimum ( −W ). 
Thirdly, we calculated the profit: 

ssd EEEE /)(%100 −×=δ  (8) 

which allows us to evaluate the depth of minima that the domain network finds. 
4105×  random starts were made for each interconnection matrix. Over 500 of 

100100 × matrices were investigated. 

4.2   Experimental Results 

The results of the experiments can be divided into three groups according to the type 
of matrix: matrices with a sparse (line) spectrum of minima, matrices with a 
combined (line-continuous) spectrum and those with a continuous spectrum. 

Matrices with a sparse spectrum. The typical spectrum and distribution of minima for 
such matrices is given in Figure 2a. Matrices with a small number of minima give this 
kind of spectrum, a wide minima-free area lying between deep and shallow minima. 
This sort of matrices were modeled with the help of Hebbian rule (8) with the small 
load parameter 050./ =NM . 

It was said earlier that finding minima with these matrices involves simultaneous 
use of conventional spin dynamics and three types of domain dynamics (with 

1052 ,,=k ). All of the algorithms proved good in finding deepest minima. 
With sparse matrices, all of the dynamics bring the system to the deepest minimum 

with almost the same probability. For example, the spin dynamics put the system to 
the deepest minimum in 279 cases of 1000, and the domain dynamics ( 2=k ) in 280. 
The deepest minimum is not called global because there is chance that it was not been 

found despite of a large number of runs ( 4105× ). 
However, the efficiency can be evaluated differently. Let us consider the 

experimental results presented in Table 1. The first column carries +W  and Eδ  for 
the case when the domain dynamics brought the network to a deeper minimum of 

energy than the spin dynamics ( 0, >< EEE sd δ ). The second column gives 0W  and 

Eδ  for the case when both algorithms put the system in the same minimum 
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Table 1. Line-spectrum matrix ( 050./ =NM ) 

sd EE <  sd EE =  sd EE >  

 +W  
Eδ  

0W  
Eδ  

−W  
Eδ  

k =2 0.27 
30.5% 

0.58 
0 

0.15 
-19.9% 

k =5 0.30 
28.2% 

0.48 
0 

0.22 
-24.8% 

k =10 0.30 
27.4% 

0.46 
0 

0.24 
-24.5% 

 

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

-0.53 -0.48 -0.43 -0.38 -0.33 -0.28 E/N2

a)

0%

5%

10%

15%

20%

25%

30%

-0.53 -0.48 -0.43 -0.38 -0.33 -0.28b)
E/N2

 

Fig. 2. Sparse-spectrum matrix ( 050./ =NM ). a) The solid line denotes the spectral density 
of minima (the number of minima at length EΔ ). The upper part of the figure shows the 
spectrum of minima distribution – each vertical line corresponds to a particular minimum. The 
Y-axis presents spectral density in % and the X-axis is the normalized values of energy minima 

2NE / . b) Probability of domain-algorithm system finding a minimum with energy E (k=2). 
The Y-axis is the probability of finding a particular minimum (%) and the X-axis is the 
normalized values of energy minima. 

( 0, == EEE sd δ ). The third column bears −W  and Eδ  for the case when the spin 

algorithm gave a deeper minimum ( 0, <> EEE sd δ ). The rows correspond to 

different variants of the domain algorithm (with different k ). 
For example, the domain algorithm with 2=k  brought the network to a deeper 

minimum with probability 270.=+W , the minimum being deeper by %.530=Eδ  than 
in using the spin algorithm. At the same time, the spin dynamics gave better results in 
15 cases of 100 with a 19.9% difference in depth ( %.919−=Eδ ). 

Matrices with a combined spectrum. This kind of matrices were modeled with the 
help of Hebbian generalized rule (8), the load parameter being 20./ =NM . A typical 
spectrum and distribution density of minima are given in Figure 3a. 

Though there are areas of deep and shallow minima in this case too, it is not so 
pronounced. One can see a denser collection of local minima in the middle of the 
spectrum (Figure 3a). 
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0%
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20%

-0.70 -0.60 -0.50 -0.40 -0.30b) E/N2

 

Fig. 3. The combined-spectrum matrix ( 20./ =NM ). The legend is the same as in Figure 2. 

All the algorithms coped with the problem of finding the deepest minimum. For 
example, the spin algorithm brought the system to a state with the sought-for energy 
in 49 cases of 100. As expected, the domain algorithm gave better results (Table 2), 
and the probability of the network reaching the deepest energy minimum was 18.5%, 
18.9%, and 18.6% for =k 2, 5 and 10 correspondingly. 

We see that the values of probability and profit are always higher in the left 
column than in the right one. Clear that the domain network comes to the lowest-
energy state more often for any k. 

Continuous-spectrum matrices. Hebbian generalized rule (8) with load parameter 
1/ =NM  was used to model this kind of matrix. The typical spectrum and 

distribution density of minima are given in Figure 4a. 
This sort of matrix holds a lot of minima, which increases the probability of 

optimization algorithms bringing the system to a shallow minimum. Our experiments 
showed that even in this case the domain algorithm puts the net to lower energy more 
often than conventional spin algorithm. Yet the difference in results is not so 
noticeable (see Table 3). The same is true for profit Eδ , the average value of which is 
no greater than 8% in this case. 

Three matrices of each type were chosen to present the results of the experiments 
with the algorithms in question. In fact, more than 100 matrices of each type were 
considered, letting alone matrices of mixed types (those were modeled using (8) and 
load parameters 1.0/ =NM  and 5.0/ =NM ), 500 in all. 

Table 2. Line-continuous spectrum matrix ( 2.0/ =NM ) 

sd EE <  sd EE =  sd EE >  

 +W  
Eδ  

0W  
Eδ  

−W  
Eδ  

k =2 0.28 
22.8% 

0.53 
0 

0.19 
-17.2% 

k =5 0.35 
22.8% 

0.42 
0 

0.23 
-17.6% 

k =10 0.33 
32.4% 

0.42 
0 

0.25 
-22.7% 
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Fig. 4. The combined-spectrum matrix ( 1/ =NM ). The legend is the same as in Figure 2. 

Table 3. Continuous-spectrum matrix (M/N=1) 

sd EE <  sd EE =  sd EE >  

k  +W  
Eδ  

0W  
Eδ  

−W  
Eδ  

k =2 0.50 
6.4% 

0.04 
0 

0.46 
-5.7% 

k =5 0.51 
5.4% 

0.06 
0 

0.43 
-4.8% 

k =10 0.47 
7.8% 

0.07 
0 

0.46 
-6.8% 

 
 

It should be noted that though +W  and Eδ  for each of those 500 matrices differed 

from the values given above, the general behavior remained nearly the same. +W  and 
Eδ  for better performance of the domain network always exceeded corresponding 

values of −W  and Eδ  for better performance of the Hopfield model. Sometimes, the 
domain network outperformed the conventional Hopfield model by %48=Eδ , and 
the probability of finding the deepest minimum exceeded  0.7. 

It is seen (Figures 2b, 3b, 4b) that the system reaching one of deep minima or the 
deepest was a frequent result for all types of matrix under investigation. This agrees 
well with theoretical evaluations and experimental results of paper [11] stating that 
the probability of finding a minimum increase with the depth of the minimum. 

5   Conclusion 

The results of application of the domain network to solving optimization problems 
allow us to draw the following conclusions: 

a) The domain network usually reaches deeper energy minima than the 
Hopfield network. The rate of the system falling in a deeper minimum 
depends on the type of the interconnection matrix and domain dimension; 
however, it is always higher than in the Hopfield network. 
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b) Energy profit in the cases when the domain net reaches deeper minima 
always exceeds the loss in the case of the domain system coming to 
shallower minima than the Hopfield net. The energy depth profit of the 
domain net is particularly noticeable when the energy landscape has a wide 
difference between shallow and deep minima. 

c) The domain algorithm outperforms the Hopfield model not only when there 
are pronounced minima, but also when 1/ ≥NM , i. e., when the difference 
between the depths of minima is very small. The experiment showed that the 
domain algorithm could detect this difference and find deepest minima with 
5% profit. 

d) The efficiency of the domain network is 2k  times higher than that of the 
Hopfield net. The advantage becomes particularly noticeable with increased 
dimensionality. 

All these observations are true for all of the domain nets being investigated 
( 10,5,2=k ). The same results were obtained in experiments with matrices whose 

elements were random numbers obeying the Gaussian distribution with the zero mean. 
We see that the domain algorithm allows faster solution of optimization problems, 

requires lower computational power and yields better results than the conventional 
algorithm of random search. 
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Fachbereich Mathematik
Universität Stuttgart

D-70569 Stuttgart, Germany
schaefdk@mathematik.uni-stuttgart.de��

Abstract. We study strong universal consistency and the rates of
convergence of nonlinear regression function learning algorithms using
normalized radial basis function networks. The parameters of the net-
work including centers, covariance matrices and synaptic weights are
trained by the empirical risk minimization. We show the rates of conver-
gence for the networks whose parameters are learned by the complexity
regularization.

1 Introduction

Multilayer perceptrons (MLP) and radial basis function (RBF) are the most pop-
ular neural networks used in practice. All these networks turned out to be very
useful in many applications such as interpolation, classification, data smoothing
and regression estimation, prediction, data mining, etc. Convergence analysis
and various properties of MLP and RBF networks can be found among others
in Anthony and Bartlett [1], Cybenko [3], Devroye et al. [4], Györfi et al. [8],
Ripley [22], and Hornik et al. [9] (MLP) and in Györfi et al. [8], Krzyżak et al.
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In the present paper we study normalized radial basis function (NRBF) net-
works in the context of nonlinear function learning (estimation of regression).
Specifically, we consider the class of NRBF networks F = F(k, �, L,R,B) with
one hidden layer of k nodes (k ∈ IN, L ≥ � ≥ 0, R,B > 0), i.e. the class of
functions of the form

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩f(x) =

k∑
i=1

wiK
(
(x− ci)TAi(x− ci)

)
k∑

i=1
K ((x− ci)TAi(x − ci))

=:

k∑
i=1

wiKci,Ai(x)

k∑
i=1

Kci,Ai(x)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1)

where K : IR+
0 → IR+ is a left-continuous, decreasing kernel, c1, ..., ck ∈ IRd are

vector centers with ‖ci‖ ≤ R for all i = 1, ..., k (‖ · ‖ is the Euclidean norm),
A1, ..., Ak are symmetric, positive definite, real d×d-matrices each of which sat-
isfies the eigenvalue conditions � ≤ λmin(Ai) ≤ λmax(Ai) ≤ L, where λmin(Ai)
and λmax(Ai) are the minimal and the maximal eigenvalue of Ai, respectively,
and w1, ..., wk ∈ IR are the output weights satisfying boundedness condition
|wi| ≤ B for all i = 1, ..., k.. Matrix Ai determines the shape of the receptive
field about the center ci. When Ai = 1

σ2
i
I, the shape is a hyperspherical ball

with radius σi. When Ai = diag[σ−2
i,1 , . . . , σ

−2
i,d ], then the shape of the receptive

field is an elliptical ball with each axis coinciding with a coordinate axis; the
lengths of the axes of the ellipsoid are determined by σi,1, . . . , σi,d. When Ai

is non-diagonal but symmetric, we have Ai = RT
i DiRi where Di is a diagonal

matrix which determines the shape and size of the receptive field and Ri is a
rotation matrix which determines the orientation of the receptive field. In this
paper the kernel is fixed, whereas network parameters wi, ci, Ai, i = 1, . . . , k are
learned from the data. Although F(k, �, L,R,B) also depends on K we will sup-
press it in the notation for the sake of simplicity. Throughout the paper we use
the convention 0/0 = 0.

NRBF networks were introduced by Moody and Darken [17] and Specht [21]
as modifications of standard RBF networks defined by

f(x) =
k∑

i=1

wiK((x− ci)TAi(x− ci)) + w0. (2)

Kernel K plays an important role in NRBF network. The common choices of
kernels include the following [8] (see Figure 1):

• K(x) = I{x∈[0,1]} (window)
• K(x) = max{(1− x2), 0} (truncated parabolic)
• K(x) = e−x2

(Gaussian)
• K(x) = e−x (exponential).

Other kernels include:

• K(x) = 1√
x2+1

(inverse multiquadratic)
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1 1

1 1
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K(x) = e−x2
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0 x

K(x) = e−x

�
0 x

K(x) = I{x∈[0,1]}

�
0 x

K(x) = max {(1 − x2), 0}

Fig. 1. Window, truncated parabolic, Gaussian, and exponential kernels

• K(x) = max{(1− x), 0} (triangular)
• K(x) = max{cos π

2x, 0} (trigonometric).

Radial basis networks naturally appear in a variety of applications involving
smoothing splines (cf. Duchon [5]), interpolation using multiquadrics, shifted
surface splines or thin-plate splines (see Girosi et al. [7]), and regression analysis
(see, e.g., Györfi et al. [8] and Krzyżak et al. [11]). In [11] the authors consider
RBF regression estimates and classifiers based on minimizing the empirical risk
and prove universal consistency results. The rate of convergence of RBF-based
regression estimates using complexity regularization is studied in Krzyżak and
Linder [12]. Practical and theoretical advantages and disadvantages of RBF and
NRBF networks are discussed by Shorten and Murray-Smith [20]. They point

out that radial coefficients Kci,Ai(x)/
k∑

i=1
Kci,Ai(x) of weights wi, i = 1, . . . , k in

(1) in NRBF networks sum to one at every point of the input space, thus their
response is highly desirable both from computational and theoretical point of
view.

In the following we study the application of NRBF networks nonlinear in
function learning. Suppose that random variables X and Y take values in IRd

and IR, respectively. The task is to find a measurable function f : IRd → IR such
that f(X) is a good approximation of Y in the mean squared error sense. In
particular, if E|Y |2 <∞, our goal is to find a measurable function r minimizing
the L2-risk, that is,

J∗ = inf
f :IRd→IR

E|f(X)− Y |2 = E|r(X)− Y |2.

The solution of this minimization problem is given by the regression function
r(x) = E[Y |X = x]. The regression function, however, can only be computed
if the distribution of (X,Y ) is known. Otherwise we have to rely on estimates
of r.
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In order to estimate r without making any assumption about the distribution
of (X,Y ), i. e., in nonparametric case, we assume that a training set Dn :=
{(X1, Y1),...,(Xn, Yn)} of independent, identically distributed samples of (X,Y )
is given, where Dn is independent of (X,Y ). The problem of determining the
specific values of parameters from the training sequence Dn is called learning or
training. The most common parameter learning strategies are:

• cluster input vectors Xi(i = 1, . . . , n) and set center vectors ci (i = 1, . . . , k)
to cluster centers. Remaining parameters are determined by minimizing the
empirical L2 risk on Dn. If the elements of the covariance matrices Ai (i =
1, . . . , k) are chosen arbitrarily then finding the output weights wi (i =
1, . . . , k) by the least squares method is an easy linear problem

• choose from Dn a random k-element subset

D′
n = {(X ′

1, Y
′
1), . . . , (X ′

k, Y
′
k)}

of samples and assign X ′
i → ci, Y

′
i → wi (i = 1, . . . , k). The elements of

the covariance matrices Ai, i = 1, . . . , k are chosen arbitrarily. This method
reduces NRBF network to the kernel regression estimate

f(x) =

k∑
i=1

Y ′
i K

(
(x−X ′

i)
TAi(x −X ′

i)
)

k∑
i=1

K ((x−X ′
i)TAi(x −X ′

i))

(see [8] for the detailed analysis of the kernel regression estimates)
• choose all the parameters of the network by minimizing the empirical L2

risk.

The second strategy has been adopted by Xu et al. [25] in their study of conver-
gence of NRBF networks. Computationally, the last strategy is the most costly,
however, it is the most general approach and thus it is the method of choice in
the present paper.

The method of the empirical risk minimization obtains an estimate f̂n of r by
selecting the parameter vector which minimizes the residual sum of squares over
a suitable class Fn of functions. In other words, we use the training sequence to
choose an estimator f̂n ∈ Fn minimizing the empirical L2-risk (mean residual
sum of squares)

Jn(f) =
1
n

n∑
j=1

|f(Xj)− Yj |2,

or equivalently,
Jn(f̂n) ≤ Jn(f) for all f ∈ Fn.

The performance of the regression estimator f̂n is measured by

J(f̂n) = E[|f̂n(X)− Y |2|Dn].
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In this framework an estimator f̂n is called strongly (weakly) consistent if it
asymptotically attains the minimal L2-risk J∗ almost surely (in probability),
i.e., if

J(f̂n)− J∗ → 0 with prob. 1 (in probability) as n→∞. (3)

Observe that J(f̂n)− J∗ → 0 if and only if

E[|f̂n(X)− Y |2|Dn]−E|r(X)− Y |2 = E[|f̂n(X)− r(X)|2|Dn] → 0,

thus the consistency of f̂n is tantamount to L2-consistency of the regression
function estimate f̂n.

The empirical risk minimization has been a very popular approach to function
learning in the machine learning literature. When the minimization is carried
out over a rich (and complex) families Fn of candidate functions, the resulting
estimate usually overfits the data and does not generalize well, i.e., it is not likely
to perform well for a new data that is independent of the training set. Different
measures of complexity of Fn have been used for different purposes, but they are
all related to the cardinality of a finite subset representing the whole family in
a certain sense. Examples are metric entropy (Kolmogorov and Tihomirov [10]),
VC-dimension (Vapnik and Chervonenkis [24]) and random covering numbers
(Pollard [19]). Based on these measures, asymptotic properties of the method
of empirical risk minimization were studied among others by Vapnik [24] and
Györfi et al. [8]. The class Fn of candidate functions should clearly allow the
statistician to find good approximations for a multitude of target functions.
Therefore, one generally needs to increase the size of the candidate family as
the size of the training set increases. However, a good trade-off should also be
maintained between the complexity of the candidate family and the training data
size to avoid overfitting. The idea of using nested candidate classes which grow
in a controlled manner with the size of the training data is Grenander’s method
of sieves [4]. This approach was successfully applied to pattern recognition by
Devroye et al. [4], to regression estimation by Györfi et al. [8] and Lugosi and
Zeger [15], and by Faragó and Lugosi [6] in the neural network framework.

In this paper we apply empirical risk minimization to obtain consistent NRBF
networks-based regression estimates. We also apply complexity regularization
(see section 3) to derive the rate of convergence of the estimates. First consistency
results for regression estimates based on NRBF networks were obtained by Xu
et al. [25] under a restrictive assumption that the centers are placed at the
data points, the covariance matrices are chosen according to some specified rules
and only the output weights are learned by minimizing the residual sum of
squares. Much more flexibility and generality is obtained by learning all these
parameters from the data. This approach is used in [14] to establish consistency
of NRBFs. The present paper discusses both universal consistency and the ates
of convergence the nonlinear regression learning algorithms derived from NRBF
networks when network parameters (centers, receptive fields and output weights)
are learned by the empirical risk minimization and by complexity regularization
(number of hidden neurons).



Nonlinear Function Learning 51

2 Consistency of the Algorithm

We will limit the choice of kernels to:

• Window kernels. These are kernels for which there exists some δ > 0 such
that K(v) �∈ (0, δ) for all v ∈ IR+

0 . The classical naive kernel K(v) = 1[0,1](v)
is a member of this class.

• Kernels with unbounded support, i.e. K(v) > 0 for all v ∈ IR+
0 . The most

famous example from this class is K(v) = exp(−v). Then K(xTx) is the
classical Gaussian kernel.

Let the parameters kn ∈ IN, Ln, Rn and Bn > 0 tend to ∞ as n → ∞. Note
that the F(kn, 0, Ln, Rn, Bn) are not nested as n increases. We therefore consider
the nested classes

Fn :=
kn⋃

k=1

F(k, 0, Ln, Rn, Bn).

The condition on the minimal admissible eigenvalue is not used here.
Suppose i.i.d. observations Dn := {(X1, Y1),...,(Xn, Yn)} are available. Let the

estimate f̂n ∈ Fn of the regression function r(·) = E[Y |X = ·] be chosen by the
empirical risk minimization, i.e.,

f̂n(·) = arg min
f∈Fn

1
n

n∑
i=1

|f(Xi)− Yi|2. (4)

This estimation strategy yields consistent estimators when a window type kernel
or a kernel with unbounded support is used [14]:

Theorem 1. Suppose kn, Ln, Rn, Bn →∞ (n→∞) in such a way that

(a) for window type kernel K:

B4
nkn

n
logB2

nkn → 0.

(b) for kernel K with unbounded support:

B4
nkn

n
log

B2
n

K(4R2
nLn)

→ 0.

Then the estimate f̂n defined by (4) is strongly consistent for any distribution of
(X,Y ) with EY 2 <∞ and ‖X‖ ≤ Q <∞ almost surely, if

B4
n ≤

n

(1 + β) logn

for some β > 0 and all sufficiently large n.
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In case (a) one may choose Ln = Rn = ∞ for all n ≥ 1, which means that
learning is unrestricted in choosing the best parameters ci, Ai, i = 1, . . . , k and,
the condition ‖X‖ ≤ Q < ∞ almost surely is not necessary. For the proof of
Theorem 1 and additional details we refer the reader to [14].

Examples. For the naive kernel NRBF with K(v) = 1[0,1](v),

B4
nkn = O(nq) for q ∈ (0, 1)

suffices for weak consistency. For Gaussian kernel NRBFs, K(v) = exp(−v),

B4
nknR

2
nLn = O(nq) for q ∈ (0, 1)

is sufficient for convergence.

3 Rate of Convergence of the Algorithm

We apply the principle of complexity regularization to establish the rate of con-
vergence of NRBF networks regression function estimation algorithm. This ap-
proach enables us to automatically adapt to the smoothness of the regression
function and to adapt the structure of the network (the number of the hidden
neurons) to the data. The complexity regularization principle was introduced by
Vapnik and Chervonenkis [23] and Vapnik [24] in pattern recognition as struc-
tural risk minimization. It was applied to regression estimation by Barron, Birgé,
and Massart [2] and to investigation of the rate of convergence of RBF networks
regression estimate by Krzyżak and Linder [12]. Lugosi and Nobel [16] studied
complexity regularization with a data-dependent penalty.

We start with defining a measure of complexity of a class of functions. Let F
be a class of real-valued functions on IRd. Let xn

1 = (x1, ..., xn) ∈ IRdn and ε > 0.
We say a class G of real-valued functions on IRd is an ε-cover of F in xn

1 , if for
each f ∈ F there exists a g ∈ G such that

1
n

n∑
j=1

|f(xj)− g(xj)| ≤ ε.

The covering number IN(ε,F , xn
1 ) is the smallest integer m such that an ε-cover

G of F in xn
1 exists with cardinality |G| = m. Covering numbers are useful in

studying convergence of algorithms learned from random data (see [19], [4], [8]
for their properties and applications). We can now define our regularized NRBF
regression estimate. Consider the following class of NRBF networks:

Fk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k∑

i=1
wiK

(
(x− ci)TAi(x− ci)

)
k∑

i=1
K ((x− ci)TAi(x − ci))

:
k∑

i=1

|wi| ≤ βn

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5)

The learning algorithm will be defined in two steps.
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1. Let

mn,k = argmin
f∈Fk

1
n

n∑
i=1

|f(Xi)− Yi|2.

Hence mn,k minimizes the empirical L2 risk for n training samples over Fk.
(We assume the existence of such a minimizing function for each k and n.)

2. Define the complexity penalty of the kth class for n training samples as any
nonnegative number penn(k) satisfying

penn(k) ≥ 2568
β4

n

n
· (log IN(1/n,Fn,k) + tk), (6)

where IN(ε,Fn,k) is almost sure uniform upper bound on the random cover-
ing numbers IN(ε,Fn,k, X

n
1 ) and the nonnegative constants tk ∈ IR+ satisfy

Kraft’s inequality
∑∞

k=1 e
−tk ≤ 1. The coefficients tk may be chosen as

tk = 2 log k + t0 with t0 ≥ log
(∑

k≥1 k
−2
)
.

The penalized empirical L2 risk is defined for each f ∈ Fk as

1
n

n∑
i=1

|f(Xi)− Yi|2 + penn(k).

Our estimate mn is then defined as the mn,k minimizing the penalized em-
pirical risk over all classes

mn = mn,k∗ , (7)

where

k∗ = argmin
k≥1

(
1
n

n∑
i=1

|mn,k(Xi)− Yi|2 + penn(k)

)
.

The following covering number bounds for F = F(k, �, L,R,B) needed in
establishing the rates are quoted from [14].

(a) Let K be a window type kernel that does not attain values in (0, δ). Then

IN(ε,F , xn
1 ) ≤ 2k ·

(
4B
ε

+ 1
)k

·
(

16eBk
εδ

)2k(d2+d+2)

.

(b) Let K be a kernel with unbounded support. If ‖xi‖ ≤ Q (i = 1, ..., n), we
have

IN(ε,F , xn
1 ) ≤ 2k ·

(
4B
ε

+ 1
)k

·
(

16eB
ε ·K((R +Q)2L)

)2k(d2+d+2)

.

The next theorem presents the rate of convergence in the class of convex closure
F of F =

⋃
k Fk in L2(μ).
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Theorem 2. Let 1 ≤ L < ∞, n ∈ IN, and let L ≤ βn < ∞. Suppose, further-
more, that |Y | ≤ L < ∞ a.s. Let K be a window type kernel or a kernel with
unbounded support. Assume that the penalty satisfies (6) for some tk such that∑∞

k=1 e
−tk ≤ 1. If r ∈ F then the NRBF regression estimate with parameters

learned by the complexity regularization (7) satisfies for n sufficiently large

E
∫
|mn(x)−m(x)|2μ(dx) = O

(
β2

n

(
log(βnn)

n

)1/2
)
. (8)

Note that if βn < const <∞ then

pen(k) = O

(
k logn
n

)
and the rate in (8) becomes

E
∫
|mn(x) − r(x)|2μ(dx) = O

(√
logn
n

)
.

Characterization of F is an interesting open problem. A similar problem for RBF
regression estimates has been considered in [8, chapter 17.3].

4 Conclusion

We considered convergence and rates of the normalized radial basis function
networks in nonlinear function estimation problem. We established convergence
for a class of window and unbounded support radial functions using empiri-
cal risk minimization. The rates of convergence were obtained for the networks
with all parameters (centers, receptive fields, output weights and the number of
hidden neurons) learned automatically from the data by means of complexity
regularization.
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Abstract. We study the problem of learning from examples (i.e., supervised
learning) by means of function approximation theory. Approximation problems
formulated as regularized minimization problems with kernel-based stabilizers
exhibit easy derivation of solution, in the shape of a linear combination of ker-
nel functions (one-hidden layer feed-forward neural network schemas). Based
on Aronszajn’s formulation of sum of kernels and product of kernels, we derive
new approximation schemas – Sum Kernel Regularization Network and Product
Kernel Regularization Network. We present some concrete applications of the
derived schemas, demonstrate their performance on experiments and compare
them to classical solutions. For many tasks our schemas outperform the classical
solutions.

1 Introduction

The problem of learning from examples (also called supervised learning) is a subject of
great interest at present. The need for a good supervised learning technique stems from
a wide range of application areas, covering various approximation, classification, and
prediction tasks.

In this paper we study one learning technique – Regularization Networks (RN). RNs
are feed-forward neural networks with one hidden layer. They benefit from a good
theoretical background, their architecture has been proved to be the solution of the
problem of learning from examples formulated as regularized minimization problem
(see [1,2,3,4]).

In [5] the first author has shown that performance of the RN learning depends signif-
icantly on the choice of kernel function. Moreover the choice of kernel function always
depends on particular task. Different kernel functions are suitable for different data
types, but we often have to deal with heterogeneous data, in the sense that different
attributes differ in type or quality, or that the character of data differs in different parts
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of the input space. Therefore we propose network architectures using composite types
of kernels that might better reflect the heterogeneous character of data.

In the following section we briefly describe the RN learning technique. In Sec. 3
we introduce two types of composite kernels: Product Kernel and Sum Kernel, and
explain their mathematical justification. In Sec. 4 we demonstrate proposed network
architectures on experiments.

2 Learning with Regularization Networks

Our problem can be formulated as follows. We are given a set of examples (pairs)
z = {(xi, yi) ∈ Rd × R}N

i=1 that was obtained by random sampling of some real
function f , generally in the presence of noise (see Fig. 1). Our goal is to recover the
function f from data, or to find the best estimate of it.

Fig. 1. Learning from examples

This problem is generally ill-posed. Thus we impose additional (regularization) con-
ditions on the solution [3]. This is typically some a-priori knowledge, or smoothness
constraints. The solution has to minimize a functional that is composed of the data part
and the “smoothness” part:

F(f) = Ez(f) + γΦ(f), (1)

where Ez is the error functional depending on the data z, Φ is the regularization part
(also called stabilizer), and γ ∈ R

+ is the regularization parameter, that gives trade-off
between the two parts of minimization functional.

Reproducing Kernel Hilbert Spaces (RKHSs) (studied by Aronszajn [6]) represent
a mathematical tool that can help us to deduce existence, uniqueness and even form of
the solution of (1).

Let K : Ω × Ω → R (for Ω ⊆ R
d) be a symmetric, positive semi-definite function

andH be the (unique) RKHS defined by the kernelK , with norm ‖.‖K . (That is,H is a
Hilbert space of functions Ω → R generated by functions {K(x, x0), x0 ∈ Ω} and the
norm is given by the scalar product 〈K(x, x0),K(x, x1)〉K = K(x0, x1).) We let the
stabilizer be Φ(f) = ‖f‖2K , choose classical mean square error for the first part (any
convex differentiable error functional would work here) and get
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F(f) =
1
N

N∑
i=1

(f(xi)− yi)2 + γ‖f‖2K . (2)

Existence and uniqueness of the solution of (2) was shown in [7]. Derivation of the
shape of the solution, known as the Representer theorem, has been shown already in [3]
but without taking advantage of RKHS. Papers [2], [4] deal with the problem as well,
for the kernel case see [7]. All the proofs are based on the idea that a minimum of a
function can exist in an interior point only if first derivative equals zero.

Fig. 2. Regularization Network schema

Employing the Representer theorem we obtain the solution in the form:

f(x) =
N∑

i=1

wiK(xi, x), (3)

where xi are the data points and K(·, ·) the corresponding kernel. The weights wi are
given by the linear system

(NγI +K)w = y, where Kij = K(xi, xj) (4)

Such function corresponds to a neural network with one hidden layer, called Regular-
ization Network (see Fig. 2). Its learning algorithm (see Fig. 3) fixes the firsts arguments
of the kernels (called centers) to the given data points, and computes the output weights
wi as a solution of linear system (4). The regularization parameter γ and the kernel
function K are supposed to be known in advance.

3 Product Kernel and Sum Kernel Regularization Networks

The most commonly used kernels are based on Gaussian functions (the kernel being
K(x, y) = e−‖x−y‖2/d2

), other symmetric positive definite function may be used as
well. In this section we introduce methods to produce more sophisticated instances of
kernels from simpler ones: Sum Kernels and Product Kernels; we also show a mathe-
matical justification for such kernels (for proofs see [8]).
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Input: Data set {xi, yi}N
i=1 ⊆ R

n × R

Output: Regularization network.

1. Set the centers of kernels:

∀i ∈ {1, . . . , N} : ci ← xi

2. Compute the values of weights:

(NγI + K)w = y,

Ki,j = K(ci, xj), y = (y1, . . . , yN ), γ > 0.

Fig. 3. RN learning algorithm

First we will consider a sum of RKHSs. A sum of reproducing kernels was proposed
and basic properties proved in [6]. We use the theory to infer regularized neural networks.

For i = 1, 2 let Fi be an RKHS of functions on Ω, let Ki be the corresponding
kernels and ‖.‖i the corresponding norms. Consider the following space of all couples
{f1, f2} on Ω: H = {{f1, f2} | f1 ∈ F1, f2 ∈ F2} . The metric will be given by
‖{f1, f2}‖2 = ‖f1‖21 + ‖f2‖22.

We have to deal with duplicities. Consider the class F0 of all functions f belonging
to F1 ∩F2. We define H0 := {{f,−f}; f ∈ F0}. It is a closed subspace of H and thus
we can write H = H0 ⊕ H ′, where H ′ is the complementary subspace to H0. Now
to every element {f ′, f ′′} of H there corresponds a function f(x) = f ′(x) + f ′′(x).
This is a linear correspondence transforming H into a linear class F of functions on Ω.
Elements of H0 are precisely those transformed into the zero function and thus the
correspondence between H ′ and F is one-to-one and has an inverse (for every f ∈ F
we obtain one {g′(f), g′′(f)}). We define metric on F by

‖f‖2 = ‖{g′(f), g′′(f)}‖2 = ‖g′(f)‖21 + ‖g′′(f)‖22.

Theorem 1. ([6]) Let Fi (for i = 1, 2) be RKHSs and Ki and ‖.‖i the corresponding
kernels and norms. Let F be defined as above with norm ‖f‖2 = ‖{g′(f), g′′(f)}‖2 =
‖g′(f)‖21 + ‖g′′(f)‖22. Then

K(x, y) = K1(x, y) +K2(x, y) (5)

is the kernel corresponding to F .
The claim holds also for F defined as class of all functions f = f1 + f2 with fi ∈ Fi

and norm ‖f‖2 = min(‖f1‖21 + ‖f2‖22) minimum taken for all decompositions f =
f1 + f2 with fi in Fi.

The kernel that can be expressed as (5) we call a Sum Kernel. We will present two
types of Sum Kernels. First suppose that a-priori knowledge or analysis of data sug-
gests to look for a solution as a sum of two functions (for example data is generated
from function influenced by two sources of different frequencies). Then we can use a
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kernel summed of two parts (employing Theorem 1) corresponding to high and low
frequencies, a simple example is the sum of two Gaussians of different widths:

K(x, y) = K1(x, y) +K2(x, y) = e−( ‖x−y‖
d1

)2 + e−( ‖x−y‖
d2

)2 . (6)

Since we operate in an RKHS we can employ the Representer theorem and obtain a
solution in the form of

f0(x) =
N∑

i=1

wi

(
e
−
( ‖x−xi‖

d1

)2

+ e
−
(‖x−xi‖

d2

)2)
.

The second task would be to approximate data with different distribution in the input
space. We can divide the space to several subsets A1, . . . , As and choose (possibly
different) kernels Ki for each Ai. Then we obtain a kernel as a sum of kernels Ki

restricted to corresponding sets:

K(x, y) =

{
Ki(x, y) x, y ∈ Ai

0 otherwise
(7)

Now we will derive a product of kernels. We will deal with the product of RKHSs.
For i = 1, 2 let Fi be an RKHS on Ωi, and Ki the corresponding kernel. Consider the
following set of functions on Ω = Ω1 × Ω2: F ′ =

{∑n
k=1 f1,k(x1)f2,k(x2) | n ∈

N, f1,k ∈ F1, f2,k ∈ F2
}
. Clearly, F ′ is a vector space, but not a complete one. To

make it complete, we first define a scalar product on F ′. Let f, g ∈ F ′ be expressed as
f(x1, x2) =

∑n
k=1 f1,k(x1)f2,k(x2), g(x1, x2) =

∑m
j=1 g1,j(x1)g2,j(x2). We define

〈f, g〉 =
∑n

k=1
∑m

j=1〈f1,k, g1,j〉1〈f2,k, g2,j〉2, where 〈·, ·〉i denotes the scalar product
in Fi. It is a routine to check that this definition does not depend on the particular form
in which f and g are expressed and that the properties of scalar product are satisfied.
We define a norm on F ′ by ‖f‖ =

√
〈f, f〉. Finally, let F be the completion of F ′.

It can be shown [6] that the completion exists not only as an abstract Hilbert space but
that F is in fact a space of functions on Ω. We call F the product of F1 and F2 and
write F = F1 ⊗ F2.

Theorem 2. ([6]) For i = 1, 2 let Fi be an RKHS on Ωi with kernel Ki. Then the
product F = F1 ⊗ F2 on Ω1 ×Ω2 is an RKHS with kernel given by

K((x1, x2), (y1, y2)) = K1(x1, y1)K2(x2, y2) , (8)

where x1, y1 ∈ Ω1, x2, y2 ∈ Ω2.

A kernel obtained as a product of another two kernel functions (8) is called a Product
Kernel. Product Kernels might be useful if a-priori knowledge of data suggests to look
for the solution as a member of a product of two function spaces.

Generally, it is possible to combine different types of kernels, for example for het-
erogeneous data, where individual attributes are of different types and different kernels
are suitable for them.

RN with Sum Kernels, respectively Product Kernels, in the hidden layer (see Fig. 4)
we call a Sum Kernel Regularization Network (SKRN), resp. Product Kernel Regular-
ization Network (PKRN).
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Fig. 4. a) Sum Unit b) Product Unit

4 Experimental Results

The goal of our experiments was to demonstrate the performance of the proposed PKRN
and SKRN, and compare them with a classical RN with Gaussian kernels.

For the comparison we have chosen the Proben1 data repository (see [9]) containing
both approximation and classification tasks, listed in Tab. 1. In addition we applied the
PKRN on a real-life task, the prediction of the flow rate on the Czech river Ploučnice.

Table 1. Overview of Proben1 tasks. Number of inputs (n), number of outputs (m), number of
samples in training and testing sets (Ntrain,Ntest). Type of task: approximation or classification.

Task name n m Ntrain Ntest Type
cancer 9 2 525 174 class
card 51 2 518 172 class
diabetes 8 2 576 192 class
flare 24 3 800 266 approx
glass 9 6 161 53 class
heartac 35 1 228 75 approx

Task name n m Ntrain Ntest Type
hearta 35 1 690 230 approx
heartc 35 2 228 75 class
heart 35 2 690 230 class
horse 58 3 273 91 class
soybean 82 19 513 170 class

As Product and Sum Kernels we used products and sums of two Gaussian functions
with different widths. For each task and network we first estimated the explicit para-
meters of the learning algorithm, i.e., the regularization parameter γ and the width(s)
of Gaussians. Parameters with the lowest cross-validation error on the training set were
chosen and used to learn the network on the whole training set. Then the error on the
testing set was evaluated, as a measure of real performance of the network. The error
was always normalised:

E = 100
1
N

N∑
i=1

||yi − f(xi)||2. (9)

The LAPACK library [10] was used for linear system solving.
The resulting errors achieved by RN, PKRN, and two types of SKRN on tasks from

Proben1 are compared in Tab. 2 (SKRN1 is a network with Sum Kernels of the first
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type (6), SKRN2 uses Sum Kernels of the second type (7)). Etrain and Etest stands
for the value of the normalised error function (9) on the training set and testing set,
respectively.

We can see that all types of RNs achieved comparable results in terms of errors on
testing set, best results on most tasks were achieved by SKRN1.

The SKRN1 showed an interesting behavior on several data sets. The error on the
training set is almost zero (rounded to zero) and still the generalization ability of the
network is good, i.e., the error on the testing set is not high. This is caused by the fact
that the chosen kernel consists of two Gaussians, one being very narrow (see Fig. 4).
The diagonal of the matrix K from (4) is dominant and so the regularization member is
not needed.

 0
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Fig. 5. Prediction of the flow rate by PKRN

In case of SKRN2 we divided each data set into two or three disjoint sets, on each of
them only one kernel was active (see (7)). This enables us to replace the larger linear
system by two (resp. three) smaller ones for individual subsets, which significantly
decreases the time requirements (see Fig. 6), and in addition makes parallelization
possible.

The applicability of PKRN on real life problems was demonstrated on the prediction
of the flow rate. Our goal is to predict the current flow rate from the flow rate and total
rainfall from the previous date , i.e. we are approximating function f : � × � → �.
The data set contains 1000 training samples and 367 testing samples.

Table 3 shows that the PKRN outperforms the so called conservative predictor (CP).
CP is a predictor saying that the value will be the same as it was yesterday, and in spite
of its simplicity it is very successful on some tasks, including this one.

The prediction on the testing set made by PKRN is displayed on Fig. 5.
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Table 2. Comparisons of errors on training and testing set for RN with Gaussian kernels and
SKRN and PKRN

RN SKRN1 PKRN SKRN2

Task Etrain Etest Etrain Etest Etrain Etest Etrain Etest

cancer1 2.28 1.75 0.00 1.77 2.68 1.81 2.11 1.93
cancer2 1.86 3.01 0.00 2.96 2.07 3.61 1.68 3.37
cancer3 2.11 2.79 0.00 2.73 2.28 2.81 1.68 2.95
card1 8.75 10.01 8.81 10.03 8.90 10.05 8.55 10.58
card2 7.55 12.53 0.00 12.54 8.11 12.55 7.22 13.03
card3 6.52 12.35 6.55 12.32 7.01 12.45 6.22 12.86
diabetes1 13.97 16.02 14.01 16.00 16.44 16.75 12.92 16.66
diabetes2 14.00 16.77 13.78 16.80 15.87 18.14 13.64 17.33
diabetes3 13.69 16.01 13.69 15.95 16.31 16.62 12.85 16.34
flare1 0.36 0.55 0.35 0.54 0.36 0.54 0.35 0.59
flare2 0.42 0.28 0.44 0.26 0.42 0.28 0.41 0.28
flare3 0.38 0.35 0.42 0.33 0.40 0.35 0.38 0.34
glass1 3.37 6.99 2.35 6.15 2.64 7.31 2.56 6.78
glass2 4.32 7.93 1.09 6.97 2.55 7.46 3.27 7.29
glass3 3.96 7.25 3.04 6.29 3.31 7.26 3.48 6.44
heart1 9.61 13.66 0.00 13.91 9.56 13.67 9.51 13.79
heart2 9.33 13.83 0.00 13.82 9.43 13.86 8.52 14.31
heart3 9.23 15.99 0.00 15.94 9.15 16.06 8.30 16.75
hearta1 3.42 4.38 0.00 4.37 3.47 4.39 3.20 4.45
hearta2 3.54 4.07 3.51 4.06 3.28 4.29 3.17 4.34
hearta3 3.44 4.43 0.00 4.49 3.40 4.44 3.37 4.40
heartac1 4.22 2.76 0.00 3.26 4.22 2.76 3.68 3.37
heartac2 3.50 3.86 0.00 3.85 3.49 3.87 2.99 3.97
heartac3 3.36 5.01 3.36 5.01 3.26 5.18 3.14 5.13
heartc1 9.99 16.07 0.00 15.69 10.00 16.08 6.50 16.07
heartc2 12.70 6.13 0.00 6.33 12.37 6.29 11.06 6.69
heartc3 8.79 12.68 0.00 12.38 8.71 12.65 9.91 11.74
horse1 7.35 11.90 0.20 11.90 14.25 12.45 7.66 12.62
horse2 7.97 15.14 2.84 15.11 12.24 15.97 6.84 15.70
horse3 4.26 13.61 0.18 14.13 9.63 15.88 8.56 15.24
soybean1 0.12 0.66 0.11 0.66 0.13 0.86 0.12 0.64
soybean2 0.24 0.50 0.25 0.53 0.23 0.71 0.19 0.54
soybean3 0.23 0.58 0.22 0.57 0.21 0.78 0.15 0.72

Table 3. Flow rate errors by PKRN and CP

PKRN CP
Etrain 0.057 0.093
Etest 0.048 0.054

Table 4. Chosen kernels for cancer1 task
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Fig. 6. Time (in clock cycles, using the PAPI library [11]) needed for one run of learning algo-
rithm for RN and SKRNB

5 Conclusion

We have shown how to use results of Aronszajn on sums and products of RKHSs to
obtain the Sum and Product Regularization Networks.

We compared proposed PKRN and SKRN to classical RN on benchmarks. All meth-
ods gave comparable results, though our SKRN achieved lowest errors in most cases.
We also demonstrated how SKRN can be used to decrease the time requirements for
larger data sets. In addition, we demonstrated the performance of PKRN on predic-
tion of a flow rate on the river Ploučnice and showed that it performs better than the
Conservative Predictor.

We showed that our algorithms are a vital alternative to classical RNs. We can benefit
from them in situations where some knowledge of the character of data is available or
if we can expect that for some groups of inputs different kernel functions are suitable.

Our future work should be focused on the application of other types of kernel func-
tions (not only Gaussian functions), and the automated choice of the optimal kernel
function for a given problem.

For proofs, details of the learning algorithm, a more detailed description of our ex-
periments, and further results see [8].
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Abstract. We propose a new model of Chaotic Cellular Neural Networks
(C-CNNs) by introducing negative self-feedback into the Euler approxi-
mation of the continuous CNNs. According to our simulation result for the
single neuron model, this new C-CNN model has richer and more flexible
dynamics, compared to the conventional CNN with only stable dynamics.
The hardware implementation of this new network may be important for
solving a wide variety of combinatorial optimization problems.

1 Introduction

Manymodern systemsdeveloped these years are based on artificial intelligence and
soft computing, where artificial neural networks play an important role, together
with fuzzy logic, evolutionary computation, and chaos. Artificial neural networks
have been widely studied in various areas since the end of the 20th century.

Chua and Yang proposed a circuit architecture, called cellular neural networks
(CNNs) [1] in 1988, which possess the ability to do parallel signal processing
in real time. Compared with general neural networks, CNNs are much more
amenable to Very Large Scale Integration (VLSI) implementation according to
its neighbor interactive property. Some rather promising applications of CNNs in
image processing, communication systems and optimization problem have been
reported in [2,3,4,5,6,7,8].

Grassi [9] designed a discrete-time cellular neural network (DTCNN) which is
globally asymptotically stable tobehave as associativememories. Fantacci et al [10]
exploited CNNs’ capability to account for the optimizationproblem by implement-
ing of a cell scheduling algorithm. They also showed that for a class of optimiza-
tion problems, the performance of CNNs is compared to Hopfield neural networks
(HNN). Nakaguchi et al [11] proposedan architecturebased on the HysteresisCNN

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 66–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and applied it on the N-Queen problem, a classic combinatorial optimization prob-
lem. The result showed the effectiveness of this network architecture.

Chaos have been widely investigated by not only mathematicians and physi-
cists, but also engineers, economists, and scientists from various discipline.
Chaotic dynamics have several special characteristics, such as a sensitivity to
initial conditions, determinism as the system function is well defined, and long
term unpredictability.

Using chaotic dynamics to solve combinatorial optimization problems (COP)
has been studied widely after the work of Nozawa [12], Chen and Aihara [13].
Nozawa modified Hopfield network by adding negative self-feedback connection,
analyzed one-dimensional maps for the single neuron model under different con-
trol parameters, and demonstrated the existence of chaos. Two engineering ap-
plications were also presented to show the effectiveness of the new model. Chen
and Aihara proposed a neural network model with transient chaos (TCNN),
which acted better in searching for globally optimal or near-optimal solutions
compared with the conventional Hopfield-type neural network.

Combinatorial optimization problems is a branch of optimization problem
where feasible solutions are discrete. The objective is to find the optimal possible
solution. Some found that chaotic dynamics are more effective for solving optimiza-
tion problems than stochastic dynamics [14,15]. Bucolo et al investigated the effect
of chaos on helping order to arise from disorder and studied the subject “Does chaos
work better than noise?” [16]. They did several experiments for different applica-
tions to compare chaos and noise, and asserted that although a general judgment
have not been formulated, chaotic dynamic are often better than random signals.

Hayakawa [17] emphasized on the effects of chaos in neural network dynamic
through a simple model for the traveling salesman problem (TSP). Aihara [18]
discussed chaotic dynamics from an engineering point of view. The paper re-
counted the development and prospective of chaos engineering. He [19] added
decaying chaotic noise which was generated by the logistic map to the discrete-
time continuous-output Hopfield neural network. The simulation on the TSP
showed better results in terms of searching ability and iteration steps compared
to Chen and Aihara’s model [13].

Based on the efficient search ability with chaos and the mature technology
of VLSI implementation of CNNs, this paper proposes a new chaotic cellular
neural network (C-CNN) with negative self-feedback. This new model share the
best feature of both world: It has complex dynamics so possesses higher ability
to search for optimal solutions for optimization problems; And furthermore, the
local interconnection feature of CNNs made it especially suited for large scale
analog implementation.

The complex dynamics in CNNs have already been reported in the past years.
Civalleri and Gilli [20] reviewed and discussed the stability of the original CNN
model, including complete stability, stability almost everywhere and global as-
ymptotic stability. Zou and Nossek observed a chaotic attractor in a two-cell
non-autonomous CNN [21]. They also presented bifurcation phenomena and
chaotic attractor in autonomous CNNs but with space variant templates [22].
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Gilli [23] analyzed a delayed cellular neural network (DCNN) which consist of
2 cells and then presented strange attractors generated by different delays. Gilli
et al [24] explored the dynamic behavior in autonomous space-invariant CNNs.
They showed limit cycle and chaotic attractor in a CNN composed by 9 (3× 3)
cells. Petras et al [25] found that boundary conditions will affect the stability of
CNNs when off-diagonal template elements have opposite-signs.

In this paper, we add negative self-feedbacks into the Euler approximation
of the continuous CNN model and demonstrate a variety of dynamic behaviors,
including fixed points, periodic oscillations, and chaos, thereby creating a new
chaotic CNN.

This paper is organized as follows. We propose the new model C-CNN in
Section 2. The stability analysis of the network is presented in Section 3. The
Simulation result of the new model is presented in Section 4. Finally, we conclude
this paper in Section 5.

2 The Continuous Cellular Neural Network

Consider an original M × N cellular neural network proposed in [1], the r-
neighborhood of neuron (i, j) 1 ≤ i ≤ M, 1 ≤ j ≤ N are defined as Nr(i, j) =
{(k, l)|max{|k − i|, |l − j| ≤ r}, 1 ≤ k ≤M, 1 ≤ l ≤ N .

The system equation can be described as follows:

C
dxij(t)
dt

= − 1
Rx

xij(t) +
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl + I (1)

Where xij , yij , uij is the internal state, output and input of neuron (i, j) re-
spectively. A and B are two matrices consisting of feedback synaptic weights
and input control parameters. C is a linear capacitor and Rx is a linear resistor.
I is an independent voltage source functioned as a constant bias.

The activation function of neuron (i, j) is piecewise linear function:

yij(t) =
1
2
(|xij(t) + 1| − |xij(t)− 1|) (2)

Constraint conditions are:

|xij(0)| ≤ 1, 1 ≤ i ≤M ; 1 ≤ j ≤ N.

|uij | ≤ 1, 1 ≤ i ≤M ; 1 ≤ j ≤ N.

The network model described above is proven to be stable [1,26] when the
space templates are symmetry i.e. A(i, j; k, l) = A(k, l; i, j) and the self-feedback
A(i, j; i, j) > 1. Any cell in a cellular neural network is connected only to its
neighboring cells. This CNN property of nearest neighbor interactions makes
CNNs much more amenable to VLSI implementation compared to general neural
networks.
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Fig. 1. An 4-by-4 network. (shaded squares are the 1-neighborhood cells of the black

cell.)

3 Chaotic Cellular Neural Networks

Usually there are positive self-feedbacks in the CNN, i.e., A(i, j, i, j) ≥ 0. Let us
change it to negative by adding a negative self-feedback and take the difference
equation version by Euler’s method [27], then the model becomes

xij(t + 1) = xij(t) + f(xij(t))Δt

= (1− Δt

CRx
)xij(t) +

Δt

C

∑
C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)

+
Δt

C

∑
C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl +
Δt

C
I − z [yij(t)− I0]

= p xij(t)− z [yij(t)− I0] +
∑

C(k,l)∈Nr(i,j)

a(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i,j)

b(i, j; k, l)ukl + i (3)

yij(t) =
1
2

(|xij(t) + 1| − |xij(t)− 1|) (4)

where

xij = Internal state of neuron (i, j),
yij = Output of neuron (i, j),
uij = Input of neuron (i, j),

A(i, j; k, l) = The output feedback parameter,
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B(i, j; k, l) = The input control parameter,
C(i, j) = The neuron (i, j),
Nr(i, j) = {(k, l)|max{|k − i|, |l− j|} ≤ r,

1 ≤ k ≤M, 1 ≤ l ≤ N}
The r-neighborhood of neuron (i, j),

I = An independent voltage source,

p = 1− Δt

CRx
,

z = Self-feedback connection weight,
I0 = A positive bias factor,
C = A linear capacitor,
Rx = A linear resistor.

This new C-CNN has two new terms compared to the conventional CNN. The
first term −z [yij(t) − I0] is related to the negative self-feedback with a bias I0.
The second term is p xij(t), where p is determined by the time step Δt in Euler’s
method.

In order to compare the new model with the continuous time CNN, Eqn. (3)-
(4) can be rewritten in forms of differential equations as follows:

dxij(t)
dt

= −z(yij(t)− I0)− xij(t) +
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl + I (5)

yij(t) =
1
2
(|xij(t) + 1| − |xij(t)− 1|). (6)

4 Stability of the New C-CNN Model

Based on the energy function used in [1], we use a computational energy function
as below:

E(t) = −1
2

∑
(i,j)

∑
(k, l)

[a(i, j; k, l)− zδikδjl] yij(t) ykl(t)

−
∑
(i,j)

∑
(k,l)

b(i, j; k, l) yij(t)ukl −
∑
(i,j)

[i+ zI0] yij(t)

+
1− p

2

∑
(i,j)

yij(t)2 (7)
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The change in the energy function between two time steps:

ΔE = −1
2

∑
(i,j)

∑
(k, l)

[a(i, j; k, l)− zδikδjl]Δyij(t)Δykl(t)

−
∑
(i,j)

∑
(k,l)

[a(i, j; k, l)− zδikδjl] ykl(t)Δyij(t)

−
∑
(i,j)

Δyij(t)

⎡⎣∑
(k,l)

b(i, j; k, l)ukl + i+ zI0

⎤⎦
+

1− p

2

∑
(i,j)

Δyij(t) [yij(t + 1) + yij(t)] (8)

Substituting the cell circuit equation (3) into equation (8), we obtain

ΔE = −1
2

∑
(i,j)

∑
(k, l)

[a(i, j; k, l)− zδikδjl]Δyij(t)Δykl(t)

−
∑
(i,j)

Δyij(t)[xij(t+ 1)− p xij(t)]

+
1− p

2

∑
(i,j)

Δyij(t)[yij(t+1) + yij(t)] (9)

According to the output function (4)

yij(t) = xij(t), when |xij(t)| < 1

Δyij(t) = 0, when |xij(t)| ≥ 1

then

ΔE = −1
2

∑
|xij|<1

∑
|xkl|<1

{a(i, j; k, l) + [−z+ 1+ p ]δikδjl} Δyij(t)Δykl(t) (10)

Therefore ΔE ≤ 0, or the network is stable according to Lyapunov Theo-
rem [28], if the matrix {a(i, j; k, l) + [−z+ 1+ p ]δikδjl} is positive-definite.

Hence a sufficient stability condition for the new model is

a(i, j; i, j)− z > −(1 + p) (11)

The new C-CNN model converges to a stable state when we choose a proper
value for self-feedback parameter z that satisfies inequality (11).
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5 Simulation Result

Deriving from (3)-(4), we obtain the single neuron model:

x(t + 1) = −z(y(t)− I0) + p x(t) +Ay(t) +B u+ I (12)
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Fig. 2. Same template values can produce various dynamics with different self-feedback

for C-CNN (a) stable dynamic with z=0.7; (b) period-2 oscillations with z=2; (c)

period-3 oscillations with z=2.15; (d) chaotic dynamics with z=5.
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y(t) =
1
2

(|x(t) + 1| − |x(t)− 1|) (13)

In the following, we vary only the value of z to investigate the dynamics of
the network while other parameters are fixed in Eqn.(12) as p = 0.999, A =
0.1, Bu + I = 0, I0 = 0.25. Fig.2 shows the time evolutions for y(t) when
z = 0.7, 2.0, 2.15, 5, respectively, and the initiative value for neuron state x
is randomly generated in [−1, 1].

We observe the output of the neuron in 30 iteration steps. When z < 2, there
is only one stable equilibrium for the output. When z = 2 the process begins
oscillating between two different points (0.6 and −0.1) without converging to
either (period-2 oscillations). When z = 2.15 the output oscillates between three
different points (1, −0.4 and −0.6) forming a period-3 output - “Period-3 implies
chaos” [29]. When z is larger, the output has chaotic dynamics.

6 Conclusion

When we add negative self-feedbacks, our discrete Chaotic Cellular Neural Net-
works (C-CNNs) have various complex dynamics (i.e. limit cycles, bifurcation
processes and chaotic attractors) depending on the magnitude of the self-
feedback. The stability condition is proved. The new C-CNN model take ad-
vantage of both efficient search for global optimal with chaos and the mature
technology of VLSI implementation of CNNs. In future work, we will apply this
new model to solve various combinatorial optimization problems.
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Abstract. This paper is concerned with a computationally efficient (sub-
optimal) nonlinear model-based predictive control (MPC) algorithm and
its application to a high-purity high-pressure ethylene-ethane distillation
column. A neuralmodel of the process is used on-line to determine the local
linearisation and the nonlinear free response. In comparison with general
nonlinear MPC technique, which hinges on non-convex optimisation, the
presented structure is far more reliable and less computationally demand-
ing because it results in a quadratic programming problem, whereas its
closed-loop control performance is similar.

1 Introduction

Model Predictive Control (MPC) is recognised as the only advanced control
technique (i.e. more advanced than the well known PID approach) which has
been very successful in practical applications [2], [7], [10], [13], [14], [15]. More
specifically, MPC algorithms can take into account constraints imposed on both
process inputs (manipulated variables) and outputs (controlled variables), which
usually decide on quality, economic efficiency and safety. Furthermore, MPC
techniques are very efficient in multivariable process control. The underlaying
idea of MPC is relatively easy to explain to engineering and operator staff, which
is of fundamental importance when it comes to introducing new techniques into
industrial practice.

The paper describes the computationally efficient MPC with Nonlinear Pre-
diction and Linearisation (MPC-NPL) algorithm with feedforward neural net-
work models and its application to a distillation process. The algorithm gives
good closed-loop performance and, unlike the nonlinear MPC techniques, which
hinge on nonlinear optimisation, it uses on-line only the quadratic programming
approach.

The paper is organised as follows. In Section 2 various MPC approaches are
shortly discussed in light of both computational load and closed-loop perfor-
mance. Next, in Section 3, the MPC-NPL algorithm with feedforward neural
networks is detailed. In Section 4 simulation results are discussed and the paper
is summarised in Section 5.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 76–85, 2006.
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2 Model Predictive Control Algorithms

Although a number of different MPC techniques have been developed over the
years, the main idea (i.e. the explicit application of a process model, the receding
horizon and optimisation of a cost function) is always the same [7], [15]. At each
consecutive sampling instant k a set of future control increments is calculated

Δu(k) = [Δu(k|k) Δu(k + 1|k) . . .Δu(k +Nu − 1|k)]T (1)

It is assumed that Δu(k+ p|k) = 0 for p ≥ Nu, where Nu is the control horizon.
The objective is to minimise the differences between the predicted values of the
output ŷ(k + p|k) and the reference trajectory yref (k + p|k) over the prediction
horizon N . The following quadratic cost function is usually used

J(k) =
N∑

p=1

(yref (k + p|k)− ŷ(k + p|k))2 + λ

Nu−1∑
p=0

(Δu(k + p|k))2 (2)

Typically, Nu < N , which decreases the dimensionality of the optimisation prob-
lem and leads to smaller computational load. Only the first element of the de-
termined sequence (1) is applied to the process, the control law is then

u(k) = Δu(k|k) + u(k − 1) (3)

At next sampling instant, k + 1, the prediction is shifted one step forward and
the whole procedure is repeated.

If the constraints are taken into account, future control increments are de-
termined as the solution to the following optimisation problem (assuming hard
output constraints [7], [15])

min
Δu(k|k)...Δu(k+Nu−1|k)

{J(k)} (4)

umin ≤ u(k + p|k) ≤ umax p = 0, . . . , Nu − 1
−Δumax ≤ Δu(k + p|k) ≤ Δumax p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax p = 1, . . . , N

Predicted output values over the prediction horizon are calculated using a
dynamic model of the process. The choice of the model (linear or nonlinear, if
nonlinear – fundamental or black-box) is crucial. This decision affects not only
the possible control accuracy but also the computational load and reliability
of the whole control policy. MPC algorithms based on linear models have been
usually applied in practice [10], [13], [15], since the predictions ŷ(k + p|k) can
be expressed as a linear combination of decision variables, which means that
the optimisation problem (4) is a quadratic programming one [7], [14], [15].
Unfortunately, when the process exhibits severe nonlinearity, such an approach
is likely to result in poor closed-loop control performance, even instability. In
general, a nonlinear model used for prediction purposes leads to a non-quadratic,
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non-convex and even multi-modal optimisation problem. For such problems there
are no sufficiently fast and reliable optimisation algorithms, i.e. those which
would be able to determine the global optimal solution at each sampling instant
and within predefined time limit as it is required in on-line control. Gradient
based optimisation techniques may terminate in local minima while global ones
substantially increase the computational burden, yet they still give no guarantee
that the global solution is found [8].

In order to overcome the problems inevitable in MPC with nonlinear opti-
misation, a few alternatives have been suggested. For example, affine nonlinear
models of neural structure result in a quadratic programming problem [3]. An
interesting idea is to approximate the whole MPC algorithm by a neural net-
work, which is trained off-line [11]. Yet another option is to use a combination
of a neural steady-state model and a simplified nonlinear second order quadratic
dynamic model [12]. The resulting optimisation task is not convex. Nevertheless,
the model is relatively simple, the approach is reported to be successful in many
industrial applications.

Bearing in mind all the aforementioned computational difficulties typical of
nonlinear MPC, a straightforward idea is to use a linearisation-based MPC tech-
niques, in which only a quadratic programming problem is solved on-line. When
compared to MPC algorithms with full nonlinear optimisation, they are sub-
optimal, but in most practical applications the accuracy is sufficient [2], [5],
[6], [10], [14], [15]. The main issue is the choice of the process model structure,
since it decides on the controller’s performance and accuracy. Fundamental (first-
principles) models, although potentially very precise, are usually not suitable for
on-line control because they are very complicated (vast number of equations.)
The MPC-NPL algorithm described in the paper [5], [6], [14] uses feedforward
neural networks, who are able to approximate precisely nonlinear behaviour of
technological processes, have relatively small number of parameters and simple
structure [1].

3 MPC-NPL Algorithm with Neural Models

Let the single-input single-output (SISO) process under consideration be de-
scribed by the following nonlinear discrete-time equation

y(k) = g(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (5)

where g : �nA+nB−τ+1 −→ � ∈ C1, τ ≤ nB. In the sequel it is assumed that the
feedforward neural network with one hidden layer and linear output [1] is used
as the function g in (5). Output of the model can be expressed as

y(k) = w2
0 +

K∑
i=1

w2
i vi(k) = w2

0 +
K∑

i=1

w2
i ϕ(zi(k)) (6)

where zi(k) and vi(k) are the sum of inputs and the output of the i-th hidden
node, respectively, ϕ : � −→ � is the nonlinear transfer function, K is the



An Efficient Nonlinear Predictive Control Algorithm 79

number of hidden nodes. Recalling the input arguments of the general nonlinear
model (5) one has

zi(k) = w1
i,0 +

Iu∑
j=1

w1
i,ju(k − τ + 1− j) +

nA∑
j=1

w1
i,Iu+jy(k − j) (7)

The weights of the network are denoted by w1
i,j , i = 1, . . . ,K, j = 0, . . . , nA +

nB − τ +1, and w2
i , i = 0, . . . ,K, for the first and the second layer, respectively.

The number of the network’s input nodes depending on input signal u is Iu =
nB − τ + 1. Total number of weights is (nA + nB − τ + 2)K +K + 1.

Considering the prediction over the horizon N , the quantities zi(k+ p|k) and
consequently ŷ(k+p|k) will depend on future values of control signal (i.e. decision
variables of the control algorithm), values of control signal applied to the plant
at previous sampling instants, future output predictions and measured values of
the plant output signal. From the equation (7) one has

zi(k + p|k) = w1
i,0 +

Iuf (p)∑
j=1

w1
i,ju(k − τ + 1− j + p|k)+ (8)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − τ + 1− j + p)+

+
Iyp(p)∑
j=1

w1
i,Iu+j ŷ(k − j + p|k) +

nA∑
j=Iyp(p)+1

w1
i,Iu+jy(k − j + p)

where Iuf (p) = max(min(p− τ + 1, Iu), 0) is the number of the network’s input
nodes depending on future control signals and Iyp(p) = min(p − 1, nA) is the
number of the network’s input nodes depending on output predictions.

Defining a linearisation point as the vector composed of past input and output
signal values

x̄(k) = [ū(k − τ) . . . ū(k − nB) ȳ(k − 1) . . . ȳ(k − nA)]T (9)

the linearised model has the form

y(k) = g(x̄(k)) +
nB∑
l=1

bl(x̄(k))(u(k − l)− ū(k − l))

−
nA∑
l=1

al(x̄(k))(y(k − l)− ȳ(k − l)) (10)

Taking into account the structure of the neural model and corresponding equa-
tions (6) and (7), the coefficients of the linearised model are calculated from

al(x̄(k)) = − ∂g(x̄(k))
∂y(k − l)

= −
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,Iu+l l = 1, . . . , nA (11)
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and

bl(x̄(k)) =

⎧⎪⎨⎪⎩
0 l = 1, . . . , τ − 1

∂g(x̄(k))
∂u(k − l)

=
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,l−τ+1 l = τ, . . . , nB

(12)

Let al(k) = al(x̄(k)), bl(k) = bl(x̄(k)). Redefining the variables y(k) := y(k) −
g(x̄(k)), y(k−i) := y(k−i)− ȳ(k−i), l = 1, . . . , nA, u(k−i) := u(k−i)−ū(k−i),
l = 1, . . . , nB the linear approximation of the model (5), obtained at sampling
instant k, can be expressed as

A(k, z−1)y(k) = B(k, z−1)u(k) (13)

where

A(k, z−1) = 1 + a1(k)z−1 + . . .+ anA(k)z−nA (14)

B(k, z−1) = b1(k)z−1 + . . .+ bnB(k)z−nB

It can be noticed that the linearisation point given by (9) and hence the co-
efficient al(k), bl(k) are not influenced by the most recent output value y(k),
which is available to be measured. It may be crucial in the case of fast processes.
Therefore, it is recommended to use

x̄(k) = [ū(k − τ + 1) . . . ū(k − nB + 1) ȳ (k) . . . ȳ(k − nA + 1)]T (15)

If τ = 1 for linearisation purposes one may set ū(k) = u(k − 1) or ū(k) =
u(k|k − 1).

It is assumed that the superposition principle holds true, i.e. the predicted
output trajectory ŷ(k+ p|k) over the prediction horizon can be expressed as the
sum of a free trajectory y0(k+ p|k), which depends only on the past (i.e. on the
control signal values applied at previous sampling instants and measured values
of the output signal) and a forced trajectory, which depends only on the future
(i.e. on decision variables.) Defining the vectors

yref (k) =
[
yref (k + 1|k) . . . yref (k +N |k)

]T
(16)

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k +N |k)]T (17)

y0(k) =
[
y0(k + 1|k) . . . y0(k +N |k)

]T
(18)

the predicted output trajectory can be expressed by the equation [5], [15]

ŷ(k) = y0(k) + G(k)Δu(k) (19)

The matrix G(k) is calculated on-line from the nonlinear model taking into
account the current state of the plant. It has the following structure

G(k) =

⎡⎢⎢⎢⎣
s1(k) 0 . . . 0
s2(k) s1 . . . 0

...
...

. . .
...

sN (k) sN−1(k) . . . sN−Nu+1(k)

⎤⎥⎥⎥⎦ (20)



An Efficient Nonlinear Predictive Control Algorithm 81

where the step-response coefficients of the linearised model are determined from

sj(k) =
min(j,nB)∑

i=1

bi(k)−
min(j−1,nA)∑

i=1

ai(k)sj−i(k) (21)

Using the superposition principle (19), the cost function (2) becomes a quad-
ratic function of the decision variables

J(k) =
∥∥yref (k)− y0(k)−G(k)Δu(k)

∥∥2
+ λ ‖Δu(k)‖2 (22)

The MPC-NPL algorithm can be summarised as follows:

1. Linearisation: obtain the matrix G(k).
2. Calculate the nonlinear free response y0(k).
3. Solve the quadratic programming problem (4) with the cost function (22) to

determine Δu(k).
4. Apply u(k) = Δu(k|k) + u(k − 1).
5. Set k := k + 1, go to step 1.

The nonlinear free response y0(k + p|k), p = 1, . . . , N , is calculated on-line
recursively from the general prediction equation

ŷ(k + p|k) = y(k + p|k) + d(k) (23)

where the quantities y(k + p|k) are calculated from the nonlinear neural model.
The above formulation uses the ”DMC type” disturbance model, in which the
unmeasured disturbance d(k) is assumed to be constant over the prediction hori-
zon. It is estimated from the equation

d(k) = y(k)− y(k|k − 1) = y(k)−
(
w2

0 +
K∑

i=1

w2
i vi(k)

)
(24)

where y(k) is a measured value while the quantity y(k|k − 1) is calculated from
the model (6). From (23) the nonlinear free response is given by

y0(k + p|k) = w2
0 +

K∑
i=1

w2
iϕ(z0

i (k + p|k)) + d(k) (25)

The quantities z0
i (k + p|k) are determined from (8) assuming no changes in

control signals from sampling instant k onwards and replacing predicted output
signals from k + 1 by corresponding values of the free response

u(k + p|k) := u(k − 1) p ≥ 0 (26)

ŷ(k + p|k) := y0(k + p|k) p ≥ 1
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hence

z0
i (k + p|k) = w1

i,0 +
Iuf (p)∑
j=1

w1(i, j)u(k − 1)+ (27)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − τ + 1− j + p)+

+
Iyp(p)∑
j=1

w1
i,Iu+jy

0(k − j + p|k) +
nA∑

j=Iyp(p)+1

w1
i,Iu+jy(k − j + p).

The extension of the presented MPC-NPL algorithm with neural networks to
systems with many inputs and many outputs (MIMO) is discussed in [5]. The
algorithm can be also combined with the stabilising dual-mode approach [4], [5]
developed by H. Michalska and D. Q. Mayne [9].

4 Simulation Results

The plant under consideration is a high purity, high pressure (1.93 MPa)
ethylene-ethane distillation column shown in Fig. 1, [5]. The feed stream con-
sists of ethylene (approx. 80%), ethane (approx. 20%) and traces of hydrogen,
methane and propylene. The product of the distillation is ethylene which can
contain up to 1000 ppm (parts per million) of ethane. The objective is to develop
a supervisory controller which would be able to increase relatively fast the im-
purity level when the composition changes in the feed stream are insignificant.
Reducing the purity of the product, of course taking into account the techno-
logical limit, results in decreasing energy consumption. Production scale is very
big, nominal value of the product stream flow rate is 43 tons/h. The column has
121 trays, the feed stream is delivered to the tray number 37.

The basic control layer comprises 3 fast single-loop PID controllers (denoted
as LC and TC.) They are used to stabilise the levels in reflux and bottom product
tanks and the temperature on the tray number 13. The supervisory control loop
has one manipulated variable r, which is the reflux ratio r = R

P , where R and
P are reflux and product stream flow rates, respectively, and one controlled
variable z, which represents the impurity of the product. The reflux is delivered
to the column by the top tray and the product is taken from the tray number
110. Sample time of the MPC algorithms is 40 min. (slow composition analyser.)

Four models of the plant were used. The first one was used as the real process
during the simulations, it was based on technological considerations [5]. An iden-
tification procedure was carried out, as a result two linear models for different op-
erating points and a neural one were obtained. For the empirical models nA = 1,
τ = nB = 3. The horizons were set to N = 10, Nu = 3, the weighting coeffi-
cient λ to 2. It is assumed that at sampling instant k = 1 the set-point value
was changed from 100 ppm to 350 ppm, 600 ppm and 850 ppm. The following
constraints were imposed on the reflux ratio: rmin = 4.051, rmax = 4.4571.
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Fig. 1. High-purity ethylene-ethane distillation column control system structure
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Fig. 2. Simulation results of the ethylene-ethane distillation column with MPC algo-

rithm with linear model valid for ”low” impurity level

At first, the MPC algorithms based on two linear models were developed. The
first one is valid for ”low” impurity level and the resulting control algorithm
works well in this region but exhibits unacceptable oscillatory behaviour for
medium and big set-point changes as it is shown in Fig. 2. The second linear
model captures the process properties for ”high” impurity level and the closed-
loop response is fast enough for the biggest set-point change but is very slow for
smaller ones as it is shown in Fig. 3. Simulation results of the MPC-NPL and
MPC with Nonlinear Optimisation (MPC-NO) algorithms with the same neural
network model are depicted in Fig. 4. The closed-loop performance obtained in
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Fig. 3. Simulation results of the ethylene-ethane distillation column with MPC algo-

rithm with linear model valid for ”high” impurity level
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Fig. 4. Simulation results of the ethylene-ethane distillation column with MPC-NPL

(dashed line) and MPC-NO (solid line) algorithms with neural network model

the suboptimal MPC-NPL algorithm is close to that obtained in computationally
prohibitive MPC-NO approach.

5 Summary

The paper describes the MPC-NPL algorithm with feedforward neural network
models and discusses its application to a high-purity ethylene-ethane distillation
process. The presented algorithm is able to control effectively highly nonlinear,
multivariable processes with constraints.

The emphasis is put on controller’s reliability, computational efficiency and
closed-loop accuracy. The MPC-NPL algorithm uses on-line only a quadratic pro-
gramming procedure, the necessity of full nonlinear optimisation is avoided. More-
over, the algorithm,althoughbeing suboptimal, inpractice gives performance com-
parable to that obtained in MPC schemes with nonlinear optimisation.

Feedforward neural networks are used as process models. Having excellent
approximation abilities, in comparison with popular fuzzy models they do not



An Efficient Nonlinear Predictive Control Algorithm 85

suffer from ”the curse of dimensionality”, which is troublesome in multivariable
cases. Furthermore, unlike fundamental models, feedforward neural models have
simple, regular structure. Hence, they can be easily incorporated into the MPC-
NPL algorithm and efficiently used on-line.
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4. �Lawryńczuk, M., Tatjewski, P.: A stable dual-mode type nonlinear predictive con-
trol algorithm based on on-line linearisation and quadratic programming. Proceed-
ings of the 10th International Conference on Methods and Models in Automation
and Robotics. Miedzyzdroje, Poland. (2004) 503–510
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Creativity of Neural Networks
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Abstract. In the paper the ability of neural networks in creativity
is tested. The creation of new words was chosen as an example task
of creativity. Three different approaches based on the neural networks
were designed and implemented to perform experiments. From all con-
cerned solutions the best results was produced by the recurrent neural
network.

1 Introduction

Human beings always have tended to attribute their features to whole environ-
ment. After invention of computers people found another thing to dream of.
Books and movies have been created, that described machines becoming more
like humans. The truth is that computers can substitute people in many activi-
ties that require lots of calculations and can be expressed in an algorithmic way.
But the common opinion is that they lack few important things, like flexibility
or creativity, and over all intelligence. The purpose of this work is to show that
skills of artificial neural networks can change this opinion.

Intelligence is hard to define and even more hard to measure. The taxonomy
distinguishes different types of intelligence among of them is cognitive, and cre-
ative one [1]. In this work we decided to focus on the last one. The reason was
that computers are quite good in mimicking cognitive intelligence. They are able
to solve complex problems if they are shown how to do it. But they can not come
up with their own solution and even a small change in the problem blocks the
ability to obtain the solution with the previous algorithm.

There were several attempts to force neural networks to become creative and
innovative, mostly in speech, art and games domains. Chen, in [2], applied a
simple recurrent network to create new melodies. He assumed that music is a
kind of language, with its own grammar and rules. According to the opinion of
the author, results were quite good, although whole melodies were not always
satisfactory. In [3] author tried to train a neural networks to predict past forms
of English verbs. He used multilayered perceptron taught by supervised growing
neural gas method. After 918 epochs of the network training 100% irregular and
99,8% regular verbs were recognized.

The most interesting example is Creativity Machine, developed by S. Thaler.
It is neural network creativity paradigm. He applied it to different problems and
forced neural networks to design: drinks, toothbrush, melodies and ultra hard
materials. His solution is described in details in [4].

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 86–93, 2006.
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2 The Problem Formulation

In this paper as an example of a creativity skill the problem of new words
creation was chosen. After a neural network training with a representative set
of English words its capability to create new words was tested. This skill can
be demonstrated by the neural network if it is able to generate words already
existing in the vocabulary, but not included in the training set. Other way to
estimate the network progress in this area is to test possibility of pronouncing
created words. but this criterion is very subjective.

The ability of neural network to solve this problem can be seen as the capabil-
ity to discover a kind of rules existing in the language represented by the words
included in the dictionary. These rules can be discovered by applying one of the
rule extraction method. However, this ability can be very useful in case when we
look for some new names, for example the name of a brand-new line of cars or other
products. Three methods based on the neural netw ork approaches were designed,
implemented and tested to solve this problem. They are described further.

3 Coding of Letters

The first problem to solve was how to represent words for neural networks. At the
beginning, each letter in a given word was coded as its ASCII code normalized to
the range [-1, 1]. The results were not satisfying. In the next approach, each letter
in the alphabet was encoded on twenty six bits. For each letter only one of them
was always set to 1 (one matching the position of the letter in the alphabet). The
rest of them was set to -1. In the last attempt, the number of bits for one letter was
equal 28, where the last two bits were used to encode whether the letter is the vowel
or not. The rest of bits has the same meaning as in the previous case.

4 The Examined Neural Networks

The basic network used in the experiments was an autoassociative memory, which
was realised as the feedforward neural network that was trained to reproduce
its inputs. The second one was Creation by Refinement [5] and the last one –
recurrent neural network [6].

4.1 Autoassociative Memory

The architecture of the multilayered perceptron with one hidden layer was chosen
in this case. To train the neural network backpropagation algorithm was used.
The main idea was to train a set of English words, and next to perturb its weights
according to the following equation with the assumed probability of change:

wj,i = wj,i ± α, (1)

where wj,i is the i-th weight of j -th neuron; α defines the intensity of perturba-
tion. In the effect the neural network should react to the known patterns in a
nondeterministic way.
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Fig. 1. The methods of retraining of autoassociative memory: a) the scheme of the

algorithm Models and Critics; b) the clone of autoassociative memory

The problem that occurred was the representation of words of a different
length. Neural networks usually have the fixed number of input neurons while
language includes words with a various length. To solve this problem three so-
lutions were considered: the first one was that the neurons in the hidden layer
exceeding beyond the length of word were not considered. In the second solution
the special mark was used to represent an empty places in the assumed number
of letters representing a word. In the third solution an ensemble of neural net-
works was considered. In the ensemble each neural network was responsible for
one of the assumed length of a word.

To simplify the problem two dictionaries were created, the first one containing
only four-letter words and the other one containing words with a various number
of letters. In the creation phase the neural network was stimulated by the pattern
in different way. The following three stimulations were considered: all inputs were
stimulated in the same way (input vector consists of bits set to 1), the random stim-
ulation, which does not represent a correct word or a stimulation defined by a user.

After a stimulation the output of neural network was produced. In case when
the produced output was not satisfying ( the sequence of vowels or the sequence of
letters have arrived which was difficult to pronounce) the network was retrained.
It could be achieved by using human critic who pointed at incorrect letters in
the generated sequence or by applying – Models and Critics method (Fig. 1a)
[7] or the clone neural network Fig. 1b).

In case ofModels andCritics there is only oneneural network inputvector, which
is taken from the associativememory. The critic neural network is trained to recog-
nize whether a given string is a word or not. The idea is shown in Fig. 1a. The input
vector processed by the associative memory is sent to the critic. It generates the
evaluation of this input. The errors from the hidden layer of the critic neural net-
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work are sent to the outputs of associative memory and they are treated as the
errors for this layer like in the standard backpropagation method. The last con-
sidered approach in the retraining process was the clone neural network. It relies
on the making a copy of trained autoassociative memory before its perturbation.
When as an input to the clone network the answer of associative memory is sent
the clone network has a tendency to repair the obtained sequence to the pattern,
which is most similar to the one it was trained.

4.2 Creation by Refinement

The next method of new words formation is based on the neural network creation
paradigm – Creation by Refinement. The method is described in [5] in details.
As the critic again the multilayered perceptron trained with backpropagation

Fig. 2. The scheme of creation phase in the method Creation by refinement

algorithm was used. The general scheme of the architecture of this paradigm
is shown in Fig. 2. In the creation phase the propagation of pattern in the
critic neural network as well as backpropagation of error is proceeded like in the
standard backpropagation algorithm but without of change of weights. Instead,
input vector is being modified and improved on the basis of the calculated and
back propagated error. It is done by establishing the position with the biggest
error for a given letter and setting this position in the input vector to 1. The
stopping criteria of the method is defined as suitably small error of the output of
neural network. Finally, decoding of an input pattern is required. During creation
phase the neural network is stimulated by random patterns.

4.3 Simple Recurrent Network

The third adapted neural approach is the recurrent neural network [6], called
also Elman network (Fig. 3). The neural network takes a single letter as an
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Fig. 3. Simple recurrent neural network

input and produces the next letter of a given word. Words are separated by the
additional mark. To encode it three methods were considered: a sequence of 1,
a sequence of -1 and the third one relies on adding of twenty seventh letter. The
last case requires encoding letters on 27 bits.

The end of learning phase takes place when the neural network properly recog-
nises the sequence of letters. During the creation phase one assumed that a
word is generated till the additional mark or tenth letter is generated. Because
this method would generate always the same word, a weights perturbation was
introduced.

4.4 Evaluation of Created Word

In order to replace human in the evaluation of a created word two mechanisms
were considered – the table of probabilities and the critic neural network. The
table of probabilities contains probability of an appearance of the three-letter
sequence in a given language. To evaluate a word, its groups are checked and their
values are assumed. Critic network is the same multilayered neural network as
the network used in Creation by Refinement method. Its role here is to evaluate
quality of the created word, not to create them. Simply, the creation phase is
skipped.

5 Experimental Studies

The aim of the described bellow experiments was an evaluation of the efficiency
of the proposed methods in new words creation. In all experiments the network
was trained using one of the following training set. The first one composes of
256 of words with the length of 4 letters, generated on the basis of 1000 most
popular English words ( they were used for all types of considered networks).
The second set contains 290 negative patterns (sequences of letters that do not



Creativity of Neural Networks 91

represent words), generated in the random way (for critic-network). The third
set includes 214 positive examples of words with a various length (for associative
memory).

First, the optimal values of parameters for each method were searched. At the
beginning we investigated the influence of the probability and an intensity of the
perturbation. For the autoassociativememory the less is the perturbation the more
correct strings it generates. When the perturbation coefficient is very high the net-
work is set up very quickly. In case when the perturbation coefficient is too small
the network produces mostly trained words. The optimal value was assumed as
0.3. The probability of perturbation set to 40 % gave the best results. Interest-
ing observation was made during the experiments with recurrent neural network.
Studying the probability and the intensity of perturbation one can notice that it
was very sensible to the probability of perturbation and less to the intensity. With
the growth of probability of perturbation from 20 % to 30% sudden disappearance
of ability to create of correct words was observed (from 70 % to 30%). The change
of the intensity of perturbation does not cause similar phenomenon.

The influence of the number of neurons in the hidden layer was evaluated, as
well. The produced words were evaluated by human in this case. The ability to
pronounce was the main criterion of evaluation but the number of neighbouring
vowels or repeated neighbouring letters were also taken into account. But, it has
to be underline that (Table 1) the comparison of the human evaluation and that
made on the basis of clone network or on the table of probability sometimes differs.

Table 1. The examples of word evaluation made by critic neural networks, human and

table of probability in associative memory approach (p- correct, n-incorrect)

word critic human table

cois p p p
roes p p p
coss p p p
cols p p p
cors p p p
coms p p p
comb p p p
rpat n p p
rpab n p n
gnls p n n
onls p n p
rilr p p n
ovar n p n
ovao n p n
ovis n p n
ovis n p n
roeq n p n
ooeq n n n
ooif n n n
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For autoassociative memory the best results were obtained with the number
of neurons set to 60. The best results were observed with the stimulation of
the network by the words from the training set. For the Creation by Refine-
ment it was difficult to find the dependence between the number of neurons
and the creation of correct words. The results depend on the ability to gen-
eralisation of the neural network. For the recurrent neural network the more
neurons are in the hidden layer, the more clearly the ability to generate cor-
rect words falls down. One can observe that with the growth of the number
of hidden neurons the generated words are longer and longer. Independently
of the number of hidden neuron the networks have their favourite sequences,
that means the strings that are generated more frequently comparing to other
strings.

Table 2. The example of words generated by using recurrent neural network, the

sign ! stands for additional mark

correct new words

teen! she! one! her! mist! how! shit! hood!
too! sea! see! tea! fist! seen! bare! hey!

In case of autoassociative memory additional experiments were performed
testing the results of its retraining using Models and Critics method and the
clone neural network. The first one prevents the network from converging in
the local minima and it gives more diverse sequences. The results of both meth-
ods were not satisfying. After retraining the network learns by rote instead of
recognition of incorrect word. Experimenting with the recurrent neural network,
one can noticed that despite it was trained on the four-letter words only, it
was able to generate longer sequences and new four-letter words (ie. words
that were not contained in the training set). In the Table 2 the examples of
three- and four-letter words discovered by the network that exist in English are
presented. They were generated with different runs and various settings of pa-
rameters. But the fact that the network was able to find them can be seen as a
success.

6 Conclusions and Future Plans

On the basis of the performed experiments we can conclude that in the ability
of neural network to create new words the best results gave the recurrent neural
network. Some ideas still need experimental studies. It applies to another let-
ter encoding and the setting of the perturbation parameters depending on the
performance of the network. However creation of new words was chosen as an
example of creation, relatively simply the solutions can be used to realise any
problem of creation, for example creation of images or an equipment design what
will be the aim of the further studies.
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Abstract. Sammon’s mapping is a well-known procedure for mapping
data from a higher-dimensional space onto a lower-dimensional one. The
original algorithm has a disadvantage. It lacks generalization, which
means that new points cannot be added to the obtained map without
recalculating it. SAMANN neural network, that realizes Sammon’s algo-
rithm, provides a generalization capability of projecting new data. Speed
up of the SAMANN network retraining when the new data points appear
has been analyzed in this paper. Two strategies for retraining the neural
network that realizes the multidimensional data visualization have been
proposed and then the analysis has been made.

1 Introduction

Searching for better and suitable data projection methods has always been an
integral objective of pattern recognition and data analysis. Such a method will
enable us to observe and detect underlying data distributions, patterns, and
structures. Feature extraction is the process of mapping the original features
into fewer features, which preserve the main information of the data structure.
Such visualizations are useful especially in exploratory analyses: they provide
overviews of the similarity relationships in high-dimensional datasets that would
be hard to acquire without the visualization.

The problem of data projection is defined as follows: given a set of high-
dimensional data points, project them to a low-dimensional space so that the re-
sult configuration would perform better than the original data in further process-
ing such as clustering, classification, indexing and searching [2], [4]. The visual
inspection of the data can provide a deeper insight into the data, since clustering
tendencies or a low intrinsic dimensionality in the data may become apparent
from the projection. In general, this projection problem can be formulated as
mapping a set of n vectors from an d-dimensional space onto an m-dimensional
space, with m < d.

There exist lots of methods that can be used for reducing the dimensionality of
data by projecting high-dimensional datasets as points on a low-dimensional, usu-
ally 2D, display. For example multidimensional scaling [11] and its partial case –
Sammon’s mapping [8] – are such technique, which, according to some predefined
error criterion, try to map the original data space into a lower-dimensional space,

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 94–103, 2006.
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hereby preserving as much as possible the local structure of the original space. The
methods differ in what properties of the dataset they try to preserve. The simplest
methods, such as the principal component analysis (PCA) [1], are based on linear
projection. A more complex set of traditional methods, that are based on multi-
dimensional scaling (MDS) [11], try to preserve the pairwise distances of the data
samples as well as possible. That is, the pairwise distances after projection approx-
imate the original distances. Another method, Sammon mapping [8], emphasizes
the preservation of local distances relative to the larger ones.

With the development of neural networks, new possibilities for non-linear
mapping were created. Among them, Self-Organizing Maps are probably the
most well-known [12]. The self-organizing map (SOM), proposed by Kohonen
[12], is a class of neural networks that are trained in an unsupervised man-
ner using competitive learning. It is a well-known method for mapping a high-
dimensional space onto a low-dimensional one. Usually a mapping onto a
two-dimensional grid of neurons is used. The advantages of the SOM are its un-
supervised training and that it combines clustering and projection operations.
Using the SOM-based approach, we can draw a table with cells corresponding to
the neurons. The cells corresponding to the so-called neurons-winners are filled
with the order numbers of the analyzed data vectors. Some cells may remain
empty. One can make a decision visually on the distribution of the vectors in
the n-dimensional space in accordance with their distribution among the cells of
the table. However, the table does not answer the question, how much the vec-
tors of the neighboring cells are close in the n-dimensional space. A natural idea
comes to apply the distance-preserving projection method to additional map-
ping of vectors-winners in the SOM. Sammon’s mapping may be used for such
purposes. In [13] a consequent combination of the SOM and Sammon’s mapping
examined and grounded experimentally. More sophisticated combination is sug-
gested in [14]. The comparative analysis of the graphical result presentation in
the SOM software is presented in [15].

Mao and Jain [6] have suggested a neural network implementation of Sam-
mon’s mapping. A specific backpropagation-like learning rule has been devel-
oped to allow a normal feedforward artificial neural network to learn Sammon’s
mapping in an unsupervised way, called SAMANN. In Mao and Jain’s imple-
mentation the network is able to project new vectors after training – a property
Sammon’s mapping does not have. A drawback of using SAMANN is that it is
rather difficult to train and it is extremely slow.

In this paper, we proposed two strategies for retraining the neural network
that realizes multidimensional data visualization.

2 A Neural Network for Sammon’s Projection

Sammon’s nonlinear mapping is an iterative procedure to project high-dimensio-
nal data into low-dimensional configurations. The algorithm was originally pro-
posed by Sammon to assist analysis of structure within volumes of data. It tries
to keep the same interpattern distances between points in the low-dimensional
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space. Suppose that we have n data points (vectors), Xi = (xi1, xi2 . . . , xid), i =
1, . . . , n, in a d-space and, respectively, we define n points, Yi = (yi1, yi2 . . . , yim),
i = 1, . . . , n, in a m-space (m < d). Without loss of generality, only projection
onto a two-dimensional space are studied (m = 2). The pending problem is to
visualize these d-dimensional vectors Xi, i = 1, ..., d onto the plane R2. Let d∗ij
denotes the Euclidean distance between Xi and Xj in the input space and is

defined as d∗ij =
√∑d

k=1(xik − xjk)2. dij denotes the Euclidean distance be-
tween the corresponding points Yi andYj in the projected space and is defined
as dij =

√∑m
k=1(yik − yjk)2. The projection (mapping) error measure E is as

follows:

E =
1∑n

i,j=1,i<j d
∗
ij

n∑
i,j=1
i<j

(d∗ij − dij)2

d∗ij
. (1)

Sammon’s algorithm involves a large amount of computations. Since,
n(n − 1)/2 distances have to be computed for every step within an iteration,
the algorithm soon becomes impractical for a large number of vectors. Sam-
mon’s algorithm has no generalization capability. In order to project new data,
one has to run the program again on pooled data (old data and new data) [3].

Since Sammon’s algorithm was primarily designed for data analysis and vi-
sualization, one of its major drawbacks is that it does not yield a map or algo-
rithm that might allow one to generalize the transformation to unseen points.
The SAMANN for Sammon’s nonlinear projection was a neural network train-
ing paradigm proposed in [6] to circumvent this problem. The SAMANN is an
improvisation on the backpropagation algorithm used for training multi-layer
perceptrons. It takes as input, vectors in the d-dimensional space and has in
its output layer m-nodes. After training the network, one is able to use it to
generalize on previously unseen data.

SAMANN network for two-dimensional projection is given in Fig. 1. It is a
feedforward neural network where the number of input units is set to be the
feature space dimension d, and the number of output units is specified as the

Fig. 1. SAMANN network for two-dimensional projection
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extracted feature space dimension m. Mao and Jain [6] have derived a weight
updating rule for the multilayer perceptron neural network that minimizes Sam-
mon’s stress, based on the gradient descent method. The general updating rule
for all the hidden layers, l = 1, . . . , L− 1 and for the output layer (l = L) is:

Δω
(l)
jk = −η∂Eμν

∂ω
(l)
jk

= −η
(
Δ

(l)
jk (μ)yl−1

j (μ)−Δ
(l)
jk (ν)yl−1

j (ν)
)
, (2)

where ωjk is the weight between the unit j in the layer l−1 and the unit k in the
layer l, η is the learning rate, y(l)

j is the output of the jth unit in the layer l, and

μ and ν are two vectors. The Δ(l)
jk are the errors accumulated in each layer and

backpropagated to a preceding layer, similarly to the standard backpropagation.
A momentum term can be added to the updating rule to speed up the learning
process. A momentum component will help to damp the fluctuations around
the optimality by encouraging the adjustments to stay in the same direction.
The sigmoid activation function whose range is (0.0, 1.0) is used for each unit.
However, in the neural network implementation of Sammon’s mapping the errors
in the output layer are functions of the interpattern distances. The network takes
a pair of input vectors at each time in the training. The outputs of each neuron
are stored for both points. The distance between the neural network output
vectors can be calculated and an error measure can be defined in terms of this
distance and the distance between the points in the input space. From this error
measure a weight update rule can be derived. Since no output examples are
necessary, this is an unsupervised algorithm.

In the SAMANN, all the inter-point distances have to be normalized before
being input to the network. This will result clamping of any new data points
whose distances to previous data points are large the initial normalizing scale.

The SAMANN Unsupervised Backpropagation Algorithm [6] is as follows:

1. Initialize the weights randomly in the SAMANN network.
2. Select a pair of vectors randomly, present them to the network one at a time,

and evaluate the network in a feedforward fashion.
3. Update the weights in the backpropagation fashion starting from the output

layer.
4. Repeat steps 2-3 a number of times.
5. Present all the vectors and evaluate the outputs of the network; compute

Sammon’s stress; if the value of Sammon’s stress is below a prespecified
threshold or the number of iterations (from steps 2-5) exceeds the prespeci-
fied maximum number, then stop; otherwise, go to step 2.

One iteration in our research means showing all pairs of vectors to the neural
network once.

The rate, at which artificial neural networks learns, depends upon several
controllable factors. Obviously, a slower rate means that a lot more time is
spent in accomplishing the learning to produce an adequately trained system.
At the faster learning rates, however, the network may not be able to make the
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fine discriminations possible with a system that learns more slowly. When the
learning rate is very small, the weight adjustments tend to be very small. Thus,
if η is small when the algorithm is initialized, the network will probably take an
unacceptably long time to converge.

3 Strategies for Retraining of the SAMANN Network

After training the SAMANN network, a set of weights of the neural network are
fixed. A new vector shown to the network is mapped into the plane very fast
and quite exactly without any additional calculations. However, while working
with large data amounts there may appear a lot of new vectors, which entails
retraining of the SAMANN network after some time. It has been established that
training of the SAMANN neural network requires much calculations, therefore
we strive to obtain new weights and a precise data projection as soon as possible.

Let us name the set of vectors that have been used to train the network by
the primary set, and the set of the new vectors, that have not been used for
training yet, by the new set.

Two strategies for retraining the neural network that visualizes multidimen-
sional data have been proposed and investigated. The first strategy uses all
possible pairs of data vectors (both from primary and new datasets) for retrain-
ing. The second strategy uses restricted number of pairs of the vectors (vector
from the primary set – vector from the new set).

The strategies of the neural network retraining data are as follows:

1. The SAMANN network is trained by N1 initial vectors, a set of weights
ω1 is obtained, then the projection error E(N1) is calculated and vector
projections are localized on the plane. After the emergence ofN2 new vectors,
the neural network is retrained with all the N1 +N2 vectors, and after each
iteration the projection error E(N1 + N2) is calculated and the computing
time is measured. The new set of SAMANN network weights ω2 is found.

2. The SAMANN network is trained by N1 initial vectors, a set of weights ω1
is obtained, and the projection error E(N1) is calculated. Since in order to
renew the weights ω, a pair of vectors μ and ν is simultaneously provided for
the neural network, the neural network is retrained with 2 ∗ N2 vectors at
each iteration: at each step of training one vector is taken from the primary
dataset and the other from the new one. After each iteration the projection
error E(N1 + N2) is calculated and the computing time is measured. The
new set of network weights ω2 is found.

Tree datasets have been used in the experiments:

1. Iris Dataset (Fisher‘s iris dataset) [9]. A real dataset with 150 random sam-
ples of flowers from iris species setosa, versicolor, and virginica. From each
species there are 50 observations of sepal length, sepal width, petal length,
and petal width in cm. The iris flowers are described by 4 attributes.
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2. 300 randomly generated vectors Xi = (xi1, ..., xid) ∈ Rd (three spherical
clusters with 100 vectors each, d = 5).

3. Austra dataset (Australian Credit Approval) [10]. The dataset concerns
credit card applications. The dataset consists of 690 14-dimensional patterns
from two classes.

These three datasets were divided into two parts: the primary dataset and the
set of new vectors (new dataset). The first part is used for primary training of
the SAMANN network, while the new part together with the primary dataset –
for retraining the network.

When projecting data, it is of great importance to achieve good results in a
short time interval. In the case of the SAMANN network, it has been observed
that the mapping error depends on different parameters. The latest investiga-
tions have revealed that in order to achieve good results, one needs to select the
learning rate η properly. The experimental investigation [5] shows that the opti-
mal value of the learning rate is in the interval [5, 30]. By selecting such values
of the learning rate, the significant economy of the computing time is possible.
Smaller values of the learning rate within the interval (0.0,1.0) guarantee a more
stable convergence to the minimum of the mapping error.

In the analysis of strategies for the network retraining, a particular case of
the SAMANN network was considered: a feedforward artificial neural network
with one hidden layer and two outputs (m = 2). In each case, the same number
(n2 = 20) of neurons of the hidden layer was taken and the set of initial weights
was fixed in advance. To visualize the initial dataset, the following parameters
were employed: the number of iterations M = 10000, the training parameter
η = 10; to visualize the set of new vectors: the training parameter was η = 1,
and the number of iterations depended on the strategy chosen. In the case of
sufficiently large d (e.g., d > 10), some fluctuations in the dependence of the
projection error on the learning time appears (see Austra dataset analysis in
Fig. 4). To decrease the fluctuations, η = 0.7 was selected in case of Austra
dataset for visualizing the new points.

In the Iris dataset, 50 vectors were used for retraining. In the randomly gener-
ated set, 90 vectors were used for retraining: 30 vectors for the different clusters.
In the Austra dataset, 230 vectors were used for retraining.

When calculating, the time of algorithm performance was measured. Figs. 2,
3 and 4 demonstrate the results of calculation. Only the results of retraining the
SAMANN network with the new vectors (points) are indicated in the figures.

The first strategy yields good results, however retraining of the network is
slow. The best visualization results are obtained by taking points for network
retraining from the primary dataset and the new dataset. This is a basis of the
second strategy. The second strategy enables us to attain good visualization
results in a very short time as well as to get smaller visualization errors and
to improve the accuracy of projection as compared to the first strategy (Fig. 3
illustrates this fact best in the experiment with the dataset of randomly gener-
ated vectors). The second strategy makes it possible to reduce the duration of
calculation because there are considerably less new vectors than in the primary
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Fig. 2. Dependence of the projection error on the computing time for the Iris dataset

Fig. 3. Dependence of the projection error on the computing time for randomly gene-

rated vectors

Fig. 4. Dependence of the projection error on the computing time for the Austra

dataset

set. Figs. 5, 6 and 7 illustrate mapping results (primary and new datasets) of
the Iris dataset, randomly generated vectors and Austra dataset.

The experiments indicate that the second strategy performs better than the
first one (see Figs. 2, 3 and 4). Moreover, intense fluctuations of the projection
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Fig. 5. Mapping results of the Iris dataset

Fig. 6. Mapping results of the randomly generated vectors

Fig. 7. Mapping results of Austra dataset
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error are possible when the first strategy is applied (see Fig. 4). When visualizing
the Austra dataset, we observe the small mapping errors from the very beginning
of the training. These errors do not decrease significantly in future iterations.
This cannot be concluded analyzing results of Figs. 2 and 3. Here we observe
the fast stabilization of the projection error in case of the first strategy, while
the mapping error by the second strategy decreases. This is an advantage of the
second strategy.

4 Conclusions

Speed up of the SAMANN network retraining when the new data points appear
has been analyzed in this paper. It is important that the retraining of the neural
network is efficient and the training algorithm is faster convergent, therefore
effort was put to obtain a new set of weights in a shorter time. Two strategies
for retraining the neural network that visualizes multidimensional data have
been proposed and investigated. The first strategy uses all possible pairs of
data vectors (both from primary and new datasets) for retraining. The second
strategy uses restricted number of pairs of the vectors (vector from the primary
set – vector from the new set). The experiments both on artificial and real data
have shown that it is expedient to take one vector from the primary dataset and
the other from the new one at every step of training. This strategy yields smaller
projection errors faster.

The experiments lead to the idea of possibility to minimize the SAMANN
neural network training time via dividing the training process into two sub-
processes: (1) training of the network by a part of the data vectors; (2) retraining
of the network by the remaining part of the dataset. In this case, the training
set will consist of some subsets. The smaller number of pairs of vectors will be
used when training the network by vectors of the subsets. This allows to obtain
the similar visualization quality much faster.
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Abstract. A modelling process of an unknown multi-dimensional sys-
tem is mostly performed with methods which describe the system by a
multi-dimensional surface (e.g. neural networks (NNs)). Some systems,
however, does not have a surface nature. On the contrary - their behav-
ior resembles multi-dimensional chains. Obviously, as it was proven in
numerous applications, always better results can be obtained when the
modelling method corresponds to the system nature. Therefore, when a
data distribution of an unknown system has a chain characteristic, the
system should be also modelled with a chain, not a surface, method.
The aim of this article is to present the alternative approach to the
modelling process, in which the multi-dimensional model of an unknown
system is built on the basis of a set of two-dimensional NNs instead of
one multi-dimensional NN. The proposed approach results in a chain
multi-dimensional model of an analyzed system.

1 Introduction

The most popular approach to the modelling process of an unknown real system
is to describe its behavior by a surface mapping its input variables into output
variables. This approach often results in a correct and satisfactory input-output
mapping, however, there are some situations when it should be avoided. The
most obvious one is when a system of a very large number of input variables is
regarded. This is due to the fact that the data distribution in a multi-dimensional
input space is often not appropriate to build a surface model. As Gershenfeld
[2] proved, almost all data contained in a data set describing a high-dimensional
space come from the border of the analyzing space, instead of its center. That
means that most analysis of a high-dimensional space are dominated by ”border
effects” [3].

This tendency can be observed for example when the Monte-Carlo method
is applied for generating points in a multi-dimensional region. It can be noticed
that a ratio of points situated inside the region to all points tends to one when
the region dimension increases. An important fact is that this effect appears
relatively quick (for example for 20 dimensions about 90% of data is located on
the region border [3]).
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(a) (b)

Fig. 1. a) System which should not be modelled by a surface. b) Economic system of

a chain characteristic.

The multi-dimensional space is not the only one in which surface approxi-
mation can sometimes result in not satisfactory input-output mapping. Even in
3D space examples of systems which cannot be properly modelled by a surface
model can be found (Fig. 1a).

The system shown in Fig.1a is an example of an artificially generated system.
However, not only artificial systems can have a chain characteristic. Systems of
this kind are also very common in real life. The best example are economic time
series systems which are mostly of a chain nature - even when the time variable
is not explicitly given. Figure 1b presents an exemplary economic time series
system of an unemployment rate in Poland in years 1992-1999 [6].

In situations in which it is not reasonable to approximate an unknown system
by a surface model another approaches should be considered. The proposition of
the authors of this article is to replace a multi-dimensional surface model, created
for instance with a multi-dimensional NN, with a multi-dimensional parametric
curve built on the basis of a set of two-dimensional NNs.

2 Parametric Curve Modelling Method in a
Multi-dimensional Space

The main idea of the parametric curve modelling method is to build a set of
two-dimensional NNs, where each NN describes the behavior of a single variable
(input or output) in regard to the known parameter t. These two-dimensional
NNs are then assembled together in order to create a multi-dimensional model
describing the input-output mapping in the whole space.

The idea of the parametric curve modelling method will be discussed in details
via a 3D system described by the following parametric equation:⎧⎨⎩x = sin(t)

t

y = cos(t)
t

z = t

(1)
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Fig. 2. Interfered data set built with eq. 1

Before starting the parametric curve modelling process the data set of one thou-
sand data points was created. Data was generated from eq. (1) for parame-
ter t = [Π, 8Π ]. In order to make the problem more realistic the data was
interfered by adding random noise from interval 〈−10%, 10%〉. The interfered
data set is shown in Fig. 2. To prepare the data for a NNs training all vari-
ables (input and output) were normalized to the interval 〈0.1, 0.9〉, according to
eq. (2) [4]:

Vn = 0.1 + 0.8 ∗ V − Vmin

Vmax − Vmin
(2)

Next, a set of two-dimensional NN models was created. The parameters of NNs
used in the survey were as follows [4] [5]:

– flow of signals: one-way,
– architecture of connections between layers: all to all,
– hidden layers: one with suitable sigmoid neurons,
– output layer: 1 linear neuron,
– training method: backpropagation algorithm with momentum and changing

learning rates,

Table 1. Parameters of NNs described by eq. (3), (4) and (5)

net. 1 (eq.3) net. 2 (eq.4) net. 3 (eq.5)

i iw b lw iw b lw iw b lw

1 -56.01 55.99 -0.72 55.99 -56.01 3.21 8.51 -6.60 1.94
2 -55.96 49.85 -0.69 57.31 -48.21 0.66 -6.02 0.76 -3.93
3 55.81 -43.68 -0.97 -57.50 41.55 0.82
4 -55.88 37.42 -1.09 57.38 -35.18 0.96
5 -56.09 30.84 1.42 -57.45 28.31 1.21
6 55.86 -24.70 1.71 57.21 -22.01 1.48
7 -56.52 17.94 2.49 -57.11 14.41 2.81
8 -54.45 11.07 -4.19 -56.57 9.97 -2.18
9 56.71 -5.52 -5.53 -55.72 6.77 -3.13
10 56.01 0.07 2.27 55.99 -0.07 1.92
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Fig. 3. Two-dimensional models created with NNs

– training aim: to minimize mean absolute error,
– training time: 10000 epoch,
– testing method: visual control.

Models built with NNs of above parameters are shown in Fig. 3 and described
by eq. (3), (4) and (5). The parameters (weights and biases) of all three networks
are gathered together in Table 1.

x = 3.95 +
10∑

i=1

lwi ∗
1

1 + e−(iwi+bi)
(3)

y = −4.17 +
10∑

i=1

lwi ∗
1

1 + e−(iwi+bi)
(4)
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(a) (b)

Fig. 4. a) Parametric curve model of the analyzed system. b) Model and data points.

z = 0.09 +
2∑

i=1

lwi ∗
1

1 + e−(iwi+bi)
(5)

where: iw - input weights vector, lw - output weights vector, b - biases vector
By assembling together eq. (3), (4) and (4) a three-dimensional model of

the analyzed system was created (Fig. 4). The approximated accuracy of this
model (4.9%) was calculated using MAE (mean absolute error) measure (eq.6)
[1], which was equal to 4.9%.

error =
∑n

k=1 |z∗i − zi|
n

(6)

where: z∗i - empirical values, zi - theoretical values, n - number of data points.
In order to calculate the theoretical values, the 2D models were equally sampled
(10000 points) in regard to t dimension. Next, the points were projected onto the
x-y space and for each empirical value the closest point (the theoretical value)
was found.

3 Surface Model Performance vs Parametric Curve
Model Performance

As it was mentioned in the introduction there is a group of systems which can-
not be successfully approximated with surface methods. In order to prove this
statement two 3D models of the system presented in the introduction (Fig. 1a)
were constructed.

The first model was created with use of a neural network. The parameters of
the network were mostly the same as described in section 2. The differences were
only in the number of hidden neurons (which was set to 10) and the number of
training epochs (which was set to 10000). The model error calculated with eq. 6
was equal to 14.57%. The model surface is shown in Fig. 5a.

In order to decrease the model error, a lot of experiments (during which the
network parameters were changed) were carried out. Their results are shown in
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Table 2. Parameters of the surface models built for the system presented in Fig. 1a

No. of experiment No. of neurons No. of epochs MAE (%)

1 10 10000 14.57
2 20 10000 12.11
3 30 10000 12.09
4 40 10000 11.81

5 10 50000 12.66
6 20 50000 10.53
7 30 50000 10.60
8 40 50000 9.88

9 10 100000 11.40
10 20 100000 11.19
11 30 100000 9.73
12 40 100000 8.55

(a) (b)

Fig. 5. Two models of the system presented in Fig. 1a: a) the surface model, b) the

parametric curve model

Table 2. After completing the experiments, it occurred that neither increasing
the number of hidden neurons or lengthen the learning time caused a significant
decrease in the model error. Even in case of the model of 40 hidden units (trained
by 100000 epoches) MAE was still not satisfactory (8.55%). The only effect of
adding new hidden neurons was a potential overparametrization of the model.

The second model was built with the method described in the previous sec-
tion. In contrast to the surface method, the application of the parametric curve
modelling method resulted in the model of a very high precision (MAE=2.3%).
The model shape is shown in Fig. 5b.

4 Other Advantages of Parametric Curve Models

The previous section described a system which was modelled much more precisely
with the parametric curve modelling method than with the surface method. The
better performance of the chain model stemmed from the fact that the system
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(a) (b)

Fig. 6. Two models of the unemployment rate system: a) the surface model, b) the

parametric curve model

was described by data of a chain distribution. This relation, however, is not
always observed. Sometimes even a system of a strict chain distribution can be
described with a higher precision by the surface model than by the chain model.
This is due to the fact that the surface model spreads its surface over data fitting
its very precisely in input dimensions and balancing only values describing the
output dimension. Figure 6 presents two models of a system of a strict chain
characteristic which was discussed in the introduction (Fig. 1b). The first model
was constructed with a neural network (Fig. 6a) and the second one with the
parametric curve modelling method (Fig. 6b). As it can be observed, the first
model is a bit more precisely fitted to the data (MAE = 2.18%) than the second
one (MAE = 2.28%).

The system illustrated in Fig. 1b presents a chain system which can be de-
scribed with a little higher rate of precision by the surface model than by the
chain model. However, even in such case building the parametric curve model
of a system with a chain data distribution is more advantageous. First of all,
the process of constructing the parametric curve model allows the researcher
to control the overfitting phenomena which is one of the main drawbacks of a
multi-dimensional neural network training. Theoretically, there are some meth-
ods which can be used in order to control this phenomena (e.g. division of data
set into two or more subsets or the cross validation method [4]), however, none
of them guarantees that the resulting multi-dimensional model is not an over-
fitted one. The only method which can give the absolute certainty is a visual
control. Obviously this method can be used only when two or three-dimensional
problems are considered. In other cases there is no possibility of creating figures
simultaneously showing a data distribution and a model shape in the whole an-
alyzed space. Since the proposed method of the parametric curve modelling is
based on creating two-dimensional models, it enables the graphic control of the
overfitting phenomena regardless of the number of input dimensions.

A two-dimensional analysis of the input-output dependencies has one more es-
sential feature - it requires far less data points for building a non-overfitted model
of the multi-dimensional system than a multi-dimensional analysis. This is due to
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Table 3. The increase in the number of parameters of the chain and surface model in

regard to the increase in the number of system input dimensions

No. of input Name of input Neural m. Chain m. Difference in
dimensions variable added to model (no. of par.) (no. of par.) no. of par.

1 number of inhabitants 16 9 7
2 money supply 21 12 9
3 dollar’s rate of exchange 26 17 9
4 rediscount rate 31 22 9
5 number of workers 36 26 10

(a) (b)

(c) (d)

(e)

Fig. 7. Parametric curves for input variables of the system of an unemployment rate

in Poland in years 1992-1999: a) money supply, b) number of inhabitants, c) dollar’s

rate of exchange, d) number of workers, e) rediscount rate

the fact that a parametric curve model, constructed by joining two-dimensional
models, requires far less parameters than corresponding multidimensional surface
model. Table 3 presents the increase in the number of parameters of the chain and
surface model in regard to the increase in the number of system input dimensions.
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The survey, which results are gathered in Table 3, were also based on the system
of unemployment rate in Poland, however, this time five following input variables
were used: money supply, number of inhabitants, dollar’s rate of exchange, number
of workers and rediscount rate. As it can be observed in Fig. 7 all input variables
applied in the survey were of a chain characteristic which means that the data dis-
tribution in the whole system was also a chain one.

5 Conclusion

The aim of this article was to present the modelling method based on a multi-
dimensional parametric curve built on the basis of two-dimensional NNs. The
intention of the authors of the article was also to show that this method, applied
in systems of a specific - so called ”chain” - nature, can result in a more precise
approximation than this obtained with multi-dimensional NNs (or other surface
modelling methods).

Naturally, it has to be underlined that the application of the modelling method
based on the multi-dimensional parametric curve has one serious limitation -
it can be used only when the data sequence is known. Therefore, so far the
parametric curve modelling method was successfully applied by the authors of
this article only in time series systems where the t parameter could be interpreted
as time. The survey aimed at finding a way of applying the parametric curve
modelling method in non-time series systems is now carried out by the authors
of this articles. The results will be presented soon.
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Abstract. The task of faults localization is discussed in a model-free
setting. As a tool for its solution we consider a multiclass pattern recog-
nition problem with a metric in the label space. Then, this problem
is approximately solved, providing hints on selecting appropriate RBF
nets. It was shown that the approximate solution is the exact one in
several important cases. Finally, we propose the algorithm for learning
the proposed RBF net. The results of its testing are briefly reported.

1 Introduction

Problems of detection and localization of faults have been the subject of intensive
research in recent years (see monograph [9] for a wide perspective and extensive
bibliographies). Roughly speaking, two main approaches to these problems can
be distinguished: a model based and a model free approach, the latter being fre-
quently motivated by hypothesis testing or by the theory of pattern recognition.
Also the approach considered here relies on this theory. Our aim is to discuss a
multi-class pattern recognition problem, which differs from the classical, statisti-
cal pattern recognition problem in that a metric (or more generally, a topology)
is defined in the space of outputs (labels). In other words, in apposite to the
classical setting, in which labels of the classes are arbitrary and unordered, we
consider the family of problems with class labels that have neighbors, which
are closer or further in a specified metric. There are many possible applications
where a metric on labels is defined in a quite natural way:

1) Consider a production process of resistors, which are classified to 1%, 5%,
10% and 20% classes of their accuracy. It is reasonable to attach a larger loss
when a resistor from a 5% class is recognized as that of a 20% class, than if it is
recognized as coming from a 10% class of accuracy. In fact, the above example
is typical for every quality control procedure that classifies products to more
than two classes, which can be ordered according to the increasing quality of
production.
2) Consider a fault localization problem on a sufficiently fine grid. For simplic-
ity assume that the grid is two dimensional with the nodes numbered as (i, j),
say. Suppose that a fault is located at (i0, j0) node. It is reasonable to attach a
smaller loss if the fault is recognized to be at the position (i0 + 1, j0 + 1) than
if it is recognized to be at node (i0 + 10, j0 − 13), say.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 113–122, 2006.
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Problems similar to 2) arise in the localization of targets as in military or medical
applications (the target is, e.g., a group of cancer cells).

The above examples lead to considering pattern recognition problems with loss
functions, which measure a kind of distance between labels of classes. The Eu-
clidean metric is of special importance, since we are able to find simple decision
rules, as is shown in the rest of the paper. There are two more important reasons
for considering quadratic loss functions instead of zero-one loss, which has been
mainly considered in the literature so far (see [4], [2] for extensive bibliographies).

A) It is well known that most of the existing pattern recognition methods can
change a decision, if the learning sequence is enlarged by even one example.
This feature is, to some extent, unavoidable, but in multiple class classification
problems with unordered class labels such a change can have far reaching con-
sequences. In opposite, if we are able to introduce a metric on labels, then this
type of changing decisions will result in selecting a decision, which is close to the
previous one. Thus, a kind of robustness is built-in into the process of training.
B) For many years a widespread opinion on multiple class recognition problems
was that they are not worth of special attention, since a multiple class problem
easily reduces to a sequences of dichotomies. On theoretical ground this is, of
course, the truth, but in practice, multiple class problems are known to cause
troubles (see, [1], [5], [7]).

It should be mentioned that different metrics were suggested in the literature
(see [12], [13] and the bibliographies cited therein), but they were introduced in
the pattern space, while here, we consider metrics in the space of labels.

2 Problem Statement

Consider firstly the statistical pattern recognition problem in the standard set-
ting (see, e.g., [2] or [4]). Let X ∈ Rd be a random vector, representing a pat-
tern, which is a member of one of I classes, labelled as 1, 2, . . . , I. Pair (X, i)
is a random vector representing a pattern and its correct classification, which
is unknown for a new pattern X to be classified, but we usually have also a
learning sequence (X(k), i(k)), k = 1, 2, . . . , n of observed patterns Xk ∈ Rd and
their correct classifications i(k) ∈ {1, 2, . . . , I}. Denote by 0 ≤ q(i) ≤ 1, a priori
probability that X comes from i-th class, i = 1, 2, . . . , I,

∑I
i=1 q(i) = 1.

For simplicity of the exposition assume the existence of probability densities
f(x|i), which describes the conditional p.d.f. of X , provided that it was drawn
from i-th class. The next ingredient of the problem setting is a loss function,
L(i, j) say, which attaches loss L(i, j) if a pattern from i-th class is classified to
j-th class. The aim is to find (or to approximate from a learning sequence) a
decision function Ψ(X), which specifies a label of the class for X and such that
it minimizes the expected loss given by:

R(Ψ) = EX

[
I∑

i=1

L(i, Ψ(X))P (i|X)

]
, (1)
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where EX denotes the expectation w.r.t. X , while P (i|X) is the a posteriori
probability that observed pattern X comes from i-th class. In other words,
P (i|X = x) is the conditional probability that label i is correct classification
of a given pattern X = x. According to the Bayes rule, P (i|X = x) is given by

P (i|X = x) =
f(x|i) q(i)
f(x)

, i = 1, 2, . . . , I, f(x)
def
=

I∑
l=1

f(x|l) q(l) . (2)

Our aim is to minimize the risk R(Ψ), provided that the minimizer Ψ∗(x), say,
is a measurable function. It is well known, that in order to minimize R(Ψ) it
suffices to minimize the conditional risk

r(ψ, x)
def
=

I∑
i=1

L(i,ψ)P (i|X = x) (3)

with respect to ψ, which is a real variable taking values in the range of Ψ(x),
while x is treated as a parameter. According to the above statement, the optimal
decision rule Ψ∗(x) is obtained as Ψ∗(x) = arg minψ r(ψ, x) for all x ∈ Rd in
the range of X and it is called the Bayes classifier.

3 Approximate and Exact Decision Rules for Quadratic
Loss Function

Now, we are at the position to put our idea into the above general framework.
Firstly, we slightly generalize the notion of class labels admitting i and j to
be vectors. For simplicity of exposition we work with two-dimensional labels,
i.e., i = (ia, ib), where ia ∈ {1, 2, . . . , Ia}, ib ∈ {1, 2, . . . , Ib}, say, and the total
number of classes is I = Ia · Ib. Analogously, our decisions are also labelled in
two dimensions j = (ja, jb), where ja ∈ {1, 2, . . . , Ia}, jb ∈ {1, 2, . . . , Ib}. Thus,
Ψ(x) is of the form (ja, jb).

In opposite to the classical stream of research, in which it is customary to
select L(i, j) as 0− 1 loss, we choose the quadratic loss function

L(i, j) = (ia − ja)2 + (ib − jb)2.

Now, the problem of finding the Bayes classifier Ψ∗(x) = (j∗a(x), j∗b (x)) reads as
follows

(j∗a(x), j∗b (x)) = arg min
ja,jb

Ia∑
ia=1

Ib∑
ib=1

[
(ia − ja)2 + (ib − jb)2

]
P ((ia, ib)|X = x) , (4)

where the minimization in (4) is carried out for ja ∈ {1, 2, . . . , Ia} and jb ∈
{1, 2, . . . , Ib}.

From the optimization theory point of view, (4) is the discrete optimization
problem, which can be quite (or even prohibitively) laborious when Ia and Ib are
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large, e.g., each of the order 1000, as we can meet when (ia, ib) are coordinates
of pixels in an image. For this reason we later relax the problem and treat ja and
jb in (4) as real variables. Thus, we can now use the standard way of finding the
minimizers of (4) and then to round them to the nearest integers. These steps
yield

j∗a = Rounda

[
Ia∑

ia=1

Ib∑
ib=1

ia P ((ia, ib)|X = x)

]
(5)

j∗b = Roundb

[
Ia∑

ia=1

Ib∑
ib=1

ib P ((ia, ib)|X = x)

]
, (6)

where Round[.]a and Round[.]b denote usual rounding to the nearest integer
with the exception that Roundl[t] = 1 for t ≤ 1, l = a, b and Rounda[t] = Ia for
t ≥ Ia, Roundb[t] = Ib for t ≥ Ib. In deriving (5) and (6) we have used the fact
that for every x

Ia∑
ia=1

Ib∑
ib=1

P ((ia, ib)|X = x) = 1 .

These formulas can further be simplified if labels ia and ib are conditionally
independent given X = x.

Formally, this approach provides only an approximate solution, but when
P ((ia, ib)|X = x) are smooth functions of ia and ib, then one can expect that
the risk is not much larger than for the optimal solution. This hope is supported
by the following results.

Theorem 1. Decision rules (5), (6) are exact minimizers of the conditional risk
(4) in the following cases.

1. One can identify the class labels with a set {1, 2, . . . , I}.
2. The classes are separable, i.e., there exist subsets Rm ⊂ Rd, m = 1, 2 . . . ,M ,

which are mutually disjoint, covering all Rd space and such that each label
is attached to one and only one Rm.

3. The class labels form the grid1 {1, 2, . . . , Ia}×{1, 2, . . . , Ib} and their com-
ponents are conditionally independent, given X, i.e.,

P ((ia, ib)|X) = P (ia|X)P (ib)|X) . (7)

Before sketching the proof, a few remarks are in order.

– The above theorem provides the list of sufficient conditions for decision rules
(5), (6) to be exact minimizers of (4). If none of these conditions is fulfilled,
it does not necessarily mean that (5), (6) are not exact minimizers of (4). In
other words, this list can be extended.

– In case 1 we do not impose any additional restrictions on probability distri-
butions of patterns.

1 For simplicity we write the grid of labels as two-dimensional, but the results can
easily be generalized.
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– The geometry of labels is not restricted in case 2.
– If the probability distributions of patterns possess densities f(x|i), i =

1, 2, . . .d, then in case 2 the requirement that Rm ⊂ Rd, m = 1, 2 . . . ,M ,
are mutually disjoint can be weakened to the condition that they are either
disjoint or just touching, i.e., they can have common boundary points or sur-
faces in Rd−1. The result still holds, since then the probability that pattern
X is drawn from the common boundary surface equals zero.

– One may attempt to prove the Bayes risk consistency of the empirical coun-
terparts of (5), (6) using the results from [6] as guidelines.

Assertion 1 follows from the fact that for univariate and ordered labels the
approximate minimizer (5) is closer to that integer for which

I∑
i=1

(i− j)2P (i|X = x) (8)

is smaller, since this function is quadratic in j.
To prove assertion 2 note that for separable classes if x ∈ Rm, then P (i|X =

x) = 1 only for i = m and P (i|X = x) = 0 for all other classes. Thus, the loss
function equals to (m− j)2 and it has the same same minimizer as arising from
the rounding of the a posteriori mean.

Under condition (7) the quadratic loss in (4) reduces to the sum of expressions
which have the form (8). Thus, assertion 3 follows by applying assertion 1 several
times.

4 RBF Net for Faults Localization

Formulas (5) and (6) form the basis for constructing an RBF net for determining
the positions of faults. The classical way of converting decision rules (5) and (6)
into empirical decision rules, which are based on the learning sequence instead
of formulas for P (i|X = x), is to estimate these functions from (X(k), i(k)),
k = 1, 2, . . . , n with the aid of (2). This way provides the so called plug-in
decision rules (see [4]) and it requires a long learning sequence when f(x|i),
i = 1, 2, . . . , I are estimated by nonparametric methods.

If Ia and Ib are large we cannot follow the plug-in method, since it would
require estimating hundreds of densities. It seems that a reasonable alternative
is to estimate each f(x|i) by an element of parametrized family of densities such
as Gaussian or elliptically contoured densities and to estimate their parameters
from the learning sequence. In some cases one can have good reason to select such
a family of densities. Otherwise, we are forced to select such a family arbitrarily,
e.g., from the class of radial basis functions (see [16] for the results on their
approximation abilities and [11], [15], [8], [10], [14] for recent results in related
directions). Below we follow the former approach, but we insist on selecting
positions of RBF centers as if they were mean vectors of densities corresponding
to these RBF’s.
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Denote by K(t) ≥ 0, t ∈ R a kernel of RBF’s, which is such that∫ ∞

−∞
K(t) = 1 ,

∫ ∞

−∞
tK(t) = 0 ,

i.e., K fulfils the same conditions as a density function. Instead of f(x|i) we shall

use Kh(||x − c(i)||), where Kh(t)
def
= h−1K(t/h), h > 0 a smoothing parameter

and ||.|| is a norm in Rd. c(i) ∈ Rd, i = 1, 2, . . . , I are centers of RBF’s. In more
details, for two-dimensional class labels i = (ia, ib) we shall write c(ia, ib). Also h
may depend on (ia, ib), but later it is not displayed. Now, f(x|(ia, ib)) is roughly
estimated as Kh(||x− c(ia, ib)||). Inserting these expressions to (2) and (5), (6)
we obtain the following plug-in decision rules

ĵa = Rounda

[
1

f̂(x)

Ia∑
ia=1

Ib∑
ib=1

ia q̂(ia, ib)Kh(||x− c(ia, ib)||)
]
, (9)

ĵb = Roundb

[
1
f̂(x)

Ia∑
ia=1

Ib∑
ib=1

ib q̂(ia, ib)Kh(||x − c(ia, ib)||)
]
, (10)

where q̂(ia, ib) is an estimate of a priori probability that a pattern comes from
class (ia, ib), while

f̂(x)
def
=

Ia∑
ia=1

Ib∑
ib=1

q̂(ia, ib)Kh(||x − c(ia, ib)||) .

We have also added hats over ja and jb in order to indicate that these are
decisions, which are based on the learning samples and they can be different than
j∗a and j∗b . Examining the nominators and the denominators in (9) and (10), one
can easily notice that their structure is exactly the same as the classical RBF
nets. Thus, for d-dimensional label space we need 2 d+1 RBF nets to be tuned.
There is, however, a difference in tuning between usual RBF’s and our case,
since parameters q̂(ia, ib) and c(ia, ib) appear in all these nets and can not be
tuned independently. Fortunately, these parameters have their own statistical
interpretation, which makes their selection easier.

Namely, we propose to select them as follows. Having the learning sequence
(X(k), (i(k)

a , i
(k)
b ), k = 1, 2, . . . , n at our disposal, we put

q̂(ia, ib) = n(ia, ib)/n , ia = 1, 2, . . . , Ia , ib = 1, 2, . . . , Ib , (11)

where n(ia, ib) denotes the number of observations with the label (ia, ib) in the
learning sequence. Clearly,

∑Ia

ia=1
∑Ib

ib=1 n(ia, ib) = n. Analogously,

c(ia, ib) = n−1(ia, ib)
n∑

k=1

X(k) χ(k, (ia, ib)) , (12)
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where χ(k, (ia, ib)) = 1 if in the learning sequence observationX(k) has the label
(ia, ib) and χ(k, (ia, ib)) = 0, otherwise. In other words, c(ia, ib) is the mean
vector of those observations, which were assigned to class (ia, ib).

One can express formulas (11) and (12) in the recursive form. These formulas
can either be used directly for tuning the above nets, as in the example below,
or one can treat them as good starting point for a direct search of centers and
weights. Smoothing parameter(s) h (or h(ia, ib)) can be selected in the standard
way, i.e., by minimizing an estimate of the expected loss, with the same care
in estimating the loss as when RBF’s are used for approximating surfaces, e.g.,
splitting the learning sequence and using cross-validation.

5 Detection of Hot Spots – Example

As is known, the presence of unexpected heat sources in electronic devices in-
dicates faults (or potential faults). Difficulties in their localization stem from
the fact that the temperature can usually be measured in locations, which are
far from possible positions of faults. Additionally, a simple linear model of heat
transfer (as the one used here for simulating training data) is not adequate. In
such cases it is reasonable to train the net in locating possible faults, basing on
indirect measurements.

In our simulation experiment observations were generated using the solution of
the linear heat equation, considered in the steady state. Four temperature
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Fig. 1. A posteriori probabilities of detecting the second component of fault labels vs

observations Y1, Y2 (see example)
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Fig. 3. Dependence of the empirical loss on smoothing parameter h (see example)

sensors were located in positions, which were far from possible positions of heating
sources. Gaussian noises were added to the measurements. A parasite heat source
could occur at four different locations with four different intensities. We have im-
plemented decision rules (9), (10), together with formulas (11), (12) for learning.

Two temperature sensors were used at the first stage of our simulations in
order to visualise decision surfaces. Assuming that the temperature is measured
with Gaussian errors2 and selecting kernel K also as the normal distribution, we
can additionally visualize a posteriori probabilities as a function of the observa-
tions Y1 and Y2, say. These probabilities are shown in Fig. 1 for four different
locations of the parasite heat source, keeping the source intensity constant. As
one can notice from these figures, the network can clearly distinguish between
positions of the hot point. Note, however, that this is an idealized case with
known errors distribution with small variances (see below for more realistic sim-
ulations). The corresponding decision surfaces are shown in Fig. 2. Rounding the
2 We underline that knowledge of measurement errors distribution is not neceessary

for functioning of the proposed neural net. The normality assumption was made only
for the purposes of simulations.
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vertical coordinates provides decisions on the coordinates and the intensities of
the parasite heat source.

In order to demonstrate dependence of the empirical loss on h we took ad-
vantage of simulations when we know the locations of faults. This time, four
temperature sensors were used. For simplicity the same parameter h was ap-
plied at each RBF center. The dependence, obtained by averaging over 100
noise realizations, is shown in Fig. 3 for various dispersion of measurement er-
rors s ≥ 0. With the exception of small s, the existence of a flat area of loss
minimizing h is clearly visible. In practice, one may hope to locate such areas
using cross-validation techniques. The level of averaged loss is also satisfactory,
since for reasonable chosen h it is less than or equal to 2, which means that the
most frequently committed decision errors were not larger than one grid step in
each direction.

6 Concluding Remarks

The algorithms of training a RBF type neural network to the task of fault
location are proposed and – to some extent – investigated. They are based on
the solution of the pattern recognition problem with a metric in the label space.
It seems that this problem has a wider potential utility than described here and
it deserve further attention.
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Council for Scientific Research under a grant ranging from 2002 to 2005 and by
the Polish Foundation for Science.
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Abstract. The aim of this article is to present a method which can be
applied to determine interpolation region of a multidimensional neural
model. The method is based on the parametric curve modelling. The
idea of it is to surround the parametric curve model with the hypertube
covering most of the data points used in a neural model training. The
practical application of the method will be shown via a system of an
unemployment rate in Poland in years 1992-1999.

1 Introduction

A characteristic feature of a neural model is that it not only covers the region
of data points used in the training process but also spreads out over the whole
domain of an analyzed system. The implication of this fact is that while the
neural model shows the correct rules of the system behavior in the region of fit,
its surface beyond this region is mostly a random one. Therefore, it can be stated
that the application of the neural model beyond the region of training data
(an extrapolation case) is unjustified. According to Niederlinski ”there seems
to be no engineering justification whatever for extrapolating any model, be it
polynomial or be it neural, beyond the region of fit used in the identification
experiment. On the contrary, there are plenty of counterexamples showing that
systems described by models established for some region of fit may break down
when driven beyond this region” [Ni1].

Since the neural model application is justified only in case of data points
located in the range of training data (an interpolation case), a very important
issue is to determine properly the interpolation region of a neural model. While
determining this region for a two-dimensional model is a relatively easy task (it
can be done on the basis of analyzing two-dimensional graphs), it can be very
hard in a multi-dimensional case. The aim of this article is to present a method
which can be used for determining the interpolation region of a multi-dimensional
neural model in a specific class of systems - chain systems.

The distinct feature of a chain system is that it can be described not only by
a surface model but also by a parametric curve. This feature is very useful when
the interpolation region of a neural model is under consideration because the
chain model is located in the very center of the training samples. That means it
indicates the location of data points in the whole system domain simultaneously.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 123–132, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The application of the method proposed in this article will be illustrated via a
real economic system of an unemployment rate in Poland in years 1992-2001. The
output variable of this system is unemployment rate and the input variables are:
money supply and number of inhabitants. The data for the survey was provided
by the Polish Statistic Department.

First section of the article shortly discusses some approaches for establishing
the interpolation region of a multi-dimensional model, second section introduces
the problem of parametric curve modelling, third - explains the basis of the
proposed method and the last one - presents the application of this method in
the system of an unemployment rate in Poland.

2 Interpolation Region of a Multi-dimensional Model

Sometimes it is assumed that interpolation takes place only when a model surface
is fitted to the data in interpolation nodes which are situated exactly in the
data points [Fl1]. Such approach, however, is not very useful when real systems
described by huge sets of noisy data are under consideration. This is due to
the fact that situating the interpolation nodes in data points often results in an
overfitted models which reflect the noise existed in the training data instead of
the general rule of the analyzed system.

The term interpolation can be also addressed in a broader sense - as the term
opposite to extrapolation. In this context interpolation is a process of deter-
mining the model answers for data points located inside the region covered by
the training data. In case of analyzing multi-dimensional systems the biggest
problem is establishing the boundary beyond which the interpolation is replaced
by the extrapolation. The most popular approach to deal with this problem
is to determine a hypercube covering all data points of the analyzed system.
The hypercube edges are established on the basis of the minimal and maxi-
mal values of each variable. Figure 1a presents an example of a hypercube in a
three-dimensional space.

The approach based on the hypercube is very easy to implement, however, as it
can be noticed in Fig. 1, it generates the interpolation region only partially covered
by data points. A more strict approach to establish the border of the interpolation
region is to build a convex hull spread over all data points in a multi-dimensional
space. The convex hull of a set of data points can be defined as the smallest closed
convex region that contains all data from this set (Fig. 2b). There are a lot methods
which can be applied in the process of building the convex hull e.g. greedy algo-
rithm [Kl1], Beneath-Beyond algorithm [Kr1], NFECH method [Kl2]. This kind
of methods generate a much more narrow interpolation region then the method
which is based on building a hypercube, however, in case of systems of a chain
data distribution this region is still too large. This is due to the fact that the data
distribution in chain systems is very often a non-convex one, which means that
these systems should not be described by the convex hull (Fig. 3).

The article presents a method of determining the interpolation region of a
neural model which can be applied in systems of a chain data distribution. Since
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(a) (b)

Fig. 1. Hypercube in a three-dimensional space (a); Hypercube in a two-dimensional

space (b)

(a) (b)

Fig. 2. Convex hull in a three-dimensional space

(a) (b)

Fig. 3. System of a chain data distribution (a); Convex hull built over the data from

fig. 3a (b)
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the proposed approach is well suited to the system characteristic, it generates a
much narrower (and of course also much more credible) interpolation region of
a neural model than approaches mentioned above.

3 Parametric Curve Modelling Method

The main feature of a multi-dimensional chain system is that its decomposition
into two-dimensional time series gives a set of tight chain systems. Therefore, in
order to verify whether a system is of a chain profile, the reverse analysis should
be performed. This analysis should be based on the time characteristics of all
system variables. Tight chain dependencies, visible on the two-dimensional time
series graphs, will indicate chain characteristic of the analyzed multi-dimensional
system.

The chain system can be described not only by a surface model but also by
a parametric curve model. The main idea of the parametric curve modelling
method is to build a set of two-dimensional models, where each model describes
the behavior of one variable (input or output) in regard to the known parameter
t. These two-dimensional models can be created with many different mathematic
techniques e.g. non-linear neural networks, polynomial regression, splines, etc.
Two-dimensional models, built with one of the mentioned techniques, are then
assembled together in order to create a multi-dimensional model describing the
input-output mapping in the whole space (eq. 1).⎧⎪⎪⎨⎪⎪⎩

x1 = f1(t)
x2 = f2(t)

...
xn = fn(t)

(1)

In order to illustrate the process of parametric curve modelling, the chain
model of the system mentioned in introduction was created. The neural networks
of following parameters were used to build two-dimensional time series models
of all system variables [Ma1] [DB1]:

– flow of signals: one-way,
– architecture of connections between layers: all to all,
– hidden layers: 1 hidden layer with suitable number of sigmoid neurons (5 for

variable number of inhabitants, 3 for variable money supply, 4 for variable
unemployment rate),

– output layer: 1 linear neuron,
– training method: backpropagation algorithm with momentum and changing

learning rates,
– training aim: minimize mean absolute error (MAE),
– training time: 20000 epoch,
– testing method: visual control.

Models built with neural networks described above are shown in Fig. 4(a, b,
c). By assembling together equations of all three models the chain curve model
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(a) (b)

(c) (d)

Fig. 4. Two-dimensional time series models (a,b,c); The parametric curve model (d)

of the analyzed system was created (Fig. 4d). The approximated accuracy of this
model was calculated using MAE (eq. 2) [Ac1] and was equal to 2.28%.

error =
∑n

k=1 |z∗i − zi|
n

(2)

where: z∗i - empirical values, zi - theoretical values, n - number of data points.

4 Interpolation Region of a Neural Model

One the characteristic feature of the interpolation region of a surface model is
that it indicates where it is possible to make credible prognosis for new data.
Hence, the problem of establishing the interpolation region of a surface model
can be replaced by the problem of determining the most credible prognostic
region.

It can be said that a prediction made on the basis of a surface model is credible
when two following criteria are fulfilled:

1. a new data point is situated in the range of data points used in the training
process,

2. a part of the surface model used for predicting an output value of a new point
is also situated in the range of data points used in the training process.
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The chain model, introduced shortly in previous section, is a tool which allows
to deal with both criteria. Its main feature is that it is situated in the center of
data distribution - which means that it shows the center of training data.

Obviously, the knowledge of the center of data points is not sufficient to
establish the interpolation region of a neural model. The second point which has
to be addressed is a width of this region in a multi-dimensional space. Assuming
that the width of the interpolation region will be the same in each direction, it
can be calculated as a radius of a hypertube surrounding the chain model in a
multi-dimensional space (in case of two-dimensional space it will be a band). In
order to establish the radius of this hypertube, the distribution of the distances
between each training data point and the chain model, calculated in a multi-
dimensional space, can be considered.

A well known statistic measure which informs about the amount of data lo-
cated in the selected region is a quantile. Among all quantiles, the most com-
monly used are quartiles, which divide a data set into four parts of equal amount
of data points. In case of analyzing the absolute distances between data points
and the chain model quartile first indicates the region surrounding the chain
model covered by 25% of data points, quartile second (median) - 50% and quar-
tile third - 75%.

At first look, the distance between the most remote data point and the model
seems to be appropriate for establishing the radius of the hypertube determining
the interpolation region of a surface model. However, taking into account the
outliers problem, often meet in real systems [Ma1], it seems that it is more
reasonable to establish the radius shorter than the greatest distance. In case
of making prognoses in real systems the value of the quartile third could be
regarded as the most appropriate one. On the other hand, however, when the
mathematic system of a normal data distribution is considered, choosing the
value of the third quartile as the radius of the hypertube would result in a false
conclusions about the unreliability of the prognoses made for data points located
behind the quartile third, while in reality a model of a system of a normal data
distribution gives reliable prognoses in the whole range of the training data.
Therefore, in order to build a hypertube appropriate for both kind of systems
(real and mathematic ones), the hypertube radius cannot be equal to the value
of the quartile third but has to be a little greater than that.

Regarding the well-known fact that in a system of a normal data distribution
quartiles divide the data space into four parts [Ac1], the width of one of these
parts can be used as the value which expands the hypertube radius. Since, these
parts are only approximately equal, the added value cannot be calculated on the
basis of any width but it ought to be equal to the minimal one (this is because the
value of the hypertube radius cannot go beyond the most remote data point).
Hence, the radius of the hypertube indicating the interpolation region of the
neural model is proposed to be calculated as follows (eq. 3):

Rh = Q3 +min(Q1;Q2−Q1;Q3−Q2) (3)

where: Q1, Q2, Q3 - value of quartile first, second and third, Rh - radius of the
hypertube.
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A hypertube of a radius calculated according to equation 3 indicates a reliable
interpolation region of a neural model for both - mathematic systems and systems
of an unknown data distribution. This is the implication of the following facts:

1. The hypertube created on the basis of systems of a normal data distribution
covers approximately the whole range of training data.

2. The hypertube created on the basis of systems of an unknown data distri-
bution eliminates the influence of the outliers problem on the width of the
interpolation region.

Theoretically, when a neural and a chain model are built correctly, then the
chain model is situated exactly on the surface of the neural model. However, it
has to be underlined that this case is an ideal one. In most real situations there
is no possibility to adapt a multi-dimensional neural network to such degree that
it would be able to overlap the whole chain model - in such case both models are
located in a distance from each other. Of course, a larger distance between both
models indicates a smaller interpolation region of the neural model. In the most
extreme case, when the whole neural model is located beyond the hypertube
built around the chain model, it will not have any reliable interpolation region.
This situation, however, should not be taken into account because it indicates
that the neural network was not trained properly or the analyzed system does
not have the surface characteristic (and cannot be described by a surface model).
Theoretically, this situation could be also caused by an incorrectly trained chain
model. However, in practice it is rather improbable because the learning process
of the two-dimensional networks, forming this model, can be controlled visually.

Summing up the ideas introduced in this section, it can be said that the most
reliable interpolation region of a neural model is given by the intersection of
a neural model and a hypertube created around the chain model. Therefore,
in order to verify whether a chosen point from the neural model is located in
the interpolation region of this model, the distance between this point and the
chain model should be calculated. The distance smaller than the radius of the
hybertube means that the analyzed point is located in the interpolation region
of the neural model.

5 Practical Application

According to prof. A. Piegat economic systems have mostly chain characteristic.
Therefore in order to present a practical application of the method described
in the previous section, an economic system (described in introduction) was
chosen. The process of determining the interpolation region of a neural model
of this system was carried out in three steps, in which:

1. a neural model was created,
2. a chain model was created,
3. an interpolation region of the neural model was established.
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In the first step of the survey a neural model of the analyzed system was
created. The parameters of the neural networks used in the process of building
a neural model were as follows:

– flow of signals: one-way,
– architecture of connections between layers: all to all,
– hidden layers: 1 hidden layer with 8 sigmoid neurons,
– output layer: 1 linear neuron,
– training method: backpropagation algorithm with momentum and changing

learning rates,
– training aim: minimize mean absolute error (eq. 2),
– training time: 50000 epoch,
– testing method: 16-cross-fold validation.

The MAE of the model was equal to 2.35%. The model surface is shown in
Fig. 5.

(a) (b)

Fig. 5. Neural model of the system of an unemployment rate in Poland in years 1992-

1999 (a); Neural model and data distribution

As it can be observed in Fig. 5b, the model surface is reasonable only in the
region covered by data points and is randomly shaped beyond this region. This
indicates that this model cannot be used for estimating the value of the output
variable in the whole space but only in the closest neighborhood of the known
data points.

In order to establish the interpolation region of the neural model, a chain
model of the analyzed system had to be created. The process of building the
chain model of the system of an unemployment rate was discussed in details in
section three - the shape of the final model is shown in Fig. 4d.

The chain model was then used as a center of a multi-dimensional hypertube
containing most of the data points of the analyzed system. The radius of the
hypertube, calculated on the basis of eq. 3, was equal to 0.0387. The hypertube is
shown in Fig. 6a and the most credible interpolation region of the neural model
- in Fig. 6b (where the overlapping of both, the hypertube and the surface model
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is visible). As it can be observed in Fig. 6 the proposed method of establishing
the interpolation region of the multi-dimensional model resulted in a much more
narrow interpolation region than the methods based on creating the convex hull,
which example was shown in section two (Fig. 3b)

(a) (b)

Fig. 6. Hypertube (a); Hypertube and surface model (b)

6 Conclusion

The application of any surface model (also a neural model) outside its inter-
polation region is unjustified because it can result in random model responses.
Therefore, it is very important to establish a reliable interpolation region - es-
pecially when multi-dimensional models are considered. To deal with this task
some methods mentioned in section two can be applied. However, in a special
class of systems (system of a chain data distribution) standard methods can
generate too wide interpolation region (Fig. 3b).

The aim of this article was to present an approach which can be used for estab-
lishing the most probable interpolation region of neural models built for unknown
multi-dimensional systems of a chain characteristic. The proposed approach uti-
lizes the knowledge coming from the chain models constructed for such systems
and is based on the analysis of hypertubes surrounding these models. The appli-
cation of the method in the systems of a chain data distribution results in a more
reliable interpolation region than the application of standard methods (Fig. 6).

It has to be underlined that at this moment of the survey the application of
the approach described in the article can be used only in systems in which the
data sequence is known (e.g. in time series systems).

References

[Ac1] Aczel A.D., ”Complete Business Statistics”, Richard D. Irwin, Inc., Sydney,
1993.

[DB1] Demuth H., Beale M., ”Neural Network Toolbox User’s Guide”, The Math
Works Inc., Natick MA USA, 2000.



132 I. Rejer and M. Mikolajczyk

[Fl1] Flannery B.P., Press W.H, Teukolsky S.A.,Vetterling W. T., ”Numerical
Recipes in C : The Art of Scientific Computing”, Cambridge University Press,
1992.

[Kl1] Klesk P., ”Algorithm for automatic definition of validated and nonvalidated
region in multidimensional space”, 10th International Conference on Advanced
Computer Systems, Miedzyzdroje, 2003.

[Kl2] Klesk P., ”The method of setting suitable extrapolation capabilities for neuro-
fuzzy models of multidimensional systems”, PhD Thesis, Technical University
of Szczecin, 2005.

[Kr1] Krivsky S., Lang B., ”Verified computation of HigherDimensional convex hulls
and the solution of linear systems”, Electronic Journal on Mathematics of Com-
putation, 2003.

[Ma1] Masters T., ”Practical Neural Networks Recipes in C++”, Academic
Press,1993.

[Ni1] Niederlinski A., ”Polynomial and Neural Input-Output Models for Control - a
Comparison”, MMAR’97, Poland, 1997.

[Re1] Rejer I., ”A method of modeling a multi-dimensional system via artificial intelli-
gence methods on the example of an unemployment in Poland”, The publishing
house of the Szczecin University, Szczecin, 2003.



RBF Neural Network for Probability Density

Function Estimation and Detecting Changes in
Multivariate Processes

Ewa Skubalska-Rafaj�lowicz

Institute of Computer Engineering, Control and Robotics, Wroc�law University of
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Abstract. We propose a new radial basis function (RBF) neural net-
work for probability density function estimation. This network is used
for detecting changes in multivariate processes. The performance of the
proposed model is tested in terms of the average run lengths (ARL),
i.e., the average time delays of the change detection. The network allows
the processing of large streams of data, memorizing only a small part
of them. The advantage of the proposed approach is in the short and
reliable net training phase.

1 Introduction

Statistical control charts are designed in order to detect abnormalities (out-of
control states) in the process under consideration. The most common abnormal-
ities are mean shifts, variance changes and trends.

Suppose X1, X2, . . . are independent random vectors observed sequentially
and X1 to Xq−1 have a distribution function with probability density f0 while
Xq, Xq+1, . . . have a distribution function with probability density f1 �= f0.

q is unknown and some action should be taken after undesirable change in
the process. One has to decide, on the basis of given observations

Xt = (xt1, . . . , xtd) ,

whether Xt is r.v. with pdf f0 , i.e., process is ”in-control” or if Xt is another r.v.
- process is ”out-of-control”, i.e., changes in the process occurred. We assume,
that probability densities f0 and f1 exist but are unknown.

There is extensive literature on statistical methods for statistical process con-
trol (SPC) and control charts, see [14] and the bibliography cited therein.

Classical control charts require prior assumptions about the probability den-
sity distribution of the observed process variables. Typically it is assumed that
monitored data follow univariate or multivariate Gaussian (or sometimes other
known) distribution. For multivariate statistical process control with individual
observations, the Hotelling T 2 control chart or charts (based on Mahalanobis
distance) are usually recommended.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 133–141, 2006.
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A neural network based approach to statistical process control and out-of
control state detection allows in-control data density distribution to be non-
Gaussian. Most of the neural network models designed for detecting changes in
(mostly univariate) statistical process work in pattern recognition settings, i.e.
on the assumption that also abnormal observation (out-of control states) are
available and their class-membership ( in-control and out-of control labels) are
known [8], [3], [7], [6], [10], [9], [4], [5], [2], [12].

A neural network-based approach used when only in-control data is available
has been considered in only a few papers ( see [18] and [22]).

In the former paper the author proposes a vector quantization neural net-
work with Kohonen‘s type learning algorithm to define the acceptance region.
The multi-variate data is transformed onto unit interval using quasi-inverse of a
space-filling curve [19], [20]. The method uses only one current vector observa-
tion to decide about the state of the process and for normal (Gaussian) data it
is comparable to the Hotelling T 2 control chart [18], [13]. Zorriassatine et al.[22]
uses a novelty detection method [1] for bivariate time series.

When constructing a control chart it is desirable to have a long average run
length (ARL) in the in-control state, since this means a low level rate of false
alarms. On the other hand, a short out-of control ARL is desired, which guar-
antees that any unacceptable changes will be identified as soon as possible.

Here we propose a new, easy to learn, radial basis function (RBF) neural
network model for detecting changes in a multivariate process. The detection is
based on one vector observation as in the classical T 2 control chart. Furthermore,
we assume that the a‘priori probabilities of in-control and out of control process
states are not given.

In this paper the possibilities of detecting changes in the process mean vector
(mean shifts) are investigated in terms of in-control and out-of-control ARL‘s.

2 RBF Neural Network Model for Detection of Changes

The radial basis function networks have been extensively applied to pattern
recognition, function approximation or regression function estimation.

A basic radial-basis function (RBF) network consists of three layers having
entirely different roles: an input layer, a hidden layer, which applies a nonlinear
transformation from the input space to the hidden space and a linear output
layer. Hence,

fN(x) =
N∑

i=1

wiG(||x− ci||) , (1)

where x ∈ Rd, ci ∈ Rd, are tunable vectors, wi are tunable weights, and N is a
number of neurons.

Usually ||x|| is the Euclidean norm, however also generalized weighted norm
||x||Qi , defined by the quadratic form ||x||2Qi

= xTQT
i Qix can be used, where Qi

are (usually tunable) d× d matrices.
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The most popular are Gausssian RBF nets:

G(r) = exp
(
− r2

2σ2

)
for some σ > 0 and r ∈ R .

There are three groups of parameters in the RBF networks which may be
learnable or arbitrarily chosen: the weights wi, the centers ci and some parame-
ters of radial basis functions, for example σ or Qi matrices.

RBF networks can be related to Parzen window estimators of a probability
density [16] or to Nadaraya-Watson regression estimators [21], [1], [15]. Similari-
ties between the RBF network structure and kernel regression estimators lead to
RBF networks with the centers chosen to be a subset of the training input vectors
and associated weights which directly correspond to Yi‘s [21]. Other approaches
related to Nadaraya-Watson regression estimators were proposed in [17] and [11]

Usually, parameters of the network (1) are obtained from an n-sample obser-
vation data set (learning sequence) Ln = ((X1, Y1), . . . , (Xn, Yn).

As regards our problem, labels Yi, i = 1, . . . , n are set as ”in-control” and
do not carry any information. Thus, we need a net which will self-organize and
generalize information about distribution of the in-control states.

In this context, we choose RBF neural networks related to Parzen kernel esti-
mators. Bishop [1] discusses a number of heuristics for learning RBF parameters
in such a way, that the basis functions approximate the distribution of the input
data.

The Parzen window estimator [16], [1] with Gaussian kernel functions takes
the form:

1
n(2πσ2)d/2

n∑
i=1

exp
(
−||X −Xi||2

2σ2

)
, (2)

where d is the dimensionality of the input data.
Let N be a number of centers. Assuming that the centers should be distributed

according the same probability distribution as the learning data, the centers are
simply a subset of the training input vectors. One can take, for example, N first
elements from the leaning sequence (X1, . . . , Xn).

Note that if Xi is close to a center C, then

G(||X −Xi||)−G(||X − C||) ≈ 0

So, we can replace each Xj in the sum (2) by its nearest neighbor among a
set of centers {C1, C2, . . . , CN} breaking ties at random. Note, that the same
Ci can be the nearest neighbor for several Xj ’s and that each Ci has at least
one point from the learning sequence (namely itself) as a neighbor, since every
center is taken from the learning set.

Let nj stands for the number of points closest to the center Cj , i.e.,

nj = card[{Xi : ||Xi − Cj || < ||Xi − Ck||}] .
Thus, we obtain the approximate version of (2):

y(X) =
1

n(2πσ2)d/2

N∑
j=1

nj exp
(
−||X − Cj ||2

2σ2

)
. (3)
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Observe, that this kind of the probability density approximation appears in
[17], where it is used as a common denominator in the RBF neural network
mimicking the Nadaraya-Watson regression estimators.

The decision about in-control or out of control state of the current vector
observation X is made according to the estimate of the probability density y(X).

If y(X) < λ, where λ is chosen acceptance level, then classify X as abnormal
(out of control) state of the process. Otherwise, accept X as an in-control state.
The set y(X) ≥ λ forms the confidence region.

2.1 Algorithm for Tuning RBF Net

Step 1. Choose centers Cj , j = 1, N at random from the learning sequence
{X1, X2, . . . , Xn}.

Step 2. Set nj = 0, j = 1, N .
Step 3. For i = 1, n perform the following steps.

1. Find j∗ = arg min1≤j≤N ||Xi − Cj ||.
2. Update the corresponding weight:nj∗ = nj∗ + 1.

Step 4. Form the net

y(X) =
1

n(2πhσ2)d/2

N∑
j=1

nj exp
(
−||X − Cj ||2

2σ2 |
)

.

Step 5. Choose the acceptance level (threshold) λ. If y(X) is greater than λ
accept vector observation as in-control, otherwise alarm, since an out-of-
control state is detected.

This algorithm should be accompanied by a method of selecting the bandwidth
σ > 0 and threshold parameter λ. One can choose any known method, e.g., the
cross-validation for selecting hσ. Having selected centers and using a formula (3)
one can considerably reduce the computational burden needed for selecting σ in
a data-driven way.

Furthermore, reducing the number of kernels (to the number of centers) leads
to the formula less sensitive to the σ choice. The threshold level λ governs the
false alarm probability α. The average run length to the false alarm (the in-control
ARL) equals to 1/α[14], but the distribution function of in-control states is usually
not (fully) known. Thus, as in classical control charts, the value of the threshold,
which guarantees desired in-control ARL should be chosen experimentally.

3 Experimental Results

In the following sections we present the results of applying the RBF control chart
to a series of simulated data sets. We have tested the proposed method using
three different data sets:

A. A 2-D normal distribution with (0, 0) mean and covariance matrix I
B. A mixture of two equiprobable 2-D normal distributions with vector means:
(0, 0) and (2, 0) and the same I.
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C. A mixture of three equiprobable 2-D normal distributions with vector means:
(0, 0), (2, 0) and (0, 0− 2) and the same I (see Figure 1).

We compared the performance of the proposed RBF control chart with the
results given by the classical T 2 chart based on the Hotelling statistic (also
known as the squared Mahalanobis distance) [14], [13]:

T 2(x) = (x−m)TΣ−1(x−m) ,

where x is a given observation vector, m is a mean vector and Σ the covariance
matrix. Both of them, m and Σ, are estimated from the learning data. If T 2(x) >
t, where t is an experimentally chosen value, it is assumed that the observation
x is rejected as out-of-control data. Thus, the region of acceptance of T 2 control
chart form an ellipsoid with the center m and the other parameters defined by
the covariance matrix Σ.

In two cases (A and B) the neural network model was tuned using 105 in-
control learning samples. We examined the changes in the process caused by the
following mean shifts ||Δm|| = 0.5, 1, 2, and 3. The number of centers was equal
to 100.

The in-control ARL‘s were obtained from 106 examples and out-of-control
ARL‘s were estimated from 105 repetitions. The results were averages over four
different shift directions. The comparisons for examples A and B are given in
Table 1.

Table 1. Comparison of RBF neural network chart with T 2 chart, d = 2

Example A Example B

||Δm|| T 2 RBF net T 2 RBF net

t = 10.6 λ = 0.00049 t = 9.8 λ = 0.0003

0.0 200.0 199.0 200.4 198.2

0.5 116.0 117.6 124.0 118.2

1.0 42.0 44.5 53.3 48.1

2.0 6.9 7.7 10.1 8.7

3.0 2.2 2.3 3.2 2.9

The second column of Table 1 contains analytically obtained ARL‘s for T 2

Hotelling chart applied to multivariate normal data (see for example [13]). The
RBF net based control chart attains almost the same ARL times, however the
knowledge about probability density distribution is not used in the process of de-
signing the RBF net chart. The value of parameter λ was chosen experimentally
on test data in such a way as to obtain ARL0=200.

The third column consists of empirically determined ARL‘s for T 2 Hotelling
chart applied to multivariate non-normal data (example B). This time, the RBF
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Fig. 1. Learning data - example C

net chart leads to shorter average detection times (smaller out-of-control ARL‘s),
than the T 2 chart.

Experiments on the third example (the mixture of three normals – C) were
performed on 300, 000 learning samples (see Figure 1). In this case the changes in
the process were introduced by the mean shifts ||Δm||/ (detΣC)1/4 = 0.5, 1, 2, 3,
where ΣC is the empirical covariance matrix obtained for the distribution C (es-
timated on the basis of all 300000 learning samples). The results for every shift’s
length were averages over eight different shift directions. The same empirical
covariance matrix ΣC was used in T 2 calculations. The number of centers of the
RBF network was equal to 200. The value of parameter λ was chosen experi-
mentally on test data in such a way as to obtain ARL0=200. The comparisons
for the example C are given in Table 2.

Table 2. Comparison of RBF neural network chart with T 2 chart for mixture of three

normals d = 2

Example C

||Δm||/detΣ
1/4
C T 2 RBF net

t = 41.5 λ = 0.00029

0.0 201.6 200.0

0.5 137.1 97.6

1.0 85.8 29.3

2.0 21.8 4.64

3.0 3.76 1.82

The RBF control chart proposed here gave this time evidently better results
than that obtained with T 2 control chart. The ARL times estimated for T 2 chart
are even worse than relative ARL‘s computed for examples A and B, since the
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Fig. 2. Probability density function of data from example C

Fig. 3. Probability density function of data from example C estimated by RBF net

Fig. 4. Error of probability density estimation for example C

mixture of three normals distributions is not similar to any two-dimensional nor-
mal distribution. Figure 2 shows the true density function of data from example
C. Figure 3 presents the probability density function of data under considera-
tions estimated using the RBF neural network (obtained by formula 3). Error of
this probability density estimation is given in Figure 4. The acceptance region
obtained during experiments with in-control data is illustrated in Figure 5 as a
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Fig. 5. Acceptance region obtained using a RBF net with λ = 0.00029

white shape. This is a set of points where the value of parameter λ is smaller
than the probability density value estimated in those points by RBF network.

4 Concluding Remarks

The crucial problem faced in this paper is in designing the simple and robust
nonparametric probability density function estimator for time independent mul-
tivariate processes. A new version of a RBF neural network allows the processing
of large streams of data, memorizing only a small part of them. The network
was successfully applied to the detection of changes in multivariate processes.
The advantage of the proposed approach is in the short and reliable net training
phase.
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Abstract. The paper presents a novel approach to the construction and
learning of linear neural networks based on fast orthogonal transforms.
The orthogonality of basic operations associated with the algorithm of
a given transform is used in order to substantially reduce the number
of adapted weights of the network. Two new types of neurons corre-
sponding to orthogonal basic operations are introduced and formulas for
architecture-independent error backpropagation and weights adaptation
are presented.

1 Introduction

Linear neural networks represent linear transforms of input signals. One layer of
linear neurons is capable of learning an arbitrary linear transform [1,2], which
involves determining of O

(
N2

)
weights, where N is the dimension of the trans-

formed space.
For special types of linear transforms, including discrete Fourier transform

(DFT), discrete cosine transform (DCT), discrete sine transform (DST) and dis-
crete Hartley transform (DHT), a symmetry-based factorization of their matrices
leads to reduction in computational complexity [3,4,5]. Following the factoriza-
tion scheme in neural network architecture it is possible to obtain a fast mul-
tilayer linear network with sparsely connected layers, containing O (N log (N))
weights [6,7]. One of the substantial advantages of such an approach is the pos-
sibility of efficient hardware implementations, based on the existing DSP archi-
tectures [8].

In this paper we consider a new approach to constructing and teaching neural
networks of this type, based on the orthogonality of basic operations in the
underlying algorithms. A notion of a basic operation orthogonal neuron (BOON)
is introduced and two types of BOONs are presented.

The main contribution of the paper is a method of BOON-based network
teaching in an architecture-independent way, applicable to a wide class of known
orthogonal transforms. It is also shown that the application of BOONs leads to
a two-fold or a four-fold reduction in the number of weights and to an increase
in the stability of the learning process. The fast cosine transform, type II and its
variant with tangent multipliers [9] have been chosen to demonstrate the network
construction, but other known fast orthogonal transforms (e.g. [10]) may be also
easily realized.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 142–149, 2006.
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2 Fast Two-Stage Orthogonal Transforms Algorithms

In homogeneous two-stage algorithms of fast orthogonal transforms, best suited
for hardware implementation, two main types of basic operations are typically
used: trivial operations (addition/subtraction) and non-trivial ones involving
multiplications by twiddle factors. In the next part of the paper two variants of
the fast cosine transform, type II will be presented as examples of a homogeneous
two-stage algorithm construction.

2.1 Fast Cosine Transform, Type II

Let x (n) be an N -point real sequence, where n = 0, 1, ..., N−1;N = 2m;m ∈ IN.
The discrete cosine transform, type II of x (n) is defined as [11]:

LII
N (k) = DCTII

N {x (n)} =
N−1∑
n=0

x (n)C(2n+1)k
4N , (1)

where n, k = 0, 1, ..., N − 1;Cr
K = cos (2πr/K).

The basic computational procedure of the fast cosine transform, type II (FCT2)
may be given as [9]:

LII
N (0) = L1 (0) , LII

N (N/2) =
√

2/2·L2 (0) ,

LII
N (k) = Ck

4NL1 (k) + Sk
4NL2 (N/2− k) , (2)

LII
N (N − k) = −Sk

4NL1 (k) + Ck
4NL2 (N/2− k) ,

k = 1, 2, ..., N/2− 1 ,

where L1 (k) = DCTII
N/2 {a (n)} , L2 (k) = DCTII

N/2 {b (n)} and the sequences
a (n) and b (n) are formed from the input sequence x (n) as follows:

a (n) = x (2n) + x (2n+ 1) ,

b (n) = (−1)n (x (2n)− x (2n+ 1)) , (3)
n = 0, 1, ..., N/2− 1 .

Formulas (2) and (3) may be applied recursively, leading to a homogeneous FCT2
algorithm, concisely described in the form of a directed graph (Fig. 1, 2).

2.2 FCT2 Algorithm with Tangent Multipliers (mFCT2)

Multiplying and dividing the formulas (2) by Ck
4N enables an additional opti-

mization [9] by means of cumulating the coefficients Ck
4N as a single multiplica-

tion performed as the last step of the transform (Fig. 3, 4).

3 Orthogonal Neural Networks

3.1 Orthogonal Basic Operations

Based on the diagram in Fig. 1 a neural network architecture where each non-
trivial basic operation is replaced by two neurons [6,7] may be built. Both neu-
rons corresponding to a single basic operation have two inputs, i.e. the number
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Fig. 1. Directed graph of the FCT2 algorithm for N = 8, s =
√

2/2

Fig. 2. Basic operations of the FCT2 algorithm

Fig. 3. Directed graph of the mFCT2 algorithm for N = 8

Fig. 4. Basic operations of the mFCT2 algorithm

of weights to adapt equals 4. A basic operation may be therefore seen as a 2-by-2
matrix multiplication[

y1
y2

]
= P4 ·

[
x1
x2

]
, where P4 =

[
w11 w12
w21 w22

]
. (4)

However, considering the matrix representation of the third operation in Fig. 2
we notice that only two weights are actually needed
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y1
y2

]
= P2 ·

[
x1
x2

]
, where P2 =

[
u w

−w u

]
. (5)

The significant difference lies in the orthogonality of matrix P2. In fact, P2 sat-
isfies even more restrictive condition: not only are its rows/columns orthogonal,
but they are also of equal norm (the orthogonality condition itself would imply
adapting three independent weights).

Taking into account the explicit target values of P2 elements, u = Ck
4N ; w =

Sk
4N , it is also possible to express the weights of a basic operation as functions of

one parameter α, e.g. u = cos (α) ;w = sin (α). This is equivalent to defining the
rows/columns of P2 as orthonormal vectors. Such an approach would, however,
result in the necessity of trigonometric functions computations in the course of
the learning process, which is undesirable.

The solution to the last inconvenience may be obtained by implementing the
neural network on the basis of the mFCT2 algorithm. This implies considering[

y1
y2

]
= P1 ·

[
x1
x2

]
, where P1 =

[
1 t
−t 1

]
, (6)

according to the third operation presented in Fig. 4.

3.2 Teaching Methods

The main practical issue resulting from the application of matrices P2 or P1
affects the methods of neuronal weights adaptation. The classical definition of
a neuron should be modified here to reflect the relationship between the out-
puts of the basic operation. We would either talk about two associated neurons,
orthogonal to each other, or simply about a basic operation orthogonal neu-
ron (BOON) with two outputs. It is also worth noting that the matrix P4 does
not require any special treatment, as its rows may be seen as representations
of classical independent neurons with two inputs. As gradient backpropagation
methods seem the best choice for teaching the considered types of neural net-
works [7], a proper algorithm suited for the special forms of matrices P2 and
P1 is necessary.

Considering a simple case of two connected layers shown in Fig. 5 and assum-
ing that the basic operation matrix has a form defined by (5) we can explicitly
express the outputs of the network as functions of its inputs

y1 = u
(2)
1 v1 + w

(2)
1 v2

y2 = −w(2)
1 v1 + u

(2)
1 v2

y3 = u
(2)
2 v3 + w

(2)
2 v4

y4 = −w(2)
2 v3 + u

(2)
2 v4

, where

v1 = u
(1)
1 x1 + w

(1)
1 x3

v2 = u
(1)
2 x2 + w

(1)
2 x4

v3 = −w(1)
1 x1 + u

(1)
1 x3

v4 = −w(1)
2 x2 + u

(1)
2 x4

(7)

and where the expressions u(l)
k and w

(l)
k refer to the k-th operation of the l-th

layer. Our goal is to minimize the error function given as:
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E =
1
2

N∑
i=1

(yi − di)
2
, (8)

where N = 4 and di represents an expected value of the i-th output.
Substituting (7) into (8) and computing derivatives for the weights in the

second and in the first layer we arrive at formulas defining the components of
the gradient vector and the error vector for a single basic operation[

∂E
∂u

∂E
∂w

]
=
[
v1 v2
v2 −v1

]
·
[
e
(n)
1

e
(n)
2

]
, (9)

[
e
(n−1)
1

e
(n−1)
2

]
= PT

2 ·
[
e
(n)
1

e
(n)
2

]
, (10)

where PT
2 denotes the transpose of P2.

Fig. 5. Two layers of an orthogonal network, each containing 2 basic operation neurons

The parameters v1 and v2 represent the inputs of the basic operation, the

vector
[
e
(n)
1 , e

(n)
2

]T
refers to the error values propagated back from the next

layer and the vector
[
e
(n−1)
1 , e

(n−1)
2

]T
defines the error values to be propagated

back from the current layer to the previous one. As the matrix P1 (6) is a special
case of the matrix P2 (5) for u = 1, the corresponding formulas, suitable for
teaching an mFCT2-based network, can be derived from (9), (10) as follows:

∂E

∂t
=
[
v2, −v1

]
·
[
e
(n)
1

e
(n)
2

]
, (11)

[
e
(n−1)
1

e
(n−1)
2

]
= PT

1 ·
[
e
(n)
1

e
(n)
2

]
. (12)

The formulas (9) - (12) have a general meaning, i.e. they are applicable to a
basic operation irrespective of its location in the network architecture. Moreover,
no specific architecture is imposed as the information about the indexes of the
interconnected basic operations’ inputs/outputs is sufficient. Given the compo-
nents of the gradient vector, any known gradient method may be successfully
applied to minimize the error function of the network.
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The numbers of multiplications (μ) and additions (α) for the matrices are:

μ (P4) = 8 μ (P2) = 8 μ (P1) = 4
α (P4) = 2 α (P2) = 4 α (P1) = 3 . (13)

These values concern gradient computation and error backpropagation only. As
one of the most crucial parameters influencing the efficiency of gradient mini-
mization algorithms is the number of the adapted weights, its two-fold (P2) and
four-fold (P1) reduction will actually play the most important role in a global
computational complexity improvement.

It should also be noted that learning of the inverse transform may be easily
realized by changing all the matrices to their (properly scaled) transpositions.

3.3 Experimental Validation

The presented methods of teaching the BOONs were implemented within a
framework developed for testing neural networks with arbitrary connections.

Three groups of tests were performed to compare the capabilities of a non-
orthogonal FCT2-based network (type P4 BOONs) and of two orthogonal net-
works: FCT2 and mFCT2-based (type P2 BOONs and type P1 BOONs). Several
datasets, varied by the length and the number of input vectors, were used for all
groups. The teaching was repeated ten times for each dataset, from a random
starting point. The averaged results are presented in Tables 1, 2, 3, respectively.

The first two columns contain the size (N) and the number (P ) of random
input vectors and std is the standard deviation. Target vectors for all the datasets
were computed according to the formula (1).

The conjugate gradient method was applied as an algorithm of error function
minimization [1] and the teaching was stopped when the error was lower than 1e-9.
The tests were performed on a computer with Intel Celeron M, 1.40 GHz processor.

Table 1. Results of FCT2-based non-orthogonal network training

N P Mean epochs Epochs std Mean time [s] Time std Weights

8 4 49 6.063 0.1329 0.0619442 20
16 8 119 23.7445 1.2891 0.245518 68
32 16 125 37.5847 8.2673 2.41184 196
64 32 172 81.5784 78.6579 37.2662 516

Table 2. Results of FCT2-based orthogonal network training

N P Mean epochs Epochs std Mean time [s] Time std Weights

8 4 25 1.96214 0.0782 0.0474443 10
16 8 46 3.74299 0.525 0.0564659 34
32 16 58 1.84662 3.9814 0.126828 98
64 32 71 2.5865 33.3281 1.16706 258
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Table 3. Results of mFCT2-based orthogonal network training

N P Mean epochs Epochs std Mean time [s] Time std Weights

8 4 14 1.22066 0.0625 0.0394899 5
16 8 25 0.916515 0.297 0.0270222 17
32 16 24 0.538516 1.7124 0.04304 49
64 32 22 0 10.9764 0.1246 129

The teaching of the orthogonal networks proved to be a stable process in
terms of the standard deviation of its length. The most interesting observation
is the almost constant number of epochs in the case of mFCT2-based network.
A closer examination revealed that the final state of the network was always
similar for a given dataset and equal to the state obtainable by computing the
weights values directly.

The relatively high mean time values for higher N result from the generality
and flexibility of the framework which involves operations on large connection
matrices. The comparison between the tables, however, shows a definite supe-
riority of the orthogonal networks, which is particularly clear in the case of
type P1 BOONs.

4 Conclusion

A new method of constructing and teaching neural networks based on fast or-
thogonal transforms was presented. Respecting the orthogonality of the basic
operations allowed to reduce the number of the adapted weights in compari-
son to the non-orthogonal network, increasing the efficiency and stability of the
learning process. Owing to the generality of the presented solutions, the pro-
posed BOONs may be used in the construction of neural networks realizing a
wide class of known orthogonal transforms.
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Abstract. The problem of solving systems of interval linear equations
with use of AI based approaches is studied in this paper. First, this
problem is viewed in terms of an optimization task. A cost function with
interval variables is defined. Next, for a given system of equations, in-
stead of the exact algebraic solution its approximation is determined by
minimizing the cost function. This is done by use of two different ap-
proaches: the NN based approach and the GA based one. A number of
numerical evaluations are provided in order to verify the proposed tech-
niques. The results are compared, discussed and some final conclusions
are drawn.

1 Introduction

Solving real world problems, one usually has to deal with various kinds of uncer-
tainties. These uncertainties may come from many sources, just to mention the
inexactness of the data, the imperfection of the model, the presence of judgment
of experts expressed in terms of linguistic values, the varying environment etc..
Moreover uncertainties can also have either the nature of randomness or impre-
ciseness [3,13]. Randomness is related to events that may or may not take place
in the future, whereas impreciseness is related to values, concepts etc. which can
not be precisely defined.

It is inevitable to deal with uncertainties in a proper way in order to achieve
a reliable solution for the given problem. Uncertainties can be mathematically
modeled by random variables, random sets, fuzzy sets, fuzzy random variables
etc. depending on their source and nature. When one only has to deal with
impreciseness of the form: X can take real values between vL and vR, interval
computation can be used [1].

Systems of linear equations play an important role in many theoretical as
well as practical, real world problems, just to mention structure mechanics, solid
mechanics, heat transfer analysis, etc.. The original problem can be transformed
into that of solving a system of linear equations in various ways. When imprecise
information is present in the underlying problem, that impreciseness must be as
well considered in the mentioned system of equations, which is now no longer
crisp.

A system of linear equations Ax = b is called a System of Interval Linear
Equations (denoted hereby as SILE) if the left side matrix A is an interval

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 150–159, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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matrix and the right side vector b is an interval vector. Solving SILEs has been
the topic of many researches for decades. Different definitions for the solution
of a SILE have been considered and various techniques have been successfully
developed [2,5,6,9,10,11]. The algebraic solutions [6] of systems of interval linear
equations are considered in this paper. It is well known that finding the exact
algebraic solution of a given SILE is an NP-hard problem. To find the exact
algebraic solution of a SILE of size n, one has to solve 2n systems of (crisp)
linear equations of size n. In many cases, such a solution may not exist at all.
The aim of this paper is to provide some AI based techniques to approximate
the exact algebraic solution, if any exists, or to find an acceptable one in the
opposite case.

In the next section, some basic notions regarding interval computation to-
gether with the formulation of the SILE problem are provided. The SILE is then
viewed in terms of an optimization problem. Next, the NN based and the GA
based techniques to approximate the algebraic solution of SILEs are discussed
in sections 3 and 4 respectively. Numerical results, comparison between the two
proposed techniques can be found in section 5. Some final conclusions are drawn
in section 6.

2 Systems of Interval Linear Equations

2.1 Basic Notions

A real interval number a can be considered as a pair
[
aL, aR

]
, where aL, aR

(aL|R ∈ R, aL ≤ aR) are called the left and right endpoints of a. Precisely a real
interval number a is a subset of R:

a =
[
aL, aR] ≡ {

x ∈ R : aL ≤ x ≤ aR}
For sake of simplicity, real interval numbers are referred to hereby as interval

numbers. The set of all interval numbers is denoted by IR. Let d : IR× IR → R
+

be defined as follows:

d
(
a, b

)
=
√

(bL − aL)2 + (bR − aR)2 (1)

then {IR, d} is a metric space.
Arithmetic operations in R can be extended to those in IR. Namely, a binary

operation ∗ (which can be either addition, subtraction, multiplication or division)
between two real interval numbers a and b can be defined as:

a ∗ b ≡
{
c = a ∗ b : a ∈ a, b ∈ b

}
(2)

where in the case of division, b is assumed not to contain zero. It can be eas-
ily observed that the right hand set in (2) is a real interval number as well.
Arithmetic operations in IR can be expressed in terms of endpoint values, e.g.:
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aL, aR] +

[
bL, bR

]
=
[
aL + bL, aR + bR

][
aL, aR] − [

bL, bR
]

=
[
aL − bR, aR − bL

]
[
aL, aR] × [

bL, bR
]

=
[

min
α,β∈{L,R}

{
aαbβ

}
, max
α,β∈{L,R}

{
aαbβ

}]
(3)

[
aL, aR] / [

bL, bR
]

=
[

min
α,β∈{L,R}

{
aα/bβ

}
, max
α,β∈{L,R}

{
aα/bβ

}]
Denote by R

n
m the set of all n ×m real matrices. Let A = [aij ]

n
m ∈ R

n
m and

B = [bij ]
n
m ∈ R

n
m. Let �≡

{
(A,B) : ∀i = 1, n, ∀j = 1,m, aij ≤ bij

}
be a relation

in R
n
m. Now let AL and AR be two real matrices so that AL � AR, then the set:

A ≡
{
A ∈ R

n
m : AL � A � AR}

is called an real interval matrix (or shortly interval matrix). The set of all interval
matrices over R

n
m is denoted in this paper by IR

n
m. It can be observed from the

above definition that in fact, interval matrices are matrices of interval numbers.
Hence each interval matrix A ∈ IR

n
m can be represented as A = [aij ]

n
m where

∀i = 1, n, ∀j = 1,m, aij ∈ IR.
Interval matrices over R

n
1 are called interval vectors. The set of all such vectors

are denoted by IR
n. Let x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T ∈ IR

n. A
metric function ρ in IR

n can be defined as:

ρ (x, y) =

√√√√ n∑
i=1

d2 (xi, yi) (4)

Let A = [aij ]
m
n ∈ IR

m
n and x = [xj ]

n ∈ IR
n. The product of A and x is an

interval vector in IR
m which is defined as follows:

Ax = [aij ]
m
n [xj ]

n ≡
[

n∑
k=1

aik × xk

]m

(5)

Using the endpoint notations, this product can be rewritten as:

Ax =

[[
n∑

k=1

min
α,β∈{L,R}

aα
ikx

β
k ,

n∑
k=1

max
α,β∈{L,R}

aα
ikx

β
k

]]m

. (6)

2.2 Algebraic Solutions of Systems of Interval Linear Equations

Let us now consider the system of interval linear equations:

Ax = b, (7)

where A ∈ IR
n
n and b ∈ IR

n. The algebraic solution of (7) is an interval
vector x∗ ∈ IR

n, for which the product Ax∗, according to (5) is equal to b [6].
Finding x∗ is known as a complex problem due to (3). Moreover, in many cases



AI Methods in Solving Systems of Interval Linear Equations 153

the algebraic solution may not exist at all. A more detailed analysis of algebraic
solutions for (7) can be found in [6].

The aim of this work is to find an interval approximation of the exact solution
x∗, if such exists. In the opposite case, the approximating interval vector may
give an idea of the solution for some solvable SILE, whose left-side matrix and/or
right-side vector are slightly different from A and b, respectively. This will be
considered in the context of an optimization task in the next section.

2.3 Solving SILE as an Optimization Problem

The SILE problem (7) can be viewed in terms of an optimization (minimization)
problem with the following cost function F:

F (x) =
1
2
ρ2 (Ax, b

)
=

1
2

n∑
i=1

(([
Ax

]L
i
− bLi

)2
+
([

Ax
]R
i
− bRi

)2
)

(8)

where as it was stated in (6):

[
Ax

]L
i

=
n∑

k=1

min
α,β∈{L,R}

aα
ikx

β
k

[
Ax

]R
i

=
n∑

k=1

max
α,β∈{L,R}

aα
ikx

β
k

If there exists an exact algebraic solution x∗ for (7) then such solution corre-
sponds to the global minimum of the cost function F (x), i.e. F (x∗) = 0. Hence
one can approximate x∗ by minimizing F.

Due to the presence of min and max functions, F is not everywhere differen-
tiable, and as a consequence gradient based optimization techniques cannot be
directly applied. In this paper two different AI based approaches are proposed.
In the first one, a neural network is involved to form a modified, differentiable
cost function, which can be in turn minimized with a gradient based technique.
In the second one, genetic algorithms are used. This will be the topics of the
next two sections.

3 The NN-Based Technique

The approach to be presented here is based on the following observations: Firstly,
if the multiplication of interval numbers defined as in (3) can be replaced by a
differential function m1 of the endpoints (i.e. m1 : R

4 → R
2), then the product

of interval matrix and interval vector in (6) can be computed as well by an-
other differential function m2 : R

2n(m+1) → R
2m. As the consequence, the cost

function (8) can also be approximated by a differential function. Secondly, any
sigmoid multilayer feedforward neural network with p input units and q output
neurons can be interpreted as a differential function:
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N : R
p → R

q

The main idea of this approach is to approximate the product of real interval
numbers by use of a simple feedforward neural network and then to use that
network to create a new differential cost function. Next this modified cost func-
tion is minimized by a gradient based technique. The approximating network N
contains p = 4 input neurons, q = 2 output neurons and one hidden layer with
K hidden neurons. All hidden and output neurons are sigmoid with the tanh
activation function. The architecture of the network is presented in Fig. 1.

•x1=aL

•x2=aR

•x3=xL

•x4=xR

yh
1

...

yh
i

...

yh
K

NL

NR

Fig. 1. Neural network for approximating the product of interval numbers

To compute the product of a and x their endpoint values (i.e. aL, aR, xL

and xR) are taken as inputes to the network. The network produces two output
values representing the left and the right endpoints of the interval product. This
approximating network is hereby referred to as a function N =

[
NL,NR

]
:

R
4 → R

2. By replacing the product of interval numbers with N , a modified cost
function f : R

2n → R
+ is to be minimized:

f (x) =
1
2

n∑
i=1

⎡⎣( n∑
k=1

NL
(
a
L|R
ik , x

L|R
k

)
− bLi

)2

+

(
n∑

k=1

NR
(
a
L|R
ik , x

L|R
k

)
− bRi

)2
⎤⎦ (9)

where x =
[
xL

1 , x
R
1 , x

L
2 , x

R
2 , . . . , x

L
n, x

R
n

]T ∈ R
2n is the vector of the endpoints of

the unknown interval vector x in (8).
This modified cost function f can be now minimized using any of the well

known gradient based methods. These methods require computations of the
partial derivatives of f with respect to each of its variables xL|R

k , k = 1, n, i.e.
∂f/∂x

L|R
k . In consequence, one has to compute the partial derivatives
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∂NL|R/∂x
L|R
k . As it was shown in our previous work [12], the computation of

∂NL|R/∂x
L|R
k can be facilitated by mean of a dual hybrid network N d, which

can be built directly from N .

4 The GA-Based Technique

The cost function introduced in (8) can be as well minimized with use of ge-
netic algorithms ([4,7]), a particular class of evolutionary algorithms. GA based
techniques are global search methods which do not require the gradient of the
objective function to be computed. The only information used in the search
process is the values of an appropriate fitness function. There are various ver-
sions of genetic algorithms. In this paper, the steady state strategy is applied.
It will be described in more details in the following section.

4.1 The Steady State Algorithm

As it is common in GA approaches, the search process starts with a population
of randomly generated individuals (genomes). At each generation it creates a
temporary set of new individuals by performing selection, crossover and mutation
on individuals from the current population. These offsprings are then added to
this population and their fitness values are computed. At this point, the worst
individuals are removed in order to return the population to its original size. A
new individual, if not proven to be good enough may not make any contribution
to the next population.

Denote by P (t) the population at step t, by S the number of individuals in
the population. Let M be the number of new individuals additionally created at
each iteration (M < S). Let T be the maximal number of iterations. The steady
state strategy can be described in the following pseudo code:

BEGIN PROCEDURE SteadyStateGA
P(0) = {};
FOR i = 1 TO S DO

Randomly generate an individual g(i);
ComputeFitness(g(i)); //compute the fitness value for g(i)
P(0) = P(0) + {g(i)};

END FOR;
FOR t = 1 TO T DO

P(t) = P(t-1);
FOR j = 1 TO M/2 DO

f = DoSelection(P(t-1)); //perform selection on P(t-1)
m = DoSelection(P(t-1));
{b, s} = CrossOver(f,m); //perform crossing over
IF (b should be mutated) THEN

Mutate(b);
END IF;
IF (s should be mutated) THEN
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Mutate(s);
END IF;
ComputeFitness(b); ComputeFitness(s);
P(t) = P(t) + {b, s};

END FOR;
Remove M worst individual from P(t);

END FOR;
Return the best individual as the solution;
END PROCEDURE;

4.2 Genetic Operators

In order to be able to apply the above algorithm in solving systems of interval
linear equations, one has to specify what the genomes are and to define the
appropriate genetic operators. In this work, each genome is simply an inter-
val vector in IR

n, i.e. x =
([
xL

i , x
R
i

]n
i=1

)T
which represents a potential solution

for (7).

Selection. Various selection schemes: roulette wheel selection, tournament se-
lection, deterministic selection and stochastic remainder sampling selection can
be applied. Selection is made based on the fitness values of genomes. Here the fit-
ness values of genomes are computed from their associating cost function values
(as defined in (8)) by applying a linear scaling scheme.

Crossover. Two mating methods - the single point crossover and the arithmetic
crossover - are used during evolution. The aim of crossing over is to allow genetic
material to be exchanged between individuals. Let x =

([
xL

i , x
R
i

]n
i=1

)T
and

y =
([
yL

i , y
R
i

]n
i=1

)T
be two genomes that are selected for mating. In the single

point crossover approach, a random crossing point k = 1, n is chosen and two
offsprings:

b =
([
xL

i , x
R
i

]k
i=1 ,

[
yL

j , y
R
j

]n
j=k+1

)T

s =
([
yL

i , y
R
i

]k
i=1 ,

[
xL

j , x
R
j

]n
j=k+1

)T

are generated. In the second approach, a random real number p ∈ (0, 1) is chosen
and the new genomes b =

([
bLi , b

R
i

]n
i=1

)T
and s =

([
sLi , s

R
i

]n
i=1

)T
are produced,

where for α ∈ {L,R}:

bαi = p.xα
i + (1− p) .yα

i

sα
i = (1− p) .xα

i + p.yα
i

Mutation. The aim of mutation is to maintain the diversity of genomes from
generation to generation, which in turn prevents the search process from pre-
mature convergence in a local minimum. Let Δ (t, r) (t ∈ N and r ∈ R

+ are the
parameters) be a random number generator with the following properties:
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1. Δ (t, r) ∈ [0, r], i.e. Δ (t, r) generates random numbers between 0 and r,
2. ∀ε > 0, ∀t1, t2 ∈ R

+ : t1 < t2,Prob {Δ (t2, r) < ε} > Prob{Δ (t1, r) < ε}. In
other words, the probability of Δ (t, r) to produce a value close to 0 increases
when t increases.

Let [Li,Ri] ⊂ R be the domain of the i-th component of the genomes in
the population. Let x =

([
xL

i , x
R
i

]n
i=1

)T
be an individual selected for muta-

tion at step t of the evolution process. For this given vector, a component[
xL

j , x
R
j

]
is randomly chosen. This j-th component of x is then replaced by[

min
{(
xL

k

)′
,
(
xR

k

)′}
, max

{(
xL

k

)′
,
(
xR

k

)′}], where(
xL

k

)′
= xL

k +Δ
(
t,Rk − xL

k

)
or

(
xL

k

)′
= xL

k −Δ
(
t, xL

k − Lk

)(
xR

k

)′
= xR

k +Δ
(
t,Rk − xR

k

)
or

(
xR

k

)′
= xR

k −Δ
(
t, xR

k − Lk

)
In this paper, the following random number generator Δ (t, r) was applied:

Δ (t, r) = r
(
1− ω1−t/T

)
Here T is the maximal number of populations, ω is a uniform random variable
in [0, 1]. Due to the properties of Δ (t, r), this mutation scheme allows the GA to
search for the solution in the whole input space at the beginning phase, whereas
as evolution goes on, this process becomes local.

5 Numerical Evaluation

To verify the NN based approach, 50 neural networks for approximating the
product of interval numbers with 5 hidden neurons were trained. The training
set is composed of 500 samples, whereas the validating set is composed of 300
samples. Both training and validating sample sets were randomly generated.
After the training process all networks were tested against a set of 2000 randomly
generated testing samples. The network with the best performance (in terms of
the mean absolute square error) was chosen as the approximating network N to
be used in the modified cost function (9). Next this modified cost function was
minimized with use of the Scaled Conjugate Gradient Algorithm [8].

For the GA based approach, the size of the population S, the maximal number
of iterations T, the probability of crossing over pC as well as the probability of
mutation pM were chosen depending on the size of the problem. For instance, in
the case when n = 20, these settings were: S = 200, T = 5000, pC = 0.85 and
pM = 0.1.

The proposed techniques were applied to approximate the algebraic solution
of various systems of interval linear equations (7) with various values of n. For
each value of n, a set of 20 different configurations of A and the exact algebraic
solution x∗ were first randomly generated (each component of A as well as of
x∗ is an interval number in [−1, 1]). The interval vectors b were then computed
according to: b = Ax∗.
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For each configuration of
{
A, b

}
, the simulation was repeated 10 times (i.e.

with 10 different randomly chosen starting points in the case of the NN based
approach and 10 initial populations in the case of the GA based technique). The
solution with the smallest value of the (modified) cost function was chosen as
the final solution for the system. In Table 1 the experimental results1 for n = 20,
in terms of the Mean Absolute Square Error (E) are shown:

Table 1. The min., max. and avg. MASE for n = 20

NN based method GA based method

Min.E 1.88e-2 1.99e-1

Max.E 1.53e-1 3.53e-1

Avg.E 6.41e-2 2.74e-1

Various numerical experiments showed that in the case of the GA based ap-
proach, the arithmetic crossover operator is slightly better than the single point
one. If one compares the NN based and the GA based techniques, the first ap-
proach outperforms the later one taking into consideration the MASE. Moreover
the number of cost function evaluations in the NN based approach is also smaller
than that in the GA based approach.

6 Conclusions

As it was described in the paper, neural networks and genetic algorithms can
be applied to approximate the algebraic solution of systems of interval linear
equations. The original problem of solving SILE was transformed into a problem
of minimization of a cost function. Due to the specific properties of interval
arithmetics, this cost function was minimized either by using genetic algorithms
or by employing a simple neural network for interval number multiplication.

It can be observed that in the case when there is no exact solution for a given
SILE, a possible solution can still be found. The proposed approaches can also
be used to solve the system (7) when A ∈ IR

n×m,b ∈ IR
n and n �= m. With

the use of neural networks and genetic algorithms, it is possible to parallelize
the computation process that takes place in each neural unit, or during genome
evaluation in the GA based case. This is an essential issue in solving complex,
large scale problems.

It may be interesting to combine both GA based and NN based approaches
into one single method. GA may be used at the beginning phase for global search,
whereas the NN based technique may be used in the final, local search phase to
improve the solution obtained by GA.

1 In the case of GA based approach, the results presented here were obtained with the
roulette wheel selection and arithmetic crossover involved.
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Abstract. A fast and numerically robust algorithm for training feedfor-
ward neural networks (FNNs) using a recursive prediction error (RPE)
method, along with an adaptively-adjustable time-varying forgetting fac-
tor technique, is presented first. Then a U-D factorization-based RPE
(UD-RPE) algorithm is proposed to further improve the training rate
and accuracy of the FNNs. In comparison with the backpropagation (BP)
and existing RPE based training algorithms, the proposed UD-RPE can
provide substantially better results in fewer iterations with fewer hidden
nodes and improve significantly convergence rate and numerical stabil-
ity. In addition, it is less sensitive to start-up parameters, such as initial
weights and covariance matrix. It has also good model prediction ability
and need less training time. The effectiveness of the proposed algorithm
is demonstrated via two nonlinear systems modeling and identification
examples.

1 Introduction

The classical method for training a multilayer FNN is the steepest descent back-
propagation (BP) algorithm. Although successfully used in many cases, the BP
algorithm suffers from a number of shortcomings. One such shortcoming is the
slow convergence rate. Furthermore, the learning rate and the momentum term
have to be tuned in a heuristic manner to obtain quick convergence. An improper
choice of these parameters may incur problems of stability, slow convergence, or
lead to only local minimal solutions. These facts motivated the research for
faster learning algorithms. Several modifications have been proposed in the lit-
erature, in an attempt to speed up the convergence. The earlier research falls
roughly into two categories. The first involves the development of heuristic tech-
niques, which arose out of a study of the distinctive performance of the standard
BP algorithm. These heuristic techniques include such ideas as varying learn-
ing rate parameter, using momentum and rescaling variables [5]. It has been
shown that the learning rate can be improved by setting a large learning rate
parameter. Unfortunately, this also increases the possibility for the algorithm
to be trapped in a local minimum, to oscillate around the global minimum, or
to numerically overflow according to author’s experience. Other research has
focused on numerical optimization techniques other than the gradient descent

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 160–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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method to accelerate convergence. Meanwhile, the learning algorithm based op-
timal estimation has also received considerable attention. Chen and Billings [2,3]
suggested the use of the recursive prediction error (RPE) method for the nonlin-
ear system modeling and identification based on the multiple layer perceptron
(MLP) network. These improve the convergence rate considerably. But the RPE
method increases computational cost and may suffer from numerical instability
[6]. Some other estimation-based training algorithms, such as extended Kalman
filter (EKF) [8,9] and recursive least squares method [4], have also been proposed.
These algorithms improve considerably the convergence of the BP algorithm and
exhibit good performance. The storage and computational cost have been more
or less reduced. However, the numerical stability is not guaranteed, which may
degrade convergence. The numerical stability, convergence rate, learning accu-
racy and the computational requirement of these algorithms can be improved
further by using the numerically robust U-D factorization of covariance matrices
[6,9] combined with a time-varying forgetting factor.

In view of the above facts and to obtain better convergence and accuracy of
the training algorithm, an adaptively-adjustable time-varying forgetting factor
technique, combined with the RPE algorithm and its two modified implementa-
tions, for training FNNs is presented in this paper first. Then, a much faster and
more robust training algorithm is proposed by using forgetting factor technique
together with a U-D factorization-based RPE (UD-RPE) algorithm.

The paper is organized as follows. In Section 2, the RPE and two modified
RPE algorithms, along with the developed adaptively-adjustable time-varying
forgetting factor technique, are presented. The UD-RPE is proposed in Section
3 for nonlinear systems with multiple as well as single output, In Section 4,
simulation results for comparison of the three algorithms for nonlinear systems
modeling and identification are given, and finally Section 5 presents the main
conclusions.

2 RPE Algorithms with Adaptively-Adjustable
Time-Varying Forgetting Factor

2.1 RPE Algorithm and Its Variants

The recursive prediction error (RPE) algorithm, referred to as the RPE(C)
algorithm, is given as follows [2,3]:[

ŷ(t)
Ψ(t)

]
=
[

f̂ [x(t); Θ̂(t− 1)]
G[x(t); Θ̂(t− 1)]

]
(1)

ε(t) = y(t) − ŷ(t) (2)
R(t) = R(t− 1) + γ(t)[Ψ(t)Λ−1ΨT (t) + δI −R(t− 1)] (3)

Θ̂(t) = Θ̂(t− 1) + γ(t)R−1(t)Ψ(t)Λ−1ε(t) (4)

where Θ̂(t) denotes the estimate of Θ at t and γ(t) is the gain at t.
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In practice, the above algorithm is not implemented in a straightforward way
with matrix inverses R−1 and Λ−1. Based on the matrix inversion lemma, an
equivalent form of (3)-(4) can be obtained [3,6] (with δ = 0) as following:

P (t)= P (t−1)−P (t−1)Ψ(t)[ΨT (t)P (t − 1)Ψ(t) + λ(t)Λ]−1ΨT (t)P (t − 1)}/λ(t)(5)

Θ̂(t) = Θ̂(t−1) + P (t)Ψ(t)Λ−1ε(t) (6)

where
P (t) = γ(t)R−1(t) and λ(t) = γ(t− 1)(1− γ(t))/γ(t) (7)

The simplest choice for Λ is I but Λ can also be chosen to be time-varying as
follows [3]:

Λ(t) = Λ(t− 1) + γ(t)[ε(t)εT (t)− Λ(t− 1)] (8)

Note that the factor P (t − 1)Ψ(t) appears three times in the computation
of the P (t). By utilizing this feature and taking advantage of symmetry and
positive definiteness of the covariance matrix P (t − 1), the following modified
RPE algorithm, referred to as the RPE(M) algorithm, can be obtained:

ε(t) = y(t)− ŷ(t)
L(t) = P (t− 1)Ψ(t)
S(t) = ΨT (t)P (t− 1)Ψ(t) + λ(t)Λ (9)
P (t) = [P (t− 1)− L(t)S−1(t)LT (t)]/λ(t)

Θ̂(t) = Θ̂(t− 1) + P (t)Ψ(t)Λ−1ε(t)

It can be shown that this modified RPE implementation is computationally
efficient, has slightly higher numerical stability, due to the use of symmetry and
positive definiteness of P (t − 1), and a faster rate of convergence. This will be
shown later via simulation.

Moreover, using the expression for P (t) in (7), the gain L(t) can be defined
and written in a computationally more convenient form

L(t) = γ(t)R−1(t)Ψ(t)Λ−1

= P (t)Ψ(t)Λ−1

= P (t − 1)Ψ(t)[ΨT (t)P (t − 1)Ψ(t) + λ(t)Λ]−1 (10)

Then (2)-(6) can also be written in the following modified form, referred to as
the RPE(L) algorithm

ε(t) = y(t) − ŷ(t)
S(t) = ΨT (t)P (t − 1)Ψ(t) + λ(t)Λ
L(t) = P (t− 1)Ψ(t)S−1(t) (11)
P (t) = [P (t− 1)− L(t)S(t)LT (t)]/λ(t)

Θ̂(t) = Θ̂(t− 1) + L(t)ε(t)

In the above algorithms, λ(t) is a time-varying forgetting factor and can be
chosen as follows [6]

λ(t) = λ0λ(t− 1) + (1− λ0) (12)
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where the rate λ0 and the initial value λ(0) are design parameters. Typical values
are λ0 = 0.99 and λ(0) = 0.95. If λ(t) ≤ 1, then P (t) will keep larger than the
case when λ(t) = 1 and will not tend to zero, and the RPE algorithm will always
be altered to tracking the changes in the system.

RPE(C), RPE(M) and RPE(L) are algebraically equivalent. Their differences
lie in the computation of P (t) from P (t − 1). RPE(M) and RPE(L) are com-
putationally less demanding. Their difference is the definition of L(t). The com-
putational requirements and numerical stability of RPE(M) and RPE(L) are
improved due to the use of symmetry and positive definiteness of the P (t).

2.2 The Adaptive Adjustment of Time-Varying Forgetting Factor

The introduction of time-varying forgetting factor in identification algorithms
makes it possible for a recursive identification to track the time-varying dynamic
systems [6]. This feature can be exploited for the training of FNNs discussed
in this paper. When the training accuracy reaches a specified accuracy, corre-
sponding to the steady-state of the identification, smaller weights for current
input and output should be given and, therefore, the forgetting factor should
adaptively change to 1 so that a fine adjustment of the weights of the FNN
can be acquired. On the other hand, if the specified accuracy is not reached in
the subsequent training iterations, the time-varying factor should be in effect
so as to speed up the convergence rate. In this way, both a fast convergence
and a high learning accuracy can be obtained simultaneously. This technique is
important for improving simultaneously the convergence rate and learning ac-
curacy of the RPE-based learning algorithms. The adaptive adjustment process
is implemented by a logic based on the detection of a “large” training error.

The root mean square errors (RMSE) between the estimated and the actual
output (prediction error) of the FNN can be used as a measure of the accuracy
of the training algorithm, which is defined as

RMSE =

√√√√ 1
N

Niter∑
j=1

N∑
i=1

ε2j(i) (13)

where Niter denotes the number of iterations for FNN while N denotes the num-
ber of training samples. When the RMSE is larger than some specified training
accuracy σ (e.g., σ = 10−3 or σ = 10−4), λ(t) should be smaller but close to 1,
as computed by (12); otherwise, set λ(t) = 1. That is

λ(t) =
{
λ0λ(t− 1) + (1− λ0)
1

if RMSE ≥ σ
if RMSE < σ

(14)

The threshold σ should be chosen to have a balanced training accuracy and
smoothness of the training process.

This “adaptively-adjustable time-varying forgetting factor” technique can
smooth out weight changes and improve significantly the convergence rate and
training accuracy. However, the faster and numerically robust learning algorithm
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can be obtained by the combination of the above forgetting factor technique with
the U-D factorization of the covariance matrix to be described in next section.

3 U-D Factorization-Based RPE Training Algorithm

In the above RPE algorithms, P (t) plays an important role. Its computational
load and numerical stability are a major consideration of the algorithm im-
plementation, especially for the case of real-time application of the algorithm.
Due to the finite word length (in particular, the truncation errors) of a com-
puter, the algorithm may lead to the loss of symmetry and positive definiteness
of P (t), or even divergence, even though theoretically P (t) is always positive
definite. Several covariance matrix factorization methods, such as square root
method (Cholesky decomposition), U-D factorization [1], and singular value de-
composition (SVD) have been developed to improve the computation of P (t).
The U-D factorization method is the most popular one [1,6] due to its com-
putational efficiency. In this method, the covariance P (t) is decomposed into
P (t) = U(t)D(t)UT (t), where U(t) and D(t) are a unit-upper triangular matrix
and a diagonal matrix, respectively. Then, U(t) andD(t), instead of P (t), are up-
dated at every time step. This decomposition guarantees the positive-definiteness
and symmetry of P (t), and thus high estimation accuracy and robustness can
be attained [1,6,9]. In view of the superiority of the U-D factorization, a U-D
factorization-based RPE algorithm is proposed to improve the performance of
the training algorithm for FNNs.

3.1 Multiple Input Single Output (MISO) Case

Suppose P (t− 1) has been U-D decomposed at time t− 1 :

P (t− 1) = U(t− 1)D(t− 1)UT (t− 1)

Eq. (5) then becomes

P (t) =
1

λ(t)
{U(t − 1)D(t − 1)UT (t − 1)

−U(t − 1)D(t − 1)UT (t − 1)Ψ(t)ΨT (t)U(t − 1)D(t − 1)UT (t − 1)

ΨT (t)U(t − 1)D(t − 1)UT (t − 1)Ψ(t) + λ(t)Λ
} (15)

=
1

λ(t)
U(t − 1) D(t − 1) − D(t − 1)e eT D(t − 1)

eT D(t − 1)e+λ(t)Λ
UT (t − 1) (16)

=
1

λ(t)
U(t − 1) D(t − 1) − g gT

β
UT (t − 1) (17)

where

e = UT (t− 1)Ψ(t) (18)
g = D(t− 1)e (19)
β = eTD(t− 1)e+λ(t)Λ = eT g+λ(t) (20)
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and Ψ(t), e and g are nθ-vectors for an FNN with single output; Λ is equal to 1
and β is a scalar.

If Ū(t) and D̄(t) are U-D factors for the matrix [D(t− 1)− g gT

β ], that is

[D(t− 1)− g gT

β
] = Ū(t)D̄(t)ŪT (t) (21)

then the U-D factors for P (t) = U(t)D(t)UT (t) can be given as:

U(t) = U(t− 1)Ū(t) (22)
D(t) = D̄(t)/λ(t) (23)

where a detailed deviation of Ū(t) and D̄(t) can be found in [1,6].
Let ei and gi, i = 1, ..., nθ, be the elements of e and g, respectively. Further,

let Uij(t) and Dij(t) represent the (i, j)th element of U(t) and D(t), respectively.
Then, the implementation of U-D factorization form of the RPE(C) algorithm
can be given as follows:

Step 1. Compute e = [e1, ..., enθ
]T := UT (t − 1)Ψ(t), g = [g1, ..., gnθ

]T :=
D(t− 1)e, α0 := λ(t)

Step 2. For j = 1, ..., nθ, compute⎧⎪⎪⎨⎪⎪⎩
αj := αj−1 + ejgj

Djj(t) := Djj(t− 1)αj−1/αjλ(t)
νj := gj

μj := −ej/αj−1

(24)

For i = 1, ..., j − 1, compute

{
Uij(t) := Uij(t− 1) + νiμj

νi := νi + Uij(t− 1)νj
(25)

Step 3.
L(t) = [ν1, ..., νnθ

]T /αnθ
(26)

Step 4.
Θ̂(t) = Θ̂(t− 1) + L(t)ε(t) (27)

where the scalar αnθ
obtained after the nθ-th cycle of Step 2 is the “innova-

tion variance”, i.e., αnθ
= ΨT (t)P (t − 1)Ψ(t) + λ(t).

3.2 Multiple Input Multiple Output (MIMO) Case

For MIMO systems, one approach is to transform the problem into a sequence of
scalar problems [1,6]. Based on this idea, a UD-RPE for multiple (vector) output
can be obtained by processing the m-dimensional output with m sequential
applications of the above single output UD-RPE algorithm. Due to the space
limitation, the detailed algorithm is omitted here.
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4 Application to System Modeling and Identification

In this section, simulation results for two nonlinear system identification prob-
lems are presented. Performance comparison of the proposed UD-RPE, RPEs
and the BP algorithm is carried out.

Example 1. Consider the following nonlinear system:

y(t) = 2.0
x(t)

1 + x2(t)
(28)

where y(t) ∈ [−1, 1] when x(t) ∈ [−10, 10]. The UD-RPE, RPEs and BP algo-
rithms were employed to train a neural network with an architecture of 1-10-1
consisting of a total of 30 adjustable weights to approximate (28).

Training and prediction accuracy. Table 1 shows the mean and standard
deviation (s.d.) of training and prediction output errors of the three algorithms
with or without the forgetting factor. Fig. 1 illustrates the RMSE and output
error curves of different algorithms. It is clear that the training and prediction
accuracy as well as the convergence of the UD-RPE algorithm are much better
than those of the RPEs and BP algorithms. The RPEs algorithms also have much
better accuracy and convergence than BP. In the BP algorithm, the learning rate
and momentum constant are selected as ηw = 0.2 and ρw = 0.2. There are some
oscillations in Fig. 1 for RPE(C) and RPE(L) due to the problem of numerical
stability and the sensitivity to the time-varying forgetting factor. The RPE(M)
gives slightly smoother and faster convergence than RPE(L) and RPE(C).

Table 1. Comparison of training and prediction accuracy of three algorithms

BP RPE UD-RPE
ηw = 0.2 λ(t) = 1 RPE(M) RPE(L) RPE(C) λ(t) = 1 λ(t)

learning mean -8.2208e-1 -6.0577e-6 9.6370e-6 -1.3220e-6 -1.2576e-6 3.0063e-6 4.4357e-7
s.d. 7.5517e-1 3.7639e-3 3.1881e-5 6.4208e-5 4.2196e-5 2.1238e-3 5.9914e-6

prediction mean 6.0716e-1 2.7231e–3 -4.8791e-4 -3.1823e-4 2.0132e-3 8.8712e-3 -1.7920e-4
s.d. 7.6116e-1 6.5024e-3 1.1455e-3 7.6485e-4 5.0064e-3 1.9154e-2 4.9411e-4
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Fig. 1. Comparison of RMSE and output errors of three algorithms
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The influence of number of hidden nodes. Fig. 2 illustrates the RMSE
curves from the three algorithms with different numbers of hidden nodes. It
is clear that better learning accuracy and convergence rate were obtained by
the UD-RPE with just 7 nodes than RPE(M) with 10 nodes, and the UD-RPE
with only 2 neurons has much better results than the BP with 10 neurons. In
addition, the RPE(M) has much better results than BP. This demonstrates the
superiority of the UD-RPE algorithm. It also means that, to obtain a specific
modeling accuracy, fewer hidden neurons and less computation time are needed
by the UD-RPE.
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Fig. 2. Performance comparison of different hidden nodes

The effectiveness of “variable” forgetting factor. As discussed previ-
ously, forgetting factor is an important design parameter which assures the fast
convergence and high training accuracy of the proposed training algorithms. Fig.
3 shows the RMSE curves for different specification of training accuracy using
different “variable” forgetting factors. It can be observed that the RPE(M) is
sensitive to the values of the forgetting factor. As shown in Fig. 3, the RMSEs
are quite different for different specifications 10−3, 10−4 and 10−5. A large oscil-
lation exists in RPE(M) when the specified accuracy in RMSE is smaller than
10−5. On the other hand, the learning accuracy will be limited to a large bound
if the RMSE is chosen as 10−3, although the convergence is smooth. In contrast,
the UD-RPE is not sensitive to forgetting factor, and a much higher learning
accuracy and smooth convergence can be acquired even when the accuracy is
specified as smaller than 10−6.

Convergence and computation complexity. As a comparison of the con-
vergence rate and computational requirement for different algorithms to reach
the same identification accuracy, Table 2 lists the required iteration numbers of
the three algorithms for the RMSE of 10−2, 10−3, 10−4 and 10−5, respectively.
In Table 2, “-” denotes that the corresponding algorithm has not reached the
expected accuracy within 200,000 iterations for BP and 2000 iterations for RPEs
and UD-RPE, respectively. Table 3 lists the computation time per iteration of
the three algorithms for the cases with different hidden nodes.
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Fig. 3. Performance comparison of different forgetting factors and specified accuracy

Table 2. Iteration number/computation time (second) for specified accuracy

RMSE BP RPE UD-RPE

λ(t) = 1 RPE(M) RPE(L) RPE(C) λ(t) = 1 λ(t)

10−2 - 16/35 6/12 7/12 14/279 17/17 6/7
10−3 - - 10/21 14/24 24/489 - 10/11
10−4 - - 27/58 53/91 - - 17/18
10−5 - - - - - - 77/80

Table 3. Computation time per iteration with different hidden node numbers

nh BP RPE(M) RPE(L) RPE(C) UD-RPE

10 0.035 2.13 1.71 19.49 1.035
7 0.03 1.06 0.85 7.08 0.52
5 0.02 0.54 0.44 2.65 0.27
3 0.015 0.21 0.16 0.67 0.11
2 0.01 0.09 0.08 0.23 0.05

It is found that the UD-RPE gives the best convergence. Although the com-
putation time per iteration for UD-RPE and RPEs are larger than BP, the
computation time required by UD-RPE for convergence to a specified accuracy
is much smaller than RPEs and BP.

Example 2. Consider the MIMO system given in [7]:[
y1(t+ 1)
y2(t+ 1)

]
=

[
y1(t)

1+y2
2(t)

y1(t)y2(t)
1+y2

2(t)

]
+
[
u1(t)
u2(t)

]
(29)

An FNN with an architecture of 4-20-2 was used to model and identify the
above MIMO system. Table 4 shows the mean and s.d. of training and prediction
output errors of the three algorithms. It is obvious that the proposed UD-RPE
has the fastest convergence and highest accuracy. RPE(M) has faster convergence
than BP.
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Table 4. Modeling and identification results comparison with three algorithms

Results y1 y2

Algorithms Mean s.d. Mean s.d.

UD-RPE -4.5249969e−6 9.4609054e−4 -6.3272516e−6 1.3137960e−3

Learning RPE(DP) 1.3641758e−4 1.7913972e−2 1.2526319e−4 2.1014970e−2

BP 2.0058365e−2 1.3416174e−1 1.3929651e−3 6.7967173e−1

UD-RPE -4.3691909e−3 1.7857307e−1 -2.9752850e−2 1.9580073e−1

Generalization RPE(DP) -4.3006508e−2 2.8429252e−1 1.2770477e−2 3.1416870e−1

BP −1.9512380e−1 8.7109413e−1 1.2051304e−1 1.0580563e0

5 Conclusions

Combined with an adaptively-adjustable time-varying forgetting factor tech-
nique, two fast learning algorithms using the recursive prediction error (RPE)
method and the U-D factorization-based RPE for training FNNs have been pro-
posed. It has been demonstrated that the UD-RPE algorithm with the adaptive
forgetting factor greatly improves the convergence rate, numerical stability, and
provides much more accurate results in fewer iterations with fewer hidden nodes.
In addition, it is less sensitive to the choice of initial weights, initial covariance
matrix. It has also been illustrated that the proposed algorithm can be used
successfully for modeling and identification of highly nonlinear systems. The al-
gorithm proposed here is not restricted to networks of a specific topology. It can
be used effectively for other types of neural networks.
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Abstract. In this paper, we propose two new ways to interpret un-
certain information reflected by non-atomic descriptors. We focus our
research on data stored in a proximity-based fuzzy relational database
as the database provides convenient mechanisms for recording and inter-
pretation of uncertain information. In proximity-based fuzzy databases
the lack of certainty about obtained information can be reflected via in-
sertion of non-atomic attribute values. In addition, the database extends
classical equivalence relations with fuzzy proximity relations, which pro-
vide users with interesting analytical capabilities. In this paper we con-
centrate on both of these properties when proposing new approaches to
interpretation of non-atomic values for decision making purposes.

1 Introduction

The aptitude to make correct decisions is one of crucial human skills. According
to the surveys published by portal KDnuggets [1], extraction of decision rules
was the most frequently used data mining technique for the last five years. In real
life, imperfect information occurs frequently (e.g. the lack of suitable precision
of measuring instruments, subjective judgments of human beings) in multiple
areas (e.g. customer surveys, genotype characteristics, police-reports). An ability
to generate decision rules from such data has crucial importance for many real-
world applications.

Currently available standard decision tree algorithms (e.g. ID3, C4.5, J48 [10-
13, 16]) do not allow processing of non-atomic variables, as they focus only on
statistically comparable entities. In this work we concentrate our attention on
the similarity-based interpretation of non-atomic descriptors and extraction of
decision trees from such data stored in a fuzzy relational database.

In the next section, we provide an overview of the proximity based fuzzy
relational database model, which we used in our research, and briefly discuss
entropy-based decision tree algorithms. In the sec. 3, we present two ways to
interpret non-atomic categorical values and discuss a method letting us utilize
the fuzzy proximity relation to support precise decision tree induction. Finally,
in sec. 4, we briefly summarize conclusions coming from our investigation.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 170–181, 2006.
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2 Related Work

The similarity-based fuzzy model of a relational database, proposed originally
by Buckles and Petry [2-3], is an extension of the ordinary relational database
[4]. The fuzzy model (based on the max-min composition of a fuzzy similarity
relation, proposed by Zadeh in [5]), was further extended by Shenoi and Melton
[6-7] using the concept of proximity relations (derived from work published by
Tamura et al. [8]). An interesting discussion of fuzzy relational database prop-
erties was recently presented by Kumar De et al. in [9].

There are two fundamental properties of fuzzy relational databases: (1) accep-
tance of non-atomic domain values when characterizing attributes of recorded en-
tities, and (2) generation of multi-level equivalence classes based on the domain-
specific and expert-specified fuzzy relations applied in the place of traditional
equivalence relations.

As mentioned above, each attribute value of the fuzzy database record is
allowed to be a subset of the whole base set of attribute values describing a par-
ticular domain. Formally, if we denote a set of acceptable attribute values as Dj ,
and we let dij symbolize a jth attribute value of the ith tuple, instead of dij∈D j

(required by Codd’s 1NF [4]), the more general case dij⊆D j is allowed in fuzzy
databases. That is, any member of the power set of accepted domain values can
be used as an attribute value except the null set. This lets us represent inexact-
ness arising from the original source of information. In the case when a particular
entity’s attribute cannot be clearly characterized by an atomic descriptor, such
uncertainty can be reflected by insertion of multiple attribute values.

The second feature characterizing proximity-based fuzzy databases is substi-
tution of the ordinary equivalence relation, defining the notion of redundancy in
the ordinary database, with an explicitly declared proximity relation (denoted
by Pα) of which both the identity and fuzzy similarity relations are actually
special cases. Since the original definition of fuzzy proximity relations was only
reflexive and symmetric, which is not sufficient to effectively replace the classi-
cal equivalence relation, the transitivity of proximity relation was added [6-7].
It was achieved by adding to the original definition of the fuzzy proximity re-
lation a transitivity property, generated by sequences of similarities, proposed
by Tamura et al. [8], and known as similarity chains. Such extended relation is
often referred as α-proximity relation (symbol: P+

α ).
Each of the attributes in the fuzzy database has its own proximity table, which

includes the degrees of proximity between all values occurring for the particular
attribute. An example of such table for the domain COUNTRY is presented in
Tab. 1.

The proximity table can be transformed using Tamura’s similarity chains [8]
to represent an α-proximity relation, which has properties identical to the fuzzy
similarity relation specified by Zadeh [5]. Results of this transformation are in
Tab. 2.

Now the disjoint classes of attribute values, considered to be equivalent at a
specific α-level, can be extracted from the Table 2 (they are marked by shadings).
Such separation of the equivalence classes arises mainly due to the sequential
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Table 1. Proximity Table for domain COUNTRY [15]

Canada USA Mexico Colomb. Venezue. Australia N. Zlnd.
Canada 1.0 0.8 0.5 0.1 0.1 0.0 0.0
USA 0.8 1.0 0.8 0.3 0.2 0.0 0.0
Mexico 0.5 0.8 1.0 0.4 0.2 0.0 0.0
Colomb. 0.1 0.3 0.4 1.0 0.8 0.0 0.0
Venezuela 0.1 0.2 0.2 0.8 1.0 0.0 0.0
Australia 0.0 0.0 0.0 0.0 0.0 1.0 0.8
N. Zlnd. 0.0 0.0 0.0 0.0 0.0 0.8 1.0

similarity proposed by Tamura et al. in [8]. For instance, despite the fact that
the proximity degree, presented in Tab. 1, between the concepts Canada and
Venezuela is 0.1, the α-proximity is 0.4. Using the sequence of the original prox-
imity degrees from Tab. 1: CanadaPαMexico=0.5 ∧ MexicoPαColombia=0.4
∧ ColombiaPαVenezuela=0.8, we can obtain CanadaP+

α Venezuela=0.4, as pre-
sented in Tab. 2.

Table 2. α-proximity Table for domain COUNTRY [15]

Canada USA Mexico Colomb. Venezue. Australia N. Zlnd.
Canada 1.0 0.8 0.8 0.4 0.4 0.0 0.0
USA 0.8 1.0 0.8 0.4 0.4 0.0 0.0
Mexico 0.8 0.8 1.0 0.4 0.4 0.0 0.0
Colomb. 0.4 0.4 0.4 1.0 0.8 0.0 0.0
Venezuela 0.4 0.4 0.4 0.8 1.0 0.0 0.0
Australia 0.0 0.0 0.0 0.0 0.0 1.0 0.8
N. Zlnd. 0.0 0.0 0.0 0.0 0.0 0.8 1.0

From the propagation of shadings in Tab. 2, we can observe that the equiva-
lence classes marked in the table have a nested character [5, 15]. This property
allows for the extraction of a concept hierarchy (identical to that presented in
[5]), representing disjoint α-equivalence classes on multiple levels of α (e.g. Fig.
1 and 2). For instance, a space of equivalence classes at 0.8-level for the domain
COUNTRY consists of three subsets (i.e.

∥∥∥P+
0.8,COUNTRY

∥∥∥=3): {{Canada, USA,
Mexico}, {Colombia, Venezuela}, {Australia, N. Zealand}}.

2.1 ID3-Type Algorithms

In 1986 Quinlan [10] presented his first ID3 algorithm, which became the most
common entropy-based decision rules learning technique [11]. Due to its popu-
larity, many improvements have been introduced, generating the whole family
of popular ID3-type algorithms [10-13, 16].

A decision tree is n-ary tree structure, which can be used to represent a set of
decision rules letting a decision maker assign currently analyzed cases to earlier
discovered classes. In the tree every leaf node represents a class (several nodes
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can represent the same class), and each internal node represents an attribute of
an analyzed object (i.e. data-item) and has one child for each of the possible
attribute’s values. Every path in that tree reflects a sequence of decisions (i.e.
nodes), which need to be taken to assign a new object to a particular class of
objects, named in one of the leaves.

ID3-type algorithms use an information gain measure, as a heuristics for se-
lecting the attribute that will best separate the samples’ individual classes. This
attribute becomes a “test attribute”, used to point the user into a direction
leading to a leaf, representing a particular class of training samples. A separate
branch is created for each known value of the “test attribute”, and the samples
are partitioned accordingly.

The major issue in the ID3 approach is to choose the best attribute for a split
at each node (i.e. to find the best ordering of attributes in every decision rule).
Since there may be many decision trees that correctly classify the training set,
a smaller one is typically preferred. In his work, Quinlan used entropy measure
[14] to calculate the value of information gain (i.e. entropy reduction) for every
attribute remaining in the current algorithm’s iteration (i.e. the current node of
the decision tree).

The expected information needed to classify a given sample is caclulated as
follows:

I(s1, s2, ..., sm) = −
m∑

k=1

sk

s
· log(

sk

s
) (1)

where s denotes the cardinality of the training set S with m classes and sk

samples of kth class (k = 1, 2, . . . , m).
If an attribute D have v different domain values {d1, d2, . . . , dv}, it can be

used to partition training set S into v subsets: {S 1, S2, . . . , S v}, where subset
Sj contains all those samples from S that have the same domain value dj of
D. If we let sij to represent the number of samples of class Ci in a subset Sj ,
the entropy, based on the partitioning of s samples into subsets by the analyzed
attribute D, is given by:

E(D) =
v∑

j=1

s1j + s2j + ... + smj

s
I(s1j , s2j , ..., smj) (2)

The smaller the entropy value E(D), the greater is the purity of the subset
partitions. The encoding information that would be gained by branching the set
of training samples using values of atrribute D is:

Gain(D) = I(s1, s2, ..., sm)− E(D) (3)

The attribute with the highest information gain for the given set of training
samples is put as a new separation node of the generated decision tree.

3 Interpretations of Tuples with Non-atomic Values

As we mentioned in section 2.1, fuzzy databases let the user reflect uncertainty
about inserted information via the insertion of multiple descriptors in every
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column of the data table. At the same time, all of the decision tree induction
algorithms, mentioned in section 2.2, were originally created for processing only
atomic attribute values.

This leads to the challenge of developing a mechanism allowing consistent
interpretation of the non-atomic values in the fuzzy databases. In other words,
we want to map (i.e. defuzzify) non-atomic values from fuzzy relation into a
set of atomic descriptors, that are compatible with 1NF definition and can be
analyzed using regular data mining techniques.

We need to keep in mind that interpretation of values in fuzzy database depends
on the character of the α-proximity relation or, in other words, on the shape of the
partition tree extracted from the relation. The hierarchical and nested distribution
of equivalence classes in the partition tree provides data miners with an interesting
knowledge allowing for consistent and accurate interpretations of fuzzy database
relations. Different attribute values can be considered as identical or totally differ-
ent, depending on the preferred level of the partition tree. It gives us the ability
to analyze the same data on multiple levels of granularity. Moreover, assuming
that proximity relation reflects true dependencies among data, the analysis of en-
tered values may give us a hint on granularity level (i.e. α) the persons, who were
entering values, were able or willing to register.

In this section, we are proposing two major approaches to the interpretation
of fuzzy tuples: (1) lossless approach, preserving all original entries stored in the
fuzzy relation, and (2) lossy approach, which transfers the original data entries
into one common α-level. We will now discuss briefly our interpretation of these
concepts.

(1) Lossless approach is the most universal, and at the same time the most
extreme case, as it separates every combination of values (i.e. any subset of
values entered for a particular attribute of a specific entity) and maps it to
a unique single (and therefore atomic) descriptor. Since the mapping has one-
to-one character, we called it lossless, as both the number of entries, and its
similarity level can be backtracked if necessary.

This approach could be interpreted as a tranformation of the multidimensional
representation of data (where the dimensionality is defined by (1) the number
of similarity levels (α’s), (2) the number of equivalence classes distinguished in
the partition tree, and (3) by the number of non-atomic values actually entered
to the original data set) into a one dimensional space that allows us to transfer
non-atomic, originally inserted values into atomic ones. For instance, {Canada}
would be interpreted as {Canada}, whereas entry {Canada, USA} as some type
of unique combination (e.g. union) of these two values, i.e. {CanadaUSA}. Such
process can generate n unique combinations of descriptors for a single domain,
such that: n ≤ 2‖P+

1.0‖. We can expect n =
∥∥P+

1.0

∥∥for an attribute that con-

tains only precise data, and n =
α=0.0∑
α=1.0

‖P+
α ‖for an imprecise attribute with α-

proximity table that reflects perfectly all dependencies occurring in real-life data.
Since a database relation is a subset of cross product of all domains’ values, we
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may ended up with 2 P+
1.0,D1 × 2 P+

1.0,D2 × ...× 2 P+
1.0,Dk unique descriptors for

table containing k attributes.
This approach to fuzzy data interpretation generates a new data table that

is in 1NF, and has a size identical with the original fuzzy data set. The 1NF
is guaranteed, as all (atomic and non-atomic) variables are artificially mapped
to atomic descriptors (e.g. atomic values are copied, whereas the non-atomic
variables are interpreted as some kind of intermediate, but now atomic, values).
Since all occurring descriptors are mapped to unique values, preservation of the
original character of the data, as well as its original size, is assured.

Despite some advantages of the lossless interpretations (accuracy, preservation
of original data character, etc.), there are many good reasons to perform lossy
interpretation of the data. As we showed above, the lossless interpretation may
cause exponential growth of new “atomic” descriptors, whereas mainitaing the
original size of the data table. This can have a significant influence on results
generated by entropy-based classification, as it couses considerable expansion
of granularity of our search space, leading to decrease in support for individual
decision rules. Moreover, this type of interpretation can be very confusing for a
customer, who may have troubles interpreting the artificially created one-to-one
mapping.

One very good reason to perform lossy interpretation is typically a client’s
preference. Quite often a customer (e.g. decision-maker) is not interested in a
detailed representation of the warehouse data, as the knowledge he/she hopes to
discover from the data set is located at the more abstract level. The transforma-
tion of data to a certain granularity level may permit the reduction of the size of
the original data repository (leading in consequence to faster data processing),
or simply provide a more human-friendly data representation.

(2) Lossy approach to interpretation of fuzzy tuples is driven by a need for the
transformation of all originally entered values, representing different equivalence
classes in the partition tree, to a single, common level, where atomic descrip-
tors/interpretations can be assigned to them. Such transformation is going to
generate the

∥∥P+
�

∥∥of unique descriptors for a single domain, such that
∥∥P+

0.0

∥∥ ≤∥∥P+
�

∥∥ ≤ ∥∥P+
1.0

∥∥, where � is the preferred abstraction level, and
∥∥P+

�

∥∥denotes the
number of unique descriptors (i.e. equivalent classes) at that level.

The most common case of lossy interpretation would be the transformation
of a fuzzy relation into a table, where all entries are atomic and reflected at the
lowest level of the partition tree (�=1.0). After such transformation we can inter-
pret information almost in the same way we would interpret a regular (in 1NF)
relational database table. We will call this approach a full data-specialization
(which, could be also interpreted as a complete data-defuzzification), as it re-
quires transformation of all higher-level (i.e. multi-valued) descriptors into the
classes distinguished at the very bottom of the partition tree (where α=1.0).

This requires development of a technique allowing appropriate splitting of a
vote, carried by every fuzzy tuple, into multiple parts, reflecting distribution of
all originally entered non-atomic descriptors and their similarities. We propose
one possible approach in the next section of this paper.
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To better explain our motivation for applying lossy interpretation, we will use
a trivial example. For instance, if in the column COUNTRY OF ORIGIN we
have two entries {Canada, USA} we could interpret such a record as two halves
of a record, one having an atomic value {Canada}, and another saying precisely
{USA}, each with half of the vote carried by the original record (usually having a
value of unity) to reflect the uncertainty represented in the original fuzzy record.

When generating lossy interpretations of fuzzy tuples, we need to remember
to add the attribute COUNT to the output relation. The attribute is neces-
sary to preserve a consistent representation of the original data after the lossy
transformation, as this transformation may cause merging identical fractions of
originally separate records (e.g. half of the vote with now atomic value {USA}
can be merged with other record that contains a descriptor belonging to the
same equvalence class, as long as values in all other attributes are the same).
In such case, an accurate count of votes is essential to guarantee proper data
mining results. It protects every original tuple from being counted more or less
than once, when the lossy data interpretation is performed. By representing
each record of the original data table as a single vote, when having it either split
(i.e. fractioned) into multiple equivalence subclasses (when transfering a tuple
to match equvalence classes at the lower level of partition tree), or generalized
(i.e. summarized) to a more abstract equivalence class(es) (when going up in the
partition tree), we are guaranteed that original proportions among the data (i.e.
distribution of originally inserted values) remain accurate in the new data set.

After performing full data-specialization (i.e. complete data-defuzzification – a
specialization reaching bottom of partition tree) we are capable of reducing a size
of the original relation by merging all fractions of tuples that look identical after
the transformation. Unfortunately, an exact representation of uncertainty distri-
bution (i.e. assignment of non-atomic values to specific tuples) cannot be main-
tained anymore. That is the major reason we called this approach a lossy one.

Obviously, with the lossy interpretation, we are not obligated to always choose
only the terms at the lowest level of the partition tree as our data representation.
We can choose any (e.g. customer-preferred) level of data granularity (i.e. α-level)
and transfer the whole dataset to the level of our preference.

3.1 Similarity-Driven Vote Distribution Method

Due to tree-like character of partition hierarchies, data-generalization of fuzzy
tuples has a typically straightforward character. We can replace the originally
inserted values with broader concepts (i.e. equivalence classes occurring at the
higher level of similarity tree), where the original values belong to and then
treat a record with originally lower-level descriptors, as a full member of higher-
level class. If the proximity table accurately reflects real-life dependencies among
the data, the vote of the generalized tuple may never need to be split, as the
equivalence classes in the partition hierarchy have a nested character.

The problem arises however when we have to deal with multiple attribute
values that need to be data-specialized. E.g. in what COUNTRY (α=1.0) should
we expect to find a drugs dealer who, as a not-confirmed report says, was
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recently seen in {Canada, Colombia, Venezuela}? The most trivial solution
would be to split the vote equally among all inserted descriptors: {Canada|0.(3),
Colombia|0.(3), Venezuela|0.(3)}. This approach however does not take into con-
sideration real life dependencies, which are reflected not only in the number of
inserted descriptors, but also in their similarity.

In our investigation we used a simple heuristic [15] letting us to replace the
even distribution of a vote with a nonlinear spread, dependent both on the
similarity of inserted values and on their quantity. Using the partition tree built
from the α-proximity table (grey structure in Fig. 1), we can extract from the set
of the originally inserted values those concepts which are more similar to each
other than to the remaining descriptors. We call them subsets of resemblances
(e.g. {Colombia, Venezuela} from the above example). Then we use them as a
basis for calculating a distribution of a vote’s fractions. An important aspect of
this approach is extraction of the subsets of resemblances at the lowest possible
level of their common occurrence, since the nested character of α-proximity
relation guarantees that above this α-level they are going to co-occur regularly.

Our algorithm is straightforward. Given (1) a set of attribute values inserted
as a description of particular entity, and (2) a hierarchical structure reflecting
Zadeh’s partition tree [5] for the particular attribute; we want to extract a table,
which includes (a) the list of all subsets of resemblances from the given set of
descriptors, and (b) the highest level of α-proximity of their common occurrence.
We then use the list to fairly distribute fractions of the original record.

Our algorithm uses preorder recursive traversal for searching the partition
tree. If any subset of the given set of descriptors occurs at the particular node
of the concept hierarchy we store the values that were recognized as similar, and
the adequate value of α. An example of such a search for subsets of resemblances
in a tuple with the values {Canada, Colombia, Venezuela} is depicted in Fig. 1.
Numbers on the links in the tree represent the order in which the particular
subsets of similarities were extracted.

After extracting the subsets of resemblances, we apply a summarization of α
values as a measure reflecting both the frequency of occurrence of the particular
attribute values in the subsets of resemblances, as well as the abstraction level
of these occurrences. Since the country Canada was reported only twice, we
assigned it a grade 1.4(i.e. 1.0+0.4). For Colombia we get: Colombia|(1.0 + 0.8
+ 0.4) = Colombia|2.2, and for the last value: Venezuela|(1.0 + 0.8 + 0.4) =
Venezuela|2.2.

Fig. 1. Subsets of Resemblances extracted from the Partition tree
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At the very end we normalize grades assigned to each of the entered val-
ues: Canada |(1.4/5.8) = Canada |0.24, Colombia |(2.2/5.8) = Colombia |
0.38,Venezuela |(2.2/5.8) = Venezuela |0.38. This leads to the new distribu-
tion of the vote’s fractions, which more accurately reflects real life dependencies
than a linear weighting approach.

3.2 Example of Decision Tree Induction Via Lossless and Lossy
Interpretations

In this section, we will analyze a short example of the entropy-based classification
of fuzzy tuples (presented in Tab. 3). Our example is a modified version of a non-
fuzzy problem presented in a popular textbook on AI [17].

Let us assume we gathered data from different clients regarding their decision
about waiting (or not) for a table at a restaurant. Some of the clients did not
exactly remember the situations they were reporting on, so we used fuzzy rep-
resentation to reflect such lack of certainty. The data has four attributes, i.e.:
Waiting Time (referred also as WT ), Day of Week (i.e. DoW ), Food Type (i.e.
FT ), and Did Wait?. The last attribute has a non-fuzzy character that answers

Table 3. Fuzzy Relation for decision about waiting problem

ID Wait Time (WT) Day Of Week Food Type (FT) Did Wait?
1 30-60 Thr Greek No
2 10-30 Fri Italian Yes
3 30-60, Above 60 Thr Burger, Barbeque No
4 30-60 Fri, Sat Greek Yes
5 Above 60 Tue Barbeque, Burger No
6 10-30 Tue Burger, Barbeque Yes
7 30-60 Mon Italian No
8 30-60 Fri, Sun Burger Yes
9 0-10 Fri Italian, Barbeque, Greek Yes
10 30-60 Sun Chinese No
11 30-60 Mon, Tue Barbeque No
12 10-30 Mon Greek No
13 30-60 Fri French, Italian Yes
14 30-60 Fri, Sat Barbeque Yes
15 10-30 Sun Barbeque, Burger Yes
16 30-60 Sun French, Greek, Italian No
17 30-60 Wed, Thr French No
18 10-30 Thr French Yes
19 0-10 Fri, Sat, Sun Barbeque Yes
20 30-60, Above 60 Sun, Mon, Tue Sushi No
21 10-30 Wed Chinese No
22 30-60 Fri Chinese, Sushi No
23 10-30 Sat Sushi, Chinese Yes
24 30-60 Sun Barbeque Yes
25 0-10 Wed Chinese, Sushi Yes
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Fig. 2. Partition trees for the analyzed example

the question whether a particular client decided to wait or not for a table, when
the circumstances described in the remaining three attributes were taking place.
As expected for fuzzy relational databases, the similarity relations are specified
for all of the attributes. To make our example more understandable, we present
the similarity relations using Zadeh’s partition trees [5]. Figure 2a presents a
similarity tree for the domain WT. Figure 2b presents partition tree for DoW,
and figure 2c is for Food Type. As explained in the previous sections, we can
transfer table 3 to multiple sets, containing only atomic values, using different
approaches to fuzzy data interpretation. In table 4 we present some results of
the Similarity-driven Vote Distribution algorithm when lossy interpretation to
1.0-level values is requested. Obviously, tuples identified as 9b and 19a can be
merged, as long as the value in COUNT attribute is appropriately modified
(COUNT for the resulting tuple: 0.24+0.333=0.573 ).

When fully defuzzifying our original relation (i.e. performing lossy interpre-
tation where �=1.0 for all of the attributes), we initially generated 76 fractions
of tuples (with the cumulative vote remaining at its original level of 25), and
managed to merge them into 51 unique records in 1NF (with the cumulative
vote unchanged). Of course, table 3 could be generalized further, even to only 2
tuples (where 12 votes would be stored in COUNT for class No, and 13 votes for
answer Yes, and �=0.0 for all of the remaining attributes). Such a transformation
could take a place if we would decide to generalize all attributes (except the Did
Wait?) to the highest level of granularity. This observation brings up a seemingly
obvious conclusion that level of entropy carried by a given data set may change
with the data generalization or specialization. Choice of the transformation has
also some influence on support of the generated classification rules. As we can
observe from table 5, we may need 780 different data points to fully cover the
space generated by lossless interpretation of data in table 3. Whereas 84 unique
combinations of attribute values would be enough to cover the whole space of
possibilites generated by the second case of lossy interpretation.

3.3 Conclusions and Future Work

In this paper we discussed new ways in which the similarity and proximity
relations, implemented in the fuzzy databases, can be successfully applied to
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Table 4. Part of Fuzzy Relation from Table 3 after defuzzification to the 1.0-level

ID Wait Time (WT) Day Of Week (DoW) Food Type (FT) COUNT Did Wait?
9a 0-10 Fri Italian 0.38 Yes
9b 0-10 Fri Barbeque 0.24 Yes
9c 0-10 Fri Greek 0.38 Yes
. . . . . . . . . . . . . . . . . .
19a 0-10 Fri Barbeque 0.333 Yes
19b 0-10 Sat Barbeque 0.333 Yes
19c 0-10 Sun Barbeque 0.333 Yes

Table 5. Characterization of three different interpretations of Table 3. First 3 rows

represent lossless interpretation, whereas the remaining 6 characterize two different

lossy transformations.

Attribute (i.e. D)  P+
�,D E(D) Gain(D) Characterization of

the generated dataset
Wait Time (WT) all 5 0.71220 0.28683 25 unique tuples
Day Of Week all 13 0.56000 0.43884 Σ COUNT = 25
Food Type (FT) all 12 0.67019 0.32865 ||WT||×||DoW||×||FT||=780

Wait Time (WT) 1.0 4 0.73592 0.26333 51 unique tuples
Day Of Week 1.0 7 0.67976 0.31949 Σ COUNT = 25
Food Type (FT) 1.0 7 0.93254 0.06671 ||WT||×||DoW||×||FT||=196

Wait Time (WT) 1.0 4 0.73592 0.26332 34 unique tuples
Day Of Week 1.0 7 0.67972 0.31952 Σ COUNT = 25
Food Type (FT) 0.6 3 0.94392 0.05533 ||WT||× ||DoW||× ||FT||=84

imprecise data interpretation and to decision rules induction. We showed how
the fuzzy relational databases, due to their interesting properties allowing for
multi-level data representations, could be successfully utilized to reduce space
size while maintaining its original entropy. Finally, we pointed out important
consequences of both methods.
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Abstract. In the design of an interpretable fuzzy rule-based classifi-
cation system (FRBCS) the precision as much as the simplicity of the
extracted knowledge must be considered as objectives. In any inductive
learning algorithm, when we deal with problems with a large number of
features, the exponential growth of the fuzzy rule search space makes
the learning process more difficult. Moreover it leads to an FRBCS
with a rule base with a high cardinality. In this paper, we propose a
genetic-programming-based method for the learning of an FRBCS, where
disjunctive normal form (DNF) rules compete and cooperate among
themselves in order to obtain an understandable and compact set of
fuzzy rules, which presents a good classification performance with high
dimensionality problems. This proposal uses a token competition me-
chanism to maintain the diversity of the population. The good results
obtained with several classification problems support our proposal.

1 Introduction

The Fuzzy Rule-Based Systems have been successfully applied to various fields
such as control, modelling and classification. Traditionally, the main goal in the
design of this kind of fuzzy systems has been the maximization of the precision,
although the interpretability has also been taken into account in some recent
studies [1]. This objective is more difficult to reach when the number of features
for the problem increase due the exponential growth of the fuzzy rule search
space. This growth makes the learning process more difficult and, in most cases,
it leads to an FRBCS with a rule base with a high cardinality (with respect to
the number of rules and the number of features included in each rule).

An analysis of the specialized literature indicates that exist two principal ways
to tackle the problem of the high dimensionality:

1. Compacting and reducing the previously learned rule set in a postprocessing
stage ([10], [13]), and
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2. Carrying out a feature selection process, that determines the most relevant
variables before or during the inductive learning process of the FRBCS ([7],
[16], [17]).

In this paper, we tackle the learning of FRBCSs with high interpretability by
means of a genetic-programming (GP) based approach. The genetic programming
[12] is a kind of evolutionary algorithm that uses variable-length trees to represent
the different individuals in the population, instead of fixed-sized vectors (with bi-
nary, integer or real codification) as the Genetics Algorithms (GAs) do.

The FRBCSs learning has already been done previously in the specialized
literature by means the GP. An initial paper in this topic is Fuzzy GP, developed
by Geyer-Schulz [6], which combines a simple GA that operates on a context-
free language with a context-free fuzzy rule language. Sánchez et al. propose
an FRBCS learning process in [18] and [5] by combining GP operators with
simulated annealing and GA respectively to establish the membership functions.
Mendes et al. develop in [14] a co-evolutionary algorithm which includes a GP
based algorithm for FRBCS learning and an evolutionary algorithm to evolve
membership functions. Tsakonas et al. propose in [19] a GP-based algorithm
with a Pittsburgh representation for the learning of FRBCSs.

In our proposal, the definition of a context-free grammar that allows the
learning of DNF fuzzy rules, together with the use of a competition mechanism
between rules which deletes irrelevant rules during the learning process, allow
us to obtain of compact FRBCSs (with few rules and conditions per rule) with
a high-generalization capability.

The paper is organized as follows. Our proposal is explained in Section 2.
Section 3 presents the experimental study and the analysis carried out. Finally,
the conclusions obtained are presented in Section 4.

2 The Genetic-Programming-Based Proposal

The first feature of our proposal is the kind of fuzzy rule used. Our method
learns DNF fuzzy rules, which have the following form:

If X1 is Â1 and . . . and Xn is Ân then Y is C with CD

where each input variable Xi takes as a value a set of linguistic terms or labels
Âi = {Ai1 or . . . or AiLi} joined by a disjunctive operator, whilst the output
variable (Y ) has one of the class values. The definition of the fuzzy sets that specify
the meaning of each linguistic term or label, is done by using expert knowledge,
or in its absence, by using triangular fuzzy sets divided in a uniform way.

This rule also includes a certainty degree (CD ∈ [0, 1]), which represents the
confidence of the classification in the class represented by the consequent. In our
proposal, this certainty degree is obtained as the quotient Sj / S, where Sj is
the sum of the matching degrees for the training examples belonging to class
represented by the consequent which are covered by the antecedent of the rule,
and S the sum of the matching degrees for all the training examples which are
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covered by the antecedent of the rule, independently of the class they belong to.
Is important to point out that, in our proposal, this kind of rule is generated
according to the production rules of a context-free grammar. The definition of
this grammar is completely explained in subsection 2.1.

One of the most important aspects in any evolutionary approach is its coding
scheme. The different evolutionary methods follow two approaches in order to
encode rules within a population of individuals [4]:

– The ”Chromosome = Set of rules”, also called the Pittsburgh approach, in
which each individual represents a rule set.

– The ”Chromosome = Rule” approach, in which each individual codifies a sin-
gle rule, and the whole rule set is provided by combining several individuals
in the population.

In turn, within the ”Chromosome = Rule” approach, there are three generic
proposals:

– The Michigan approach, in which each individual codifies a single rule. This
kind of system is usually called a learning classifier system. It is rule-based,
message-passing system that employs reinforcement learning and the GA to
learn rules that guide its performance in a given environment [11].

– The IRL (Iterative Rule Learning) approach, in which each chromosome
represents a rule, but the solution is the best individual obtained and the
global solution is formed by the best individuals obtained when the algorithm
is run multiple times. SLAVE [8] is a proposal that follows this approach.

– The cooperative-competitive approach, in which the complete population or
a subset of it codifies the rule base. LOGENPRO [21] is an example with
this kind of representation.

Our method follows the cooperative-competitive approach. However, this kind
of representation makes necessary to introduce a mechanism to maintain the
diversity of the population. In this proposal we use a token competition mecha-
nism to promote the diversity in order to avoid that all the individuals in the
population converge into the same area of the search space. This mechanism
is described in subsection 2.1, together with the remaining components of the
evolutionary learning process.

Finally, is important to point out that our proposal is made up by two different
stages:

– The first stage consists in an evolutionary learning process that uses GP to
obtain a compact fuzzy rule base with a good classification performance.

– The second one, consists in a postprocessing stage that eliminates redundant
rules from the rule base in order to increase the interpretability.

In the following two subsections we describe these two stages.

2.1 Evolutionary Learning Process

The GP process starts with an initial population of rules that is randomly ge-
nerated according to the grammar production rules.
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In each iteration of the evolutionary process, parents are selected to generate
offspring by the ranking selection scheme. All the individuals in the new popula-
tion generate one descendant by means one of the genetic operators. Individuals
in the population and offspring obtained by the application of the genetic opera-
tors, are joined to form a new population. The size of the resulting population is
double the original. The individuals of this new population are ordered by their
fitness score and the token competition is carried out. The token competition
modifies the fitness of the individuals in order to maintain the diversity of the
population. Once token competition is finished, the individuals in the population
are ordered again by their modified fitness score, and the population size is set
to its original one. This evolutionary process is repeated until a certain number
of calls to the fitness function is reached.

Once the evolutionary process is concluded, the best evolved population is
returned as the final rule set. The best population obtained in the evolutionary
process is selected according to a certain measure of global fitness score.

In the following, the most important components of our method are described.

1. Grammar Definition: In our method, is necessary to define a grammar that
allows the learning of DNF fuzzy rules and the absence of some input features.
In Table 1, an example of the grammar for a classification problem with two
features (X1, X2), three linguistic labels per feature (Low, Medium, High) and
three classes (C1, C2, C3) is shown.

Table 1. Grammar example

Start −→ [If ], antec, [then], conseq, [.].
antec −→ descriptor1, [and], descriptor2.
descriptor1 −→ [any].
descriptor1 −→ [X1 is] label.
descriptor2 −→ [any].
descriptor2 −→ [X2 is] label.
label −→ {member(?a, [L, M, H, L or M, L or H,

M or H, L or M or H])}, [?a].
conseq −→ [Class is] descriptorClass.
descriptorClass −→ {member(?a, [C1, C2, C3])}, [?a].

2. Genetic Operators: Offspring are generated by one of the next three genetic
operators (these operators are selected in a probabilistic way):

1. Crossover: Produces one child from two parents. A part in the first parent is
randomly selected and replaced by another part, randomly selected, in the
second one, but under the constraint that the offspring produced must be
valid according to the grammar.

2. Mutation: A part of the rule is selected and replaced by a randomly generated
new part. Since the offspring have to be valid according to the grammar, a
selected part can only mutate to another part with a compatible structure.
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3. Dropping Condition: Due the probabilistic nature of GP, redundant cons-
traints may be generated in the rule. Thus, it is necessary to generalize the
rules, to represent the actual knowledge in a more concise form. Dropping
condition selects randomly one descriptor in the antecedent part and then
turns it into ”any”. The attribute in the descriptor is no longer considered
in the rule, hence, the rule can be generalized.

3. Fitness Function: Our method uses a fitness function based on the estima-
tion of two measures:

1. Confidence, which measures the accuracy of an individual, that is, the con-
fidence of the consequent to be true if the antecedent is verified

confidence =
tp

(tp+ fp)
∗ tn

(fn+ tn)
. (1)

2. Support, which measures the coverage of the knowledge represented in the
individual

support =
tp

(tp + fn)
∗ tn

(fp+ tn)
. (2)

where tp and fp are the sums of the matching degrees for true and false positives,
and tn and fn are the number of true and false negatives, respectively.

Both measures are combined to make up the fitness function in the following
way

raw fitness =
{
support, if support < min support
support ∗ confidence, otherwise . (3)

If the support of the rule is below a user-defined minimum threshold, the
confidence value should not be considered to avoid the waste of effort to evolve
those individuals with a high confidence but low support.

4. Maintaining the Diversity of the Population: Token Competition [21]
has been used as mechanism to maintain the diversity in the population in our
approach. It assumes that each example in the training set can provide a resource
called a token, for which all chromosomes in the population will compete to
capture. If an individual (i.e. a rule) can match the example, it sets a flag to
indicate that the token is seized. Other weaker individuals then cannot get the
token.

The priority of receiving tokens is determined by the strength of the indi-
viduals. The individuals with a high fitness score will seize as many tokens as
they can. The other ones will have their strength decreased because they cannot
compete with the stronger ones. The fitness score of each individual is penalized
based on the tokens it can seize. The penalized fitness is defined as:

Penalized fitness = raw fitness ∗ count
ideal

. (4)

where raw fitness is the fitness score obtained from the evaluation function, count
is the number of tokens that the individual actually seized and ideal is the total
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number of tokens that it can seize, which is equal to the number of examples
that the individual matches.

As a result of token competition, there exist individuals that cannot seize any
token. These individuals are considered as irrelevant, and they can be eliminated
from the population due to all of their examples are covered by other stronger
individuals.

In order to increase the diversity into the population, new rules are also ge-
nerated to cover those examples whose tokens have not been seized by any rule
(if those examples exist).

5. Selecting the Best Population: At the end of each iteration in the evolu-
tionary process, a process that keeps the best evolved population is carried out.
This process checks if the current population is better than the others that have
been evolved. One population A is considered better than other B if the global
fitness score of A is greater than the global fitness score of B. The global fitness
score is calculated adding four different measures

Global fitness = Percent + Nvar +Ncond + Nrules . (5)

where Percent indicates the correct percentage on training, Nvar the average
number of variables per individual (rule) in the population, Ncond the average
number of labels per individual (rule) in the population and Nrules the number
of rules in the population. These four measures are defined in the following way

Percent = W1 ∗ %Tra . (6)

Nvar = W2 ∗ (1.0 − #V ) . (7)

Ncond = W3 ∗ (1.0 − #C) . (8)

Nrules = W4 ∗ (1.0 − #R) . (9)

where %Tra is the normalized value of the correct percentage on training, #V is
the normalized value of the number of variables per rule, #C is the normalized
value of the number of labels per rule, #R is the normalized value of the number
of rules and Wi are some weights that allows give more importance to any of
the four measures (in our experiments we have used the same value for all the
weights, Wi = 1).

2.2 Rule Base Simplification

Once the evolutionary process has finished, a postprocessing stage is carried
out for eliminating redundant rules. During the rule base learning process it
may happen that the algorithm learns two rules, one included in the other. For
example, in the following two rules

R1 : If X1 is Low then Class is C1 with α1

R2 : If X1 is Low or Medium then Class is C1 with α2
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the second rule includes the first one, hence, it does not make sense to keep both
of them in the rule set. In this case, it must be deleted the first rule because
the examples that it covers are also covered by the second rule. Sometimes, it
is also necessary to recalculate the certainty degree of the remaining rule. This
process aims to increase the interpretability of the previously learned FRBCS,
by deleting redundant rules.

3 Experimental Study

In order to analyse the behaviour of the proposed method, we use Pima, Wiscon-
sin, and Wine databases from the UCI repository of machine learning Databases
(http://www.ics.uci.edu/mlearn/MLRepository.html). Our method (from now on
called FRBCS GP) has been compared to other fuzzy rule learning techniques:

1. An extension of Wang & Mendel algorithm [20] for classification problems
proposed by Chi et al. [2], that generates a fuzzy rule for each example in
the training set and does not carry out any feature selection process.

2. A process for deriving fuzzy rules for high-dimensionality classification pro-
blems developed by Ravi et al. [16]. This approach uses a reduced set of
features extracted from the original ones by the principal component ana-
lysis. After that, a fuzzy rule learning process is carried out following the
method proposed in [9] which divides the pattern space in several fuzzy sub-
spaces, learning a rule for each one. Finally, a modified threshold accepting
algorithm [17] is used to build a compact rule subset with a high classification
accuracy, from rule set obtained in the previous stage.

3. SLAVE, a GA-based method for the learning of DNF fuzzy rules proposed
by Gonzalez et al. [8]. In [7], this method is extended by the inclusion of a
feature selection process. This extension will be called 2SLAVE from now.

4. A GP-based FRBCS learning process designed by Tsakonas et al. [19] which
uses a Pittsburgh approach to represent the solutions.

5. C4.5, a classification algorithm proposed by Quinlan [15] that constructs a
decision tree, which can be later transformed into a crisp rule set.

The parameters of our algorithm are the following: It stops after 5000 evalua-
tions, initial population size is 20, crossover probability is 0.5, mutation probabi-
lity is 0.4, dropping condition probability is 0.1, and the minimum threshold for
the support used in fitness function is 0.01. We have used 5 linguistic labels per
variable in all the experiments. For each different database, we have used 10-fold
cross-validation (except for the Sonar database, where only two partitions for
training and test, with a distribution of 50%, have been used).

The results are showed in Table 2, where #R indicates the average rule num-
ber, #Var the average antecedent variables per rule, #Cond the average an-
tecedent conditions number per rule and the %Test the correct percentage with
test examples. The subscripts in %Test are related to the fuzzy reasoning method
(FRM) [3] used, so 1 corresponds to the classical FRM (max-min) and 2 with
the normalised sum respectively (except in the C4.5 algorithm in where FRM is
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Table 2. Databases results

Pima

Method #R #Var #Cond %Test1 %Test2
WM 472.6 8 8 70.18 70.70
Ravi 354.9 5 5 70.06 70.06

2SLAVE 3.43 4.26 11.28 65.47 65.37
Tsakonas 17.4 1.41 1.74 52.8 51.6

C4.5 47.2 4.47 5.6 71.46 -

FRBCS GP 10.27 1.14 2.29 71.37 72.73

Sonar

Method #R #Var #Cond %Test1 %Test2
WM 104 60 60 43.27 43.27
Ravi 277 6 6 73.08 75

2SLAVE 7.67 22.39 41.43 68.33 68.33
Tsakonas 18.33 1.65 1.73 49 50.67

C4.5 10 3.1 3.1 74 -

FRBCS GP 11.33 6.5 14.62 75.33 75.33

Wisconsin

Method #R #Var #Cond %Test1 %Test2
WM 296.5 9 9 66.34 66.19
Ravi 344.3 5 5 93.85 93.85

2SLAVE 5.73 6.02 16.09 88.53 91.93
Tsakonas 22.7 1.15 1.19 72.2 56.9

C4.5 38.4 4.46 5.11 94.29 -

FRBCS GP 11.6 1.67 3.81 93.87 94.5

Wine

Method #R #Var #Cond %Test1 %Test2
WM 159.4 13 13 78.56 79.74
Ravi 231.8 5 5 92.22 92.22

2SLAVE 5.67 6.9 16.86 89.87 89.87
Tsakonas 19.53 1.38 1.49 35.63 39.13

C4.5 7.1 2.15 2.28 90.51 -

FRBCS GP 8.53 1.69 3.15 91.77 92.43

not used, so it has been decided to place the results in the first of the last two
columns).

Analysing the results, we can point out the following considerations:

– Our method learns rule sets with a low number of variables and labels per
rule. It also learns rule bases with a small number of rules. Therefore the
resulting FRBCSs have a high interpretability level. Our results are compa-
rable with the ones obtained by 2SLAVE.
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– Analysing the performance of our approach, it presents a good performance
in test for all the problems, obtaining the best results for all the different
databases with the normalised sum FRM.

4 Conclusions

In this work, we have proposed a genetic-programming-based method to obtain
FRBCSs with a high interpretability. The definition of a context-free grammar
that allows the learning of DNF fuzzy rules and the absence of some input
features, allows the obtaining of rules with fewer antecedent conditions. On the
other hand, the use of token competition mechanism to increase the diversity
into the population makes the rules compete among themselves giving out a
smaller number of rules with a high-generalization capability.

The effectiveness of the method has been demonstrated over several classifica-
tion problems and the results are promising. Therefore, we consider this approach
to be an interesting alternative for the learning of interpretable FRBCSs.

As future work we will incorporate a proper multiobjective approach within
the learning process.

References

1. Casillas J., Cordón O., Herrera F., Magdalena L. (Eds.): Interpretability Issues in
Fuzzy Modeling. Springer-Verlag. Series Studies in Fuzziness and Soft Computing,
Vol. 128 (2003)

2. Chi Z., Wu J., Yan H.: Handwritten numeral recognition using self-organizing maps
and fuzzy rules. Pattern Recognition 28:1 (1995) 59–66

3. Cordón O., del Jesus M.J., Herrera F.: A Proposal on Reasoning Methods in Fuzzy
Rule-Based Classification Systems. International Journal of Approximate Reaso-
ning 20 (1999) 21–45

4. Cordón O., Herrera F., Hoffmann F., Magdalena L.: Genetic Fuzzy Systems. Evo-
lutionary tuning and learning of fuzzy knowledge bases. World Scientific (2001)
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8. González A. Pérez R.: SLAVE: A genetic learning system based on an iterative
approach. IEEE Transactions on Fuzzy Systems 27 (1999) 176–191

9. Ishibuchi H., Nozaki K., Tanaka H.: Distributed representation of fuzzy rules and
its application to pattern classification. Fuzzy Sets and Systems 52 (1992) 21–32

10. Ishibuchi H., Nozaki K., Yamamoto N., Tanaka N.: Selecting fuzzy if-then rules for
classification problems using genetic algorithms. IEEE Trans. Fuzzy Systems 3:3
(1995) 260–270



A Genetic-Programming-Based Approach 191

11. Kovacs T.: Strength or Accuracy: Credit Assignment in Learning Classifier Sys-
tems. Springer-Verlag (2004).

12. Koza J.R.: Genetic programming on the programming of computers by means of
natural selection. Cambridge MA, USA: The MIT Press (1992)

13. Krone A., Krause P., Slawinski T.: A new rule reduction method for finding inter-
pretable and small rule bases in high dimensional search spaces. Proc. of the 9th
IEEE International Conference on Fuzzy Systems vol. 2 (2000) 694–699

14. Mendes R.R.F., Voznika F. de B., Freitas A.A., Nievola J.C.: Discovering Fuzzy
Classification Rules with Genetic Programming and Co-evolution. Principles of
Data Mining and Knowledge Discovery: 5th European Conference (PKDD’01).
Springer-Verlag. Lecture Notes in Computer Science, Vol. 2168 (2001) 314

15. Quinlan J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
16. Ravi V., Reddy P.J., Zimmermann H.J.: Pattern classification with principal com-

ponent analysis and fuzzy rule bases. European Journal of Operational Research
126:3 (2000) 526–533

17. Ravi V., Zimmermann H.J.: Fuzzy rule based classification with FeatureSelector
and modified threshold accepting. European Journal of Operational Research 123:1
(2000) 16–28

18. Sánchez L., Couso I., Corrales J.A.: Combining GP operators with SA search to
evolve fuzzy rule based classifiers. Information Sciences 136:1–4 (2001) 175–191

19. Tsakonas A., Dounias G., Jantzen J., Axer H., Bjerregaard B., von Keyserlingk
D.G.: Evolving rule-based systems in two medical domains using genetic program-
ming. Artificial Intelligence in Medicine 32:3 (2004) 195–216

20. Wang L.X., Mendel J.M.: Generating fuzzy rules by learning from examples. IEEE
Transactions on Systems, Man, and Cybernetics 22:6 (1992) 1414–1427

21. Wong M.L., Leung K.S.: Data Mining using grammar based genetic programming
and applications. Kluwer Academics Publishers (2000)



Performance Evaluation of Fuzzy-Neural HTTP

Request Distribution for Web Clusters

Leszek Borzemski1 and Krzysztof Zatwarnicki2

1 Institute of Information Science and Engineering,
Wroclaw University of Technology, Wroclaw, Poland

leszek.borzemski@pwr.wroc.pl
2 Department of Electrical Engineering and Automatic Control,

Technical University of Opole, Opole, Poland
KZatwarnicki@po.opole.pl

Abstract. In this paper we present the performance evaluation of our
fuzzy-neural HTTP request distribution algorithm called FNRD, which
assigns each incoming request to the server in the Web cluster with
the quickest expected response time. The fuzzy mechanism is used to
estimate the expected response times. A neural-based feedback loop is
used for real-time tuning of response time estimates. To evaluate the
system, we have developed a detailed simulation and workload model
using CSIM19 package. Our simulations show that FNRD can be more
effective than its competitors.

1 Introduction

Users perceive good Internet performance as characterized by low latency and
high throughput. When browsing the Web, users are concerned with the perfor-
mance of downloading entire pages. Various solutions impact the performance of
downloading individual Web objects as well as the base page. Among them there
are Web site architectures. A current trend is to organize a number of servers in
a cluster with front-end components, called dispatchers or Web switches, which
distribute the incoming requests among the Web servers. Such Web site sys-
tem architectures are scalable and can better overcome the peak demands for
Web services. The content-aware Web switches with adaptive policies, effectively
combining client and server information, may provide better performance in Web
services support, especially when we are interested in optimizing the quality of
Web service according to the idea of ‘Quality of Web-based Services’ (QoWS).

To meet these requirements we propose the use of artificial intelligence meth-
ods, namely fuzzy sets and neural networks in the development of a content-
aware Web switch that may take advantage of the fuzzy-neural approach in the
problem solving. Fuzzy and neural networks-based problem formulation work
to solve issues for different types of computer systems, for example in computer
networks [9], distributed computer systems [11], and WWW servers [10,12]. How-
ever, not in the area of Web switch design, except our research [4,5].

In [4] we developed the fuzzy-neural adaptive HTTP request distribution al-
gorithm called FNRD (Fuzzy-Neural Request Distribution). Our previous works
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evaluated FNRD via trace-driven simulation [5] (using real-life trace data from
the 1998 World Cup Soccer Web site [1]) and via benchmarking experiments
[4] (using our Web switch prototype, real Web servers and own benchmarking
system). This paper presents new results of a more general study on FNRD per-
formance. Our research is based on a well-accepted modeling approach [7] and
CSIM19 tool [14] for Web systems simulations.

FNRD minimizes the request response time and because of that it meets
the demand that the Web switch should distribute requests taking into account
the user perspective. It dispatches each incoming request to the server with
the quickest expected response time which is estimated at the moment for that
individual request based on the current knowledge on the server load state. A
fuzzy estimation mechanism with client and server awareness is used. Due to
the neural network-based mechanism which is employed for real-time tuning
of request response estimates, our Web switch learns how the changes in the
Web cluster configuration, server loading, and the workload characteristics affect
the response times, and tunes its decisions according to these changes. Special
attention has been devoted to the development of a new combined system- and
component-level model for a Web cluster with back-end databases equipped with
our Web switch, as well as the application of a new Web workload model.

The rest of this paper is organized as follows. In the next section we review re-
lated work and introduce the problem of HTTP distribution. Section 3 presents
the fuzzy adaptive request distribution mechanism. Section 4 shows the perfor-
mance evaluation experiments and discusses the results. Section 5 concludes the
paper and proposes future work.

2 Related Work and Background

HyperText Transfer Protocol (HTTP) is the method used to transfer information
on the World Wide Web. It is an Internet protocol providing a way to receive
HTML pages from WWW servers. Although a user’s browser issues one request
at a time for a Web page, it usually causes multiple client-to-server interactions
because retrieving one Web page requires, on the average, 1+n accesses on the
server (1 access to retrieve the HTML file and n accesses to retrieve its n em-
bedded objects (resources)). All these interactions are referred to us as HTTP
requests.

In the paper we deal with Web-server clusters consisting of multiple server
nodes, built on a local area and equipped with a mechanism to distribute client
requests among the nodes. Web servers in a cluster work collectively as a single
Web resource in the network. The distribution algorithm is embedded in a Web
switch providing the required level of performance and availability of a Web ser-
vice. Taking into account the OSI protocol stack, we may think about Layer-4
and Layer-7 Web switches. Layer-4 switch is content-blind as it knows only in-
formation about TCP/IP connections. Layer-7 switch is content-aware because,
in addition to layer 4 information, it makes use of the layer-7 data (that is HTTP
content).
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The main classes of request distribution algorithms are static, those that do
not consider any information about the current state of the system at the time
of decision-making, and dynamic, those that use system state information to
prepare the distribution decisions. Both policies have been widely studied, e.g.
see valuable literature in [8]. Further taxonomy may include adaptive algorithms
for systems where some parameters of the distribution algorithm are changing
due to fluctuating system and workload conditions. Adaptive algorithms are not
yet deeply studied for the Web and need further research [8]. Finally, the request
distribution algorithms can be client information aware [7]. Then the Web switch
takes into account information about the user that can be extracted from the
HTTP request. Alternatively, the policy can be server information aware when
server state information is utilized in decision-making [7].

Two basic performance strategies are mainly considered in Web switch opera-
tion: load balancing and load sharing. Typical load metrics are either the number
of new and active TCP connections for each server or server CPU utilization, or
queue length. Load balancing policies are aimed at equalizing the load among all
servers in a cluster, while load sharing algorithms attempt to smooth out tran-
sient peak overload periods on some cluster nodes. Layer-4 switches distribute
requests to even the load. The Layer-7 Web switch-based clustered architectures
are aimed at sharing more than balancing the cluster workload. Both perfor-
mance strategies focus on the most advantageous Web site resource utilization.
However, they represent different perspectives. Load balancing comes from the
site administrator’s viewpoint, whereas load sharing would take into account
the end-user’s point of view. Such user-oriented distribution approach is a new
direction in Web switch design.

Paper [8] presents the extensive taxonomy of HTTP requests, distribution
methods and algorithms, including local and geographical, static and dynamic,
content-blind and content-aware, client-aware and server-aware approaches, and
algorithms. The authors concluded that the Web switch architectures need fur-
ther research in the direction of the development of new content-aware adaptive
policies combining effectively client and server information.

We have responded to the challenge issued in the literature and developed
a novel HTTP request fuzzy-neural distribution algorithm, FNRD [4,5], which
is a client-and-server-aware, dynamic and adaptive dispatching policy. The dis-
patching decisions are dynamic, as they are based on current knowledge about
client request and server state. We think that our solution would be valuable for
the quality of Web service aware developments and might be well-suited for user
perceived end-to-end performance, e.g. in situations when a Web server support
for differentiated services is required [7]. To the best of our knowledge, no other
works in the area use a learning approach. Also fuzzy logic has not been applied
yet. Fuzzy approach may be especially beneficial when a small amount of uncer-
tain and imprecise information about a system under consideration is provided
whereas neural networks have learning and adaptive capabilities. These system
modeling approaches have been very widely used in studying several decision-
making systems, also designed for the need of computer networks. For example,
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[10,12] propose a fuzzy controller for Apache Web server and [9] presents a
QoS-provisioning neural-fuzzy connection admission controller for multimedia
high-speed networks.

In this paper, for comparison reasons, we use two widely known request distri-
bution policies: Round Robin (RR) [7] and Locality Aware Request Distribution
(LARD) [2,15]. RR is a content-blind baseline policy that allocates arriving re-
quests based on a round robin discipline. It is often used in evaluation studies
as ‘a point of reference’. LARD is known to be the best content-aware dynamic
policy that is aimed to distribute files among servers and increase the RAM
cache hit rate. LARD works as follows. When a Web switch receives a request
it extracts the URL and if this URL is requested the first time then the Web
switch selects the server with the lowest load (taking into account the number
of connections) and forwards the request to the selected server. If the URL is
known for the Web switch, it forwards it to the previously used server for that
URL. If that server is overloaded then a request is forwarded to a lightly-loaded
server. Because a URL is always forwarded to the same server, very likely the
server will have the requested object in its RAM.

3 Fuzzy-Neural HTTP Request Distribution

We deal with an algorithm for a Layer-7 Web switch and use two-way architecture
of cluster-based Web system where all HTTP requests arrive through the Web
switch and the obtained resources are sent back through the Web switch. The goal
of the Web switch is to optimize the request response time that is the time between
the opening and closing of the TCP session that is established between the Web
switch and a target Web server to get a resource. This goal can be realized by
the redirection of the request to the server that is expected to provide the fastest
response time. We assume that the resources are fully replicated on all servers and
each server can handle each request. Fig. 1a presents the major components of
our fuzzy-neural Web switch: Executor, MIN and Model of Server modules. Each
server has its own corresponding Model of Server (Fig. 1b).

In our model we evaluate the server (each server consists of the Web server and
a database server) load by the combination of two independently observed load
indexes: the Web server load a (the number of TCP connections active on a Web
server) and the back-end database server load b (the number of TCP connections
active on a database server). The values of these measures are discrete. The
server load is described by the tuple (a, b). They are represented in the load
table (Fig. 1b) as the tuples (Aan, Abm), where Aan and Abm are fuzzy sets.
Based on the semantics of both loads we define the same eleven membership
functions (Fig. 1c). The shape and distribution of the fuzzy sets underlying
control variables correspond to the way in which control is expressed in the
model. Increasing the number of fuzzy sets generally increases the precision of the
estimation but at a price of more number of rules and more computations. The
model is capable of balancing between the high precision of the estimation of the
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request response time desired for the loads lower than (and around) the system
operating point, and the computation time needed to calculate the estimator.
The operating point is the number of requests that are handled by the system
simultaneously in typical situations. It was determined on the basis of empirical
data as eight requests. Consequently, we use eight singleton membership func-
tions for the first eight values of inputs and triangular and trapezoid membership
functions distributed for higher loads. The requests xi, i=1,. . . , are serviced in-
dependently in the order of their arrival. When xi request arrives, each Model of
Server (Fig. 1b) calculates its own estimator of the response time t∗s

i , s = 1, .., S
assuming that this request is to be serviced by the given server, and making use
of current server load information (a, b)s, s = 1, .., S and the knowledge about
the request xi (type and size of the object).

First, the request xi is classified to the k-th class using the classification
function Φ(x i). K classes are defined. After that, the estimation mechanism
determines the expected response time t∗s

i on the basis of the set Δikj of elements
in the k -th row of the load table for the s-th server, where Δikj={tikj}, for given
i, k and for fired j’s , j∈J ∗, J∗ ⊂ J , where J={1, . . . , 121} is the set of indexes
of rules defined in the rule base with 121 if-then rules. J∗ is the set of indexes of
rules in the rule base that are fired by a current crisp value of server load (a, b)s

(i.e. such that μRj(a, b)s >0).
The rule base is as follows: R1: IF (a=Aa1) AND (b=Ab1) THEN (t=T1),

. . . , Rj : IF (a=Aam) AND (b=Abn) THEN (t=Tj ),. . . , R121: IF (a=Aa11)
AND (b=Ab11) THEN (t=T121), where a, b - server loads (number of active
connections), t - response time, Aa1,. . . , Aa11, Ab1,. . . ,Ab11 - servers load fuzzy
sets, T1,. . . ,T121- sets of output t.

Next, the MIN module determines the target server as the one for which the
estimated response time is minimal. Our estimation mechanism is based on a
fuzzy-neural model and follows Mamdani’s model [13]. Figure 1d presents the
proposed estimation mechanism with adaptability. The fuzzification block and
the rule base are constructed like typical fuzzy models, whereas in the defuzi-
fication block we propose to use the artificial neuron. The input in the model
is the load tuple (a, b). For both loads we use eleven fuzzy sets that cover all
possible load ranges. We have K*S estimation mechanisms because we need to
have an individual estimation mechanism for each class of objects in each Model
of Server module. The system continuously adapts to the changes in the work-
load and Web cluster characteristics. Information about server loads is collected
independently of request handling. When the request is completed by the target
server, then the Executor measures the response time, and uses this measured
value as the observed value of response time t̃ s

i for request xi in the learning
algorithm to recalculate the set Δ(i+1)kj of new values of the response times,
where Δ(i+1)kj ={t(i+1)kj}, for given i, k and for fired j’s , j∈J ∗. Set Δ(i+1)kj

refines the old values stored in the k-th row of the load table of the s-th server.
To teach the network we use the traditional error back propagation algorithm.

The new weights t(i+1)kj are calculated in accordance with the learning rule for
the ADALINE neuron, each time after completing the request, according to the
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formula t(i+1)kj = tikj +ημRj(t̃i−t∗i ) , where t∗i is the estimated request response
time, t̃i is the observed request response time, and η=0.13 is the learning rate
index.

4 Simulation and Results

The model of a cluster-based Web system used in our simulation is shown in
Fig. 2a. We assumed that both the Web switch and local area network are fast
enough and do not introduce significant delay that might influence results. The
main delay in request servicing is assumed to be introduced by Web servers and
database servers. Our CSIM19 based simulator runs for the similar values of
such system parameters as CPU speed, amount of memory, number of disks and
other as assumed in [2,7,15].

a) b)

Fig. 2. (a) A simulation model; (b) Workload model parameters

The processing costs are calculated for Pentium II 300 MHz PC with FreeBSD
2.2.5 and Apache 1.3.3 Web server. We use real-life parameters to setup the Web
cluster components. Connection establishment and teardown costs are set at 278
μs of CPU time and 527 μs, respectively, while transmit processing incurs 24
μs per 512 bytes. Disc costs are the following: reading a file from disk has a
latency of 28 ms, the disk transfer time is 410 μs per 4 KByte. Additionally, for
files larger than 44 KBytes, an additional 14 ms is charged for every 44 KBytes
of file length in excess of 44 KBytes. The Least Recently Used (LRU) cache
replacement policy is used, however files with a size of more than 500 KB are
never cached. The total memory size used for caching is 85 MB.

To evaluate the system we have developed new detailed simulation (Fig. 2a)
and workload (Fig. 2b) models. CSIM19 package [14] was used in the simulation
as it is a well-accepted simulation tool used also for building Web systems models.
We evaluate the system performance using the workload model incorporating the
most recent research on Web load which is heavy-tailed and self-similar [3, 7]. We
consider two classes of requests: static and dynamic. Static requests are serviced
directly by the Web server, whereas in the dynamic requests the objects are
dynamically generated by the back-end servers. Figure 2b shows the probability
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Fig. 3. Simulation results: (a) response time v. load; (b) UF request v. load; (c) response

time v. S ; (d) UF bandwidth v. S ; (e) UF request v. S ; (f) convergence characteristics

distributions and parameters we use in the workload model. The size of dynamic
requests is simulated based on the same size distribution as the static ones.
They are additionally classified into three classes, namely high, medium and low
intensive, according to the workload size incurred while database processing. The
service time on the database server for a dynamic request is modeled according
to a hyper-exponential distribution with the parameters as shown in Fig. 2b. In
the simulation we assumed the basic workload composition consisting of 80% of
static requests and 20% of dynamic requests. We simulated the browsing of a Web
site with the total size of 200 MB size. The first simulation we performed with
4 servers (each server is the system consisting of the Web and database server)
in the cluster and measured the average response times versus the number of
Web clients serviced by the cluster per second. As the load balance measure we
propose to use the Load Balance Metric (LBM), which is the weighted average
of the instantaneous peak-to-mean ratios [6]. Let loadi,j and peak loadj denote
the load of server i (of S servers) at the j− th sampling point (of M such points)
and the highest load on any server at the j − th sampling point, respectively.
Then the peak-to-mean ratio and the LBM are defined as follows:
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peak − to−mean ratio = peak loadj

S

i=1
loadi,j /S

and LBM =

M

j=1
peak loadj

M

j=1

S

i=1
loadi,j /S

.

LBM can range from 1 to at most S. Small values of the LBM indicate better
load balancing performance, i.e. smaller peak-to-mean load ratios, than larger
values. The optimal LBM value is 1. We can interpret the LBM metric in the
following way. On a two-server system, an LBM of 1.0 indicates perfect load
balance. A load imbalance where one server holds 60% of load and the other
server has 40% of load yields an LBM of 1.2 (60/((60+40)/2)=1.2. We can
also define the unbalancefactor as the percentage variation of the LBM value
with respect to the optimal LBM value, UF = ((LBM − 1)/(S− 1))100, where
0 ≤ UF ≤ 100.

The unbalance factor UF is the performance measure that is independent of
the number of servers S and defines the variation of the load with the respect
to the even load balancing. UF also gives a good measure to compare the per-
formance of different distribution algorithms. As the load can be expressed by
either the total number of requests serviced by the Web cluster or by the total
bandwidth of data transmitted back to the clients, we can consider either UF
request or UF bandwidth unbalance factor, respectively. It is shown (Fig. 3a)
that FNRD outperforms LARD and RR for the whole range of the load size.
Figure 3b presents the UF request v. load characteristics for 4 servers. As in
the previous experiment the FNRD outperforms other policies.

The next experiments were performed to study how the number of servers
affects the performance of the Web cluster for a given load size. We generated
the load of 140 clients/sec. Fig. 3c demonstrates that when considering the re-
sponse time the FNRD algorithm is the best choice for all server configurations.
However, the results on Figures 3d - 3e show that the fuzzy-neural FNRD policy
is not a best load balancing policy for all configurations. Only for a small num-
ber of servers (S=4, 5 or 6) it outperforms LARD and RR in load balancing.
Nevertheless, one should remember that FNRD was developed having in mind
the response time optimization, not load balancing. Fig. 3f illustrates the con-
vergence characteristic of FNRD when estimating the response time for a cluster
with 4 servers under 130 clients/sec workload. The experiment showed that the
average estimated response time converges starting at about 2000000 requests.

5 Conclusions and Future Work

A fuzzy-neural HTTP distribution policy called FNRD for Web cluster was
evaluated through the simulation using CSIM19 package. We showed that a
fuzzy-neural approach is useful in the design of the content-aware Web switch.
FNRD optimizes request response time and outperforms substantially the most
popular content-blind RR policy as well as the state-of-the-art content-aware
LARD policy. In a load balancing challenge it is a winner for smaller clusters.
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There is still the challenge in the design of fuzzy-neural Web switch. Below
we would like to suggest some future research directions: (1) Performance eval-
uation of FNRD algorithm in the overloaded conditions; (2); Analysis of FNRD
algorithm in the context of supporting differentiated service; and (3) Design of a
new fuzzy-neural Web switch for distributing HTTP requests at the global (i.e.
Internet) level.
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Abstract. The paper presents second author’s step toward building
quite new theory of fuzzy signals. Before, in the first step author de-
fined fuzzy Fourier transform. Here, an approach to description of fuzzy
correlation functions is proposed. New definitions, called later fuzzy cor-
relation and defuzzified correlation are proposed for fuzzy signals. The
definitions are based on new concepts of the class L2

f , L2
Tf , and class

Mf for fuzzy functions. Comparison with conventional approach and an
example are shown.

1 Introduction

Concept of correlation plays an important part in the theory of many branches
of science as electricity, optical or acoustical signal transmission and filtering,
image processing, statistics, economy, etc. Conventional approach to signal the-
ory uses determined functions for description of signals or random processes for
uncertain signals. Here, author tries to use fuzzy description of uncertain signals.
In previous works [1] [3] author introduced concept of fuzzy Fourier transform.
It was the first step to build basis of spectral analysis of fuzzy functions. New
definition of correlation of fuzzy functions is a second step to build basis of fuzzy
signal theory. In this paper conventional definition of correlation function is en-
larged to fuzzy functions. New definition is proposed in such a way to preserve
general properties of correlation functions. Proofs of properties are not shown
here. It can be found in [1], [2], [3].

2 Conventional Approach to Correlation

At the beginning conventional definitions of correlation functions are discussed
below. Generally, correlation function is closely related to scalar product in ap-
propriate Hilbert space [4]. Thus, the definition of correlation depends on the
class of functions. Three classes of functions are most important: L2, L2

T , and
M . In any case formal definition of correlation function is something different,
but all the time based on scalar product. Therefore, for simplify notations in the
paper the correlation functions will be denoting by the same symbols in different
classes.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 202–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Class L2. Function x(t) (real or complex) belongs to the space L2(t1, t2) iif
the integral below is finite

‖ x ‖2L2=
∫ t2

t1

|x(t)|2dt (1)

The square root of this integral plays a role of a norm in the space L2. If the
values of t1, t2 are infinite, then x(t) ∈ L2(−∞,∞). Physical interpretation of
the ‖ x ‖2L2 is energy of signal x(t). Thus, the class of such functions is sometimes
called the class of functions with finite energy.

Scalar product in L2 is defined by

(x, y)L2 =
∫ t2

t1

x(t)y∗(t)dt (2)

Definition (Correlation functions in L2)
Let x(t) and y(t) belong to L2(t1, t2). Suppose that integrals

Rxy(τ) = (x(t), y(t − τ))L2 =
∫ t2

t1

x(t)y∗(t− τ)dt (3)

Ryx(τ) = (y(t), x(t − τ))L2 =
∫ t2

t1

y(t)x∗(t− τ)dt (4)

are finite. Symbol ∗ denotes operation of conjugation when x(t), y(t) are complex.
Functions Rxy(τ) and Ryx(τ) are called correlation functions in L2.

It can be shown that

Rxy(τ) =
∫ t2

t1

x∗(t)y(t + τ)dt (5)

Ryx(τ) =
∫ t2

t1

y∗(t)x(t + τ)dt (6)

Autocorrelation function is defined by Rxx(τ) = (x(t), x(t − τ))L2 .

Class L2
T . Periodic function x(t) with period T belongs to the space L2

T iif the
integral

‖ x ‖2L2
T
=

1
T

∫ T

0
|x(t)|2dt (7)

is finite.
Physical interpretation of the integral is power of signal x(t) in [0, T ]. Square

root of this integral plays a role of norm in the space L2
T . Interpretation of the

norm is effective value of x(t). Thus, the class of such functions is called the class
of periodic functions with finite power.

Scalar product in L2
T is equal

(x, y)L2
T

=
1
T

∫ T

0
x(t)y∗(t)dt (8)
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Definition (Correlation function in L2
T )

Let x(t) and y(t) belong to L2
T . Suppose that integrals

Rxy(τ) = (x(t), y(t − τ))L2
T

=
1
T

∫ T

0
x(t)y∗(t− τ)dt (9)

Ryx(τ) = (y(t), x(t − τ))L2
T

=
1
T

∫ T

0
y(t)x∗(t− τ)dt (10)

are finite. Functions Rxy(τ) and Ryx(τ) are called correlation functions in L2
T .

Similarly as before it can be shown that

Rxy(τ) =
1
T

∫ T

0
x∗(t)y(t + τ)dt (11)

Ryx(τ) =
1
T

∫ T

0
y∗(t)x(t + τ)dt (12)

Class M . Function x(t) belongs to the space M (Marcinkiewicz space) iif exists
the limit of integral

‖ x ‖2M= lim
T→∞

1
T

∫ T/2

−T/2
|x(t)|2dt (13)

where lim denotes superior limit.
Physical interpretation of the integral is mean power of signal x(t) in (−∞,∞).

Square root of the expression above is the norm in the space M . Interpretation
of the norm is effective value of x(t). Thus, the class of such functions is called
the class of functions with finite mean power.

The integral

(x, y)M = lim
T→∞

1
T

∫ T/2

−T/2
x(t)y∗(t)dt (14)

plays a role of pseudo-scalar product in M , because it not fulfils some axioms of
scalar product.

Definition (Correlation in M)
Let x(t) and y(t) belong to M . Suppose that integrals

Rxy(τ) = (x(t), y(t− τ))M = lim
T→∞

1
T

∫ T/2

−T/2
x(t)y∗(t− τ)dt (15)

Ryx(τ) = (y(t), x(t− τ))M = lim
T→∞

1
T

∫ T/2

−T/2
y(t)x∗(t− τ)dt (16)

are finite. Function Rxy(τ) and Ryx(τ) are called correlation functions in M .
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Class Γ . If ξ(t) is second-order stationary random processes then it belongs to
the space Γ iif expected square value

‖ x ‖2Γ = ξ2 =
∫ ∞

−∞
x2fξ(x)dx (17)

is finite, where fξ(x) is probability density function of ξ(t).

Definition (Correlation in Γ )
If stationary processes ξ(t), η(t) ∈ Γ then correlation functions are defined as
expected value

Rξη(τ) = ξ(t)η(t − τ) =
∫ ∞

−∞

∫ ∞

−∞
x(t)y(t− τ)fξη(x, y; t, τ)dxdy (18)

Rηξ(τ) = η(t)ξ(t− τ) =
∫ ∞

−∞

∫ ∞

−∞
y(t)x(t− τ)fξη(x, y; t, τ)dxdy (19)

where fξη is two-dimensional probability density function.
As before both correlation functions are defined as scalar product, now in Γ

Rxy(τ) = (x(t), y(t − τ))Γ Ryx(τ) = (y(t), x(t − τ))Γ (20)

3 Fuzzy Approach to Correlation

As it can be seen from further definitions, correlation function is the scalar
product in appropriate functional space. Only class Γ describes uncertainty of a
signal. Nevertheless, as it can be shown here, any of previously defined class can
be enlarged for fuzzy functions. Thus, is necessary to define in reasonable way
new spaces, the spaces of fuzzy functions.

Class L2
f and L2

μ. Fuzzy function x(t, α) (real or complex), where α is a
parameter being a fuzzy set, belongs to the space L2

f (t1, t2) iif for any a ∈
supp(α) the integral

‖ x ‖2L2
f
=
∫ t2

t1

|x(t, a)|2dt (21)

is finite.
It can be shown that square root of above integral fulfills for any a ∈ supp(α)

all axioms required for a norm. This concept leads to fuzzy norm. If someone not
agreed with fuzziness of the norm, he can use another definition of crisp norm
of fuzzy function defined as below.
Fuzzy function x(t, α) ∈ L2

μ(t1, t2), where t1, t2 ∈ (−∞,∞), iif exists an integral

| x(t, α) |2 �
= ‖ x ‖2L2

μ
=

∫ t2
t1

∫
supp(α) |x(t, a)|2μα(a)da dt∫

supp(α) μα(a)da
(22)
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where overline denotes here mean value and denominator is the surface under
μα(a). The space can be called space of fuzzy functions with finite energy.

Scalar products of x(t, α), y(t, β) in L2
f is defined by

(x, y)L2
f

=
∫ t2

t1

x(t, a)y∗(t, b)dt (23)

where a ∈ supp(α), b ∈ supp(β). The set of all values of (x, y)L2
f

will be called
scalar product in L2

f .
In the space L2

μ definition is based on the norm (22)

(x, y)L2
μ

=

∫ t2
t1

∫
supp(α)

∫
supp(β) x(t, a)y∗(t, b)μα(a)μβ(b) da db dt∫

supp(α)

∫
supp(β) μα(a)μβ(b) da db

(24)

where a ∈ supp(α), b ∈ supp(β). This scalar product is crisp.
In signal theory very important case is a situation when signal x(t) is de-

fined on the interval (−∞,∞). Therefore, in the text below it is supposed
t ∈ (−∞,∞).

Definition (Fuzzy correlation functions in L2
f)

Let x(t, α) and y(t, β) belong to L2
f(−∞,∞). Suppose that integrals

Rxy(τ, a, b) = (x(t, a), y(t − τ, b))L2
f

=
∫ ∞

−∞
x(t, a)y∗(t− τ, b)dt (25)

Ryx(τ, a, b) = (y(t, b), x(t − τ, a))L2
f

=
∫ ∞

−∞
y(t, b)x∗(t− τ, a)dt (26)

are finite for any a ∈ supp(α), b ∈ supp(β). The sets Rxy(τ, α, β), Ryx(τ, α, β)
of all functions Rxy(τ, a, b) and Ryx(τ, a, b) for a ∈ supp(α), b ∈ supp(β) will be
called fuzzy correlation functions in L2

f .
If μα(a) and μβ(b) are membership functions of sets α and β then membership

function μR(a, b) for Rxy(τ, α, β) can be found as product

μR(a, b) = μα(a)μβ(b) (27)

Generally, if α and β are in a fuzzy relation R(α, β) with membership μR(a, b)
then fuzzy correlation function is described by

Rxy(τ, α, β) =
∫

μR(a, b)
/
Rxy(τ, a, b) (28)

where Zadeh notation is used, i.e. the ”integral” is considered as union [5].
It is possible to obtain defuzzified version of correlation using a defuzzification

procedure, example area method

Rxy(τ) =

∫
supp(α)

∫
supp(β) Rxy(τ, a, b)μR(a, b) da db∫

supp(α)

∫
supp(β) μR(a, b) da db

(29)

The value Rxy(τ) will be called defuzzified correlation function in L2
f .
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Using formula (24) for scalar product (x(t, α), y(t, β))L2
μ

in L2
μ definition of

correlation in L2
μ can take the following form

Rxy(τ) =

∫∞
−∞

∫
supp(α)

∫
supp(β) x(t, a)y∗(t− τ, b)μR(a, b) da db dt∫

supp(α)

∫
supp(β) μR(a, b) da db

(30)

where the product μα(a)μβ(b) is replaced by more general form of relation
μR(a, b). Thus, this formula is similar to (29).

Autocorrelation function in L2
μ is defined by

Rxx(τ) =

∫∞
−∞

∫
supp(α) x(t, a)x∗(t− τ, a)μα(a) da dt∫

supp(α) μα(a) da
(31)

It is known that autocorrelation in L2 has property

Rxx(τ) = R∗
xx(−τ) (32)

For real functions autocorrelation is even function of τ , i.e. Rxx(τ) = Rxx(−τ).
It is obvious that this property holds also for L2

f and L2
μ.

Class L2
T f and L2

T μ. Definitions for periodic signals can be enlarged similarly.

Definition (Fuzzy periodic signal)
Fuzzy function x(t, α) of crisp real argument t and fuzzy argument α will be
called periodic if exist a real number T such that for all t ∈ (−∞,∞) and all
a ∈ supp(α)

x(t + T, a) = x(t, a) (33)

Fuzzy periodic function x(t, α) belongs to L2
Tf iif for any a ∈ supp(α) the

integral

‖ x ‖2L2
T f

=
1
T

∫ T

0
|x(t, a)|2dt (34)

is finite.
Fuzzy periodic function x(t, α) belongs to L2

Tμ iif integral below is finite

‖ x ‖2L2
Tμ

=
1
T

∫ T

0

∫
supp(α) |x(t, a)|2μα(a) da dt∫

supp(α) μα(a) da
(35)

Similarly as before ‖ x ‖2
L2

T f
is fuzzy norm and ‖ x ‖2

L2
Tμ

is crisp norm.

Definition (Fuzzy correlation functions in L2
Tf)

Let x(t, α) and y(t, β) belong to L2
Tf . Suppose that integrals

Rxy(τ, a, b) = (x(t, a), y(t − τ, b))L2
T f

=
1
T

∫ T

0
x(t, a)y∗(t− τ, b)dt (36)
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Ryx(τ, a, b) = (y(t, b), x(t− τ, a))L2
T f

=
1
T

∫ T

0
y(t, b)x∗(t− τ, a)dt (37)

are finite where a ∈ supp(α), b ∈ supp(β).
The set Rxy(τ, α, β) of all functions Rxy(τ, a, b) for a ∈ supp(α), b ∈ supp(β)

will be called fuzzy correlation function in L2
Tf .

Membership function μR(a, b) for Rxy(τ, α, β) can be found as product
μR(a, b)=μα(a)μβ(b) or more generally as membership of fuzzy relationR(α, β).

Similarly for class L2
Tμ from formula (35) it follows that correlation function

equals

Rxy(τ) =
1
T

∫ T

0

∫
supp(α)

∫
supp(β) x(t, a)y(t− τ, b)μR(a, b) da db dt∫

supp(α)

∫
supp(β) μR(a, b) da db

(38)

and it is defuzzified and normalized version of Rxy(τ, α, β).
Of course, all correlation functions (36) (37) (38) are periodic with period T .

Class Mf and Mμ. Fuzzy function x(t, α) belongs to the space Mf if for any
a ∈ supp(α) exists the limit of integral

‖ x ‖2Mf
= lim

T→∞

1
T

∫ T/2

−T/2
|x(t, a)|2dt (39)

Fuzzy set ‖ x ‖Mf
will be called fuzzy norm in Mf .

Fuzzy function x(t, α) belongs to the space Mμ iif exists the limit of integral

‖ x ‖2Mμ
=

limT→∞
1
T

∫ T/2
−T/2

∫
supp(α) |x(t, a)|2μα(a) da dt∫

supp(α) μα(a) da
(40)

If limT→∞ exists in conventional sense then superior limit limT→∞ in formulas
(39) (40) and formulas below can be replaced by ordinary limit.

In the class M scalar product not exists. Pseudo-scalar product is introduced
only. Thus, correlation function in Mf is based on this pseudo-scalar product.

Definition (Fuzzy correlation function in Mf)
Let x(t) and y(t) belong to Mf . Suppose that integrals

Rxy(τ, a, b) = lim
T→∞

1
T

∫ T/2

−T/2
x(t, a)y∗(t− τ, b)dt (41)

Ryx(τ, a, b) = lim
T→∞

1
T

∫ T/2

−T/2
y(t, b)x∗(t− τ, a)dt (42)

are finite for any a ∈ supp(α) b ∈ supp(β). The set Rxy(τ, α, β) of all functions
Rxy(τ, a, b) and appropriately set Ryx(τ, α, β) of all Ryx(τ, a, b) be called fuzzy
correlation functions in Mf .
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Fig. 1. Membership function for α (left) and for β (right)
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Fig. 2. Fuzzy functions x(t,α) (left) and y(t,β) (right)

Membership function for Rxy(τ, α, β) can be found as product μR(a, b) =
μα(a)μβ(b) or more generally as membership of relation R(α, β). The defuzzified
correlation function in Mf can be found using for example area method.

Crisp correlation functions are possible to obtain also starting from appro-
priate pseudo-scalar product (14) and crisp norm (40). It obtains correlation
function in Mμ

Rxy(τ) =
limT→∞

1
T

∫ T/2
−T/2

∫
supp(α)

∫
supp(β) x(t, a)y∗(t− τ, b)μR(a, b)da db dt∫

supp(α)

∫
supp(β) μR(a, b)da db

(43)

Example. Fuzzy functions x(t, α) = exp(−α | t |) and y(t, β) =
∏

(t/β) (rec-
tangular shape) belong to L2

f . Membership functions for fuzzy parameters have
trapezoidal shape for α and triangular shape for β (Fig. 1). Fuzzy functions are
shown in the Fig. 2.
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Fuzzy correlation function Rxy(τ, a, b) according to (25) is equal

Rxy(τ, a, b) =
∫ ∞

−∞
e−a|t|

∏
(
t− τ

b
)dt =

∫ τ+b/2

τ−b/2
e−a|t|dt =

2
a
[1− e−b/2 cos(aτ)]

(44)
Function R(τ, a, b) depends on three arguments and presents a four dimensional
surface. It can be presented as tree dimensional projections. It is shown in the
Fig. 3 as projection for constant a = 2.5 and for constant b = 4. Autocorrelation
function for x(t, α) in L2

f is found using symmetry property and is equal

Rxx(τ, a) =
∫ ∞

−∞
e−a|t|e−a|t−τ |dt =

1
a
e−a|τ |[1 + a | τ |] (45)
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Autocorrelation in L2
μ is equal

Rxx(τ) =

∫ 4
1

1
ae

−a|τ |[1 + a | τ |]μα(a) da∫ 4
1 μα(a) da

(46)

The formula for the result is complicated. Fig. 4 shows autocerrelation functions.

4 Remarks and Conclusions

In the paper the same notation was used for correlation function in different
functional spaces in order to simplify notations and due to the same general
definition - scalar product. Conventional definitions were generalized using this
definition. Presented approach allows apply fuzzy description, which is more and
more popular in different scientific areas, and introduce it in signal theory. Some
proofs of shown properties were published in [3], and probably will appear in [2].
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Abstract. In the paper we develop a new method for designing and
reduction of flexible neuro-fuzzy systems. The method allows to reduce
number of discretization points in the defuzzifier, number of rules, num-
ber of inputs, and number of antecedents. The performance of our ap-
proach is illustrated on a typical benchmark.

1 Introduction

In the last decade various neuro-fuzzy systems have been developed (see e.g.
[3], [5], [7], [12], [13]). They are characterized by natural language description
and learning abilities. Typical applications include identification, pattern classi-
fication, prediction and control. Most of neuro-fuzzy systems are based on the
Mamdani type reasoning described by a t-norm, e.g. product or min, applied
to connect antecedents and consequences in the individual rules. Another ap-
proach is based on the logical method, e.g. an S-implication (see, e.g. [4], [6])
used to connect antecedents and consequences in the rule base. Flexible neuro-
fuzzy systems have been developed in [1], [2], [8]-[10]. Such systems are char-
acterized by various flexibility parameters incorporated into their construction.
Moreover, they allow to combine the Mamdani type reasoning with the logical
approach and to find a fuzzy reasoning (Mamdani or logical) in the process of
learning. In this paper we continue to investigate flexible neuro-fuzzy systems
and the goal is to develop a new method for their designing and complexity
reduction.

In this paper we consider multi-input, single-output neuro-fuzzy system map-
ping X→ Y, where X ⊂ Rn and Y ⊂ R. The fuzzy rule base of these systems
consists of a collection of N fuzzy IF-THEN rules in the form

R(k) : IF x is Ak THEN y is Bk, (1)

where x = [x1, . . . , xn] ∈ X, y ∈ Y, Ak
1 , A

k
2 , . . . , A

k
n are fuzzy sets characterized

by membership functions μAk
i
(xi), Ak = Ak

1 ×Ak
2 × . . .×Ak

n, and Bk are fuzzy
sets characterized by membership functions μBk (y), respectively, k = 1, . . . , N .
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Defuzzification in these systems is realised for example by COA (centre of area)
method defined by the following formula

ȳ =

N∑
r=1

ȳr · μB′ (ȳr)

N∑
r=1

μB′ (ȳr)
(2)

where B′ is the fuzzy set obtained from the linguistic model (1), using an ap-
propriate fuzzy reasoning, and ȳr denotes centres of the output membership
functions μBr (y), i.e. for r = 1, . . . , N ,

μBr (ȳr) = max
y∈Y

{μBr (y)} . (3)

2 New Flexible Neuro-fuzzy Systems

Neuro-fuzzy architectures developed so far in the literature are based on the
formula (2) with the assumption that number of terms in both sums is equal
to the number of rules N . In this paper we relax that assumption and replace
formula (2) by

ȳ =

R∑
r=1

ȳr · μB′ (ȳr)

R∑
r=1

μB′ (ȳr)
, (4)

where R ≥ 1. A great advantage of formula (4) over formula (2) is that an
elimination of a single rule in (4) has no effect on number of discretization
points.

For further investigations we choose flexible neuro-fuzzy systems of a logical
type with an S-implication given by (for details see e.g. [8]-[10])

ȳ =

R∑
r=1

ȳr · agrr (x̄, ȳr)

R∑
r=1

agrr (x̄, ȳr)
, (5)

where

agrr (x̄, ȳr) =

⎛⎝ (1− αagr) avg (I1,r (x̄, ȳr) , . . . , IN,r (x̄, ȳr))+

+αagrT ∗
{
I1,r (x̄, ȳr) , . . . , IN,r (x̄, ȳr) ;

wagr
1 , . . . , wagr

N

} ⎞⎠ , (6)

Ik,r (x̄, ȳr) =
((

1− αI
k

)
avg (1− τk (x̄) , μBk (ȳr))+

+αI
kS {1− τk (x̄) , μBk (ȳr)}

)
, (7)
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and

τk (x̄) =

⎛⎜⎝ (1− ατ
k) avg

(
μAk

1
(x̄1) , . . . , μAk

n
(x̄n)

)
+

+ατ
kT

∗
{
μAk

1
(x̄1) , . . . , μAk

n
(x̄n) ;

wτ
1,k, . . . , w

τ
n,k

} ⎞⎟⎠ . (8)

In formulas (6) and (8) we apply the weighted t-norm [8] defined by

T ∗ {a1, . . . , an;w1, . . . , wn} =
n

T
i=1
{1− wi (1− ai)} (9)

to connect the antecedents in each rule, k = 1, . . . , N , and to aggregate the
individual rules in the logical models, respectively. Observe that if w1 = 0
then T ∗ {a1, a2; 0, w2} = T {1, 1− w2 (1− a2)} = 1 − w2 (1− a2). Therefore,
antecedent a1 is discarded since its certainty is equal to 0.

We incorporate flexibility parameters [10] into construction of new neuro-fuzzy
systems. These parameters have the following interpretation:

– weights in antecedents of the rules wτ
i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N ,

– weights in aggregation of the rules wagr
k ∈ [0, 1], k = 1, . . . , N ,

– soft strength of firing controlled by parameter ατ
k, k = 1, . . . , N ,

– soft implication controlled by parameter αI
k, k = 1, . . . , N ,

– soft aggregation of rules controlled by parameter αagr.

The general architecture (see e.g. [8]) of the above system is depicted in Fig. 1.
It is easily seen that system (4) contains N (3n+ 5) + R + 1 parameters to be
determined in the process of learning.

Fig. 1. The scheme of neuro-fuzzy system



A Method for Designing Flexible Neuro-fuzzy Systems 215

3 Algorithm of Reduction of Neuro-fuzzy Systems

In this section we present an algorithm of reduction of neuro-fuzzy systems. The
flowchart of the algorithm is depicted in Fig. 2.

It is assumed that the system under consideration works satisfactory after the
learning process is finished. We apply the reduction procedure to that system in
the following way:

– The initial system (structure and parameters) is saved before the reduction
process starts.

– One parameter (discretization point in the defuzzifier, r = 1, . . . , R, the
whole rule, k = 1, . . . , N , input, i = 1, . . . , n, or antecedent, i = 1, . . . , n,
k = 1, . . . , N) of the system is deleted.

– Learning by a single epoch is performed. Remaining parameters take over
activity of the eliminated parameter.

– Performance of a reduced system is determined. If it is acceptable the reduced
system is saved. Otherwise, the initial system is restored.

4 Simulation Results

The neuro-fuzzy system is simulated on Glass Identification problem [11]. The
Glass Identification problem contains 214 instances and each instance is de-
scribed by nine attributes (RI: refractive index, Na: sodium, Mg: magnesium,
Al: aluminium, Si: silicon, K: potassium, Ca: calcium, Ba: barium, Fe: iron). All
attributes are continuous. There are two classes: the window glass and the non-
window glass. In our experiments, all sets are divided into a learning sequence
(171 sets) and a testing sequence (43 sets). The study of the classification of the
types of glass was motivated by criminological investigation. At the scene of the
crime, the glass left can be used as evidence if it is correctly identified.

The experimental results for the Glass Identification problem are depicted in
tables 1, 2, 3, 4, 5 and figures 3, 4. In Table 1 we show the percentage of mistakes
in the learning and testing sequences before and after reduction, e.g. for N = 2
and R = 3 we have 3.51%/2.34% for the learning sequence before and after
reduction and 2.33%/2.33% for the testing sequence before and after reduction.
In Table 2 we present number of inputs, number of rules, number of discretization
points in the defuzzifier, number of antecedents and number of parameters before
and after reduction. In Table 3 we show degree of learning time reduction [%] for
a reduced system. In Table 4 we present reduced inputs, antecedents, rules and
discretization points in the defuzzifier. In Table 5 we depict percentage of neuro-
fuzzy systems having a particular input (attribute) after the reduction process
and percentage of inputs (attributes) corresponding to a particular neuro-fuzzy
system after the reduction process. In Fig. 3a we show degree of parameter
number reduction [%], in Fig. 3b degree of learning time reduction [%], in Fig.
4a percentage of neuro-fuzzy systems having a particular input (attribute) after
the reduction process, in Fig. 4b percentage of inputs (attributes) corresponding
to a particular neuro-fuzzy system after the reduction process.
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Fig. 2. The algorithm for reduction of flexible neuro-fuzzy systems
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Table 1. Simulation results

Glass identification problem

R N
1 2 3 4

2 6.43%/5.85% 2.34%/2.34% 2.92%/2.92% 2.34%/2.34%
9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00%

3 6.43%/5.85% 3.51%/2.34% 2.34%/2.34% 2.34%/2.34%
9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00%

4 6.43%/6.43% 2.34%/2.34% 2.34%/2.34% 2.34%/2.34%
9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00%

Table 2. Simulation results

Glass identification problem

R N
1 2 3 4

2 9/1/2/9/35 9/2/2/18/67 9/3/2/27/99 9/4/2/36/131
2/1/2/2/14 5/2/2/8/37 5/3/2/13/57 6/3/2/16/66

3 9/1/3/9/36 9/2/3/18/68 9/3/3/27/100 9/4/3/36/132
2/1/2/2/14 4/2/2/4/25 6/3/3/10/49 6/4/3/13/63

4 9/1/4/9/37 9/2/4/18/69 9/3/4/27/101 9/4/4/36/133
2/1/2/2/14 6/2/4/12/51 7/3/4/17/71 4/3/3/11/52

Table 3. Simulation results

Glass identification problem

R N
1 2 3 4

2 61% 58% 57% 57%

3 65% 70% 51% 48%

4 87% 50% 52% 67%

Fig. 3. Degree of a) parameter number reduction [%], b) learning time reduction [%]
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Table 4. Simulation results

Glass identification problem

R N
1 2 3 4

2 x̄1, x̄2, x̄4, x̄5, x̄6,
x̄7, x̄9

x̄1, x̄2, x̄4, x̄5, A1
3,

A2
6

x̄1, x̄5, x̄6, x̄7, A1
2,

A2
3

x̄2, x̄6, x̄7, A1
1,

A2
5, rule4

3 x̄1, x̄2, x̄4, x̄5,
x̄64, x̄7, x̄9, ȳ1

x̄1, x̄2, x̄4, x̄5, x̄6,
A1

3, A1
9, A2

7, A2
8,

ȳ1

x̄2, x̄5, x̄8, A1
1,

A1
4, A1

9, A2
3, A2

9,
A3

3, A3
4, A3

6

x̄2, x̄5, x̄7, A1
1,

A1
4, A1

9, A2
1, A2

3,
A2

4, A2
6, A2

9, A3
3,

A3
8, A4

1

4 x̄1, x̄2, x̄4, x̄5, x̄6,
x̄7, x̄9, ȳ1, ȳ2

x̄1, x̄5, x̄7 x̄2, x̄4, A1
1, A1

5,
A1

9, A2
1

x̄1, x̄2, x̄4, x̄5, x̄6,
A1

7, rule4

Table 5. Simulation results

Glass identification problem

N
R

1
2

1
3

1
4

2
2

2
3

2
4

3
2

3
3

3
4

4
2

4
3

4
4

x̄1 v v v v 33%

x̄2 v v 17%

x̄3 v v v v v v v v v v v v 100%

x̄4 v v v v v 42%

x̄5 v v 17%

x̄6 v v v v v 42%

x̄7 v v v v v 42%

x̄8 v v v v v v v v v v v 92%

x̄9 v v v v v v v v v 75%

22% 22% 22% 56% 44% 67% 56% 67% 78% 67% 67% 44%

Fig. 4. Percentage of a) neuro-fuzzy systems having a particular input (attribute) after

the reduction process, b) inputs (attributes) corresponding to a particular neuro-fuzzy

system after the reduction process
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5 Conclusions

In the paper we described a new method for designing and reduction of flexi-
ble neuro-fuzzy systems. From simulations it follows that the reduction process
of neuro-fuzzy structures based on weighted triangular norms do not worsen
the performance of these structures. The method allows to reduce number of
discretization points in the defuzzifier, number of rules, number of inputs, and
number of antecedents. It should be noted that our method allows to the decrease
the learning time and to detect important features.
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Abstract. In this paper a new method of parameters estimation for
neuro-fuzzy system with parameterized consequents is presented. The
novelty of the learning algorithm consists of an application of the deter-
ministic annealing method integrated with ε-insensitive learning. This
method allows to improve neuro-fuzzy modeling quality in the sense of
an increase in generalization ability and outliers robustness. To demon-
strate performance of the proposed procedure two numerical experi-
ments concerning benchmark problems of prediction and identification
are given.

1 Introduction

The basic problem while designing fuzzy systems is the determination of their
rule base which consists of a set of fuzzy conditional statements. Because there is
no standard method of expert knowledge acquisition in process of fuzzy if-then
rules determination, automatic methods of rules generation are actively inves-
tigated. A set of fuzzy conditional statements may be obtained automatically
from numerical data describing input/output system characteristics. A number
of fuzzy rules extraction procedures use learning capabilities of artificial neural
networks to solve this task [9].

In this work a new learning procedure for Artificial Neural Network Based
on Fuzzy Inference System (ANNBFIS) [4] is presented. The main goal of the
proposed changes is to allow the enhancement of learning abilities of the neuro-
fuzzy system and the same quality of the extracted fuzzy if-then rules.

The ANNBFIS is a fuzzy system with parameterized consequents that gen-
erates inference results based on fuzzy if-then rules. Fuzzy sets of linguistic val-
ues in rule antecedents have Gaussian membership function and the linguistic
connective ”and” of multi-input rule predicates is represented by algebraic prod-
uct t-norm. Consequently the firing strength of the i-th rule has the following
form [4]:

∀
i=1,2,...,I

F (i) (x0) =
t∏

j=1

A
(i)
j (x0j) = exp

⎡⎣−1
2

t∑
j=1

(
x0j − c(i)j

s
(i)
j

)2⎤⎦ , (1)

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 220–229, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where I is a number of if-then rules, A(i)
j is a j-th linguistic value of the fuzzy set

in rule antecedent, x0j is the element of the input vector x0 = [x01, x02, . . . , x0t]
T ,

c
(i)
j and s(i)j for i = 1, 2, . . . , I; j = 1, 2, . . . , t are membership function param-

eters, center and dispersion, respectively. Consequents of ANNBFIS fuzzy rules
have symmetric triangular membership functions. They are defined using two pa-
rameters: width of the triangle base w(i) and center of gravity location y(i) (x0)
determined by linear combinations of fuzzy system inputs:

y(i) (x0) = p(i)0 + p(i)1 x01 + . . .+ p(i)t x0t = p(i)T x′
0, (2)

where x′
0 = [1,x0]

T is the extended input vector. The above dependency formu-
lates so called parameterized (moving) consequent [4]. The neuro-fuzzy system
with parameterized consequents allows both conjunctive and logical interpre-
tations of fuzzy if-then rules [4]. We assume conjunctive interpretation using
Larsen’s product in the following considerations. It was proven [4] that the
neuro-fuzzy system with parameterized consequents based on Larsen fuzzy rela-
tion gives equivalent inference results with inference obtained from Reichenbach
fuzzy implication. Assuming additionally a normalized arithmetic mean as a ag-
gregation operator and modified indexed center of gravity [4] as a defuzzifier,
we can evaluate the final crisp output value of the ANNBFIS system from the
following formula:

y0 =
I∑

i=1

w(i)F (i) (x0)
I∑

i=1
w(i)F (i) (x0)

y(i) (x0) =
I∑

i=1

G(i) (x0) y(i) (x0) . (3)

The fuzzy system with parameterized consequents can be treated as a radial
basis function neural network [4]. Consequently, the unknown neuro-fuzzy sys-
tem parameters can be estimated using learning algorithms of artificial neural
networks. Several solutions of this problem have been introduced in literature
[4], [7], [3]. In this work, a new hybrid learning procedure, which connects de-
terministic annealing method and ε -insensitive learning algorithm by solving
a linear inequalities system is presented. For next considerations let us assume
that we have N examples of input vectors x0 (n) ∈ IRt and the same number of
known output values t0 (n) ∈ IR which formulate the training set.

2 Deterministic Annealing

Our goal is the extraction of the set of fuzzy if-then rules that represents the
knowledge of the phenomenon under consideration. The extraction process con-
sists of an estimation of membership function parameters of antecedents as well
as consequents ζ =

{
c
(i)
j , s

(i)
j , p

(i)
j , w

(i)
}
, ∀i = 1, 2, . . . , I, ∀j = 1, 2, . . . , t. The

number of rules I is also unknown. We assume that it is pre-set arbitrarily. The
number of antecedents t is defined by the size of the input training vector di-
rectly. To increase ability to avoid many local minima that traps steepest descent
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method used in original ANNBFIS learning algorithm, we employ the technique
of deterministic annealing [12] adapted for the sake of learning the neuro-fuzzy
system with parameterized consequents [3]. The equation (3) defines the neuro-
fuzzy system as a mixture of experts (models). Its global output is expressed as
a linear combination of I outputs y(i) (x0) of local models, each represented by
a single fuzzy conditional statement. A randomness of the association between
data and local models can be measured using the Shannon entropy:

S = −
N∑

n=1

I∑
i=1

G(i) (x0 (n)) logG(i) (x0 (n)) . (4)

In deterministic annealing method the objective is minimization of the cost
function defined as a squared-error:

E =
N∑

n=1

1
2

(t0 (n)− y0 (n))2 , (5)

while simultaneously controlling the entropy level of a solution. The deterministic
annealing optimization problem is formulated as a minimization procedure of the
Lagrangian:

L = E − T S, (6)

where T is the Lagrange multiplier [12].
A connection between the equation presented above and the annealing of solids

is essential here. The quantity L can be identified as the Helmholtz free energy of
physical system with ”energy”E, entropy S and ”temperature”T [12]. The proce-
dure involves a series of iterations while the entropy level is reduced gradually. To
allow achievement of the cost global optimum the simulated annealing method
framework is used. The algorithm starts at a high level of pseudo-temperature
T and tracks the solution for lowered values of T . The pseudo-temperature re-
duction procedure is determined by the annealing schedule function. We use the
following decremental rule in the next considerations:

T ← q T, (7)

where q ∈ (0, 1) is a pre-set parameter.
At each level of temperature we minimize the Lagrangian iteratively using

gradient descent method in L over the parameter space. The parameters of
ANNBFIS system are given as:

ζ (k + 1) = ζ (k)− η ∂L
∂ζ

∣∣∣∣
ζ=ζ(k)

, (8)

where k denotes the iteration index and η is the learning rate which can be
further expressed using formula proposed by Jang [6]:

η =
ηini√∑ni

i=1

(
∂L
∂ζi

)2

ζi=ζi(k)

, (9)
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where ηini denotes initial (constatnt) step size, ni is a number of optimized
parameters: for parameters of membership function of fuzzy sets in antecedents
ni = 2It, for parameters of linear function in consequents ni = I (t+ 1) , and
for triangle base widths ni = I.

3 ε-Insensitive Learning

In original ANNBFIS learning method parameters of consequents p(i) are esti-
mated using the least square (LS) method [4]. It accelerates the learning con-
vergence [4]. A novel, tolerant to imprecision method for estimating parameters
of consequents – ε-insensitive learning – was presented in [7]. It improves the
generalization ability of the neuro-fuzzy system in comparison to the LS algo-
rithm. The ε symbol represents the limiting value of the imprecision tolerance.
If the error value is less than ε, then the zero loss is obtained. Three differ-
ent approaches to solve the ε-insensitive learning problem were proposed in [7]
also. In this work we use ε-insensitive Learning by Solving a System of Lin-
ear Inequalities (εLSSLI) because of its lowest computational burden which is
approximately 3-times grater in comparison to the zero-tolerant learning with
LS [7]. The ε-insensitive learning can be formulated using the following equations
system: {

p(i) =
(
X

′T
0eDeX

′
0e + τ

2 Ĩ
)−1

X
′T
0eDe (t0e + b) ,

e = X
′
0e p(i) − t0e − b = 0.

(10)

where X
′
0e = [x

′
0 (1) , x

′
0 (2) , . . . , x

′
0 (N) , −x

′
0 (1) , −x

′
0 (2) , . . . , −x

′
0 (N)]T is

an extended input matrix, t0e = [t0 (1)− ε, t0 (2)− ε, . . . , t0 (N)− ε, −t0 (1)− ε,

−t0 (2)− ε, . . . , −t0 (N)− ε]T is an extended output vector, Ĩ =diag([0, 1lTt×1]),
1lt×1 is a (t× 1) dimensional vector with all entries equal to 1 and De denotes
a diagonal weights matrix, De =diag(G(i) (x0 (1)) / |e1| , G(i) (x0 (2)) / |e2| , . . . ,
G(i) (x0 (N)) / |eN | , G(i) (x0 (1)) / |eN+1| , . . . , G(i) (x0 (N)) / |e2N |) where ei is
the i-th component of the error vector e. The regularization parameter τ ≥ 0
controls the trade-off between the model matching to the training data and the
model generalization ability [7]. A larger τ results in an increase in the model
generalization ability. The vector b is called margin vector [7], because its com-
ponents determine the distance between a datum and the insensitivity region.
From the first equation of (10), we can see that solution vector p(i) depends on
margin vector. If datum lies in the insensitivity region then the zero error can be
obtained by increasing the corresponding distance. Otherwise, the error can be
decreased only by decreasing the corresponding margin vector component. The
only way to prevent margin vector b from converging to zero is to start with
b > 0 and not allow any of its components to decrease [7]. This problem can
be solved using εLSSLI procedure [7] which is an extended version of Ho and
Kashyap iterative algorithm [5]. In εLSSLI the margin vector components are
modified by corresponding error vector components only if the change results in
the margin vector components increase: b[k+1] = b[k] + ρ

(
e[k] +

∣∣e[k]
∣∣) , where
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ρ > 0 is a parameter. The εLSSLI starts with the pre-set margin vector b[1] > 0
and stops if

∥∥b[k+1] − b[k]
∥∥ > κ, where κ is a pre-set parameter or when the

maximal number of iterations kε max is achieved.

4 A New Learning Algorithm

Integration of εLSSLI procedure with deterministic annealing method leads to a
hybrid learning algorithm, where the parameters of fuzzy sets from antecedents
and consequents of fuzzy if-then rules are adjusted separately. Antecedent pa-
rameters c(i)j , s

(i)
j , i = 1, 2, . . . I, j = 1, 2, . . . , t, as well as triangle base widths

w(i), i = 1, 2, . . . , I of fuzzy sets in consequents are estimated by means of
deterministic annealing method whereas parameters of linear equations from
consequents p(i)T

, i = 1, 2, . . . , I, are adjusted using ε-insensitive learning and
then tuned using deterministic annealing procedure. For decreasing the compu-
tational burden of the learning procedure the deterministic annealing method
with ”freezing” phase (DAF) can be applied [3]. The ”freezing” phase consists
of the calculation of p(i) using εLSSLI procedure after every decreasing step of
pseudo-temperature value while keeping c(i)j , s

(i)
j and w(i) constant. The hybrid

learning can be summarized as follows:

1. Set parameters: initial solution ζ, initial pseudo-temperature Tmax, final
pseudo-temperature Tmin and annealing schedule function. Set T = Tmax.

2. Minimize the Lagrangian L using the steepest descent method (8).
3. Check the equilibrium |δS| =

∣∣∣S[k−1]−S[k]

S[k−1]

∣∣∣ > δ or iteration stop condition
k ≤ kmax, where k denotes the iteration index, δ is pre-set parameter and
kmax denotes the maximum number of iteration at given level of pseudo-
temperature, if one of them is fulfilled go to Step 2.

4. Lower pseudo-temperature according to the annealing schedule.
5. Perform the ”freezing”phase i.e. estimate parameters of linear equations from

consequents for all rules by means of εLSSLI procedure.
6. If T ≥ Tmin go to Step 2.
7. Stop the algorithm.

Another problem is estimation of initial values of membership functions for
antecedents. It can be solved by means of preliminary clustering of the input
training data [4]. We use the fuzzy c-means (FCM) [1] method for this task.
The center and dispersion parameters of Gaussian membership functions can be
initialized using final FCM partition matrix [4]:

∀
1≤i≤I

∀
1≤j≤t

c
(i)
j =

N∑
n=1

(uin)m
x0j (n)

N∑
n=1

(uin)m

(11)
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and

∀
1≤i≤I

∀
1≤j≤t

(
s
(i)
j

)2
=

N∑
n=1

(uin)m
(
x0j (n)− c(i)j

)2

N∑
n=1

(uin)m

, (12)

where uin is the FCM partition matrix element and m ∈ [1,∞) is a weighted
exponent.

5 Numerical Experiments

To validate the introduced hybrid method of neuro-fuzzy modeling two numerical
experiments using benchmark databases were conducted. The first one concerns
prediction of sunspots [14]. The data set consists of 280 samples x(n) of sunspots
activity measured within a one-year period from 1700 to 1979 A.D. The goal is
prediction of a number of sunspots (output value) y (n) = x(n) using past values
combined in the embedded input vector [x (n− 1) x (n− 2) . . .x (k − 12)]T . The
training set consists of the first 100 input-output pairs of data and the testing
set contains the remaining 168 pairs.

The learning process was carried out in two phases. In each of the number of if-
then rules I was changed from 2 to 6. The generalization ability was determined
on the basis of root mean square error (RMSE) values on the testing set. All ex-
periments were conducted in the MATLAB environment. During the first phase
of learning only the εLSSLI algorithm was used with triangle base widths set to
1 and initial values of antecedents parameters estimated using FCM clustering
results obtained for m = 2. The clustering was stopped if the maximum number
(500) of iterations was achieved or when in sequential iterations the change of
the criterion function was less than 10−5. The partition process was repeated
25 times for different random initialization of the partition matrix and results
characterized by the minimal value of Xie-Beni validity index [16] were chosen.
We sought a set of parameters τ and ε for which the best generalization ability
of neuro-fuzzy system was achieved. We set b[1] = 10−6, ρ = 0.98, κ = 10−4 and
kε max = 1000 and changed values of τ and ε from 0.01 to 0.1 with step 0.01. The
quantities for which the lowest RMSE was achieved were chosen (see Table 1).

During the second phase the proposed hybrid learning algorithm (DAF +
εLSSLI) was employed. Parameters of the εLSSLI method were set using re-
sults obtained during the first learning phase. For the deterministic annealing
procedure the following parameters’ values were applied: ηini = 0.01, Tmax ∈{
103, 102, . . . , 10−3

}
, Tmin = 10−5Tmax, λ = 0.95, δ = 10−5 and kmax = 10.

The obtained results are tabulated in Table 1. The best results are marked. For
comparison RMSE values obtained from deterministic annealing with ”freezing”
phase integrated with least square method (DAF + LS) and results got from
original ANNBFIS learning procedure are shown also.

Clearly, in all the examples, the ε-insensitive learning based method demon-
strates consistent improvement in generalization ability. However, it must be
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Table 1. RMSE of the prediction

εLSSLI DAF + εLSSLI DAF + LS ANNBFIS
I RMSE ε τ RMSE Tmin RMSE Tmin RMSE

2 0.0838 0.09 0.10 0.0728 10−2 0.0843 10−2 0.0882
3 0.0783 0.09 0.05 0.0760 100 0.0847 10−2 0.0921
4 0.0786 0.03 0.06 0.0765 100 0.0990 102 0.1112
5 0.0810 0.76 0.01 0.0776 100 0.1083 100 0.1122
6 0.0857 0.01 0.10 0.0763 101 0.1042 10−2 0.1428

noted, that the computational burden of the εLSSLI is approximately 3 times
greater comparing to the LS method and the deterministic annealing computa-
tional burden is approximately 2 times greater than the steepest descent algo-
rithm used in the original learning procedure of ANNBFIS.

To make a precise comparison of results obtained using the proposed hybrid
method with results reported in literature we used the most common partitioning
of the sunspots data set with one training and two testing parts. The training set
contained sunspots activity measures from years 1700 to 1920, the first testing set
measures from 1921 to 1955 and the second from 1956 to 1979. The specification
of the learning algorithm was defined the same but additionally, we changed the
value of the initial step size ηini in the range from 0.01 to 0.05 with step 0.01. The
best prediction quality with the DAF+εLSSLI method was obtained for I = 2,
Tmin = 10−3 and ηini = 0.03. The comparison results are tabulated in Table 2.
It can be seen that DAF + εLSSLI approach improves the generalization ability
over the reference methods.

Table 2. Comparison results of sunspots prediction

Author RMSE1 RMSE2

Tong [13] 0.064 0.108
Nowland [10] 0.056 -
Weigend [14] 0.060 0.121
Waterhouse [15] 0.061 0.106
Rementeria [11] 0.057 0.120
DAF+εLSSLI 0.050 0.104

The proposed procedure was also tested for robustness of outliers. For this
purpose we added one outlier to the training set: the minimal output sample
y (1) equal to 0 was set to doubled value of maximal output sample 2 y (67)
equal to 1.6150. Then, we performed second learning stage for I = 2 using
parameters for which we obtained the best generalization ability without outliers.
We obtained the following results RMSEDAF+εLSSLI = 0.0900, RMSEDAF+LS =
0.1210, RMSEANNBFIS = 0.1411. We can see that the DAF + εLSSLI approach
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improves the generalization ability for the sunspots prediction problem in the
presence of outliers in the training set over the reference algorithms.

The second numerical experiment concerns the benchmark identification pro-
blem of a gas oven. It is based on data originating from G. E. P. Box and G. M.
Jenkins work [2]. An input signal consists of measuring samples of methane flow
x(n) [ft/min]. Methane is delivered into the gas oven together with air to form
a mixture of gases containing carbon dioxide. The samples of CO2 percentage
content form an output signal y(n). The sampling period was 9 sec. The data set
consisting of 290 pairs of input vector [y(n− 1) . . . y(n− 4)x(n) . . . x(n− 5)]T

and output value y (n) was divided into two parts: training and testing. The
training set consists of the first 100 pairs of data and the testing set contains the
remaining 190 pairs.

Analogous to the previous example the whole learning process was split into
two phases. The specification of the learning algorithms was defined the same.
The results from the first learning phase (εLSSLI) are shown in Table 3.

During the second phase the proposed hybrid learning algorithm (DAF +
εLSSLI) was employed. The obtained learning results together with RMSE values
on testing data calculated for reference algorithms are tabulated in Table 3.

Table 3. RMSE of the identification

εLSSLI DAF + εLSSLI DAF + LS ANNBFIS
I RMSE ε τ RMSE Tmin RMSE Tmin RMSE

2 0.3507 0.01 0.01 0.3441 10−1 0.3491 101 0.3608
3 0.3656 0.09 0.01 0.3547 101 0.3669 102 0.3786
4 0.3936 0.02 0.02 0.3560 103 0.4284 102 0.4299
5 0.4000 0.14 0.05 0.3893 103 0.4282 101 0.4433
6 0.5094 0.59 0.02 0.3590 10−1 0.5291 103 0.5390

The results of the second experiment also confirm that ε-insensitive learning
leads to better generalization ability in comparison to zero-tolerant learning.
The identification error for testing data increases with increase of the number of
fuzzy if-then rules. It is due to the overfitting effect of the training set. However,
the generalization ability decrease of ε-insensitive based methods is slower in
comparison to zero-tolerant learning.

We compared performance of the proposed hybrid algorithm with six dif-
ferent methods using ε-insensitive learning which were presented in [8]. The
specification of the DAF+εLSSLI procedure remained the same but additionally
we changed the value of the initial step size ηini in the range from 0.01 to 0.05
with step 0.01. The best prediction quality of the proposed hybrid procedure
was obtained for I = 3, Tmin = 102 and ηini = 0.04. The comparison results
are tabulated in Table 4. We did not get the generalization ability improve-
ment in comparison with two reference methods denoted as ε-LS-gradientg and
ε-LS-ε-gradientg.
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Table 4. Comparison results of gas oven identification

Method RMSE

ε-LSl 0.3327
ε-LSg 0.3313
ε-LS-gradientl 0.3252
ε-LS-gradientg 0.3162
ε-LS-ε-gradientl 0.3284
ε-LS-ε-gradientg 0.3222
DAF+εLSSLI 0.3231

To test the robustness of outliers for the identification problem we added
one outlier to the training set: the minimal output sample y (43) equal to 45.6
was set to doubled value of maximal output sample 2 y (82) equal to 116.8.
Then, analogously to the previous numerical example, we performed the second
learning stage for two fuzzy if-then rules using parameters characterized by the
best generalization ability without outliers. We obtained the following results
RMSEDAF+εLSSLI = 0.3649, RMSEDAF+LS =2.1698, RMSEANNBFIS = 1.4518.
It can be noticed that the DAF + εLSSLI approach significantly improves the
generalization ability for the gas oven identification problem in the presence of
outliers in the training set over the reference algorithms.

6 Conclusions

In this paper a new learning algorithm of ANNBFIS neuro-fuzzy system was
presented. In the proposed procedure parameters of fuzzy sets from antecedents
and consequents of fuzzy if-then rules are adjusted separately by means of deter-
ministic annealing with ”freezing” phase and ε−insensitive learning by solving
a system of linear inequalities method respectively. Experimentation shows the
usefulness of the method in extraction of fuzzy if-then rules for signal prediction
and system identification problems. The obtained results indicate generalization
ability and outliers robustness improvement in comparison with zero-tolerant
learning. However, the performance enhancement is achieved through an in-
crease in the computational burden of the learning procedure. Another problem
is the necessity of arbitrary selection of learning parameters. Determination of
automatic methods for their selection constitutes the cardinal direction of future
investigations.
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Abstract. The work presents some applications of the transformation
lemma on analytical modeling using the Takagi-Sugeno fuzzy rule-based
system [7], which can be used for exact fuzzy modeling of some class of
conventional systems. The examples are based on recent author’s theo-
rems [5], which provide necessary and sufficient conditions for transfor-
mation of fuzzy rules into the crisp model of the system and vice-versa.
The fuzzy model represents the widely used Takagi-Sugeno fuzzy sys-
tem with linear membership functions. The main attention is paid for
usability of the results for control engineering community.

1 Introduction

There are many advantages in using fuzzy logic by modeling real systems, espe-
cially in the area of control systems design [2], [8]. We can define fuzzy rule-based
system in the form of a set of linguistic rules. It is known that fuzzy control has
the unique ability to successfully accomplish control tasks without knowing the
mathematical model of the system, even if it is nonlinear and complex. However,
the applications are currently being developed in an ad hoc manner requiring sig-
nificant trial-and-error effort. The fuzzy systems developed are often treated as
magic black boxes with little analytical understanding and explanation. There is
a need for developing an analytical theory of fuzzy systems to support and accel-
erate the growth of the technology and eliminate the existing misunderstanding
and controversy in the control engineering community [10], [11].

System modeling, with fuzzy rule-based systems, usually comes with two con-
tradictory requirements in the obtained model: the capability to express the
behavior of the real system in an understable way (interpretability), and capa-
bility to faithfully represent the real system (accuracy) [1]. Thus, the problem in
the fuzzy modeling scientific community is: how to assure both interpretability
and accuracy, or at least a good balance between them? The answer to this ques-
tion is given in this contribution. We show some applications of theorems con-
cerning equivalency between the multi-input-single-output Takagi-Sugeno fuzzy
rule-based system, and some class of multivariate polynomials. Such approach

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 230–239, 2006.
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combines the advantages of classical control system theory and fuzzy sets the-
ory. We can show that, using the transformation lemma on analytical modeling
via Takagi-Sugeno fuzzy system, proved in [5], the important classes of dynamic
plants, controllers, or control algorithms are themselves equivalent to a set of
Takagi-Sugeno type fuzzy rules.

2 The MISO TS System

We will consider a multi-input-single-output system (MISO, for short), in which
any input variable zk ∈ [−αk, βk], where αk + βk �= 0 for k = 1, 2, . . . , n. For
every zk we define two fuzzy sets with linear membership functions Nk (zk) and
Pk (zk), where the fuzzy set Pk is a complement to Nk

Nk (zk) =
βk − zk
αk + βk

, Pk (zk) =
αk + zk
αk + βk

, k = 1, 2, . . . , n. (1)

Such fuzzy sets are very simple and they preserve clear linguistic interpretation
of the inputs of the modeled system. The MISO system with one output S and
the inputs z1, . . . , zn, will be called MISO Takagi-Sugeno fuzzy system (MISO
TS for short). It is defined by 2n fuzzy rules in the form

If z1 is Ai1 and ... and zn is Ain , then S = qi1,...,in , (2)

where i1, . . . , in ∈ {1, 2}, the fuzzy set Aik
is either Aik

= Nik
, if ik = 1, or

Aik
= Pik

, if ik = 2, for the input variable with the index k = 1, . . . , n. Thus,
the system of rules is assumed to be complete and noncontradictory one in the
sense of the work [4]. The indices ik we can uniquely identify with linguistic
labels. If it will not be stated differently, we assume that the consequents qi1,...,in

of the rules in (2) do not depend on the input variables.
For any n-tuple of indices (i1, . . . , in) ∈ {1, 2}n, we define the corresponding

index v, which is formally a function of the labels (i1, . . ., in)

v = 1 +
n∑

k=1

2n−k (ik − 1) , ik ∈ {1, 2} , k = 1, . . . , n. (3)

Each index v ∈ {1, 2, 3, . . . , 2n}, corresponds exactly to only one antecedent and
consequent of the fuzzy “If–then” rule. Because of the bijection (3), we will
write v ↔ (i1, . . . , in) for short. By such indexing, the rule-based system can be
rewritten in a compact form

If Pv, then S = qv, v ↔ (i1, . . . , in) . (4)

The output of the MISO TS system S = S (z1, . . . , zn) is defined by the formula

S =
∑2n

v=1 (Ai1 (z1) , . . . , Ain (zn))v × qv∑2n

v=1 (Ai1 (z1) , . . . , Ain (zn))v

, v ↔ (i1, . . . , in) , (5)

where Aik
∈ {Nk, Pk}, (ik ∈ {1, 2}, k = 1, . . . , n) and  denotes the algebraic

t–norm:  (x, y) = xy [9].



232 J. Kluska

3 Transformation Lemma

Let us denote the hyperrectangle Dn = ×n
k=1 [−αk, βk] and its vertices Γn =

×n
k=1 {−αk, βk}, where × denotes the Cartesian product. All vertices of Dn

are the vectors γv = [(i1 − 1) (α1 + β1)− α1, . . . , (in − 1) (αn + βn)− αn]T , for
v = 1, v = 2, . . . , v = 2n, where v ↔ (i1, . . . , in), according to (3). The set of
vertices Γn = {γ1, . . . ,γ2n}, is ordered so that γ1 ≺ γ2 ≺ . . . ≺ γ2n .

Lemma 1 (Basic transformation lemma for zero-order MISO TS system). Let
us define for the variable z = [z1, . . . , zn]T , the function f0 : Dn → R as follows

f0 (z) = θT φ (z) , (6)

where
θ = [θ0, θ1, θ2, . . . , θ1,2,...,n]T ∈ R

2n

, (7)

φ (z) = [1, . . . , (zp1
1 · · · zpn

n ) , . . . , (z1 · · · zn)]T , (8)

with pk ∈ {0, 1}, and k = 1, . . . , n. For every function of the type (6), there
exists a zero-order MISO TS system, such that S (z) = f0 (z) for all points from
the hyperrectangle z ∈ Dn, and

(i) the inputs of the system are components of z ∈ Dn, and its output is S,
(ii) each component of z corresponds to two the membership functions as in (1),
(iii) the MISO TS system is defined by 2n fuzzy rules in the form of (2).

One can find the consequents q1, q2, ..., q2n of the fuzzy rules by solving the
system of 2n linear equations. The unique solution always exists.

Proof of the lemma is given in [5]. For the given z, the vector φ (z) is called a
generator that consists of monomials. One can prove that the following 2n linear
equations

q = ZT θ, Z =
[
φ (γ1) . . . φ (γ2n)

]
2n×2n , (9)

are satisfied, where vector q = [q1, . . . , q2n ]T is the vector of the consequents of
the rules [5]. The matrix ZT given by (9) is nonsingular one, if and only if, the
universe of discourse for any input zk is a nondegenerated interval, and therefore,
it is called the fundamental matrix. The equation (9) can be equivalently written
as follows

qT =
[
θT φ (γ1) , . . . ,θ

T φ (γ2n)
]

= [f0 (γ1) , . . . , f0 (γ2n)] . (10)

The equations (9)-(10) formulate necessary and sufficient conditions, under
which the system of fuzzy rules is equivalent to the function f0 (z) given by
(6). Lemma 1 says that we can always obtain an equivalent TS system for the
given function (6).
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4 Examples of MISO TS Fuzzy Systems

Example 1. Let us consider a TS system with n = 2 inputs, which models a
logical system. In such case the inputs z1, z2 are from the unity interval [0, 1],
i.e. the boundaries are α1 = α2 = 0, and β1 = β2 = 1. The function f0 is
f0 (z) = θT φ (z), where θ, the generator φ (z), and the fundamental matrix Z,
are as follows

θ =

⎡⎢⎢⎣
θ0
θ1
θ2
θ1,2

⎤⎥⎥⎦ , φ (z) =

⎡⎢⎢⎣
1
z1
z2
z1z2

⎤⎥⎥⎦ , ZT =

⎡⎢⎢⎣
1 −α1 −α2 α1α2
1 −α1 β2 −α1β2
1 β1 −α2 −α2β1
1 β1 β2 β1β2

⎤⎥⎥⎦ .
There are four fuzzy rules:
R1 : If z1 is N1 and z2 is N2, then S is q1,
R2 : If z1 is N1 and z2 is P2, then S is q2,
R3 : If z1 is P1 and z2 is N2, then S is q3,
R4 : If z1 is P1 and z2 is P2 , then S is q4.
From Lemma 1 we obtain θ =

(
ZT

)−1 [q1, q2, q3, q4]
T and the output S of the

system S (z) = θT φ (z). We define a strong negation as n (x) = 1−x for x ∈ [0, 1].
Taking into account boundary conditions we obtain that, for a generalized AND
operation (t-norm), the consequents of the rules have to be q1 = 0, q2 = 0,
q3 = 0, and q4 = 1. We immediately obtain θ0 = θ1 = θ2 = 0 and θ1,2 = 1.
Thus, the function expression is S = z1z2 - a probabilistic t-norm. Analogously,
we obtain analytical expressions for co-t-norm function: “z1 + z2 − z1z2” and
the other functions: implication, equivalency, etc. (see Table 1). Observe that,
interpretation of all fuzzy rules and logical functions, is obvious.

Table 1. Multivalued-logic functions of two variables as the TS fuzzy system with

n = 2 inputs for Example 1

t-norm co-t-norm implication equivalency

q1 = 0 q1 = 0 q1 = 1 q1 = 1

q2 = 0 q2 = 1 q2 = 1 q2 = 0

q3 = 0 q3 = 1 q3 = 0 q3 = 0

q4 = 1 q4 = 1 q4 = 1 q4 = 1

z1z2 z1 + z2 − z1z2 1 − z1 + z1z2 1 − z1 − z2 + 2z1z2

Example 2. The discrete-time NARX model (Nonlinear AutoRegressive with the
eXtra input) is given by the following equation (see [12])

y (k + 1) = θ0 + θ1y (k) + θ2y (k − 1) + θ3u (k)
+ θ1,2y (k) y (k − 1) + θ1,3y (k)u (k) + θ2,3y (k − 1)u (k)
+ θ1,2,3y (k) y (k − 1)u (k) ,
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in which y (k), y (k − 1) ∈ [−a, a] and u (k) ∈ [−b, b]. Assume that:
• The inputs of the TS system are z1 = y (k), z2 = y (k − 1) and z3 = u (k),
• The system’s output is S = y (k + 1),
• The vector of coefficients θT = [θ0, θ1, θ2, θ3, θ1,2, θ1,3, θ2,3, θ1,2,3].

For the three input TS system, the generator is

φT (z) =
[
1, z1, z2, z3, z1z2, z1z3, z2z3, z1z2z3

]
and the fundamental matrix

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 −α3 α1α2 α1α3 α2α3 −α1α2α3
1 −α1 −α2 β3 α1α2 −α1β3 −α2β3 α1α2β3
1 −α1 β2 −α3 −α1β2 α1α3 −α3β2 α1α3β2
1 −α1 β2 β3 −α1β2 −α1β3 β2β3 −α1β2β3
1 β1 −α2 −α3 −α2β1 −β1α3 α2α3 α2β1α3
1 β1 −α2 β3 −α2β1 β1β3 −α2β3 −α2β1β3
1 β1 β2 −α3 β1β2 −β1α3 −α3β2 −β1α3β2
1 β1 β2 β3 β1β2 β1β3 β2β3 β1β2β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Table 2. Look-up-table for the TS fuzzy system from Example 2

z1, z2 z3 →
↓ N3 P3

N1, N2 q1 q2

N1, P2 q3 q4

P1, P2 q7 q8

P1, N2 q5 q6

By assumptions: α1 = a, β1 = a, α2 = a, β2 = a, α3 = b and β3 = b, we obtain
the coefficients of the vector θ for the given collection of conclusions qj of the
rules, which are given in Table 2, by computing θ =

(
ZT

)−1 [q1, q2, . . . , q8]
T , and

finally, the output of the system S (z) = θT φ (z). The NARX model becomes
the linear ARX one (without offset), iff the conclusions of the rules are as follows

q = ZT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
θ1
θ2
θ3
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−aθ1 − aθ2 − bθ3
−aθ1 − aθ2 + bθ3
−aθ1 + aθ2 − bθ3
−aθ1 + aθ2 + bθ3
aθ1 − aθ2 − bθ3
aθ1 − aθ2 + bθ3
aθ1 + aθ2 − bθ3
aθ1 + aθ2 + bθ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The same results were obtained in [12], but our approach is general, sistematic
and seems to be very simple.
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5 Modeling of n-Dimensional Dynamical One-Input
System

Our goal is to model a nonlinear dynamical system ẋ (t) = f (x (t) , u (t)) by the
fuzzy rules expresssed by (2), with linear membership functions, the consequents
beeing linear combinations of the state vector x, and a scalar control u.

Let us define for the TS system the following input vector z=x=[x1, . . . , xn]T ,
where xi = xi (t) is the state variable of a modeled dynamical system. We define
the output of the (dynamical) TS system by

S =
dxi

dt
= ẋi, i = 1, . . . , n,

where the index i is arbitrarily choosen. Finally, let us assume, that the jth
consequent of the rule has the following form

qj =
dxi

dt
= aT

i,(j)x + bi,(j)u,

where a(j) ∈ R
n×1, b(j) ∈ R for i = 1, . . . , n and j = 1, . . . , 2n. In other words,

the TS system consits of 2n fuzzy rules

Rj : If x1 is X1 and . . . and xn is Xn,
then ẋ1 = aT

1,(j)x + b1,(j)u and . . . and ẋn = aT
n,(j)x + bn,(j)u,

(11)

where Xi ∈ {Ni, Pi} for i = 1, . . . , n and j = 1, . . . , 2n. The above rule is
equivalent to

Rj : If x1 is X1 and . . . and xn is Xn, then ẋ =
[
A(j) b(j)

] [x
u

]
, (12)

and A(j) is the local state matrix and b(j) is the local control matrix (as a
vector) from the jth region

A(j) =

⎡⎢⎣ aT
1,(j)
...

aT
n,(j)

⎤⎥⎦ =

⎡⎢⎣ a11,(j) · · · a1n,(j)
...

. . .
...

an1,(j) · · · ann,(j)

⎤⎥⎦ , b(j) =

⎡⎢⎣ b1,(j)
...

bn,(j)

⎤⎥⎦ , j = 1, . . . , 2n.

Thus, in the region number j we obtain the consequent of the jth rule:

qj = ẋi = aT
i,(j)x + bi,(j)u = Mi

[
x
u

]
, j = 1, . . . , 2n.

For the i-th state variable ẋi we define the following vector of all consequents of
the rules

q =

⎡⎢⎢⎢⎣
q1
q2
...
q2n

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ẋi

ẋi

...
ẋi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
aT

i,(1) bi,(1)
aT

i,(2) bi,(2)
...

...
aT

i,(2n) bi,(2n)

⎤⎥⎥⎥⎦
[
x
u

]
= Mi

[
x
u

]
,
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for i = 1, . . . , n. From the Lemma 1 the output of the defined TS system is
S = θT φ (x), and according to (9), the inferred model for the derivative of the
state variable ẋi is given by

ẋi = qT Z−1φ (x) =
[
xT u

]
MT

i Z−1φ (x) (13)

where

MT
i =

⎡⎢⎢⎢⎣
aT

i,(1) bi,(1)
aT

i,(2) bi,(2)
...

...
aT

i,(2n) bi,(2n)

⎤⎥⎥⎥⎦
T

=
[
ai,(1) ai,(2) · · · ai,(2n)
bi,(1) bi,(2) · · · bi,(2n)

]
. (14)

Finally, for every state variable xi we obtain

ẋi =
[
xT u

]
MT

i Z−1φ (x) , i = 1, . . . , n.

Theorem 1. Suppose we model a nonlinear dynamical system ẋ = f (x, u),
(x ∈ R

n, u ∈ R), using linear membership functions (1) for every state variable
xi, ( i = 1, . . . , n), using 2n fuzzy rules of the form (12).
1) Such a TS system is equivalent to the following nonlinear dynamical system

ẋ = WΦ (x) ,

where W ∈ R
n×dimΦ(x) and Φ (x) is the “generator of the dynamical TS sys-

tem”. The elements of this generator are the same, as the components of the
expanded form of the polynomial(

n∑
k=1

xk + u

)
n∏

k=1

(1 + xk) , (15)

by neglecting coefficients of the sum in (15). The elements of the matrix W
depend on boundaries αi, βi ( i = 1, . . . , n), and the elements of A(j), and
b(j),( j = 1, . . . , 2n).
2) The length of the generator Φ (z) is equal to

dimΦ (x) = 2n−1 (n+ 4)− 1. (16)

Proof. The first part of Theorem 1 is rather simple and will be omitted. We
prove the relation (16). The length of Φ (x), denoted by dimΦ (x), is for n = 1
equal to dimΦ (x)|dimx=1 = 4. Next, one can show that the following recurrency

dimΦ (x)|dimx=k+1 = 2 dimΦ (x)|dimx=k + 2k + 1 by dimΦ (x)|dimx=1 = 4

holds. This implies that for dimx = n we have dim Φ (x) = 2n−1 (n+ 4)− 1. �
For example, for n = 2 the generator of the dynamical TS system is

Φ (x) =
[
x1, x2, u, x1x2, x

2
1, x

2
2, x1x

2
2, x

2
1x2, ux1, ux2, ux1x2

]T
. (17)

The length of Φ (x) grows faster than dimφ (x) – see Table 3.
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Table 3. Length of the generators φ and Φ for the dynamical TS fuzzy system with

n state variables

n = dim (x) dim φ (x) dim Φ (x)

1 2 4

2 4 11

3 8 27

4 16 63

5 32 143

6 64 319

7 128 703

8 256 1535

9 512 3327

10 1024 7167

Example 3. Let us consider a one-input two-dimensional (n = 2) dynamical
system {

ẋ1 = f1 (x1, x2, u)
ẋ2 = f1 (x1, x2, u)

which is modeled by 4 fuzzy rules as in (12):

R1: If x1 is N1 and x2 is N2, then
[
ẋ1
ẋ2

]
=
[
a11,(1), a12,(1), b1,(1)
a21,(1), a22,(1), b2,(1)

]⎡⎣x1
x2
u

⎤⎦ ,
R2: If x1 is N1 and x2 is P2, then

[
ẋ1
ẋ2

]
=
[
a11,(2), a12,(2), b1,(2)
a21,(2), a22,(2), b2,(2)

]⎡⎣x1
x2
u

⎤⎦ ,
R3: If x1 is P1 and x2 is N2, then

[
ẋ1
ẋ2

]
=
[
a11,(3), a12,(3), b1,(3)
a21,(3), a22,(3), b2,(3)

]⎡⎣x1
x2
u

⎤⎦ ,
R4: If x1 is P1 and x2 is P2, then

[
ẋ1
ẋ2

]
=
[
a11,(4), a12,(4), b1,(4)
a21,(4), a22,(4), b2,(4)

]⎡⎣x1
x2
u

⎤⎦ .
According to equations (13)-(14) we obtain

ẋ1 =
[
x1 x2 u

]⎡⎣a11,(1) a11,(2) a11,(3) a11,(4)
a12,(1) a12,(2) a12,(3) a12,(4)
b1,(1) b1,(2) b1,(3) b1,(4)

⎤⎦Z−1

⎡⎢⎢⎣
1
x1
x2
x1x2

⎤⎥⎥⎦ ,

ẋ2 =
[
x1 x2 u

]⎡⎣a21,(1) a21,(2) a21,(3) a21,(4)
a22,(1) a22,(2) a22,(3) a22,(4)
b2,(1) b2,(2) b2,(3) b2,(4)

⎤⎦Z−1

⎡⎢⎢⎣
1
x1
x2
x1x2

⎤⎥⎥⎦ ,
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where the inverse of the fundamental matrix is

Z−1 =
1
V2

⎡⎢⎢⎣
β2β1 −β2 −β1 1
β1α2 −α2 β1 −1
β2α1 β2 −α1 −1
α2α1 α2 α1 1

⎤⎥⎥⎦ , V2 = (α1 + β1) (α2 + β2) .

After computations we obtain[
ẋ1
ẋ2

]
=
[
w1,1 w1,2 · · · w1,11
w2,1 w2,2 · · · w2,11

]
Φ (x) ,

where Φ (x) is given by (17) and the elements of the matrix W ∈ R
2×11 are

wi,1 =
(
β1β2ai1,(1) + α2β1ai1,(2) + α1β2ai1,(3) + α1α2ai1,(4)

)
/V2,

wi,2 =
(
β1β2ai2,(1) + α2β1ai2,(2) + α1β2ai2,(3) + α1α2ai2,(4)

)
/V2,

wi,3 =
(
β1β2bi,(1) + α2β1bi,(2) + α1β2bi,(3) + α1α2bi,(4)

)
/V2,

wi,4 =
(
−β1ai1,(1) + β1ai1,(2) − α1ai1,(3) + α1ai1,(4)

)
/V2

+
(
−β2ai2,(1) − α2ai2,(2) + β2ai2,(3) + α2ai2,(4)

)
/V2,

wi,5 =
(
−β2ai1,(1) − α2ai1,(2) + β2ai1,(3) + α2ai1,(4)

)
/V2,

wi,6 =
(
−β1ai2,(1) + β1ai2,(2) − α1ai2,(3) + α1ai2,(4)

)
/V2,

wi,7 =
(
ai2,(1) − ai2,(2) − ai2,(3) + ai2,(4)

)
/V2,

wi,8 =
(
ai1,(1) − ai1,(2) − ai1,(3) + ai1,(4)

)
/V2,

wi,9 =
(
−β2bi,(1) − α2bi,(2) + β2bi,(3) + α2bi,(4)

)
/V2,

wi,10 =
(
−β1bi,(1) + β1bi,(2) − α1bi,(3) + α1bi,(4)

)
/V2,

wi,11 =
(
bi,(1) − bi,(2) − bi,(3) + bi,(4)

)
/V2,

for i = 1, 2.
Theorem 2. The TS dynamical system is a linear one if and only if all local
matrices are the same. In this case the columns of the matrix W with numbers
j = n+ 1, n+ 2, . . . , 2n−1 (n+ 4)− 1 are zero.

Proof. (Sufficiency) From assumption A(1) = ... = A(2n) = A and b(1) =
b(2) = ... = b(2n) = b. Let us take a variable xi for an arbitrarily given index i

ẋi =
[
xT u

]
MT

i Z−1φ (x) , MT
i =

[
ai ai · · · ai

bi bi · · · bi

]
∈ R

(n+1)×2n

.

Thus, we obtain

MT
i Z−1 =

[
ai 0 · · · 0
bi 0 · · · 0

]
∈ R

(n+1)×2n

,

and finally

ẋi =
[
xT ai + biu 0 · · · 0

]
⎡⎢⎢⎢⎣

1
x1
...

x1x2 . . .xn

⎤⎥⎥⎥⎦ = aT
i x + biu.

The result is valid for any index i ∈ {1, . . . , n}. This ends the proof of sufficiency.
(Necessity) The necessary condition one can easily prove by construction a coun-
terexample, for say n = 2. �
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6 Conclusions

Using our approach we have a detailed insight into the TS fuzzy rule-based
system with linear membership functions. The methodology is completely analy-
tic and practically useful: we use 2 linear membership functions for every variable
and the fuzzy rules have clear interpretation. Necessary and sufficient conditions,
which have been formulated of how to transform some class of nonlinear systems
into the fuzzy rules and vice-versa, deliver an exact relationships between fuzzy
models and their classical counterparts. Transformation lemma can be easily
applied for both some class of discrete- and continuous-time dynamical systems,
or logical systems. Among others, using this lemma, we derived a TS model,
which is equivalent to some nonlinear dynamical system of nth order with a
scalar input. We used linear membership functions for state variables and fuzzy
rules with consequents beeing velocities of the state variables, which are linear
functions of state variables and the scalar input. We obtained an exact model of
such nonlinear dynamical system. The proposed method can be easily extended
to multi-input-multi-output systems.
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ul. Rewolucji 1905 nr 64, �Lódź, Poland
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Abstract. Boosting is one of the most popular methods of multiple
classification. In the paper we propose a method for merging several
logical-type neuro-fuzzy systems that come from boosting ensemble into
one neuro-fuzzy system. Thanks to this we can use all rule-bases as one
system.

1 Introduction

Classifiers can be combined to improve accuracy. A variety of known classi-
fiers [3,8,10,13] and other learning systems [1, 4, 5, 14, 15, 16, 17, 19] can be
combined in ensembles to improve accuracy. By combining intelligent learning
systems, the model robustness and accuracy is nearly always improved, compar-
ing to single-model solutions. Combined systems are developed under different
names: blending, combining models, bundling, ensemble of classifiers, commit-
tee of experts. Classifiers can be combined at the level of features, data subsets,
using different classifiers or different combiners, see Figure 1. Popular methods
are bagging and boosting [3, 8, 9, 18] which are meta-algorithms for learning
different classifiers. They assign weights to learning samples according to their
performance on earlier classifiers in the ensemble. Thus subsystems are trained
with different datasets. There are many variations of boosting with the most
known - AdaBoost, where every learning vector has a weight assigned. Accord-
ing to the AdaBoost algorithm, consecutive classifiers should be learned with the
greatest impact from the samples with the highest weight values. These weights
have influence on the learning process by changing the learning rate. In the
paper we develop a method for merging fuzzy rule-bases from several logical-
type neuro-fuzzy systems constituting an ensemble trained by AdaBoost and
the backpropagation algorithm. The method leads to the merged neuro-fuzzy
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system characterized by interpretability and possibility to reduce its size. In the
next section we describe the AdaBoost algorithm and in the Section 3 a logical-
type neuro-fuzzy system constituting the boosting ensemble and a new method
allowing merging fuzzy rule-bases. In Section 4 we verify the method on a well
known data benchmark.

2 AdaBoost Agorithm

In this section we describe the AdaBoost algorithm which is the most popu-
lar boosting method [3][9][18]. Let us denote the l-th learning vector by zl =
[xl

1, ..., x
l
n, y

l] , l = 1...m is the number of a vector, n is a size of input vector xl,
and yl is the learning class label. Weights, assigned to learning vectors, have to
fulfill the following conditions

(i) 0 < dl < 1 , (1)

(ii)
m∑

l=1

dl = 1 . (2)

The weight dl is the information how well classifiers learned in consecutive steps
of an algorithm for a given input vector xl. Vector d for all input vectors is
initialized according to the following equation

dl
t =

1
m
, for t = 0 (3)

where t is the number of a boosting iteration (and a number of a classifier in
the ensemble). Let {ht(x) : t = 1, ..., T} denotes a set of hypotheses obtained in
consecutive steps t of the algorithm being described. For simplicity we limit our
problem to a binary classification (dichotomy), i.e. y ∈ {−1, 1} or ht(x) = ±1 .
Similarly to learning vectors weights, we assign a weight ct for every hypothesis,
such that

(i) 0 < ct , (4)

(ii)
∑

t

ct = 1 . (5)

Now in the AdaBoost algorithm we repeat steps 1-4 for t = 1, . . . , T :
1. Create hypothesis ht and train it with a data set with respect to a distribution
dt for input vectors.
2. Compute the classification error εt of a trained classifier ht according to the
formula

εt =
m∑

l=1

dl
t(z

l)I(ht(xl) �= yl) , (6)

where I is the indicator function
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I(a �= b) =
{

1 if a �= b
0 if a = b . (7)

If εt = 0 or εt ≥ 0.5, stop the algorithm.
3. Compute the value

αt = log
0.5(1− εt)
εt(1− 0.5)

. (8)

4. Modify weights for learning vectors according to the formula

dt+1(zl) =
dt(zl) exp{−αtI(ht(xl) = yl)}

Nt
, (9)

where Nt is a constant such that
m∑

l=1

dt+1(zl) = 1 . (10)

To compute the overall output of the ensemble of classifiers trained by AdaBoost
algorithm the following formula is used

f(x) =
T∑

t=1

ctht(x) , (11)

where
ct =

αt∑T
t=1 |αt|

(12)

is classifier importance for a given training set. The AdaBoost algorithm is a
meta-learning algorithm and does not determine the way of learning for classifiers
in the ensemble.

3 Logical-Type Neuro-fuzzy Ensemble

In this section we propose a new method to build one neuro-fuzzy system, con-
sisting of many logical-type neuro-fuzzy systems using boosting algorithm. The
final output of an ensemble classifiers in AdaBoost, as was mention above, is

f(x) =
T∑

t=1

ctht(x) . (13)

So if classifiers were neuro-fuzzy systems and we used the Center of Area defi-
nition of defuzzifier then we could write the output of the t-th member of the
committee in the discrete form

ht =

N∑
r=1
yr

t · μB′
t
(yr

t )

N∑
r=1
μB′

t
(yr

t )
. (14)
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Putting (14) into (13), the final output of a boosting algorithm f(x) is defined
by

f(x) =
T∑

t=1

⎛⎜⎜⎝ct
N∑

r=1
yr

t · μB′
t
(yr

t )

N∑
r=1
μB′

t
(yr

t )

⎞⎟⎟⎠ . (15)

It is evident from eq. (15) that to make one neuro-fuzzy system we need to
transform it in a such way that in the denominator there should be only the
sum of antecedent rules for all members of the committee. One way to obtain
that is assuming that

∀t = 1, . . . , T ,
N∑

r=1

μB′
t
(yr

t ) = 1 . (16)

Neuro-fuzzy systems can be divided in two categories: Mamdami neuro-fuzzy
systems with ”engineering implications” and logical-type neuro-fuzzy systems
with fuzzy implications [14]. First group consists of fuzzy systems where fuzzy
relation is defined by a t-norm. Special transformation for merging this type of
system ensemble is shown in [6]. In the second, logical-type approach, all rules
aggregated using a t-norm to achieve one output fuzzy set μB′

t
(yr

t ) of the t-th
fuzzy classifier

μB′
t
(yr

t ) =
N

T
k=1

{
μBk

t
(yr

t )
}

=
N

T
k=1

{
Ifuzzy(μAk

t
(x), μBk

t
(yr

t ))
}
, (17)

where Ifuzzy denotes fuzzy implication [14]. In this context we can rewrite formula
(14) in the form

ht =

N∑
r=1
yr

t ·
N

T
k=1

{
Ifuzzy(τk

t , μBk
t
(yr

t ))
}

N∑
r=1

N

T
k=1

{
Ifuzzy(τk

t , μBk
t
(yr

t ))
} , (18)

where τk
t = (μAk

t
(x) =

n

T
i=1

{
μAk

t,i
(xi)

}
is the level of the firing strength of the k-

rule in the t-th subsystem. Our assumption given by (16) forces us to normalize
values of denominators for all members of the committee. It can not be done in
the same way as we have shown in [6] for Mamdani type systems. If we use a
fuzzy implication e.g. binary or Lukasiewicz, then the final output of t-th system
can be written in the form

ht =

N∑
k=1
yk

t ·
N

T
j=1
j �=k

[
1− μAj

t
(x)

]
N∑

k=1

N

T
j=1
j �=k

[
1− μAj

t
(x)

] . (19)
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Fig. 1. The general form of a logical-type neuro-fuzzy system
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Fig. 2. The general form of a logical-type neuro-fuzzy system with additional layer

L3A added for normalization purposes

Graphical representation of this kind of fuzzy systems is presented in Figure 1,
where index t is ommited in the structure description for clarity of presentation.
In our method we add an additional layer denoted L3A. Single member of the
committee after our modification is shown in Figure 2. Assumption (16) in a
neuro-fuzzy system can be also fulfilled in a different way than one showed in
Fig. 2. In case of using selected triangular norms it can be fulfilled by modifying
functions realized by blocks for fuzzy sets of rule antecedents. For aggregation
realized by product t-norm, membership functions μAj (x) have to be replaced
by ζAj (x) of the form

ζAj (x) = 1− 1− μAj (x)

N−1

√√√√ N∑
k=1

N∏
r=1
r �=k

[1− μAr (x̄)]

. (20)
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Fig. 3. Simplified structure with modified antecedent sets

It should be emphasized that function ζAj (x) can not be interpreted as a
membership function. It is easy to prove the correctness of proposition (20) by
proving the following formula

N∑
k=1

N∏
j=1
j �=k

[1− ζAj (x)] = 1 . (21)

Substituting (21) to (20) we obtain

N∑
k=1

N∏
j=1
j �=k

⎡⎢⎢⎢⎢⎢⎢⎣1− 1− 1− μAj (x)

N−1

√√√√ N∑
q=1

N∏
r=1
r �=q

[1− μAr (x)]

⎤⎥⎥⎥⎥⎥⎥⎦ = 1 , (22)

and in a few steps we obtain
N∑

k=1

N∏
j=1
j �=k

[1− μAj (x)]

N∑
q=1

N∏
r=1
r �=q

[1− μAr (x)]
= 1 . (23)

In a very simple way we can make further simplifications by eliminating blocks
marked ”neg” that realize operation y = 1 − x. It can be done by merging
blocks realizing the function ζAj (x) with ”neg” operations, introducing blocks
that realize function ξAj (x) defined by

ξAj (x) = 1− ζAj (x) =
1− μAj (x)

N−1

√√√√ N∑
k=1

N∏
r=1
r �=k

[1− μAr (x)]

. (24)
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The neuro-fuzzy structure using blocks with ξAj (x) is shown in Figure 4. In the
system described by (15) there exists a weight ct which determines importance of
each subsystem. The number of parameters in the neuro-fuzzy system after learn-
ing can be reduced by replacing yr

t with parameters y∗r
t = ctyr

t and eliminating the
weight ct, see Fig. 5. The neuro-fuzzy system (15) is described then by

f(x) =
T∑

t=1

⎛⎜⎜⎝
N∑

r=1
ȳ∗r

t · μB′
t
(yr

t )

N∑
r=1
μB′

t
(yr

t )

⎞⎟⎟⎠ , (25)

and is shown in the Figure 6.

4 Numerical Simulations

Numerical simulations were carried out on the Pima Indians Diabetes problem
[2]. The subsystems were trained by the backpropagation algorithm, starting
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with random values of all parameters. The dataset were converted such that
class label y(x) = ±1, which is requirement in the boosting learning algorithm
used in the paper. Everytime the training was stopped when εt ≥ 0.5. The Pima
Indians Diabetes (PID) data [2][14] contains two classes, eight attributes

– number of times pregnant
– plasma glucose concentration in an oral glucose tolerance test
– diastolic blood pressure (mm Hg)
– triceps skin fold thickness (mm)
– 2-hour serum
– insulin (mu U/ml)
– body mass index (weight in kg/(height in m)2)
– diabetes pedigree function, age (years)).

We consider 768 instances, 500 (65.1%) healthy and 268 (34.9%) diabetes cases.
All patients were females at least 21 years old of Pima Indian heritage, living
near Phoenix, Arizona. In our experiments, all sets are divided into a learning
sequence (576 sets) and a testing sequence (192 sets).
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Table 1. Simulation results for Pima Indians Diabetes problem

Classifier Number of ct MSE testing
number fuzzy rules coefficient error

1 3 0.32 0.34
2 3 0.45 0.22
3 3 0.16 0.56

The training was stopped after the fifth classifier has been trained, because
during creating the second classifier value of εt did not drop below 0.5. The
classification accuracy is 79%. Table 1 shows results of each classifier in the
boosting ensemble.

5 Conclusions

The paper introduces a new method for merging logical-type neuro-fuzzy systems
constituting a boosting ensemble. The merging is possible thanks to special
modification of neuro-fuzzy systems which are parts of the ensemble. The new
structures were tested on a popular benchmark.
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Abstract. The concept of ordered fuzzy numbers (OFN) is revised in
order to handle with general fuzzy inputs in a quantitative way, exactly in
the same way as with real numbers. Referring to α cuts and interval arith-
metic method the algebraic structure is introduced to allow counting with
more general type of membership curves (relations). Application is given
to a problem of economics and finance in which fuzzy equation appears.

1 Introduction

Fuzzy numbers are of great importance in fuzzy systems. The fuzzy numbers
usually used in applications are the triangular (or triangular shaped) and the
trapezoidal (or trapezoidal shaped) fuzzy numbers. This is due to the commonly
accepted theory of fuzzy numbers [5] set up by Dubois and Prade [7] in 1978.
They proposed a restricted class of membership functions, called (L,R)–numbers
with two so-called shape functions: L and R. Then the arithmetic of fuzzy num-
bers was developed using both the Zadeh’s extension principle [28,29] and the
α-cut with interval arithmetic method [10].

It is well-known [3] that as long as one works with fuzzy numbers that possess
continuous membership functions the two procedures: the extension principle
and the α-cut and interval arithmetic method give the same results. However,
approximations of fuzzy functions and operations are needed, if one wants to
follow the extension principle and stay within (L,R)–numbers. It leads to some
drawbacks as well as to unexpected and uncontrollable results of repeatedly
applied operations [25,26].

Classical fuzzy numbers are very special fuzzy sets defined on the universe of
all real numbers that satisfy three conditions (compare [3,4,6,10,25]): a) the core
of a fuzzy number A is nonempty 1, b) α-cuts of A are closed, bounded intervals,
and c) the support of A, i.e. supp A = {x ∈ R : μA(x) > 0} is bounded.

1 A core of A is the set of those x ∈ R for which its membership function μA(x) = 1.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 250–259, 2006.
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For the fuzzy number A the α-cut, written A[α] is defined as a classical set
{x ∈ R : μA(x) ≥ α}. Notice that no assumption about continuity of the
membership function μA of the fuzzy number has been made. In this way all
crisp numbers are fuzzy numbers, as well. However, in most cases one assumes
that membership function of a fuzzy number A satisfy convexity assumptions. It
was Nguyen [23] who introduced so-called convex fuzzy numbers requiring from
all α-cuts to by convex subsets2 of R. Its generalization has been discussed by
Drewniak in several papers, cf. [6], as well as by Klir [11] and Wagenknecht [25].

Those fuzzy numbers are convenient as far as a simple interpretation in the
set-theoretical language is concerned [27], however, to operate on them using
either the extension principle or α-cut and interval arithmetic method, is not
easy task. Moreover, the results of multiply operations on the fuzzy numbers are
leading to the large grow of the fuzziness, and, what is especially unpleasant,
they depend on the order of operations since the distributive law, which involves
the interaction of addition and multiplication, does hold in neither procedures.

Main observations made in our first paper [15] were:

– a kind of quasi-invertibility of membership functions is crucial, and
– if one wants to have the classical arithmetic with crisp numbers within a more

general one of that dealing with fuzzy numbers that possess membership
functions which are locally invertible then we may (or stronger - we have to)
define arithmetic operations on their inverse parts.

Invertibility allows to define two functions a1, a2 on [0, 1] that give lower and
upper bounds of each α-cut of the membership function μA of the number A

A[α] := {x ∈ R : μA(x) ≥ α} = [a1(α), a2(α)], (1)

where boundary points are given for each α ∈ [0, 1] by

a1(α) = μA|−1
incr(α) and a2(α) = μA|−1

decr(α) . (2)

In (2) the symbol μA|−1
incr denotes the inverse function of the increasing part

of the membership function μA|incr, the other symbol refers to the decreasing
part μA|decr of μ. Then we can define the core of A as the interval [a1(1), a2(1)],
and we can see that the membership function μA of A is completely defined by
two functions a1 : [0, 1] → R and a2 : [0, 1] → R. In terms of them arithmetic
operations for fuzzy numbers can be defined: if A and B are two (convex) fuzzy
numbers with the corresponding functions a1, a2 and b1, b2 for A and B, respec-
tively, which describe (according to (1)-(2)) the boundary points of their α-cuts,
then the result C of addition A + B is defined [3,4,23] in terms of their α-cuts
and the functions as follows:

C[α] = A[α] +B[α], C[α] = [a1(α) + b1(α), a2(α) + b2(α)], α ∈ [0, 1]. (3)

One can do the same for subtraction, however, according to the interval arith-
metic [10] if D = A−B, then the difference of two intervals is defined

D[α] = [a1(α)− b2(α), a2(α)− b1(α)], α ∈ [0, 1], (4)
2 Notice that only convex subsets of R are intervals.
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because of the general formula for two arbitrary closed intervals I and J

I " J = {s ∈ I, t ∈ J} (5)

where " stands for one of operations +,−, ·,÷. For example, if I = [2, 4] and
J = [3, 5] then [2, 4]− [3, 5] = [2− 5, 4− 3] = [−3, 1].

Two next operations: multiplication and division may be defined accordingly.
Notice, that in subtraction of the same fuzzy number A, i.e. for C = A−A, we
get C[α] = [a1(α)−a2(α), a2(α)−a1(α)] which represents non-crisp, fuzzy zero,
unless a1(α) = a2(α) for each α.

However, when the classical denotation for independent and dependent vari-
ables of the membership functions, namely x and y is used, and we look once
more at (1)-(2) and Fig.1 when two trapezoidal fuzzy numbers A and B are
added, then we can see that for A its corresponding functions are a1(α) = 1 +α
and a2(α) = 4−α. Now if we put y = α and x for the values of a1 and a2, then
we will get for two ”wings” of the graph of A two possible representations:

x = 1 + y and x = 4− y , y ∈ [0, 1] (6)

or

y = x− 1 if x ∈ [1, 2] and y = 4− x if x ∈ [3, 4], and y = 1 if x ∈ [2, 3]. (7)

We can see that in the second representation (7) we have the membership

Fig. 1. Addition of two trapezoidal fuzzy numbers A and B

function of A, while the first contains two functions giving the boundary points
of all α-cut of A. For the number B in Fig. 1we have

x = 2(1 + y) and x = 6− y , y ∈ [0, 1] , (8)

and for the sum C we will have, according to the interval arithmetic method (3)

x = (1+y)+2(1+y) = 3(1+y) and x = (4−y)+(6−y) = 10−2y , y ∈ [0, 1]. (9)

We can see that the obtained representation is in agreement with the graph of
C in Fig. 1.

In what follows we will use the first approach (6) in the representation of
”new’ fuzzy numbers, so-called ordered fuzzy numbers which can be identified
with pairs of continuous functions defined on the interval [0, 1]. In this paper
we summarize recent concepts related to the algebra of ordered fuzzy numbers
which becomes the efficient tool in dealing with unprecise, fuzzy quantitative
terms. Then some applications of fuzzy equations to problems of economics and
finance will be given.
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2 Ordered Fuzzy Numbers

In the series of papers [12,14,15,16,17,18,19,20] we have introduced and then de-
veloped main concepts of the space of ordered fuzzy numbers. In our approach
the concept of membership functions [5] has been weakened by requiring a mere
membership relation. Following our observations made in Introduction a fuzzy
number A was originally identified with an ordered pair of continuous real func-
tions defined on the interval [0, 1], i.e.

Definition 1. By an ordered fuzzy number A we mean an ordered pair (f, g) of
functions such that f, g : [0, 1] → R are continuous.

Notice that the continuous functions f and g are exactly the same as already
introduced in (1)-(2) the functions a1 and a2, respectively. We call the corre-
sponding elements: f – the up-part and g – the down-part of the fuzzy number A.

The continuity of both parts implies their images are bounded intervals, say
UP and DOWN , respectively (Fig. 1a). We have used symbols to mark bound-
aries for UP = [lA, 1+

A] and for DOWN = [1−A, pA].
In general, the functions f, g need not to be invertible as functions of y ∈ [0, 1],

only continuity is required. If we assume, however, that
1)they are monotonous: f is increasing, and g is decreasing, and such that
2) f ≤ g (pointwise), we may define the membership function

μ(x) = f−1(x), if x ∈ [f(0), f(1)] = [lA, 1+
A], (10)

μ(x) = g−1(x), if x ∈ [g(1), g(0)] = [1−A, pA] and
μ(x) = 1 when x ∈ [1+

A, 1
−
A] .

In this way we have obtained the membership function μ(x), x ∈ R which is
the general representation corresponding to the second form given by (7) in the
case of the number A.

Notice that for the representation of the membership function μ of the clas-
sical, convex fuzzy number one can attach two monotonous functions μup :=
f−1 and μdown := g−1 defined on the corresponding intervals [f(0), f(1)] and
[g(1), g(0)], respectively.

In the part c) of Fig.2 to the ordered pair of two continuous functions (here
just two affine functions) f and g corresponds a membership function of a convex
fuzzy number with an extra arrow which denotes the orientation of the closed
curve formed below. This arrow shows that we are dealing with the ordered pair
of functions and we can see that we have appointed an extra feature, namely an
orientation.

Notice that if some of the conditions formulated above are not satisfied the
construction of the classical membership function is not possible. However, in
the x − y plane the graphs of f and g (both functions of y) can be drawn
together with the constant function of x on the interval [f(1), g(1)], equal to
1. Consequently, obtained in this way graphs of three functions form together
a curve, which can be called the membership curve of an ordered fuzzy number
(f, g) .
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Fig. 2. a) Ordered fuzzy number, b) Ordered fuzzy number with membership function,

c) Arrow denotes the order of inverted functions and the orientation

The original definition of the ordered fuzzy numbers [16,17,18] has been re-
cently generalized in [13] by admitting for the pair (f, g) to be functions of
bounded variation.

Definition 2. By an ordered fuzzy number A we mean an ordered pair (f, g) of
functions such that f, g : [0, 1] → R are of bounded variation.

The necessity of the above generalization follows from some limitations if we
pass from the concept of ordered fuzzy numbers (OFN) represented by ordered
pairs of continuous functions to the theory of convex fuzzy numbers represented
by their membership functions. This is due to the fact that some membership
functions already known in the classical theory of fuzzy numbers (cf. [4,5]) cannot
be obtained by taking inverses of continuous functions f and g, in the process
described above. We think here about such membership functions which are
piecewise constant (cf. Fig. 3)), i.e. such μ is one of them if its branches μup and
μdown are not strictly monotonous.

The existence of constancy subintervals implies the inverse functions to μup

and μdown, regarded as functions of y, do not exist in the classical sense. To solve
this problem we may assume that both functions μup and μdown possess at most -
countable number of such constancy subintervals, and the inverse functions, say f
and g, respectively, exist in a generalized sense, i.e. they are piecewise continuous
and monotonous with at most - countable number of discontinuity points. Those
discontinuity points are of the first order, i.e. at each such a point one–sided limits
of the functions exist [21], however, they may be different. Then each jump of
discontinuity in the y variable corresponds to a constancy subinterval in the x
variable. The class of functions with that property are real–valued functions of
bounded (finite) variation [21] and obtained ordered fuzzy numbers are called of
class BV (compare [13] for more details).
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Fig. 3. Membership function of an ordered fuzzy number of class BV

3 Operations

Now, in the most natural way, the operation of addition between two pairs
of such functions has been defined (cf. our main definition from [20]), as the
pairwise addition of their elements, i.e. if (f1, g1) and (f2, g2) are two ordered
fuzzy numbers, then (f1 + f2, g1 + g2) will be just their sum. This is exactly
the same as operation defined in Introduction on α-cuts of A and B, cf. (3).
Notice that as long as we are adding ordered fuzzy numbers which possess their
classical counterparts in the form of trapezoidal type membership functions,
and moreover, are of the same orientation, the results of addition is in agrement
with the α-cut and interval arithmetic. However, this does not hold, in general,
if the numbers have opposite orientations, for the result of addition may lead to
improper intervals as far as some α-cuts are concerned. In this way we are close
to the Kaucher arithmetic [9] with improper intervals, i.e. such [n,m] where n
may be greater than m.

Notice that if we stay within ordered fuzzy numbers represented by pairs of
affine functions of the variable y then there are pairs to which a trapezoidal type
membership function does not correspond (cf. the requirement of the invertibility
of f and g and the conditions 1) - 2) formulated above Eq. (10), some of them
are improper (as it was noticed already in [20]) like in Fig.4.

Operations are introduced almost identical to that used in our previous pub-
lications [12,14,15,16,17,18,19,20].

Definition 3. Let A = (fA, gA), B = (fB, gB) and C = (fC , gC) are mathe-
matical objects called ordered fuzzy numbers. The sum C = A + B, subtraction
C = A−B, product C = A ·B, and division C = A÷B are defined by formula

fC(y) = fA(y) " fB(y) ∧ gC(y) = gA(y) " gB(y) (11)

where ”"” works for ”+”, ”−”, ”·”, and ”÷”, respectively, and where A ÷ B
is defined, if the functions |fB| and |gB|, are bounded from below by a positive
number.

As it was already noticed in the previous section the subtraction of B is the same
as addition of the opposite of B, i.e. the number (−1) · B. If we want to add
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two pairs of affine functions (i.e. two particular type of ordered fuzzy numbers)
defined on [0, 1] the final result is easy to obtain, if we apply a mnemotechnic
method known in the interval analysis and pointed out by the author in the
last paper [13]. If for any pair of affine functions (f, g) of y ∈ [0, 1] we form a
quaternion (tetrad) of real numbers according to the rule [f(0), f(1), g(1), g(0)]
(which correspond to the presented in Eq. (11) four numbers [lA, 1+

A, 1
−
A, pA]),

then this tread uniquely determines the ordered fuzzy number A. If (e, h) =: B
is another pairs of affine functions then the sum A + B = (f + e, g + h) =: C
will be uniquely represented by the tread

[f(0) + e(0), f(1) + e(1), g(1) + h(1), g(0) + h(0)] . (12)

In the assumed definitions (cf. [18]) the operation of subtraction is compatible
with a linear structure of OFN’s, i.e.A−B := A+(−1)B, and the representations
(3) and (12) are for our disposal to find the result D = A−B in the form of the
corresponding tread.

Fig. 4. Sum of two convex OFN’s is an improper convex number

Notice that the present operation of subtraction is not the same as the sub-
traction copied in Introduction from the α-cut and interval arithmetic method,
since now, if we use the same denotation as in (4), we will have

D[α] = [a1(α)− b1(α), a2(α)− b2(α)], α ∈ [0, 1]. (13)

Thanks to this definition we will have A−A = 0, where 0 is the crisp zero.
If for A = (f, g) we define its complement Ā = (−g,−f) (please note that Ā �=

(−1) ·A), then the sum A+Ā gives a fuzzy zero 0 = (f−g,−(f−g)) in the sense
of the classical fuzzy number calculus. For better presentation of the advantages
of the new operations on OFN we are adding extra figure for the sum.In Fig. 4
we can follow the operation of addition using the tread representation of two
trapezoidal ordered fuzzy numbers.

Additionally, more set-theoretic operations can be defined, cf. [13]. The Fuzzy
Calculator has been already created as a calculation tool, by my co-worker
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Mr.Roman Koleśnik [19]. It lets an easy future use of all mathematical objects
described as ordered fuzzy numbers.

Algebraic operations on OFN give a unique possibility to define new types of
compositional rules of fuzzy inference and new methods of aggregation of premise
parts of fuzzy If–Then, cf. [24]. The original case of OFN’s with continuous
elements (f, g) allows to define a set of defuzzyfications operators thanks to the
Riesz-Kakutami-Banach theorem, cf. [12].

In R - the set of all OFN’s of class BV a different norm from that of sup (cf.
[12,14] can be introduced, compare [13]. Finally, R is a Banach algebra with the
unity (1†, 1†), where 1†(y) = 1, y ∈ [0, 1].

The relation of partial order in R can be introduced by defining the subset of
those ordered fuzzy numbers which are bigger or equal to zero. We say that the
fuzzy number A = (f, g) is not less than zero, and write A ≥ 0, iff f ≥ 0 and g ≥
0. Hence for two ordered fuzzy numbers B,C the relation B ≥ C if B − C ≥ 0
which makes R a partial ordered ring.

4 Application

The internal rate of return is one of commonly used methods of comparing
mutually exclusive investment alternatives. Let a given, or estimated, net cash
flow of a proposed investment project over n periods of time be represented by
the finite sequence A0, A1, A2, ..., An of positive values, where A0 is the initial
outlay. The internal rate of return (IRR) for this cash flow is any solution r > −1 to

n∑
i=1

Ai(1 + r)−i = A0 . (14)

It is a well-known fact from the theory of polynomials, that Eq. (14) possesses
a unique solution r > −1 if all Ai’s are positive real numbers. Notice, that (14)
says the present value of all future returns discounted at rate r must equal the
initial outlay A0. If the cost of capital to the firm is r0 and assuming all projects
have a unique IRR, then those projects with IRR > r0 are ranked from highest
to lowest according to their IRR value, and the firm accepts these projects in
this order until its investment capital is depleted.

Since future returns are always uncertain one can modelled the net cash flow
using positive ordered fuzzy numbers, and try to solve Eq. (14) as a fuzzy equa-
tion. So one can look for ordered fuzzy number X = (fr, gr), which a unique
positive root of the fuzzy polynomial

W (X) :=
n∑

i=1

AiX
i −A0 , (15)

where all coefficients A0, A1, ..., An are positive ordered fuzzy numbers. The vari-
able X is related to the previous r from (14) by the relation X = (1 + r)−1.
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Theorem 1. If the above assumptions concerning coefficients in (15) are sat-
isfied then there exists a unique positive ordered fuzzy number Xr which is the
root of the polynomial W (X), i.e. W (Xr) = 0, where 0 is the crisp zero.

The proof is a simple application of the operations defined on the partial ordered
ring R. The above result generalizes those obtained for example in [2], where it
was assumed that coefficients are triangular fuzzy numbers.

References

1. Alexiewicz A. (1969), Functional Analysis (In Polish: Analiza funkcjonala), Mono-
grafie Matematyczne, Tom 49, PWN, Warszawa.

2. Buckley James J. (1992), Solving fuzzy equations in economics and finance, Fuzzy
Sets and Systems, 48, 289–296.

3. Buckley James J. and Eslami E. (2005), An Introduction to Fuzzy Logic and Fuzzy
Sets, Physica-Verlag, A Springer-Verlag Company, Heidelberg.

4. Chen Guanrong, Pham Trung Tat, (2001), Fuzzy Sets, Fuzzy Logic, and Fuzzy
Control Systems, CRS Press, Boca Raton, London, New York, Washington, D.C.

5. Czoga�la E., Pedrycz W. (1985), Elements and Methods of Fuzzy Set Theory (in
Polish), PWN, Warszawa, Poland.

6. Drewniak J.(2001), Fuzzy numbers (In Polish), in: Fuzzy Sets and their Applica-
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Abstract. TOPSIS is a multiple criteria method to identify solutions from a 
finite set of alternatives based upon simultaneous minimization of distance 
from an ideal positive point and maximization of distance from a negative 
point. Owing to vague concepts frequently represented in decision data,  
the crisp value is inadequate to model real-life situations. In this paper, the 
scoring of each alternative and the weight of each criterion are described by 
linguistic terms which can be expressed in triangular fuzzy numbers. Then, 
the ratings and weights assigned by decision makers are averaged and  
normalized into a comparable scale. A coefficient of variation is defined to 
determine the ranking order of alternatives by calculating the mean value and 
standard deviation. A numerical example demonstrates the feasibility of the 
proposed method. 

1   Introduction 

Among the numerous approaches available for conflict management, one of the most 
prevalent is multicriteria decision making. Decision-making problem is the process of 
finding the best option from all of the feasible alternatives. In classical MCDM meth-
ods, the ratings and the weights of the criteria are known precisely. MCDM may be 
considered as a complex and dynamic process including one managerial level and one 
engineering level [10]. 

Technique for order performance by similarity to ideal solution (TOPSIS), one of 
the known classical MCDM methods, was first developed by Hwang and Yoon [4]. It 
bases upon the concept that the chosen alternative should have the shortest distance 
from the positive ideal solution and the farthest from the negative ideal solution. In 
the process of TOPSIS, the performance ratings and the weights of the criteria are 
given as crisp values. 

Under many conditions, crisp data are inadequate to model real-life situations. 
Since human judgments including preferences are often vague and cannot estimate his 
preference with an exact numerical value. 

A more realistic approach may be to use linguistic assessments instead of numeri-
cal values, that is, to suppose that the ratings and weights of the criteria in the prob-
lem are assessed by means of linguistic variables [5, 9, 13, 16]. Decision making 
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often takes place in a fuzzy environment where the information available is imprecise 
or uncertain. For fuzzy decision problems of prioritizing or evaluating a finite set of 
alternatives involving multiple criteria, the application of fuzzy set theory to multicri-
teria analysis models under the framework of utility theory has proven to be an effec-
tive approach [2, 11, 17, 19]. In fuzzy TOPSIS, attribute values are represented by 
fuzzy numbers. 

In this paper, we further extended the concept of TOPSIS to develop a methodol-
ogy for solving multi-person multi-criteria decision-making problems in fuzzy envi-
ronment. In order to develop the fuzzy TOPSIS method, the paper is organized as 
follows. Next section introduces the basic definitions and notations of the fuzzy num-
ber and linguistic variable. Section 3 presents the proposed fuzzy TOPSIS method in 
group decision making and the choice process. And then, the proposed method is 
illustrated with an example. Finally, some conclusions are pointed out in the end of 
this paper. 

2   Preliminary 

In the following, we briefly review some basic definitions of fuzzy sets from [1, 7, 
14]. These basic definitions and notations below will be used throughout the paper 
until otherwise stated.  

Definition 1. A real fuzzy number A is described as a fuzzy subset of the real line R 

with membership function Af  which possesses the following properties [6]: 

1. Af  is a continuous mapping from R to the closed interval [0,1]. 

2. )(xf A =0, for all ax ≤ . 

3. Af  is strictly decreasing on [a, b]. 

4. Af =1, for all cxb ≤≤ . 

5. Af  is strictly decreasing on [c, d]. 

6. )(xf A =0, for all dx ≥ . 

Where a, b, c, and d are real numbers. It may be −∞=a , ba = , or cb = , or 

dc = , or +∞=d .  

The membership function Af  of the fuzzy number A can also be expressed as 

[15]: 

≤≤
≤≤
≤≤

=

otherwise
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A triangle fuzzy number A can be defined by a triplet ),,( cba shown in Fig. 1. For 

this fuzzy number, 
L

Af is left membership function and is equal to )()( abax −−  and 
R

Af  is right membership function and is equal to )()( cbcx −− . 

 

Fig. 1. A triangular fuzzy number 

Definition 2. The -cut of fuzzy number A  is defined as [10]: 

( ){ } 10,, ≤≤∈≥= αα RxaxfxA A (2) 

αA is a non-empty bounded closed interval contained in R and it can be denoted by 

[ ]ααα
ul AAA ,= , where α

lA and α
uA  are the lower and upper bounds of the closed 

interval, respectively [1, 11]. For triangle fuzzy number A , -cut can be expressed as: 

[ ] [ ]c)cb(,a)ab(A,AA ul +α−+α−== ααα
 (3) 

If A is a fuzzy number and 0>αA for 10 ≤≤ α , then A is called a positive fuzzy 
number [12, 13]. 

Given any two positive fuzzy numbers A and B subset of the +R , the -cut of 

them are [ ]ααα
ul AAA ,=  and [ ]ααα

ul BBB ,= . By interval arithmetic, some main 

operations of A and B can be expressed as following [1]: 

( ) [ ]ααααα ++=+ uull BA,BAB)(A
 

(4) 

( ) [ ]ααααα −−=− uull BA,BAB)(A
 

(5) 

( ) [ ]ααααα =× uull BA,BAB)(A
 

(6) 

( ) [ ]ααααα ÷÷=÷ luul BA,BAB)(A
 

(7) 

b c
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( ) [ ] +ααα ∈=× Rr,rA,rAr)(A ul 
(8) 

( ) [ ] +∈=× RrrArArA ul ,,)( ααα

 
(9) 

( ) [ ]ααα
lu AAA ÷÷=−

1,1
1

 
(10) 

Definition 4. According to the Lee and Li [8], mean and standard deviation of the 
triangular fuzzy number ),,( cbaA = are defined as: 

( )cbaA ++= 2
4

1μ (11) 

( )acbcabcbaA 244343
80

1 222 −−−++=σ )12( 

3   Proposed Method 

This method is very suitable for solving the group decision-making problem under 
fuzzy environment. In this paper, the importance weights of various criteria and the 
score of qualitative criteria are considered as linguistic variables. 

At whole, an algorithm of the multi-person multicriteria decision making with 
fuzzy set approach is given in the following: 

Step 1-  Identifying the evaluation criteria and the appropriate linguistic variables for 
the importance weight of the criteria and the linguistic score for alternatives 
with respect to criteria. 

Step 2-  Constructing the normalized fuzzy decision matrix (NFDM). 
Step 3-  Constructing the weighted mean normalized fuzzy decision matrix  

(WMNFDM). 
Step 4-  Determining the mean, standard deviation, coefficient variation, and ranking 

of each alternative.  

3.1   Identifying the Evaluation Criteria and the Appropriate Linguistic 
Variables 

Assume that a committee of k  decision makers ),...,,( 21 kDDD  is responsible for 

evaluating m  alternatives ),...,,( 21 mAAA  under n  criteria ),...,,( 21 nCCC . Criteria 

are classified into benefit (B) and cost (C).  
Let ( );,, t

ij
t
ij

t
ij

t
ij cbax = ;,...,2,1; miRxt

ij =∈ + ;,...,2,1 nj = kt ,...,2,1= , is a triangu-

lar fuzzy number and the score assigned to alternative iA  by decision maker tD  for 

criterion jC . In addition, let ( );,, t
j

t
j

t
j

t
j gfew =  ;+∈ Rwt

j
 ;,...,2,1 nj =  
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kt ,...,2,1=  is a triangular fuzzy number and the weight assigned to criterion jC by 

decision maker tD . 

3.2   Constructing the NFDM  

According to before step, the importance of the criteria and the rating of alternatives 
with respect to each criterion can be calculated as [20]:  

( ) ( ) ( ) ( )[ ] kackbbkaaxxx
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ij
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To ensure compatibility between averaged scores and averaged weights, they must 
normalize into a comparable scale. Then the normalization formula used in classical 
TOPSIS, was used. Therefore, we can obtain the normalized fuzzy decision matrix 

denoted by U
~

[20]. 
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According to the normalization method mentioned above, the ranges of normalized 
triangular fuzzy numbers belong to [0, 1]. 

3.3  Constructing the WMNFDM 

According to the following equation, we can construct the weighted mean normalized 
fuzzy decision matrix. 

( ) ( ) ( ) ( )×××=×=
===

c
j

n

j

c
ij

b
j

n

j

b
ij

a
j

n

j

a
ijij wuwuwuvWUV
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,,;
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3.4   Ranking  

In order to choose a best alternative, we need a method for building a crisp total or-
dering from fuzzy numbers. Many methods for ranking of fuzzy numbers have been 
suggested. Each method appears to have some advantages as well as disadvantages 
 



 Combination of Fuzzy TOPSIS and Fuzzy Ranking 265 

 

[18]. We can compare them on the basis of the standard deviation or mean value. 
From the concept of statistics, the standard deviation and mean value cannot be the 
sole basis for comparing two fuzzy numbers, respectively. Furthermore, according to 
Lee and Li [3], higher mean value and at the same time lower spread is ranked higher. 
However, when higher mean value and at the same time higher spread/or lower mean 
value and at the same time lower spread, it is not easy to compare the orderings 
clearly. Therefore, we propose an efficient index [3] that is, using the coefficient of 
variation. It is defined as 

( ) ( ) 0,0;/tan >≠= σμμσ MeanDeviationdardSCV (17) 

For calculation of Standard deviation and mean value, Lee and Li method is used  
(Eq. 10, 11). 

4   An Illustrative Example 

In this section, an example of [7] has been solved. According to the fuzzy TOPSIS 
steps, we have: 

Step 1- In this example, we have three decision makers, three alternatives, and five 
criteria. Assume that decision maker use the linguistic score set S = {VL, L, ML, M, 
MH, H, VH}, where VL = very low = (0, 0, 0.1), L = low = (0, 0.1, 0.3), ML = me-
dium low = (0.1, 0.3, 0.5), M = medium = (0.3, 0.5, 0.7), MH = medium high = (0.5, 
0.7, 0.9), H = high = (0.7, 0.9, 1), VH = very high = (0.9, 1, 1) to evaluate the suitabil-
ity of each alternative under each of the criteria. Also assume that the decision makers 
employ a linguistic weighting set W = {VP, P, MP, F, MG, G, VG}, where VP = very 
poor = (0, 0, 1), P = poor = (0, 1, 3), MP = medium poor = (1, 3, 5), F = (3, 5, 7), MG 
= medium good = (5, 7, 9), G = good = (7, 9, 10), VG = very good = (9, 10, 10) to 
assess the importance of all the criteria. 

Step 2- Table 1 and 2, represent The importance weight of the criteria and The ratings 
of the three candidates by decision makers under all Criteria, respectively. By Eq. 
(13), the averaged suitability rating of each alternative iA  with respect to criterion 

jC from the decision making committee can be obtained, as shown in Table 1. By Eq. 

(14), the averaged weights of the criteria 
jC from the decision making committee can 

be obtained, as shown in Table 2.  

Table 1. The importance weight of the criteria  

Decision Maker 
Criteria 

D1 D2 D3 
Average Weights 

C1
+ H VH MH (0.7, 0.87, 0.97) 

C2
- VH VH VH (0.9, 1, 1) 

C3
+ VH H H (0.77, 0.93, 1) 

C4
- VH VH VH (0.9, 1, 1) 

C5
+ MH MH MH (0.5, 0.7, 0.9) 
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Table 2. The ratings of the three candidates by decision makers under all criteria 

Decision Maker 
Criteria Candidates 

D1 D2 D3 
Average Weights 

A1 MG G MG (5.67, 7.67, 9.33) 

A2 G G MG (6.33, 8.33, 9.67) C1
+ 

A3 VG G F (6.33, 8, 9) 

A1 G MG F (5, 7, 8.67) 

A2 VG VG VG (9, 10, 10) C2
- 

A3 MG G VG (7, 8.67, 9.67) 

A1 F G G (5.67, 7.67, 9) 

A2 VG VG G (8.33, 9.67, 10) C3
+ 

A3 G MG VG (7, 8.67, 9.67) 

A1 VG G VG (8.33, 9.67, 10) 

A2 VG VG VG (9, 10, 10) C4
- 

A3 G VG MG (7, 8.67, 9.67) 

A1 F F F (3, 5, 7) 

A2 VG MG G (7, 8.67, 9.67) C5
+ 

A3 G G MG (6.33, 8.33, 9.67) 

Step 3- According to the Eq. (15), weighted normalized fuzzy matrix is as Table 3. 

Table 3. The weighted normalized fuzzy decision matrix 

 C1
+ C2

- C3
+ C4

- C5
+ 

A1 (0.20, 0.32, 0.51) (0.32, 0.39, 0.48) (0.20, 0.29, 0.43) (0.19, 0.26, 0.36) (0.11, 0.23, 0.43) 
A2 (0.23, 0.35, 0.53) (0.18, 0.27, 0.41) 0.29, 0.37, 0.48) (0.17, 0.25, 0.36) (0.27, 0.39, 0.59) 
A3 (0.23, 0.33, 0.49) (0.25, 0.32, 0.43) (0.24, 0.33, 0.48) (0.24, 0.29, 0.37) (0.24, 0.38, 0.59) 

Step 4- According to the Eq. (16), the weighted mean normalized fuzzy decision ma-
trix is as Table 4. Afterwards, by Eq. (11, 12, 17), final ranking is as Table 4.  

Table 4. The weighted mean, mean value, standard deviation, and coefficient variation 

 WMNEM Mean Standard Deviation CV RANK 

A1 (0.81, 1.36, 2.14) 1.42 0.04 0.0317 2 
A2 (0.82, 1.44, 2.29) 1.50 0.05 0.0361 3 
A3 (0.90, 1.48, 2.27) 1.53 0.05 0.0307 1 

5   Conclusion 

In this paper, a linguistic decision process is proposed to solve the multi person 
multi criteria decision-making problem under fuzzy environment. Considering the 
fuzziness in the decision data and group decision-making process, linguistic vari-
ables are used to assess the weights of all criteria and the ratings of each alternative 
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with respect to each criterion. In this paper, at first, we converted the decision ma-
trix into a fuzzy decision matrix. Then according to the concept of fuzzy TOPSIS, a 
normalized fuzzy decision matrix was constructed. In the next step, a weighted 
mean normalized fuzzy decision matrix was made. Finally, for alternatives ranking, 
we calculate mean value, standard deviation, and the coefficient of variation. The 
best alternative has the lowest coefficient of variation.  
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Abstract. This paper is concerned with the issue of design and analysis
of fuzzy decision systems, basing on recorded process data. A concept of
fuzzy flow graphs is proposed to allow representation of decision tables
with fuzzy attributes. Basic notions of the crisp flow graph approach
are generalized. Satisfaction of flow graph properties, with respect to
fuzzy connectives used in calculations, is taken into account. Alternative
definitions of the path’s certainty and strength are introduced. In an
illustrative example a decision table with fuzzy attributes is analyzed
and interpreted in terms of flow graphs.

1 Introduction

An appropriate utilization of recorded process data and decision examples, for
creating a set of relevant fuzzy decision rules, is an important problem in ap-
plications of fuzzy inference systems [3,9]. The used data can be conveniently
represented in the form of a decision table with fuzzy attributes. It might be
advantageous to carry out an analysis of this kind of decision table, by applying
the fuzzy rough set model [4].

A hybrid approach to decision algorithms, proposed by Pawlak [5,6,7], com-
bines the idea of flow graphs with the crisp rough set model. Greco, Pawlak and
S�lowiński [1] proved that relaxation of mutual exclusion of decision rules does
not violate basic properties of flow graphs, and every decision algorithm can be
associated with a flow graph.

The main goal of this paper consists in developing a fuzzy flow graph approach,
which is suitable for representing and analyzing fuzzy decision systems. First of
all, we want to address crucial issues of the generalized flow graph approach,
concerning especially its connection to fuzzy inference systems. We concentrate
on the aspect of representing and selecting fuzzy decision rules with the help of
flow graphs. The problem of a correct choice of fuzzy connectives is considered
with the aim to retain the flow conservation equations. Furthermore, we give new
definitions of the path’s certainty and strength, by respecting only the relevant
part of the flow, i.e by disregarding the flow components which come from other
paths.
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2 Decision Tables with Fuzzy Attributes

In further discussion, we apply fuzzy decision tables in the form introduced in [4].
We consider a finite universe U with N elements: U = {x1, x2, . . . , xN}. Every
element x of the universe U will be described with the help of fuzzy attributes,
which are divided into a subset of n condition attributes C = {c1, c2, . . . , cn},
and a subset of m decision attributes D = {d1, d2, . . . , dm}.

We assign a set of linguistic values to every fuzzy attribute. Let us denote by
Vi = {Vi1, Vi2, . . . , Vini} the family of linguistic values of the condition attribute
ci, and by Wj = {Wj1,Wj2, . . . ,Wjmj} the family of linguistic values of the
decision attribute dj , where ni and mj is the number of the linguistic values of
the i-th condition and the j-th decision attribute, respectively, i = 1, 2, . . . , n
and j = 1, 2, . . . ,m.

For any element x ∈ U , its membership degrees in all linguistic values of the
condition attribute ci (or decision attribute dj) should be determined. This is
accomplished during the fuzzification stage, basing on the recorded crisp value
of a particular attribute of x. The value of an attribute for a given element x is
a fuzzy set on the domain of all linguistic values of that attribute.

We denote by Vi(x) the fuzzy value of the condition attribute ci for any x, as
a fuzzy set on the domain of the linguistic values of ci

Vi(x) = {μVi1(x)/Vi1, μVi2(x)/Vi2, . . . , μVini
(x)/Vini} . (1)

Wj(x) denotes the fuzzy value of the decision attribute dj for any x, as a fuzzy
set on the domain of the linguistic values of dj

Wj(x) = {μWj1 (x)/Wj1, μWj2 (x)/Wj2, . . . , μWjmj
(x)/Wjmj} . (2)

If the linguistic values of an attribute have the form of singletons or disjoint
intervals, with membership degree equal to 1 on the original domain of the
attribute, then only one linguistic value can be assigned to that attribute. In
that case we get a classical crisp decision table. In general, we obtain a non-zero
membership of x to more than one linguistic value of an attribute.

Table 1. Decision table with fuzzy attributes

c1 c2 · · · cn d1 d2 · · · dm

x1 V1(x1) V2(x1) · · · Vn(x1) W1(x1) W2(x1) · · · Wm(x1)
x2 V1(x2) V2(x2) · · · Vn(x2) W1(x2) W2(x2) · · · Wm(x2)

· · ·
xN V1(xN) V2(xN) · · · Vn(xN) W1(xN) W2(xN) · · · Wm(xN)

Furthermore, we assume that for any element x ∈ U , all linguistic values Vi(x)
and Wj(x) (i = 1, 2, . . . , n , j = 1, 2, . . .m) satisfy the requirments

power(Vi(x)) =
ni∑

k=1

μVik
(x) = 1 , power(Wj(x)) =

mj∑
k=1

μWjk
(x) = 1 . (3)
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This assumption allows us to generalize the flow graph approach and use it for
analysis of fuzzy information system.

Decision tables with fuzzy values of attributes will be applied for examining
all possible decision rules generated by using the Cartesian product of sets of
the linguistic values.

Let us denote by Rk the k-th decision rule from the set consisting of r possible
decision rules (r =

∏n
i=1 ni

∏m
j=1mj)

Rk: IF c1 is V k
1 AND c2 is V k

2 . . . AND cn is V k
n

THEN d1 is W k
1 AND d2 is W k

2 . . . AND dm is W k
m

(4)

where k = 1, 2, . . . , r , V k
i ∈ Vi , i = 1, 2, . . .n , W k

j ∈Wj , j = 1, 2, . . . ,m.
When we use the fuzzy Cartesian products Ck = V k

1 × V k
2 . . . × V k

n and
Dk = W k

1 ×W k
2 . . .×W k

m , the k-th decision rule can be written in the form of
a fuzzy implication Ck → Dk.

We need to select a subset of those decision rules which are relevant to the con-
sidered decision process. To this end, we determine to what degree any element
x ∈ U , corresponding to a single row of the decision table, confirms particular
decision rules. We should calculate the truth value of the decision rule’s an-
tecedent and the truth value of the decision rule’s consequent, by determining
the conjunction of the respective membership degrees of x in the linguistic values
of attributes.

In the case of a decision table with crisp attributes, a decision rule is con-
firmed for some x, if the result of conjunction is equal to 1, both for the rule’s
premise and the rule’s conclusion. Otherwise, the element x does not confirm
the considered decision rule. The set of those elements x ∈ U , which confirm a
decision rule, is called the support of the decision rule.

In order to determine the confirmation degree of fuzzy decision rules, in the
case of decision tables with fuzzy attributes, we need to apply a T-norm operator.
By cd(x, k), we denote the confirmation degree of the k-th decision rule by the
element x ∈ U

cd(x, k) = T(cda(x, k), cdc(x, k)) , (5)

where cda(x, k) denotes the confirmation degree of the decision rule’s antecedent

cda(x, k) = T(μV k
1

(x), μV k
2

(x), . . . , μV k
n
(x)) , (6)

and cdc(x, k) the confirmation degree of the decision rule’s consequent

cdc(x, k) = T(μW k
1
(x), μW k

2
(x), . . . , μW k

m
(x)) . (7)

By determining the confirmation degrees (6), (7) and (5), we get the following
fuzzy sets on the domain U :
the support of the decision rule’s antecedent

support(cda(x, k)) = {cda(x1, k)/x1, cda(x2, k)/x2, . . . , cda(xN , k)/xN} , (8)
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the support of the decision rule’s consequent

support(cdc(x, k)) = {cdc(x1, k)/x1, cdc(x2, k)/x2, . . . , cda(xN , k)/xN} , (9)

and the support of the decision rule Rk, respectively

support(Rk) = {cd(x1, k)/x1, cd(x2, k)/x2, . . . , cd(xN , k)/xN} . (10)

The introduced notions will be used in the next section to define strength,
certainty, and coverage factors of a decision rule.

3 Flow Graphs

The idea of using flow graphs in the framework of rough sets, for discovering
the statistical properties of crisp decision algorithms, was proposed by Pawlak
[5,6,7]. We want to utilize and extend this concept with the aim of applying flow
graphs to analysis of fuzzy information systems. First, we recall basic notions of
the crisp flow graph approach.

A flow graph is given in the form of directed acyclic final graph G = (N ,B, ϕ),
where N is a set of nodes, B ⊆ N ×N , is a set of directed branches, ϕ: B → R+

is a flow function with values in the set of non-negative reals R+.
For any (X,Y ) ∈ B, X is an input of Y and Y is an output of X . The quantity

ϕ(X,Y ) is called the throughflow from X to Y .
I(X) and O(X) denote an input and an output of X , respectively. The input

I(G) and output O(G) of a graph G are defined by

I(G) = {X ∈ N : I(X) = ∅} , O(G) = {X ∈ N : O(X) = ∅} . (11)

Every node X ∈ N of a flow graph G is characterized by its inflow

ϕ+(X) =
∑

Y ∈I(X)

ϕ(Y,X) , (12)

and by its outflow
ϕ−(X) =

∑
Y ∈O(X)

ϕ(X,Y ) . (13)

For any internal node X , the equality ϕ+(X) = ϕ−(X) = ϕ(X) is satisfied. The
quantity ϕ(X) is called the flow of the node X .

The flow for the whole graph G is defined by

ϕ(G) =
∑

x∈I(G)

ϕ−(X) =
∑

x∈O(G)

ϕ+(X) . (14)

By using the flow ϕ(G), the normalized troughflow σ(X,Y ) and the normal-
ized flow σ(X) are determined as follows

σ(X,Y ) =
ϕ(X,Y )
ϕ(G)

, σ(X) =
ϕ(X)
ϕ(G)

. (15)
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For every branch of a flow graph G the certainty factor is defined by

cer(X,Y ) =
σ(X,Y )
σ(X)

. (16)

The coverage factor for every branch of a flow graph G is defined by

cov(X,Y ) =
σ(X,Y )
σ(Y )

. (17)

The certainty and coverage factors satisfy the following properties∑
Y ∈O(X)

cer(X,Y ) = 1 ,
∑

X∈I(Y )

cov(X,Y ) = 1 . (18)

The measures (16) and (17) are useful for analysis of decision algorithms [2].
Let us now consider the possibility of applying flow graphs in the case of

fuzzy decision algorithms. Any decision table with fuzzy attributes can be con-
veniently expressed as a flow graph. We can assume, without losing the generality
of consideration, that only one decision attribute will be used. Each attribute
is represented by a layer of nodes. The nodes of the input and hidden layers
correspond to linguistic values of the condition attributes, whereas the output
layer nodes correspond to linguistic values of the decision attribute.

Let us denote by X̃ a fuzzy set on the universe U , which describes membership
degree of particular elements x ∈ U in the linguistic value represented by X . The
membership degrees of all x in the set X̃ can be found in a respective column of
the considered decision table.

The flow ϕ(X,Y ) for the branch (X,Y ) is equal to power (fuzzy cardinality) of
the product of fuzzy sets X̃ and Ỹ . However, the T-norm operator prod should
be used for determining the product of sets, in order to satisfy the following
equation for the input and internal layer nodes

ϕ−(X) = power(X̃) =
∑

Y ∈O(X)

ϕ(X,Y ) =
∑

Y ∈O(X)

power(X̃ ∩ Ỹ ) . (19)

An analogous equation can be given for the output and internal layer nodes

ϕ+(X) = power(X̃) =
∑

Y ∈I(X)

ϕ(Y,X) =
∑

Y ∈I(X)

power(X̃ ∩ Ỹ ) . (20)

Similarly, the equality ϕ+(X) = ϕ−(X) = ϕ(X) is satisfied for any internal
node X , when the T-norm operator prod is used. The above equations do not
hold in general, if we use another T-norm operator, e.g. min. This is because
the total normalized inflow (outflow) of each layer does depend on the form
of T-norm operator used in calculations. In order to satisfy (19) and (20), the
total normalized inflow (outflow) of a layer should be equal to 1. By applying
the property (3), we can show that this is fulfilled, when we choose the T-norm
operator prod.
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In the special case of crisp decision tables, the formulae (19) and (20) become
equivalent to (12) and (13).

The input and hidden layers of the flow graph can be merged into a single
layer, which contains nodes representing all possible combinations of linguistic
values of the condition attributes. Let us denote by X∗ a node of the resulting
layer. The node X∗ corresponds to antecedent of a certain decision rule Rk.
Support of the antecedent of the decision rule Rk is determined by using (8).

The decision rule Rk is represented by a branch (X∗,Y ), where Y denotes a
node of the output layer.

Power of the support of the rule Rk, defined by (10), is equal to the flow
between the nodes X∗ and Y

ϕ(X∗, Y ) = power(support(Rk)) . (21)

By using the formulae (8), (9) and (10), we can determine, for every deci-
sion rule Rk, the certainty factor cer(X∗, Y ), coverage factor cov(X∗, Y ), and
strength of the rule σ(X∗, Y )

cer(X∗, Y ) = cer(Rk) =
power(support(Rk))

power(support(cda(x, k)))
, (22)

cov(X∗, Y ) = cov(Rk) =
power(support(Rk))

power(support(cdc(x, k)))
, (23)

σ(X∗, Y ) = strength(Rk) =
power(support(Rk))

card(U)
. (24)

Every decision rule can be represented by a sequence of nodes [X1 . . .Xn], i.e.
by a path from the 1-th to the n-th layer of the flow graph G. For a given path
[X1 . . .Xn], the resulting certainty and strength can be defined. In contrast to
the definitions presented in [5,6,7], in which the statistical properties of flow are
taken into account, we introduce an alternative form of the path’s certainty and
strength

cer[X1 . . .Xn] =
n−1∏
i=1

cer(X1 . . .Xi, Xi+1) , (25)

σ[X1 . . .Xn] = σ(X1) cer[X1 . . .Xn] , (26)

where

cer(X1 . . .Xi, Xi+1) =
power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i+1)
power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i)

. (27)

With the help of equation (25), we can determine what part of the flow of
the starting node X1 reaches the final node Xn, passing through all nodes of the
path [X1 . . .Xn].
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4 Example

We consider a decision table with fuzzy attributes (Table 2). There are two
condition attributes A and B, and one decision attribute D. All attributes have
three linguistic values. We use the same labels for both the linguistic values of
the attributes and the corresponding nodes of the flow graph. As we stated in
previous section, we use the T-norm operator prod in our calculations.

Table 2. Decision table with fuzzy attributes

A B D

A1 A2 A3 B1 B2 B3 D1 D2 D3

x1 0.2 0.8 0.0 0.0 0.9 0.1 0.0 0.9 0.1
x2 0.9 0.1 0.0 1.0 0.0 0.0 0.0 0.1 0.9
x3 0.0 0.2 0.8 0.0 0.1 0.9 0.9 0.1 0.0
x4 0.2 0.8 0.0 0.0 0.8 0.2 0.0 1.0 0.0
x5 0.0 0.8 0.2 0.9 0.1 0.0 0.0 0.1 0.9
x6 0.9 0.1 0.0 0.0 0.2 0.8 1.0 0.0 0.0
x7 0.1 0.9 0.0 0.0 0.9 0.1 0.1 0.9 0.0
x8 0.0 0.1 0.9 0.8 0.2 0.0 0.0 0.0 1.0
x9 0.0 0.1 0.9 0.0 0.1 0.9 0.9 0.1 0.0
x10 0.1 0.9 0.0 0.2 0.8 0.0 0.0 1.0 0.0

The values of normalized flow, for nodes representing condition attributes, are
given in Table 3. We can easy check that the flow conservation equations (19)
and (20) are satisfied, for example,

σ−(A1) =
power(Ã1)
card(U)

=
3∑

i=1

σ(A1, Bi) = 0.240 ,

σ+(B1) =
power(B̃1)
card(U)

=
3∑

i=1

σ(Ai, B1) = 0.290 .

In the next step, we merge the layers corresponding to condition attributes
into a resulting layer, which represents all possible linguistic values in the an-
tecedences of decision rules. We determine the degrees of satisfaction of the rules’
antecedences for particular elements x ∈ U . For the antecedence represented by
A1B1, we get:

Ã1B1 = Ã1 ∩ B̃1 = { 0.00/x1, 0.90/x2, 0.00/x3, 0.00/x4, 0.00/x5, 0.00/x6,
0.00/x7, 0.00/x8, 0.00/x9, 0.02/x10},

ϕ(A1, B1) = power(Ã1B1) = 0.92, σ(A1, B1) = ϕ(A1,B1)
cardU = 0.092.
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Table 3. Normalized flow between nodes of condition attributes’ layers

σ(Ai, Bj)

B1 B2 B3 Σ

A1 0.092 0.069 0.079 0.240
A2 0.108 0.304 0.068 0.480
A3 0.090 0.037 0.153 0.280
Σ 0.290 0.410 0.300 1.000

Table 4. Normalized flow between resulting and output layer

σ(AiBj , Dk)

D1 D2 D3 Σ

A1B1 0.0000 0.0110 0.0810 0.0920
A1B2 0.0189 0.0483 0.0018 0.0690
A1B3 0.0721 0.0067 0.0002 0.0790
A2B1 0.0000 0.0262 0.0818 0.1080
A2B2 0.0128 0.2748 0.0164 0.3040
A2B3 0.0332 0.0340 0.0008 0.0680
A3B1 0.0000 0.0018 0.0882 0.0900
A3B2 0.0153 0.0019 0.0198 0.0370
A3B3 0.1377 0.0153 0.0000 0.1530

Σ 0.2900 0.4200 0.2900 1.0000

Table 5. Certainty factor for branches between resulting and output layer

cer(AiBj , Dk)

D1 D2 D3 Σ

A1B1 0.0000 0.1196 0.8804 1.00
A1B2 0.2740 0.7000 0.0260 1.00
A1B3 0.9127 0.0848 0.0025 1.00
A2B1 0.0000 0.2426 0.7574 1.00
A2B2 0.0421 0.9039 0.0539 1.00
A2B3 0.4882 0.5000 0.0118 1.00
A3B1 0.0000 0.0200 0.9800 1.00
A3B2 0.4140 0.0510 0.5350 1.00
A3B3 0.9000 0.1000 0.0000 1.00

The results of calculation of normalized flow between nodes of the resulting
layer and nodes of the output layer are given in Table 4. The values of normalized
outflow σ−(AiBj), i, j ∈ {1, 2, 3}, (column

∑
in Table 4) are equal to the

respective values of normalized troughflow σ(Ai, Bj), given in Table 3, e.g.,
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Table 6. Coverage factor for branches between resulting and output layer

cov(AiBj , Dk)

D1 D2 D3

A1B1 0.0000 0.0262 0.2793
A1B2 0.0652 0.1150 0.0062
A1B3 0.2486 0.0159 0.0007
A2B1 0.0000 0.0624 0.2821
A2B2 0.0441 0.6543 0.0566
A2B3 0.1145 0.0810 0.0028
A3B1 0.0000 0.0043 0.3040
A3B2 0.0528 0.0045 0.0683
A3B3 0.4748 0.0364 0.0000

Σ 1.0000 1.0000 1.0000

Table 7. Decision rules with the largest value of certainty factor

decision rule certainty coverage strength [%]

A1B1 → D3 0.8804 0.2793 8.10
A1B2 → D2 0.7000 0.1150 4.83
A1B3 → D1 0.9127 0.2486 7.21
A2B1 → D3 0.7574 0.2821 8.18
A2B2 → D2 0.9039 0.6543 27.48
A3B1 → D3 0.9800 0.3040 8.82
A3B3 → D1 0.9000 0.4748 13.77

σ−(A1B1) = σ(A1, B1) =
3∑

j=1

σ(A1B1, Dj) = 0.0920 .

Thus, the flow conservation equations are satisfied. This is due to applying the
T-norm operator prod.

For branches connecting the resulting and output layers, the certainty and
coverage factors are determined according to (16) and (17). The results are
given in Tables 5 and 6. They correspond to certainty and coverage factors of the
decision rules AiBj → Dk, i, j, k ∈ {1, 2, 3}, expressed by the formulae (22) and
(23). For example, cer(A1B1, D3) = 0.8804 means that 88.04% of outflow from
the node A1B1 reaches the decision node D3, cov(A1B1, D3) = 0.2793 means
that 27.93% of inflow to the decision node D3 comes from the node A1B1.

Another important measure is the strength of decision rule expressed by (24).
For example, the strength of the rule A1B1 → D3 is equal to 8.1%. We can
say that the troughflow (A1B1, D3) constitutes 8.1% of the total flow of the
considered graph.
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Fuzzy decision rules with the largest values of certainty factor (Table 7) can
be included in the final fuzzy inference system. The respective values of coverage
factor are useful for explaining these decision rules.

5 Conclusions

The proposed approach to fuzzy flow graphs is suitable for representing and
analyzing decision tables with fuzzy attributes. Every layer of a flow graph cor-
responds to a particular attribute, and all nodes of a layer correspond to linguis-
tic values of the attribute. For calculating the flow between nodes, the T-norm
operator prod was chosen in order to satisfy the flow conservation equations.
New definitions of the path’s certainty and strength were given with the aim to
correctly determine the change of the original flow along the paths. Future work
should consider the problem of generating optimal flow graphs, by taking into
account the properties of crisp or fuzzy decision tables (e.g. significance of at-
tributes). This can be done by applying the methods of the rough sets theory. In
particular, the variable precision fuzzy rough sets model seems to be a promising
tool for reduction of fuzzy flow graphs.
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Abstract. Modern and effective methods of knowledge extraction from
databases and information systems are required to provide rather lin-
guistic than numerical information. The so-called linguistic summaries
of databases by Yager [1], exemplified by Many children like sweet ice
cream, and further improvements by George and Srikanth [2] and by
Kacprzyk and Yager [3], are discussed in this paper. The use of type-2
fuzzy sets is an original contribution to the domain, since only ordinary
fuzzy sets have been originally employed. Elements of type-2 semantics
are shown to handle effectively pieces of imprecise information (e.g. fuzzy
sets) stored in databases. An application on sample data is provided.

1 Type-2 Fuzzy Sets

The type-1 fuzzy sets, i.e. the Zadeh sets, are 40 years old [4]. Thanks to their
semantics it is possible to create models of uncertain pieces of knowledge and
information, like big car, heavy ship, etc. The so-called full, partial, or none
belongingness of an element to a fuzzy set A in a universe of discourse X is
determined via a membership function μA(x):X → [0, 1] (in the example below,
X is discreet). (

x1, x2, . . . , xn

μ(x1), μ(x2), . . . , μ(xn)

)
(1)

Type-2 fuzzy sets were mentioned, at first, by Zadeh, too. Not many works
have appear since there, e.g. [5,6,7], until Karnik and Mendel presented the
results of their research on theory and applications [8,9,10]. The crucial extension
of Zadeh’s idea is that type-2 membership levels are fuzzy sets themselves, in
contrary to traditional membership levels which are crisp numbers. Let F(Y ) be
the set of all fuzzy sets over the universe Y . A type-2 fuzzy set Ã is a collection of
ordered pairs < x, μ̃(x, u) >, where x ∈ X and u ∈ [0, 1] – a primary membership
level for x. Hence, μ̃:X → F([0, 1]):⎛⎝ x1 x2 · · · xn(

u1(x1) · · · un(x1)
μx1(u1) · · · μx1(un)

) (
u1(x2) · · · un(x2)
μx2(u1) · · · μx2(un)

)
· · ·

(
u1(xn) · · · un(xn)
μxn(u1) · · · μxn(un)

)⎞⎠
(2)

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 278–287, 2006.
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where uj(xi) ∈ Jx is a primary and μxi(uj) is a secondary membership, and
Jx ⊆ [0, 1] – the set of primary membership degrees of x ∈ X . Secondary mem-
bership levels may be viewed as weights or as possibility levels, cf. [9]. A mem-
bership function for a type-2 fuzzy set can be treated as a fuzzy-valued function
[11]. Naturally, each type-1 set is a special case of a type-2 set.

Karnik and Mendel in [8,10] under the assumption that different words can
mean different things to different people propose to increase the number of de-
grees of freedom in fuzzy logic systems. The very analogous situation from the
field of the probability theory using higher-than-first-order moments is recalled
in [8]:

To just use the first-order moments [of probability density function

(pdf)] would not be very useful, because random uncertainty requires
understanding of dispersion about the mean and this information is pro-
vided by the variance. So, our accepted probabilistic modelling of ran-
dom uncertainty focuses on (...) methods, that use at least the first two
moments of a pdf.1

It must be emphasised, that the quotation is not the interpretation of fuzzi-
ness by means of probability, but only and simply the analogy which is for sure
familiar to the reader. The conclusion given by the authors of [8] is that, although
it is impossible to use an infinite number of degrees of freedom in both proba-
bilistic and fuzzy manners of handling uncertainty, the introduction of at least
one additional degree of freedom to fuzzy logic systems may provide a measure
of dispersion for totally certain type-1 membership functions.

Various applications have been introduced [12,13,14] and useful comments and
remarks on operations on fuzzy sets of type-2 [15] and on groups of fuzzy sets
of type-2 (as Interval Type-2 Fuzzy Sets) have been given [16]. Also some works
of de Korvin et al. concern rules in type-2 fuzzy logic systems [17]. Cardinality
concepts for type-2 fuzzy sets are presented in [11].

2 Linguistic Summarization of Databases

A linguistic summary of a database D = {d1, d2, · · · , dm} is a semi-natural lan-
guage sentence: Q P are/have S [T ], where Q is a quantity in agreement, ex-
pressed with the so-called linguistic quantifier represented by a fuzzy set [18],
e.g. more than half, about 100; P is a subject of the summary, the set of objects
the data of which are stored in the summarized base, e.g. cars, workers; S is
a summarizer – a property of objects expressed with a fuzzy set, e.g. big car,
young worker; T is a degree of truth of a summary, a real number from [0, 1]. T
is computed via

T = μQ

(∑m
i=1 μS(di)
M

)
(3)

1 [8], p.1.
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where μS(di) is a membership level of the di record to S. In addition, m is a
number of records in the base, and M = m if Q is a relative fuzzy quantifier, cf.
[18], or M = 1, if Q is absolute.

The presented in [2] improvement of the method for linguistic summarization,
allows to generate summaries with composite summarizers: Q P are/have S1
and S2 and ... and Sn (e.g. few cars are cheap and well-equipped), where the and
connective is modelled by the minimum operation:

μS(di) = minj=1,..,n μSj (di) (4)

and the method for computing the T index is analogous to (3).
The method presented in (4) can influence, however, on the high compu-

tational cost of a summary, especially when m and n are large numbers. The
algorithm which helps to reduce this cost is presented by Kacprzyk and Yager [3]
and Kacprzyk, Yager and Zadrożny [19], and is based on a preselected feature,
the so-called query, denoted as wg, g = 1, ..., n. The task of this method is to
summarize these records only, which manifest wg at a non-zero grade. The μS

function is given as

μS(di) = minj=1,2,...,n

{
μSj (di) t μwg (di)

}
, i = 1, 2, ...,m (5)

and T is computed as

T = μQ

( ∑m′

i=1μS(di)∑m′
i=1 μwg (di)

)
(6)

Since the denominator in (6) is a cardinality of the wg fuzzy set, Q must be
relative, cf. [3]. Additionally, it must be explained, that it is necessary to preselect
a database D′ ⊆ D consisting of those records di only for which μwg (di) > 0, and
|D′| = m′; otherwise, the computation via (5) and (6) would be more, instead of
less, costly.

3 Type-2 Fuzzy Sets in Summarization

3.1 Type-2 Linguistic Variables

The concept of linguistic variable was introduced by Zadeh in 1975 [20]. An L
linguistic variable is defined as an ordered quintuple < L, H , X , G, M >. H , or
H(L), is a set of linguistic values of L – these values are modelled by fuzzy sets
in X generated according to G (syntactic) and M (semantic) rules.

The main reason for extending the idea of linguistic variable is that ordinary
fuzzy sets describe imprecise information with crisp numbers, which may be seen
contradictory. Moreover, in many situations membership degrees are described
by people with words again, instead of crisp numbers. Hence, the type-2-fuzzy-
set-based extension of linguistic variable is defined:

Definition 1. A type-2 linguistic variable is an ordered quintuple < L, H, X ,
G, M >, where:
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L is the name of the variable,
H or H(L) is the term-set of linguistic values of L,
X is the universe of discourse,
G is a syntactic rule which generates the terms (labels) in L,
M is a semantic rule which associates a term from L with a type-2 fuzzy set
in X .

The definition is a generalization of the Zadeh definition, since a type-2 set is
a generalization of a type-1 set. In particular, in linguistic summarization, at least
three possibilities of employing type-2 linguistic variable may be enumerated: 1)
as a summarizer, 2) as a linguistic quantifier (in this case X ⊆ R+ ∪ {0}), and
3) as a query wg. The idea of 1) and 2) cases has already been introduced in
[21], nevertheless, this paper additionally provides technical details and a real
application.

The model of the and connective for two or more labels associated to a type-2
fuzzy set each, can be found via the meet operation on their their membership
functions, which produces the intersection for type-2 fuzzy sets [15]:

μÃ∩B̃(x) = μÃ(x) � μB̃(x) =
∫
uÃ

∫
uB̃

μÃ(x, uÃ) t1 μB̃(x, uB̃)
uÃ t2 uB̃

(7)

where uÃ, uB̃ are primary membership degrees for x in Ã, B̃, respectively, and
t1, t2 – t-norms (in a discreet X , integrals can be replaced by summations). The
result is interpreted as Ã and B̃, e.g. intelligent and good-looking.

Similarly, the union is defined by means of the join of membership functions
of type-2; it is denoted by μÃ(x, uÃ) � μB̃(x, uB̃), x ∈ X and expressed as

μÃ∪B̃(x) = μÃ(x, uÃ) � μB̃(x, uB̃) =
∫
uÃ

∫
uB̃

μÃ(x, uÃ) t1 μB̃(x, uB̃)
uÃ s uB̃

(8)

The complement of Ã is denoted by Ãc and defined as

μÃc(x) =
∫
uÃ

μÃ(x, uÃ)
1− uÃ

(9)

Equations (7), (8), and (9) are valid also for type-1 fuzzy sets, since they are
special cases of type-2 fuzzy sets. In that case, formula (8) is rewritten as

μA∪B(x) =
∫
X

1
uA s uB

(10)

and (7), (9) – analogously, because the primary membership levels uA and uB

are single numbers which describe grades of belonging of x to the ordinary fuzzy
sets A and B, respectively, and therefore the secondary membership levels are
replaced by unities in both sets. The forms of intersection, union, and comple-
ment for fuzzy sets of type-1, at the same time as the analogous operations for
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interval-valued fuzzy sets are obtained as special cases of formulae (8)–(9). The
operations are applied as models for the or, and and not connectives respec-
tively, in representing linguistic information.

If only common operations on type-1 and type-2 summarizers are needed, we
propose to express an ordinary fuzzy set A as a type-2 fuzzy set Ã in which all
secondary degrees equal 1:

A =
∫

x∈X

μA(x)
x

−→ Ã =
∫

x∈X

∫
u∈Jx

1
x, u(x)

(11)

where μA(x) = u(x).

3.2 Type-1 Fuzzy Quantification of Type-2 Fuzzy Propositions

The canonical forms of linguistically quantified propositions are presented by
Zadeh in [18]. Let us extend the first and the second canonical forms with the
use of type-2 fuzzy sets as a representation of imprecise linguistic expressions:

Q objects are S̃1 (12)

and
Q objects being S̃2 are S̃1 (13)

where S̃1 and S̃2 are the labels associated with type-2 fuzzy sets in a crisp
universe of discourse X , and Q is a linguistic quantifier represented by a type-
1 fuzzy set. Degrees of truth of propositions (12) and (13) are real numbers
computed as

T
(
Q objects are S̃1

)
= μQ

(
card(S̃1)
M

)
(14)

where card(S̃1) is a real number – the result of (17), M = card(X ) if Q is
relative, or M = 1 if Q is absolute, and

T
(
Q objects being S̃2 are S̃1

)
= μQ

(
card(S̃1 ∩ S̃2)

card(S̃2)

)
(15)

where the S̃1 ∩ S̃2 intersection is computed via (7). Similarly to the propositions
represented by type-1 fuzzy sets, only relative quantification is possible in (13),
and S̃2 can be interpreted as the importance.

Finally, it must be noticed that quantified propositions (14) and (15) are
reduced to the forms proposed by Zadeh, if S̃1 and S̃2 are type-1 fuzzy sets.

3.3 Type-2 Summarizers and Their Cardinalities

Some basic ideas and implementations of extended summarization methods have
already been given by the authors [21,22,23,24]. The quoted publications con-
cern, however, mostly interval-valued fuzzy sets [5,6,7] with interval-valued car-
dinalities and compatibility levels. The approach presented in this paper is a bit
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different from those earlier attempts, since it concerns type-2 fuzzy sets in gen-
eral, and, even if an interval-valued fuzzy set may be seen as an interval type-2
fuzzy set, its cardinality and membership values are considered as reals.

When a type-2 summarizer is used, the algorithm for computing the T in-
dex must be enriched with a cardinality of a type-2 fuzzy set (which represents
a summarizer). Jang and Ralescu point to at least two possible forms of car-
dinalities of type-2 fuzzy sets: a fuzzy set or a crisp number [11]. The former
variant requires much more complicated computations, therefore, the latter is
chosen, since the ordinary fuzzy quantifiers are employed in summarization. In
particular, we use non-fuzzy sigma count, which produces the cardinality of a
type-2 fuzzy set Ã as a real number. This approach assumes that values of a
type-2 membership function are fuzzy numbers with membership functions in
the form of:

μÃ(xi, ui) =

⎧⎨⎩1, xi ∈ [ri, si] �= ∅
Li(ui), xi < ri
Ri(ui), xi > si

(16)

where [ri, si] are closed intervals, Li are continuous and monotonically non-
decrea-sing functions, and Ri are continuous and monotonically non-increasing
functions. Non-fuzzy sigma count of Ã (nfσ-count(Ã)), where values of member-
ship function of Ã are given by (16) is considered as:

card(Ã) = nfσ-count(Ã) =
∑
x∈X

max{u ∈ Jx:μÃ(x, u) = 1} (17)

In particular, the max operation can be omitted, if ri = si in (16). In case of a
summarizer composed of two or more type-2 fuzzy sets, see (4), (5) and (7), the
meet operation on their membership functions, μÃ and μB̃, must be performed:

μÃ∩B̃(x) = μÃ(x) � μB̃(x) (18)

Let μx,Ã, μx,B̃ be the secondary membership functions of Ã, B̃, respectively,
and θÃ, θB̃ are primary memberships such a μx,Ã(θÃ) = μx,B̃(θB̃) = 1. Thus, sec-
ondary membership of the intersection Ã and B̃ for given primary membership
grades:

μÃ∩B̃(x, θ) =

⎧⎨⎩
max {μÃ(x, θ), μB̃(x, θ)} θ < θÃ
μÃ(x, θ) θÃ ≤ θ ≤ θB̃
min {μÃ(x, θ), μB̃(x, θ)} θ > θÃ

(19)

The cardinality of the intersection can be computed via replacing Ã with Ã∩ B̃
in (16)–(18).

3.4 Degrees of Truth for Type-2 Summaries

We compute the degree of truth of a summary with a type-2 fuzzy summarizer
S̃ as:

T
(
Q P are/have S̃

)
= μQ

(
nfσ-count(S̃)

M

)
(20)
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where S̃ is a single or a composite summarizer, and M = 1 if Q is an absolute
quantifier, or M = m, if Q is relative; cf. [1,18].

If a type-2 summary with a w̃g query is to be obtained, its degree of truth is

T
(
Q P being/having w̃g are/have S̃

)
= μQ

(
nfσ-count(S̃ ∩ w̃g)

nfσ-count(w̃g)

)
(21)

which is valid for relative quantifiers only. Similarly to the summaries presented
in [3,19], the second canonical form is to be a template for more sophisticated
summaries, which additionally can be obtained at a lower computational cost,
see Section 2.

4 Implementation: Summarizing Fuzzy Values

The database used in the experiment consists of 200 records which describe re-
views of articles submitted to the scientific conference AWIC 2005. 6 attributes in
the database, i.e. relevance, originality, significance; usefulness, tech-
nical soundness, reference to the related literature, and presenta-
tion are evaluated with linguistic values bad, weak, fair, good, excellent,
and each of them is related to a fuzzy set in [0, 1], e.g.

μbad(x) =
{
−10x+ 1, if x ∈ [0, 0.1]

0, otherwise (22)

The reason for modelling of scores via fuzzy sets, instead of crisp numbers (e.g.
bad=0, good=0.8, etc.), is that the necessity of handling rather wide range
of experts’ intuitions on linguistic descriptions of quality of papers is usually
observed. According to Mendel’s explanation, that different words mean different
things for different people [8,10], type-2 fuzzy sets provide much more flexible
and ”safe” notation of expressing the scores which are being given in rather
subjective circumstances.

The degree of truth of the summary for a chosen S̃ (e.g. fair significance
or excellent relevance and originality) and with w̃g = ∅ is computed:

1. For each di ∈ D compute the (fuzzy) value of μS̃(di) summarizer S̃

S̃ =
(

d1 d2 . . . dm

μS̃(d1) μS̃(d2) . . . μS̃(dm)

)
(23)

2. Determine Q and compute the degree of truth for ”Q P are S̃” via (20).

The membership of a record to the type-2 fuzzy set is a type-1 fuzzy set – the
intersection of a value of a chosen attribute (fuzzy number) of the record and of
the fuzzy set appearing as a value of summarizer’s membership function, i.e.

μS̃(di) = VC(di) ∩N (24)
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where VC(di) is value of the VC attribute for di, and N ∈ { bad, weak, fair,
good, excellent}. The sample results are:

about half of papers are of the excellent relevance [0.81]
about half of papers are of the good originality [0.99]
few of papers are of the weak presentation [0.93]
about half of papers are of the excellent usefulness [0.97]

If w̃g appears in the summary to be generated, the computation proceeds:

1. Determine D′ ⊆ D which collects only those records di for which μw̃g
(di) �= ∅

2. For each di ∈ D′ compute μS̃(di) � μw̃g
(di) via (7).

3. Compute T for a chosen relative quantifier Q via (21).

The sample results obtained this way are:

almost none of papers having fair relevance are of bad originality [1.0]
about half of papers having good technical soundness have weak

references [0.87]

It must be said that the results would be impossible to obtain via the Yager
summarization methods. Since it enables handling mostly crisp values, the fuzzy
data on the papers, e.g. originality, technical soundness, etc., would have to be
converted to crisp values, defuzzified, for instance, and the loss of naturalness
in such processed experts (reviewers) opinions would be observed. Thus, the
type-2 fuzzy sets applied to represent objects’ features in linguistic summariza-
tion, provide more flexible, more general, and more human consistent manner of
describing uncertain data.

5 Conclusions and Future Work

The chosen aspects of applying type-2 fuzzy sets to linguistic summarization
of databases which contain fuzzy values, have been presented. In particular,
the linguistic variable by Zadeh has been redefined based on type-2 fuzzy sets.
Thanks to the used semantics, summarizing imprecise and subjective linguistic
opinions is possible at the reasonable computational cost.

Another possibility is to represent linguistic quantifiers as type-2 fuzzy sets.
The canonical forms (12) and (13) should be extended to

Q̃ objects are S̃1 (25)

and
Q̃ objects being S̃2 are S̃1 (26)

where Q̃ is represented by a type-2 fuzzy set in [0, 1]. Next, the use of type-2
(instead of type-1) membership functions of Q̃ will cause that the degrees of truth
of these propositions are expressed by fuzzy numbers, instead of crisp, compare
(14) and (15). Moreover, definitions of convex and normal type-2 fuzzy sets,
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should be introduced, to provide a generalization which includes type-1 fuzzy
quantification as a special case. Naturally, these future formulae must generalize
(12) and (13).

The type-2-fuzzy-set-based extensions of other quality measures and applying
these sets as fuzzy quantifiers are currently being developed by the authors.
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a.pokropinska@ajd.czest.pl
http://www.imi.ajd.czest.pl

2 Department of Computer Engineering, Czȩstochowa University of Technology
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Abstract. The paper concerns designing relational neuro-fuzzy systems
as a multicriteria optimization problem. Relational neuro-fuzzy systems
have additional relation making rules to have more flexible form. A
method for designing neuro-fuzzy systems by using information crite-
ria and criteria isolines is used to find the optimal relational system for
a given problem.

1 Introduction

There are many diferrent neuro-fuzzy systems [1][4][5][6][8][9][10][11][16]. Most of
them are based on intelligible fuzzy rules. These fuzzy rules are obtained through
expert knowledge, some heuristic methods or by learning from numerical data,
using so called data-driven learning as in neuro-fuzzy systems. The structure of
neuro-fuzzy systems is similar to a neural network but elements constituting the
structure reflect fuzzy sets and operations performed on fuzzy sets like t-norms
or t-conorms. Thanks to this, the system can be presented in a graphical form
and it can be learned by a gradient algorithm. A learning algorithm can be used
to approximate any n-dimensional function [16]. And yet the structure consists
of fuzzy rules which are easy to extract unlike in the case of neural networks.
In traditional fuzzy systems the input-output mapping is defined by the relation
built from fuzzy rules and input and output fuzzy sets. Usually, output fuzzy
sets are singleton sets in neuro-fuzzy systems. One kind of fuzzy systems are
relational fuzzy systems [3][8][14], where there is an additional relation binding
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input and output fuzzy sets. In this case we obtain fuzzy rules with additional
weights that can be regarded as a kind of rule weights. In relational neuro-fuzzy
systems [12][13] there is a possibility to train the system by the backpropaga-
tion algorithm. This kind of fuzzy systems has more flexible fuzzy rules which
improves fitting the system for data. That is possible thanks to more adjustable
parameters. Because the systems have more parameters it is very important to
keep a good trade-off between the size of the system and its performance. In
machine learning it is important to check after learning the performance of the
system on testing and validating data set. Good results on a learning set do
not guarantee satisfactory performance on testing or unseen before data. This
ability to generalize data can be provided by maintaining suitable number of
parameters in the learning system.

In the paper we propose the use information criteria [7] to evaluate the quality
of relational neuro-fuzzy systems. We also use so called criteria isolines as a basis
for system designing. The paper is organized as follows. In Section 2 relational
fuzzy systems are described, and in Section 3 the idea of using information
criteria for system evaluation is presented. Finally, in Section 4, we evaluate the
system for function approximation for various numbers of parameters.

2 Fuzzy Relational Systems

Fuzzy relational systems can be perceived as extended Mamdani-type systems. In
such systems fuzzy rules are more flexible because of the form of the consequents.
Fuzzy rules in a MISO relational model have the following form

Rk : IF x1 is Ak
1 , . . . , xn is Ak

n, THEN
y is B1 (rk1) , y is Bm (rkm) , . . .
. . . , y is BL (rkL) ,

(1)

where Ak
i is an antecedent (input) fuzzy set of the k-th rule and the i-th input,

Bm is a consequent (output) fuzzy set and rkm is a weight, responsible for the
strength of connection between input and output fuzzy sets. Relational fuzzy
systems store associations between the input and the output linguistic values,
represented by sets A and B defined further in the text, in the form of a discrete
fuzzy relation

R (A,B) ∈ [0, 1] . (2)

In case of a multi-input multi-output system (MIMO), the relation R is a matrix
containing degree of connection for every possible combination of input and
output fuzzy sets. If we would consider a fuzzy system with multidimensional
input linguistic values, where input fuzzy sets are common for all classes, we
would have only one set A of fuzzy linguistic values

A =
{
A1, A2, ..., AK

}
. (3)

Thus the relational matrix R is only two-dimensional. Output variable y has a
set of L linguistic values Bm with membership functions μBm (y), form = 1, ..., L

B =
{
B1, B2, ..., BL

}
. (4)
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Sets A and B are related to each other with a certain degree by the K×L binary
relation matrix

Rc =

⎡⎢⎢⎢⎣
r11 r11 · · · r1M

r21 r22 · · · r2M

...
... rkm

...
rK1 rK2 · · · rKL

⎤⎥⎥⎥⎦ . (5)

For simplicity we use a system where sets Ak are replaced by t-norm of n input
fuzzy sets Ak

i

μAk = τk =
n∏

i=1

μAk
i
(xi) . (6)

Having given vector Ā of K membership values μAk (x̄) for a crisp observed
feature values x̄, vector B̄ of L crisp memberships μm is obtained through a
fuzzy relational composition

B̄ = Ā ◦R , (7)

implemented element-wise by a generalized form of sup-min composition [1], i.e.
s-t composition

μmc =
K

S
k=1

[T (μAk (x̄) , rkm)] . (8)

The crisp output of the relational system is computed by the weighted mean

ȳ =
∑L

m=1

{
ȳm SK

k=1 [T (μAk (x̄) , rkm)]
}∑L

m=1 SK
k=1 [T (μAk (x̄) , rkm)]

, (9)

where ȳm is a centre of gravity (centroid) of the output fuzzy setBm. The system
is depicted in Figure 1. Antecedent fuzzy sets with t-norms (see (6)) are replaced
in the figure with multidimensional fuzzy sets for clarity. Antecedent fuzzy sets
have Gaussian membership function

μGauss(x) = exp

(
−
(
x− x̄
σ

)2
)
, (10)

where x̄ is responsible for its centre and σ responsible for its width. Using alge-
braic product T-norm and the arithmetic mean (the boundary case of the OWA
operator [18][19]) as t-conorm in s-t composition, the output of the relational
system becomes

ȳ =

∑M
m=1

{
ȳm 1

K

∑K
k=1 {μAk (x̄) · rkm}

}
∑L

m=1

{
1
K

∑K
k=1 {μAk (x̄) · rkm}

} , (11)

and reducing K, we obtain

ȳ =

∑L
m=1

{
ȳm

∑K
k=1 {μAk (x̄) · rkm}

}
∑L

m=1
∑K

k=1 {μAk (x̄) · rkm}
, (12)
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and

ȳ =
∑M

m=1
∑K

k=1 {ȳm · μAk (x̄) · rkm}∑L
m=1

∑K
k=1 {μAk (x̄) · rkm}

. (13)

This special case of OWA operators would further simplify the neuro-fuzzy re-
lational system.

Fig. 1. Neuro-fuzzy relational system. Antecedent fuzzy sets (linguistic terms) with

t-norms (see (6)) are replaced in the figure with multidimensional fuzzy sets for clarity.

3 Evaluating Relational System Quality

In case of regression tasks the most important factor is error Q. The most com-
monly used error measure is the root mean square error

RMSE =

√√√√ 1
M

M∑
l=1

(dl − yl)2 , (14)

where M is the size of the learning set, dl id the output value from the learning
set and yl is the system output. In case of classification the quality measure
is the number of misclassified patterns. The evaluation of relational neuro-fuzzy
systems will be made using some error measure against the number of adjustable
parameters, which ”store” the knowledge. The number of parameters in case of
relational neuro-fuzzy systems can be computed as follows

p = 2nK +KL+ L . (15)
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Increasing the number of parameters improves learning error but after some
treshold the testing error gets higher. We have problem of searching for the
optimal set utilizing two criteria p and Q. This leads to determining the whole set
of optimal neuro-fuzzy systems. To evaluate the quality of neuro-fuzzy systems
we use information criteria. The Akaike Information Criterion (AIC) is defined
as follows

AIC(p) =M ln Q̂f
p + 2p , (16)

where Q̂f
p is an estimation of average square error of prediction, M is the size

of the considered problem and p is the estimated order of autoregression. Final
Prediction Error is defined by

FPE(p) =
M + p
M − pQ̂

f
p . (17)

The Schwarz criterion is defined as follows

S(p) =M ln Q̂f
p + p lnM . (18)

The Södeström and Stoica criterion is defined as follows

H(p) =M ln Q̂f
p + 2pc log (logM) , (19)

where c is assumed 1. Seeing an analogy between autoregression and neuro-
fuzzy systems we can treat p, M and Qf

p as the number of parameters, the
size of the problem and average error. The size of the problem was assumed
as product of the learning dataset size and number of input variables. We use
values of the information criteria to graph criteria isolines, where coordinate p
is the number of the learning system parameters and coordinate Q is the testing
RMSE error. Isolines show different values of criteria. Thanks to this it is easy
to find an optimal relational neuro-fuzzy system. The next section shows the
application of the information criteria to relational neuro-fuzzy selection for a
given approximation problem.

4 Numerical Simulations

4.1 Nonlinear Dynamic Plant Problem (NDP)

We consider the second-order nonlinear plant from [17]

y (k) = g (y (k − 1) , y (k − 2) + u (k)) , (20)

g (y (k − 1) , y (k − 2)) =
y (k − 1) y (k − 2) (y (k − 1)− 0.5)

1 + y2 (k − 1) + y2 (k − 2)
, (21)

and the goal is to approximate nonlinear component g (y (k − 1) , y (k − 2)) of
the plant with a neuro-fuzzy relational model. In [17], 400 simulated data were
generated from the plant model (2). Starting from the equilibrium state (0,0),
200 samples of identification data were obtained with a random input signal u(k)
uniformly distributed in [−1.5, 1.5], followed by 200 samples of evaluation data
obtained using a sinusoidal input signal u (k) = sin (2πk/25).
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4.2 Nonlinear Function Aproximation Problem

Numerical simulations were carried out on a double-input and a single-output
static system

y =
(
1 + x−2

1 + x−1,5
2

)2
, 1 � x1, x2 � 5 , (22)

taken from [15]. From the evenly distributed grid point of the input range
x, y ∈ [1, 5] of the preceding equation, 50 training data pairs were obtained.
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All parameters were tuned by the backpropagation algorithm. By choosing the
system with the smallest value of a criterion we obtain the system with the
highest quality. Approximately all criteria choose systems with similar number
of parameters.
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5 Conclusions

In the paper information criteria and criteria isolines are used to design rela-
tional neuro-fuzzy systems. Rules in such systems are more flexible because of
the additional weights in rule consequents. Because of the higher number of ad-
justable parameters it is beneficial to evaluate the systems against their size and
performance on testing error. The system design was made on two well-known
benchmarks.
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Abstract. Growing expectations for low priced software-intensive ap-
plications tailored to the individual customers needs require the usage of
techniques aimed at the individual development of application systems,
which could be attained at the costs of standard software and easily
adapted. In the paper the concepts associated with assembling the ap-
plications by means of software factories in conjunction with the fuzzy
description of the variable product parts are introduced. The approach
is demonstrated in the example of a part of an order process.

1 Introduction

In the software engineering industry reuse of the pieces of software has been
applied for several decades. Reuse of software components [18] in subsequent
versions of a product has been known and applied for a long time in the devel-
opment of one system at a time. The reuse of components in product versions
and various products is the goal in the software product family approach [11].
This kind of component reuse has succeeded in several domains and is at present
being addressed by the software product lines [1]. Software product line is a “set
of software-intensive systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way” [2]. Component
reuse in product versions, various products and different organizations and do-
mains, may also be addressed in the future. The contemporary developments in
this field are concepts of software factories designated for assembling software-
intensive applications with patterns [5], models, frameworks [7] and tools [3].

1.1 Software Factory

Software factory is a special case of a software product line: “A software factory
is a software product line that configures extensible tools, processes, and contents
using a software factory template based on a software factory schema to auto-
mate the development and maintenance of variants of an archetypical product

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 297–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Schema of a Software Factory [6]

by adapting, assembling, and configuring framework-based components” [6].The
software factory schemata (see Fig. 1) is a directed graph whose nodes are view-
points (perspectives) and whose edges are computable mappings between the
viewpoints. A viewpoint provides a pattern for describing the given aspect of a
software product [6]. Such a schema for e.g. a business application [4] will contain
the viewpoints for the subsystems like customer management, order management
or order fulfillment.

The paper addresses the problems associated with the capturing of the vari-
ability in variable assets for configuring the software factory schemata. One possi-
ble mechanism for product specification and implementation is the feature-based
configuration.

The feature is a logical unit of behavior specified by a set of functional and
non-functional requirements [1]. A feature may represent many requirements and
aggregate them from different points of view for scoping purposes in a software
product line. Feature modeling has been introduced [8] and then extended in
diverse methodologies [11].

In the paper the extension of the feature modeling in UML [16], [11] with ap-
plication of the fuzzy weights of some variable features is proposed. The approach
is demonstrated in an example of a part of an order process [4].
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1.2 Payment Alternatives in an Order Process

The example in this section is based on order processing, which is a part of the
Sales and Marketing Information System [9]. Generating and fulfilling an order
is a multistep process involving activities performed by sales, manufacturing and
production, and accounting functions. The accounting functions include activities
such as check credit, approve credit and generate invoice. Considering the diverse
possible payment kinds, a payment bears for the trader some risk associated with
a possible failure of a customer to make full payment. Therefore a part of an or-
der process example containing some variant features modeled with fuzzy weights
will be considered below. The optional sub-features of the Payment feature, i.e.,
Credit, Pay by Bill, Credit Card, and Pay on Delivery represent the different risk
levels, dependent on the customer paying for the ordered goods (see Fig. 2).

<<mandatory>>
Payment

<<alternative>>

Credit

{weight=R(CR)}

<<alternative>>

Pay_by_Bill

{weight=R(BL)}

<<alternative>>

Credit_card

{weight=R(CC)}

<<alternative>>

Pay_on_Delivery

{weight=R(PoD)}

{XOR}

Fig. 2. Part of the Order Process Feature Model with Fuzzy Payment Sub-features [11]

Regular Frequently New

(k)

k

[1/Ordering Frequency]

0,001 1,0

�

Fig. 3. The fuzzy representation of the clients
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Three types of clients have been distinguished for the fuzzy representation.
These will be described in the fuzzy representation by using the linguistic values,
such as the “new client”, “frequent client” and the “regular client” (see Fig. 3).

The belongingness of a client to a fuzzy set depends on a frequency of the
buying activities. The membership functions representing those three types of
clients are represented by the trapezoidal membership functions. For each of the
payment types the experts should define the shape of the membership function
for representing the applied fuzzy set. The risk associated with obtaining the
payments from the customers is dependent on the particular kind of payment.
For each of the payment kinds mentioned above, the fuzzy representation of the
risk associated with a possible failure has been applied. For the description of
the risk three fuzzy sets [19], i.e., Low (L), Medium (M) and High (H), have
been used (see Fig. 4).

Low (L) Medium (M) High (H)

(CR)

Risk
level

0,0 1,0

�

Fig. 4. The description of the risk

2 Inference in Risk Assessment System by Using Fuzzy
Features

Let us assume, that according to the above description and the diagram de-
picted graphically in Fig. 2 there are following payment possibilities: Credit
(CR), Pay by Bill (BL), Credit Card (CC), Pay on Delivery (PoD). The risk
associated with obtaining a payment from a customer will be given from the
following formula 1:

ri(py) = T (μA(py), μ(k)) (1)

Where: μA(py) stands for a membership function of a belongingness of the pay-
ment risk to the fuzzy set Ai(L,M,H);
T stands for the t− norm operator determining the intersection of the
set Ai describing the risk and the set defining the client’s status.

The number of the sets and a shape of the function defining the payment
risks in a particular form depend on the mutual arrangement of the sets defining
the risks for the particular payment form and the set describing the status of
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the client. The risk of the debt has been calculated for all payment kinds with
Mamdani-type min of the t− norm operator:

R(py) = min
j=CR,···,PoD

(Rj(py)) (2)

Where: Rj(py) denotes the risk for the jth kind of payment.

It takes the discrete values given by the following formula:

Rj(py) =
H∑

i=L

ri,j(py) · wi,j = R̃T
j (py)Wj (3)

Where: R̃T
j (py) = [rL,j , rM,j , rH,j ] stands for a vector with the discrete values

attained in the procedure sharpening the fuzzy answer for particular
fuzzy sets (L, M, H), which define the risk level for the chosen jth kind
of payment.
Wj stands for the vector containing the weights defined by an expert,

determining the influence of the particular risks features (L, M, H) on
the whole payment risks.

The inference in the risk assessment system for two clients and the different
kinds of payment is graphically depicted in Fig. 5. Assume the definitions of
the payment risk in the fuzzy representation, given for the different kinds of a
payment as shown in Fig. 5. The possible risks weights for the case of the payment
on credit have been graphically depicted. Moreover, let us assume, that the new
and regular client carries out the payment operation. The process of establishing
the risk level value for the particular kinds of a payment and different clients is
also graphically depicted in Fig. 5.

The process of obtaining the crisp values for the fuzzy answers of the system
will be accomplished for the particular payment forms and for the fuzzy sets (L,
M, H) describing the risks weights for the chosen kind of payment. The operation
of sharpening has been made by means of the well-known and often used Center
of Area (COA) method [19]. The final weighting of the discrete risks levels has
been determined with the aid of the following weight vector:

W =

⎡⎣0.2
0.5
0.8

⎤⎦ . (4)

2.1 Example of Risk Payment Calculation

Let the new client and Credit payment be used to explain the risk calculation
procedure. The risks for the particular payment forms and the whole risks for
the payment have been attained by using the formulas (1) - (3). The crisp value
of payment risk can be obtained using formula (1) and the COA defuzzification
method (Fig. 6). There are the following results of calculating using a different
fuzzy sets defining the kinds of payment: high=0.81, medium=0.66 and low=0.
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Fig. 5. Inference in Risk Assessment System for the New and Regular Client and

Different Kinds of Payment

Using formula (3) and weight vector (4) the Credit risk payment has been cal-
culated and it is 0.98. Finally, the risks results attained for the particular kinds
of payment for a new client are as follows: CR = 0.98, BL = 1.03, CC = 1.10,
PoD = 1.16. Therefore the most secure possibility for the trader is by the Credit
(CR). The highest risks for a new client are in the case of Payment on Delivery
(PoD). For a regular client (using data from the Fig. 3) we can obtain following
results: CR = 0.63, BL = 0.22, CC = 0.21, PoD = 0.18. Therefore the most
secure possibility for the trader is by the Pay on Delivery (PoD). The highest
risks for a regular client are in the case of Credit(CR).

In this section an example of the feature model of a part of the order process,
containing some variant features, which have been modeled with fuzzy weights,
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Fig. 6. Risk associated with chosen client and fuzzy set

has been given. The establishment of the risk level values for the particular
kind of payment is possible by using the sharpening methods, such as COA.
The achieved results of the inference may then be used for the choice of the
appropriate kind of payment according to the customer making the order.

3 Conclusion and Related Work

Development of software-intensive systems within a foreseen time and budget
has to deal with the factors affecting the quality of the system i.e. complexity
and change. Contemporary software systems are growing in size and complexity
and so the object-oriented approach, in practice with its reuse concepts alone is
not sufficient.

The critical innovations in the paradigm shift in the software engineering
embrace systematic reuse, development by assembly and the model driven de-
velopment. The promising solutions in this field are addressed by the so-called
software-factory concepts. Modeling variable assets with feature models can sup-
port configuring software factory schemata. The proposed extensions of the fea-
ture diagram, which are applied in the description of the system features, can be
helpful to satisfy the needs of the customers buying software-intensive products.

The further applications of the fuzzy weighted feature diagram have been
presented in [10], [12], [13], [14] and [15]. The implementation of the components
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containing the problem domain features should take into account the validation
of the component composition [17].

Future research will consider some modification to the representation of fuzzy
and crisp knowledge: the customization of the particular elements of the fuzzi-
fication system. These are the number of fuzzy sets, the shapes of the member
functions and their arrangement, and the appropriate choice of values for the
elements of weight vectors. Another open problem is the appropriate choice of
fuzzy weights (importance factors), which should be tuned for specific customer
profiles.
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Abstract. In the paper a boosting ensemble of neuro-fuzzy relational
systems is created. Rules in relational fuzzy systems are more flexible
than rules in linguistic fuzzy systems because of the additional weights
in rule consequents. The weights come from an additional binary rela-
tion. Thanks to this, input and output fuzzy sets are related to each
other with a certain degree. The size of the relations is determined by
the number of input fuzzy sets and the number of output fuzzy sets.
Simulations performed on popular benchmarks show that the proposed
ensemble outperforms other learning systems.

1 Introduction

Fuzzy and neuro-fuzzy systems abound in many variations [1][6][10][14][15][16].
Most of them are based on intelligible fuzzy rules. These fuzzy rules are ob-
tained through expert knowledge or some heuristic methods, but they lack the
ability to learn from data as neural networks. Neuro-fuzzy systems are a solu-
tion to the problem. They have the ability to learn from numerical data, using
so called data-driven learning. The structure of these systems looks like a neural
network but its units reflect fuzzy sets and operations performed on fuzzy sets
like t-norms or t-conorms. Thanks to this, it is easy to see the construction of
the fuzzy system and to learn the system by a gradient algorithm. A learning
algorithm can be used to approximate any n-dimensional function. And yet the
structure consists of fuzzy rules which are easy to extract unlike in the case
of neural networks. In traditional fuzzy systems the input-output mapping is
defined by the relation built from fuzzy rules and input and output fuzzy sets.
Usually, output fuzzy sets are singleton sets in neuro-fuzzy systems. Neuro-fuzzy
systems are used for various tasks, as they are able to approximate any function
[21]. In case of classification, a fuzzy system has to approximate discriminant
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Grant 2005-2008) and the Polish State Committee for Scientific Research (Grant Nr
T11C 04827).
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functions. Fuzzy classifiers [8][10][19] are developed as an alternative approach
to traditional classifiers [13].

One kind of fuzzy systems are relational fuzzy systems [2][12][19], where there
is a relation binding input and output fuzzy sets. In this case we obtain fuzzy
rules with additional weights that can be regarded as a kind of rule weights
[11]. In relational neuro-fuzzy systems [17][18] there is a possibility to train the
system by the backpropagation algorithm. This kind of fuzzy system has more
flexible fuzzy rules which improves fitting the system for data.

Neuro-fuzzy can be joined into ensembles which improves accuracy and ro-
bustness. One of the most popular methods for creating multiple learning sys-
tems is boosting, where input patterns obtain weights according to learning
system performance on a given input pattern. Then consecutive classifiers are
learned with the greatest impact from the learning samples with the highest
weight values. The most popular modification of boosting is the AdaBoost algo-
rithm [4][9][20], described in Section 3.

In the paper we propose a boosting ensemble of relational neuro-fuzzy systems.
The ensemble has the following advantages comparing to other fuzzy systems:

(i) The system allows learning all its parameters (relation matrix elements and
membership function parameters) by the backpropagation algorithm.

(ii) The system has very flexible, yet intelligible form of fuzzy rules.
(iii) The ensemble of such systems outperforms other fuzzy learning systems,

not sacrificing transparency (which happens when we introduce more ad-
justable parameters).

The paper is organized as follows. In Section 2 relational fuzzy systems are
described, and in Section 3 the AdaBoost algorithm is presented. Finally, we
test the multiple classifier system on popular benchmarks taken from [3].

2 Fuzzy Relational Systems for Classification

Fuzzy relational models can be regarded as a generalization of linguistic fuzzy
systems, where each rule has more than one linguistic value defined on the same
output variable, in its consequent. Fuzzy rules in a MISO relational model have
the following form

Rk : IF x1 is Ak
1 , . . . , xn is Ak

n, THEN
y is B1 (rk1) , y is Bm (rkm) , . . .
. . . , y is BM (rkM ) ,

(1)

where Ak
i is an antecedent (input) fuzzy set of k-th rule and i-th input, Bm is

a consequent (output) fuzzy set rkm is a weight, responsible for the strength of
connection between input and output fuzzy sets. Relational fuzzy systems store
associations between the input and the output linguistic values in the form of a
discrete fuzzy relation

R (A,B) ∈ [0, 1] . (2)
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In case of a multi-input multi-output system (MIMO), the relation R is a matrix
containing degree of connection for every possible combination of input and
output fuzzy sets. If we would consider a fuzzy system with multidimensional
input linguistic values, where input fuzzy sets are common for all classes. Thus,
we would have only one set A of fuzzy linguistic values

A =
{
A1, A2, ..., AK

}
, (3)

thus the relational matrix R is only two-dimensional. Output variable y has a set
of M linguistic values Bm with membership functions μBm (y), for m = 1, ...,M

B =
{
B1, B2, ..., BM

}
. (4)

Sets A and B are related to each other with a certain degree by the K ×M
binary relation matrix

Rc =

⎡⎢⎢⎢⎣
r11 r11 · · · r1M

r21 r22 · · · r2M

...
... rkm

...
rK1 rK2 · · · rKM

⎤⎥⎥⎥⎦ . (5)

For simplicity we use a system where sets Ak are replaced by t-norm of n input
fuzzy sets Ak

i

μAk = τk =
n∏

i=1

μAk
i
(xi) , (6)

In case of classification, x is a vector of features of an object ν, and Ω =
{ω1, ..., ωC} is a set of classes. The classifier knowledge is represented by a set
of K rules in the form

Rk : IF x1 is Ak
1 , . . . , xn is Ak

n, THEN
ν ∈ ω1(zk

1 ), ν ∈ ω2(zk
2 ), . . . , ν ∈ ωC(zk

C) , (7)

where zk
c , c = 1, ..., C, k = 1, ...,K, are interpreted as a ”support” for a class

ωc given by a rule Rk. Farther we redefine a description of the fuzzy relational
system using this idea. Let us introduce a vector z = [z1, ..., zC ], where zc, c =
1, ..., C, is the ”support” for a class ωc given by all C rules. We can scale the
support values to the interval [0, 1], so that zc is the membership degree of an
object ν to class ωc according to all K rules. Now a k-th rule in case of binary
classification has the form (1) and this form will be used to design our neuro-
fuzzy relational classifier.

Having given vector Ā of K membership values μAk (x̄) for a crisp observed
feature values x̄, vector B̄ of M crisp memberships μm is obtained through a
fuzzy relational composition

B̄ = Ā ◦R , (8)

implemented element-wise by a generalized form of sup-min composition [1], i.e.
s-t composition

μmc =
K

S
k=1

[T (μAk (x̄) , rkm)] . (9)
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The crisp output of the relational system is computed by the weighted mean

ȳ =
∑M

m=1

{
ȳm SK

k=1 [T (μAk (x̄) , rkm)]
}∑M

m=1 SK
k=1 [T (μAk (x̄) , rkm)]

, (10)

where ȳm is a centre of gravity (centroid) of the output fuzzy setBm. The system
is depicted in Figure 1.

Fig. 1. Neuro-fuzzy relational system used in the ensemble. The index t denoting hy-

pothesis number is omitted for simplicity. Antecedent fuzzy sets (linguistic terms) with

t-norms (see (6)) are replaced in the figure with multidimensional fuzzy sets for clarity.

3 AdaBoost Agorithm

In this section we describe the AdaBoost algorithm which is the most popular
boosting modification [4][9][20]. Let us denote the l-th learning vector by zl =
[xl

1, ..., x
l
n, y

l] , l = 1...m is the number of a vector, n is a size of input vector xl,
and yl is the learning class label. Weights, assigned to learning vectors, have to
fulfill the following conditions

(i) 0 < dl < 1 , (11)

(ii)
m∑

l=1

dl = 1 . (12)

The weight dl is the information how well classifiers learned in consecutive steps
of an algorithm for a given input vector xl. Vector d for all input vectors is
initialized according to the following equation

dl
t =

1
m
, for t = 0 (13)
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where t is the number of a boosting iteration (and a number of a classifier in
the ensemble). Let {ht(x) : t = 1, ..., T} denotes a set of hypotheses obtained in
consecutive steps t of the algorithm being described. For simplicity we limit our
problem to a binary classification (dichotomy), i.e. y = −1, 1 or ht(x) = ±1 .
Similarly to learning vectors weights, we assign a weight ct for every hypothesis,
such that

(i) 0 < ct , (14)

(ii)
∑

t

ct = 1 . (15)

Now in the AdaBoost algorithm we repeat steps 1-4 for t = 1, . . . , T :
1. Create hypothesis ht and train it with a data set with respect to a distribution
dt for input vectors.
2. Compute the classification error εt of a trained classifier ht according to the
formula

εt =
m∑

l=1

dl
t(z

l)I(ht(xl) �= yl) , (16)

where I is the indicator function

I(a �= b) =
{

1 if a �= b
0 if a = b . (17)

If εt = 0 or εt ≥ 0.5, stop the algorithm.
3. Compute the value

αt = log
0.5(1− εt)
εt(1− 0.5)

. (18)

4. Modify weights for learning vectors according to the formula

dt+1(zl) =
dt(zl) exp{−αtI(ht(xl) = yl)}

Nt
, (19)

where Nt is a constant such that
m∑

l=1

dt+1(zl) = 1 . (20)

To compute the overall output of the ensemble of classifiers trained by AdaBoost
algorithm the following formula is used

f(x) =
T∑

t=1

ctht(x) , (21)

where
ct =

αt∑T
t=1 |αt|

(22)

is classifier importance for a given training set. The AdaBoost algorithm is a
meta-learning algorithm and do not determine the way of learning for classifiers
in the ensemble.
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4 Numerical Simulations

Numerical simulations were carried out on two binary classfication benchmarks
from [3]. The ensembles were created from several relational neuro-fuzzy sys-
tems (Figure 1). The subsystems were trained by the backpropagation algorithm,
starting with random values of all parameters. The dataset were converted such
that class label y(x) = ±1, which is requirement in the boosting learning algo-
rithm used in the paper. Everytime the training was stopped when εt ≥ 0.5.

4.1 MONK-2 Problem

The three monks problems are artificial problems designed to test machine learn-
ing algorithms. Each of the three monks problems requires determining whether
an object described by six features (head shape, body shape, is smiling, holding,
jacket colour, has tie) is a monk or not. In the MONK-2 problem the learning
set has 169 cases and the testing set has 432 cases. The obtained classification
accuracy is 100% and Table 1 shows hypothesis parameters.

Table 1. Simulation results for MONK-2 problem

Classifier Antecedent Consequent ct

number fuzzy sets fuzzy sets coefficient

1 16 2 2.50
2 16 2 0.99
3 16 2 0.46
4 16 2 0.13

4.2 Pima Indians Diabetes Problem

The Pima Indians Diabetes (PID) data [3][14] contains two classes, eight at-
tributes (number of times pregnant, plasma glucose concentration in an oral glu-
cose tolerance test, diastolic blood pressure (mm Hg), triceps skin fold thickness
(mm), 2-hour serum insulin (mu U/ml), body mass index (weight in kg/(height
in m)2), diabetes pedigree function, age (years)). We consider 768 instances, 500
(65.1%) healthy and 268 (34.9%) diabetes cases. All patients were females at
least 21 years old of Pima Indian heritage, living near Phoenix, Arizona. In our
experiments, all sets are divided into a learning sequence (576 sets) and a testing
sequence (192 sets).

The relational neuro-fuzzy systems used in the experiment have 2 antecedent
fuzzy sets and 2 consequent fuzzy sets. In the PID case the training was stopped
after the fifth classifier has been trained, because during creating the second
classifier value of εt did not dropped below 0.5. The classification accuracy is
82.3%. Table 2 shows results of each classifier in the boosting ensemble.
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Table 2. Simulation results for Pima Indians Diabetes problem

Classifier Antecedent Consequent ct

number fuzzy sets fuzzy sets coefficient

1 2 2 0.616
2 2 2 0.308
3 2 2 0.058
4 2 2 0.012
5 2 2 0.015

5 Conclusions

In the paper, we presented a new fuzzy relational system as a part of a boosting
ensemble. In fuzzy classifiers we can use vague knowledge, and rules are intel-
ligible and easier to define than in purely data-driven classifiers. Rules in the
system are more flexible because of the additional weights in rule consequents.
The weights comes from binary relations R. The dimension of the relation is
determined by the number of input fuzzy sets and the number of output fuzzy
sets for a given class. To train the relational system we can set linguistic values
in advance and fine-tune only elements of the relation. In the paper we train all
the relational neuro-fuzzy systems constituting the ensemble by the backprop-
agation algorithm with random initial parameter values. The achieved results
for Pima Indians Problem are better than achieved so far in the literature [14]
and for MONK-2 problem the results are comparable to the best obtained in the
literature. The relational neuro-fuzzy systems can be highly transparent, despite
having very good performance and ability to fit to the data very accurately.
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Abstract. We propose a new solution to a multi-criteria decision mak-
ing problem by using similarity measures for intuitionistic fuzzy sets.
We show that the new solution is better than the method proposed in
[5] which fails in some situations.

1 Introduction

Intuitionistic fuzzy sets (Atanassov [1], [2]) can be viewed as a tool that may
better model and process imperfect information. They have found numerous
applications among which a notable example is multi-criteria decision making
under imperfectly defined facts and imprecise knowledge.

The idea of using positive and (independently) negative information that is
the core of intuitionistic fuzzy sets is natural in any real life human discourse
and action, and as an obvious consequence, is well-known and widely studied
in psychology and other social sciences [e.g., [8], [6]]. It has also attracted much
attention and reserach interest in soft computing. It would be difficult to deal
with machine learning (making use of examples and counter-examples), modeling
of preferences or voting without taking into account positive and (independently)
negative testimonies or opinions. Although from a mathematical point of view
intuitionistic fuzzy sets are equipollent to interval-valued fuzzy sets (as noticed
by Atanassov and Gargov in 1989 [3]), from the point of view of solving problems
(starting from the stage of collecting data), they are different as intuitionistic
fuzzy sets force a user to explicitly consider positive and negative information
independently. On the other hand, while employing interval-valued fuzzy sets,
a user’s attention is focused on positive information (in an interval) only. This
fact – that is strongly related to a psychological phenomenon called by the
Nobel Prize winner Kahneman (cf. Kahneman [6]) a “bounded rationality” (see
also [8]), caused among others by the fact that people tend to notice and take
into account only most obvious aspects (e.g. advantages only) – may be viewed
to places intuitionistic fuzzy sets among up-to-date and promising means of
knowledge representation and processing.

In this paper we will use intuitionistic fuzzy sets for a multi-criteria decision
making problem. More specifically, we have a set M of options fulfilling a set
of criteria C. We wish to rank the options satisfying: Cj , and Ck, . . . , and Cp

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 314–323, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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or Cs whereas each criterion is fulfilled to some extent μ and is not fulfiiled to
some extent ν (when 0< μ + ν< 1). The solution of this problem was proposed
by Chen and Tan [5] but it does not always give a proper answer as indicated
by Liu [7]. We show how to overcome these deficiencies by using some measures
of similarity between intuitionistic fuzzy sets.

2 Brief Introduction to Intuitionistic Fuzzy Sets

As opposed to a fuzzy set in X(Zadeh [21]), given by

A
′
= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, an intu-

itionistic fuzzy set (Atanassov [1], [2]) A is given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that 0<μA(x) + νA(x)<1
and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. For details on operations on, properties of,
etc. intuitionistic fuzzy sets, see Atanassov [1], [2].

Obviously, each fuzzy set may be represented by:

A = {< x, μA′ (x), 1 − μA′ (x) > |x ∈ X} (3)

For each intuitionistic fuzzy set in X , we call

πA(x) = 1− μA(x) − νA(x) (4)

an intuitionistic fuzzy index (or a hesitation margin) of x ∈ A and, it expresses
a lack of knowledge of whether x belongs to A or not (cf. Atanassov [2]).

Applications of intiutionistic fuzzy sets to group decisions, negotiations and
other situations are given in Szmidt and Kacprzyk [10], [11], [13], [15], [17].

2.1 A Geometrical Interpretation of Intuitionistic Fuzzy Sets

Having in mind that for each element x belonging to an intuitionistic fuzzy set
A, the values of membership, non-membership and the intuitionistic fuzzy index
add up to one, i.e.

μA(x) + νA(x) + πA(x) = 1

and that each: membership, non-membership, and the intuitionistic fuzzy index
are from the interval [0, 1], we can imagine a unit cube (Figure 1) inside which
there is ABD triangle where the above equations are fulfilled. In other words,
ABD triangle represents a surface where coordinates of any element belonging
to an intuitionistic fuzzy set can be represented. Each point belonging to ABD
triangle is described via three coordinates: (μ, ν, π). Points A and B represent
the crisp elements. Point A(1, 0, 0) represents elements fully belonging to an
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intuitionistic fuzzy set as μ = 1. Point B(0, 1, 0) represents elements fully not
belonging to an intuitionistic fuzzy set as ν = 1. Point D(0, 0, 1) represents
elements about which we are not able to say if they belong or not belong to an
intuitionistic fuzzy set (intuitionistic fuzzy index π = 1). Such an interpretation
is intuitively appealing and provides quite powerful and adequate means for the
representation of many aspects of imperfect information. Segment AB (where
π = 0) represents elements belonging to classical fuzzy sets (μ + ν = 1). Any
other combination of the values characterizing an intuitionistic fuzzy set can be
represented inside the triangle ABD. In other words, each element belonging to
an intuitionistic fuzzy set can be represented as a point (μ, ν, π) belonging to
the triangle ABD (cf. Figure 1).

It is worth mentioning that this geometrical representation is directly related
to the definition of an intuitionistic fuzzy set introduced by Atanassov [1], [2],
and it does not need any additional assumptions. More considerations on the ge-
ometrical representations of intuitionistic fuzzy sets can be found in [20] and [4].

D 0,0,1

C 0,0,0 A 1,0,0

B 0,1,0

x
'

X

Fig. 1. Geometrical representation

3 A Multicriteria Decision Making Problem

Basically, Chen and Tan’s approach [5] to be considered here can be outlined,
assuming a intuitionistic fuzzy perspective, as follow. M is a set of options and
C is a set of criteria

M = {M1,M2, ...,Mm}, C = {C1, C2, . . . , Cn}

where each option Mi is expressed via intuitionistic fuzzy description, namely

Mi = {(C1, μi1, νi1), (C2, μi2, νi2), . . . , (Cn, μin, νin)}, i = 1, 2, . . . ,m
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where μij indicates the degree to which option Mi satisfies criterion Cj , νij
indicates the degree to which option Mi does not satisfy criterion Cj .

Our goal is to point out the best option (to rank the considered options). The
options should satisfy the criteria Cj , Ck,. . . , and Cp or criterion Cs, i.e.:

(Cj and Ck and , . . . , and Cp) or Cs (5)

Chen and Tan’s [5] solution of the problem is as follows. First, they define an
evaluation function E to measure a degree to which optionMi satisfies and does
not satisfy the condition given by (5):

E(Mi) = ((μij , νij) ∧ (μik, νik)∧, . . . ,∧(μip, νip)) ∨ (μis, νis)
= (μMi , νMi) (6)

where ∧ and ∨ denote min and max, and

μMi = max(min(μij , μik, . . . , μip), μis)

νMi = min(max(νij , νik, . . . , νip), νis)

The score function S gives a degree of satisfaction (5) by option Mi

S(E(Mi)) = μMi − νMi (7)

where S(E(Mi)) ∈ [−1, 1]. Option Mi is the best one if S(E(Mi)) is the largest
value among the values {S(E(Mi))|i = 1, 2, . . . ,m}.

But as shown in [7], the proposed solution does not work properly in some
situations as outlined in the below example.

Example 1. M = {M1,M2,M3,M4,M5} and N = {N1, N2} are two sets of
options. C = {C1, C2, C3} – a set of criteria. The characteristics of option are
expressed via the following intuitionistic fuzzy description

M1 = {(C1, 0.2, 0.2), (C2, 0.3, 0.1), (C3, 0.2, 0.)}

M2 = {(C1, 0.3, 0.3), (C2, 0.2, 0.2), (C3, 0.3, 0.1)}

M3 = {(C1, 0.4, 0.4), (C2, 0.5, 0.4), (C3, 0.3, 0.2)}

M4 = {(C1, 0.5, 0.3), (C2, 0.4, 0.4), (C3, 0.5, 0.3)}

M5 = {(C1, 0.4, 0.4), (C2, 0.6, 0.3), (C3, 0.6, 0.4)}

and
N1 = {(C1, 0.3, 0.5), (C2, 0.2, 0.4), (C3, 0.2, 0.3)}

N2 = {(C1, 0.3, 0.6), (C2, 0.2, 0.4), (C3, 0.4, 0.6)}

and we assume that the following condition concerning the criteria is fulfilled
C1 and C2 or C3



318 E. Szmidt and J.Kacprzyk

From (6) we have:

E(M1) = (0.2, 0), E(M2) = (0.3, 0.1), E(M3) = (0.4, 0.2)

E(M4) = (0.5, 0.3), E(M5) = (0.6, 0.4)

E(N1) = (0.2, 0.3), E(N2) = (0.4, 0.6)

Finally, from(7) we obtain:

S(E(M1)) = S(E(M2)) = S(E(M3)) = S(E(M4)) = S(E(M5)) = 0.2

S(E(N1)) = −0.1, S(E(N2)) = −0.2

what means that it is not possible to single out the best options amongM1,M2,
M3, M4, M5, and that N1, is better than N2. But this conclusion is difficult to
accept.

In this article we propose another solution of the problem. Our approach differs
from the solution proposed in [5] in two decisive aspects:

1. We evaluate options comparing them to the positive-ideal solution and nega -
tive-ideal solution. The best considered option should be as close as possible
to the positive-ideal solution and as far as possible to the negative-ideal
solution. In our previous works (cf. e.g, [16]) we have shown that looking for
the solution (the best option) taking into account only positive-ideal solution
can be misleading.

2. We claim that the criterion (7) proposed in [5] is not enough while employing
intuitionistic fuzzy sets. The degree of satisfaction (7) takes into account the
membership values and non-membership values of the considered options
only. But from the point of view of a real decision making it is also impor-
tant if we have a complete information concerning an option (the hesitation
margin is equal to 0) or if there is a considerable lack of knowledge as far
as an option is concerned. When comparing the options taking into account
(7), we put a sign of equality, for instance between the following obviously
different options (μ, ν) because for all of them the criterion (7) gives the
same value that is equal to 0.4:
– (0.7, 0.3) with a lack of knowledge (concerning the membership and non
− membership) equal to 0, and

– (0.6, 0.2) with a lack of knowledge (concerning the membership and non
− membership) equal to 0.2, and

– (0.5, 0.1) with a lack of knowledge (concerning the membership and non
− membership) equal to 0.4, and

– (0.4, 0.0) with a lack of knowledge (concerning the membership and non
− membership) equal to 0.6.

As opposed to the results obtained from (7), it seems obvious that a deci-
sion maker would like to consider as quite different the above options, e.g.,
(0.7, 0.3) and (0.4, 0.0). In the first case we know that the option fulfils 70%
of desirable conditions and does not fulfil 30% of desirable conditions. In the
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second case we know that the option fulfils 40% of desirable conditions, but
we are not able to say anything about the remaining 60% of the considered
conditions.

In this article we propose an alternative solution of this problem (i.e. the one
considered in [5]) by using a measure of similarity for intuitionistic fuzzy sets
which overcomes the two drawbacks mentioned above hence helping attain more
adequate and intuitively appealing solutions.

4 A Similarity Measure for Intuitionistic Fuzzy Sets and
Its Use in Solving the Multi-criteria Decision Making
Problem

We remind here briefly the concept of a similarity measure for intuitionistic fuzzy
sets. The starting point is a geometrical interpretation of intuitionistic fuzzy sets
(Section 2.1, see also Szmidt and Baldwin [9], Szmidt and Kacprzyk [12],[14])
which implies that any combination of the parameters characteristic for elements
belonging to an intuitionistic fuzzy set can be represented inside triangle ABD
(Figure 2). In other words, a degree to which any considered criterion Ci is
fulfilled can be represented inside the ABD triangle.

In [16], [17] we proposed a general concept of a similarity measure for two
elements of an intuitionistic fuzzy set (or sets). Here we give a modified measure
of similarity that is meant for any criterionCi, and elementA (Figure 2). Element
A (μA = 1, νA = 0, and πA = 0) is our reference element representing the
positive-ideal solution, i.e., a criterion which is fully satisfied (μA = 1). The
proposed measure indicates if a criterion Ci is more similar to A (representing
the positive-ideal solution, i.e. a fully satisfied criterion) or to B (μB = 0, νB = 1,
and πB = 0) representing the negative-ideal solution, i.e. a fully dissatisfied
criterion. In other words, it may indicate if the criterion considered is more
satisfied or more dissatisfied (Figure 2).

Definition 1

Sim(Ci, A) =
lIFS(Ci, A)
lIFS(Ci, B)

(8)

where: lIFS(Ci, A) is a distance from Ci(μCi , νCi , πCi) to A(1, 0, 0),
lIFS(Ci, B) is the distance from Ci(μCi , νCi , πCi) to B(0, 1, 0).
The distances lIFS(Ci, A) and lIFS(Ci, B) are calculated from (9) and (10),
respectively [12], as:

lIFS(Ci, A) =
1
2

n∑
i=1

(|1− μCi |+ |0− νCi |+ |0− πCi |) (9)

lIFS(Ci, B) =
1
2

n∑
i=1

(|0− μCi |+ |1− νCi |+ |0− πCi |) (10)

For (8) we have 0<Sim(Ci, A)<∞.
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Fig. 2. Idea of similarity measures for intitionistic fuzzy sets

It is worth emphasizing that the distances (9) and (10) used in the definition
of similarity take into account all three functions (membership, non-membership
and hesitation margin) characterizing intuitionistic fuzzy sets. A motivation for
using all three functions and poor effects of omitting one of them (from the point
of view of decision making) is given in (Szmidt and Kacprzyk [18], [19]).
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Fig. 3. Values of similarity measure Sim(Ci, A) (8) – a), b) – contour plot

Note that:

– Sim(Ci, A) = 0 means the identity of Ci and A,
– Sim(Ci, A) = 1 means that Ci is to the same extent similar to A and B (i.e.,

values bigger than 1 mean in fact a closer similarity of Ci and B to Ci and
A),

– when Ci = B, i.e. lIFS(Ci, B) = 0 means the complete dissimilarity of Ci

and A (or the identity of Ci and B), and then Sim(Ci, A) → ∞.

So, when applying the measure (8) to analyse our problem (Section 3), the
values 0<Sim(X,F )< 1 are of interest – the measure (8) was constructed for
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selecting objects which are more similar than dissimilar, and well-defined in the
sense of possessing (or not) the attributes we are interested in (cf. Szmidt and
Kacprzyk [16]).

Now we will show that a measure of similarity (8) is more powerful and gives
more intuitively appealing results then a simple distance between an option Ci

and the ideal option A (Figure 2), i.e. (8) gives more resonable results than the
distance (9) alone.

Example 2. C1 and C2 are two options (with the coordinates (μ, ν, π)), C1 =
(0, 0, 1), C2 = (0, 1, 0) so from (8) we have

lIFS(C1, A) =
1
2
(|1− 0|+ |0− 0|+ |0− 1|) = 1 (11)

lIFS(C2, A) =
1
2
(|1− 0|+ |0− 1|+ |0− 0|) = 1 (12)

which means that both options are the same (their distances to the the ideal
option A are the same). But when we analyse thoroughly the options, we see
that

– option C1 fulfills at worst 0% of our demands, and at best 100% of our
demands,

– option C2 does not fulfil for sure any demands.

Formulas (11) – (12) inform us only about a sure fulfilment of the considered
criteria (the lower bound) as for both C1 and C2 the lower bound of the fulfilment
of the criteria is equal to 0, both options are treated as equal ones. In other words,
while calculating the distance alone puts the equality sign between such different
options like C1 and C2.

On the other hand, similarity (8) does clearly differentiate between options
C1 and C2: Sim(C1, A) = 1 whereas Sim(C4, A) =→ ∞.

Now we will show that the similarity measure (8) is a good tool to solve the
problem formulated in Section 3.

The problem of finding an option Mi satisfying in the best way condition (5)
can be solved by evaluating each option Mi

E(Mi) = Sim(A,Mi) = min{max[Sim(A,Cj), Sim(A,Ck), . . .
. . . , Sim(A,Cp)], Sim(A,Cs)} (13)

Condition (13) means that for eachMi we look for the worst satisfied criterion
Wi among Cj , Ck,. . . , and Cp, and next – we look for the better criterion between
Wi and Cs). The worst means the least similar, and the best means the most
similar.

The smallest value among E(Mi), i = 1, . . . ,m (13) points out the option
which best satisfies condition (5).
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Let us now come back to Example 1. For M1 we calculate from (8)

Sim(A,C1) = 1, Sim(A,C2) = 0.77, Sim(A,C3) = 0.8 (14)

from (13) and (14) we have

E(M1) = Sim(A,M1) = min[max(1, 0.77), 0.8] = 0.8 (15)

Repeating the above steps for the rest of options we obtain

E(M2) = 0.77, E(M3) = 0.875, E(M4) = 0.714, E(M5) = 0.666 (16)

E(N1) = 1.143, E(N2) = 1.5 (17)

So now, as opposed to the results given in [5], the options can be ordered:M5 is
the best among M1 – M5, and N1 is better than N2 (although both N1 and N2
are bad options which can be easy noticed as for both of them, for each criterion
C1, C2, C3, the non-membership degree is bigger than the membership degree).

The difference between the solution proposed in [5] and our method lies in
the fact that evaluation of the options in [5] boils down to the consideration
of the differences (7) between their membership and non-membership degrees
only. It means that not all the information accessible is taken into account. Our
solutions differs from [5] because:

– besides the membership and non-membership degrees we also make use of
the information concerning a lack of knowledge about the membership and
non-membership degrees of the options considered;

– we use the similarity measure (8) which compares each option with both the
positive-ideal solution and the negative-ideal solution.

5 Conclusions

We proposed a solution to a multi-decision problem by using a similarity measure
for intuitionistic fuzzy sets. The proposed method makes it possible to compare
the options in a more intuitively appealing and human consistent way than it
was proposed in [5].
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Abstract. Process models play important role in computer aided pro-
cess engineering. Although the structure of these models are a priori
known, model parameters should be estimated based on experiments.
The accuracy of the estimated parameters largely depends on the in-
formation content of the experimental data presented to the parameter
identification algorithm. Optimal experiment design (OED) can maxi-
mize the confidence on the model parameters. The paper proposes a new
additive sequential evolutionary experiment design approach to maximize
the amount of information content of experiments. The main idea is to
use the identified models to design new experiments to gradually im-
prove the model accuracy while keeping the collected information from
previous experiments. This scheme requires an effective optimization al-
gorithm, hence the main contribution of the paper is the incorporation
of Evolutionary Strategy (ES) into a new iterative scheme of optimal
experiment design (AS-OED). This paper illustrates the applicability of
AS-OED for the design of feeding profile for a fed-batch biochemical
reactor.

1 Introduction

Process models play important role in computer aided process engineering since
most of advanced process monitoring, control, and optimization algorithms rely
on the process model. Unfortunately often some of the parameters of these mod-
els are not known a priori, so they must be estimated from experimental data.

The accuracy of these parameters largely depends on the information content
of the experimental data presented to the parameter identification algorithm
[1]. Optimal Experiment Design (OED) can maximize the confidence on model
parameters through optimization of the input profile of the system. For param-
eter identification of different dynamic systems and models, this approach has
been already utilized in several studies [2]- [6]. OED is based on an iterative
algorithm where the optimal conditions of the experiments or the optimal input
of the system depends on the current model, which parameters were estimated
based on the result of the previously designed experiment. Consequently, exper-
iment design and parameter estimation are solved iteratively, and both of them
are based on nonlinear optimization of cost functions.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 324–333, 2006.
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That means in practice, the applied nonlinear optimization algorithms have
great influence on the whole procedure of OED, because for nonlinear dynamical
models the design of the experiment is a difficult task. This problem is usually
solved by several gradient-based methods e.g. nonlinear least squares method
or sequential quadratic programming. Several gradient computation methods
are described in [7]. In [8] extended maximum likelihood theory is applied for
optimizing the experiment conditions.

As a population-based effective optimization algorithm, this paper proposes
the application of evolutionary strategy (ES). In [9] it has been shown that ES
results in more satisfactory parameter values than classical sequential quadratic
programming (SQP) or nonlinear least square (NLS) methods.

On the presented application example, a fed-batch biochemical reactor, some
results were already shown in e.g. [10], but these results assume that model
parameters or model structure are perfectly known.

The drawback of OED is that the experiment design uses only information
from the current experiment and parameter identification relies only on one
experiment while there are previous experiment information available. In this
paper an additive sequential evolutionary OED was proposed, which uses the
results of the previous experiment designs and parameter estimations. The aim
of this paper is to illustrate the usefulness of AS-OED, independently from the
model structure, hence a simplified monotonic Monode model was used.

The paper is organized into five sections: the first, second and third sections
review the theoretical background of experiment design, additive design and
evolutionary strategy, respectively. The fourth section presents an application
example and finally conclusions are given in the fifth section.

2 Classical Optimal Experiment Design

The case study considered in this paper belongs to the following general class of
process models:

dx(t)
dt

= f(x(t),u(t),p) (1)

y(t) = g(x(t)), (2)

where u is the vector of the manipulated inputs, y is the output (vector), x
represents the state of the system, where p denotes the model parameters. The
p parameters are unknown and should be estimated based on data taken from
experiments. The estimation of these parameters is based on the minimization of
the square error between the output of the system and the output of the model:

min
p

[
Jmse(u(t),p) =

1
texp

∫ texp

t=0
(eT (t) ·Q(t) · e(t))dt)

]
(3)

e(t) = ỹ(u(t))− y(u(t),p) (4)
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in which ỹ(u(t)) is the output of the system for a certain u(t) input profile,
and y(u(t)) is the output of the model for the same u(t) input profile with p
parameters, Q is a user supplied square weighting matrix that represents the
variance measurement error.

The basic element of the experiment design methodology is the Fisher infor-
mation matrix F , which combines information on (i) the output measurement
error and (ii) the sensitivity of the model outputs y with respect to the model
parameters:

F (p0,u(t)) =
1
texp

∫ texp

t=0
(
∂y

∂p
(u(t),p)|p=p0)T ·Q(t) · (∂y

∂p
(u(t),p)|p=p0)dt (5)

The sensitivities are calculated based on the partial derivatives of the model
parameters. As the true parameters p∗ are unknown during experiment design,
the derivatives are calculated near to the so-called nominal parameters po, which
can be given by some initial guess, extracted from literature or estimated from
the previous experiments. The optimal design criterion aims the minimization
of a scalar function of the F matrix. several optimal criterion exist, we present
D-optimal and E-optimal criterion suggested by Bernaerts et al. [1]:

– D-optimal criterion minimizes the determinant of the covariance matrix and
thus minimizes the volume of the joint confidence region:

JD = min
u(t)

(det(F )) (6)

– E-optimal criterion minimizes the condition number of F , i.e. the ratio of
the largest to the smallest eigenvalue of the Fisher matrix:

JE = min
u(t)

λmax(F )
λmin(F

(7)

If the po nominal parameters are far from the p∗ true parameters, convergence
cannot be guaranteed after a first optimal design. So an iterative design scheme
is needed to obtain convergence from po to p∗(Fig.2(a)).

Both the parameter estimation and the experiment design steps of this it-
erative scheme represent a complex nonlinear optimization problem, hence the
effectiveness of the applied optimization algorithms have great influence on the
performance of the whole procedure. The classical solution is to use nonlinear
least squares (NLS) algorithm for parameter estimation eq. (3), and sequential
quadratic programming (SQP) for the experiment design eq. (7). In this paper
the application of evolutionary strategy (ES) is proposed for this purpose, which
can be used for non-linear optimization problems.

The main drawback of the classical iterative approach is that the Fisher in-
formation matrix F contains information only about the current experiment re-
gardless of the information content of the previous experiments, and the param-
eters are identified from this experiment. It is useful to include the information
from previous experiments within the parameter estimation and the experiment
design steps, too.
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(a) (b)

Fig. 1. Design schemes of the classical (a) and the Additive Sequential (b) OED method

3 Additive Sequential Experiment Design

The paper proposes a new additive sequential experiment design approach. The
goal of the additive sequential design is to include all available information
within the iterative design scheme, so the Fisher information matrix is calcu-
lated for the current AND the previous experiments. It means that in every
iteration step, the new experiment is designed considering the previous experi-
ments too:

F i(p0
i ,ui(t)) =

i∑
k=1

1
texp,k

∫ texp,k

t=0
(
∂y

∂p
(uk(t),p)|p=p0

i
)T · (8)

·Q(t) · (∂y
∂p

(uk(t),p)|p=p0
i
)dt

where ui is the input vector of the ith experiment with texp,i experiment time. In
this way, the parameters might be identified very effectively since every available
experimental data is used to design a set of new informative (and independent)
experiments. The iterative scheme of this Additive Sequential Experiment De-
sign is shown in Fig.2(b).

The main advantage of this new approach is that in this way the experiment
design becomes more robust and effective.

4 Evolutionary Strategy

This paper proposes the application of evolutionary strategy (ES) instead of
the utilization of NLS and SQP. ES is a stochastic optimization algorithm that
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uses the model of natural selection [11]. The advantage of ES is that it has proved
particularly successful in problems that are highly nonlinear, that are stochastic,
and that are poorly understood [11]. The design variables in ES are represented
by n-dimensional vector xj = [xj,1, . . . , xj,n]T ∈ Rn, where xj represents the j-
th potential solution, i.e. the j-th the member of the population. The mutation
operator adds zj,i normal distributed random numbers to the design variables:
xj,i = xj,i + zj,i, where zj,i = N(0, σj,i) is a random number with σj,i standard
deviation. To allow for a better adaptation to the objective functions’s topol-
ogy, the design variables are accompanied by these standard deviation variables,
which are so-called strategy parameters. Hence the σj strategy variables control
the step size of standard deviations in the mutation for j-th individual. So an
ES-individual aj = (xj ,σj) consists of two components: the design variables
xj = [xj,1, . . . , xj,n]T and the strategy variables σj = [σj,1, . . . , σj,n]T . Before
the design variables are changed by mutation operator, the standard deviations
σj are mutated using a multiplicative normally distributed process:

σ
(t)
j,i = σ(t−1)

j,i exp(τ ′N(0, 1) + τNi(0, 1)) . (9)

The exp (τ ′N(0, 1)) is a global factor which allows an overall change of the
mutability, and the exp (τNi(0, 1)) allows individuals to change of their mean
step sizes σj,i. So τ ′ and τ parameters can be interpreted as global learning rates.
Schwefel suggests to set them as [12]:

τ ′ =
1√
2n
, τ =

1√
2
√
n
. (10)

Throughout this work discrete recombination of the object variables and inter-
mediate recombination of the strategy parameters were used:

x′j,i = xF,i or xM,i (11)
σ′j,i = (σF,i + σM,i) /2 , (12)

where F and M denotes the parents, j is index of the new offspring.
The Evolutionary Strategy function in Matlab environment has three impor-

tant parameters that one has to adjust carefully in order to find the most reliable
solution with the least computation time: (i) number of generations, (ii) size of
a population in a generation and (iii) number of individuals with the best fit
values, which appear unchanged in the next generation.

5 Application Example

This paper illustrates the applicability of the proposed approach for the design
of a feeding profile of a fed-batch biochemical reactor with monotonic kinetics.

Prior knowledge on the microbial dynamics is generally lacking, the param-
eters of the applied kinetic model are usually determined by using a method
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which minimizes the difference between the measured response of the reactor
and the predicted response of the model. The following equation describes the
mass balance of the reactor:

d

dt

⎡⎣ SX
V

⎤⎦ =

⎡⎣−σXμX
0

⎤⎦+

⎡⎣CS,in

0
1

⎤⎦u (13)

where S is the mass of the substrate [g], X is the mass of the micro-organism
[g DW], V is the volume [L], u is the inlet flowrate [L/h], CS,in = 500 g/L is
the substrate concentration in the inlet feed, σ = μ/YX/S + m is the specific
substrate consumption rate, where, YX/S = 0.47 g DW/g, m = 0.29 g/g DW
h, while μ [1/h] is the kinetic rate. The initial conditions: S(t = 0) = 500 g,
X(t = 0) = 10.5 g DW, V (t = 0) = 7 L. The maximum volume is Vmax = 10 L,
and the maximum inlet flowrate is umax = 0.3 L/h.

The following monotonic kinetic (Monode) model of the μ kinetic rate was
considered:

μM (CS) = μmax
CS

KS + CS
(14)

The system was simulated with μmax = 0.1 1/h and KS = 1 g/L as real pa-
rameter values, i.e. p∗ = [0.1 1]T . The goal was to find the unknown parameters
of the model: μmax and KS (the other parameters were assumed to be accu-
rately known). The μmax andKS parameters were estimated by optimization, see
eq. (3).

It was assumed that only the substrate concentration CS is measured. Conse-
quently, in this application example, the system output is ỹ = S̃[g]

Ṽ [L]
, which was

generated by the simulation of (13) and (14).
We applied the iterative OED methodology to design the feeding profile u(t)

with E-optimal criterion equations (5) (8) and (7). It has been shown in [9] that
ES seems to be the best optimization algorithm for this non-linear problem. The
aim of the paper is to prove that an additive (memory-effect type) evolutionary
experiment design can accord better results for this application.

The parameter error (Err) was defined as the sum of the absolute difference
between the ending output parameter results and the ’true’ μmax=0.1 1/h and
KS=1 g/L values, normalized with the true values(Eq.(15)) where npar denotes
the number of optimized parameters.

Err =
npar∑
i=1

∣∣∣∣p0 − p∗

p∗

∣∣∣∣ (15)

Both the classical and the additive evolutionary ED was initialized with the
pinit = [0.15 0.5] parameter vector (50 percent error for each), 3 independent runs
were made with 9 iteration during each of them. The length of one experiment
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was 20 h, the sample time was 1 h. Ten input profile values were optimized with
linear extrapolation between them.

The parameters of ES function were adjusted to 40 generations with a pop-
ulation size of 25 individuals and the best 10 individuals appear unchanged in
the next generation. With all these experimental parameters the runtime of the
algorithm is ca. 2 minutes.

Note, that our task here is not to maximize the system output, i.e. the biomass
concentration but to find an input profile which maximizes the precision of the
parameter estimation. For comparison, Fig.2 (a) shows a manually selected input
step profile and the response of the system. The ES optimized parameters for
this profile are pmanual = [0, 0997 0, 8968] with an Err value of 0.1053. The
parameter space does not converge to a global minima if this input profile is
selected as shown in Fig.2 (b). Identification cost function is defined as the
square error of the model output with respect to its parameters around the p0

nominal parameters.
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Fig. 2. Manually selected input profile and system output (a) and contour plot of the

identification cost (b)

The results are shown in Table 1., Fig.3. and Fig.4. Table 1. shows the sum of
Err values of the ending parameters for the 3 independent runs, and their mean
values; pinit is shown on the figure as the 0th experiment.

As one can see, the additive sequential evolutionary experiment design results
in better parameters at the end of the experiments and almost in every iteration
step, it is more robust and computationally just a bit more expensive. The
iterative sequential design has its uncertainty in the output because of the large
searching space and the lack of information from previous experiments. As Fig.3.
shows, in additive design, less iteration cycles and evolutionary computation
would result also in reliable parameters, hence computation time excess could
be spared without any quality loss in parameter estimation. E-optimized input
profiles are presented on Fig.4. for the runs with the best ending parameter
estimations.
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Fig. 3. Err and Jmse values (dotted line with ’o’ marker for classical and continous

line with ’x’ marker for AS-OED) for the three independent runs
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Table 1. Sum of error of the ending parameters and mean values

1st run 2nd run 3rd run Err

Sequential Ev. Design 0.1283 0.0094 0.0256 0.0544

Additive Seq.Ev.Design 0.0091 0.0449 0.0785 0.0441
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Fig. 4. E-Optimized input profiles and system outputs generated by (a) classical se-

quential OED and (b) Additive Sequential OED

6 Conclusion

The aim of this paper was to develop a robust and effective additive evolutionary
experiment design strategy and to demonstrate its usefulness on an industrial
example. This approach uses Evolutionary Strategy for both the experiment
design and the parameter identification steps of the iterative scheme. Additive
Sequential Evolutionary Experiment Design uses information from the previous
experiments and although it is computationally just a little more expensive than
the ES aided classical Optimal Experiment Design because Fisher matrices and
the input profiles of the previous experiments already exist so they do not need
to be calculated again. Computation time could be lowered by decreasing the
number of iteration cycles what does not worsen parameter estimation quality. It
has been proven that this new approach results in more reliable and confidential
values of the identified parameters.
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Abstract. Combinatorial optimization problems of scheduling belongs
in most cases to the NP-hard class. In this paper we propose a very
effective method of construct parallel algorithms based on the island
model of coevolutionary algorithm. We apply block properties, which
enable the inter-island genetic operator to distribute calculations and
shorten communication between processors.

1 Introduction

Many methods of algorithms construction consist in looking through (directly
or indirectly) either all or a part of a set of feasible solutions. Such a mechanism
is based on generating from a current (base) solution a next solution, or a set of
solutions (so called neighborhood), from which the best solution is chosen. This
solution is the base solution in the next iteration. Such a mechanism can be met
(among others) in Branch and Bound (B&B) method and in many other algo-
rithms which deal with improving the solution, as well as in the best (nowadays)
approximate algorithms, metaheuristics: tabu search and simulated annealing
methods. The same method is used in the path-relinking method, which is used
in the local search genetic operators, such as Multi – Step Crossover Fusion
(MSXF) of Reeves and Yamada [19]. Quality of these algorithm’s solutions de-
pends on: the number of iteration, the method of neighborhood describing and
its reviewing. The time of computations can be shorten by its realization in a
multiprocessor environment. Unfortunately parallelization of the sequential algo-
rithms directly (for example by using parallel compiler) does not give satisfactory
speedup. In this paper we propose some new elements of parallel local search
algorithms. Partitioning solution (permutation) into blocks (subpermutations –
subsequences of jobs) enables to decrease the neighborhood size and its division
into separated subsets. It makes possible its generating and reviewing indepen-
dently on a parallel machine. Many classic scheduling problems have blocking
partitioning property, i.e.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 334–343, 2006.
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1. Flow shop problem – subsets of jobs from the same machine on critical path
are blocks, see Nowicki and Smutnicki [16], Grabowski and Wodecki [9].

2. Job shop problem – subsets of jobs from the same machine on critical path
are blocks, see Nowicki and Smutnicki [17], Grabowski and Wodecki [10] .

3. Classic single machine total weighted tardiness problem (TWTP) – sub-
sets of jobs made on time and made after deadline are blocks, see Bożejko,
Grabowski and Wodecki [5].

4. Single machine earliness/tardiness scheduling problem – subsets of jobs made
on time, made before the earliest moment of finishing and made after dead-
line are blocks (three types of blocks; considered in this paper).

We consider a single machine earliness/tardiness problem in this paper. Methods
proposed here can be directly applied to all of the problems presented above.

Many authors have studied the earliness and tardiness (E/T) problem which
was first introduced by Kanett [13]. An useful review of early/tardy scheduling
is provided in Baker, Scudder [1] and the book T’kindt and Billant [22]. In
paper [1] Baker and Scudder proved that there can be an idle time in an optimal
solution (jobs need not be processed directly one after another). Solving the
problem amounts to establishing a sequence of jobs and their starting times.
Hoogeven and van de Velde [12] proposed an algorithm based on a branch and
bound method. Because of the exponentially growing computation’s time, this
algorithm can be used only to solve cases, where the number of jobs is not
bigger than 20. Therefore, in practice almost always the approximate algorithms
are used. The best of them are based on the artificial intelligence methods.
Calculations are performed in two stages:

1. determining the scheduling of jobs (with no idle times).
2. establishing jobs’ optimal starting times.

There is an algorithm in the paper of Wan and Yen [24] based on this scheme.
To determine scheduling a tabu search algorithm is used. Algorithms for the
optimal job sequencing are relatively less studied. Szwarc [20] proposed a Branch
and Bound algorithm based on some adjacent ordering conditions for jobs with
distinct penalty weights. Lee and Choi [14] proposed a genetic algorithm and
Yano and Kim [25] studied several dominance properties for sequencing jobs
with penalty weights proportional to processing times.

The most important results for unrestrictive and restrictive scheduling E/T
problems are presented in the papers of Bank and Werner [2], Gordon et al. [11],
Valente and Alves [23], and Feldmann and Biskup [8].

In this paper we consider TWET problem, additionally assuming that the
machine begins the execution of jobs in time zero and it works with no idle
(TWET-no-idle problem). We present new elements of the neighborhood search
method. Partition of permutation into blocks (subsequences) and replacing sets
of moves with its representatives significantly decrease size of the neighborhood,
eliminating ‘bad’ moves and speeding up the calculations. Computational ex-
periments shows that such a neighborhood is not bigger (in average) than the
size of classical neighborhood generated only by the insert moves. We use a
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parallel computer for executing coevolutionary genetic algorithm with inter-
island genetic operator based on local search procedure with blocks.

2 Blocks in Solutions

For the TWET-no-idle problem, each schedule of jobs can be represented by
permutation π = (π(1), π(2), ... , π(n)) of the set of jobs J . Let Φ(n) denotes the
set of all such permutations. The total cost π ∈ Φ(n) is F (π) =

∑n
i=1 fπ(i)(Cπ(i)),

where Cπ(i) is a completed time of the job π(i), Cπ(i) =
∑i

j=1 pπ(j). The job
π(i) is considered early if it is completed before its earliest moment of finishing
(Cπ(i) < eπ(i)), on time if eπ(i) ≤ Cπ(i) ≤ dπ(i), and tardy if the job is completed
after its due date (i.e. Cπ(i) > dπ(i)). An expression uiEi + wiT is the cost of
the job execution, where ui and wi are the nonnegative coefficients of a goal
function. The objective is to find a sequence of jobs that minimize the following
non-regular function: ∑n

i=1
(uiEi + wiTi).

This problem became more popular after the introduction of JIT manufacturing
philosophy, where jobs are desired to be completed as close as possible to their
due dates. In the classical scheduling notation in literature the problem is de-
noted by 1||

∑
(uiEi + wiTi) and it belongs to a strongly NP-hard class (if we

assume that ui = 0, i = 1, 2, ... , n, we obtain a problem 1||
∑
wiTi, which is

strongly NP-hard, see Lenstra et al. [15]).
Each permutation π ∈ Φ(n) is decomposed into subpermutations (subse-

quences of jobs) Ω = [B1, B2, ... , Bv] called blocks in π, each of them contains
the jobs, where:

1. Bi = (π(ai), π(ai + 1), ... , π(bi − 1), π(bi)), and
ai = bi−1 + 1, 1 ≤ i ≤ v, a0 = 0, bv = n.

2. All the jobs j ∈ Bi satisfy the following condition:
ej > Cπ(bi), or (C1)
ej ≤ Cπ(bi−1) + pj and dj ≥ Cπ(bi), or (C2)
dj < Cπ(bi−1) + pj . (C3)

3. Bi are maximal subsequences of π in which all the jobs satisfy either Con-
dition C1 or Condition C2 or Condition C3.

By definition, there exist three types of blocks implied by either C1 or C2 or
C3. To distinguish them we will use the E-block, O-block and T-block notions
respectively.

Theorem 1. For any permutation π ∈ Φ(n) there are partitions into blocks
(subsequences), such that every of them is:

i. E-block, or
ii. O-block, or
iii. T -block.
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Proof. Let us assume that a permutation π is partitioned into blocks. From
definition of E , O and T blocks, if Cπ(1) < eπ(1), then π(1) belongs to the first
E-block in the opposite case if Cπ(1) > dπ(1), then π(1) belongs to the first T -
block or (on the contrary) to the first O-block. We sequentially consider jobs
π(2), π(3), ..., π(n). For the job π(i), 2 ≤ i ≤ n, let the previous job π(i− 1)
belongs to a block B.

Let us assume, that Cπ(i) < eπ(i). If

1. B is O or T -block, then π(i) is the first job of the next E-block.
2. B is E-block and B∪{π(i)} is E-block, then job π(i) ∈ B, and on the contrary
π(i) is the first job of the next E-block.

We can consider the case of Cπ(i) > dπ(i) and eπ(i) ≤ Cπ(i) ≤ dπ(i) similarly.

The definition of blocks and Theorem 1 presents, that after partitioning of a
permutation:

1) every job belongs to some E or O or T block,
2) blocks are disjoin sets of jobs.

For any block B in a partition Ω of permutation π ∈ Φ(n), let

FB(π) =
∑

i∈B (uiEi + wiTi).

Therefore, the value of a goal function takes the form of

F (π) =
∑n

i=1 (uiEi + wiTi) =
∑

B∈Ω FB(π).

If B is a T -block, then every job which belongs to it is early. Therefore, in
the permutation π, an optimal sequence of jobs within B (which is minimizing
FB(π)) can be obtained using the well-known Weighted Shortest Processing
Time (WSPT ) rule proposed by Smith [8]. The WSPT rule creates an optimal
sequence of jobs in the non-increasing order of the ratios wj/pj. Similarly, if
B is an E-block, then an optimal sequence of jobs can be obtained using the
Weighted Longest Processing Time (WLPT ) rule which creates a sequence of
jobs in non-decreasing order of the ratios uj/pj.

Partition Ω of the permutation π is ordered, if there are jobs scheduled by
the WSPT rule in any T -block and jobs scheduled by the WLPT rule in any
E-block.

Lemma 1. If a permutation π ∈ Φ(n) is ordered, then changing the order of jobs
in any block does not generate permutation with less cost of the goal function.

Proof. Let B = (π(a), π(a + 1), ... , π(b)), 1 ≤ a < b ≤ n, be a block in a
partition of ordered permutation π ∈ Φ(n). Let us assume that permutation β
was generated from π by changing the order of jobs in block B. Therefore

β(i) = π(i), i = 1, 2, ... , a− 2, a− 1, b+ 1, b+ 2, ... , n
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and sets of jobs fulfill the equality

{β(j) : j = a, a+ 1, ... , b} = {π(j) : j = a, a+ 1, ... , b}.

We should consider two cases:

1. B is E-block. If jobs from the set {β(a), β(a + 1), ... , β(b)} does not fulfill
the WLPT rule in permutation β, then F (β) ≥ F (π).

2. B is O-block. From the definition of O-block, every job β(j), j = a, a +
1, ... , b is on time in permutation β, so F (β) = F (π).

3. B is T -block. If jobs from the set {β(a), β(a + 1), ... , β(b)} does not fulfill
the WSPT rule in permutation β, then F (β) ≥ F (π).

Next theorem is a base of the neighborhood’s construction in the local search
algorithms.

Theorem 2. For each ordered permutation π ∈ Φ(n), if a permutation β ∈ Φ(n)
was obtained from π by any interchange of its elements and

F (β) < F (π),

then in the permutation β at least one job of some block of π was moved before
the first or after the last job of this block.

Proof. Let [B1, B2, ... , Bv] be a partition of ordered permutation π ∈ Φ(n)
into blocks. Each block is a subsequence of jobs

Bi = (π(ai), π(ai + 1), ... , π(bi)), i = 1, 2, ... , v,

1 ≤ a1 ≤ b1 < a2 ≤ b2 <, ... , < av ≤ bv.
By

Y i(π) = {π(ai), π(ai + 1), ... , π(bi)}
we represent the set of jobs from the block Bi.

Let permutation β ∈ Φ(n) and F (β) < F (π). Let us assume on the contrary,
that in permutation β any job from any block B1, B2, ... , Bv has not been
moved before the first or after the last job of this block. Therefore

Y i(π) = Y i(β), i = 1, 2, ... , v.

Then for i = 1, 2, . . . , v subsequences (π(ai), π(ai +1), ... , π(bi)) in permutation
π and (β(ai), β(ai + 1), ... , β(bi)) in β are permutations of the same subset of
jobs {π(ai), π(ai + 1), ... , π(bi)}. Lemma 1 presents, that F (β) ≥ F (π), which
contradicts the assumption on the contrary.

Let us notice that Theorem 1 provides the necessary condition to obtain a per-
mutation β from π such, that F (β) < F (π).

Let Ω = [B1, B2, ... , Bv] be an ordered partition of the permutation π ∈ Φ(n)
into blocks. If a job π(j) ∈ Bi (Bi ∈ Ω), therefore existing moves, which can
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improve the goal function value, consist in reordering a job π(j) before the first
or after the last job of this block. Let Mbf

j and Maf
j be sets of such moves

(obviously Mbf
1 = Maf

v = $). Therefore, the neighborhood of the permutation
π ∈ Φ(n) has the form of

M(π) =
n⋃

j=1

Mbf
j ∪

n⋃
j=1

Maf
j . (1)

A move m̂ is a representative of moves from the set M ⊆M, if

∀ m ∈ M, F (m(π)) ≥ F (m̂(π)).

Sets of moves Mbf
x and Maf

x are presented in Fig. 1. Looking inside the block,
the job π(fk) is the first one, and π(lk) is the last one.

︸ ︷︷ ︸
Mbf

x − moves before the block

︸ ︷︷ ︸
Mbf

x −moves after the block

Fig. 1. Moves of the job π(j)

3 Parallel Genetic Algorithm

There are three basic types of parallelization strategies which can be applied
to the genetic algorithm: global, diffusion model and island model (migration
model).

Algorithms based on the island model divide the population into a few sub-
populations. Each of them is assigned to a different processor which performs
a sequential genetic algorithm based on its own subpopulation. The crossover
involves only individuals within the same population. Occasionally, the proces-
sor exchanges individuals through a migration operator. The main determinants
of this model are: (1) size of the subpopulations, (2) topology of the connection
network, (3) number of individuals to be exchanged, (4) frequency of exchanging.

The island model of parallel genetic algorithm is characterized by a signifi-
cant reduction of the communication time, compared to the global model (with
distributed computations of the fitness function only). Shared memory is not
required, so this model is also more flexible. Bubak and Sowa [7] developed an
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implementation of the parallel genetic algorithm for the TSP problem using the
island model. Belding [3] extended a previous work on the distributed genetic
algorithm of Tanese [21], focusing on migration rates and intervals.

Below, a parallel genetic algorithm is proposed. The algorithm is based on
the island model of parallelism. There is the MSXF (Multi – Step Crossover
Fusion) operator used to extend the process of researching for better solutions
of the problem. MSXF has been described by Reeves and Yamada [19]. Its idea
is based on local search, starting from one of the parent solutions, to find a new
good solution where the other parent is used as a reference point. Additionally,
block properties were used to make the search process more effective – to prevent
changes inside the block which are unprofitable from the fitness function’s point
of view. Such a proceedings is consistent with an idea of not making changes
between genes of different chromosomes. In such a way a MSXF+B (MSXF with
blocks) operator was created.

The neighborhood N(π) of the permutation (individual) π is defined as a
set of new permutations that can be achieved from π by exactly one adjacent
pairwise exchange operator which exchanges the positions of two adjacent jobs
of a problem’s solution connected with permutation π. The distance measure
d(π,σ) is defined as a number of adjacent pairwise exchanges needed to trans-
form permutation π into permutation σ. Such a measure is known as Kendall’s
τ measure.

Algorithm 1. Multi-Step Crossover Fusion with Blocks (MSXF+B)
Let π1, π2 be parent solutions. Set x = q = π1;
repeat

For each member yi ∈ N(π), calculate d(yi, π2);
Sort yi ∈ N(π) in ascending order of d(yi, π2);
repeat

Select yi from N(π) with a probability inversely
proportional to the index i; Calculate Csum(yi);

Accept yiwith probability 1 if Csum(yi) ≤ Csum(x), and with
probability PT (yi) = exp((Csum(x) − Csum(yi)) / T ) otherwise
(T is temperature);

Change the index of yi from i to n and the indices of
yk, k = i+1,...,n from k to k−1;

until yi is accepted;
x← yi; if Csum(x) < Csum(q) then q ← x;

until some termination condition is satisfied ;
q is the offspring.

In our implementation, MSXF+B is an inter-island (i.e. inter-subpopulation)
crossover operator which constructs a new individual by using the best individ-
uals of different islands connected with subpopulations on different processors.
The condition of termination consisted in exceeding of 100 iterations by the
MSXF+B function.
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Algorithm 2. Parallel genetic algorithm
parfor j = 1, 2, ..., p { p is number of processors }
i← 0;
Pj ← random subpopulation connected with processor j;
pj ← number of individuals in j subpopulation;
repeat

Selection(Pj , P
′
j); Crossover(P ′

j, P
′′
j ); Mutation(P ′′

j );
if (k mod R = 0) then {every R iteration}
r := random(1, p); MSXF+B(P ′

j(1), Pr(1));
end if;
Pj ← P ′′

j ; i← i + 1;
if there is no improvement of the average Csum then {Partial restart}
r := random(1,p);
Remove α = 90 percentage of individuals in subpopulation Pj.;
Replenish Pj by random individuals;

end if ;
if (k mod S = 0) then {Migration}
r := random(1,p);
Remove β = 20 percentage of individuals in subpopulation Pj ;
Replenish Pj by the best individuals from subpopulation Pr

taken from processor r;
end if;

until Stop Condition;
end parfor

The frequency of communication between processors (MSXF+B operator and
migration) is very important for the parallel algorithm performance. It must not
be too frequent because of the relative long time of communication between
processors, comparing to the time of communication inside the program of a one
processor. In this implementation the processor gets new individuals quite rarely,
every R = 20 (MSXF+B operator) or every S = 35 (migration) iterations.

4 Computer Simulations

The algorithm was implemented in the Ada95 language and ran on 4-processors
Sun Enterprise 4 x 400 MHz under the Solaris 7 operating system. Tasks of the
Ada95 language were executed in parallel as system threads. Tests were based
on 125 instances with 40,50 and 100 jobs taken from the OR-Library [18]. The
results were compared to the best known, also taken from [18].

The computational results can be found in Table 1. The number of iterations
was counted as a sum of iterations on processors, and was permanently set to
800. For example, 4-processor implementations make 200 iterations on each of
the 4 processors, so we can obtain comparable costs of computations. As we can
see, the parallel versions of the algorithm have much better results of the average
and maximal relative deviation from the optimal (or the best known) solutions,
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Table 1. Relative deviation of solutions of sequence and parallel genetic algorithms

compared to the best known solutions

n
1 processor 4 processors

aver. dev. max. dev. aver. dev. max. dev.

40 2.907 99.963 0.057 1.534
50 4.035 167.576 0.064 1.362
100 0.005 1.054 0.004 0.103

average 2.317 89.531 0.042 0.999

working (parallel) in a shorter time. Because of a small cost of the communication
the speedup parameter of the parallel algorithms is almost linear.

5 Conclusions

We have discussed a new approach to the optimization problems with block
properties based on the new inter-island genetic operator for the parallel asyn-
chronous coevolutionary algorithm. Compared to the sequential algorithm, the
parallelization shortens the computation’s time and it improves quality of the
obtained solutions. The advantage of the parallel algorithm is especially visible
for large cases of the problem.
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Abstract. An example of soft computing applied to electrical engineer-
ing is presented and discussed. Attention is focused on the design tech-
niques of MicroElectroMechanical Systems. In particular, the criterion of
Pareto optimality is used to identify the optimal shape design of a rotary
electrostatic microactuator. Accordingly, two algorithms of evolutionary
optimization are presented and compared. The requirements in terms of
know-how and computing facilities fit the resources of a research-and-
development center of an industrial company.

1 Introduction

MicroElectroMechanical Systems (MEMS) technology has generated an impres-
sive deal of academic and industrial research, opening the relevant market. Al-
though the power delivered by an electrostatic motor is modest, the absence
of field coils and ferromagnetic material makes these devices competitive, with
respect to the conventional electromagnetic ones, in applications where a weak
torque and small dimensions are required. This remark, together with the far-
dating experience in fabricating electronic microsystems on Silicon, has stim-
ulated, since at least ten years, the development of mechanical microsystems
on Silicon, in which the motion-generating force is electrostatic. By exploiting
the mechanical properties of Silicon - as extraordinary as the electrical ones -
using the technology already achieved for integrated circuit manufacturing, and
integrating power supply, motion actuation and control functions, it is possi-
ble, nowadays, to make MEMS smaller than one square millimeter, for several
applications. Actually, pressure and acceleration microsensors, as well as mi-
croswitches, microvalves, micromirrors, microresonators, linear and rotary mi-
croactuators and microrobots, have already been developed, for application in
medicine, space and automobile industry, and precise mechanical industry. The
design of a MicroElectroMechanicalDevice (MEMD) needs semiconductors and
related technologies: VLSI, polycrystalline silicon and intelligent materials; gen-
erally, the supply system is integrated into the device on the same board. Critical
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components of MEMD are represented by microactuators, for which severe re-
quirements in terms of performance, reliability and cost are prescribed. [1,2,3]

MEMS are characterized by a multi-physics domain: structural mechanics,
electrostatics, fluid flow, optical phenomena interact and give rise to coupled
fields at the device level. These requirements demand for a sophisticated design
procedure. The field of microengineering is leading to radical changes in strate-
gies of computer modeling simulation for high-technology MEMS. Modeling and
simulation of MEMS is of vital importance to develop innovative products and
to reduce time-to-market at lower total costs.

2 Soft Computing and Automated Optimal Design:
A Review

In all engineering fields, and especially in electrical and electronic engineering,
the optimized computer-based design has reached a crucial role. In literature
many non-deterministic methods are available, especially those ones based on
the principle of natural evolution. In these ones, the natural law ”survival of the
fittest will win” is the way to determine the best design set fulfilling constraints.
In nature, individuals of a population in an assigned domain mate and reproduce
with the aim of adjusting to new surroundings, so that those chromosomes more
prone to adaptation survive in the new generation. Similarly, in a simulation
environment, a population of different candidate design solutions, after repro-
duction, combines their own most favourable features, thus giving rise to a new
population of solutions that best fit design criteria.

Another class of widely used non-deterministic methods is based on the so-
called ”swarm intelligence”, in contrast to the intellective ability of the single
individual. The most studied swarm is the ant colony: ants indirectly commu-
nicate by modifying the natural environment, with the aim of reaching food
from the nest through the shortest path. The imitation of such a behaviour
leads to the implementation of optimization methods (”Ant Colony Optimiza-
tion”) based on software agents (artificial ants), which are singularly equipped
with a small computational ability and work in a distributed way without a
centralized coordination. These are reliable and robust techniques, because of
the little importance of the single agent within the swarm; furthermore, the
small computational ability of the single agent allows a cheap implementation
of the algorithms. The reproduction of flocks of birds and of antibodies of a
living organism immune system are two other important themes of recent stud-
ies, resulting in ”Particle Swarm Optimization” and ”Artificial Immune System”
techniques, respectively.

Developed methods allow to cast the automated design of systems and de-
vices as an optimization problem of an objective function dependent on design
variables and whose values must fulfil an assigned number of constraints. Un-
fortunately, many real-life engineering problems exhibit an increased complexity
due to the presence of a high number of design criteria; actually, a vector of
mutually conflicting objective functions characterizes the full formulation of the
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design problem. In other words, in a design problem from real-life engineering,
the presence of a single design criterion is rather an exception than a rule; of-
ten, the designer has to cope with the minimization of two or more conflictual
objectives. It is reasonable to state that design — or inverse — problems are
multiobjective problems by their very nature and imply the simultaneous mini-
mization of a number of objectives being in mutual conflict. [4]

Traditionally, multiobjective problems are reduced to single-objective prob-
lems, for instance by means of one of the following procedures:

– the use of a penalty function composed of the various objectives;
– the separate solutions of single-objective problems and their trade-off;
– the solution of a single-objective problem, with the other objectives as con-

straints.

This approach leads to classical methods of multiobjective optimization and
gives a solution which is supposed to be the optimum.

A more satisfactory way to tackle the problem of multiobjective optimisation
consists of applying the theory of Pareto optimality in connection with a suitable
minimization algorithm. In this respect, the key concept is the dominance cri-
terion: a solution x is said to dominate another solution y, if both the following
conditions hold:

– x is not worse than y for all objectives;
– x is strictly better than y for at least one objective.

Basically, the procedure of automated optimal design consists of searching for the
non-dominated solutions of the problem. In this context, several non-deterministic
methods are available in the literature for Pareto multiobjective optimisation.
Most of these methods have been developed for solving problems in which the com-
putational cost of the objective functions is moderate. When dealing with design
optimisation of electromagnetic devices, the evaluation of the objectives requires
at least a field simulation based on finite-element method (FEM); field simula-
tion, in turn, may have an inherent complexity due to various reasons: complicated
shape of the device implying two- or three-dimensional models, coupled-field anal-
ysis, non-linear material properties, transient conditions. Typical amount of run-
time required by the direct problem limits severely the use of non-deterministic
methodologies, even resorting to powerful computing facilities.

To clarify this point, let us imagine a case in which an objective implies the
FEM simulation of the torque-angle curve featuring a rotating electrical device;
in the case of e.g. a twelve-pole device, taking a rotation step of 1 deg and
considering symmetry, 15 FEM analyses are necessary to find out the torque-
angle curve for a given geometry of the device. If, additionally, the non-linear
characteristic of ferromagnetic material is taken into account and 10 Newton-
Raphson iterations are involved, the number of FEM analyses grows up to 150
per geometry. If the optimisation of the geometry relies on a standard algorithm
with a population of 30 individuals and 100 iterations are required to converge,
the total number of field analyses becomes 450,000; even if a single FEM analysis
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lasts only 10 s for a three-dimensional model, the resulting runtime is 4,500,000 s
(nearly 52 days) for finding 30 non-dominated solutions, which is an unaffordable
duration for industrial design timing.

Indeed, one might think of more sophisticated strategies to reduce the cost,
e.g. those based on parallel computing, but this kind of resources is still loosely
available in a typical design center of an electrical or electromechanical company.
Consequently, it has been decided to focus the attention on cost-effective algo-
rithms, i.e. algorithms where the number of calls to the objectives is reduced for
a given degree of accuracy in approximating the non-dominated solutions of the
problem.

Moving from this background, a cost-effective procedure for the automated
shape design of a MEMD has been developed. [5]

3 An Evolutionary Method for the Multiobjective Shape
Design of an Electrostatic Microactuator

A simplified flow-chart of the four-step procedure that has been devised and
implemented is shown in Fig.1.

Fig. 1. Flowchart of NSESA and NSGA algorithms

In the first step of the algorithm an initial population of individuals is ran-
domly generated in the search domain; generation fulfils constraints the design
variables are subject to.

In the second step individuals are ranked into local Pareto fronts. In particular,
the criterion of dominance is first applied to the whole population; this way, all
non-dominated individuals are identified in order to set up the first Pareto front.
The individuals belonging to the first front are then removed from the population
and the above criterion is applied again in order to obtain the second front and so
on. The procedure ends when all individuals have been ranked into local fronts;
an example of sorting is shown in Fig. 2.
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Fig. 2. Sorting a population in local Pareto fronts

The third step consists of assigning a suitable value of fitness to each individual;
two criteria must be followed in this step: forcing convergence to the global Pareto
front; forcing diversity among solutions. In order to do this, the fitness value of
each individual depends on the local front which it belongs to; successively, a shar-
ing procedure is implemented in order to reduce clustering of solutions.

Finally, as the fourth step, if the stopping criterion is not fulfilled, a stochastic
algorithm produces a new generation of individuals; then, steps 2 and 3 are
repeated.

A code has been developed and implemented, in which two minimizers have
been implemented giving rise to two different algorithms of multiobjective opti-
misation based on non-dominated sorting, respectively: Non-dominated Sorting
Genetic Algorithm (NSGA) if the minimizer is a GA; Non-dominated Sorting Evo-
lution Strategy Algorithm (NSESA) if the minimizer is an ESA (see Fig. 1). As far
as GA is concerned, three classical genetic operators have been implemented, i.e.
selection, crossover and mutation; an elitism procedure has been added to guaran-
tee the survival of the best individual coming from the previous generation. The
values of probability p are listed in Fig. 1 for the three operators; real coding is
adopted. On the other hand, as concerns ESA, standard evolutionary operators
(generation, mutation, annealing) of a (1+1) evolution strategy are implemented;
the parameter values used (namely, probability of successful iteration p and an-
nealing amount q) are listed in Fig. 1 as well.

4 Case Study

The optimal shape design of a variable-capacitance rotary microactuator with ra-
dial field has been carried out by means of the multiobjective strategy described
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Fig. 3. Cross section of the microactuator

above. The device, etched on a polySilicon structure, is characterized by 18 sta-
tor electrodes and 6 rotor teeth, respectively (see Fig.3). One of the three-phase
system of square voltages, having amplitude equal to V = 100V , is switched
on; denoting the tooth width as x1 = α and the electrode width as x2 = β the
equivalent capacitance Ceq(φ, x1, x2) is considered, where φ is the rotor angular
position. The simplest model for computing both no-load commutation torque
T0 and static torque TS is the following:

T0 (x1, x2) =
1
2
V 2NS

[CeqA (x1, x2)− CeqB (xx, x2)]
2π

(1)

TS (�, x1, x2) =
1
4
V 2NR [Cmax (x1, x2)− Cmin (x1, x2)] sin (NR�) (2)

where NS and NR are the number of stator electrodes and rotor teeth, respec-
tively; CeqA(x1, x2) is the capacitance of the maximum coenergy configuration,
when the axis of the supplied electrode is coincident with the axis of the rotor
tooth, while CeqB(x1, x2) is the equivalent capacitance when the rotor position
is the same as before, but the supply has been switched to the next phase. In
turn, Cmax(x1, x2) and Cmin(x1, x2) are maximum and minimum capacitances
with respect to the rotor position φ, keeping the supplied electrode fixed. Two
objective functions, namely:



350 P. Di Barba and S. Wiak

Fig. 4. NSESA: starting (◦) and final (*) populations in objective space (10 individuals,

150 iterations)

Fig. 5. NSGA: starting (◦) and final (*) populations in objective space (50 individuals,

150 iterations)

maximum static torque, to be maximized

f1 (x1, x2) = Cmax (x1, x2)− Cmin (x1, x2) (3)

and torque ripple, to be minimized

f2 (x1, x2) = 1− T0 (x1, x2)
f1 (x1, x2)

(4)
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Fig. 6. NSGA: starting (◦) and final (*) populations in design space (50 individuals,

150 iterations)

are considered; the design variables (x1, x2) which values should fulfill the geo-
metric congruency of the model. In particular, f1 represents the performance of
the actuator, while f2 accounts for the side effect. Therefore, the design problem
can be cast as follows: starting from a population of individuals randomly gener-
ated in the design space (x1, x2), find an approximation of the global Pareto front,
such that f1 is maximum and f2 is minimum, subject to the problem constraints.

In order to obtain an approximation of the global Pareto front, different so-
lutions obtained by means of either NSESA (see Fig.4) or NSGA (see Fig.5) are
reported, respectively.

The genetic algorithm proves to be particularly suited for large population
size (more than 30 individuals, as a rule of thumb), while the quality of solution
is poor when a smaller population is adopted.

In Fig.6 the geometries corresponding to the Pareto front are represented in
the design space (x1, x2); the diversity of shape can be noted.

The evolution of the initial population towards the Pareto optimal front has
been monitored in the objective space for NSGA; Fig. 7 shows six frames of
the evolution in the case of 50 individuals, from initial guess (first frame) to
convergence (last frame).

A final remark on computational burden is worth of consideration. In order to
estimate the maximum cost mc of the evolutionary strategy implemented, the
following formula holds

mc = niter × npop× nobj ×Δt (5)

where nobj is the number of objective functions (2 through 3), niter is the
maximum number of iterations to convergence (say 300) at a given accuracy
(say 10-9), npop is the number of individuals (5 through 20); finally, Δt is the
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Fig. 7. NSGA: evolution of the solutions in the objective space

runtime of a single analysis. The latter is the crucial factor influencing the overall
cost of optimisation.

5 Conclusion

Referring to the algorithms implemented, the following features should be em-
phasized:

– both NSGA and NSESA are conservative strategies; in other words, the
total number of individuals is constant and equal to the initial population
(no individual expires during the optimisation procedure);

– in both NSGA and NSESA each elementary operator can be implemented
in parallel, whereas ranking a population into Pareto fronts and assigning
fitness to each individual are sequential operations by their very nature;

– the intrinsic operation of NSGA implies the continuous interaction between
pairs of individuals: as a rule of thumb, different tenths of individuals (say
30 through 50) are necessary in order to achieve a satisfactory convergence;

– in the frame of NSESA individuals do not interact during the optimisation
procedure: convergence does not depend on the number of individuals (the
procedure converges for a single individual too).

As a consequence, it is reasonable to state that NSESA can be applied when a
small population (say 5 to 10 individuals) is available, leading to a remarkable
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reduction of computational cost; the drawback is a poor approximation of the
Pareto optimal front.

More generally, it should be noted that the definition of Pareto front enhances
the diversity of optimal solutions; consequently, non-trivial designs that are a
priori unpredictable can be highlighted after investigating the front. This is
a method of soft computing which represents a powerful way to promote the
innovation of the industrial design. The numerical implementation of a procedure
of automated optimal design, like that described in the paper, is compatible with
the standard resources of a research-and-development center of an industrial
company.
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Abstract. In this paper we present an evolutionary method for learning
fuzzy rule base systems as an alternative to gradient methods. It is known
that the backpropagation algorithm can be trapped in local minima. We
use evolutionary strategies (μ, λ) with a novel method for generating an
initial population. The results of simulations illustrate efficiency of our
method.

1 Introduction

In the last decade various architectures of neuro-fuzzy systems have been devel-
oped [13,14]. They can be divided as follows:

1. Mamdani-type neuro-fuzzy systems - in this approach antecedents and con-
sequences in the individual rules are connected by a t-norm.

2. logical-type neuro-fuzzy systems - in this approach antecedents and conse-
quences in the individual rules are connected by a fuzzy implication satisfing
Fodor’s definition [5], e.g. an S-implication.

3. Takagi Sugeno neuro-fuzzy systems - which are characterized by a functional
dependence between consequents and inputs.

Recently, a concept of flexible neuro-fuzzy systems has been developed [11,13,14].
The main idea is based on the incorporation of various parameters into con-
struction of such systems leading to high accuracy in problems of modelling and
classification.

We can use successfully evolutionary methods for designing different types
of fuzzy systems [3]. For example a genetic algorithm optimizes values of pa-
rameters which define membership functions. In the second case it creates the
whole knowledge base, i.e. form of membership functions, antecedents and conse-
quences of rules and their number. In this paper we present evolutionary learning
� This work was supported in part by the Foundation for Polish Science (Professorial
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process for learning Mamdani type neuro-fuzzy systems. We use the evolutionary
strategy (μ, λ) with a novel method for generating an initial population. Our ini-
tialization method leads to smaller populations and less number of generations
comparing with previous methods [12]. The method can be used as an alternative
to the backpropagation algorithm which is frequently adopted to learn neuro-
fuzzy systems. Unfortunately, the backpropagation algorithm can be trapped in
local minima. Experiments and simulations presented in section 4 show that our
evolutionary learning procedure with novel initialization outperforms gradient
methods [11].

2 Description of Fuzzy Systems

In this paper, we consider a multi input, single output neuro fuzzy system map-
ping X → Y where X ⊂ Rn and Y ⊂ R. The fuzzy rule base consists of a
collection of N fuzzy IF-THEN rules in the form:

R(k) : IF xi is Ak
1 AND . . .AND xn is Ak

n THEN y is Bk (1)

where x = [x1, . . . , xn] are input variables, n - number of inputs, y - output value,
fuzzy sets Ak

1 , A
k
2 , . . . , A

k
n and Bk are characterized by membership functions

μAk
i
(xi) and μBk(y), respectively, k = 1, ..., N , i = 1, ..., n. This system is based

on the Mamdani-type reasoning, where antecedents and consequences in the
individual rules are connected by the product t-norm. We use the most common
singleton fuzzifier for mapping crisp values of input variables into fuzzy sets [11].
The defuzzification process is made by the COA (center of area) method [11].
We choose as membership functions μAk

i
(xi) and μBk(y) the Gaussian functions

μAk
i
(xi) = exp

[
−
(
xi − xk

i

σk
i

)2]
, (2)

μBk
i
(y) = exp

[
−
(
y − yk

σk

)2]
. (3)

The following neuro-fuzzy system [11] will be investigated:

y =

N∑
r=1

yr · max
1≤k≤N

{
n∏

i=1

exp

[
−
(
xi − xk

i

σk
i

)2]
· exp

[
−
(
yr − yk

σk

)2]}
N∑

r=1

max
1≤k≤N

{
n∏

i=1

exp

[
−
(
xi − xk

i

σk
i

)2]
· exp

[
−
(
yr − yk

σk

)2]} . (4)

This system has been trained using the idea of the backpropagation method [11].
In the next section we will develop an evolutionary algorithm to train system (4).
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3 Genetic Fuzzy System

Let x ∈ X ⊂ Rn, y(t) ∈ Y ⊂ R and d(t) ∈ Y ⊂ R, t = 1, ...,K. Based
on the learning sequence ((x(1), d(1)), (x(2), d(2)), ..., (x(K), d(K))) we wish to
determine all parameters xk

i , σk
i , yk, σk, i = 1, ..., n, k = 1, ..., N , such that

e(t) =
1
2

[f (x(t)) − d(t)]2 (5)

is minimized.
We will solve the problem (5) by using the evolutionary strategy (μ, λ) (see

[1][4]). It is well known that evolution strategies are distinguished by self-
adaptation of additional strategy parameters, which enables them to adapt the
evolutionary optimization process to the structure of the fitness landscape [2].
It is assumed that the chromosome of an individual is formed by a pair of real-
valued vectors (X,σ). The strategy vector σ is subject to a random mutation
according to

σ′i = σi · eτ
′·N(0,1)+τ ·Ni(0,1) (6)

where τ ′ = 1√
2L

, τ = 1√
2
√

L
, i = 1, . . . , L, and L is the length of the chromosome.

The mutation
X ′

i = Xi + σ′ ·Ni(0, 1) (7)

replaces the parent X′ with the parent X. We extend the standard evolu-
tion strategy based on mutation by making use of a uniform recombination
operator [9].

3.1 Encoding

In a fuzzy system described by formula (4) membership functions (2) and (3)
are determined by two parameters (xk

i , σ
k
i ) and (yk, σk), respectively. Thus each

of the rules will be encoded in a piece of the chromosome Xj denoted by Xj,k,
k = 1, . . . , N , in following way:

Xj,k =
(
xk

1 , σ
k
1 , x

k
2 , σ

k
2 , . . . , x

k
n, σ

k
n, y

k, σk
)

(8)

where j = 1, ..., μ or j = 1, ..., λ where μ and λ are parametrers of the evolution-
ary strategy (μ,λ). The complete rule base is represented by chromosome Xj

Xj = (Xj,1,Xj,2, . . . ,Xj,N ) (9)

or more in detail

Xj =

(
x1

1, σ
1
1 , x

1
2, σ

1
2 , . . . , x

1
n, σ

1
n, y

1, σ1,
x2

1, σ
2
1 , x

2
2, σ

2
2 , . . . , x

2
n, σ

2
n, y

2, σ2,
...
xN

1 , σ
N
1 , x

N
2 , σ

N
2 , . . . , x

N
n , σ

N
n , y

N , σN
)
.

(10)
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3.2 Initialization

In this section we will describe the first step of evolutionary strategy, i.e. pro-
cess of initialization of the first population. When we have a learning sequence
(x(t), d(t)), for every input variable xi we define range

[
x−i , x

+
i

]
. Boundary values

x−i and x+
i can be computed as follows

x−i = min
1≤t≤K

(xi(t)) ,

x+
i = max

1≤t≤K
(xi(t)) .

(11)

In the same way we find range [d−, d+] for output values y, i.e.

d− = min
1≤t≤K

(d(t)) ,

d+ = max
1≤t≤K

(d(t)) .
(12)

On the ranges defined above uniform fuzzy partition are made, where every
region has a membership function assigned. The number of pieces for every
partition

[
x−i , x

+
i

]
and [d−, d+] is equal N . Therefore width ai for input variables

(i = 1, . . . , n) has value ai = x+
i −x−

i

N , i = 1, ..., n. For output variable we have
an+1 = d+−d−

N . Initial parameters of membership functions μAk
i
(xi) (see (2))

take values
xk

i = x−i + bk · ai −
ai

2
, (13)

σk
i =

ai

2
(14)

where b = [b1, ..., bN ] is a vector with randomly chosen components bk ∈ {1, ...,
N}, bk �= bl, k, l = 1, ..., N . Similarly, intial parameters of membership functions
μBk(y) (see (3)), k = 1, ..., N assume values

yk = d− + b′k · an+1 −
an+1

2
, (15)

σk =
an+1

2
(16)

where b′k is determined analogously to bk, k = 1, ..., N . Numbers bk and b′k,
determined in the random way, give us the method of generating parameters of
membership functions in the initial population.

We will present a method of initialization of the standard deviation
vector σ. This problem is not clearly described in literature and most often
elements of vector σ are chosen experimentally. We use information which is
encoded in chromosome Xj . Therefore the vector of standard deviation σ will
be initiated by using values of ai and an+1 as follows
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σj =

(h · a1, h · a1, h · a2, h · a2, ..., h · an, h · an, h · an+1, h · an+1,
...
h · a1, h · a1, h · a2, h · a2, ..., h · an, h · an, h · an+1, h · an+1)

(17)

where h = 0.1 is a constant, which value was selected experimentally.

4 Simulation Result

In this section we present results of evolutionary learning of the Mamdani-
type system. We consider classification problems taken from [15]: Iris problem,
Ionosphere problem, the Pima Indians Diabetes, Glass Identification, Wisconsin
Breast Cancer and Wine Recognition problem.

In the first experiment we show a comparison of diffrent initialization methods
of an initial population. We assume the following parameters of simulations:
μ = 10, λ = 50, maximal number of generations is 100, each simulation is
repeated five times and we take the RMSE (root means square error) as a fitness
function

fitness =

√√√√ 1
K

K∑
i=1

(y − d(i))2. (18)

The experimental results for the Pima Indians Diabetes problem are shown in
Table 1. In the first column we show average results of learning by evolutionary
strategies presented in section 3. In the next two columns we present average
results assuming that all elements of stadard deviation vector σ was initialized
by values 0.1 and 1, respectively.

In the second experiment we show effectiveness of our learning method. We
assume the following parameters of simulations: μ = 10, λ = 50, maximal num-

Table 1. Simulation results of evolutionary learning

our method σ = 1 σ = 0.1

training testing
79.4% 76.6%

training testing
73.0% 71.2%

training testing
73.8% 71.6%

Table 2. Comparation of effectiveness diffrent methods

problem [11] [8] our method

Iris 97.8% 95.7% 100%
IO 94.25% 91.8% 95.2%
PID 80.2% - 79.7%
GI 98.4% - 98.4%
WBC 98.5% - 98.3%
Wine 100% 93.8% 97%
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ber of generations is 200 and we take (18) as a fitness function. The experimental
results and comparisons for six benchmark problems are shown in Table 2.

5 Final Remarks

In the paper we presented a learning method of Mamdani-type neuro-fuzzy sys-
tems. The evolutionary strategy was initialized by a new algorithm. We have
obtained comparable or better results than those presented in [11] and [8]. It
seems that our approach leads to obtaining smaller populations and faster con-
vergence.
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Abstract. We consider the fuzzy job-shop problem, a job-shop schedul-
ing problem with uncertain task durations and flexible due-date con-
straints. We propose different definitions of the objective function and
analyse solutions obtained for each alternative using a genetic algorithm.

1 Introduction

In the last decades, scheduling problems have been subject to intensive research
due to their multiple applications in areas of industry, finance and science [1].
Some of these applications involve modelling the uncertainty and vagueness per-
vading real-life situations; this has resulted in a particular branch of scheduling,
known as fuzzy scheduling [2],[3]. Here we find a great variety of approaches,
connected with the three semantics of fuzzy sets. They range from represent-
ing incomplete or vague states of information to using fuzzy priority rules with
linguistic qualifiers or preference modelling. It is also possible to find models
combining more than one of these approaches. Although the first applications
of fuzzy scheduling date back to the 1970’s, it has not been until recently that
it has received an increasing attention. In particular, little work has been done
with more realistic and complex problems such as open-shop and job-shop. In
classical scheduling, the high complexity of such problems means that practical
approaches to solving them usually involve heuristic strategies. Among these,
genetic algorithms have proved to be a powerful tool to tackle this kind of prob-
lems, due to their ability to cope with huge search spaces involved in optimising
schedules [4]. All the above motivates our description of a fuzzy job-shop problem
and of a genetic algorithm to solve it.

2 Description of the Problem

The job shop scheduling problem, also denoted JSSP, consists in scheduling a set
of jobs {J1, . . . , Jn} on a set of physical resources or machines {M1, . . . ,Mm},
subject to a set of constraints. There are precedence constraints, so each job Ji,
i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially scheduled. Also,
there are capacity constraints, whereby each task θij requires the uninterrupted
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and exclusive use of one of the machines for its whole processing time. In ad-
dition, we may consider due-date constraints, where each job has a maximum
completion time and all its tasks must be scheduled to finish before this time.
The goal is twofold: we need to find a feasible schedule, so that all constraints
hold and then we want this schedule to be optimal, in the sense that its makespan
(i.e., the time it takes to finish all jobs) is minimal.

2.1 Uncertain Processing Times and Flexible Constraints

In real-life applications, it is often the case that the exact duration of a task is not
known in advance. For instance, in ship-building processes, some tasks related to
piece cutting and welding are performed by a worker and, depending on his/her
level of expertise, the task will take a different time to be processed. Hence, it is
impossible to know a priori the exact duration of this task. However, based on pre-
vious experience, an expert may have some knowledge about the duration, thus
being able to estimate, for instance, an interval for the possible processing time or
its most typical value. Clearly, classical job shop problems, arenot adequate to deal
with this type of situations. Instead, it is necessary to somehow model uncertain
processing times and thus take advantage of the expert’s knowledge.

It is possible to find many examples in the literature where fuzzy numbers are
used to represent uncertain processing times. Fuzzy sets proved an alternative
to probability distributions, which require a deeper knowledge of the problem
and usually yield a complex calculus. When there is little knowledge available,
the crudest representation for uncertain processing times would be a human-
originated confidence interval. If some values appear to be more plausible than
others, a natural extension is a fuzzy interval or a fuzzy number. The simplest
model of fuzzy interval is a triangular fuzzy number or TFN, using only an
interval [a1, a3] of possible values and a single plausible value a2 in it. That is, for
a TFN A, denoted A = (a1, a2, a3), the membership function takes a triangular
shape completely determined by the three real numbers, a1 ≤ a2 ≤ a3 as follows:

μA(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 : x < a1

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : a3 < x

(1)

To compute the completion time of a given task, it is necessary to add the
task’s duration to its starting time. This can be done using fuzzy number addi-
tion, which in the case of TFNs A = (a1, a2, a3) and B = (b1, b2, b3) is reduced
to adding three pairs of real numbers as follows:

A+B = (a1 + b1, a2 + b2, a3 + b3) (2)

A consequence of this operation is that completion times are TFNs as well.
Another situation where the need of fuzzy number arithmetic arises is when the

starting time for a given task θ must be found. Here, it is necessary to find the
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maximum between twoTFNs, the completion time of the task preceding θ in its job
J and that preceding θ in its resourceM . Now, given twoTFNsA = (a1, a2, a3) and
B = (b1, b2, b3), the maximum A∨B is obtained by extending the lattice operation
max on real numbers using the ExtensionPrinciple. However, the calculation of the
resulting membership function might be quite complex. Also, the result of such an
operation, while still being a fuzzy number, is not guaranteed to be a TFN. For
these reasons, we approximate A ∨B by a TFN, A �B, given by:

A ∨B ≈ A �B = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3) (3)

The approximation �, proposed in [5] for 6-point fuzzy numbers, may coincide
with the maximum ∨. Even if this is not the case, the support of both fuzzy sets
A∨B and A�B is exactly the same and the unique point x with full membership
in A �B also has full membership in A ∨B.

Using the addition and the maximum �, it is possible to find the comple-
tion time for each job. The fuzzy makespan Cmax would then correspond to the
greatest of these TFNs. Unfortunately, neither the maximum ∨ nor its approx-
imation � can be used to find such TFN, because they do not define a total
ordering in the set of TFNs. Instead, it is necessary to use a method for fuzzy
number ranking [6]. The chosen method consists in obtaining three real numbers
C1(A), C2(A), C3(A) from each TFN A as follows:

C1(A) =
a1 + 2a2 + a3

4
, (4)

C2(A) = a2, C3(A) = a3 − a1

Using real number comparisons, it is then possible to establish a total ordering
in any set of TFNs according to Algorithm 1.

1: order the TFNs using C1

2: if there are TFNs with identical value of C1 then
3: order these TFNs using C2

4: if there are TFNs with identical value of C1 and C2 then
5: rank them using C3

Algorithm 1. Ranking Method for TFNs

In practice, if due-date constraints exist, they are often flexible. For instance,
a customer may have a preferred delivery date d1, but some delay will be allowed
until a later date d2, after which the order will be cancelled. We would then be
completely satisfied if the job finishes before d1 and after this time our level of
satisfaction would decrease, until the job surpasses the later date d2, after which
date we will be clearly dissatisfied. The satisfaction of a due-date constraint
becomes a matter of degree, our degree of satisfaction that a job is finished on a
certain date. A common approach to modelling such satisfaction levels is to use
a fuzzy set D with linear decreasing membership function:
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μD(x) =

⎧⎪⎨⎪⎩
1 : x ≤ d1

x−d2

d1−d2 : d1 < x ≤ d2

0 : d2 < x

(5)

Such membership function expresses a flexible threshold “less than”, represent-
ing the satisfaction level sat(t) = μD(t) for the ending date t of the job [2].
However, when dealing with uncertain task durations, the job’s completion time
is no longer a real number t, but a TFN C. In this case, the degree to which a
completion time C satisfies the due-date constraint D may be measured using
the following agreement index [8],[7]:

AI(C,D) =
area(D ∩C)
area(C)

(6)

The intuition behind this definition is to measure the degree to which C is
contained in D (the degree of subsethood).

2.2 Definition of the Objective Function

Once we have established a means of modelling uncertain duration times and
flexible due-dates, we can find a schedule for a given problem. Let us assume
that resource and precedence constraints hold (otherwise, the schedule is un-
feasible and hence is not a solution). Every job Ji, i = 1, . . . , n has a fuzzy
completion time Ci; a fuzzy makespan Cmax may be obtained from these com-
pletion times and, in the case that a due date Di exists for job Ji, the agree-
ment index AIi = AIi(Ci, Di) measures to what degree the due date is satis-
fied. Based on this information, it is necessary to decide on the quality of this
schedule.

If flexible due-date constraints exist, the degree of feasibility of the given
schedule may be obtained by combining the satisfaction degreesAIi, i = 1, . . . , n.
If the aim is that due dates be satisfied in average, the degree to which a schedule
s is feasible is given by:

AIav =
1
n

n∑
i=1

AIi (7)

A more restrictive approach is to expect that all due dates be satisfied, so satis-
faction degrees are combined using the minimum aggregation operator as follows:

AImin = min
i=1,...,n

AIi (8)

The value of AIav can be seen as the probability Pr(F ) of the fuzzy event F “the
schedule s is feasible” over the finite domain of jobs D = {J1, . . . , Jn}, provided
that the membership of job Ji in F is μF (Ji) = AIi, i = 1, . . . , n. Similarly,
AImin corresponds to the necessity measure N(F ) of the fuzzy event F over
the finite domain D [9]. Clearly, AIav, AImin ∈ [0, 1] and AImin ≤ AIav. Both
measure the degree to which due-date constraints are satisfied by the schedule,
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and our aim should be to maximise them. However, the two measures model
different requirements for due dates and encourage different behaviours.

Regarding makespan, the “smaller” Cmax is, the better the schedule is. Now,
because Cmax is a TFN, it is not totally clear what is meant by “smaller”. If
we consider the total ordering defined by the ranking method, it would mean a
smaller C1(Cmax) and our goal should be to minimise this quantity.

Given both measures of feasibility and the makespan and depending on the
final goal of the job-shop scheduling problem, we may define different objective
functions.

If no due-date constraint is considered and the only goal is to find a schedule
with minimum makespan, the objective function will be given by:

f1 =
1

C1(Cmax)
(9)

When due-date constraints are present and the only goal is to find a fea-
sible schedule, the objective function of the job-shop problem may be defined
alternatively as:

f2 = AIav f3 = AImin (10)

Finally, even if due-date constraints hold, we may also want to minimise the
makespan. Here, the degree of feasibility, given by AIav or AImin, must be max-
imised and, at the same time, the makespan (in fact, C1(Cmax)) must be min-
imised. The combination of the two goals yield the following objective functions
(depending on the feasibility measure used):

f4 =
AIav

C1(Cmax)
f5 =

AImin

C1(Cmax)
(11)

Having proposed the above objective functions, we may define the Fuzzy Job
Shop Scheduling Problem or FJSSP as the problem of maximising fi, i = 1, . . . , 5,
subject to precedence and capacity constraints.

To our knowledge, despite their simplicity, the above objective functions for
the FJSSP have not been yet considered in the literature. For instance, the
FJSSP is considered in [10] and [7], but the definition of the objective function,
based on fuzzy decision making, is completely different. A job-shop problem is
also considered [5], but uncertain durations are modelled using 6-point fuzzy
numbers, there are no due dates, and the only objective of minimising makespan
is achieved based on fuzzy number comparison. Finally, similar objective func-
tions appear in [8], but in the setting of a different and less complex problem,
the fuzzy flow-shop problem.

3 Using Genetic Algorithms to Solve FJSSP

In classical JSSP, the search for an optimal schedule is usually limited to the
space of active schedules. One of the best-known algorithms to find active sched-
ules is the G&T Algorithm [11], which allows to use complementary techniques
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1: A = {θi1, i = 1, . . . , n}; /*first task of each job*/
2: while A 	= ∅ do
3: Find the task θ′ ∈ A with minimum earliest completion time /*CT (θ)1*/;
4: Let M ′ be the machine required by θ′ and B the subset of tasks in A requiring

machine M ′;
5: Delete from B any task that cannot overlap with θ′; /*ST (θ)1 > CT (θ′)3*/
6: Select θ� ∈ B (according to some criteria) to be scheduled;
7: Remove θ� from A and, if θ� is not the last task of its job, insert in A the task

following θ� in the job;

Algorithm 2. Fuzzy G&T

to reduce the search space [12]. Also, it can be used as a basis for efficient genetic
algorithms (GA), successful in solving classical job-shop problems. We describe
a possible extension of G&T for the FJSSP (see Algorithm 2) and a GA to solve
the FJSSP based on this algorithm. Both algorithms were first proposed for a
different objective function that also needed to be maximised in [10] and were
inspired in the work from [7].

Chromosomes are a direct codification of schedules. If there are n jobs and m
machines, each individual will be represented by a n×m matrix, where element
(i, j) represents the completion time for the task in job Ji requiring resource
Mj. Therefore, each row is the schedule of a job’s tasks over the corresponding
resources. Each chromosome in the initial population for the GA can be gener-
ated with fuzzy G&T algorithm, choosing a task at random from the conflict
set B. To prevent premature convergence, it is advisable that the initial pop-
ulation be diverse enough. Hence, a new individual will only be incorporated
to the population if similarity to other members of the population is less than
a given threshold σ. Let PrI(θ) be the set of tasks preceding θ in its machine
according to the ordering induced by individual I and let SuI(θ) be the set of
tasks following θ in its machine w.r.t. the same ordering. Then, the similarity
between two individuals I1 and I2 is defined using phenotype distance as follows:

Sim(I1, I2) =

∑n
i=1

∑m
j=1 (|PrI1∩I2(θij)|+ |SuI1∩I2(θij)|)

n ·m · (m− 1)
(12)

where |PrI1∩I2(θij)| denotes the cardinal of PrI1(θij) ∩ PrI2(θij) and |SuI1∩I2

(θij)| denotes de cardinal of SuI1(θij) ∩ SuI2(θij).
The value of the fitness function for a chromosome is simply the value of the

objective function for the corresponding schedule.
The crossover operator, applied with probability pm, consists in performing

the fuzzy G&T algorithm and solve non-determinism situations using the in-
formation from the parents. Every time the conflict set B has more than one
element, the selected task is that with earliest completion time in the parents,
according to the ranking algorithm. The mutation operator is embedded in the
crossover operator, so that, with a given probability pm, the task from the con-
flict set is selected at random.
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1: Generate initial population divided in k groups P1, . . . , Pk containing K individuals
each;

2: while terminating condition T1 is not satisfied do
3: for i = 1; i ≤ k; i + + do
4: repeat
5: select 2 parents at random from Pi;
6: obtain 3 children by crossover and mutation;
7: select the best of 3 children and the best of remaining children and parents

for the new population NPi;
8: until a new population NPi is complete
9: Replace the worst individual in NPi with the best of Pi.

10: Merge P1, . . . , Pk into a single population P ;
11: while Terminating condition T2 is not satisfied do
12: Obtain a new population from P following the scheme above;

Algorithm 3. Genetic Algorithm for FJSSP

The general scheme of the GA, in Algorithm 3, is designed to avoid prema-
ture convergence to local optima by using a niche-based system. The population
is initially divided in k sub-populations, containing K individuals each. This
is more feasible, from a computational point of view, than generating a sin-
gle initial population. Each sub-population evolves separately, until a certain
convergence is obtained (in practice, for Imin generations). At this stage, these
sub-populations are merged into a single population of N individuals, which will
again evolve until some terminating condition holds (in practice, when a total
of Imax generations is reached).

4 Experimental Results

Unfortunately, benchmark examples of FJSSP in the literature are scarce, clearly
a problem for any thorough experimentation, where a sufficiently large and di-
verse set of problems is needed. For this reason, we propose a novel heuristic
method to generate new problems. It will later be used to provide a sample of
problems to test the different objective functions introduced in Section 2.

4.1 Generation of New Problems

In order to define a problem of size n×m, where n is the number of jobs and m
is the number of resources, the following must be defined: capacity constraints,
assigning a machine to each task of every job, uncertain durations, in the form
of TFNs, and flexible due-dates. Here, we have generated new problems (ten
problems of size 10 × 10 and ten problems of size 20 × 5) using the following
heuristic method. For a problem of size n×m, capacity constraints are defined
by a matrix R of size n×m where row i is a random permutation of (1, . . . ,m)
representing the machine assignments in job Ji. Regarding the duration of a
given task, its most typical value a2 is obtained at random from the interval
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Table 1. Average results obtained with different objective functions. Parameter values

are: pm = 0.03, pc = 0.9, σ = 0.8 and N/Imin/Imax are 200/100/200, except for 6 × 6,

where they are 100/50/100.

Problems objective function AIav AImin C1(Cmax)

f1 0.678 0.097 98.700
f2 0.888 0.545 115.960

S&K f3 0.856 0.700 119.133
f4 0.871 0.525 105.192
f5 0.854 0.676 110.485
f 0.811 0.444 106.346

f1 0.948 0.662 870.591
f2 1.000 0.997 966.032

10 × 10 f3 1.000 0.999 964.852
f4 0.994 0.948 883.685
f5 0.999 0.994 903.654
f 0.996 0.966 936.173

f1 0.737 0.016 1174.879
f2 0.953 0.505 1251.991

20 × 5 f3 0.877 0.619 1237.380
f4 0.934 0.359 1193.927
f5 0.874 0.619 1220.791
f 0.695 0.082 1273.926

[1, 99] and a1 and a3 are random values from [int(2
3a

2), a2] and [a2, int(4
3a

2)]
respectively, where int(x) denotes the closest integer to a given real number x.

Due-date values are the most difficult to define. If they are too strict, the
problem will have no solution and if they are too lenient, due-date constraints
will always be satisfied, which is equivalent to having no constraints at all. For a
given job Ji, let ιi =

∑m
j=1 a

2
i,j be the sum of most typical durations across all its

tasks. Also, for a given task θi,j let ρi,j be the sum of most typical durations of all
other tasks requiring the same machine as θi,j , ρi,j =

∑
θi,j �=θ:M(θ)=M(θi,j) a

2(θ),
where M(θ) denotes the machine required by task θ and a2(θ) denotes its most
typical duration. Finally, let ρi = maxj=1,...,m ρi,j be the maximum of such
values across all tasks in job Ji. Then, the earlier due-date d1 is taken as a
random value from [dm, dM ], where dm = ιi + 0.5ρi and dM = ιi + ρi. The later
due-date d2 is a random value from [d1, int(1.1d1)].

4.2 Results of the GA with Different Objective Functions

In addition to the 20 new problems, we consider the problems proposed in [7],
three of size 6×6 and three of size 10×10, denoted S&K. For all 26 problems, we
have run the GA using the five objective functions proposed in Section 2 and the
objective function based on fuzzy decision making proposed in [10] (denoted f
hereafter). For each problem and objective function, the GA from Section 3 is ex-
ecuted 20 times with the parameter values used in [10] (pm/pc/σ/N/Imin/Imax
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Fig. 1. Results for problems of size 20 × 5 using different objective functions

equal to 0.03/0.9/0.8/200/100/200). For the obtained schedule, we measure
AIav, AImin and C1(Cmax). Table 1 is a summary of the obtained results, with
average values across all problems in a family. Notice that for problems of size
10× 10, due dates that are in general easy to satisfy, whilst for problems of size
20×5 due dates are quite strict in some jobs. Let us now see if the results support
the arguments used to define the different objective functions in Section 2. As
expected when the objective functions were introduced, the results indicate that,
when only the productivity goal of minimising Cmax is considered, f1 should be
used. Notice that, in accordance with what has just been said, the lowest values
of Cmax are obtained with schedules for which at least a due-date restriction is
not satisfied at all.

More surprising are the results with respect to due-date satisfaction. At first,
we may feel tempted to conclude that, if the goal is to respect delivery dates in
average, then f2 should be used and, if the goal is to respect all delivery dates,
then f3 should be used. This would certainly correspond to the motivation for
defining f2 and f3. However, a more careful look shows that if we use f4 and f5
instead, due dates are satisfied to almost the same degree and there is the added
benefit of reducing the makespan and improving in productivity. Therefore, if the
goal is to satisfy due dates, it seems preferable to use the more complex objective
functions f4 or f5, instead of just using f2 or f3. Notice as well that using AIav

as objective function does not always provide high values for AImin. Finally,
if the goal consists in both maximising due-date satisfaction and minimising
makespan, the results suggest that the objective function should be f5. For
all 26 problems, AIav values are similar with both f4 and f5, whilst AImin

does improve considerably when f5 is used. Regarding C1(Cmax), f4 does obtain
better schedules, but the difference does not compensate the loss of due-date
satisfaction in AImin. This is further illustrated by Figure 1. In any case, the
objective function f , defined in [10] to simultaneously maximise 1

C1(Cmax) , AIav

and AImin, obtains worse results than either f4 or f5. We may conclude then
that overall it is preferable to use the simpler objective function f5, proposed
herein.
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5 Conclusions and Future Work

We have considered the FJSSP, a version of JSSP that tries to model the impre-
cise nature of data in real-world problems, using fuzzy sets to represent uncertain
processing times and considering flexible due-dates. Different objective functions
have been proposed, depending on whether the aim is to optimise productivity
or respect delivery dates, and their behaviour has been compared based on the
results obtained using a GA. We have seen that, overall, it is preferable to use
the function denoted f5. This also obtains better results than the function from
[10] and has the further advantage that its definition involves no parameters.
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Abstract. The Job Shop Scheduling Problem is a paradigm of Con-
straint Satisfaction Problems that has interested to researchers over the
last decades. In this paper we confront this problem by means of a Ge-
netic Algorithm that is hybridized with a local search method. The Ge-
netic Algorithm searches over the space of active schedules, whereas the
local search does it over the space of semi-active ones. We report results
from an experimental study over a set of selected problem instances
showing that this combination of search spaces is better than restricting
both algorithms to search over the same space. Furthermore we compare
with the well-known Genetic Algorithms proposed by D. Mattfeld and
the Branch and Bound procedure proposed by P. Brucker and obtain
competitive results.

1 Introduction

The Job Shop Scheduling Problem (JSSP) is a Constraint Satisfaction Problem
(CSP) that has interested to many researchers over the last years. Consequently
we can found in the literature a great number of approaches based on different
meta-heuristics, constraint satisfaction techniques or operational research algo-
rithms [7]. In particular Genetic Algorithms (GAs) and Branch and Bound (BB)
algorithms are two of the most important approaches. For example the BB algo-
rithm proposed by P. Brucker et al. in [3] and [4] is one of the most efficient exact
approaches proposed so far and it is able to solve the majority of instances up
to a size of about 15 jobs and 15 machines. Regarding GAs, the approaches pro-
posed by Ch. Bierwirth and D. Mattfeld in [1], [2], [8] or the approach proposed
by T. Yamada and R. Nakano in [15] are among the most efficient ones.

In this paper we propose a GA that combines judiciously a number of ideas
proposed in the literature to obtain an efficient approach. To codify chromosomes
we have chosen the permutation with repetition schema proposed in [1]. These
chromosomes are then evaluated with a variant of the Giffler and Thomson
algorithm proposed in [6]. Also we have considered a number of local search
methods that rely on the concepts of critical path and critical block. The main
principles of these models were proposed by R. J. M. Vaessens et al. [11], P. J. M.
Van Lardoven et al. [12], M. Dell’ Amico and M. Trubian [5], and E Taillard [10].
These models were afterwards used and developed by other researchers such as
� Authors supported by MCYT-FEDER Grant TIC2003-04153

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 370–379, 2006.
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for example D. Mattfeld [8] or E. Nowicki and C. Smutnicki [9] in combination
with Genetic Algorithms.

The rest of the paper is organized as follows. In section 2 the JSSP is defined.
In section 3 we describe the basic components of the GA used for solving the
JSSP. Then Section 4 outlines the Local Search strategies, termedN2,N3 andN4
in the literature, that we have exploited to improve the GA. Section 5 describes
the experimental study, and finally in Section 6 we give the main conclusion of
the paper.

2 Problem Formulation

In this paper we consider the Job Shop Scheduling Problem, also denoted JSSP.
This problem requires scheduling a set of N jobs {J0, . . . , JN−1} on a set of M
physical resources or machines {R0, . . . , RM−1}. Each job Ji consists of a set of
tasks or operations {θi0, . . . , θiM−1} to be sequentially scheduled. Each task θil
has a single resource requirement, a fixed processing time or duration pθil and
a start time stθil whose value should be determined.

The JSS has two binary constraints: precedence constraints and capacity con-
straints. Precedence constraints are defined by the sequential routings of the
tasks within a job and translate into linear inequalities of the type: stθil +pθil ≤
stθi(l+1) (i.e. θil before θi(l+1)). Capacity constraints restrict the use of each re-
source to only one task at a time and translate into disjunctive constraints of the
form: stθil + pθil ≤ stθjk ∨ stθjk + pθjk ≤ stθil. The most widely used objective
is to obtain a feasible schedule such that the completion time, i.e. the makespan
denoted Cmax, is minimized.

A problem solution may be represented by an acyclic graph showing job rout-
ings on the machines. Figure 1 shows a feasible solution to a problem with 3
jobs and 3 machines. Arcs are labelled with the processing time of the operation
at the outcoming node. The makespan is the cost of the longest or critical path
between the dummy nodes start and end. A subset of consecutive operations on
this path requiring the same machine is a critical block.

Every operation v has at most two direct predecessors denoted PMv and PJv

and two successors denoted SMv and SJv in the solution graph. PMv is the
predecessor of v in the machine sequence and PJv is the predecessor of v in its
job sequence. Analogous, SJv and SMv are the job successor and the machine
successor respectively. When v is the first operation in its job PMv = PJv =
start, and analogous if v is the last one SMv = SJv = end. Naturally, direct
predecessors are not defined for operation start and also direct successors are
not defined for operation end.

Given a solution graph, the earliest starting time that can be assigned to an
operation v is the head of v and it is denoted rv. Then the earliest completion
time of an operation v is denoted Cv and is calculated as rv + pv. Hence, the
head of the operation v is actually the cost of the longest path from node start
to node v and is determined by

rv = max(rPMv + pPMv , rPJv + pPJv) = max(CPMv , CPJv )
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Fig. 1. A feasible schedule to a problem with 3 jobs and 3 machines. The bold face

arcs shown a critical path whose length, that is the makespan, is 12.

rstart and pstart being 0. Analogous, the tail of an operation v in the solution
graph is the cost of the longest path from node v to node end and is defined by

qv = max(pSMv + qSMv , pSJv + qSJv )

also qend and pend being 0. The tail of operation start is

qstart = max0≤i<N (qθi0 + pθi0)

and the head of operation end

rend = max0≤i<N (rθiM−1 + pθiM−1)

No buffer time exist for any critical operation v, hence Cmax = rv + pv + qv.
These equations are relevant for the feasibility test and makespan estimation
considered in Section 4.

3 A Genetic Algorithm for the JSSP

The JSSP is a paradigm of constraint satisfaction problems and has been con-
fronted by many heuristic techniques. In particular Genetic Algorithms [1],
[2], [6], [8], [13] are a promising approach due to its ability to be combined
with other techniques such as tabu search and simulated annealing. Moreover
GAs allow to exploit any kind of heuristic knowledge from the problem do-
main. In doing so, GAs are actually competitive with the most efficient methods
for JSSP.

As mentioned above, in this paper we consider a conventional GA for tack-
ling the JSSP and make an experimental study of two local search methods.
The selected approach to codify chromosomes is the permutation with repeti-
tion proposed by C. Bierwirth in [1]: a chromosome is a permutation of the set of
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operations, each one being represented by its job number. This way a job number
appears within a chromosome as many times as the number of job operations.
For example the chromosome (1 0 0 2 1 2 0 1 2) actually represents the per-
mutation of operations (θ10, θ00, θ01, θ20, θ11, θ21, θ02, θ12, θ22). This permutation
should be understood as expressing partial schedules for every set of operations
requiring the same machine. This codification presents a number of interesting
characteristics: it is easy to evaluate with different algorithms and allows for
efficient genetic operators. In [14] this codification is compared with other per-
mutation based codifications and demonstrated to be the best one in average
over the set of 12 selected problem instances considered in the experimental
study of this work.

The way these partial schedules are translated to an actual schedule depends
on the decoding algorithm. Here we consider a variant of the well-known G&T
algorithm proposed by Giffler and Thomson in [6]. The G&T algorithm is an
active schedule builder.

Definition 1 (Active schedule). A schedule is active if for any operation to
start earlier, at least another one must be delayed.

Active schedules are good in average and the space of active schedules contains
at least an optimal one. For these reasons it is worth to restrict the search to this
space. The G&T algorithm can be modified in order to reduce even more the
search space by means of a parameter δ ∈ [0, 1] (see algorithm 1). When δ < 1
the search space gets narrowed so that optimal schedules might no longer be
included. At the extreme δ = 0 the search is constrained to non-delay schedules.

Definition 2 (Non−delay schedule). A schedule is non-delay or dense if it is
never the case that a resource is idle when a requiring operation is available.

Experience demonstrates that as long as parameter δ decreases, the mean value
of solutions within the search space tends to improve. Also of interest are often
semi-active schedules.

Definition 3 (Semi−active schedule). A schedule is semi-active if for any
operation to start earlier, the relative ordering of at least two operations must be
swapped.

It is easy to devise a decoding algorithm over the space of semi-active schedules
with lower complexity than the G&T algorithm, but at the same the semi-active
schedule is usually worse than the active schedule for a given chromosome.

The rest of the components of the GA are rather conventional. In the selec-
tion phase all chromosomes of the population are grouped into pairs. Then each
pair is mated and the resulting offsprings mutated according to crossover and
mutation probabilities Pc and Pm. We have chosen the job order crossover JOX
described in [1]. Given two parents JOX selects a random subset of jobs and
copies their genes to the offspring at the same positions as in the first parent,
then the remaining genes are taken from the second parent so as they maintain
their relative ordering. The mutation operator simply swaps two consecutive
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1: Let A = {θj0, 0 ≤ j < n}; /*n is the number of jobs*/
2: while A 	= ∅ do
3: ∀θ ∈ A let stθ be the earliest starting time of θ if it is scheduled the next one;
4: Let θ1 ∈ A such that stθ1 + pθ1 ≤ stθ + pθ, ∀θ ∈ A;
5: Let M = MR(θ1); /*MR(θ) is the machine required by operation θ*/
6: Let B = {θ ∈ A : MR(θ) = M, stθ < stθ1 + duθ1};
7: Let θ2 ∈ B such that stθ2 ≤ stθ, ∀θ ∈ B; /*the earliest starting time of every

operation in B, if it is selected next, is a value of the interval [stθ2, stθ1 +duθ1]*/
8: Reduce set B: B = {θ ∈ B : stθ ≤ stθ2+δ((stθ1+duθ1)−stθ2), δ ∈ [0, 1]};/*now

the interval is reduced to [stθ2, stθ2 + δ((stθ1 + duθ1) − stθ2)]*/
9: Select θ� ∈ B such that is the leftmost operation in the chromosome and schedule

it at time stθ�;
10: Let A = A \ {θ�} ∪ {SUC(θ�)}; /*SUC(θ) is the next operation to θ in its job,

if any exists*/

Algorithm 1. Chromosome decoding algorithm G&T hybrid

genes selected at random. Finally the acceptation of chromosomes to the next
generation is done by tournament from each group of two parents and their two
offsprings.

4 Local Search

Conventional GAs as the one described above often produce moderate results.
However meaningful improvements can be obtained by means of hybridization
with other methods. One of these techniques is local search, in this case the GA
is called a Memetic Algorithm. Roughly speaking local search is usually imple-
mented by defining a neighborhood for each point in the search space as the set
of chromosomes reachable by a given transformation rule. Then a chromosome
is replaced in the population by one of its neighbors, if any of them satisfies
the acceptation criterion. The local search from a given point terminates after a
number of iterations or when no neighbor satisfies the acceptation criterion.

In this paper we consider the local search strategies termed N2, N3 and N4
by D. Mattfeld in [8]. All these strategies rely on the concepts of critical path
and critical block. They consider every critical block of a critical path and make
a number of moves on the operations of each block. After a move inside a block
the feasibility must be tested. Since an exact procedure is computationally pro-
hibitive, the feasibility is estimated by the approximate algorithm described in
Section 4.1 that is proposed by Dell’ Amico and Trubian in [5]. This estimation
ensures feasibility at the expense of omitting a few feasible solutions. Transfor-
mation rules for N2, N3 and N4 are as follows.

Definition 4 (N2). Let operation v be a member of a block b such that b =
(b′vb′′). In a neighboring solution v is moved to the beginning of b or to the the
end of b if feasibility is preserved, otherwise v is moved closest to the first or the
last operation of b for which the feasibility is preserved.
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Definition 5 (N3). Let v and w be successive operations on a critical path, and
let PMv and SMw be the machine predecessor of v and the machine successor
of w respectively. If neither PMv and SMw belong to the same block as v and
w, then the only permutation is (w, v), otherwise all possible permutations of
PMv, v, w and v, w, SMw are considered as neighboring if v and w are also
reversed.

Due to neither N2 ⊂ N3 nor N3 ⊂ N2 it is reasonable to define the N4 neigh-
borhood as

Definition 6 (N4). N4 = N3 ∪N2.

The acceptation criterion is based on a makespan estimation which is done in
constant time as it is described in Section 4.2, instead of calculating the ex-
act makespan of each neighbor. The estimation provides a lower bound of the
makespan. The selected neighbor is the one with the lowest makespan estimation
whenever this value is lower than the makespan of the current chromosome.

4.1 Feasibility Checking

To test the feasibility of a solution resulting from a block move, a labeling al-
gorithm to detect cycles in the solution graph can be used. This procedure is
exact but is also computationally expensive. Therefore, it is more efficient an
estimation for testing feasibility such as the algorithm proposed in [5] for N2
given by the following lemma.

Lemma 1. For a move of an operation v inside a block b = (b′, b′′, v, b′′′) yield-
ing the sequence (b′, v, b′′, b′′′), a cycle in the resulting solution graph can exist if
and only if there exist an operation w of b′′ such that there is a path from SJw

to PJv.

Thus, it is sufficient to test the inequality

rSJw
+ pSJw

> rPJv

for all w of b′′ to guarantee that the resulting schedule is feasible. Analogous,
for a move of v inside a block b = (b′, v, b′′, b′′′) yielding (b′, b′′, v, b′′′) it is also
sufficient to test the inequality

rSJv
+ pSJv

> rPJw

for all w of b′′.
In the case of N3 the feasibility checking is even more simple. Due to the

reversal of (v, w) always leads to a feasible schedule and the following lemma, that
is proved in [5], it is sufficient to consider as the only neighbor the permutation
with the smallest makespan estimation.

Lemma 2. The estimated makespan of a (v, w) reversal is smaller or equal than
any estimated makespan resulting from the reversal of two arcs if such a reversal
leads to an infeasible solution
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4.2 Makespan Estimation

The makespan estimation is based on heads and tails. Let us consider firstly the
situation where the arc (v,w) is reversed. Here is important to remark that either
PMv or SMw are not critical, otherwise reversing the arc (v,w) does not produce
any improvement. The values of r′w, r′v, q′v, q′w after reversing the arc (v,w) are

r′w = max(rPMv + pPMv , rPJw + pPJw)

r′v = max(r′w + pw, rPJv + pPJv)

q′v = max(qSMw + pSMw , qSJv + pSJv)

q′w = max(q′v + pv, qSJw + pSJw)

Therefore the makespan can be estimated by

C′
max = max(r′w + pw + q′w, r

′
v + pv + q′v)

which is a lower bound of the actual makespan after reversing (v,w).
Now let us consider the general case of N2 where not only successive opera-

tions are moved. Let CB = (O1, ..., Oi, ..., Oj , ..., On) a critical block of a machine
m and suppose that operation Oj is moved before Oi. Therefore in the neighbor-
ing solution we have the sequence (O1, ..., Oi−1, Oj , Oi, ..., Oj−1, Oj+1..., On) on
the machine m. The head of operations (O1, ..., Oi−1) and the tail of operations
of (Oj+1..., On) do not change with respect to the original solution. However,
the tail of operations (O1, ..., Oi−1) and the head of operations (Oj+1..., On) in
general change. But in this case, neither the exact values nor lower bounds of
these new tails and heads can be estimated without calculating the new heads
and tails for the whole set of operations, which is very time consuming. On
the contrary, exact values of new heads and tails of operations (Oj , Oi, ..., Oj−1)
may be efficiently calculated as it is indicated below. So, these new values may
be used for the makespan estimation of the neighboring solution. An analogous
reasoning can be done if Oj is moved towards the end of the critical block CB.

Now, the set (Oj , Oi, ..., Oj−1) is denoted (L1, ..., Ll), and Oi−1 and Oj+1 are
denoted first and last respectively. As rfirst and qlast will not change from the
original solution to a neighboring one, the estimation of the new makespan can
be calculated as follows.

r′L1
= max(rfirst + pfirst, rPJL1

+ pPJL1
)

r′L2
= max(r′L1

+ pL1, rPJL2
+ pPJL2

)

. . .

r′Ll
= max(r′Ll−1

+ pLl−1, rPJLl
+ pPJLl

)

q′Ll
= max(qlast + plast, qSJLl

+ pSJLl
)

q′Ll−1
= max(q′Ll

+ pLl
, qSJLl−1

+ pSJLl−1
)

. . .
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q′L1
= max(qL2 + pL2, qSJL1

+ pSJL1
)

C′
max = r′L1

+ pL1 + q′L1

C′
max = max(C′

max, r
′
L2

+ pL2 + q′L2
)

. . .

C′
max = max(C′

max, r
′
Ll

+ pLl
+ q′Ll

)

This method is also suitable for N3. In this case the subsequence (L1, ..., Ll) is
given by the first or last three operations of the critical block.

5 Experimental Study

In this study we have considered the set of 12 selected problems with sizes
ranging from 10×10 to 20×15 which were used in other works such as [8]. These
problem instances are considered hard to solve due to their resistance to be solved
by the BB procedure proposed by Brucker et al. [3], [4] with only one exception
(FT10). This procedure solves to optimality almost every other instance of these
sizes. We have experimented with different combinations of neighborhoods and
compare with the genetic algorithms GA1 and GA3 proposed by Mattfeld in [8].
GA1 is similar to our version but uses semi-active decoding instead, and GA3 is
GA1 with two additional refinements: a structured population mechanism that
restricts mating to the neighbors placed on a grid, and a diffusion model that
allows to control population diversity. In all cases we parameterize our GA so
that the number of chromosomes evaluated is similar to the experiments reported
in [8] with GA1 and GA3. When comparing with the BB procedure, we run both
algorithms, GA and BB, on the same machine during similar time.

Table 1 shows results from the comparison of our GA with both algorithms
GA1 and GA3, that were executed on a SUN 10/41 running Solaris Operating
System. Our GA was run on a Pentium IV at 1.7 Ghz running Windows OS, so
that it evaluates the same number of chromosomes (about 10000) and the same
number of trials (50) were done. In order to do that we have run the GA with
the following parameters: 100 chromosomes in the population, 140 generations,
pc = 0.7, pm = 0.1 and δ = 1 in G&T algorithm. The neighborhood is N3 as
in GA3. In average the running time of GA3 is 6 times the running time of GA
if the same number of chromosomes is evaluated. The whole set of experiments
was made only one time. Regarding mean values of the 50 solutions, GA is better
than GA1 in all 12 cases, and also is better than GA3 in 9 cases and quite similar
in 3. However for the best of the 50 solutions GA3 is better in 6 cases, while GA
is better in 3. The best values reached for GA1 are not reported in [8].

Table 2 shows results from the comparison of GA with BB. In this case the
neighborhood N4 was used. As we can observe, in every case GA reached much
better mean solutions than BB, with only one exception (ft10) where BB reached
the optimal solution. In these experiments we have used populations of 200
chromosomes and also a number of 200 generations.
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Table 1. GA with N3 vs. GA3 and GA1

Problems Avg. GA1 Best GA3 Avg. GA3 Best GA Avg. GA

ABZ7(665) 687.9 668 682.9 670 678.74
ABZ8(670) 699.6 684 696.2 683 692.16
ABZ9(665) 716.2 702 712.6 694 707.6
FT10(930) 959.1 930 943.7 930 934.82
FT20(1165) 1181.9 1165 1180.3 1165 1176.58
LA21(1046) 1070.0 1047 1059.4 1053 1055.86
LA24(935) 955.9 938 945.3 938 945.98
LA25(977) 990 .0 977 986.6 978 984.34
LA27(1235) 1265.7 1236 1261.6 1248 1261.26
LA29(1153) 1212.1 1180 1199.9 1167 1193.16
LA38(1196) 1235.2 1201 1222.5 1207 1220.62
LA40(1222) 1258.0 1228 1243.7 1233 1243.62

Table 2. GA with N4 vs. BB

Problems Best GA Avg. GA CPU-GA BB CPU-BB

ABZ7(665) 669 673.6 139.98 726 160
ABZ8(670) 674 683.83 161.50 767 162
ABZ9(665) 688 695.37 158.37 821 160
FT10(930) 930 932.13 17.45 930 22
FT20(1165) 1165 1171.93 46.63 1179 60
LA21(1046) 1052 1054.17 32.29 1117 60
LA24(935) 938 942.50 30.91 1009 60
LA25(977) 977 981.37 37.60 996 60
LA27(1235) 1240 1252.47 86.89 1349 90
LA29(1153) 1164 1175.07 82.86 1242 90
LA38(1196) 1202 1210.10 55.36 1295 60
LA40(1222) 1230 1239.70 60.82 1283 90

6 Concluding Remarks

We have proposed a GA that combines decoding into the space of active sched-
ules and local search in the space of semi-active schedules. The reported ex-
perimental results demonstrated that GA is better than GA1, which exploits
semi-active scheduling for both decoding and local search. Furthermore the GA
is quite competitive (even better in average) with GA3, which is one of the most
outstanding methods in solving JSS problems. We have also experimented with
decoding with a semi-active schedule builder. In this case, if the same parame-
ters were used, the GA reached better solutions, but the computation time were
much larger as well. This is due to the local search (either N3 or N4) has more
chances for improving. However, in the same amount of time, the GA with ac-
tive scheduling reaches better results that the GA with semi-active scheduling.
Moreover we have compared GA with the BB procedure proposed by Brucker et
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al. This algorithm is the best exact approach proposed so far and is able to solve
to optimality many instances up to a size of 15 × 15. In this case GA clearly
outperforms BB in solving the selected instances. We have done experiments
(not reported here) with much larger problem instances and the results of GA
were even much better. Hence the proposed GA is quite competitive with the
most efficient methods for solving JSS problems.
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Inst. of Computer Engineering, Control and Robotics, Wroclaw Univ. of Technology,
Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

iwona.duleba@pwr.wroc.pl

Abstract. The model of phenotypic evolution is considered where a
population is ruled by proportional selection and normally distributed
mutation. Expected values of the population state generate a discrete
dynamical system. The system displays various asymptotic behavior de-
pending on a fitness function and a mutation parameter. Stable fixed
points, period-doubling bifurcations and chaos are observed. Lyapunov
exponents are used to detect chaos in the system for some fitness
functions.

1 Introduction

Optimization methods based on natural evolution rules (evolutionary algo-
rithms) are very popular recently. Despite of usefulness, their theoretical foun-
dations are frequently very weak. The methods are indeterministic, often based
on heuristics, so proving their properties is very cumbersome. Many approaches
to the algorithms’ analysis can be found in the literature. Vose [11] proposed dy-
namical system models of genetic algorithms and showed the expected behavior
of the algorithms for infinite populations. For phenotypic evolution the dynami-
cal system model was developed in [1,3]. The model was successfully applied to
study very small (two-elements) populations evolving in one-dimensional real-
valued infinite search space [4,5,6,7,8]. The reproduction process is ruled by the
proportional selection and normally distributed mutation. Usually, populations
are regarded as assembles of individuals in the space of individual traits. In this
model, populations are considered in a space where every point describes a state
of the whole population. When regarding populations in the space of population
states, expected values of the states generated a dynamical system. An asymp-
totic behavior of the system was studied for some fitness functions. Fixed points
of the system can be stable or unstable, periodic orbits and chaotic behavior were
observed in simulations as well. In the reported research Lyapunov exponents
are applied to detect chaos in the system.

Although there are many approaches to detect chaos (time series examination,
an auto-correlation function, phase portraits, the Fourier series), the exponents
seem to be the most informative as they provide not only qualitative but also
quantitative insight into chaotic phenomena.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 380–389, 2006.
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2 Discrete Dynamical System

The model of phenotypic asexual evolution with the m-element population evol-
ving in n-dimensional continuous real search space was introduced in [2]. Each
individual xxx is described by the n-dimensional vector of traits and quality index
q(xxx). Reproduction is composed of two phases: proportional selection followed
by normally distributed mutation (determined by the standard deviation of mu-
tation parameter σ). The population is considered in a space of traits T = Rn,
where each point represents an individual.

Alternatively, the population can be regarded in the space of population states
S. In this space every point describes the whole population, thus dim(S) = m ·n.
As evolution of the population should not depend on ordering of individuals
within the population, the equivalence relation U is defined to make states inde-
pendent on permutations of individuals. The space S equipped with the equiv-
alence relation is reduced to the factor space SU :

U : S → SU = Rn·m/U ∈ Rm·n. (1)

We concentrate on the simplest case of evolution when two-element populations
(m = 2) evolve in one-dimensional search space (n = 1). The space of population
states is easy to visualize in this case. The equivalence relation sets individuals
x1 and x2 in decreasing order, thus the state space SU ∈ R2 is identified with
the half-plane SU = {(x1, x2) : x1 ≥ x2}, bounded by the line x1 = x2 called
the identity axis. A rotation of the coordinate frame X1X2 facilitates an ana-
lysis of the process. Counterclockwise rotation around the axis perpendicular to
the plane X1X2 (and passing through the origin of the frame) by the angle π/4
transforms coordinates as follows w = (x1 − x2)/

√
2, z = (x1 + x2)/

√
2. The

rotation converts space SU into right half-plane, i.e. sss = (R+ % w, z ∈ R). The
coordinate w is a measure of populations diversity and describes a distance of
the population state from the identity axis. The coordinate z situates a state
along the identity axis.

In papers [3]-[8] we argued that instead of modeling evolution of the popu-
lation it is instructive and much easier to trace its average (expected) behavior
preserving its qualitative and quantitative features. Moreover, expected values of
position coordinates (w, z) of the population state E(w|sss), E(z|sss) in the (i+1)st
generation can be calculated analytically based on the current state sss and pa-
rameters of the evolution (the standard deviation of mutation and parameters
of the fitness function used). In the space SU the expected values generate two
dimensional discrete dynamical system

sssi+1 = FFF (sssi) =
(
F1(sssi) = Ei+1(w|sssi)
F2(sssi) = Ei+1(z|sssi)

)
, sssi =

(
wi

zi

)
, (2)

described by the equations{
wi+1 =

√
2
πσ + (1− Ψi

2) · σ · θ(wi

σ )

zi+1 = zi + Ψi · wi

(3)
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where

q1 = q(
w + z√

2
), q2 = q(

z − w√
2

), Ψ(w, z) =
q1 − q2
q1 + q2

, Ψi = Ψ(wi, zi),

φ0(ξ) =
1√
2π

(exp
(
−ξ2/2

)
− 1), Φ0(ξ) =

1√
2π

ξ∫
0

exp(−t2/2)dt,

θ(ξ) = φ0(ξ) + ξ · Φ0(ξ).

3 Asymptotic Behavior of the Dynamical System

The asymptotic behavior of dynamical system (3) was studied for a large class of
uni- and multimodal, symmetrical and asymmetrical fitness functions [4,5,6,7,8].
Fixed points of the system (3), derived from conditions FFF (sss) = sss, are character-
ized by equations

ws ∼= 0.97 · σ, (4)

Ψ(ws, zs) = 0. (5)

The w-coordinate of fixed points (4) depends only on the standard deviation of
mutation. The z-coordinate (5) depends on a fitness function and it satisfies the
condition q((zs + ws)/

√
2) = q((zs − ws)/

√
2). The number of fixed points is

determined by the fitness modality and by the standard deviation of mutation.
For uni-modal fitness functions, dynamical system (3) has one fixed point. For
symmetrical functions, the fixed point is located on the symmetry axis. The
asymmetry in fitness function influences only the value of the z-coordinate of
the fixed point. For a fitness function with k optima the system has odd number
of fixed points, no more than 2k + 1. The points are located in the vicinity of
optima and saddles of the fitness. The number of fixed points decreases as the
value of σ is increased.

The linear approximation matrix for dynamical system (3) at fixed points
(ws, zs) is diagonal and its eigenvalues are equal to(

λ1
λ2

)
=
(

Φ0(ws)
ws · ∂Ψ(w,z)

∂z |(ws,zs) + 1

)
. (6)

Because |λ1| < 1, the fixed point stability depends on the second eigenvalue,
which is determined by the fitness function (via the function Ψ) and the standard
deviation of mutation (via ws). Fixed points located near saddles of the fitness
are always unstable [8]. Optima fixed points are usually stable for small values
of the parameter σ and lose their stability as σ is increased. For large σ the fixed
point becomes unstable and a period-doubling (pitchfork) bifurcation occurs,
giving rise to a stable orbit of period 2. For asymmetrical fitness functions series
of period-doubling bifurcations leading to chaos were discovered (Fig. 1.1b,1c).
The effect of period-doubling bifurcations depends on degree of asymmetry and
manifests itself clearly for functions with distinct asymmetry.
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4 Chaos Detection with Lyapunov Exponents

The period-doubling bifurcations and chaos were revealed in numerical experi-
ments. In the simulations the system was iterated many times until stable/un-
stable behavior was observed. It is not a very accurate method of detecting chaos
in a dynamical system. More reliable method of discovering chaos is to compute
Lyapunov exponents [9,10]. Lyapunov exponents are used to verify sensitivity of
trajectories on varying slightly initial conditions. In fact the maximal, dominant
Lyapunov exponent is of primary importance as it determines the worst behavior
of the system. Although Lyapunov exponents are not the only tool used to check
for chaos (auto-correlating parts of a trajectory, checking spectrum of energy in
the signal, and verifying behavior of the Poincare map around an orbit are the
other features to check [10]), they have a good theoretical and analytical back-
ground. Note that the dominant Lyapunov exponent exceeding zero does not
necessary mean that chaos is detected. However, in typical situations it is really
the case. The dominant Lyapunov exponent is computed from the formula

λ =
1
N

lnμmax(DFFFN (sss0)) (7)

where μmax(A) is the maximal absolute value among eigenvalues of the matrix
A and DFFFN is the accumulated, in N steps, the Jacobi matrix of the map FFF

DFFFN (sss0) = DFFF |FFF N−1(sss0) ·DFFF |FFF N−2(sss0) · . . . ·DFFF (sss0) =
N∏

i=1

DFFF (F i−1(sss0)), (8)

where sss0 is an initial state, FFF 0(sss) ≡ sss and

DFFF =
∂FFF

∂sss
=

(
∂FFF 1
∂w

∂FFF 1
∂z

∂FFF 2
∂w

∂FFF 2
∂z

)
. (9)

The Lyapunov exponent λ, is useful to differ various types of orbits. For λ < 0 a
fixed point or a periodic orbit is stable. Such systems exhibit asymptotic stability,
the more negative the exponent, the wider stability margin. For λ = 0 a fixed
point is neutral. The system is in some sort of steady state mode. Such systems
display Lyapunov stability. For λ > 0 a fixed point is likely unstable and chaotic.

Lyapunov exponents were computed for system (3) and two uni-modal and
one bimodal fitness functions. The uni-modal functions are represented by the
family of tent functions given by

q(x) =

⎧⎪⎨⎪⎩
x/A+ 1 for x ∈ [−A, 0), A > 0
−x/B + 1 for x ∈ [0, B], B ≥ A
0 otherwise,

(10)

and Gaussian functions

q(x) =

{
exp(−a1x2) for x ≤ 0
exp(−a2x2) for x > 0.

(11)



384 I. Karcz-Dulȩba
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Fig. 1. Bifurcation diagram (1) and the dominant Lyapunov exponent (2) as the func-

tion of σ for: a) the symmetrical Gaussian function, a1 = a2 = 5; b) the asymmetrical

Gaussian function, a1 = 1, a2 = 0.05; c) the asymmetrical tent function, A = 1,

B = 2.5
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Fig. 2. Bifurcation diagram (1) and the dominant Lyapunov exponent (2) as the func-

tion of σ for the bimodal Gaussian function (12) (a1 = 5, a2 = 50, h = 2), and two

initial states a) (0.8, −0.6), b) (0.5, 1). In the panel 1a) squares/stars come from the

first/second initial state, marked with circles.

Depending on values of parameters (A, B or a1, a2) the fitness functions can
be symmetrical or asymmetrical. The only fixed point of system (3) becomes
unstable for large values of σ and the orbit of period 2 appeared (Fig. 1.1a). The
period-doubling bifurcations and chaotic behavior is discovered for the functions
with distinct asymmetry (B ≥ 1.5A, a2 < 0.1a1) (Fig. 1.1b,1c) [6].

The sum of two Gaussian functions exemplifies bimodal fitness

q(x) = exp(−a1x2) + h · exp(−a2(x − 1)2). (12)

For h > 1 the second Gaussian peak sets the global optimum. For equi-width
peaks (a1 = a2), the dynamical system has got two stable optima fixed points and
one unstable saddle fixed point for small values of σ. As the standard deviation
of mutation increases, the local optimum fixed point vanishes and only global
ones remains. For large σ the periodic orbit is observed. When a2 > a1, the
attraction region of the global optimum is smaller than the region of the local
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Fig. 3. The dominant Lyapunov exponent λ as the function of the number of iterations

(iter = N), initial state (0.6, 1.0), fitness (11) with a1 = 1, a2 = 0.05, and varied

mutation parameter: a) σ = 3.1, b) σ = 3.85, c) σ = 3.9, d) σ = 3.95

optimum, as the global peak is narrower. The asymmetry in hills width results
in chaotic behavior of dynamical system (3) (Fig. 2.1a) [8].

For the system (3), the bifurcation diagram and the dominant exponent as
the function of the standard deviation of mutation are provided in Figs. 1 (uni-
modal fitness (10), (11)) and in Figs. 2 (bimodal fitness (12)). For bimodal
fitness, diagrams of the Lyapunov exponents are presented (Fig. 2.2a,2b) for two
initial states taken from the region of attraction of the local, sss0 = (0.8,−0.6),
and the global optimum, sss0 = (0.5, 1.0). 200 iterations were performed to draw
each point on the Lyapunov exponent characteristics. Comparing left and right
panels in Figs. 1 and 2 one can observe that bifurcations rising periodic orbits are
easy to detect when the Lyapunov exponent characteristics touch the horizontal
axis (λ = 0). Chaotic behavior, clearly visualized on the bifurcation diagrams,
manifests itself when the line λ = 0 is crossed upwards. Although the Lyapunov
exponents are not fast to compute, they can be computed much faster than data
required to draw bifurcation diagrams.
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Fig. 5. The dominant Lyapunov expo-

nent as the function of mutation param-
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from the rectangle w ∈ [0.1, 1], z ∈ [−1, 1]

for the fitness (11) with a1 = 1, a2 = 0.05.

100 iterations performed. Solid/dotted

line - maximal/minimal value of the dom-

inant Lyapunov exponent over all initial

states.

It is instructive to analyze the impact of various parameters on the domi-
nant Lyapunov exponent. Simulations were performed for uni-modal Gaussian
function (11) (a1 = 1, a2 = 0.05). In Fig. 3 the dominant Lyapunov exponent
is presented as the function of the numbers of iterations (N) to compute λ for
different values of standard deviation of mutation σ. The values correspond to:
the stable fixed point σ = 3.1, orbits of different periods σ = 3.85, σ = 3.9
and chaos σ = 3.95. For small numbers of iterations the dominant Lyapunov
exponent varies significantly. A few hundreds of iterations are usually necessary
to draw reliable conclusions. However, to determine orbits of large periods more
iterations are required. In the cases characteristics λ(N) very slowly and with
small amplitude jumps tends to cross the line λ = 0. The more detailed diagram
for small number iterations (σ = 3.85) is presented in Fig 4 which displays also
periodic phenomena. For most of σ values, the exponent λ stabilizes itself after
about 200 iterations. The influence of initial states on λ is depicted in Fig 5. 10
initial states were randomly chosen from the rectangle w ∈ [0.1, 1], z ∈ [−1, 1]
and for each the dominant exponents was computed. The difference between
minimal (dotted line) and maximal (solid line) values of the dominant Lyapunov
exponent over all initial states displayed in Fig 5 reveals that initial states prac-
tically do not impact λ. Theoretically the dominant Lyapunov exponent should
be computed for a large number of iterations. In this case the transient interval
(and initial conditions) should not impact the dominant exponent. In practical
situations, the number of iterations is restricted. In Fig 6 plots λ(σ) are pre-
sented for two values of the number of iterations N = 200, 400. In order to check
whether the transit interval is important, the characteristics are presented in
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Fig. 6. The dominant Lyapunov exponent as the function of mutation parameter σ; the

initial state (0.5, 1.0), fitness (11) with parameters a1 = 1, a2 = 0.05, and the number

of iterations to compute the exponent a) 200 b) 400, solid/dotted line - with/without

omitting first 200 iterations

two variants with and without considering the first 200 iterations. It appears
that the transient interval does not impact the dominant Lyapunov exponent
significantly as well as omitting the very first few hundreds of iterations.

5 Conclusions

Criteria used to detect chaos in dynamical systems are not decisive and checking
any of them is not sufficient to prove chaotic behavior of the systems. In this
research Lyapunov exponents were used to detect chaos for the discrete dynami-
cal system generated by phenotypic evolutionary process. Presented simulations
confirmed that for asymmetrical fitness functions and large values of standard
deviation of mutation parametr σ, chaos appeared easily. Also bifurcation val-
ues of σ were easy to detect. Generally, if the number of iterations was sufficient
enough (in the simulations a few hundreds), the accuracy of computing the
dominant Lyapunov exponent did not depend on parameters (initial states, the
number of iterations to compute the exponent, omitting some first iterations).
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Abstract. In solving highly dimensional multi-objective optimization
(EMO) problems by evolutionary computations the concept of Pareto-
domination appears to be not effective. The paper discusses a new
approach to EMO by introducing a concept of genetic genders for the
purpose of making distinction between different groups of objectives.
This approach is also able to keep diversity among the Pareto-optimal
solutions produced.

1 Introduction

Evolutionary computation EC [4], [5], [6], [20], [19], based on emulation of the
evolution of biological systems, has turned up to be one of the most successful
means of solving optimization problems [2], [6], [9], [13], [17] including those
characterized by the possible discontinuity or multi-modality of partial objective
functions.

ECs are most valued in solving difficult multi-objective optimization prob-
lems, where several objectives globally optimized at the same time [5], [17], [19],
[20], [24]. Such tasks are though difficult to perform, as the notion of optimal-
ity is not obvious. In assessing the merit of solutions [5], [14], [20], the concept
of optimality in the Pareto sense is usually applied. Its non-uniqueness can be
straightforwardly utilized during EC runs. At the end, however, this idea of opti-
mality does not give any hints as to the choice of a single solution from amongst
the final Pareto-optimal solutions. The problem is even more complicated when
the objectives are defined in a highly dimensional vector space.

In this paper we present a genetic-gender approach GGA [11], [12], [13] to
solving multi-objective optimization (EMO) problems by evolutionary search.
The concept is based on the information about a degree of membership to a
given gender [11], [12], which is attributed to each solution being evaluated.
This information is appropriately utilized in the process of parental crossover,
in which only individuals of different genders are allowed to create their
offspring.

As compared to other methods our approach is fairly simple, sticks to the
very basics of the GA/EC methodology, more profoundly utilizes hints from
the nature, fulfills the requirements of technical designs, and is open to other
amendments and developments proposed in the literature.
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2 Multi-objective Optimization Problem

The issue of simultaneous optimization of several objective functions is most
critical in solving theoretical and practical tasks [2], [14], [17], where the designer
has to make a choice from amongst equivalent ‘optimal’ solutions [16].

Consider a general multi-objective optimization problem formulated as a
multi-profit maximization task without constrains:

max
x

f(x), (1)

x =
[
x1 x2 . . . xn

]T ∈ �n, n ∈ ℵ, (2)

f(x) =
[
f1(x) f2(x) . . . fm(x)

]T ∈ �m, m ∈ ℵ. (3)

To integrate those objectives, it is necessary to define the relations (or
weights) between the partial objectives considered. For the purpose of solv-
ing such optimality problems, various methods have been proposed, including
weighted profits [20], distance functions [20], sequential inequalities [23], or rank-
ing with reference to Pareto-optimality [4], [5], [10], [11], [12], [13], [14], [17],
[19], [22].

The substance of the first three methods lies in direct integration of many
objectives into one submitted to optimization by using an arbitrary choice of
the weighting vector, demand vector or limit values for the objective functions.
Such choices are not always straightforward. They also definitely restrict and
simplify the multi-objective optimization problem. In contrast to the above,
the ranking method using the notion of Pareto-optimality avoids the arbitrary
weighting of the objectives. Instead, a useful classification of the solutions is
applied that takes into account particular objectives more objectively. Namely,
with maximization tasks in mind, the solutions can be classified as dominated
and non-dominated (Pareto-optimal). According to such an assessment, each
individual is assigned a scalar rank representing its degree of domination. Thus,
in practice, in assessing the merit of its solutions the concept of optimality in
the Pareto sense and the related ranking method [5], [14], [16], [20] are usually
most suitable.

Global Optimality. The Pareto-based ranking does not, however, give any
directions as to the choice of a single solution from amongst the Pareto-optimal
solutions found. In order to utilize that freedom, a development of the ranking
methodology was proposed [10], [14], where the profit vector of each solution
is mapped to a scalar global optimality level GOL, which equals a minimal
co-ordinate of the vector. This approach permits a practical elimination of the
issue of the ambiguity of final Pareto-solutions. What is important, problematic
P-optimal solutions of high dimensional spaces which maximize only some cri-
teria can then be easily ruled out.
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3 The Genetic-Gender Approach

While considering multi-objective optimization problems one always has to be
aware of the issue of dimensionality. It is well known that when the space of
the objectives has a higher dimension many individuals fall within the category
of being P-optimal, i.e.mutually equivalent in the Pareto sense. The same rank
implies that they are indistinguishable from the P-optimality viewpoint. An
outer effect of such a state of the Pareto assessment discussed is a low number
of Pareto-fronts that obstructs distinction, estimation and ordering of solutions.
This, in particular, means that during the process of selecting individuals to new
generations the Pareto-based ranking is ineffective leading to a stochastic search
with no ‘conscious’ progress.

On the other hand, when one confines the scope of optimality by reduc-
ing the dimension of the analyzed objectives space, the ability of the Pareto
optimality method to differentiate between different individuals is facilitated
[11], [12].

Another motivation is the fact that, practically, there have been only direct
estimates of the fitness functions applied in the reproduction process of the GA
algorithms. This means using solely the concept of one ‘unisex’ parental pool,
unlike within the species met in the earth nature.

3.1 Recognition of the Genetic Gender

In nature the gender division of a species appears to differentiate individuals with
reference to reproductive functions. According to this division, our concept of
an artificial genetic gender (GG) consists in dividing the objective functions into
several subsets, each of which has an attributed genetic gender Xj (j = 1, 2, ..., s)
and portrays a partial-scope optimality value (a certain utility interpretation for
the designer).

In this way, one gender set (Xj) can be constituted by objectives of a ‘similar’
character that are in a kind of internal/secondary rivalry (in terms of an equal
meaning to the user from his point of view). Such an assortment can effectively
discharge the designer from the task of the final isolation of a single solution from
amongst all the Pareto-suboptimal ones obtained in the course of multi-objective
optimization.

On the other hand, different gender sets can express various groups of ‘in-
terests’ that are difficult to be judged by the user in advance. In general, this
division can be employed to represent an external/primary rivalry, which is not
simple to be resolved (in such cases the best method can be to use the notion of
Pareto-optimality).

Thus in our consequent approach, we propose using the mechanism of the
gender allotment during the whole computational evolution for the purpose of
creating several parental pools of different genders and generating new offspring
by mating only apparently dissimilar individuals.
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The vector of the profit functions (3) can therefore be divided into s-sub-
vectors

f(x) =
[
f1(x) f2(x) . . . fs(x)

]T ∈ �m, (4)

fj(x)T ∈ �mi , m =
s∑

i=1

mi. (5)

Each j-th subvector (j = 1, 2, ..., s) specifies the GG set of individuals labeled
by Xj. Within each of these sets, P-suboptimality-based ranking of individuals
is applied. In effect, each of the individuals is allotted a vector of ranks

r(x) =
[
r1(x) r2(x) . . . rs(x)

]T ∈ �s. (6)

According to the proposed GG approach (GGA), a genetic gender li is assigned
to each individual xi in the population by computing the following:

rjmax = max
i=1,2,...,N

{rj(xi)} , (7)

ϕj
i =

rj(xi)
rjmax

, (8)

li = arg max
j=1,2,...,s

ϕj
i , (9)

ϕi = max
j=1,2,...,s

ϕj
i . (10)

where ϕi is the obtained highest degree of suboptimality, meaning a (fuzzy)
measure of the memberships of the i-th individual to the li-th variant of the
genetic gender, while the symbol rjmax denotes the maximum rank from amongst
all individuals with respect to the j-th subcriterion (Xj).

The method of selecting parental pools is carried out according to the stochas-
tic -remainder method [5], [14], [17] based on the highest degrees of the member-
ship to the gender set considered. The population of each gender-set is monitored
in terms of an assumed minimal number of members (N/(3s), for instance). The
lacking positions can be filled up with individuals from the lowest Pareto front
of another gender set which have been waived in the course of the GG selection
process.

It is thus clear that introducing the GG approach we alleviate the issue of
dimensionality by atomizing the scope of optimality and restricting the dimen-
sion of the spaces being considered. We can easily anticipate that this manip-
ulation will produce a greater number of Pareto fronts leading to a measur-
able diversity of the generated subpopulations and to an improved effectiveness
of the genetic search into the ‘directions’ of both the partial and full scope
objectives.
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Fig. 1. GA search: Optimal solutions found in the space of the sought objectives

4 Illustrative Example

Let us now consider an abstract example of a two-dimensional vector of criteria:

min
x

f(x) = min
x

[f1(x) f2(x)] , (11)

f1(x1, x2) = (x1 + 50)2 + x2
2, (12)

Fig. 2. Full-scope GA search: Optimal solutions against the co-domain of available

two-dimensional objectives
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Fig. 3. Gender GGA search: Optimal solutions in their domain (the searched space)

f2(x1, x2) = (x1 − 50)2 + x2
2. (13)

and x ∈ �2 is the optimized vector. The structure of this criterion allows
a natural division into two singular GG sets, representing the two objectives
of (11).

The results of a classical evolutionary quest for solutions minimizing the full-
scope two-objective function are illustrated in Figs. 1 and 2. Fig. 1 portrays
the objective functions projected on the two-dimensional searched space in the
form of circles of equal values, with the non-dominated and dominated solutions
marked by the full squares and the empty squares, respectively. Fig. 2 presents
the co-domain of the transformation f(x) defined by (12), or, equivalently, the set
of all vector costs obtained by scanning the domain �2[-100,100] of all admissible
solutions. Within this area, the 31 P-optimal individuals finally selected are
marked by the full squares, while the dominated individuals are represented by
the empty squares.

The same experiment has been performed for the GG modification of the
EC, and the GGA results are shown in Figs. 3 and 4, where the Pareto-optimal
individuals of different genders are marked with the seven full circles and the
four full triangles.
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Fig. 4. Gender GGA search: Achievements of the optimal solutions (in their co-domain)

The individuals of the first and the second gender obtained after 100 steps of
the GGA optimization process are shown in Fig. 3 by means of the circles and
the triangles, respectively, on the background of the equal-cost circles projected
on the two-dimensional parameter space.

As can be seen from the above results, the GGA method of restricting the
crossover possibilities of the genetic algorithm proved useful in coping with the
questions of convergence and diversity.

5 Conclusions

The proposed GGA method of solving EMO problems is based on the recognition
of genetic genders. Information about a degree of membership to a given gender
set is extracted in the Pareto-suboptimal process of ranking the fitness functions
of the analyzed solutions. This information is exploited in the crossover process
of mating, in which only individuals of different genders are allowed to create
their offspring.

An instructive feature of the proposed multi-optimization approach is the
way of utilizing the Pareto-optimization results. Namely, within each gender set
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the Pareto-optimization is used as an effective tool of suboptimal judgment of
the ‘internal’ single-gender rivals for the purpose of their uniform estimation
and selection (in a greater number) to the new parental subset (and to the
next generation) in each iteration cycle of evolutionary computations (or genetic
algorithms, GA). It is worth emphasizing that despite of relying on this limited
perspective the very notion of the set-fitting P-suboptimality is entirely clear
and practically adequate.

The method can be interpreted in terms of: (a) a new mechanism of
pre-selecting both the transient and the final individuals, and (b) a mutual inter-
gender support in the genetic search. There are also several practical improve-
ments in the performance of ECs gained by GGA (as opposed to the classical
Gas), which appear in terms of: sensitivities to initial conditions and high dimen-
sionality, the number of Pareto fronts, solution diversity, convergence, optimality,
and the final selection.

The diversity, for instance, represents an attractive genetic ‘search power’,
based on both the internal and external rivalry of individuals, in a more rational
way than the popular niching mechanism [5], [20], [19], [17], [14], [7], [3], [8], [1]
(see also the literature in [15]).

A major success of the gender approach can be attributed to the fact that it
properly deals with a greater number of objectives by reducing the dimension-
ality of the Pareto-analyzed spaces. Observe that in the full scope optimization
case, due to a high dimension of the objectives space, the number of Pareto
fronts is strongly limited [13]. This means that many solutions are estimated as
equivalent from the Pareto-optimality viewpoint (i.e. they have the same rank).
As a result, the process of selecting individuals is not effective and the evolu-
tionary search is overly stochastic with no indications and progress in particular
directions represented by the stated criteria.

By introducing the GGA approach we solve the above issue by means of
restricting the dimensions of the objectives spaces and bringing about a greater
number of Pareto fronts within each gender population analyzed in subspaces
of restricted dimensions (i.e. solely in the space of the assigned gender objec-
tives). This leads to diversity among the individuals of the GGA subpopulations
that can be easily estimated and used in effectively pushing the evolutionary
exploration into the defined/desired directions on the basis of the achievable
distinctive ordering.

As compared to other methods our approach is fairly simple (in both terms
of conception and computation), sticks to the very basics of the GA/EC method-
ology, more profoundly utilizes hints from the nature, fulfills the requirements
of technical design and ultimate decision making, and – what is more – is com-
pletely open to other amendments and developments proposed in the literature
(see for instance [21], [5], [22], [7], [3], [4], [8], [1], [17], [10], [14], as well as the
bibliography in [15]).

Our approach is also entirely different from other propositions. Although
showing several instrumental (implemental) consequences, basically, the GGA
method has a conceptual nature consisting in the objective space decomposition



398 Z. Kowalczuk and T. Bialaszewski

of the initial problem (and the effective reduction of an originally highly-
dimensional problem). Nevertheless, it is interesting to see that the VEGA al-
gorithm [21] and others [18] have few limited similarities. Namely, their partial
parental pools can be assigned genders from a maximalm-element set, though it
does not make use of the Pareto optimality conception, its genders are not exclu-
sive (one individual can have a number of genders), and the crossover mechanism
has generally no gender restrictions.

For the purpose of making the final evaluation of the obtained outcomes,
the solutions can be ordered with the use of the global optimality index (GOL),
which gives a scalar measure of each solution relating to a common attainable
maximal value of all relative partial quality indices.
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Abstract. In the paper a new evolutionary algorithm for global induc-
tion of linear trees is presented. The learning process consists of searching
for both a decision tree structure and hyper-plane weights in all non-
terminal nodes. Specialized genetic operators are developed and applied
according to the node quality and location. Feature selection aimed at
simplification of the splitting hyper-planes is embedded into the algo-
rithm and results in elimination of noisy and redundant features. The
proposed approach is verified on both artificial and real-life data and the
obtained results are promising.

1 Introduction

Decision trees are, besides decision rules, one the most popular forms of knowl-
edge representation in data mining systems [8] and clones of the classical induc-
tion algorithms are included in almost all exploratory tools. The popularity of
the decision tree approach can be explained by their ease of application, fast
operation and what may be the most important, their effectiveness. Further-
more, the hierarchical structure of a tree classifier, where appropriate tests from
consecutive nodes are sequentially applied, closely resembles a human way of de-
cision making which makes decision trees natural and easy to understand even
for the not experienced analyst.

There are two main types of decision trees [17]: more common univariate
trees, where tests in non-terminal nodes use single features, and linear (oblique)
ones, where splits are based on the dividing hyper-planes. The most known
example of the first group is C4.5 [20] with its commercial version C5.0, whereas
LTree and OC1 [16] can be treated as good representatives of the second group.
There exist also heterogeneous systems, like the well-known CART [3], where
both forms of tests are permitted.

In univariate trees an inequality test is equivalent to partitioning the feature
space with an axis-parallel hyper-plane. However in many real-life problems de-
cision borders are not axis-parallel and the use of only simple tests may lead to
over-complicated classifiers (so called ”staircase effect”). In such a situation, a
piece-wise linear solution offered by an oblique tree is much more natural and
appropriate. The richer representation of linear trees gives one the opportunity
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to find simpler and more accurate classifiers. However, it should be mentioned
that induction algorithms for this type of decision tree are computationally more
complex.

Nature-inspired techniques like evolutionary computation [15] are known to
be especially useful in difficult optimization tasks and they are successfully ap-
plied to various data mining tasks [9]. As for decision tree learning there are two
main approaches to the induction: top-down and global. The first one is based
on a greedy recursive procedure of test searching and sub-node creation until the
stop condition is met. In contrast to this classical method, the global algorithm
searches for both the tree structure and tests at the moment. Evolutionary meth-
ods were applied for both induction types and both tree types. In the framework
of univariate trees, most of the research was concentrated on global induction
(e.g. [11,18,19,14]), whereas for linear trees mainly top-down methods were de-
veloped, where only splitting hyper-planes in internal nodes were evolutionary
searched (e.g. [5,4,12]). In [2] genetic programming was applied to induce classi-
fication trees with limited oblique splits.

In this paper we focused on the global learning of linear decision trees with
embedded feature selection. In real applications, data gathered in operational
databases, which are used as a learning set, often contain irrelevant or redun-
dant features. The overall performance of the decision tree can be improved
by noisy feature elimination and test simplification. Furthermore, the ability to
understand and properly interpret the classifier can be increased.

The rest of the paper is organized as follows. In the next section the proposed
approach is described. Section 3 presents experimental verification with both
artificial and real-life data. In the last section, the paper is concluded and future
research directions are outlined.

2 Evolutionary Algorithm for Global Induction of
Oblique Decision Trees

The structure of the proposed approach follows the typical evolutionary algo-
rithm framework as described in [15]. The algorithm can be seen as a contin-
uation and significant extension of the work presented in [13]. Due to lack of
space, we gave most of our attention to new issues introduced in this work: a
new scheme of applying genetic operators and embedding feature selection into
the induction process.

2.1 Preliminaries

A learning set is composed of M N -dimensional feature vectors xj = [xj
1, ..., x

j
N ]T

(j = 1, ...,M)(xj ∈ RN) belonging to one of K classes. The feature space can
be divided into two regions by a hyper-plane:

H(w, θ) = {x : 〈w,x〉 = θ}, (1)
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where w = [w1, ..., wN ] (w ∈ RN) is a weight vector, θ is a threshold and 〈w,x〉
represents an inner product. A linear decision tree is a binary tree with splitting
hyper-planes in internal nodes and class labels in leaves.

2.2 Genetic Operators

In the majority of evolutionary approaches there are two types of genetic op-
erators applied to individuals: mutation, which affects single chromosome and
cross-over, which enables exchange of genetic information among two chromo-
somes. In a typical setup, a mutation-like operator is applied with equal and
relatively small probability to any gene of the chromosome. In [13] we followed
this scheme and every node of the tree has the same chance of being modified.
However, it seems that this approach is not really appropriate for the non-linear
and hierarchical structure of the decision tree. It is evident that modification of
the test in the root node is very crucial because it affects all descendant nodes,
whereas mutation of a node near leaves has only a local impact. It was also ob-
served that for small trees mutations were very rare and this significantly slowed
down the induction process. Furthermore, mutations of certain nodes, like leaves
with feature vectors from only one class, are not profitable at all and should
be avoided.

A new complex mutation-like operator is introduced to avoid the aforemen-
tioned shortcomings. It is applied with a given probability (default 0.5) to a
tree and it guarantees that at least one node will be mutated. First, the type of
the node (a leaf or an internal node) is randomly chosen with equal probability.
Then the ranked list of nodes is created and a mechanism analogous to rank-
ing linear selection [15] is applied to decide which node will be affected. While
concerning leaves, the number of feature vectors from other classes than the de-
cision assigned to the leaf (i.e. number of objects misclassified in this node) is
used to put them in order. Additionally, homogeneous leaves (with objects only
from one class) are excluded from the list. As a result, leaves which are better in
terms of the classification accuracy are mutated with lower probability. As for
internal nodes, locations (the level) of the node in the tree is taken into account.
It allows us to mutate with higher probability nodes, which are situated on the
lower levels of the tree. In Fig. 1 an example of constructing the ranking lists of
leaves and internal nodes is presented.

When one node is chosen, possibilities of applying different variants of the
mutation are checked and one of them is randomly chosen according to its rel-
evance to the node and to the given probability. Among considered possibilities
are:

– changing the role of the node (i.e. pruning an internal node to a leaf or
replacing a leaf by a sub-tree);

– the dipolar operator introduced in [12]. It starts with the random choosing
of one dipole1 from the set of not-divided mixed dipoles and divided pure

1 A mixed dipole is a pair of feature vectors from different classes, while in pure dipole
both objects belong to the same class.
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Ranking of leaves

Ranking of internal nodes

Leaf Prob

Node Prob

L5 0.17

L4 0.33

L2 0.5
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N1 0.13

N2 0.25

N3 0.37
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Fig. 1. The construction of two ranking lists of nodes (separate list for leaves and

internal nodes) for the mutation operator

ones. If the mixed dipole is drawn, the hyper-plane is shifted to cut it. A
new position is obtained by modification of only one randomly chosen weight
(or threshold). In case of the pure dipole, the hyper-plane is shifted to avoid
separation of objects from the same class and similarly as for mixed dipoles,
only one coefficient is modified.

– the classical modification of a single weight of the hyper-plane; in relation
to feature selection the probability of dropping a feature (i.e. assigning zero
value to a weight) was increased because in the real value representation the
number zero has extremely low probability;

– tests from the node and one of its sons are interchanged. This variant can be
applied only if at least one son of the considered node is also a non-terminal
node.

– one sub-tree can be replaced by another sub-tree from the same node;
– a test can be replaced by an entirely new test, which is chosen in a dipolar

way [12]. One mixed dipole is randomly chosen and a hyper-plane is placed
to split it. More precisely the hyper-plane is perpendicular to the segment
connecting opposite ends of the dipole. The same method is applied for
finding splitting hyper-planes during creation of an initial population.

In the presented system, there is also an operator analogous to the standard
cross-over. One node is randomly chosen in each of two affected individuals and
an exchange encompasses a sub-tree or is limited only to nodes (their hyper-
planes). Additionally if both nodes are non-terminal ones, the typical one-point
cross-over is applied on weight vectors and thresholds. In other cases nodes are
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just substituted. It should be however noted, that according to the results [9]
obtained in the framework of genetic programming, where a solution is also en-
coded in a tree-like structure, the context-insensitive cross-over operator has a
rather destructive effect on the offspring. For that reason, the cross-over opera-
tor is applied with relatively low probability (default value is equal 0.2) in our
system.

The application of a genetic operator to a tree makes its part rooted in the
modified node invalid in relation to locations of the input feature vectors. For this
reason renewed determination of the locations is necessary. This process can lead
to a situation where certain nodes in the sub-tree are empty (or almost empty)
and have to be removed. Additionally maximization of fitness is performed by
pruning lower parts of the sub-tree on the condition it improves the value of the
fitness.

The problem which is directly connected with feature selection is “under-
fitting” the training data [6], which often occurs near the leaves of the tree.
The number of feature vectors used to search for a splitting hyperplane has
to be significantly greater than the number of features used. In the presented
system, the maximal number of features in a test is restricted using the number
of available training objects (default value is 5 objects for each non-zero feature
weight).

2.3 Fitness Function

A key issue for any decision tree induction algorithm is finding the appropri-
ate balance between the re-classification accuracy and the generalization power
related to the classifier complexity. In the classical top-down approach, the over-
fitting problem is mitigated by applying a post-pruning algorithm, but such a
method has only a limited possibility to restructure the tree [7]. In contrast,
the proposed evolutionary algorithm represents the global approach, where the
search for an optimal tree structure is a built-in element of the process, thanks
to a suitably defined fitness function. The fitness function, which is maximized,
has the following form:

Fitness(T ) = QReclass(T )− α · (Comp(T )− 1.0), (2)

where QReclass(T ) is the re-classification quality, Comp(T ) is the complexity
measure of the tree T and α is the relative importance of the complexity term
(default value is 0.005) and a user supplied parameter. Subtracting 1.0 eliminates
the penalty related to the complexity of the classifier when the tree is composed
of only one leaf - the root node.

The complexity term Comp(T ), which is crucial for effective feature selec-
tion, should reflect both the tree size (the number of nodes) and the complexity
of tests. This can be obtained by expressing Comp(T ) as a sum of test complex-
ities in the internal nodes and the number of leaves (for any leaf we assume that
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the complexity is equal 1.0). For the hyper-plane H(w, θ) the test complexity
Comp(w) can be defined as follows:

Comp(w) = (1− β) + β
n(w)
N

, (3)

where n(w) is the number of non-zero weights in the hyper-plane and β is a user
supplied parameter designed for controlling the impact of test complexity on the
tree size (default value = 0.5). When n(w) = N the test complexity is equal 1,
which means that no feature is eliminated from the test. If this condition is met
for all tests, Comp(T ) is equal to the number of nodes.

It should be noted that, when concerning a specific dataset, by tuning α and
β parameters better results can be obtained in terms of accuracy or classifier
complexity.

3 Experimental Results

Two groups of experiments are performed to validate the proposed approach
(denoted in tables as GDT). For the purpose of comparison, results obtained by
the well-known OC1 system [16] are also presented. Both systems were run with
default values of parameters. Presented in tables results correspond to averages
of 10 runs and were obtained by using test sets (when available) or by 10-fold
stratified cross-validation. The average number of leaves is given as a complexity
measure of classifiers.

In the first group, artificial datasets with analytically defined decision bor-
ders are analyzed. Analogous experiments are described e.g. in [16], but original
datasets are not available, hence similar configurations were generated by using
a random number generator (see Fig. 2). All these datasets are two-dimensional,
except LS5 and LS10 problems which are defined with 5 and 10 features corre-
spondingly. The number of feature vectors in the learning sets is 1000.

a) b) c)

Fig. 2. Examples of 2-dimensional artificial datasets: a) rotated chessboard, b) zebra1
and c) zebra3
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Table 1. Results obtained for artificial datasets. Classification accuracy [%] is given

as the quality measure and number of leaves as the tree size.

without noise 50% noise 100% noise
GDT OC1 GDT OC1 GDT OC1

Dataset Quality Size Quality Size Quality Size Quality Size Quality Size Quality Size

chess2 98.4 4 99.3 6 97.3 4.0 89.9 16 96.5 4.0 90.7 22
zebra1 99.1 4.1 98.2 8 98.7 4.1 97.8 8 98.3 4.0 96.7 8
zebra3 97.4 9.0 95.1 15 93.5 9.7 96.3 8 93.9 8.4 90.4 8
LS2 99.8 2 99.7 2 99.9 2 99.9 2 99.8 2 98.8 6
LS5 99.5 2 98.7 2 98.7 2 99.4 4 99 2 98.4 2
LS10 98.1 2.0 96 4 97.3 2.0 93.5 4 97.3 2.0 93.5 4

In order to check the robustness of induction algorithms and especially the
efficiency of the embedded feature selection, noisy features were added. They
were generated randomly without taking into account class labels and obviously
they are irrelevant to classification. Two levels of added noise are analyzed: the
number of noisy features is equal to the half of the original amount in the features
(denoted as ”50% noise”) and the number of additional features is equal to the
number of features in the original dataset (”100% noise”).

Results of experiments with artificial datasets are gathered in the Table 1. For
all domains GDT performed very well, both in terms of classification accuracy
and tree complexity. Compared to OC1 it was able to find simpler trees with
competitive accuracy. It is should be emphasized that GDT was also much more
robust for added noise than its rival. It can be observed that the accuracy of our
system is only slightly decreased, whereas OC1 performed significantly worse in
noisy scenarios.

One of the important innovations introduced in the paper is a new way of
applying mutation-like operators (i.e. mutation is applied to the tree and not
independently to nodes). It is rather difficult to analyze the impact of any single

a) b)
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Fig. 3. The performance of two mutation strategies on LS5 dataset: a) mutation of

nodes (5%), b) mutation of the tree (50%)
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Table 2. UCI datasets description. In brackets the number of feature vectors in the

testing set is provided when such a set is available.

Number of Number of Number of
Dataset examples features classes

breast-w 683 9 2
bupa 345 6 2
iris 150 4 3
page-blocks 5473 10 5
pima 768 7 2
sat 4435(2000) 36 7
vehicle 846 18 4
waveform 600(3000) 21 3

operator modification only by looking at the final classification results and more
detailed simulations are necessary. In Fig. 3 frequency and efficiency of two
types of mutation are compared in one typical run of the algorithm. All other
parameters except the mutation type are exactly the same. Performance of two
mutation strategies is presented on LS5 dataset because the optimal decision
tree for this problem is composed of only one internal node. It can be easily
observed that with the convergence of the search the mutation of nodes becomes
less frequent and effective, whereas the mutation of the tree performs equally
effectively and can finely fit the dividing hyper-plane position.

In the second series of experiments, a few datasets taken from UCI Machine
Learning Repository [1] are analyzed to assess the performance of the proposed
system in solving real-life problems. In order to avoid the problem of coding
nominal features and treating missing values the datasets with only continuous-
valued features and without missing values were chosen. Table 2 presents char-
acteristics of investigated datasets. Obtained results are gathered in Table 3.

The proposed system performed well on almost all analyzed datasets, but
its superiority over OC1 is not so evident as for artificial datasets. The worst

Table 3. Results obtained for real-life datasets from UCI repository. Classification

accuracy [%] is given as the quality measure and number of leaves as the tree size.

GDT OC1
Dataset Quality Tree size Quality Tree size

breast-w 96.7 2.0 95.3 3.0
bupa 68.8 3.5 67.5 6.9
iris 97.0 3.0 96.7 3.0
page-blocks 95.2 3.0 97.0 12.0
pima 75.6 2.1 72.6 5.1
sat 83.7 6.3 85.4 45.0
vehicle 67.6 8.2 70.2 15.4
waveform 82.4 4.2 78.0 3.0



408 M. Krȩtowski and M. Grześ

result was obtained by the GDT system with a default set of parameters for the
vehicle dataset. It was verified that significantly better classification accuracy
can be easily obtained just by relaxing the stoping condition. Finally, it was
once more confirmed that the global approach finds more compact trees with at
least comparable accuracy.

As can be expected, the induction times of EA-based system are longer that
its top-down rival. However, even for page-blocks, which is the biggest dataset
composed of more than 5000 feature vectors, the computation time is equal to
about 58 min as measured on a standard PC (PIV 3GHz, 1GB RAM). It seems
that such an amount of time is acceptable in most analytical applications.

4 Conclusion

In the paper a new evolutionary algorithm for global induction of linear deci-
sion trees is proposed. In contrast to the classical top-down approaches, both
the structure of the classifier and all hyper-planes in internal nodes are searched
during one run of the algorithm. The modified scheme of applying genetic opera-
tors leads to a more effective search process that is not sensitive to the tree size.
The presented system is able to detect and eliminate noisy or irrelevant features
from tests, thanks to feature selection embedded into the induction algorithm.
Experimental validation of our approach shows that resulting trees are simpler
and more compact with at least the same classification accuracy as existing
counterparts.

The presented approach is constantly improved and currently we are working
on introducing also univariate tests (tests with nominal outcomes and inequal-
ity tests for continuous-valued features) into our system. This should allow the
algorithm to better adapt to the problem solved and to locally choose the most
suitable test representation.

While investigating evolutionary algorithms there is always a strong motiva-
tion for speeding them up. Because they are well suited for parallel architecture
we are contemplating re-implementing our system in a distributed environment.
This is especially important in the context of modern data mining applications,
where huge learning sets are analyzed.

Acknowledgments. This work was supported by the grant W/WI/5/05 from
Bia�lystok Technical University.
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Abstract. In this paper, we are concerned with the design of a hybrid
resolution framework including genetic algorithms and constraint prop-
agation to solve the balanced academic curriculum problem. We develop
a theoretical model in which hybrid resolution can be achieved as the
computation of a fixpoint of elementary functions. These functions cor-
respond to basic resolution techniques and their applications can easily
be parameterized by different search strategies. This framework is used
to solve a specific problem and we discuss the experimental results show-
ing the interest of the of the model to design such hybridizations.

Keywords: CSP, genetic algorithms, constraint propagation, hybrid
resolution.

1 Introduction

Constraint Satisfaction Problems (CSP) are usually defined by a set of variables
associated to domains of possible values and by a set of constraints over these
variables. They provide a modeling framework for many computer aided decision
making practical applications (such as planning, scheduling, time tabling,...).
CSP model is extended, for real world applications, in order to optimize a given
objective function. The Balanced Academic Curriculum Problem (BACP) has
been introduced in [6] and consists in planning the different courses of an acad-
emic curriculum on a given set of periods, satisfying some constraints to insure
the most suitable organization for the students.

Solving such a problem consists in finding an assignment of values to the
variables that satisfies the constraints and optimizes the given criterion. Many
resolution algorithms have been proposed and can be classified in two main
groups.
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Complete methods aim at exploring the whole search space in order to find all
the solutions or to detect that the CSP is not consistent. Concerning complete
resolution techniques, we are here mainly concerned with constraint propagation
with split of domains of variables (e.g., enumeration), i.e., one of the most famous
techniques of Constraint Programming (CP) [3].

Incomplete methods mainly rely on the use of metaheuristics providing a more
efficient exploration of interesting areas of the search space in order to find some
solutions. Most commonly used approaches are based on evolutionary [12,10]
and local search algorithms [1]. In this paper, we focus on the first ones and
more especially on genetic algorithms (GA).

In order to improve the efficiency of the solving algorithms, combinations
of resolution paradigms and techniques have been studied (e.g. [8] presents an
overview of possible uses of local search [1] in constraint programming [3]).

The benefit of the hybridization GA+CP is well-known (see [4] , [5]). Most of
these works are rather algorithmic approaches which define a kind of master-slave
combination, (e.g., LS to guide the search in CP, or CP to reduce interesting
area of the search space explored in LS) or ad-hoc realizations of systems for
specific classes of problems.

Our purpose is twofold: on the one hand, we aim at solving efficiently BACP
by combining a genetic algorithm with constraint programming techniques, and
on the other hand, we propose a general modelling framework to precisely design
such hybrid resolution process and to highlight their characteristics and prop-
erties. This framework allows one to design and manage new and finer solving
strategies and extensions.

To this end, we use our uniform generic hybridization framework [15] which
is based on K.R. Apt’s chaotic iterations [2], a mathematical framework for iter-
ations of a finite set of functions over “abstract” domains with partial ordering.
In this framework, basic hybrid resolution processes (such as domain variable
reductions, offspring generation, and enumeration) are considered and managed
at the same level by a single mechanism. Hence, we may adjust the application
rate of the different resolution process in order to model various search strategies.
We integrated GA functions and optimization aspects in our constraint system
[7] (which is based on our hybrid framework) and solved instances of the BACP.
The results show the benefits of our framework and of hybridization as well.

The paper is organized as follows: after having raised the problem in Sec-
tion 2, we present in Section 3 an overview of GA and CP, confronted with
experimentations in Section 4 before concluding in Section 5.

2 The Balanced Academic Curriculum Problem (BACP)

The problem consists in organizing courses in order to balance the work load
of students for each period of their curriculum. Each course is given a number
of credits representing the amount of work necessary to successfully follow the
course. The load of a period is the sum of the credits of each course of the period.
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Some more constraints are added: there is a maximum and minimum load per
period, and some precedence relationships are established among some courses.

– Parameters:
m, n: number of courses and number of periods
αi: number of credits of course i : ∀i = 1, . . . ,m
β, γ: minimum and maximum academic loads allowed per period
δ, ε: minimum and maximum numbers of courses per period

– Variables:
xi: period of course i , ∀i = 1, . . . ,m ,xi ∈ [1..n]
ci: academic load of course i , ∀i = 1, . . . ,m

– Objective function: Min c = max(
∑m

k=1 ck | xk = j, ∀j = 1, . . . , n)
– Constraints:

Courses b has course a as prerequisite : xa < xb

Each period j has a greater or equal and a less or equal academic load
allowed: β ≤

∑m
k=1 ck | xk = j ≤ γ

Each period j has a greater or equal and a less or equal number of courses
allowed: δ ≤

∑m
k=1 1 | xk = j ≤ ε

Thus, a solution is a fair assignment of courses to periods: we translate it as
the minimization of the highest load period. For a more detailed description, the
reader can refer to [6].
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Fig. 1. Example of a courses distribution

As an example, for the 10 periods problem, 42 courses have to be assigned
in the 10 periods. Every course has a cost affected from 1 to 5. The number of
prerequisite constraints is 32 and for each period the number of courses has to
be between 2 and 10, the charge (sum of load) between 10 and 24.
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3 The Hybrid Algorithm

We first recall the resolution paradigms related to CSP, optimization, and GA
and how they will be integrated in our hybrid algorithm.

3.1 Constraint Programming

A CSP is a tuple (X,D,C) where X = {x1, · · · , xn} is a set of variables taking
their values in their respective domains D = {D1, · · · , Dn}. A constraint c ∈ C
is a relation c ⊆ D1×· · ·×Dn. In order to simplify notations, D will also denote
the Cartesian product of Di and C the union of its constraints. A tuple d ∈ D
is a solution of a CSP (X,D,C) if and only if ∀c ∈ C, d ∈ c.

Constraint propagation, one of the most famous techniques for solving CSP
consists in iteratively reducing domains of variables by removing values that do
not satisfy the constraints. However, reduction mechanisms use one or some of
the constraints of the CSP. Thus, they enforce a local consistency property (such
as arc-consistency) but not a global consistency of the CSP. These reductions
must be interleaved with a splitting mechanism (such as enumeration) in order
to obtain a complete solver, (i.e., solver which returns only solutions and does
not loose any solution).

Constraint optimization problems, although similar to constraint solving, is
comparatively harder because it only accepts solutions (i.e., values of variables)
that minimize or maximize a given objective function while satisfying the con-
straints.

Prerequisite constraints are easily converted to binary constraint and ab-
stracted to arc-consistency reduction functions on course domains. The con-
straints on periods: sum of loads and number of courses are represented as
global constraints and used to prune the search tree by detecting inconsisten-
cies. Thus, for the 8-period problem we have the following global constraints:
load(i, 10, 24), i = 1, .., 8 standing for the allowed range (10,24) of the sum of
load for the period i, and courses(i, 2, 10), i = 1, .., 8 for the allowed range (2,10)
of the sum of courses for the period i.

During the search, in a given CSP, the global constraint period(i, δ, ε) com-
putes the number of domains within the value i. If less than δ occurrences of the
period i are present in the different domains of courses, then the current CSP is
locally inconsistent. The global constraints load(i, β, γ) counts the charge range
for a given period i in the current CSP.

3.2 Genetic Algorithms

Evolutionary algorithms are mainly based on the notion of adaptation of a pop-
ulation of individuals to a criterion using evolution operators like crossover [10].
Based on the principle of natural selection, Genetic Algorithms [12,13] have been
quite successfully applied to optimization problems such as scheduling or trans-
portation problems.
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The key principle of this approach states that, species evolve through adapta-
tions to a changing environment and that the gained knowledge is embedded in
the structure of the population and its members, encoded in their chromosomes.
If individuals are considered as potential solutions to a given problem, applying
a genetic algorithm consists in generating better and better individuals w.r.t.
the problem by selecting, crossing, and mutating them. This approach reveals
very useful for problems with huge search spaces. We had to adapt some basic
techniques and slightly modify some definitions to fit our context.

In the context of GA, for the resolution of a given CSP (X,D,C), the search
space can be usually defined with the set of tuples D = D1 × · · · × Dn. We
consider populations g of size i, g ⊆ D such as |g| = i. An element s ∈ g is
an individual and represents a potential solution to the problem. Our genetic
algorithm aims at generating from a population k, a new population k+1 of 60
individuals selected among 100 issued from k. Each time GA is called by the
main algorithm, the following different cases can occur:

– The population k+ 1 has less than 100 individuals: an individual is selected
randomly; then, either it is coupled with another parent to create 2 children
in the population k+1, either it is submitted to mutation, or it is not change
in the population k + 1.

– Population k+ 1 has 100 individuals: a selection of the 60 best ones is made
according to the evaluation function.
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Fig. 2. Genetic Algorithm
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3.3 Designing the Hybrid Algorithm

K.R. Apt proposed in [2] a general theoretical framework for modelling such
reduction operators. In this context, domain reduction corresponds to the com-
putation of a fixpoint of a set of functions over a partially ordered set. These func-
tions, called reduction functions, abstract the notion of constraint. The model
is extended with splitting operators and GA in order to model the different
hybrid solving methods as the computation of a fixpoint of a set of functions.
This model is also now extended to optimization problems such as BACP. The
computation of the least common fixpoint of a set of functions F is achieved by
the following algorithm:

GI: Generic Hybrid Algorithm
d :=⊥;
G := F ;
While G �= ∅ do

choose g ∈ G;
G := G− {g};
G := G ∪ update(G, g, d);
d := g(d);

endwhile

where G is the current set of functions still to be applied (G ⊆ F ), d ∈ D a
partially ordered set (the domains in case of CSP), and for all G, g, d the set of
functions update(G, g, d) from F is such that:

– A : {f ∈ F −G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆ update(G, g, d).
– B : g(d) = d implies that update(G, g, d) = ∅.
– C : g(g(d)) �= g(d) implies that g ∈ update(G, g, d)

This abstract framework corresponds to the hybridization of resolution tech-
niques since we want to use a evolutionary optimization techniques combined
with constraint propagation techniques.

Basically, we define three families of functions corresponding to domain re-
duction functions, split and the generation of a new population by a one step
genetic algorithm. These functions are then alternatively chosen according to
a given strategy and applied until a fixpoint is reached on the structure (this
fixpoint characterizes either an optimal solution or a maximum number of al-
lowed iterations). Therefore, hybridization and strategies are easily usable in this
generic context as it will be shown in next section.

4 Experimental Results

In [14], we presented the constraint based solving system we built for hybridiza-
tion of local search and constraints propagation. We have re-used our system
and integrated the GA module (i.e., ga functions) in it. We have also added the
notion of optimization to the notion of solution we had.
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All tests are performed on a cluster with 22 processors used sequentially run-
ning at 2.2 GHz with 1 Go of RAM each.

4.1 Selected Problems

We consider the bacp8, bacp10 and bacp12 problems issued from the CSPlib [9]
and latest data of these three curricula to form a new problem where some

courses are shared by the different curricula. In order to give a point of reference,
we present the results of [6] using the linear programming solver lp_solve for
the 8-periods and 10-periods problems (Figure 3) and using our hybrid solver
(Figure 4). If lp_solve is able to find the optimal solution for the first one, it is
not the case for the second one.

Sol quality bacp 8 Sol quality bacp 10
24 137.08 33 9.11
23 218.23 32 25.38
21 218.43 30 25.65
20 712.84 29 1433.18
19 1441.98 27 1433.48
18 1453.73 26 1626.49

17 1 1459.73 24 1626.84

Sol quality bacp 8 bacp 10 bacp 12
24 0.47 4.71 2.34
23 0.54 4.67 2.40
22 0.61 3.68 2.48
21 0.61 4.36 2.76
20 0.69 4.63 3.20
19 0.83 4.95 4.25
18 1.20 5.13 35.20
17 15.05 1 5.60
16 6.39
15 8.53
14 34.84 1

Fig. 3. Results in seconds using lp_solve Fig. 4. Results using GA+CP

4.2 Strategies

We control the rates of each family of functions (reduction, split and genetic)
by giving as strategy a tuple (%dr,%sp,%ga) of application rates. These values
corresponds indeed to a probability of application of a function of each family
but, in practice, we measure in Fig 5 the real rate of application (i.e., we only
count the functions which are chosen according to the strategy and which have
a real impact on the resolution).

4.3 Analysis

The most interesting in such an hybridization is the completeness of the asso-
ciation GA-CP, and the roles played by GA and CP in the search process (see
Figures 5) : GA optimizes the solutions in a search space progressively being
locally consistent (and thus smaller and smaller) using constraints propagation

1 Optimum found.



Solving the BACP with an Hybridization of GA and Constraint Propagation 417

0

20

40

60

80

100

16171819202122232425

r
a
n
g
e

evaluation

propagation
genetic algorithm

split

8-period problem

0

20

40

60

80

100

12141618202224

r
a
n
g
e

evaluation

propagation
genetic algorithm

split

10-period problem

0

20

40

60

80

100

171819202122232425

r
a
n
g
e

evaluation

propagation
genetic algorithm

split

12-period problem

0

1000

2000

3000

4000

5000

6000

202224262830

N
u
m
b
e
r
 
o
f
 
o
p
e
r
a
t
i
o
n
s

Optimization criterion

genetic algorithm
propagation

split

all-period problem

Fig. 5. Evolution of CP vs GA during the optimization process

and split. To evaluate the benefits of each of the components we have measured
for CP: the number of effective reductions that are performed and the number
of split and for GA: the fact that the next generation is globally better than the
previous one.

Concerning the single problems (8, 10, 12), at the beginning, CP represents
70% of the effort: constraint propagation narrows the search space. On the con-
trary, GA represents about 30%. During this period, not enough local consistency
is enforced by constraint propagation, and GA only finds solutions (satisfying
all constraints) with a cost greater than 21. Then, at the beginning of the sec-
ond half of the search process, in terms of costs, CP and GA converge: most of
the sub CSP have reach the local consistency and tests over constraints do not
improve domain reduction. At the end, GA performs 70% of the search effort to
find the optimal solution.

Concerning strategies using GA and CP alone. In this implementation, CP is
unable to find a feasible solution in 10 minutes cpu time. GA is able to find alone
the optimal value but is 10 times slower w.r.t. the hybrid resolution GA+ CP .
Therefore, we have not included these results in the tables.

In the graph for the all-period problem, CP and GA start searching with
the same efficiency but while CP seems to be stable, most of the operations
are performed by the genetic process to obtain better solutions. This could be
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explained by the fact that, in this problem, constraints are not strong enough
w.r.t. the number of variables and the size of the generated search space. But,
in our hybrid resolution system, GA appears as a powerful method even if most
of the constraint operators have not reached their fixpoints.

5 Perspectives and Conclusion

Most of hybrid approaches are ad-hoc algorithms based on a master-slave combi-
nation: they favor the development of systems whose efficiency is strongly related
to a given class of CSPs. In this paper, we have used a more suitable general
framework to model hybrid optimization solving algorithms.

The results over the BACP show the benefits of our framework and of hy-
bridization. They also allow us to identify the interaction between the different
resolution mechanisms. Such studies could be used to tune general purpose hy-
brid solvers in the future.

A future extension will consist in providing “tools” to help designing finer
strategies in the GI algorithm in our particularly suitable uniform framework.
To this end, we plan to extend works of [11] where strategies are built using
some composition operators in the GI algorithm. Moreover, this will also open
possibilities of concurrent and parallel application of reduction functions inside
the model.
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Abstract. We developed a new approach for the multiple sequence
alignment problem based on Genetic Algorithms (GA). A new method
to represent an alignment is proposed as a multidimensional oriented
graph, which dramatically decreases the storage complexity. Details of
the proposed GA are explained, including new structure-preserving ge-
netic operators. A sensitivity analysis was done for adjusting running
parameters of the GA. Performance of the proposed system was evalu-
ated using a benchmark of hand-aligned sequences (Balibase). Overall,
the results obtained are comparable or better to those obtained by a well-
known software (Clustal). These results are very promising and suggest
more efforts for further developments.

1 Introduction

In biological systems, proteins are the most abundant and functionally diverse
molecules and almost all vital processes depend on these macromolecules, which
are composed by amino acids chains. The common 20 different types of amino
acids can be combined in a linear sequence having the necessary information
for the generation of a unique tri-dimensional structure. The comparison of
two protein sequences (or a group of them) is known as alignment. It con-
sists in the systematic comparison of the amino acids compounding the se-
quences throughout their whole extension (or only definite regions), and then
computing a similarity score. From the computational viewpoint, the multiple
sequence alignment (MSA) of proteins or DNA is a very difficult task and it
was proved to be NP -complete [12]. However, alignment is the most impor-
tant tool for discovering and representing similarities between sequences, and
can unravel the evolutionary history, critical preserved motifs, and details of
the tertiary structure or important clues about function. Therefore, MSA is
a recurrent issue of extensive research in Bioinformatics and Computer Sci-
ence, aiming at finding more efficient algorithms, as well as speeding-up existing
ones [5,6].
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There are known computational algorithms that allow finding suitable align-
ments among sequences (local/global alignment; pairwise/multiple alignment).
The main difference between them is the quality of the alignment. Frequently,
algorithms that give good alignments are computationally expensive or even un-
feasible for a large number of sequences. The optimum MSA can be obtained
with multidimensional dynamic programming [9], but the time complexity is
O(2N .LN), and the memory complexity is O(LN ), where N is the number of
sequences and L the average length of the sequences. Therefore, this approach
is unfeasible for large problems, and then, many heuristic methods have been
proposed for this case, including Genetic Algorithms – GA (see, for instance,
[10]). GA’s are efficient heuristic methods for dealing with large search spaces
and general optimization problems, especially when conventional methods fail.
The objective of this work is to present a simple and efficient GA for multiple
sequence alignment.

2 A Graph-Based Genetic Algorithm for MSA

The Needleman-Wunsch algorithm [9] requests a n × n matrix, where n is the
number of sequences to be aligned. Once the matrix is constructed, a backtrack-
ing is done, starting from cell (n, n) and ending in cell (1, 1). For each point of
this path, it is necessary to discover which is the neighbor cell that was respon-
sible for the generation of the current cell. If we consider this path in the matrix
as a directed graph, a MSA problem can be modelled as a problem of finding
the shortest path in a directed graph embedded in a n-dimensional space. In
this case, the backtracking is substituted by a forward tracking, provided it is
kept in each cell the information of which is its generating cell. The graph-based
approach requires a vector with the dimension no larger than the sum of the
length of all sequences. Therefore, the great advantage of this approach is the
dramatic reduction of the memory complexity to solve the problem, estimated
in O(N.L).

The edges of the graph have weights corresponding to the evolutionary dis-
tances between between pairs of amino acids, given by: a substitution matrix
(BLOSUM62) [7], a gap opening penalty and a gap extension penalty [1]. Figure
1a) shows the representation of the graph for the particular case of two proteins
to be aligned. The way a graph is encoded in the GA is a key point in this work
and detailed below.

The use of GA for real-world problems encompasses de definition of two
basic issues: how problem’s variables are encoded, and how candidate solutions
are evaluated by a fitness function. These issues are approached in the next
sections, as well as the generation of the initial population and the special genetic
operators created for this problem. Regarding the selection method of the GA,
we used the well-known stochastic tournament of size k. Elitism is also used in
conjunction with the selection method. Two forms of elitism are defined. The
first elitism selects the best individual of the current population and uses current
the gap penalties (generation dependent). The other form of elitism selects the
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5 best individuals of current generation, considering the SP when applying the
final gap penalties. By default, both forms of elitism are enabled.

2.1 Chromosome Encoding

Let P = p1, p2, . . . , pn be the set of n sequences to be aligned. Suppose that
these sequences are in a n-dimensional matrix, in such a way that each dimension
corresponds to a sequence. Sequences may have different lengths, and λ(pi) is the
length of the i-th sequence. Each individual represents a path over the matrix,
that is, a multidimensional directed graph. The maximum possible coordinates
of the graph, corresponding to the dimensions of the matrix, are the length of
the sequences. A valid path (graph) always begin in the cell corresponding to
the first amino acid of all sequences, and ends in the cell corresponding to the
last amino acid of all sequences.

To represent the weighted graph, we used a single chromosome of variable
length. This chromosome is composed bym genes, where maxi=1..n[λ(pi)] ≤ m ≤
[
∑n

i=1 λ(pi)−1]. Each gene, in turn, is composed by a string of bits representing
segments of the path in the graph. Recall that the graph will be translated into
a MSA. To construct the alignment using the graph, we start with the first
coordinate, and follow the steps of the graph until the last coordinate. For each
step, a single column is defined in the MSA. The amino acid corresponding to
the dimension to which the current step is advanced, is added to the column (of
the alignment) that is under construction. For the remaining dimensions, gaps
are added to the alignment.

Once a valid path starts in {0, 0, . . . , 0} and finishes in {λ(p1), λ(p2), . . .
λ(pn)}, a chromosome will be composed of a set of genes that represent such
path. Figure 1a shows an example of a matrix for the particular case of two
sequences to be aligned, and a possible path in the matrix. Figure 1b shows
the corresponding encoding of possible moves in a bi-dimensional matrix. Figure

 

 

NLFV-AL
--KGVIY

(b)

(c)
(a)

Fig. 1. (a) Example of the alignment matrix for two sequences. (b) Detail of the encod-

ing, showing the possible moves in a 2-dimensional matrix. (c) Corresponding alignment

of the two sequences represented by the graph in the matrix.
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1c shows the final alignment represented by the path. For this example, the
individual of the GA that encodes the path shown in the matrix corresponds
to the binary vector (10 − 10 − 11 − 11 − 01 − 11 − 11). Only for the sake of
clarity, genes are separated by hyphens. The number of bits per gene, that is,
the dimension of the matrix, depends on the number of sequences to be aligned.

2.2 Fitness Function

To evaluate a candidate solution, a chromosome is decoded into a MSA. Next,
two quality measures are computed, based on the classical sum-of-pairs (SP ),
defined in Equation 1:

SP =
m∑

k=1

n−1∑
x=1

n∑
y=x+1

D(aax,k, aay,k) (1)

where: m = length of the alignment, n = number of sequences of the alignment,
aaij = amino acid located in line i, column j of the alignment, D(x, y) = evolu-
tionary distance between amino acids x and y, according to a given substitution
matrix.

The first quality measure is used in the selection procedure of the GA, and
takes into account progressive gap penalties. Considering that substitution ma-
trices can have negative values, the computed SP can be negative. Normalization
is then necessary to make the fitness function always positive. To do so, we add
the SP value computed for the worst individual of the first generation to the fit-
ness of every other generated individual, in any generation. If, anytime a given
individual have a negative value for its fitness, this value is set to zero. The
second quality measure is used only for the elitism procedure of the GA, used
in conjunction with the selection, and corresponds to SP , but uses fixed gap
penalties.

2.3 Initial Population and Genetic Operators

Considering the complexity of the MSA problem and how individuals evolve
throughout generations for this problem, the way the initial population is gen-
erated is of great concern to achieve good results. Hence, in the proposed GA,
there are four different methods for generating the initial population, as follows:

– Progressive alignment: Sequences to be aligned are randomly selected for a
pre-alignment using the dynamic programming method. Initially, sequences
are aligned and, them, profiles are, in the same way that was proposed by [4]
and also used in the profile alignment of Clustal [8]. First, two sequences are
optimally aligned. Then, a third one is added to the other two, and so on,
until all sequences are added. This procedure has a very high computational
cost and, by default, it is not enabled.

– Pairwise alignment: Pairs of sequences are randomly selected and aligned us-
ing dynamic programming. After, these pairs of aligned sequences are simply
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added to the MSA without any additional work. The added sequences are
juxtaposed to the existing ones, simply by adding columns of gaps to make
lengths coincide.

– Shuffling: Sequences are juxtaposed after a variable random number of gaps
be inserted in the left side.

– Random generation: This is the default method. Individuals are randomly
constructed, assuring that the corresponding graph meet the constraint of
ending at position {λ(p1), λ(p2), . . . λ(pn)}, where the last element is the
length of the n-th sequence (the n-th dimension of the graph).

Differently from other approaches in the literature where a large number of
special genetic operators are defined [10], in this work we defined only three
genetic operators for the problem: crossover, random mutation and dynamic
mutation. Since chromosomes represent a path in a graph, our genetic operators
were designed to preserve the integrity and validity of the path.

Crossover, or recombination, is applied to two chromosomes, in the way illus-
trated in Figure 2. First, a random gene is selected in both parents (dot point in
Figure 2a,b, corresponding to coordinates (4,3)). All genes, from the first until
the selected one are copied from parent-1 the offspring. If the remaining part of
the chromosome was filled up with the equivalent part of parent-2, in most cases
an invalid individual would be generated due to de discontinuity in the path.
Hence, the following procedure is done. Parent-2 is scanned backwards, from the
final coordinate to the first, aiming at finding the last gene of the chromosome
(called U) whose coordinates in all dimensions are larger than the coordinate of
the last gene of parent-1. Once found this gene, it is copied to the offspring. In
the example of Figure 2b, it corresponds to gene 7, between coordinates (4,7)
and (5,7). This gene is the first to be copied from parent-2 to the offspring. Now,
the same procedure of random generation of the initial population is used, just
to create some genes to fill up the gaps between the initial and final segments
inherited from parent-1 and parent-2, respectively (as shown in Figure 2c).

The random mutation operator aims at improving the genetic diversity of the
population and works as follows. Two genes and one dimension of the matrix
are randomly selected. The bits corresponding to that dimension (a gene in the
chromosome) are inverted. To guarantee that the path in the matrix is still
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Fig. 2. Example of the crossover operator: (a) parent-1, (b)parent-2, (c) offspring
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Fig. 3. Example of the random mutation operator: (a) parent, (b) offspring

valid after this operation, it is necessary that the two bits are complimentary.
Otherwise, the second point selected is shifted to the right until it satisfies the
continuity constraint. An example of the application of this operator is shown in
Figure 3. In this example, genes 4 and 6 were random selected (Figure 3a). The
dimension selected was the line (not the column). Hence, the bits of the selected
dimension of the two genes satisfy the continuity constraint, and can be inverted
so as to create a new individual shown in Figure 3b.

The objective of the dynamic mutation operator is the same as the previous
one and it is illustrated in Figure 4 for the alignment of three proteins (P1, P2
and P3) with 22 amino acids each. First, a segment of the individual, comprising
a number of genes, is randomly selected. In the figure this segment is the central
region. Then, the columns of the alignment, corresponding to the selected seg-
ment, are found. To these columns, we apply a progressive dynamic alignment,
using the same strategy used to initialize individuals, as mentioned in the be-
ginning of this section. Therefore, besides the probability of application of this
operator, it is also necessary to define the width of the segment to which the
operator is applied to. This parameter is called WIDDM and for the example
given, its value is 7. The lower lines of Figure 4 represent the protein sequences
after the application of the dynamic mutation operator.

P1 -KISPAEV AKHNK-- PDDC-WVVING

P2 -DIARKEQ LKSLLPP LDNIINLYD--

P3 CK-LGN-P LEG-EKD -VARGCGQGVT

P1' -KISPAEV AKH--NK PDDC-WVVING

P2' -DIARKEQ LKSLLPP LDNIINLYD--

P3' CK-LGN-P LE-GEKD -VARGCGQGVT

Fig. 4. Example of the dynamic mutation operator



426 H.S. Lopes and G.L. Moritz

2.4 Progressive Gap Penalties

Empirically, we observed that, case the gap penalties were too high, the GA
could not evolve good individuals. This is a consequence of the fact that all in-
dividuals of the first generations have a large number of gaps. Therefore, despite
of the genetic diversity of the population, most fitness values are too low to cre-
ate a useful selective pressure. To circumvent this problem, we implemented a
progressive gap penalty strategy. The effective value of a gap (either for opening
a gap or extending a gap) is proportional to the generation number. By default,
it starts with -4 for gap opening and -1 for gap extension, and is incremented
until reaching -10 and -3, respectively, when reaching mature generations. As a
consequence of this procedure, the same individual will have a different fitness,
depending on the current generation it is considered, except for the case when
it has no gaps. Therefore, there is a difference between the objective function
(absolute value) and the fitness function (relative value).

3 Computational Experiments

3.1 Parameters Adjustment

Several preliminary tests were done to find suitable values for the control pa-
rameters of the GA. All tests were done using a PC computer with AMD Athlon
XP 2.4 MHz and 512 Mbytes of RAM.

The sequences used in the experiments are from BaliBase 1.0 [11], a bench-
mark specially developed for the comparison of MSA algorithms. Alignments in
BaliBase were manually refined, and regions that can be aligned without am-
biguity are explicitly marked. A software is also provided with the database
to compare results using specific metrics. BaliBase is composed by 142 refer-
ence alignments, with more than 1,000 sequences. These alignments are divided
into four sets. These sets, in turn, are divided according to the length of the
sequences (short, medium, long) and the identity between sequences (<25%,
20-40%, >35%).

For the adjustment of parameters, we used alignment 1ajsA, from subgroup
Test − 1 of Ref − 1. All experiments run 10 times, and results shown are the
average value. For the adjustment of parameters, the probability of using the
dynamic mutation operator was set to zero (PROBDM = 0). The remaining
parameters were set as follows: number of individuals (POP = 100), number of
generations (GEN = 500), initial gap open penalty = −4, initial gap extension
penalty = −1, final gap open penalty = −10, final gap open extension = −3.
Regarding to the generation of the initial population, the percent of individu-
als generated according each proposed method was: 20% by shuffling, 10% by
pairwise alignment, 0% by progressive alignment and 70% by random generation.

A total of 15 experiments were done with all combinations of probability for
crossover and random mutation in the ranges 0.6, 0.8, 1.0 and 0.05, 0.2, 0.4, 0.6,
1.0, respectively. There were no significant differences in the processing time for
different values of the parameters tested. Therefore, the processing time was not
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taken into account in the selection of the following best set values: 0.6 for the
probability of crossover and 0.6 for the probability of random mutation.

Using the values of parameters previously defined, we varied the tourney size
(K), number of generations (GEN) and population size (POP ) in the ranges
3, 5, 8, 100, 200 and 500, 800, respectively. For this case, and the following,
the processing time is strongly influenced by the specific value of parameters.
Hence, the selection of default values for parameters must consider not only the
quality of the alignment, given by the sum-of-pairs (SP ), but also the processing
time (TIME).This takes to a multiobjective optimization problem, for which
the analysis of the Pareto front was necessary [3].

We observed no significant change in results when the tourney size was var-
ied. Therefore, we set K = 3 individuals henceforth. It was also observed that
better results were obtained using a larger population compared with a smaller
population. However, it is not possible to conclude anything about the number
of generations, since experiments suggested that more generations are necessary
to stabilize the system. Consequently, a new set of tests were done, keeping K
= 3 and expanding GEN to 800, 1300, 2000 and POP to 200, 300, 500. These
experiments showed that beyond 1300 generations the gain of SP is minimal,
but at the expense of a large increment in TIME. We also observed that the
increment in POP has an important consequence in the value of SP , but re-
flects linearly in TIME. Hence, we adopted as default values a combination that
gives a good performance in a fair processing time, that is: GEN = 1300 and
POP = 300.

The dynamic mutation operator, is computationally expensive. This is why it
was not used in the previous experiments. Using the default parameters defined
so far, we tested the influence of PROBDM andWIDDM in the behavior of the
GA, according to both SP and TIME. We tested PROBDM andWIDDM in
the ranges 0.1, 0.3, 0.4 and 10, 50, respectively. The analysis of these results in the
Pareto plane shown in Figure 5 suggested that PROBMD has a small influence
in SP , but has a direct relationship with TIME. Keeping fixed PROBDM =
0.1, further tests were done with WIDMD in the range 20, 30, 80, 100. The
default value ofWIDMD was set to 30, because it reflects the best compromise
between SP and TIME.
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Fig. 5. Results of the variation of PROBDM and WIDDM in the Pareto plane
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3.2 Performance Assessment

Using the default parameters previously defined, the proposed GA was tested
with nine unseen instances of Ref−1 of BaliBase, including one reference align-
ment for each length and identity. For each instance, shown in Table 1, 10 runs
were done and the average value of SP was compared with Clustal [8], a well-
known software for MSA. However, to do such comparison, the alignment per-
formed by Clustal was submitted to the same algorithm for computing SP , in
order to assure a fair comparison.

The experiments shown in Table 1 cover all combinations of length of the
sequences (short, medium, long) and identity between sequences (<25%, 20-
40%, >35%). In this table, the leftmost column refers to the specific alignment
of Reference-1 of the database, and “Rel.Dif.” means how good is the result
obtained by the GA relative to that of Clustal. A positive difference means that
the GA performed better than Clustal, and a negative difference means the
opposite. Recall that this comparison is relative only to SP . In fact, Clustal
does not use sum-of-pairs as its internal quality measure. In this table, it can
be observed that our GA performed better for short sequences than for the
medium or the long ones. Regarding the identity of sequences, our GA gives
better performances than Clustal for sequences with 20-40% or >35% of identity.

Table 1. SP obtained by the proposed GA and Clustal, for several instances of Balibase

Ref-1 Type Identity GA Clustal Rel.Dif.
short medium long <25% 20-40% >35%

1Abo � � -212.5 -289.0 26.47%
1hpi � � 499.3 515.0 -3.05%
1fkj � � 1789.0 1725.0 3.71%
1sbp � � -1537.5 1229.0 -25.10%
1ad2 � � 1380.8 1276.0 -8.21%
1amk � � 5531.4 5846.0 -5.38%
1ajsA � � 687.6 1569.0 -56.17%
1ac5 � � -1246.9 -1258.0 0.88%
1ad3 � � 5585.4 5652.0 -1.18%

4 Conclusions

We have presented an efficient genetic algorithm especially devised for the prob-
lem of multiple sequence alignment. The graph-based approach for modelling
a possible alignment proposed in this work allows a dramatic reduction of the
estimated memory complexity for solving the problem, when compared with the
traditional multidimensional Needleman-Wunsch method [9]. We devised a sim-
ple fitness function, based on the sum-of-pairs, and three genetic operators to
modify existing solutions. Other GA approaches in the literature have proposed
much more complex operators and fitness function. A careful sensitivity analy-
sis was done (detailed in section 3.1), so as to find near-optimal values for the
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control parameters of the GA, trying to establish a fair compromise between the
quality measure, and the processing time.

A number of tests were done using a benchmark database of alignments and
our GA was compared with Clustal, a well-established MSA software. When
analyzing results, two factors should be taken into account. First, we used a
substitution matrix (BLOSUM62), which is a standard for ungapped matching
and, possibly, it is not the most suited for the type of sequences we used here. Sec-
ond, sum-of-pairs, although widely used and simple to compute, is recognized
to present some problems for multiple sequence alignment, rather than pair-
wise alignment. Therefore, it is suggested to use a weighting scheme altogether
(see [2]). In fact, a more suitable quality measure to compare multiple alignments
should be devised. This is a well-known fact in Bioinformatics.

Notwithstanding, even considering these issues and the stochastic nature
of GA, overall results can be considered quite satisfactory. The methodology
is promising and future work will include refinements in the algorithm, mov-
ing towards distributed processing [6], as well as more experiments with other
benchmarks.
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Abstract. This paper presents an improved multi-objective diversity
control oriented genetic algorithm (MODCGA-II). The improvement in-
cludes the introduction of an objective-domain diversity control oper-
ator, which is chromosome representation independent, and a solution
archive. The performance comparison between the MODCGA-II, a non-
dominated sorting genetic algorithm II (NSGA-II) and an improved
strength Pareto evolutionary algorithm (SPEA-II) is carried out where
different two-objective benchmark problems with specific multi-objective
characteristics are utilised. The results indicate that the MODCGA-II
solutions are better than the solutions generated by the NSGA-II and
SPEA-II in terms of the closeness to the true Pareto optimal solutions
and the uniformity of solution distribution along the Pareto front.

1 Introduction

It is undeniable that a major factor that contributes to the success of genetic
algorithms in the field of optimisation is the parallel search mechanism embed-
ded in the algorithm itself. However, this does not prevent the occurrence of
premature convergence in the situation when the similarity among individuals
in the population becomes too high. As a result, the prevention of a premature
convergence must also be considered during the genetic algorithm design. One
of the direct approaches for achieving the necessary prevention is to maintain
diversity within the population [1].

Various strategies can be used to maintain or increase the population diver-
sity. Nonetheless, a modification on the selection operation has received much
attention. For instance, Mori et al. [2] has introduced a notion of thermodynam-
ical genetic algorithm where the survival of individuals is regulated by means of
monitoring the free energy within the population. The modification on the selec-
tion operation can also be done in the cross-generational sense [3,4,5]. Whitley [3]
has proposed a GENITOR system where offspring generated by standard oper-
ators are chosen for replacing parents based upon the ranks of the individuals.
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In contrast to Whitley [3], Eshelman [4] recommends the application of mating
restriction while Shimodaira [5] suggests the use of variable-rate mutation as a
means to create offspring. Then a cross-generational survival selection is carried
out using a standard fitness-based selection technique in both cases.

In addition to the early works described above, another genetic algorithm has
been specifically developed by Shimodaira [6] to handle the issue of population
diversity; this algorithm is called a diversity control oriented genetic algorithm
or DCGA. Similar to most genetic algorithms, offspring in the DCGA are gen-
erated using standard crossover and mutation operators. However, during the
cross-generational survival selection, duplicated individuals in the merged pop-
ulation containing both parent and offspring individuals are first eliminated.
Then, the remaining individuals are selected based on either the associate fit-
ness or the consideration on both the fitness and the genomic similarity between
the interested individual and the elite individual. The performance of the DCGA
has been benchmarked using various test problems [7].

With a minor modification, the DCGA can also be used in multi-objective
optimisation. One possible approach for achieving this is to integrate the DCGA
with other genetic algorithms that are specifically designed for multi-objective
optimisation such as a multi-objective genetic algorithm or MOGA [8]. Such
approach has been investigated by Sangkawelert and Chaiyaratana [9] where
the inclusion of cross-generational survival selection with the multi-objective ge-
netic algorithm is equivalent to the use of elitism, which is proven to be crucial
to the success of various multi-objective algorithms including a non-dominated
sorting genetic algorithm II or NSGA-II [10] and an improved strength Pareto
evolutionary algorithm or SPEA-II [11]. In addition, the similarity measurement
between the non-elite individual and the elite individual required by the diver-
sity control operator is still carried out in the genotypic space. The resulting
combined algorithm, which can be uniquely referred to as a multi-objective di-
versity control oriented genetic algorithm or MODCGA has been successfully
tested using a two-objective benchmark suite [12]. Although some insights into
the behaviour of the MODCGA have been gained through the benchmark trial
by Sangkawelert and Chaiyaratana [9], further studies can be made and are re-
quired. In particular, the initial study of the MODCGA is conducted with a
similarity measurement between two individuals being carried out in genotypic
space. However, in multi-objective optimisation the trade-off surface, which is
the direct result from the spread of solutions, is generally defined in objective
space. This means that diversity control can also be achieved by considering the
similarity between objective vectors of the individuals.

The organisation of this paper is as follows. In section 2, the explanation
of the original DCGA and how it can be modified to cope with multi-objective
optimisation problems is given. In section 3, the multi-objective benchmark prob-
lems and performance evaluation criteria are explained. Next, the multi-objective
benchmarking results of the improved MODCGA or MODCGA-II are illustrated
and discussed in section 4. Finally, the conclusions are drawn in section 5.
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2 DCGA and Its Extension

The original DCGA developed by Shimodaira [6] can only be used to solve
single-objective optimisation problems. However, the algorithm can be easily
combined with other genetic algorithms. The extension of the DCGA for use
in multi-objective optimisation that will be used throughout this paper involves
the integration between the DCGA and MOGA. However, in contrast to the
previous work by Sangkawelert and Chaiyaratana [9] where the similarity mea-
surement between individuals is conducted in genotypic space, in this work the
measurement will be carried out in objective space. Detailed explanation of the
DCGA, MOGA and algorithm integration is given as follows.

2.1 Diversity Control Oriented Genetic Algorithm

The diversity control oriented genetic algorithm (DCGA) was first introduced
by Shimodaira [6]. Similar to other single-objective steady-state genetic algo-
rithms, the parent population and the offspring population are merged together
during the DCGA run where the appropriated individuals are extracted from the
merged population. However, instead of selecting the highly fit individuals from
the population straightaway, the extraction process in the DCGA starts with the
elimination of duplicated individuals in the merged population. The remaining
individuals are then sorted according to their fitness values in descending order.
Following that the best individual from the remaining individuals is determined
and kept for passing onto the next generation. Then either a cross-generational
deterministic survival selection (CDSS) method or a cross-generational prob-
abilistic survival selection (CPSS) method is applied in the top-down fashion
to the remaining non-elite individuals in the sorted array. In the case of the
CDSS, the remaining non-elite individuals with high fitness value will have a
higher chance of being selected since they reside in the top part of the array and
hence have a higher selection priority than individuals with low fitness values.
In contrast, a survival probability value is assigned to each non-elite individual
according to its similarity to the best individual in the case of the CPSS. This
survival probability (ps) is given by

ps = {(1− c)dh/L+ c}α (1)

where dh is the Hamming distance between the interested individual and the
best individual, L is the binary chromosome length, c is the shape coefficient
and α is the exponent coefficient. With this form of survival probability assign-
ment, if the genomic structure of the individual interested is very close to that
of the best individual, the survival probability assigned to this individual will
be close to zero. On the other hand, if the chromosome structure of this indi-
vidual is quite different from that of the best individual, its survival probability
will be close to one. Each individual will then be selected according to the as-
signed survival probability where the survival selection of the sorted non-elite
individuals is still carried out in the top-down manner. With the use of sorted
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individual array, the selection of non-elite individuals will depend entirely on the
assigned fitness in the CDSS scheme. On the other hand, a decision either to
select or not to select an individual according to the CPSS scheme depends on
both the assigned fitness and the survival probability. Basically, the individual
that have a high chance of being selected must possess high fitness and have a
genomic structure that is quite different from that of the best individual. This
also means that both a highly fit individual that is quite resemble to the best
individual and a mediocre individual that is different from the best individual
would not have a high chance of being picked. If the total number of all selected
individuals including the pre-selected elite individual does not reach the required
population size after the survival selection loop, randomly generated individu-
als will be added to the individual array until the required number is met. A
comprehensive description of the DCGA and its benchmarking performance in
various continuous test problems can be found in Shimodaira [7].

2.2 Multi-Objective Genetic Algorithm

The multi-objective genetic algorithm (MOGA) was first introduced by Fonseca
and Fleming [8]. The MOGA functions by seeking to optimise the components
of a vector-valued objective function. Unlike single-objective optimisation, the
solution to a multi-objective optimisation problem is a family of points known
as the Pareto optimal set. Each point in the set is optimal in the sense that no
improvement can be achieved in one component of the objective vector that does
not lead to degradation in at least one of the remaining components. Given a set
of possible solutions, a candidate solution is said to be Pareto optimal if there
are no other solutions in the solution set that can dominate the candidate solu-
tion. In other words, the candidate solution would be a non-dominated solution.
Assuming, without loss of generality, a minimisation problem, an m-dimensional
cost vector u is said to be dominating another m-dimensional cost vector v if,
and only if, u is partially less than v (u p < v), i.e.

u p < v ↔ ∀i = 1, . . . ,m : ui ≤ vi ∧ ∃i = 1, . . . ,m : ui < vi. (2)

By identifying the number of solutions in the solution set that dominate the
solution of interest, a rank value can be assigned to the solution. In other words,
the rank of a candidate solution is given by the number of solutions in the
solution set that dominate the candidate solution. After a rank has been assigned
to each solution, a fitness value can then be interpolated onto the solution where
a genetic algorithm can subsequently be applied in the optimisation procedure.
Since the aim of a search by the MOGA is to locate Pareto optimal solutions,
in essence the multi-objective optimisation problem has also been treated as a
multi-modal problem. Hence, the use of additional genetic operators including
the fitness sharing and mating restriction procedures is also required. However,
in addition to the usual application of the fitness sharing and mating restriction
procedures in the decision variable space, they can also be carried out in the
objective space. A comprehensive description of the MOGA, which covers other
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advanced topics including goal attainment and priority assignment strategies,
can be found in Fonseca and Fleming [8].

2.3 Genetic Algorithm Integration

By combining the MOGA and the DCGA together, the resulting algorithm can
be referred to as a multi-objective diversity control oriented genetic algorithm or
MODCGA. Similar to the MOGA, the rank of each individual will be obtained
after comparing it with the remaining individuals. However, the comparison will
be made among individuals in the merged population, which is the result from
combining parent and offspring populations together. Since the best individuals
in the MOGA are the non-dominated individuals, in the case where the CPSS
method is used there will be more than one survival probability value that can
be assigned to each dominated individual. In this study, the lowest value in the
probability value set is chosen for each dominated individual. After the survival
selection routine is completed and the fitness values have been interpolated onto
the individuals, the standard genetic operations can then be applied to the popu-
lation in the usual way. In the early work by Sangkawelert and Chaiyaratana [9],
a similarity measurement between dominated and non-dominated individuals,
which leads to the survival probability assignment, is carried out in genotypic
space. In this work, the similarity measurement will be conducted in objective
space instead; two advantages are gained through this modification. Firstly, since
the aim of multi-objective optimisation is to obtain multiple solutions at which
together produce a trade-off objective surface that represents a Pareto front,
diversity control in objective space would directly enforce this aim. Secondly,
a diversity control operator that is designed for use in objective space would
be independent of the chromosome encoding scheme utilised. Recent investiga-
tion into multi-objective optimisation using genetic algorithms usually involves
problems with large number of decision variables [10,11,12]. The use of a binary
representation would lead to an excessively long chromosome and hence degrades
the algorithm performance. As a result, real-value chromosome encoding is gen-
erally employed instead. With the modification described above, in the case of
CPSS scheme the survival probability as given in equation (1) will change to

ps = {(1− c)d/dmax + c}α (3)

where d is the distance between the interested individual and a non-dominated
individual in objective space and dmax is the maximum distance between two
individuals in the population. In order to distinguish between the early work
by Sangkawelert and Chaiyaratana [9] and the present work, the MODCGA
where the similarity measurement is done in objective space will be referred
throughout this paper as the MODCGA-II. In this investigation, the fitness
sharing strategy utilised in the MODCGA-II is similar to the one described in
Fonseca and Fleming [8] where the fitness sharing is carried out in objective
space.

In addition to the modification on the diversity control operation, the use of a
preserved non-dominated solution archive is included in the MODCGA-II. Basi-
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cally, the parent individuals will be picked from a population which includes both
individuals obtained after the diversity control and that from the archive. Each
time that a new population is created after the diversity control operation, non-
dominated solutions within the archive will be updated. If the solution that sur-
vives the diversity control operation is neither dominated by any solutions in the
archive nor a duplicate of a solution in the archive, then this solution will be added
to the archive. At the same time, if the solution that survives the diversity control
operation dominates any existing solution in the archive, the dominated solution
will be expunged fromthe archive. In order tomaintain the diversitywithin the pre-
served non-dominated solution archive, k -nearest neighbour clustering technique
[11] is used to regulate the size of the archive.

3 Multi-objective Problems and Performance Criteria

The MODCGA-II will be benchmarked using six optimisation test cases devel-
oped by Deb et al. [13]. The problems DTLZ1–DTLZ6 are scalable minimisation
problems with n decision variables and m objectives. In this paper, two-objective
problems with 11 decision variables are investigated. DTLZ1 has a linear Pareto
front and contains multiple local fronts. DTLZ2 has a spherical Pareto front.
DTLZ3 and DTLZ4 also have spherical Pareto fronts where DTLZ3 contains
multiple local fronts while the DTLZ4 solutions are non-uniformly distributed
in the search space. DTLZ5 has a curve Pareto front. DTLZ6 also has a curve
Pareto front but the problem contains multiple local fronts.

Zitzler et al. [12] suggest that to assess the optimality of non-dominated so-
lutions identified by a multi-objective optimisation algorithm, these solutions
should be compared among themselves and with the true Pareto optimal solu-
tions. Two corresponding measurement criteria are considered: the average dis-
tance between the non-dominated solutions to the Pareto optimal solutions (M1)
and the distribution of the non-dominated solutions (M2). These criteria are
calculated from the objective vectors of the solutions obtained. A low M1 value
implies that the solutions are close to the true Pareto optimal solutions. In ad-
dition, when two solution sets have similar M1 indices, the set with a higher M2
value would have a better distribution.

4 Results and Discussions

In this section, the results from using the MODCGA-II to solve test problems
DTLZ1–DTLZ6 will be presented. The results will be benchmarked against that
obtained from the non-dominated sorting genetic algorithm II or NSGA-II [10]
and the improved strength Pareto evolutionary algorithm or SPEA-II [11] where
the executable codes for the implementation of both algorithms are obtained
directly from A Platform and Programming Language Independent Interface for
Search Algorithms (PISA) web site (http://www.tik.ee.ethz.ch/pisa). Both
CDSS and CPSS techniques are utilised in the implementation of the MODCGA-
II. The diversity control study will be conducted with other genetic parameters
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Table 1. Parameter setting for the MODCGA-II, NSGA-II and SPEA-II

Parameter Value and Setting

Chromosome coding Real-value representation
Fitness sharing Triangular sharing function (MODCGA-II only)
Fitness assignment Linear fitness interpolation (MODCGA-II only)
Selection method Stochastic universal sampling (MODCGA-II) or

tournament selection (NSGA-II and SPEA-II)
Crossover method SBX recombination with probability = 1.0 [14]
Mutation method Variable-wise polynomial mutation with probability

= 1/number of decision variables [14]
Population size 100
Archive size 100 (MODCGA-II and SPEA-II only)
Number of generations 300 (MODCGA-II) or 600 (NSGA-II and SPEA-II)
Number of repeated runs 30

remain fixed throughout the trial. The parameter setting for the MODCGA-II,
NSGA-II and SPEA-II that is used in all problems is displayed in Table 1.

Five values of the shape coefficient (c)—0.0, 0.25, 0.50, 0.75 and 1.00—and six
values of the exponent coefficient (α)—0.00, 0.20, 0.40, 0.60, 0.80 and 1.00—are
used to create 30 different diversity control settings for the MODCGA-II. From
equation (3), the settings of c = 1.00 and α = 0.00 are for the implementation of
the CDSS technique since the survival probability of each dominated individual
is equal to one. For each setting, the MODCGA-II runs for the DTLZ1–DTLZ6
problems with two objectives are repeated 30 times. TheM1 andM2 performance
indices from each run are subsequently obtained and the average values of the two
indices calculated from all problems are displayed in the form of contour plots in
Fig. 1. TheM2 index is calculated using the neighbourhood parameter σ = 0.488
and the M2 index has been normalised by the maximum attainable number of
non-dominated individuals from a single run. From Fig. 1, it is noticeable that
a significant performance variation can be detected in the benchmark problems.
The region where the M1 index has a small value coincides with the area where
the M2 index is small. At the same time the region where the M1 index is high
is also in the vicinity of the area where the M2 index has a large value. In a
successful multi-objective search, the M1 index should be as small as possible.
Although a large M2 index usually signifies a good solution distribution, the
interpretation of the M2 result must always be done while taken the M1 index
into consideration. This is because in the case where the solutions are further
away from the true Pareto optimal solutions, the obtained value of the M2
index is generally high since each solution would also be far apart from one
another. In other words, the M2 index has a lesser priority than the M1 index
and should be considered only when the obtained values of the M1 index from
two different algorithms or algorithm settings are close to one another. Using
the above argument, multiple settings of the c and α values in Fig. 1 can be
used to achieve low M1 indices. In the current investigation, the setting where
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Fig. 1. Average values of M1 and M2 indices from all multi-objective problems for each

diversity control setting (a) M1 index (b) M2 index

c = 0.75 and α = 0.2 is chosen as the candidate setting that represents the
diversity control that leads to a low M1 value.

The search performance of the MODCGA-II with c = 0.75 and α = 0.2 will be
compared with that from the NSGA-II and SPEA-II. As stated in Table 1, each
algorithm run will be repeated 30 times where theM1 and normalisedM2 indices
are subsequently calculated for each repeated run. After all repeated runs are
completed, the individuals from all runs are merged together where the final non-
dominated individuals are then extracted. The performance of the MODCGA-II,
NSGA-II and SPEA-II in terms of the average and standard deviation of the
M1 and normalised M2 indices on the two-objective DTLZ1–DTLZ6 problems
is summarised in Table 2. In Table 2, the neighbourhood parameter (σ) for the
calculation of M2 indices for all test problems is also set to 0.488; the parameter
is set using the extent of the true Pareto front in the objective space as the
guideline.

In terms of the average distance from the non-dominated solutions identi-
fied to the true Pareto front or the M1 criterion, the MODCGA-II posses the
highest performance in all six test problems. Nonetheless, the MODCGA-II is
unable to identify the true Pareto optimal solutions in the DTLZ3 and DTLZ6
problems. These two problems are difficult to solve since they contains multi-
ple local Pareto fronts. Although the DTLZ1 problem also contains numerous
local Pareto fronts, the majority of results from all 30 MODCGA-II runs indi-
cate that the MODCGA-II is capable solving this problem. This means that the
shape of Pareto front in two-objective problems can also affect the algorithm per-
formance since the DTLZ1 problem has a linear Pareto front while the DTLZ3
and DTLZ6 problems have spherical and curve Pareto fronts, respectively. The
M1 index also reveals that the performance of NSGA-II and SPEA-II are very
similar in all six problems. Since the M1 indices from both algorithms are quite
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Table 2. Summary of the MODCGA-II, NSGA-II and SPEA-II performances on the

two-objective DTLZ1–DTLZ6 problems

Problem Index MODCGA-II NSGA-II SPEA-II

Average S.D. Average S.D. Average S.D.

DTLZ1 M1 3.1157 4.7837 11.9186 5.1490 12.9616 5.2649
M2 0.4326 0.2942 0.6391 0.0474 0.7810 0.0547

DTLZ2 M1 0.0030 0.0008 0.0148 0.0088 0.0190 0.0096
M2 0.5039 0.0439 0.5672 0.0310 0.5053 0.0494

DTLZ3 M1 22.2335 18.1880 78.6069 24.8055 88.4823 22.4487
M2 0.5642 0.3941 0.6119 0.0814 0.7463 0.0745

DTLZ4 M1 0.0023 0.0018 0.0238 0.0138 0.0252 0.0104
M2 0.3353 0.2111 0.2871 0.2353 0.3457 0.2417

DTLZ5 M1 0.0030 0.0006 0.0148 0.0088 0.0175 0.0079
M2 0.4972 0.0495 0.5672 0.0310 0.5026 0.0501

DTLZ6 M1 1.0199 0.3685 6.4295 0.3509 6.4986 0.3355
M2 0.8044 0.0603 0.7157 0.0493 0.8946 0.0166

close, a further inspection on the M2 indices can be easily made. Again, the M2
indices from the NSGA-II and SPEA-II are also very close to one another. This
leads to the conclusion that the capability of both the NSGA-II and SPEA-II is
similar.

5 Conclusions

In this paper, an improved multi-objective diversity control oriented genetic
algorithm or MODCGA-II is presented. The proposed algorithm differs from
the MODCGA described in Sangkawelert and Chaiyaratana [9] in the sense
that the MODCGA-II performs diversity control via similarity measurement
in objective space and the use of a preserved non-dominated solution archive
is also included. Six scalable benchmark problems described in Deb et al. [13]
are utilised. In addition, the criteria used to assess the algorithm performance
include the closeness of non-dominated solutions to the true Pareto front and
the distribution of the solutions across the front [12]. The analysis indicates that
the MODCGA-II can produce non-dominated solutions that are better than
that generated by the NSGA-II [10] and the SPEA-II [11] when the number of
objectives in the benchmark problems is limited to two.
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Abstract. In this paper, a concept of directional mutations for phe-
notypic evolutionary algorithms is presented. The proposed approach
allows, in a very convenient way, to adapt the probability measure un-
derlying the mutation operator during evolutionary process. Moreover,
the paper provides some guidance, along with suitable theorems, which
makes it possible to get a deeper understanding of the ineffectiveness of
isotropic mutations for large-scale problems.

1 Introduction

Many stochastic optimization algorithms apply isotropic random vectors to
produce new candidate solutions [5,8]. Spherically symmetric distributions guar-
antee that there is no preferable direction in the search space, which is a desired
property especially at the beginning of the optimization process. Moreover, this
also means that the effectiveness of an optimization technique does not depend
on a reference frame. This, in the evolutionary algorithms (EAs) framework
was intensively studied by Obuchowicz [8]. An isotropic sampling strategy may
be effective for the low-dimensional problems, but its efficiency may drasti-
cally decreases for large-scale problems. Thus, many evolutionary algorithms
are supplied with auxiliary heuristics which try to neutralize a negative influ-
ence of the dimensionality problem [5,8,11]. An intuitive idea of dealing with the
problem is to adjust a probability measure on the basis of information gained
during the optimization process. In this paper, a special class of the so-called
directional distributions is introduced. This new class gives an access to con-
structing new techniques for adaptation probability measures in the mutation
operator.

The paper is organized as follows. In the first section the reason why isotropic
mutations are doomed to failure for high-dimensional problems is clearly ex-
plained. In the second section the concept of directional distributions with rota-
tional symmetry is introduced. The third section contains the definition and the
most important characteristics of directional distributions. In forth section some
well-known techniques for estimating the most preferable direction of mutation
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are briefly presented. The fifth section contains comparative studies regarding
effectiveness of different heuristics based on the directional distribution. Finally,
the last section concludes the paper.

2 Isotropic Mutation and High-Dimensional Problems

Evolutionary algorithms dedicated to continuous optimization problems very
often favour an isotropic distribution in the mutation operator. Even though
this class of multivariate distributions guaranty a fair searching way, it may be
extremely ineffective for high-dimensional problems. In this section it is looked
forward a source of the above-mentioned phenomenon.

It can be proved [4] that every spherically symmetric random vector Z can
be decomposed into

Z = ru(n), (1)

where u(n) is uniformly distributed on the n-dimensional unit sphere, and r > 0
stands for the so-called generating variate. Moreover, the relationship between r
and Z is one-to-one, what implies, that the number of spherical distributions is
essentially equal to the number of nonnegative random variable [4]. It is worth
noticing that the random variable u(n) possesses the greatest possible entropy
among all distributions defined on the unit sphere.

The impair of the effectiveness of EAs with spherically symmetric mutations
can be explained with the help of the following theorem:

Theorem 1. Let us consider any spherically distributed random vector Z, and a
new candidate solution formed in the following way xt+1 = xt+Z. Moreover, let
μt denotes the most profitable direction in the search space at point xt. Then, the
probability that the candidate solution xt+1, will lie on the direction perpendicular
to μt, tends to one when the dimension of the search space increases to the
infinity.

Proof. Let μ ∈ R
n be an unit vector, and u(n) denote a random vector uni-

formly distributed on the n-dimensional unit sphere. Then the distribution of
the random variate t = μT u(n) has a density given as [4]:

fn(t) =
1

β(n−1
2 ,

1
2 )

(1 − t2)
n−3

2 , (2)

where β(·, ·) stands for the Beta function. Let us consider the following limit for
t ∈ (−1, 0) ∪ (0, 1)

lim
n→∞

fn(t) = π−1/2 lim
n→∞

Γ (n
2 )

Γ (n−1
2 )

(1− t2)
n−3

2 . (3)

Substituting k = 2(n+ 1), and b = (1 − t2) ∈ (0, 1), (3) can be written as:

lim
n→∞

fn(t) = lim
k→∞

Γ (k + 1)
Γ (k + 1/2)

bk−1/2. (4)
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Next, let us notice that

ak = 0 ≤ Γ (k + 1)
Γ (k + 1/2)

bk−1/2 < (k + 1/2)1/2bk−1/2 ≤ (k + 1/2)bk−1/2 = ck.

The limit of the sequence ck can be obtained with help of L’Hospital’s rule:

lim
k→∞

ck = lim
k→∞

k + 1/2
b1/2−k

= lim
k→∞

1/2
− ln(b)b1/2−k

= − b
−1/2

2 ln(b)
lim

k→∞
bk = 0

Since both sequences ak and ck converge to 0, thus the sequence dk also ap-
proaches 0. Therefore, the density function (2) tends to 0 for every t ∈ [−1, 0)∪
(0, 1] and goes to infinity for t = 0. Thus, it is obvious that, in the limit, the
whole probability mass is focused in the point t = 0, which means that the
functions’ sequence {fn} approximates the Dirac Delta Distribution. Now, if we
assume that the vector μ stands for the most preferable direction in the search
space (e.g. for smooth function it can be the gradient of the objective function)
then the probability of generating a random vector other than perpendicular to
μ is equal to zero, if the dimension of the search space tends to infinity. What
completes the proof. �

3 Directional Distribution

The problem revealed in Theorem 1 can be neutralized with help of a technique
which is based on the so-called directional distributions. In the literature, several
classes of such distributions can be found [7], while for the need of evolution-
ary computations, the class of the so-called rotationally symmetric distributions
M seems to be very attractive. The class M is usually parameterized by a pair
{μ,κ}, where μ is the mean direction, and κ stands for the concentration param-
eter. Therefore, the mutation operator can be perceived as a two stage process:
first the direction of mutation is chosen according toM(μ,κ), and then the phe-
notype of an individual is changed in this direction by adding an one dimensional
generate variable (in fact, heavy-tailed symmetric α-stable distribution SαS(γ)
is utilized [14] i.e.:

xk+1 = xk + rdk, (5)

where r d= χα,γ = |SαS(γ)|, and dk
d= M(μ,κ). At this stage, the choice of the

symmetric α-Stable distribution at this stage is not an accidental one. In recent
years, the class of SαS(γ) distributions, has received an increasing interest of the
evolutionary computation community [6,9,15]. The family of Symmetric Stable
Distribution SαS(γ) is characterized by two parameters: stable index α, which
define the shape of its p.d.f., and scale γ. Bearing in mind that evolutionary
algorithms are not convergent to the optimal solution, but to the some area
around it [3], the class of SαS(γ) distribution allows to establish a well-balanced
compromise between two mutually exclusive properties: an accuracy in locating
potential solution and an ability of escaping from the local optima - two the
most challenging problems of stochastic optimization.
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Despite the fact that in literature one can find several well-known classes of
distributions with rotational symmetry, each of them has its own disadvantage.
For example, the most popular class, the so-called von Mises-Fisher distribution
(vMF) with the density given by [2]:

fn(x;κ,μ) =
κn/2−1

(2π)n/2In
2 −1(κ)

exp(κμT x), (6)

possesses the marginal density of t = μT X, given by:

fn(t;κ) =
(κ

2 )n/2−1

Γ (n−1
2 )Γ (n/2)In−1

2
(κ)

exp(κt)(1 − t2)
n−3

2 , (7)

where ‖μ‖2 = 1, In(·) stands for the modified Bessel function of the first kind.
As one can observe, even though information collected during the optimization
process allows to detect the best direction in the search space, it appears that
vMF will not prefer this direction at all. Thus, the following question arises: is it
possible to obtain a random vector distributed in the similar way as that of vMF,
but having an arbitrarily chosen marginal density t = μT X? Looking for the
suitable subclass of directional distributions one can make use of the fact that
every rotationally symmetric random variable X can be uniquely determined by
its tangent normal decomposition [7]:

X = tθ +
√

1− t2ξ, (8)

where t is invariant under rotation about θ. Moreover ξ and t are independent
and ξ is uniform on a surface of the unit ball S(n−2). The above fact can be used
for creating a random variable with an arbitrarily chosen marginal distribution.
To see this, let us substitute θ = [0, 0, . . . , 1]T ∈ R

n, and then consider an
orthogonal transformation QX that satisfies Qθ = μ. It is easy to check that the
random vector X, obtained int this way, has the marginal distribution XT θ

d=
t. Thus, by selecting a proper distribution for t, one can control the degree
of probability mass concentration around the mean direction μ. In fact, the
attention is focused on the marginal distribution of the form: t = 2X − 1, where
X is Beta distributed random variable β(a, b). Therefore, the density of t is given
by:

f(t|a, b) =
21−a−b

β(a, b)
(1− t)b−1(1 + t)a−1, (9)

where a and b are parameters of the Beta distribution. The concentration pa-
rameter κ can be provided by using parameters of density (9) with: a = n−1

2
and b = κn−1

2 . The expectation and variance of the random variable T = θT X
are as follows:

E[T ] =
1− κ

1 + κ
, Var(T ) =

8κ
n(1 + k)2(1− κ2)

. (10)

The direction distribution simulation process is summarized in the Tab. 1.
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Table 1. Algorihtm to simulating directional distribution M(μ, κ)

Input data

μ ∈ R
n – mean direction

κ ∈ (0, 1] – concentration parameter

Output data

Y – pseudo-random vector of M(μ, κ) distribution

Algorithm

t = 2β(n−1
2 , κ(n−1)

2 ) − 1, where β(a, b) gives random number from Beta distribution

X ← N (0, In−1)

Z ← X/‖X‖2

Y ← [
√

1 − t2ZT , t]T

Y ← [In − vvT ] Y where v = [0,0,...,1]T −μ

‖[0,0,...,1]T −μ‖2

(a) (b)
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Fig. 1. p.d.f. of random variable t = XT μ for isotropic mutation (a), and for direc-

tional mutation with mean direction μ and concentration parameters κ = 0.1 (b)

4 Adaptation of the Probabilistic Measure in Mutation
Operator

The EAs belongs to the class of the so-called meta-heuristic stochastic optimiza-
tion algorithms, which are based on a very simple rules adopted from Darwinian
evolution theory: better individuals are preferable during evolution process, what
means that they posses greater chance to survive and generate descendants. In
the continuous evolutionary algorithms, new candidate solutions xk+1, are usu-
ally generated, by adding some realization of random variable Z to the before
selected parent:

xk+1 = xk + Z. (11)
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It is worth to stress that the effectiveness of any continues EAs depends, to
a large extent, on the choice of a suitable distribution for Z. The knowledge,
needed for choosing the optimal distribution in the mutation operator, in prac-
tical applications, is neither complete nor sufficient. In order to avoid the prob-
lem, a probabilistic measure should be learnt during an optimization process.
Most approaches presented in the literature utilize the multivariate Normal dis-
tribution [12]. Thus, their heuristics are mainly focused at the adaptation of
a covariance matrix. Despite the fact that heuristics used to adapt Gaussian
distribution during the evolution process allow to obtain algorithms with an ef-
fectiveness invariant to linear transformation of the solution space, it is worth
to focus attention on a serious drawback related to the Normal distribution.
Namely, even if one can imagine the best heuristic, that are able to point to
the most preferable direction in the search space, the symmetry of Gaussian
distribution will favour the worst direction, which is equally well preferable.The
concept of directional distributions presented in the previous section allows to
remove the above-mentioned problem. Naturally, the effectiveness of EAs with
mutation based on a class M(μ,κ) will depend at least on two factors: the cor-
rectness of establishing the mean direction of mutation μ, and the value of the
concentration parameter κ, which controls the dispersion around the mean di-
rection. In fact, concentration parameter κ, defined in the Section 3, allows to
obtain on one side an isotropic distribution on the sphere (κ = 1), and on the
other side, a degenerate distribution at the mean direction (κ = 0). The idea
of forcing mutation direction boils down to utilizing a traditional way of creat-
ing a new individual (5). Since directional distributions, are parameterized by a
pair {μ,κ}, then one must determine the strategy of adjusting their values. In
this paper, the attention is restricted to the parameter μ only. In the literature,
several techniques doing this can be found:

– Heuristic No. 1 – the most promising direction is given by the formula:

μt = − z

‖z‖2
, where z = [P T

t P t]−1P T
t Φt,

where P t ∈ Rη×n and Φt ∈ Rη stands for a matrix of phenotypes and a
vector of individual fitness respectively, e.g.:

P t = [xt
1,x

t
2, . . . ,x

t
η]T Φt = [φ(xt

1), φ(x
t
2), . . . , φ(x

t
η)]T

An obvious drawback of the method lies in the fact that the inversion of the
matrix P T

t P t requires at least as many individuals as the dimension of the
search space.

– Heuristic No. 2 – the method, firstly proposed by Salomon [13], for the
class of algorithms known as Evolutionary Gradient Search:

μt =
z

‖z‖2
, where z =

η∑
k=1

φ(xt−1
k )− φ(xt

k)
φ(xt−1

k )
xt−1

k − xt
k

‖xt−1
k − xt

k‖2
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– Heuristic No. 3 – the approach proposed by Obuchowicz [8] for the class
of evolutionary algorithms known as Evolutionary Search with Soft Selection
and Forced Direction of Mutation (ESSS-FDM):

μt =
〈xt〉 − 〈xt−1〉
‖〈xt〉 − 〈xt−1〉‖ , where 〈xt〉 =

1
η

η∑
k=1

xt
k

4.1 Evolutionary Search with Soft Selection

Evolutionary algorithms used in simulation experiments in this work are based
on the ESSS algorithm (Evolutionary Search with Soft Selection), which is based
on a probably the simplest selection-mutation model of the Darwinian’s evolu-
tion [5]. To stress that original algorithm is modified by applying directional
mutation (5) the abbreviation ESSSα−DM is used. The evolution is a motion

Table 2. Outline of the ESSSα − DM algorithm

Input data

η – population size;

tmax – maximum number of iterations (epochs);

γ, α, κ – parameters of mutation: scale, stable index and concentration;

φ : R
n → R – fitness function;

x0
0 – initial point.

Algorithm

1. Initialize

P (0) =
(
x0

1, x
0
2, . . . , x

0
η

)
, x0

k = x0
0 + Z,

where Z ∼ N (0, γIn), k = 1, 2, . . . , η

2. Repeat

(a) Estimation

Φ
(
P (t)

)
=
(
qt
1, q

t
2, . . . , q

t
η

)
, where qt

k = φ
(
xt

k

)
, k = 1, 2, . . . , η.

(b) Proportional selection

P (t) −→ P (t)′ =
(
xt

h1
, xt

h2
, . . . , xt

hη

)
,

(c) Estimation of the most promising direction of mutation

μ(t) ←− H
(
P ′(t), P ′(t − 1)

)
,

(d) Mutation

P (t)′ −→ P (t + 1);

xt+1
k = xt

hk
+ χα,γu(n), u(n) ∼ M(μ(t), κ), k = 1, 2, . . . , η.

Until t > tmax.
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of individuals in the phenotype space, called also the adaptation landscape. This
motion is caused by the selection and mutation process. Selection leads to the
concentration of individuals around the best ones, but mutation introduces the
diversity of phenes and disperses the population in the landscape.

The above-described assumptions can be formalized by the algorithm pre-
sented in Tab. 2.

5 Simulation Experiments

The aim of first experiment was to minimize an objective function of the form
f(x) = xT x. Four versions of ESSSα − DM algorithm were investigated, with
stable index α = 1.5. Initial population η = 45 was placed at the point x0 =
[20, 20, . . . , 20]T ∈ R

40. During the optimization process, two quantities were ob-
served: the value of the best individual in the population, and the cosine of the
angles between an exact gradient vector and the direction of a particular mutation
e.g. T = dT μ∗, where d = xt−xt−1

‖xt−xt−1‖2
. Both results are presented in the Fig. 2.

For the spherical model, heuristics presented in Section 4, lead to the faster
convergence of ESSSα −DM algorithm. In comparison with the isotropic mu-
tation, the number of useless population steps was minimized, which is clearly
visible in the Fig. 2 (b) - histograms related to different version of ESSSα−DM
algorithm are shifted towards 1, which means that more mutations lay closer to
the steepest descent direction.

The objective of the second experiment, was to check the effectiveness of
the proposed heuristics in multimodal landscapes. The two standard benchmark
functions [1] were chosen: the Ackley Function and Rastringin Function. In both
cases the initial population was placed at x0 = [20, 20, . . . , 20]T ∈ R

20, and the
fitness value of the best individual was observed. It must to be stressed, that
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Fig. 2. The best fitness value vs. epochs - (a) (results averaged over 50 runs), (b)
- histogram of the cosine angles between the exact gradient direction and prefer-

able direction by the mutation operator for ESSSα − DM algorithms with different

heuristics
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Fig. 3. The best fitness value vs. epochs (results averaged over 50 runs). (a) - Ackley

Function , (b) - Rastringin Function.

parameters of mutation α = 1.5, γ = 0.1, κ = 0.1 were chosen in such way as to
assure slow convergence of the algorithm.

In the case of the Ackley function (Fig. 3), heuristics No. 1 and 2 make the
evolutionary algorithm more susceptible to being trapped in local solutions. In
this respect heuristic No. 3 guaranteed the fastest convergence, and appeared to
be much more efficient than the isotropic mutation with the same stable index.
The results obtained for the Rastringin Function confirm advantages of the pro-
posed directional mutation. In this case a completely different situation is ob-
served. In Fig. 3 one can see that all of the proposed approaches led to the faster
convergence than the mutation with spherical symmetry.

6 Conclusion

In this paper, the general concept for the adaptation of a probabilistic measure
in a mutation operator of phenotypic EAs is introduced. The proposed approach
is based on the directional distributions which are parameterized by the mean
vector and concentration parameter. Three techniques for adjusting the most
promising direction of mutation are introduced and their efficiency is investigated
via numerical simulations. The proposed mutation improves the effectiveness of
evolutionary algorithms by making use of an information collected during every
mutation procedure. Moreover, it also provides an access to construction of more
sophisticated techniques which aim at improving effectiveness of evolutionary
algorithms for high-dimensional problems.
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6. M. Gutowski: Lévy flights as an underlying mechanism for a global optimization
algorithm. Proc. 5th Conf. Evolutionary Algorithms and Global Optimization, Jas-
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Abstract. Adaptive inertia weight is proposed to rationally balance
the global exploration and local exploitation abilities for particle swarm
optimization. The resulting algorithm is called adaptive inertia weight
particle swarm optimization algorithm (AIW-PSO) where a simple and
effective measure, individual search ability (ISA), is defined to indicate
whether each particle lacks global exploration or local exploitation abili-
ties in each dimension. A transform function is employed to dynamically
calculate the values of inertia weight according to ISA. In each iteration
during the run, every particle can choose appropriate inertia weight along
every dimension of search space according to its own situation. By this
fine strategy of dynamically adjusting inertia weight, the performance of
PSO algorithm could be improved. In order to demonstrate the effective-
ness of AIW-PSO, comprehensive experiments were conducted on three
well-known benchmark functions with 10, 20, and 30 dimensions. AIW-
PSO was compared with linearly decreasing inertia weight PSO, fuzzy
adaptive inertia weight PSO and random number inertia weight PSO.
Experimental results show that AIW-PSO achieves good performance
and outperforms other algorithms.

1 Introduction

Particle Swarm Optimization (PSO), a new evolutionary computation technique
inspired by social behavior simulation, has achieved promising performance on
nonlinear function optimization. Since the original version PSO is first intro-
duced by Kennedy and Eberhart in 1995 [1], many interesting variations of PSO
have emerged [2-5]. Among them, linearly decreasing inertia weight PSO (LDW-
PSO) [5] has been widely regarded as the standard version PSO algorithm. Many
engineering optimization application are based on LDW-PSO [6-10]. The con-
cept inertia factor is very important and useful in PSO community. In 1998,
Angeline [11] found that the original version has a poor ability to search at a
fine grain because it lacks velocity control mechanism. In order to overcome this
disadvantage, a linearly decreasing inertia factor was first introduced by Eber-
hart and Shi in 1998 [5]. At the beginning of the process, a larger inertia factor is
used for global exploration. During the search, inertia factor is becoming smaller
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and smaller for local exploitation. By doing this, the inertia factor balances the
global wide-rang exploration and the local nearby exploitation abilities of the
swarm, which leads to significant improvement in the performance of PSO. In
2001 Shi [12] used a fuzzy system to dynamically adapt the inertia weight in
order to further improve the performance. In 2003 Zhang [13] investigated the
effect of random inertia weight in PSO. As reported in their experimental results,
the resulting algorithm achieved better performance than LDW-PSO.

Depending on the concept inertia weight, above methods achieve promising
results, but they still did not adequately exploit the effect of it. The inertia
factor has potential to aid in further performance improvement. In this paper, we
define a measure, Individual Search Ability (ISA), to indicate each particle lacks
whether global exploration or local exploitation abilities. Depending on the ISA,
the inertia weight of each particle in each dimension is calculated with the defined
transform function so as to enhance the corresponding weak search abilities.
Thus, along every dimension, every particle has different values of inertia weight
in every iteration, which can promote to choose the appropriate inertia weight.
Then rational combination of global and local search abilities is achieved for
every particle. The proposed method is called adaptive inertia weight particle
swarm optimization algorithm (AIW-PSO).

The rest of this paper is organized as follows. In Section 2, AIW-PSO is pro-
posed, and then the mechanism of individual activity and transform function are
discussed in detail. In Section 3, benchmark functions and experimental setup are
described. Subsequently, results are presented. Finally, Section 4 gives conclusions.

2 Adaptive Inertia Weight Particle Swarm Optimization

A swarm consists of N particles moving around in a D-dimensional search space.
The i-th particle at the t-th iteration has a position X

(t)
i = (xi1, xi2, . . . , xiD),

a velocity V
(t)
i = (vi1, vi2, . . . , viD), the best solution achieved so far (pbest) by

itself P (t)
i = (pi1, pi2, . . . , piD). The best solution achieved so far by the whole

swarm (gbest) is represented by P
(t)
g = (pg1, pg2, . . . , pgD). The position of the

i-th particle at the next iteration will be calculated according to the following
equations:

V
(t+1)
id = w ∗ V (t)

id + c1 ∗ rand() ∗ (P (t)
id −X

(t)
id ) + c2 ∗ rand() ∗ (P (t)

gd −X
(t)
id )

(1)

X
(t+1)
id = X

(t)
id + V

(t+1)
id (2)

where c1 and c2 are two positive constants, called cognitive learning rate and so-
cial learning rate respectively; rand() is a random function in the range [0, 1] ;
w is inertia factor. In addition, the velocities of the particles are confined within
[V min, V max]D. If an element of velocities exceeds the threshold V min or Vmax,
it is set equal to the corresponding threshold.
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The inertia weight is critical for the performance of PSO, which balances
global exploration and local exploitation abilities of the swarm. A large iner-
tia weight facilitates exploration, but it makes the particle long time to con-
verge. Conversely, a small inertia weight makes the particle fast converge, but
it sometimes leads to local optimum. During the search every particle dynam-
ically changes its position, so every particle locates in a complex environment
and faces different situation. Therefore, each particle along every dimension may
have different trade off between global and local search abilities. In this paper,
inertia weight is dynamically adapted for every particle along every dimension.
A measure, Individual Search Ability (ISA), which characterizes the faced sit-
uation for every particle is defined. Basing on this measure, the particle could
decide to whether to increase or decrease the values of inertia weight. The fine
strategy of dynamically adjusting inertia weight could lead to improvement in
performance of PSO.

Definition 1. Given ε > 0, the Individual Search Ability of the i-th particle
along the jth dimension, ISAij , is defined:

ISAij =
|xij − pij |

|pij − pgj |+ ε
(3)

where xij is the position of the i-th particle in the j-th dimension; pij is the
own best solution, while pgj is the current global best solution. |...| denotes the
absolute value and ε is a positive constant close enough to zero.
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Fig. 1. The relation between xi, pi, and pg in 2-dimensional optimization problem:

(a) pi is far from pg (b) pi is close to pg

As illustrated in Figure 1 (a), the particle i moves around pi , and pi is far
from pg, It is possible that pi is the local optimum and the particle i is trapped.
According to formula (3), ISA gets a small value at this scenario. The global
exploration should be enhanced in order to escape from the local optimum. On
the other hand, as illustrated in Figure 1 (b) pi is close to pg, which means is
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a good position, but the particle i is far from it. It is possible that the particle
i has too much strong global exploration ability but lacks local exploitation
ability, which leads to a large value of ISA. As it only utilizes the information
of the current iteration, ISA is expected to be a simple and effective measure to
indicate individual search ability. A large ISA means strong global exploration
ability, inertia weight should be decreased. While a small ISA means that the
inertia weight should be increased. Then, the value of inertia weight for every
particle along every dimension, wij(i = 1, · · · , N ; j = 1, · · · , D), is dynamically
calculated with the following transform function.

Definition 2. The transfer function is

wij = 1− α(
1

1 + e−ISAij
) (4)

where α is a positive constant in the range (0,1].
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Fig. 2. w vs ISA with different α

Figure 2 shows the change of inertia weight w with respect to ISA with dif-
ferent α varied from 0.1 to 1. The parameter α controls the decreasing speed
of inertia weight. In order to observe the impact of α on the performance of
PSO, parameter α is varied from 0.1 to 1 with step size 0.1. AIW-PSOs with
different values of α, 20 particles, 2000 maximum iterations, were conducted
on three 30-dimensional benchmark functions. For each experimental setting,
100 runs of the algorithm were performed. Table 1 listed the mean best fit-
ness values averaged over 100 runs. It is clear that the values in range [0.1,
0.4] for α can all lead to acceptable performance. In present paper, α is set
to 0.3.
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Table 1. The mean best fitness values with different values of α

α f1 f2 f3

0.1 170.1461 31.2124 0.0148

0.2 208.9064 24.6422 0.0137

0.3 241.9252 22.0608 0.0113

0.4 179.2728 23.9913 0.0144

0.5 511.6168 27.6693 0.0181

0.6 738.7308 28.7811 0.0174

0.7 768.6959 31.3867 0.0305

0.8 1855.2588 37.2883 0.0416

0.9 1261.3114 38.1208 0.0766

1 1944.9399 45.9375 0.1877

3 Experiments

Three well-known benchmark functions (all minimization) were used in our ex-
periments.

The first function is the Rosenbrock function(Figure 3):

f1(x) =
n−1∑
i=1

(100
(
xi+1 − x2

i

)2
+ (xi − 1)2) (−100 ≤ xi ≤ 100) (5)
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Fig. 3. The Rosenbrock function

The second function is the generalized Rastrigrin function(Figure 4):

f2(x) =
n∑

i=1

(
x2

i − 10 cos (2πxi) + 10
)

(−10 ≤ xi ≤ 10) (6)
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Fig. 4. The generalized Rastrigrin function

The third function is the generalized Griewank function(Figure 5):

f3(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos(
xi√
i
) + 1 (−600 ≤ xi ≤ 600) (7)
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Fig. 5. The Griewank function

Figures 3, 4 and 5 show the surface landscapes of three benchmark functions:
Rosenbrock, generalized Rastrigrin, and Griewank when the dimension is set to
2 respectively. Rosenbrock is a unimodal function,which has a global minimum
of 0 at the point (1, · · · , 1). Compared with multimodal function, the unimodal
function is easy to optimize, but the optimum solution is difficult to achieve when
problem dimension goes high. As shown in Figure 4 and 5, generalized Rastrigrin
and Griewank are multimodal functions which have many local minima. The op-
timum solution of generalized Rastrigrin is (0, · · · , 0) with the global minimum 0;
Griewank also has a global minimum of 0 when the vector is (0, · · · , 0).

In our experiments, AIW-PSO were compared with linearly decreasing iner-
tia weight PSO (LDW-PSO) [5] , fuzzy adaptive inertia weight PSO (FUW-PSO)
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Table 2. Search space and initialization range

Function Search Space Initialization Range
[Xmin, Xmax]

f1(x) −100 ≤ xi ≤ 100 15 ≤ xi ≤ 30

f2(x) −10 ≤ xi ≤ 10 2.56 ≤ xi ≤ 5.12

f3(x) −600 ≤ xi ≤ 600 300 ≤ xi ≤ 600

Table 3. The best fitness values for the Rosenbrock function f1(x)

Population Dim Max AIW RNW FUW LDW

Size Iteration PSO PSO PSO PSO

20 10 1000 48.6378 65.28474 66.0141 96.1715

20 1500 115.1627 147.52372 108.2865 214.6764

30 2000 218.9012 409.2443 183.8037 316.4468

40 10 1000 24.5149 41.32016 48.7652 70.2139

20 1500 60.0686 95.48422 63.8841 180.9671

30 2000 128.7677 253.81490 175.0093 299.7061

80 10 1000 19.2232 20.77741 15.8165 36.2945

20 1500 52.8523 82.75467 46.0000 87.2802

30 2000 149.4491 156.00258 124.4184 205.5596

[12], and random number inertia weight PSO (RNW-PSO) [13]. For the purpose
of comparison, parameters were assigned as same as that in literature [5] [12] [13].
For each function, three dimensions were tested: 10, 20 and 30, the maximum
numbers of generations were set to 1000, 1500 and 2000 correspondingly. In
order to investigate the scalability of PSO algorithms, three population sizes
20, 40 and 80 were used for each function with different dimensions. Vmin is
set equal to Xmin; Vmax equal to Xmax. The learning rates were c1 = c2 = 2.
The parameter of AIW-PSO, α, is set to 0.3. For each experimental setting, 100
runs of the algorithm were performed. The search space and initialization range
for each test function were listed in Table 2. In order to give right indications
of relative performance, an asymmetric initialization was adopted according to
literature [11].

Tables 3, 4 and 5 respectively listed the mean fitness values of the best
solutions achieved by four algorithms on Rosenbrock, Rastrigrin, and Griewank
functions with each experimental setting. For fair comparisons, the results of
RNW-PSO, FUW-PSO, and LDW-PSO were directly taken from their original
publications. The results of AIW-PSO were averaged over 100 trails with each
experimental setting.

In these Tables, AIW-PSO algorithm exhibits good performance. It outper-
forms RNW-PSO and LDW-PSO on all benchmark problems. AIW-PSO is lit-
tle inferior to FUW-PSO on Rosenbrock function with some dimension, while
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Table 4. The best fitness values for the generalized Rastrigrin function f2(x)

Population Dim Max AIW RNW FUW LDW

Size Iteration PSO PSO PSO PSO

20 10 1000 3.7415 5.04258 4.9552 5.5572

20 1500 11.1323 20.3111 23.2733 22.8892

30 2000 22.1155 42.5813 48.4756 47.2941

40 10 1000 1.9900 3.2255 3.2834 3.5623

20 1500 7.2145 13.8481 15.0445 16.3504

30 2000 17.5765 32.1564 35.2015 38.5250

80 10 1000 1.0051 1.8593 2.3282 2.5379

20 1500 5.0615 9.9500 10.8610 13.4263

30 2000 13.1237 25.4412 22.5239 29.3063

Table 5. The best fitness values for the Griewank function f3(x)

Population Dim Max AIW RNW FUW LDW

Size Iteration PSO PSO PSO PSO

20 10 1000 0.0734 0.0962 0.9162 0.0919

20 1500 0.0252 0.0300 0.0273 0.0303

30 2000 0.0120 0.0167 0.0216 0.0182

40 10 1000 0.0671 0.0870 0.0757 0.0862

20 1500 0.0266 0.0342 0.0312 0.0286

30 2000 0.0146 0.0168 0.0122 0.0127

80 10 1000 0.0106 0.0715 0.0683 0.0760

20 1500 0.0258 0.0283 0.0260 0.0288

30 2000 0.0106 0.0159 0.0149 0.0128

AIW-PSO is superior to FUW-PSO on Rastrigrin, and Griewank functions with
all dimensions.

The performance improvement of AIW-PSO results from the two aspects.
On the one hand, the variety of inertia weight is maintained in every iteration.
During the search, the particles face different situation, so they get different
the values of ISA and then inertia weight. At the early iteration, part parti-
cles with large inertia weight have strong global search abilities and locate the
promising search areas, while part particles with small inertia weight can help to
accelerate convergence. Near the end of the run part particles with small inertia
weight is responsible to fine search, while part particles with large inertia weight
can promote escaping from the local optima. On the other hand, the particles
can rationally adjust inertia weight according to particle’s own situation. Every
particle first calculates ISA to know its situation, and then chooses appropriate
inertia weight along every dimension. When the particle achieves a small ISA,
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a large value of inertia weight will be set. Meanwhile, if the ISA is large, the
value of inertia weight will be small. Thus, the particles can duly achieve cor-
responding search ability at different situation so that they can capture better
solutions.

4 Conclusions

In this paper, we proposed AIW-PSO algorithm where every particle dynam-
ically adjusts inertia weight along every dimension of search space according
to its faced situation. Individual Search Ability (ISA) was proposed to identify
the situations for particles. ISA can indicate each particle lacks whether global
exploration or local exploitation abilities in a situation. The calculation of ISA
involves only three parameters: the position of the particle, pbest and gbest, so
ISA is a simple and effective measure. Then a transform function was defined
to translate ISA into inertia weight. Because the particles face different situa-
tion and complex environment, they achieve different suitable values of inertia
weight. The variety of inertia weight results in the whole swarm good balance
of global and local search ability. Moreover, the particle can rationally adjust
inertia weight according to its situation indicated by ISA. Therefore, the parti-
cle can duly achieve corresponding search ability at different situation. By this
fine strategy of dynamically adjusting inertia weight, the performance of PSO
algorithm was improved. Experimental results show that AIW-PSO achieves bet-
ter solutions than LDW-PSO, FUW-PSO and RNW-PSO on three well-known
benchmark functions.
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Abstract. The efficiency of the evolutionary search in M. Eigen’s quasi-
species model for the case of an arbitrary alphabet (the arbitrary number
of possible string symbols) is estimated. Simple analytical formulas for
the evolution rate and the total number of fitness function calculations
are obtained. Analytical estimations are proved by computer simulations.
It is shown that for the case of unimodal fitness function of λ-ary strings
of length N , the optimal string can be found during (λ−1)N generations
under condition that the total number of fitness function calculations is
of the order of [(λ − 1)N ]2.

1 Introduction

Evolutionary algorithms and methods [1-5] were intensively investigated and ap-
plied during the last two decades. In this connection it is important to analyze
quantitatively the questions: How efficient is the evolution as an optimization
technique? What is speed of evolutionary processes? How many evolving organ-
isms should be processed before “the optimal organism” is found for the given
genome size N?

A number of researchers analyzed efficiency of evolutionary algorithms in dif-
ferent contexts [6-10]. Obtained results reveal many significant aspects of the evo-
lution models; nevertheless, there is no clear answer on the questions stated above.

In this paper we analyze the efficiency of evolutionary search in the qua-
sispecies model that was proposed and investigated by Manfred Eigen [11,12].
Some estimations of the evolution rate in this model were made by Hans Kuhn
with coworkers [13]. The quasispecies model can be considered as simple canoni-
cal model of evolution with well defined scheme. This model is equivalent to the
genetic algorithm [1,2] without crossover.

We obtain rough analytical estimations for the rate of evolution and the total
number of evolution participants (the number of fitness estimations) and prove
analytical estimations by computer simulations. We pay a special attention to
stochastic character of evolution and to neutral selection that are due to finite
population size [14].
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In the previous work [15] we analyzed the special case of the quasispecies
model, in which the strings consist of two symbols. In this paper we investigate
the more general case: the string symbols are taken from an arbitrary alphabet.

The paper is organized as follows. Section 2 describes the scheme of the qua-
sispecies model. In Section 3 we outline general features of evolution in the qua-
sispecies model qualitatively. Section 4 characterizes the role of neutral selection.
Analytical estimations of the rate and efficiency of the evolution algorithm are
made in Section 5, the results of computer simulations are described in Section
6. Section 7 includes discussion and conclusion.

2 The Scheme of the Quasispecies Model

The main assumptions of the quasispecies model [11,12,15-17] are as follows.

1. We consider evolution of a population of model “organisms” {Sk}, where
each organism Sk is defined by a string of λ-ary symbols Ski , i = 1, ..., N ;
k = 1, ..., n; N is the length of the strings and n is the population size. We
assume that symbols are taken from the predetermined alphabet and that
the number of letters in the alphabet is λ. For example, λ = 4 in case of
DNA or RNA. The string Sk can be considered as a model DNA of the kth

organism.
2. We assume that fitness function f(S) is unimodal, that is there is the optimal

string Sm, that has maximum fitness value, and fitness of any other string S

Table 1. The scheme of evolution

Step 0. The formation of the initial random population {Sk(0)}. For each k =
1, 2, ..., n and each i = 1, 2, ..., N , a symbol Ski is chosen at random from the
considered alphabet.

Step 1. Selection

Substep 1.1. Fitness calculation. For the population {Sk(t)} (t is the number of
the generation), f(Sk) is evaluated for each k = 1, 2, ..., n.

Substep 1.2. Formation of the new population {Sk(t + 1)}. n strings are selected
from {Sk(t)} into the next generation {Sk(t + 1)} by means of the “roulette-wheel
sampling” [2]. Namely, selection of a string into the new population takes place

exactly n times; every time, the probability that the kth string is selected for the
next generation {Sk(t + 1)} is proportional to its fitness f(Sk).

Step 2. Mutations. For each k = 1, 2, ..., n and for each i = 1, 2, ..., N , the symbol
Ski(t + 1) is replaced with probability Pm by arbitrary symbol from the considered
alphabet; Pm is the mutation intensity.

Step 3. Organization of the sequence of generations. Steps 1,2 are repeated for
t = 1, 2, ...
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decreases exponentially as the Hamming distance ρ(S,Sm) between S and
Sm (the number of noncoinciding symbols at the respective positions of these
strings) increases:

f(S) = exp[−βρ(S,Sm)], (1)

where β is the parameter of selection intensity.
3. The evolution process consists of a number of generations. In each generation,

selection of the organisms into the next generation (in accordance with their
fitness) and mutations (replacements of symbols Ski by random symbols
from the considered alphabet) take place.

4. The string length N and the population size n in a certain evolution process
are invariable and large: N,n) 1.

The formal scheme of the evolution process for the considered model is presented
in Table 1.

It should be noted that the described model is characterized in full extent
by the following parameters: N,n, β, Pm, λ.

3 Qualitative Picture of Evolution

In previous studies [15-17] and in this research, series of computer simulations have
been done for the considered model. Computer simulations demonstrate that if the
mutation intensity is sufficiently small (β ≥ PmN, 1 ≥ PmN), then the evolution
can be characterized as follows (an example calculation is shown in Fig. 1):

Fig. 1. The evolution of distribution Pr(ρ) of Hamming distance ρ from the optimal

string in the population. Pr(ρ) is the fraction of organisms with certain value ρ in the

population, t is the number of the generation. λ = 4, N = 500, n = 500, β = 1, Pm =

1/N = 0.002. The distribution for t = 500 corresponds to quasispecies.
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− initial distribution Pr0(ρ) with respect to ρ in the population (for t = 0) is
close to the normal distribution with mean <ρ>= (λ− 1)N/λ and variance
(λ − 1)Nλ−2 [16]; < ρ > is the average (over the population) Hamming
distance to the optimal string Sm;

− the dynamics of the distribution Pr(ρ) can be characterized by two stages,
rapid and slow;

− during the first (rapid) stage, organisms from the left side of the initial
distribution Pr0(ρ) are selected and the distribution Pr(ρ) contracts;

− during the second (slow) stage, new organisms with smaller values of ρ can
appear in the population only through mutations, and the distribution Pr(ρ)
drifts to small values of ρ with low rate;

− the final distribution characterizes the quasispecies, the quasispecies is the
string distribution in a neighborhood of the optimal string Sm;

− at small selection and mutation intensities (1 ) β ≥ PmN), the quasi-
species distribution Pr(ρ) is close to the Poisson distribution with mean
(λ− 1)PmN/(λβ) [16].

4 The Role of Neutral Selection

In what follows, we assume that λN >> n, i.e., that the length N of each string
S is sufficiently large. The number of strings corresponding to certain species in
the population is not large, and many species are absent at all. For this reason,
fluctuations of the number of species are essential, and the evolution processes
under consideration have stochastic character. In particular, the neutral selec-
tion, i.e., the selection independent of fitness [14], must be taken into account.

To demonstrate the neutral selection impact explicitly, let’s consider the fol-
lowing pure neutral evolutionary game:

There is a population of black and white balls; the total number of the balls in
the population is equal to n. The evolution consists of a sequence of consequent
generations. Each generation consists of two steps. At the first step all balls are
doubled: each black ball has two black descendants, and each white ball has
two white descendants. At the second step, precisely one half of the balls are
randomly removed from the population, independently of their colors.

We say that the population is in l-state, if the numbers of black and white
balls at a considered generation are equal to l and n− l, respectively. The evolu-
tion can be characterized by the probabilities Plm, where Plm is the probability of
transition from l-state to m-state during one generation. Using straightforward
combinatorial consideration, we can calculate values of Plm:

Plm =

⎧⎪⎪⎨⎪⎪⎩
(

2l
m

)
×
(

2n− 2l
n−m

)/(
2n
n

)
, if 2l− n ≤ m ≤ 2l;

0, if m > 2l or m < 2l− n.

(2)

where
(
a

b

)
=

a!
(a− b)!b!

.
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The matrix Plm determines the random Markovian process that can be con-
sidered as a simple stochastic genetic process [18]. Using general methods of
analysis of such processes [18], we can deduce that:

− the considered process always converges to one of the two absorbing states,
namely, to 0-state (all balls are white), or to n-state (all balls are black);

− for large n , the characteristic number of generations Tn , required for the
process to converge to either absorbing state, is equal to 2n:

Tn = 2n. (3)

Thus, although this evolution process is purely neutral (black and white balls
have equal chances to survive), nevertheless only one species is selected. The
value of Tn characterizes neutral selection rate, Tn ∼ n.

5 Analytical Estimations

In this section we estimate the efficiency of the algorithm described above. We
assume that the population size n is sufficiently large, i.e.:

Tn ≥ T, [1− (1 − Pc)
N ]n * 1, (4)

where Tn is the characteristic time of neutral selection (Tn ∼ n), T is the char-
acteristic time (number of generations) of the convergence of the entire evolu-
tion process, Pc is the probability that a symbol Ski is changed by mutations,
Pc = Pm(λ−1)/λ. The first inequality in (4) means that the influence of the neu-
tral selection is sufficiently small. The second inequality corresponds to ignorance
of the mutation losses of already found “good organisms” in the population.

Let us estimate the characteristic convergence time T of the evolution process.
The value of T is determined by the second (slow) stage of the evolution. At this
stage, new strings with smaller values of ρ arise because of the mutations and
are fixed in the population through selection. Let us estimate the characteristic
time t−1 during which <ρ> decreases by 1. This time can be approximated by
the expression

t−1 ∼ tm + ts, (5)

where tm ∼ (NPm/λ)−1 is the characteristic mutation time during which the
strings mutate in proper direction (namely, towards the optimal sequence) and
ts ∼ β−1 is the characteristic selection time during which the strings with ρ =
(<ρ> −1) replace the strings with ρ =<ρ> in the population in the course of
the selection. Setting T ∼ t−1N , we obtain

T ∼ λP−1
m +Nβ−1. (6)

The total number of strings involved in the evolution is ntotal = nT . Let us
estimate the value of ntotal for given N by choosing the parameters β, Pm, n so
as to minimize ntotal. We assume that the intensity of the selection is sufficiently



Estimation of the Evolution Speed for the Quasispecies Model 465

large, i.e., β ≥ PmN/λ; this allows us to ignore the second term in (6). Setting
Pc ∼ N−1 and taking into account that Pc = Pm(λ− 1)/λ , we calculate Pm as
Pm = λN−1/(λ− 1). For this value of Pm, on the one hand, new strings appear
in the population via mutations sufficiently quickly and, on the other hand, it is
possible to ignore the mutation losses (the second inequality in (4) holds). Thus,
we have T ∼ (λ− 1)N . We also assume that the first inequality in (4) is valid at
the utmost limit, i.e., n ∼ Tn ∼ T ∼ (λ − 1)N ; in other words, we assume that
the population has minimal admissible size for which the loss of felicitous strings
caused by neutral selection is inessential. With respect to all the assumptions
we have:

T ∼ (λ− 1)N, ntotal ∼ [(λ− 1)N ]2. (7)

6 Results of Computer Simulations

In order to verify the analytical estimations (7), we investigated the dependence
of the evolutionary search effectiveness on the string size N by computer simu-
lations. The parameters were set to values corresponding to the conditions for
obtaining the analytical estimates, namely: Pm = λN−1/(λ − 1), β = 1, n =
(λ− 1)N . We made computations for λ = 2 and λ = 4.

The computations were organized as follows. The time dependencies <ρ> (t)
of the average (over the population) distance to the optimum were obtained for

Fig. 2. The dependencies <ρ> (t) for various values of N ; λ = 2. Scheme of estimation

of TR and TS values for N = 600 is shown. The dependencies are averaged over 50

independent runs.
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Fig. 3. The dependencies of relaxation time TR , stabilization time TS and time to find

optimal solution TO on the string length N for λ = 2. The dependencies are averaged

over 50 independent runs.

Fig. 4. The dependencies TR(N), TS(N) and TO(N) for λ = 4. The dependencies are

averaged over 50 independent runs.
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various N (see Fig. 2). These dependencies were used to estimate the character-
istic time T of convergence of the evolution in two ways:

1. The characteristic relaxation time TR in the dependencies < ρ > (t) was
calculated from the initial slopes of these dependencies.

2. The time TS of reaching the stationary value < ρ > (t) attained at large t
was evaluated.

Obtained dependencies TR(N) and TS(N) are presented in Fig. 3 (for λ = 2)
and Fig. 4 (for λ = 4). In addition, the time TO of the first appearance of the
optimal string Sm in the population was determined. The resulting dependencies
TO(N) are also shown in Figs. 3,4.

We see that, for sufficiently large N , all these dependencies are approximately
linear: TR(N) = kRN + TR0, TS(N) = kSN + TS0, TO(N) = kON + TO0, where
for λ = 2 : kR = 0.1772, kS = 0.3903, kO = 0.3685, TR0 = 8.2709, TS0 = 38.7356,
and TO0 = 2.1288; for λ = 4 : kR = 0.3283, kS = 0.7113, kO = 0.6826, TR0 =
13.7219, TS0 = 48.3387, and TO0 = 21.3483.

These dependencies are in good agreement with estimates (7).

7 Discussion and Conclusion

Let us compare the evolution method of optimization of fitness function (1) under
consideration with the two simplest methods, sequential search and random
search. For simplicity we consider here the case of binary strings λ = 2.

We organize the sequential search as follows. We start from an arbitrary
string S which symbols are Si = 1 or -1. Then, for each i (i = 1, 2, ..., N), we
change the sign of the ith symbol (Si → -Si). If the fitness f(S) at this change
increases, then we accept the new value of the symbol; otherwise, we return the
old value Si. As a result, after N tests, we obtain an optimal string Sm. Thus,
for the sequential search, the total number of strings, which should be processed
before the optimal string Sm is found, is equal to N : ntotal = N .

To find an optimal string by random search, the number of strings to be
tested is of the order of 2N : ntotal ∼ 2N .

The estimates obtained are given in Table. 2.
These estimates demonstrate that the evolution process as an optimization

algorithm is “suboptimal”: it does not ensure the maximal speed of search (for
particular problems, more efficient algorithms are possible; in the case under
consideration, such an algorithm is sequential search); nevertheless, it is much
more efficient than random search. Since the evolution method of search is simple
and universal, it can be qualified as a good heuristic optimization method for a
large class of problems.

Note that, although the estimates were obtained for unimodal fitness function
(1), similar estimates can be made for the spin-glass evolution model, in which
the number of local maxima of the fitness function exponentially increases with
the string dimension N [17].

Thus, efficiency of the evolutionary search in quasispecies model is estimated.
It is shown that for the case of unimodal fitness function of λ-ary strings of
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Table 2. Comparison of the search methods efficiency for the case λ = 2

Search method ntotal ntotal for N = 1000

Sequential N 1000

Evolutionary ∼ N2 ∼ 106

Random ∼ 2N ∼ 100300

length N , the optimal string can be found during (λ − 1)N generations under
condition that the total number of fitness function calculations is of the order of
[(λ−1)N ]2. These analytical estimations are confirmed by computer simulations.
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Abstract. In this paper, we present an evolutionary algorithm appli-
cation to partitioning VLSI circuits on subcircuits with minimal num-
ber of connections between them. The algorithm is characterized by a
multi-layer chromosome structure. Due to this structure, the partition
of circuits is possible without applying a repair mechanism in the algo-
rithm. The test circuits chosen from literature and created randomly are
partitioned using proposed method. Results obtained by this method
are compared with results obtained using a traditional Kernighan-Lin
algorithm.

1 Introduction

With the quick development of VLSI integrated circuits, it is possible to place
larger and larger numbers of electronic elements in a single integrated circuit.
The problem of the circuit parititioning on subcircuits is still important, es-
pecially in early phases of layout design of integrated circuits [1]. The VLSI
integrated circuits are partitioned into subcircuits in order to fulfill constraints
connected with: a) the number of external connections of the integrated circuit,
b) signal delays in the circuit, c) electrio-thermal interactions between elements,
d) the size of the area for the circuits, and e) the testability of integrated circuits.
The first constraint is essential, because the large number of external connections
dramatically increases the overall expense of producing the circuit [2]. The reduc-
tion of the number of connections between subcircuits is a primary objective of
partitioning algorithms. It is important from a few reasons. First, electric signal
are delayed during transmission through external connections; second, exter-
nal connections occupy large place on circuit printed boards; and third, external
connections decrease reliability of the system [2]. The problem of the circuit par-
titioning into k subcircuits with minimal number of connections between them
is NP-complete [3] thus, the typical approach to partitioning problems is an ap-
plication of heuristic algorithms which allow to find suboptimal solutions. The
� This work was supported by the Polish Ministry of Scientific Research and Informa-

tion Technology (MNiI) under Grant No. 3 T11B 025 29.
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most popular heuristics is Kernighan-Lin algorithm [4] and its modification pro-
posed by Fiduccia-Mattheyses [5]. Recently, evolutionary algorithms are applied
to partitioning problems of electronic circuits. This comes out of the fact that
evolutionary algorithms are the very effective tools for solving difficult combina-
torial problems. A few partitioning algorithms based on evolutionary algorithms
are described in literature, including Raman [6], Vemuri [7], and Kozie�l [1]. In the
Kozie�l paper [1], he has presented an algorithm for multiobjective partitioning
of VLSI circuits based on evolutionary algorithm. This algorithm was based on
single-layer chromosome representation of each individual (potential solution).
However, this approach caused that in the case when the circuit was to be parti-
tioned into k equal-number subcircuits, then a typical crossover operator created
solutions that did not satisfy the constraints. In this article, we introduce the
evolutionary algorithm with multi-layer chromosomes (similar to that applied
in [10]) to partitioning of electronic circuits. Here, the circuit partitioning into
k equal-number subcircuits is possible without applying additional repair algo-
rithms, because each created solution is acceptable. Suitable genetic operators
were proposed to this data structure. This algorithm (described in section 3) is
named MLCEA-PP (Multi Layer Chromosome Evolutionary Algorithm for Par-
titioning Problem). Results obtained by this algorithm were compared with the
results obtained using Kernighan-Lin algorithm.

2 Problem of VLSI Circuits Partitioning

Each electronic circuit can be modelled using the G(V, E) graph, where V rep-
resents a set of graph nodes, that is the set of electronic elements, and E corre-
sponds to a set of graph edges, that is the set of connections between electronic
elements in the circuit. In Fig. 1 an example of a digital circuit composed of 8
gates, and 9 connections between them, is presented.

Fig. 1. Example of the digital circuit
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In Fig. 2 the graph corresponding to the circuit shown in Fig. 1 is presented.
This graph has 8 nodes, and 9 edges between them.

Fig. 2. Graph corresponding to the digital circuit of Fig. 1

The described problem corresponds to such partition of the set V of circuit
nodes into k subsets (subcircuits) to optimize given objective function includ-
ing possible constraints. It usually depends on minimization of the connection
number between particular subcircuits (subsets). In Fig. 3 two examples of the
circuit partitioning into two equal-number subcircuits (k=2) are presented.

Additionally, the graphs corresponding to the circuits of Fig. 3 are shown in
Fig. 4.

The circuit (graph) partitioning presented in Fig. 3a (Fig. 4a) possesses four
connections between subcircuits (subgraphs), however the partitioning shown in
Fig. 3b (Fig. 4b) has only two connections between subcircuits (subgraphs). So,
we can say that partitioning presented in Fig. 3b (Fig. 4b) is better. Generally
an objective function in circuit partitioning problem is the sum of products of
external graph edge, and weight value assigned to it. In the case when all weight
values of the graph edges are equal to one, then the objective function is the
number of the connections between particular subcircuits (subgraphs).

Fig. 3. Two examples of circuit partitioning into two equal-number subcircuits
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Fig. 4. Graphs partitioning corresponding to the circuits partitioning into two equal-
number subcircuits from Fig. 3

3 MLCEA-PP Algorithm

3.1 Representation of Individuals

Each individual is represented by a multiple-layer chromosome which structure
is shown in Fig. 5.

Fig. 5. Structure of the chromosome

The particular chromosome consists of k layers where each layer represents
a single subcircuit (subset). With this representation, the circuit partitioning
into k equal-number subcircuits each including n elements is possible without
applying additional repair algorithms. Each solution is acceptable solution, be-
cause the constraints is ”build-in” the proposed data structure. It is necessary
to point out that the introduced structure is not limited only and exclusively to
the circuit partitioning into k equal-number subcircuits. Introducing so called
dummy nodes, that are not connected with any other node, enables a graph
partitioning into k subgraphs with different number of elements. In Fig. 6, an
example circuit partitioned into three subcircuits is presented.
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Fig. 6. Example circuit partitioned into three subcircuits

In Fig. 7 the graph corresponding to the circuit form Fig. 6 is shown.

Fig. 7. Graph corresponding to the circuit from Fig. 6

In Fig. 8 the multi-layer chromosome representing the partitioned circuit
(graph) from the Fig. 6 (Fig. 7) is presented.

Fig. 8. Multi-layer chromosome representing the partitioned circuit
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3.2 Used Genetic Operators

In the described algorithm, we use the well known PMX [11] crossover; how-
ever, we have modified it to make it suitable for operation on the multi-layer
chromosome. This crossover operator has one important advantage: the child
individuals that are obtained using it always represent acceptable solutions and
additional repair algorithms are not required. In Fig. 9 the PMX [11] crossover
procedure is presented.

Fig. 9. PMX crossover operation

The crossover consists of three steps. In the first step, after choosing parent
chromosomes and determining the point of the crossover for them (in the Fig. 9a
crossing is after 2 gene) the code sequences after the cross-point are exchanged.
As a result of this operation a pair of individuals presented in Fig. 9b is obtained.
In the second step, we insert ”not-colliding” genes from the parental individual
into the blank places, (not-colliding genes, that is not existing still in the newly
created child individuals). In the case of the individual A such genes are: ”10”,
”7”, and ”6”; while for individual B the genes ”10”, ”6”, and ”7” are inserted.
After this operation the second step of crossing is finished, what is shown in Fig.
9c. In the third step, remaining vacancies are filled in the chromosomes according
to the following rule. In the first gene of the first layer of the created individual
A’ the gene ”8” would be inserted from parental individual A. However, it exists
already in the newly created individual; therefore we exchange the genes accord-
ing to the following rule: we are looking which gene from the created individual
B’ corresponds to the gene ”8” from the created individual A’. The responding
gene is ”1” which does not exist in the individual A’, therefore it is inserted to
it. Following this way the genes: ”9”, and ”5” are inserted to the individual A’,
and genes: ”8”, ”3”, ”5” to individual B’. This completes the crossover, and as
the effect of this operation is the pair of child individuals A’, and B’ presented
in Fig. 9d. Besides the crossover, two mutation operators are introduced in the
algorithm. After selection of a given gene for the mutation, the kind of muta-
tion is determined randomly with equal probability. The first mutation operator
choices randomly two genes from the parental individual which are exchanged
during the mutation. In the relation to the electronic circuit (graph) this muta-
tion causes exchange of one element between two subcircuits (subgraphs). This
mutation operation is shown in Fig. 10.
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Fig. 10. First mutation operation

The second mutation operation causes a circulation of the column (chosen
randomly). In reference to the electronic circuit (graph) it causes the exchange
of all subcircuits (nodes in subgraphs). The second mutation operation is shown
in Fig. 11.

Fig. 11. Second mutation operation

3.3 Objective Function

The following objective function is used in the algorithm:

fc =
NC

NOC
(1)

where: NC -number of all connections in the graph (the constant parameter for
a given graph), NOC -number of all connections between created subgraphs (ex-
ternal connections). During operation of the algorithm the objective function is
maximized. It is necessary to notice, that during the maximization of the ob-
jective function, the minimization of the number of external connections occurs
(i.e. connections between created subgraphs, what is the main objective of this
problem).

3.4 Description of the Algorithm

The following evolutionary algorithm was applied to circuit partitioning into
k subcircuits with the minimal number of connections between them. At the
start the initial population was created. Then, we check whether the algorithm
converged (lack of change of the best solution). If the algorithm converged, the
result represented by the best individual in the population is printed out and
algorithm is stopped. If the algorithm did not converge, the following operations
are used: crossover, mutation, calculation of value of the objective function for
particular individuals, and the fan selection [8]. Then the algorithm convergence
is checked again and the whole process is repeated.
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4 Description of Experiments

During performed experiments the parameters of evolutionary algorithm were:
population size=100, crossover probability=0.5, mutation probability=0.05, pa-
rameter of fan selection a=0.7. Results obtained by MLCEA-PP algorithm
were compared with results obtained using the Kernighan-Lin (K-L) algorithm
(Tab. 1). The circuits were partitioned into k equal-number subcircuits. A few
test circuits were chosen to the experiments from [9] (they are marked with the
symbol ”*” in the Tab. 1); also randomly created graphs with different number
of nodes and connections between were tested. It is assumed that each connec-
tion is equally important (i.e., in the graph all edges weights have value ”1”).
The experiments were repeated 10 times, and results obtained as an average
values from 10 starts are shown in Tab. 1. The algorithm has converged and
stopped after 100 generations for 10, 12, 24, 32 nodes graphs, after 400 gen-
erations for 48 nodes graphs, and after 1000 generations for 96 nodes graphs.
In Tab. 1 the symbols used are as follows: NN -number of nodes, NC -number
of connections (edges), k -the number of subcircuits (subsets), NOC -number of
connections between subcircuits (external connections).

Table 1. Results of graph partitioning for algorithms: MLCEA-PP (M-PP), and
Kernighan-Lin (K-L)

M-PP K-L — M-PP K-L — M-PP K-L

NN NC k NOC NOC — NN NC k NOC NOC — NN NC k NOC NOC

10* 21* 2 5 6.2 24 96 3 45.5 48.8 48 384 4 236 245

10* 21* 2 7 7 24 96 4 53.8 56.5 48 384 6 272.9 281.6

32* 54* 2 7.4 7.4 24 96 6 64.8 68.2 48 384 8 292.7 300.7

32* 54* 4 12.9 18.4 24 96 8 73 74.9 48 768 2 339.8 343

12 24 2 8.11 8.9 48 96 2 19.7 22.7 48 768 3 465 472.4

12 24 3 11 12.1 48 96 3 30.8 34.1 48 768 4 533 539.8

12 24 4 13.2 14.2 48 96 4 37.8 42.3 48 768 6 606.5 613.7

12 48 2 22 22 48 96 6 45.8 51.5 48 768 8 649 652.4

12 48 3 31 31.1 48 96 8 51.2 56.6 96 192 2 35.5 36

12 48 4 36 36.1 48 192 2 55.9 58.4 96 192 3 58.5 62.7

24 48 2 12.6 13.4 48 192 3 83.8 89.4 96 192 4 73.5 78.5

24 48 3 18.5 19.9 48 192 4 97.7 105.6 96 192 6 95.1 93.3

24 48 4 21.6 24.6 48 192 6 116.1 122.4 96 768 2 270.2 271.1

24 48 6 27.6 29.3 48 192 8 128 134 96 768 3 390.1 397.7

24 48 8 31.5 32.6 48 384 2 146.2 149.8 96 768 4 459.5 459.4

24 96 2 30.3 32.7 48 384 3 202.5 210.6 96 768 6 506 530.7

5 Conclusions

Results obtained for the algorithm MLCEA-PP are comparable or better than
results obtained using the K-L algorithm. It is necessary to add, that in relation
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to the algorithm of paper [1], in the presented algorithm MLCEA-PP any re-
pair mechanisms were not used. Due to application of multi-layer chromosome,
the crossover operator does not create unacceptable solutions or infringe the
constraints.
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Abstract. The essential problem in transport system functional and
economic analysis is a technique of modeling the human dispatcher pre-
sented in real systems. It is very hard to find an ”intelligent” algorithm
of dispatcher - an algorithm which is giving results which significantly
differs from pure random algorithms. In a paper we propose an evolu-
tionary approach to this problem. A set of heuristic rules for dispatcher is
searched by genetic algorithm. The fitness function is defined by the eco-
nomic measure. The discrete transport system is modeled using Monte-
Carlo simulation. A more accurate model of dispatcher, found by genetic
algorithm, allows to obtain more realistic results of functional and eco-
nomic analysis. The proposed, novelty approach can serve for practical
solving of essential decision problems related to an organization and pa-
rameters of transport systems.

1 Introduction

Modern transportation systems often have a complex network of connections
[10]. From the reliability and functional point of view [8] the systems are char-
acterized by a very complex structure of different elements. The transportation
system are often driven by a dispatcher - an person which allocates vehicles to
the tasks introduced into system. The dispatcher ought to take into account
different features which describe the actual situation of all elements of trans-
port systems. The modeling of transport systems with dispatcher is not a trivial
challenge. The most effective method is to use a time event simulation with
Monte Carlo analysis [3]. It allows to calculate any point wise parameters. We
can also estimate different distributions of time being in a state or in a set of
states and combine reliability measures with functional features and economic
parameters. We have proposed the formal model of Discrete Transport System
(DTS) [4] to analyze reliability and economic aspects of complex systems. Our
previous works [12], [11] showed that it is very hard to find an ”intelligent” al-
gorithm of dispatcher - an algorithm which is giving results which significantly
differs from pure random algorithms. In many papers, i.e. [2], it was shown that
the evolutionary approach to challenging science or engineering problem gives
very promising results. Therefore, in this paper we propose a novel approach for
modeling a dispatcher in DTS by a usage of the genetic algorithm. Applying
them requires a proper definition of a fitness function. Economic measures [11]
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are very important in decision problems related to an organization of transport
systems [9]. Therefore, we propose to define the fitness function by an economic
measure of the DTS.

2 Discrete Transport System (DTS)

The model can be described as following quintuple [4], [11], [12]:

DTS = 〈N,R, V, T,M〉 (1)

where: N - set of nodes, R - set of routes, V - set of vehicles, T - set of tasks,
M - set of maintenance crews.

Commodities: The single kind of a commodity is transported in the system.
There are no parameters describing commodities.

Nodes: Nodes are inputs and outputs of the system. DTS nodes are described
by no parameters.

Routes: Each route is described by following parameters: initial node u, ter-
minal node v and length l which is the basis for journey time calculation if the
vehicle velocity (when hauling the commodity and when empty):

R = 〈u, v, l〉 u, v ∈ N l > 0 (2)

Each route is a connection of two nodes in the directed graph which describes
the topology of the network. The length of the route can be not equal to the
length of the ”opposite direction” route, because these routes are placed in the set
independently. Each node is connected to all other nodes, if initial and terminal
node is the same node the length of the route equals to zero. The DTS contains
a map - 2-dimensional matrix (number of nodes × number of nodes) which
describes all routes.

Vehicles: Each vehicle is described by following functional and reliability pa-
rameters: mean speed of a journey, capacity, reliability function and time of
vehicle maintenance, initial node where the vehicle is available when the DTS
observation begins. The temporary state of each vehicle is characterized by fol-
lowing data: vehicle state, distance traveled from the begin of the route, route
where the vehicle is attached to, capacity of the commodity, capacity of already
allocated commodity, task - currently executed by vehicle. The vehicle running
to the end of the route is hauling only a single kind of a commodity. The ve-
hicle hauling a commodity is always fully loaded or taking the last part of the
commodity if it is less than its capacity.

Tasks: Each task can be described by: route for a commodity, amount of
commodity to transfer, maximum number of vehicles which can be assigned to
a given task, time when task is introducing into system, time when task begins,
time when task ought to be finished. The temporary state of task is character-
ized by following data: remaining amount of commodity to transfer, amount of
allocated commodity to vehicles, but not loaded yet, amount of commodity on
the routes, number of vehicles temporary focused on the task.
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Maintenance Crews: Maintenance crews are identical and unrecognized. The
crews are not combined to any node, are not combined to any route, they op-
erate in the whole system and are described only by the number of them. The
temporary state of maintenance crew is characterized by: number of crews which
are not involved into maintenance procedures, queue of vehicle waiting for the
maintenance.

3 Simulator

A simulator, performing a Monte-Carlo simulation [3], is composed of four basic
elements: input data file, system description language analyzer, event-driven
simulator, output data file. The system description language analyzer creates,
based on data taken from the input file objects which represent system in the
memory. The event-driven simulator repeats N -times the following loop [5]:

1. state of a DTS initialization,
2. event state initialization, set time t = 0,
3. repeat until t less than T :

– take first event from event list,
– set time equals time of event,
– realize the event.

The event is a basis for a simulation process. It is described by the following
data: time of event occurring, type of event - vehicle failure for example, part of
the DTS where event has its influence. The events are placed in the ordered list.
Time of event occurring is the key for the list order. We have following events
in the DTS: vehicle reached the node, vehicle is failing, vehicle is repaired, task
is starting, end of simulation. [11]

After the end of a single simulation loop the following data are stored for each
task: percentage of task realization, time of task end - if task is not realized in
100% this time equals to time of simulation, required time of task end - defined
in input data. The set of data related to each vehicle stored after the end of
single simulation loop envelops: number of repairs, number of unloads, number
of loads, distance traveled hauling the commodity, distance traveled in empty
state. There is also a special ”null task” to aggregate data uncombined to any
other tasks - failure of vehicle waiting in the node for example. Data stored
in output file can be used for different measures calculations. In this paper we
proposed to analyze the profit function - which is presented in the next chapter.

4 Economic Measures Calculation

The economic analysis is realized from vehicle owner’s view-point [7]. Such dis-
cussion is the most justifiable because in real world the owner of vehicles is
responsible for different agreements related to transportation tasks and he/she
has to dispose his/her means in most sensible way. The economic quality of dis-
crete transport system is described by ”profit function” P(T) estimated in given
time-period T as follow [5]:
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P (T ) = f(DTS, T ) = RV (T )− C(T )− L(T ), (3)

where: RV(T) - revenue in time-period T, C(T) - system operating cost in time-
period T, L(T) - loss in time-period T.

The system operating cost C(T) is modeled as follows [13]:

C(T ) =
Nv∑
i=1

OCi(T ) +
Nv∑
i=1

V Ci · T +MC · T, (4)

where: Nv - number of vehicles T, OCi(T ) - vehicle i operating cost in time-
period T, V Ci- vehicle i cost calculated based on leasing agreement, MC - cost
of necessary maintenance agreement related to the whole system.

The vehicle operating cost OCi(T ) in time-period T is calculated as a sum
of partial products: cost of each kilometer traveled by single vehicle with and
without the commodity, cost of each load and each unload of single vehicle, cost
of each repair of single vehicle, cost of each hour of driver’s work.

Loss L(T) is connected with penalties payed if tasks are not realized within
required time slot. It is calculated in a simple linear model as a multiplication
of a the penalty constant by delays of task realization (if any).

5 DTS Functioning Description

5.1 System Simulation

At the beginning DTS places vehicles to their initial nodes. There are no failed
vehicles, all maintenance crews are available, the task list is empty. Tasks are
entered to DTS during whole operation time, all of them can be also entered at
the beginning moment. The available (empty) vehicles not allocated to any task
are waiting in these nodes which were terminal in case of previously realized
task. When the task is allocated, the empty vehicle runs from that node to
initial node defined by allocated task - all possible routes are available. Then
the vehicle is loaded up to its capacity or to exhaustion of commodity declared
in the task and the vehicle runs to the terminal node of the task. If there are no
available vehicles when the task appears, the task is placed into the queue. The
task can also be placed into the queue if vehicles are available, but a dispatcher
algorithm (see below for the dispatcher description) did not allocate vehicle to
task realization. The vehicle can fail in any time - hauling the commodity or
in an empty state. The failed vehicle is waiting for the maintenance crew - if
the crew is not available at the moment of the failure. When the maintenance
is finished the vehicle continues the task, if it has not attached to any task the
dispatcher algorithm is called [5].

5.2 Dispatcher Algorithm

The dispatcher [11] is an algorithm which allocates vehicles to the tasks. Vehicles
are attached to the already started tasks. The allocation decision is only taking
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when: a new task is starting, a vehicle is unloading in a node - it is possible to
reattach it to any task, a vehicle running for allocated commodity fails, main-
tenance procedure related to empty vehicle ends - it means that new vehicle is
available in the node.

Dispatcher : DTS → V × T (5)

Dispatcher algorithms consist of two combined decision functions which allocate
vehicle or vehicles to a single task. Task allocation means that vehicle changes
its state, receives information about allocated task and also we can observe
task change: the amount of commodity to transfer decreases, the commodity is
allocated to vehicle, but vehicle is still empty. Then the vehicle is traveling to
initial node of a proper task (all routes ought to be available) or it does not
change the node if the node where vehicle is present is initial node of the task.
The vehicle is loaded in the initial node - its state changes from empty to full
and starts the journey to terminal node.

The usage of two decision functions differs by a single argument describing
which resource of DTS is released. The decision A is taken when any vehicle is
available. The function called in two cases: when a vehicle reached the end of
a route and was unloaded or when a vehicle is repaired and is not allocated to
any task. The decision B is taken when any task is available. It happens in two
cases: when a task is starting or when a vehicle fails during travel to initial node
- already allocated commodity is available again as a part of task and this part
of commodity ought to be allocated once more to another vehicle.

We have not described trivial situation - when there are no available vehi-
cles and decision function has nothing to do. We describe below three different
dispatchers.

5.3 Stochastic Dispatcher

In case of the decision A the task taken from the task list is randomly attached
to a vehicle. We assume that the attached task is already started but not fin-
ished yet. Whereas in case of the decision B the vehicles with no attached
task taken from available vehicle list are randomly attached one of available
(already started) tasks. This function works until the number of vehicles is
exhausted or task ends - there is no commodity to be taken. This simple algo-
rithm works in a way that vehicles are attached to tasks by groups - we can
say that every task ”sucks” vehicles and therefore the other tasks have to wait
for their turn.

5.4 Stochastic (Delta) Dispatcher with Multiple Choice in Bordered
Time Horizon

Both decisions A and B are taken in the same way. All parallel tasks are grouped
- tasks which start in bordered time horizonΔ and vehicles which in the bordered
time horizon Δ are available it means reach terminal nodes of previous tasks.
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The grouped tasks are operated by single dispatcher function call. Single vehicle
and single task is randomly chosen. The vehicle is removed from list. If the task
after drawing ends - there is no more commodity to be taken - the task is also
removed from list. The procedure is repeated for the next pair: vehicle and task.
The process ends when there are no more vehicles or no more tasks.

The process of vehicles attaching to tasks is finished, if the currently hauling
commodity vehicle had been attached then this decision is cleared. Such solution
ought to prevent the situation when the vehicle with next task attached failed
before the final of the previous journey.

5.5 Global FIFO Dispatcher

FIFO dispatcher takes global decision how to distribute vehicle fleet to currently
proceeded tasks. When the decision is taken next journeys of the vehicle - with
following parts of commodity are deterministic and next dispatcher decisions are
need-less. In case of decision A the FIFO dispatcher attachers following available
vehicles to task until the vehicles run out or the commodity within single task
exhausted. In case of decision B, if vehicle reaches the terminal node next part
of commodity within the attached task is loaded to the vehicle, if the commodity
within attached task exhausted next global dispatcher decision ought to be taken
- appearing available vehicles are attached to next task until the vehicles run
out or commodity exhausted.

5.6 Dispatcher Algorithm Selection

All mentioned dispatcher algorithms has been implemented and tested in dif-
ferent exemplar DTS systems [11], [12]. However, in almost cases, most of the
results (i.e economic measures) differs only a bit from the most simple stochas-
tic dispatcher with attached vehicles to running tasks in a purely random way.
Therefore, there is a need to develop a new dispatcher algorithm.

6 Evolutionary Dispatcher

As it was mentioned in the introduction the main idea in this paper is to develop
the dispatcher algorithm by means of the genetic algorithm. One could imagine
a large set of heuristic rules for the dispatcher. However, it is hard to decide
a-priori which rules should be used. Therefore, we decided to describe a set of
rules designed by human expert in IF condition THEN statement form. Then
we applied the classical genetic algorithm to select the best set of rules. The
chromosome consists of 8 IF-THEN rules encoded in a binary form (1 bit for
information if a rule is on or off, 3 bits for eight conditions and next 3 bits for
different statement rules). The fitness was defined as an average profit (3) gained
in an exemplar DTS (described in the next section). For each set of rules analyzed
by genetic algorithm the Monte-Carlo simulation of DTS was performed and a
profit function was calculated for each loop of simulator.
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Fig. 1. Exemplar Discrete Transport System - routes and tasks

7 Case Study

Performance of the proposed evolutionary approach in a compare to the stochas-
tic dispatcher was tested on an exemplar DTS illustrated in Fig. 1. The system is
composed of four nodes numbered from N 1 to N 4. The nodes are begins or ends
of 12 routes with defined lengths described in Tab. 1. The system is equipped by

Table 1. Routes defined in exemplar DTS

Route Initial Terminal Length
node node

R1 N 1 N 2 100
R2 N 2 N 1 100
R3 N 2 N 3 200
R4 N 3 N 2 200
R5 N 3 N 1 300
R6 N 3 N 4 300
R7 N 4 N 3 300
R8 N 4 N 1 400
R9 N 1 N 3 300
R10 N 1 N 4 400
R11 N 4 N 2 400
R12 N 2 N 4 400
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Table 2. Tasks defined in exemplar DTS

Tasl Start End Route Volume
time time

T1 10 30 R1 50
T2 5 20 R2 40
T3 10 30 R3 40
T4 2 60 R4 30
T5 20 55 R5 30
T6 10 30 R6 40
T7 5 45 R7 20
T8 7 70 R8 20
T9 20 65 R9 40
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Fig. 2. Probability distribution of the profit function the for stochastic dispatcher

(dotted line) and the evolutionary dispatcher (solid line)

nine tasks - and 10 identical vehicles presented . Vehicles are described by stars,
the volumes of tasks are described by dots. At the beginning of simulation there
are two vehicles in N 2 and five vehicles in N 3. We use for illustration Petri net like
methodology. The single journey related to single task can be started (the transi-
tion is fired) if a pair: star and dot is available in the initial node. It means there is
a vehicle available and a commodity - single dot describes amount of commodity
which equals to vehicle capacity. This way dots are step by step eliminated - this
process corresponds to task realization, the position of stars changes - it means
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that vehicles are available in different nodes. Tasks parameters are presented in
Tab. 2. All vehicles travel with the same velocity: speed hauling commodity equals
to 45 units, speed in empty state equals to 80 units.

8 Results

The achieved results, the distribution of the profit function (3), for the stochas-
tic dispatcher (dotted line) and the dispatcher ”designed” by genetic algorithm
(solid line) is presented in Fig. 2. It could be noticed, that the evolutionary dis-
patcher is giving a higher profit, in average more then 16%. Whearas the manualy
designed dispatchers were better in an average over the stochastic dispatcher not
more than 5%. We think, that the results are promising but a larger number of
tests is needed. The evolutionary dispatcher was trained (i.e. dispatcher rules
were selected) and tested on the same exemplar DTS. It is worth to investigate
how dispatcher rules selected by genetic search on one exemplar DTS performs
in different DTS. Moreover, it is worth to develop a more complicated set of
rules analyzed by genetic algorithm as well as to use genetic programming [6].

9 Conclusion

Summarizing, we have proposed a new method of transport system modeling
for economic analysis. It is based on evolutionary modeling of dispatcher rules
to achieve a dispatcher which gives better economic results. We hope that the
evolutionary algorithm is able to ”design” a dispatcher which is able to mimic
the behavior of the real dispatcher - human being. The presented approach
could be used as a foundation for a new methodology of the functionality and
economic analysis of transport systems with dispatcher, which is much closer to
the practice experience.
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Abstract. We present a method of interactive analysis of preference
ordered data that is based on Dominance-based Rough Set Approach
(DRSA). The presented here methodology is conceptually similar to
multi-dimensional reports (pivot tables) applied in On-Line Analytical
Processing (OLAP). However, it allows to identify patterns in data that
remain undiscovered by traditional approaches to multi-dimensional re-
porting. The main difference consists in use of specific dimensions and
measures defined within DRSA. The method permits to find a set of
reports that ensures specified properties of analyzed data and is optimal
with respect to a given criterion. An example of reports generated for a
well-known breast cancer data set is included.

1 Introduction

The method presented in this paper originates from On-Line Satisfaction-
Analysis (OLSA) that was introduced to analyze customer satisfaction data.
Some of basic elements of this method were already described in [1]. It has also
some common elements with the work by Michalski [8] that extended the concept
of a Karnaugh-like map to visualize non-Boolean functions. Similar problem was
also addressed by Kohavi and Sommerfield [7]. They present decision tables in a
spreadsheet-like manner. Kohavi and Sommerfeld pointed that business users of
data mining tools found the projections of multi-dimensional cubes into spread-
sheets very intuitive.
Our method, based on Dominance-based Rough Set Approach (DRSA) in-

troduced by Greco et al. [3,4,5,6], differs from those approaches because it is
applicable to preference-ordered data and it can be used to discover inconsis-
tencies coming from violation of the dominance principle. Depending on the
character of decision problem described by ordered data, the order can either
be interpreted as a preference order or a general order. In the first case, it is
meaningful to consider semantic correlation between preference order on con-
dition and decision side of object description, e.g. ”the more the car is speedy,
the more it is preferred”. In the second case, the general order makes meaning-
ful just a monotonic relationship between the order on condition and decision
side of object description, e.g. ”the greater the clump thickness, the greater the
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malignity of the tumor”. In this paper, we will use terms related to preference
order, however, the second meaning would be equally as good. We believe that
the method that takes into account orders occuring in the data allows finding
more general dependencies.
One of the first steps of the method is transformation of the original decision

table containing input data into a pivot table that is referred to as decision
cross-table. Moreover, we have defined an optimal set of decision cross-tables
that preserves quality of approximation of the original decision table. This set is
also optimal with respect to complexity of included decision cross-tables. Such
a set is obtained by solving a 0-1 mathematical programming problem.
Let us notice that the approach by Kohavi and Sommerfield and our method

presented here has a lot in common with On-Line Analytical Processing (OLAP).
OLAP allows pivoting data around different dimensions and drilling down and
rolling up the multi-dimensional cube. However, classical aggregations functions
are here substituted by functions aggregating a decision value with respect to
the chosen dimensions.
The structure of the paper is as follows. In section 2, a brief reminder of

DRSA and basic definitions of Interactive Analysis of Preference-Ordered Data
are presented. In section 3, a problem of finding an optimal set of decision cross-
tables is defined. Section 4 shows results obtained by the presented method
applied to well-known Wisconsin breast cancer data. The last section concludes
the paper and gives outlines of future research directions.

2 Interactive Analysis of Preference-Ordered Data

In this section we propose a methodology called Interactive Analysis of
Preference-Ordered Data (IAPOD). It extends the dimensional modeling of data
in a specific way for dealing with ordered data.
A decision table S = 〈U,C,D〉 is 3-tuple, where U is a set of objects described

by set C of condition criteria (i.e., attributes with a preference-ordered domains)
and D is a set of decision criteria (for simplicity, it is assumed that D = {d}).
Domain of a criterion ci ∈ C, i = 1, . . . , n, is defined as Vci = {c1i , c2i , . . . , cmi }.
For simplicity, it is assumed without loss of generality that domains of criteria
are numerically coded with an increasing order of preference. Value of an object
x ∈ U on criterion ci is denoted by ci(x). Domain of a decision criterion d is
defined analogously to domains of condition criteria. Value of an object x ∈ Uon
decision criterion d is denoted by d(x). Let us notice that d induces a partition
of U into a finite number of classes Cl(D) = {Clt, t ∈ Vd}. It is assumed that the
classes are preference-ordered according to an increasing order of class indices
(i.e., for all r, s ∈ T , such that r > s, the objects from Clr are strictly preferred
to the objects from Cls).
Given a decision table S, one may construct a decision cross-table DCT (S),

shortly DCT . It is defined as 4-tuple DCT = 〈Dim,Con,Dec,Mes〉, where
Dim is a subset of condition criteria C that are referred to as dimensions. Dim
consists of {c1, c2, . . . , ck} ⊆ C condition criteria. It is said that the decision
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cross-table DCT is of a degree k, where k is a number of dimensions. Con is a
set of elementary conditions that constrains set U , the resulting set of objects
is then denoted UCon. Dec is a subset of decision criteria D (here, Dec = {d}).
Mes is a set of measures that are defined later in the paper.
DCT can be presented as multi-criteria report spanned over condition criteria.

In such a report, columns and rows correspond to dimension’s values or combi-
nations of dimension’s values. For each of those combinations, a specific measure
aggregating decision value is computed and set into a cell inside a multi-criteria
report. Such a report corresponds in many ways to planar diagrams defined by
Michalski [8], classical cross-tables, cross-tables defined by Kohavi and Sommer-
field [7] and OLAP reports. However, it is different by the fact that it is used
to present multi-criteria space. The measures that we use to represent DCT
are divided into two groups. The first group consists of typical measures and
statistics, such as number of objects described by a given combination of di-
mension’s values (i.e., count). The second group of measures is defined in the
framework of DRSA. We refer to [3,4,5,6] for a detailed description of DRSA.
Here we introduce only notions that are necessary for further presentation.
We will consider a function called generalized decision [2] defined for object

x ∈ U as:
δP (x) = 〈lP (x), uP (x)〉, (1)

where

lP (x) = min{d(y) : y ∈ U, yDPx},
uP (x) = max{d(y) : y ∈ U, xDP y}.

In the above,DP is a dominance relation defined as xDP y ⇔ ci(x) ≥ ci(y), ∀ci ∈
P , P ⊆ C. In this way, we have defined an interval of decision values of object
x taking into account all of inconsistencies coming from violation of the domi-
nance principle. This principle requires that object x having not worse values of
condition criteria than object y, has not worse decision value than y. This relates
to assignment of object x to approximations of unions of decision classes in the
following way. lP (x) represents the highest upward union of decision classes to
which lower approximation object x belongs (i.e., pessimistic assignment of ob-
ject x). uP (x) represents the lowest downward union of decision classes to which
lower approximation object x belongs (i.e., optimistic assignment of object x).
Lower dominance-based rough approximations are defined as [4]:

P (Cl≥t ) =
{
x ∈ U, {y ∈ U : yDPx} ⊆ Cl≥t },

P (Cl≤t ) = {x ∈ U, {y ∈ U : xDP y} ⊆ Cl≤t },

where Cl≥t = {x ∈ U : d(x) ≥ t} and Cl≤t = {x ∈ U : d(x) ≤ t} are called
upward and downward union of decision classes, respectively. Correspondence
between generalized decision and lower dominance-based rough approximations
is the following:

lP (x) = max{t : x ∈ P (Cl≥t )},
uP (x) = min{t : x ∈ P (Cl≤t )}.
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The process of finding dependencies in data in presented here context consists
in specifying selections of objects from decision cross-tables. This selections are
specified by complexes that are composed of selectors. Let us define a complex
by Φ = φ∝

1 ∧φ∝
2 ∧ . . .∧φ∝

l , where φ
∝
i is a selector defined as ci(x) ∝ cji , c

j
i ∈ Vci ;

and ∝ is specified as =,≥,≤. Each selector φ∝
i is defined on dimension ci ∈ Dim

and corresponds to rows or columns of the multi-criteria report. In other words,
complex Φ is a set of selectors that allows to select a subset of objects. Objects
covered by complex Φ are denoted by [Φ] and referred to as cover of a complex Φ.
Let us now define the above mentioned measures Mes more formally:

– count : count(Φ∝) = card([Φ∝]), counts the number of objects that are cov-
ered by the complex Φ∝,
– exact upward decision: d≥(Φ=) = min{lDim(x) : x ∈ [Φ=]},
– exact downward decision: d≤(Φ=) = max{uDim(x) : x ∈ [Φ=]}.

In the definition above Φ= = φ=
1 ∧ φ=

2 ∧ . . . ∧ φ=
l . This implies a complex that

selects only objects that have exactly the same description (i.e., have equal
values on each criterion). The first measure count is a standard one that is
usually defined for OLAP-like analysis. It is useful to differentiate facts that
are frequent (i.e., complexes that cover high number of objects) from those that
are not. However it says nothing about dependencies between condition and
decision criteria and inconsistencies in analyzed data. The further two measures
are defined in the DRSA context. These measures indicate the relation between
values on condition criteria and the value on decision criterion. Comparison of
those two measures is useful to detect inconsistencies between objects.
To show an example of DCT , let us consider the problem of Wisconsin breast

cancer prediction (BCW) [10]. In this problem, we have to do with general order
in data and monotonic relationship between conditions and decision, however,
we keep the vocabulary adopted in this paper, i.e., the preference terms. This
data set consists of objects that are assigned to two decision classes benign
(denoted by value 2) and malignant (denoted by value 4). Objects are described
by the following condition criteria: Clump Thickness, Uniformity of Cell Size,
Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare
Nuclei, Bland Chromatin, Normal Nucleoli, Mitoses.
An example of two dimensional report generated for those data is presented

in Figure 1. In the case of this report exact upward decision measure is used. In
cells, for which [Φ=] = ∅, the value is computed as follows. Let us assume that
for each cell that is not empty, a DRSA decision rule is created, with a condition
part corresponding to complex Φ≥ and decision part in the form d(x) ≥ d≥i (Φ=).
In other words, the decision rule is as follows: Φ≥ ⇒ d(x) ≥ d≥(Φ=). The
value of cells, for which [Φ=] = ∅, is then set to maximal decision suggested by
decision rules covering those cells (i.e., a piece of multi-criteria space determined
by complex Φ=). In the figures, these cells are marked with lighter colors. For
example, one can find the following decision rule in the report presented in
Figure 1:

Clump Thickness(x) ≥ 7 ∧ Single Epithelial Cell Size(x) ≥ 6⇒ d(x) ≥ 4.
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Fig. 1. Multi-criteria report including two criteria describing BCW problem (Clump
Thickness, Single Epithelial Cell Size). The measure used is the exact upward deci-
sion d≥(Φ=).

Cells in the report in Figure 1 denoted by d≥(Φ=) = 4 represent objects for
which one can be certain that their decision value is d(x) = 4. It is worth to
observe that all cells denoted by d≥(Φ=) = 2 represent objects that have decision
values d(x) = 2 as well as those that have d(x) = 4. To be certain which cells
represent objects with decision value d(x) = 2, one have to generate a report
using exact downward decision measure. Such a report is presented in Figure 2.
In this report, all cells denoted by d≤(Φ=) = 2 represent those objects for which
one can be certain that they have decision values d(x) = 2. On the other hand, all
cells denoted by d≤(Φ=) = 4 represent on this report objects that have decision
values d(x) = 4 as well as those that have d(x) = 2. For example, one can find
the following decision rule in the report presented in Figure 2:

Clump Thickness(x) ≤ 1 ∧ Single Epithelial Cell Size(x) ≤ 3⇒ d(x) ≤ 2.

Cells that have different values on these reports (d≥(Φ=) = 2 and d≤(Φ=) = 4)
represent objects that are inconsistent with respect to criteria Clump Thickness
and Single Epithelial Cell Size. It means that there are objects assigned to class 4
that have values on these criteria that are not better than values of objects
corresponding to these cells assigned to class 2. Of course, the same occur in the
opposed direction. There exist objects assigned to class 2 that have values on
these criteria that are not worse than values of objects corresponding to these
cells assigned to class 4. For example, objects for which Clump Thickness(x) = 5
∧ Single Epithelial Cell Size(x) = 5 are inconsistent. However, objects that are
inconsistent on one pair of downward and upward exact decision reports can
become consistent with respect to other pair of reports (that correspond to
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Fig. 2. Multi-criteria report including two criteria describing BCW problem (Clump
Thickness, Single Epithelial Cell Size). The measure used is the exact downward deci-
sion d≤(Φ=).

different dimensions). In other words, those objects when present on such other
pair of reports can have the same value of decision.
We can show that in case of BCW data set there exists monotonic depen-

dence between condition criteria and decision class. It is reflected by gradual
change of belonging to decision class with change of criterion value. This kind
of dependency can by shown for all condition criteria in this data set.

3 Optimal Set of Decision Cross-Tables

Let us formulate the following problem. Find a set of decision cross-tables that is
minimal with respect to complexity of these tables and maintains some properties
of a original decision table. The complexity of cross-tables may be defined as a
total number of cells computed as a sum of cells of each decision cross-table in
the set. A property that is maintained by the set of decision cross-tables can be,
for example, the same quality of approximation as for the original decision table.
Let us remind, that the quality of approximation is defined as a ratio of number
of objects from the original decision table that are consistent with respect to
all criteria to number of all objects from this decision table. The obtained set is
referred to as an optimal set of decision cross-tables.
The above formulation is in some sense similar to the problem of reducing

decision tables and inducing decision rules. A set of decision cross-tables main-
tains the quality of approximation and minimizes the complexity of the set of
decision cross-tables. Moreover, it is easy to identify decision rules in each of
decision cross-tables.
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The problem of finding optimal decision cross-tables can be expressed in terms
of 0-1 mathematical programming. In fact, this formulation is not efficient and
näıve, however, our objective is to define the problem and to give, at the be-
ginning, its simplest solution. Let us assume that P1, P2, . . . , P2card(C)−1 is a
sequence of all subsets of the set of condition criteria C excluding an empty set.
The solution is to minimize:

min →
2card(C)−1∑

j=1

wj · xj , subject to: Ax ≥ 1

where xj is decision variable (x is a vector containing all decision variables) that
indicates a decision cross-table based on a subset of condition criteria Pj ⊆ C,
wj is a cost of a decision cross-table, computed as

∏
cl∈Pj

card(Vcl
) and A is a

matrix with 2card(C) − 1 (!) columns and card(U) rows defined as:

aij = 1, if lPj (x) = uPj (x), and aij = 0, otherwise,

where Pj is the j-th subset of condition criteria.
To constrain the complexity of the problem one may choose only decision

cross-tables up to degree k = card(Pj) (let k = 3, 4, 5). In such a case, however,
the quality of approximation for a given set of decision cross-tables may be lower
than for the original decision table. Note that, the quality of approximation for
a decision table S is defined as:

γ(C) =
card({x ∈ U, uC(x) = lC(x)})

card(U)
.

We define the quality of approximation for a set of decision cross-tables up to
degree k:

γ(k) =
∑card(U)

i=1 maxj=1,...,c{aij}
card(U)

,

where Pj , j = 1, . . . , c is a sequence of subsets of condition criteria containing
up to k criteria.

4 Example of Application

In this section we present results obtained by using the presented methodology
to BCW data set. The analysis was performed for decision cross-tables up to
degree k = 4. This constrains the defined mathematical programming problem
to 255 decision variables. The quality of approximation for such decision cross-
tables is γ(4) = 0.974 (quality of approximation for the original decision table
is γ(C) = 0.976). The resulting set of decision cross-tables consists of six tables
(that corresponds to twelve reports taking into account exact upward decision
and exact downward decision measures). Those decision cross-tables include the
following sets of criteria:
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Fig. 3. Multi-criteria report including two criteria describing BCW problem (Clump
Thickness, Normal Nucleoli). The measure used is the exact upward decision d≥(Φ=).

– Clump Thickness, Single Epithelial Cell Size (presented on Figure 1; exact
upward decision measure is used, and presented on Figure 2; exact downward
decision measure is used),
– Clump Thickness, Normal Nucleoli (presented on Figure 3; exact upward
decision measure is used),
– Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin (not presented
because of space limit),
– Bare Nuclei, Bland Chromatin, Normal Nucleoli (not presented because of
space limit),
– Clump Thickness, Uniformity of Cell Shape, Marginal Adhesion, Bare Nuclei
(presented on Figure 4; exact upward decision measure is used),
– Clump Thickness, Marginal Adhesion, Bare Nuclei, Mitoses (not presented
because of space limit).

All reports presented on Figures 1-4 were created under R environment [9].

5 Conclusions

The presented results extend the original DRSA by adding a visualization tech-
nique. Interactive analysis of preference-ordered data allows to presents data in
cross-tables similar to that known from OLAP. Moreover, there is a possibility to
identify optimal set of decision cross-tables that shows important dependencies
in analyzed data. Interpretation of those tables from decision rule perspective
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Fig. 4. Multi-criteria report including four criteria describing BCW problem (Clump
Thickness, Uniformity of Cell Shape, Marginal Adhesion, Bare Nuclei). The measure
used is the exact upward decision d≥(Φ=).

seems to be very natural. However, the problem of automatic discovery of optimal
cross-decision tables is very demanding in the sense of computational complexity.
That is why there is a need to construct a heuristic algorithm. It is included in
our further research plans.
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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed for multi-criteria classification problems in order to handle in-
consistencies in the input information with respect to the dominance
principle. The end result of DRSA is a decision rule model of Decision
Maker preferences. In this paper, we consider an additive function model
resulting from dominance-based rough approximations. The presented
approach is similar to UTA and UTADIS methods. However, we define a
goal function of the optimization problem in a similar way as it is done
in Support Vector Machines (SVM). The problem may also be defined as
the one of searching for linear value functions in a transformed feature
space obtained by exhaustive binarization of criteria.

1 Introduction

The rough set approach has often proved to be an interesting tool for solving a
classification problem that consists in an assignment of objects from set A, de-
scribed by condition attributes, to pre-defined decision classes Clt, where t ∈ T
and T is a finite set of numerically coded labels. In order to solve the problem
(i.e., to classify all objects from A), a decision rule model is induced from a set of
reference (training) objects U ⊂ A. The rough set analysis starts with computing
lower and upper rough approximations of decision classes. The lower approxi-
mation of a decision class contains objects (from U) certainly belonging to the
decision class without any inconsistency. The upper approximation of a decision
class contains objects possibly belonging to the decision class that may cause
inconsistencies. In the simplest case, the inconsistency is defined as a situation
where two objects described by the same values of condition attributes (it is said
that these objects are indiscernible) are assigned to different classes. In the next
step, decision rules are induced from lower and upper rough approximations.
These rules represent, respectively, certain and possible patterns explaining re-
lationships between conditions and decisions. The model in the form of decision
rules permits to classify all objects from A.
Greco. Matarazzo and Słowiński [5,6,13] have introduced a rough set approach

(called Dominance-based Rough Set Approach— DRSA) for solving the problem

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 499–508, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of multi-criteria classification. In this problem, it is additionally assumed that
the domains of attributes (scales) are preference-ordered. The decision classes are
also preference-ordered according to an increasing order of class labels, i.e. for all
r, s ∈ T , such that r > s, the objects from Clr are strictly preferred to the objects
from Cls. The condition attributes are often referred to as condition criteria.
DRSA extends the classical approach by substituting the indiscernibility relation
by a dominance relation, which permits taking into account the preference order.
The inconsistency is defined in view of a dominance principle that requires that
any object x, having not worse evaluations than any object y on the considered
set of criteria, cannot be assigned to a worse class than y. Moreover, unlike in the
classical rough set approach, there is no need in DRSA to make discretization
of numerical attributes.
The preference model is a necessary component of a decision support system

for multi-criteria classification. Construction of preference model requires some
preference information from the Decision Maker (DM). Classically, these are
substitution rates among criteria, importance weights, comparisons of lotteries,
etc.. Acquisition of this preference information from the DM is not easy. In this
situation, the preference model induced from decision examples provided by the
DM has clear advantages over the classical approaches. DRSA, but also UTA
[8] and UTADIS [9,15], follows the paradigm of inductive learning (in Multi-
Criteria Decision Analysis referred to as a preference-disaggregation approach).
It is very often underlined by Słowiński, Greco and Matarazzo (see, for example
[13]) that a decision rule model has another advantage over other models, i.e. it
is intelligible and speaks the language of the DM. However, in the case of many
numerical criteria and decision classes, the set of decision rules may be huge and
may loose its intelligibility. In such situations, an additive model composed of
marginal value (utility) functions, like in UTA and UTADIS, may be helpful.
The marginal value functions are usually presented graphically to the DM in
order to support her/his intuition.
In the following, we present an extension of DRSA, where after computing

rough approximations, additive value functions are constructed instead of a set
of decision rules. The additive value function is composed of piecewise linear
marginal value functions. Its construction is proceeded by solving a problem
of mathematical programming similar to that formulated in UTA and UTADIS.
The main difference is that we define a goal function of the optimization problem
in a similar way as it is done in Support Vector Machines (SVM) [14]. However,
the obtained additive value functions, for lower and upper rough approximations
of decision classes, may not cover accurately all objects belonging to correspond-
ing rough approximations. It is caused by a limited capacity of an additive model
based on piecewise linear functions to represent preferences as proved in [7,12].
The problem may be also defined as the one of searching linear value functions
in a transformed feature space obtained by exhaustive binarization of criteria.
The paper is organized as follows. In Section 2, DRSA involving piecewise

linear marginal value functions is presented. Section 3 contains first experimental
results of the methodology. The last section concludes the paper.
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Table 1. Decision table: q1 and q2 indicate criteria, d class label. The last two columns
present range of generalized decision function; objects x2 and x3 are inconsistent.

U q1 q2 d(x) l(x) u(x)

x1 0.25 0.3 −1 −1 −1
x2 0.5 0.65 1 −1 1
x3 0.75 0.7 −1 −1 1
x4 1 0.6 1 1 1

2 Piecewise Linear Marginal Value Functions and
Dominance-Based Rough Set Approach

Assume, we have a set of objects A described by n criteria. We assign to each
object x a vector x = (q1(x), . . . , qn(x)), where i-th coordinate qi(x) is a value
(evaluation) of object x on criterion qi, i = 1, . . . , n. For simplicity, it is assumed
that domains of criteria are numerically coded with an increasing order of prefer-
ence. The objective of multi-criteria classification problem is to build a preference
model, according to which a class label d(x) from a finite set T is assigned to
every object from A. Here, for simplicity, it is assumed that T = {−1, 1}. It cor-
responds to that the objects from Cl1 are strictly preferred to the objects from
Cl−1. We assume that the DM provides a preference information concerning a
set of reference objects U ⊂ A, assigning to each object x ∈ U a label d(x) ∈ T .
Reference objects described by criteria and class labels are often presented in
the decision table. An example of the decision table is presented in Table 1.
The criteria aggregation model (preference model) is assumed to be additive

value function:

Φ(x) =
n∑

i=1

wiφi(qi(x)) (1)

where φi(qi(x)), i = 1, . . . , n, are non-decreasing marginal value functions, nor-
malized between 0 and 1, wi is a weight of φi(qi(x)). A similar aggregation model
with was used in [8] within UTA method (for ranking problems) and UTADIS
[9,15] (for multi-criteria classification problems), where marginal value functions
were assumed to be piecewise linear. The use of this aggregation model for clas-
sification requires existence of threshold φ0, such that d(x) = 1 if Φ(x) ≥ φ0 and
d(x) = −1 otherwise (so d(x) = sgn(Φ(x)− φ0)). The error, which is the sum of
differences |Φ(x) − φ0| of misclassified objects is minimized.
Assume however, that objects can be inconsistent. By inconsistency we mean

violation of the dominance principle, requiring that any object x, having not worse
evaluations than any object y on the considered set of criteria, cannot be assigned
to a worse class than y. If such inconsistencies occur, the UTA method is not
able to find any additive value function compatible with this information, what-
ever the complexity of the marginal functions (number of breakpoints) is, since
none monotonic function can model this information. Within DRSA, such incon-
sistencies can be handled by using concepts of lower and upper approximations
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of classes. It was shown [3] that it corresponds to generalized decision function δ
for an object x ∈ U :

δ(x) = 〈l(x), u(x)〉 (2)

where

l(x) = min{d(x) : yDx, y ∈ U} u(x) = max{d(x) : xDy, y ∈ U} (3)

where D is a dominance relation defined as xDy ⇔ ∀i∈{1,...,n}qi(x) ≥ qi(y). In
other words, given the preference information, for object x there is determined a
range of decision classes to which x may belong. This range results from taking
into account inconsistencies caused by x. Remark that without inconsistencies,
for all x ∈ U , l(x) = u(x). Moreover, if we assign to each x ∈ U a class index l(x)
(instead of d(x)), the decision table becomes consistent (similarly if we assign
a class index u(x) for all x ∈ U). Thus one can deal with inconsistent set U ,
by considering two consistent sets with two different labelings. The values of
generelized decision function are also presented in Table 1. In terms of further
classification, the response of such model is a range of classes, to which an object
may belong.
For the two consistent decision tables it is possible to derive compatible value

functions Φl(x), Φu(x) respectively, and corresponding marginal value functions
φl

i(qi(x)) and φ
u
i (qi(x))We assume that both φl

i(qi(x)) and φ
u
i (qi(x)) have piece-

wise linear form:

φi(qi(x)) =
k−1∑
r=1

cri +
cki

hk
i − hk−1

i

(qi(x) − hk−1
i ), for hk−1

i ≤ qi(x) ≤ hk
i (4)

where hk
i is the location of the k-th brakepoint on the i-th criterion (k = 1, . . . ,κi,

where κi is a number of brakepoints on i-th criterion), and cki is an increment of
marginal value function between brakepoints hk−1

i and hk
i , i.e. φi(hk

i )−φi(hk+1
i ).

Equation (4) states that function φi evaluated at qi(x) equals to the sum of in-
crements on all intervals on the left of qi(x) and linearly approximated increment
in the interval where qi(x) is located. The example is shown on Figure 1.
In the simplest form, the corresponding optimization problem can be formu-

lated for lower bound of generalized decision (Φl
i(x)) as follows:

min:
m∑

j=1

σl
j (5)

subject to constraints:

Φl(xj) ≤ φl
0 + σl

j ∀xj : l(xj) = −1 (6)

Φl(xj) ≥ φl
0 − σl

j ∀xj : l(xj) = 1 (7)

σl
j ≥ 0 ∀xj (8)

φl
i(z

∗
i ) = 1 ∀i ∈ {1, . . . , n} (9)

φl
i(zi∗) = 0 ∀i ∈ {1, . . . , n} (10)

cki ≥ 0 ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,κi} (11)
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Fig. 1. Piecewise linear marginal value function φi defined by Equation 4. The incre-
ments are: c1

i = 0.1, c2
i = 0.5, c3

i = 0.3, c4
i = 0.1.

where m is the number of reference objects, σj are possible errors, z∗i and zi∗ are
the highest and the lowest value on i-th criterion. Constraints (6) and (7) ensure
correct separation, (9) and (10) control scaling and (11) preserves monotonicity.
Analogous problem can be formulated for upper bound of generalized decision
(function Φu(x)). It is worth noting, that the method does not assure all errors
become zero as the complexity of φl

i(qi(x)) and φ
u
i (qi(x)) grows, however, it

avoids errors caused by inconsistencies. If all σl
i and σ

u
i become 0, the obtained

model is concordant with DRSA in the sense that all objects belonging to lower
or upper approximations will be reassigned by the obtained functions to these
approximations.
It is worth introducing some measure of complexity of marginal functions

and minimize it, to avoid building complex models. Notice, that as the function
φi(qi(x)) is multiplied in (1) by weight wi, we can introduce new coefficients
wk

i = ckiwi in order to keep the problem linear. Now control of the complexity
is done by minimizing a regularization term:

||w||2 =
n∑

i=1

κi∑
k=1

(wk
i )2 (12)

instead of controlling the scale of functions in (9) and (10). Minimizing of term
may lead to rescaling the utility function, so that all values of φi(qi(x)) will
decrease down almost to zero. To avoid that, constraints are modified introducing
the unit margin around threshold, in which no object may appear without error.
Thus we rewrite equations (6) and (7) as:

(Φl(xj)− φl
0)l(xj) ≥ 1− σl

i (13)

The objective of the optimization is now:

min: ||wl||2 + C
m∑

j=1

σl
j (14)
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Fig. 2. Functions obtained by decomposing φi(qi(x)). Notice that φi(qi(x) =

0.1φi,1(qi(x)) + 0.5φi,2(qi(x)) + 0.3φi,3(qi(x)) + 0.1φi,4(qi(x)).

where C is the complexity constant. Analogous reasoning may be proceeded for
Φu(x). Such problem resembles maximal margin classifier and Support Vector
Machines [14]. We will try to bring it even more similar.
Let us first modify Φ(x) to be Φ(x) =

∑n
i=1 wiφi(qi(x)) − φ0. Now, we de-

compose each function φi(qi(x)) into κi functions φi,k(qi(x)) in the following
way:

φi(qi(x)) =
κi∑

k=1

cikφi,k(qi(x)). (15)

An example of such decomposition is shown on Figure 2. One can treat the
family of functions {φ1,1(q1(x)), . . . , φn,κn(qn(x))} as a transformation of the
space of criteria. Namely, there is a map T : A → R

s where s =
∑n

i=1 κi, such
that T (x) = (φ1,1(q1(x)), . . . , φn,κn(qn(x))). By substituting wk

i = wic
k
i and

denoting w = (w1
1 , . . . , w

κn
n ), the function (1) becomes:

Φ(x) = 〈w, T (x)〉 − φ0 (16)

where 〈·, ·〉 is a canonical dot product in R
s.

Finally, after reformulating the problem we obtain:

min: ||wl||+ C
m∑

j=1

σl
j (17)

subject to constraints:

(〈wl, T l(x)〉 − φl
0)l(x) ≥ 1− σl

i ∀xi ∈ U (18)
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σl
i ≥ 0 ∀i ∈ {1, . . . ,m} (19)

wk
i ≥ 0 ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,κi} (20)

Notice that the regularization term is just squared Euclidean norm of the
weight vector in new feature space.
Motivated by the above result, we introduce a kernel function k : A×A→ R,

defined as:

k(x, y) =
n∑

i=1

ki(x, y) (21)

where

ki(x, y) =
κi∑

j=1

φi,j(qi(x))φi,j(qi(y)). (22)

Notice, that k(x, y) = 〈T (x), T (y)〉. Assume that we have a brakepoint in each
evaluation point of all objects x ∈ U , the set of brakepoints for i-th criterion is
{qi(x1), . . . , qi(xm)}. Then the computing of the marginal kernel function ki(x, y)
boils down to:

ki(x, y) = min{ranki(x), ranki(y)} (23)

where ranki(x) is a position (in ranking) of value qi(x) on i-th criterion.
Thus, the problem may be formulated in a dual form. The most essential

advantage of such approach is reduction in number of variables, irrespective to
the number of brakepoints of marginal functions. As the complexity of marginal
functions increases, the optimization problem remains the same and only the
computation of the kernel function becomes harder. However there is a problem,
how to ensure monotonicity of the resulting utility function. In the dual formu-
lation the information about each criterion is lost, thus not all the weights may
be non-negative.
Let us remark that the transformed criteria space obtained by image of map-

ping T (A) (i.e. (φ1,1(q1(x)), . . . , φn,κn(qn(x))), x ∈ A) may be also seen as a
result of binarization of criteria. This type of binarization should be called an
exhaustive one by analogy to other approaches well-known in rough set theory
or in logical analysis of data (see for example, [1]).
The exhaustive binarization is proceeded by choosing cut points in each eval-

uation point of all objects x ∈ U . More precisely, the binarization of the i-th
criterion is accomplished in a straightforward way by associating with each value
v on this criterion, for which there exists an object x, such that qi(x) = v, a
boolean attribute qiv such that:

qiv (x) =
{

1 if qi(x) ≥ v
0 if qi(x) < v

. (24)

Table 2 shows the exhaustive binarization of criteria from Table 1.
Moreover, let us remark that the binarized decision table contains almost the

same information as dominance matrix introduced in [2]. The dominance matrix
DM is defined as follows:

DM = {dm(x, y) : x, y ∈ U}, where dm(x, y) = {qi ∈ Q : qi(x) ≥ qi(y)}. (25)
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Table 2. Decision table from Table 1 with binarized criteria

U q10.25 q10.5 q10.75 q11 q20.3 q20.6 q20.65 q20.7 d

x1 1 0 0 0 1 0 0 0 −1
x2 1 1 0 0 1 1 1 0 1
x3 1 1 1 0 1 1 1 1 −1
x4 1 1 1 1 1 1 0 0 1

where Q = {qi, i = 1, . . . , n}. Dominance Matrix DM is usually implemented
as 3-dimensional binary cube C defined as cjki = 1, if qi ∈ dm(xj , xk), and
cjki = 0 otherwise, where j, k = 1, ...,m and i = 1, . . . , n. Such a structure
is very useful in a procedure of generating exhaustive set of decision rules [2],
because all computations may be quickly proceeded as bitwise operations. It is
a counterpart of a discernibility matrix [11] well-known in classical rough set
approach. It is easy to see that the following occurs:

cjki = 1 ⇔ qiqi(xk)(xj) = 1, xj , xk ∈ U.

3 Experimental Results

We performed a computational experiment on Wisconsin breast cancer (BCW)
data obtained from the UCI Machine Learning Repository [10]. This problem
was chosen since it is known to have monotonic relationship between values on
condition attributes and decision labels. Thus, all attributes can be interpreted
as criteria, enabling DRSA. BCW consist of 699 instances described by 9 integer-
valued attributes, from which 16 instances have missing values. Each instance is
assigned to one of two classes (malignant and benign).
Several approaches have been compared with the methodology presented in

the previous section that will be referred to as Piecewise Linear DRSA (PL-
DRSA). These are k-Nearest Neighbours, linear Support Vector Machines, Lo-
gistic Regression, J48 Decision Trees and Naive Bayes. WEKA [4] software was
used for the experiment. For all algorithms a criteria selection was performed, by
using backward elimination. The number of criteria left and the leaving-one-out
(loo) accuracy estimate are shown in Table 3.

Table 3. Experimental results for Wisconsin breast cancer data

Algorithm Number of criteria loo estimate
k-NN (k = 1) 6 96.8%
linear SVM 6 97.2%
J48 4 97.7%
Logistic Regr. 6 97.2%
Naive Bayes 6 97.1%
PL-DRSA 6 97.4%
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Apparently, all the accuracy estimates are similar. PL-DRSA was conducted
with setting breakpoints on each evaluation point of all objects on each criterion.
Two models were created, one for lower bound of the decision range, second for
the upper bound. The classification rule was the following: if Φl(x)− Φu(x) ≥ 0
then assign x to class Cl1 otherwise assign x to Cl−1. The achieved accuracy
was one of the best, competitive to other methods. However, marginal value
functions constructed in PL-DRSA may be presented graphically and easily in-
terpreted. Moreover, PL-DRSA shows the inconsistent data both in learning and
classification stage.

4 Conclusions

Within DRSA framework, the decision rule model were always considered for
multicriteria decision analysis. We presented an alternative method, related to
additive aggregation model, similar to the one used in the UTA method. The
described approach has several advantages. First, it is flexible and allows various
shapes of separating function to be obtained. Marginal value functions may also
be presented graphically and interpreted by DM. Finally, PL-DRSA can control
the complexity of the additive function by fixing the number of breakpoints and
minimizing the slopes in each breakpoint. DRSA plays important role in han-
dling inconsistencies, which affect the data. Ignoring them may cause errors and,
therefore generate wrong decision model. The method can be also interpreted in
terms of criteria transformation (in a specific case, also in terms of binarization)
and Support Vector Machines.

Acknowledgements. The authors wish to acknowledge financial support from the
Ministry of Education and Science (grant no. 3T11F 02127).
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Abstract. In this paper we focus our attention on the classification
problem. We use rough set theory and propose new methods for induc-
tion of decision rules. Our approach generalize the concept of a reduct in
a dataset. We use minimal set of descriptors gained from decision table.
A reduct of descriptors is a set of descriptors which allows us to distin-
guish between objects as well as the whole set of descriptors present in
the dataset. Two types of descriptors are considered: attribute-value and
attribute-object-value. We propose appropriate methodology for dealing
with descriptors and inducing decision rules. We also present performed
experiments on different datasets and compare them with results ob-
tained by other algorithms for object classification based on rough sets.

1 Introduction

Classification problem has been deeply researched due to variety of its applica-
tions. Classification can be considered in different fields of science and industry
and may be done using different technics: e.g. neural networks, decision rules,
rough sets etc.

In this paper we mainly focus on methods based on rough sets theory [8].
We generalize the concept of reduct of attributes to the reduct of descriptors.
We consider two types of descriptors: a pair of atribute-value (AV) and a tiriple
atribute-object-value (AOV). A reduct of descriptors is a set of descriptors which
allows us to distinguish between objects as well as the whole set of descriptors
present in the dataset.

2 State of Art

Most of the rough set oriented methods for decision rules inducing [4] take ad-
vantage of concept of a reduct. Classic reduct is defined as subset of condition
attributes which distinguishes all objects as well as whole set of condition at-
tributes. Two special types of reducts are considered: relative reduct and local
relative reduct.

In the first case [10], [9] a common way is to calculate one relative reduct or
all relative reducts for training decision table. Relative reducts are later used for

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 509–517, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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inducing rules for objects from training decision table. Such rules are minimal
with respect to number of condition attributes.

Similar approach is proposed for local relative reducts [10], [9]. These rules, on
the other hand, are minimal with respect to number of attribute-value descriptors
used in every rule.

3 Reduct of a Set of Descriptors

Let decision table be a triple (U , C,D), where U(universum) is a non-empty,
finite set of objects, C is a non-empty finite set of condition attributes and D is
a non-empty finite set of decision attributes. A set of all attributes is denoted
by A = C ∪ D. A domain of an attribute a ∈ A is denoted by Va and its value
for an object u ∈ U is denoted by a(u). Further, we will consider tables with
only one decision attribute DT = (U , C, {d}) and a term attribute will refer to a
condition attribute. Let descriptor attribute-value sAV

a,u and descriptor attribute-
object-value sAOV

a,u be defined as follows:

sAV
a,u = (a, a(u)) sAOV

a,u = (a, u, a(u))

Thus sAV
a,u is a pair of atribute and value of this atribute for a given object in

the dataset. The sAOV
a,u is a triple which contains also the identifier of the object.

Each set of attribute-object-value descriptors XAOV can be transformed into
attribute-value set of descriptors XAV by T -transformation:

XAV = T (XAOV ) = {sAV
a,u | sAOV

a,u ∈ XAOV }

Each set of attribute-value descriptors XAV can be transformed into attribute-
object-value set of descriptors XAOV by G-transformation:

XAOV = G(XAV ) = {sAOV
a,u | sAV

a,u ∈ XAV }

Let XAV , Y AV , ZAV be sets of attribute-value descriptors and XAOV , Y AOV ,
ZAOV be sets of attribute-object-value descriptors such that: XAOV = G(XAV )
and Y AOV = G(Y AV ). The following facts are true:

XAOV ⊆ Y AOV ⇔ XAV ⊆ Y AV

ZAV = T (G(ZAV ))

ZAOV ⊆ G(T (ZAOV ))

Each object u ∈ U from a decision table can be treated as a set of appro-
priate descriptors: attribute-value descriptors (OAV

u ) or attribute-object-value
descriptors (OAOV

u ):

OAV
u =

⋃
a∈C

sAV
a,u =

⋃
a∈C

(a, a(u))
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and
OAOV

u =
⋃
a∈C

sAOV
a,u =

⋃
a∈C

(a, u, a(u))

Obviously OAV
u = T (OAOV

u ). Let SAV be a set of all attribute-value descriptors
and SAOV be a set of all attribute-object-value descriptors for the given decision
table:

SAV =
⋃
u∈U

OAV
u

and
SAOV =

⋃
u∈U

OAOV
u

Let XAV ⊆ SAV and XAV
u = OAV

u ∩XAV . An indiscernibility relationIND(XAV )
is defined as follows:

IND(XAV ) = {(u, v) ∈ U × U | XAV
u ⊆ XAV

v ∨ XAV
u ⊇ XAV

v ∨ d(u) = d(v)}

Let XAOV ⊆ SAOV and XAOV
u = OAV

u ∩ T (XAOV ). An indiscernibility rela-
tion IND(XAOV ) is defined as follows:

IND(XAOV )={(u, v) ∈ U×U | XAOV
u ⊆ XAOV

v ∨XAOV
u ⊇ XAOV

v ∨d(u)= d(v)}

Note that sets: XAV
u and XAOV

u are not identical. Obviously IND(SAV ) =
IND(SAOV ). A set of descriptors R (either attribute-value or attribute-object-
value) is called reduct of set of descriptors S if it meets following conditions:⎧⎨⎩

R ∈ S
IND(S) = IND(R)
¬∃s ∈ R : IND(S) = IND(R− {s})

Reducts with minimal number of descriptors are called minimal reducts. Let
RED be set of all reducts of S and REDM be set of all reducts of minimal size.

4 Finding Reduct of Descriptors

Problem of finding minimal reduct (all reducts) of descriptors is very similar
to problem of finding reduct of attributes. The only difference is definition of
indiscernibility relation.

Problem of finding minimal reduct is NP-hard. Most of the algorithms cal-
culate all reducts and then select minimal one. The paper [7] proposes a method
which reduces the number of needed computations. Classic exhaustive approach
is based on indiscernibility matrix and indiscernibility function. This problem
can be also expressed as integer (boolean) programming task [5].

Heuristics methods are widely used as well. The most popular approaches
use either greedy search (i.e. algorithm proposed by Johnson [4]) or genetic and
evolutionary algorithms [12] [11].
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5 Classification Using Reduct of Descriptors

We use a reduct of descriptors as a tool for creating classifier based on decision
rules. Each rule r consists of two parts: condition part k (set of attribute-value
descriptors) and decision part d (category). Each object u ∈ U from decision
table is transformed into decision rule r(u) according to different formulas for
different kind of minimal set of descriptors:

– attribute-value descriptors (AV ): r(u) : OAV
u ∩RAV → d(u)

– attribute-object-value descriptors (AOV ): r(u) : T (OAOV
u ∩RAOV ) → d(u)

Let us notice that if the decision table is deterministic, such rules correctly
classify all objects (coverage and accuracy are equal to 1.0).

6 Example

Let us consider the decision table DT = (U , C, {d}) presented below, where
U = {1, 2, 3, 4} and C = {a, b, c}.

No. a b c d OAV OAOV

1 1 0 1 1 {(a,1), (b,0), (c,1)} {(a,1,1), (b,1,0), (c,1,1)}
2 1 1 2 1 {(a,1), (b,1), (c,2)} {(a,2,1), (b,2,1), (c,2,2)}
3 0 0 1 1 {(a,0), (b,0), (c,1)} {(a,3,0), (b,3,0), (c,3,1)}
4 0 2 2 0 {(a,0), (b,2), (c,2)} {(a,4,0), (b,4,2), (c,4,2)}
5 0 1 0 0 {(a,0), (b,1), (c,0)} {(a,5,0), (b,5,1), (c,5,0)}

SAV ={ (a,0), (a,1), (b,0), (b,1), (b,2), (c,0), (c,1), (c,2) }
Let us calculate indiscernibility relation for a few sets of attribute-value de-

scriptors:

IND(SAV ) ={ {1,1}, {1,2}, {1,3}, {2,1}, {2,2}, {2,3}, {3,1}, {3,2}, {3,3},
{4,4}, {4,5}, {5,4}, {5,5} }
IND({(a, 0), (a, 1)}) = { {1,1}, {1,2}, {1,3}, {2,1}, {2,2}, {2,3}, {3,1}, {3,2},
{3,3}, {3,4}, {3,5}, {4,3}, {4,4}, {4,5}, {5,3}, {5,4}, {5,5} }
IND({(c, 0), (c, 1), (c, 2)}) ={ {1,1}, {1,2}, {1,3}, {2,1}, {2,2}, {2,3}, {2,4},
{3,1}, {3,2}, {3,3}, {4,2}, {4,4}, {4,5}, {5,4}, {5,5} }
IND({(a, 0), (b, 0), (b, 1), (c, 2)}) ={ {1,1}, {1,2}, {1,3}, {2,1}, {2,2}, {2,3},
{3,1}, {3,2}, {3,3}, {4,4}, {4,5}, {5,4}, {5,5} }=IND(SAV )

Let us calculate set of all reducts (REDAV ) and set of all minimal reducts
(REDAV ) of SAV :

REDAV ={ {(a,0), (b,0), (b,1), (c,2)}, {(a,0), (b,1), (c,1), (c,2)}, {(a,1), (b,0),
(b,2), (c,0)}, {(a,1), (b,2), (c,0), (c,1)}, {(a,0), (a,1), (b,0), (b,1), (b,2)}, {(a,0),
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(a,1), (b,0), (c,0), (c,2)}, {(a,0), (a,1), (b,1), (b,2), (c,1)}, {(a,0), (a,1), (c,0),
(c,1), (c,2)}, {(b,0), (b,1), (b,2), (c,0), (c,2)}, {(b,1), (b,2), (c,0), (c,1), (c,2)}}

REDAV
M ={ {(a,0), (b,0), (b,1), (c,2)}, {(a,0), (b,1), (c,1), (c,2)}, {(a,1), (b,0),

(b,2), (c,0)}, {(a,1), (b,2), (c,0), (c,1)}}

Let RAV
M ∈ REDAV

M . Table 1 contains sets of rules induced using different
reducts of attribute-value descriptors.

Table 1. Rules induced using different reducts of attribute-value descriptors

RAV
M Rules Minimal Rules

Number of
distinct

descriptors

{(a,0), (b,0), (b,1), (c,2)}

(b,0) → (d,1) (a,0) → (d,0)

4
(b,1) ∧ (c,2) → (d,1) (b,0) → (d,1)
(a,0) ∧ (b,0) → (d,1) (b,1) ∧ (c,2) → (d,1)
(a,0) ∧ (c,2) → (d,0)

(a,0) → (d,0)

{(a,0), (b,1), (c,1), (c,2)}

(c,1) → (d,1) (c,1) → (d,1)

4
(b,1) ∧ (c,2) → (d,1) (b,1) ∧ (c,2) → (d,1)
(a,0) ∧ (c,1) → (d,1) (a,0) ∧ (c,1) → (d,1)
(a,0) ∧ (c,2) → (d,0) (a,0) ∧ (c,2) → (d,0)
(a,0) ∧ (b,1) → (d,0) (a,0) ∧ (b,1) → (d,0)

{(a,1), (b,0), (b,2), (c,0)}

(a,1) ∧ (b,0) → (d,1) (a,1) → (d,1)

4
(a,1) → (d,1) (b,0) → (d,1)
(b,0) → (d,1) (b,2) → (d,0)
(b,2) → (d,0) (c,0) → (d,0)
(c,0) → (d,0)

{(a,1), (b,2), (c,0), (c,1)}

(a,1) ∧ (c,1) → (d,1) (a,1) → (d,1)

4
(a,1) → (d,1) (b,2) → (d,0)
(c,1) → (d,1) (c,0) → (d,0)
(b,2) → (d,0) (c,1) → (d,1)
(c,0) → (d,0)

Similar reasoning can be done for attribute-object-value descriptors (a few steps
are presented below).

SAOV ={ (a,1,1), (a,2,1), (a,3,0), (a,4,0), (a,5,0), (b,1,0), (b,2,1), (b,3,0),
(b,4,2), (b,5,1), (c,1,1), (c,2,2), (c,3,1), (c,4,2), (c,5,0) }
IND(SAOV ) = { {1,1}, {1,2}, {1,3}, {2,1}, {2,2}, {2,3}, {3,1}, {3,2}, {3,3},
{4,4}, {4,5}, {5,4}, {5,5} }=IND(SAV )

IND({(a, 1, 1), (a, 3, 0)}) = IND({(a, 2, 1), (a, 4, 0), (a, 5, 0)}) =
IND({(a, 2, 1), (a, 4, 0)}) = IND({(a, 1, 1), (a, 5, 0)}) = IND({(a, 0), (a, 1)})
IND({(c, 1, 1), (c, 2, 2), (c, 4, 0)}) = IND({(c, 0), (c, 1), (c, 2)}) = IND(SAOV )
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Note that in classical rough set approach [10], [9] this decision table has three
relative reducts: {a,b}, {a,c}, {b,c}. Each reduct will induce five rules and each
rule will consist of three attribute-value descriptors.

Table 2 contains sets of rules induced using classic rough set algorithms: based
on relative reducts and reletive local reducts.

Table 2. Rules induced using classic rough sets algorithms

Algorithm details Rules Minimal Rules
Number of

distinct
descriptors

(a,1) ∧ (b,0) → (d,1) (a,1) ∧ (b,0) → (d,1)

5
Relative reduct: (a,1) ∧ (b,1) → (d,1) (a,1) ∧ (b,1) → (d,1)

{a,b} (a,0) ∧ (b,0) → (d,1) (a,0) ∧ (b,0) → (d,1)
(a,0) ∧ (b,2) → (d,0) (a,0) ∧ (b,2) → (d,0)
(a,0) ∧ (b,1) → (d,0) (a,0) ∧ (b,1) → (d,0)

(a,1) ∧ (c,1) → (d,1) (a,1) ∧ (c,1) → (d,1)

5
Relative reduct: (a,1) ∧ (c,2) → (d,1) (a,1) ∧ (c,2) → (d,1)

{a,c} (a,0) ∧ (c,1) → (d,1) (a,0) ∧ (c,1) → (d,1)
(a,0) ∧ (c,2) → (d,0) (a,0) ∧ (c,2) → (d,0)
(a,0) ∧ (c,0) → (d,0) (a,0) ∧ (c,0) → (d,0)

(b,0) ∧ (c,1) → (d,1) (b,0) ∧ (c,1) → (d,1)

6
Relative reduct: (b,1) ∧ (c,2) → (d,1) (b,1) ∧ (c,2) → (d,1)

{b,c} (b,0) ∧ (c,1) → (d,1) (b,0) ∧ (c,1) → (d,1)
(b,2) ∧ (c,2) → (d,0) (b,2) ∧ (c,2) → (d,0)
(b,1) ∧ (c,0) → (d,0) (b,1) ∧ (c,0) → (d,0)

(a,1) → (d,1) (a,1) → (d,1)

5
Local reletive (b,0) → (d,1) (b,0) → (d,1)

reducts (c,1) → (d,1) (c,1) → (d,1)
(b,2) → (d,0) (b,2) → (d,0)
(c,0) → (d,0) (c,0) → (d,0)

7 Results

As it was mentioned before presented approaches properly classify all objects
from deterministic decision table used for rule induction. Induced sets of rules
contain minimal number of appropriate descriptors. In the tests we wanted to
check the effectiveness of classification of objects from test datasets using the
concept of reduct of descriptors not only in a training set but also in a test
dataset. Thus we built different classifiers and compare its coverage and classi-
fication accuracy, number of rules and its length and finally number of distinct
descriptors and attributes in rules. The classification accuracy is the percent of
objects properly classified, whereas the coverage is the percent of objects which
may be classified using induced rules [4].

We used a few datasets from UCI repository [1]. There were two different
groups of datasets. First one contained datasets which were explicitly divided
into two decision tables: training and test (e.g. monks-1, monks-2, monks-3).
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Table 3. Coverage and classification accuracy

Dataset
Coverage Accuracy

AV AOV EXH LEM2 AV AOV EXH LEM2

irys 0.65 0.80 0.96 0.53 0.91 0.93 0.84 0.85
lung 0.53 0.83 — 0.30 0.44 0.48 — 0.40
lymn 0.59 0.91 0.98 0.56 0.78 0.79 0.79 0.84

monks-1 0.97 0.97 1.00 0.76 1.00 0.99 0.87 0.98
monks-2 0.39 0.98 1.00 0.75 1.00 0.76 0.74 0.83
monks-3 0.76 0.98 1.00 0.75 0.94 0.95 0.94 0.92

zoo 0.89 0.90 0.96 0.85 0.93 0.95 0.94 0.95

Table 4. Number of rules and average rule length

Dataset
Number of rules Average rule length

AV AOV EXH LEM2 AV AOV EXH LEM2

irys 28.61 26.78 133.28 28.78 1.37 1.17 1.39 1.58
lung 10.92 16.17 — 5.75 2.58 1.09 — 4.48
lymn 40.56 48.11 2904.83 21.06 4.6 1.88 3.42 8.56

monks-1 35.00 39.00 161.00 45.00 3.00 2.90 3.70 4.50
monks-2 169.00 99.00 247.00 94.00 6.00 3.70 4.00 5.20
monks-3 82.00 38.00 135.00 41.00 4.00 2.70 3.40 4.50

zoo 10.28 15.39 521.00 7.39 3.47 1.80 3.42 6.59

Table 5. Number of distinct descriptors and attributes in rules

Dataset
Number of distinct descriptors Number of distinct attributes

AV AOV EXH LEM2 AV AOV EXH LEM2

irys 23.89 28.44 93.17 34.17 3.78 3.11 4.00 3.78
lung 6.58 17.50 — 20.75 6.17 15.67 — 18.42
lymn 13.83 37.89 54.89 33.78 8.72 15.11 17.61 17.22

monks-1 10.00 17.00 17.00 17.00 3.00 6.00 6.00 6.00
monks-2 17.00 17.00 17.00 17.00 6.00 6.00 6.00 6.00
monks-3 13.00 17.00 17.00 17.00 4.00 6.00 6.00 6.00

zoo 8.44 16.94 34.22 19.83 6.11 11.56 15.78 12.33

Second one contained only one decision table per one dataset (e.g. irys, lung,
lymn, zoo). In this case we divided original dataset into two decision tables: for
training and test purposes. Division was made with several ratios (from 0.1 to
0.9 with step: 0.1) of number of objects of training decision table to test decision
table. Ratio of objects from different categories was constant. Each division was
repeated 5 times. Presented results are average values from all divisions and
repetitions. We tested the following algorithms:

– AV - inducing rules from minimal reduct of attribute-value descriptors
– AOV - inducing rules from minimal reduct of attribute-object-value descrip-

tors



516 A. Dominik and Z. Walczak

– EXH - exhaustive algorithm [4] (inducing rules by calculating all local rel-
ative reducts)

– LEM2 - LEM2 algorithm [6]

The algorithms EXH and LEM2 are implemented in RSES [3]. We used GLPK [2]
for finding minimal reduct of descriptors. LEM2 algorithm was parameterized to
cover whole training set. Exhaustive algorithm didn’t find solution to set of lung
decission tables in appropriate time. Conflicts in classification where resolved by
Standard voting procedure (each rule votes with strength equals to its support).
Coverage and classification accuracy of tested algorithm is shown in Table 3. We
also calculated number of rules and average rule length found by each algorithm
(Table 4). Comparison of number of distinct descriptors and attributes in rules
is presented in Table 5.

Performed experiments led us to some interesting conclusions. As long as cov-
erage and accuracy of classification is concerned in the most cases LEM2 was
the worst algorithm. Exhaustive algorithm provided best coverage of all algo-
rithms but also had the biggest number of rules containing the biggest number
of distinct descriptors.

Attribute-object-value descriptor method had better coverage (also shorter
average rule length) and better accuracy (except for 2 cases) than attribute-
value approach. On the other hand rules induced by AV algorithm had the
lowest number of distinct descriptors.

8 Conclusions

In this paper we proposed two new algorithms for rules induction based on rough
set theory. The most characteristic feature of sets of induced rules is the fact
that they are minimal in respect of number of appropriate descriptors (attribute-
value in first algorithm and attribute-object-value in second one). The obtained
results confirmed that the proposed methods give comparable or better results
than other algorithms i.e EXH and LEM2. Our algorithms are the best suitable
for situations where a small number of short rules is needed.

Proposed concept of minimal reduct of descriptors can be also used in a differ-
ent way. For instance instead of inducing rules from one minimal reduct of set of
descriptors one may induced rules using all minimal reducts or even all reducts
(not only minimal). Another interesting idea to investigate would be to relax one
of the conditions of reduct i.e. IND(S) = p ∗ IND(R), where p ∈ (0, 1). Such
approach would induce rules with fewer number of distinct descriptors (shorter
rules as well) providing better coverage of objects.
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Abstract. The paper discusses the properties of an attribute selection
criterion for building rough set reducts based on discernibility matrix
and compares it with Shannon entropy and Gini index used for building
decision trees. It has been shown theoretically and experimentally that
entropy and Gini index tend to work better if the reduct is later used
for prediction of previously unseen cases, and the criterion based on
the discernibility matrix tends to work better for learning functional
relationships where generalization is not an issue.

1 Introduction

An information system [8] is a pair (U,A), where U = {u1, . . . , un} is a set of
objects (also called records), and A = {a1, . . . , am} is a set of attributes. An
attribute a ∈ A is a function a : U → Da assigning to each object a value of
that attribute. Da is the domain of attribute a. Without loss of generality let us
assume that Da = {1, . . . , k} for all a ∈ A.

A decision system is an information system (U,A ∪ {d}) which contains a
distinguished attribute d called decision. Let us assume that the domain of d is
Dd = {1, . . . , l}. A relative reduct, is a minimal (in the sense of set inclusion)
set of attributes not containing d, which functionally determines the decision
d, see [8] for a formal definition. For a decision system (U,A ∪ {d}) we define
relative discernibility matrix as

Md
ij = {a ∈ A : a(ui) �= a(uj) and d(ui) �= d(uj)}.

Some reduct finding algorithms, e.g. [1,12] are based on explicitly constructing
the relative discernibility matrix. The size of this matrix is O(n2m) so generating
it is a serious performance limitation.

The reduct finding algorithm given in [1] starts with an empty set of attributes
and heuristically adds new attributes one by one, in a greedy way, until a su-
perreduct is constructed. Each time the attribute present in the largest number
of cells of the relative discernibility matrix is added. This is equivalent to choos-
ing the attribute which ‘discerns’ the largest number of pairs of objects with
different decisions. Full details of the algorithm can be found in [1].

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 518–527, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Discernibility matrices are used mainly for counting the number of object
pairs discerned by a given attribute. The number of the those pairs can however
be obtained from the distribution of each attribute using combinatorial methods.

Let S(d) be the number of pairs of objects which differ on attribute d. Let
S(d|a = i) be the number of pairs objects (u1, u2) such that a(u1) = a(u2) = i
and d(u1) �= d(u2). Intuitively, this is the number of pairs objects differing in d

within the subset of objects having a = i. Define S(d|a) =
∑k

i=1 S(d|a = i), it
is the number of pairs of objects discerned by d after taking a into account.

In [6] the following combinatorial identities were proved (similar results have
been presented earlier in [7,2]).

S(d) = n2 −
l∑

j=1

n·j
2

S(d|a = i) = ni·
2 −

l∑
j=1

nij
2

S(d|a) =
k∑

i=1

ni·
2 −

k∑
i=1

l∑
j=1

nij
2,

where ni· = |{u ∈ U : a(u) = i}|, n·j = |{u ∈ U : d(u) = j}|, nij = |{u ∈ U :
a(u) = i ∧ d(u) = j}| are the counts of events a = i, d = j and a = i ∧ d = j,
respectively, in the decision system.

Denote also pi· = ni·
n , p·j = n·j

n , pij = nij

n . These are estimates of the proba-
bilities of events a = i, d = j and a = i ∧ d = j, respectively, from the decision
system.

After taking attribute a into account, the number of pairs discerned by d will
decrease by

IS(d, a) = S(d)− S(d|a).
Therefore, the attribute a added to the reduct in each step by the algorithm
presented in [1] is the one which maximizes IS(d, a).

2 Information Theoretical Measures and Finding Reducts

In [6] we have introduced the following quantities

G(d) = 1−
l∑

j=1

p·j
2

G(d|a = i) = 1−
l∑

j=1

(
pij

pi·

)2

G(d|a) =
k∑

i=1

pi·
2G(d|a = i),
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and shown that

S(d) = n2

⎛⎝1−
l∑

j=1

p·j
2

⎞⎠ = n2G(d)

S(d|a = i) = ni·
2

⎛⎝1−
l∑

j=1

(
pij

pi·

)2
⎞⎠ = ni·

2G(d|a = i)

S(d|a) = n2
k∑

i=1

pi·
2G(d|a = i) = n2G(d|a).

Notice that G(d) is identical to the well known Gini index used in constructing
decision trees [3] (GCART (d) = G(d)). However G(d|a) differs from the condi-
tional Gini index in that the probabilities pi· are squared in G(d|a). Similar
results have been previously obtained in [7].

It can thus be seen that many reduct finding algorithms based on discerni-
bility matrices are in fact using this modified version of the Gini index to select
attributes added to the reduct. It is thus important to understand the properties
of G and that’s what this paper is devoted to. Below we compare the properties
of G with Shannon entropy H and conditional Gini index defined in the standard
way GCART , used for example in the CART decision tree builder [3].

A general class of entropies has been analyzed in [10] defined as

Gα(d) =
1

21−α − 1

⎛⎝ l∑
j=1

p·j
α − 1

⎞⎠
Gα(d|a) =

k∑
i=1

pi·
αGα(d|a = i).

It is interesting that G is a special case for α = 2 and appears naturally when
we count the number of discerned pairs of objects, also in the conditional case.
When α→ 1, Gα tends to the standard Shannon entropy.

2.1 Properties of G

Below we present some interesting properties of G, more can be found in [10].

(P1) Minimum and maximum value. We have 0 ≤ G(d) ≤ l−1
l . The first in-

equality becomes an equality iff d is constant. The second inequality becomes
an equality iff all values of d occur with identical probabilities 1

l , as is the case
with Shannon entropy.

Proof. Since for p·j ∈ [0, 1] we have p·j ≥ p·j
2. It follows that

G(d) = 1−
l∑

j=1

p·j
2 ≥ 1−

l∑
j=1

p·j = 1− 1 = 0.
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Suppose now that G(d) = 0. It follows that

1 =
l∑

j=1

p·j
2 =

⎛⎝ l∑
j=1

p·j

⎞⎠2

−
∑

1≤j1 �=j2≤l

p·j1p·j2 ,

which implies ∑
1≤j1 �=j2≤l

p·j1p·j2 = 0.

This is possible only if at most one p·j is greater than 0, and this in turn is
possible only if d is constant. The second inequality can easily be shown by
maximizing G(d) using the method of Lagrange multipliers. The details are
omitted due to lack of space.

(P2) Relation between joint and conditional measures. In case of Shannon en-
tropy we have H(da) = H(d|a) + H(a) = H(a|d) + H(d). This property does
not hold for GCART . But it does hold for G

G(ad) = 1−
k∑

i=1

l∑
j=1

pij
2 = 1−

k∑
i=1

pi·
2

l∑
j=1

(
pij

pi·

)2

+
k∑

i=1

pi·
2 −

k∑
i=1

pi·
2 (1)

= G(a)−
k∑

i=1

pi·
2

⎛⎝1−
l∑

j=1

(
pij

pi·

)2
⎞⎠ = G(d|a) +G(a). (2)

Of course G(ad) = G(a|d) +G(d) is also true.

(P3) Symmetry of information gain. Define the information gain IG(d, a) for G
as

IG(d, a) = G(d)−G(d|a).
This is an analogue of Shannon entropy gain IH [9] or Gini gain IGCART [3].
We have (using (P2)) IG(d, a) = G(d) − G(d|a) = G(d) + G(a) − G(ad) =
G(a) − G(a|d) = IG(a, d), that is IG(a, d) is symmetric. The same property
holds for entropy gain but not for IGCART (d, a) = GCART (d) −GCART (d|a).

Also note that the Shannon entropy gain is equal to Shannon mutual infor-
mation between a and d, defined as IH(a, d) = H(a)+H(d)−H(ad). Analogous
property holds for G but not for GCART .

(P4) Inequality between unconditional and conditional measures. The inequality
G(d) ≥ GCART (d|a) ≥ G(d|a) always holds. Moreover, the second inequality is
strict unless a or d are constant.

Proof. Assume all pi· > 0, and a and d not constant. Obviously all pi· < 1 or a
would have been constant. Define f(x) = x(1 − x). We have

G(d) = 1−
l∑

j=1

p·j
2 =

l∑
j=1

p·j −
l∑

j=1

p·j
2 =

l∑
j=1

p·j (1− p·j)
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=
l∑

j=1

f (p·j) =
l∑

j=1

f

(
k∑

i=1

pij

)
=

l∑
j=1

f

(
k∑

i=1

pi·
pij

pi·

)

≥
l∑

j=1

k∑
i=1

pi·f

(
pij

pi·

)
=

k∑
i=1

pi·

l∑
j=1

f

(
pij

pi·

)
=

k∑
i=1

pi·G(d|a = i)

= GCART (d|a) ≥
k∑

i=1

pi·
2G(d|a = i) = G(d|a).

The first inequality follows from Jensen’s inequality. Let us now consider the
second inequality. Suppose that for some i, G(d|a = i) > 0, then p2

i·G(d|a = i) <
pi·G(d|a = i) since 0 < pi· < 1, and the strict inequality holds. If, on the other
hand, for all i, G(d|a = i) = 0 then G(d|a) = 0 and the inequality is strict since
for a non-constant d, G(d) > 0.

(P5) Independent variables. It can be seen that G, contrary to GCART , shares
many properties of Shannon entropy. Interestingly, there is an important prop-
erty which G does not have.

Suppose that d and a are statistically independent, that is pij = pi· ·p·j . In this
case H(d|a) = H(d), GCART (d|a) = GCART (d) but, as Property (P4) states,
G(d) > G(d|a) if a or d are not constant. Indeed, after elementary algebraic
transformations we get

G(d|a) =
k∑

i=1

pi·
2

⎛⎝1−
l∑

j=1

(
pij

pi·

)2
⎞⎠

=
k∑

i=1

pi·
2

⎛⎝1−
l∑

j=1

p·j
2

⎞⎠ = G(d)(1 −G(a)),

which is different from G(d) unless either a or d are constant. As a consequence
IG(d, a) = G(d)G(a) > 0. Also, it can be easily seen that

G(ad) = G(d) +G(a)−G(a)G(d)

and is not in general equal to G(d) + G(a) for independent variables.
Notice further that both IH(d, a) and IGCART (d, a) are minimal for indepen-

dent a and d. This is not the case for IG(d, a). Consider for example attributes
a1, a2, d with two values each. Suppose that a1 and d are statistically indepen-
dent and both follow probability distribution (1

2 ,
1
2 ). Suppose now that the joint

distribution of a2 and d is(
a2 = 1, d = 1 a2 = 1, d = 2 a2 = 2, d = 1 a2 = 2, d = 2

1
8 0 3

8
4
8

)
.

Clearly a2 and d are not independent (e.g. a2 = 1 implies d = 1) but

IG(d, a2) = G(d)−G(d|a2) = 1
2 −

( 7
8

)2 (1−
( 3

7

)2 − ( 4
7

)2) = 1
8 < 1

4 = IG(d, a1).



Comparison of Information Theoretical Measures for Reduct Finding 523

On the other hand 0 = IH(d, a1) < IH(d, a2) ≈ 0.138, and 0 = IGCART (d, a1) <
IGCART (d, a2) ≈ 0.0714.

This fact has important implications for attribute selection. Entropy and
GCART treat independent attributes as having zero predictive value. They will
never be added to a reduct when attributes not independent from d are present.
On the other hand, there are cases when G, (and thus many algorithms based
on discernibility matrices [1,2,12]) favor statistically independent attributes.

If the dataset is probabilistic, and we want the reduct to generalize to previ-
ously unseen data, adding independent attributes is clearly undesirable (except
for rare special cases like the XOR function). For such cases we should use Shan-
non entropy or GCART and not measures based on discernibility matrix.

If the dataset describes a deterministic function, i.e. generalization is not a
factor, measures based on discernibility matrix should be used since (as we shall
see in the next section) they tend to give shorter reducts.

2.2 Conditioning on More Attributes

In reality, when building reducts we are faced with a situation when some at-
tributes are already in the reduct and we are adding another attribute to the
ones already present. Let R be the set of attributes already in the reduct and a
the new attribute to be added. Attributes are then added based on

IG(d, a|R) = G(d|R)−G(d|aR). (3)

Of course G can be replaced by Shannon entropy of GCART .
It can be seen that properties (P1) − (P4) all hold after conditioning on R.

Due to lack of space we show this only for (P2) but the proofs for (P1), (P3),
(P4) are similar.

We want to show that G(da|R) = G(d|aR) + G(a|R). For every r ∈ DR

we have G(da|R = r) = G(d|a,R = r) + G(a|R = r). After multiplying by
Pr(R = r)2 and summing over r ∈ DR we get G(da|R) = G(d|a,R) +G(a|R).

The important part of (P5) can be generalized as IG(d, a|R) > 0 if a and d are
independent conditioned on R, i.e. for all r ∈ DR, Pr(ad|R = r) = Pr(a|R =
r) · Pr(d|R = r). For entropy and GCART the gain would be 0 in this case.

3 Experimental Evaluation

We now present an evaluation of the algorithm on synthetic and real data.
We created a dataset with 50 mutually independent attributes and 4000

records. The attributes have randomly selected domain sizes of 2 or 3 and come
from randomly selected probability distributions. We added a decision which was
a function of 8 of the attributes. The function used was d =

∑18
i=11 ai

2(mod 5).
To model noise we randomly set the value of the decision in 25% of cases. The
dataset is constructed in such a way that there is a very strong dependency
between d and a11, . . . , a18 jointly, and a weak, but detectable, dependency of d
with each of them separately.
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Fig. 1. Relation between reduct length and validation error for various attribute selec-

tion criteria, for artificial data (a), e-mail data (b), UCI letter-recognition data (c)

and UCI chess endgame KRvsKP data (d)

We split the dataset into a training and validation datasets with 2000 records
each. To use a reduct for prediction we construct a set of rules from it. For each
set of values of attributes present in the reduct we construct a rule predicting the
majority class for this case (based on the training set). For values of attributes
not present in the training set we pick the decision at random according to the
distribution of d in the training set. More advanced rule construction methods
can also be used, see e.g. [11,5,4], but the simple method described above is
sufficient for illustration purposes.

We then created reducts on the training set by adding attributes to the reduct
one by one based on IG, IGCART , IH and Equation 3 computed on the training
set. Attributes were added until a reduct was found on the training set. After
each attribute was added we computed the reducts accuracy on the validation
set. This way we get a sequence of errors on the validation set after adding each
new attribute to the reduct based on the IG, IGCART , IH measures computed
on the training set. Figure 1a shows how the error on the validation set changes
after adding each attribute.
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It can be seen that entropy and GCART both perform quite well and quickly
identify the correct attributes and their validation error decreases. Only after the
correct attributes were picked, independent attributes are added to the reduct
and the validation error begins to grow. On the other hand, G keeps picking
wrong attributes right from the start and its error on the validation set does not
decrease as the reduct grows. However G finds a reduct shorter by 2 attributes,
so if generalization to future data is not an issue it gives better results.

Figure 1b shows results on a real dataset of e-mail messages. The set contains
data about 1600 e-mails. There are attributes for 536 most frequently occurring
words. The value of an attribute is 1 if a given word is present in the message and
0 otherwise. The set has been divided into training and validation sets of equal
sizes. There are two decisions possible for each message: spam or not spam. The
first 5 attributes selected by Shannon entropy and GCART are identical, which
shows that those measures are similar. The validation set error for entropy and
GCART remained lower than that of G throughout the learning process, which
proves that entropy and GCART have better generalization properties.

All measures pick the same first attribute. However it can be seen that Shan-
non entropy and GCART pick a correct second attribute, while G picks an at-
tribute which is independent from d, and does not reduce the validation error.
Although entropy and GCART were the first to pick an attribute visibly decreas-
ing validation accuracy, it happened only in step 5 when the data was already
split into relatively small classes by the already included attributes. It can be
seen that a highly effective spam filtering system can be built using only 6 or 8
keywords found using IGCART or IH respectively.

Similar results can be seen for two of standard UCI benchmark datasets, see
Figure 1c,d. Of course we cannot guarantee that the properties will hold for every
dataset. In some cases IG can give better predictions and IH shorter reducts,
however our experiments confirm that the trends described above are usually
true.

WhyG produces shorter reducts on the training set. We will now give some hints
on why the G measure often picks a shorter reduct on the training set. Assume
the decision d takes values in {0, 1}. Consider a number of attributes a1, a2, . . .
statistically independent from the decision d and between each other. Suppose
also the attributes are all binary with distributions (1

2 ,
1
2 ). The attributes partition

the training set into equivalence classes of exponentially decreasing sizes. That
decrease will cause all decision values to be predicted perfectly on the training
set by a reduct whose size is logarithmic in the size of the data. Of course such
a reduct has no prediction power on unseen data. Suppose also that there is a
number of attributes b1, b2, . . . such that if any of them is 1 the decision is also
1, but the probability that each bi = 1 is very small, e.g. there is only one such
example in the table. d is dependent on each bi and a predictive reduct can be
built from them. This reduct will however be much longer than that built based
in independent attributes. We have

G(d|ai) =
(

1
2

)2

G(d|ai = 0) +
(

1
2

)2

G(d|ai = 1) =
1
2
G(d),
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Table 1. Example table for which IG gives short and IH very long reducts (case n = 3)

no. a1 a2 a3 b1 b2 b3 b4 d = ai(mod2)

1 0 0 0 0 0 0 0 0

2 0 0 1 1 0 0 0 1

3 0 1 0 0 1 0 0 1

4 0 1 1 0 0 0 0 0

5 1 0 0 0 0 1 0 1

6 1 0 1 0 0 0 0 0

7 1 1 0 0 0 0 0 0

8 1 1 1 0 0 0 1 1

on the other hand

G(d|bi)=Pr(bi = 0)2G(d|bi = 0)+Pr(bi = 1)2G(d|bi = 1)≈ 1·G(d)+0·0 = G(d),

so statistically independent attribute ai would be picked leading to a shorter
reduct.

In other words, there are two aspects which can be considered when picking
attributes for the reduct: predicting the decision and quickly partitioning the
sample space into small blocks. Entropy only considers the first aspect and com-
pletely ignores the second. The G measure on the other hand considers both
those aspects.

We will now show an extreme example when IG picks a reduct which is loga-
rithmic in the size of the table and IH and IGCART pick a reduct with size linear
in the size of the table. Let the table have 2n records, n attributes a1, . . . , an

taking all possible different binary vectors of length n as values. The decision
d is the exclusive-OR of all ai’s. This way the ai’s are statistically independent
from each other and from d. Let us also add 2n−1 attributes bi each of which
has value 1 in only one record such that for every record with d = 1 there is a
distinct bi having the value of 1 in this record.

Table 1 shows the situation for n = 3. In the example IGCART picks the same
attributes as IH so it’s omitted. In the first step we have IG(d, ai) = 0.25 >
0.125 = IG(d, bi) and IH(d, bi) = 0.138 > 0 = IH(d, ai). So IG picks one of ai’s
and IH picks one of bi’s. In the second step IG(d, aj �=i|ai) = 0.125 > 0.0625 =
IG(d, bj |ai) and IH(d, bj �=i|bi) = 0.173 > 0.018 = IH(d, aj |bi). The last attribute
picked by each method can be either an ai or a bi but the length of the reducts
will be as described above.

Intuitively we expect that IG will build a logarithmic (in the number of ob-
jects) length reduct using attributes ai and IH and IGCART a reduct of length
2n−1 made from the bi’s. Unfortunately after several attributes have been added
to the reduct, the exact behavior becomes difficult to analyze but experiments
have shown that for n up to 10, IG always found the shortest possible reduct
(containing only ai’s), while IH produced super-reducts containing all bi’s and
some ai’s.
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4 Conclusions

An analysis of the properties of attribute selection criteria for building rough
set reducts based on discernibility matrix has been presented. It has been shown
that this criterion is in fact a modified version of the well known Gini index.

A comparison of the criterion with standard Gini index and Shannon entropy
has been presented. It has been shown theoretically and experimentally that
entropy and traditional Gini index are better for discovering probabilistic rela-
tionships, while the criterion based on the discernibility of pairs of objects works
better for deterministic cases. In other words the criterion G learns well a spe-
cific dataset while Entropy and classical Gini index have better generalization
properties.
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Abstract. Intuitionistic fuzzy sets, originally introduced by Atanassov,
allow for representation both degrees of membership and degrees of non–
membership of an element to a set. In this paper we present a generali-
sation of Pawlak’s rough approximation operations taking Atanassov’s
structures as a basis. A special class of residuated lattices is taken as
a basic algebraic structure. In the signature of these algebras we have
abstract counterparts of two main classes of fuzzy implications. We show
that basing on these lattices we can express degrees of weak and strong
certainties and possibilities of membership and non–membership of an
element to a set.

Keywords: Rough sets, Fuzzy sets, IF sets, Residuated lattices, Fuzzy
logical connectives.

1 Introduction

In many applications the available information is in general both incomplete
and imprecise. Rough set theory ([13],[14]) provides tools for representing and
processing incomplete information, while fuzzy set theory ([23]) offers a wide
variety of techniques for analysing imprecise data. During recent decade many
researchers combined techniques developed within both theories and proposed
hybrid fuzzy–rough structures for analysing incomplete and imprecise informa-
tion ([12],[15],[16],[17],[21]).

In fuzzy set theory the central notion is the degree of membership of an ele-
ment to a set and a degree of non–membership is technically calculated using
a suitable fuzzy negation. Since fuzzy negations are non–increasing functions,
higher degrees of membership make degrees of non–membership lower. In 1986
Atanassov ([1],[2]) introduced intuitionistic fuzzy sets, which allow us for repre-
sentation degrees of both membership and non–membership of an element x (of
the domain in discourse) to the set F by two fuzzy sets F1 and F2, with the addi-
tional assumption that for each x, F1(x)+F2(x) ≤ 1. The value 1−F1(x)−F2(x),
called a hesitation degree, represents lack of information about belongingness of
x to F . Consequently, there is no strict monotonicity requirement between both
functions, which admits more flexibility in representation.
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In this paper we continue our investigations on fuzzy generalisations of rough
sets and present rough approximation operations based on Atanassov’s struc-
tures. Due to the terminological problems with the term “intuitionistic fuzzy
sets” recently widely discussed in the literature ([9]), these structures will be
referred to as IF sets. In contrast to many existing approaches ([3],[5],[6]), where
the unit interval [0, 1] and fuzzy logical connectives are used, some class of resi-
duated lattices ([8]) will be taken as a basic algebraic structure. Our approach
is motivated by the following reasons. Firstly, rough approximations of sets are
based on similarities between objects which, in general, involves incomparability
(e.g. a baby is similar to his mother and to his father, but it is often hard to
say to which of his parents he is more/less similar). To model such situations,
some lattice structures seems to be more adequate. Secondly, taking a general
algebraic structure we show that lattice–based IF sets can be viewed as specific
L–fuzzy sets ([10]). Finally, in the signature of our lattices we have counter-
parts of main fuzzy logical connectives, in particular two main classes of fuzzy
implications. We show that, depending on fuzzy implications determining lower
rough approximations, we can express degrees of weak and strong certainties
and possibilities of membership (resp. non–membership) of an element to a set.

2 Algebraic Foundations

A monoid is a structure (M,⊗, ε) such that M is a non–empty set, ⊗ is an
associative operation in M (i.e. a⊗ (b⊗ c) = (a⊗ b)⊗ c) for all a, b, c∈M), and
ε∈M is a distinguished element satisfying a ⊗ ε = ε ⊗ a = a for every a∈M .
A monoid is called commutative iff ⊗ is commutative, i.e. a ⊗ b = b ⊗ a for all
a, b∈M .

Typical examples of commutative monoid operations are triangular norms and
triangular conorms ([20]). Recall that a triangular norm (t–norm, for short) is a
mapping ⊗ : [0, 1]× [0, 1]→ [0, 1], associative and commutative, non–decreasing
in both arguments, and satisfying the border condition a ⊗ 1 = a for every
a∈ [0, 1]. Three most popular triangular norms are:

. the Zadeh’s t–norm a⊗Z b = min(a, b) for all a, b∈ [0, 1],

. the algebraic product a⊗P b = a · b for all a, b∈ [0, 1], and

. the �Lukasiewicz t–norm a⊗L b = max(0, a+ b− 1) for all a, b ∈ [0, 1].

A triangular conorm (t–conorm) is a mapping ⊕ : [0, 1] × [0, 1] → [0, 1], as-
sociative and commutative, non–decreasing in both arguments, and satisfying
0⊕ a = a for every a∈ [0, 1]. Three well–known triangular conorms are:

. the Zadeh’s t–conorm a⊕Z b = max(a, b) for all a, b∈ [0, 1],

. the bounded sum a⊕P b = a+ b− a · b for all a, b∈ [0, 1], and

. the �Lukasiewicz t–conorm a⊕L b = min(1, a+ b) for all a, b∈ [0, 1].

A t–norm (resp. t–conorm) is called left–continuous (resp. right–continuous) iff
it has left–continuous (resp. right–continuous) partial mappings.
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Let (L,≤) be a poset and let ◦ : L × L → L be a commutative operation
in L. By the residuum → of ◦ and the dual residuum ← of ◦ we mean binary
operations in L satisfying the following conditions for all a, b, c∈L,

a ◦ b ≤ c ⇐⇒ a ≤ b→ c

a ◦ b ≥ c ⇐⇒ a ≥ b ← c.

It can be easily proved that if the residuum of ◦ and the dual residuum of ◦
exist, then

a→ b = sup{c∈L : c ◦ a ≤ b}
a ← b = inf{c∈L : c ◦ a ≥ b}.

It is well–known that a t–norm (resp. t–conorm) has its residuum (resp. dual
residuum) iff it is left–continuous (resp. right–continuous). The residua of left–
continuous triangular norms are called residual implications ([11]). Three most
popular residual implications, determined respectively by tZ , tP , and tL, are
given by: for all a, b∈ [0, 1],
. the Gödel implication a→Z b = 1 iff a ≤ b and a→Z b = b otherwise,
. the Gaines implication a→P b = 1 iff a ≤ b, and a→P b = b

a otherwise,
. the �Lukasiewicz implication a→L b = min(1, 1− a+ b).

The dual residua of the three most popular triangular conorms, ⊕Z , ⊕P , and
⊕L, are respectively given by: for all a, b∈ [0, 1],
. a ←Z b = 0 iff b ≤ a and a ←Z b = b otherwise,
. a ←P b = 0 iff b ≤ a and a ←P b = b−a

1−a otherwise
. a ←L b = max(0, b− a).

Let a poset (L,≤) be given. A unary operation ∼ : L → L is called antitone iff
for all a, b∈L, a ≤ b implies ∼b ≤ ∼a; it is said to be involutive iff ∼∼a = a for
every a∈L.

Definition 1. [16] By an extended residuated lattice (ER–lattice, for short)
we mean a system (L,∧,∨,⊗,→,∼, 0, 1) such that

(i) (L,∧,∨, 0, 1) is a bounded lattice with the greatest element 1 and the least
element 0,

(ii) (L,⊗, 1) is a commutative monoid,
(iii) → is the residuum of ⊗, and
(iv) ∼ is an antitone involution.

The operation ⊗ of an ER–lattice is called its product. ��

An ER–lattice is complete iff the underlying lattice (L,∧,∨, 0, 1) is complete.
Given an ER–lattice (L,∧,∨,⊗,→,∼, 0, 1), we define the following additional

operations for all a, b∈L,

a⊕ b = ∼(∼a⊗∼b),
a⇒ b = ∼a⊕ b,

a ← b = inf{c∈L : a⊕ c ≥ b}.
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The operations ⊗ and ⊕ of an ER–lattice are the algebraic counterparts of a
t–norm and a t–conorm, respectively. The residuum → of ⊗ corresponds to a
residual implication based on a t–norm ⊗, ⇒ is a counterpart of a fuzzy S–
implication1 ([11]), and ∼ corresponds to an involutive fuzzy negation. In order
to find the intuitive meaning of the dual residuum ← of ⊕, note first that

a ← b = ∼(∼a→ ∼b).

Assume that ∼ and → are respectively the classical negation and the classical
implication. Since ∼(∼a → ∼b)=∼(b → a)= b ∧ ∼a, a ← b is in fact a fuzzy
generalisation of the classical conjunction ∼a ∧ b.

Main properties of ER–lattices can be found in [16] and [18].

Example 1. Let ⊗ be a left–continuous t–norm, → be the residual implication
determined by ⊗, and let ∼ be the standard fuzzy negation ∼a = 1−a for every
a∈ [0, 1]. The algebra L= ([0, 1],min,max,⊗,→,∼, 0, 1) is an ER–lattice. ��

Now we present a specific example of ER–lattice. Let (L,∧,∨,⊗,→,∼, 0, 1) be
an ER–lattice and let the set L	 be given by

L	 = {(a1, a2)∈L× L : a1 ≤ ∼a2}.
Define the ordering relation ≤	 in L	 as: for all a, b∈L	, a=(a1, a2), b=(b1, b2),

a ≤	 b ⇐⇒ a1 ≤ b1 & b2 ≤ a2.

Also, define the following binary operations in L	 as: for all a, b∈L	, a = (a1, a2)
and b = (b1, b2),

a ∧	 b = (a1 ∧ b1, a2 ∨ b2) (1)
a ∨	 b = (a1 ∨ b1, a2 ∧ b2) (2)
a⊗	 b = (a1 ⊗ b1, a2 ⊕ b2) (3)
a⊕	 b = (a1 ⊕ b1, a2 ⊗ b2) (4)
a→	 b = sup{c∈L	 : c⊗	 a ≤	 b} (5)
a⇒	 b = (a2 ⊕ b1, a1 ⊗ b2) (6)

and a unary operation in L	 by:

∼	 (a1, a2)= (a2, a1). (7)

Moreover, two constants 1	 and 0	 are defined by

0	 = (0, 1) (8)
1	 = (1, 0). (9)

In [7] it was shown that the structure (L	,∧	,∨	, 0	, 1	) with the operations
(1), (2) and the constants (8), (9), is a bounded lattice.
1 Recall that an S–implication based on a t–conorm ⊕ and a fuzzy negation ¬ is a

mapping a ⇒ b = ¬a ⊕ b for all a, b ∈ [0, 1].
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We also have:

Proposition 1. The residuum →	 of ⊗	 is given by: for all (a1, a2), (b1, b2)
∈L	: (a1, a2) →	 (b1, b2) = ((a1→b1)∧(∼a2→∼b2) , a2←b2). ��

Moreover,

Theorem 1. Let (L,∧,∨,⊗,→,∼, 0, 1) be an ER–lattice. Then

(i) (L	,⊗	, 1	) and (L	,⊕	, 0	) are monoids
(ii) (L	,∧	,∨	,⊗	,→	,∼	, 0	, 1	) is the ER–lattice. ��

Let (L,∧,∨,⊗L,→L,∼, 0, 1) be an ER–lattice, where ⊗L and →L are respec-
tively the �Lukasiewicz t–norm and the �Lukasiewicz implication, and ∼ is the
standard fuzzy negation. Using the definitions (3), (4), (6), and Proposition 1,
we get the following �Lukasiewicz L	–logical connectives, also referred to as the
�Lukasiewicz IF logical connectives, presented in Table 1 below.

Table 1. �Lukasiewicz IF logical connectives

(a1, a2) ⊗�
L (b1, b2) (max(0, a1 + b1−1), min(1, a2 + b2))

(a1, a2) ⊕�
L (b1, b2) (min(0, a1 + b1−1), max(1, a2 + b2))

(a1, a2) →�
L (b1, b2) (min(1, 1−a1 + b1, 1−b2 + a2), max(0, b2−a2))

(a1, a2) ⇒�
L (b1, b2) (min(1, a2 + b1), max(0, a1 + b2−1))

3 Rough Sets, Fuzzy Sets, IF Sets

Rough sets. Let X be a non–empty domain and let R ⊆ X×X be a relation on
X . Traditionally, R represents indiscernibilities (or similarities) among objects
in X and is assumed to be (at least) reflexive. A system Σ = (X,R) is called
an approximation space. Given Σ = (X,R), two operations Σ,Σ : 2X → 2X are
defined as: for every A ⊆ X ,

Σ(A) = {x∈X : (∀y ∈X) (x, y)∈R =⇒ y ∈A} (10)
Σ(A) = {x∈X : (∃y ∈X) (x, y)∈R & y∈A}. (11)

Σ(A) is called a lower rough approximation of A in Σ, while Σ(A) is an upper
rough approximation of A in Σ. It can be easily proved that reflexivity of R
gives for every A ⊆ X ,

Σ(A) ⊆ A ⊆ Σ(A).

Therefore, the operations (10) and (11) are called approximation operations.
One can easily note that these operations correspond respectively to classical
modal operations of certainty and possibility ([4]). Accordingly, x∈Σ(A) is read
as “x certainly belongs to A”, and x∈Σ(A) is read as “x possibly belongs to A”.
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A rough set is a pair (L,U) of subsets of X such that L = Σ(A) and U = Σ(A)
for some A ⊆ X .

Fuzzy sets. Let (L,∧,∨,⊗,→,∼, 0, 1) be an ER–lattice and let X be a non–
empty universe. An L–fuzzy set in X is a mapping F : X → L. For any x∈X ,
F (x) is the degree of membership of x to F . Two specific L–fuzzy sets in X are
defined as: ∅(x)= 0 and X(x)= 1, x∈X . An L–fuzzy complement of an L–fuzzy
set A wrt ∼ is defined as: (∼A)(x)=∼A(x), x∈X . For two L–fuzzy sets A and
B, we write A ⊆L B iff A(x) ≤ B(x) for any x∈X . An L–fuzzy relation on X
is an L–fuzzy set in X×X . An L–fuzzy relation R on X is called
• reflexive iff R(x, x)= 1 for every x∈X ,
• irreflexive iff R(x, x)= 0 for every x∈X ,
• symmetric iff R(x, y)=R(y, x) for all x, y ∈X .

IF sets. Let (L	,∧	,∨	,⊗	,→	,∼	, 0	, 1	) be an ER–lattice defined in Section 2.
An L–IF set in X is an L	–fuzzy set in X . For any x∈X , F (x)= (F1(x), F2(x))
is interpreted as: F1(x) is the degree of membership of x to F and F2(x) is the
degree of non–membership of x to F . Note that ∼F2(x) (resp. ∼F1(x)) can be
viewed as the degree, to which x potentially belongs (resp. does not belong) to
F . For two L–IF sets in X , A= (A1, A2) and B=(B1, B2), A ⊆L� B means that
A1 ⊆L B1 and B2 ⊆L A2. The family of all L–IF sets in X will be denoted by
IFL�(X). An L–IF relation on X is an L	–fuzzy relation on X . For all x, y ∈X ,
R(x, y)= (R1(x, y), R2(x, y)) is interpreted as: R1(x, y) is the degree to which x
is R–related with y, while R2(x, y) is the degree to which x is not R–related with
y. Note that an L–IF relation R=(R1, R2) is
• reflexive iff R1 is reflexive and R2 is irreflexive,
• symmetric iff both R1 and R2 are symmetric.

4 IF Rough Approximation Operations

Let (L	,∧	,∨	,⊗	,→	,∼	, 0	, 1	) be a complete ER–lattice as defined in Section
2, let X �= ∅ be a set of objects, and let R be an L–IF relation on X representing
(dis)similarities between objects: for all x, y ∈X , R(x, y)= (R1(x, y), R2(x, y)),
R1(x, y) is the degree to which x is R–similar to y, while R2(x, y) is the degree
to which x is R–dissimilar to y. A system Σ =(L	, X,R) is called an IF approxi-
mation space. Given Σ, define two mappings Σ�� , Σ⊗�

: IFL�(X)→ IFL�(X) by:
for every A= (A1, A2)∈ IFL�(X) and for every x∈X ,

Σ��(A)(x) = infy∈X(R(x, y)�	 A(y)) (12)

Σ⊗�

(A)(x) = supy∈X(R(x, y)⊗	 A(y)), (13)

where �	 stands for either →	 or ⇒	. Σ��(A) is called an IF–lower rough ap-
proximation of A, while Σ⊗�

(A) is an IF–upper rough approximation of A.
Depending on the arrow operation used in (12) we have two classes of IF–lower

rough approximation operations, Σ→� and Σ⇒� , respectively.
Some main properties of the operations (12)–(13) are given in the following

theorem.
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Theorem 2. Let (L	,∧	,∨	,⊗	,→	,∼	, 0	, 1	) be a complete ER–lattice and
let Σ=(L	, X,R) be an IF approximation space. Then

(i) Monotonicity:
for all A,B ∈ IFL�(X), A⊆L�B implies

Σ→�(A) ⊆L� Σ→�(B)
Σ⇒�(A) ⊆L� Σ⇒�(B)
Σ⊗�

(A) ⊆L� Σ⊗�

(B)

(ii) Duality:
for A∈ IFL�(X),

Σ⇒�(A) =∼	Σ⊗�

(∼	A)
Σ⊗�

(A) =∼	Σ⇒�(∼	A)

(iii) Approximation property:
for every A∈ IFL�(X),

R is reflexive iff Σ→�(A) ⊆L� A

iff Σ⇒�(A) ⊆L� A

iff A ⊆L� Σ⊗�

(A). ��

In the literature similarity relations are usually fuzzy equivalence relations (i.e.
reflexive, symmetric and ⊗–transitive, where ⊗ is a t–norm). However, many re-
searchers argue that transitivity and symmetry do not adequately characterize
the notion of similarity. It seems that reflexivity is the natural feature of this no-
tion, since any object x is totally similar to itself. By the approximation property
of Theorem 2, for any A= (A1, A2), if Σ��(A)= (L1,L2) and Σ⊗�

(A)= (U1,U2),
then

L1 ⊆L A1 ⊆L U1

U2 ⊆L A2 ⊆L L2.

Hence, IF–rough approximation operations allow us to approximate both degrees
of membership and non–membership of an object to a set: x certainly (resp.
possibly) belongs to A to the degree L1(x) (resp. U1(x)), and x certainly (resp.
possibly) does not belong to A to the degree U2(x) (resp. L2(x)).

4.1 Weak and Strong Modalities

We show now that, depending on the class of IF–lower rough approximations
determined respectively either by→	 or⇒	, we get interesting interpretations of
possibilities and certainties of membership and non–membership of an element
to a set.

Consider first the class of IF–lower approximation operations determined by
→	. For any L–IF set A=(A1, A2)∈ IFL�(X), put Σ→�(A)= (L1,L2). By Propo-
sition 1, for any x∈X ,

L1(x) = infy∈X(R1(x, y) → A1(y)) ∧ infy∈X(∼R2(x, y) → ∼A2(y))
L2(x) = supy∈X(R2(x, y) ← A2(y)).
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Intuitively, for x∈X , L1(x) is the degree, to which all objects similar to y
are in A and all objects potentially similar to y are potentially in A. Then
L1(x) might be viewed as the degree of weak certainty of membership of x to A.
Since R2(x, y) ← A2(y) is a generalisation of the classical conjunction A2(y) ∧
∼R2(x, y), L2(x) is then the degree, to which some object y ∈X potentially
similar to x does not belong to A. In other words, L2(x) is the degree of weak
possibility of non–membership of x to A.

Now, consider the second class of IF–lower approximation operations (deter-
mined by ⇒	) For any A=(A1, A2)∈ IFL�(X), put Σ⇒�(A) = (L′

1,L
′
2). By the

definition of ⇒	 we easily get for every x∈X ,

L′
1(x) = infy∈X(∼R2(x, y)⇒ A1(y))

L′
2(x) = supy∈X(R1(x, y)⊗A2(y)).

Intuitively, L′
1(x) is the degree, to which all objects potentially similar to y are

in A. We can say then that L′
1(x) reflects strong certainty of membership of x

to A. Similarly, L′
2(x) is the degree, to which some object similar to x does not

belong to A – here we have a strong possibility of non–membership of x to A.
Finally, let us consider IF–upper rough approximation operations. For any

A∈ IFL�(X), A=(A1, A2), put Σ⊗�

(A)= (U1,U2). Then for every x∈X ,

U1(x) = supy∈X(R1(x, y)⊗A1(y))
U2(x) = infy∈X(R2(x, y)⊕A2(y)).

Intuitively, U1(x) is the degree, to which some object similar to x belongs to
A. Then U1(x) represents the degree of strong possibility of membership of x to
A. Since R2(x, y) ⊕ A2(y)=∼R2(x, y) ⇒ A2(y), U2(x) is the degree, to which
all objects potentially similar to x are not in A. This reflects strong certainty of
non–membership of x to A.

It is worth noting that the duality property of Theorem 2 implies that strong
possibility and strong certainty are strictly dual. This fact seems intuitively
justified.

Example 2. Let X = {John, Bob, Al, Jim} be a set of patients and let rela-
tionships among these patients, determined by their symptoms, have a form of
similarities and dissimilarities. These relationships are represented by an IF re-
lation given in Table 2. According to a doctor decision, for each patient it was
determined to what extent his symptoms fit (resp. do not fit) to some disease d.
The doctor’s decision is represented by an IF set D given in Table 3.

Moreover, let L	 = ([0, 1]2,∧	,∨	,⊗	
L,→	

L,∼	, 0	, 1	) be an ER–lattice, where
∧	, ∨	, and ∼	 are respectively defined by (1), (2), and (7), and ⊗	

L and →	
L are

the �Lukasiewicz IF–connectives given in Table 1.
Consider the IF approximation space Σ =(L	, X,R). By simple calculations

we get Σ→�
L
(D), Σ⇒�

L
(D), and Σ⊗�

L(D) given in Table 3. In particular, Al’s
illness coincides with the disease d to the degree 0.3 and does not coincide with
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Table 2. IF relation R

R John Bob Al Jim

John (1,0) (0.3,0.2) (0.2,0.6) (0.8,0.0)

Bob (0.6,0.1) (1,0) (0.3,0.4) (0.9,0.1)

Al (0.1,0.0) (0.0,0.3) (1,0) (0.6,0.2)

Jim (0.7,0.3) (0.9,0.0) (0.7,0.1) (1,0)

Table 3. Decision D and its IF–rough approximations

X Σ→�
L
(D) Σ⇒�

L
(D) D Σ⊗�

L(D)

John (0.1, 0.8) (0.1, 0.8) (0.1, 0.8) (0.7, 0.1)

Bob (0.3, 0.7) (0.2, 0.4) (0.4, 0.0) (0.8, 0.0)

Al (0.2, 0.8) (0.1, 0.5) (0.3, 0.5) (0.5, 0.3)

Jim (0.4, 0.5) (0.4, 0.5) (0.9, 0.1) (0.9, 0.0)

d to the degree 0.5. Moreover, his illness certainly fits to d: in a weak sense to
the degree 0.2 and in the strong sense to the degree 0.1. Also, it certainly does
not fit to d (in the strong sense) to the degree 0.3. Finally, Al’s illness possibly
fits to d to the degree 0.5 (in the strong sense) and possibly does not fit to d: in
the weak sense to the degree 0.8 and in the strong sense to the degree 0.5.

5 Conclusions

In this paper we have presented rough approximation operations based on IF
sets. A specific class of residuated lattices has been taken as a basic algebraic
structure. In particular, it has been shown that IF sets and IF relations can
be viewed as specific L–fuzzy sets and L–fuzzy relations, respectively. We have
shown that this approach allows us for representing weak/strong certainties and
possibilities of membership and non–membership of elements to a set. Some main
properties of IF rough approximation operations have been given.
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Abstract. Formal concept analysis and rough set theory provide two
different methods for data analysis and knowledge processing. In this pa-
per, we discuss some basic relationships between the extensions of con-
cepts and the equivalence class in rough set theory. And by introducing
the term of anti-chain formal context, we study their relation between
the two theories more deeply. Finally, we study the relation between the
reduction of formal context in concept lattice and attribute reduction in
rough set theory.
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1 Introduction

Formal concept analysis [4] and rough sets theory [8] offer related and com-
plementary approaches for data analysis. They have very important meaning
in activating mathematical thinking for conceptual data analysis and knowledge
processing [1,4,8]. Formal concept analysis is a field of applied mathematics based
on the mathematization of concept and conceptual hierarchy. It was firstly intro-
duced by Wille [10] in 1982. Formal concept analysis, which also called concept
lattice, is based on the notion of a formal context, which is a binary relation
between a set of objects and a set of attributes. From the binary relation, one
can construct hierarchical structure of concept, each concept is the unification
of objects and attributes. It realizes the relationship of generalization and the
specialization among concepts through Hasse diagram. As a kind of very effec-
tive methods for data analysis, formal concept analysis has been wildly applied
to various fields, such as machine learning, information retrieval, software engi-
neering, and knowledge discovery.

The theory of rough set is a new mathematical tool to deal with inexact,
uncertain or vague knowledge. The basic concepts are that of an equivalence
relation on a set of objects called the universe. Through the lower and upper
approximation of subsets of discourse, it provides a mathematical method of
knowledge discovery, and has many important applications in various fields. For
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example, rough set theory has been applied to knowledge acquisition [8] and
lattice theory [2]. In these domains, some useful results have been obtained using
the principle of rough approximation.

Formal concept analysis and rough set theory use data as the central tool for
the development of decision aids. Many efforts have been made to compare and
combine the two theories [2,3,5-7, 9, 11-13]. For example, Duntsch and Gediga
presented various forms of set approximations via the unifying concept of modal-
style operators [2,3]. Saquer and Deogun studied approximations of a set of
objects, a set of properties, and a pair of a pair of a set of objects, based on
the system of formal concepts in the concept lattice [9]. Yao [12] presents a
comparative study of rough set theory and formal concept analysis, and gives
some concept correspondence relation. Wolff [11] studies the differences between
the ”partition oriented” rough set theory and the ”order oriented” formal concept
analysis. The fundamental connection of the two theories is that the knowledge
bases of rough set theory and scaled many-valued contexts of formal concept
analysis are shown to be nearly equivalent.

In this paper, we discuss some basic relationship between the extension of
a formal concept and equivalence classes in a special information system. By
introducing the concept of antichain formal context, we study their relation more
deeply. In the process of classification and forming concept, it always exists some
superfluous attributes, we then study the relationships between the reduction in
a formal context and in an information system.

2 Basic Concepts

2.1 Formal Context and Concept Lattice

Definition 2.1. A formal context is a triple (U,A, I), where U = {x1, x2, . . . , xn}
is a non-empty, finite set of objects called the universe, and A = {a1, a2, . . . , am}
is the set of attributes, I is binary relation between U and A, i.e., I ⊆ U ×A. In
order to express that an object x is in a relation I with an attribute a, we write
xIa or (x, a) ∈ I, I is called regular if it satisfies the following conditions:

(1)∀x ∈ U, ∃a1, a2 ∈ A, (x, a1) ∈ I, (x, a2) �∈ I ;
(2) ∀a ∈ A, ∃x1, x2 ∈ U, (x1, a) ∈ I, (x2, a) �∈ I.

In this paper, if (x, a) ∈ I, the intersection of the row labelled by x and the
column labelled by a contains 1; otherwise it contains 0.

Definition 2.2[4]. Let (U,A, I) be a formal context, for a set X ⊆ U of objects
and a set B of attributes, we define

X∗ = { a ∈ A | ∀x ∈ X, (x, a) ∈ I}

B∗ = { x ∈ U | ∀a ∈ B, (x, a) ∈ I}
X∗ is the set of common attributes of objects in X , B∗ is the set of ob-
jects possessing all the attributes in set B. For x ∈ U, a ∈ A, we denote
x∗ = {x}∗, a∗ = {a}∗.
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Definition 2.3[14]. A pair (X,B), X ⊆ U,B ⊆ A, is called a formal concept of
the context (U,A, I), if X∗ = B and B = X∗. We call X the extent and B the
intent of the concept (X,B). The set of all concepts in (U,A, I) is denoted by
L(U,A, I).

Theorem 2.1[4]. Let (U,A, I) be a formal context, X,X1, X2 ⊆ U,B,B1, B2 ⊆
A, then

(1)X1 ⊆ X2,=⇒ X∗
2 ⊆ X∗

1 ;
(2)B1 ⊆ B2,=⇒ B∗

2 ⊆ B∗
1 ;

(3)X ⊆ X∗∗, B ⊆ B∗∗;
(4)X∗ = X∗∗∗, B∗ = B∗∗∗;
(5)(X1 ∪X2)∗ = X∗

1 ∩X∗
2 , (B1 ∪B2)∗ = B∗

1 ∩B∗
2 .

Definition 2.4. Let (U,A, I) be a formal context, (X1, B1) and (X2, B2) be
concepts of the context, (X1, B1) is subconcept of (X2, B2), written (X1, B1) ≤
(X2, B2), or (X2, B2) is a superconcept of (X1, B1) if and only if X1 ⊆ X2(which
is equivalent to B2 ⊆ B1).

Theorem 2.2[4]. Let (U,A, I) be a formal context, then L(U,A, I) is a complete
lattice. Its infimum and supremum are given by:∧

i∈τ

(Xi, Bi) =
( ⋂

i∈τ

Xi,
( ⋃

i∈τ

Bi)∗∗),

∨
i∈τ

(Xi, Bi) =
(( ⋃

i∈τ

Xi)∗∗,
⋂
i∈τ

Bi).

Where τ is an index set and for every t ∈ τ , (Xt, Bt) is a formal concept.

Let L(U,A, I) be a concept lattice, for any Y ⊆ U , denote

Apr(Y ) = ex(
∨
{(X,B) ∈ L(U,A, I)| X ⊆ Y },

Apr(Y ) = ex(
∧
{(X,B) ∈ L(U,A, I)| Y ⊆ X}.

(Apr(Y ), (Apr(Y ))∗) and (Apr(Y ), (Apr(Y ))∗) are , respectively, referred to the
lower and upper approximation concept of Y Wrt L(U,A, I).

Definition 2.5. Let L(U,A1, I1) and L(U,A2, I2) be two concept lattices. If for
any (X,B) ∈ L(U,A2, I2), there exists (X ′, B′) ∈ L(U,A1, I1) such that X ′ = X ,
then L(U,A1, I1) is said finer than L(U,A2, I2), denoted by

L(U,A1, I1) ≤ L(U,A2, I2).

If in addition L(U,A2, I2) ≤ L(U,A1, I1), we say that the two concept lattices
are isomorphic, denoted by

L(U,A1, I1) ∼= L(U,A2, I2).
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Definition 2.6. Let (U,A, I) be a formal context, D ⊆ A. D is referred to
as a consistent set of (U,A, I) if L(U,D, I ∩ (U × D)) ∼= L(U,A, I). If D is a
consistent set and no proper subset of D is consistent, then D is referred to as
a reduct of (U,A, I).

2.2 Information Systems and Reduction

In rough set theory, an information system plays similar role as context in con-
cept lattice.

An information system is a triple (U,A, F ), where U = {x1, x2, . . . xn} is a
nonempty, the finite set of objects and A = {a1, a2, . . . am} is a nonempty, finite
set of attributes, F is a set of functions between U and A, i.e. F = {al : U →
Vl, al ∈ A}, Vl is the domain of al.

Every nonempty subset B ⊆ A determines an equivalence relation as follows:

RB = {(xi, xj) ∈ U × U : al(xi) = al(xj), ∀al ∈ B}.

Since RB is an equivalence relation on U , it partitions U into a family of disjoint
subsets U/RB called a quotient set of U , U/RB = {[xi]B : xi ∈ U}, where
[xi]B denote the equivalence class determined by xi with respect to B, i.e.,
[xi]B = {xj ∈ U : (xi, xj) ∈ RB}. Denote by σ(U/RB) the algebra generated
by U/RB, that is,

σ(U/RB) = {
⋃

x∈E

[x]B : E ⊆ U} ∪ {∅}.

Let X ⊆ U , B ⊆ A, denote

RB(X) = {x ∈ U : [x]B ⊆ X} =
⋃
{[x]B : [x]B ⊆ X};

RB(X) = {x ∈ U : [x]B ∩X �= ∅} =
⋃
{[x]B : [x]B ∩X �= ∅}.

RB(X) and RB(X) are referred to the lower and the upper approximation of X
Wrt σ(U/RB), respectively. The lower approximation RB(X) is the set of ob-
jects that belong to X with certainty, while the upper approximation RB(X) is
the set of objects that possibly belong to X .The pair(RB(X), RB(X)) is referred
to as the Pawlak rough set of X wrt. B.

Definition 2.7. Let (U,A, F ) be an information system, B ⊆ A. Then B is
referred to as a partition consistent set of (U,A, F ) if RB = RA. If B is a con-
sistent set and no proper subset of B is partition consistent, then B is referred
to as a partition reduct of (U,A, F ). Let {Bk, k � r} be the family of partition

reducts of (U,A, F ), if CA =
r⋂

k=1
Bk �= ∅, then we called CA a partition core of

(U,A, F ).

Actually, from the above definition we know that a formal context (U,A, I) is
a special information system in which Vl = {0, 1}, and the following relations
hold:
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(1)(x, a) ∈ I ⇐⇒ a(x) = 1;
(2)(xi, xj) ∈ RA ⇐⇒ x∗i = x∗j .

In the following, we discuss the relationships between the concept based on
a formal context and the equivalence class of information systems derived from
the context.

3 Relationships Between Concept Lattice and Rough Set

For the sake of simplicity, we denote Lu(U,A, I) = {X ; (X,B) ∈ L(U,A, I)}.

Theorem 3.1. Let (U,A, I) be a formal context. For any X ∈ Lu(U,A, I), we
have

X =
⋃

x∈X

[x]A ∈ σ(U/RA)

Proof. Clearly, ∅, U ∈ σ(U/RB).
For x ∈ X , since RA is reflexive, we have x ∈ [x]A, which implies that x ∈⋃

x∈X

[x]A. Therefore, X ⊆
⋃

x∈X

[x]A.

Conversely, since X ∈Lu(U,A, I),X = (
⋃

x∈X

x)∗∗ = (
⋂

x∈X

x∗)∗ = (
⋂

x∈X

[x]∗A)∗ =

(
⋃

x∈X

[x]A)∗∗ ⊇
⋃

x∈X

[x]A. Hence X =
⋃

x∈X

[x]A ∈ σ(U/RA).

Theorem 3.2. Let (U,A, I) be a formal context, B ⊆ A. Denoted by

f−1(B) = {x ∈ U, x∗ = B},
J = {f−1(B) �= ∅}.

Then J is a partition of U , and J = U/RA.

Proof. If B1 �= B2, then f−1(B1) ∩ f−1(B2) = ∅.
Clearly

⋃
B⊆A

f−1(B) ⊆ U .

If x ∈ U , then there exists B ⊆ A such that x∗ = B, i.e., x ∈ f−1(B).
Hence x ∈

⋃
B⊆A

f−1(B). Thus we obtain that U =
⋃

B⊆A

f−1(B). Therefore J is

a partition of U .
If x1, x2 ∈ f−1(B), then x∗1 = x∗2, i.e., (x1, x2) ∈ RA. Hence J = U/RA.

Theorem 3.3. Let (U,A, I) be a formal context, and (Xi, Bi)(i ∈ τ) be the
nonempty minimum element of L(U,A, I), then

(1)Xi ∈ U/RA,
(2)

⋂
i∈τ0

Xi = ∅ (τ0 ⊆ τ).

Proof. (1)In order to prove Xi ∈ U/RA, by Theorem 3.2, we have to prove
that Xi ∈ J , i.e.,Xi = f−1(Bi).
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If x ∈ f−1(Bi), then x∗ = Bi, so for any b ∈ B, we have (x, b) ∈ I, thus
x ∈ B∗

i = Xi. Consequently f−1(Bi) ⊆ X.
Conversely, if x ∈ Xi = B∗

i , then x∗∗ ⊆ B∗∗∗
i = B∗

i = Xi. It follows from the
conditions that x∗∗ = Xi, and so x∗ = Bi i.e., x ∈ f−1(Bi). Hence Xi ⊆ f−1(Bi).
Thus we obtain Xi = f−1(Bi) ∈ J .

(2)It follows directly from (1).

Theorem 3.4. Let (U,A, I) be a formal context. For any (X,B) ∈ L(U,A, I),
we denote

L(X,B) = {(X ′, B′), X ′ ⊆ X}
L0(X,B) = X −

⋃
{X ′, (X ′, B′) ∈ L(U,A, I)}

Then U/RB = {L0(X,B) �= ∅. (X,B) ∈ L(U,A, I)}.

Proof. Clearly X −
⋃
{X ′, (X ′, B′) ∈ L(U,A, I)} ⊆ U .

Firstly, we suppose (X1, B1), (X2, B2) ∈ L(U,A, I). If (X1 −
⋃
{X ′

1, (X
′
1, B

′
1) ∈

L(X1, B1)})
⋂

(X2 −
⋃
{X ′

2, (X
′
2, B

′
2) ∈ L(X1, B1)}) �= ∅, then there exists at

least one x ∈ U , such that x ∈ (X1 −
⋃
{X ′

1, (X ′
1, B

′
1) ∈ L(X1, B1)}) and x ∈

(X2−
⋃
{X ′

2, (X
′
2, B

′
2) ∈ L(X1, B1)}), hence x ∈ X1 ∩X2, x �∈

⋃
{X ′

1, (X
′
1, B

′
1) ∈

L(X1, B1)}, and x �∈
⋃
{X ′

2, (X
′
2, B

′
2) ∈ L(X1, B1)}. Since X1 ∩ X2 ⊆ Xi(i =

1, 2), which is a contradiction.
Secondly, for any x ∈ U . Since I is regular, there exists (X,B) ∈ L(U,A, I),

such that x ∈ X , i.e., x ∈ X−
⋃
{X ′, (X ′, B′) ∈ L(X,B)} or x ∈

⋃
{X ′, (X ′, B′)

∈ L(X,B)}. If x ∈ X ′−
⋃
{X ′, (X ′, B′) ∈ L(X,B)}, then conclusion is obvious.

If x ∈
⋃
{X ′, (X ′, B′) ∈ L(X,B)}, then there exists at least (X ′′, B′′) ∈ L(X,B)

such that x ∈ X ′′. It is similar to the above methods, then we can prove
that for any x ∈ U there exists at least one (X,B) ∈ L(X,B), such that
x ∈ X−

⋃
{X ′, (X ′, B′) ∈ L(X,B)}. Hence, {L0(X,B) �= ∅. (X,B) ∈ L(U,A, I)}

is a partition. Finally, since for any x1, x2 ∈ X −
⋃
{X ′, (X ′, B′) ∈ L(U,A, I)},

x1, x2 ∈ X and x1, x2 �∈
⋃
{X ′, (X ′, B′) ∈ L(U,A, I)}. Hence x∗1 = x∗2, i.e.,

(x1, x2) ∈ RA.

Example 3.1. A formal context (U,A, I) is given as Table 1, where U =
{x1, x2, . . . , xn} and A = {a1, a2, . . . , am}.

Table 1. A formal context

a b c d e
1 1 0 1 1 1
2 1 0 1 0 0
3 0 1 0 0 1
4 0 1 0 0 1
5 1 0 0 0 0
6 1 1 0 0 1
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For the formal context given by Table 1, the corresponding concept lattice is
given by Figure 1. For simplicity, a set is denoted by listing its elements. For
example, the set {1, 2, 5, 6} is denoted by 1256.

( ∅,U )

(1256, a) (1346, e)

(12,ac) (16, ae) (346, be)

(1, acde) (6, abe)

( A,∅ )

Fig. 1. The concept lattice of (U, A, I)

where
1∗ = {a, c, d, e}, 2∗ = {a, c}, 3∗ = 4∗ = {b, e}, 5∗ = {a}.

The set of all extensions of formal concepts of the context (U,A, I) is

Lu(U,A, I) = {U, 1256, 1346, 12, 16, 346, 1, 6, ∅}

Table 1 as an information system, it can be calculated that

U/RA = {C1, C2, C3, C4, C5}

where C1 = [1]A = {1}, C2 = [2]A = {2}, C3 = [3]A = [4]A = {3, 4}, C4 =
[5]A = {5}, C5 = [6]A = {6}. For any equivalence class, it may not necessarily
be the extension of a formal concept, but there are strong connections between
them.
If X = {1, 3, 4, 6} ∈ Lu(U,A, I), then

X = [1]A ∪ [3]A ∪ [6]A.

We can easily notice (1, acde) and (6, abe) are two nonempty minimum elements
of L(U,A, I), their extensions is two equivalence classes of the information sys-
tem, and intersection of extensions is emptyset.

Definition 3.1. Let (U,A, I) be a formal context, we denote

R<
A = {(xi, xj), x∗i ⊂ x∗j}.

If R<
A = ∅, then the formal context is called an antichain formal context.

Example 3.2. Table 2 gives an antichain formal context and Figure 2 gives
the corresponding concept lattice.
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Table 2. An antichain formal context (U, A, I)

a b c d e
1 1 1 0 0 1
2 1 1 1 0 0
3 0 0 0 1 1
4 1 0 1 0 1

From Table 2, we have 1∗ = {a, b, e}, 2∗ = {a, b, c}, 3∗ = {d}, 4∗ = {a, c, e}.
Obviously, R<

A = ∅, which means that (U,A, I) is an antichain formal context.

(U ),

(124, a) (134, e)

(24, ac) (12, ab)

(2, abc) (4, ace) (1, abe) (3, de)

( )A,

Fig. 2. The concept lattice of (U, A, I)

The set of all extensions of formal concepts of the context (U,A, I) is

Lu(U,A, I) = {U, 124, 134, 24, 12, 1, 2, 3, 4, ∅}

Table 2 as an information system, it can be calculated that

U/RA = {C1, C2, C3, C4, }

where C1 = [1]A = {1}, C2 = [2]A = {2}, C3 = [3]A = {3, }, C4 = [4]A = {4}.
Obviously, for any equivalence class, it must be the extension of a formal

concept.

Theorem 3.4. Let (U,A, I) be a formal context. If (xi, xj) ∈ R<
A , then

[xi]A �∈ Lu(U,A.I).

Proof. Since (xi, xj) ∈ R<
A, we have x∗i ⊂ x∗j . Hence x∗i = x∗i ∩ x∗j = (xi ∪ xj)∗.

Simultaneously, since (x∗∗i , x∗i ) ∈ L(U,A, I), xj ∈ x∗∗i , we have xj �∈ [xi]A.
Therefore [xi]A �∈ Lu(U,A.I).

Theorem 3.5. Let (U,A, I) be a formal context, we denote

U0 = {xj ; not exists xk, (xj , xk) ∈ R<
A}.

For any xj ∈ U0, then [xj ]A ∈ Lu(U,A, I).
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Proof. Since x∗∗j = {x;x∗ ⊇ x∗j} = {x;x∗ = x∗j} = [xj ]A, we have [xj ]A ∈
Lu(U,A, I).

Theorem 3.6. Let (U,A, I) be a formal context. Then R<
A = ∅ ⇐⇒ Every

equivalence class is a formal concept.

Proof. If R<
A = ∅. Then the conclusion follows from Theorem 3.5.

If every equivalence class is a concept, then [xi]A = [xi]∗∗A . Since [xi]∗∗A =
{xj ;x∗j ⊇ x∗i }, there exists no x such that x∗ ⊃ x∗i . Therefore R<

A = ∅.

Theorem 3.7. Let (U,A, I) be a formal context. If D ⊆ A is a consistent set
of the formal context (U,A, I), then it is a partition consistent set of (U,A, I).

Proof. If D is not a partition consistent set of (U,A, I), then RA �⊆ RD, there
exists (xi, xj) ∈ RD such that (xi, xj) �∈ RA. Hence for the formal context
(U,D, I ∩ (U ×D)), x∗i = x∗j , and for the formal context (U,A, I), x∗i �= x∗j . Thus
D is not partition consistent set. This is a contradiction. Hence D is a partition
consistent set of (U,A, I).

Corollary 3.7. Let (U,A, I) be a formal context, and CA a partition core of
(U,A, I). If D ⊆ A is a reduct of the formal context (U,A, I), then CA ⊆ D.

Example 3.3. From Table 1, by using the method in [15] , We conclude that
D = {abce} is a reduct of the formal context. It can also be calculated by the
discernibility matrix method [14] that the information system has two reducts
B1 = {ace}, and B2 = {abcd}. therefore, the core is CA = {ac}. It follows that
D is a partition consistent set of (U,A, I), and CA ⊆ D, but B1, B2 aren’t the
reducts of the formal context.

4 Conclusion

Formal concept analysis and rough set theory provide two different methods
for data analysis. By studying the relationship between these two theories and
combining them, we may provide more insights into data analysis. Because they
contact with each other, it is very significant to compare these two theories. In
this paper, based on a data table, we discuss the connections between extensions
of the formal concept and equivalent class of rough set, and also discuss the
relations between the reduction in the two theories.
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Abstract. In this paper we derive a family of new extended SMART
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in information theory which allow us to obtain generalized forms of mul-
tiplicative NMF learning adaptive algorithms. We also provide flexible
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sults is vast since discussed generalized divergence functions include a
large number of useful loss functions such as the Amari α– divergence,
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[1, 2, 3, 4, 5, 6]. The NMF, first introduced by Paatero and Trapper, and further
investigated by many researchers [7, 8, 9, 10, 4, 11, 12], does not assume explic-
itly or implicitly sparseness, smoothness or mutual statistical independence of
hidden (latent) components, however it usually provides quite a sparse decom-
position [1, 13, 9, 5]. NMF has already found a wide spectrum of applications in
PET, spectroscopy, chemometrics and environmental science where the matrices
have clear physical meanings and some normalization or constraints are imposed
on them (for example, the matrix A has columns normalized to unit length)
[7, 2, 3, 5, 14, 15]. Recently, we have applied NMF with temporal smoothness
and spatial constraints to improve the analysis of EEG data for early detection
of Alzheimer’s disease [16]. A NMF approach is promising in many applications
from engineering to neuroscience since it is designed to capture alternative struc-
tures inherent in data and, possibly to provide more biological insight. Lee and
Seung introduced NMF in its modern formulation as a method to decompose
patterns or images [1, 13].

NMF decomposes the data matrix Y = [y(1),y(2), . . . ,y(N)] ∈ R
m×N as a

product of two matrices A ∈ R
m×n and X = [x(1),x(2), . . . ,x(N)] ∈ R

n×N

having only non-negative elements. Although some decompositions or matrix
factorizations provide an exact reconstruction of the data (i.e., Y = AX), we
shall consider here decompositions which are approximative in nature, i.e.,

Y = AX + V , A ≥ 0, X ≥ 0 (1)

or equivalently y(k) = Ax(k) + v(k), k = 1, 2, . . . , N or in a scalar form as
yi(k) =

∑n
j=1 aijxj(k) +νi(k), i = 1, . . . ,m, with aij ≥ 0 and xjk ≥ 0 where

V ∈ R
m×N represents the noise or error matrix (depending on applications),

y(k) = [y1(k), . . . , ym(k)]T is a vector of the observed signals (typically pos-
itive) at the discrete time instants1 k while x(k) = [x1(k), . . . , xn(k)]T is a
vector of nonnegative components or source signals at the same time instant
[17]. Due to additive noise the observed data might sometimes take negative
values. In such a case we apply the following approximation: ŷi(k) = yi(k) if
yi(k) is positive and otherwise ŷi(k) = ε, where ε is a small positive constant.
Our objective is to estimate the mixing (basis) matrix A and sources X sub-
ject to nonnegativity constraints of all entries of A and X. Usually, in BSS
applications it is assumed that N >> m ≥ n and n is known or can be rela-
tively easily estimated using SVD or PCA. Throughout this paper, we use the
following notations: xj(k) = xjk, yi(k) = yik and zik = [AX]ik means ik-th
element of the matrix (AX), and the ij-th element of the matrix A is denoted
by aij .

The main objective of this contribution is to derive a family of new flexible and
improved NMF algorithms that allow to generalize or combine different criteria
in order to extract physically meaningful sources, especially for biomedical signal
applications such as EEG and MEG.

1 The data are often represented not in the time domain but in a transform domain
such as the time frequency domain, so index k may have different meanings.
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2 Extended Lee-Seung Algorithms and Fixed Point
Algorithms

Although the standard NMF (without any auxiliary constraints) provides sparse-
ness of its component, we can achieve some control of this sparsity as well as
smoothness of components by imposing additional constraints in addition to
non-negativity constraints. In fact, we can incorporate smoothness or sparsity
constraints in several ways [9]. One of the simple approach is to implement
in each iteration step a nonlinear projection which can increase the sparseness
and/or smoothness of estimated components. An alternative approach is to add
to the loss function suitable regularization or penalty terms. Let us consider the
following constrained optimization problem:

Minimize:

D
(α)
F (A,X) =

1
2
‖Y −AX‖2F + αAJA(A) + αXJX(X) (2)

s.t. aij ≥ 0, xjk ≥ 0, ∀ i, j, k, (3)

where αA and αX ≥ 0 are nonnegative regularization parameters and terms
JX(X) and JA(A) are used to enforce a certain application-dependent character-
istics of the solution. As a special practical case we have JX(X) =

∑
jk fX(xjk),

where f(·) are suitably chosen functions which are the measures of smooth-
ness or sparsity. In order to achieve sparse representation we usually choose
f(xjk) = |xjk| or simply f(xjk) = xjk, or alternatively f(xjk) = xjk ln(xjk)
with constraints xjk ≥ 0. Similar regularization terms can be also implemented
for the matrix A. Note that we treat both matrices A and X in a symmetric
way. Applying the standard gradient descent approach, we have

aij ← aij − ηij
∂D

(α)
F (A,X)
∂aij

, xjk ← xjk − ηjk
∂D

(α)
F (A,X)
∂xjk

, (4)

where ηij and ηjk are positive learning rates. The gradient components can be
expressed in a compact matrix form as:

∂D
(α)
F (A,X)
∂aij

= [−Y XT + AXXT ]ij + αA
∂JA(A)
∂aij

, (5)

∂D
(α)
F (A,X)
∂xjk

= [−AT Y + AT AX]jk + αX
∂JX(X)
∂xjk

. (6)

Here, we follow the Lee and Seung approach to choose specific learning rates
[1, 3]:

ηij =
aij

[AXXT ]ij
, ηjk =

xjk

[AT AX] jk,
(7)

that leads to a generalized robust multiplicative update rules:
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aij ← aij

[
Y XT ]ij − αAϕA(aij)

]
ε

[A X XT ]ij + ε
, (8)

xjk ← xjk

[
[AT Y ]jk − αX ϕX(xjk)

]
ε

[AT AX]jk + ε
, (9)

where the nonlinear operator is defined as [x]ε = max{ε, x} with a small positive
ε and the functions ϕA(aij) and ϕX(xjk) are defined as

ϕA(aij) =
∂JA(A)
∂aij

, ϕX(xjk) =
∂JX(X)
∂xjk

. (10)

Typically, ε = 10−16 is introduced in order to ensure non-negativity constraints
and avoid possible division by zero. The above Lee-Seung algorithm can be con-
sidred as an extension of the well known ISRA (Image Space Reconstruction
Algorithm) algorithm. The above algorithm reduces to the standard Lee-Seung
algorithm for αA = αX = 0. In the special case, by using the l1-norm regular-
ization terms f(x) = ‖x‖1 for both matrices X and A the above multiplicative
learning rules can be simplified as follows:

aij ← aij

[
[Y XT ] ij − αA

]
ε

[AX XT ] ij + ε
, xjk ← xjk

[
[AT Y ] jk − αX

]
ε

[AT AX] jk + ε
, (11)

with normalization in each iteration as follows aij ← aij/
∑m

i=1 aij . Such nor-
malization is necessary to provide desired sparseness. Algorithm (11) provides
a sparse representation of the estimated matrices and the sparseness measure
increases with increasing values of regularization coefficients, typically αX =
0.01 ∼ 0.5.

It is worth to note that we can derive as alternative to the Lee-Seung algorithm
(11) a Fixed Point NMF algorithm by equalizing the gradient components of (5)-
(6) (for l1-norm regularization terms) to zero [18] :

∇XD
(α)
F (Y ||AX) = AT AX −AT Y + αX = 0, (12)

∇AD
(α)
F (Y ||AX) = AXXT − Y XT + αA = 0. (13)

These equations suggest the following fixed point updates rules:

X ← max
{
ε,
[
(AT A)+(AT Y − αX)

]}
=
[
(AT A)+(AT Y − αX)

]
ε
, (14)

A ← max
{
ε,
[
(Y XT − αA)(XXT )+

]}
=
[
(Y XT − αA)(XXT )+

]
ε
,(15)

where [A]+ means Moore-Penrosepseudo-inverse and max function is component-
wise. The above algorithm can be considered as nonlinear projected Alternating
Least Squares (ALS) or nonlinear extension of EM-PCA algorithm.
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Furthermore, using the Interior Point Gradient (IPG) approach an additive
algorithm can be derived (which is written in a compact matrix form using
MATLAB notations):

A ← A− ηA ∗ (A ./ (A ∗X ∗X ′)) . ∗ ((A ∗X − Y ) ∗X ′), (16)
X ← X − ηX ∗ (X./(A′ ∗A ∗X)) . ∗ (A′ ∗ (A ∗X − Y )), (17)

where operators .∗ and ./ mean component-wise multiplications and division,
respectively, and ηA and ηX are diagonal matrices with positive entries repre-
senting suitably chosen learning rates [19].

Alternatively, the mostly used loss function for the NMF that intrinsically
ensures non-negativity constraints and it is related to the Poisson likelihood is
based on the generalized Kullback-Leibler divergence (also called I-divergence):

DKL1(Y ||AX) =
∑
ik

(
yik ln

yik

[AX]ik
+ [AX]ik − yik

)
, (18)

On the basis of this cost function we proposed a modified Lee-Seung learning
algorithm:

xjk ←
(
xjk

∑m
i=1 aij (yik/[AX]ik)∑m

q=1 aqj

)1+αsX

, (19)

aij ←
(
aij

∑N
k=1 xjk (yik/[AX] ik)∑N

p=1 xjp

)1+αsA

, (20)

where additional small regularization terms αsX ≥ 0 and αsX ≥ 0 are introduced
in order to enforce sparseness of the solution, if necessary. Typical values of the
regularization parameters are αsX = αsA = 0.001 ∼ 0.005.

Raul Kompass proposed to apply beta divergence to combine the both Lee-
Seung algorithms (11) and (19)-(20) into one flexible and elegant algorithm with
a single parameter [10]. Let us consider beta divergence in the following gener-
alized form as the cost for the NMF problem [10, 20, 6]:

D
(β)
K (Y ||AX) =

∑
ik

(
yik

yβ
ik − [AX]βik
β(β + 1)

+ [AX]βik
[AX]ik − yik

β + 1

)
+αX‖X‖1 + αA‖A‖1, (21)

where αX and αA are small positive regularization parameters which control
the degree of smoothing or sparseness of the matrices A and X, respectively,
and l1-norms ||A||1 and ||X||1 are introduced to enforce sparse representation
of solutions. It is is interesting to note that for β = 1 we obtain the square
Euclidean distance expressed by Frobenius norm (2), while for the singular cases
β = 0 and β = −1 the beta divergence has to be defined as limiting cases as
β → 0 and β → −1, respectively. When these limits are evaluated one gets for
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β → 0 the generalized Kullback-Leibler divergence (called I-divergence) defined
by equations (18) and for β → −1 the Itakura-Saito distance can be obtained:

DI−S(Y ||AX) =
∑
ik

[
ln(

[AX]ik
yik

) +
yik

[AX]ik
− 1

]
. (22)

The choice of the β parameter depends on statistical distribution of data and
the beta divergence corresponds to the Tweedie models [21, 20]. For example,
the optimal choice of the parameter for the normal distribution is β = 1, for the
gamma distribution is β → −1, for the Poisson distribution β → 0, and for the
compound Poisson β ∈ (−1, 0).

From the beta generalized divergence we can derive various kinds of NMF
algorithms: Multiplicative based on the standard gradient descent or the Ex-
ponentiated Gradient (EG) algorithms (see next section), additive algorithms
using Projected Gradient (PG) or Interior Point Gradient (IPG), and Fixed
Point (FP) algorithms.

In order to derive a flexible NMF learning algorithm, we compute the gradient
of (21) with respect to elements of matrices xjk = xj(k) = [X ]jk and aij = [A]ij .
as follows

∂D
(β)
K

∂xjk
=

m∑
i=1

aij

(
[AX]βik − yik [AX]β−1

ik

)
+ αX , (23)

∂D
(β)
K

∂aij
=

N∑
k=1

(
[AX]βik − yik[AX]β−1

ik

)
xjk + αA. (24)

Similar to the Lee and Seung approach, by choosing suitable learning rates:

ηjk =
xjk∑m

i=1 aij [AX]βik
, η̃ij =

aij∑N
k=1[AX]βik xjk

, (25)

we obtain multiplicative update rules [10, 6]:

xjk ← xjk
[
∑m

i=1 aij (yik/[AX]1−β
ik )− αX ]ε∑m

i=1 aij [AX]βik
, (26)

aij ← aij
[
∑N

k=1(yik/[AX]1−β
ik ) yjk − αA]ε∑N

k=1[AX]βik xjk

, (27)

where again the rectification defined as [x]ε = max{ε, x} with a small ε is intro-
duced in order to avoid zero and negative values.

3 SMART Algorithms for NMF

There are two large classes of generalized divergences which can be potentially
used for developing new flexible algorithms for NMF: the Bregman divergences
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and the Csiszár’s ϕ-divergences [22, 23, 24]. In this contribution we limit our
discussion to the some generalized entropy divergences.

Let us consider at beginning the generalized K-L divergence dual to (18):

DKL(AX||Y ) =
∑
ik

(
[AX]ik ln

(
[AX]ik
yik

)
− [AX]ik + yik

)
(28)

subject to nonnegativity constraints (see Eq. (18)) In order to derive the learn-
ing algorithm let us apply multiplicative exponentiated gradient (EG) descent
updates to the loss function (28):

xjk ← xjk exp
(
−ηjk

∂DKL

∂xjk
xjk

)
, aij ← aij exp

(
−ηij

∂DKL

∂aij
aij

)
, (29)

where

∂DKL

∂xjk
=

m∑
i=1

(aij ln[AX]ik − aij ln yik) (30)

∂DKL

∂aij
=

N∑
k=1

(xjk ln[AX]ik − xjk ln yik) . (31)

Hence, we obtain the simple multiplicative learning rules:

xjk ← xjk exp

(
m∑

i=1

ηjkaij ln
(

yik

[AX]ik

))
= xjk

m∏
i=1

(
yik

[AX]ik

)ηjkaij

(32)

aij ← aij exp

(
N∑

k=1

η̃ijxjk ln
(

yik

[AX]ik

))
= aij

N∏
k=1

(
yik

[AX]ik

)ηijxjk

(33)

The nonnegative learning rates ηjk and η̃ij can take different forms. Typically,
for simplicity and in order to guarantee stability of the algorithm we assume
that ηjk = ηj = ω (

∑m
i=1 aij)−1, η̃ij = η̃j = ω (

∑N
k=1 xjk)−1, where ω ∈ (0, 2) is

an over-relaxation parameter. The EG updates can be further improved in terms
of convergence, computational efficiency and numerical stability in several ways.

In order to keep weight magnitudes bounded, Kivinen and Warmuth proposed
a variation of the EG method that applies a normalization step after each weight
update. The normalization linearly rescales all weights so that they sum to a con-
stant. Moreover, instead of the exponent function we can apply its re-linearizing
approximation: eu ≈ max{0.5, 1 + u}. To further accelerate its convergence, we
may apply individual adaptive learning rates defined as ηjk ← ηjkc if the corre-
sponding gradient component ∂DKL/∂xjk has the same sign in two consecutive
steps and ηjk ← ηjk/c otherwise, where c > 1 (typically c = 1.02− 1.5) [25].

The above multiplicative learning rules can be written in a more generalized
and compact matrix form (using MATLAB notations):

X ← X . ∗ exp
(
ηX . ∗ (A′ ∗ ln(Y ./(A ∗X + ε)))

)
(34)

A ← A . ∗ exp
(
ηA . ∗ (ln(Y ./(A ∗X + ε)) ∗X ′)

)
, (35)

A ← A ∗ diag{1./sum(A, 1)}, (36)
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where in practice a small constant ε = 10−16 is introduced in order to ensure
positivity constraints and/or to avoid possible division by zero, and ηA and
ηX are non-negative scaling matrices representing individual learning rates. The
above algorithm may be considered as an alternating minimization/projection
extension of the well known SMART (Simultaneous Multiplicative Algebraic Re-
construction Technique) [26, 27]. This means that the above NMF algorithm can
be extended to MART and BI-MART (Block-Iterative Multiplicative Algebraic
Reconstruction Technique) [26].

It should be noted that the parameters (weights) {xjk, aij} are restricted to
positive values, the resulting updates rules can be written:

ln(xjk) ← ln(xjk)− ηjk
∂DKL

∂ lnxjk
, ln(aij) ← ln(aij)− ηij

∂DKL

∂ ln aij
, (37)

where the natural logarithm projection is applied component-wise. Thus, in a
sense, the EG approach takes the same steps as the standard gradient descent
(GD), but in the space of logarithm of the parameters. In other words, in our
current application the scalings of the parameters {xjk, aij} are best adapted in
log-space, where their gradients are much better behaved.

4 NMF Algorithms Using Amari α-Divergence

It is interesting to note, that the above SMART algorithm can be derived as
a special case for a more general loss function called Amari α-divergence (see
also Liese & Vajda, Cressie-Read disparity, Kompass generalized divergence and
Eguchi-Minami beta divergence)2 [29, 28, 23, 22, 10, 30]):

DA(Y ||AX) =
1

α(α − 1)

∑
ik

(
yα

ikz
1−α
ik − αyik + (α − 1)zik

)
(38)

We note that as special cases of the Amari α-divergence for α = 2, 0.5,−1, we
obtain the Pearson’s, Hellinger and Neyman’s chi-square distances, respectively,
while for the cases α = 1 and α = 0 the divergence has to be defined by the limits
α → 1 and α → 0, respectively. When these limits are evaluated one obtains
for α→ 1 the generalized Kullback-Leibler divergence defined by equations (18)
and for α→ 0 the dual generalized KL divergence (28).

The gradient of the above cost function can be expressed in a compact form
as

∂DA

∂xjk
=

1
α

m∑
i=1

aij

[
1−

(
yik

zik

)α]
,

∂DA

∂aij
=

1
α

N∑
k=1

xjk

[
1−

(
yik

zik

)α]
. (39)

2 Note that this form of α–divergence differs slightly with the loss function of Amari
given in 1985 and 2000 [28, 23] by the additional term. This term is needed to allow
de-normalized variables, in the same way that extended Kullback-Leibler divergence
differs from the standard form (without terms zik − yik) [24].
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However, instead of applying the standard gradient descent we use the projected
(linearly transformed) gradient approach (which can be considered as general-
ization of exponentiated gradient):

Φ(xjk) ← Φ(xjk)− ηjk
∂DA

∂Φ(xjk)
, Φ(aij) ← Φ(aij)− ηij

∂DA

∂Φ(aij)
, (40)

where Φ(x) is a suitable chosen function.
Hence, we have

xjk ← Φ−1
(
Φ(xjk)− ηjk

∂DA

∂Φ(xjk)

)
, (41)

aij ← Φ−1
(
Φ(aij)− ηij

∂DA

∂Φ(aij)

)
. (42)

It can be shown that such nonlinear scaling or transformation provides stable
solution and the gradients are much better behaved in Φ space. In our case, we
employ Φ(x) = xα and choose the learning rates as follows

ηjk = α2Φ(xjk)/(x1−α
jk

m∑
i=1

aij), ηij = α2Φ(aij)/(a1−α
ij

N∑
k=1

xjk), (43)

which leads directly to the new learning algorithm 3: (the rigorous convergence
proof is omitted due to lack of space)

xjk ← xjk

(∑m
i=1 aij (yik/zik)α∑m

q=1 aqj

)1/α

, aij ← aij

(∑N
k=1 (yik/zik)α

xjk∑N
t=1 xjt

)1/α

(44)

This algorithm can be implemented in similar compact matrix form using the
MATLAB notations:

X ← X . ∗
(
A′ ∗ ((Y + ε)./ (A ∗X + ε)).α

)
.1/α, (45)

A ← A . ∗
(
((Y + ε)./ (A ∗X + ε)).α ∗X ′) .1/α, (46)

A ← A ∗ diag{1./sum(A, 1)}.

Alternatively, applying the EG approach, we can obtain the following multi-
plicative algorithm:

xjk ← xjk exp

{
ηjk

m∑
i=1

aij

[(
yik

zik

)α

− 1
]}

, (47)

aij ← aij exp

{
η̃ij

N∑
k=1

[(
yik

zik

)α

− 1
]
xjk

}
. (48)

3 For α = 0 instead of Φ(x) = xα we have used Φ(x) = ln(x).
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5 Generalized SMART Algorithms

The main objective of this paper is to show that the learning algorithm (32) and
(33) can be generalized to the following flexible algorithm:

xjk ← xjk exp

[
m∑

i=1

ηjk aij ρ(yik, zik)

]
, aij ← aij exp

[
N∑

k=1

η̃ij xjk ρ(yik, zik)

]
(49)

where the error functions defined as

ρ(yik, zik) = −∂D(Y ||AX)
∂zik

(50)

can take different forms depending on the chosen or designed loss (cost) function
D(Y ||AX) (see Table 1).

As an illustrative example let us consider the Bose-Einstein divergence:

BEα(Y ||AX) =
∑
ik

yik ln
(

(1 + α)yik

yik + αzik

)
+ αzik ln

(
(1 + α)zik

yik + αzik

)
. (51)

This loss function has many interesting properties:
1. BEα(y||z) = 0 if z = y almost everywhere.
2. BEα(y||z) = BE1/α(z||y)
3. For α = 1, BEα simplifies to the symmetric Jensen-Shannon divergence

measure (see Table 1).
4. limα→∞BEα(y||z) = KL(y||z) and for α sufficiently small BEα(y||z) ≈

KL(z||y).
The gradient of the Bose-Einstein loss function in respect to zik can be ex-

pressed as

∂BEα(Y ||AX)
∂zik

= −α ln
(
yik + αzik

(1 + α)zik

)
(52)

and in respect to xjk and aij as

∂BEα

∂xjk
= −

m∑
i=1

aij
∂BEα

∂zik
,

∂BEα

∂aij
= −

N∑
k=1

xjk
∂BEα

∂zik
. (53)

Hence, applying the standard (un-normalized) EG approach (29) we obtain
the learning rules (49) with the error function ρ(yik, zik) = α ln ((yik + αzik)/
((1 + α)zik)). It should be noted that the error function ρ(yik, zik) = 0 if and
only if yik = zik.

6 Multi-layer NMF

In order to improve performance of the NMF, especially for ill-conditioned and
badly scaled data and also to reduce risk to get stuck in local minima of non-
convex minimization, we have developed a simple hierarchical and multi-stage
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Table 1. Extended SMART NMF adaptive algorithms and corresponding loss func-

tions

aij ← aij exp
(∑N

k=1 η̃ij xjk ρ(yik, zik)
)

, xjk ← xjk exp
(∑m

i=1 ηjk aij ρ(yik, zik)
)

aj =
∑m

i=1 aij = 1, ∀j, aij ≥ 0 yik > 0, zik = [AX ]ik > 0, xjk ≥ 0

Minimization of loss function Corresponding error function ρ(yik, zik)

1. K-L I-divergence, DKL(AX ||Y )

∑
ik

(
zik ln

zik

yik
+ yik − zik

)
ρ(yik, zik) = ln

(
yik

zik

)
2. Relative A-G divergence AGr(Y ||AX)

∑
ik

(
(yik + zik) ln

(
yik + zik

2yik

)
+ yik − zik

)
ρ(yik, zik) = ln

(
2yik

yik + zik

)
3. Symmetric A-G divergence AG(Y ||AX)

2
∑
ik

(
yik + zik

2
ln

(
yik + zik

2
√

yikzik

))
ρ(yik, zik) =

yik − zik

2zik
+ ln

(
2
√

yikzik

yik + zik

)
4. Relative Jensen-Shannon divergence

∑
ik

(
2yik ln

(
2yik

yik + zik

)
+ zik − yik

)
ρ(yik, zik) =

yik − zik

yik + zik

5. Symmetric Jensen-Shannon divergence

∑
ik

yik ln

(
2yik

yik + zik

)
+ zik ln

(
2zik

yik + zik

)
ρ(yik, zik) = ln

(
yik + zik

2zik

)
6. Bose-Einstein divergence BE(Y ||AX)

∑
ik

yik ln

(
(1 + α)yik

yik + αzik

)
+ αzik ln

(
(1 + α)zik

yik + αzik

)
ρ(yik, zik) = α ln

(
yik + αzik

(1 + α)zik

)
7. J-divergence DJ(Y ||AX)

∑
ik

(
yik − zik

2
ln

(
yik

zik

))
ρ(yik, zik) =

1

2
ln

(
yik

zik

)
+

yik − zik

2zik

8. Triangular Discrimination DT (Y ||AX)

∑
ik

{
(yik − zik)2

yik + zik

}
ρ(yik, zik) =

(
2yik

yik + zik

)2

− 1

9. Amari’s α divergence DA(Y ||AX)

1

α(α − 1)

∑
ik

(
yα

ikz1−α
ik − yik + (α − 1)(zik − yik)

)
ρ(yik, zik) =

1

α

[(
yik

zik

)α

− 1

]
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procedure in which we perform a sequential decomposition of nonnegative ma-
trices as follows: In the first step, we perform the basic decomposition (factor-
ization) Y = A1X1 using any available NMF algorithm. In the second stage,
the results obtained from the first stage are used to perform the similar decom-
position: X1 = A2X2 using the same or different update rules, and so on. We
continue our decomposition taking into account only the last achieved compo-
nents. The process can be repeated arbitrarily many times until some stopping
criteria are satisfied. In each step, we usually obtain gradual improvements of
the performance. Thus, our model has the form: Y = A1A2 · · ·ALXL , with the
basis nonnegative matrix defined as A = A1A2 · · ·AL. Physically, this means
that we build up a system that has many layers or cascade connections of L
mixing subsystems. The key point in our novel approach is that the learning
(update) process to find parameters of sub-matrices X l and Al is performed
sequentially, i.e. layer by layer4. In each step or each layer, we can use the same
cost (loss) functions, and consequently, the same learning (minimization) rules,
or completely different cost functions and/or corresponding update rules. This
can be expressed by the following procedure:

(Multilayer NMF Algorithm)
Set: X0 = Y ,
For l = 1, 2, . . . L, do :

Initialize randomly A
(0)
l and/or X

(0)
l ,

For k = 1, 2, . . . ,K , do :

X
(k)
l = arg min

Xl≥0

{
Dl

(
X l−1||A(k−1)

l X l

)}
,

A
(k)
l = arg min

Al≥0

{
D̃l

(
X l−1||AlX

(k)
l

)}
,

A
(k)
l ←

[
aij∑m
i=1 aij

](k)

l

,

End
X l = X

(K)
l , Al = A

(K)
l ,

End

7 Simulation Results

All the NMF algorithms discussed in this paper (see Table 1) have been exten-
sively tested for many difficult benchmarks for signals and images with various
statistical distributions. Simulations results confirmed that the developed algo-
rithms are stable, efficient and provide consistent results for a wide set of para-
meters. Due to the limit of space we give here only one illustrative example: The
five (partially statistically dependent) nonnegative source signals shown in Fig.1
(a) have been mixed by randomly generated uniformly distributed nonnegative

4 The multilayer system for NMF and BSS is subject of our patent pending in RIKEN
BSI, March 2006.
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(a) (b)

(c) (d)

Fig. 1. Example 1: (a) The original 5 source signals; (b) Estimated sources using the

standard Lee-Seung algorithm (8) and (9) with SIR = 8.8, 17.2, 8.7, 19.3, 12.4 [dB]; (c)

Estimated sources using 20 layers applied to the standard Lee-Seung algorithm (8) and

(9) with SIR = 9.3, 16.1, 9.9, 18.5, 15.8 [dB], respectively; (d) Estimated source signals

using 20 layers and the new hybrid algorithm (15) with (49) with the Bose Shannon

divergence with α = 2; individual performance for estimated source signals: SIR = 15,

17.8, 16.5, 19, 17.5 [dB], respectively

matrix A ∈ R
50×5. To the mixing signals strong uniform distributed noise with

SNR=10 dB has been added. Using the standard multiplicative NMF Lee-Sung
algorithms we failed to estimate the original sources. The same algorithm with 20
layers of the multilayer system described above gives better results – see Fig.1
(c). However, even better performance for the multilayer system provides the
hybrid SMART algorithm (49) with Bose-Einstein cost function (see Table 1)
for estimation the matrix X and the Fixed Point algorithm (projected pseudo-
inverse) (15) for estimation of the matrix A (see Fig.1 (d). We also tried to apply
the ICA algorithms to solve the problem but due to partial dependence of the
sources the performance was poor. The most important feature of our approach
consists in applying multi-layer technique that reduces the risk of getting stuck
in local minima, and hence, a considerable improvement in the performance of
NMF algorithms, especially projected gradient algorithms.
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8 Conclusions and Discussion

In this paper we considered a wide class of loss functions that allowed us to de-
rive a family of robust and efficient novel NMF algorithms. The optimal choice
of a loss function depends on the statistical distribution of the data and additive
noise, so different criteria and algorithms (updating rules) should be applied for
estimating the matrix A and the matrix X depending on a priori knowledge
about the statistics of the data. We derived several multiplicative algorithms with
improved performance for large scale problems. We found by extensive simula-
tions that multilayer technique plays a key role in improving the performance of
blind source separation when using the NMF approach.
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Abstract. This paper presents a novel approach to feature selection
and multiple-class classification problems. The proposed method is based
on metaphors derived from artificial immune systems, clonal and nega-
tive selection paradigms. A novel clonal selection algorithm – Immune
K-Means, is proposed. The proposed system is able to perform feature
selection and model identification tasks by evolving specialized subpop-
ulations of T- and B-lymphocytes. Multilevel evolution and real-valued
coding enable for further extending of the proposed model and inter-
preting the subpopulations of lymphocytes as sets of evolving fuzzy
rules.

1 Introduction

Multiple-class discrimination is an important task in machine learning. However,
it demands many steps, each of which is a difficult problem itself. The main steps
are feature selection, model identification and classifier training. It is obvious
that systems that combine all these steps in one learning procedure could bring
significant benefits. In this paper a novel classification system which performs all
these main steps in one multilevel evolution process is proposed. The proposed
system utilizes the main paradigms of the Artificial Immune Systems (AIS) [1],
the clonal and negative selection, together with the novel suppression mechanism.
The model is an extension of the Two-Level AIS model, first proposed in [2]. To
further extend the model, a novel clonal selection algorithm which is described
in this paper was developed. The paper is organized as follows. In Section 2
a short description of the AIS and a brief overview of the previous work is
given. In Section 3, the limitations of the Two-Level AIS are pointed out and
possible improvements and extensions are proposed. In Section 4 the novel clonal
selection algorithm – Immune K-Means – is described and utilized in building of
the proposed model MAICS (Multilevel Artificial Immune Classification System)
in Section 5. Some conclusions are drawn in Section 6.
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2 Two-Level Artificial Immune System

Artificial immune systems [1] try to imitate the real immune systems. The main
task of the immune system is to defend the organism against the pathogens.
Different types of cells cooperate to give a reliable system able to efficiently
adapt itself to changing environment. The AIS use only the main ideas of the
real immune systems, the clonal and negative selection, which deal with the
evolution of B- and T-cells, respectively.

2.1 General Concept of Artificial Immune Systems

B-cells with different receptors’ shapes try to bind to antigens (training and test-
ing data). The best fitted B-cells become stimulated and start to proliferate and
produce clones, which are mutated at very high rates (somatic hyper-mutation).
These steps are repeated and it is likely that there will emerge a better B-cell
(better solution). The whole process is called the clonal selection. T-cells un-
dergo a different type of evolution. They are created in thymus and learned
to recognize none of the self-cells presented to them. If a T-cell recognizes any
of the self-cells it is destroyed in the thymus. The mature T-lymphocytes do
not react on self-cells and thus can protect the organism from auto-destruction.
This evolution is know as a negative selection and it has been used by several
researches for such problems as computer security, novelty or anomaly detection.
These tasks can be considered as two-class discrimination problems. The clonal
selection paradigm has been mainly used for data compression, data and web
mining, clustering and optimization.

These two techniques, the clonal and negative selections, have been usually
used separately. However, it should be kept in mind that the real power of the
immune system is the cooperation of different types of cells. In particular, B- and
T-cells cooperate in the way that B-cells wait for the signal from T-cells before
they start to perform cloning. This simplified concept of cooperation between
T- and B-cells is utilized in the model. The system AIRS proposed in [3] is
an application of the clonal selection for multiple-class classification problems.
The AIRS is based on a concept of ARB (artificial recognition ball) which is
generalized concept of B-cell based on limitation of resources available for the
evolving system. However, the AIRS model differs much from that proposed in
this paper.

2.2 Evolutionary Methods for Classification Problems

Evolutionary methods (genetic algorithms, evolutionary strategies) have also
been applied to classification tasks in different ways (evolving classification
model, parameters’ tuning, etc.). They have also been applied to the problem of
evolving a population of fuzzy rules for classifications purposes [4]. The concept
of applying evolutionary methods for creating and/or tuning of classification
systems is not new, however, as it will be presented in the next sections, AIS,
especially the one proposed in our work, can bring significant benefits, as the
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individuals in AIS are detectors which undergo different kind of evolution, thus
are able to explore the search space in a different manner, resulting in interesting
possibilities for building complex in behavior, thus conceptually simple systems.

2.3 Two-Level AIS for Feature Selection and Classification

A system for feature selection and classification based on immune metaphors has
been proposed in [2]. It uses both the clonal and negative selections. Its main
characteristics are: a localization, a two-level evolution and a novel suppression
mechanism. On the highest level of the system there is a population of binary
strings in which ”1’s” indicate selected features. Each binary string describes a
subpopulation of T-cells which are created by means of the negative selection
based only on the features indicated by the binary string of that subpopula-
tion. As it was shown in [2] this approach enables T-cells to focus on selected
features (localization) and thus, to give better results. The two-level evolution,
as depicted in Fig. 1, stands for the use of both the negative selection (for T-
detectors creation and evaluation of selected features) and the clonal selection
(for exploration of the feature space as the evolution of the population of bi-
nary stings describing subpopulations). The detectors from each subpopulation
are able to detect different numbers of antigens as they use different subsets
of features, some of which are potentially more useful. Those subpopulations,
which recognize bigger number of antigens, are promoted during the evolution
and can produce more clones. A novel suppression mechanism, based on the
usefulness of a given subpopulation for the whole system, rather then on the
similarity between binary strings, allowed not to remove useful subpopulation
and to reach high percentage of recognized antigens while keeping the popula-
tion size on constant, dynamically selected level. The subpopulation is removed
if its loss does not result in decrease in the total number of recognized antigens
by the whole system. This idea comes from the fact that slightly different sub-
sets of features can have different discrimination abilities. The tests showed that
this type of suppression does not result in an explosion in the total number of
subpopulations [2]. The system is able to dynamically evolve a proper number
of subpopulations and gives better results as when the traditional suppression
is used.

3 Limitations of the Two-Level AIS and Proposed
Improvements

The most important limitation of the Two-Level AIS is that it performs two-class
discrimination only. Also the knowledge gained by the system is not so useful
while trying to extract it as a set of rules, which are much easier to understand
for humans. There are two main reasons for that. The first one is that the
created detectors were artificial T-cells and as such they are able to answer to
the question ”when the feature vector does not belong to the self-class” rather
then to the question ”when the feature vector does belong to the self class”.
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Fig. 1. The main concept of the Two-Level AIS [2]. Each Pi describes features used

by a subpopulation of T-cells.

The reason is that the T-cells are trained to recognize all but not the samples
presented to them during evolution. The second reason is that the T-cells are
binary coded. This form is considered [5] as being too low-level coded and thus
losing its ability for being easily understood by humans.

The answer for the aforementioned limitations is using the real-coded detec-
tors and creating subpopulations of T-cells for each class treated as a self-class.
Also, specialized subpopulations of real-valued B-cells should be created in the
same fashion as the subpopulations of T-cells but using the clonal selection
method. Thus, the proposed method incorporates a new level of evolution by
means of the clonal selection. But this clonal selection is of different type that
the clonal selection of the population of binary strings describing subpopula-
tions. The subpopulations are still described by binary strings as they are easily
interpreted as indicators of selected features. However, the B-cells in subpopula-
tions are real-coded and require different type of the clonal selection, adequate
for real-coded lymphocytes. An efficient algorithm of the clonal selection is pro-
posed in the next section.

4 Immune K-Means – A Novel Clonal Selection
Algorithm

A new clonal selection algorithm is proposed. It is a simple but robust clustering
algorithm. It is suited especially for use in the proposed system MAICS as the
clonal selection used for creating subpopulations of real-valued B-cells is repeated
several times during the evolution of MAICS. The proposed algorithm resembles
in some parts the well known k-means clustering algorithm, which has some lim-
itations thought, like the need of determining the number of clusters in advance,
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however, it is fast and easy to implement. It is especially useful when the training
data set is big and using more sophisticated clustering methods is computation-
ally prohibited. On the other hand clonal selection algorithms are able to evolve
a proper number of clusters. Combining these two methods results in a clustering
method that has all the positives and is free of the limitations. The biggest advan-
tage of the new algorithm is that each B-cell creates only one clone in each itera-
tion. The most important concept in this novel algorithm is a proper suppression
mechanism which is able to decide when to remove useless B-cells. The concept of
the suppression based on the usefulness of the given cell rather then based on the
similarity among the cells was adopted. This approach to performing suppression
emerged during developing of the Two-Level AIS [2]. In that system, starting from
the worst subpopulation, the whole subpopulation was temporarily removed and
the system was evaluated whether there is any loss in the number of recognized
antigens by the rest of subpopulations. If there was no loss, the subpopulation
was removed permanently. The main concept of removing only the cells that are
useless for the whole system can be easily adopted here.

The current implementation of the proposed method assumes that both anti-
gens and B-cells are real valued vectors. The algorithm goes as follows:

1. Generate an initial population of B-cells as a set of random real valued
vectors.

2. For each antigen ai (a sample in the training set) find its nearest B-cell.
3. For each B-cell create its clone as a mean vector of all antigens for which

a given B-cell is the nearest neighbor. If a clone is the same as the parent,
mutate the clone by adding to each dimension a random value from range
[-mut, mut ]. It allows the clones to escape from the places where there are
no clusters. Add the clones to the population of B-cells.

4. For each antigen find its new nearest B-cell.
5. Count the stimulation level of each B-cell. The stimulation level for the j-th

B-cell is counted according to (1):

stimulation level(Bj) =
∑

ai:ai∈NN(Bj)

exp−beta∗euc dist(Bj ,ai) (1)

where NN(Bj) is a subset of antigens for which Bj is the nearest neighbor,
beta is a positive constant and euc dist stands for the Euclidean distance.

6. Sort B-cells in a descending order according to their stimulation level.
7. Perform the suppression.
8. Repeat from step 3 until the termination condition is satisfied (in the current

implementation it is a given number of iterations).

The first proposed suppression goes as follows:

Suppression I. Starting from the less stimulated Bj , for each ai ∈ NN(Bj)
find Bnew as ai’s new NN (nearest neighbor) among B-cells (except for the Bj )
and calculate the distance to Bnew. If a condition (2)

(new dist− old dist) ≤ alpha (2)
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is satisfied for each ai ∈NN(Bj), removeBj and find new NN for all ai ∈NN(Bj).
The values old dist and new dist are the Euclidean distances between the given
antigen ai and B-cells Bj and Bnew, respectively.

The training samples are normalized to the range [0, 1]. The parameters of
the algorithm are easily tuned. As tests showed, the parameter beta does not
influence the evolution much and can be set to 1 and thus removed from tuning.
The parameter mut should decrease over the iteration to 0, with a small start-
ing value (like 0.05). The most important parameter is alpha. It indicates the
maximum allowed change in distance to the NN of each antigen while trying to
remove a given B-cell. The initial value of this parameter should be small (like
0.001), and then, which can be confusing at first, should grow over the iterations.
The final value depends on the training set and it can be considered as a density
measure of the B-cells’ population. The bigger the final value, the less B-cells
there will be in the final population.

Fig.2 depicts a result of applying the Immune K-means algorithm to two-
dimensional data. The algorithm is able to learn the structure of data easily.

Fig. 2. Immune K-Means algorithm is easily able to evolve a population of B-cells

(black dots) that properly represent the structure of data (crosses). The starting value

of the parameter alpha was 0.001, the final value was 0.07. The iterations number was

set to 25. There was only one B-cell in the initial population.

The proposed algorithm Immune K-Means is an unsupervised learnign al-
gorithm, as it does not use class information during training. In order to use
the B-cells from the final population as classifiers it is necessery to label each of
the final B-cells as representing one of the classes. The simplest way of doing this
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is to label each B-cell depending on the number of training samples (antigens)
it binds (for which it is the nearest neighbor). The B-cell gets the label of the
class, from which it binds the biggest number of antigens.

However, if the lymphocytes are to be good classifiers, using class information
during learning seems to be a good idea. For that reason another type of sup-
pression is proposed. While performing this type of suppression during learning
it is necessary to count the class labels for each lymphocyte everytime when the
nearest neighbors are found for the antigens. The difference is also while creating
offspring of each B-cell: each cell creates one clone for each class as the mean
of antigens (from that class) for which the given B-cell is the nearest neighbor.
The suppression goes as follows:

Suppression II. For each lymphocyte Bj , for each ai ∈ NN(Bj) find its new
NN, Bnew, among B-cells (except for the Bj) and check whether the condition (3)

C(Bj) = C(ai) AND C(Bnew) �= C(ai) (3)

is satisfied. If the condition (3) is satisfied for at least one ai ∈ Bj , Bj cannot
be removed from the population, otherwise, permanently remove Bj and find
a NN for each ai ∈ Bj . C(Bj) and C(ai) are the class labels of the B-cell and
the antigen, respectively. This mechanism does not allow removing B-cells in the
situation when at least one training sample was classified correctly by a given
B-cell and it would be misclassified by another B-cell while trying to remove the
first one. A given B-cell Bj is removed permanently only when its removal does
not cause the growth of the total number of misclassified training samples.

The suppression II utilizes the class information during the learning and thus
makes the Immune K-Means algorithm a supervised learning algorithm. Both
variations of the proposed clonal selection algorithm share most of the steps. The
most important difference is in the suppression step. Additionally, one should
easily observe that the parameter alpha does not play any role while using
suppression II and thus it can be eliminated from tuning. Also, as tests revealed,
sorting of B-cells according to their bounding degree seems to have no influence
on the behavior of the algorithm and its final results when using suppression II.
Sorting is a necessary step while using suppression I, as it leads to an attempt
of removing the B-cells from the edges of data clusters and thus enables the
evolution of cells representing the inner distribution of data. On the contrary,
suppression II is expected to focus the learning on the class discrimination and
place the B-cells near the class boundaries. Of course, it is possible to use both
types of suppression in the same time, which would result in developing B-cells
of two types: those describing the inner distribution of data and those somewhat
describing the class boundaries.

An example result of applying the proposed Immune K-Means algorithm with
the suppression II to artificial two-dimensional data is presented in Fig. 3.
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Fig. 3. Immune K-Means algorithm with suppression II. B-cells (blackdots) near the

boundaries of three distinct clusters (three classes) are the result of different meaning

of usefulness in suppression II. The starting value of the parameter alpha was 0.004,

the final value was 0.13. The iterations number was set to 20. There were 5 B-cells in

the initial population.

5 Classification with MAICS

The proposed clonal selection method is incorporated in the proposed system
extending its capabilities. Subpopulations of B-cells are allowed to evolve in a
similar fashion as the subpopulations of T-cells. Fig. 4 depicts the idea. The
subpopulations of B-cells evolve by means of the Immune K-Means by using
samples from all classes. After the Immune K-Means algorithm is finished, each
B-cell in the given subpopulation is labeled as recognizing antigens from a given
class, by a simple voting scheme – the subpopulation is treated as the kNN
classifier and the number of recognized antigens from each class for each B-cell
is checked. Each B-cell can then be assigned a certainty degree as the ratio of
the number of recognized antigens from the class it is assigned to, to the total
number of recognized antigens from other classes. The average certainty degree
of the B-cells from a given subpopulation ebables to rate the subpopulations and
to reward the best of them during the evolution by allowing them to produce
bigger number of clones. Also, as it was mentioned earlier, subpopulations of
T-detectors are created for each class treated as the self-class.

Having evolved subpopulations of both types of lymphocytes MAICS is able
to perform multiple-class discrimination. Having an unknown sample the system
uses B-cells as k-nearest-neighbor classifiers. Different types of voting schemes
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Fig. 4. A new level of evolution is added. The proposed Immune K-Means algorithm

is incorporated to create subpopulations of B-cells based on the selected features.

Fig. 5. Classification scheme of MAICS. Given an unknown sample, MAICS uses infor-

mation from T- and B-cells populations. T-cells subpopulations give binary information

of whether a given sample belongs or not to a given class. Available certainty degree

of each B-cell allows to develop different schemes of classifications.

can be adopted and tested. Subpopulations of T-detectors cooperate with sub-
populations of B-cells and provide additional classification criteria, leading to
possible decrease in classification error. As the detectors are real-coded it is pos-
sible to interpret them as subpopulations of evolving fuzzy rules. Thus, the pro-
posed system can be used for developing fuzzy inference systems for classification,



572 M. Bereta and T. Burczynski

which is done in the same time as the feature selection process. The concept of
classification process in MAICS is depicted in Fig. 5.

6 Conclusion

The proposed system MAICS tries to combine different type of metaphors de-
rived from artificial immune methods in one multilevel evolutionary system able
to perform the model identification, feature selection and detectors creation in
one powerful, but conceptually simple, process. The novel clonal selection algo-
rithm and the suppression mechanisms are proposed. The proposed system will
be further tested and compared to other methods for classification problems.
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Abstract. Prototype-based rules are an interesting alternative to fuzzy
and crisp logical rules, in many cases providing simpler, more accurate
and more comprehensible description of the data. Such rules may be
directly converted to fuzzy rules. A new algorithm for generation of
prototype-based rules is introduced and a comparison with results ob-
tained by neurofuzzy systems on a number of datasets provided.

1 Introduction

Similarity-based approaches that developed from the k-Nearest Neighbors (kNN)
algorithm [1,2] are still one of the most useful and popular algorithms in pat-
tern recognition. They are also at the foundation of the Artificial Intelligence
learning methods, such as the Case Based Reasoning or Memory Based Reason-
ing methods, allowing for comparison of complex objects that cannot be easily
represented in a feature space with fixed number of dimensions.

Nearest neighbor algorithms, or more generally Similarity-Based Learning
(SBL) framework [2,3], may provide not only predictive models, but also proto-
type-based logical rules (P-rules) [4,5] for data understanding. Knowledge hidden
in many datasets can be captured in a small set of prototypes using appropriate
similarity measures. As shown in [6] this type of rules are equivalent to fuzzy
rules (F-rules). P-rules seem to be more general because they support all types of
features (discrete, nominal or symbolic), while the use of F-rules is restricted to
continuous or ordinal attributes. Moreover, non-additive distance functions may
include explicit models of correlation between variables and cannot be converted
into fuzzy rules. Algorithms for selection of good prototypes and similarity mea-
sures are in a direct competition to the popular neurofuzzy approaches and fuzzy
modeling techniques [7], and therefore their further development is an important
issue.

Selection of reference vectors, also called prototypes, is very important espe-
cially for large datasets, because storing the whole training set in memory is then
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prohibitively expensive and searching for nearest neighbors becomes computa-
tionally very expensive, making similarity-based algorithms completely useless
for real time applications. The need to overcome these limitations brought the
development of many approaches aimed at increase of the speed and reduction
of the memory requirement of the basic nearest neighbor algorithms. As a result
many powerful algorithms for prototype selection were created [8,9,10,11] that
may also find an application in creation of P-rules.

These algorithms may be divided into four groups: noise filters, data condens-
ing methods, clustering, and prototype optimization methods. Most of these
approaches try to reduce the number of prototypes by getting rid of irrele-
vant training vectors [10]. Some algorithms try also to identify and remove
outliers that decrease accuracy. More advanced algorithms like WITS, DROP
[1,2,3,4,5,11], remove also vectors which lie close to the decision border and are
not necessary for classification, increasing generalization abilities. Another group
of methods starts with a small number of prototypes optimizing their position
using such techniques as learning vector quantization (LVQ). This is a powerful
method, but the results strongly depend on the starting position of prototypes.
Results presented in [8,9] lead to the conclusion that LVQ approach should be
used as second step following other prototype selection methods.

The last group of methods is based on clustering algorithms that search for
interesting groupings of vectors in a dataset [1]. Usually clustering is done sepa-
rately for each class, so that each class has an independent number of clusters. In
this approach spherical clusters are preferred like obtained from Hard C-means
(HCM), Fuzzy C-Means (FCM) algorithm or Gaussian Mixture Model (GMM).
Unfortunately these clustering methods search for clusters among all vectors be-
longing to one of the classes, producing a subset of irrelevant prototypes that
are often far away from the decision boundary and that do not participate in
the decision process.

This problem is especially important for P-rules where a small subset of ref-
erence vectors that can be interpreted as prototypes is searched for [2]. These
observations allow for construction of a new prototype selection algorithm based
on the context dependent clustering approach, for example the Conditional FCM
(CFCM) with weighting of the training vectors [12]. In the next section hetero-
geneous distance functions are described, in the third section CFCM algorithm
is presented, in the fourth section creation of an appropriate condition values
to determine clustering context is described, the algorithm for the selection of
optimal number of prototypes is presented in section five, followed by empirical
experiments in section six, and the final section contains conclusions.

2 Heterogeneous Distance Functions

Real word classification problems usually involve different types of features, some
may be continuous or linearly ordered, some may be discrete and some symbolic.
This constitutes a real problem for many algorithms, including statistical, neu-
ral or neurofuzzy approaches (ANFIS). Similarity-Based Learning framework
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[2,3] defines many variants of similarity evaluations, including different distance
functions for different types of attributes. The most popular and frequently used
Minkovsky distance function is a generalization of Euclidian distance and is
applicable only for numerical attributes. Symbolic features require different dis-
tance functions that may be defined using conditional probabilities to evaluate
similarity of each symbolic feature value from the point of view of class distri-
butions, as it is done in the Value Distance Metric (VDM) [15]. Numerical and
probabilistic distance measures may be combined in a general distance metric,
usually called the Heterogeneous Distance Metric (HDM), and in particular case
of the VDM metric the Heterogeneous Value Distance Metric (HVDM). Such
distance functions were used by Wilson and Martinez [16] who simply added
scaled contributions from different features:

D (x, r)α =
n∑

i=1

d (xi, ri)
α (1)

where D (x, r) is total distance between two vectors x and r with n features,
d(xi,ri) are distances calculated for single features, and α is an exponent (in more
general case exponents on the left and right side of Eq. 1 may be different [3]).
Explicit account of correlations between features is done in the simplest way by
introducing covariance matrices. HDM assumes that different types of features
are independent, and for the real-valued or ordered discrete features Minkovsky’s
distances are used, while for symbolic features probabilistic distances based on
conditional probabilities are used.

DMink (x, r)α =
n1∑
i=1

|xi − ri|α (2)

DV MD (x, r)α =
n2∑
i=1

C∑
j=1

|p (cj |xi)− p (cj |ri)|α (3)

where n1 is the number of numerical and n2 of symbolic values, C is the number
of classes and posterior probabilities p (cj |xi) and p (cj |ri) are calculated as:

p (cj |xi) = Nxij/Nxi (4)

where Nx i is number of instances in the training set that have value x for feature
i, and Nx ij is the number of training vectors from class j that have value x for
feature i.

Because HVDM is additive it can be written as the sum of two distance
functions that depend on different attribute types:

D (x, r)α = DMink (xa, ra)α +DV DM (xb, rb)α (5)

where xa and ra are subsets of numerical attributes and xb and rb are sub-
sets of their symbolic features. An important problem with such heterogeneous
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functions is to define a common distance scale. DMink takes values in the range
(0,+∞) while DV DM in the range

(
0, n1/α

2

)
. Features should be properly nor-

malized to assure that each distance component has the some or comparable
contribution. Wilson and Martinez [16] proposed one type of normalization for
numerical attributes (6) and three different normalization methods for VDM
distance (7), where the choice depends on particular problem:

dMink (x, r) =
|x− r|

4σ
(6)

N1 : dV MD (x, r) =
C∑

j=1

∣∣∣Nxj

Nx −
Nrj

Nr

∣∣∣
N2 : dV MD (x, r) =

√
C∑

j=1

∣∣∣Nxj

Nx −
Nrj

Nr

∣∣∣2
N3 : dV MD (x, r) =

√
C ·

C∑
j=1

∣∣∣Nxj

Nx −
Nrj

Nr

∣∣∣2
(7)

In N1 the distance between one dimensional probabilities is calculated using the
Manhattan norm, while in N2 and N3 the Euclidean norm is used.

In [16] authors suggest that normalization N2 “favors having all of the class
correlations fairly similar rather then having some very close and some very
different”. The difference between N2 and N3 normalizations may have an influ-
ence on classification using kNN method, but for P-rules, with a small number
of reference vectors common feature weighting may be replaced by optimization
of their positions. The parameter α that occurs in all distance functions has sig-
nificant influence on the shape of decision borders [3]. There is no specific value
of this parameter that will always lead to the best classification results, therefore
the optimal α value should be determined using meta-learning algorithms [17].
Another possibility is to set the value of α depending on particular needs. This
is one of the P-rules advantages, because the results are equivalent to fuzzy rules
with various types of membership functions, for example Gaussian for α=2 or
crisp logical rules for α=∞.

3 Conditional Fuzzy C-Means

In classification tasks the area between samples from different classes is most
important [1], and the goal of pattern recognition algorithms is to construct
the optimal shape of this border to assure maximum generalization, that is the
lowest error rate for the test data. This observation encourages searching for
prototypes similar to “support vectors” [18] in the border area. Classical clus-
tering algorithms search for groups of data in the whole data space without any
knowledge of class distribution. Of course one may cluster each class indepen-
dently, however the centers of the clusters will lead to prototypes far from the
decision borders. Another disadvantage of classical clustering algorithms follows
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from the fact that useless prototypes are created for data clusters far from de-
cision borders, as show in Fig. 1. Optimization methods from the LVQ family
cannot move such prototypes to areas where they could take an important part
in the decision process.

One possible solution of this problem is based on conditional or context de-
pendent clustering algorithms. One of the examples of such methods is the Con-
ditional Fuzzy C-Means method (CFCM) [12]. It is an extension of the FCM
clustering algorithm where data are grouped under some external conditions
defined for every training vector. These conditions are specified by an external
variable ykwhich corresponds to each training vector xk. This variable yk has
an associated membership function μ(y) or in other words weight that creates
clustering condition fk=μA(y) ∈[0,1] defined for every vector xk. This condi-
tion allows for clustering related data, where fk defines strength of the relation
between data vectors xk and the external variable yk.
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Fig. 1. Decision border and prototype activation areas for prototypes selected by a)
Conditional Fuzzy C-means and b) Fuzzy C-means algorithm

In our approach this external variable is defined as a measure of distance
between each data vector and a possible decision border. The task is to find
clusters near to this border. FCM and CFCM are based on minimization of a
cost function defined as:

Jm(U,V) =
C∑

i=1

N∑
k=1

(uik)m ‖xk − vi‖2A (8)

where C is the number of clusters centered at vi, N is the number of vectors,
m >1 is a parameter, and U=(uik) is a C ×N dimensional membership matrix
with elements uik ∈ [0,1] defining the degree of membership of the k-th vector
in the i-th class. The matrix U has to fulfill three conditions:

1o each vector xk belongs to the i-th cluster to a degree between 0 to 1:

∀
1≤i≤C

∀
1≤k≤N

uik ∈ [0, 1] (9)
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2o sum of the membership values of k-th vector xk in all clusters is equal to fk

∀
1≤k≤N

C∑
i=1

uik = fk (10)

3o no clusters are empty.

∀
1≤i≤C

0 <
N∑

k=1

uik < N (11)

Cost function (8) is minimized under these conditions by [12]:

∀
1≤i≤C

vi =
N∑

k=1

(uik)mxk

/
N∑

k=1

(uik)m (12)

∀
1≤i≤C

1≤k≤N

uik = fk

/
C∑

j=1

(
‖xk − νi‖
‖xk − νj‖

)2/(m−1)

. (13)

4 Determining the Context

Searching for optimal position of prototypes for P-rules is a difficult problem;
moreover, a balance between the number of prototypes (simplicity of the rules)
and the accuracy of the whole system is very important. Irrelevant prototypes,
that is prototypes that do not have any influence on classification, should be
removed. This assumption allows for search of prototypes that lie close to one
of the opposite classes, that is close to the possible decision border.

To determine position of prototypes using conditional clustering algorithm a
coefficient wk is defined, evaluating for a given vector xk the ratio of a scatter
between this vector and all vectors from the same class, divided by a scatter for
all vectors from the remaining classes:

wk =
∑

j,ω(xj)=ω(xk)

‖xk − xj‖2
/ ∑

l,ω(xl) �=ω(xk)

‖xk − xl‖2 (14)

Here ω(xk) denotes class label of the vector xk. This coefficients is then normal-
ized to be in the range [0,1]:

wk =
(
wk −min

k
(wk)

)/(
max

k
(wk)−min

k
(wk)

)
(15)

Normalized wk coefficients reach values close to 0 for vectors inside large
homogenous clusters, and close to 1 if the vector xk is near the vectors of the
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opposite classes and far from other vectors from the same class (for example if it is
an outlier). To avoid effects related to multiple density peaks in non-homogenous
data distributions a cut-off point for distance of the order of standard deviation
of the whole data could be introduced, although in our tests it was not necessary.
These normalized weights determine the external variable which then is filtered
to assign appropriate context or condition for CFCM clustering. Filtering can
be also understood as assigning appropriate linguistic term in the fuzzy sense.
In the algorithm used below a Gaussian filter was used:

fk = exp
(
wk − μ
σ2

)
(16)

with the best parameters in the range of μ=0.6-0.8 and σ=0.6-0.9, determined
empirically for a wide range of datasets. The μ parameter controls where the
prototypes will be placed; for small μ they are closer to the center of the cluster
and for larger μ closer to the decision borders. The range in which they are
sought is determined by the σ parameter.

5 Prototype Racing Algorithm for Optimizing Number
of Prototypes

Most algorithms for clustering require specification of the number of clusters.
This is especially important for the C-means clustering group of algorithms,
where premises for determining C do not exist, while in the hierarchical cluster-
ing they can be obtained by analyzing dendrogram tree [19]. In our approach
clusterization of data from each class is done in an independent way, therefore
determination of the number of prototypes requires control of several Ci param-
eters, one for each class. Moreover, these parameters may be strongly correlated.
The simplest way to build a model with optimal number of reference vectors is
to check its performance for all possible combinations of Ci with optimization of
final positions of all prototypes but this will lead to a very high computational
costs.

One possible solution is provided by the racing algorithm [13] based on the
results of candidate model comparison in cross-validation task. To speed up the
learning process Hoeffding or Bayesian estimation of error bounds of analyzed
models is used, rejecting those that are significantly worse than the current best
model during the optimization procedure. Another possible improvement leading
to reduction of computational costs, especially in optimizing balanced accuracy
(BER), is based on the heuristics for increasing the number of prototypes only
for the class that has worst accuracy. Adding new prototype to the class with
lowest accuracy increases the accuracy for that class but may also reduce overall
balanced accuracy. To avoid such problems the racing algorithm keeps only the
best models, growing the number of prototypes per class as long as the gain
in balanced accuracy justifies the added complexity. This approach significantly
increases optimization speed but unfortunately not always finds optimal combi-
nation of prototypes per class.
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6 Experiments and Results

In numerical experiments presented below prototype selection scheme described
above was compared with results obtained from classical clustering algorithm
without external conditions. All results are from the 10-fold crossvalidation tests
with the racing algorithm for determining the number of prototypes. Maximum
number of iterations was limited to 15 for both FCM and CFCM clustering.
Positions of prototypes obtained from clustering were then optimized with the
LVQ1 algorithm [19]. Test results summarized in Tab. 1 were obtained for six
benchmark datasets from UCI repository [7], with different number of classes
and types of features: Cleveland Heart Disease, Glass, Ionosphere, Pima Indians
Diabetes, and the Iris dataset with all 4 and with two most important features.
A small medical dataset Appendicitis was also used, with two most relevant
features selected using SSV decision tree (description of these datasets may be
found in [4]).

Crisp rules generated by decision tree using Gini index were used to generate
C-rules as a reference for accuracy and complexity comparison. Features selected
by the tree were used with the CFCM approach. Results are also compared with
the state-of-the-art NefClass [7] neurofuzzy system that generates F-rules. It
is based on greedy partitioning for initialization of fuzzy sets. In NefClass the
number of fuzzy sets and the maximum number of rules are selected manually.
Several available shapes of fuzzy membership functions have been used with
different number of fuzzy sets and rules, and the best balanced accuracy results
are reported in Tab.1. Crossvalidation results are used to select the model and to
estimate expected accuracy, and this model is then trained on all data to obtain
the number of rules and premises.

Appendicitis dataset is quite small (21+85 samples) and thus standard de-
viation for balanced accuracy is very large, therefore the differences are not
significant. All solutions are quite simple, including the C-rules from the tree: If
F7<7520.5 and F4<12 then Class 2, else Class 1. For the remaining five datasets
best balanced accuracy was achieved using the CFCM algorithm, although for
such small datasets standard deviations are quite large and thus even 8% differ-
ences (Ionosphere) between P-rules and F-rules are not statistically significant.
P-rules generated in an automatic way using the CFCM approach have com-
parable complexity to the manually optimized F-rules. P-rules may be directly
converted to the F-rules [6] and therefore algorithms for their generation offer a
competitive approach to the neurofuzzy algorithms.

7 Conclusions

In many data mining applications understanding and transparency of the
results are of great importance. Rule-based systems should be flexible to repre-
sent data accurately, and should be easy to understand, implying a small number
of accurate rules. Although both P-rules and F-rules may fulfill these conditions
for some reason P-rules are not so popular, mistakenly believed to be difficult
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Table 1. Classification results for 6 datasets: balanced accuracy, standard deviation,
the number of premises and rules

Dataset Decision Tree CFCM FCM NefClass
bacc std Prem/ bacc std Prem/ bacc std P-rule bacc std Prem/

C-rule P-rule F-rule
Appendicitis 76.0 19.0 2/1 81.1 13.0 2/3 79.7 19.7 2 81.9 12.3 1/4
Heart 78.9 7.7 3/5 76.3 3.4 13/4 75.4 6.8 5 76.6 6.6 1/2

78.9 5.9 3/2
Glass 62.4 9.1 6/8 71.2 11,6 9/16 68.6 10.0 16 64.8 9.4 3/13

70.6 11.1 6/14
Ionosphere 88.7 4.8 2/2 90,1 5.3 33/7 84.8 6.5 6 81.8 9.8 2/4

85.9 6.8 2/6
Diabetes 69.9 4.4 2/2 74.9 3.1 8/7 74.1 4.7 7 71.1 4.9 1/2

73.9 5.9 2/3
Iris 93.3 7.0 2/2 96.0 4.7 4/5 95.3 5.5 5 93.3 4.4 2/3

97.3 4.7 2/5

to understand. On the other hand complex sets of fuzzy rules that no-one even
tries to understand are hailed as comprehensible just because they are logical
rules. Comparison with neurofuzzy systems shows that P-rule algorithms are
frequently capable of generating simpler and more accurate description of data
in terms of prototypes. The balance between transparency (rule simplicity and
their number) and accuracy should be determined in each task individually,
depending on the application.

In this paper a new approach based on the conditional fuzzy C-means ap-
proach with determination of the distance to the decision border has been in-
troduced and used for selecting good prototypes, optimizing their position and
number. This algorithm has several advantages: it limits the search area to the
most probable space, facilitates searching for good prototypes, reduces influence
of outliers, reduces the number of irrelevant prototypes, creating only prototypes
that have important meaning for classification, and it automatically determines
optimal number of prototypes for each class.

Although this approach introduces two new parameters that should be tuned
experiments showed that it is not sensitive to their values and leaving these
values in the μ=0.6-0.8 and σ=0.6-0.9 range is sufficient. The results presented in
Tab.1 show that the proposed coefficient for context clustering may significantly
improve the prototype selection based on clustering. For some datasets like Glass
or Ionosphere the classification quality increased by almost 20% comparing to
the normal clustering, while for the other datasets the increase was more modest.

So far the context dependent clustering algorithm was used only with the
CFCM clustering, but applications to other algorithms look also very promising
and will be investigated in our future work. Combination of this approach with
feature selection based on Relief index should lead to a P-rule system that should
easily compete with the best neurofuzzy systems.
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Abstract. The paper presents a system for the road signs recognition
which is based on an ensemble of the non Euclidean distance neural net-
works and an arbitration unit. The input to this system constitutes a
binary pictogram of a sign which is supplied from the detection mod-
ule. The classifier is composed of a mixture of experts - the Hamming
neural networks - each working with a single group of deformed reference
pictograms. The ensemble of experts is controlled by an arbitration mod-
ule operating in the winner-takes-all mode. Additionally it is equipped
with a promoting mechanism that favours the most populated group of
unanimous experts. The presented classifier is characterized by the fast
training and very fast response times which features make it suitable for
the driving assistant systems. The presented concepts have been verified
experimentally. Their results and conclusions are also discussed.

1 Introduction

The paper presents a compound neural classifier designed to recognize the rec-
tangular shaped road signs (RSs) of the group ”D”. These are the so called ’in-
formation’ signs frequently encountered on our roads. This classifier is a part of a
more complex driving assisting system which is able to detect and recognize road
signs during driving. This is a model-free recognition system with prototypes in a
form of deformable images created from the predefined data base (DB). Each set
of deformable training patterns is used to train a single 1-nearest-neighbour ex-
pert which, in our case, is a Hamming neural network (HNN). All outputs of the
experts are then fed into the arbitration module, operating in the winner-takes-
all mode, and which was additionally extended by a mechanism that amplifies
response of the unanimous experts (a democratic like voting system).

Detection and recognition of the road signs have gained much attention and
research [2,6,11,13]. Some shape detectors are described in [1,2,3,6]. RS recog-
nition with the back-propagation NN is proposed in [1,6]. However, there are
many ways of image preprocessing to feed the input neurons. For example in
[5] the corners are detected and their mutual relations are analyzed, then the
final classification is done by the NN. The Kohonen NN is proposed in [9] - this
network is trained considering rotations and occlusions. The other NNs for the
sign recognition were also proposed: the receptive field NN [10], the radial basis
function RBF NN [15], and the adaptive resonance ART NN [5].

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 583–592, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Structure of the Road Sign Classification System

Fig. 1 depicts architecture of the proposed classification system for the RS detec-
tion and recognition. This is a general scheme which can fit many classification
systems and which behaviour depends on the chosen building blocks. In our case
the process begins with the image acquisition. We use the Olympus C70 camera
for image acquisition. Then the input image is fed into the detector of rectan-
gular shapes, built upon the structural tensor [3]. It operates on colour images
with different scales. However we do not use colour information in other parts
of the system. Proper operation of these modules has a significant influence on
the rest of the system.

Fig. 1. Overall view of the system for road sign detection and recognition

The detection is followed by the shape registration phase. Its purpose is to
recover a rectified view of an object which in natural scenes has been projectively
distorted due to physical parameters of the image acquisition system. The road
signs have been designed to be easily discernible on the roads. Therefore they
are characterized by modal histograms. We utilize this attribute in the feature
extraction module (Fig. 1) which binarizes the detected pictograms. Finally, the
binary features are fed into the committee classifier depicted in Fig. 2.

Fig. 2. The hybrid system for the road sign classification

The road sign data base and the shape deformation modules are used during
the training phase of the system. The big advantage of the proposed system is its
ability to use a data base in the form of the predefined printed patterns instead of
natural examples which require much more effort. We use the predefined bitmaps
(Fig. 1a) of the Polish law regulations for traffic signalization [12]. However,
nothing hinders from using real examples as well. The shape deformation module
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in Fig. 1 is based on the inverse warping algorithm that generates predefined
horizontally and vertically shifted versions of the training patterns from the
data base. Each set of the patterns deformed in one way is fed into one expert
of the committee machine in Fig. 2.

a b c

Fig. 3. The formal specification of the “D” group of the Polish RSs (a). The DB created

from the specification (b). The pictograms after binarization and sampling (c).

Fig. 2 depicts architecture of the neural committee classifier (see Fig. 1). This
is a mixture of experts which are separate Hamming NNs [4]. Each expert is
responsible for recognition within a group of a single deformation.

3 Shape Registration and Feature Extraction

The image registration is accomplished by the following affine transformation:

Ax =

⎡⎣a11 a12 a13
a21 a22 a23
0 0 1

⎤⎦⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣ x̂1
x̂2
1

⎤⎦ = x̂, (1)

where x = (x1, x2, x3)T is a point in homogeneous coordinate system, A is the
warping (affine) matrix, and x̂ is the position of a point x after the warping.

A value at a point is determined by the bilinear interpolation. The matrix A
is computed from the system of linear equations set from the three non collinear
pairs of matched points (the three corners of a sign).

From experiments on real scenes we noticed that binarization around the mean
intensity value gives acceptable results for most of the scenes under different

a b

Fig. 4. Example of the real road scene: Each of the detected “D-6” signs is marked by

the three white cross pointers (a), sampling scheme of a registered pattern (b)
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a b c

d e f

Fig. 5. The two “D-6” signs detected from the scene in Fig. 4a and registered to the

64×64 frame (a,d). Histograms of the registered images (b,e). Mean binarization (c,f).

lighting conditions. Results of this process are presented in Fig. 5 and Fig. 3.
The group of ”D” road signs (Fig. 1a) contains square, rectangular and special
shaped signs (diamonds D-1 and D-2, as well as D-39 and D-42). The latter
are dealt separately by the special detection module and are not considered
here. We noticed that the system can be further simplified by cropping the
rectangular signs to a common square of d1 × d1 pixels. Thus, all the patterns
fit into a square frame which is further shrunk by a horizontal a vertical offsets
(in practice 4-6 pixels) and sampled as shown in Fig. 4b.

4 A Single Expert-Classifier Module

Having binary input signals (i.e. the sign pictograms) the natural choice for an
expert is a binary NN. We choose the Hamming NN which is an extension of the
well known Hopfield NN and which originally was proposed by Lippmann [8].

Fig. 6. The hybrid system for the road sign classification

This four (auto-associative) or five (hetero-associative) layers recursive NN
has many interesting properties and overcomes some problems encountered in
the Hopfield NN, as for example small pattern capacity. It is much faster during
the training phase and also in the recognition stage. The very good and thorough
analysis of the auto- and hetero-associative memories build upon the HNN, with
in-depth analysis of the network convergence and computational complexity, can
be found in [7]. The HNN has been quite often used for image classification. In
this case however, the best results are obtained when the network is not directly
fed with image intensity values but rather with binarized or non-parametrically
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preprocessed input signals. The Hamming NN (Fig. 6) directly realizes the one-
nearest-neighbor classification rule [4]. For each of the training data vectors we
assign a single class Ci. In the recognition stage the one nearest (in the sense of
the Hamming distance) vector to the input pattern x is found and its class Ci

is returned. In this type of NN the four layers of neurons can be distinguished:

1. The input binary layer N0(.) which accepts binary vector with components
from the set {-1, +1}. The modification to this can include the new ”neutral”
state with value 0 which can be used to indicate the unknown state [7].

2. The layer N1(.) which computes the binary distance between the input pat-
tern and each reference pattern, already stored in the weights W;

3. The recursive winner-takes-all layer N2(.) selects the winning neuron. The
characteristic is a self connection of a neuron with the weight 1.0.

4. The output layer N3(.) which at the stable state contains at most one neuron
with non-zero output - a winner which indicates a class of the input vector.

In the hetero-associative version there is an another final layer N4(.) which
returns a new output vector y which the network associated with x. Training
of the binary NN is fast and simple, at least when compared to other NNs. It
consists of filling in the matrix Wpn in Fig. 6, as follows:

wi = xi, 1 ≤ i ≤ p, (2)

where p is the number of input patterns x, of length n, wi is the i-th row of the
matrix Wp×n. The computation time is linear with the size and number of input
patterns p. The recursive layer N2(.) selects a winning neuron. However, prior to
this its weights need to be initialized. This group of neurons is characterized by a
self connection of a neuron to itself with a weight mii = 1 for all l ≤ i ≤ p. At the
same time all other weights are kept negative. Thanks to this strategy a neuron
amplifies itself while all other neurons try to lower its value by amount which is
proportional to the connecting weights and values of these neurons. Initialization
of the N2(.) layer is done by assigning negative values to the square matrix Mp×p
except the main diagonal. Originally Lippmann proposed the following formula
for initialization [8]:

mkl = − 1
p− 1

+ ξkl for k �= l, 1 for k = l, where 1 ≤ k, l ≤ p, p > 1, (3)

ξ is a random value for which |ξ| * (p−1)−1. A modification to (8) was proposed
by Floréen [7] which consists of assigning εk to all mkl for k �= l , as follows:

mkl = εk = − 1
p− 1

(
1− 1

n

) k−1
p−1

, k �= l, 1 for k = l, 1 ≤ k, l ≤ p, p > 1, (4)

Computed this way values εk are near-optimal in terms of the network conver-
gence. The computational complexity of this scheme is of order O(p · log(np)) in
general case and O(p · log(n)) if there exists a unique stored vector which is the
nearest to the input pattern [7]. The other advantage of using (4) is significant
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saving of the memory necessary to store the matrix M which in this case reduces
to a single vector of length p. However, it appears that the most efficient and
still convergent solution consists of setting equal weights for all neurons N2(.)
which are then modified at each step during classification phase, as follows [7]:

mkl = εk(t) = − 1
p− t

, k �= l, 1 for k = l, 1 ≤ k, l ≤ p, p > 1, (5)

where t is a classification time step. In this case the convergence is achieved
in p-1-r steps, where r > 1 stands for a number of nearest vectors stored in
W [7]. During the classification phase the group N1(.) of neurons computes the
binary distance measure between the input pattern z and the training patterns
stored in W. Most often than not this is the Hamming distance (i.e. amount of
mismatched positions in the two vectors), given as follows [7]:

bi(z,W) = 1− 1
n
DH(z,wi), 1 ≤ i ≤ p, (6)

where bi ∈ [0 , 1 ] is a value of an i-th neuron in N1(.), DH (z,wi) ∈ {0 , 1 , . . . ,n} is
the Hamming distance between the input patterns z and the i-th stored pattern
wi (i.e. the i-th row of W). It is interesting to observe that values of DH take
on only discrete values whereas values of bi are in the real set [0 , 1 ]. Binary
values of the input patterns influence only computation of DH in (6). Usually
the vectors are assumed to have coefficients from the set {-1,+1}. In this case
(6) can be computed as follows:

bi(z,W) =
1
2
(n−1wiz + 1) =

1
2
(n−1

n∑
r=1

wirzr + 1), 1 ≤ i ≤ p, (7)

where z is a column vector. For the vectors with values from the set {0,1}, which
is more common in image processing, we have the following formula:

bi(z,W) = 1− n−1wiz = 1− n−1
n∑

r=1

wirzr, 1 ≤ i ≤ p, (8)

In [7] it is proposed to extend the allowable values from the binary set {-1,+1}
to the ternary {-1,0,+1} where the new middle value 0 indicates a ”don’t know”
state. During classification N2(.) operates recursively to select a winner:

ai[t + 1] = ϕ(
n∑

j=1

mijaj [t]) = ϕ(ai[t] +
n∑

j=1,i�=j

mijaj[t]), (9)

where ai [t ] is an output of the i-th neuron of the N2(.) layer at the iteration step
t, φ denotes a threshold function which is given as follows:

ϕ(x) =
{
x, x > 0
0, x ≤ 0 . (10)

Choosing different schemes (3-5) for computation of the mij in (9) results in
different dynamics of the classification stage. The goal of the iterative process
(9) is to run up until only one neuron has value different than 0 (a winner).



Committee Machine for Road-Signs Classification 589

5 The Arbitration Unit

The arbitration unit selects a winner of the whole system. It operates after
E competing experts select their local winners (Fig. 2). This unit follows the
same MAXNET scheme, analogous to the N2(.) layer in Fig. 6. Inputs to this
layer come from the experts e ∈ {1 , . . . ,E} after reaching their final states and
selecting their winners we . Their output follow (9) when reaching the final step
tF : ae

w [tew ] ∈ {0 , 1}. The weights of the arbitration MAXNET layer are initialized
in accordance with (3) and with p=E. Randomized scheme (3) appeared to be the
most effective for initialization, especially for similar output values aw coming
from the expert modules. Finally, an answer is accepted iff a winning neuron
has its score greater than a predefined threshold tH . Choice of its value depends
on many factors, such as: size of the pictograms in DBs, number of experts,
assumed level of acceptance/rejection ratio, etc.

A mechanism has been developed to cope with situations when many experts
select the same winning class. This is more probable for small number of experts.
Such common voting can be a clue for selecting a dominating class (similar to hu-
man experts or democratic voting). We propose the promotion mechanism which
operates as follows: the most populous group of unanimous experts (the ones vot-
ing for the same class) relax their inhibition weights to the neurons belonging to
their group. This way a cooperating group of support is emerged. If such a dom-
inating group does not exist then this mechanism is not applied. To apply this
rule the weights (5) of neurons from a group of support are modified as follows:

mkl =
{
mkl + γG if mkl < −γG

mkl otherwise k �= l, (k, l) ∈ G, (11)

where γG is a positive value related to the mean of the cooperating group G:

γG =
c

N

∑
(k,l)∈G,k �=l

|mkl|, (12)

where N is a number of indices {k,l} such that {k , l} ∈ G, k �= l , c is a constant
value (in practice 0.05-0.3).

6 Experimental Results

For implementation we used the Microsoft c© Visual C++ 6.0 and Intel c© C++
9.0 compiler (code optimized for speed). The computer platform consists of the
IBM PC c© with Pentium 4 c© 3.4G and 2 GB RAM, controlled by the Windows
XP Prof. The system has two types of detectors for the signs of group ”D”. The
first is based on the structural tensor [9] and is used during classification. The
second is a manual detector where a user points the three corner points of a sign
(Fig. 4a). It was used to create the non-deformed reference data base (Fig. 3b) of
the Polish ”D” road signs from their formal specification (Fig. 3a) [12]. We also
tested influence of the size of the prototype patterns on the classification quality.



590 B. Cyganek

For this purpose we created two reference DBs with patterns of size 44 × 44
and 64× 64, respectively. This gives 1056 and 2756 input bits per single pattern
(with 6×6 border margins - Fig. 4b), respectively. This is also a number of input
neurons for each of the experts (Fig. 6). The smaller sizes of DBs gave much worse
results because of lack of sufficient salient features. In this case classification
was also more problematic since many different patterns had the same binary
distance. The question is how to configure the system classification with many
deformable models of reference patterns. In this case we have p classes, however
each class is represented by up to q deformable versions of the main reference
pattern. There are two possible configurations of the system: Create p experts,
each responsible for classification of a single sign based on its q deformable
reference patterns. The second option is to create q experts, each classifying
all road sign under a single deformation. Since we changed q from 1 to 289
deformations we choose the latter, which is also more suitable for incremental
build of the system, i.e. adding step by step new experts that work on a new data
base with differently deformed images. As already mentioned, the deformations
were created by combinations of horizontal and vertical shifts of the reference
images. The maximum tested version of such deformation was with ±16 pixels
shifts with 2 pixels step. This gives 172 = 289 possibilities and this is the maximal
amount of experts that were tested. Due to quite precise automatic registration
of the input patterns to the lower base segment of the ”D” signs, we avoided
generation of the rotated versions of DBs which would significantly increase
number of experts.

Quality of the system was measured in terms of Precision vs. Recall on the
patterns from the two data-bases: The first one contains only ”D” RS objects - it
is created on the base of the reference DB with ”D” road signs that was already
used during the training. We draw a test pattern from this DB, adding the
Gaussian noise and random deformation however. The second DB is composed
of 50% ”D” RSs and 50% of non-RS objects. The latter are randomly created
from other images that do not contain any RSs. As previously, a drawn object
is deformed and noised.

Table 1 presents results of our system operating on the first DB. In this
experiment we tested an influence of the resolution of the pictograms, as well

Table 1. Classification results on the DB of ”D” road signs with different resolutions

and the arbitration thresholds. Horz/vert deformations ±16 pixels with 2 pixels step

Pat.size ((tH)) 44 × 44 (0.01) 64 × 64 (0.01) 44 × 44 (0.05) 64 × 64 (0.05)

PSNR[dB] Prec. Recall Prec. Recall Prec. Recall Prec. Recall

100 1.000 0.958 1.000 1.000 1.000 0.939 1.000 0.987

50 1.000 0.922 1.000 0.928 1.000 0.830 1.000 0.682

44 1.000 0.860 1.000 0.895 1.000 0.699 1.000 0.454

40 1.000 0.906 1.000 0.940 1.000 0.729 1.000 0.490

38 1.000 0.764 1.000 0.927 1.000 0.710 1.000 0.735
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as threshold value of the arbitration MAXNET module on the precision and
recall of the system. As we have expected the best results were obtained for
larger resolutions of the pictograms used for training (the more discriminative
features) and smaller threshold value (less requirements on a winning neuron).
The test patterns were gradually deteriorated with noise and random deforma-
tions (horz/vert shifts). Although PSNR values (computed from the expectation
value of a difference of a ’pure’ image and its noised version) indicate significant
deterioration of the patterns, the system performs well.

Table 2. Classification results on a DB with 50/50 true/false examples of the “D” RSs

(randomly cropped from provided images). All pictograms 64 × 64.

tH(c) 0.0275 (c=0.2) 0.0275 (c=0.35) 0.07 (c=0.15) 0.07 (c=0.35)

PSNR[dB] Prec. Recall Prec. Recall Prec. Recall Prec. Recall

100 0.937 1.000 0.882 1.000 1.000 0.930 1.000 0.964

80 1.000 0.696 0.939 0.628 1.000 0.659 1.000 0.693

50 1.000 0.329 0.991 0.327 1.000 0.320 1.000 0.359

40 1.000 0.202 0.842 0.260 1.000 0.247 1.000 0.213

30 1.000 0.154 0.617 0.185 1.000 0.124 1.000 0.159

Classification results obtained on the second DB and with 64×64 pictograms
presents Table 2. In this experiment we tested robustness on the system in terms
of true vs. false patterns in terms of the arbitration threshold and constant c in
(12). We noticed a more rapid deterioration of the recall value with added noise
and distortions to the test images. However, the precision parameter is high
(especially for tH = 0.07) what indicates that almost all ’good’ objects were
detected. We also noticed a positive influence of the proposed unanimous arbi-
tration mechanism on the recall factor. The conclusion from these experiments is
that the performance of the system is satisfactory taking into consideration that
- when built in the whole driving assistant system - its input is coming from the
precisely tuned RS detector which acts as a pre-classification mechanism. This
also follows the principle of boosted cascade of simple classifiers proposed e.g. in
[14]. Currently we are developing the additional classifier which operates in the
log-polar space and is responsible for rejection of non road sign patterns before
they are put into the classifier described in this paper.

7 Conclusions

The paper presents the committee machine for classification of the ”D” road
signs. The proposed classifier is a part of a system for driving assistance. Its
works with the deformable prototypes from the reference DB. Each group of
deformed patterns is processed by a single one-nearest-neighbour classifier for
which we used the Hamming NN. The ensemble of experts is orchestrated by the
arbitration unit which is a MAXNET layer that selects the winning neuron. The
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arbitration is augmented by the mechanism of supporting groups of unanimous
experts. The achieved results, as well as run times are quite promising. The
system can be built in about 1 second, whereas its response is in order of ms.
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Abstract. The paper presents dynamic self-organizing neural networks
with one-dimensional neighbourhood that can be efficiently applied to
complex, multidimensional cluster-analysis problems. The proposed net-
works in the course of learning are able to disconnect their neuron chains
into sub-chains, to reconnect some of the sub-chains again, and to dy-
namically adjust the overall number of neurons in the system; all of that
- to fit in the best way the structures “encoded” in data sets. The oper-
ation of the proposed technique has been illustrated by means of three
synthetic data sets, and then, this technique has been tested with the use
of two real-life, complex and multidimensional data sets (Optical Recog-
nition of Handwritten Digits Database and Image Segmentation Database
of Statlog Databases) available from the ftp-server of the University of
California at Irvine (ftp.ics.uci.edu).

1 Introduction

Cluster analysis in data sets is an essential issue in designing various systems
for “making sense” of data in order to support the user in better understanding
of data and thus making sensible decisions. In general, cluster analysis aims
at partitioning a given set of data or objects into clusters (classes, groups) such
that the elements of each cluster are as “similar” as possible to each other and as
“different” as possible from those of the other clusters (see, e.g., [4] for review).

This paper presents a clustering technique that is an advanced and improved
version of clustering method presented in [2]; the latter method, in turn, devel-
ops the approaches of [1]. Therefore, papers [1], [2], and the present one (by the
same authors) can be put in a line demonstrating the evolution of the implemen-
tation of some new, general and flexible idea of clustering. This idea consists in
designing a route coming through the data set at hand; then, an analysis of this
route (by determining the histogram of nearness between neighbouring points
along the route - see [1, 2] for details) provides the user with an image - on the
plane - of the cluster distribution in the considered multidimensional data set.

This paper, first, illustrates - by means of a synthetic data set - some draw-
backs of the method of [2] that operates on the modification of the conventional
self-organizing neural network with one-dimensional neighbourhood (the neu-
ron chain). The modification consists in embedding into the learning algorithm

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 593–602, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of the network some mechanisms allowing the neuron chain to disconnect and
reconnect in the course of learning to better fit the data structure in a given
data set. Then, a generalization of the method of [2] - in the form of a dynamic
self-organizing neural network - is formulated. The generalization aims at auto-
matic adjustment of the number of neurons in the network in the course of its
learning in order to further enhance its abilities to fit in the best way the cluster
distribution in a given data set. In turn, an illustration of the operation of the
dynamic self-organizing neural networks with the use of three synthetic data
sets is provided. Finally, the advantages of using the dynamic self-organizing
neural networks are demonstrated in the clustering of two real-life, complex and
multidimensional data sets (Optical Recognition of Handwritten Digits Database
and Image Segmentation Database of Statlog Databases) [5]. The application of
the proposed technique to big-scale problems of WWW-document clustering is
presented in [3].

2 Illustration of Drawback of Modified Self-organizing
Neural Network of [2] in Cluster Analysis

Fig. 1 shows a synthetic data set (1000 points of the plane) with three visible
“parallel” clusters and several routes in this set determined by modified self-
organizing neural networks of [2] for different numbers of neurons in the neuron
chains. It is clear that the number of neurons - fixed and experimentally selected
at the beginning of the learning - is the parameter that critically affects the
performance of the system. Too small number of neurons in the chain unables
its free spread in the whole data set (Fig. 1b), whereas too large number of
neurons results in a relatively big number of low-active neurons that affect the
correct operation of the sub-chain disconnection- and reconnection mechanisms
of the considered technique (Fig. 1d). In both cases the system provides wrong
image of the cluster distribution in a given data set; see Fig. 1e - the envelope of
the nearness histogram (see [1, 2] for details) for the route of Fig. 1d suggesting
the occurrence of four clusters.

3 Dynamic Self-organizing Neural Networks for Cluster
Analysis

Since the predefinition of the number of neurons in the neuron chain is the critical
parameter of the approach of [2], the main goal of its generalization (in the form
of a dynamic self-organizing network) is to solve that problem by introducing
a mechanism that automatically adjust the number of neurons in the course of
learning. This mechanism (it has three components - see below) supports two
already existing sub-chain disconnection- and reconnection mechanisms (see [2]
for the discussion of their rationale) in fitting by the neuron chain - in the best
way - the data structure (the cluster distribution) in a given data set. In order to
achieve this goal, five successive operations are activated (under some condition)
after each learning epoch of the network:
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1) the removal of single, low-active neurons,
2) the disconnection of a neuron chain (sub-chain) into two sub-chains,
3) the removal of short neuron sub-chains,
4) the insertion of additional neurons into the neighbourhood of high-active

neurons in order to take over some of their activities,
5) the reconnection of two selected sub-chains.
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Fig. 1. Synthetic data set (a) and the routes in it determined by modified self-

organizing neural networks with: b) 50, c) 150, and d) 220 neurons as well as the

envelope of nearness histogram for the route of Fig. 1d (e)

The operations nos. 1, 3, and 4 are the components of the afore-mentioned
mechanism for automatic adjustment of the number of neurons in the chain.
Based on experimental investigations, the following conditions for particular
operations have been formulated (numberings of conditions and operations are
the same). Possible operation takes place between neuron no. i and neuron no.
i+1; i ∈ {1, 2, . . . , r−1}, where r is the number of neurons in the original neuron
chain or a given sub-chain.

Condition 1: wini < β1, where wini is the number of wins of i-th neuron
and β1 is experimentally selected parameter (usually β1 ∈ {3, 4, . . . , 7}). This
condition allows to remove single neuron whose activity (measured by the num-
ber of its wins) is below an assumed level represented by parameter β1.
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Condition 2: di,i+1 > α1

r−1
j=1 dj,j+1

r , where di,i+1 is the distance between the
neurons no. i and no. i+ 1 (see [1] for details) and α1 is experimentally selected
parameter (usually α1 ∈ [2, 4]). This condition prevents the excessive disconnec-
tion of the neuron chain or sub-chain by allowing to disconnect only relatively
remote neurons.

Condition 3: rS < β2, where rS is the number of neurons in sub-chain S and β2
is experimentally selected parameter (usually β2 ∈ {3, 4}). This condition allows
to remove rS-element neuron sub-chain S that length is shorter than assumed
acceptable value β2.

The operation of the insertion of additional neurons into the neighbourhood
of high-active neurons in order to take over some of their activities covers 3 cases
denoted by 4a, 4b, and 4c, respectively.

Condition 4a (the insertion of new neuron (n) between two neighbouring high-
active neurons no. i and no. i+1): IF wini > β3 AND wini+1 > β3 THEN weight
vector w (n) of new neuron (n) is calculated as follows: w (n) = w i+w i+1

2 , where
wini, wini+1 are as in Condition 1 and β3 is experimentally selected parameter
(usually β3 ∈ {5, 6, . . . , 9}).

Conditions 4b (the replacement of high-active neuron no. i - accompanied by
low-active neurons no. i−1 and no. i+1 - by two new neurons: (n) and (n+1)): IF
wini > β3 AND wini−1 < β3 AND wini+1 < β3 THEN weight vectors w (n) and
w (n+1) of new neurons (n) and (n+1) are calculated as follows: w (n) = w i−1+w i

2
and w (n+1) = w i+w i+1

2 (β3 - as in Condition 4a).
Condition 4c (the insertion of new neuron in the neighbourhood of an end-

chain high-active neuron accompanied by low-active neighbour; r-th neuron case
will be considered; 1st neuron case is analogous): IF winr > β3 AND winr−1 <
β3 THEN weight vector wr+1 of new neuron (r + 1) is calculated as follows:
w r+1 = w r + w r−w r−1

dr,r−1
davr, where davr = 1

r−1

∑r−1
j=1 dj,j+1 (β3 - as in Condition

4a and dj,j+1 - as in Condition 2).

Condition 5: deS1,eS2 < α2[12 (
rS1−1
j=1 dj,j+1

rS1
+

rS2−1
j=1 dj,j+1

rS2
)] , where S1 and

S2 are two sub-chains (containing rS1 and rS2 neurons, respectively) whose
appropriate ends eS1 ∈ {1, rS1} and eS2 ∈ {1, rS2} are closest to each other; sub-
chains S1 and S2 are the candidates for the connection by combining their ends
eS1 and eS2 (dj,j+1 - as in Condition 2, α2 - experimentally selected parameter
(usually α2 ∈ [0.5, 4])). This condition allows to connect two sub-chains not
only with closest ends but also with relatively close to each other neighbouring
neurons that correspond to compact pieces of the same cluster of data.

Conditions 1 through 5 are checked after each learning epoch. The condition
that is fulfilled activates the appropriate operation. As far as the network learning
rule is concerned, the Winner-Takes-Most (WTM) approach has been applied.
It uses the Gaussian-type neighbourhood function for the winning neurons as
well as the Euclidean distance measure between learning- and weight vectors in
determining these neurons (see also [1, 3]).

Fig. 2 shows the performance of the dynamic self-organizing neural network
applied to the synthetic data set of Fig. 1a considered earlier in this paper.
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Fig. 2. Synthetic data set of Fig. 1a and the route in it in learning epochs: a) no. 2,

b) no. 5, c) no. 15, d) no. 50, and e) no. 100 (end of learning), as well as the plots

of number of neurons (f) and number of sub-chains (g) vs. epoch number, and the

envelope of nearness histogram for the route of Fig. 2e (h)

This time, the system automatically adjusts the number of neurons in the
network starting from arbitrarily chosen 10 neurons at the beginning of learning.
In the final stage of learning the number of neurons oscillates around an optimal
value, to stabilize finally on 124 neurons (see Fig. 2f). The number of neuron sub-
chains in the course of learning is presented in Fig. 2g. The proposed approach -
as it can be seen in Fig. 2e and Fig. 2h (the envelope of nearness histogram for the
route of Fig. 2e) - provides a clear and correct image of the cluster distribution
in the problem under consideration.
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a) b) c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

d) e) f)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Epoch number

0

40

80

120

160

200

240

N
um

be
r 

of
 n

eu
ro

ns

g) h)

0 20 40 60 80 100
Epoch number

0

1

2

3

4

5

6

7

8

N
um

be
r 

of
 s

ub
-c

ha
in

s

0 17 34 51 68 85 102 119 136 153 170 187 204
Numbers of neurons along the route

0.0

0.1

0.2

0.3

0.4

0.5

E
nv

el
op

e 
of

 n
ea

rn
es

s 
hi

st
og

ra
m

Fig. 3. Synthetic data set (a) and the route in it in learning epochs: b) no. 3, c)

no. 10, d) no. 20, and e) no. 100 (end of learning), as well as the plots of number

of neurons (f) and number of sub-chains (g) vs. epoch number, and the envelope of

nearness histogram for the route of Fig. 3e (h)

Figs. 3 and 4 are further illustrations of the performance of the proposed
clustering technique applied to two synthetic data sets presented in Figs. 3a and
4a, respectively.

Data set of Fig. 3a contains clusters in the form of two spirals “wound” on each
other, whereas data set of Fig. 4a contains as many as fourteen clusters of different
sizes and shapes. Such a diversified collection of data sets (including also two real-
life, multidimensional data sets considered later in this paper) enables us to carry
out a comprehensive test of the performance of the proposed clustering technique.
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Fig. 4. Synthetic data set (a) and the route in it in learning epochs: b) no. 2, c) no. 5,

d) no. 10, and e) no. 100 (end of learning), as well as the plots of number of neurons

(f) and number of sub-chains (g) vs. epoch number, and the envelope of nearness his-

togram for the route of Fig. 4e (h)

As far as experiments regarding data sets of Figs. 3a and 4a are concerned,
in both cases the dynamic neural systems automatically adjust the numbers of
their neurons starting - as in experiment of Fig. 2 - from arbitrarily chosen 10
neurons at the beginning of learning. In the final stage of learning the numbers
of neurons oscillate around optimal values, finally stabilizing on 206 neurons for
two-spiral problem (see Fig. 3f), and 188 neurons for the problem of Fig. 4a
(see Fig. 4f). The numbers of neuron sub-chains in the course of learning are
presented in Figs. 3g and 4g, respectively. As it can be seen in Fig. 3e and
Fig. 3h (the envelope of nearness histogram for the route of Fig. 3e) in the
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case of two-spiral problem, and, analogously, in Fig. 4e and Fig. 4h in the case
of fourteen-cluster problem, the proposed clustering technique provides correct,
clear and easily-verified image of the cluster distribution in both problems under
consideration.

4 Application to Complex, Multidimensional
Cluster-Analysis Problems

The dynamic self-organizing neural networks as the clustering technique will now
be tested with the use of two real-life, complex and multidimensional data sets
(Optical Recognition of Handwritten Digits Database and Image Segmentation
Database of Statlog Databases) [5]. The first data set contains 1797 records (nu-
merical descriptions of images of handwritten digits); each record is described
by as many as 64 numerical attributes. The second data set consists of 4435
records (numerical descriptions of 3x3-pixel neighbourhoods in a satellite im-
age) described by 36 attributes. Due to complexity of both data sets and high
dimensionality of their attribute spaces, their graphical presentation by means
of e.g. a well-known Sammon’s mapping is of no use.

Figs. 5 and 6 present the performance of the proposed clustering technique
in both considered data sets. As the learning progresses, both dynamic neural
systems adjust the overall numbers of neurons in their networks (Figs. 5a and 6a,
respectively) that finally are equal to 163 (the first data set) and 886 (the second
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Fig. 5. The plots of number of neurons (a) and number of sub-chains (b) vs. epoch
number, and c) the envelope of nearness histogram for the route in the attribute space
of Optical Recognition of Handwritten Digits Database
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data set) as well as the numbers of sub-chains (Figs. 5b and 6b, respectively)
finally achieving the values equal to 10 (the first data set) and 6 (the second
data set). The number of sub-chains is equal to the number of clusters detected
in a given data set. The envelopes of the nearness histograms for the routes in
the attribute spaces of both considered data sets (Figs. 5c and 6c, respectively)
reveal perfectly clear images of the cluster distributions in them, including the
number of clusters and the cluster boundaries (indicated by 9 local minima on
the plot of Fig. 5c and 5 local minima on the plot of Fig. 6c). Since the number
of classes and class assignments are known in both original data sets, a direct
verification of the obtained results is also possible. The percentages of correct
decisions, equal to 91.65% (the first data set) and 75.33% (the second data
set), regarding the class assignments are very high (especially that they have
been achieved by the unsupervised-learning systems operating on complex and
multidimensional data sets).
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Fig. 6. The plots of number of neurons (a) and number of sub-chains (b) vs. epoch

number, and c) the envelope of nearness histogram for the route in the attribute space

of Image Segmentation Database of Statlog Databases

5 Conclusions

The dynamic self-organizing neural networks with one-dimensional neighbour-
hood that can be efficiently applied in complex, multidimensional cluster-analysis
problems have been presented in this paper. The proposed networks in the course
of learning are able to disconnect their neuron chains into sub-chains and to re-
connect some of the sub-chains again as well as to dynamically adjust the overall
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number of neurons in the system. These features enable them to fit in the best
way the structures “encoded” in data sets. The operation of the proposed tech-
nique has been illustrated by means of three diversified synthetic data sets, and
then, this technique has been tested with the use of two real-life, complex and
multidimensional data sets (Optical Recognition of Handwritten Digits Database
and Image Segmentation Database of Statlog Databases) [5]. The application of
the proposed technique to WWW-document clustering is presented in [3].
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Abstract. In this article we extend the global relevance learning vector
quantization approach by local metric adaptation to obtain a locally
optimized model for classification. In this sense we make a step in the
direction of quadratic discriminance analysis in statistics where classwise
variance matrices are used for class adapted discriminance functions. We
demonstrateb the performance of the model for a medical application.

1 Introduction

Classification is an important tool in data processing. Popular methods are tradi-
tional statistical approaches like Fishers linear or quadratic discriminant analysis
(LDA/QDA) or Learning Vector Quantization (LVQ). Fishers discriminant as-
sumes global constant variance for the linear case and classwise constant variance
for the quadratic case. The variance is directly involved in the classification de-
cision by the discriminance function. In this sense, the QDA decision is based on
classwise local variance analysis. However, LDA/QDA is a linear classifier, only.
LVQ belongs to the prototype based classifiers, i.e. one or more prototypes as
representatives for the several class distributions are generated. It has the disad-
vantage that the adaptation process does not follow a gradient descent of a cost
function. The problem is solved by Sato&Yamada proposing the generalized
LVQ (GLVQ). As Fishers approach, GLVQ is based on the Euclidean metric.
Yet, it can be extended to handle general similarity measures, which may de-
pend on additional parameters. In this way a global metric adaptation has been
established resulting in relevance GLVQ (GRLVQ). However, the prototypes re-
flect the local properties of their respective classes. Hence, a local metric would
be preferable.

In this paper we extend GRLVQ to locally adapt the metric for each proto-
type. Thus the above mentioned conflict is solved. Choosing a class dependent
metric the approach becomes a non-linear extension of QDA, in the same way
as GRLVQ can be seen as non-linear extension of LDA.

In mathematical terms, GRLVQ can be interpreted as large margin optimiza-
tion. The idea of margin optimization has been pioneered in the well-known,
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powerful support vector machine. We extend the margin analysis of GRLVQ
to the local variant, introduced in this article. The efficiency of the method is
demonstrated in a real life example from medicine.

2 Prototype Based Classification

From a mathematical point of view, we are interested in general classification
tasks. Data X = {xi ∈ R

n : | : i = 1, . . . ,m}, whereby the input vectors xi are
characterized by n features, are to be classified into C given classes. Components
of a vector x ∈ R

n are referred to by subscripts, i.e., x = (x1, . . . , xn). Prototype
based classifiers constitute a particularly intuitive way of classification by means
of typical locations of known class allocation which characterize local regions
of the data space. Every class c is represented by a set W (c) of weight vectors
(prototypes) in R

n. Weight vectors are denoted by wr and their respective class
label is referred to by cr. A new signal x ∈ R

n is classified by the winner-takes-all
rule of the classifier, i.e.

x 3→ c(x) = cr such that d(x,wr) is minimum.

Thereby, d(x,wr) is chosen as the squared Euclidean distance

d(x,wr) = ‖x− wr‖2 =
n∑

i=1

(xi − wr
i )

2

of the data point x to the prototype wr. The respective closest prototype wr is
called winner or best matching unit for x. The subset

Ωr = {xi ∈ X | d(xi, wr) is minimum}

is called receptive field of neuron wr . Thus, data point xi is mapped to the class
c(xi).

Usually, one is interested in finding a prototype based classifier which matches
a given training set and its underlying regularity as accurately as possible. A
training set consists of a collection of data points together with their known
class allocations {(xi, yi) ∈ R

n × {1, . . . , C} | i = 1, . . . ,m}. Training aims
at minimizing the classification error on the given training set. I.e., prototype
locations have to be found such that the difference between the set of points
belonging to the c th class, {xi ∈ X | yi = c} and the receptive fields of the
corresponding prototypes,

⋃
wr∈W (c)Ωr, is minimized by the adaptation process.

Learning vector quantization (LVQ) as proposed by Kohonen [7] constitutes
a popular and simple learning algorithm which forms the base for several ex-
tensions and alternatives. The LVQ learning rule consists in heuristically moti-
vated Hebbian learning which leads to a stochastic gradient descent on the cost
function

CostLVQ =
∑

xi∈X

fLVQ(dr+ , dr−) .
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dr+ denotes the squared Euclidean distance of xi to the closest prototype wr+

labeled with cr+ = yi, and dr− denotes the squared Euclidean distance to the
closest prototype wr− labeled with a label cr− different from yi. For standard
LVQ, the decisiion function is

fLVQ(dr+ , dr−) =
{
dr+ if dr+ ≤ dr−
−dr− otherwise

Obviously, this cost function is highly discontinuous, and instabilities arise for
overlapping data distributions. The decision function of LVQ2.1 is

fLVQ2.1(dr+ , dr−) = Iw(dr+ − dr−),

whereby Iw yields the identity inside a window where LVQ2.1 adaptation takes
place, and Iw vanishes outside. Still this choice might produce an instable dy-
namic, and the window where adaptation takes place must be chosen carefully.
Generalized LVQ (GLVQ) has been proposed by Sato&Yamada as a stable al-
ternative to LVQ2.1 [8]. The respective cost function can be obtained by setting

fGLVQ(dr+ , dr−) = sgd
(
dr+ − dr−

dr+ + dr−

)
whereby

sgd(x) = (1 + exp(−x))−1

denotes the logistic function. The update rule can be achieved by taking the
derivatives [4]

4wr+ = 2ε+ ·sgd′
μ(xi) ·ξ+ ·(xi−wr+) and 4wr− = −2ε− ·sgd′

μ(xi) ·ξ− ·(xi−wr−)

where ε+ and ε− ∈ (0, 1) are the learning rates, the logistic function is evaluated
at position μ(xi) = (dr+ − dr−)/(dr+ + dr−), and

ξ+ =
2 · dr−

(dr+ + dr−)2
and ξ− =

2 · dr+

(dr+ + dr−)2
(1)

denote the derivatives of fGLVQ(dr+ , dr−) with respect to dr+ and dr− , respec-
tively. This procedure still has the drawback that it is very sensitive to initial-
ization of prototypes because of the multiple optima of the cost function. This
can be widely avoided by integrating neighborhood cooperation resulting in su-
pervised relevance neural gas, whereby the cost function of GLVQ is obtained in
the limit for vanishing neighborhood cooperativness.

2.1 Metric Adaptation

Prototype based classifiers crucially depend on the metrics. Since an appropriate
metric is usually not clear prior to learning, learning metrics which are automati-
cally adapted during training according to the information contained in the data
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are particularly interesting. Since GLVQ is formulated as general cost minimiza-
tion algorithm, any differentiable similarity measure can be integrated into its
cost function instead of the Euclidean metric yielding update rules for the proto-
types where the Hebbian terms (xi−w) are substituted by the derivative of the
respective similarity measure with respect to the prototype w, as demonstrated
in [4]. The same optimization mechanism can be used to adapt metric parameters
during training. Then the prototype update is accompanied by a simultaneous
adaptation of the metric parameters. One simple but powerfull choice is the local
scaled Euclidean metric

dλr

r (x,wr) = ‖x− wr‖2λr =
n∑

i=1

λr
i (xi − wr

i )2 with λr = (λr
1, . . . , λ

r
n)

with the constraint λr
i ≥ 0 and

∑
i λ

r
i = 1 attached to prototype r. Thus, the

relevance factors λr
i are assigned to a specific prototype and the respective local

region of the data space. They can be adapted independently for each local
region of the data space. Classification is performed extending the winner takes
all rule to this situation

x 3→ c(x) = cr such that ‖x− wr‖2λr is minimum . (2)

Note that now, the receptive fields of prototypes need no longer be convex
since no global metric is used for classification. Training can be achived by taking
the derivative of the extended cost function

CostLGRLV Q =
∑

xi∈X

sgd

(
dλr+

r+
− dλr−

r−

dλr+
r+

+ dλr−
r−

)

We refer to this local relevance GLVQ as LGRLVQ. Standard GRLVQ is
obtained by λr ≡ λ, ∀r. As for GLVQ neighborhood cooperation during learning
can easily be established to avoid local optima.

The updates for the prototypes and local relevance terms are achieved taking
the derivatives as beforehand. The relevance terms are adapted by

4λr+
l = −ελ · sgd′|μr(xi) · ξ+ · (w

r+
l − xi

l)
2

and
4λr−

l = ελ · sgd′|μr(xi) · ξ− · (w
r−
l − xi

l)
2

whereby the local distance measure has to be used in (1). A normalization for
each λr is added after an adaptation step.

2.2 Generalization Ability

Due to the local relevance parameters of LVQ, the generalization bounds of
standard GRLVQ [5] do not longer hold for this more powerful setting. Here,
we derive large margin generalization bounds for LGRLVQ. Thereby, we de-
rive bounds for general function classes given by the winner takes all rule with
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adaptive local metric as defined in equation (2). In addition, we show that the
denominator of the cost function function of LGRLVQ characterizes the mar-
gin and directly influences the generalization bound. Thus, LGRLVQ can be
interpreted as large margin algorithm just as GRLVQ.

Generally speaking, the generalization ability of a classifier refers to the com-
parison of the training error with the expected error for new data [2,11]. Here, we
consider binary classification problems, with classes labeled 1 and −1. Assume
an (unknown) probability measure P is given on R

n × {−1, 1}. Training sam-
ples (xi, yi) are drawn independently and identically distributed (i.i.d. for short)
from R

n × {−1, 1}. Pm refers to the product of P if m examples (x1, y1), . . . ,
(xm, ym) are chosen. The unknown regularity shall be learned by a LGRLVQ-
network or some other prototype-based classifier with adaptive local diagonal
metric and p prototypes wk ∈ R

n and the respective relevance terms λ1, . . . ,
λp which describe the local weighted metrics. The function computed by the
classifier is given by the winner-takes-all rule defined in (2). Denote by

F = {f : R
n → {−1, 1} | f is given by (2) depending on :

w1, . . . , wp, λ1, . . . , λp ∈ R
n}

the class of functions which can be computed by such a network. The goal of
learning is to find a function f ∈ F for which the probability

EP (f) := P (y �= f(x))

is minimum. Since the underlying regularity P is not known and only examples
(xi, yi) are available for characterizing this regularity, training tries to minimize
the empirical training error

Êm(f) :=
m∑

i=1

1yi �=f(xi)/m

whereby 1yi �=f(xi) indicates whether xi is mapped to the desired class yi or not.
Generalization means that Êm(f) is representative for E (f) with high proba-
bility if the examples are chosen according to Pm such that optimization of the
empirical training error will eventually approximate the underlying regularity.

Given a point x with desired output y, we define the margin as the value

Mf(x, y) := −dλr+

r+
+ dλr−

r− ,

i.e. x is classified incorrectly iff Mf(x, y) is negative. Otherwise, x is classified
correctly with ‘security’ margin Mf (x, y). Due to the choice of the cost function
of LGRLVQ which involves this term within the denominator, LGRLVQ aims at
maximizing this margin. Following the approach [2] we define the loss function

L : R → R, t 3→

⎧⎨⎩1 if t ≤ 0
1− t/ρ if 0 < t ≤ ρ
0 otherwise
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for fixed ρ > 0. The term

ÊL
m(f) :=

m∑
i=1

L(Mf(xi, yi))/m

accumulates the number of errors made by f and, in addition, punishes all
correctly classified points, if their margin is smaller than ρ. It can be shown
using the theory provided in [2] that this modified empirical error, which also
includes the margin, is representative for the true error with high probability,
whereby a bound is obtained, which is independent of the dimensionality of
the input space: We assume that the support of the probability measure P is
bounded, i.e. ∀x the inequality ‖x‖ ≤ B holds for some B > 0 and further
‖w‖ ≤ B , using the standard Euclidean metric.

According to [2](Theorem 7) we can estimate for all f ∈ F with probability
at least 1− δ/2

EP (f) ≤ ÊL
m(f) +

2K
ρ
·Gm(F) +

√
ln(4/δ)

2m

whereby K is a universal positive constant and Gm(F) is the so-called Gaussian
complexity of the considered function class which we now define. The empirical
Gaussian complexity is given by

Ĝm(F) = Eg1,...,gm

(
sup
f∈F

∣∣∣∣∣ 2
m

m∑
i=1

gi · f(xi)

∣∣∣∣∣
)

for which expectation is taken with respect to independent Gaussian variables
g1, . . . , gm with zero mean and unit variance. The Gaussian complexity is the ex-
pectation over the i.i.d. points xi according to the marginal distribution induced
by P :

Gm(F) = Ex1,...,xmĜm(F).

Both complexities measure the richness of the function class F and constitute
convenient alternatives to the standard VC-dimension which can also be esti-
mated for prototype-based classifiers.

The classification given by the winner-takes-all rule (2) can be reformulated
as fixed Boolean formula over terms of the form dλi

i − dλj

j with dλi

i and dλj

j

constituting the weighted squared Euclidean distance of a given input x to two
prototypes wi and wj with different class labels. Note that the number of such
terms is upper bounded by p · (p− 1)/2 since p prototypes are available within
the classifier. According to [2](Theorem 16) we find

Gm(F) ≤ p · (p− 1) ·Gm(Fij)

whereby Fij denotes the restricted class of classifiers which can be implemented
with only two prototypes wi and wj with different class label. Define by Λi the
diagonal matrix with entries λi

j . For fixed i and j, we find
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dλi

i − dλj

j ≤ 0
⇐⇒ (x− wi)t · Λi · (x− wi)− (x− wj)t · Λj · (x− wj) ≤ 0
⇐⇒ xt · Λi · x− xt · Λj · x

− 2 · (Λi · wi − Λj · wj)tx+ (wi)t · Λi · wi − (wj)t · Λj · wj ≤ 0

Hence, every function from Fij can be written as the sum of a function from the
set Fi = {x 3→ xt·Λi·x}, a function form the set−Fj , and a function implemented
by a simple perceptron, i.e. linear classifier. According to [2](Theorem 12), it
holds

Gm(c · F) = c ·Gm(F)

and
Gm(

∑
i

Fi) ≤ lnm
∑

i

Gm(Fi).

Thus it is sufficient to independently estimate the Gaussian complexity of
linear and quadratic functions of this form.

For linear functions, the estimation follows immediately: since ‖x‖ ≤ B, the
length of inputs to the linear classifier can be restricted by B + 1 (including the
bias term). Since all prototypes w are restricted by ‖w‖ ≤ B and the relevance
terms add up to 1, the size of the weights of the linear classifier is restricted by
4B + 2B2. The empirical Gaussian complexity of this class of linear classifiers
can be estimated according to [2](Lemma 22) by

4 · B · (B + 1) · (B + 2) ·
√
m

m
.

The empirical Gaussian complexity and the Gaussian complexity differ
by more than ε with probability at most 2 · exp(−ε2m/8) according to [2]
(Theorem 11).

Since we can interprete the mapping (x 3→ (x2
1, . . . , x

2
n) as feature map of a

kernel, an estimation of the Gaussian complexity for the consisdered quadratic
functions is also possible: for x 3→

∑
λj

ix
2
i with ‖λj‖ ≤ 1 we can estimate the

empirical Gaussian complexity by

2 ·B2 ·
√
m

m

because of [2](Lemma 22), using again the fact ‖x‖ ≤ B.
Thus, the overall error bound

EP (f) ≤ ÊL
m(f) +

4K · p(p− 1)(2B(B + 1)(B + 2) +B2) lnm
ρ ·
√
m

+
(

1 +
8K · p(p− 1) · lnm

ρ

)√
ln 4/δ
2m

≤ ÊL
m(f) +

lnm
ρ ·
√
m
·
√

ln(1/δ) ·O(Kp2B3)
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with probability of at least 1− δ arises. This term limits the generalization error
for all classifiers of the form (2) with adaptive metric if only two classes are
dealt with and inputs and weights are restricted by B. Note that this bound is
independent of the dimensionality n of the data. It scales inversely to the margin
ρ, i.e. the larger the margin the better the generalization ability.

This bound indicates that LGRLVQ includes the objective of structural risk
minimization during training because the termsMf (x, y) which characterize the
margin are directly contained in the cost function of LGRLVQ. Naturally, only
the extremal margin values need to be limited and thus a restriction of the
respective update to extremal pairs of prototypes would suffice. Thus, this argu-
ment even proposes schemes for active data selection if a fixed and static pattern
set is available for training to speed the algorithm and improve its convergence.

3 Experiments and Concluding Remarks

We apply LGRLVQ to medical data. Prototype based classification plays an im-
portant role in medical application because of its intuitive understanding and
robust behaviour [9]. We investigate data of psychotherapy patients which un-
derwent a psychodynamic psychotherapy at the University Hospital for Psy-
chotherapy of Leipzig university between 1997 and 2005 [10]. Psychotherapy
patients have to give a self-adjudgemet of their recent psychotic stage at several
times during therapy. The resepctive questionaire is the Symptom-Check-List-
90-R (SCL), which was developed to describe psychosomatic impairments [3]. It
consists of 90 items, which are collected in 9 scales describing different clinical
aspects:

– somatization (12 items)
– obsessive-compulsive (10 items)
– interpersonal sensitivity (9 items)
– depression (13 items)
– anxiety (10 items)
– anger-hostility (6 items)
– phobic anxiety (7 items)
– paranoid ideation (6 items)
– psychoticism (10 items)
– rest scale (7 items)

The rest scale is not under consideration, thus the questionaires data dimen-
sion is 9. We investigate two data sets, whereby the patients data were collected
at the begin of a stationary psychotherapy in our psychosomatic clinic. The first
data set comprise all patients between 1997 and 2001 (N1 = 484), wheras the
second one is from 2001 to 2005 (N2 = 575). The statistic of both sets does not
differ, such that the first can serve as training set, the other one as test. The
patient data should varying according to patients impairment.

The clinical impairment level of the patients was judged by a discretized
global-severity-index (GSI) level. The GSI is slightly influenced by the age and
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Table 1. GSI-levels and clinical meaning using the threshold τ = 0.6

GSI - value meaning

GSI ≤ 0.6 without disturbances

0.6 < GSI ≤ 1.2 weakly disturbed

1.2 < GSI ≤ 1.8 moderately disturbed

1.8 < GSI heavily disturbed

Table 2. Classification accuracies obtained by the the several methods for training

and test

data set LDA QDA GLVQ GRLVQ LGRLVQ

training 71.39% 84.46% 83.12% 85.71% 87.28%

test 67.27% 82.13% 82.06% 85.54% 86.02%

the gender. Yet, the relation is that the higher the GSI-value the heavier the
disturbances, in general, and the influence of age and gender is only marginally
[1]. So it is neglected in our investigations. Roughly, one can identify several
level classes of severity using the threshold τ = 0.6, which are depicted in Tab.1.
Thus the level ranges between 1 . . . 4 with inceasing disorder.

We compare LDA/QDA with GLVQ/GRLVQ/LGRLVQ whereby for the
LVQ-algorithms 3 prototypes per class are used. The results are depicted in
Tab. 2

We see that the metric adapted prototype based classifiers outperform
LDA/QDA. Further, as expected, LGRLVQ achieves best accuracy for training
as well as test. Thus LGRVQ can be seen as a very powerful non-linear alter-
native to QDA. Moreover, the good experimental behavior is accompanied by a
mathematical counterpart putting the algorithm into the class of large margin
optimizers.
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Abstract. We have recently proposed a novel algorithm for ensemble
creation called GEMS (Genetic Ensemble Member Selection). GEMS
first trains a fixed number of neural networks (here twenty) and then
uses genetic programming to combine these networks into an ensemble.
The use of genetic programming makes it possible for GEMS to not
only consider ensembles of different sizes, but also to use ensembles as
intermediate building blocks. In this paper, which is the first extensive
study of GEMS, the representation language is extended to include tests
partitioning the data, further increasing flexibility. In addition, several
micro techniques are applied to reduce overfitting, which appears to be
the main problem for this powerful algorithm. The experiments show
that GEMS, when evaluated on 15 publicly available data sets, obtains
very high accuracy, clearly outperforming both straightforward ensemble
designs and standard decision tree algorithms.

1 Introduction

This paper focuses on predictive modeling, which is the task of learning a target
function that maps each attribute set to an output value. If the output (target)
value is continuous, the problem is referred to as regression. Predictive classifi-
cation, on the other hand, deals with target values representing predefined class
labels. Fig. 1 on the following page shows a schematic picture of predictive mod-
eling. Here, data from both a data warehouse and operational databases is fed
to the data mining algorithm. The data mining algorithm uses a score function
to produce a model, which in turn is used on novel data (a test or production
set) to produce the actual predictions.

More technically, the predictive model is a mapping from a vector input to
a scalar output which is learnt from samples. The training data thus consists
of pairs of measurements, each having an input vector x(i) and a corresponding
target value y(i). The predictive model is an estimation of the function y=f(x;Θ),
used to predict a value y, given an input vector of measured values x and a set
of estimated parameters Θ for the model f. The process of finding the best Θ
values, using the score function, is the core of the data mining technique.

The primary goal, when performing predictive modeling, is, of course, to ob-
tain models that are likely to generalize well; thus exhibiting high accuracy when
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Fig. 1. Predictive modeling

applied to novel data. The two most common data mining techniques are, ar-
guably, artificial neural networks (ANNs) and decision trees (DTs). ANNs are
normally the technique of choice if there is no explicit demand requiring a trans-
parent model. The motivation is that ANNs are known to often produce very
accurate models in many diverse domains. Within the research community it is,
however, a well-known fact that the use of ANN ensembles normally results in
even higher accuracy; see e.g. [1] or [2]. Despite this, the use of ensembles in
applications is still limited. Two possible reasons for this are insufficient knowl-
edge about the benefits of using ensembles and limited support in most data
mining tools. In addition, even when ensembles are used, very simple variants
are often preferred. A typical choice would be to train exactly five (or ten) ANNs
with identical topology and simply average the output. With this in mind, al-
gorithms for constructing accurate ensembles should be of significant interest to
both researchers and practitioners within the data mining community. The over-
all purpose of this paper is to extend and further evaluate a recently proposed
technique for the creation of ANN ensembles, called GEMS (Genetic Ensemble
Member Selection).

2 Background and Related Work

Although any algorithm for constructing ensembles must somehow determine
ensemble members, the actual selection could be performed in many different
ways. Standard techniques like bagging, introduced in [3], and boosting, intro-
duced in [4], rely on resampling techniques to obtain different training sets for
each of the classifiers. Another option is to train each classifier independently
(most often using common data) and then either combine all classifiers or select
a subset to form the actual ensemble.
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Several approaches try to use genetic algorithms (GAs) to search for optimal
ensembles. Zhou et al. [5] - [6] proposed an approach named GASEN, where
several ANNs are trained before GAs are used to select an optimal subset of
individual networks. In GASEN, the optimization is performed on individual
ANNs and each ANN is coded (in the chromosome) as a real number denoting
the benefit of including that ANN. The optimization criterion (the fitness) is
rather technical, but boils down to accuracy on a hold-out set. Opitz and Shavlik
[7] proposed a method called ADDEMUP, where the GA is used for creating new
ANNs as parts of an ensemble. The size of the ensemble is predetermined and
fixed. ADDEMUP uses a fitness function directly balancing accuracy against
diversity, also using a hold-out set.

We have recently proposed and evaluated a novel, yet simpler, approach [9],
also based on GAs. Here several individual ANNs are trained separately, on the
same data set, and then GAs are used to directly find an accurate ensemble
from these ANNs. The optimization is performed on ensembles and the fitness
is directly based on ensemble accuracy on training and/or hold-out sets. The
number of ANNs in the ensemble can vary since optimization is performed on the
ensemble level. More specifically; each chromosome is represented as a bitstring
where each gene corresponds to a specific ANN. As expected, a 1 would indicate
that the specific ANN should be included in the ensemble.

In that study we also evaluated several, more basic ways, of creating ensem-
bles. Although our novel technique finished on top, an interesting result was that
some extremely straightforward approaches came very close. More specifically;
if we trained 50 ANNs and used the ten ANNs with highest individual accu-
racy on a hold-out set to form the ensemble, this ensemble turned out to have
almost as high accuracy on the test set as the one created using GAs. Another
observation was that just combining all 50 ANNs into an ensemble most often
also resulted in very accurate ensembles. All in all, the main conclusion was that
almost all ensembles clearly outperform single models, but it is very hard to find
a technique constantly producing ensembles more accurate than even the most
straightforward ensembles.

In our latest study [8], we introduced the novel algorithm GEMS. GEMS
consists of two steps, each requiring several design choices and parameters. In
the first step of GEMS, a number of ANNs are trained and stored in a pool. Each
ANN uses a localist (1-of-C) coding; the number of output units is thus equal
to the number of classes. The activation level of the output units for a specific
ANN is termed its result vector. In the second step, Genetic Programming (GP)
is used to create the actual ensemble. When using GP, the ensembles are coded
as (genetic) programs, each individual representing a possible combination of
the available ANNs. More specifically; each ensemble is represented as a tree,
where the internal nodes contain operators, while the leaves must be either ANNs
from the pool or (random) constants. In the first study, GEMS used only two
operators; FACT and AVG. FACT was used to multiply a result vector with
a constant and AVG averaged the result vectors from its children. The actual
classification from a GEMS ensemble is determined from the maximum value of
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the top-level result vector. If, for example, the problem has three classes, every
result vector would include three values (each representing a specific class) and
the ensemble would make the prediction based on these values on the top level.
It should be noted that GEMS in fact builds ensembles using a mix of smaller
ensembles and single ANNs as building blocks. Fig. 2 shows a GEMS ensemble
coded in the tree format described above. This very small, sample, ensemble uses
only three ANNs and the result is the average of ANN3 (multiplied with a factor
0.8) and the average of ANN1 and ANN2.

Fig. 2. GEMS ensemble

In the paper introducing GEMS [8], GEMS was evaluated in two different
experiments, both using four data sets. The first experiment used a pool of 20
ANNs and the second 50 ANNs. In the experiments, GEMS was compared to the
straightforward choice of choosing a fixed number of ANNs, based on hold-out
set accuracy, from the mutual ANN pool. The GEMS fitness function was also
based mainly on hold-out set accuracy. The main result was that GEMS, on two
of the four data sets, was significantly more accurate than all fixed ensembles
evaluated. The results on the other two data sets were, however, inconclusive
since no statistically significant difference between the ensembles evaluated was
found. To be more precise, GEMS in both experiments had almost identical
accuracy to the best competing ensemble. Again it appeared almost impossible
to constantly obtain ensembles significantly better than straightforward choices.
Part of this is probably due to the fact that hold-out set accuracy does not
seem to be the silver bullet it is often assumed to be. As a matter of fact, the
standard procedure of using hold-out set accuracy when comparing models must
be questioned. We all agree that the overall goal is to achieve high accuracy
on unseen data, so naturally the best possible test seems to be to measure
exactly that, accuracy on unseen data. This reasoning, however, has a devious
shortcoming; the real issue is how a model chosen from accuracy on a hold-
out set would perform on yet novel data. If we use a hold-out set to somehow
choose one model over another, the underlying assumption must be that there
is a high correlation between accuracy on that hold-out set and accuracy on
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another set of unseen data; i.e. the actual test set. If this assumption does not
hold, there is obviously little to gain from using a hold-out set as a basis for
ensemble construction.

With this in mind, one very interesting observation was the fact that although
GEMS consistently had much higher accuracy on the hold-out set (compared to
the other ensembles), this property was not always preserved in the test set.
Even though the fitness function used all available data (i.e. both training and
hold-out data) and a length penalty was used to encourage smaller ensembles,
the most probable explanation is that the GP, in spite of this, did overfit the test
data. Just to iterate this important point; in the first study GEMS always had
very high accuracy on the part of the data set covered by the fitness function, but
this did not necessarily carry over to the production set. So, the main purpose
of this study is to investigate if it is possible to avoid the effects of overfitting
by making some alterations to GEMS.

3 Method

With the previous results in mind, we wanted to modify GEMS and the training
scheme in several ways. First, we decided to dispose of hold-out sets altogether
when constructing the ensembles. We believe that the best way of using the
data set might be to use all available data for both ANN training and GP
evolution. We also opted for using a micro technique to enforce some diversity
among the networks. More specifically, each ANN was trained using only part of
the available training data (here 70%) and the exact patterns were randomized
for every ANN. In addition, we significantly altered some parameters, where all
changes were aimed at reducing the risk of overfitting. More specifically; the pool
now contained only 20 ANNs, GP was aborted after only 100 generations and
evolution started with much less complex programs since the creation depth was
reduced from eight to six. In addition, mutation was increased by a factor ten
to introduce more variation in the population. The GP settings used are found
in Table 1.

Table 1. GP parameters

Parameter Value Parameter Value
Crossover rate 0.8 Elitism Yes
Mutation rate 0.01 Persistence 25
Population size 500 Creation depth 6
Number of generations 100 Creation method Ramped half-and-half

The most important difference, however, is that the representation language
for GEMS was changed. Now the first levels of the tree contain splits (the con-
ditions are expressed in original variables) similar to standard DTs. Function and
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Fig. 3. GEMS representation language

terminal sets together with the exact grammar for the representation language
are given in Fig. 3. Using this grammar, GEMS becomes extremely flexible.
Now, it is possible to mix tests partitioning the data with ensembles built using
either individual ANNs or other ensembles. Fig. 4 shows a sample program in
the syntax used by GEMS.

Fig. 4. A sample ensemble in GEMS syntax

The fitness function used has two components: accuracy on the training set
and a length penalty; see Eq. 1. The purpose of the length penalty is to encourage
smaller ensembles to avoid complex and overly specialized ensembles.

f = #correct in training set− 1
10

length (1)

All ANNs in the pool are fully connected feed-forward ANNs. Of the 20 ANNs;
five have no hidden layer, ten have one hidden layer and the remaining five have
two hidden layers. The exact number of units in each hidden layer is slightly
randomized, but is based on the number of inputs and classes in the current
data set. For an ANN with one hidden layer, the number of hidden units is
determined from Eq. 2.

h =
⌊
2 · rand ·

√
v · c

⌋
(2)

v is the number of input variables and c is the number of classes. rand is a
random number in the interval [0, 1]. For ANNs with two hidden layers the
number of units in each hidden layer is determined from Eq. 3 and Eq. 4.
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h1 =
⌊√

v · c
2

+ 4 · rand ·
√
v · c
c

⌋
(3)

h2 =
⌊
rand ·

√
v · c
c

+ c

⌋
. (4)

3.1 Experiments

The 15 data sets used in this study are all publicly available from the UCI
Repository [10]. One explicit goal of this study was to evaluate GEMS on a suf-
ficiently large and diverse set of problems. For a summary of the characteristics;
see Table 2.

To evaluate the performance of GEMS, we created two competing ensembles
also built using the available ANNs. The first ensemble (called S10 ) uses the ten
ANNs with highest individual training accuracy and the second (all) uses all 50
ANNs. In addition, results are also reported for the two standard decision tree
algorithms C5 [11] and CART [12]. For the actual evaluation, we use standard
ten-fold cross validation.

Table 2. Data set characteristics

Name Abbreviation Instances Classes Continuous Categorical Total
BUPA BUP 345 2 6 0 6
CLEVE CLE 303 2 6 7 13
CMC CMC 1473 3 2 7 9
CRX CRX 690 2 6 9 15
GERMAN GER 1000 2 7 13 20
GLASS GLA 214 7 9 0 9
LED7 LED 3200 10 0 7 7
PIMA PIM 768 2 8 0 8
SAT SAT 6435 6 36 0 36
SONAR SON 208 2 60 0 60
TAE TAE 151 3 1 4 5
TIC-TAC TIC 958 2 0 9 9
WAVEFORM WAV 5000 3 21 0 21
WBC WBC 699 2 9 0 9
VEHICLE VEH 846 4 18 0 18

4 Results

The results from the experiments are given in Table 3 on the following page.
As seen in Table 3 on the next page, all ensembles clearly outperform the

two DT algorithms. Additionally, GEMS has the highest mean accuracy on 8
of 15 data sets. GEMS also has the highest overall mean accuracy; although an
average of mean values from different data sets, is, admittedly a rather simplified
measurement. Another very important observation, is the fact that GEMS’ drop
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in accuracy from the training set to the test set is much smaller, compared
to the previous study, indicating that the problem with overfitting actually was
reduced. To further compare the techniques, a series of standard pair wise t-tests
over all ten folds was performed. The results are shown in Table 4.

Table 3. Accuracy on test set, mean values over 10 folds

Technique C5 CART S10 All GEMS
Data set TestAcc TestAcc TrainAcc TestAcc TrainAcc TestAcc TrainAcc TestAcc
BUP .626 .640 .784 .733 .787 .737 .819 .737
CLE .742 .765 .990 .806 .985 .809 .998 .809
CMC .555 .559 .602 .534 .622 .543 .634 .544
CRX .871 .842 .942 .861 .933 .848 .952 .849
GER .716 .716 .956 .734 .937 .729 .958 .732
GLA .632 .632 .838 .668 .835 .664 .884 .708
LED .648 .652 .747 .731 .750 .738 .753 .734
PIM .757 .758 .818 .768 .815 .765 .840 .767
SAT .870 .863 .926 .904 .918 .897 .931 .905
SON .789 .711 1.00 .826 1.00 .811 1.00 .853
TAE .419 .488 .779 .550 .781 .531 .820 .581
TIC .809 .827 .992 .913 .979 .888 .995 .915
WAV .768 .766 .906 .864 .901 .866 .910 .855
WBC .940 .933 .999 .964 .997 .967 1.00 .961
VEH .724 .693 .918 .837 .903 .841 .933 .851
MEAN .724 .723 .880 .780 .876 .776 .895 .787

Table 4. Statistically significant differences

Data sets Results
GLA GEMS significantly better than all other
SAT, TIC GEMS and S10 significantly better than all other
BUP, CLE, LED, WBC, VEH All ensembles significantly better than both DTs
TAE GEMS significantly better than DTs
WAV S10 and All significantly better than GEMS. GEMS

significantly better than DTs
CMC, GER, PIM No significant differences
SON All ensembles significantly better than CART
CRX C5 significantly better than all except S10

It should be noted that it is rather hard to obtain statistical significance
using only ten observations (folds). Accordingly, we performed another series of
experiments on Sonar, TAE and Vehicle. 40 runs on each data set were carried
out; each using 80% of available data for ANN training and GP evolution and
the remaining 20% for testing. The result, again using pair wise t-tests, was
that GEMS, on these data sets, in fact had significantly higher accuracy than
both S10 and All. One interesting observation is that many successful ensembles
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turned out to be very small. As a matter of fact, most winning ensembles used a
single split and, in addition, the two alternative ensembles were often also rather
small.

Fig. 5. Evolved GEMS ensemble (BUPA fold 10)

Fig. 5 shows one example, from the BUPA data set, where a single split
determines if a specific ANN (ANN6) or a small ensemble (ANN4 and ANN7)
should make the prediction.

5 Conclusions

The results of this study clearly illustrates GEMS’ ability to create accurate
classifiers (here ANN ensembles) for many diverse problems. The enhancements
to GEMS introduced here successfully address the previously identified short-
coming of the original GEMS; i.e. the strong tendency to overfit data used for
GP evolution. The most important change is the extension of the representation
language to also include tests partitioning the data, further increasing flexibility.
The excellent performance, coupled with the high flexibility, makes GEMS an
interesting approach to develop further.
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Abstract. In this paper there are developed and evaluated methods for
performing sequential classification (SC) using fuzzy relations defined
on product of class set and fuzzified feature space. First on the base of
learning set, fuzzy relation in the proposed method is determined as a
solution of appropriate optimization problem. Next, this relation in the
form of matrix of membership degrees is used at successive instants of
sequential decision process. Three various algorithms of SC which differ
both in the sets of input data and procedure are described. Proposed
algorithms were practically applied to the computer-aided recognition of
patient’s acid-base equilibrium states where as an optimization procedure
the real-coded genetic algorithm (RGA) was used.

1 Introduction

In many pattern recognition problems there exist dependencies among patterns
to be recognized. For instance, this situation is typical for character recogni-
tion, recognition of state in technological processes, image classification, medical
diagnosis, to name only a few [1].

Among the different concepts and methods of using ”contextual” informa-
tion in pattern recognition, the Bayes decision theory is an attractive from the
theoretical point of view and efficient approach. In this approach a classifying
decision is made on one pattern at a time using information from the entire
past and as a dependence model the Markov chain is adopted [2]. Unfortunately,
this model has many disadvantages (e.g. to construct the effective decision rules
the naive Bayes assumption should be made [4], it requires a priori knowledge
of probability characteristics of compound statistical process) which seriously
restrict its practical usefulness.

Methods developed in the field of computational intelligence such as neural
networks, fuzzy logic and genetic algorithms are recently becoming increasingly
popular in the pattern recognition as an attractive alternative to statistical ap-
proach. They can perform classification from both labeled and unlabeled training
set as well as acquire and explore the human expert knowledge.

This paper presents a new approach to the problem of sequential classification
which uses a fuzzy logic model. This method is based on a concept of fuzzy re-
lation defined on Cartesian product of input data (appropriately formed feature
space) and set of class numbers. This relation expressed as matrix of membership
degrees can either be obtained from the experts directly or can be extracted from
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available learning data containing a set of correctly classified patterns. Though
there are several approaches to designing a classifier using the concept of fuzzy
relation (e.g. [11], [13], [14], [15], [17]), the authors had focussed their attention
on the classical recognition task without taking into account the ”context”, i.e.
dependencies among the patterns to be recognized.

A specific feature of the explored classification task is the dependence between
patterns at particular instants, which should be taken into account in SC algo-
rithms. In other words, when constructing an appropriate decision algorithm we
must not limit our approach to the narrow information channel that concerns
just the features of current pattern but we have to consider all the available data
instead, as they may contain important information about the class of pattern
at a given instant. This methodological imperative applied to the fuzzy relation
approach denotes new conceptual and technical problems which must be solved
in the phase of classifier design. Particularly, it involves the determination of
space of input data, the computation of fuzzy relation matrix (matrices) from
learning data and its/their use in recognition procedure.

The rest of this paper is organized as follows. In Section 2 we introduce neces-
sary background and formulate the problem of SC using fuzzy relations. Section 3
presents various concepts of SC which differ both in the sets of input data and
classification procedure for particular instants of decision process. In Section 4 we
discuss the results of application of proposed SC algorithms to computer-aided
recognition of human acid-base equilibrium states.

2 Preliminaries and the Problem Statement

We will treat the SC as a discrete dynamical process. The object is at the n-th
instant in the state jn ∈ M = {1, 2, . . . ,M}. The state jn is unknown - what
we can observe only is the indirect features by which a state manifests itself. We
will denote a d-dimensional feature vector by xn = [x(1)

n , x
(2)
n , ..., x

(d)
n ] ∈ X , for

features measured at the n-th instant (thus X is the feature space).
The current object state depends on the history and thus in the general case

the decision algorithm must take into account the whole sequence of the pre-
ceding feature values, x̄n = {x1, x2, . . . , xn}. It must be underlined here that
sometimes it may be difficult to include all the available data, especially for big-
ger n. In such cases we have to allow various simplifications (e.g. make allowance
for only several recent values in the x̄n vector), or compromises (e.g. substituting
the whole object history segment that spreads as far back as the k-th instant,
with data processed in the form of a decision established at that instant, say ik).

Apart from the data measured for an object to be recognized, we need some
more general information to take a valid classifying decision, namely the a priori
knowledge concerning the general associations that hold between states (classes)
and features. From now on we assume that this knowledge has the form of a so
called training set, which in the considered decision task consists of m training
sequences:

S = {S1, S2, ..., Sm}, (1)
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where
Sk = ((x1,k, j1,k), (x2,k, j2,k), ..., (xN,k, jN,k)) (2)

denotes a sequence of feature observations and states (classes) for a learning
object.

In consequence, the classification algorithm in the n-th step is of the following
form:

Ψn(x̄n,S) = in. (3)

Obviously, the SC can be also treated as a sequence of single independent tasks
without taking into account the associations that may occur between them. Such
approach leads to the classical concept of recognition algorithm, which assigns
a pattern at the nth instant to a class on the base of its features only, namely:

Ψn(xn,S) = in. (4)

Application of fuzzy relation to the construction of classifier (4) from the
learning set (1) containing N × k patterns (now the order of patterns in the
sequences (2) is irrelevant) is well known in literature (see e.g. [11], [17], [13],
[18]) and resulting procedure comprises the following items:

1. Cover the space X (l) of the individual feature x(l) (l = 1, 2, ..., d) by overlap-
ping fuzzy sets corresponding to the linguistic ”values” of this feature (e.g.
small, medium, big, etc.). For each fuzzy set define its membership function.
Obtained fuzzy sets state fuzzified feature space X (l)

F of individual features.
Create fuzzified feature space as a product XF = X (1)

F ×X (2)
F × ...×X (d)

F . Let
its cardinality be equal to dF - this value depends on number of partitions
and the size of feature vector. For example, in the further practical medical
diagnosis task, d = 3 and we used triangular fuzzy numbers with 3 regular
partitions [3], which gave dF = 27.

2. Determine observation matrix O(S) of learning set S, i.e. fuzzy relation
defined on product of fuzzified feature space XF and learning set S. The ith
row of O(S) (i = 1, 2, ..., N × k) contains membership degrees of features of
ith learning pattern to fuzzy sets of space XF . The number of columns of
O(S) is equal to dF .

3. Determine decision matrix D(S), i.e. relation defined on product of learning
set S and the set of decisions (classes) M. For the training data, where the
classification is exactly known, the ith row is a fuzzy singleton set, i.e. a
vector of all zeros except for a one at the place corresponding to the class
number of ith learning pattern.

4. Find matrix E(S) as a solution of so-called fuzzy relational equation ([11],
[13]):

O(S) ◦ E(S) = D(S), (5)

or - in approximate way - as a solution of the following optimization problem:

ρ(O(S) ◦ E(S), D(S)) = minE ρ(O(S) ◦ E,D(S)), (6)
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where criterion ρ(A,B) evaluates difference between matrices A and B, i.e.
ρ(A,B) ≥ 0 and ρ(A,B) = 0 iff A = B. Operator ◦ denotes here max-
min-norm composition of relations, i.e. multiplication of matrices O and E
with × and + operators replaced by min and max operators (more general
by t-norm and s-norm operators)([7]). In the further practical example we
decided to select the method of determination of matrix E, adopting

ρ(A,B) =
∑
i,j

(aij − bij)2 (7)

and applying as an optimization procedure real-coded genetic algorithm.

Matrix E(S) is a fuzzy relation defined on product of decision setM and feature
space XF , in which reflects knowledge contained in the learning set. To classify a
new pattern x, first the row-matrix of fuzzy observation O(x) is calculated from
known vector of its features [x(1), x(2), ..., x(d)]. Then matrix E(S) is applied to
compute an output row-matrix called target vector ([17]):

O(x) ◦ E(S) = T (x) = [t1(x), t2(x), ..., tM (x)], (8)

which gives a fuzzy classification in terms of membership degrees ti(x) of the
pattern x to the given classes i = 1, 2, ...,M . When a crisp decision is required,
defuzzification has to be applied, typically according to the maximum rule.

In the next section we will apply this procedure to the construction of SC
algorithm (3), i.e. taking into account dependencies among patterns to be recog-
nized.

3 Algorithms of Sequential Classification

Although, the main concept of the proposed methods of SC is the same as for
independent patterns, there are many differences concerning details in procedure
of construction of matrix E and the course of recognition process.

Three procedures have been proposed which differ exclusively in the rele-
vant selection of input data. The first algorithm includes k-instant-backwards-
dependence (k < N) with full measurement data. It means, that decision at the
nth instant is made on the base of vector of features

x̄(k)
n = (xn−k, xn−k+1, ..., xn−1, xn). (9)

In the second approach however, we also include k-instant-backward-
dependence, but using the previous decisions in lieu of the features (9).

Before we will describe these algorithms let us first introduce set S(k) contain-
ing sequences of (k+1) learning patterns from S and set S(k)

j̄(k) - as previously but
in which at the first k position additionally the sequence of classes j̄(k) ∈ Mk

appears.
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3.1 Algorithm with kth Order Dependence (AkD)

The algorithm with the full measurement features can be presented according
to the following points:

1. Create the fuzzified feature space XF as in the procedure for independent
patterns (see Section 2.)

2. Determine observation matrix O(k), i.e. fuzzy relation in the space X k
F =

XF ×XF ×· · ·×XF (k times) and learning subset S(k). The ith row of obser-
vation matrix contains memberships degrees of features x̄(k) of ith learning
sequence from S(k) to the fuzzy sets of space X k

F .
3. Determine decision matrix D(k), i.e. relation defined on product of learning

sequences S(k) and the set of decisions (classes) M. The ith row of D(k) is
a vector of all zeros except for a one at the place corresponding to the last
class number of ith sequence in the set S(k).

4. Find matrix E(k) , so as to minimize criterion

ρ(O(k) ◦ E(k), D(k)). (10)

Matrix E(k) is a fuzzy relation defined on product of decision set M and
feature space X k

F .

The manner of applying the matrix E(k) for decision making is obvious. At
the nth step of sequential recognition first the row-matrix of fuzzy observation
O(x̄(k)

n ) is calculated from known sequence of feature observations (9). Then
matrix E(k) is applied to compute a target vector of soft decisions:

O(x̄(k)
n ) ◦ E(k) = T (x̄(k)

n ), (11)

and final crisp decision is obtained after defuzzification step.
It must be emphasized that proposed procedure leads to the very flexible

sequential recognition algorithm due to optional value of k. In particular, the
value of k need not be constant but it may dynamically change from step to step.
It means next, that choice k = n− 1 for nth instant of sequential classification
denotes the utilization of the whole available information according to the general
form of decision rule (3). On the other side however, such concept - especially
for bigger n - is rather difficult for practical realization.

3.2 Reduced Algorithm with kth Order Dependence and Crisp
History (RkDC)

In this approach for classification at the nth instant, we substitute the whole
object history segment which - as previously - covers the k last instances, i.e.
(xn−k, xn−k+1, ..., xn−1) values with data processed in the form of decisions es-
tablished at these instances, say

ī(k)
n = (in−k, in−k+1, ..., in−1). (12)
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Such a concept significantly simplifies the computational procedure since - the
sequence of previous decisions plays plays the role of peculiar ”switch” which
allows to select appropriate fuzzy relation (matrix). Thus now, we determine the
set of matrices E(k)

ī(k) (for different sequences (12)) using identical procedure as

previously in which set S(k) is replaced with set S(k)
ī(k) and fuzzified feature space

X k
F with simply XF .
As a consequence for each sequence of decisions ī(k), on the base of learning

sequences (1) via optimization procedure (6) the matrix E
(k)
ī(k) is determined.

Next applied in the formula

O(xn) ◦ E(k)

ī
(k)
n

= T (xn, ī
(k)
n ) (13)

leads to the vector of soft classifications at the nth instant and then after max-
imum defuzzification procedure, to the crisp result.

3.3 Reduced Algorithm with kth Order Dependence and Soft
History (RkDS)

In the RkDC algorithm with crisp history, matrix E was univocally determined
by observed sequence of previous diagnoses (12). In the concept of algorithm with
soft history however, we take into account soft decisions at previous instances,
i.e. sequence of decisions for previous instances before defuzzification procedure
(target vectors T containing membership degrees for particular classifications)
instead of sequence (12) of crisp decisions.

Let
Tn−i = (t(1)n−i, t

(2)
n−i, ..., t

(M)
n−i), (14)

be the vector of membership degrees for all classes produced by classification
algorithm at the (n− i)th instant (i = 1, 2, ..., k).

In the RkDS algorithm at the nth instant we replace in (13) matrix E
(k)

ī
(k)
n

for
observed sequence of previous decisions (12) with the weighted sum of matrices
for all possible sequences ī(k)

n ∈Mk, viz.

O(xn) ◦
∑

ī
(k)
n ∈Mk

w
ī
(k)
n
× E

(k)

ī
(k)
n

= T (xn, ī
(k)
n ), (15)

where weight coefficients are equal to product of elements of vectors (14) corre-
sponding to the elements of vector (12), namely

w
ī
(k)
n

= t
(in−k)
n−k · t(in−k+1)

n−k+1 · ... · t(in−1)
n−1 . (16)

4 Practical Example and Concluding Remarks

All the decision algorithms that are depicted in the previous section have been
experimentally tested in respect of the decision quality (frequency of correct
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classifications) for real data that are concerned with recognition of human acid-
base equilibrium states (ABE).

The ABE states diagnosis treated as a classification task contains 5 classes
(patient’s states): metabolic acidosis, respiratory acidosis, metabolic alkalosis,
respiratory alkalosis, correct state and decision is made on the base of vector of
3 features (gasometric examinations): the pH of blood, the pressure of carbon
dioxide, the current dioxide concentration.

Experiments have been worked out on the basis of evidence material that
was collected in Neurosurgery Clinic of Medical Academy of Wroclaw and con-
stitutes the set of training sequences (1). The material comprises 78 patients
(78 sequences) with ABE disorders caused by intracranial pathological states
for whom the data were regularly put down on the 12-hour basis. There were
around 20 examination cycles for each patient, yielding the total of 1486 single
examination instances.

In order to find matrix E the genetic algorithm was applied, which is a popular
and powerful search technique. It is based on ideas borrowed from the theories
of natural selection - the ”survival of the fittest” ([9]). The genetic algorithm
was proceeded as follows:

– Coding method - Although binary representation has been widely used for
GA analysis, in recent years many researchers have been concentrated on the
use of real-coded GA (RGA). It is robust, accurate and efficient approach
because the floating-point representation is conceptually closest to the prob-
lems with real optimization parameters. The chromosome used by the RGA
is a string of floating-point numbers (real-valued genes) of the same length
as the solution vector. It means, that in our task, the elements of matrix
E = [eij ]dF ×M were directly coded to the chromosome, namely:

C = [e11, e12, ..., e1M , e21, e22, ..., e2M , ..., edF M ] = [c1, c2, ..., cL], (17)

where M is a number of classes and dF denotes dimension of feature space.
– The fitness function - Each chromosome was evaluated based on the following

fitness function:
Fit =

1
1 + ρ(A,B)

, (18)

where ρ is as in (7).
– Initialization - GA needs an initial individual population to carry out parallel

multidirectional search of optimal solution. The RGA starts with construct-
ing an initial population of individuals generated randomly within the search
space. Since each chromosome contains L genes which directly correspond
to the elements of matrix E, the generated random numbers have a range
[0, 1]. The size of population after trials was set to 60.

– Selection - The probability of selecting a specific individual can be calculated
by using the individuals fitness and the sum of population fitness. In this re-
search a roulette wheel approach was applied. Additionally, an elitism policy,
wherein the best individual from the current generation is copied directly to
the next generation, was also used for faster convergence.
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– Crossover - The crossover process defines how genes from the parents have
been passed to the offspring. In experiments both arithmetic and directional
crossover [10] were used and in each generation one of them was selected
randomly. If C1

p and C2
p are parent chromosomes, then we get offspring chro-

mosomes C1
c and C2

c according to the following formulas (α is a random
number uniformly distributed in [0, 1]):

C1
c = α · C1

p + (1 − α) · C2
p , C2

c = α · C2
p + (1− α) · C1

p , (19)

for arithmetic crossover,

C1
c = α · (C1

p − C2
p) + C1

p , C2
c = α · (C2

p − C1
p) + C2

p , (20)

for directional crossover.
These crossover procedures represent a promising way for introducing a

correct exploration/exploitation balance in order to avoid premature conver-
gence and reach approximate final solution.

– Mutation - Mutation is carried out by randomly perturbing genes of chromo-
somes after crossover. This operator provides GA with a mechanism for es-
caping local maxima and for protection against premature convergence. The
mutation used in experiments is the random (uniform) procedure ([8]), i.e.:
• an individual (in offspring population) is randomly selected,
• a mutation site is randomly fixed in the interval [1, L],
• the selected gene (value) ci is replaced by c̄i, randomly generated from

[0, 1] interval with uniform distribution.
The probability of mutation was equal to 0.01.

– Stop procedure - evolution process was terminated after 1000 generations. In
fact, the fitness value usually converged within this value. Fig. 1. shows the
fitness change against generation number in one run of RGA.

To compare the classification accuracy of proposed concepts of SC algorithms
and the performance of RGA, ten independent runs of RGA were carried out for
each diagnostic algorithm with different random initial populations. The results
are shown in Table 1. The values depicted in the Table are those of the best

0.5
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0.2

0.3

0.1

1,0007505002500

Fig. 1. The example of the course of the fitness value vs. number of generation
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Table 1. Frequency of correct diagnosis for various diagnostic algorithms (in per cent)

Trial A0D A1D A2D R1DC R2DC R1DS R2DS

1 80.6 89.6 91.8 85.1 85.7 82.7 90.3
2 82.2 86.5 91.9 82.7 89.6 88.6 86.7
3 79.4 87.2 88.9 89.3 85.3 85.9 85.8
4 78.5 85.9 92.6 87.2 85.7 83.8 90.4
5 80.9 90.3 91.9 82.5 85.4 84.2 84.5
6 82.1 89.7 91.6 86.8 89.8 89.1 83.8
7 81.9 88.1 89.4 85.2 90.6 82.8 90.4
8 78.3 87.2 89.0 87.9 86.1 83.3 89.7
9 78.5 90.7 92.9 84.3 89.9 87.5 90.8
10 81.1 88.7 92.8 88.1 89.2 88.3 89.6

Best 82.2 90.7 92.9 89.3 90.6 89.1 90.8
Mean 80.3 88.4 91.3 85.9 87.7 85.6 88.2
SD 1.44 1.58 1.49 2.20 2.12 2.43 2.57

solution obtained at the end of a RGA trial. Table 1 contains also the best
result, the mean value and standard deviation for each SC algorithm.

These results imply the following conclusions:

1. Algorithm A0D that does not include the inter-state dependencies and treats
the sequence of states as independent objects is worse than those that have
been purposefully designed for the sequential medical diagnosis task, even for
the least effective selection of input data. This confirms the effectiveness and
usefulness of the conceptions and algorithm construction principles presented
above for the needs of sequential diagnosis.

2. There occurs a common effect within each algorithm group: the model of
the second order dependency (A2D, R2DC, R2DS) turns out to be more
effective than the first order dependence approach (A1D, R1DC, R1DS).

3. Algorithms A1D and A2D that utilize the original data (i.e. gasometric ex-
aminations) yield always better results than those which substitute the data
with diagnoses.

4. There is no essential difference between the algorithms with crisp and soft
history.

5. The RGA method is capable of solving the problem of learning of SC algorithm
for practical computer-aided medical diagnostic system. Results of RGA per-
formances turn out to be quite repeatable and insensitive to initial conditions.
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Abstract. In the paper a method is presented for improving the recog-
nition reliability of backpropagation-type networks, based on the atten-
tion shifting technique. The mechanism is turned on in cases when the
reliability of the network’s answer is low. The signals reaching the hidden
layer are used for selection of image areas which are the most ”doubtful”
in the process of recognition by the network. Three methods have been
proposed for appending the input vector after shifting the area where
the attention is focused. The methods have been tested in the problem
of hand-written digits recognition. Noticeable improvement of the recog-
nition reliability has been obtained.

1 Introduction

Image recognition making use of the selective attention method is one of the most
interesting methods, based on the biological visual systems. In the majority of
models based on application of that technique the so called saliency maps are
created. The choice, location and feature analysis for such maps depend on many
factors, like the type of surrounding scene (background) or the color, contrast
and orientation of a given feature [1]. Normally such features are analyzed in
sequence: the attention shift to the next feature depends on the interpretation
of the previous features. Another problem is the necessity for introducing the
”blockade”, i.e. avoiding places that have already been analyzed in the attention
shifting process.

Examples of such realization can be found in the literature. In the paper
[2] a hierarchical system has been presented for words recognition, based on the
features of individual characters. The features of individual characters (detection
of lines with various slopes, located within a rectangular matrix), forming level 1
of the network, influence the recognition of consecutive characters (level 2). These
in further turn condition the recognition of words on level 3, the highest. These
three levels are related by both top-down and bottom-up connections. The words
from the top level are connected with the letters forming the given word, and
the letters are connected with their characteristic features. This is also visible
in the reverse direction: the features are connected with the respective letters,
and the letters are connected with words, in which they are present. At the
� This work has been partially supported by the AGH UST grant No 10.10.120.39.
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c© Springer-Verlag Berlin Heidelberg 2006



634 Z. Mikrut and A. Piaskowska

beginning of the recognition process all nodes at the words level are active and
the same probabilities (summing up to one) are attributed to individual nodes.
The downward information flow models the individual probabilities for each
letter and each feature. The recognition process consists of cycles, which are
completed when one of the nodes is attributed probability equal to one, and
all the other nodes - zero. In the first cycle one feature is investigated and on
that basis the individual probabilities of encountering specific letters and words
are modified. Some words are completely excluded. Then the information flows
down and some letters and features are also excluded. After modification of
the probabilities the attention is focused on the feature which is responsible for
the greatest ambiguities: the algorithm determines the feature the presence or
absence of which, affects most seriously the progress speed. The authors show
that the recognition is achieved faster in comparison to the cases in which the
whole word is being analyzed (in the average it takes 5.3 cycles for a database
including 950 words).

In the papers [3][4] the saliency map is created in a similar way, and the
detected features are analyzed in sequence. In the paper [3] other features like
intensity, color or symmetry are also taken into account. Additionally the fea-
tures that have lost their ”importance” status during the analysis are removed
from the saliency map - and for that task a modified ART neural network is used.
In the paper [5] a neural network deals with both searching and recognition of
the object. In addition to classical connections between the network layers there
are connections within the layers and feedback connections to the input layer.
The respective signals can be also taken from outside of the network. Some of
the above-mentioned authors point out the necessity to include also the reduced
resolution matrix representation in the recognition process.

The approach proposed in the present work differs from the ones presented
above. The authors have decided to model the attention shifting process on the
basis of two well-known mechanisms:

– well known and properly looking objects (e.g. letters or digits) are being
recognized by humans ”at a glance”,

– doubts emerge, when the object is somehow different from the standard look
(e.g. a digit has been written carelessly) - then the attention is focused on
the areas, which contain features differing the objects being mixed up.

These two general rules have been implemented in a backpropagation type
neural network, with the intended task to learn the recognition of hand-written
digits (see figure 1). The accuracy of reproduction of the digit images has been
reduced. The operation has been applied to both the learning and test sets
images.

During recognition of the test set images the recognition reliability (see figure 1
- two small grey arrows, indicating the differences between two highest network
outputs) has been monitored. If its value was too low the network switched on
the mechanism of attention shifting to the doubtful image areas (in figure 1 -
area a of digit ”1” and α of digit ”7”). The respective areas were reproduced
with more accuracy and then the recognitions were redone in order to check



Attention Improves the Recognition Reliability of Backpropagation Network 635

� a

c� b

H

I

D

D

E

N

O

U

T

P

U

T

1

.

.

.

.

7

.

.

DOUBTFUL AREAS

OF „1” (a, b, c, ...)

DOUBTFUL AREAS

OF „7” (�, �, ...)

Fig. 1. The working principle of the mechanism of attention shifting based on the

recognition results of the input character matrix elaborated by a backpropagation type

network

whether the recognition reliability was improved enough. If the answer was ”Yes”
the recognition process was terminated. If the answer was ”No” the attention
focusing point was shifted to another image area (in figure 1 - areas b, c of
digit ”1” and β of digit ”7”) and the recognition process was repeated - until
positive results were obtained or the specified number of iterations was reached.
Obviously during the recognition process, or the iterative attention shifting and
the related modification of the input information, the network was allowed to
change its decisions.

2 Methods and Algorithms

In the present paper the main stress has been put on defining and testing of
several methods responsible for modification of the network’s input, during the
attention shifting process. Therefore it has been decided that the basic platform
for the experiments will be a simple neural network, with one hidden layer,
trained by the fast Resilient Backpropagation algorithm.

A simple mechanism has been also determined for the attention shifting
process. From the correctly recognized characters of the learning set averaged
images have been created separately for each class. In combination with some of
the network connection weights they provided the representation of the knowl-
edge. For determination of consecutive attention shifting points the connection
weights between the input and hidden layer have been used. The connections
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between the hidden and output layer have not been taken into account. Such a
solution limits the operation accuracy but it also drastically reduces the numer-
ical complexity.

The iterative mechanism of the attention shifting is turned on when:

|yr − yq| ≤ delta (1)

where yr and yq are two highest signals of the network’s output layer, and delta is
the recognition reliability threshold, specified by the user. For the two characters
related to the r and q indices two n-dimensional vectors are calculated (where n
is the number of network inputs), which determine the contributions from the
consecutive network inputs, which sum up to form the total signals stimulating
the hidden layer elements:

Rr =

[∣∣∣∣∣(x̄r
1 − xr

1)
m∑

i=1

w1,i

∣∣∣∣∣ . . .
∣∣∣∣∣(x̄r

n − xr
n)

m∑
i=1

wn,i

∣∣∣∣∣
]

(2)

Rq =

[∣∣∣∣∣(x̄q
1 − xq

1)
m∑

i=1

w1,i

∣∣∣∣∣ . . .
∣∣∣∣∣(x̄q

n − xq
n)

m∑
i=1

wn,i

∣∣∣∣∣
]

(3)

where x are the respective input signals (averaged and current), w - connection
weights between the inputs and the hidden layer elements, and m is the size of the
hidden layer. Then the vectors are sorted in descending order. After reordering
the indices of consecutive elements point to the areas, to which the attention
should be sequentially shifted, with the accompanying modification of respective
inputs. In order to realize the above procedure three methods, described below,
have been proposed. Two of the methods are based on transforming the character
image to the log-polar form, the third one - on the classical raster representation.

2.1 Log-Polar Transform

The log-polar transform [6] is a very simplified model of the arrangement of re-
ceptive fields in human retina. It is characterized by inhomogeneous reproduction
of details: it is very accurate near the center and with the growing distance from
the center the receptive fields become bigger and therefore the details become
blurred (averaged). The receptor fields are limited by concentric circles with ex-
ponentially growing radii and split into angular sectors by radial lines (rays),
dividing the 360o angle into equal parts. Additionally there is a ”blind-spot” in
the center. The image part covered by the blind-spot area is not transformed
into the log-polar space.

In figure 2 an example is shown of transforming the image of digit ”5” to
the log-polar form. The main advantage of the log-polar transform is the con-
siderable reduction of the input data volume which however preserves the rough
information about the object. After transforming a small raster image 139x70
(9730 pixels) to the form consisting of 9 rings and 24 sectors (216 pixels) the
achieved compression is 45:1. As can be seen in the right-hand part of figure 2
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(the inverse transform) part of the information is lost: it is therefore a lossy com-
pression and it is hardly useful for image compression but it can be plausible in
image recognition. The reduction of input data volume is particularly important
when neural networks are used, because the construction and even more the
learning of an oversized network is a task of high calculational complexity.

Fig. 2. Original image matrix, the image after log-polar transform (24x9 pixels) and

the inverse transform (the log-polar image has been increased)

Additional advantage of that transform is the fact that two operations: input
image rotation and its rescaling with respect to the transform center are realized
in the log-polar space by parallel object translations along respective axes.

In spite of its multiple advantages the log-polar transform exhibits also some
limitations. As mentioned before the transformation involves a lossy compres-
sion, and as a result inaccurate mapping of details located far from the center.
The next problem is the loss of information contained near the transform center.
This is an essential flaw, because the main feature of the transform is the fact
that the area near the center of the image contains the best reproduced and
sometimes most essential information. A direct consequence of that problem is
another problem: the central point of the transform must be chosen very carefully
as even a minor object shift with respect to the center generates a considerable
change in the resulting output image.

The log-polar transformation was an inspiration for several practical applica-
tions: from realization of the object tracking tasks [7] through the design of a
photo-sensitive chip [8] to the generation of object representations [9][10].

2.2 Method 1 – Moving the Log-Polar Center

In the discussed method the shifting of the attention focusing point is realized
by shifting the center of the log-polar transform to the receptive field on which
the attention should be focused. Then a new log-polar transform is calculated,
in which the examined receptive field is reproduced more accurately, because
now it is located near the transform center. The new values are determined from
the averaged values of the ”new” receptive fields, whereas the zero values are
replaced by the values from the previous transform.
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2.3 Method 2 – Changing Resolution of the Log-Polar Transform

Shifting the transformation center is numerically cumbersome, therefore in the
second method it has been decided to leave the center where it was. Instead a
four-fold increase of the resolution has been executed (doubling the number of the
concentric circles, and doubling the number of rays dividing the receptive fields).
The averaging over the new fields, located within the previous receptive field, is
done in order to avoid the edge blurring: the maximum values are determined
in the individual new fields, and then they are averaged with the neighboring
fields, which usually exhibit comparable values.

2.4 Method 3 – Changing Resolution of the Image Matrix

In method 3 the log-polar transform has been abandoned in favor of input image
scaling, using bicubic interpolation. Similarly to method 2 the shift of the at-
tention focusing point is realized by carrying out the analysis of the interesting
area magnified four times (twice in vertical direction and twice in horizontal).
Averaging to the original matrix is realized in the same way as in method 2,
what means that if there are bright spots within the analyzed field then the
general intensity is increased (the same is true in the reverse direction).

3 Experiments and Results

In order to test the above-mentioned algorithms several backpropagation net-
works, with sigmoidal transfer function, have been built and learned. The net-
works were different in the size of the hidden layer (between 7 and 30 neurons)
as well as initial conditions and learning parameters. The set used for learning
and testing was a set of 4000 hand-written digits, collected during research work
carried out in the Biocybernetic Laboratory. It contained images in 256 greyscale
levels, with matrix sizes varying between 100x100 and almost 1000x1000 pixels.
The set has been divided into two equal parts: learning and testing. Each part
consisted of 200 representations of each character.

During the initial experiments the influence has been studied of the log-polar
representation form on the results of the networks training and recognition. Log-
polar representations of various sizes have been designed: the changes affected
number of sectors (24-30), number of rings (8-10) and the minimum transforma-
tion radius (the dimensions of the blind spot). Additionally two possible locations
of the transformation centers have been tested: in the character’s center of grav-
ity and in the geometrical center of character’s outline. Better effectiveness has
been achieved for a log-polar transform with the center located in the center of
gravity of the analyzed character. The character representations obtained from
such transform exhibited more reproducible shapes. It has also turned out that
further increase of the matrix resolution in the log-polar coordinates is useless,
because the recognition quality obtained for matrices greater than 30x10 pixels
is worse than the results obtained for smaller matrices.
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Finally two networks have been selected. Both networks include an input layer
consisting of 216 elements, but they differ in the process of preparation of the
hand-written digits images. The first network recognizes images (24x9) pixels,
processed by applying the log-polar transform, the second network uses matrices
downsized to (18x12) pixels, using the bicubic interpolation. Parameters of both
networks and the obtained recognition rates are listed in Table 1. The application
of methods 1 and 2 have not improved the recognition results, whereas the
application of the third method have lead to small increase in the number of
correct recognitions.

Further experiments have been carried out for three values of the rejection
level delta: 0.4, 0.2 and 0.1. Obviously the higher the rejection level the more
characters are rejected, but the results are similar, if one takes into account the
ratio of the rejections number with and without attention shifting. In Table 2 the
results for delta=0.1 are listed. As can be seen for all algorithms the recognition
rate of the accepted data has decreased, while the recognition reliability has been
increased. It means that for the case when the rejection level has been used, less
undecided (”I don’t know”) answers have been obtained. If the ”I don’t know”
answers are regarded as wrong, then the network’s effectivity becomes better
after application of the attention shifting (see the last row in Table 2).

Figure 3 presents an example of iterative shifting of the attention focusing
point. Initially the network has recognized the character ”9” as character ”7”,
but with low recognition reliability (delta=0.1, see figure 3). In the course of

Table 1. Parameters and recognition rates of backpropagation networks

Network 1 Network 2
(log-polar) (bicubic)

Input layer (organization) 216 (24x9) 216 (18x12)
Hidden layer 22 23
Recognition rate (attention ”off”) 87.05% 88.3%
Recognition rate (att. ”on” - methods 1,2) 86.95%

No of iterations (avg) 8.4 /7.1 —
Recognition rate (att. ”on” - method 3) — 89.9%

No of iterations (avg) 4.75

Table 2. Results for networks with and without attention shifting (delta=0.1)

Network 1 Network 1 Network 1 Network 2 Network 2
(log-polar) method 1 method 2 (bicubic) method 3

Number of rejected data 7.35% 3.65% 3.50% 6.50% 0.70%
Recognition rate 90.02% 88.53% 88.65% 91.55% 90.13%
of accepted data
Recognition rate 83.40% 85.30% 85.55% 85.60% 89.50%
of all the data
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Fig. 3. Shifting of the attention to the areas inconsistent with a) digit ”7”, b) digit

”9”. The dashed line - network output attributed to ”9”, solid line - to ”7”. On the

left-hand side the translation path of the attention focusing point has been plotted

against the analyzed character. For better visibility the path has been slightly shifted

upwards. The three (outlined) matrices on the right-hand side respectively present:

the originally presented matrix of the character, the final (corrected by the shifting

attention algorithm) matrix and their difference image.

consecutive iterations, carried out alternatively for the answers ”7” and ”9”,
and the respective modifications of the input vector, the network’s answers have
also varied. Finally in the 8-th iteration the character has been recognized as ”9”,
because the difference of the highest output neuron answers has become higher
than the predefined threshold delta=0.4 (see figure 3a, grey double arrow).

In figure 3 one can study the details of algorithm execution, having in mind
that the path of the attention focusing point plotted against the original ”9” char-
acter has been slightly shifted upwards. Without this translation most of that
path would coincide with the elements of the original character. The attention
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shifting order should be also noticed (marked by arrows): at first the most essen-
tial features are searched for. The shape of the ”9” character is somewhat atypical,
as it becomes similar to the shape of digit ”7”. Figure 3a shows as the algorithm
searches for the missing characteristic points of the digit ”7”: first the horizontal
”roof” and then the mid-height crossing line. Figure 3b shows that the missing
features of the ”9” character are the vertical and lower part of the ”cane” and the
upper left part of the ”circle”. The matrix elements changed during the transla-
tion of attention focusing point are presented in the right-hand side of the picture.
The changes have influenced the output values from the network until a satisfac-
tory recognition reliability has been achieved.

4 Summary and Conclusions

The purpose of this work was to check whether the mechanism of attention shift-
ing to ”doubtful” areas of the image of a hand-written digit will positively affect
the recognition results of a backpropagation network. Algorithm has been con-
structed analyzing both the learning set data and the knowledge, contained in
the connection weights between the first two layers of the network. The attention
shifting mechanism has been turned on depending on the network’s recognition
reliability. The modifications of the input vector have been done by three differ-
ent methods. Two algorithms have been based on the log-polar transform, the
third one on resizing of the rectangular image matrix. The application of the first
two mechanisms have not increased the recognition rate values (network with-
out attention shifting 87.05%, with the attention shifting mechanism 86.95%),
whereas the third method, in which the log-polar transform has been replaced by
the matrix representation, has improved the results (without attention - 88.3%,
with attention - 89.8%).

After testing the algorithms it has turned out that all of them have increased
the recognition reliability. It means that when the answers with low reliability
(low difference between the two highest output values) are considered as wrong
the network’s effectiveness is better after switching on the feedback mechanism.
At the same time it usually leads to a considerable decrease in the rejection
rate (see Table 2). The obtained results indicate that further development of
this methods is recommended, with introduction of the necessary modification
of the applied algorithms. It seems that the modifications should explore two
main directions: making use of the information accumulated in all the network’s
connection weights and including the information contained in the neighborhood
of the receptive field to be enhanced, by application of more advanced processing.
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Abstract. A common task in data mining is the visualization of multivariate ob-
jects on scatterplots, allowing human observers to perceive subtle inter-relations
in the dataset such as outliers, groupings or other regularities. Least- squares mul-
tidimensional scaling (MDS) is a well known Exploratory Data Analysis family
of techniques that produce dissimilarity or distance preserving layouts in a non-
linear way. In this framework, the issue of visualizing large multidimensional
datasets through MDS-based methods is addressed. An original scheme providing
very accurate layouts of large datasets is introduced. It is a compromise between
the computational complexity O(N5/2) and the accuracy of the solution that
makes it suitable both for visualization of fairly large datasets and preprocessing
in pattern recognition tasks.

1 Introduction

The increasing amount of data available over the Internet gives rise to a need in efficient
data analysis tools allowing an easier use of large databases. Data visualization is often
a necessary step in a data analysis process that permits to detect the presence of clusters,
outliers or various regularities in data. This paper focuses on dimensionality reduction
methods as tools for the visualization of large multidimensional datasets, as well as a
feature extraction of such data. These tasks have been successfully performed by neural
networks as the Self-Organizing Maps [10], or by kernel methods [17], latent variable
methods as the GTM [3] or multidimensional scaling (MDS) [7]. In order to improve
the quality of layouts and to adapt them to the visualization of increasingly growing
datasets, newly developed approaches to the above models include local dimensionality
reduction and hierarchical visualization.

The visualization of large datasets using full MDS scaling is in general unpractical
due to the computational complexity scaling exponentially with the number of mapped
items N (one iteration of the minimization process scales with O(N2) and O(N) such
steps are needed, leading to an algorithmic complexity of O(N3)). This limits such ap-
plications to a few thousands items sized datasets. A strategy to alleviate this constraint
is to split the dimensionality reduction process into two steps: first a smaller dataset
built from the data (obtained e.g. by clustering, or any other technique) is mapped and
second, the input data is added in some way to the smaller dataset’s layout obtained in
the first step.

This general scheme for large scale dimensionality reduction has been proposed
and implemented in various manners, by applying various approaches for building

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 643–652, 2006.
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the smaller dataset (called sometimes Basis, as in the rest of this paper) and differ-
ent choices for the dimensionality reduction technique. Let us mention here below only
those approaches that are most closely related to our MDS-based proposal. Basalaj pro-
posed incremental scaling [2], in which data points are incrementally added through a
single least-squares scaling (points are added on a 1 by 1 basis). A Minimal Spanning
Tree of the data is used to define the order in which points are added. The Basis is
incrementally growing, leading to O(N7/3) global complexity. Brodbeck and Girardin
[5] use the clustering capability of SOM and a spring model to produce whether local
layouts of cluster neighborhoods, or one global layout of the cluster centers. Morrison
et al. [6] [11] [12] use a sample of

√
N items instead of a data clustering followed

by an interpolation strategy also proposed by Brodbeck and Girardin, achieving very
low complexities: O(N2), O(N

√
N) and O(N5/4), allowing to visualize a dataset of

108,000 14-dimensional objects. Schwenker et al. [18] combine in ACMDS adaptive
c-means and classical scaling. Williams and Muntzer [19] designed a steerable and pro-
gressive MDS capable of visualizing 120,000 items and 294 dimensions in a few hours,
using hierarchical structures to select subsets of interest and progressive, in-depth and
localized layouts. There are also many approaches proposed to adapt linear dimension-
ality reduction techniques (such as classical scaling [7]) to the visualization of large
datasets, let us mention among others FastMap [8] and Locally Linear Embeding [16].

Our approach is to take as a Basis the set of cluster centers resulting from k-means
clustering of input data, and then map the cluster centers using standard least-squares
MDS. In a second step, input data is added to the Basis layout using relative MDS
[13]. This association scheme of k-means clustering and multidimensional scaling is
introduced in next Section 2. In Section 3, experiments on artificial and real datasets
show the validity of the proposed scheme. A short conclusion summarizes the paper.

2 A New Approach to the Association of MDS to k-Means
Clustering

In least-squares MDS, the preservation of neighborhood relationships is ensured by the
minimization of the Stress functional S(Y) defined as

S(Y) =
1
Fn

N∑
i<j

wij · (Dij − dij(Y))2 (1)

in which Y is the matrix of coordinates of N points representing the given N D-
dimensional items in the output d-dimensional space. {Dij} are given dissimilarities
or inter-item distances, {dij} are inter-point distances in the output space and {wij}
are weighting factors that permit to tune the impact of large distance on the sum (wij

is generally inversely proportional to Dij). Fn is a normalization factor designed to
keep Stress values in unit range [0, 1]. The minimization of functional S(Y) wrt N × d
variables (the coordinates in Y) can be realized in various ways, these may be local or
global optimization techniques, with more or less accurate and time consuming proce-
dures. Our approach implements a steepest descent procedure which includes second
order derivatives (increasing convergence and accuracy), in such a way that it is not as
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computationally intensive as a real Newton method. It was found in practice to be a
good compromise between accuracy of the solution and computational complexity.

In the first step, the NB-sized Basis is build as the set of cluster centers obtained
by a standard k-means clustering. The choice of this clustering algorithm results from
a comparison with other techniques (Learning Vector Quantization or dendrograms) in
this framework [14], where it was shown that k-means is best suited to this task (i.e.
leading to layouts with lower final Stress values). Another small experiment also con-
firmed this result: 100 random Bases were generated as NB-sized samples from the
input data, these were mapped according to the proposed scheme and the resulting lay-
outs were compared in terms of general Stress values (1). The best final layout obtained
was with a Basis of points very close to the cluster centers obtained from k-means clus-
tering. The association scheme presented in this paper is similar to the one presented in
[14], but is gives generally better results (i.e. lower final stresses) for a relatively small
computational cost. Let us recall here this scheme: in the first step, the NB Basis points
are mapped using standard least-squares MDS, that is minimizing the Stress functional
Sb(Y) defined as

Sb(Y) =
1
Fn

NB∑
i<j

wij · (Dij − dij(Y))2 , (2)

The second step (addition of data to the Basis layout) slightly differ from the one in
[14], in which input data was added on a point by point basis (as in Basalaj’s work).
Here the data is added into K batches of NC input data (NC = NB for each batch,
except for the last batch where NC ≤ NB , and K = 5N/NC6). So each batch adds
only a subset of NC input data to the Basis layout using relative MDS. Each such batch
mapping consists in the minimization of one Stress functional from the following series
(for k = 1, · · · ,K):

Sr,k(Y) =
1
Fn

NC∑
i<j

wij · (Dij − dij(Y))2 +
1
Fn

NC∑
i=1

NB∑
j=1

wij · (Dij − dij(Y))2 , (3)

Intuitively (this is confirmed by experiments in Section 3), the layout resulting from this
relative MDS mapping scheme cannot be as low as the one obtained by one full MDS
of the entire dataset, because in relative MDS distances between points added in sepa-
rate batches are never taken into account. For this reason, adding points in batches of
small subsets, whose inter-points distances are included in Stress expression (3) should
give better results than adding points one by one. We have at hand groupings from the
clustering stage: the cluster centers neighborhoods (the set of points whose a center is
the closest). Two strategies to form the data groups are as follows: i) form one group
corresponding to each cluster center neighborhood (this is intra-cluster grouping) and
ii) form one group by picking randomly one input data from each neighborhood (this is
inter-cluster grouping). Expressions (2) and (3) give inherently more weight to larger
distances, even more if squared distances are used. This suggests to apply the above sec-
ond strategy (ii), in order to force having as much as possible larger distances taken into
account in each relative mapping batch, to finally obtain a lower Stress. Experiments
presented in the next section will show that this intuitive approach is well-founded.
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In order to reduce computation times, the above Stress expressions have been simpli-
fied by using squared Stress (SStress) where all input and output distances are squared
Euclidean distances. Besides this, all the weights {wij} are taken equal to 1 and the
normalization factor is Fn =

∑N
i<j D

2
ij , which leads to a Stress functional called here

below SS1. The stopping criterion for the minimizations iterative process was the gra-
dient length per variable, that is divided by Nm × d, (Nm = {NB, NC} is the num-
ber of points mapped in one minimization process). The stopping threshold value was
εG = 1.0e − 12 for full MDS and εG = 1.0e − 8 for relative MDS, which yields in
general to a number of iterations of the same order as Nm.

As proven by expressions (4-6) and shown in next section’s experiments, minimizing
expressions (2) and (3) is faster than minimizing the original expression (1). We assume
that the number of iterations needed in one standard MDS minimization process is pro-
portional to N , and proportional to

√
N in relative MDS. Computational complexities

CCfull of full MDS on input data, CCsingle of relative MDS in single batches and
CCgroups of relative MDS of NC-sized batches can be assessed as follows (following
Chalmers et al. [11], we set NB =

√
N to simplify the expressions, and neglecting the

clustering stage):
CCfull = O

(
N3) , (4)

CCsingle = CCstep1 + CCstep2 = O
(
N3

b

)
+O

(
N2

b N
)
≈ O

(
N2) , (5)

CCgroups = CCstep1 +CCstep2 = O
(
N3

b

)
+O

(
(N/Nb)2NbN

)
≈ O

(
N5/2

)
. (6)

3 Experiments on Artificial and Real Datasets

The proposed mapping schemes have been checked and compared on 10 artificial and
real datasets summarized in Table 1. Four artificial datasets were generated from high
dimensional simplices as follows: a D-dimensional simplex is first built as a set of
D+ 1 vertices such that Dij = 1, {i, j} ∈ [1, ..., D + 1], then NG points are generated
by spherical Gaussian distributions centered on each simplex vertex (with fixed vari-
ance σ = 0.01). Four such intrinsically high-dimensional datasets (IDs1-4 in Table 1
were generated for D = 10, 11, 20, 50 and NG = 500, 1000, 100, 120 respectively.
Dataset 5-psychometric, provided by J. Gomula from UMK Academic Dispensary
in Torun, Poland, contains psychometric profiles of patients featured by 13 numerical
scales (∈ [20, 120]) derived from the MMPI tests. The next 3 datasets, 6-abalone,
7-satimage and 8-segment are from the UCI repository [4]. In order to assess
the accuracy of the results obtained by our approach, we need to compare their Stress
values to the ones obtained by full scaling of the entire datasets. These datasets have
similar sizes (N values of order a few thousand items), which allows full scaling of the
entire datasets. In order to evaluate its scalability, the proposed scheme was also tested
on 2 larger datasets: 9-KDD cup2004 from which the Quantum Physics dataset (file
phy_train) was used and only 65 out of the 70 available features were taken, ignoring
the 5 features having missing values. Finally, dataset ID10-UCI-KDD texture is a
part of the Corel Image Features dataset from the UCI KDD Archive. From the 4 subsets



An Accurate MDS-Based Algorithm 647

Table 1. Datasets used for tests: data whose names are followed by * have been standardized
prior to process. Computation times (in seconds) for Full MDS and k-means + relative MDS
mappings with Basis size NB = 100 on CPUs: Pentium 4 3.4GHz (s3) or Dual Core AMD
Opteron 2.65GHz (s4).

Dataset name N D CPU Full MDS k-means + relative MDS
ID (# items) (# features) NOC Nit KMS BAS 1B1 ICG
1 simplex10r500 5000 10 s4 152230 10 671 30 105 919
2 simplex11r1000 11000 11 s4 – 10 2985 30 262 3349
3 simplex20r100 2000 20 s4 5527 10 140 7 71 1490
4 simplex50r120 6000 50 s4 47004 10 1232 7 635 5400
5 psychometric 1606 13 s3 11094 10 116 16 22 364
6 abalone 4177 7 s3 65500 20 913 90 432 4583
7 satimage 4435 36 s3 60196 20 1958 5 42 182
8 segment* 2310 16 s3 19800 10 103 31 23 546
9 KDD cup2004* 50000 65 s4 – 10 17733 26 1022 29226

10 UCI-KDD texture 68040 16 s4 – 20 13722 15 968 3913

of features available, only the texture co-occurrence 16 coefficients (file CoocTexture)
were used.

The datasets were clustered using the standard iterative k-means procedure of
Matlab (compiled in C). Since k-means and relative MDS are not deterministic al-
gorithms, they were run several times for each mapping (10 times for MDS and relative
MDS, and Nit times for k-means), finally keeping the best solution (with lowest Stress
for MDS or lowest sum of distances for k-means). Although k-means is generally con-
sidered to be a fast clustering method, its application to our scheme showed that it is the
computation time bottleneck when NB > 100, and its use is prohibitive for Bases of
size NB > 500. Table 1 presents execution times (in seconds) for 3 different mapping
schemes: a) Full MDS mapping (column NOC, for no clustering), b) k-means combined
to relative MDS of data added one by one (column 1B1) and c) k-means combined to
relative MDS of data added in inter-cluster groups (column ICG). For these two last
schemes, execution times of k-means clustering (column KMS) and MDS mapping of
Basis (column BAS) are detailed. Full MDS is always very time consuming, and it was
not performed on datasets IDs2, 11 and 12 for obvious prohibitive time and memory
requirements. It can be seen that k-means execution times grow proportionally to D as
well as N and NB , and become very important for larger datasets. The relative MDS
runs shown in Table 1 were for NB = 100. Execution times (in seconds) for varying
Basis sizes are presented in Fig. 3 for two datasets. The durations differences between
the datasets for relative MDS can vary from one Basis size to another. These perfor-
mances can be reduced if we decrease the iterations stopping criterion εG, at the cost of
less accurate final layouts.

The performances of the different mappings schemes were assessed by computing
Stress values using expr. (1) for the whole datasets. These values were compared to
what should be their optimal values: the Stress obtained by Full MDS mapping of the
entire datasets. Final Stress values for varying Basis sizes NB ∈ [10, 500] are presented
in Fig. 1 (datasets 1-5) and Fig. 2 (datasets 6-10). Note that the Stress values scales do
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Fig. 1. Datasets 1-5: Final Stress values for varying Basis sizes, obtained by 3 different mapping
schemes. Final Stresses reached by ICG variant are lower than with 1B1 variant for each dataset.

not start at zero, in order to enlarge Stress differences between the 3 mapping schemes.
Consequently, the observed differences are not similar from one sub-figure to another
and should not be compared. As could be expected, final Stresses decrease when NB

increases, due to a growing number of Basis reference points allowing more precise lo-
cations of added data. The continuous line (NOC, for no clustering) shows the minimum
reached by Full MDS mapping of the entire dataset, when memory requirement made
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Fig. 2. Datasets 6-10: Final Stress values for varying Basis sizes. As in Fig. 1, final Stresses
reached by ICG variant are lower than with 1B1 variant for each dataset.

this possible. The dotted lines show mappings based on k-means combined to relative
MDS, through addition of data one by one (1B1 symbols) or through addition in inter-
cluster groups (ICG symbols). Two layouts obtained with a Basis size NB = 100 are
presented in Fig. 4.
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Fig. 3. Execution times as a function of Basis size NB , for the different steps of the 3 mapping
schemes. All execution times grow linearly with NB . The inter-cluster groups variant is notice-
ably more time consuming than the one by one variant.

Fig. 4. Layouts of simplex10r500 (left) and UCI-KDD texture (right) for NB = 100

For smaller NB values, important Stress variations are observed. These are probably
related to the curse of dimensionality occurring as the number of objects is too law w.r.t.
the number of dimensions of the input data. Nevertheless, important local minima can
be observed for simplex10r500 and abalone datasets (at NB ≈ 20), these effects
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remain to be analyzed in greater details. The bottom solid lines represent minimal Stress
values reached using Full MDS mapping on whole datasets. It is surprising that final
Stress reached by Full MDS is in three cases outperformed by relative MDS (for NB >
200 in abalone and psychometrics, and forNB > 300 in segment). This result
shows that combining k-means to relative MDS does not only allow to obtain mappings
for large datasets faster than standard MDS does, it can also provide with more optimal
solutions.

4 Conclusion

A new way to combine k-means clustering and multidimensional scaling, as an alter-
native to other approaches aimed at reducing the computational complexity of mul-
tidimensional scaling has been presented. The proposed association of relative MDS
scaling allowed to obtain accurate layouts of datasets of size up to 68000 items in two
hours. The computational complexity of the designed process is reduced by combining
MDS to a naive iterative k-means clustering. The resulting solutions present very good
Stress performances, sometimes even outperforming the results of full MDS solutions.
From the computation times measurements, it appears that the bottleneck of the whole
scheme is the k-means clustering stage. In order to speed up this stage, more efficient
clustering techniques must be used instead, such as the ones proposed in [1] [9] [15].
The proposed scheme, applied here to data visualization, can be also useful everywhere
a dimensionality reduction of data is needed, for instance as a preprocessing stage in
pattern recognition applications.
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Abstract. To take into account different character of distinct segments
of non-stationary financial time series the multi-agent system based fore-
casting algorithm is suggested. The primary goal of present paper is to in-
troduce methodological findings that could help to reduce one step ahead
forecasting error. In contrast to previous investigation [6], instead of sin-
gle prediction rule we use a system of several adaptive forecasting agents.
The agents evolve, compete among themselves. Final decision is made by
a collective of the most successive agents and present time moment. New
multi-agent forecasting system allows utilizing shorter training sequences
and results in more accurate forecasts than employing single prediction
algorithm.

Keywords: Classification, Forecasting, Sliding window, Training, Di-
mensionality.

1 Introduction

The Problem. Today much attention is drawn to analyzing processes, which
are changing rapidly over the time. The changes could be of different nature,
they can be temporary or permanent. Financial time series are examples of a
dynamic system. Financial time series here are defined as the price of an asset
over time, including stocks, commodities, bonds, price indices or exchange rates.
In the financial forecasting task, the algorithms ought to include means to reflect
the changes, to be able to adapt to sudden situational changes [1]. Financial time
series might be affected by utilization of diverse forecasting algorithms employed
in real market [2]. Thus, the foremost important properties of financial forecast-
ing algorithm should have, are: quick adaptability to changing environments and
utilization of short historical information. The primary goal of present paper
is to introduce methodological findings which could help to reduce forecasting
error for one step ahead financial time series forecasting task.

Research in the field. There are a lot of research papers in the financial time
series forecasting field; however, the disclosure is limited due to profit opportuni-
ties involved. The repeatability of such experiments is limited, first of all, due to
the same profit opportunity reason, but moreover, due to constant environmen-
tal changes. Financial time series forecasting algorithms should be readapting
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to environmental (data) changes dynamically, otherwise they are not repeatable
and they cannot be valuable. Many artificial neural networks (ANN) based ap-
proaches for solving financial time series forecasting tasks have been proposed.
We would distinguish two main categories: experimental design orientated, which
mostly assume neural networks as “black boxes” producing outputs from given
inputs, and methodological approaches, analyzing what is inside the ANN, which
usually do not have “plug-and-play” design to be used in real financial markets
directly. We attribute our work to the second category.

Many existing financial time series forecasting algorithms employing ANN
differ in formation of forecasting target (index), and in measuring the testing
error. In this literature review we skip the experimental design oriented financial
time series forecasting algorithms (“black box” approaches), and focus on the
papers dealing with methodological issues, which to our mind have much more
value added in the long term perspective.

One of the pioneering reviews was presented by Moody [3], where poor signal
to noise ratio, non-stationarity and non-linearity of financial time series were
addressed. The author pruned unnecessary MLP nodes, regularized MLP and
used sliding window. He obtained minimum testing error at ∼ 10 years training
history. He used 1-12 months forecasting horizon (a number of steps ahead).
Moody used rates of return as prediction index and market data ranging from
1950 to 1980 as inputs. It can be argued that market characteristics were different
thirty years ago, at least due to an absence of powerful forecasting tools.

The reader is referred to an excellent review of foreign exchange rates fore-
casting by Huang et al. [4], where a number of forecasting methods using ANN
were compared, to a large extent applicable to various financial time series. The
authors aligned 11 papers comparing ANN forecasting with traditional financial
time series forecasting methods, such as ARMA, ARIMA, GARCH and random
walk. MLP was used in 10 out of the 11 papers. Although these papers highly
differ in performance measures including several types of absolute and percent-
age errors as well as average relative variance, in 7 out of 11 papers, better results
were achieved using the ANNs as compared to traditional statistical methods.
In the remaining 4 papers mixed results were obtained.

Lendasse et al. [5] used radial basis function ANN for forecasting. They used
stock market index data and obtained 42,8% testing error with 2100 days test-
ing set. They reformulated the task into classification of increases and decreases
of financial variables over time and used 500 days sliding window for training.
The proposed approach to solve non stationarity problem was to disregard t+1
period forecasting if wrong predictions exceeded right in the last 5 days counting
back from day t, obtaining 34,7% testing error in 1583 testing days.

Our previous research. Beforehand, we developed a method to increase the
accuracy in situations when environments are changing permanently [6]. Train-
ing of forecasting rule was based on short data sequences what results to more
accurate predictions as using lengthy historical data. Optimal training set size
was determined both theoretically and experimentally. To reduce generalization
error, the data dimensionality was reduced by mapping input vectors into low
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dimensional space using MLP. Forecasting was performed by SLP based classi-
fier. While training, the perceptron it was initialized with weight vector obtained
after training with previous portion of the data sequence. To save useful infor-
mation accumulated in financial time series data, the early stopping procedure
was utilized. For reader convenience let us call the former algorithm presented
above MSSE (M-mapping, S-short history, S-save weights, E-early stopping).

Thus, there is a common understanding in the field of financial time series
forecasting, that in changing environments, it is necessary to reduce complexity,
find ways to make use of the shortest possible historical data and the algorithm
should have means to adapt to complex and continuously changing environments.
Inspired by the nature, we claim that successive adaptation is possible employing
a number of diverse competing agents. An entity of the agents allows creating
distinct forecasting “styles” to learn rapidly different environmental changes.

In present paper, we expand our method proposed in [6] from the single fore-
cast to multi-agent system (MAS). While the MSSE contributed towards solv-
ing a problem of permanently changing environment, the integration of MSSE
algorithm to the MAS contributes to solving temporary changing environment
problems. Forecasting algorithm ought to adapt to the changes quickly and start
to predict accurately. Adaptation speed depends on accuracy of determination of
initial weight vector. Since a character of multidimensional time series is chang-
ing often, for a single forecasting rule it is difficult to adapt rapidly. We suggest
using several distinct forecasting algorithms (SLPs) capable to adapt to diverse
changes. In our paper, at first we analyze a behavior of such system while dealing
with artificial time series, then test our algorithm with real data. We developed a
simplified prototype of such system where only a part of our ideas were realized.

2 Proposed Method

We formulate financial time series forecasting task as pattern classification prob-
lem [6], defining the classes as increase, decrease and insignificant change of a
chosen financial variable at time t + 1 as compared to time t. We use forecast-
ing/prediction terminology when referring to the problem itself and classification
terminology, when referring to the proposed methodology. Forecasting procedure
is based on sliding window approach, which is often used in financial time series
forecasting domain: the system is trained on a particular segment of the multi-
variate time series historical data and the performance of the trained algorithm
is tested on subsequent segment. After recording testing results, the testing set
becomes a part of training set, the oldest training data are left over. Then we
consider a new testing segment, etc.

The first stage of MSSE algorithm [6] was data preparation and dimension-
ality reduction, where data was mapped into low dimensional space by wrapper
approach based neuro-linear dimensionality reduction [7]. The second stage was
derivation of polynomial features and single SLP training - testing using the
sliding window approach. Here we extend the final stage of the algorithm. In
order to make forecasting system more robust to changes, we use MAS for final
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forecast. In the new approach, r distinct adaptive forecasting agents are repre-
sented by r diverse SLPs. Each time we select rbest most successful agents for
final decision making, see Stage II b in Table 1. For reader’s convenience now on
we call MSSE algorithm MSSE-1, having in mind single agent forecasting. The
new algorithm based on MAS will be called MAFS (Multi Agent Forecasting
System) or MAFS-r, when specific number of agents r will be used.

Table 1. The steps of MAFS algorithm

Stage I Step 1 Data preparation (training TR and testing TE data blocks)

Step 2 Neuro-linear dimensionality reduction (TR, TE → TR3,TE3)

Stage II a Step 3 Derivation of polynomial features (TR3, TE3 → TR9, TE9)

Step 4 Generating r agents with differentiated initial weights, using TR9

Stage II b Step 5 Each agent retraining; testing on TE9 using “sliding window”

Step 6 rbest best* agents (SLPs) vote to make final forecast

Step 7 Retraining weights are saved only for rw best* agents

* “best” in terms of factual testing error estimated in previous testing “window”

Stage I: Data preparation and dimensionality reduction. This stage
mainly deals with experimental design.

Step 1. After dividing the data into training (TR) and testing (TE) slots, we
leave testing data aside and use training data slot for determination of model pa-
rameters. We divide training days into three non-overlapping classes: C1 – index
“ups” (25% of highest increases of forecasting index in two consecutive days),
C2 – index “downs” (25% of highest decreases) and Cmiddle – the “middle” class
(the remaining 50% of training days) which we eliminate from the experiment
to exclude insignificant changes and account for transaction costs.

Input data vectors Xt are formed using four consecutive days price history
(from day t − 3 to day t) of each of the five considered financial variables.
In this way, we generate 20-dimensional vectors. The length of input has been
determined experimentally and is a subject of user’s choice. We apply the C1
and C2 input vectors transformation towards zero mean and unit variance.

Step 2. We apply the MLP classifier for dimensionality reduction from 20 down
to 3 new features [7]. This simple feature extraction (FE) method performs linear
FE with nonlinear performance criterion. The l new features : Z = (z1, z2, . . . , zl),
are linearly weighted sums, zs =

∑p
j=1 wsjxj , (s = 1, 2, . . . , l) of p inputs (l < p)

calculated in l hidden neurons. The new extracted feature space depends on
minimization criterion used in training, i.e. on complexity of decision boundary.
In spite of simplicity, the neuro-linear FE method is very powerful tool, using
information contained in all input features.

The parameters determined in Steps 1 and 2 using TE were applied to TR
data set. For classification into 3 pattern classes we have chosen thresholds:
Xt ∈C1, if Yt > Ymax, Xt ∈C2, if Yt < Ymin, where Yt is the value of forecasted
index at day t and Ymax = maxY |Y ∈ C1, TR; Ymin = minY |Y ∈ C2, TR.
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We did not recalculate Stage I after each training window, since the gain was
negligible.

Stage II a: The MAFS algorithm architecture
Step 3. Financial data is complex. Thus, non linear decision boundary is

needed. The MLP based classifier can be easily trapped into bad local minima.
Therefore, we have chosen SLP classifier to work in the 2nd order polynomial
feature space derived from TR3 and TE3.
Z = (z1, z2, z3) → (z1, z2, z3, (z1)2, (z2)2, (z3)2, z1z2, z1z3, z2z3) = Q, here

Q = (q1, q2, . . . , q9) leads to 9-dimensional input feature space (TR9 and TE9) [6].
Step 4. We generate r agents (SLPs) with identical architecture. In order

to obtain diversity among the predictors, the perceptrons differ in their initial
weight vectors wstart(i), j = 1, 2, . . . , r. At first, we divided training set TR9 into
(r−5)/2 non-intersecting segments. We utilized 60% of each segment for training
and remaining 40% of vectors we used for validation. We had run trainings on
each of those segments in order to determine starting weights of (r−5)/2 agents.
The starting weights of other (r−5)/2 agents were determined by adding uniform
distribution random components ξ, ξ ∈ (−0, 5; 0, 5), to (r − 5)/2 previously
obtained weights. Remaining four agents got absolutely random weights 5*ξ.
The very last agent got zero initial weights (see Table 2 for the agent selection).

Table 2. Initial agent selection for final decision making

Method for the agent selection Number of agents

1 Initial weights obtained via training agents on the training block (r − 5)/2

2 Initial weights obtained via training agents on the training block
+ uniformly distributed random variable ζ ∈ (−0, 5; 0, 5)

(r − 5)/2

3 Uniformly distributed random weights wstart ∈ (−2, 5; 2, 5) 4 agents
4 Zero component initial weights 1 agent

We believe that for each segment of the data or short period of time we have
different “styles” of financial data fluctuations, since non-stationarity assump-
tion holds. Thus, for each fluctuation style we do need different classification
(forecasting) algorithms. We train and test all r agents with the same portion of
data, however, start training from the agent’s individual weight vector.

Stage II b: Forecasting as the Multi-agent system. This stage gets into
feedback loop, which steps through all the testing set TE9.

Step 5. We retrain the system on subset TR′
9 = (Qt−k, . . . , Qt) and test the

performance on subset TE′
9 = (Qt+1, . . . , Qt+m), where k stands for training

window size and m stands for system moving step, t stands for the time (today).
Step 6. The final forecasting decision for subset TE′

9 is made by rbest agents’
majority voting procedure. The rbest agents are selected according to forecasting
performance on subset TE−1

9 = (Qt−m+1, . . . , Qt).
Step 7. If training of the jth agent was successful (it falls into a pool of the rw

best agents characterized by the smallest testing errors on TE′
9), its final weight

vector was used as a starting weight in subsequent data segment training.
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It is known that if the weights of the well trained non-linear SLP based classi-
fier become large, they start slowing down further training process [8]. To over-
come this complicatedness, and to save possibly useful information contained
in starting 10-dimensional weight vector wstart, each new training session was
started from a scaled weight vector κ×wend, where wend stands for weight vector
obtained from previous training. Optimal value of parameter κ was determined
from the minimum of the cost function calculated from the testing subset TR′

9
after recording current test results. In contrast, if previous training of the jth
agent was unsuccessful, the initial weight vector for this agent training remains
unchanged. In present version of the forecasting algorithm, a number of training
epochs, ntrain, was fixed a priori. It is a subject of future investigations.

3 Experiment Design

We used artificial data set for setting architecture, global parameters of MAFS
system and investigation of its primary characteristics. Real world data was used
to check usefulness of the MAFS and compare it with previous research.

Artificial data. Long-lasting non-stationary multidimensional data was used
in the first part of the experiments. The data was generated by excitable media
model composed of 250×250 cells in a hexagonal grid as described in [9]. Each
cell mimics single financial market participant and affects six neighboring cells.
Sums of the excitations in five non-overlapping areas served as five features
that mimic random fluctuations of five financial variables. Random changes in
strength and directions of wave propagation, refractory period, threshold value
(when the cell is excited), were manually introduced in order to have severe
unexpected environmental changes. The waves of cell excitation were assumed to
represent information reaching some market participants and not known to the
other ones. Such financial market model was not used by other researchers yet.

Artificial data used in the experiment consist of 6884 “days”, 1884 from which
were used for training and the rest of them – 5000 “days” for testing. A couple
of excerpts from generated artificial time series are shown in Fig. 1a. In addition,
in Fig. 2b real time series used in the experiment are pictured for comparison.

Real market data. As in [6], the real data was taken form commodity ex-
changes during period 1993-06-08 – 2005-10-27. It consisted of 3211 observation
days. The data array was comprised of 5 time series: x1 – Crude Oil-WTI Spot
Cushing U$/BBL, x2 – Cocoa-ICCO Daily Price US$/MT, x3 – Corn No.2 Yel-
low Cents/Bushel, x4 – Gasoline, Unld. Reg. Non-Oxy, NY, C/Gal and x5 –
LME-Copper, Grade A Cash U$/MT, the price index of latter security was pre-
dicted. We used 711 days for training and the remaining 2500 days for testing.

Experimental parameters. After several attempts we have chosen: r = 41,
rw = 13 and rbest = 9. The testing window size was chosen |TE′

9| = m = 20
days and TR′

9 was a variable in the range |TR′
9| = k = 20...800 days to come

up to the optimal training window size with the smallest testing error. For
each testing attempt with different training window length we repeatedly used
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Fig. 1. (a) artificial time series; (b) real market time series (scaled to fit the grid)

|TE9| = 5000 testing “days” in the experiments with artificial data and |TE9| =
2500 testing days in the experiments with real data.

Index. We use rather simple measure of returns to construct less typical index,
for labeling training and testing data. Our index is as follows:

Index: Yt = log
(
(Bt+1 +Bt)/(Bt +Bt−1)

)
, (1)

where Bt is the price vector of given security in time t.
This way we aim to forecast if the return tomorrow will be significantly higher

(label 1) or significantly lower (label 0) than it was today. We know today’s and
historical prices. Therefore, we can calculate simplified returns. It should be noted
that the model is designed for testing of our methodology. The index is not a core
aspect in this research. It might be changed by another one at user’s convenience.

4 Results

We compare the testing error results obtained using MAFS-41 with the results of
forecast MSSE-1, proposed in previous paper. A number of differently generated
artificial time series were used to develop new algorithm. In Fig. 2 we see fore-
casting examples where the previous algorithm and the new one are compared.

While considering artificial time series, we generated the series with discreet
environmental changes of needed length. Our experiments show that the more
non-stationary time series are, the more clear training window optimum we get
and we have clearly convex pattern of experimental graph. Fig. 2a shows that
MAFS is able to constantly outperform MSSE-1 during the whole training win-
dow spectrum. It is very positive and promising result. For the same set of model
parameters, utilization of MLP gave almost constant 27% testing error rate, thus
giving clear loose in accuracy as compared to both of our suggested strategies.

We validated the experiment with the real market data (Fig. 2b and Table 3).
We observed notable gain in absolute testing error as well as we gained 170 days
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Fig. 2. Classification error et as a function of training window size k (in days): (a) ar-

tificial data, (b) real data. Bold lines – smoothed results, thin lines – original results.

in training window size. We achieved the gain for all training window lengths, k.
(Fig. 2b). This aspect of the MAFS is essential as the optimal training window
can hardly be determined in advance in applications for real time systems. In
terms of testing error, we can argue that new MAS based forecasting algorithm
is capable reacting to abrupt market changes more successfully.

Having the same time horizon and other experimental parameters we tested
with other commodity prices, the results of three of which are provided in Ta-
ble 3. We achieved gains in testing error and mixed results in terms of training
history, gaining in accuracy in several experiments, but losing in the other ones.

5 Implementation and Limitations

A contribution of present paper is the suggestion to utilize adaptive multi-agent
system for collective decision making in the final stage of MSSE algorithm. Such
approach enables accumulation of prior information about different “styles” of
the time series and makes adaptation to changing environments easier. Em-
ploying the MAFS for forecasting of financial variables allows creating diverse
adaptation and forecasting “styles” that are good for distinct segments of time
series. Use of MAFS improves the testing results of MSSE-1 and helps to reduce
the length of training history. Moreover, while employing such forecasting system
in practice, one does not know in advance, which agent is the best. Therefore,
cooperation (voting) of the most successful agents also gives additional gain.

We suggest using several distinct forecasting algorithms (SLPs) capable to
adapt to diverse changes rapidly. The algorithms should differ both in initial
weight vectors and learning parameters (learning speed, the length of multidi-
mensional segment of time series used for training, etc.). We set these parameters
to be dissimilar to distinct predictors, organize them into adaptive MAFS, ca-
pable to change its structure and the global parameters interactively.

We let our MAFS work in real changing environments and then select these
initial weight that have been successful at least in one time segment. Then we
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Table 3. Results achieved using different real commodities time series starting with

different initial conditions

Testing
error, et

Optimal
“window”, k

Testing
error, et

Optimal
“window”, k

Index commodity MSSE-1 (1 agent) MAFS-41 (MAS)

Artificially generated data 25,60% 340 25,35% 350
Copper 45,19% 270 40,29% 100
Amex Oil price index 39,73% 300 37,23% 190
Cotton 42,12% 170 41,57% 260

perform cluster analysis of a set of these initial weight vectors and use cluster
centers as the initial weights for the agents of MAFS in subsequent work.

Our experimental design might be questioned by a practitioner as we repeated
the experiment several times and used averages from test data sequences to de-
termine mean generalization error, et. From a point of view of theoretician, we
behaved correctly, since we compared different algorithms in identical conditions
and showed principal way how to predict prices in unavoidably changing environ-
ments, making use of: (1) short training sequences, (2) dimensionality reduction,
(3) early stopping to save previous information (4) faster adaptation to sudden
severe changes by utilizing MAFS.

The key goal of the research was to introduce the pool of diverse prediction
agents which could help to reduce forecasting error in one step ahead of markedly
non-stationary financial time series forecasting task. We did not aim to design
ready made system for trading in real market. Our analysis demonstrated use-
fulness of application of MAFS and indicated that much wider experimentation
is necessary in order to determine global parameters of the decision making
algorithm, which here were determined from several empiric experiments.

Unfortunately, we cannot compare our method with many of the methods
proposed in the field in quantitative terms before rearranging and repeating the
experiment due to lack of common problem formulation standards and wide vari-
ety of experimental designs in the field. The repetition of published experiments
is often impossible due to lack of details provided. However, our paper deals
with several important problems often addressed in this field, the most impor-
tant of which is complexity of influencers and changing environments. Therefore,
qualitative results here we believe more important than quantitative gains.

6 Conclusion

We expanded MSSE algorithm from single forecast to the MAFS approach. The
MSSE-1 contributed towards solving a problem of permanently changing en-
vironments. The MAFS additionally contributes to solving temporary changing
environments problem. It is done through utilization of a great number of diverse
prediction rules that learn and adapt to environmental changes differently.
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We achieved gains in testing error, while changes in training window size
were controversial: for artificial time series minimum smoothed testing error was
reduced from 25,60% to 25,35% by 0,25% (MLP gave 26,97% error). Training
window size, however, was slightly increased from 340 to 350 days. For the real
market Copper price time series minimum smoothed testing error was reduced
from 45,19% to 40,29% and training window size decreased from 270 to 100. At
100 days training window MSSE-1 gave 46,9%. Therefore, at that point the gain
in accuracy was even larger.

Positive effect tendencies of MAFS as compared to MSSE-1 can be clearly seen
in the graphs. Although absolute gain is not large, we got promising principal
results in artificial, as well as real financial variables testing. The most impor-
tant result of our gain is that the improvement was achieved over all lengths of
the training window sizes. The integration of MSSE algorithm to MAFS in addi-
tion to contribution towards solving permanently changing environment problem
contributes to solving temporary changing environment problem.
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Abstract. Evaluation of clustering partitions is a crucial step in data
processing. A multitude of measures exists, which - unfortunately - give
for one data set various results. In this paper we present a visualiza-
tion technique to visualize single clusters of high-dimensional data. Our
method maps single clusters to the plane trying to preserve membership
degrees that describe a data point’s gradual membership to a certain
cluster. The resulting scatter plot illustrates separation of the respecting
cluster and the need of additional prototypes as well. Since clusters will
be visualized individually, additional prototypes can be added locally
where they are needed.

Keywords: Clustering, Visualization, Cluster Validity.

1 Introduction

Partitioning data sets is an important task in many domains such as costumer
segmentation, organizing textual information or gene expression analysis. The
agenda behind this process is knowledge discovery via abstraction over an ap-
propriate data representation. However, despite the availability of powerful ana-
lytical methods, the evaluation of resulting models turns out to be non-trivial.

Common prototype-based clustering algorithms, such as k-means or fuzzy
c-means, minimize an objective function [3]. As a matter of fact, clustering al-
gorithms always fit the clusters to the data, even if the cluster structure is
not adequate for the problem. Thus, the quality of a partition cannot be ver-
ified meaningfully by the value of the objective function. Therefore, many va-
lidity measures are developed to analyze the adequateness of clustering results
[4,5,12,14,16,17].

Most of these measures evaluate the partitioning by means of analyzing the
fuzzy partition matrix (for fuzzy clustering) or analyzing compactness and sepa-
ration of clusters considering variance, dispersion, homogeneity or other deriva-
tives drawn from the partitions resulting in a single value, which is of course
associated with some loss of information. Primarily, global validity measures
cannot give hints which part of the data should be explored more in detail.
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VAT, Visual Assessment of Cluster Tendency, is a tool to visualize pairwise
dissimilarity information of objects X = {x1, . . . , xn} as a square image with
n2 pixels. VAT reorders the data objects so that the image highlights potential
cluster structures. As a modification of this, bigVAT allows the visualization for
larger data sets [13]. VCV, Visual Cluster Validity, is related to VAT, but takes
the inter-datum distances into account that come from partitioning the data
set [11].

FUZZSAM, an approach to visualize fuzzy partitions based on Sammon’s
Mapping is presented in [1]. The proposed tool maps the cluster centres and
the data on an arbitrary low dimensional feature space such that the distances
between the clusters and the data points will be preserved.

Recently, two visualization methods using the information of a fuzzy clustering
partition were presented in [14]. One method arranges the membership degrees
to the respective cluster over the distances to the according prototype vector.
Each cluster is represented in a single plot. The other method represents a whole
fuzzy partition by plotting the highest membership degree to each feature vector
over the corresponding second highest membership degree. Such a plot gives an
overall impression of a partition.

We propose in this paper a visualization technique to visualize single clusters
of high-dimensional data. Our method maps a single cluster to the plane trying
to preserve the fuzzy membership degrees that are directly obtained from fuzzy
clustering or subsequently derived from crisp partitions. In the following section
we briefly recall fuzzy clustering. Section 3 describes the visualization technique.
In section 4 we will give some practical details to the implementation. In section
5, we illustrate our method on an artificial data set and on a benchmark data
set as well. Finally, we conclude with section 6.

2 Fuzzy Clustering

Generally, fuzzy clustering algorithms partition a data set into several clusters as
minimizing an objective function J that describes the sum of weighted distances
dij between c prototypes vectors vi and n feature vectors xj of the feature
space R

p

J =
c∑

i=1

n∑
j=1

um
ijdij . (1)

Prototype vectors represent the respecting clusters by their location in the clus-
ter’s centre. By means of the fuzzifier m ∈ (1,∞] one can control how much the
clusters overlap. Widely overlapping clusters, which can be obtained with high
values for m, will be reflected by almost equal membership degrees uij to every
cluster. Rather crisp partitions can be found with small values for m. Usually,
the fuzzifier is set to m = 2. In order to avoid the trivial solution assigning no
data to any cluster by setting all uij to zero and avoiding empty clusters, the
following constraints are required:
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uij ∈ [0, 1] 1 ≤ i ≤ c, 1 ≤ j ≤ n (2)
c∑

i=1

uij = 1 1 ≤ j ≤ n (3)

0 <
n∑

j=1

uij < n 1 ≤ i ≤ c. (4)

When the Euclidian norm

dij = d2(vi,xj) = (xj − vi)T (xj − vi)

is used as distance measure for distances between prototype vectors vi and fea-
ture vectors xj , the fuzzy clustering algorithm is called fuzzy c-means algorithm.
Other distance measures can by applied resulting in clustering techniques which
can adopt different cluster shapes [9,10]. With the Euclidian distance measure
the fuzzy c-means algorithm finds approximately equally sized spherical clusters.

The minimization of the functional (1) represents a nonlinear optimization
problem that is usually solved by means of Lagrange multipliers, applying an
alternating optimization scheme [2]. This optimization scheme considers alter-
natingly one of the parameter sets, either the membership degrees

uij =
1∑c

k=1

(
dij

dkj

) 1
m−1

(5)

or the prototype parameters

vi =

∑n
j=1(uij)mxj∑n

j=1(uij)m
(6)

as fixed, while the other parameter set is optimized according to equations (5)
and (6), respectively, until the algorithm finally converges.

3 Visualizing Single Clusters

We propose in this paper to visualize single clusters by projection of the data
points onto the plane under the constraint that the membership degrees to clus-
ters are preserved. Note, membership degrees can be obtained directly when us-
ing a fuzzy clustering algorithm (e.g. fuzzy c-means), but also when calculating
membership degrees after the partitioning, which can be done for any prototype-
based clustering algorithm. To achieve the objective of membership preservation,
we adopt the noise distance aspect of the noise clustering technique [6].

Noise clustering is based on the introduction of an additional noise cluster
that is supposed to contain all feature vectors that are about a certain distance,
the noise distance δ, away from all other prototype vectors. This means that the
prototype vc for the noise cluster c has no parameters. The clustering scheme
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0 1

x̂j
d̂ij

d̂�j

Fig. 1. Placement of x̂j in the plane

differs only in one point from k-means or fuzzy c-means. When calculating the
membership degrees the distance of the feature vector xj to the noise cluster vc

is the fixed constant value dcj = δ2. The proper specification of δ is discussed
in [6,15].

With the objective to place the cluster in the plane, we need for each data
point two coordinates. Note, that the constraint for the projection is not to
preserve the distances dij but the membership degrees uij . The idea for our
visualization is to compute the distances to the cluster prototypes by means of
the membership degrees. To achieve this we consider the usual computation of
membership degrees as mentioned in equation (5). This provides a very simple
connection between membership degrees and distances

uij

u�j
=

1∑c
k=1

(
dij
dkj

) 1
m−1

1∑
c
k=1

(
d�j
dkj

) 1
m−1

=
(
d�j

dij

) 1
m−1

. (7)

For the purpose of visualization we propose to place the cluster i to be visualized
at (0, 0) and to choose a second cluster � at (1, 0). The cluster at (1, 0) is a virtual
cluster that contains all feature vectors with the highest membership degree
apart from uij . The intention of this cluster is to collect all feature vectors that
are assigned to another cluster than the one we want to visualize. Let us denote
the membership degree to the most competing cluster by u�j . Furthermore, we
introduce a noise cluster to cover the clusters apart from i and �. According to
the distance of the two chosen cluster prototypes at (0, 0) and (1, 0), we define
the noise distance δ = 1. This means we have unoisej = 1− uij − u�j . According
to equation (7) this leads to

uij

unoisej
=

(
1

d̂ij

) 1
m−1

. (8)

We denote the distance between cluster i and � on the plane by d̂ij to emphasize
the fact that we do not deal with original distances any more but with repre-
sentative distances with respect to the according membership degrees. Solving
equation (8) for d̂ij we obtain

d̂ij =
(
unoisej

uij

)m−1

. (9)
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Analogously, we obtain for the second cluster �

d̂�j =
(
unoisej

u�j

)m−1

. (10)

This approach enables us to visualize some useful aspects: 1. which feature vec-
tors can be assigned clearly to the cluster i of intrest, 2. if a feature vector cannot
be assigned to i, is there another cluster �, where the vector can be assigned to,
3. which feature vectors are near to one or more prototypes apart from i and �,
4. are there feature vectors that cannot be assigned to any cluster clearly.

With equation (9) one can compute the distance of each feature vector xj to
the cluster i, so that it is possible to draw a circle around (0, 0) as one hint for
the feature vector’s position in the plane. With the distance to the other cluster
(1, 0), one could draw another circle around the cluster centre. The intersection
point of these two circles would be the position of the new feature vector in the
plane.

Figure 1 illustrates this approach. The small circle that represents the poten-
tial coordinates of x̂j , can be drawn with distance d̂ij obtained from equation
(9). Analogous, the bigger circle can be drawn with d̂�j that we get with equation
(10). The intersection point of these two circles represents the feature vector x̂j

in the plane.

4 Implementation Aspects

Apart from the clustering itself, which leads to the membership degrees uij

another parameter affects the transformation, namely m (see equations (8, 9,
10)). A priori, one would set m the same value as for the clustering. But it can
be also useful to modify this parameter. Practical tests have shown that in some
cases, i.e. when a feature vector is very close to a prototype vector, no intersection
point can be obtained in the plane and consequently the membership degrees to
the respecting feature vector cannot be preserved exactly.

The rules shown in algorithm (1) handle such cases while trying to preserve
membership degrees approximately. Let us denote the transformed data set X̂ .
With x̂2j = 0 we define for a feature vector that is very close to one certain
prototype vector a position on the x-axis on the plane. The rest of the rule
tries to find the proper position for x̂j on the x-axis balancing the distances
to cluster (0, 0) and cluster (1, 0). If the distance to both clusters is relatively
small, say max(d̂ij , d̂�j) < 1, then we compute a position between both clusters
in relation to d̂ij and d̂�j . Otherwise, which means one or both clusters are about
a distance of 1 or further away from the feature vector we distinguish whether
cluster (0, 0) or cluster (1, 0) is nearer. If the distance of xj to cluster (0, 0) is
higher than the distance to cluster (1, 0) then x̂j will be placed to the right of
cluster (1, 0) at x̂j = (1 + d̂1j , 0). If the distance d̂ij to cluster (0, 0) is smaller
than the distance d̂�j to cluster (1, 0) then x̂j will be placed to the left of cluster
(0, 0) at x̂j = (−d̂ij , 0). This concept enables us to place the data point at least
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Algorithm 1. Placement of x̂j on the x-axis
if no intersection point then

x̂2j = 0
if max(dij , d�j) < 1 then

x̂1j = dij/ (dij + d�j)
else

if dij > d�j then
x̂1j = 1 + d�j

else
x̂1j = −dij

end if
end if

end if

accurate relative to the nearest cluster. However, it is not very interesting to
know exactly how far away the feature vector is, since the distance is quite large
in fact.

With these rules the membership degrees cannot be preserved exactly, but
approximated intuitively. Alternatively, one can avoid this kind of approximation
by modifying parameter m for the transformation process. Small values m→ 1
prevent that no intersection point can be met. Otherwise, one can set higher
values for m to force placements on the x-axis. Such transformations may be
not that differentiated, but information can be reduced to some essential facts
if needed. Generally, data points situated left from 0.5 on the x-axis can be
assigned to cluster (0, 0), while data points on the other side belong to another
cluster.

5 Results

Let us first apply our visualization method to an artificial data set. The cube
data set (see figure 2(a)) consists of eight well separated clusters, which are
in the corners of an imaginary 3-dimensional cube. A fuzzy c-means partition
of the data set with five prototypes is shown in the figure. Of course, eight
prototypes would be the best choice to partition the cube data set with. Thus,
we can illustrate with this partition which information one can get from the
visualization tool.

Figure 2(b) shows the transformation of the cube data set from the perspective
of prototype A. Clearly four groups of data points can by observed (circled with a
dashed line). The data points in group 1 are those, which can by clearly assigned
to prototype A. Data points that are located in group 2 are those, which are
not assigned to prototype A at all, but to another prototype. Note, a partition
that only consists of these both groups is ideal. Group 3 stands for feature
vectors, which are not assigned to prototype A and not to any other prototype.
Instead, the data points have approximately the same membership degree to two
or more prototype vectors (but not to prototype A). Group 4 represents feature
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(a) Clustering of the cube data set with
5 prototypes

A

B

C

(b) Transformation of the cube data set
from the perspective of prototype A

1 2 3

4

(c) Transformation of the cube data set
from the perspective of prototype B

(d) Transformation of the cube data set
from the perspective of prototype C

Fig. 2. An illustrative example

vectors that have approximately the same membership degree to prototype A
and another prototype.

Figure 2(c) shows the transformation of the cube data set from the perspective
of prototype B. At first sight one can notice that group 4 is absent. That means
in fact that no other prototype than prototype B has high membership degrees
to the data points in group 1. A closer look reveals that the distance of prototype
B to some misrepresented data is higher comparing to other prototypes, such
as prototype A and C. All other data points that could contribute to group
4 are clearly represented by some prototypes. The transformation of the cube
data set from the perspective of prototype C is shown in figure 2(d). Now group
3 is missing in the plot. This becomes evident, because all data points that
are underrepresented are directly between prototype C and at least one other
prototype. As we have discussed above, group 3 only occurs when data points
have low membership degrees to the regarding prototype and approximately
equal membership degrees to two or more other prototypes. Since prototype C
is at least as near as other prototypes, group 3 cannot be formed.

Figure 3 shows some results on the well known wine data set. The figure shows
exemplarily two clusters of a partitioning with four prototypes. The left one is a
visualization of a quite compact cluster. Data points left from 0.5 on the x-axis
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(a) (b)

Fig. 3. Some transformations of clusters of the wine data set

(a) Transformation with m = 1.2 (b) Transformation with m = 1.02

Fig. 4. The effect of parameter m

whose component on the y-axis is greater than zero have only small membership
degrees to the cluster (1, 0) even if their distance to cluster (0, 0) seams to be
far. This is due to the relatively small fuzzifier. The cluster shown in figure 3(b)
is much more overlapping other clusters as the points on the x-axis, fairly in the
middle between both clusters, indicate. As mentioned above, using small values
for m leads to rather sensitive transformations. Even a relative small membership
degree to a certain cluster attracts the data point in the transformation. To
smooth this effect it is advisable to decrease m for the transformation or increase
m for the clustering if possible.

The effect of decreasing m for the transformation is shown in figure 4. While
figure 4(a) shows the transformation of a cluster of the wine data set with
m = 1.2, the figure 4(b) shows the same cluster transformed with m = 1.02.
The changeover from cluster (0, 0) to cluster (1, 0), which is the imaginary line
at 0.5 through the x-axis, is rather sparse. This fact indicates a compact clus-
ter with only few feature vectors which cannot be assigned that clear to any
cluster.
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6 Conclusion

We presented in this paper a new method to visualize fuzzy clustering partitions
on the plane. The visualization reveals whether a cluster is compact and if there
is some data from the perspective of the respective cluster that is not well rep-
resented. Our results on two data sets are promising. Subject of future work will
be the development of an appropriate evaluation method.
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Abstract. Despite increasing amounts of data and rapidly increasing computa-
tional power current state-of-the-art pattern recognition models still can not han-
dle massive and noisy corporate data warehouses, that have become the reality of
today’s businesses. Moreover, real-time and adaptive systems often require fre-
quent model retraining which further hinders their use. The necessity is therefore
to build the classification model on a much smaller representative subset of the
original dataset. Various condensation methods ranging from data sampling up
to density retention models attempt to capture the summarised data structure, yet
they either do not account for labelled data or degrade the classification perfor-
mance of the model trained on the condensed dataset. The proposed family of
models called Dynamic Data Condensation (DDC) combine dynamic condensa-
tion, data editing and noise filtering in an attempt to maximally reduce labelled
dataset yet with no harm on the performance of a classifier trained on the reduced
set. The condensation is achieved by data merging and repositioning imposed by
an electrostatic-type field applied to the data which attracts data from the same
class but repels data from different classes, thereby trying to improve class sepa-
rability. Initial experiments demonstrate that DDC outperforms competitive data
condensation methods in terms of both data reduction and the classification per-
formance, and is therefore considered better preprocessing step for classification.

1 Introduction

Rapid increase of cheap storage space and computation power led to the massive expan-
sion of terabyte data-warehouses and boosted the demand for accessing and processing
these massive information sources. Data analytics and mining continuously gain in im-
portance for virtually any business today [2]. On the one hand increasing number of
automated intelligent data-driven processes require information processed in real-time,
on the other hand complex analytical and predictive models are being deployed for a
variety of on-demand services. All these technologies attempt to use the most advanced
data mining and machine learning models, yet the disparity between the requirements
and model capabilities is worryingly growing due to inability to process vast amounts
of data in real time. Classification methods are at the very heart of pattern recognition
and machine learning yet the most advanced models like neural networks, support vec-
tor machines or density based classifiers [1] are of high - at least quadratic - complexity
with respect to the number of samples. At such complexity classification models strug-
gle with the data sizes in the order of tens of thousands yet face now the data sources
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with millions or even billions or records. To deal with this problem the data needs to be
reduced to the manageable sizes, yet the challenge is to do that with minimum informa-
tion loss and no harm on the subsequent classification performance.

The simplest and possibly the most common condensation methods are random sam-
pling techniques [3]. They are suitable for large datasets with simple structure, yet fail
on smaller noisy data particularly with large density or class imbalances as they tend
to ignore less populated data subspaces. It is believed that the proper condensation
method should make use of all of the original data points [1]. The state-of-the-art data
condensation methods in its majority try to select subset of data that maximally retains
the original data density or other characteristics like quantisation error etc [4]. A num-
ber of methods in this group work around the principle of removing samples from the
less dense regions in favour of strengthening the evidence in the denser regions such
that the deviation from the original data density is minimum possible [4], [6]. Other
methods use multi-resolution spatial analysis to split data into partitions or clusters [7]
and use centres of these clusters as new condensed dataset. Classification-based con-
densation methods are relatively new and serve directly the purpose of retaining or
improving classification performance given reduced training set. The typical examples
of such classification focussed condensation are the reduced nearest neighbour rule, it-
erative condensation algorithm [5] or locally variable condensation models based on
neural networks [8]. In all these efforts none of the methods try to actively change the
data from its original position. It is reasonable to assume that releasing data from their
original positions could further improve classification performance or at least allow for
further condensation given similar classification performance. In [6] Girolami and He
obtained improvement of the Parzen density fit of the reduced set by releasing and find-
ing optimal data weights on the course of constrained optimisation process. A natural
extension of such model would be to include data vectors themselves into the variables
to be optimised yet this would undoubtedly trap the process into large number of local
optima building up on the excess of the degrees of freedom for this ultra-high dimen-
sional search space. In a response to this challenge a new condensation model is here
proposed which applies electrostatic-like data field to condense and transform labelled
dataset in order to retain or boost the performance of a classifier trained on such dataset.
A set of 5 model variations is presented and tested in a form of dynamic iterative simu-
lations carried out on standard dataset used for classification benchmarking.

The remainder of the paper is organised as follows. Section 2 introduces the con-
cept of potential fields used in classification. The following section provides detailed
description of the dynamic data condensation presented in 5 different variations. Sec-
tion 4 shows the results of some comparative experiments demonstrating condensation
and classification performance of the proposed model. Finally conclusions and further
research are briefly drawn in the closing Section 5.

2 Data Fields for Classification

The concept of a field in classification is not new and in fact is related to the kernel
methods [9]. The rationale behind using the field concept is to ensure that every data
sample is actively contributing in the formation of final classification decision. By an
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analogy with the particles in the physical world one can consider the data as charged
particles each being the source of a central field affecting other samples in the input
space. All the characteristics of such field are the results of the definition of potential and
can be absolutely arbitrarily chosen depending on various priorities. For classification
purposes the idea is to assign the class label to a previously unseen sample based on the
class spatial topology learnt from the training data. This goal is achievable within the
data field framework if we assume testing samples to be mobile and forced by the field
to move towards affixed training data to share their label. The overall field measured
in a particular point of the input space is a result of a superposition of the local fields
coming from all the sources. Thus the positions of the training data uniquely determine
the field in the whole input space and thereby determine trajectories of the testing data
during classification process. If the field is designed in such a way that all possible
trajectories end up in one of the sources then the whole input space can be partitioned
into regions representing distinct classes. The boundaries between these regions form
the ultimate class boundaries, completing the classifier design process.

2.1 Attracting Field Model

Given the training data acting as field sources, every point of the input space can be
uniquely described by the field properties measured as a superposition of the influences
from all field sources. Let us make an initial assumption that the field sources are fixed to
their initial positions i.e. let us have a static glimpse of the field with all dynamic aspects
imposed by the field ignored. Given a training set of n data points: X = (x1, ..,xn)
let each sample be the source of a field defined by a potential Uj = −csif(−→rij) where
c represents the field constant, si stands for the source charge of xi, and f(−→rij) is a
certain non-negative function decreasing with an increasing distance |−→rij | = |rij| from
the source xi to the point yj in the input space. In the attracting field equivalent to
the gravity field we simply have f(rij) = 1/|rij|. Overall the potential Uj and field
interaction energy Ej in a certain point yj of the input space is a superposition of the
potentials coming from all the sources:

Uj = −c
n∑

i=1

si

|rij|
Ej = −csj

n∑
i=1

si

|rij|
(1)

We can simplify model further by assuming that all data points are equally important
and have the same charge equal to the unit: si = 1 thus eliminating it from the equations
1. Another crucial field property is its intensity Ej , which is simply a gradient of the
potential and its solution leads to the following:

−→
Ej = Ej = −−→∇Uj = −

(
∂Uj

∂yj1
, ...,

∂Uj

∂yjm

)
= −c

n∑
i=1

yj − xi

|rij|3
(2)

A field vector shows the direction and the magnitude of the maximum decrease in field
potential. By further analogy to gravitational field, the charged data point is affected
by the field in the form of force attempting to move the sample towards lowest energy
levels. As the charge has been assumed uniformly of unit value and excluded from the
equations the force vector becomes identical to field intensity vector: Fj = sjEj = Ej.
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2.2 Attracting-Repelling Field Model

So far data have been only attracting each other which was a consequence of the same
charge and as a consequence negative potential definition resulting in the energy wells
intercepting samples found in the neighbourhood. Such field does not use the informa-
tion about the class labels as all the samples are considered to hold the same charge.
Ideally, the attracting force should be acting only upon the data from the same class. At
the same time the samples from different classes should be repelled from each other to
stimulate increased separability between classes. Again nature offers a perfect guide in
a form of electrostatic field, where opposite charges attract each other and charges of the
same sign repel from each other. To adopt this rule to the labelled data, the samples from
the same class should interact with negative potential as in previous case, whereas sam-
ples from different classes should generate the positive potential of the same absolute
value triggering repelling force. The major problem with electrostatic data field is that
testing samples do not have labels and cannot straightforwardly interact with labelled
training samples. Estimating the label of the testing sample means that classification
is accomplished. To avoid this trivial situation we assume that each testing sample is
decomposed into fractional subsamples with the charges proportional to different class
potentials normalised to sum up to a unit.

Given the training set X = (x1, ..,xn) with labels LS = (l1, .., ln) where li ∈
(1, .., C), labels partition matrix PN×C for the testing set Y = (y1, ..,yN) can be
simply obtained by pjk = |Uk

j |/
∑C

i=1 |U i
j | where U b

a stands for potential generated
by samples xi coming from class indexed by b measured in point ya. Given this label
partition matrix the new definition of potential and field vector take the following form:

Uj =
n∑

i=1

⎛⎜⎜⎜⎝
∑

k 	=li
pjk

|rij|︸ ︷︷ ︸
repelling

− pjli

|rij|︸︷︷︸
attracting

⎞⎟⎟⎟⎠=
n∑

i=1

1 − 2pjli

|rij| Ej =
n∑

i=1

[
(1 − 2pjli)

yj − xi

|rij|3
]

(3)

The numerator of the potential definition (3) can be both positive and negative de-
pending on the class partial memberships. In the presence of many classes, regardless
of their topology, the absolute values of the partition matrix P will naturally decrease
to share the evidence among many classes. Effectively the potential would grow pos-
itive with the repelling force dominating the field landscape. In our model the data
still has to slide down the potential towards the source samples. To satisfy this require-
ment, it is sufficient to normalise the field such that the overall potential of the field
should not be larger than zero. Taking into account the fact that the field is substan-
tially negative in the close neighbourhoods around the training samples, it is sufficient
to satisfy the condition of

∑N
j=1 Uj = 0. To achieve this goal potential definition has

to be parameterised and solved with respect to the regularisation coefficient q as in the
following:

N∑
j=1

Uj =
N∑

j=1

n∑
i−1

1− qpjli

|rij|
= 0 (4)
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(a) 3D potential plot (b) Vector field plot

Fig. 1. Visualisation of the attracting-repelling field applied to the Land Satellite dataset with
2000 examples, 4 features and 6-classes. 1(a) Plot of the potential created by the samples. 1(b)
Vector plot of the resulting field intensities.

In the model we use bisection method to find numerical estimation of the parame-
ter q. Note that parameter q has a meaningful interpretation as the value 1 − q says in
general how many times should the attracting interaction be stronger to compensate the
excess of the repelling interaction coming from the multitude of different classes. Figure
1 demonstrates the examples of both field models applied to the Land Satellite dataset.

3 Dynamic Data Condensation

The data fields presented above will be used to condense the labelled data in the process
of dynamic field interaction with its sources. For this purpose the data, are released from
their initial positions and are moved by the field forces towards decreasing potential
in the multidimensional input space. Whenever two or more data points meet, as a
result of such repositioning, they instantly become a single data point with the summed
charge strengthening the field around the new point yet increasing also its mass which
reduces relative ability to shift. The whole process becomes in fact a simulation in
which data-points move towards each other and gradually merge, thereby performing
the act of condensation. Due to the fact that the introduced potential fields retain the
total energy, the undesirable kinetic energy that would normally be gained as a result of
such simulation is cancelled out after each simulation step.

The dynamic condensation process is defined as a sequence of simulation steps
which start from the original data locations and finish when no more changes in the
data positions is recorded after each step or it can be stopped arbitrarily by the user
at desired level of data condensation. At each step the field and corresponding forces
vectors are recalculated at all existing data point locations. Using the force vectors the
points are then shifted by a small step d in the directions determined by the force vec-
tors. After the shifting phase all the data are tested for mergers which are assumed to
happen when the distance between two points is lower than an arbitrarily small merger
range for simplicity set to d.
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Computationally the critical process is the calculation of the distances among all
the sources. Using matrix formulation of the problem and the appropriate mathemat-
ical software, this task can be obtained rapidly even for large datasets. Denoting by
X [n×m] the matrix of n m-dimensional data points, the task is to obtain the matrix D
of the distances between each pair of of the considered data points. Introducing ”◦”
as element-wise matrix multiplication and 1[n×m] as an n by m matrix with all unit
elements, the distance matrix can be calculated instantly by:

D2 = X ◦X • 1[m×n] − 2 •X •XT + 1[n×m] •XT ◦XT (5)

Given the distance matrix the process of data evolution is very straightforward. The
data points are simply sliding down the potential wells they have created to meet one
or more of the neighbouring field sources. Ignoring the dynamics of sliding data i.e.
removing the kinetic energy they gain during the drift towards each other each data
point is moved by4X [n×m] again efficiently calculated using matrix formulation by:

4X =
d •F√

(F ◦ F ) • 1[m×m]
(6)

where d is an arbitrarily small step. Negative potential definition appearing in both
fields ensures that the data is trapped to its original data space and will not escape as
a result of the simulation. To avoid numerical problems the data should be normalised
within the same limits in each dimension and distances limited from the bottom by
a small interception threshold comparable to d which prevents division by zero and
”overshooting” the field sources during simulation.

3.1 Crisp Dynamic Data Condensation (DDCC)

Let us first assume that individual data point is an indivisible fault free unit of evidence.
During the condensation process these data points are let free and as they move and
merge the field changes according to their new locations. Depending on how the class
labels of the data are used the crisp electrostatic condensation models can be further
subdivided into unlabelled and labelled which differ fundamentally from each other.

Let us first consider Crisp Unlabelled DDC (DDCCU ) model which uses attracting-
only data field as shown in (1). To be able to effectively use such field for the condensa-
tion purposes the dynamic simulation model has to be applied to all classes in isolation
as otherwise all the data merge to the centre-mass point and completely destroy the
class structure. The simulation can be carried out simultaneously for all the classes yet
in that case the intra-class interactions have to be insensitive to the other classes inter-
actions. In this model data points of each class are collapsing gradually up to a single
data point per class which terminates with the weights proportional to the counters of
original points in the condensed data.

In the Crisp Labelled Electrostatic Condensation (DDCCL) the labels of the training
data are used to determine the sign of the potential. Negative potential is generated by
the data from the same class and positive for the data from different class such that the
data points from the same class are attracting each other and data from different classes
repel from each other. Note that during condensation process all the labels of the con-
densing dataset are known hence the definition of potential becomes a special case of
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(3) where all the charge partitions pji are crisp i.e. are either 1 or 0. An advantage of
this approach for classification purposes is during such process the data from different
classes would try to separate out from each other. However, in case of elongated class
shapes some data tails or other isolated data points could be pushed away by the dense
neighbouring regions from different classes. Another problem that emerges in the la-
belled electrostatic model is collisions of data from different classes. Such collisions
could happen if the attracting forces generated by large data concentrations from the
same class override weaker repelling actions from the samples of different classes.

3.2 Soft Dynamic Data Condensation (DDCS)

It is reasonable to assume that the labelled classification data is noisy and often faulty
and hence to treat it in the soft probabilistic terms. The data labels is summarised in the
form of soft class membership or partition values. These class partitions are obtained
from the original class densities obtained via Parzen window density estimator and then
mapped onto the probabilities. According to Parzen-window approach [2] an estimate
of the data density in point xj can be obtained by calculating:

p(xj) = pj =
1
n

n∑
i=1

1
Vn

ϕ

(
xj − xi

hn

)
(7)

where Vn is a window volume, ϕ is a specific window function and hn is a smoothing
parameter. This model uses the common Gaussian window function defined as follows:

ϕ(u) =
1
2π

e−u2/2 (8)

The leave-one-out maximum likelihood estimation is applied to find the optimal
smoothing parameter hn. Let pk denote a vector of Parzen density estimates measured
on dataset X but generated only from kth class of the dataset X , k ∈ (1, .., C). Class
partitions are obtained from Parzen densities using typical transformation mapping used
in classification and scaled up to sum up to a unit:

pN
k =

1
1 + e−pk

pS
k =

pN
k∑C

i=1 p
N
i

(9)

Given the matrix of partitions as defined above, one could easily apply electrostatic
potential (3) yet there is still a freedom in deciding how to control the variability of
such soft labels during the condensation process. The most conservative model called
Soft Fixed-Field Condensation (DDCSFF ) assumes fixed field built on the original
data which is kept fixed during the condensation process. Such approach would try to
maximally preserve the original Parzen density structure even if it requires continuous
relabelling of moving samples. Here the merging process is free of any conflicts as
the class partitions of the merging samples are simply adding up to the new ”heavier”
sample which stays partitioned after the merger.

The Soft Fixed-Labels Condensation (DDCSFL) keeps label partitions fixed during
the condensation, once they are calculated before the simulation. The merging process
remains additive as in the previous case.
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Finally the least constrained Soft Dynamic Data Condensation (DDCS) model re-
leases all the constraints and lets both the field and data partitions change as the data
samples evolve during condensation process. As in previous soft models colliding data
merge into a single point with summed class label partitions.

For all soft condensation models the field is continuously renormalised using a reg-
ularisation parameter calculated as shown in (4). Both soft and crisp dynamic conden-
sation processes finish when the sum of data shifts at a single step is smaller than an
arbitrarily small distance, for simplicity chosen to be equal to d used in (6).

4 Experiments

The presented electrostatic condensation models have been evaluated in terms of clas-
sification performance obtained at different levels of data reduction and then compared
with the performance obtained on the original data. All the models have been applied
to the well-known Land Satellite Image dataset from UCI Repository 1. The training
set consisted of 2000 data points and the left-out testing set was sized 4435. All the
dynamic condensation models have been applied to the multiple training sets collected
during the condensation at increasing level of dataset reduction. These training sets were
used to train the two selected benchmark classifiers: Parzen density classifier (PDC) and
k nearest neighbour (KNN). The trained classifiers were then tested on the testing set to
produce the performance condensation profiles as shown in Figure 2.
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Fig. 2. Visualisation of the classification performance obtained on increasingly condensed Land
Satellite datasets at different condensation levels for 2(a) Parzen density classifier 2(b) K nearest
neighbour classifier

The soft condensation methods clearly outperformed the crisp methods with the con-
strained versions of DDCSFF and DDCSFL consistently taking the leading positions.
In the following experiment the best dynamic condensation method i.e. DDCSFF

1 University of California Repository of Machine Learning Databases and Domain Theories,
available free at: ftp.ics.uci.edu/pub/machine-learning-databases.
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Fig. 3. Visualisation of the Parzen density classifier performance obtained on increasingly con-
densed Land Satellite datasets using DDCSF F , intra-class RSDE method, random sampling
and k-means clustering. 3(a) Condensation profiles comparison. 3(b) Visualisation of the Land-
Sat dataset reduced by 99% using DDCSF F , overlayed on the class boundary map of a Parzen
density-based classifier trained on the full training set.

was compared with the typical random sampling, condensation based on k-means intra-
class clustering, and the state-of-the-art RSDE density estimation method described in
[6]. Both k-means and RSDE have been applied to reduce each class separately yet for
RSDE it was only possible to obtain a single point of the condensation profile i.e. for the
condensation level at which the RSDE method converged. For k-means clustering, the
condensation level was controlled by selecting the numbers of cluster centres for each
class that were proportional to the prior class probability. The random sampling was ap-
plied to the incrementally reduced training sets preserving the prior class probabilities.
The results of this experiment are shown in Figure 3.

Clearly DDCSFF outperformed the other methods and even showed higher testing
performance than the model trained on the data reduced by the top-in-the-field RSDE
method [6]. The top-ranked condensation algorithm managed to retain the 99% of the
original classification performance for almost 99% reduced training set. An interesting
observation comes our off the reduced set visualisation showed in Figure 3(b) which
shows that some classes were partitioned into isolated clusters as a result of the repelling
inter-class forces. The class remainders retained their identity outside of the main class
mass yet they found the positions which do not disturb the purity of the main class
densities as opposed to the fixed-position condensation methods which would most
likely ignore the class remainders treating them as outliers. This property could be the
key to retaining maximum class representativeness at high data condensation levels.

5 Conclusions

This work promotes a new type of data condensation which dynamically merges and
repositions the data as a result of the electrostatic-like field generated by and acting upon



Dynamic Data Condensation for Classification 681

the labelled data in the input space. The electrostatic metaphor of charge-dependent at-
tracting or repelling field was adopted in the classification context to generate intra-class
attraction and inter-class repulsion to further encourage class separability. To boost the
retention of the original class density, soft versions of the proposed dynamic condensa-
tion were developed which allow for mergers of data from different classes yet retaining
soft/fuzzy class partitions. Morover in DDCS and the most successful DDCSFF the
field is directly guided by the Parzen estimates of the original class densities which
continuously redistribute class partitions as the data marge and move during the con-
densation process. On the course of comparative experiments carried out with typical
classifiers on Land Satellite dataset the soft versions of the presented condensation al-
gorithms outperformed comparable state-of-the-art algorithms in terms of classification
performance on maximally reduced training sets. The best CCDSFF model managed
to retain 99% of the original classification performance on 99% reduced training set.
Future advancements will include attempts to incorporate categorical data and provide
automated field tuning mechanisms along with an attempt to make the presented algo-
rithms more scalable and numerically stable.
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Abstract. In this paper, two level handwriting recognition concept is
presented, where writer identification is used in order to increase hand-
writing recognition accuracy. On the upper level, author identification
is performed. Lower level consists of a classifiers set trained on samples
coming from individual writers. Recognition from upper level is used on
the lower level for selecting or combining classifiers trained for identified
writers. The feature set used on the upper level contains directional fea-
tures as well as the features characteristic for general writing style as line
spacing, tendency to line skewing and proportions of text line elements,
which are usually lost in typical process of handwritten text normal-
ization. The proposed method can be used in applications, where texts
subject to recognizing come form relatively small set of known writers.

1 Introduction

Automatic handwriting recognition is one of the most intensively explored area of
artificial intelligence. Despite many years of research, there are still no mature
methods allowing for handwritten text recognition with acceptably low error
rate. One of the main reasons of the problem difficulty seems to be the great
diversity in handwriting styles. Different writers write the same character in
different manners. Examples presented on Fig. 1 show digit 4 and digit 9 written
by different persons. The shape of digit 4 by writer A is very similar to digit 9
written by writer B, while digits 4 and 9 written by B are easy distinguishable.
This misleading observation may cause degradation of character or word classifier
accuracy, if it is trained using common learning set consisting of character or
script samples coming from great number of writers.

In case of automatic handwriting recognition applications, where number of
writers is known and relatively small, better results can be expected if separate
classifiers are trained for each writer individually, using only text samples coming
from single person. In this way, the classifier can better fit individual author
writing style. Additionally, if particular writer style is difficult to analyze (i.e.
different characters are written in similar way), then separation of classifiers by
authors prevents deterioration of overall classification performance by limiting
uncertainty in recognition to texts written by ”careless” writer. The concept
of individual writer classifiers can be applied both to character recognition, in

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 682–691, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Digits written by two writers A and B a) digit 4 by A, b) digit 9 by B c) digit

4 by B

case where characters can be easily isolated (e.g. in case of forms recognition
as described in [15]) and to cursive script recognition, where holistic approach
to complete words recognition is used. In remaining part of this article we will
focus on isolated characters recognition.

Applying classifiers trained for particular writers requires the ability to reli-
ably identify the text author before individual classifier is applied. The problem
of writer identification is being investigated by many researchers ([2], [8], [9],
[12], [13]). In most of publications however, writer identification is the ultimate
aim (as e.g. in forensic document analysis, forgery detection, signature verifica-
tion etc). Here we will adopt writer identification methods as a stage of more
complex text recognition problem. For our purposes the assessment of writer
identification stage is different than in cases where exact writer identification
is an ultimate goal. Here we rather expect that writer identification results in
finding such writer which writing style is similar to the style of actual writer, so
as to maximize the performance of character recognition on the lower level. For
this reason it is more convenient to use soft classification paradigm ([5]) instead
of typical crisp classification.

The main aim the work being described here is to examine how writer iden-
tification influences the final character recognition performance. Secondly, we
want to investigate methods of using soft writer recognition results in combining
character classifiers trained for individual authors and recommend the one for
practical applications. We do not consider here in detail the problem of feature
selection for writer identification. The features recommended by other authors
([8], [13]) extended with some features describing text layout, specific for indi-
viduals are used.

2 Two-Level Classifier with Writer Identification

Let us consider a problem of handwritten character recognition. The text con-
taining characters to be recognized is written in upper case isolated letters,
so precise segmentation of words into characters is not a problem. In practice,
we usually deal with such kind of text in case of form recognition, where the
text layout is strictly determined by the form structure. In majority of cases
the aim of text recognition consists in correct recognition of words or complete
sentences. Because low error rate of character classifier is crucial for lexical or
semantic level text recognition accuracy, here we will restrict our considerations
to isolated characters classification.
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Two-level classification scheme is proposed. On the upper (text) level we deal
with writer identification problem. Text being recognized comes from finite and
relatively small set of M writers. The writer is being identified using writing
style features vF = (vF

1 , v
F
2 , ..., v

F
L ) extracted from the text image F . Writer is

identified by soft classifier ΨR(vF ), which assigns the support value di(vF ) to
each of writers i = 1, ...,M :

ΨR(vF ) = [d1(v), d2(vF ), ..., dM (vF )]T . (1)

The support value di(vF ) can be interpreted as the classifier confidence that
text comes from i-th writer. For computational purposes we request that the
support vector is normalized, i.e. its components are non-negative and they all
sum up to 1.0.

On the lower (character) level we have the set of character classifiers Ψr
C(x), r =

1, ...M . The input of the classifier is the vector of features x extracted from iso-
lated and appropriately preprocessed character image. The set of classes in the
classification problem on the lower level corresponds to the alphabet containing
L admissible characters. Each classifier Ψr

C(x) is trained using the learning data
coming from the r-th writer, so it is expected to perform best when classifying
characters written by this individual. Soft classification is also applied here, i.e.
each soft character classifier provides the support vector:

Ψr
C(x) = [dr

1(x), dr
2(x), ..., dr

L(x)]T , (2)

where di(x) is the support value for i-th character from the alphabet.
The basic problem of two-level classifier construction is how to utilize the soft

writer classification result on the lower level. We deal here with rather typical
classifier combination problem. There are great number of methods for classifiers
combination ([5], [6], [10], [11]). We have selected frequently used weighted voting
scheme. Because soft classification paradigm is applied on the lower level, the
final result of recognition can be obtained as weighted combination of component
classifiers outputs. Let ΨC(x) denote the combined soft classifier on the character
level producing the final support vector [d1(x), d2(x), ..., dL(x)]T . The support
value di(x) for i-th character is calculated as:

di(x) =
M∑

r=1

βrd
r
i (x), (3)

where βr are weight factors dependent on the support values dr(vF ) fetched by
the writer soft classifier on the upper level. In our experiments we tested two
strategies of βr calculation:

– single r∗-th classifier is used, for which dr∗(vF ) is maximal; so βr∗ is set to
1.0 while remaining βi factors are set to 0.0,

– weighting factors are calculated according to the formula:

βr = αdr(vF ) + (1 − α)pr, (4)
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where pr is prior probability of appearance of text written by r-th writer and
α ∈ [0, 1] depends on average assessment of writer identifier. In particular,
α can be the estimated probability of correct writer identification converted
from soft to crisp classification rule, i.e. this writer is recognized, which has
the greatest support factor in (1).

3 Classifier Selection and Feature Extraction

The general two-level classification scheme described in the previous section can
be applied with any soft classifiers on both levels. Because feature selection and
analysis of its impact on writer identification was not our main aim, then we just
borrowed concepts of writer identifiers and features sets from other works ([2], [9],
[12]). It should be pointed out, that results reported by other researchers concern
the problem of writer identification based mainly on cursive script sample, while
our problem concerns upper case block character recognition. It seems that there
are more measurable features characterizing writing style in cursive script than
in block characters, so writer identification in our case may be more difficult.

On upper level we have considered two concepts of feature extraction for
writer identification: texture features extracted from text image using a bank of
Gabor filters ([2]) and directional features derived from character contour lines
([9], [13]). Writer identification accuracy achieved on our test data set using
texture features and Gabor filters was much worse than reported in [2]. Much
better results were obtained with directional contour features extracted accord-
ing to procedures described in [13]. The features sets, which seem to be the most
appropriate for isolated characters were used: edge direction distribution and
edge-hinge distribution. Edge direction distribution informs about distribution
of stroke directions in character images. It is strictly related to writing slant
angle, very characteristic for a writer. The second feature group describes distri-
bution of two directions d1 and d2 of contour segments incident to a point on the
contour, as depicted on Fig 2. From perceptual point of view, it characterizes
the writer tendency to write angular or smooth rounded allographs. Directions
are quantized to 12 direction zones. In result, 12 features are obtained for edge
distribution and 252 features for edge-hinge distribution. Details of feature ex-
traction procedure are given in [9]. This features set containing 264 elements will
be referenced as set A.

Directional feature set is complemented by a few additional features charac-
teristic for handwriting and easy observable by human: average character width,
standard deviation of characters width, average width to height character aspect

Fig. 2. Incident directions extraction for edge-hinge features set
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ratio, standard deviation of characters height, average distance between charac-
ters within a word and average distance between words. This feature set will be
referenced as set B.

Multi Layer Perceptron (MLP) is applied as the recognition method on the
upper level. Due to different nature of feature sets A and B we decided to use
two isolated MLPs for two sets of features. Outputs of MLPs for sets A and B
are inputs of another MLP, which provides final soft writer recognition. In fact,
upper level is also subdivided into two sublevels. MLP for set A has 264 inputs,
one hidden layer with 20 nodes and M outputs (M is the count of writers). MLP
for set B is a neural net with 6 inputs, 10 nodes in hidden layer and M outputs.
MLP in upper sublevel has 2M inputs and M outputs. All MLPs were trained
independently, in ”1 of M” manner, i.e. only one of outputs corresponding to
actual writer is expected to have value 1.0 while all others are expected to be 0.0.

Soft classification vector (1) can be easily obtained from upper sublevel MLP
by appropriately normalizing its output. First, the output values are clipped to
[0, 1] range and then the vector of clipped values is normalized to sum up to
unity.

On the lower level, there are M independently trained character classifiers.
Again, MLP is used as the classification method. Although other researchers
report that slightly better accuracy of ”crisp” character classification can be
obtained using SVM classifier, we selected MLP. This is because SVM superiority
was not confirmed in case of soft classification of characters set gathered for our
experiments consisting of 35 Polish letters. Also the training time, much shorter
for MLP than in case of SVM, is an important factor as far as frequent adaptation
to changing writers set is considered.

Gray level gradient features proposed by Liu in [7] were used as inputs to
MLP. Gradient features extracted according to the algorithm proposed by Liu
proved to be superior, as far as discriminative power is considered, and were
successfully applied in our previous works and practical applications ([14], [15]).
In recognizing Polish character set, the classifier achieved 90.1% of recognition
accuracy. Feature vector consists of values describing distribution of stroke di-
rections in 25 evenly spaced regions of the character image. The input for feature
extraction procedure is a gray scale image of isolated character. The features are
extracted in four steps:

1. Character image is clipped to smallest rectangle covering all character stroke
pixels. Next, obtained image height is normalized to standard value. Image
is scaled along x axis according to formula proposed by Liu in ([1]):

xout =

√
sin(

Π

2
xin), (5)

where xin is clipped image width and xout is the width of resultant im-
age. The method produces images of similar width but prevents unnatural
widening of characters which are inherently narrow (e.g ’i’, ’l’, ’1’).

2. Sobel operator is applied to grayscale character image resulting in calculating
gradient of brightness at each pixel.
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3. Obtained gradient direction is assigned to one of 8 regions (0-45 deg, 45-
90 deg, 90-135 deg etc.). For each region there is corresponding directional
subimage. Assigning direction to the region results in increasing the value
accumulated in the corresponding sub-image pixel.

4. All directional sub-images are sampled at evenly spaced 25 points using
Gaussian filter. By calculating 25 samples on all 8 directional sub-images
200 values are obtained, which are then used as feature vector.

The method produces 200 elements feature vectors which are inputs to three-
layer MLP classifier with 50 nodes in hidden layer. Output layer contains as
many nodes as is the count of characters in the alphabet. Soft classification
vector (2) is derived from MLP output in the same way as described for upper
level. Character classifiers are trained and their outputs interpreted in ”1 of N”
manner. Final character soft classification vector is calculated according to the
formula (3).

4 Experimental Results

The aim of experiments was to assess the improvement of character recognition
accuracy resulting from writer identification.

4.1 Data

The method described here was elaborated for applications, where the set of
writers is relatively small. The set of texts used in our experiments come from
25 writers. Because the method is a part of wider project related to automatic
recognition of handwritten medical documents collected on the hospital ward
in defined period of time, this number seems to approximately correspond to
typical number of physicians writing patient records.

Writers participating in the experiment were requested to write five samples of
texts. The samples contents were taken from real medical documentation, mainly
from treatment summary section of patient records. Each sample text contained
200-250 letters. Writers were asked to write the text in isolated capital letters.
The forms used in the experiment have printed doted line borders, distant 2.5
cm each from other, so character sizes were not forced by the form layout.

Forms gathered from writers were automatically processed. Texts were auto-
matically segmented into lines, words and characters, but automatic segmentation
was verified by a human. In this way, the problems with incorrect segmentation into
words and characters was avoided. Correctly segmented text images werenext used
for feature extraction for both levels.

Form images were divided into training and testing sets in this way, that
single sample from each writer was assigned to the testing set while all remaining
four samples were assigned to the training set. For better accuracy of results,
leave-one-out method was applied. We repeated complete experiment five times,
selecting each time another sample as an element of testing set for each writer.
All results presented here are averaged values obtained in five iterations of the
experiments.
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4.2 Numerical Results

At the first stage of our experiment we tested writer identification accuracy
on the upper level. MLPs on both sublevels were trained using 100 training
objects in each iteration of leave-one-out procedure. Table 1 shows identification
accuracy obtained for separate features sets A and B on lower sublevels of writer
identification classifier and final identification accuracy on upper sublevel (set
A∪B). Because of soft writer recognition results application method on the lower
level (in particular if the formula (4) is used as a character classifier combination
rule) it is not essentially important that the actual writer is assigned the highest
support value in the vector (1). Rather, it is expected that the actual class is
in the small subset of classes with highest support factors. Therefore rows of
the table contain recognition accuracy, where the recognition is considered as
correct if actual writer is among k writers with highest support values dr(vF )
for k = 1, 3, 5.

Table 1. Writer identification accuracy

Criterion (k) set A set B set A ∪ B

k = 1 72% 31% 78%
k = 3 78% 37% 82%
k = 5 81% 41% 84%

Results obtained using only features set A are worse than results reported
by Bulacu in [9] obtained when identifying writers of cursive scripts, despite
the same fetaures set is used. We obtained 72% of correct identification for 25
writers while Bulacu reports 75% of correct recognition for combined features
set and 250 writers. It should be noted however, that cursive script brings more
information about writing style than text consisting of isolated upper case letters,
in particular as far as stroke directional distribution is being concerned.

Using only features set B results in poor identification quality, but comple-
menting features set A with set B causes noticeable increase of identification
accuracy.

At the second stage of the experiment final character recognition performance
was assessed. The following recognition methods were compared:

– SGL - single MLP trained with all available text samples without writer
identification,

– PWI - artificial perfect writer identification (this experiment determines up-
per bound of accuracy that we are able to achieve with writer identification),

– SCC - single character MLP is used, trained with samples from the writer
having highest support value in vector (1) on the upper level,

– LCC - linear combination of character classifiers is used according to (4).

In Table 2, accuracies achieved by compared methods are presented. Here
again three correctness criterions are applied, where the recognition is considered
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Table 2. Final character classification accuracy

Criterion (k) SGL PWI SCC LCC

k = 1 91.0% 95.6% 92.1% 94.7%
k = 3 94.3% 96.5% 94.9% 96.0%
k = 5 95.1% 97.2% 95.7% 96.8%

as successful if actual class is among k=1,3 and 5 characters with highest support
factors. The motivation of such assessment method is similar as in case of upper
level. The soft character recognition results can be used on higher levels of text
recognition system (not discussed in this article), where complete words are
recognized. The results of word recognition can be in turn used to complete
sentence recognition using methods of natural language processing. Majority of
methods used there assume that word recognizer provides the rank of words
for each isolated word. The score for the word w = (c1, c2, ...ck) consisting of
k characters can be obtained by multiplying the support factors di

ci
evaluated

for character ci by the classifier applied to the character image on i-th position
in the word. To obtain reliable words rank, it is necessary that the most likely
characters have high support values. This goal will be achieved if the actual
character is in the small set of characters with highest support factors. In result
most likely words have high support factors and the whole sentence can be
relatively reliably recognized.

General observation is that character recognition accuracy with writer iden-
tification is significantly higher that in case of single classifier trained on whole
samples set from all writers (SGL vs. LCC). LLC method evidently outperforms
SCC. In case of k = 1 and LLC method, the error rate was reduced from 9.0%
to 5.3%. Interesting observation is that LLC method gives the accuracy close to
the upper bound defined by PWI method, where the text is always recognized
by character classifier trained for actual text writer, despite writer identification
accuracy is below 80%. This is probably because writer recognizer, even if fails
to recognize actual writer, assigns high support values to writers having similar
writing style. It appears to be sufficient to correctly recognize characters on the
lower level.

5 Conclusions

In the paper, results of using writer identification in order to improve the ac-
curacy of handwritten text are presented. Described experiments confirm that
the recognition accuracy can be significantly increased by applying personalized
character classifiers trained for individual writers. The concept can be applied
in cases, where all writers are known and their count is relatively small. Such
situation appears e.g. in medical information systems, where some documents
are primarily prepared in paper form and then must be automatically entered
to the system database.
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The work described here is a preliminary stage of larger project related to
multilevel handwriting recognition algorithms and their application to medical
texts. Our ultimate goal is to apply the technique described here to cursive script
recognition. This is more complicated task than isolated character recognition,
but on the other hand, writer identification algorithms perform better for cur-
sive scripts. Hence, we believe that application of presented concept to cursive
handwriting will result in even higher boost of words recognition accuracy.

Writer identification can be useful also on higher levels of text recognition
system, where words and complete sentences are being recognized. Having suffi-
ciently large corpus of texts written by particular writers individual writing style
features can be extracted for each writer. In particular, probabilistic lexicons (un-
igram models) and language models (e.g. n-grams) can be build for each writer
([15]). Rough analysis of text corpora extracted from hospital information sys-
tem database used in our project indicates that there are significant differences
in word probability distribution between writers. Experiments with probabilistic
lexicon application to words recognition proved that taking into account word
probability distribution greatly improves the word recognition accuracy. Using
probabilistic lexicons and language models adapted to actual writer will proba-
bly result in further improvement of words and sentence recognition accuracy.
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005 28.

References

1. Liu C., Koga M., Sako H., Fujisawa H.: Aspect ratio adaptive normalization for
handwritten character recognition, Advances in Multimodal Interfaces - ICMI 2000,
LNCS, Springer Verlag (2000) 418-425

2. Said H.E.S., Tan T.N., Baker K.D.: Personal identification based on handwriting.
Pattern Recognition Vol. 33. (2000) 149-160

3. Cha S.H., Srihari S.N.: Multiple Feature Integration for Writer Integration. Proc. of
Seventh International Workshop on Frontiers in Handwriting Recognition, (2000)
333-342

4. Duda R., Hart P., Stork D.: Pattern Classification. John Wiley and Sons (2001)
5. Kuncheva L.: Combining classifiers: soft computing solutions. In: Pal S., Pal A.

(eds.): Pattern Recognition: from Classical to Modern Approaches. World Scientific
(2001) 427-451

6. Verma B., Gader P., Chen W.: Fusion of multiple handwritten word recognition
techniques. Pattern recognition Letters, Vol. 22. (2001) 991-998

7. Liu C., Nakashima K., Sako H., Fujisawa H.: Handwritten digit recognition: bench-
marking of state-of-the-art techniques. Pattern Recogn., Vol. 36. (2003) 2271-2285

8. Schomaker L., Bulacu M., van Erp M.: Sparse-parametric writer identification using
heterogeneous feature groups. Proc. of Int. Conf. on Image Processing ICIP, Vol.
1. (2003) 545-548

9. Bulacu M., Schomaker L., Vuurpijl V.: Writer identification using edge-based direc-
tional features, Proc. of Seventh International Conference on Document Analysis
and Recognition, Vol. 2. (2003) 937-941



Handwriting Recognition Accuracy Improvement by Author Identification 691

10. Gunes V., Menard M., Loonis P.: Combination, cooperation and selection of classi-
fiers: a state of art. Int. Journal of Pattern Recognition and Artificial Intelligence,
Vol. 17 No. 8 (2003) 1303-1324

11. Rahman A.F.R., Fairhurst M.C.: Multiple classifier decision combination strate-
gies for character recognition: a review. Int. Journal on Document Analysis and
Recognition, No. 5. (2003) 166-194

12. Schlapbach A., Bunke H.: Off-line handwriting identification using HMM based
recognizers. Proc. 17th Int. Conf. on Pattern Recognition, Vol. 2. (2004) 654-658

13. Schomaker L., Bulacu M., Franke K.: Automatic writer identification using frag-
mented connected-component contours. Proc. of 9th IWFHR, Japan, Los Alamitos:
IEEE Computer Society, (2004) 185-190.

14. Sas J., Luzyna M.: Combining character classifier using member classifiers assess-
ment, Proc. of 5th Int. Conf. on Intelligent Systems Design and Applications, ISDA
2005, IEEE Press (2005) 400-405

15. Kurzynski M., Sas J.: Combining character level classifier and probabilistic lexi-
cons in handprinted word recognition - comparative analysis of methods. In: Proc.
XI Int. Conference on Computer Analysis and Image Processing, LNCS Springer
Verlag (2005) 330-337



Adaptive Potential Active Hypercontours

Arkadiusz Tomczyk1 and Piotr S. Szczepaniak1,2

1 Institute of Computer Science, Technical University of Lodz
Wolczanska 215, 93-005, Lodz, Poland

tomczyk@ics.p.lodz.pl
2 Systems Research Institute, Polish Academy of Sciences

Newelska 6, 01-447 Warsaw, Poland

Abstract. In this paper, the idea of adaptive potential active hypercon-
tours (APAH) as a new method of construction of an optimal classifier
is presented. The idea of active hypercontours generalizes the traditional
active contour methods, which are extensively developed in image anal-
ysis, and allows the application of their concepts in other classification
tasks. In the presented implementation of APAH the evolution of the po-
tential hypercontour is controlled by simulated annealing algorithm (SA).
The method has been evaluated on the IRIS and MNIST databases and
compared with traditional classification techniques.

1 Introduction

The concept of active hypercontours (AH) was first introduced in [17] as a gener-
alization of the active contour (AC) techniques ([1,2,3,4,5]) which are used in the
image analysis. As shown in [16], active contour techniques can be in fact consid-
ered as search methods of an optimal classifier of pixels (it is usually a contextual
classifier). The main advantage of active contours methods, in comparison with
traditional segmentation techniques, is the possibility of an arbitrary choice of
energy function which makes those techniques much more intuitive and allows
an easier use of experts’ knowledge than other classification methods (e.g. k-
NN, neural networks NN ([6,7,10,13]), etc.). The concept of AH was proposed
to enable an exchange of experience between those so far separately developed
methodologies. In this article, a practical realization of AH is presented.

The paper is organized as follows: in section 2 the basic concepts of active
hypercontours are described and their relationship with traditional classifiers is
revealed, section 3 focuses on the description of the proposed APAH algorithm,
section 4 presents obtained results comparing them to results achieved by means
of traditional classification methods and finally the last section is devoted to
conclusions and main ideas for future research directions.

2 Active Hypercontours and Classifiers

2.1 Hypercontours and Classifiers

In AC methods the contour of the object is sought in an optimization process
of energy function E : C → R, where C is the space of acceptable contours. The

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 692–701, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Adaptive Potential Active Hypercontours 693

a) b)

Fig. 1. Sample hypercontours generated by traditional classifiers (IRIS database, fea-
tures 1 − 2): (a) - k-NN method with Euclidean metric and k = 1 (70), (b) NN (MLP)

with 10 neurons in one hidden layer (74)

construction of a classifier is very similar. To find an optimal classifier every
method bases on some a priori knowledge (e.g. on a training set of correctly
labeled objects). That knowledge can be expressed in the form of performance
index Q : K → R capable of the evaluation of the usefulness of each function
k ∈ K (where K represents the space of all admissible classifiers). It is further
assumed that k : X → L where X ⊆ Rn denotes a feature space and L =
{1, . . . , L} denotes the set of labels. The performance index plays here a similar
role to the energy function.

To exchange the experience between those groups of methods, the relation-
ship between them was presented in [16] and further developed to the general
definition of hypercontour in [17]. The hypercontour (contour is a special case of
hypercontour for n = 2 and L = 2) can be defined in the following way:

Definition 1. Let ρ denote any metric (e.g. Euclidean metric) in Rn, L =
{1, . . . , L} denote the set of labels and let K(x0, ε) = {x ∈ Rn : ρ(x0,x) < ε}
denote the sphere with center x0 ∈ Rn and radius ε > 0. The set h ⊆ Rn

together with information about labels of regions it surrounds is called a hyper-
contour if and only if there exists a function f : Rn → R and p0 = −∞, p1 ∈
R, . . . , pL−1 ∈ R, pL = ∞ (p1 < p2 < . . . < pL−1) such that:

h = {x ∈ Rn : ∃l1,l2∈L,l1 �=l2 ∀ε>0 ∃x1,x2∈K(x,ε)
pl1−1 ≤ f(x1) < pl1 ∧ pl2−1 ≤ f(x2) < pl2}

(1)

and the region {x ∈ Rn : pl−1 ≤ f(x1) < pl} represents class l ∈ L.

In [17] it has been proved that hypercontours are equivalent to classifiers. Each
classifier generates a hypercontour in every feature space which has a sufficient
discriminative power to distinguish classified objects:
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p0 = −∞, ∀l∈{1,...,L−1} pl = l + 1
2 , pL =∞

∀x∈Rn f(x) = k(x) (2)

Similarly, each hypercontour unambiguously generates the corresponding classi-
fication function:

∀x∈Rn k(x) = l if pl−1 ≤ f(x) < pl (3)

The name hypercontour is used to emphasize the relationship of the proposed
technique with active contour methods.

Having the hypercontour defined as a generalization of contour, it is easy
to generalize the AC technique for other classification problems than image
segmentation. Only the energy function E : H → R must be properly defined
to evaluate the usefulness of hypercontours h ∈ H (where H is the space of all
the available hypercontours) and the optimization technique must be chosen to
be able to find an optimal classifier. That leads to the formulation of the AH
technique and thanks to that all the advantages of AC can be used not only in
image analysis tasks but also in other classification problems.

2.2 Traditional Classifiers as Hypercontours

As stated in the previous section, each classifier generates a corresponding hy-
percontour in the proper feature space. Two typical classifiers: k-NN and NN
(multilayer perceptron MLP) can be considered as examples of that fact. Each
classifier assigns labels to vectors from the feature space and divides it into L
regions of different topology. The boundaries of those regions are in fact a visual
representation of hypercontour. In Fig. 1, sample hypercontours for the above
mentioned two types of classifiers are presented.

In the case of NN, the similarity to AH is even more evident. The process of
neural network learning is in fact a search for the optimal classifier basing on
knowledge contained in the training set. Each iteration of the back propagation
algorithm actually creates a new classifier (encoded in weights of neural net-
work) and, in consequence, a new hypercontour. Thus, the adaptation of weights
of neurons is in fact an evolution process controlled by the objective function
(performance index, energy) which evaluates the progress of learning.

3 Potential Active Hypercontours

3.1 Potential Hypercontour

In this article potential hypercontour as a method of practical realization of
hypercontour is introduced. For given values of n (the number of features) and L
(the number of classes), the potential hypercontour is defined by means of a set
of labeled control points: Dc = {〈xc

1, l
c
1〉 , . . . , 〈xc

Nc , lcNc〉} where xc
i ∈ X ⊆ Rn

and lci ∈ L for i = 1, . . . , N c. Each point is a source of potential the value of
which decreases with the increase of distance from the source point (that concept
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a) b)

Fig. 2. (a) The method of potential hypercontour adaptation (M = 4). In the presented

situation (n = 2, L = 3) new control points should be added in centers of regions

(1, 3), (3, 2), (4, 2). (b) The method of the extraction of features for MNIST database:

1 - sample object from MNIST database, 2 - the smallest region containing the whole

digit, 3 - subregions where the number of pixels with intensity above given threshold

is calculated.

is similar to the electric potential field). The classifier (and consequently the
corresponding hypercontour (2)) is defined as follows:

∀x∈X k(x) = arg maxl∈L
∑Nc

i=1 PQiμi(xc
i ,x)δ(lci , l) (4)

where δ : L × L → {0, 1}, l1 �= l2 ⇒ δ(l1, l2) = 0, l1 = l2 ⇒ δ(l1, l2) = 1 and
P : Rn ×Rn → R is a potential function e.g. exponential potential function:

PQμ(x0,x) = Qe−μρ2(x0,x) (5)

or inverse potential function:

PQμ(x0,x) = Q
1+μρ2(x0,x) (6)

In both cases Q and μ are parameters characterizing the potential field and ρ
denotes a metric (e.g. Euclidean metric) ([6]). The potential hypercontour defined
in this way is able to describe almost each division of feature space (its shape
depends both on the distribution of control points and on parameters of potential
functions) and at the same time is very simple and intuitive in use.

3.2 Evolution of Potential Hypercontour

The shape of the potential hypercontour and its classification ability depend on
the position of control points in the feature space and on the parameters char-
acterizing potential functions. The search for the optimal distribution of control
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a) b)

Fig. 3. The influence of the parameter Q of potential functions on the results of PAH

algorithm (IRIS database, inverse potential, μ = 1, features 1− 2): (a) - the parameter

Q was not modified during optimization (76), (b) - the parameter Q was modified by

simulated annealing algorithm (the search space contains more elements - the hyper-
contours are more flexible) (80)

points only appeared, after first experiments, to be sometimes unsatisfactory (the
hypecontours are less flexible and its harder to achieve a desired shape especially
if the initial configuration is far from the optimal one) (Fig. 3). Because of that
reason also the optimal value of the parameter Q for each source of potential is
sought (parameter μ is assumed to be constant during the optimization). In the
proposed implementation of potential active hypercontour PAH the simulated
annealing (SA), as an optimization algorithm, was used ([18]). That method on
the one hand does not require any gradient information about objective function
(only its values) and, on the other hand, it allows avoiding the local minima.
Any other optimization techniques (e.g. genetic algorithm etc.) can also be used
here.

3.3 Energy of Hypercontour

The main advantage of AH is its ability to define energy (objective function) in
an almost arbitrary way. In this paper the a priori knowledge about the problem
is hidden in a training set. In general, however, the energy can use any other
information obtained from an expert as well as it can put any arbitrary chosen
constraints on the shape of the desired hypercontour.

Let Dtr = {〈xtr
1 , l

tr
1 〉 , . . . , 〈xtr

Ntr , ltrNtr〉} where xtr
i ∈ X ⊆ Rn and ltri ∈ L for

i = 1, . . . , N tr denote a sample training set of correctly labeled vectors. The
energy of potential hypercontour h described by means of control points Dc can
be defined as:

∀h∈H E(h) =
∑Ntr

i=1 (1 − δ(ltri , arg maxl∈L
∑Nc

i=1 PQiμi(xc
i ,x

tr
i )δ(lci , l))) (7)
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3.4 Adaptive Potential Active Hypercontour

Experimental results revealed that in some situations the initial large number of
random control points can cause some problems during the optimization process
i.e. it can be hard to get out of the local minima. (especially when there is no
a priori information about some fragments of feature space). Moreover, at the
beginning of the hypercontour evolution it is usually not known how many control
points are needed for a satisfactory description of a desired classifier. Too many
control points can reduce its generalizing abilities. Due to those reasons and to
improve the performance of the proposed algorithm, an adaptation mechanism
can be added to PAH. This adaptation allows in APAH to start the optimization
phase several times. After each phase additional control points can be added to
Dc in those areas of features space where the number of incorrect classifications
is the largest. Thus, the evolution can begin with a smaller number of control
points and can be finished when the classification results are satisfactory.

In the presented implementation each adaptation step adds either one or L
control points, one for each class. To choose the points that should be added,
the smallest n-dimensional cube containing all the points from the training set
is considered. After each optimization phase that cube is divided into Mn iden-
tical but smaller n-dimensional cubes (in every dimension the smallest interval
containing all the possible values of the feature is divided into M equal subinter-
vals) (Fig. 2). Next, in all of those cubes the number of incorrect classifications
of objects from Dtr is calculated and a new control point, for a given class
l ∈ L, is placed in the center of that cube where the highest number of wrong
classifications of objects from that class was observed.

4 Results

The method was tested on the IRIS and MNIST databases. In both cases the
training set Dtr and test set Dte = {〈xte

1 , l
te
1 〉 , . . . , 〈xte

Nte , lteNte〉} ⊆ Rn × L were
considered. The latter was used to evaluate the results of classification (the
percent of correct classifications in that set was used as a measure of the quality
of the classifier).

The first data set contains L = 3 classes referring to 3 types of iris plants
(iris setosa, iris versicolour and iris virginica) ([19]). Each class is represented
by 50 objects and each object is described using n = 4 features (sepal length,
sepal width, petal length and petal width). For evaluation purposes the whole set
was randomly divided into training set Dtr (100 instances) and test set Dte (50
instances). The achieved results of classification for traditional methods as well
as for PAH and APAH are presented in Table 1 and in Fig. 3, Fig. 4.

The second database contains a set of images with handwritten digits (L = 10)
([20]). One image contains one digit only. This set was divided into training set
Dtr and test set Dte with 6000 and 1000 instances respectively. In this case
to conduct experiments, the features had to be first extracted. The method of
extraction proposed here first finds the smallest region containing the whole
digit and then divides it into a given number (here 16) of identical subregions
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Table 1. Sample classification results (percent of correctly labeled objects from Dte)

for each combination of features (IRIS database). Each column corresponds to one clas-

sifier: (a), (b) k-NN method with Euclidean metric and k = 1 and k = 7, respectively;

(c), (d) - NN with one hidden layer containing 5 and 10 neurons, respectively; (e), (f),

(g) - PAH method with inverse potential where μ = 1 and the number of control points

in each class is equal to 1, 2, 10 respectively; (h), (i) - APAH with inverse potential,
μ = 1, M = 8 and 1, 9 adaptation steps respectively, (j), (k), (l), (m), (n) - the same

as (e), (f), (g), (h), (i) but with μ = 15.

Features (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) Best
1 68 68 74 68 72 74 72 72 72 76 72 72 72 72 PAH

2 46 50 50 50 52 52 52 52 52 52 52 52 52 54 APAH

3 92 94 92 92 92 92 92 92 92 92 92 92 92 94 k-NN, APAH

4 92 92 94 92 94 92 92 92 92 92 96 96 92 96 APAH

1 − 2 70 76 74 82 76 76 74 78 80 78 76 78 78 84 APAH

1 − 3 94 92 92 94 94 94 94 94 94 94 94 94 94 96 APAH

1 − 4 94 96 94 94 94 94 94 94 94 94 94 96 94 94 k-NN, PAH

2 − 3 90 94 92 92 90 92 92 92 92 92 92 92 92 92 k-NN

2 − 4 92 92 94 92 92 94 92 94 94 92 92 92 90 94 NN, APAH

3 − 4 96 96 96 96 96 96 96 96 96 96 96 96 96 96 ALL

2 − 3 − 4 98 94 94 94 94 94 96 94 96 94 94 94 94 98 k-NN, APAH

1 − 3 − 4 96 98 96 94 96 96 96 98 96 94 94 98 96 98 k-NN, APAH

1 − 2 − 4 94 98 92 94 92 90 94 94 96 94 94 94 98 98 k-NN, APAH

1 − 2 − 3 92 90 94 96 94 96 94 94 94 94 94 96 94 96 NN, APAH

1 − 2 − 3 − 4 96 96 94 94 94 96 94 96 98 96 96 96 94 96 APAH

Table 2. The influence of the adaptation process on the classification. Comparison

of the achieved results (percent of correctly labeled objects from Dte) with results

obtained by means of traditional techniques (MNIST database). Each column corre-

sponds to one classifier: (a), (b), (c) - k-NN method with Euclidean metric and k = 1

and k = 7, respectively; (d), (e), (f), (g) - NN with one hidden layer containing 10,

20, 50 and 100 neurons, respectively; (h), (i), (j), (k), (l) - APAH method with inverse
potential, μ = 1 and M = 2 after 0, 4, 8, 12, 16 adaptation steps, respectively.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

78.1 80.5 78.9 65.0 72.8 76.4 79.2 19.2 48.4 62.2 66.8 75.2

(Fig. 2). The feature vector is composed of the ratios of pixels with intensity
above the given threshold (e.g. 128) to the whole number of pixels in every
subregion (consequently n = 16). In spite of the fact that in the literature the
better features can be found, those proposed here are sufficient for comparison
of classifiers. The obtained results are gathered in Table 2.

It is worth mentioning that the choice of a potential function and its param-
eters affects the character of the potential hypercontour and consequently the
classification results. For the potential functions considered here, the parameter



Adaptive Potential Active Hypercontours 699

a) b)

c) d)

e) f)

Fig. 4. The influence of parameters of APAH (IRIS database, features 1 − 2, M = 8):

(a), (c), (e) - μ = 1, results after 0 (76), 4 (76), 7 (78) adaptations steps, respectively;

(b), (d), (f) - μ = 15, results after 0 (78), 4 (80), 7 (82) adaptations steps, respectively
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μ affects the flexibility of the APAH (Fig. 4). Thus μ can be used to control the
ability of a classifier to generalize the available knowledge.

5 Conclusions

The presented APAH method is a new approach to an optimal classifier con-
struction. It allows (even in its basic form presented here) to obtain classifiers
which give similar and in some situations even better results than traditional
methods. The main advantage of APAH, however, is its ability to straightfor-
wardly use any experts’ knowledge. Here, the knowledge was gathered in the
form of a training set, but sometimes experts, basing on their experience, can
add a heuristic information which can improve the classification significantly
(e.g. fuzzy information). This method allows also to take into account any ad-
ditional constraints that can be put on the shape of desired hypercontour (as
for example in support vector machines SVM) which is not always possible in
traditional techniques. In the APAH approach all of that can be simply encoded
in the energy function. Moreover, it is also possible to consider the potential ac-
tive contour (PAC) method as a new method for image segmentation. It is worth
mentioning that there are some analogies between this approach and other meth-
ods known from pattern recognition to call RBF neural networks as an example.
All these aspects are presently under further, practical investigation.
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Abstract. Spatial data clustering plays an important role in numerous
fields. Data clustering algorithms have been developed in recent years. K-
means is fast, easily implemented and finds most local optima. IDBSCAN
is more efficient than DBSCAN. IDBSCAN can also find arbitrary shapes
and detect noisy points for data clustering. This investigation presents a
new technique based on the concept of IDBSCAN, in which K-means is
used to find the high-density center points and then IDBSCAN is used
to expand clusters from these high-density center points. IDBSCAN has
a lower execution time because it reduces the execution time by selecting
representative points in seeds. The simulation indicates that the proposed
KIDBSCAN yields more accurate clustering results. Additionally, this
new approach reduces the I/O cost. KIDBSCAN outperforms DBSCAN
and IDBSCAN.

1 Introduction

Larger amounts of data are produced and stored in databases, explaining why
approaches for analyzing effectively and efficiently these data are in great de-
mand. The need to extract useful implicit information has made data-mining
increasingly popular over recent years [1].

As a method of spatial data analysis, data clustering classifies objects into
groups. Objects in the same group are highly similar. Conversely, those objects
in different groups are quite dissimilar. Based on a general definition, data clus-
tering algorithms can be classified into four categories; (1) partitioning, (2) hi-
erarchical, (3) density-based and (4) grid-based. However, some algorithms may
fall into more than one category.

Partitioning clustering is the conventionally adopted approach in this field,
and most such algorithms identify the center of a cluster. The most well-known
partitioning algorithm is K-means [2]. K-means is fast, easily implemented and
finds most local optima for data clustering. However, the crucial shortcoming of
K-means is the difficultly of recognizing arbitrary shapes. Hierarchical clustering
employs a hierarchical data structure and constructs a tree of clusters to sort data.
Hierarchical clustering includes two sub-categories - agglomerate and divisive. Ag-
glomerative clustering, which involves BIRCH [3], CURE [4] and ROCK [5], is a
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bottom-up technique that organizes similar objects from one point to a cluster. In
contrast,divisive clustering, such as theCHAMELEON [6], is a top-down approach
which decomposes one cluster into numerous similar clusters.

Hierarchical clustering compares all objects before they are merged. This
comparison takes much time. Density-based clustering emphasizes dense areas,
which are grouped into a single cluster. Restated, the density in the cluster
should exceed that out of the cluster. Density-based clustering algorithms can
handle arbitrarily shaped clusters and detect noise. DBSCAN [7] and IDBSCAN
[8] are two density-based clustering algorithms. Grid-based clustering segments
the data space into pieces like grid-cells. Grid-based clustering algorithms treat
these grid-cells as data points, so grid-based clustering is more computationally
efficient than other forms of clustering. Typical examples are STING [9] and
STING+ [10].

This work presents a new algorithm that combines K-means and IDBSCAN.
K-means yield the core points of clusters, regardless of whether data sets are reg-
ular and converge rapidly. Then, clusters are expanded from these core points
by executing IDBSCAN. IDBSCAN has the advantages of density-based cluster-
ing and employs sampling techniques, to reduce the execution time below that
of DBSCAN. The synergy provided by merging K-means and IDBSCAN is an
effective way to reduce the I/O cost. The algorithm herein can be classified as a
partition- and density-based clustering algorithm.

The rest of this paper is organized as follows. Section 2 discusses several
clustering algorithms related to our work. Section 3 then introduces- the pro-
posed algorithm KIDBSCAN. Next, Section 4 summarizes the experimental and
analysis. Conclusions are finally drawn in Section 5.

2 Related Works

This section discusses various data clustering algorithms. Merits and limitations
of these data clustering algorithms are described below.

2.1 K-Means

In 1967, McQueen presented K-means as the first clustering algorithm. Simple
rules for data clustering are required to reduce the execution time. K-means
involves the following iteration. (1) Randomly select K cluster centers from data
set. (2) Assign each object to its closest cluster center. (3) Recalculate the cluster
centers until convergence. K-means is almost always converges to local optima.
However, its greatest weakness is that it tends to form in round clusters it is
weak at detecting noise. Fig. 1 shows the K-means concept for data clustering.

2.2 DBSCAN

DBSCAN is based on the concept of dense areas to form data clustering. The
distribution of objects in the cluster should be denser than that outside of the
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Fig. 1. K-means concept for data clustering

cluster. DBSCAN is the first algorithm that clusters using density. It depends
on two parameters to specify the dense area:ε and MinPts. ε represents the
radius of the circle, and MinPts denotes the number of minimal points in a
circle.

DBSCAN seeks clusters by examining the ε-neighborhood of each object in
the database. If the ε-neighborhood of an object Q has at least MinPts points,
then Q is called a core point and a cluster is formed. However, the cluster from
an object P is extended, then the number of points in its ε-neighborhood under

Q

P

P: border point
Q: core point

P is directly 
density-reachable 

from Q

Q is not directly 
density-reachable 

from P

Fig. 2. Directly density reachable [7]

Q

P

P  is density-
reachable from 

Q

Q is not density-
reachable from P

Fig. 3. Density reachable [7]
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MinPts. P labels the border points in Fig. 2. Fig. 2 demonstrates that these core
points are called directly density reachable. Fig. 3 depicts some points in the
cluster extended from the border points. These are regarded as density reachable.
During continuous expansion, the clusters take shape in the end.

DBSCAN can detect arbitrary shapes and separate noises. However, the two
parameters are difficult to arrange and severely affect the clustering results and
the quality of clustering. They can be determined from a series of observations.

2.3 IDBSCAN

DBSCAN expands clusters by adding ε-neighborhood points to seeds. These
seeds will also query their ε-neighborhood points to expand clusters iteratively.
This is a time-consuming process that must be repeated the data sets are enor-
mous. Accordingly, some representative points, rather than all of the points in
ε-neighborhood, should be sampled.

The method that selects representative points illustrates in the two-dimension
database. Eight distinct points are selected as Marked Boundary Objects (MBO),
displayed in Fig.4. For each of these MBOs, the closest object in the
ε-neighborhood of an object P is found and selected as a seed. If the same point
is identified as the nearest point for more than one MBO, then this point must
be regarded only once as a seed. Therefore, at most eight points are seeds at
an one-time. This number is lower than the corresponding number in DBSCAN.
IDBSCAN yields the same quality of DBSCAN but is more efficient.

A

B

C

D

E

F

G

H

P

Fig. 4. Circle with eight distinct points [8]

3 KIDBSCAN

The sampling of MBOs in IDBSCAN significantly affects execution time. Truly
assigning unnecessary points to seeds causes the execution to be redundant.
Hence, a much more effective way to reduce dispensable seeds is sought.
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According to shown in Fig. 5, when IDBSCAN is executed according to
the sequence of data points, so more time must be taken to find dispensable,
low-density point or border points from which the expansion of clusters begins.
Accordingly, an effective means to solve this problem is sought.

Eps = 2
MinPts = 5

Fig. 5. Expansion from low-density point

The irregular order of data sets is such that nothing is known about them
a priori. In this situation, clusters are expanded from high-density comes out.
As presented in Fig. 6, clusters are expanded from high-density points. Con-
sequently, K-means is used to overcome the difficulty. K-means’ rapid location
of high-density center points is exploited. Then, the expansion of clusters from
high-density center points reduces the number of redundant steps and increases
efficiency.

KIDBSCAN is developed here to merge K-means and IDBSCAN. KIDB-
SCAN has three parameters. They are cluster,ε and Minpts . KIDBSCAN con-
sists of the following three stages.

1. Initial stage: initialize variables required by K-means and IDBSCAN, and
included in the input data set.

2. K-means stage: a parameter K is input. K-means is applied to the input
data set to yield K high-density center points. Find the points in the data
set that are closest to the center points. These points are moved to the front
of data.

3. IDBSCAN stage: the two parameters are ε and MinPts. IDBSCAN is first
executed on an adjusted data set determined by K-means. Finally, the clus-
tering result is generated.

These center points are exploited in high-density areas obtained from K-
means. They help IDBSCAN to expand clusters. Additionally, IDBSCAN yields
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Eps = 2
MinPts = 5

Fig. 6. Expansion from high-density point

superior clusters and handles noise more effectively. The synergy of K-means
and IDBSCAN provides high quality data clustering, and substantially reduces
I/O cost. The KIDBSCAN algorithm is shown in Fig. 7.

4 Experiment and Analysis

This section describes numerous experiments conducted to confirm the proposed
algorithm. Four data sets are used to check the accuracy of clustering. Both reg-
ular and arbitrary shapes are used. Second, large data sets are used to compare
the performance of DBSCAN, IDBSCAN and the proposed algorithm.

In the simulations, these algorithms are implemented in Java-based programs.
All results were obtained using a desktop computer with 1G MB of RAM, an
Intel 1.3 GHz CPU. The results of the experiments are presented below.

4.1 Correctness Experiments on KIDBSCAN

Four data sets were used as samples to measure the accuracy of KIDBSCAN in
two-dimensional space. DS1 comprises three rectangular clusters. DS2 includes
three clusters - two rectangular and one triangular. DS3 follows a Gaussian
distribution comprises four circular clusters. DS4 is constructed from clusters
with four arbitrary shapes and with noise, to demonstrate the sensitivity to
noise. Figs. 8-11 depict the original data sets of DS1-DS4 and their clustering
results.

Accordingly, after the parameters were adjusted, the experiments revealed
that KIDBSCAN can clearly identify clusters, even though noise exists.

4.2 Speed Experiments on KIDBSCAN

Artificial data sets of seven sizes were examined to measure the speed of the
proposed algorithm. These data sets contain three clusters. The experimental
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Fig. 7. KIDBSCAN Algorithm
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Fig. 8. The original data set of DS1 and its clustering result

Fig. 9. The original data set of DS2 and its clustering result

Fig. 10. The original data set of DS3 and its clustering result

Fig. 11. The original data set of DS4 and its clustering result
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Table 1. Comparisons with data sets (seconds)

Data Size DBSCAN IDBSCAN KIDBSCAN
1000 0.2 0.1 0.1
20000 121 9 9
30000 276 16 15
40000 457 41 35
60000 896 66 52
80000 2419 109 85
100000 3699 131 98

data are in seconds. In order to be unaffected by parameters, these data sets are
in the same shape.

Table 1 indicates that as the size of the data sets increases, KIDBSCAN still
outperforms than DBSCAN and IDBSCAN. The expansion from high-density
center points improves efficiency.

5 Conclusion

This work presents a new clustering algorithm to perform data clustering effi-
ciently. Two clustering algorithms are merged to refine each shortcoming. The
main advantages of the synergy are as follows. (1) The computational time does
not increase with the number of data points. (2) It performs excellently for ar-
bitrary shapes. (3) It is not limited by memory when dealing with large data
sets. KIDBSCAN improves the accuracy of the clustering result. Furthermore,
the proposed technique can reduce the I/O cost. KIDBSCAN outperforms DB-
SCAN and IDBSCAN.
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Abstract. This paper presents an algorithm for automatic extraction
of the optic disc in retinal images. The developed system consists of two
main parts. Firstly, the localization of the region containing the optic
disc is performed by means of a clustering algorithm. Then, in order to
extract the optic disc, the fuzzy circular Hough transform is applied to
the edges of the region. The optic disc might not be extracted since there
are vessels in the inside of the optic disc. To avoid this, a crease extraction
algorithm is applied to the retinal image. The vessels are extracted and
the vessel edge points contained in the edge image are removed. The final
system was tested by ophthalmologists. The localization of the region of
interest is correct in 100% of the cases and the extraction of the optic
disc is obtained in 98% of the cases.

1 Introduction

The retinal fundus photographs are widely utilized in the diagnosis of eye dis-
eases. Processing automatically a large number of retinal images can help oph-
thalmologists increase the efficiency in medical environment. The optic disc is the
brightest area in images that have not large areas of axudates and it is a slightly
oval disc. It is the entrance region of vessels and its detection is very important
since it works as a landmark for the other features in the retinal image.

There are many previous works on optic disc localization. Lalonde et al. [1]
extract the optic disc using Hausdorff–based template matching and pyramidal
decomposition. It is neither sufficiently sensitive nor specific enough for clinical
application.

On the other hand, strategies based on active contours [2, 3, 4] are used to
detect the optic disc boundary in retinal images. These techniques are very
robust against noise but their main disadvantage is their high computational
cost.

In this paper, a new methodology to extract the optic disc is proposed. Firstly,
the localization of the region containing the optic disc is performed. Then, the
fuzzy circular Hough transform is applied to the edges of the region in order to
extract the optic disc. The fuzzy circular Hough transform might not extract
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the disc due to the vessels in the inside of the optic disc. In order to avoid it, an
automatic extraction of vessels is done by means of a crease extraction algorithm.
The proposed methodology is shown in figure 1.

Fig. 1. Main parts of the proposed methodology

This paper is organized as follows. In Section 2 the localization of the region
of interest is discussed. Section 3 explains the fuzzy circular Hough transform
and the crease extraction algorithm. Section 4 shows the main results. Finally,
in Section 5 the conclusions are presented.

2 Localization of the Region of Interest

Since the intensity of the optic disc is much higher than the retinal background,
a posible method in order to localize the optic disc is to find the largest clusters
of pixels with the highest gray levels. Therefore, the pixels with the highest 1%
gray levels are selected. After this, a clustering algorithm groups the nearby
pixels into clusters. Iniatilly, each point is a cluster and its own centroid. If
the euclidean distance between two centroids is less than a specified threshold ε,
these clusters are combined to one cluster. The new centroid (cx, cy) is computed
as

cx =
n∑

i=0

xi

n
(1) cy =

n∑
i=0

yi

n
(2)

where (xi, yi) is each cluster point and n is the number of points of the cluster.
After the combination process, the cluster with the maximum number of

points is selected. The points of this cluster correspond with the points of the
optic disc since the utilized images have not large area of exudates. The region
of interest is defined as n × m rectangle whose center is the centroid of this
cluster. The rectangle size depends on the image resolution. Figure 2 shows the
computed regions of interest in two retinal images.

3 Extraction of the Optic Disc

Once the region containing the optic disc is computed, the extraction of the optic
disc is performed. Since the optic disc has a circular structure, the extraction
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Fig. 2. Regions of interest in two retinal angiographies

Fig. 3. The computed region of interest and the edges of this region

process consists of searching for circular shapes. To this end, the fuzzy circular
Hough transform is applied to the edges of the region of interest. These edges
are computed by means of the Canny filter [6]. Figure 3 shows the computed
region and the edges of this region.

3.1 The Fuzzy Circular Hough Transform

The Hough transform [5] is widely used in Computer Vision and Pattern Re-
cognition for the detection of geometrical shapes that can be defined through
parametric equations. This paper describes the fuzzy circular Hough transform
based on the edge images obtained from previous process.

The Hough transform for the detection of circles is based on the parametric
equation of the circle, defined as:

(xi − a)2 + (yi − b)2 = r2 (3)
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where (a, b) are the coordinates of the circle center and r is the radius. The
implementation of the Hough transform in a digital computer requires the quan-
tisation of the continuous a − b − r space into suitable sized x cubes and the
association of each of these cubes with a cell of a 3D accumulator array A of x
size.

In order to reduce the computational cost and using the known characteristics
of the optic disc, the circle (a, b, r) must satisfy two restrictions. First, the radius
r must be between the minimum radius rmin and the maximum radius rmax.
Then, the center (a, b) must be in a ca×cb window centered at the center point of
the region of interest. The optic disc size and the image resolution are considered
to set these values.

In order to generate the accumulator array, the contribution of each edge pixel
p = (xi, yi) to the accumulator array is computed. Firstly, the angle θp of the
pixel is determined from the Sobel operator [7]. Then, the voting space of the
pixel is constructed. In the fuzzy Hough transform, each pixel votes for the set
of centers and corresponding radios contained in the gray area depicted in figure
4. This area is delimited by the two lines that pass through p with slopes θp + π

12
and θp − π

12 . Moreover, the centers and the radius contained in this area must
satisfy the previous restrictions in order to belong to the voting space.

Fig. 4. Voting space of pixel p in the fuzzy circular Hough transform

The contribution of the pixel p to the accumulator array is not homogeneous
for all the (aj , bj, rj) in figure 4. The contribution to the accumulator array is
maximum over the line that passes through p with slope θp and must rapidly
decrease with the orientation difference, falling to the minimum when d(θp, θj) =
π
12 . θj is the slope of the line that joins (aj , bj) and p. Specifically, the contribution
is defined through the following Gaussian function:

A(aj , bj , rj) = e−β·d(θp,θj) (4)
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Fig. 5. In the first two images, the optic disc is extracted while in the following ones
the two optic discs are not extracted due to the vessel edges

where β is the parameter that defines the decay of the Gaussian function.
After processing all edge points, the maximum value of the accumulator array

(a, b, r) should correspond with the optic disc. Due to the vessel edges in the
inside of the optic disc, the fuzzy circular Hough transform might not extract
the optic disc.

Four different results are shown in figure 5 . The first two images show that
the optic discs are extracted while the following ones show that the discs are not
extracted due to the vessel edges.

3.2 Automatic Extraction of Vessels

In order to eliminate circles which belong to vessel edges, the vessel edge points
are removed. To this end, an automatic extraction of vessels is done by means
of the following crease extraction algorithm.

Vessels are reliable landmarks in retinal images because they are almost rigid
structures and they appear in all modalities. Moreover, they can be thought of
as creases (ridges or valleys) when images are seen as landscapes.
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Amongst the many definitions of crease, the one based on level set extrinsic
curvature, LSEC (5), has useful invariance properties. Given a function L : IRd →
IR, the level set for a constant l consists of the set of points {x|L(x) = l}. For
2D images, L can be considered as a topographic relief or landscape and the
level sets are its level curves. Negative minima of the level curve curvature κ,
level by level, form valley curves, and positive maxima ridge curves.

κ = (2LxLyLxy − L2
yLxx − L2

xLyy)(L2
x + L2

y)
− 3

2 (5)

However, the usual discretization of LSEC is ill–defined in a number of cases,
giving rise to unexpected discontinuities at the center of elongated objects. In-
stead, we have employed the MLSEC−ST operator, as defined in [8] and [9] for
the case of 3–D landmark extraction of CT and MRI volumes. This alternative
definition is based on the divergence of the normalized vector field w̄:

κ = −div(w̄) (6)

Although (5) and (6) are equivalent in the continuous domain, in the discrete
domain, when the derivatives are approximated by finite centered differences of
the Gaussian–smoothed image, (6) provides much better results.

The creaseness measure κ can still be improved by pre–filtering the image
gradient vector field in order to increase the degree of attraction/repulsion at
ridge–like/valley–like creases, which is what κ is actually measuring. This can
be done by the structure tensor analysis:

1. Compute the gradient vector field w and the structure tensor field M

M(x;σI) = G(x;σI) ∗ (w(x) ·w(x)t) (7)

being ∗ the element–wise convolution of matrix w(x) ·w(x)t with the Gaus-
sian window G(x;σI).

2. Perform the eigenvalue analysis of M. The normalized eigenvector w′ corres-
ponding to the highest eigenvalue gives the predominant gradient orienta-
tion. In the structure tensor analysis, opposite directions are equally treated.
Thus, to recover the direction we put w′ in the same quadrant in 2–d, or oc-
tant in 3–d, as w. Then, we obtain the new vector field w̃ and the creaseness
measure κ̃d:

w̃ = sign(w′tw)w′ (8)
κ̃ = −div(w̃) (9)

For full details and further refinements regarding this operator please refer to
[8, 9].

Once the crease image in the region of interest is computed by means of the
previous process, the vessel edge points are removed. It is checked if a edge point
(xi, yi) is a part of a vessel. A wa × wb neighbourhood window centered at the
crease point is considered in the edge image. If the direction of an edge point of
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Fig. 6. The crease image (left), the edge image of figure 3 plus the crease image (center)
and the final edges after removing the vessel points (right)

the window is the same as the direction of the crease point, this edge point is
removed.

Figure 6 shows the crease image of the region of figure 3, this crease image
plus the edge image of figure 3 and the final edge points after removing the vessel
points.

4 Results

In this work, 1024×1024 gray level images are used. The optic disc is the brightest
area in these images, since these images have not large area of axudates.

In the localization of the optic disc, a value of 350 pixels was used for the
parameter ε in the clustering algorithm. The rectangle size which defines the
region of interest n×m is set to 350× 350.

In the Canny filter, a value of 2 was used for the parameter σ. The low
threshold of edge strength tlow was set to 0.5 and the high threshold thigh was
set to 0.8.

Results

98%

2%

0%

20%

40%

60%

80%

100%

Optic disc correctly extracted Optic disc not correctly extracted

Fig. 7. The optic disc is correctly extracted in 98% of the cases
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Fig. 8. Obtained results in different retinal images
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In the fuzzy circular Hough transform, the parameter of the maximum radius
rmax was set to 125 and 75 was used for the minimum radius rmin. The window
size ca× cb where the center must be is set to 80× 80. The parameter β was set
to 10 in the gaussian function. Finally, the neighbourhood window size wa ×wb

was 6× 6 in the process in order to remove vessel edges.
The system was tested on a set of 100 images given by the University Hospital

of Santiago de Compostela (CHUS). The final results were evaluated by several
ophthalmologists. The proposed system localizes the region of interest in 100%
of the cases and extracts the optic disc in 98% of the cases. Figure 7 shows this
statistic.

Figure 8 shows the obtained results in retinal images with different contrast
and different optic disc sizes.

5 Conclusions

A new method to extract the optic disc has been proposed. Two main parts have
been described. On one hand, a clustering algorithm is used in order to localize
the region where the optic disc is. This region is compute in 100% of the cases
since the utilized images have not large area of exudates.

On the other hand, the fuzzy circular Hough transform is applied to the edges
points of this region in order to extract the optic disc. The optic disc might not
be extracted since there are vessels in the inside of the optic disc. For this
reason, a crease extraction algorithm is applied to the retinal image. The vessels
are extracted automatically and the vessel edge points are removed in the edge
image. The final technique extracts the optic disc in 98% of the cases.

References

1. Lalonde, M. and Beaulieu M. Gagnon, L.: Fast and robust optic disk detection using
pyramidal decomposition and Hausdorff–based template matching. IEEE Transac-
tions on Medical Imaging 20 (2001) 1193–1200

2. Mendels, F. and Heneghan C. and Thiran J.P.: Identification of the optic disk bound-
ary in retinal images using active contours. Proceedings of the Irish Machine Vision
and Image Processing Conference (1999) 103–115

3. Lowell, J. and Hunter, A. and Steel, D. and Basu, A. and Ryder, R. and Fletcher,
E. and Kennedy, L.: Optic nerve head segmentation. IEEE Transactions on medical
Imaging 23 (2004) 256–264

4. Chanwimluang, T. and Fan, G.: An efficient algorithm for extraction of anatomical
structures in retinal images. IEEE International Conference on Image Processing
(2004) 1093–1096

5. Hough, P.V.C.: Method and means for recognizing complex pattern. U.S. Pattern
06954 (1962)

6. Canny, J.: A computational aproach to edge detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 8 (1986) 679–698



Localization and Extraction of the Optic Disc 721

7. Pratt, W.: Digital Image Processing. New York: Wiley (1978)
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Abstract. In this paper is shown an obstacle avoidance strategy based
on object recognition using an artificial vision application. Related works
focus on the implementation of efficient algorithms for image processing.
This work emphasizes in using minimum information from an image in
order to generate free obstacles trajectories. The algorithm used is based
on Pattern Matching for detection of the robot and Classification for
the rest of objects. Each form of detection has its particular algorithm:
Cross Correlation for Pattern matching and Nearest Neighbor for Classi-
fication. The objective pursued is to demonstrate that, with a very simple
system, precise information can be provided to a navigation system in
order to find free obstacle paths.

1 Introduction

Nowadays traditional robotics sensors have been shifted by artificial vision sys-
tems. Several works on this area have been published and the interest of most
researchers is to develop faster systems trying to do real-time processing [1] [2].
This work presents an artificial vision system where the objective is to extract
the minimum information in order to detect objects and supply their position,
size and orientation. This data will be useful to guarantee the generation of
free-obstacle trajectory in future works, instead of efficiency improvements.

The application developed takes pictures and, using techniques of pattern
recognition and classification, is able to provide the position of obstacles, and
models last ones as simple geometric forms containing the real obstacle. The
system is also able to detect a mobile robot and return its position and orien-
tation. Tests have been done and are shown to demonstrate the effectiveness of
the application.

The work is presented in the following way: In Sect. 2 the methodology used to
develop the application as well as the concepts involved are described. Section 3
is devoted to explain tests made to validate the system. An analysis is included.
Paper ends with Sect. 4 where conclusions are shown.
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2 Implementation

2.1 The Application

The main sensor used is a wireless camera providing 30 frames per seconds
of 640x480 pixels. The image acquired is cropped in order to provide 480x480
pixels, covering an area of 6.25m2. All the experiments were done with 8 bits
grayscale images, and the workspace, the surface where the mobile robot moves,
was chosen black in order to solve luminosity variability. The platform employed
for development was Labview v7.1, where a Dynamic Link Library (DLL) was
created in order to improve the processing speed of the application. The DLL
is called from a program that is being developed in Matlab to generate free-
obstacles paths.

The processes described in Sect. 2.2 and Sect. 2.3 are executed and the system
provides enough information to a velocity field generator. The global objective
is to generate dynamic velocity references for a controller based on this Vision
System.

2.2 Mobile Robot Detection

A pattern matching algorithm is used to detect the mobile robot. It consists
in the localization of regions that match with a known reference pattern on a
grayscale image. The reference pattern is also known as template, and contains
information related to edge pixels and region pixels, removing redundant infor-
mation in a regular image. In this way, the matching process is done in a faster
and more accurate manner. In the case where a pattern appearing rotated in the
image is expected, it is possible to store pixels specially chosen, whose values
reflect the pattern rotation.

Robot detection process is divided into two stages: Learning and matching.

Pattern Learning Algorithm. It can be summarized as follows [3]:

– Pseudo-random sub-sampling of image, which allows an improvement
in the sampling uniformity through the template without using a predefined
grid. If an uniform grid is used, information related to horizontal or vertical
edges could be lost in the process of sampling. In the other hand, if a random
sampling is used then it may produce clusters in the same area, or open non-
sampled areas which contain vital information.

– Stability analysis, where the pseudo-random pixels are analyzed to check
their stability in their neighborhood. Based on this information every pixel
is classified according to the size of its stable neighborhood. Doing this, a
reduction in the number of comparisons in the matching phase is achieved.

– Features identification, which consists in an edge detection process, stor-
ing information about their position.

– Rotation-Invariant Analysis, in which a circular intensity profile is iden-
tified in the template and is used to recognize a version of the template
rotated having the same profile.
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Process Description. The detailed description of the pattern learning algorithm
implementation is as follows [4]:

– Initialization: An 8-bit blank image is created.
– Image file load: Over the blank image, the image file containing the pattern

desired for learning is loaded. It must be an 8-bit image.
– Image conversion: The image is converted to a grayscale image so it can

be processed by the learning module.
– Pattern Selection: The region of interest is selected and it will be the

pattern to match. Figure 1 shows the selection process.

Fig. 1. Initialization - Pattern Selection

– Learning module setup: The learning module is configured to generate in-
formation for rotation-invariant pattern matching, that means, for detection
of the mobile robot pattern regardless of its rotation.

– Learning: the learning process is done according to the configuration above
described and resulting data is stored in a PNG file.

The image generated in the process above is employed by the pattern matching
sub-system described next.

Pattern Matching Algorithm. It can be divided into two main processes [3]:

1. A circular intensity profile, obtained in the learning phase, is used to locate
shifted versions of itself through the image.

2. Pseudo-random sampled pixels are used in a correlation process between
candidates identified in the previous process, generating a score for each one
employed later to determine if it matches or not.
Correlation process is based in the calculus of the squared Euclidean distance
[5][6]:

d2f,t(u, v) =
∑
x,y

[f(x, y)− t(x− u, y − v)]2 , (1)

where f is the image, and the sum is over (x, y), in the window containing
the sub-image t located at u, v. Expanding d2, it results:

d2f,t(u, v) =
∑
x,y

[
f2(x, y)− 2f(x, y)t(x− u, y − v) + t2(x− u, y − v)

]
, (2)
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where the term
∑

x,y t
2(x− u, y− v) is constant. If

∑
x,y f

2(x, y) is nearly a
constant, the remaining term of the cross correlation

C(u, v) =
∑
x,y

f(x, y)t(x − u, y − v) (3)

is the similarity or matching measure between image and template. Due to
sensibility of this term to changes in the image amplitude, the correlation
coefficient is normalized [7]:

R(u, v) =

∑
x,y

(
f(x, y)− fu,v

) (
t(x− u, y − v)− t

)
[∑

x,y

(
f(x, y)− fu,v

)2 ∑
x,y

(
t(x− u, y − v)− t

)2] 1
2
, (4)

where t is the mean of the intensities of pixels in the image and fu,v is the
mean of f(x, y) inside the template.

Process Description. The detailed description of the pattern matching algorithm
implementation is as follows [4]:

– Initialization: Two 8-bit blank images are generated. One will be used for
the video capture, and the other one will be used to load the image containing
the desired pattern. Video acquisition in the NI IMAQ 1407 is initialized.

– Image capture: A real grayscale image from the workspace is captured.
– Cropping: To simplify position calculations and to achieve an increase in

the detection speed, the captured image is cropped to a 480x480 pixels (from
640x480 pixels). This image size allows the visualization of a workspace of
6.25m2.

– Information load: The information (related to pattern learning) contained
in the PNG image stored in the Learning process is loaded.

– Pattern matching module setup: The pattern matching module is set
to rotation-invariant mode so it can detect the desired pattern regardless of
its rotation.

– Matching: The matching process is done according to the configuration
above described between the captured image and the loaded image (with
the information from the learning process). If the desired pattern is located,
the result will be its position within the image and its orientation.

2.3 Obstacle Detection

The obstacle detection process has two main phases: learning process, and object
detection and classification [3].

The learning process or training consists in the collection of a set of samples of
images emulating the possible obstacles that will be encountered and captured
by the camera, here limited to regular geometric forms. From these samples a
set of features are extracted and different classes are created: “circle”, “square”
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and “rectangle”. Once classification is finished, next step is to calculate the fea-
tures value, in this case, elongation and circularity. With these values, a classifier
session file containing them is generated, which will be employed later for com-
parisons in order to achieve the classification of the unknown figures captured
by the camera.

More complex objects will be considered as rectangles. Once an object of any
shape is detected, the application will provide information corresponding to the
detection of a rotated rectangle whose area is the minimum needed to surround
the whole object.

The object detection and classification phase involves input image prepro-
cessing, feature extraction and classification. This part of the system was imple-
mented in the same DLL where mobile robot detection stage was done, giving
the facility of sharing the first three steps between the two stages of the appli-
cation. The only difference is in the number of blank images generated. For this
stage, four 8-bit blank images are generated.

The input parameters are adjusted in a way that the system “can see” the
objects within the visual field. The detailed description of the obstacle detection
process implementation is as follows [4]:

Image Preprocessing. The input image is passed to a particle analyzer, which
will convert the grayscale image to a binary image through a thresholding pro-
cess. The resulting image will contain the particles within the threshold range.
Then, this image is filtered with a morphological process of erosion, rejecting
small or insignificant particles.

Particle Detection. The filtered image is passed to a classification particle
analyzer. This will return the center of masses of particles and the coordinates
of the rectangles that enclose them (top-left and bottom-right pixels).

Classification. With the position of the particles obtained in the particle de-
tection step and the classifier session already created, the particles in the binary
image are classified by feature extraction. Through this, image data is reduced
because the whole process will only consider the values of the features that distin-
guish each one of the different classes. In addition, those features are invariant to
changes in the scale, rotation and mirror symmetry, making possible to classify
objects correctly regardless of the rotation or scale they have within the image.

Last step is to classify objects captured in the images using the extracted
features. The basic problem in classification is to assign n items in terms of k,
based on the attributes of the item [8] [9]. The algorithm used is Nearest Neighbor
(NN) [10], chosen due its calculus simplicity and effectiveness in situations where
the number of features involved is low. The metric used is taxicab metric and
was chosen to reduce the number of calculations.

Under this classification algorithm, the distance of a set of input features X
of an unknown class to a class Cj is defined as the distance to the closest sample
which is used to represent the class:

D(X,Cj) = min
i
d(X,Xj

i ) , (5)
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where d(X,Xj
i ) is the taxicab distance [11] between X and Xj

i .
Then applying NN algorithm results in the following rule:

X ∈ class Cj if D(X,Cj) = min
i
D(X,Ci) . (6)

Obstacle Parameters Measurement. Once the objects are classified, the
size of the smallest diagonal of the rectangle that enclose each one is obtained
(this rectangle has 0◦ of rotation). When rectangle and squares are detected,
the rotation of this objects are determined. For this task, the Rotation Detect
function of the IMAQ Vision package is used, which obtains the object rotation
comparing its image with a reference (previously stored) image containing the
same figure with null rotation. Figure 2 shows the representation of the angle
measured for each object detected.

Fig. 2. Representation of the rotation angle of a detected object

Results. The values obtained in the processes above are arranged in arrays for
each kind of object, which means that there are three arrays for position, three
arrays for rotation angles and three else for diagonal size, that is, one array for
each type of obstacle detected.

3 Experimental Tests and Results

To adjust the system a program under LabVIEW 7.1 was made. This program
integrates the pattern matching and the obstacle detection systems described
previously. In this program the values related to rotation and position of the
mobile robot can be observed, as the values of orientation, size and position of
the detected obstacles.

3.1 Pattern Matching System Results

For the rotation detection tests, the following procedure was done [4]:

– Initially, the mobile robot was placed over a small black plane of 100x50cms.
with a metallic rule aligned with it.
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– The robot was oriented 0◦ according to the reference established by the
image taken by the camera over the workspace.

– With the aid of a protractor, the black plane was rotated seven times in steps
of 45◦ until complete a revolution, and measurement was done. Figure 3
shows images adquired and Table 1 the summary of results.

Fig. 3. Pattern Detection Results

Table 1. Mobile detection test results

#1 #2 #3 #4 #5 #6 #7 #8

Manually Mesuared Angle 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Obtained Angle 0◦ 45◦ 88◦ 137◦ 178◦ 225◦ 270◦ 312◦

Table 1 shows that there is a slight difference between some values obtained
with the application and the manually measured values, being ±3◦ the maximum
variation obtained. Besides this variation, the detection system showed random
fluctuations in the pattern rotation value, but within the maximum variation
value.

3.2 Obstacles Detection Results

Figure 4 shows the set of templates used for the obstacle classification training
stage. Two different tests were done. Figure 5 shows the obtained results for
classification. In Table 2 a summary of results for position and orientation is
shown.

Figure 5 shows the correct classification of objects in images. Table 2 shows a
comparison between real position and orientation of objects values measured by
the application. In the two tests shown, the error encountered was always less
than 2 pixels or 1 cm. Comparing this error with the dimensions of the objects
involved, it resulted in insignificant differences.

For orientation, worst error found was for the square object: in one case 3◦

and in the other or 4◦, while for the rectangle was 2◦. Although this errors could
be considered high and not desirables, they appear on a figure that is modeled as
a circle to simplify calculations. So, the error doesn’t have a practical meaning.
It is important to note that the orientation of a circle is not measurable.

At this point it is important to remark that results provided by the application
are always integers.

Additional tests were applied to the system using a mobile robot under veloc-
ity control, and real-time execution of path tracking was achieved. Details are
beyond from the scope of this paper.
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Fig. 4. Set of templates used for classification training

Fig. 5. Experimental results for classification in test 1 and test 2

Table 2. Summary of tests results

Test # 1

Rectangle Circle Square

Reference Obtained Reference Obtained Reference Obtained

X 214 214 322 320 229 229
Y 160 159 211 212 296 296
θ -32◦ -30◦ N/A N/A 25◦ 28◦

Test # 2

X 300 299 198 198 243 243
Y 194 194 209 209 290 291
θ 72◦ 70◦ N/A N/A 59◦ 55◦

4 Conclusions

A system for identification of a mobile robot and classification of obstacles was
shown. After the proper processing of an image taken by a camera it returns the



730 J.M. Bolanos et al.

position of every object in the scene as well as their orientation and size. The
system was tested using a common environment and results obtained suggest
that the system is very suitable for robotics applications.

The application developed and here presented is very light, computationally
speaking; the amount of info used is too small such as objects position and
orientation. The algorithm has been proved in real time applications where the
mobile robot avoids perfectly the obstacles in the path. With only the small
amount of info supplied a dynamic velocity field is created and modified for
the obstacles in the navigation path. To present time, only simple geometric
obstacles have been considered.

The behavior of the algorithm is achieved thanks to the DLL developed in
order to connect the VI running in the Labview environment with the Matlab
package.

Although satisfactory results were achieved, they can be improved using a
better acquisition system which allows the use of more complex images, for
instance, RGB, HSL, 32 bits. Besides, a more complex classification system can
be used too. However, between complexity and velocity there is a tradeoff that
has to be kept on mind. Future works point to include the classification of more
than simple geometric forms to constitute a complete Vision System for the
generation of general dynamic velocity fields for mobile robotics.
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Abstract. This paper describes a technique for statically stable gait
synthesis for a quadruped robot using a simple Feed Forward Neural Net-
works (FFNN). A common approach for gait synthesis based on neural
networks, is to use an implementation with Continuous Time Recurrent
Neural Network (CTRNN) of arbitrary complex architecture as pattern
generator for rhythmic limb motion. The preferred training method is
implemented using genetic algorithms (GAs). However, to achieve the
desired trajectory becomes an obstacle during the training process. This
paper presents a much more simpler process converting a statically sta-
ble gait into actuator’s space via inverse kinematics; the training of the
network is done with those references. By doing so, the training problem
becomes a spatio-temporal machine learning problem. It is described a
solution for trajectory generation combining a simple oscillator model
with a Multilayer Feedforward Neural Network (MFNN) to generate the
desired trajectory.

1 Introduction

Several works on legged robots have used biological principles as a source for
solutions to common problems with biomechanical systems. At present time, it’s
widely accepted that motion control process in animals takes place in the spinal
chord by the Central Pattern Generator (CPG). It’s there where reflex signals,
and high level brain and cerebellum signals are combined in order to produce
coordinated excitation of neuromuscular system. Several authors have tried to
model neuromotor system using Continuous Time Recurrent Neural Networks
(CTRNN), as a consequence of rythmic and dynamical behaviour of CPG. This
has proven be a good choice because of CTRNNs ability to model dynamical
systems. However, in order to synthesize the N2 + 2.N parameters required to
describe an N -neuron recurrent network, well known backpropagation training
methods cannot be applied in a direct way. Different techniques for training
of recurrent networks to model dynamical systems and other tasks have been
proposed as those described by Tsung[12], Molter[5] and Nishii[10]. However,
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coordination of legs movement given by phase relation between them remains
unsolved with those training approachs. The most common training technique
for CPG-based locomotion model, is to train a fixed-size recurrent network using
Genetic Algorithms (GAs). R. Beer [3] uses a simple leg model and dynamical
analysis to evaluate CPG performance, M. Lewis [9] based his research in wave-
form analysis of CPG output and a simple body model, or by heuristical methods
as Cohen and Fukuoka[7, 8]. Other authors have used different CPG models, as
the Amari-Hopfield neural oscillator[1] or a simple Amplitud Controlled Phase
Oscillator (ACPO)[2].

This paper describes the use of a simple structure for the neural network based
on biological models[6]: a main oscillator that acts as pacemaker and a multilayer
feedforward network, to model a CPG that can generate different trajectories
for quadruped robot legs. The conditions for stable walking and leg kinematic
are described in Sect. 2. The complete neural network structure is shown and
explained in Sect. 3. The training process of the neural network is described in
Sect. 4, and finally Sect. 5 describes the experimental results obtained of the
training process of the neural network for gait synthesis.

2 Static Walking in Quadruped Robot

In legged robot walking, the gait system generates the trajectory for the terminal
element of the leg. Usually that trajectory is provided as a triplet of values in the
IR3 space for position, and converted to actuator’s space via inverse kinematics.
There is a model described in [11] that synthesize a wide variety of gaits like
pace, trot, gallop and crawl. In that model there are three important parameters:
Stride length (λ) that represents the length of the leg step for a complete cycle,
Period(τ ) it’s the time measure for a step cycle and the Duty cycle(β) or the
quotient between the support phase of the leg, when it is in contact with ground
and τ . Modifying these parameters and the phase relations between each leg, it
can be obtained different gait patterns.

For a legged platform the condition for stability in a static walking pattern is
that vertical projection of weight vector onto the support surface must be inside
the polygon described by the legs in contact with surface. In the particular
case of a quadruped robot, that polygon can have either three or four sides.
As mechanical platform it was used the Quadruped-3 of Lynxmotion. The legs
have the typical reptile configuration with 3 Degrees of Freedom (DOF). Each
DOF is directly actuated by a Hitec HS-475HB servomotor and named q1, q2
and q3 respectively. Leg segments lengths are: L1 = 33mm, L2 = 70mm and
L3 = 113mm.

Using Denavit-Hartenberg convention for selection of leg reference system, it
was obtained the forward and inverse kinematics equations. Also, based on stable
gait model we generated three different trajectories for leg’s terminal element:
triangle, rectangle, and rounded rectangle. Using the inverse kinematic it was
obtained a set of waveforms for each leg’s actuator. In the Fig. 1 are shown the
waveforms for the different desired trajectories.
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Fig. 1. Leg References: IR3 space, and actuator’s space

For all of the trajectories the gait parameters were β = 0.8, λ = 100mm
and τ = 7 seg, and leg phase relation was set to obtain the crawling gait. The
condition for stability in a static walking pattern was met.

3 Neural Network Architecture

The whole pattern generator system is separated into two subsystems: a pace-
maker subsystem and the MFNN. At the input level, the pacemaker subsystem
generates a temporal reference output vector with dimension M . The following
subsystem, implemented with a MFNN, performs a nonlinear space transforma-
tion M → N , where N is the dimension of the output of the complete system;
in this case N = 3 given by the number of actuators per leg. This network archi-
tecture allows extra parameters inclusion at Feed-Forward network input that
can be used to modulate temporal reference output. It can be done without in-
creasing complexity in training process as long as the number of neurons in the
hidden layers is choosen so that Vapnik Chervonenkis (VC) dimension of the
neural network is greater than problem’s one.

3.1 Temporal Reference Subsystem

Three different models for temporal reference were evaluated. All of them had
the same period Tt. The first one was an 1-D vector with a normalized ramp
signal between 0 and 1. It was also used a 2-D vector described in (1).{

U = A · sin(ωst+ φs)
V = B · cos(ωct + φc)

(1)

With this reference model it’s possible to map any (U, V ) point in IR2, while
modulating modulating A, B, φs and φc. Also modifying ωs and ωc it’s possible
to obtain different Lissajous figures for the (U, V ) output, but for the model
here described it’s enough to stablish a fixed frequency value for both U and V .
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The third temporal signal was a simple 2-neuron CTRNN. The recurrent neural
network was based on the neuron model described by R. Beer[3]:

τiẏi = −yi +
M∑
j=i

wjiσ(yj + θj) + Ii, i = 1, · · · ,M (2)

where yi is the output of the ith neuron, τ is the neuron’s membrane time
constant, the conections weights are represented by wij , and the bias term θj

for each neuron. The term Ii is an extern input that is held constant at zero,
in order have the natural response of the system. The threshold function is the
standard logistic sigmoid:

σ(x) =
1

1 + e−x
(3)

3.2 Feed Forward Neural Network

For the space transformation subsystem it was used a simple multilayer neural
network, with one hidden layer and the output layer. For the hidden layer it was
used K = 18 standard neurons with sigmoidal transfer function (4), and N = 3
neurons with linear transfer function for the output layer (5).

yi = σ

⎛⎝ M∑
j=1

wj · Ij + θj

⎞⎠ , i = 1, · · · ,K (4)

yi =
K∑

j=1

wj · Ij + θj , i = 1, · · · , N (5)

At hidden layer level, it was included an aditional mode input to the MFNN,
in order to synthesize any of the three desired space trajectories with the same
network. This was made to allow a soft transition between all training trajecto-
ries, instead the standard approach in geometrical models of robot locomotion,
that performs abrupt changes between different leg trajectories. The resulting
feedforward network structure is shown in Fig. 2:

Fig. 2. Feedfoward network architecture
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4 Network Training

The network was trained with standard backpropagation algorithm for feedfor-
ward networks. In this work, the feedforward network was used to synthesize a
desired output trajectory. It was used Least Mean Square (LMS) error in order to
compute the waveform aproximation error. The network training was perfomed
using waveforms shown in Fig. 1 as target outputs and the different temporal
references cases as inputs, giving three kinds of neural networks.

It was used the batch training method with a 100 points vector per batch. The
training was applied 15 times to each network, starting from different random
seeds, during 500 epochs each. Normal gradient descent approach was employed,
without special modificiations added as momentum. This was done because this
works points toward the simplest training method, instead the use of faster
modified methods. For the whole training process it was used the neural network
tool NNTOOL provided by Matlab R©. Figure 3 shows the training scheme for
the whole system.

Fig. 3. MFNN training scheme

The parameters of the two-neuron recurrent network (U, V ) used as pacemaker
were synthesized through a simple genetic algorithm (GA). The GA used binary
encoding for τ , θ and wij parameters. Those variables were coded with 16 bits
with an absolute value lower than 20. As fitness function, it was used the Relative
Frequency (RF ) value of CTRNN 2-D output vector to evaluate its performance.
RF was computed as the quotient between the total numer of oscillations and
the total number of points of CTRNN output vector. This approach is faster and
simpler than those described in [3] and [9] because there are less parameteres
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involved in fitness function, and no special output waveform is requiered as long
as is mets RF target. The cross-over subsystem was feeded with individuals
obtained through the tournament selection algorithm. It was used the mutation
operator with a mutation rate of 2%. The stop conditions for the training process
with GA were the number of epochs (1000) or the percentual error for the RF
fitness function (≤ 1%).

5 Experimental Results

In the Fig. 4 is shown the temporal evolution of the MFNN network training
process with the three different temporal references.

Fig. 4. MFN backpropagation training for 3 temporal reference inputs

It can be seen that backpropagation method eventually converges to solutions
with low mean square error for waveform aproximation task, as it should be
expected because of FFNN ability to perfom function aproximation with an
arbitrary low output error. The best performance in training speed and output
error value was obtained for the UV temporal input. For the ramp input the
convergence was lower than the other two input cases. It can be explained if we
see at desired output vector that describes a closed cycle trajectory as UV and
CTRNN output does too, helping both type of temporal references to converge
to a suitable solution for the FFNN, this behaviour is not present for the ramp
temporal reference.

The angle outputs for the networks trained with the three temporal reference
modes are shown in Fig. (5) for the ramp input, Fig. (6) for (U, V ) input and
Fig. (7) for the CTRNN case.
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Fig. 5. Angles outputs for RAMP input case

Fig. 6. Angles outputs for UV input case

Fig. 7. Angles outputs for CTRNN input case
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It was also observed that overfitting occured in the training process. This
problem appeared because no special considerations to avoid it were taken during
the training process. It would be enough to create a separate validation set, and
include the stop condition for the backpropagation training when overfitting is
detected. The overfitting itself represents an important problem for the design
here described. It is desired to perform soft transition between the different leg
trajectories shown in Fig. 1, but when overfitting occurs the neural network
ability to modulate between those trajectories in a soft way is degraded. This
is because it tries to match perfectly the training examples and also because no
intermediate solutions were provided during training process.

Fig. 8. Outputs transition for UV input with MSE = 0.131 and MSE = 0.417

The Fig.8 shows two MFNN solutions illustrating the negative incidence of
overfitting in the trajectory modulation. It can be seen that the network with
lower error match almost perfectly the training examples (triangle and rectan-
gle), but intermediate outputs for mode varying from one trajectory to the other
one exhibits abrupt changes. However the other MFNN solution, with a higher
error for the examples, performs a better trajectory transition.

In further implementations, it can be used the same sigmoidal neuron model
for output layer instead of linear neurons, because the output vector (servomotor
angles) is a bounded space by mechanical limitations allowing values that range
between -90 and 90 degrees. This only requires a linear transformation as y =
mx+ b for the feedforward network outputs.

6 Conclusions

In this paper it has been shown that it is possible to synthesize the desired tra-
jectories for 3DOF quadruped legs using simple Feed Forward neural networks.
The simple idea, coming from biological systems, is to use oscillatory patterns de-
signed to assure stable gaits to train the FFNN. The method presented improves
previous methodologies using Recurrent Neural Networks, because the proposed
subsystems, a pacemaker subsystem and a MFNN, can be implemented with the
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well known backpropagation algorithm. In this way the use of GAs is limited to
synthesize a simple 2-neuron oscillator for test without special amplitud require-
ment. Also it was shown that the use of the simple sin− cos temporal reference
has a better performance for trajectories generation. Several experimental re-
sults have been shown using the proposed method and the gait was sinthesized
assuring the gait stability. The gait was tested on a small quadruped showing
stable behaviour.

In the near future some different approaches are going to be tested, as combi-
nation of gait synthesis using the FFNN with strategies of position-force control
on the quadruped leg. Also, it will be tested the inclusion of more gait param-
eters at the multilayer network input level, in order to sinthesize a wider range
of leg trajectories allowing control of quadruped platform for irregular terrain
locomotion.
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Abstract. In this paper, we propose a two-stage fuzzy filtering method
to sequentially remove the mixed noises of images corrupted with non-
linear impulse and linear Gaussian noises as well. In the first stage, a
new decision-based method, called nonlinear fuzzy K-nearest neighbor
(FK-NN) filter, detect and replace the outlier pixels, based on local pro-
cessing window, to remove the nonlinear impulse noise. Then we derive a
linear modified fuzzy rule-based (MFRB) filter to remove the linear type
Gaussian noise while preserving the image edges and details as much as
possible. For practical consideration, we design several sets of universal
MFRB filters in correspondence to the estimated values of contaminated
Gaussian noise variance in the image. The correspondent MFRB filter
closest to the estimated Gaussian noise level will be selected to remove
the Gaussian noise of the processed image. According to the experiment
results, the proposed method is superior, both quantitatively and visu-
ally, compared to several other techniques.

1 Introduction

In the real-life, images are often contaminated by mixture of impulse and
Gaussian noises of varying noise intensities due to the imperfection of sensors
and communication channels when transmitted. The objectives of image noise
removal are to remove the mixed noise and to retain the edges or other salient
structures in the original image. Noise smoothing and edge enhancement are
inherently conflicting processes, since smoothing a region will destroy an edge
and sharpening edges might lead to enhance the unnecessary noise. Thus it is a
difficult work for a universal algorithm [1] that can remove different kinds and
intensities of noise from images and preserve their sharpness and details.

There are mainly three kinds of fuzzy approaches used in mixed noise re-
moval of an image. The first kind is the fuzzy weighted average filter [2] and
fuzzy weighted median filter [3]. Peng [4] proposed a multi-level adaptive fuzzy
(MLAF) filter, which uses fuzzy sets to adaptively combine simple linear and
nonlinear filters to remove varying mixed noise with different levels. The second
kind is the fuzzy logic filter [5]-[7], which suggests that individual pixels should

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 740–749, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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not be uniformly fired by each of the fuzzy rules. Choi et al. [5] derived three
different filters for each of the three objectives using the fuzzy weighted least
squares (FWLS) method. Criteria are defined to select one of the three filters
based on the local context using the fuzzy rules. Taguchi [6] proposed the modi-
fied fuzzy filter (MFF) with new local characteristic calculated with fuzzy rules
by using multiple difference values between arbitrary pixels in the filter window.
Farbiz et al. [7] proposed the fuzzy logic filter (FLF), which adopted the general
structure of fuzzy if-then-else rules mechanism. The S-type fuzzy function en-
ables the non-uniform firing of the basic fuzzy rules. For the third kind, Russo
[8] used fuzzy reasoning for noise removal, which is embedded into the neural
network structure through genetic learning algorithm. It is able to adapt the
filtering action to different distributions of mixed noise.

The hybrid fuzzy filters are difficult to remove the mixed noises without blur-
ring the edge and details information. The two tasks, involving suppressing the
impulse noise and removing the Gaussian noise in an image, are very different
in characteristics because each of them respectively facilitates the nonlinear and
linear filtering operations. Besides, the presence of impulse noise can seriously
degrade the performance of a restoration technique that is designed mainly to
remove Gaussian type noise. Consequently, we propose in this paper a two-stage
filtering technique to remove the nonlinear impulse and linear Gaussian noises
sequentially. In the first stage, a decision-based method, fuzzy K-nearest neigh-
bor filter (FK-NN), is proposed to detect and replace the outlier pixels detected.
Based on local processing window, this method can remove the nonlinear im-
pulse noise very efficiently and almost ignore the Gaussian noise which is usually
not observed to be impulsive. Then we derive a linear modified fuzzy rule-based
(MFRB) filter to remove the linear type Gaussian noise while best preserving
image details. The noise in this stage is almost Gaussian because the image con-
tains the original Gaussian noise and the small fraction residual impulse noise
not filtered by the FK-NN scheme.

2 Fuzzy K-Nearest Neighbor Filter

The design rationale behind generalized median-type approaches is the order
statistic theory used for impulse noise removal. Along this line of reasoning, the
proposed fuzzy K-NN filter is a decision-based median-type filter, and it is aug-
mented with a classifier to detect the impulsive pixel. For impulse noise removal
of images, the fuzzy K-NN decision rule [9] is introduced to determine whether
the central operating pixel of the sliding window belongs to the majority class
or not. If the operating pixel is in the majority class, then it is left unchanged
because it is probably a noise-free pixel. On the other hand, it is likely an out-
lier, i.e., an impulse corrupted pixel. Then the operating pixel is replaced by the
median of the majority class. With this filter, the image structures and details
can be best retained because the new median filter only modifies the outlier
detected by the fuzzy K-NN classifier. The details of the fuzzy K-NN filter will
be omitted here; interested reader may refer to [9] for more details.
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3 Modified Fuzzy Rule-Based Filter

To remove the Gaussian noise artifacts in an image, we wish to design a group
of adaptive filters, whose weighted value combinations constitute the fuzzy rules
for pixel value restoration. Fuzzy rules have been found useful to reconstruct the
pixel value from the pixel itself and its neighboring pixels as well. This is because
that the local statistics and structural characteristics of the signals can be taken
into consideration by the fuzzy rules. Along this line of reasoning, Arakawa [10]
developed the Fuzzy Rule Based (FRB) filter that adapted the ambiguity of
image signals caused from the following three parameters: gray level variations,
signal spatial distribution, and the local structure of the pixels. The first pa-
rameter is the difference between the input pixels’ gray values; indexed by j, the
second is the time (or position) difference between pixel points; indexed by l, and
the third is the pixel’s local variance; indexed by m, in the sliding window. The
filter coefficients are determined through learning from the difference between
the noisy image and its original image. After training, the dominant roles of the
signal distribution texture, spatial and edge structures, and local pixel statistics
of the image will be learned by a set of weight parameters constituting the FRB
filter. For best-fit and unbiased considerations, fuzzy rule based system through
learning can achieve the best combinations of rules, and thus can usually produce
a better off one in comparison with the filters constructed from the knowledge
or experience of a domain expert. Therefore, the proposed MFRB filters scheme
adopts a training method to learn suitable sets of weight parameters for image
Gaussian noise removal. Namely, the weights of MFRB filters are obtained by
minimizing the mean square output error between the noisy and original image
data. As a result, pixel xn can be restored, to remove the contaminated Gaussian
noise, by MFRB filter using the pixels xn−k inside the sliding window centered
at xn by x̂n =

∑
μjlm[k] · xn−k. MFRB filter [11] can adapt reasonably well

from smooth regions to edge areas.

3.1 The Proposed Modified FRB Filter

In this section, we will propose the modified fuzzy rule based filters for im-
age Gaussian noise removal. A set of filter coefficients of MFRB denoising filter
can be determined through the training over Gaussian corrupted images. In the
denoising phase, any corrupted images can be processed to reduce the noise em-
ploying the set of weighting coefficients we have learned. In an image, the pixel’s
gray levels, statistical variances, and positional distances and orientations are
the three most important factors to be considered altogether. For the MFRB
design below, we will not only better determine the gray-level difference inter-
val [εj−1, εj) and variance interval [δm−1, δm) but also propose a new clustering
scheme of pixels inside the working window, taking both pixels’ positional dif-
ference and spatial correlation into consideration.

The details regarding the design of these three parameter spaces will be il-
lustrated below. (1) to better design the error difference interval [εj−1, εj) for
the first parameter, the gray level difference or variable [a]: We propose that
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the size of gray-level difference interval be chosen inversely proportional to the
probability of gray level difference, to reach the spirit of A-law. That is, the
smaller the gray-level magnitude difference is; i.e., the more frequent occurrence
is, the smaller difference interval will be chosen for this gray level difference di-
mension, and vice versa. (2) to choose the cluster the pixel should belong to,
for the second parameter, the spatiality or variable [b]: In our experiment, the
size of the processing window of the MFRB filter is chosen to be 5 × 5. In the
variable [b], it is reasonable to take both the position distance and orientation
relation between pixel and pixel into consideration. With this concept in mind,
we can divide the window pixels, except the central, into 12 clusters. Each clus-
ter, indexed by l, contains two pixels and the line connecting them will have the
same orientation and positional distance from the center pixel. (3) to better de-
termine variance interval [δm−1, δm) for the third parameter, the gray level local
variance or variable [c]. The design of the third parameter, variance, is similar to
the way we design variable [a], by dividing the variance interval [εj−1, εj) being
approximated inversely proportional to the relative frequency of local variance.

To design the MFRB filter, it follows from the LMS learning algorithm that
μjlm can be obtained iteratively as follows:

μjlm(T + 1) = μjlm(T ) + α · tjlm · (xn−k − yn)(dn − yn)/
N∑

k=−N

μjlm, (1)

where μjlm(T ) is the value of μjlm at learning iteration T, α is the learning
factor, and tjlm equals 1 when belongs to the specified j, l, and m intervals and
equals to zero otherwise. So in the training procedure, signal points are trained
to update its involving interval weighting coefficient μjlm until μjlm converges.
Note that the concept of the fuzzy rule based filter is named in a broad sense.
There are no conventional fuzzy rules in the FRB filter because each 3-index
weighting coefficients, i.e., the case differentiated by the partition in the 3-D
parameter space, will be used to predict a distorted or noise-corrupted value
by weighted-sum filtering procedure. Each μjlm coefficient corresponding to the
specified j, l, and m intervals is considered as if it were a rule, and the set of
all possible j, l, and m combinations constitutes the whole rule set. Moreover,
the weighting coefficients versus each index dimension, i.e., j, l, or m, play the
similar role of the membership function defined for that dimension. In summary,
the size of the membership function matrix in each noise level is chosen to be a
look-up table of size 64×13×100, designed with the spirits of efficient partitioned
intervals and adaptive edge-directed spatial relations being proposed.

4 Two-Stage Universal MFRB Filter for Mixed Noise
Removal

For practical applications, the percentage of impulse noise and the variance of
Gaussian noise are unknown in a noise-corrupted image. It is demonstrated that
the fuzzy K-NN filter can effectively remove the impulse noise in spite of the
different impulse noise corruption percentage [9]. So the noise remained after the
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first stage, fuzzy K-NN filter stage, is mostly the Gaussian noise original in the
image and a small fraction impulse noise not removed or imprecisely restored
impulsive pixels.

Though the MFRB noise removal filter is most robust to the level of Gaussian
noise corrupted, it is impractical and too hardware consuming to train the look-
up table of each noise level. Since the MFRB filter works effectively in a certain
noise level range, a universal MFRB filter can thus be obtained through training
over several typical images having similar levels of Gaussian noise contamination.
For cost-effectiveness consideration, we designed three MFRB filters at σ =10,
20, and 30 to constitute a universal MFRB filter. From our experimental expe-
riences, these three MFRB filters can produce good enough filtering result and
they do not cost too much in hardware and memory requirements. Accordingly,
each MFRB filter of a certain noise level, i. e., σ =10, 20, and 30, can be trained
by some ensemble images that are corrupted with the same Gaussian noise level.
As usual, a train loop covering all training image set once is called an epoch,
and let μp

jlm denote the membership function after learning p epochs. When the
variation of the membership function in the training process is smaller than a
predefined threshold, we will stop the training process. In our experiment, if the
condition satisfies

‖ μd
jlm ‖

‖ μp
jlm ‖ ≤ θ, (2)

where μd
jlm = μp

jlm − μp−1
jlm , and θ = 0.01, we will terminate the training process

and obtain the universal MFRB filter μjlm for this Gaussian noise variance. In
this way, we will have a universal MFRB Gaussian noise removal filter in the
sense that it is image independent and contains three MFRB de-noise filters with
each constituted μjlm being designed for a Gaussian noise level σ =10, 20, or
30, respectively.

Since the particular MFRB filter to be employed from the universal MFRB
filter depends on the Gaussian noise level in an image, the noise level estimation
is necessary for efficient noise removal. It is well known that the noise variance
of a local area can be estimated better by the local variance of a flat area to get
rid of excessive offset by the edge and minute details of images. Accordingly, a
method has been devised to estimate the Gaussian noise level of an image by
averaging the smaller half variances estimated on the overlapping 7 × 7 sliding
window over the whole image. After the Gaussian noise level estimation routine is
activated to find the Gaussian noise level of an image, the nearest corresponding
filter in the universal MFRB filter is selected to remove the remained noise of
the image processed by the first, FK-NN, stage.

5 Experimental Results

For performance comparison, the proposed technique is evaluated and compared
with other post-processing schemes, which include 3 × 3 and 5 × 5 Adaptive
Wiener filter, FWLS by Choi et al. [5], MMF by Taguchi [6], FLF by Farbiz
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et al. [7], and PBM filter by Chen et al. [1]. The simulations are based on
a set of 256 level grayscale images of size pixels. For performance evaluation,
the peak signal-to-noise ratio (PSNR) is used as a quantitative indication. The
proposed algorithm has been extensively tested on various simulated images.
In each performance comparison table, we rank the top three best-performed
algorithms by superscript for clarity. We divide our experiments into three parts
to demonstrate the capabilities of our proposed algorithm. First, we test the
effectiveness of our second stage filter, the MFRB filter, to remove the Gaussian
noise in images. The powerfulness of our first-stage FK-NN scheme to remove
impulsive noise in an image is demonstrated in [9], and hence it is omitted here.
Secondly, images contaminated with mixed noise, assume the Gaussian noise
level is known, are processed to verify the proposed two-stage MFRB filtering
method. At last, images corrupted with real-world mixed noise, assume unknown
noise levels, are processed by the proposed two-stage universal MFRB scheme.

A. Gaussian Noise (Only) Case: Table 1 shows the different filter scheme results
for four images corrupted with Gaussian noise of σ = 20. From Table 1, the
proposed MFRB algorithm performs the best among the four test images. Our
proposed MFRB filter also performs excellently both in removing the Gaussian
noise and in preserving the edge and details in the image.

Table 1. Comparative Results of PSNR in the Cases of Corruption by Gaus-
sian Noise (σ = 20)

Win 3 Win 5 FWLS [5] MFF [6] FLF [7] PBM [1] MFRB

Boats 28.62 28.972 26.59 28.953 28.87 27.20 30.131

Bridge 26.252 25.04 24.99 25.04 25.483 25.46 26.401

Goldhill 28.21 28.512 26.46 28.473 28.44 26.97 29.451

Lena 28.91 29.953 26.88 30.122 29.63 27.69 30.981

B. Mixed Noise Case of Known Gaussian Noise Intensities: For general assess-
ment, we experimented the proposed algorithm with various combinations of
impulse noise densities (p = 10%, 20%, and 30%) and Gaussian noises (σ = 10,
15, and 20). We individually apply the fuzzy K-NN filter to remove the impulse
noise and then apply the MFRB filter with corresponding noise level to remove
the Gaussian noise. To be brief, Fig. 1 shows the processed image of “Lena”
having 20% impulse and Gaussian of σ=20. And we only show the results of the
two-stage filter schemes in Table 2, the case of largest image corrupted noise.
Wiener filters are also combined with the FK-NN to remove the impulsive noise
in the first stage. FWLS [5] and FLF [7] decay abruptly in PSNR metric in the
cases of high impulse rate noisy images. On the contrary, MFF [6], PBM [1] and
our proposed algorithm are constantly stable in all the noise level combination.
Our proposed two-stage MFRB filters can sequentially remove the impulse and
Gaussian noises well and perform the best among them.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. The corrupted images (a) “Lena” with 20% impulses and Gaussian noise of σ=
20; (b) FK-NN with Wiener filter; (c) FK-NN with Wiener filter; (d) FWLS [5]; (e)
MFF [6]; (f) FLF [7]; (g) PBM [1]; (h) FK-NN; and (i) Two-Stage method

In view of visual perception from Fig. 1, both FWLS [5] and the FLF [7]
method cannot remove the impulse noise well, which result in a large decay
in the PSNR measurement. The other algorithms, MFF [6] and PBM [1], are
incapable of removing the Gaussian noise well. The proposed nonlinear FK-
NN filter can detect and remove the nonlinear impulse noise well in the first
stage. Then the second-stage MFRB filter removes the residual Gaussian noise
efficiently and preserves the image edges and details well.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. The corrupted image (a) “Airplane” with 20% impulses and Gaussian noise of
σ= 20; (b) FK-NN with Wiener filter; (c) FK-NN with Wiener filter; (d) FWLS [5];
(e) MFF [6]; (f) FLF [7]; (g) PBM [1]; (h) FK-NN; and (i) Two-Stage method

C. Real-World Mixed Noise Case: We have tested and proved good of our
Gaussian noise standard deviation estimation routine by several typical images,
each contaminated with various Gaussian noises including σ=10, 20, and 30. To
demonstrate the effectiveness of the proposed algorithm in the real-world sit-
uation, Fig. 2 shows one of resulting images for brevity. Table 3 summarizes
the filtered results by various post-processing schemes, for four images corrupted
with unknown impulse noise rates and Gaussian levels as the case of practical
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Table 2. Comparative Results of PSNR in the Cases of Corruption by Mixed
Gaussian (σ = 20 known) and Impulse Noise (p = 30%)

FK-NN FK-NN FWLS MFF FLF PBM FK-NN FK-NN
+Win 3 +Win 5 [5] [6] [7] [1] [11] +MFRB

Boats 27.833 27.922 20.87 24.99 21.52 25.46 23.08 28.961

Bridge 24.512 23.763 17.86 22.44 20.23 22.83 22.06 24.291

Goldhill 27.473 27.642 22.02 26.89 23.88 20.89 29.61 28.111

Lena 28.323 28.932 20.08 25.66 21.97 25.97 23.13 29.761

Table 3. Comparative Results of PSNR in the Cases of Random Mixed Noise

FK-NN FK-NN FWLS MFF FLF PBM FK-NN FK-NN+Uni-
+Win 3 +Win 5 [5] [6] [7] [1] [11] versal MFRB

Airplane 27.833 27.922 23.74 27.74 24.95 27.78 26.29 28.961

Pepper 24.51 23.76 23.49 26.752 24.55 25.383 20.13 27.361

Lena 27.473 27.642 22.02 26.89 22.88 21.09 29.61 28.111

House 28.323 28.932 20.67 23.35 21.05 20.32 22.03 29.761

“Airplane” corrupted with Gaussian (σ = 13) and Impulse Noise (p = 20%)

“Peppers” corrupted with Gaussian (σ = 27) and Impulse Noise (p = 15%)

“Lena” corrupted with Gaussian (σ = 8) and Impulse Noise (p = 30%)

“House” corrupted with Gaussian (σ = 33) and Impulse Noise (p = 25%)

application. Our two-stage universal MFRB with Gaussian noise intensity es-
timation routine still performs the best and obtains pleased resulting images.
From these figures and table, we can see that the proposed two-stage universal
MFRB filter approach provides a practicable way to remove the mixed noise and
produces very good restoration results, in comparison to other methods both in
metric measurement and visual quality perception.

6 Conclusion

A new two-stage mixed noise removal scheme for images is proposed in this
paper. In the first stage, the fuzzy K-NN filter is employed to detect and replace
the impulse corrupted pixels in the image. The fuzzy K-NN filter can remove the
impulse noise and preserve the image details better than the order statistic filters.
In the second stage, the MFRB filter is validated to suppress the Gaussian noise
and preserve the image details and structures very well. For practical application,
we combine the fuzzy K-NN filter and universal MFRB filter, together with
the Gaussian noise level estimation routine, to sequentially remove the mixed
noise in an image. The proposed two-stage filtering scheme has demonstrated
the effectiveness and robustness, in comparison with other filters in mixed noise
removal of images.
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Abstract. A novel algorithm to determine the optimal seam-line in im-
age mosacking is proposed to establish the best borderline among neigh-
boring images. The algorithm is based on the utilization of the dynamic
programming algorithm on the converted cost field. The converting func-
tion is created adaptively based on the distribution of the pixel difference
values. The path found with this algorithm runs along the smaller cost
regions regardless its length.

1 Introduction

Image mosaicking is a technique of constructing a large image by the combination
of smaller image patches and is often used for large and expanded high-resolution
satellite images, realistic 3D image modeling, continuous image reconstruction in
virtual reality, and video compression. Misalignment or different characteristics
between two neighboring images will cause discontinuity between images at the
image border area. The most important requirement in the mosaicking process is
reducing such discontinuity. The first step of the mosaicking process is with the
alignment of two neighboring images as precisely as possible. The next step is
with the determination of the least noticeable border line on the overlapped area.
Rather straightforward algorithms for this task are the histogram matching and
the image blending. Typical use of the histogram matching algorithm involves
making the histograms of two images to be as close as possible using lookup
tables [1]. The blending algorithm reduces the difference of two neighboring
images using weights as a function of distance in the overlapping [2],[3].

Martin et al. proposed a method called the ”snake technique” to determine an
optimal seam-line [4]. Their algorithm starts with a line, called a ”snake”, on the
overlapped area of two neighboring images. The sum of the mismatching values
on the line is considered to be energy, and the curve line with the smaller energy is
determined to be the optimal seam-line. One problem with this technique is that

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 750–757, 2006.
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the line of the ”snake” gets easily stuck to local minima. An improved algorithm
called the ”twin snake” algorithm has also been proposed. The two lines of ”twin
snake” starting from opposite borders on the overlapped area evolve, while they
are forced to be attracted to each other. The optimal seam-line is determined
if two lines are merged into one. However, this algorithm cannot overcome the
local minima problem completely, and it requires a high computation load. In
this paper, a novel algorithm that employs Dynamic Programming (DP) on the
converted cost space is proposed. The optimal seam-line is found by means of
the optimality power of the dynamic programming.

2 Similarity of the Optimal Seam-Line with Water Way

The proposed seam-line determination is based on the minimum cost-path find-
ing capability of the DP [5]. One problem associated with the DP-based approach
is that the minimum cost path is likely to be the shorter path, because the cost
increases as the path is longer. However, the human visual system is more sensi-
tive to the higher pixel difference, regardless of the length of the seam-line. The
proposed optimal seam-line algorithm is with the utilization of the DP after the
cost conversion.

Let the pixel value difference between two images on the overlapped region
be the cost. Since such cost is a quantity for each pixel point, the cost field can
be expressed in 3D. Using the similarity of the 3D cost field with the terrain
structure, the proposed seamline algorithm can be explained with the water way
appeared on the 3D terrain structure when water is filling. Imagine that water
is filled on the terrain structure and its level is high as in the Fig. 1(a), where
many possible ways between two points A and B through water appear. If the
water level is lowered slowly, water paths are thinned and the paths formed
along the lower places of the cost field are obtained. The paths satisfy the global
requirement for the optimal seam-line; The paths run along the smaller costs
regardless the length of the path. One problem is that such water connections
are often composed of areas instead of lines. Therefore, the local algorithm to
obtain finer seam-line is also required.

2.1 The Simulated Water Level

To simulate the water level, the thresholdedcost concept is introduced. The
thresholded cost space is the simplified cost field on which the cost values are
replaced with 0 for the values below a given threshold value as shown in (1).

tcost(i, j) =
{
cost(i, j) : ifcost(i, j) ≥ threshold

0 : otherwis
(1)

The water level is equivalent to the threshold level in this expression. If the
threshold is high, larger area which has lower cost than the threshold is replaced
with 0. In this arrangement, the paths filled with 0 cost are corresponding to
the water ways. Finding the water ways at some water level is equivalent to the
finding paths of 0 cost.
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(a) (b)

Fig. 1. The proposed seam-line algorithm can be explained with the water way on the

terrain structure. (a) When the water level is high, many possible paths between two

points A and B appear. (b) With the lowered water level, the finer water ways which

satisfies the requirements of the optimal seam-line are obtained. The path runs along

smaller cost regions regardless of its length.

2.2 Adaptive Cost Conversion

For easiness of explanation, observe the 1D cost function along a path as in
Fig.1 where different kinds of slopes at different locations are shown. It is easy
to know that the total length of path between A and B increases more at the
slower slope than steeper one as in the figure when the threshold is lowered by
4c. So does the sum of costs. Let the increment rate of the length of the path
about 4c be 4l/4c . Then, the spatial slope which is the slope along x axis is

4c
4x =

4c√
4l2 −4c2

=
4c√

(4l/4c)2 − 1
(2)

where 4l/4c can be obtained by the DPwiththethresholdedcost which is dis-
cussed below. The 4c/4x is the spatial slope at the cost c. Therefore, it is
proportional to the visualdiscomfort on the seamline since it is the pixel value
difference. Let such visual discomfort at the cost c be d(c).

d(c) ∼= k/|
4l
4x | (3)

Finally, cost converting function, Ψ(c), is obtain via the integration of such
visualdiscomfort about the cost axis c as in (5).

Ψ(c) = k
∫ c

0
1/|4l4c |dz (4)

Computationof |�l
�c |: Let 4l be the change of the sum of path-cost obtained

when the threshold is changed by4c . The sum of the path-cost at each threshold
level is obtained utilizing DP on the thresholded cost field. We call such DP
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operation the preliminaryDP which is different from the finalDP operation
which will be performed on the converted cost field.

Let the sum of path-cost obtained with the preliminary DP at the threshold
th be φ(the) and the DP operation be ODp . Then, the path length obtained
with the DP at the threshold th is

φ(th) = ODP (tcost(th)) (5)

Since 4l is the difference of the sum of the path-cost at the different thresholds,
|�l
�c | is computed as

| 4l4c | = φ(th) − φ(th−4c) = ODP (tcost(th)) −ODP (tcost(th−4c)) (6)

In the example of Fig. 2, the sum of the path-cost, φ(c) , which is obtained
from the cost function of Fig. 2(a) is as shown in Fig. 2(b). Note that the
horizontal axis is the cost differently from the Fig. 2(a). |�l

�c | which is obtained
by differentiating Fig. 2 (b) is shown with the function of c as in Fig. 2 ( c).
Also, the visual discomfort function d as the function of c is illustrated in the
Fig. 2(d). In the figure, d is small if |�l

�c | is big and vice versa. Fig. 2 (e) is the
cost converting function obtained with the integration of Fig. 2(d). As seen in
the illustration of Fig. 2, costs are converted adaptively according to the shape
of the cost function along the path. After the cost conversion, the seamline is
determined by the final DP operation on the converted cost field.

3 Visual Discordance of the Seam-Line

The Visual Discordance (VD) is also proposed as a measure of the discontinuity
on the seam-lines. Let the array of the original costs (before the cost conver-
sion) on the path be COST, the function to be sorted in descending order be
SORTDEC , and its results be . Then,

COST = SORTDEC (COST) (7)

The measure of visual discordance (VD) is defined as the sum of the predeter-
mined number of biggest costs. Therefore, the VD is

V D =
FN∑
k=1

cost(k) (8)

where FN is a fixed, predetermined number.

4 Experiments

The experiment of the seam-line determination has been done on an Ortho-
Satellite image, as shown in Fig. 3. The lower part of the left image in Fig. 3(a)
is overlapped with the left part of the right image in Fig. 3(b). Mosaicked images



754 J. Chon and H. Kim

(a) (b)

(c) (d) (e)

Fig. 2. An illustration of the construction procedure of the proposed adaptive cost con-

verting function (a)1D cost function along the path, (b) sum of the path-cost function

about c, (c) | 
l

c

| , (d) the visualdiscomfortfunctiond which is the inverse of (c), (e)

the cost converting function which is obtained with the integration of (c)

(a)Left image (b)Right image

Fig. 3. Two images to be mosaicked (Ortho-Satellite images)
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(a)

(b)

(c)

Fig. 4. Mosaicked images (a) with the original dynamic program algorithm, (b) with

the twin snake algorithm, and (c) with the proposed algorithm. Significantly strong

visual discontinuities appear in the image area with the original dynamic programming

algorithm and with the twin snake algorithm, while no visual discontinuities are found

with the proposed algorithm.
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Table 1. Comparison of VD

Algorithm ProposedAlgorithm OriginalDP TwinSnake

VD 5.6 12.2 16.47

with the aforementioned seam-lines are shown in Figure 4 where significant visual
discontinuities appear in the dotted box area of images constructed with the origi-
nal dynamic programming and with the twin snake algorithm. However, no visual
discontinuity can be seen on the image constructed with the proposed algorithm.

A quantitative comparison has been done among the proposed, the original
DP and the twin snake algorithms with the proposed Visual Discordance (VD)
measure, as shown in table 1. The number of costs to be summed in computing
the VD is 30. As seen in the table, the VD of the proposed algorithm is much
smaller than that of either the original dynamic programming or the twin snake
algorithms. The experimental results show that the proposed algorithm produces
visually and quantitatively superior results, compared to the original dynamic
programming algorithm and the twin snake algorithm.

5 Conclusion

We have proposed a cost-converting method that allows the dynamic program-
ming to be applied directly to optimal seam-line determination. This cost-
conversion function is obtained through the test of the thresholded cost field.
The adequacy of the proposed algorithm has been explained analytically. Also,
a figure of merit, which is the summation of a fixed number of biggest pixel
differences (cost), is suggested as an evaluative measure of seam-lines.

The performance of the proposed algorithm has been tested, both quantita-
tively and visually, using various kinds of images that have been compared with
those constructed with the original dynamic programming algorithm and the
twin snake algorithm. The experimental results show that the proposed algo-
rithm always produces visually and quantitatively superior results, compared to
the original dynamic programming algorithm and the twin snake algorithm.
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Abstract. In the article we propose the automatic method of symmetry-
based salient points detection in face images. The proposed method is
based on the modified Discrete Symmetry Transform. Firstly, multireso-
lution Gabor Wavelets filtration is performed. Secondly, DST is used in
order to detect symmetry-based salient points in face images. Then, hav-
ing automatically extracted a number of salient points, further process-
ing including feature extraction for various applications is performed.
Finally, on the basis of the extracted feature vectors, face recognition in
a biometrics system can be performed.

1 Introduction and Motivation

Saliency definition and detection in images is a crucial issue in computer vision.
There are many methods of salient (fiducial) points extraction in images. The
basis for those methods depend on the class of considered images and appli-
cations. Symmetry-based salient points extraction is especially interesting and
valid for face images. Even though faces are not ideally symmetrical and even the
biometrics of asymmetrical face has been recently developed [9][10], the points
of the highest symmetry are appropriate to define saliency within face images.

There are many applications, in which detection and extraction of salient
points is needed for further processing including feature extraction and face
recognition. The most important areas involved in implementing good solutions
for that problem are: face biometrics, interpretation of face expression, human-
computer interaction, face coding and face tracking.

Despite the huge interest and rapid growth in the mentioned fields of computer
vision, nowadays still in many proposed methods and systems, extraction of the
salient points is performed manually [15]. In contrast to such methods we propose
to search for those points automatically on the basis of symmetry-based saliency
definition and detection. Such approach is not well-researched yet, even though
there have been some recent developments in this field [4][7].
The contribution of this paper is a novel approach to saliency definition and
extraction in face images on the basis of Gabor filtration and the modified DST.

Hereby, we modify the Discrete Symmetry Transform proposed by DiGesu
and Valenti [5][6].
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We implement Gabor Wavelets in order to perform multiresolution face image
filtration. Then we detect symmetry-based salient points within the image using
the modified DST calculated on the basis of the filtered images. Moreover, Gabor
filter responses calculated in the salient points may be later used as features
representing the face images [1].

In section 2 face image filtration and the method of high symmetry points
extraction are presented in detail. Moreover the algorithm of crucial symmetry
points selection is described. In section 3 the calculated features are presented
and application to face recognition is discussed. Conclusion and references are
given next.

2 Symmetry-Based Salient Points Detection

We use Discrete Symmetry Transform for choosing the points with the highest
symmetry value within the face image. In contrast to a proposed method of DST
[5][6], we apply DST onto combined image of Gabor directional filtration images.

2.1 Image Filtration

The Gabor Wavelets are used for image analysis because of their biological rel-
evance and computational properties. The Gabor filter kernels model similar
shapes as the receptive field of simple cells in the primary visual cortex. Those
are multi-scale and multi-orientation kernels and each kernel is a product of a
Gaussian envelope and a complex plane wave. We use Gabor Wavelets to ex-
tract the facial features as the set of filter responses with determined scale and
orientation values.

The responses image of the Gabor filter can be written as a convolution of
the input image I (x), with the Gabor kernel ψμ,ν (x), such as:

Rμ,v (x) = I (xo) ∗ ψμ,ν (x− xo) , (1)

where vector coordinates x of the image I (x) are equal to x = (x, y) and ∗
denotes the convolution operator.

The filtration result is a complex function consisting of the following two
components:

Rμ,ν (x) = Re
μ,ν (x) + iRo

μ,ν (x) . (2)

The even component is given by:

Re
μ,ν (x) = I (x0) ∗ ψe

μ,ν (x− x0) (3)

and the odd component is:

Ro
μ,ν (x) = I (x0) ∗ ψo

μ,ν (x− x0) . (4)

Some examples of Gabor kernels are presented in Figure 1.
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Fig. 1. Imaginary parts of Gabor kernels for different orientations μ = 0, 1, ..., 7

The Gabor filters ψμ,ν (kernels) can be formulated as:

ψμ,ν (x) =
k2

μ,ν

σ2 exp

(
k2

μ,νx2

2σ2

)[
exp (ikμ,νx)− exp

(
−σ

2

2

)]
. (5)

It is a complex filter combined of the real (even) and imaginary (odd) parts,
such as:

ψe
μ,ν (x) =

k2
μ,ν

σ2 exp

(
k2

μ,νx2

2σ2

)[
cos (kμ,νx)− exp

(
−σ

2

2

)]
, (6)

ψo
μ,ν (x) =

k2
μ,ν

σ2 exp

(
k2

μ,νx2

2σ2

)[
sin (kμ,νx)− exp

(
−σ

2

2

)]
. (7)
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The parameters μ and ν define the orientation and scale of the Gabor kernels
and σ = 2π. The wave vector kμ,ν is defined as follows:

kμ,ν =
(
kxμ,ν

kyμ,ν

)
=
(
kν cosφμ

kν sinφμ

)
, (8)

where: kν = 2−
ν+2
2 π and φμ = π

8μ (where kν is the spacing factor between
kernels in the frequency domain).

In most cases Gabor wavelets are used at five different scales and eight orienta-
tions [15]. Sometimes other configurations e.g. six orientations are also deployed
[16]. Hereby, we use eight orientations and three scales as presented in Figure 2
(3 scales ν ∈ {0, 1, 2} are sufficient for reliable face representation; adding 2 more
resolutions ν ∈ {3, 4} does not improve the method because the filter responses
are small and not distinctive within various images).

In general, ψμ,ν (x) is complex, however, in our approach, only the magnitudes
are used since they vary slowly with the position while the phases are very
sensitive.

Fig. 2. Filtration outputs of example image ”FaDab157” [3] (8 orientations and 3

resolutions)

2.2 Extraction of the High Symmetry Points

The face salient points extraction is based on the Discrete Symmetry Transform
as presented in [5]. Hereby we modify the known method of symmetry points
detection by applying Gabor filtered images in the first step of the Discrete
Symmetry Transformation.

Our application to detect points of symmetry is developed in two steps. The
first step is the Gabor Wavelet filtration for proper values of orientations and res-
olution. Secondly for each point of the gradient image we compute the symmetry
value.

The algorithm to compute the modified Discrete Symmetry Transform is
following:
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Fig. 3. Results of Discrete Symmetry Transform shown on the ”ideal face image” for

different radius r = 1, 2, 4, 6, 8, 10, 12 and n = 2, respectively

1. First we filter the image with the Gabor filters for all the orientations. Then
we sum all these images and in result of such filtering we obtain the combined
image O(x), such as:

O (x) = 1−
∑
μ,v

Rμ,v (x). (9)

The image O(x) is presented in the Figure 4 (left).
2. Computation of the DST . The Discrete Symmetry Transform is computed

as the multiplication of the filter response image O(x) with the image M(x)
(Figure 4 (right)) such as:

DST (I (x)) = O (x)×M (x) , (10)

where:

M (x) =

√√√√ 1
n

n−1∑
k=0

(Mk(x)2 − 1
n2

(
n−1∑
k=0

(Mk(x)

)2

, (11)
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Fig. 4. Image O(x) and the image M(x)

and:

Mk (x) =
∑

(p,q)∈Πr

∣∣∣∣(p− d) sin
(
kπ

n

)
− (q − e) cos

(
kπ

n

)∣∣∣∣× I (x) , (12)

where:
– (p, q) are the coefficients of each calculated symmetry point,
– (d, e) are the coefficients of the point belonging to the circle Πr with the

distance r from the point (p, q),
– Πr is the circle centred in (p, q),
– r limits the size of the neighbourhood of each point (p, q),
– n is the number of axial moments with the slope kπ/r with k = 0, 1, ..., n.

The final result of the modified DST computation is presented in Figure 5.

Fig. 5. Final image DST (I(x))

2.3 Symmetry Points Selection

The computed DST (I(x)) gives the number of extracted symmetry points, but
not all the symmetry points become our salient points.
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Fig. 6. Original test image ”Fadab127” from FaDab Database [3] and the correspond-

ing resulting image ThreshDST (I(x)) with the extracted salient points

Fig. 7. Original image ”Fadab044” from FaDab Database [3] and the corresponding

resulting image ThreshDST (I(x)) with the extracted salient points

Fig. 8. Original image from IMM database [14] and the corresponding resulting image

ThreshDST (I(x)) with the extracted salient points
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In order to find the most significant of those points we perform the threshold
operation according to the following rule [5]:

ThreshDST (I (x)) =
{

1 if DST (I (x)) > mean+ 3 ∗ var
0 otherwise

(13)

where mean and var are the mean value and the standard deviation of
DST (I(x)), respectively.

The resulting image ThreshDST (I(x)) for the test image ”Fadab127” is pre-
sented in Figure 6.

Usually we obtain 30 - 50 points of the highest symmetry value. Then in
those points we calculate face features based on Gabor Wavelets responses as
presented in the next section.

More results of our method for images from FaDab and IMM databases are
shown in Figures 7 and 8.

3 Feature Extraction and Application to Face
Recognition

The filter responses that result from the application of filter bank of Gabor
filters can be used directly as texture features. Three different preferred spatial
frequencies and eight different preferred orientations were used, resulting in a
bank of 24 Gabor filters. Such response-vectors corresponding to face salient
points are often called Gabor Jets [15].

Moreover, other features such as Gabor energy, local frequency information,
gradient properties and complex moments are computed in order to enhance
the effectiveness of the known EBGM (Elastic Bunch Graph Matching) face
recognition algorithm based on the Gabor Jets.

Gabor Energy is given by:

Eμ,ν (x) =
√(

Ro
μ,ν (x)

)2 +
(
Re

μ,ν (x)
)2
. (14)

where Ro
μ,ν (x) and Re

μ,ν (x) are the responses of the linear even and odd Gabor
filters, respectively.

Gabor filter response phase is calculated as:

Φμ,ν (x) = arctan
(
Ro

μ,ν (x)
Re

μ,ν (x)

)
. (15)

Local frequency information can be extracted from Φμ,ν as follows:

Γμ,ν (x) = arctan
(
∇y (Φμ,ν (x))
∇x (Φμ,ν (x))

)
, (16)

where ∇y and ∇x are gradient estimation functions.
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The next calculated feature is the dominant gradient angle such as:

θμ,ν (x) =
(

Γμ,ν (x) for |φμ − Γμ,ν (x)| ≤ π
2

Γμ,ν (x) + π for |φμ − Γμ,ν (x)| > π
2

(17)

and:
Pμ,ν (x) =

√
∇2

x (Φμ,ν (x)) +∇2
y (Φμ,ν (x)), (18)

where φμ is the orientation of the Gabor filter, Γμ,ν is the direction of the gradient
vector, and Pμ,ν is the module of the gradient vector.

Furthermore we calculate the spatially localized estimate of the frequency
along the direction φμ and the direction of maximal phase change rate θμ,ν (i.e.,
highest local frequency). This value is expressed as:

Hμ,ν (x) = Pμ,ν (x) · cos (φμ − θμ,ν (x)) (19)

Finally the complex moments of the the gradient vector Hμ,ν (x) are defined as
follows:

C(m,n)
μ,ν (x) =

∫ ∫
(u− iv)m (u− iv)n Hμ,ν (x) dudv. (20)

Those features are translation invariant inside homogeneous texture regions and
give information about the presence or absence of dominant orientations in the
texture. The sum m+ n is called the order of the complex moment; it is related
to the number of dominant orientations in the texture. In our application, the
nonzero real and imaginary parts of the complex moments are used as features.

4 Conclusion

In the article we presented an efficient method of image filtering in order to
extract symmetry-based salient points within face images. In our work we base
on directional Gabor Wavelets and the modified Discrete Symmetry Transform
for the extraction of the face saliency corresponding to the points of the highest
symmetry within the face image.

Feature vectors representing face images are calculated only in the extracted
salient points. We propose to use Gabor-based features such as filter responses,
Gabor-energy and the complex moments. Furthermore local frequency informa-
tion, dominant gradient angle and gradient vector are used as features.

Then the calculated feature vectors can be stored and compared in various face
recognition systems. Some possible applications include face image retrieval from
face databases, facial expression understanding and passive biometrics based on
acquired face images.
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Abstract. Cephalometric landmarks detection is a knowledge intensive
activity to identify on X-rays of the skull key points to perform measure-
ments needed for medical diagnosis and treatment. We have elsewhere
proposed CNNs (Cellular Neural Networks) to achieve an accuracy in
automated landmarks detection suitable for clinical practice, and have
applied the method for 8 landmarks located on the bone profile. This pa-
per proposes and evaluates a CNNs approach augmented by local image
dynamic enhancemet for other 3 landmarks that are notoriously diffi-
cult to locate; the advantages of this method in the landmark detection
problem are pointed out.

1 Introduction

Cephalometric landmark detection is a knowledge intensive activity to identify
on standardized, lateral X-rays of the skull (cephalograms) key points to per-
form measurements needed for medical diagnosis, treatment planning and eval-
uation (for example, an orthodontic intervention or maxillo-facial surgery). A
cephalometric analysis can include from 8 to 30 landmarks, and requires expert
knowledge of anatomical structures. Automatic landmarks detection is needed
because this is a very time consuming process (up to thirty minutes), and accu-
racy is affected by human measurements errors. Several automated approaches
have been attempted, (e.g., [1],[2],[3]), but have been criticized because the accu-
racy they achieve is not suitable for standard clinical practice[4]. Measurements
are considered precise when errors are within 1 mm; errors within 2 mm are
considered acceptable, and are used as a reference to evaluate the recognition
success rate. We have recently proposed a landmarking method based on CNNs
(Cellular Neural Networks) and landmark specific knowledge-based algorithms
[5]. This approach has been validated by experimental evaluation on a set of
landmarks located on bone profiles. This paper extends and evaluates the use
of CNNs to locate 3 points that were not included in the former analysis (Sella,

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 768–777, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Gonion, Orbitale); these landmarks are located in regions that may be partially
hidden or where there is ambiguity due to overlapping bone structures, and are
not in edges or bone profiles. After surveying the state of art of cephalometric
landmark detection in section 2 and outlining the functioning of CNNs in section
3, the paper turns to describing the method proposed to locate Sella, Gonion
and Orbitale, this latter one by the joint application of CNNs and local dynamic
enhancement. Section 5 presents and discusses the experimental evaluation of
the proposed method.

2 Automated Cephalometric Landmarks Identification

In this section we review the state of art in cephalometric landmarks identifi-
cation with respect with the techiniques employed. A detailed comparison with
respect to the accuracy and number of detected landmarks is carried out in
section 5, after our results have been illustrated. The first automatic landmark
detection systems [6], [7], [8] were based on filters use to reduce noise and image
enhancement followed by a knowledge based approach to locate landmarks in
enhanced edges. In some cases the techinque of the resolution pyramid was also
used to speed up the process to find first a region of interest and then to refine
the search in the selected area. A knowledge-based system, based on a black-
board architecture was proposed in [9], although it has been criticized as having
the major drawback of rule rigidity. Other approaches to landmark detection
are based on the use of pattern-matching techniques. Mathematical morphology
was used in [1] in conjunction with a search for several anatomical structures
assured to maintain an almost exact geometrical relation to the landmark, in
order to improve accuracy; however, these structures can only be determined
for a small number of landmarks. Grau et. Al. [10] used a technique based on
edge detection and pattern-matching. The system detects a set of reference lines
used to determine the search area for the landmarks. Then a template matching
technique using morphological operations is used similar to the one used in [1].
Spatial spectroscopy was used in [3], but this approach suffers of false detection
that can result in large error since the pattern detection steps are not supported
by other confirming techniques. Other approaches have used neural networks
together with genetic algorithms [11]. A model of the gray-levels around each
point was generated from a training set and matched to a new image in order to
locate the points of interest. Accuracy of this method was assessed in [4]. Fuzzy
neural networks have been used in [12] and in [13] (in conjunction with tem-
plate matching), whereas [14] have used Pulse Coupled Neural Networks. Active
shape models (ASMs) were used in [2]. The technique is based on a set of de-
formable templates of important structures that are deformed in order to match
the deformable template to the structure in a particular image. This method can
be used for a first landmark location estimate since the accuracy is not suited
for exact identification (mean error above 2 mm.). Similarly, in [15] a technique
based on statistical pattern recognition applied to points and shapes is used.
The model is defined for ordered set of points that are approximated by Bézier
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curves, the Active contours with a similarity function are used. The model suffers
the presence of noise. El-Feghi et al. [16] proposed a method based on Partial
Least Squares Regression. This model tries to establish a relationship between
independent and dependent variable by the principal component analysis and
by maximizing the correlation with the dependent variable. Giordano et al. [5]
recently used CNNs templates and knowledge based algorithm for landamarks
identification. The approach proved general and flexible enough to deal with
variability in the anatomical morphologies and achieve the needed accuracy for
8 landmarks loocated in the bone profiles. The method proposed in this paper
extends this work by using CNNs and dynamic thresholding, as descrived in the
next section.

3 Cellular Neural Networks

CNN is a powerful computational model equivalent to a Turing machine [17] im-
plemented on chip known as CNN-UM (CNN Universal Machine). CNNs consist
of computational units (cells) arranged in matrix forms (2D or 3D). 2D matrix
arrangement are suitable to process images [18], [19]. Each cell is a dynamic unit
with an input, an output and one state. Each cell is influenced by the input and
the output of all the n neighboring cells. A cell in a matrix of MxN is indicated
by C(i,j). The state of each cell (i, j) depends on the states of the neighbouring
cells from i - n to i + n and from j - n to j + n, and on their gray level values. If
a cell (i, j) depends on the cells from i - 1 to i + 1 and from j - 1 to j + 1, then
the CNN consists of the 3 x 3 array shown in fig.1.

Fig. 1. 3x3 CNN

CNNs dynamics are determined by the equations (1) and (2), where x is the
state, y the output, u the input, x(i,j) is the generic cell belonging to the matrix;
I(i,j) is the activating treshhold for each cell, Nr (i,j) is the neighborhood radius
of the interacting cells. A is known as feedback template and B is known as
control template. By setting the proper initial conditions for the state variables
and for the input values several processing tasks can be accomplished. Changing
template parameters allow CNN programming [20].
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˙xi,j = −xi,j +
∑

C(k,n)∈Nr(i,j)

A(i, j, k, h)ykh(t)+
∑

C(k,n)∈Nr(i,j)

B(i, j, k, h)ukh(t)+I

(1)

yi,j =
1
2
(|xi,j + 1|+ |xi,j − 1|) (2)

CNNs are intrinsically parallel and analogic structures and can be used as fast
elaboration tools for systems with a matrix organization, as images. Moreover,
they don’t need training and can be easily implemented in VLSI, since interac-
tions are localized in a limited neighborhoods.

4 Cephalometric Landmarks Identification by CNNs

The tool developed for automated landmarking of cephalograms is based on
a software simulator of a CNN of 512 x 480 cells able to map an image of
512 x 480 pixels, with 256 grey levels [5]. Each point is located by employing
different algorithms, after a pre-processing stage consisting of three steps: 1)
CNN processing, 2)Thresholding, 3) Noise removal by a Median filter. Each
landmark needs specific CNN templates and also different thresholding values
defined by the parameters Tlow and Tup. All the pixel values greater than Tup and
smaller than Tlow will be changed to 0 (i.e., black), whereas the other pixels will
be set to the max value in the pixels variation range. For some points dynamic
thresholding will be used. Let’s analyze the algorithms for each point.

4.1 Sella

The Sella is the depression of the superior face of sphenoid (hypophysial fossa).
The landmark Sella is a constructed radiological point defined as the central
point of the region Sella. In this case pre-processing involves: CNN elaboration
by the templates (see 3) with 5000 cycles and 0.1 as integration step; thresholding
with Tup = 255 and Tlow = 87; application of a median filter.

A =

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎠ ;B =

⎛⎜⎜⎜⎝
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
0 0 2 0 0
1 1 1 1 1
1 1 1 1 1

⎞⎟⎟⎟⎠ ; I = 0.5; (3)

Fig.2(a) and 2(b) illustrate the original and the output binary image. Then
the approach is to search for Sella in a region of interest (ROI) that is likely
to contain it, in order to reduce search time and the error probability, since
the smaller the region the less the number of objects to analyze. This ROI
has been empirically defined as comprised within rows 9-160 and columns 160-
262 (fig. 3(a)); the comprised objects are identified by applying the connected
components algorithm (fig. 3(b)). A property of this ROI is that the Sella can be
identified by a search starting from the furthest right and up connected element.
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(a) Original X-Ray (b) Processed Image

Fig. 2. Processing using CNNs

(a) ROI in the image (b) Connected com-
ponents in ROI

Fig. 3. Connected components algorithm in the ROI defined for Sella

The search algorithm starts from the point A, defined as the one belonging
to the furthest right and up connected element and with minimum coordinates.
From point A, a new point Camp is derived. Its coordinates are Camp (i) = A
(i) and Camp (j) = A(j) + 18. Starting from Camp, a 20 pixels wide horizontal
segment is analyzed. When a white pixel is found, its coordinates are assigned
to Camp. The new point might belong to Sella, this is verified by the single
evaluation procedure, that checks if the points belongs to a connected element
wider than 20 pixels; if yes, the Sella is found. The landmark is then computed
as the intersection of two segments: one linking the borders of the Sella and the
line that divides in a half the Sella.

4.2 Gonion

The Gonion is a constructed point defined as the intersection of the lines tangent
to the more distal border of the ascending ramo and to the mandibular plane
(line 1 and line 2, respectively, in fig.4(a)). The X-ray is processed as follows:
first a gradient filter 5X5 in south-west direction is applied by means of the
CNN templates shown in (4); then the image is binarized by thresholding with
Tup = 255 and Tlow = 100; and finally a median filter is applied. To compute
line 1 in the output image, a ROI is chosen. In this case ROI is defined vertically
by the parameters 160 and 220, and horizontally by 220 and 365. As in the
previous case, the connected component algorithm is applied, but recognition
is performed simply based on dimension. In particular, the longest object will
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be the one being sought (i.e., the ascending ramo). The tangent line is found
with good approximation by the least squares method. An analogous approach
is used to compute the second line. The only difference is in the parameters that
identify the ROI to carry out the search. In this case these are 365 and 452
horizontally, and 250 and 370 vertically.

A =

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎠ ;B =

⎛⎜⎜⎜⎝
1 0.5 −1 −1 −1

0.5 1 1 −1 −1
−1 1 5 1 −1
−1 −1 1 1 0.5
−1 −1 −1 0.5 1

⎞⎟⎟⎟⎠ ; I = −13; (4)

(a) Gonion in the original
image

(b) Filtered Image

Fig. 4. Processed Image for Gonion Detection

4.3 Orbitale

The Orbitale is the lowermost point of the orbit in the radiograph. One of the key
difficulties in locating this landmark is that sometimes the relevant anatomical
structures are hardly visible with respect to other zones; this has been solved
by applying dynamic thresholding in the relevant ROI. The processing methods
discussed in the previous sections are global, because that pixels are modified
by a transformation function based on the gray-level content of an entire image.
Although this global approach is suitable for overall image enhancement, there
are cases in which it is necessary to enhance details over small areas in an
image, like in the case of Orbitale. The features of the pixels in these areas may
have negligible influence on the computation of a global transformation whose
application does not necessarily guarantee the desired local enhancement. The
applied solution is to devise transformation functions based on the gray-level
distribution in the desired ROI. The detection algorithm is as follows. First,
a 5X5 gradient filter in north-east direction is applied by the CNN template
shown in (3). For orbitale a suitable ROI is delimited vertically by parameters
120 and 210, and horizontally by 370 and 450. Local enhancement to pinpoint
the anatomical structures of interest is perfomed by dynamic thresholding, i.e.,
Tup and Tlow are defined respectively as μ and μ + σ where μ is the mean of
the histograms in the ROI(Region Of Interest), and σ is the standard deviation,
defined as follows:
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μ =
∑

(s,t)∈ROI

rs,t · p(rs,t) (5)

σ =
∑

(s,t)∈ROI

[rs,t − μ] · p(rs,t) (6)

where rs,t is the gray level at coordinates (s,t) in the ROI, and p(rs,t), is the
normalized histogram component corresponding to the considered value of gray
level. The effect of local enhancement is shown in figure 5, where using the
Tup and Tlow of the Sella case it is impossible to detect some shapes for the
Orbitale(see fig.5(d)), whereas using the μ and σ of the histogram, the new values
of Tup and Tlow are respectively 165, 115, fig.5(c), the anatomical structures for
the detection are highlighted, fig.5(d).

(a) ROI for Or-
bitale Detection

(b) Image with
Static Enhance-
ment

0 50 100 150 200 250

0

50

100

150

200

(c) Histogram of
the selected ROI

(d) Image with
Local Enhance-
ment

Fig. 5. Dynamic Local Enhancement

The binary image is then denoised by the median filter. Filtering of the objects
in the ROI proceeds by taking into account their area. In particular, the objects
with area greater than the mean area are filtered. Among these objects, those
whose width is greater than average are selected, and the 2nd order derivative is
computed. If this value is positive (concavity up) the object might be the lower
part of the orbit. Since two objects might be present due to the overlapping
of two symmetrical structure, the midpoint is selected, as in standard clinical
practice.

5 Experimental Evaluation

Performance of the developed algorithms for these 3 landmarks was assessed on
a sample of 19 cases at 300 dpi, by computing the Euclidean distance from the
same point marked by an expert orthodontist. Points with a distance less than
2mm were considered successfully located. Table 1 reports the findings.

The overall mean success rate is 93%. Best detection performances were on
Sella, with 100% recognition rate and 89% of the found landmarks within 1 mm
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Table 1. Experimental results of the proposed method

Land-
mark

Mean Error
(mm)

Standard deviation
(mm)

≤1
mm

>1mm
≤2mm

> 2mm
≤3mm

>3mm Success
Rate

Sella 0.43 0.34 89% 11% 0 0 100%

Gonion 1.36 1.86 53% 37% 5% 5% 90%

Orbitale 1.10 0.62 42% 47% 11% 0 89%

precision. We can compare our findings to the performance of other automatic
landmarking systems, with respect to recognition rate (RR) and mean error
(m.e.) on the same points. By morphological processing coupled with a statistical
approach [1] the RR for Sella was 53%; for Gonion 61%; and for Orbitale 40%
(40 cases). By edge detection and pattern matching [10], the RR for Sella and
Orbital was 65% with m.e. 1.92 mm, for Gonion RR was 85% with m.e. 1.11 mm
(20 cases). By image spectroscopy [3] Sella was found with m.e. 5.06±3.37 mm,
and Orbitale with m.e. 2.46±3.7 mm (14 cases). By multilayer perceptron and
genetic algorithms [4] Sella was found with m.e. 0.94±0.54mm, Orbitale with
5.28±4.1mm and Gonion with 4.53±3.13 mm (38 cases). By Active Shape Model
[2] Sella was found with m.e. 5.5±6.8mm, Orbitale with 5.5±3.4 mm and Gonion
with 5.8±6.0mm (63 cases). By statistical pattern recognition [15]Sella was found
with m.e. of 1.2 mm. By Pulse Coupled Neural Networks [14]the Sella RR was
36% (cases 109). By a neurofuzzy system [12] the Sella RR was 77%, Gonion 87%
and Orbitale 74% (600 cases). By Partial Least Squares Regression [16] Sella was
detected in 83% of the cases, Gonion in 71%, and Orbitale in 72% (100 cases).
For Sella our method has the lowest mean error (comparable to the performance
of the multilayer perceptron [4]) and achieves 100% RR. Concerning Gonion, in
the literature RR varies from 61% to 87%; our RR and m.e. are similar to the
best ones [10]. For Orbitale we obtain again the same mean error as [10] but
our recognition rate is 84% vs. their 65%, and superior to the best recognition
rate reported in the literature, i.e. 72%. Thus our approach, for each landmark
outperforms or equates the performance of the other approaches, but is the only
one able to achieve these levels in all the three landmarks. Also, the mean error
is smaller than those reported in the other studies, and, consistently with our
findings in [5], very close to the human mean error, which is 1.26 mm [4].

6 Concluding Remarks

In this paper we have illustrated a novel approach to detect relevant landmarks
in cephalometric analysis by using Cellular Neural Networks combined, for the
Orbitale point, with local dynamic thresholding. A skull X-ray contains severals
anatomical structures, each with a different distribution of gray levels, thus mak-
ing static thresholding inadequate to properly highlight each of them. To point
out these different structures and related landmarks we have used, dynamic en-
hancement. This method facilitates the search of the landmarks because it uses
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specific statistical parameters of the histogram in the chosen ROI, prior to the
application of CNNs. CNNs effects on X-rays processing could also be obtained
by spatial filtering by means of a gradient filter. For example, in the case of
Sella, application of a north-south gradient filter produces the image shown in
fig.2(b). Using a simple gradient filter would allow a computation speed one or-
der of magnitude greater than a CNN software simulator. However, CNNs afford
peculiar advantages over other filters. One is the possibility of visualizing the in-
termediate processing steps. This can be convenient if an overall integrated and
adaptive landmarking system is devised, since our results exploit the transient
solution provided by the CNNs, and in some cases it might be convenient for the
user to adjust the n. of cycles of elaboration, or the integration step. Also, the
hardware implementation in a chip ACE 16K [21] allows the parallel processing
of 128x128 pixel, thus lowering significantly the processing time.
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Abstract. A new applications of adaptive critic identifier for wheeled
mobile robot is presented. In this approach the architecture of adaptive
critic identifier contains a neural network (NN) based adaptive critic
element (ACE) generating the reinforcement signal to tune the associa-
tive search element (ASE), which is applied to approximate nonlinear
functions of the mobile robot. The proposed system identification that
can guarantee tracking performance and stability is derived from the
Lyapunov stability theory. Computer simulation have been conducted to
illustrate the performance of the proposed solution by a series of exper-
iments on the emulator of wheeled mobile robot Pioneer-2DX.

1 Introduction

The problem of identification consists of choosing an appropriate identification
model and adjusting its parameters such that the response of the model to an
input signal approximates the response of the plant under the same input [3,6,7].
The synthesis of the mobile wheeled-robot state identifier is a complex problem
for these objects are not linear, non-holonomic but multidimensional systems.
It would be desirable to use more advanced learning and intelligent features of
NN in system identification design as reinforcement learning (RL)methods. RL
had been applied to acquire a control system, identification for many fields, such
as robotics, image processing, etc., as learning without any teacher [8]. The ap-
proach taken in this paper involves an actor-critic learning system for RL [1,5,8].
Actor-critic architectures differ from other methods in that separate data struc-
tures are used for the control policy (the actor) and the value function (system
performance) (the critic). One advantage of the actor-critic framework is that ac-
tion selection requires minimal computation.[1,8]. The proposed RL systems will
be capable of avoiding too many trial and error learning process and guarantee
the stability of the proposed identifier. The remainder of the paper is orga-
nized as follows. Chapter 2 displays a two layer neural network. Dynamic equa-
tions of the mobile 2-wheeled-robot and identification properties are included in
Chapter 3. Chapter 4 includes results of the identification algorithm tests, ob-
tained after numerical simulation. Chapter 5 resumes the results of the research.
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2 Linear-in-the-Parameter Neural Nets

A two layer NN [2,4] is depicted in figure 1, where there are two layers of neurons,
with one layer having m neurons feeding into a second layer having r neurons,
with linear activation functions on the output layer. The output of the two-layer
NN is given by the equation

y =WTS
(
V Tx

)
(1)

If the first-layer weights V are predetermined by some a priori method, then
only the second-layer weights W are considered to define the NN. Define the
fixed function φ (x) = S

(
V Tx

)
so that such a one-layer NN has the equation

y =WTφ (x) (2)

This NN is linear in the NN parameters W so that it is easier to train the NN by
tuning the weights. It is shown in [4] that, selecting the matrix V in (1) randomly
the resulting function φ (x) = S

(
V Tx

)
is a basis, so that the linear in the NN

parameters has the universal approximation property. In this approach, can be
the standard sigmoid functions.

Fig. 1. Neural network scheme

3 Modeling and System Identification

The mechanical structure of the mobile robot, like Pioneer-2DX, is shown in
figure 2. Presented robot has two degrees of freedom. In the word co-ordinates
a posture is defined as [xA, yA, β]

T , where (xA, yA) is the position of the point
A, and β is the heading angle of the robot with respect to absolute co-ordinates
(x, y) . Using Maggi’s formalism the dynamics of wheeled mobile robot can be
written as [2][
a1 + a2 + a3 a1 − a2
a1 − a2 a1 + a2 + a3

] [
α̈1
α̈2

]
+
[

0 2a4 (α̇2 − α̇1)
−2a4 (α̇2 − α̇1) 0

] [
α̇1
α̇2

]
+

+
[
a5sgnα̇1
a6sgnα̇2

]
=
[
M1
M2

]
(3)
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Fig. 2. The schematic of mobile robot

where a is a vector of the mobile robot parameters, which results from the system
geometry, weights distribution and motions resistance, u = [M1,M2] is a vector
of the moments propelling driving wheels and α = [α1, α2]

T is a vector of turn
angle of the driving wheels. The equation (3) can be written in the form

M (q) q̈ + Cr (q, q̇) q̇ + F (q) = u (4)

where q = α ∈ R2 . Establishing x1 = q ∈ Rn1, x2 = q̇ ∈ Rn1 with n1=2
dynamic equations of motion (4) can be written in state space

ẋ = f (x, u) (5)

where f (.) ∈ R2n1x1 is a non-linear function vector. The identification model for
the mobile robot (5) can by expressed by [2,6]

ẋ = Ax+G (x, u) (6)

where G (x, u) = f (x, u) −Ax and A ∈ R2n1x2n1 is a Hurwitz matrix. Suppose
that a neural network is used to approximate the non-linear vector G (x, u) ∈
R2n1 according to

G (x, u) =WTφ (x) + ε (7)

with W the ideal approximating weights, φ (x) provides a suitable basis and ε is
the approximation error with ‖ε‖ ≤ zε . Then an estimate of G (x, u) is given by

Ĝ (x, u) = ŴTφ (x, u) (8)

This gives the following identification model

˙̂x = Ax̂ + ŴTφ (x, u) (9)

where x̂ denotes the state vector of the network model. Define the state error
vector as

x̃ = x− x̂ (10)

so that the dynamical expression of the state error is given by

˙̃x = Ax̃+ W̃Tφ (x, u) + ε (11)
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Fig. 3. Configuration for the identification framework

In RL context, the estimate of the function is often used in the actor-critic
configuration as shown in figure 3. The estimate of Ĝ (x, u) is implemented by
the ASE which the weights will be tuned by the signal from ACE. The outputs
of ASE and ACE can by represented as ŴTφ and ĈTφ respectively. The ACE
generates a reinforcement signal vector r to tune neural net weights Ŵ . The
first layer of the actor-critic system employs neural net with standard sigmoid
functions and the matrix V is selected randomly to implement the decoder [1,8].
The proposed RL systems will be capable of avoiding too many trial and the error
learning process and guarantee the stability of the proposed tracking controller.
It means that the neural networks weights W and C are tuned on-line with no
learning phase and all signals in the closed-loop system are bounded. Assume
the input signal u be bounded and the norms of ideal weights ‖W‖ ,‖C‖ are
bounded by known positive valuesWm ,Cm respectively. In order to calculate the
reinforcement signal r and law of learning weights of the neural net actor-critic
system, which is essential for the net’s stability, we introduce the Lyapunov’s
function in the form of [4,5,6]:

V = 0.5x̃T x̃+ 0.5trW̃TF−1
w W̃ + 0.5trC̃TF−1

c C̃ (12)

Making a differential calculus along the result of the system (11), and using the
principle of learning weights of the net

˙̂
W = Fwφr

T − γFw ‖x̃‖ Ŵ (13)

˙̂
C = −Fc ‖x̃‖φ

(
ŴTφ

)T

− γFc ‖x̃‖ Ĉ (14)

with Fw ,Fc positive and diagonal constant matrices and using reinforcement
signal equals to

r = x̃+ ‖x̃‖ ĈTφ (15)
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we get:

V̇ ≤ −x̃TAx̃ + x̃T ε+ ‖x̃‖ tr[−W̃Tφ
(
ĈTφ

)T

+ γW̃T Ŵ+

+C̃Tφ
(
ŴTφ

)T

+ γC̃T Ĉ]

(16)

Since W̃Ŵ ≤
∥∥∥W̃∥∥∥Wm−

∥∥∥W̃∥∥∥2
and C̃Ĉ ≤

∥∥∥C̃∥∥∥Cm−
∥∥∥C̃∥∥∥2

and
∥∥∥φ̃∥∥∥2

≤ m there
results

V̇ ≤ −λmax (A) ‖x̃‖2−

−γ ‖x̃‖

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[∥∥∥W̃∥∥∥− (mCm + γWm) /2γ
]2

+

+
∥∥∥C̃∥∥∥− [(mWm + γCm) /2γ]2 − [(mCm + γWm) /2γ]2−

− [(mWm + γCm) /2γ]2 − zε/γ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(17)

which is negative as long as

‖x̃‖ > γ
{
[(mCm + γWm) /2γ]2 + [(mWm + γCm) /2γ]2 + zε/γ

}
/

/λmax (A) = bx

(18)

or ∥∥∥W̃∥∥∥ > (mCm + γWm) /2γ+

+
√{

[(mCm + γWm) /2γ]2 + [(mWm + γCm) /2γ]2 + zε/γ
}

= bw

(19)

or ∥∥∥C̃∥∥∥ > (mWm + γCm) /2γ+

+
√{

[(mCm + γWm) /2γ]2 + [(mWm + γCm) /2γ]2 + zε/γ
}

= bc

(20)

where λmax (A) is the maximum eigenvalue of the matrix A. Thus V̇ is negative
outside a compact set. This guarantees that the error x̃ ,C̃ and W̃ are uniformly
ultimately bounded [4,5].

4 Simulation Results

In this section, the computer simulation results of adaptive critic identifier for
wheeled mobile robot are given to demonstrate the feasibility of the proposed
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Fig. 4. Input signal u and generated the parameters of movement of mobile robot

Fig. 5. The weights for neural critic element
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solution. We have to transform the dynamical equation (3) into its state-variable
description to the form (6). Let X = [x1, x2, x3, x4]

T = [α1, α2, α̇1, α̇2]
T we get

the identification model⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−ax1 0 0 0

0 −ax2 0 0
0 0 −ax3 0
0 0 0 −ax4

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦+

⎡⎢⎢⎣
x3 + ax1x1
x4 + ax2x2

f3 (X,u) + ax3x3
f4 (X,u) + ax4x4

⎤⎥⎥⎦ (21)

where axi are designed elements of a Hurwitz matrix A and f3 (X,u) , f4 (X,u) is
a non-linear function elements, which results from the equation (3). Verification
of the neural identifier suggested will be carried out for three periods of mobile
robot motion, such as: starting period, travel at constant speed of point A, when
point A is moving along circular trajectory, and stopping period [2]. The control
signals u and the generated parameters of movement of mobile robot (real state)
against time t are shown in figure 4a,b,c respectively. The elements of matrix
A are chosen as ax1 = 4.61, ax2 = 4.61, ax3 = 3.2, ax4 = 3.2 . Modeling the
non-linear function vector G (X,u) ∈ R4x1 in (21) with two layer NN, which is
depicted in figure 1, and selecting the matrix V in (1) randomly using m = 5
neurons described by standard sigmoid functions for each element of vector G,
gives the decoder for ASE and ACE elements. The parameter values used in
this example are as follows: γ = 0.01, Fw = diag (3) , Fc = diag (0.01). The
sampling time used in the simulation is 0.01 second. The rest of the data, and

Fig. 6. The weights for neural actor element
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Fig. 7. State errors with time

Fig. 8. Reinforcement signals with time

the average quantities of the parameters a in (3), which were assumed for the
simulation, are given in [2]. The performance of the proposed RL systems are
shown in figures 5-7. The weights for neural critic element and actor element are
depicted in the figure 5,6 respectively. In the actor-critic NN identifier scheme
derived in this paper there is no preliminary off-line learning phase. The weights
are simply initialized at zero, for then figure 3 and equation (9) show that the
identifier is just a linear with designed Hurwitz matrix A and gives bounded
errors if λmax (A) is large enough. Therefore the closed-loop identifier remains
stable until the actor-critic NN begins to learn as we can see in the picture 7.
Moreover, it can be found that the weights shown in the figure 5,6 are bounded.
The state errors x̃ = x− x̂ = x−xd of the mobile robot against time t are shown
in figure 7a,b. It can be seen that the state errors are bounded. Moreover, it can
be found that reinforcement signal shown in the figure 8 is bounded. Note that
persistence of excitation (PE) is not needed to establish the bounds on C̃, W̃
with the modified weight tuning algorithm. The importance of the γ term added
to the NN weight tuning algorithm (13),(14) is that it is possible to establish
that is negative outside a compact set in the

(
‖x̃‖ ,

∥∥∥C̃∥∥∥ , ∥∥∥W̃∥∥∥) plane.
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5 Conclusion

A sequential identification scheme for mobile robot with unknown nonlinearities
using ASE-ACE reinforcement learning method has been developed. This work
shows how to cope with nonlinearities through adaptive critics with no prelim-
inary off-line learning required. The proposed scheme consists of a feedforward
action generating NN that compensates for the unknown system nonlinearities.
The learning of this NN is performed on-line based on a signal from a second
higher level NN acting as a critic. The proposed identifier that can guarantee
good performance and stability is derived from the Lyapunov stability theory. In
this paper have been discuss relatively new developments in the general area of
complex robotic systems. Basin on numerical analysis, it has been demonstrated
that the tested identification algorithm is stable and simulated experiment con-
formed to theoretical expectations.

Acknowledgment. This research was supported by MEiN Grant No. 4 T07A
030 29.
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Abstract. This paper presents a color image watermarking scheme
based on spatial information analysis in spatio-chromatic space. Principal
component analysis (PCA) is used as an appropriate tool for estimating
information. We use RGB color images with a regular arrangement RGB
channels into spatio-chromatic space, and PCA performs de-correlation
of these signals. We show that spatio-chromatic principal components
of images contain spatial information and color information, and that
PCA spatio-chromatic analysis is able to help the reconstruction of full
images. We propose an efficient watermarking method for color images
based on the observation. Watermarks are embedded in some spatio-
chromatic principal components of the image, which provide invisibil-
ity and robustness. The experimental results show that the proposed
method possesses robustness against most common attacks, and image
processing techniques.

1 Introduction

There have been proposed many watermarking methods, and they have mainly
focused on grey scale image watermarking. Extension to the color case still
presents one of the open issues in watermarking research. In field of image wa-
termarking, research has been mainly focused on grayscale image watermarking,
whereas the extension to the color case is usually accomplished by marking the
image luminance, or by processing each color channel separately. There have been
many watermarking algorithms developed in the image space, Fourier, DCT,
Mellin-Fourier transforms and wavelet domains [1-4].

Cox et al [1] proposed a secure spread spectrum watermarking for multimedia
in DCT domain. Application of the method to color images is straightforward.
Color images are therefore converted in to a YIQ representation and the bright-
ness component Y is then watermarked. The color image can then be converted
to other formats but must be converted back to YIQ prior to extraction of the
watermark. However, robustness against certain color image processing proce-
dures should be investigated. Kutter et al [5, 6] proposed a color image water-
marking scheme that embeds the watermark into the blue-channel of each pixel

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 787–795, 2006.
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by modifying its pixel value. The reason why the pixels in the blue channel are
selected to embed the watermark is because the message in the blue channel is
less sensitive to the human eyes.

In this work, we take a new approach to analysis and watermarking color im-
ages: consider color information in spatio-chromatic domain. We analyze spatial
information in spatio-chromatic images. Principal component analysis (PCA) is
used as an appropriate tool for estimating information. RGB color images are
rearranged among color channels (Figure 1) into spatio-chromatic images and
PCA perform de-correlation of those signals. We show that spatio-chromatic
principal components of images contain spatial information and color informa-
tion, and that PCA spatio-chromatic analysis is able to help the reconstruction
of full spatio-chromatic images.

Based on the observation, watermarks are embedded in some spatio-chromatic
principal components of images which possess invisibility and robustness. The
experimental results show that the proposed method is robust against most
common attacks, and image processing techniques.

2 Spatio-chromatic PCA of Color Images

Principal component analysis is a well-known statistical method for reducing the
dimension of data sets. This method finds a new representation of the data set
preserving only the most important information. It is based on spectral decom-
position of the covariance matrix of the data set [7][8].

Step 1. Denote an RGB image of size MxNx3, by IR,G,B(m,n), where m and
n take integer values from 0 through M − 1 and N − 1, respectively.

The image IR,G,B(m,n) is partitioned into sub-images of size KxK; we then
construct a two dimensional matrix X which contains for each row a column
vector xj composed of spatial neighbors of size K for color bands (Figure 1).
Thus, the size of matrix X is (MxN/K2)x(3K2). This matrix, on which we apply
PCA analysis, can be interpreted as containing on each row a representation of
the spatio-chromatic random variables of a color image. We extract the principal
components of sub-image color bands by finding the PCA transformation matrix
(basis functions). Each sub-image color bands is then transformed by the PCA
basis function.

The following steps are applied to the X to find the transformation
matrix [Φ]:

Step 2. Partition X into a number of sub-pixel KxK for convenience in numer-
ical implementation. Sub-units are selected by random choosing KxK sub-pixel
in R, G, and B at X separately, and then the size of sub-unit is Kx3K.

Consider each sub-unit as a vector (vector of pixels), and the data vectors can

be written as: X = (x1,x2,x3,....,xm)T

where vector xi is the ith sub-unit and T denotes the transpose matrix. Each
sub-unit has Kx3K pixels, and each vector xi has Kx3K dimensions.
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Step 3. Calculate the covariance matrix C of X ,

C = cov(X) = (X - X)T(X - X) (1)

where X is the mean vector of each sub-vector. The resulting matrix C of size
3K2x3K2 is then decomposed into eigenvalues S and corresponding eigenvectors
U , C = USU−1 the columns of U are the eigenvectors and represent the basis
functions of the transformation denoted by [Φ]. We can represent these basis
functions as spatio-chromatic samples and display their spatial and chromatic
properties as color image. We have discovered that, the first principal compo-
nents are mostly achromatic basis functions. If we had chosen a set of RGB
images instead of one single image, we probably would have obtained a more
accurate result.

Step 4. The matrix [Φ] represents a rotation matrix that is used to transform
the original spatio-chromatic space into a new space where components are de-
correlated. If we call Y the de-correlated matrix corresponding to X , we have

Y = XΦ⇒ (Y - Y)T(Y - Y) = ΦT(X - X)T(X - X)Φ (2)

Equation 2 shows clearly that Y is a de-correlated data set.

Step 5. The reconstruction matrix X∗ is obtained from X as follows :

X∗ = XΦDΦ−1 (3)

where D is a diagonal matrix that contains zero or one depending on if the
corresponding vector is used or not.

As shown in Figure 2(a), only the first principal components of spatio-
chromatic samples give a good approximation of the image (PSNR=18.09). We
showed that the achromatic basis functions are able to reconstruct accurately
the luminance information and color information of the original images. Figures
2(b), 2(c) and 2(d) show the reconstructed images with first two (PSNR=21.5),
first five (PSNR=25.36) and first ten (PSNR=27.79) basis functions respectively.
Since the main information of the sub-image is concentrated in first several prin-
cipal components, it is easy to choose the components for embedding the water-
mark. We can choose components to embed watermarks to adapt the invisibility
and robustness.

3 Spatio-chromatic PCA Based Watermarking

3.1 Embedding

We suppose that the original image IR,G,B(m,n) is sub-divided into a num-
ber of sub-images. The matrix X can be obtained by step 1 and step 2 de-
scribed earlier. We can get PCA chromatic basis function which is denoted by [Φ]
(step 3). Principal components are computed on these sets of sub-images. The de-
correlated PCA coefficients are calculated thought step 4. A set of coefficients
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Fig. 1. Decomposition of a color image into spatio-chromatic images

    
(a) (b) (c) (d) 

 
Fig. 2. Reconstruction of the original RGB image, (a) using only the first principal

component, (b) using first two principal components, (c) using first five principal com-

ponents and (d) using first ten principal components

in each sub-unit is selected to embed the watermarks by modifying the PCA
coefficients. Watermarks are added in perceptually insignificant components of
sub-images.

In this proposal, the watermark consists of pseudo-random number sequence
of length M with values wi normally distributed, which can be written as W =
(w1, w2, ...., wM ) where wi is random numbers. The method embeds the water-
mark into selected components of each PCA sub-unit uncorrelated coefficients
which are obtained by step 4. Thus, we choose one watermark wi and embed
into yi by the equation:

y
′
= y + αyiwi (4)

where i = 1, 2. . .m is a scaling parameter to control strength of the watermark
and y

′
is a watermarked coefficient. Finally the watermarked image I

′

R,G,B
(m,n)

is obtained by applying the inverse PCA process (step5).
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3.2 Detection

Watermark detection is applied to the watermarked image I
′

R,G,B
(m,n) for

copyright purposes. The procedure of watermark detection is as follows:
Partition the watermarked image into a number sub-image. The image data

vectors can be written as: X
′

=
(
x

′
1, x

′
2, ...., x

′
M

)T

where vector x
′
i is the x

′
th

sub-units and T denotes the transpose matrix. (Step 1 and step2). Sub-unit
coefficients of X

′
are computed by applying the PCA image basis function [Φ]

(step 4). The PCA coefficients, which were embedded watermarks, are selected
to generate watermarked coefficient vector: C∗ = (c∗1, c

∗
2, ...., c

∗
M )

The correlation value between the watermark W and possibly corrupted co-
efficient C∗ is calculated to detect the mark:

Corr =
WC∗

M
=

1
M

M∑
1

wici (5)

By applying the correlation-based watermarking method, watermark corre-
lations are calculated first for watermarks W = (w1, w2, ...., wM ), and then for
1000 different random-watermarks Wk = (k = 1 ∼ 1000). The correlation can be
used to determine whether a given mark is present or not. In order to detect the
watermark, a threshold which is estimated on the watermarked image is applied
to evaluate the detection system [9]. The threshold is defined by the equation:

T =
α

3M

M∑
i=1

yi. (6)

4 Computer Simulations

In this section, we demonstrated on inserting a watermark in color images based
on the properties of spatio-chromatic PCA. Experiments are performed with
some standard color images of size 512x512. Images are partitioned into sub-
images of 8x8 pixels; RGB color channels are separated and the spatio-chromatic
space is constructed. The PCA spatio-chromatic orthogonal basis functions are
determined by those data and they are adaptive to data (Section 2, step 3).
Furthermore, since the main information of the color image is concentrated in
principal components, it is easy to select suitable components for embedding.

For each of block spatio-chromatic coefficients, sixteen different watermark
random numbers are inserted into the sixteen coefficients. To carry out this
process a watermark which has total length of M = 655361 is randomly generated
with standard normal distribution. Signal to noise ratio (PSNR) or mean square
error (MSE) is used to evaluate the quality of the watermarked image.

One important requirement of watermarking is to compromise between the
invisibility and the robustness. First, the watermark should be embedded in an
invisible way to avoid degrading of perceptual quality. Second, the watermark
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should be robust against watermark attacks which are applied to image content.
Those attacks include but not limited to lossy image compression, filtering, noise-
adding, and geometrical modification.

To assess the validity of spatio-chromatic PCA watermarking in terms of
watermark invisibility, we select a set of standard color images and we marked
each image. It is noted that the robustness can be improved by increasing the
strength of the embedded watermark, which affects perceptible degradation of
the image. For the experiments we chose empirically alpha = 0.4. Figure 3 shows
five original images and the corresponding watermarked images. Both original
and watermarked images are evidently indistinguishable, and the watermarked
images have corresponding detector response, and PSNR values in Table 1.

One important question in applying PCA is the computational cost for detec-
tion of the watermarks. The detection simulation took few second of computing
time on an AMD 3000++ personal computer (PC). It is clearly possible to design
watermarking application using computational method based on PCA.

Extensive testing was performed to assess the performance of the proposed
watermarking scheme from the point of view robustness. Tests were carried out
aiming at measuring the robustness of the watermark against standard image

     

     

Fig. 3. The original and the corresponding watermarked images in experiments, with

scaling parameter

Table 1. The detector response, Threshold, MSE, and PSNR: the proposed method

Images Detector response Threshold MSE PSNR

Airplane 0.616 0.285 0.134 56.9

Baboon 3.89 1.27 2.23 44.6

Lena 1.2 0.444 0.302 53.3

Peppers 1.69 0.596 0.528 50.9

Tiffany 1.24 0.481 0.346 52.7
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(a) Cropped (b) Jpeg compressed (c) Added noise 

(d) Cropped – proposed method (e) Jpeg compressed 65 %- 
proposed method 

(f) Added noise – proposed 
method 

Fig. 4. Cropping, Jpeg compression and added noise attacks, and the corresponding

detector responses

(a) Lowpass filtered (b) Median filtered (c) Resized (d) Jpeg2000 Comp-
ressed ratio 0.15

Fig. 5. Detector responses of filtering, Jpeg 2000 and resizing attacks

Table 2. The corresponding detector response attacks

Attacks Airplane Baboon Lena Peppers Tiffany

Adding random noise (Power = 5000) 1.11 5.72 2.15 2.26 2.12

Low-pass filtered (5x5) 0.10 0.77 0.24 0.16 0.16

Median filtered (5x5) 0.23 1.04 0.42 0.32 0.24

Center crop (85%) 6 0.11 1.28 1.04 1.1 0.88

Jpeg compression (65%) 3 0.07 0.06 0.06 0.07 0.05

Jpeg2000 compression (rate =0.15) 0.06 0.07 0.07 0.05 0.05

Resized 1.04 5.19 1.77 2.17 1.76
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processing, lossy compression and geometric manipulation. For each attack, the
response of the detector for 1000 randomly generated watermarks, including the
actually embedded one within image, was measured. The response relative to
the true watermark and the highest response among those corresponding to the
other watermarks are plotted. Figures 4 and Fig.5 show the detector response
of attacks and Table 2 shows the corresponding detector response values. Ex-
perimental results show that watermarks by the proposed method are invisible
as needed in most practical applications and robust enough against common
attacks, and image processing techniques.

5 Conclusions

A long-standing problem in statistics and related areas is how to find a suitable
representation of multivariate data. Representation here means that we show
some how transform the data so that their essential structure is made more vis-
ible or accessible. It is important for subsequent analysis of the data, such as
in de-noising, edge detection, pattern recognition, and watermarking, that the
data is represented in a manner that facilitates the analysis. Several principles
and methods have been developed to find a suitable linear representation. These
include principal component analysis (PCA), factor analysis (FA), projection
pursuit (PP), and independent component analysis (ICA). In this paper PCA is
used as an appropriate tool for estimating color information in a spatial chro-
matic image domain, since the basis functions are determined by data and they
are adaptive to the data.

A new color watermarking method is introduced in this paper. Our PCA
spatio-chromatic analysis is able to fully reconstruct color images. We proposed
a new color image watermarking based on spatial information analysis in spatio-
chromatic images. Watermarks are embedded in some spatio-chromatic principal
components of images which adapt for invisibility and robustness. The proposed
method is closely related to DCT or wavelet based frequency domain method, but
the orthogonal PCA spatio-chromatic basis functions are determined by data and
they are adaptive to the data. Furthermore, since main information of the spatio-
chromatic image is concentrated in the principal components, it is easy to choose
the components for embedding. Our results show that the proposed method is
robust against the most common attacks, and image processing techniques.
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Abstract. To meet today’s demands for constructing even better
biometric systems of human identification, a few fingerprint matching
techniques are presented in this paper. One can also find here a short
description of fingerprint image pre-processing and the minutiae extrac-
tion scheme used in our research. Because there is still a need to find the
best matching algorithm, preliminary research was conducted to com-
pare quality differences and answer times between the analysed methods
for a prepared on-line system.

1 Introduction

In the last decade we have observed an increased interest in biometric technolo-
gies [13], that is, human identification based on one’s individual features. Most
of this interest is due to security reasons – payment operations without cash,
the secrecy of information stored in databases, restricted access to specific areas,
etc. One can also notice that such systems if, for example, considered as a lock
are more comfortable in use – we do not have to care any more about keys or
ID cards which can be additionally easily lost, forgotten or even stolen.

Fingerprint identification is one of the oldest and still very important bio-
metric technologies considered nowadays. A fingerprint itself can be defined as a
structure of ridges and valleys. The shape and the way in which ridge continuities
are disturbed is individual and unique for all human beings [4].

Fingerprint matching algorithms try to compare exclusive local characteristics
of a finger and the relationships between them, and decide whether two finger-
print impressions delivered by a scanner belong to the same person [9][10][12].
Certainly, beside their effectiveness, their answer times are equally important in
all real-time implementations – the use of any system based on these methods
should be as convenient as possible if it acts, for example, as a door lock.

This paper discusses a few fingerprint matching techniques, that is, the Hough
transform, the structural global star method and the speeded up correlation ap-
proach (Sect. 4). One can also find here a brief description of image enhancement
(Sect. 2) and the minutiae extraction method applied in this work (Sect. 3). Pre-
liminary experimental results are presented in Section 5.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 796–803, 2006.
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2 Fingerprint Image Enhancement

A very common technique for reducing the quantity of information received from
a fingerprint scanner in the form of a grayscale image is known in literature as
the Gabor filtering [9]. The greatest advantage of the filter is its nearly binary
output – the intensity histogram has a U-shaped form [5] so the fingerprint
structure of ridges and valleys can be easily binarized. The filter is also capable
of removing any impulsive or Gaussian noise in similar efficacy as, for example,
the method proposed in [8] for cDNA images.

The Gabor filter is defined by

h(x, y, f, θ) = exp
{
− 1

2
(x2

θ

δ2x
+
y2θ
δ2y

)}
cos(2πfxθ), (1)

where xθ = x sin θ + y cos θ, yθ = x cos θ − y sin θ [1] and, in our case, θ is the
local ridge orientation, f is the estimation of ridge frequency in the currently
processed block of the image, δx and δy are space constants defining the stretch
of the filter.

3 Minutiae Detection

The uniqueness of a fingerprint is exclusively determined by its local ridge char-
acteristics called the minutiae points. In this paper only two fundamental types
of minutiaes are considered, that is, ending and bifurcation. An ending point is
the place where a ridge ends its flow, while a bifurcation is the place where a
ridge forks into two parts.

To determine whether a pixel at the position (i, j) in the binary form of a
fingerprint image is a minutiae point, we can use the image thinning technique [3]
witch conjunction to the mask rules illustrated in Fig. 1a-d.

To define minutiae orientation, we can use a (7× 7) mask technique (see, for
instance, Fig. 1e-f) with angles quantized to 15◦ and the center placed at the
minutiae point. The orientation of an ending point is equal to the point where
a ridge is crossing through the mask. The orientation of a bifurcation point can
be estimated with the same method but only the leading ridge is considered,
that is, the one with a maximum sum of angles to the other two ridges of the
bifurcation.

Fig. 1. Example of: 3 × 3 masks used to define: a) bifurcation, b) non-minutiae point,

c) ending, d) noise; and masks used to estimate: e) bifurcation (60◦) and f) ending

(210◦) point orientation
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4 Minutiae Matching

4.1 Hough Transform

Let MA = {mA
1 ,m

A
2 , . . . ,m

A
m} and MB = {mB

1 ,m
B
2 , . . . ,m

B
n } denote minutiae

sets determined from the images A and B. Each minutiae is defined by the
image coordinates (x, y) and the orientation angle θ ∈ [0 . . . 2π], that is, mA

i =
{xA

i , y
A
i , θ

A
i }i=1...m and mB

j = {xB
j , y

B
j , θ

B
j }j=1...n.

The Hough transform [10] can be performed to find the best alignment
between the MA and MB sets including the possible scale, rotation and dis-
placement between the images A and B. The transformation space is discretized
– each parameter of the geometric transform (Δx,Δy, θ, s) comes from a fi-
nite set of values. A four dimensional accumulator A is used to accumulate the
evidences of alignment between each considered pair of minutiaes. The best pa-
rameters of the geometric transform, that is, (Δx+, Δy+, θ+, s+) are arguments
of the maximum value from the accumulator (see the procedure in Fig. 2).

∀i∀j∀k∀l A(i, j, k, l) ← 0

FOR {xA
i , yA

i , θA
i } ∈ MA, i = 1 . . . m

FOR {xB
j , yB

j , θB
j } ∈ MB , j = 1 . . . n

FOR θ ∈ {θ1, θ2, . . . , θk}, k = 1 . . . K
IF min(|θA

i + θ − θB
j |, 2π − |θA

i + θ − θB
j |) < θ0

FOR s ∈ {s1, s2, . . . , sl}, l = 1 . . . L
{ [

Δx
Δy

]
←

[
xA

i

yA
i

]
− s

[
cos θ sin θ

− sin θ cos θ

] [
xB

j

yB
j

]
Δx#, Δy#, θ#, s# ← discretize(Δx,Δy, θ, s)

A(Δx#, Δy#, θ#, s#) ← A(Δx#, Δy#, θ#, s#) + 1
}

Δx+, Δy+, θ+, s+ ← arg max(A)

Fig. 2. Hough transform routine

After performing the transformation, minutiae points have to be juxtaposed to
calculate the matching score with respect to their type, orientation and distance
tolerance.

An example result of the Hough transform is shown in Fig. 3.

4.2 Global Star Method

The global star method is based on a structural model of fingerprints. A star
is a structure with the central point placed in one of minutiaes and arms di-
rected to the remaining ones of the same type (Fig. 4). Assuming that MA =
{mA

1 ,m
A
2 , . . . ,m

A
m} and MB = {mB

1 ,m
B
2 , . . . ,m

B
n } indicate the sets of minuti-

aes of one type, m stars for the image A and n stars for the image B can be
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Fig. 3. Example result of the Hough transform (matched minutiae points are marked

with an elipsis and connected with a straight line)

Fig. 4. General explanation of the star method, examples of: a) star created for finger-

print ending points, b) ridge counting (here equal to 5), c) relative angle determination

between the central minutiae and the remaining ones

created: SA = {SA
1 , S

A
2 , . . . , S

A
m} and SB = {SB

1 , S
B
2 , . . . , S

B
n }, where each star

can be defined by SA
i = {mA

1 ,m
A
2 , . . . ,m

A
m}i=1...m with the center in mA

i and
SB

j = {mB
1 ,m

B
2 , . . . ,m

B
n }j=1...n with the center in mB

j .
In opposition to the local methods [12], the voting technique for selecting

the best aligned pair of stars (SA
w i, S

B
w j) can be performed (Fig. 5), including

matching such features like the between-minutiae angle K and the ridge count
D (Fig. 4). In the final decision also the orientation of minutiaes, corrected by
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∀i∀j A(i, j) ← 0

FOR SA
i ∈ SA, i = 1 . . . m

FOR SB
j ∈ SB , j = 1 . . . n

FOR mA
k ∈ SA

i − {mA
i }

assuming that : mB
l ∈ SB

j − {mB
j }

IF ∃l(|D(mB
j , mB

l ) − D(mA
i , mA

k )| < d0 & |K(mB
j , mB

l ) − K(mA
i , mA

k )| < k0)
A(i, j) ← A(i, j) + 1

SA
wi ← SA(argi(max(A))

SB
wj ← SB(argj(max(A))

Fig. 5. First stage of the global star matching algorithm

Fig. 6. Example result of the global star matching method

the angle of the star’s central point orientation difference, have to be taken into
account (with a given tolerance).

An example result of the global star method is shown in Fig. 6.

4.3 Correlation

Because of non-linear distortion, skin conditions or finger pressure that cause
the varying of image brightness and contrast [9], correlation between fingerprint
images cannot be applied directly. Moreover, taking into account the possible
scale, rotation and displacement, an intuitive sum of squared differences is com-
putationally very expensive. To eliminate or at least reduce some of the above-
mentioned problems, a binary representation of the fingerprint can be used. To
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speed up the process of preliminary alignment, a segmentation mask can be used
with conjunction to the center of gravity of binary images. Also, the quantization
of geometric transform features can be applied, considering the scale and rotation
only at the first stage (since displacement is the difference between the centers
of gravity) minimizing the Fseg performance index:

Fseg(A,B) =
N∑

i=1

N∑
j=1

{
1, where A(i, j) �= B(i, j)
0, otherwise. (2)

After finding nearly the best alignment of segmentation masks, looking for the
best correlation is limited to a much more reduced area. Including the rotation,
vertical and horizontal displacement, stretch and arbitrarily selected granularity
of these features, the best correlation can be found by searching for the maximum
value of the Fimg criteria:

Fimg(A,B) =
N∑

i=1

N∑
j=1

{
1, where A(i, j) = B(i, j) = obj
0, otherwise (3)

where obj represents the object’s (ridge) pixel.
Because fingerprint correlation does not inform us directly about minutiae

matching, the thinning process with minutiae detection should be applied to
both binary images from the best correlation. Then two sets of minutiaes can be
compared to sum up the matching score.

An example result of the correlation method is shown in Fig. 7.

Fig. 7. Example result of the correlation method: best aligned segmentation masks

(left) and best correlated binary forms of fingerprint images (right)
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5 Experimental Results

The experiments were performed on a PC with a Digital Persona U.are.U 4000
fingerprint scanner. The database consists of 20 fingerprint images with 5 differ-
ent impressions (plus one more for the registration phase).

There were three experiments. The first and the third one differ in parameter
settings of each method. In the second experiment the image selected to the reg-
istration phase was chosen arbitrarily as the best one in the arbiter’s opinion (in
the first and the third experiment the registration image was the first fingerprint
image acquired from the user).

All images were enhanced with the Gabor filter presented in Section 2 and
matched using the algorithms described in Section 4. The summary of match-
ing results for Polish regulations concerning fingerprint identification based on
minutiaes [4] and time relations between each method are grouped in Tab. 5.

As one can easily notice, the Hough transform gave us the fastest response
and the highest hit ratio from the methods considered. Moreover, it can be quite
easily vectorized to perform more effectively with SIMD organized computers.

The global star method is scale and rotation independent but more expensive
computationally because of star the creation process – determining the ridge
count between the mA and mB minutiaes requires a time consuming iteration
process. Moreover, possible filtering errors causing breaks in ridge continuity can
disturb proper ridge count determination.

The analysis of an error set of the correlation method shows that it is the most
sensitive one in the case of image selection for the registration phase from the
group of the algorithms considered. Additionally, it is time consuming because
of its complexity.

Table 1. Summary of the achieved results (HT – Hough Transform, GSM – Global

Star Method, CRL – Correlation)

Experiment HT GSM CRL

1 85 45 37
Match percentage 2 88 76 70

3 82 80 61

Avg. count of 1 25/7 10/3 16/4
endings / bifurcations 2 25/7 13/4 19/5

in the best match 3 26/7 19/5 17/5

Number of images 1 1 22 6
that did not cross 2 1 10 1
match threshold 3 1 2 2

Time relation 1, 2, 3 1 HT ∼ 6 HT ∼ 14 HT

6 Conclusions

This paper reviews several selected fingerprint matching techniques. The prelimi-
nary experimental results show quality differences and time relations between the



Human Identification Based on Fingerprint Local Features 803

algorithms considered. Additionally, the influence of selecting an image for the
registration phase can be observed – the more representative image selected, the
higher match percentage.

Because the selected parameters for each investigated method were subopti-
mal, it is still a challenge to use global optimization techniques for finding the
best values on a much more extended database. Additionally, automatic image
pre-selection (classification) [2][6][7] and/or hardware implementation [10] can
speed up the whole matching process for large databases.
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Abstract. In this paper, we present a novel approach to learning from
visual information given in a form of raster images. The proposed learn-
ing method uses genetic programming to synthesize an image processing
procedure that performs the desired vision task. The evolutionary al-
gorithm maintains a population of individuals, initially populated with
random solutions to the problem. Each individual encodes a directed
acyclic graph, with graph nodes corresponding to elementary image pro-
cessing operations (like image arithmetic, convolution filtering, morpho-
logical operations, etc.), and graph edges representing the data flow.
Each graph contains a single input node to feed in the input image and
an output node that yields the final processing result. This genetic learn-
ing process is driven by a fitness function that rewards individuals for
producing output that conforms the task-specific objectives. This evalu-
ation is carried out with respect to the training set of images. Thanks to
such formulation, the fitness function is the only application-dependent
component of our approach, which is thus applicable to a wide range of
vision tasks (image enhancement, object detection, object tracking, etc.).
The paper presents the approach in detail and describes the computa-
tional experiment concerning the task of object tracking in a real-world
video sequence.

1 Introduction

Automated interpretation of visual information is in general difficult, mainly
due to various forms of imperfectness of visual data, including, but not limited
to, incompleteness (e.g., due to object occlusion), inconsistency (e.g., due to
incoherent object labelling), and imprecision (e.g., due to spatial sampling). This
calls for use of methods that autonomously learn from an interaction with the
external world and acquire the knowledge required to solve the visual task (like
recognition, location, navigation, tracking, etc.). Handcrafting of computer vision
(CV) systems, though still prevailing and predominant for the nearest future,
does not offer general and scalable solutions, and leads to over-specialization of
particular CV disciplines. Motivated by these issues, in this paper we present
a novel visual learning framework based on evolutionary design. Our approach
uses a variant of genetic programming (GP, [4]) to search for an (sub)optimal
program composed of elementary image processing and analysis steps.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 804–813, 2006.
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2 Related Work and Contribution

Contemporary recognition systems are mostly open-loop and human expert’s
input is still predominant in their design. In most approaches reported in the
literature, learning, if any, is limited to parameter optimization that usually
concerns only a particular processing step, such as image segmentation, feature
extraction, etc. Only a few contributions [1,2,3,12,14,11,8,9] attempt to close
the feedback loop of the learning process at the highest (e.g., recognition) level,
and test the proposed approach in a real-world setting. Moreover, some of the
proposed methods make an intense use of domain-specific knowledge and are
highly specialized towards a particular application.

In our former work on feature synthesis [1,5], we proposed a visual learning
framework inspired by the linear genetic programming and tested it on different
object recognition tasks. The main contribution of this paper is the elaboration
and experimental evaluation of a novel model of visual information processing
and learning. To represent procedures that reason from visual data, the pro-
posed approach uses a variant of genetic programming called hereafter genetic
graph programming. The automation of the learning process frees the system’s
designer from the tedious and time-consuming trial-and-error approach. In par-
ticular, using graphs rather than trees for representing image processing proce-
dures reduces the risk of code bloat, simplifies the interpretation of the evolved
solutions, and reduces the computational cost of individual evaluation.

3 Genetic Graph Programming

Genetic Programming (GP, [4]) is a variant of evolutionary computation (EC). In
GP, individuals processed by the algorithm, rather than being passive solutions
to the problem being solved (e.g., a sequence of towns in traveling salesperson
problem), are active programs that process some external data. Usually, in GP a
non-linear representation of solutions is preferred. In particular, most GP-based
approaches assume that the individuals undergoing evolution have the form of
Lisp-like expressions (expression trees). Such expressions expect input data in
leaves, process it in inner tree nodes (operation nodes), and produce output at
the tree root node. The evaluation of an individual consists in letting it process
some external (training) data, and comparing the produced output with the
expected value.

As an illustration, let us refer to the well-know application of GP to the task
of symbolic regression. In symbolic regression, the task of the learner is to syn-
thesize a symbolic (analytic) form of an unknown function f , given a limited
(training) sample of its arguments and values (examples). In particular, each
training example consists of a vector of values of independent variables 〈x1, x2,
. . . , xn〉 and the corresponding function value f(〈x1, x2, . . . , xn〉). The GP
process starts with a population of random initial solutions to the problem (in-
dividuals). Each individual encodes a symbolic description of some function in
a form of a tree. The terminal tree nodes return the values of the independent
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variables x1, x2, . . . , xn and constants. The non-terminal nodes implement fun-
damental arithmetic operators (like addition, subtraction, multiplication, and
division) and elementary functions (e.g., exponential, logarithm, trigonometric
functions). The fitness of particular individual is estimated by feeding it with
the values of independent variables 〈x1, x2, . . . , xn〉, computing the ‘response’
of the tree (at its root), and measuring the discrepancy between that output
and the desired value f(〈x1, x2, . . . , xn〉). These errors are computed for all the
training examples and aggregated by means of root mean square error. The evo-
lution maintains a population of solutions evaluated in this way. As in standard
genetic algorithm, the selection operator promotes solutions with high fitness,
the mutation operator introduces small modifications of solutions (e.g., by re-
placing randomly selected tree fragment by a new randomly generated subtree),
and the crossover operator exchanges some genetic material between solutions
(e.g., by exchanging randomly selected tree fragments between parent solutions).
In [4], Koza has proven the ability of GP to find symbolic definitions of different
polynomials.

The non-linear and non-fixed in length representation of GP solutions is
much more flexible than the fixed-length representation used in most other EC
branches. It also relieves the experimenter from estimating a priori the expected
complexity of the solution. As a consequence, the GP paradigm proved extremely
successful in many real-world applications and, in some cases, produced results
superior to human-handcrafted solutions (see Chapter 1 of [4]).

Nevertheless, one of deficiencies of GP is the inability of code (subexpression)
re-usage within a particular solution. Whenever there is a need of multiple refer-
ence to the same subexpression within a GP solution, it cannot be implemented
in other way than by duplicating the desired code fragment. This feature of
GP contributes negatively to the performance of the approach, resulting, among
others, in so-called code-bloat, i.e. the tendency to produce overgrown solutions.

This is why we use a variant of GP which is in following referred to as Ge-
netic Graph Programming (GGP, [6]). GGP shares most of its features with GP,
except for the fact that solutions (programs) are represented as directed acyclic
graphs (DAGs) rather than trees. A solution may have an arbitrary number of
input (starting) nodes, but exactly one output node (sink) where it produces its
response.

Functionally, the DAG representation is equivalent to expression trees, as any
such DAG may be univocally converted into tree. However, such representa-
tion enables the solutions to reuse code fragments and, thus, it prevents (or at
least reduces) the so-called code bloat and decreases the computation time. This
is especially advantageous when the processing performed in particular nodes
is time-consuming (e.g., image processing considered in this paper). The only
price paid for this convenience is the increased complexity of recombination pro-
cedures.

The evolutionary operators that create (breed) the initial solutions, mutate
solutions, and cross them over, have been defined in the following way. The solu-
tion breeding starts with random selection of n (currently 10) GGP operations.
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Table 1. The complete list of GGP operations

Group Operators

Filters Convolve, GradientMagnitude, Invert, MaxFilter, MedianFilter,
MinFilter, UnsharpMask

Arithmetic AddConst, Add, Divide, Max, Min, Multiply, Subtract, SubtractConst
Functions Absolute, Binarize, Exp, Log
Logic And, Not, Or, Xor

Next, the individual is being built starting from the sink node, by adding ran-
domly selected operations and connecting them to the partially built individual.
After all n nodes have been added, the ‘hanging’ inputs of the individual are
connected to the source of the input data. The crossover operator works as fol-
lows: given two parent individuals S1 and S2, it selects at random a node in
S1. Then, starting from that node, it marks (selects) a connected subgraph s1
of random size in S1, that is to be exchanged with analogous subgraph in S2.
For this purpose, we search in S2 for a subgraph s2 with precisely the same
numbers of inputs and outputs (arity). If such s2 is found, we exchange it with
s1. Otherwise, we retry the whole process. If no appropriate s2 is found in 10
such trials, the crossover is cancelled and the offspring are copied from parents.

For mutation, the following four operators have been implemented. First op-
erator simply deletes a randomly chosen node in the individual undergoing mu-
tation. As removing of one node may imply removal of other nodes connected to
it (to keep the individual consistent), we allow to remove only the direct succes-
sors of input nodes. The second mutation operator inserts a randomly selected
node into the individual at a randomly selected location, where the output of
the inserted node is being connected to its ‘parent’. The remaining two mutation
operators do not change the structure of the graph. One of those operators re-
places the operation realized by randomly selected node by a randomly selected
operation (however, the replacing operation must have the same arity as the
replaced one). The last mutation operator changes a randomly selected param-
eter of a single operation, performing in fact only very smooth modification in
individual’s chromosome.

4 The Experiment

The general outline of GGP is quite universal. To adapt it to a particular real-
world problem (object detection in our case), one has to define (i) the represen-
tation of input and output data, and (ii) the set of elementary operators (nodes)
to be used. As far as the former issue is concerned, we use raster images as the
representation of visual data that is accepted as input, processed, and produced
by GGP solution. Thus, in its current form, the individual’s acting is limited to
image processing only. For instance, an individual is unable to compute global
image features.



808 K. Krawiec and P. Lijewski

Fig. 1. The sample of the image data used in experiment (the upper row shows the

complete training set, the lower row shows the selected frames from the testing set)

Consequently, we need appropriate operators (nodes) that perform the actual
image processing. Each such node has exactly one output and one or more inputs
(depending on the number of input arguments used by a particular operation).
The operators used currently in our approach may be grouped according to their
interpretation in terms of computer vision. These grouping is shown in Table 1.
For detailed description of operators, see [13].

For an experimental verification, we choose the task of object detection in a
video sequence. In particular, we use the tennis video sequence obtained from
the Signal Analysis and Machine Perception Laboratory at Ohio State University
[10]. This sequence shows two men playing table tennis and is composed of 150
color frames, each with dimensions 352×240 pixels, and color depth 24 bits per
pixel. To provide reliable verification of our approach, from this complete set we
selected training and testing subset of frames. The four frames presented in upper
row of Fig. 1 constitute the complete training set. The testing set is composed
of other 15 randomly selected frames; the lower row of Fig. 1 depict four of
them. Note that the images exhibit significant variability as far as zoom and
background contents are concerned. In particular, the tennis ball to be tracked
appears at different sizes and is blurred in some frames.

Our task is to evolve GGP expressions that are able to localize the tennis ball
in an image. This requires a specific interpretation of localization. First of all,
we need to define the way in which an individual selects the pixels. As the GGP
expressions operate on and produce raster images, this decision must be defined
in pixel-oriented way too. For the purpose of this experiment, we interpret the
pixels with brightness greater than 127 (on [0,255] scale) on all channels (Red,
Green, and Blue) as being ‘lit’, i.e., selected by the GGP expression.

Given this interpretation of pixel selection, also have to provide an appropriate
fitness function f . That function should:

1. reward an individual for selecting pixels located close to the ball, and
2. penalize an individual for selecting pixels distant from the ball.
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Fig. 2. Mean fitness graph of the evolutionary runs: mean, 0.95 confidence intervals

(whiskers), minimum, and maximum

Note that these properties are neither equivalent nor complementary. A fitness
function that realizes only rewarding would also erroneously promote individuals
that select all pixels. Conversely, a fitness function that performs only penaliza-
tion would encourage evolution of individuals that do not select any pixels at
all. Thus, we need to take into account both these factors simultaneously.

Formally the fitness f(S) (f ∈[0,1]) of an individual S is been defined as:

f(S) =
1

2|I|
∑|I|

i=1

(
ti
pi

+
ni − fi
ni

)
(1)

In Formula (1), I denotes the set of training images and i is the image index.
Next, ti is the number of all pixels that are localized within the target object
(tennis ball) and lit (true positives), fi refers to the number of all pixels that are
not localized within the target object and lit (false positives), pi refers to the
number of all pixels contained in target object (max positives), and ni refers to
all remining pixels in frame #i (max negatives). Note that this form of the fitness
function makes it equally sensitive to false positive and false negative errors.

For the purpose of the experiment, we designed a software framework based on
two libraries: Evolutionary Computation in Java (ECJ, [6]) and Java Advanced
Imaging (JAI, [13]). The most relevant parameters of evolutionary algorithm are
set as follows: algorithm type: generational, number of generations: 75, popula-
tion size: 100. To populate the consecutive generations, we designed a ‘breeding
pipeline’ according to ECJ’s standards. In this pipeline, parent individuals un-
dergo recombination (crossover) and their offspring is transferred to the next
generation with probability 0.9. Alternatively, the parent solutions are trans-
ferred into the next generation without undergoing any changes; this happens
with probability 0.1. In the reproduction stage, we apply tournament selection
with pool size 7. In the recombination phase, we perform crossover and mutation
using operators described in Section 3.
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Fig. 3. The output images produceds by one of the best individuals (run #1) for the

training set

To provide for statistical significance of the obtained results, we repeat the
evolutionary run 10 times, starting with different initial populations. Each such
run lasted for approx. 3 hours. Figure 2 shows the fitness graph reflecting the
average dynamics of all 10 runs. This graph has been obtained by averaging the
fitness of best individual of each generation over 10 runs. The whiskers show
the 0.95-confidence intervals for the mean value, and the two accompanying
series depict the maximum and minimum fitness of best individuals in all 10
runs. The leveling-off observed in these series clearly indicates that the number
of generations (75) is sufficient. Further significant improvement of obtained
solutions is highly unlikely.

The resulting aggregated performances ofbest individuals found in all 10 evolu-
tionary runs are shown in Table 2. On the average, the learning process produces
solutions that perform almost perfectly on the training data. On the testing set,
we observe a significant reduction of performance (overfitting). This effect could
be reduced by using more frames in the training set; this, however, would make
the experiments last much longer. Nevertheless, taking into account how much
different are our testing frames from the training ones (see Fig. 1), this perfor-
mance should be considered good.

For comparison, the last row of Table 2 displays the fitness of the raw input
image (or, in other words, the fitness of an ‘identity’ individual that produces a
copy of input at its output). Note also that our fitness should not be interpreted
as accuracy of tracking or as percentage of ‘hits’ (see Formula (1)).

Figure 3 shows the processing performed by one of the best individuals found
in evolutionary runs for training images. It may be clearly seen that the individ-
ual was able to effectively get rid of the bright pixels representing objects other
than the tennis ball. In particular, this applies also to the large white poster in
the back of the scene.

Figure 4 shows the progress of two selected evolutionary runs in terms of image
processing. The two left-hand columns show the processing performed in run #1,

Table 2. Aggregate performances computed based on best solution found in each run

Training set Testing set

Average fitness over all runs 0.9770±0.0133 0.8096±0.0806
Maximum fitness over all runs 0.9997 0.9487
Fitness of raw input image 0.7770 0.7500
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Fig. 4. The progress of best solutions of evolutionary run #1 (two left-hand columns)

andrun #8 (two right-hand columns)

whereas the two right-hand columns show the processing performed in run #8.
Within each run, each column corresponds to a selected input image (there are
two of them) and shows, in consecutive rows, the output produced for that image
for the best individual of generation 1, 15, 30, 45, 60, and 75. In initial generation,
the best solutions are apparently straightforward as they do not change much
the image contents. Then, the performance of the best individual is improved by
gradually getting rid of undesired pixels. Note also that for the two presented
runs, the best performing solutions follow significantly different strategy of image
processing to select the tennis ball.

In Figure 5, we present the code of the best GP individual together with the
processing it performs on one of the input images. Note that the result produced
by the code fragment composed of operations #1, 2, and 3 is used twice in
the following operations. This fact clearly demonstrates that the option of code
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Fig. 5. The best individual found during one of evolutionary runs

re-usage offered by GPP is advantageous and reduces the complexity of evolved
solutions.

5 Conclusions

In this paper, we presented a novel framework for GP-based image processing and
interpretation. The major feature of the proposed approach is the use of advanced
graph-based genetic programming to successfully recognize objects in real-world
views of 3D scenes. The obtained results are encouraging, taking into account
that the temporal nature of video sequence has not been taken into account
– the ball is being located in each frame independently. Providing the method
with extra information on estimated object locations in preceding frames would
probably increase the performance of the approach. Note also that the proposed
approach may be easily adapted to learn image processing procedures for other
kinds of visual tasks, like, e.g., image enhancement or object recognition.
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Abstract. We propose a biologically motivated motion analysis model
using a dynamic bottom-up saliency map model and a neural network
for motion analysis of which the input is an optical flow. The dynamic
bottom-up saliency map model can generate a human-like visual scan
path by considering dynamics of continuous input scenes as well as
saliency of the primitive features of a static input scene. Neural network
for motion analysis responds selectively to rotation, expansion, contrac-
tion and planar motion of the optical flow in a selected area. The ex-
perimental results show that the proposed model can generate effective
motion analysis results for analyzing only an interesting area instead of
considering the whole input scenes, which makes faster analysis mecha-
nism for dynamic input scenes.

1 Introduction

The optical flow has been popularly used as one of ways to analysis of dynamic
information of an input scene, which can represent rotation, expansion and con-
traction and is useful for tracking and navigation [1].

In our brain, there are many middle superior temporal (MST)-cells that re-
sponds selectively to global features of optical flow, such as rotation, expansion,
contraction and planar motion, which covers a large area of the visual field [2,3].
Various kinds of MST models and hypotheses can be categorized as two major
streams of the hypotheses of MST-cell: the direction mosaic hypothesis and the
vector-field hypothesis [2,3]. There are some computational models where neural
networks are self-organized by learning [3]. In most of the models, however, the
cells in hidden layers show a behavior similar to that of the direction mosaic
hypothesis. In recent, Fukushima et. al. proposed a neural network model for
analyzing optical flow based on the vector-field hypothesis [4]. The outputs of
the neural network describe the motion information, but it analyzes the whole
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area of input scene and resultantly the computational complexity is so high that
the model can not be applied for real application. Moreover, the model is based
on an assumption for retina-topic optical flow signal.

On the other hand, there is strong evidence that a specialized processing of
object motion takes place in the dorsal area including the V5 and the middle
temporal (MT) area. The lateral intra-parietal cortex (LIP), which is essential
organ for attention integrator, receives motion information from the V5 together
with static information from the V4 in the ventral area [5]. Thus, the motion
analysis is highly correlated with selective attention function. If we consider the
selective attention mechanism in motion analysis, we can develop more efficient
method for analyzing a dynamic input scene. The human visual system can ef-
fortlessly detect an interesting area or object within natural or cluttered scenes
through the selective attention mechanism. The selective attention mechanism
allows the human vision system to process input visual scenes more effectively
with a higher level of complexity. The human visual system sequentially inter-
prets not only a static input image but also a dynamic input scene with the
selective attention mechanism.

In this paper, we propose a selective motion analysis model using a biologically
motivated dynamic bottom-up saliency map model in conjunction with a neural
network for motion analysis. Our proposed model is based on understanding of
human visual pathway in the brain. Also, we use a maximum entropy approach
to obtain a dynamic saliency map with scale information from successive static
saliency maps.

2 The Proposed Model

Fig. 1 shows the procedure to get the proposed selective motion analysis using
the dynamic bottom-up saliency map (SM) model. The dynamic bottom-up SM
model imitates the roles of human visual brain from retina to MT and MST
through the lateral geniculate nucleus (LGN), V1 and V2 including the LIP [6].

After the selective attention region is decided by the SM model, the selected
area is processed as the low-resolution intensity with Guassian filter which mim-
ics the foveated retina image. Then, the optical flow is obtained by successive
image frames and used for the neural network model for motion analysis pro-
posed by Fukushima [4]. The proposed model can generate effective motion anal-
ysis considering only an interesting area. The following subsections describe the
dynamic bottom-up saliency map (SM) model and the selective motion analysis.

2.1 The Dynamic Bottom-Up Saliency Map Model

As shown in Fig. 1, in order to model the human-like visual attention mechanism
for a static input scene, we use the three bases of edge, intensity, and color in-
formation, for which the roles of the retina cells and the LGN. The feature maps
(Ī , Ō and C̄) are constructed by center surround difference and normalization
(CSD& N) of three bases, which mimics the on-center and off-surround mecha-
nism in our brain. We modified and enhanced our previous bottom-up saliency
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Fig. 1. The proposed selective motion analysis model (I: intensity image, E:edge image,

S: symmetry image, RG: red-green opponent coding image, BY: blue-yellow opponent

coding image, CSD & N: center-surround difference and normalization, Ī: intensity

feature map, Ō: orientation feature map, S̄: symmetry feature map, C̄: color feature

map, ICA: independent component analysis, LIP: lateral intra-parietal cortex, Static

SM: static saliency map, Dynamic SM: dynamic saliency map)

map model by considering the orientation feature based on the edge feature and
the symmetry feature based on the orientation feature, which seems more plau-
sible in mimicking the biological mechanism more correctly. Among the feature
maps, the orientation feature map is generated using orientation feature that is
extracted using Gabor filters from edge feature, which mimics the orientation
selective activation of the simple cells in the V1. Moreover, the symmetry feature
map is constructed from symmetry features obtained by a noise tolerant gener-
alized symmetry transformation (NTGST) algorithm from orientation feature,
which mimics the higher-order analysis of complex cells and hyper-complex cells
in the V1. The constructed four feature maps (Ī , Ō, S̄ and C̄) are then integrated
by an independent component analysis (ICA) algorithm based on maximization
of entropy [6].

Barlow’s hypothesis is that human visual cortical feature detectors might be
the end result of a redundancy reduction process [7], and Sejnowski’s and Lee’s
results are that the ICA is the best way to reduce redundancy [8]. After the
convolution between the channel of the feature maps and the filters is obtained
by ICA learning, the saliency map is computed by integrating all feature maps
for every location [6]. The LIP plays a role to provide a retinotopic spatio-feature
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map that is used to control the spatial focus of attention and fixation, which is
able to integrate feature information in its spatial map [9]. As an integrator
of spatial and feature information, the LIP provides the inhibition of return
(IOR) mechanism required here to prevent the scan path returning to previously
inspected sites [9,8].

Fig. 1 shows the procedure to get a dynamic SM from natural input images.
The human visual system sequentially interprets not only a still input image
but also dynamic input scenes. A conventional bottom-up selective attention
model, however, considers only static scenes. All selective attention models, in-
cluding our previous model [6], considered only a static scene. Human beings,
however, decide what constitutes an interesting area within a dynamic scene, as
well as static images. The proposed dynamic SM model is based on successive
static SMs. The entropy maximum is considered to analyze the dynamics of the
successive static SMs, which is an extension of Kadir’s approach [10] since the
proposed model considers time varying property as well as spatial features. Fig. 1
shows the procedure to get a final SM by integrating both the static SM and the
dynamic SM from natural input images. For the first frame at time τ , the most
appropriate scale xs for each area centered at location x is obtained by Eq. (1)
which aims to consider spatial dynamics at each location:

xs = argmaxs{HD(s,x, τ) ×WD(s,x, τ)} (1)

where D is the set of all descriptor values which consist of the intensity values
corresponding the histogram distribution in local region s around an attended
location x in a static SM at time τ , and HD(s,x, τ) is the entropy defined by
Eq. (2) and WD(s,x, τ) is the inter-scale measure defined by Eq. (3):

HD(s,x, τ) ≡ −
∑
d∈D

pd,s,x,τ log2pd,s,x,τ (2)

WD(s,x, τ) ≡ s2

2s− 1

∑
d∈D

| pd,s,x,τ − pd,s−1,x,τ | (3)

where pd,s,x,τ is the probability mass function obtained from the histogram of
pixel values at time τ for scale s, position x, and the descriptor value d which
takes on values in D.

The probability mass function for a dynamic scene pHD(xs,x,τ+k�t) is obtained
from the histogram of the entropy values for a sequence of the static SMs in (k+1)
frames from τ to τ + k4t where k is the number of continuous frames and 4t
denotes a sampling time. The entropy value at location x is calculated using the
histogram of pixel values of the local area centered at x with size xs in a static
SM. Using the probability mass function for a dynamic scene pHD(xs,x,τ+k�t),
the time varying entropy TD(·) is calculated by Eq. (4):

TD(xs,x, τ + n4t) ≡ −
∑
d∈D

pHD(xs,x,τ+n�t)log2pHD(xs,x,τ+n�t) (4)
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The entropy value TD(·), at each pixel x, represents a fluctuation of visual
information according to time, through which the proposed model can generate
a dynamic SM. Finally, the proposed attention model decides the attention areas
based on a final SM which is generated by integration of the static SM and the
dynamic SM. Therefore, the proposed dynamic bottom-up attention model can
selectively decide an attention area by considering not only static saliency but
also dynamic feature information obtained from consecutive input scenes.

2.2 The Selective Motion Analysis Model

Fig. 2 shows the block diagram of the selective motion analysis. The dynamic
SM model decides on the attention area, and the successive input images with
low resolution intensity are used as input data to calculate the optical flow that
is obtained by Horn & Schunck model [11]. The calculated optical flow is used
as input for the feed-forward neural network in the Fukushima’s model in order
to analyze motion information [4]. The Fukushima’s previous model is applied
for analyzing motion information. However, the V1-cells’ response is calculated
as the optical flow in proportion to the speed of the stimuli with their receptive
fields. As shown in Fig. 2, the MTabs-cells extract absolute-velocity of stimuli.
The MTabs-cells consist of two sub-layers, namely exc-cell and inh-cell. Only
the receptive-field sizes are different between them, that is, the receptive-field
of an inh-cell is larger than that of an exc-cell. Receiving antagonistic signals
from exc- and inh-cell of MTabs-cells, MTrel-cells extract relative velocity of
the stimuli. Finally, MST-cells integrates responses of many MTrel-cells simply
by summation. Therefore by collecting signals from MTrel-cells, MST-cells ex-
tract the global clockwise rotation, counter-clockwise rotation, expansion and
contraction of optical flow [4].

Fig. 2. A block diagram of the proposed selective motion analysis model (exc.: exc-cell,

inh.: inh-cell, MTabs: absolute-velocity of the stimuli, MTrel: relative-velocity of the

stimuli, ccw: counter-clockwise, cw: clockwise, exp: expansion, con: contraction, CCW:

global counter-clockwise, CW: global clockwise, EXP: global expansion, CON: global

contraction)
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3 Experiments

Figs. 3 (a), (b), (c) and (g) show the scan path in static images with scale
information at successive time with sampling time as 0.1sec, respectively. Scale
information in each salient area is represented by a scaled box on the correspond-
ing salient area in the figures. The numbers in each figure show the sequence of
scan path generated by the static SMs. Figs. 3 (d), (e), (f) and (j) show the
successive static SMs for the first, second, the third, and the fourth frame of a
sequence of frames from time to time, respectively.

Fig. 3. Comparison the dynamic SM with static SM: (a) and (d) Scan path in static

image and static SM for the first frame at time τ . (b) and (e) Scan path in static image

and static SM at time τ + �t. (c) and (f) Scan path in static image and static SM at

time τ +2�t. (g) and (j) Scan path in static image and static SM at time τ +3�t. (h)

and (k) Scan path in dynamic image and dynamic SM from time τ to time τ +3�t. (i)

and (l) Scan path in dynamic image and integrated SM from time τ to time τ + 3�t.



820 I. Lee et al.

Although the person moves slowly in the left and forward direction, the scan
paths generated by the static SM are same with each other. Fig. 3 (h) shows
the scan path in dynamic situation which is obtained from the successive static
SMs shown in Figs. 3 (a), (b), (c) and (g). Fig. 3 (k) shows the dynamic SM
corresponding to Fig. 3 (h). The scan path generated by the dynamic SM focuses
on the moving person instead of paying attention to a dominant object in each
static image. Finally, Fig. 3 (i) shows the final scan path generated by integrating
the static SM and the dynamic SM. Fig. 3 (l) shows the scan path obtained
from the final SM. As shown in Fig. 3, the scan path generated by the proposed
dynamic model can pay attention to a dynamic area. Thus, for the same frame
at time, the static bottom-up attention model can selectively pay attention to
the salient areas shown in Fig. 3 (g). However, the proposed dynamic bottom-
up attention model can dynamically decide more plausible attention areas as
shown in Fig. 3 (l) than those in Fig. 3 (g). If the human vision system were a
static system, the attention result shown in Fig. 3 (g) is reasonable. However,
the human vision system contains dynamics as well as static characteristics.
Therefore, the proposed model can generate a more reasonable attention result
by focusing a dynamic area as well as static salient regions.

Fig. 4. The results of proposed selective motion analysis model: (a) Gaussian image

after down-sampling for the first frame at time τ (b) Gaussian image after down-

sampling for the fifth frame at time τ + 3�t. (c) Magnitude of optical flow between

(a) and (b). (d) Counter-clockwise rotation. (e) Clockwise rotation. (f) Expansion. (g)

Contraction.

After we get the scan path by the proposed dynamic SM, we obtain the gaus-
sian filtered intensity image in which the gaussian function has the center value
around in the first salient area. Figs. 4 (a) and (b) show the gaussian smoothed
input images at τ and τ + 34t, respectively. Fig. 4 (c) shows the optical flow
obtained from Figs. 4 (a) and (b). Figs. 4 (d), (e), (f) and (g) show the motion
analysis results for 4 directions such as counter-clockwise rotation, clockwise
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Fig. 5. Motion analysis result for blind spot monitoring in a car driving: (a), (b), (c)

and (d) Input images at time τ , τ + �t, τ + 2�t and τ +3�t. (e) Dynamic SM result.

(f) and (g) Gaussian image image after down-sampling at time τ and at time τ + 3�.

(h) Magnitude of optical flow between (f) and (g). (i) Counter-clockwise rotation. (j)

Clockwise rotation. (k) Expansion. (l) Contraction.

rotation, expansion and contraction. From the motion analysis result, we can
understand that the people in the image move to left and forward direction.

We apply the proposed method to implement an automotive detector for blind
spot monitoring in a car driving. Figs. 5 (a), (b), (c) and (d) show the successive
images obtained from time τ to time τ + 34t. Fig. 5 (e) show the dynamic
SM for the successive input images, and Fig. 5 (f) and (g) show the gaussian
images after down-sampling at time τ and at time τ + 34t, respectively. Fig.
5 (h) shows the magnitude of optical flow. Figs. 5 (i), (j), (k) and (l) show the
motion analysis results for 4 directions. From the motion analysis result, we can
understand that the car in the image is approaching.

4 Conclusions

Computer simulation results showed that the proposed model can generate ef-
fective motion analysis results for analyzing only an interesting area instead
of considering the whole input scenes, which makes faster analysis mechanism
for dynamic input scenes. The proposed model can play an important role for
motion detection or tracking process in a human-like robot system.
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Abstract. The eligibility trace is one of the basic mechanisms in re-
inforcement learning to handle delayed reward. The traces are said to
indicate the degree to which each state is eligible for undergoing learn-
ing changes should a reinforcing event occur. Formally, there are two
kinds of eligibility traces(accumulating trace or replacing traces). In this
paper, we propose an ant reinforcement learning algorithms using an el-
igibility traces which is called replace-trace methods(Ant-TD(λ)). This
method is a hybrid of Ant-Q and eligibility traces. With replacing traces,
the eligibility trace for the maximum(MaxAQ(s, z)) state visited on the
step is reset to 1 and the eligibility traces for another states decay by
γλ. Although replacing traces are only slightly different from accumulat-
ing traces, it can produce a significant improvement in optimization. We
could know through an experiment that proposed reinforcement learning
method converges faster to optimal solution than ACS and Ant-Q.

1 Introduction

Reinforcement Learning is learning by interaction as agent achieves learning
doing interaction by trial-and-error. Agent attempts an action that can be taken
in the given state, and changes its state and receive reward value for the action.

In the popular TD(λ) algorithm, the λ refers to the use of an eligibility traces.
Almost any temporal-difference(TD) method, such as Q-learning can be com-
bined with an eligibility traces to obtain a more general method that may learn
more efficiently.

An eligibility trace is a temporary record of the occurrence of an event, such as
the visiting of a state or the taking of an action. The trace marks the parameters
associated with the event as eligible for undergoing learning changes. When a
TD-error occurs, only the eligible states or actions are assigned credit or penalty
for the error. Thus, eligibility traces help bridge the gap between events and
training information, and a basic mechanism for temporal credit assignment.

In this paper we introduce Ant-Q algorithm [7], [8] for combinatorial opti-
mization has been introduced by Colorni, Dorigo and Maniezzo, and we propose

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 823–832, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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new ant reinforcement learning algorithms using an eligibility traces are often
called replace-trace methods(Ant-TD(λ)) to Ant-Q learning.

Proposed Ant-TD(λ) reinforcement learning method searches goal using TD-
error [3], [4], [5] and an eligibility traces [13], there is characteristic that converge
faster to optimal solution than original ACS [11], [12] and Ant-Q.

The rest of the paper is organized as follows. In section2, we introduce Ant-Q
and Ant-TD reinforcement learning. Section3 describes new ant reinforcement
learning algorithms using eligibility traces are called replace-trace methods (Ant-
TD(λ)). Section 4 presents experimental results. Finally, Section 5 concludes the
paper and describes directions for future work.

2 Related Work

2.1 Ant-Q

Ant-Q learning method [7], [8] that is proposed by Coloni, Dorigo and Mauiezzo
is an extension of Ant System(AS) [1], [2], [6], [9], [10], it is reinforcement learning
reinterpreting in view of Q-learning.

In Ant-Q, an agent(k) situated in node(r) moves to node(s) using the follow
rule, called pseudo-random proportional action choice rule(or state transition
rule):

s =

{
arg max

u∈Jk(r)

{
[AQ(r, u)]δ · [HE(r, u)]β

}
if q ≤ q0 (exploitation)

S otherwise (exploration)
(1)

AQ(r, u) is Ant-Q value, be a positive real value associated to the edge(r,u), It
is counterpart of Q-learning Q-values, and is intended to indicate how useful it
is to move node(u) when in node(r).

AQ(r,u) is changed at run time. HE(r, u) is a heuristic value associated to
edge(r,u) which allows an heuristic evaluation of which moves are better(in the
TSP, the inverse of the distance).

Let k be an agent making a tour. Jk(r) are nodes to be visited from the current
node(r). Let initial parameter is set to AQ(r, u)=AQ0= 1/(average length of
edges·n).

Where δ and β is parameters which weigh the relative importance of the
learned AQ-values and the heuristic values. q is a value chosen randomly with
uniform probability in [0,1], q0(0 ≤ q0 ≤ 1) is a parameter, and S is a random
variable selected according to the distribution given by Eq.(2) which gives the
probability with which an agent in node(r) choose the node(s) to move to.

pk(r, s) =

⎧⎨⎩
[AQ(r,s)]δ·[HE(r,s)]β∑

u∈Jk(r)
[AQ(r,u)]δ·[HE(r,u)]β

if s ∈ Jk(r)

0 otherwise
(2)

The goal of Ant-Q is to learn AQ-values to find better solution as stochastic.
AQ-values are updated by the following Eq.(3).

AQ(r, s) ← (1− α) · AQ(r, s) + α · (ΔAQ(r, s) + γ · Max
z∈Jk(s)

AQ(s, z)) (3)
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α(0<α<1) is the pheromone decay parameter and γ is discount rate.
MaxAQ(s, z) is maximum reinforcement value that receive from external en-
vironment, global reinforcement is zero.

Also, ΔAQ is reinforcement value, local reinforcement is always zero, while
global reinforcement, which is given after all the agents have finished their tour,
is computed by the following Eq.(4).

ΔAQ(r, s) =

{
W

Lkib

if(r, s) ∈ tour done by the agent kib

0 otherwise
(4)

Where Lkib is the length of the tour done by the best agent which did the shortest
tour in the current iteration, and W is a parameter, set to 10. Fig.1 shows the
Ant-Q algorithm in pseudocode.

/* Initialization phase */
Set an initial value for AQ-values, each pairAQ(r, s)=AQ0.

/* Main algorithm */
Loop

1. /* Initialization of agents data structures */
Choose a starting node for agents

2. /* In this step agents build tours and locally update AQ-values*/
Each agent applies the state transition rule Eq.(1) to choose the
node to go to, updates the set Jk and applies Eq.(3) to locally
update AQ-values (in Eq.(3) ΔAQ(r, s)=0)

3. /* In this step agents globally update AQ-values */
The edges belonging to the tour done by the best agent are updated
using Eq.(3) where ΔAQ(r, s) is given by Eq.(4)

Until (End condition = True)

Fig. 1. Pseudocode of Ant-Q Algorithm

2.2 Ant-TD

To solve temporal-credit assignment problems, reinforcement learning that uses
TD can be a method to learn prediction.

Traditional learning methods such as supervised learning wait until final result
happens to keep recording for prediction for all outputs that were calculated in
intergrade. And then, as training error, we use difference between prediction
value for output of each state and final result.

But, the reinforcement learning using TD without waits final result. At each
learning step, training error uses difference with prediction for output of present
state and prediction for output of next state and this is known as TD-error
(Temporal Difference error).

The prediction for output of present state is updated to approximate with
prediction for output of next state in TD-learning. Thus, it is known that re-
inforcement learning of simple form that uses difference of prediction values for
output of each state is TD-learning.
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TD-learning that use TD-error calculates Q-function value of present state
with Eq.(5) using difference with prediction for output of present state and
prediction for output of next state.

Q(st, at)← (1− α) ·Q(st, at) + α · TD error (5)

Here, α is learning rate, TD-error calculates with Eq.(6) as difference with pre-
diction of present state and prediction of next state.

TDerror = rt+1 + γ[ Max
a∈A(st)

Q(st+1, at+1)−Q(st, at)] (6)

rt is reinforcement value and γ is discount rate. The goal of Ant-Q is to learn
AQ-values to find better solution as stochastic.

AQ-values are updated by the following Eq.(7). Appling Eq.(6) to Ant-Q, it
is expressed with Eq.(8).

AQ(r, s) ← (1− α) · AQ(r, s) + α · (ΔAQ(r, s) + γ · Max
z∈Jk(s)

AQ(s, z)) (7)

TDerror = ΔAQ(r, s) + γ[ Max
z∈Jk(s)

AQ(s, z)−AQ(r, s)] (8)

Finally, an ant reinforcement learning model that apply TD-error in Ant-Q
calculates Q-function value for node(r,s) of present state with Eq.(9)[14].

AQ(r, s) ← (1− α) · AQ(r, s)

+α · (ΔAQ(r, s) + γ · [ Max
z∈Jk(s)

AQ(s, z)−AQ(r, s)])

where ΔAQ(r, s) = 0 if Local updating

Max
z∈Jk(s)

AQ(s, z)−AQ(r, s) = 0 if Global updating

(9)

α(0<α<1) is the pheromone decay parameter and γ is discount rate.
MaxAQ(s, z) is maximum reinforcement value that is received from external
environment, global reinforcement is zero. Also, ΔAQ is reinforcement value, lo-
cal reinforcement is always zero, while global reinforcement, which is given after
all the agents have finished their tour, is computed by the following Eq.(10).

ΔAQ(r, s) =

{
W

Lkib

if(r, s) ∈ tour done by the agent kib

0 otherwise
(10)

Where Lkib is the length of the tour done by the best agent which did the shortest
tour in the current iteration, and W is a parameter, set to 10.
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3 Ant Reinforcement Learning Using Replacing
Eligibility Traces

An eligibility trace is one of the basic mechanisms of reinforcement learning.
For example, in the popular TD(λ) algorithm, the reference to the use of an
eligibility trace.

Almost any temporal-difference method, such as Q-learning, can be combined
with eligibility traces to obtain a more general method that may learn more
efficiently [13].

An eligibility trace is a temporary record of the occurrence of an event, such
as the visiting of a state or the taking of an action. The trace marks the memory
parameters associated with the event as eligible for undergoing learning changes.

When a TD error occurs, only the eligible states or actions are assigned credit
for the error. Thus, eligibility traces help bridge the gap between events and
training information. Like TD methods themselves, eligibility traces are a basic
mechanism for temporal credit assignment.

In Ant-TD(λ), there is an additional memory variable associated with each
state, its eligibility trace. The eligibility trace for edge(r,s) is denoted e(r, s).

The traces are said to indicate the degree to which each state is eligible for
undergoing learning changes should a reinforcing event occur.

Times of MaxAQ
states visits

Accumulating trace (A)

Replacing trace (B)

Fig. 2. Feature of Accumulating(A) and Replacing(B) Eligibility Traces

Formally, there are two kinds of eligibility traces: accumulating trace or re-
placing traces(Fig.1).

With accumulating trace(A), it accumulates each time the state is visited,
then fades away gradually when the state is not visited. After all, on each step,
the eligibility trace for the maximum(MaxAQ(s, z)) state visited on the step is
incremented by 1 and the eligibility traces for another states decay by γλ.

Whereas with replacing traces(B), the trace is reset to 1, as illustrated below:

e(r, s) =

⎧⎪⎪⎨⎪⎪⎩
γ · λ · e(rt−1, st−1) + 1 if AQ(r, s) = Max

z∈Jk(s)
AQ(s, z) . . . (A)

1 if AQ(r, s) = Max
z∈Jk(s)

AQ(s, z) . . . (B)

γ · λ · e(rt−1, st−1) otherwise
(11)
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In this paper, we use a replacing traces. Although replacing traces are only
slightly different from accumulating traces, they can produce a significant im-
provement in optimization.

e(r, s) =

{
1 if AQ(r, s) = Max

z∈Jk(s)
AQ(s, z)

γ · λ · e(rt−1, st−1) otherwise
(12)

Where γ is the discount rate and λ is the trace-decay parameter. This kind of
eligibility trace is called a replacing trace because it replaces each time the state
is visited, and then fades away gradually when the state is not maximum.

Finally, Ant reinforcement learning algorithms using eligibility traces are
called replacing trace methods(Ant-TD(λ)) updated by the following Eq.(13).

AQ(r, s)← (1− α) ·AQ(r, s)

+α · (ΔAQ(r, s) + γ · [ Max
z∈Jk(s)

AQ(s, z)−AQ(r, s)]) · e(r, s)

where ΔAQ(r, s) = 0 if Local updating

Max
z∈Jk(s)

AQ(s, z)−AQ(r, s) = 0 if Global updating

(13)

α(0<α<1) is the pheromone decay parameter and γ is discount rate.
MaxAQ(s, z) is maximum reinforcement value that is received from external
environment, global reinforcement is zero. Also, ΔAQ is reinforcement value, lo-
cal reinforcement is always zero, while global reinforcement, which is given after
all the agents have finished their tour, is computed by the following Eq.(14).

ΔAQ(r, s) =

{
W

Lkib

if(r, s) ∈ tour done by the agent kib

0 otherwise
(14)

Where Lkib is the length of the tour done by the best agent which did the shortest
tour in the current iteration, and W is a parameter, set to 10. Fig.3 shows the
proposed Ant-TD(λ) algorithm in pseudocode.

4 Performance Evaluation

Prediction of performance of ant reinforcement learning algorithms using eligibil-
ity trace is called replace-trace methods(Ant-TD(λ)). We measure performance
through comparison with original ant model(ACS and Ant-Q).

We experimented the proposed model by using TSPLIB[15] which is a famous
TSP example. Basis environment parameter for an experiment was decided as
following, and optimum value decided by an experiment usually are β=2, α=0.1,
q0=0.9, γ=0.3, λ=0.7, m=n, W=10 and AQ0= 1/(average length of edges·n).

The initial position of agents assigned one agent in an each node at randomly,
and the termination condition is that a fixed number of cycles or the value known
as the optimum value was found.
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1. /* In this step, initialization phase */
/* Set an initial value for AQ-values */
For each pair(r,s) AQ(r,s) := AQ0

End-for
/* Choose a starting node */
For k := 1 to m do

Let rk1 be the starting node for agent(k)
Jk(rk1) := {1, · · · , n} - rk1

/* rk1 is the node set of yet to be visited nodes for agent(k) in node rk1 */
rk := rk1

End-for
2. /* In this step, agents build their tours and locally update AQ-values. Local

reinforcement is always zero, only the next state evaluation is used to
update AQ-values. */
For i := 1 to n do

If i 	= n
For k :=1 to m do

/* Each agent choose the next node sk according to the state
transition rule Eq.(1), updates the set Jk(sk)
If i < n-1 Then Jk(sk) := Jk(rk) - sk

If i = n-1 Then Jk(sk) := Jk(rk) - sk + rk

Tourk(i) := (rk , sk)
End-for

Else
For k := 1 to m do

/* All the agents go back to the initial node rk */
sk := rk

Tourk(i) := (rk , sk)
End-for
For k := 1 to m do

AQ(r,s) := (1-α)·AQ(rk,sk)
+α·(ΔAQ(rk,sk)+γ[MaxAQ(sk,z)-AQ(rk,sk)])·e(rk,sk)

/* This above is Eq.(13), the locally reinforcement ΔAQ(rk,sk) is
always zero */
rk := sk /* New node for agent(k) */

End-for
End-for

3. /* In this step, delayed reinforcement is computed and AQ-values are updated
using Eq.(13), the next state evaluation term γ[MaxAQ(s, z)-AQ(r,s)] is
zero for all z */
For k := 1 to m do

Compute Lk

End-for
For each edge(r,s)

Compute the delayed reinforcement ΔAQ(r, s) using Eq.(14)

Fig. 3. Pseudocode of Ant-TD(λ) Algorithm
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AQ(r, s) := (1-α)·AQ(rk ,sk)
+α·(ΔAQ(rk,sk)+γ[MaxAQ(sk,z)-AQ(rk,sk)])·e(rk,sk)

End-for
Update AQ-values applying a Eq.(13)

4. If (End condition = True)
then Print shortest of Lk

else goto Step 2

Fig. 3. (continued )

Table 1 shows optimal tour length and average tour length that are achieved
by each algorithms(ACS, Ant-Q and Ant-TD(λ)) in case of repeated 1000 cycles
in 10th trials about R×R grid problems, the performance of proposed method
is excellent.

Table 2 shows best tour length and average tour length that are achieved by
each algorithms(ACS, Ant-Q and nt-TD(λ)) in case of repeated 20000 cycles
in 10th trials about TSPLIB problems, the performance of proposed method is
excellent.

Table 1. Performance evaluation of Ant-TD(λ) (1)

ACS Ant-Q Ant-TD(λ)
Node Average Best Average Best Average Best

length length length length length length

4×4 160 160 160 160 160 160
5×5 254 254 254 254 254 254
6×6 360 360 362 360 360 360
7×7 510 507 509 502 494 494
8×8 661 654 654 648 640 640
9×9 790 764 782 753 775 749

10×10 971 959 963 941 952 936

Table 2. Performance evaluation of Ant-TD(λ) (2)

ACS Ant-Q Ant-TD(λ)
Node Average Best Average Best Average Best

length length length length length length

KroA150 28909 27824 28761 27231 26542 26524

Rat195 2572 2461 2514 2397 2441 2338

Gil262 2637 2526 2592 2493 2412 2380

A280 2893 2768 2841 2758 2637 2581

Pr299 53498 51395 52714 50278 49108 48320

Lin318 46244 44837 45319 43832 44083 42997
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5 Conclusion and Future Work

In this paper, we proposed new ant reinforcement learning algorithms using
eligibility traces are called replace-trace methods(Ant-TD(λ)).

Proposed Ant-TD(λ) learning is method that is proposed newly to improve
Ant-Q, this converged faster to optimal solution by solving temporal-credit as-
signment problems to use TD-error while agents accomplish tour cycle.

Proposed Ant-TD(λ) ant model using eligibility traces used difference with
prediction for output of present state and prediction for output of next state at
each learning step, and updated to approximate with prediction for output of
present state and prediction for output of next state in present state.

This method is a hybrid of Ant-Q and eligibility traces. With replacing traces,
the eligibility trace for the maximum(MaxAQ(s, z)) state visited on the step is
reset to 1 and the eligibility traces for another states decay by γλ. Although
replacing traces are only slightly different from accumulating traces, it could
produce a significant improvement in optimization.

Forward, we need study about several possible ways to generalize replacing
eligibility traces in Ant-TD(λ).
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Abstract. n this paper investigate how to aggregation method from face
recognition varying environments. Face Images clustering is enhanced
face recognition performance. Face image is clustered several cluster
unsupervised or statistical method and we recognize using correlation
between clusters. In this paper we adopted recognition algorithm by ag-
gregation method. In this paper we present the recognition system using
the table of fitness correlations between clusters for combining the results
from the individual clusters. By training the different classifiers with dif-
ferent clusters of training data and adopting fusion method considering
fitness correlation between clusters we found out better recognition per-
formance than combining classifiers fed with same data.

1 Introduction

In an attempt to realize these computing environments, a new brand of com-
puting technologies utilizing human sensory system has been developed. Face
recognition technologies have been motivated from the application area of phys-
ical access, face image surveillance, people activity awareness, visual interaction
for human computer interaction, and humanized vision. Dynamically changing
illumination in a real world application poses one of the most challenging prob-
lems in face recognition systems.

Classifier decision methods for identification are illustrated their better re-
liance on recognition than single classifier and implemented in various ways[1,
2, 3]. Clustering the data set into different regions is added value to recognition
systems by finding specific sophisticated system for particular region in ways as
selection and fusion of classifiers [4, 5]. The outline of this paper is as follows. In
section 2, we present the architecture of the proposed classifier fusion system.
We give experimental results in section 3. Finally, we give concluding remarks
in section 4.

2 Correlation Table Between Illuminant Context

As discussed in session 2, adaptive preprocessing and identification is required
for robust face recognition under uneven environments.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 833–840, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2.1 Adaptive Gabor Feature Space

We employ the method of context-awareness in order to provide the capability
of adaptation in preprocessing and feature representation stages. The proposed
context-aware preprocessing together with adaptive Gabor feature space can
perform well under uneven environments. That is generated by GA from best
recognition performance. We determine Gabor weight for facial points using
evolution algorithm. And we use three preprocessing, histogram equalization,
contrast stretching and retinex algorithm [6, 7] for filter fusion.

Fig. 1. Face recognition architecture based on the context-aware preprocessing

Clustering is researched many peoples [8, 9, 10]. In contrast to the huge
amount of research in this active area [8], little work has been done on com-
bining the specific classifier - the k nearest neighbor classifier (kNN) [11].

In this paper, we generate the method filter fusion as Bayesian based method.
The system learns changing environments in the context-awareness stage, and
adapts itself by restructuring its structure and/or parameters. The adapta-
tion is guided by evolutionary computing module, genetic algorithm here. We
adopt Fuzzy ART [12] for achieving an optimal illumination clustering architec-
ture. In this paper, the clustering performance is improved by iterative learning
method.

The system learns changing environments in the context-awareness stage, and
adapts itself by restructuring its structure and/or parameters. The adaptation is
guided by evolutionary computing module, genetic algorithm here. Filter fusion
made following figure.
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Fig. 2. GA based fusion for preprocessing filter

2.2 Classifier Fusion in Decision Step

Classifier outputs are usually made comparable by scaling to interval [0,1]. We
assumed the outputs are also measurable as similarity of feature to classes. By
the Fig1 the features in same cluster are measured more similar by classifiers..
In this paper, it is assumed that combination of Classifiers, each fed by data in
one cluster is more steady in recognition rate. Classifier fusion assumes that all
classifiers are trained over the whole feature space, and are thereby considered as
competitive rather than complementary. But some methods as bagging, boosting
and Ada-boosting made the classifiers individual from each other by selecting
different training data sets [9, 10]. Thus, some solutions considered individualism
between classifiers by correlation between them for making final decision.

The assumption that classifiers perform independent of each other might be
invulnerable. But methods related to Boosting as Bagging [11], Boosting [9], Ad-
aBoosting [9, 10] considered create each classifier in an ensemble independently
of the other classifiers. We can look in way the classifier is simply compares the
Test data with trained data. Same idea is introduced here to create the classifiers
independent from each other and make the ensemble method fitness correlation
more considerable and reasonable. Fig 4 shows the difference of independency of
classifiers trained by different data set or whole.

Training Fitness Correlation Table
There is no guarantee that training data set contains features of each class
in each cluster. Classifier fusion assumes that all classifiers are trained over
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Fig. 3. Classifier Decision Architecture

the whole feature space, and are thereby considered as competitive rather than
complementary [1]. In this paper, it is assumed that combination of Classifiers,
each fed by data in one cluster is more steady in recognition rate. Let Ω =
{ω1, ω2, ..., ωc} be a set of class labels.

Let x = [x1, x2, ..., xn]T ∈ �n be an n-dimensional column-vector describing
an object. “Soft labels” classifiers are usually defined as the mapping from n-
dimensional space to c-dimensional vector with supports to the classes.

That means D̃ : �n → [0, 1]c in other word D̃(x) = [d1(x), d2(x), ..., dc(x)].
We can restrict the di(x) within the interval [0,1] and say di(x) is the degree of
‘support’ given by classifier D̃ to the hypothesis that x comes from class ωi. But
we actually will use classifiers more simple than “soft labels” for implementing
Xcor. In a need of making the problem simple we will define the classifier D form
D̃ as follows:

D̃ : �n → Ω × [0, 1] (1)

We will use the name “simple-soft-labels” for the classifiers as define above to
facilitate further writing.

Xcor Table Traning
Training will consists of two main methods “classifier training” and the “Xcor
Table training”. Each will be accomplished by using Training Data Set T and
Xcor Data Set U respectively.

T = {ti, ti ∈ �n}, U = {ui, ui ∈ Ren} (2)

First we will cluster these data sets into K different sets by using clustering
methods like k-means. Let T1, T2, ...Tk are the clustered sets of T and U1, U2, ...Uk

are the clustered sets of U . Despite the T set contains elements of all classes, there
is no guarantee that Ti should contain the elements of all classes. This assumption
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actually the reason we are adopting Xcor method to keep the recognition rate
of classifiers when the training set is not complete at all clusters.

Classifier Training. Train the “simple-soft-label” classifier D by sets T1, T2, ...Tk

and let D1, D2, ...Dk are the trained classifiers respectively.

Acor Table Training. In this method we will create the Xcor Table by using
classifiers’, D1, D2, ...Dk, result of recognition on data sets U1, U2, ...Uk. This
method would naturally be understood the training of second layer classifier.

Let Yij , Yij = y, y = Di(u)|u ∈ Uj is the set of results of Di on Uj, simply
can be represented as Y T

ij . As we discussed in section 3.2 we can define three
different sets of soft labels Hij ,overlineHij , widetildeHij from Yij , Hij is set of
d(x) components of true results.
Hij is set of d(x)components of wrong results despite T contains the true class

of u,u ∈ Uj . H̃ij is set of d(x)components of results when Ti does not contains
the true class of u, u ∈ Uj .

Suppose that Hij , Hij , H̃ij perform normal distributions. The average and
standard deviation ofHij , Hij , H̃ij are denoted by {μij , σij}, {μij , σij}, {μ̃ij , σ̃ij}
respectively. The Xcor table, the final result of “Xcor Table training” method,
would contain {μij , σij}, {μij , σij}, {μ̃ij , σ̃ij}, mij , eij where i, j ∈ 1..k

Classifying Method
Let x, x ∈ Ren was the vector element that to be labeled into one of C classes.
Let {ω′

1, d1}, {ω
′
2, d2}, ..., {ω

′
k, dk} are the results of classifiers D1, D2, .., Dk. Our

main goal is to combine these results by using elements in Xcor table and de-
termine the most valuable result of classifiers. In order to achieve overall per-
formance, the cluster in which the element x belongs to has to be identified.
Assume that x is a element of cluster numbered by j, x ∈ Rj . For each classi-
fier, two kind of probability αi and βi will be generated using the elements in

Fig. 4. Classifier Decision Architecture
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Xcor table and the final result would be calculated by the αi , βi. In final fusion
method we will find the probabilities Pu = P (Y |whenxwaselementofωu) and
the final result would be ωu=1..c ∈ Ω.

Generating Probabilities αi and βi . In instance for classifier Di two kind of
trueness αi and βi of result {ω′

1, d1} = Di(x), x ∈ Rj would be generated using
the particular elements {μij , σij}, {μij , σij}, {μ̃ij , σ̃ij}, mij , eij in Xcor table.
αi is probability of trueness of ω

′
i.

In other word αi = P (True|ω′
i). We will calculate this probability by Bayesian

decision theory in an assumption that Ti, the set of data used for training the
classifier UDi, contains the element of class ω

′
i .

3 Experiment

The feasibility of the proposed method has been tested using Inha, FERET[13],
and Yale[14] database. Experiments have been carried out to compare the recog-
nition performance of the filter fusion and identification based face recognition
scheme and that of other methods. We used 1000 images of 100 persons from
Inha DB, 60 images of 15 persons from Yale Face DB, and 2418 images of 1196
persons from FERET DB. Table 1 and 2 show that preprocessing fusion using
feature weight is high performance for bed illumination images.

Table 3 shows the comparison between single classifier and proposed classi-
fier fusion method. This is result from 5 clusters for illuminant information. It
becomes apparent that proposed method shows the highest recognition perfor-
mance, especially under varying illumination images.

Table 1. Frontal face detection result using single classifier

Method Retnix + HE HE + Retnix

FERET fafc dataset 81.2% 78% 83.5%
Our lab dataset 97.2% 94.5% 98%
FERET fafb 82.2% 93% 96%
Yale DB 84.5% 82.5% 94%

Table 2. Performance evaluation of the proposed system comparing with other

approaches

Algorithm Method FERET(fafc) FERET(fafb)

Ef hist dev ml1 0.392 0.733
Mit sep 96 0.32 0.948
Umd mar 97 0.588 0.962
usc mar 97 0.82 0.95
Proposed method 0.835 0.96
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Table 3. In case of different between text image illuminant and enrolled illumination

Method and database Yale DB InhaDB

Gabor28 84.5% 95.1%
PCA 74.1% 87.9%
PCA[5] 95.1% 67.4%

FitCorr[5] with G28 94.4% 99.3%
FitCorr[5] with PCA 71.9% 69.2%

4 Concluding Remarks

We proposed the classifier fusion method from cluster’s correlation. Therefore
we enhanced face recognition ratio in external environment. The proposed pre-
processing and decision fusion based on context-awareness performs well espe-
cially in changing illumination environments. Different clusters of training data
and adopting fusion method considering fitness correlation between clusters we
found out better recognition performance than combining classifiers fed with
same data. From extensive experiment, we found that the performance of indi-
vidual filtering methods for image enhancement is highly depending upon ap-
plication environments. When the face images is different illuminant between
enrolled face image and test face image, face recognition ratio is high other
method.
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Abstract. In this paper, we propose multi-class classifier and knowledge
based face detection. Eye region and face location is used illuminant
based Bayesian detector. We propose the efficient face and eye detection
system using varying illuminant context modeling and multi–classifier.
The face detection system architecture use cascade method by illuminant
face model. Also, we detect eye region after face detection. Proposed eye
detection frame is multiple illuminant Bayesian classifiers. Because face
images have varying illuminant and this is vary difficult problem in face
detection. Therefore, we made in context model using face illuminant.
The multiple classifiers consist of face illuminant information. Multiple
Bayesian classifiers are employed for selection of face and eye detection
windows on illuminant face group. Finally, face and eye regions of the
detected candidates are selected by context awareness.

1 Introduction

Detecting human face in image frames is an important task in many computer vi-
sion applications. Face detection, the first step of an automated face recognition
system, determines the location and size of each human face from an input image.
Closely related problems are face verification and identification. Face detection
is one of the hardest problem in the research area of face recognition, and an
important task in many computer vision applications such as human-computer
interface, smart environment, ubiquitous computing, multimedia retrieval, etc.
Object detection using a static image can be used in unconstrained environ-
ments with complex background Object detection systems from still image can
be divided into three major categories. Eye detection is researched many people,
Hero, Baskan [1, 2, 3]searched the profile method but is not researched very
illuminant face images.

The major contribution of this paper is efficient classification using multiple
Bayesian classifiers for efficient face and eye detection.

The outline of this paper is as follows. In section 2, we present the archi-
tecture of the proposed context awareness system. In section 3, we describe the
method that search context based object detection. We give experimental results
in section 4. Finally, we give concluding remarks in section 5.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 841–849, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Illuminant Context-Awareness by BP

The supervised learning method is classified the nine illuminant group. Fig.1 is
shown the illuminant context group.

Fig. 1. Synthesized images using the face image modeling

We have tested three methods for illumination discrimination: the simple rule
based discrimination(SR), the back propagation neural network based discrimi-
nation(BP). The training of evolutionary neural network is done 100 original face
images accumulated in our lab, and 800 virtually generated mosaic face images
using the image synthesis method described above. We assume that illumination
variation in face images can be represented by the noise model. The modeling
face image reflecting an brightness variation can be done by the additive, the
multiplicative, and the hybrid functions[7]. Directional illumination variations
are modeled by the sine and the cosine weight function.

3 Context Based Object Detection Scheme

In this paper, we proposed the method that is multiple Bayesian classifiers for
selecting eye location and face detection. The final decision of face candidate
window is done by post processing.

3.1 Face Detection

Face detection is statistical method using Mahalanobis distance and cascading
face detection system, Search space is reduced by finding regions that has face
color. The remaining regions are searched by multiple Bayesian classifiers under
varying illuminant.

We can model a face in frequency domain using Haar wavelet transform(shown
Fig.3). It is organize the image into sub-bands that are localized in orienta-
tion and frequency. In each sub-bands, each coefficient is spatially localized.
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Fig. 2. Face detection system architecture

Fig. 3. Haar wavelet transform for face modeling

We use a wavelet transform based on 3 level decomposition producing 10 sub-
bands. Generally, low frequency component has more discriminate power than
higher. Also too high component has some noisy information. Then we use 3
level decomposition of Haar wavelet transform. Face image distribute using Back
propagation.

These classifiers are constructed in cascade form of multi steps. The 64-
dimensional feature from illuminant 1’st classifier is used as classifier in first
step. The illuminant 2’st classifier is used in second step. These classifiers pro-
duce different false alarms when they work alone. Therefore cascade classifier
reduces false alarms when each result is merged. Structure of cascade classifier is
shown in middle block of Fig.4. Once a sub-window is determined to non-face by
first classifier, it doesn’t be tested by second classifier. First, search space can be
reduced by skin color module. The remaining regions are searched by multiple
Bayesian classifiers using integrated feature space. Final results are produced by
post processing.

Merging heuristic that removes the overlapped face candidate windows is pow-
erful process to remove most false detections and reduce multiple detections
of a single face to one[4, 5]. This post processing can produce the results as
Fig.5.
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Fig. 4. Context-based face detection

Fig. 5. Post processing. (a) Input image (b) Before post processing (c) After post
processing.

3.2 Eye Detection

The outline of the proposed method is shown in Fig.6. Search space is reduced
by finding eye regions. The remaining regions are searched by multiple Bayesian
classifiers using integrated feature space to determine whether the 16×16 sub-
window is eye region. These classifiers are constructed in cascade form of two
steps. The 54-dimensional feature from intensity using sub-regions is used as
feature in first step. Haar wavelet transform is used in second step. These
two classifiers produce different false alarms when they work alone. Therefore
cascade classifier reduces false alarms when each result is merged. Structure of
cascade classifier is shown in middle block of Fig.6.Once a sub-window is deter-
mined to eye region by first classifier, it don’t be tested by second classifier. In
this paper, we use feature extraction method by the Haar wavelet transform.

We proposed the multi-classifier using Bayesian for illumination face and eye
image.

Bayesian formula for each illuminant face and eye group is

P (ωi|x) =
p (x|ωi)P (ωi)

p (x)
(1)

where , i is illuminant eye group.



An Efficient Face and Eye Detector Modeling in External Environment 845

Fig. 6. The proposed scheme used for eye region detection

We applied different Bayesian classifier for cluster classification.

ge (X) = lnp (x|ωi) + lnP (ωi) (2)

gne (X) = lnp (x|ωn) + lnP (ωn) (3)

But we can use one discriminant function, g(x) as (3) since we try to classify
a pattern into two categories. In this case, if g(x) is greater than 0, we can decide
input pattern as face. Otherwise, it is comparison other Bayesian classifier.

g (X) = ge (X)− gne (X) (4)

The locations which output through previous methods are good at being pre-
cision detect. But because eyes are very important feature at face recognition,
we want to make robust precision position of eye. We regard pupil is robust
precision point of eye and make an effort to point pupil. We use Gaussian filter
and projection function to point center of pupil. In this case, center of detected
window is moved far away from earlier position. It is a critical error and a pri-
mary factor of decrease of detect rate. Therefore, we need to restrict center of
window to move for away.

Fig. 7. An Eye detection sample under varying illuminant context images
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Fig. 8. Eye detection results under varying illuminant

4 Experiment

We used 3,816 FERET frontal face images as face data and 23 natural images
as nonface data for training data. Because we include mirror images with the
face data, total face data consist of 7,632 frontal face images.

In order to normalize size and position of eyes, each face image was rotated
and scaled to 16×16 size as shown in Fig.9. Non-face data was gathered from
23 natural images. Because the face-like non-face samples were chosen by each
Bayesian classifier with two different types of feature extraction methods. Thus
each classifier uses different number of face-like non-face images.

We performed the experiments on two test sets constituted from images of
MIT-CMU frontal face images and captured images. First set consists of 130
images include 507 faces. 117 images contain frontal faces and remains don’t.

Fig. 9. Face training images

Fig. 10. Natural images that are not contained any face image
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Table 1. Frontal face detection result using single classifier

Test Set Face Detection False detection Face number

MIT -CMU 283 150 507
Our Lab. 2299 43 2539
FERET 1100 32 1196
Yale 92 20 100

Table 2. Frontal face detection result using multi-classifier using illuminant context-
awareness

Test Set Face Detection False detection Face number

MIT -CMU 350 30 507
Our Lab. 2445 10 2539
FERET 1153 6 1196
Yale 97 3 100

Fig. 11. ROC Curve of eye detection

Second set consists of 2,539 images that were captured in various environments.
We show the experiment result in Table 1 and Table 2.

Table 3 and Fig.11 are shown that we achieved very encouraging experimental
results in the error rate 0.18. The first set has the some faces that are not frontal.
Thus the result in this set is not good. But in the second set, the images have
only frontal faces and our skin color module worked. The result in this set is
very good. We show the detected images in Fig.12.
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Table 3. Without context – awareness eye location results

Err AR FA AR

0 0 3816 0.00
0.04 54 3762 1.42
0.05 111 3705 2.91
0.06 201 3615 5.27
0.07 314 3502 8.23
0.08 744 3072 19.50
0.09 1424 2392 37.32
0.10 2021 1795 52.96
0.11 2544 1272 66.67
0.12 2942 874 77.10
0.13 3148 668 82.49
0.14 3342 474 87.58
0.15 3438 378 90.09
0.16 3521 295 92.27
0.17 3607 209 94.52
0.18 3670 146 96.17

Fig. 12. Detected images of MIT-CMU data set

5 Concluding Remarks

In this paper, we propose the efficient face and eye detection method. It consists
of multiple Bayesian classifiers using clustering face and sys images. In varying
illuminant images such that from cameras face detector module can reduce false
detectio ratio. And face detection ratio is enhancement in dynamic environment.
This proposed method can detect 96.17% of eye in Err 0.18. There are some
works that can improve the proposed method. The second feature of our method,
Haar wavelet transformation must be improved. Proposed multiple face and eye
detector is high performance. The face and eye detection ratio must be improved
in our propose method.
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Abstract. The following paper proposes a procedure for SIFT key-
points derivation for the purpose of object class detection. The main
idea of the method is to build appropriate object class keypoints by
extracting information that corresponds to characteristic class features.
The proposed procedure is composed of two main steps: clustering of
similar SIFT keypoints and derivation of appropriate keypoint descrip-
tors. Face detection in images has been selected as a sample application
for the proposed approach performance evaluation.

1 Introduction

Scale-Invariant Feature Transform (SIFT) algorithm is a relatively new object
recognition paradigm [1], which belongs to a class of feature-based object recog-
nition strategies [2],[3],[4]. SIFT proved to be robust in realizing several hard
recognition tasks, such as detection of scaled, rotated and partially occluded
objects in highly cluttered environments. Objects in SIFT are characterized
through keypoints and their descriptors. Keypoint descriptors are complex im-
age gradient field characteristics, built in a way that makes them insensitive to
image transformations and that provides very distinctive and unique represen-
tation of object features. High specificity of descriptors maximizes a chance of
some particular object detection; however it becomes a drawback when a detec-
tion of object class is to be made, i.e. when some level of within-class object
variability needs to be admitted.

The following paper proposes a procedure for building SIFT keypoints that
could be used for detecting of object classes (a problem of object class recognition
from local features has been studied e.g. in [5],[6],[7]). The main idea of the
procedure is to identify, among all class’ objects, pools of keypoints that share
the same common properties, and to integrate this information in a form of
target, object class keypoints and their descriptors. Face detection has been
selected as a specific task for the proposed approach evaluation.

The paper has the following structure. After a brief presentation of the SIFT
algorithm (Section 2), the proposed keypoint derivation procedure is explained
(Section 3) along with its preliminary experimental evaluation (Section 4).
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2 SIFT Algorithm

SIFT algorithm is a feature-based object recognition strategy that is composed
of two major image processing phases [1]. First, a set of characteristic locations
(keypoints) is extracted from an input image and then, keypoint and keypoint
group matching is employed to test an image for a presence of objects of interest.

To ensure scale-invariant object recognition, keypoint derivation involves
multi-resolution image analysis, so that characteristic image regions at vari-
ous scales can become preliminary candidates for keypoints. These candidates
are subject to further selection aimed at excluding of elements with insufficient
magnitude (low feature stability) and edge responses (redundant representation).
The remaining elements become keypoints and are assigned with descriptors that
summarize information on local image gradient flows.

Object recognition step begins with matching of all keypoints, extracted from
an image, to object prototype keypoints, recorded in a corresponding database.
Keypoint-distinctiveness is used as a primary criterion for preliminary match
selection, reducing a pool of elements considered in further analysis. Object
recognition is done through keypoint group matching, which involves object
candidate pre-selection (using Generalized Hough Transform), affine matching of
considered regions and a probabilistic correspondence test, performed on aligned
keypoints.

3 Object Class Keypoints Derivation Procedure

SIFT keypoint descriptors represent local gradient-field properties in a form of
a set of orientation histograms, computed for sixteen regions within a keypoint
neighborhood. This detailed representation provides high keypoint matching se-
lectivity, crucial for reference object detection, however, it becomes a problem
in detection of objects that somehow differ from a prototype, yet belong to the
same class. Poor performance of the method in detecting objects of the same
category has been illustrated in Fig. 1, where keypoints derived from sample im-
age face (shown in upper right) allow for finding of only two faces in the image
(including the prototype).

For object class detection one needs to look for keypoint descriptors that
would reflect some typical appearance of features, which is common to all class’
elements rather than to derive keypoints from some randomly drawn class mem-
ber. The proposed object class keypoint derivation procedure, which is depicted
in Fig. 2, explores similarities that exist among class objects.

The first phase of the procedure is aimed at determining groups of keypoints
that are likely to correspond to various realizations of the same semantic features
of training set objects. This is done through a sequence of keypoint clustering
procedures, where spatial locations, orientations and scales are used as keypoint
similarity criteria. The resulting keypoint clusters are then used for derivation
of object class keypoints in the second phase of the algorithm. Keypoints ex-
tracted from training set images will be henceforth referred to as object keypoints,
whereas target object class keypoints will be referred to as class keypoints.
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Fig. 1. Face detection using object-derived keypoints: input image (left), detected key-

points (middle) and detected faces (right) with marked correct match locations

Fig. 2. Object class keypoint derivation procedure

3.1 Feature Selection

A derivation of object class representation begins with a search for groups of
keypoints that appear consistently in location, scale and orientation among all
training set objects, so that they can be regarded as markers of the same seman-
tic feature. Spatial keypoint grouping can be performed using any of existing
data clustering methods [8], however, for the considered face detection case, a
set of characteristic regions that correspond to distinct facial features was se-
lected manually (Fig. 3). Keypoints, which appear within any of pre-selected
facial regions, are subject to clustering in scale and orientation. Sample key-
point distributions for the ’nose’ facial region, expressed in a scale-orientation
space, have been presented in Fig. 3, along with image intensity distributions
that correspond to marked keypoint clusters. Each of the clusters of object key-
points with low-variance, both in scale and orientation, has been selected as a
basis for further class keypoint derivation procedure. Since no distinctive clus-
ters were found for some of pre-selected regions, these regions were dropped from
further analysis. This means that some semantic features, such as e.g. forehead,
will have no representation among class keypoints. On the other hand, some
other features will have several representatives, as it happens in the case of the
presented ’nose’ region.
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Fig. 3. Facial regions used for clustering of keypoints in space (left); keypoint clusters

in the scale-orientation space (middle) and intensity distributions corresponding to the

marked clusters (left)

3.2 Keypoint Descriptor Derivation

Object keypoint clusters identified in the first phase of the procedure correspond
to semantic facial features and form domains for a derivation of class keypoints.
A class keypoint is supposed to reflect common properties of cluster members. If
we assume that orientation histograms of all cluster keypoints have similar dis-
tributions, an appropriate class keypoint descriptor can be generated by taking
an average or median over these histograms. Since median is more robust with
respect to outliers, it has been used for producing a class keypoint descriptor.

The major difference between object recognition and object class recognition
by means of the SIFT algorithm emerges at final stages of image analysis, i.e.
at keypoint elimination and keypoint group matching. In the original algorithm,
keypoints extracted from a test image are discarded if they correspond to am-
biguous matches, i.e. if a ratio of matching scores for the two winners drops
below some pre-set threshold. This strategy is justified when corresponding key-
points from the same object are to be fit. However, a class keypoint is expected
to reflect an average realization of some feature appearance and consequently,
differs from any particular object keypoint. Therefore some level of keypoint mis-
match is inevitable, which implies that an application of the original criterion
for keypoint elimination is inappropriate. To enable discarding of false matches
one can use another approach. Namely, one can evaluate (and record) an aver-
age mismatch that exists between a class keypoint and all object keypoints from
the corresponding cluster. This value can be used as a reference for determining
whether a match is to be accepted or rejected. Each generated class keypoint
is therefore assigned with additional information - an average scatter, which is
used for determining a keypoint match acceptance threshold.

Keypoint clustering based on orientation histograms. The presented class
keypoint descriptor derivation strategy will produce a correct representation
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of a feature only if gray level distributions, represented by descriptors of cluster
object keypoints, are similar to each other. However, cluster keypoints typically
correspond to various realizations of the underlying feature (Fig. 4a,b), which is
usually represented by distinct, yet repetitive intensity distributions. Averaging
object keypoint descriptors or taking their median is therefore likely to produce
a class keypoint descriptor, which represents neither of characteristic modes of a
typical feature appearance. Therefore, keypoint clusters identified in the
feature selection phase of the procedure need to be further partitioned, to
identify groups of keypoints that correspond to similar image intensity distribu-
tions. Since keypoint descriptor structure is region-oriented, a region-wise con-
sistency among cluster member descriptors is examined. Region-wise histogram
similarity is evaluated based on a parametric histogram representation, through
modes and corresponding spreads of orientation distributions. As a result, ob-
ject keypoint sub-clusters that represent similar image distributions are identi-
fied. A class keypoint descriptor that corresponds to such a sub-cluster can be
computed by taking an element-wise median of sub-cluster member descriptors
(Fig. 4c).

Fig. 4. Keypoint orientation histograms for two sample members of the nose-region

cluster (a,b), a class keypoint descriptor candidate generated for one of its sub-clusters

(c) and the resulting class keypoint descriptor with discarded regions shown blank (d)

The last refinement of the presented strategy is aimed at increasing class
keypoint selectivity by focusing only on these regions around cluster keypoint
locations, which have similar image intensity distributions. For example, some
areas within a neighborhood of keypoints that are located in eye regions can be
repetitive, whereas some others, such as eye-lids with eye-lashes, can vary sig-
nificantly. Instead of admitting of inevitably large within-class scatters, a better
strategy is to selectively discard parts of a descriptor from a matching process.
This can be based on the assessment of a within-class scatter that exists for each
neighborhood region r among a set of considered object keypoints:
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sr =
1
8

8∑
b=1

N∑
i=1

∣∣cr,b − oir,b

∣∣ (1)

where cr,b is an element of the derived class keypoint descriptor that corresponds
to b − th bin of an r − th region, oir,b is an b − th element of an r − th region
of some i − th object keypoint and N is a number of object keypoints in the
considered sub-cluster. The following descriptor region acceptance threshold:

θ = E(sr) + kθσ(sr) (2)

is then computed for a class keypoint, where E(.) is an expectation, σ(.) de-
notes a standard deviation and kθ is a parameter. Only these descriptor regions
where sr < θ are included into a class keypoint descriptor. By varying the pa-
rameter kθ, i.e. the threshold level (2), different sets of keypoints with varying
numbers of excluded descriptor regions, can be generated. High descriptor region
acceptance thresholds yield keypoints with larger admissible region-wise inten-
sity differences, low thresholds yield more selective sets of keypoints. The class
keypoint descriptor, derived according to the proposed strategy, will contain re-
gions, which won’t be considered in testing for keypoint similarity, which has
been shown in Fig. 4d.

Fig. 5. Class keypoint descriptor derivation procedure

The adopted strategy for object class keypoint descriptor derivation has been
summarized in Fig. 5. Clusters of features that are consistent in space, scale and
location are subject to partitioning, based on region-wise orientation histogram
consistency analysis. Element-wise median of object keypoint descriptors from
resulting sub-clusters constitute preliminary candidates for corresponding class
keypoint descriptors. These candidates are subject to further refinement, aimed
at increasing their selectivity by excluding some descriptor regions. The last
step of the class keypoint derivation procedure is an estimation of the keypoint
match acceptance threshold, which is done by adding together within-class scat-
ter measures sr of all accepted regions. This value is assigned to every derived
class keypoint.
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4 Experimental Evaluation of the Procedure

A database of 1650 annotated frontal-view face images of 40 persons (taken
mainly from the ”BioId” database [9]) was used in our experiments. Train-
ing and test sets used for derivation of class keypoints as well as for image
recognition, were disjoint, i.e. they were containing faces of different persons.
SIFT algorithm parameters suggested in [1] (such as a number of scales used
within each resolution octave, edge response elimination thresholds, details of
orientation histogram generation etc.) were adopted throughout experiments.
Fifteen hundred images of thirty persons were used to derive several sets of ob-
ject class keypoints according to the presented procedure. Each of these sets,
which can be considered as a ’SIFT face prototype’, was constructed by setting
different values of the procedure parameters (such as kθ, clustering thresholds
etc.). The constructed face prototypes were composed on average of 25 class
keypoints.

The first objective of our experiments was to verify whether object class key-
points perform any better than object keypoints in detecting faces. To examine
that, results of test image analysis by means of the derived class keypoint sets
were compared to the results of processing with sets of object keypoints, ex-
tracted from multiple, randomly selected training images. For the case of class
keypoint matching, an average number of correct matches per test face image
varied between five and nine, depending on the selectivity of applied keypoints.
In the latter case, results of object keypoint matching were significantly worse,
regardless of a number of face images used for keypoint extraction (Fig. 6).

Fig. 6. Object keypoint matching versus class object matching performance

An objective of further experiments was to examine a performance of the
derived different SIFT face prototypes in the context of object recognition effi-
ciency. To achieve reasonable complexity of object class detection, a substantial
number of false matches should be eliminated prior to subsequent SIFT algo-
rithm steps. The adopted false match elimination mechanism, tests matching
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scores and rejects test image keypoints with excessive mismatch. Keypoint fil-
tering performance for two different sets of class keypoints, composed of less
selective keypoints (obtained for setting kθ from the equation (2) to 3) and more
selective keypoints (with kθ = 1), has been shown in Fig. 7. An experiment ob-
jective was to estimate a percentage of correct matches and false matches as a
function of the keypoint acceptance threshold. This threshold was varying from
Ti to 3 ∗ Ti, where Ti is an average scatter, associated with an i-th class key-
point. As it can be seen, a transition between two extreme cases - all keypoints
rejected and all keypoints accepted - is steep for SIFT face prototypes composed
of less selective keypoints. Since wide transition regions provide larger tolerance
for a threshold selection (it has to be preset prior to test image analysis, however
its exact value is data-dependent), face prototypes composed of more selective
keypoints should be used.

Fig. 7. Keypoint acceptance rates versus the acceptance threshold for three different

SIFT face prototypes: low selective keypoint set (left), selective keypoint set (middle)

and a set of well-performing selective keypoints (right). C denotes class keypoints,

O - object keypoints.

Results of an application of two different keypoint acceptance thresholds in
sample face detection task are shown in Fig. 8. As it can be seen, a number of
incorrect matches significantly exceeds a number of the correct ones, whereas a
proportion between the two remains similar (as shown in Fig. 7).

To increase an efficiency of object class detection it would be desirable to
change a proportion between correct and false match acceptance rates in favor of
the former category. To do that we decided to determine keypoints that account
for large numbers of correct matches as well as these ones that produce large
number of false matches. Typical correct and false match histograms for a sample
class keypoint set has been presented in Fig. 9.

As it can be seen, some keypoints unevenly contribute to correct and to false
match frequencies. Therefore, we decided to discard from the created SIFT face
prototypes all keypoints that produced an excessive amount of false matches. A
performance of sample resulting set is summarized in the right part of Fig. 7,
where 10 to 20 percent increase in a correct to false match acceptance ratio can
be observed.
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Fig. 8. Keypoint-matching results for two different keypoint acceptance thresholds T1

and T2 > T1: from left to right - keypoints accepted for T1, correct matches for T1,

keypoints accepted for T2, correct matches for T2, all image keypoints

Fig. 9. Sample histograms of correct matches (left) and false matches (middle) for

various feature regions; filled regions with well-performing keypoints (right)

5 Conclusion

A strategy for object class keypoint set derivation has been presented in the
paper. The proposed procedure includes two phases - a selection of keypoints that
correspond to characteristic class object features and a derivation of appropriate
class keypoint descriptors. It has been shown that using the proposed approach
it is possible to generate sets of keypoints that are capable of detecting object
classes. Also, a strategy for false match elimination, which is crucial for the
computational feasibility of the SIFT algorithm, has been proposed. Since this
strategy relies on data-driven keypoint acceptance threshold estimation, further
experiments involving other data sets still need to be performed, before any
decisive conclusions regarding SIFT robustness in object class detection can be
made.
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Abstract. The brief analysis of methods for contrast enhancement of
gray images is performed. The application of fuzzy logic for image bi-
narization and contrast enhancement is emphasized. The drawbacks of
known methods are shown. To transfer from spatial domain to fuzzy
one by the way of additional optimization of the of S-type membership
function shape over its steepness by the change of order, which can be
both whole number and fractional one, is proposed. The new method of
image reconstruction from the smoothed one after the local contrast en-
hancement in the fuzzy domain is applied. The effectiveness of proposed
method is illustrated on the examples.

1 Introduction

Fuzzy logic, introduced by L. Zadeh in 1965, has found wide application in image
processing, particularly in different analysis systems, in 70th-80th years of last
century. The distinguishing feature of this period is the fact that problem of
binary image formation from its halftone initial one was solved. Several papers
will be enumerated here, among which the most typical is [6], where the classical
for nowadays way of halftone image binarization is described. In the Ref. [5]
method of construction of fuzzy membership function is proposed. It also was
implemented in the halftone image processing with the purpose of the formation
of its binary representation. Simultaneously, the automation of the process of
text and sign recognition also caused further development of image processing
methods based on fuzzy logic [3, 7]. And only in posterior papers [8, 9] the
methods of gray image enhancement in the sense of their detalization and quality
increase for visual perception were proposed.

These approaches, as well as described in [1, 2], made the application of fuzzy
logic an effective tool for image quality enhancement, in spite of some process-
ing time increasing in comparison with classical method in the spatial domain
[4]. Their advantage is a possibility to represent image details on the multiplex
nonuniform background in more qualitative way. But the disadvantage of exist-
ing approaches is an unsolved problem of improved image contrast management
and receiving of its significant increasing without the distortion of multiplex el-
ements of the background. It is known, the image contrast enhancement with
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the lost of weak contrast details, when significant contrast of image is reached
by actual transformation of halftone image into close to binary one – is not a
problem. The purpose of this paper is the development of approach to widening
of range of halftone image contrast intensification in general, and preserving the
structure of fine details.

2 Membership Functions

The approach to image contrast enhancement, proposed by us, uses some known
steps, namely connected with information lost minimization at the transition to
fuzzy domain and noise influence suppression. Lets consider them further.

2.1 One Parameter Optimization of Membership Function

In the Ref. [1], which was taken for the basis of our modification of image
contrast enhancement approach, was proposed the way of selection for the S-
type function such one, which is specified by parameters a, b, and c and is
defined as

μX(xmn) = S(xmn, a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a,
(x− a)2

(b − a)(c− a)
, if a < x ≤ b,

1− (c− x)2

(c− b)(c− a)
, if b < x ≤ c,

1, if x > c,

(1)

where xmn – gray level value for the pixel of input image, which is considered as a
set of fuzzy singletons, with dimension M×N, m = 1, 2, . . .M, n = 1, 2, . . . N .

Notice that expression (1) is a generalization of the following membership
functions

μ(x) = S(x, a, b, c) =
{

1− 2(1− x)2 , if x ≤ 0.5,
2x2 , if x > 0.5, (2)

and [13, 14]

μ(x) = S(x, a, b, c) =
{

1− 2n−1(1− x)n , if x ≤ 0.5,
2n−1xn , if x > 0.5, (3)

where n ∈ N .
However, the class of membership functions can be significantly expanded by

the nonlinear transformation

μ∗(x) = F (μ(x)) , (4)

satisfying requirements:

F (μ(x)) ∈ [0, 1], F (μ(x2)) ≥ F (μ(x1)) when x2 ≥ x1.
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That is those transformations create new monotone membership function
μ∗(x) with range [0,1].

As an example for the nonlinear transformation function F (·) power function
with positive real power γ can be chosen:

F (μ(x)) = (μ(x))γ
. (5)

Figure 1 demonstrates shapes of function (3) with transformation by power
function (5) depending on values of exponent n and γ.

(a) (b)

(c) (d)

Fig. 1. Shape of membership function (5) depending on values of powers n and γ:
(a) n=2, γ=2; (b) n=2, γ=0,5; (c) n=2, γ=1; (d) n=3, γ=2

It follows that S-function is integer-order, mainly second-order [5]. At the
same time we’ll notice, that parameters a and c are chosen from the reflection of
noise influence minimization [1], and parameter b is determined as the solution
of optimization problem, reasoning from the initial conditions b ∈ [a+1, c−1] and
find an optimum value bopt such that fuzzy entropy H , by which the transformed
by means of membership function image is estimated, is maximized:

Hmax(X ; a, bopt, c) = max {H(X ; a, b, c |Lmin ≤ a < b < c ≤ Lmax)} , (6)
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where Lmin, Lmax minimum and maximum grayscale values of input image ele-
ments. Entropy of the fuzzy set is defined as

H(x) =
1

MN

N∑
n=1

M∑
m=1

Sf (μX(xmn)), (7)

where Sf (·) is a Shannon function

Sf (μX(xmn)) = −μX(xmn) log2 μX(xmn)− (1− μX(xmn)) log2(1− μX(xmn)).
(8)

The drawback of the known method is the fact that optimization of mem-
bership function for the a and c parameters determination is held only by the
way of choosing such a parameter b, at which fuzzy entropy (7) of transformed
image in fuzzy domain is maximized. At that, fact that S-shaped function can
be not necessary second order, but another one, including fractional, isn’t taken
into consideration. That’s why the optimization should be performed both at
the selection of b ∈ [a + 1, c − 1] and at another parameter – selection of order
α of Sα-function, such that α ∈[αmin, αmax]. Furthermore, a new membership
function (Fig.1) gained by nonlinear transformation (4) can be used.

2.2 Membership Functions of Real Order

In [11] we enlarged the possibility of construction of S-type membership functions
by adding to the existing S-functions of integer order – second, third, fourth [5],
new ones of real order Sα for which the power α is positive real number α ≥1. At
that the function Sα(x) is constructed in such a way, that at position of joint of two
units of power functions derivative dSα(x)/dx exists and is a continuous function.

3 Three Stage Image Processing

Three-stage image processing consists in optimal transformation of input image
from spatial domain into fuzzy one through calculation of optimal membership
function. At the second stage the amplification of local contrasts at the fuzzy
domain is performed. At the third stage the improved image is reconstructed by
the way of its transformation from fuzzy domain to spatial one.

3.1 Two-Parameter Optimization of Membership Function

The minimum αmin and maximum αmax values of power α of membership func-
tion order were specified by us for the two-stage optimization of membership
function, described as

μ
(α)
X (x; a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a,
(x− a)α

(b− a)α−1(c− a)
, if a < x ≤ b,

1− (c− x)α

(c− b)α−1(c− a)
, if b < x ≤ c,

1, if x > c.

(9)
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After that the optimal value of parameter b, which maximizes fuzzy entropy,
was determined for the chosen membership function μ

(α)
X

Hα
max(X ; a, bopt, c, α) = max {H(X ; a, b, c, α |Lmin ≤ a < b < c ≤ Lmax)} ,

(10)
and for the optimal maximal among all Hα

max was chosen:

Hmax = max
αmin≤α≤αmax

{Hα
max(X ; a, b, c, α).} (11)

Thus the optimal fuzzy membership function μ
(α)
X is selected.

3.2 Local Contrast Intensification in Fuzzy Domain

Since the goal of this paper is widening of range of halftone image contrast
intensification in general, and preserving the structure of fine details, the different
from accepted in [1] way of local contrast intensification in fuzzy domain was
chosen by us. Approach described in [10] was taken for the basis.

Local contrast of image element in fuzzy domain is defined as in [1]

Cμ(xmn) =
|μα(xmn)− Eμ(xmn)|
[μα(xmn) + Eμ(xmn)]

, (12)

where Eμ(xmn) – mean gray value in moving window W of size r × s in fuzzy
domain for pixel with coordinates (m,n).

Nonlinear enhancement of local contrast was held using power function

C∗
μ(xmn) = (Cμ(xmn))σ

, (13)

but the averaged value was reconstructed in accordance with [11]

E′
μ(xmn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μα(xmn)

(
1 + C∗

μ(xmn)
)(

1− C∗
μ(xmn)

) : μα(xmn) ≤ Eμ(xmn),

μα(xmn)

(
1− C∗

μ(xmn)
)(

1 + C∗
μ(xmn)

) : μα(xmn) > Eμ(xmn),
(14)

After that the reconstruction of enhanced fuzzy value of image element mag-
nitude was held by the expression

μ∗(xmn) = μα(xmn) + β · r · s · (Eμ(xmn)− E′
μ(xmn)), (15)

where β is normalizing factor.

3.3 Reconstruction of Enhanced Image

For the reconstruction of enhanced image the described in [11] formula of tran-
sition from fuzzy domain to spatial one by the function inverse to membership
function (9) is used:
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x∗ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lmin, μ∗(xij) = 0,

Lmin + Lmax − Lmin
(c− a)

[
(b − a)α−1(c− a)μ∗(xij)

] 1
α ,

0 < μ∗(xij) ≤ b− a
c− a ,

Lmin + Lmax − Lmin
(c− a)

{
c− a−

[
(c− b)α−1(c− a)(1 − μ∗(xij))

]} 1
α ,

b− a
c− a ≤ μ∗(xij) < 1,

Lmax, μ∗(xij) = 1,
(16)

that allows to form image with enhanced local contrasts and amplified image
contrast as a whole.

4 Experimental Studies

The described approach (9)-(16) is illustrated on the example of contrast en-
hancement of Orthophoto image. The results of those investigations are presented
in the Figure 2. Sliding window Wof size r = s=15 and local contrast enhance-
ment (13) with power σ=0.75 and reconstruction with β = 0.01 were used. The
generalized contrast Cgen [12] and fuzzy entropy H were calculated for every
image, that additionally demonstrates effectiveness of proposed approach. The
value α, which is the order of membership function μ

(α)
x (11), is also specified. At

the Fig. 2 are presented: (a) – Orthophoto image; (e) – histogram of image (a);
(b) – result of image (a) processing by method [1]; (f) – histogram of image (b);
(c) – result of image (a) processing by the proposed method (α=1.1); (g) – his-
togram of image (c); (d) – result of image (a) processing by the proposed method
without the optimization by the parameter α; (h) – histogram of image (g).

(a) Cgen= 0.180 (b) Cgen= 0.328, (c) Cgen= 0.400, (d) Cgen= 0.438,
H= 0.798 H =0.889 H= 0.798

(e) (f) (g) (h)

Fig. 2. Contrast enhancement for image Orthophoto and their histograms
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(a) Cgen= 0.180 (b) (c) Cgen= 0.617, (d)
H =0.955

(e) Cgen= 0.077 (f) (g) Cgen= 0.617, (h)
H =0.859

(i) Cgen= 0.236 (j) (k) Cgen= 0.474, (h)
H =0.902

Fig. 3. Contrast enhancement, using approach with power transformation (5) of mem-
bership function (9) – input images, enhanced images and their histograms

The analysis of images (a), (b), (c) and (d) confirms effectiveness of proposed
approach by the receiving of greater values of generalized contrast and better
amplification of pure contrast images. The effectiveness of two parameters opti-
mization of fuzzy membership function is well illustrated by Fig. 2 (c) and (d).
The last one is received without optimization by the parameter α that allowed
getting greater generalized contrast Cgen then in the Fig. 2 (c), but at the same
time lower contrast of fine details.

The results of two-parameter optimization with the usage of membership func-
tion nonlinear transformation (5), in particular power function, are shown in
Figure 3 on the examples of Orthophoto, Beans and Town images. Sliding win-
dow Wof size r = s=15 and local contrast enhancement (9) with power σ=0.75
and β = 0.01 were used. At the Fig. 3 are presented: (a), (e), (i) – original
images, (b), (f), (j) – histograms of original images, : (c), (g), (k) – results
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of images (a), (e), (i) processing, (d), (h), (l) – histograms of images (c), (g),
(k) accordingly. Values of generalized contrast Cgenand fuzzy entropy H are
shown.

Some artifacts can appear while processing images with homogeneous back-
ground. We propose method for such artifact suppression which consist in mod-
ification of image reconstruction in fuzzy domaine (11):

μ′α(xmn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μα(xmn) + q · β · r · s ·

∣∣∣ 1q (Eμ(xmn)− E′
μ(xmn)

)∣∣∣λ∣∣Eμ(xmn)− E′
μ(xmn)

∣∣ ≤ q,
μα(xmn) + β · r · s · (Eμ(xmn)− E′

μ(xmn)),∣∣Eμ(xmn)− E′
μ(xmn)

∣∣ > q,

(17)

where λ ∈ (1, 2], q ∈ [0.1, 0.5] –coefficients of artifacts formation decrease on
homogeneous regions of large size. It is necessary to select specified values of
parameters λ and q for each image individually.

Essence of this modification can be illustrated by the graph shown on Fig.4.

Fig. 4. Graph of reconstruction modification (17) for artifacts suppression (λ=1.2,
q=0.5)

Variation of additional parameter λ allows to reduce artifacts in enhanced
image.

This algorithm is illustrated on the example of Capitol image on Fig.5. Here
(a) is an original image; (d) – its histogram; (b) – image (a) enhanced using
approach with power transformation of membership function (5) (α=0.5, γ=2,
β = 0.01); (e) – its histogram; (c) – image (a) enhanced using approach with
power transformation of membership function (5) and reconstruction modifica-
tion in fuzzy domain (17) (α=0.5, γ=2, β = 0.01, λ=1.4); (g) – its histogram.
From comparison of images (b) and (c) one can see that proposed method signif-
icantly reduces artifacts on homogeneous background, though slightly decreases
a value of generalized contrast.
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(a) Cgen= 0.228 (b) Cgen= 0.460 (c) Cgen= 423
H =0.908

(d) (e) (f)

Fig. 5. Illustration of algorithm for artifact removal

5 Conclusion

A new approach of two-parameter optimization of membership function by the
maximum of fuzzy entropy of halftone image criterion is proposed. It is real-
ized by the construction of membership function of real order. It allows to reach
greater values of generalized contrast in transformed images at simultaneous
preserving of fine details that made these images more informative and more
acceptable for the analysis. Proposed approach to the construction of new mem-
bership functions through nonlinear transformation of classical S-type member-
ship functions allows to enlarge the region of search of optimal transition to
fuzzy domain by the principal of fuzzy entropy maximum. It becomes apparent
in better visualization of fine details on the images with poor contrast, regardless
of the dark or light background of these details. If image has homogenous object
of large size, which can be interpreted as background than developed method
decreases possibility of artifact formation through abundant intensification of
small differences of pixel local contrast.
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Non-negative Matrix Factorization

with Quasi-Newton Optimization
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Abstract. Non-negative matrix factorization (NMF) is an emerging
method with wide spectrum of potential applications in data analysis,
feature extraction and blind source separation. Currently, most applica-
tions use relative simple multiplicative NMF learning algorithms which
were proposed by Lee and Seung, and are based on minimization of the
Kullback-Leibler divergence and Frobenius norm. Unfortunately, these
algorithms are relatively slow and often need a few thousands of itera-
tions to achieve a local minimum. In order to increase a convergence rate
and to improve performance of NMF, we proposed to use a more general
cost function: so-called Amari alpha divergence. Taking into account a
special structure of the Hessian of this cost function, we derived a rela-
tively simple second-order quasi-Newton method for NMF. The validity
and performance of the proposed algorithm has been extensively tested
for blind source separation problems, both for signals and images. The
performance of the developed NMF algorithm is illustrated for separation
of statistically dependent signals and images from their linear mixtures.

1 Introduction and Problem Formulation

Non-negative matrix factorization (NMF) [1, 2, 3, 4, 5] decomposes the data
matrix Y = [y(1),y(2), . . . ,y(K)] ∈ R

M×K as a product of two matrices
A ∈ R

M×R and X = [x(1),x(2), . . . ,x(K)] ∈ R
R×K having only non-negative

elements. Although some decompositions or matrix factorizations provide an ex-
act reconstruction data (i.e., Y = AX), we shall consider here decompositions
which are approximative in nature, i.e.,

Y = AX + V , A ≥ 0, X ≥ 0 (1)

or equivalently y(k) = Ax(k) + v(k), k = 1, 2, . . . ,K or in a scalar form as
ym(k) =

∑R
r=1 amrxr(k) +νm(k), m = 1, . . . ,M, where V ∈ R

M×K repre-
sents noise or error matrix, y(k) = [y1(k), . . . , yM (k)]T is a vector of the ob-
served signals (typically nonnegative) at the discrete time instants1 k while
� On leave from Institute of Telecommunications, Teleinformatics and Acoustics, Wro-

claw University of Technology, Poland.
�� On leave from Warsaw University of Technology, Poland.
1 The data are often represented not in the time domain but in a transform domain

such as the time frequency domain, so index k may have different meaning.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 870–879, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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x(k) = [x1(k), . . . , xR(k)]T is a vector of components or source signals at the
same time instant [6]. Our objective is to estimate the mixing (basis) matrix A
and sources X subject to nonnegativity constraints all entries. Usually, in Blind
Source Separation (BSS), to which NMF is applied in this paper, K >> M ≥ R
andR is known or can be relatively easily estimated using SVD or PCA. Through
this paper, we use the following notations: xr(k) = xrk, ym(k) = ymk and
zmk = [AX]mk means mk-element of the matrix (AX), the mr-th element of
the matrix A is denoted by amr.

The basic approach to NMF is alternating minimization or alternating pro-
jection: the specified loss function is alternately minimized with respective to
two sets of the parameters {xrk} and {amr}, each time optimizing one set of
arguments while keeping the other one fixed [7, 2, 6].

One of the NMF algorithms, which was proposed by Lee and Seung [2], alter-
natively minimizes the Kulback-Leibler (KL) divergence

DKL(AX||Y ) =
∑
mk

(
ymk log

ymk

[AX]mk
+ [AX]mk − ymk

)
(2)

s. t. xrk ≥ 0, amr ≥ 0, ‖ar‖1 =
M∑

m=1

amr = 1.

with multiplicative update rules based on a gradient descent approach [6]. This
leads to the following algorithm

xrk ← xrk

∑M
m=1 amr (ymk/[AX]mk)∑M

q=1 aqr

, (3)

amr ← amr

∑K
k=1 xrk (ymk/[AX]mk)∑K

p=1 xrp

. (4)

This algorithm extends (by alternating minimization) the well-known EMML
or Richardson-Lucy algorithm (RLA) [8]. Another Lee-Seung algorithm mini-
mizes the square Euclidean distance (Frobenius norm) with the same alternating
approach.

The multiplicative descent algorithms are known to be very slowly-convergent
and easily stuck in local minima. One of the way to speed up the convergence
is to modify the learning rate in an iterative scheme. In this paper, we address
this issue with second-order approximations of the loss function, i.e. with the
quasi-Newton method.

2 Quasi-Newton Optimization

The KL divergence (2) is a particular case of the Amari alpha-divergence [9, 10,
11] defined as

DA(AX||Y ) =
∑
mk

ymk
(ymk/zmk)α−1 − 1

α(α− 1)
+
zmk − ymk

α
, zmk = [AX]mk (5)
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This case takes place if α → 1, and for α → 0 the dual KL can be derived.
For α = 2, 0.5,−1, we obtain the Pearson’s, Hellinger and Neyman’s chi-square
distances, respectively.

Applying the quasi-Newton method to (5), we have

X ←
[
X − [H(X)

DA
]−1∇XDA

]
ε
, A ←

[
A− [H(A)

DA
]−1∇ADA

]
ε
, (6)

where H
(X)
DA

and H
(A)
DA

are Hessians, ∇XDA and ∇ADA are gradients matrices
for (5) with respect to X and A, respectively. The nonlinear operator [·]ε =
max{·, ε} enforces nonnegativity.

The gradients with respect to X can be expressed as

G
(X)
DA

= ∇XDA =
1
α

AT (1
¯
− (Y ./(AX))α) ∈ R

R×K , (7)

where ./ is a Hadamard division. The Hessian has the form: ∀i ∈ {1, . . . , R}, j ∈
{1, . . . ,K} :

[H(X)
DA

]ij =
∂2DA

∂xrk∂xij
=

⎧⎪⎨⎪⎩
M∑

m=1

amr y
α
mk ami

(
∑R

s=1 ams xsk)α+1
, for j = k, i = s

0, otherwise

, (8)

or in a block matrix

H
(X)
DA

=
1
α

diag{[h(X)
k ]k=1,...,K} ∈ R

RK×RK (9)

where
h

(X)
k = AT diag{[Y α./(AX)α+1]∗,k}A ∈ R

R×R

Similarly for A, we get

G
(A)
DA

= ∇ADA =
1
α

(1
¯
− (Y ./(AX))α) XT ∈ R

M×R. (10)

The Hessian has the form: ∀i ∈ {1, . . . ,M}, j ∈ {1, . . . , R} :

[H(A)
DA

]ij =
∂2DA

∂amr∂aij
=

⎧⎪⎨⎪⎩
K∑

k=1

xrk y
α
mk xjk

(
∑R

s=1 ams xsk)α+1
, for j = s, i = m

0, otherwise

, (11)

or in a block matrix

H
(A)
DA

=
1
α

diag{[h(A)
m ]m=1,...,M} ∈ R

MR×MR (12)

where
h(A)

m = X diag{[Y α./(AX)α+1]m,∗}XT ∈ R
R×R
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Since the Hessian is usually ill-conditioned, especially if we have sparse rep-
resentations of the image to be estimated, some regularization of the Hessian is
essential, which leads to a quasi-Newton iterations. We applied the Levenberg-
Marquardt approach with a small fixed regularization parameter λ = 10−12.
Additionally we control the convergence by a slight relaxation of the iterative up-
dates. To reduce substantially a computational cost, the inversion of the Hessian
is replaced with the Q-less QR factorization computed with LAPACK. Thus the
final form of the algorithm with the quasi-Newton algorithm is

X ← [X − γRX\W X]ε , A ← [A− γRA\WA]ε , (13)

W X = QT
X∇XDA, QXRX = H

(X)
DA

+ λIX,

W A = QT
A∇ADA, QARA = H

(A)
DA

+ λIA,

where IX ∈ R
RK×RK , IA ∈ R

MR×MR are identity matrices, RX and RA are
upper triangular matrices, and γ controls the relaxation. We set γ = 0.9. The \
in (13) means the Gaussian elimination.

For α → 0, the Amari alpha-divergence converges to the dual I-divergence
(generalized K-L divergence), i.e.

DKL2(Y ||AX) = lim
α→0

DA(AX||Y ) (14)

=
∑
mk

(
zmk log

zmk

ymk
+ ymk − zmk

)
, zmk = [AX]mk,

and consequently the gradient and Hessian matrices simplify as follows:

– For X:

G
(X)
DKL2

= ∇XDKL2 = AT log ((AX)./Y ) ∈ R
R×K , (15)

and

H
(X)
DKL2

= diag{[h(X)
k ]k=1,...,K} ∈ R

RK×RK , (16)

where
h

(X)
k = AT diag{[1./(AX)]∗,k}A ∈ R

R×R.

– For A:

G
(A)
DKL2

= ∇ADKL2 = log ((AX)./Y )XT ∈ R
M×R, (17)

and

H
(A)
DKL2

= diag{[h(A)
m ]m=1,...,M} ∈ R

MR×MR, (18)

where
h(A)

m = X diag{[1./(AX)]m,∗}XT ∈ R
R×R.

In each alternating step, the l1-norm of the columns of A are normalized to
a unity, i.e. we have: amr ← amr∑M

m=1 amr

.



874 R. Zdunek and A. Cichocki

3 Fixed-Point Algorithm

In our application, X has much larger dimensions than A, and hence, the com-
putation of X with the Newton method may be highly time-consuming or even
intractable, even though the Hessian is very sparse. Let us assume some typical
case: M = 20, R = 10, and K = 1000. Thus the Hessian H(A) has size 200 by
200 with MR2 = 2 × 103 non-zero entries, but the size of H(X) is 104 by 104

with KR2 = 105 non-zero entries. For this reason, we do not apply the Newton
method for updating X. This can be also justified by the fact that the compu-
tation of A needs to solve the system which is much more over-determined than
for X, and hence, this may be better done with the second order method since
the information about the curvature of the cost function is exploited. In our
approach, we apply the Newton method to the generalized cost function (Amari
alpha-divergence).

In this paper, the sources X are basically estimated with the EMML and
Fixed-Point (FP) algorithms.

In general, the FP algorithm solves a least-squares problem

X∗ = arg min
X

{
1
2
||Y −AX||2F

}
(19)

with the Moore-Penrose pseudo-inverse of a system matrix, i.e. in our case, the
matrix A. Since in NMF M ≥ R, we formulate normal equations as AT AX =
AT Y , and the least-squares solution of minimal l2-norm to the normal equations
is XLS = (AT A)−1AT Y = A+Y , where A+ is the Moore-Penrose pseudo-
inverse of A. The cost function given by the square Euclidean distance as in (19)
works the best with Gaussian noise (matrix V in (1)), however, the computation
of A uses the Amari alpha-divergence which is optimal for a wide spectrum of
signal distributions.

The computation of X is usually improved with the prior knowledge about
the source representations, such as sparsity and/or smoothing. The informa-
tion about a structure of the estimated sources is usually incorporated to the
cost function in the form of the additional term that regularizes the solution.
Thus, the cost function in (19) is extended to the regularized squares Euclidean
distance, and the problem to be solved becomes:

X∗ = argmin
X

{
1
2
||Y −AX||2F + αXΩ(X)

}
, (20)

where Ω(X) is a regularization function, and αX ≥) is a regularization parame-
ter. The minimal-norm least-square solution to (20) is given by:

XLS = (AT A + αXC)−1AT Y , (21)

where C ∈ R
R×R is some discrete representation of the regularization term

Ω(X).
There are many possibilities for defining Ω(X). For example, we have the

basic Tikhonov regularization for Ω(X) = ||X||2F , which leads to C = IR, where
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IR ∈ R
R×R is an identity matrix. This operator enforces a smooth solution. In

many applications, Ω(X) is a first or second derivative of the solution, or it is
given by the Total Variation (TV) term. For more regularization operators, e.g.
see [12, 13, 14].

Due to sparse solutions in NMF, we introduce some new approach, i.e. we
assume that C = E ∈ R

R×R, where E is a matrix composed from all ones
entries. The regularization parameter is set according to the exponential rule,
i.e.

αX = α
(k)
X = α0 exp{−τk}, (22)

where k is a number of alternating steps. This rule is motivated by a temperature
schedule in the simulated annealing that steers the solution towards a global one.
Thus, larger parameter α0 and smaller τ should give better results but at the
cost of high increase in a number of alternating steps. In our simulations, we set
α0 = 20 and τ = 0.02 for 1000 alternating steps.

Another simple approach that can be used for controlling sparsity of estimated
variables is to apply nonlinear projections with suitable nonlinear monotonic
functions. In this paper, the EMML updates are modified by a very simple non-
linear transformation xrk ← (xrk)1+αsX , ∀k, where αsX is a small coefficient,
typically from 0.001 to 0.005, and it is positive or negative to increase or decrease
the sparseness, respectively.

Since the Newton method does not ensure a nonnegative solution, we enforce
a nonnegative solution through a very simple nonlinear projection as in (6),
which is applied to both sets of the arguments (X and A). The same nonlinear
projection is also applied to (21). Moreover, since E is singular, and AT A may
be very ill-conditioned, especially for sparse solutions, the inversion in (21) is
done with the Moore-Penrose pseudo-inverse instead of the standard one. Thus
the updating of X in the (k+1)-th alternating step is performed with the novel
algorithm:

X(k+1) ← max
{
ε, ([AT A](k) + α

(k)
X E)+[AT ](k)Y

}
, (23)

where A(k) is the update of A from the k-th alternating step.

4 Results

The proposed algorithms have been extensively tested for many benchmarks of
signals and images. The original 4 images [Fig. 1(a)] and the original 9 signals
[Fig. 2 (a)] have been mixed with uniform distributions, where A(i) ∈ R

9×4 and
A(s) ∈ R

18×9 are dense mixing matrices for the images and signals, respectively.
The mixtures are shown in Figs. 1 (b) and 2 (b). The results obtained with the
traditional Lee-Seung algorithm (3) and (4), which has been applied to estima-
tion of both A and X, are presented in Figs. 1 (c) and 2 (c). The separations
are quantified with Signal-to-Interference Ratios (SIRs) that have the following
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(a) (b)

(c) (d)

Fig. 1. Example 1: (a) Original 4 source images; (b) observed 9 mixed images; (c)

Estimated source images using the standard Lee-Seung algorithm for KL function (2)

(SIR = 5.5dB, 12.5dB, 9dB, 6dB, respectively); (d) Estimated source images using the

new EMML-Newton algorithm for α = 2 with nonlinear projection αsX = 0.002 with

SIR=47dB, 45dB, 50dB, 44dB, respectively

values: 5.5, 12.5, 9, 6 [dB] for the images, and 1, 7.6, 5.9, 4.9, 4.4, 9.8, 5.9, 10.7,
3.7 [dB] for the signals. Applying the quasi-Newton method only to estimation
of A, and the nonlinear transformation with αsX = 0.002 to the same Lee-Seung
algorithm (EMML) we obtained much better results which are shown in Fig. 1
(d). The SIRs are as follows: 47, 45, 50, 44 [dB]. The similar performance can
be obtained for signals. Furthermore, the results can be even much better if the
sources X are estimated with the Fixed-Point algorithm – see Fig. 2 (d). For
this case, we have all the SIRs above 110 [dB], which is nearly a perfect result.
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(a) (b)

(c) (d)

Fig. 2. Example 2: (a) Original 9 source signals; (b) observed 18 mixed signals; (c)

Estimated source signals with the standard Lee-Seung algorithm for KL function (2)

(SIR = 1, 7.6, 5.9, 4.9, 4.4, 9.8, 5.9, 10.7, 3.7 [dB], respectively); (d) Estimated source

signals with new Fixed-Point – Quasi-Newton algorithm with SIR = 130.8, 126.6, 135.9,

129.6 135.9, 129.5, 133.7, 119.5, 137.4 [dB], respectively

For a sparse mixing matrix, the results can be even better. For estimating A
we set α = 2, but satisfactory results can be obtained for α ∈ [−1, 2].

The cost functions (2) and (19) are convex with respect to only one set of the
arguments (X or A). In the whole set of the arguments, both functions are non-
convex, and hence, the alternating minimization may get stuck easily in local
minima. To check how plausible are the single estimations given by the tested
algorithms, the Monte Carlo analysis is carried out from 100 SIR samples in
each case. We tested four different algorithms. Fig. 3 (a) presents the histogram
of the SIR samples obtained with the traditional Lee-Seung algorithm. Applying
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(a) (b)

(c) (d)

Fig. 3. Histograms from 100 SIR samples generated with the following algorithms ini-

tialized from uniformly distributed random initial matrices A and X : (a) A – EMML,

X – EMML; (b) A – Quasi-Newton, X – EMML; (c) A – Quasi-Newton, X – EMML

with 3 inner iterations and αsX = 0.001; (d) A – Quasi-Newton, X – Fixed-Point

(with exponential rule for damping parameter)

the quasi-Newton only to estimation of A, the mean-SIR performance increased
more than twice – see Fig. 3 (b). Then, improving the estimation of X with
the nonlinear projection with αsX = 0.001, and using a few inner iterations
for updating X in each alternating step, the performance substantially goes
up [Fig. 3 (c)]. However, the extremely good performance is obtained with the
hybrid connection of the FP and quasi-Newton algorithm, which is illustrated
in Fig. 3 (d). The global solution with the exponential rule is reached 90% times
for 100 trials, and such a good performance is not possible to get with the other
tested algorithms. However, the rest 10% trials are still quite far from the desired
solution, and this problem will be analyzed in our further research.
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5 Conclusions

In this paper, we proposed a new hybrid algorithm for NMF, which demonstrates
a very good performance. We have confirmed by the extensive simulations that
the proposed algorithm can successfully separate signals and images, especially
if a suitable regularization/projection is applied. Changing parameter α in the
Amari alpha-divergence, we can tune the algorithm to minimize the influence of
noisy disturbances in data. The free parameters in the exponential rule (22) steer
the updates towards the global solution. All the parameters can be estimated
from data, but this issue will be a subject of our future research. The detailed
description of our other algorithms for NMF can be found in [15].
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[13] Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia

(1996)
[14] Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadel-

phia (1998)
[15] Cichocki, A., Zdunek, R.: NMFLAB for Signal Processing. Technical report,

Laboratory for Advanced Brain Signal Processing, BSI RIKEN, Saitama, Japan
(2006) http://www.bsp.brain.riken.jp.



Active Mining Discriminative Gene Sets

(Invited)

Feng Chu and Lipo Wang

College of Information Engineering, Xiangtan University,
Xiangtan, Hunan, China

School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore

elpwang@ntu.edu.sg

Abstract. Searching for good discriminative gene sets (DGSs) in mi-
croarray data is important for many problems, such as precise cancer
diagnosis, correct treatment selection, and drug discovery. Small and
good DGSs can help researchers eliminate “irrelavent” genes and focus
on “critical” genes that may be used as biomarkers or that are related
to the development of cancers. In addition, small DGSs will not impose
demanding requirements to classifiers, e.g., high-speed CPUs, large mem-
orys, etc. Furthermore, if the DGSs are used as diagnostic measures in
the future, small DGSs will simplify the test and therefore reduce the
cost. Here, we propose an algorithm of searching for DGSs, which we
call active mining discriminative gene sets (AM-DGS). The searching
scheme of the AM-DGS is as follows: the gene with a large t-statistic
is assigned as a seed, i.e., the first feature of the DGS. We classify the
samples in a data set using a support vector machine (SVM). Next, we
add the gene with the greatest power to correct the misclassified sam-
ples into the DGS, that is the gene with the largest t-statistic evaluated
with only the mis-classified samples is added. We keep on adding genes
into the DGS according to the SVM’s mis-classified data until no error
appears or overfitting occurs. We tested the proposed method with the
well-known leukemia data set. In this data set, our method obtained
two 2-gene DGSs that achieved 94.1% testing accuracy and a 4-gene
DGS that achieved 97.1% testing accuracy. This result showed that our
method obtained better accuracy with much smaller DGSs compared to
3 widely used methods, i.e., T -statistics, F -statistics, and SVM-based
recursive feature elimination (SVM-RFE).

1 Introduction

Accurate classification of homogenous cancers is a key problem for disease di-
agnosis, treatment selection, pathology research, and drug discovery. In recent
years, gene expression profiles have been extensively applied to classifying can-
cers at the molecular level [5,13,14]. A typical gene expression data set can be
described as a high dimensional n × m matrix B. In B, each column stands
for a cancer sample (i.e., an observation) and each row stands for a gene. Here
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m usually ranges from several tens to over one hundred and n usually ranges
from several thousands to tens of thousands. Since n is much larger than m,
it is of great importance to select a group genes (rather than use all of them)
for classification because of the following two points. First, among all the genes,
only a part of them have discriminating power. Furthermore, some genes even
act as “noise” and undermine the classification accuracy. Second, some genes are
highly correlated and their expression profiles behave very similarly in classifi-
cation. Excluding some of such correlated genes will reduce redundancy in the
discriminative gene sets (DGS).

Since mid-1990s, a number of gene selection approaches [8,9,11,12,10,15] have
been proposed. Most of these methods can be regarded as filter schemes [20],
which first rank genes according to their discriminative ability and then select
a certain number (e.g., 20, 50, or 100) of top-ranked genes for classification.
Although these top-ranked genes can lead to highly accurate classification re-
sults, they may still contain great redundancy. Some other methods use wrapper
scheme [20]. In [1], a support vector machine based recursive feature elimination
method (SVM-RFE) is proposed, which eliminates unimportant genes (i.e., the
genes with little or no discriminating power) or redundant genes one by one from
the initial gene set that includes all the genes. Since the SVM-RFE usually has to
eliminate several hundreds or thousands genes to obtain a final DGS, it requires
a large amount of computing time. In [17], a method called Markov blanket was
used to reduce redundancy in DGSs. Since the Markov blanket mainly focus
on reducing redundancy, it does not guarantee that the resulting DGS has very
good discriminating power. In [7], Wang et al. proposed a method that uses un-
supervised clustering to identify the redundancy in DGSs and then reduced the
redundancy by “collapsing dense clusters”. They firstly rank all the genes and
then select some top-ranked genes. After that, they cluster these “pre-selected”
genes and pick out a representative gene for each cluster. The DGSs were formed
using these representative genes. Although this method is able to reduce the re-
dundancy of DGSs, the obtained DGSs are often not optimal because of the
following reasons. (a) The cooperation among clusters and their representatives
are not optimal; (b) A gene sometimes cannot represent the whole cluster, espe-
cially when the cluster contains more genes than other clusters. In [24], Liu et
al. used entropy to reduce the redundancy of DGSs. However, the computaion
of entropy needs to know or estimate the very complicated probability density
function of training samples, which prevents the entropy-based method becoming
popular for this application.

Here we propose a simple yet very effective and efficient method of searching
for DGSs that lead to high classification accuracy. Our method is a top-down
forward wrapper search scheme, which is much more computationally efficient
than the SVM-RFE scheme [1] and is able to greatly reduce the redundancy of
DGSs by considering the cooperation among genes.

The rest of this paper is organized as follows. In Section 2, we introduce
our SVM-based method of searching for DGSs, i.e., active mining discriminative
gene sets (AM-DGS), and its related techniques. In Section 3, we apply our
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SVM-based AM-DGS algorithm to the well-known benchmark gene expression
data sets, i.e, the leukemia data set [5]. In Section 4, we discuss our results and
conclude the paper.

2 Active Mining Discriminative Gene Sets

Recently, active learning has attracted great attention in the machine learning
field because of its self-learning ability [2,3,22,23]. An active learner, AL, has
three components {X,F,Q}. Here X is the input matrix. F is the mapping
function from input space to output space that describes the objective (or func-
tion) of the AL. Q is a query function that is used to determine the sequence of
unlabelled samples to be learned by the AL according to the current state of the
AL, i.e., the AL has the ability to choose the “new things” that will “benefit”
its learning. Compared to passive learners, which only contain X and F but
no Q, ALs are able to select data for themselves based on the learners’ present
performance and therefore has the potential to obtain better learning results.

For almost all the active learning approaches proposed to date, the function
Q is used to search for the unlabelled samples, i.e., observations, to be learned
by the AL. In the following parts of this section, we will propose a learning
scheme with a query function Q̃ that is used to search for features (i.e., genes
in this application) according to the current state of the learner (i.e., the SVM
classifier in this application) and its objective. Hence we call our algorithm ac-
tive mining as opposed to active learning. In addition, our proposed method
is a forward searching scheme that is more straight-forward and efficient than
backward searching schemes are.

2.1 T-Statistic

In the first step of our scheme, we rank all the features (genes) according to their
t-statistics (TSs). The TS of gene i is defined as follows [16].

TSi = | xc1 − xc2

spi

√
1/n1 + 1/n2

| (1)

where
xc1 =

∑
j∈C1

xij/n1 (2)

xc2 =
∑

k∈C2

xik/n2 (3)

s2pi =

∑
j∈C1

(xij − xc1)2 +
∑

k∈C2
(xik − xc2)2

n1 + n2 − 2
(4)

There are 2 classes, i.e., C1 and C2, which include n1 and n2 samples, respec-
tively. xij and xik are the expression values of gene i in C1 and C2, respectively.
xc1 and xc2 are the mean expression values of C1 and C2. spi is the pooled
standard deviation of gene i.
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2.2 Seeds

After ranking all the genes with TSs, the gene with the largest TS is selected as
the first feature in the discriminative gene set (DGS). We call this first feature
the seed. The best seed that leads to the highest accuracy may not necessarily
be the No.1 gene in the TS ranking result (the gene with the greatest TS). It can
be the No.2 gene, the No.3 gene and so on. In our application, we use a number
of top genes as seeds to search for the best DGS with the highest classification
accuracy.

2.3 Support Vector Machines

We use support vector machines (SVMs) [18] [19] as our classifier, i.e., we input
our DGS into an SVM to carry out training and classification.

A standard SVM classifier aims to solve the following problem. Given l train-
ing vectors {xi ∈ Rn, i = 1, ..., l} that belong to two classes, with desired output
yi ∈ {−1, 1}, find a decision boundary:

wT φ(xi) + b = 0, (5)

where w is the weight vector and b is the bias. φ(xi) is the function that maps xi

to a potentially much higher dimensional feature space. This decision boundary
is determined by minimizing the cost function:

ψ =
1
2
||w||2 + C

l∑
i=1

ξi, (6)

subject to:
yi(wT φ(xi) + b) ≥ 1− ξi, (7)

ξi ≥ 0. (8)

where {ξi, i = 1, 2, ..., l} are slack variables and C is a constant that deter-
mines the tradeoff between the training error and the generalization capability
of the SVM. This optimization problem has a quadratic programming (QP) dual
problem:

maximize: Q(α) =
l∑

i=1

αi −
1
2

l∑
i=1

l∑
j=1

αiαjyiyjφ(xi)T φ(xj), (9)

subject to:
l∑

i=1

αiyi = 0, (10)

C ≥ αi ≥ 0, (11)
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where {αi, i = 1, 2, ..., l} are Lagrange multipliers. For this problem, we use the
sequential minimum optimization [4] as the QP -solver.

2.4 Correction Score

We define a ranking scheme, which we call correction score (CS), to measure
a feature’s ability to separate the samples that are misclassified by the DGS
obtained in the previous round of training. (Here we define the process of picking
out a feature and adding it into a DGS as a round of training.) The CS of gene
i is defined as:

CSi = Sbi/Swi (12)

where
Sbi =

∑
j∈C1

(eij − xc1)2 +
∑

k∈C2

(eik − xc2)2 (13)

Swi =
∑
j∈C1

(eij − xc2)2 +
∑

k∈C2

(eik − xc1)2 (14)

where eij and eik are the expression values of misclassified samples in C1 and C2,
respectively. xc1 and xc2 are defined in Eq.2 and Eq.3. Sbi is the sum of squares of
the inter-class distances [21] (the distances between samples of different classes)
among the misclassified samples. Swi is the sum of squares of the intra-class
distances (the distances of samples within the same class) among the misclassified
samples.

2.5 Adding Features According to Misclassification

We input the feature with the largest CS into the SVM in the next round of
learning. Our method of searching for the discriminating gene sets is analogous
to an AL in the sense that our method has the ability to choose the feature (i.e.,
the gene) to be included in the next round of learning based on the present state
of the learner (i.e., the SVM).

2.6 SVM-Based AM-DGS

The whole process to obtain a DGS is summarized as follows.

Algorithm: SVM-based AM-DGS
Inputs:
Training samples: Xtr = [xtr1,xtr2, ...,xtrl]T , validation samples: Xv, testing

samples Xtest

Class labels for training, validation, and testing samples: Ytr = [ytr1, ytr2, ...,
ytrl]T , Yv, Ytest

The number of top-ranked genes to search for DGSs: M.
Initialize:
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Initialize DGS to an empty matrix: DGS=[ ].
Initialize the training error to 1: Etr = 1.
Initialize the validation error to 0: Ev = 0.
Initialize the repeat counter to 0: Rpt = 0.
Choose a seed:
Calculate the TS for each feature in Xtr.
for(m = 1;until m < M ; m+ +)
{

Select a feature with the m-th largest TS as the seed (S).
S→DGS.
Repeat until: Etr = 0 or Ev < Evpre or Rpt > 2:
{
Etrpre = Etr ;
Evpre = Ev;
Train an SVM with DGS then obtain Etr.
Pick out the misclassified samples Xe = [xe1,xe2, ...,xet]T .
Validate the SVM using Xv and obtain Ev.
If Evpre = Ev, Rpt = Rpt+ 1.
Calculate CS for each feature in Xe.
Pick out the feature with the largest CS and put it into the DGS.

}
}
Output
DGS

3 Experimental Results

We tested our method in the well-known leukemia data set [5]. The leukemia data
set [5] (http://www-genome.wi.mit.edu/cancer/) contains two types of leukemia
samples, i.e., acute myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL). Golub et al. divided the data into 38 samples for training and the
other 34 independent samples for testing. Among the 38 training samples, there
are 27 ALL samples and 11 AML samples. Among the 34 testing samples,
there are 20 ALL samples and 14 AML samples. The entire leukemia data
set contains the expression values of 7129 genes. We normalized this data set
by subtracting the mean and dividing the standard deviation across each
sample.

We processed the leukemia data set with our SVM-based AM-DGS algorithm
and showed the results in Table 1. Here we list the 8 DGSs whose seeds are the
top 8 genes according to their TSs. For each DGS, the first gene (i.e., the first
line in the DGS) is its seed. The second, third (and so on) genes are the genes
included in the DGS in the corresponding round, respectively.

From these results, we found that our SVM-based AM-DGS is very effective
and efficient in finding good DGSs. Let us use DGS 1 to illustrate this. Since



886 F. Chu and L. Wang

Table 1. Training and testing accuracies for various DGSs obtained by our SVM-based

AM-DGS algorithm to the leukemia data set

Set No. Gene Sets Training Accuracy (%) Testing Accuracy (%)

1 U50136 rna1 at 92.11 79.41
X17042 at 100 82.35

2 X95735 at 97.37 94.12
M23197 at 100 94.12

3 M55150 at 97.37 82.35
M84526 at 92.11 82.35
M23197 at 97.37 91.18

4 M16038 at 92.11 79.41
U22376 cds2 s at 94.74 82.35

5 Y12670 at 94.74 64.71
U22376 cds2 s at 100 82.35

6 M23197 at 92.11 85.29
U22376 cds2 s at 97.37 88.24

M63138 at 97.37 94.12

7 D49950 at 97.37 94.12
U22376 cds2 s at 86.84 67.65
X04085 rna1 at 94.74 76.47
U50136 rna1 at 100 82.35

8 X17042 at 89.47 79.41
U22376 cds2 s at 89.47 85.29

M86406 at 94.74 64.71
X95735 at 100 97.06

DGS 1 contained only 2 genes, we plotted the gene expression values of the
two genes in Fig.1. In the first round of training, only the seed, i.e., gene
U50136 rna1 at, was input to the SVM. Because gene U50136 rna1 at has a
high TS, the SVM misclassified only three samples that were indicated with ar-
rows. In the second round training, the algorithm selected the gene that had the
best capability to separate the three misclassified samples, i.e., gene X17042 at.
We found in Fig.1(a) that gene X17042 at “dragged” the misclassified sam-
ples away from the classes which these 3 samples were mistakenly assigned to
in the previous round of training. Therefore, with the help of the second gene
X17042 at, DGS 1 increased its training accuracy from 92.11% to 100%: the 38
training samples were perfectly separated by DGS 1.

The best testing accuracy was obtained by DGS 8, which included 4 genes.
The SVM obtained 100% training accuracy and 97.1% testing accuracy (i.e.,
1 errors in the 34 testing samples) using DGS 8. In this data set, we used
the 8 genes with the largest TSs as the seeds (M=8 in our algorithm summa-
rized in the previous section). If more seeds were used, more DGSs could be
found.
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Fig. 1. Gene expression values for the two genes in DGS 1 in the leukemia data set.

(a) a plot includes only the training samples; (b) a plot includes all the training and

testing samples.

4 Discussion

The results of leukemia data set visually indicate the effectiveness of our SVM-
based AM-DGS algorithm. Except the seeds, all the genes in a DGS are se-
lected according to their capability to correct misclassified samples. Therefore,
the SVM-based AM-DGS can optimize the cooperation among genes and hence
leads to good accuracy and smaller DGSs. Compared with the filter approaches,
e.g., TS and FS, the SVM-based AM-DGS can greatly reduce the redundancy
in a DGS.
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In conclusion, the SVM-AMDGS proposed here is effective and computation-
ally efficient in searching for good DGSs, the simulation using the leukemia data
set shows that our algorithm leads to highly accurate classifications with the
smallest gene sets found in the literature.
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A Novel Approach to Image Reconstruction

from Discrete Projections Using Hopfield-Type
Neural Network
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Armii Krajowej 36, 42-200 Czestochowa, Poland

Abstract. Presented paper shows a novel approach to the problem
of image reconstruction from projections using recursive Hopfield-type
neural network. The reconstruction process is performed during the min-
imizing of the energy function in this network. Our method is of a great
practical use in reconstruction from discrete parallel beam projections.
Experimental results show that the appropriately designed neural net-
work is able to reconstruct an image with better quality than obtained
from conventional algorithms.

1 Introduction

Computerized tomography is regarded as one of the most important inventions of
the twentieth century. The remarkable feature of this medical imaging method is
a possibility of using it to examine the inside of an object, for example the human
body. A three-dimensional image of the object is given by applying an appro-
priate method of projection and an image reconstruction algorithm. There are
several reconstruction methods to solve this problem, for example the most pop-
ular reconstruction algorithm using convolution and back-projection [7] and the
algebraic reconstruction technique (ART) [2]. This work presents an approach to
image reconstruction from projections problem using the Hopfield-type neural
network. The idea of an application of a neural network to computerized tomog-
raphy is shown for example in [1]. In this paper we present a new approach to
reconstruction problem based on the commonly applied transformation method-
ology. An algorithm based on the algebraic approach was proposed in [8]. A great
advantage of our algorithm is a possibilty of a hardware implementation and a
direct practical application to medical divices.

2 Image Reconstruction Algorithm

Presented in this paper reconstruction neural network algorithm resembles the
ρ-filtered layergram method [4]. The main difference between these two methods
is a realization of the filtering. In our case the neural network is implemented
instead of the two-dimensional filtering of the blurred image obtained after the
back-projection operation. The scheme of the proposed reconstruction method
using the Hopfield-type neural network is shown in Fig.1.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 890–898, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A neural network image reconstruction algorithm with parallel beam geometry

of the scanner

2.1 Projections

In the first step of the presented reconstruction algorithm a set of parallel beam
projections pp(s, αp); s = (l + 1/2) ·Δs, l = −L/2, . . . , 0, . . . , L/2− 1, L—even
number of detectors; αp = ψ · Δψ, Δψ = π/Ψ , ψ = 0, . . . , Ψ − 1, Ψ—number
of projections, is obtained. A projection can be interpreted as the depth of
the shadow cast by the object onto a screen positioned opposite the radiation
source. In the case of parallel geometry of the scanner (see Fig.2) this is called
the Radon’s transformation [6] and in continuous domain it can be expressed as
follows

pp(s, αp) =

+∞∫
−∞

+∞∫
−∞

μ(x, y) · δ(xcosαp + ysinαp − s)dxdy, (1)
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where: αp—is the angle of parallel projection; x, y —the co-ordinates of the
examined object; Δs = (xcosαp + ysinαp − s)—a distance from the centre of
rotation to the axis of the ray falling on the projection screen; μ(x, y)—a distri-
bution of the attenuation of x-rays in analysed cross-section.

Fig. 2. A single parallel projection

2.2 Interpolation and Back-Projection

The next step in the proceeding sequence is the back-projection operation. This
can be expressed as

μ̃(x, y) =

π∫
0

pp(s, αp)dαp. (2)

Function μ̃(x, y) denotes a blurred image obtained after operations of projection
and back-projection. According to equations (1) and (2) after some algebra we
can write

μ̃(x, y) =

+∞∫
−∞

+∞∫
−∞

μ(ẍ, ÿ)

π∫
0

δ(ẍcosαp + ÿsinαp−xcosαp−ysinαp)dαpdẍdÿ. (3)

In practical realization of the proposed reconstruction algorithm it is highly
possible that for any given projection no ray passes through a certain point (x, y)
of the image. To take this into account we can apply interpolation expressed by
the equation

ṗp(ṡ, αp) =

+∞∫
−∞

pp(s, αp) · I(ṡ− s)ds, (4)
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where I(Δs) is an interpolation function. Owing to relation (5) it is possible to
define the obtained, after back-projection operation, image in the following way

μ̃(x, y) =

π∫
0

+∞∫
−∞

⎛⎝ +∞∫
−∞

+∞∫
−∞

μ(ẍ, ÿ)· δ(ẍcosαp + ÿsinαp − ṡ)dẍdÿ

⎞⎠ ·I(ṡ−s)dsdαp.

(5)
According to the properties of the convoluation we can transform formula (5) to
the form

μ̃(x, y) =
∫ +∞∫

−∞

μ(ẍ, ÿ)

⎛⎝ π∫
0

I(ẍcosαp + ÿsinαp − xcosαp − ysinαp)dαp

⎞⎠ dẍdÿ.

(6)

2.3 Discrete Reconstruction Problem

In presented method we take into consideration the discrete form of images
μ(x, y) and μ̃(x, y). That means we will substitute continuous functions of images
in equation (6) for their discrete equivalents μ̂(i, j) and ˆ̃μ(i, j); i = 0, 1, . . . , I;
j = 0, 1, . . . , J , where I and J—are numbers of pixels in horizontal and vertical
directions, respectively. Additionally, we approximate the 2-D convolution func-
tion by two finite sums. In this way we express relation (6) in the following form

ˆ̃μ(i, j) �

∑
ï

∑
j̈

μ̂(i− ï, j − j̈) · hïj̈ , (7)

where

hïj̈ = Δp
α (Δs)

2 ·
Ψ−1∑
ψ=0

I
(̈
iΔscosψΔ

p
α + j̈ΔssinψΔ

p
α

)
. (8)

As one can see from equation (7), the original image in a given cross-section of
the object, obtained in the way described above, is equal to the amalgamation
of this image and the geometrical distortion element given by (8). The number
of coefficients hïj̈ is equal to I· J and owing to expression (8) values of these
coefficients can be easily calculated.

The discrete reconstruction from projections problem can be formulated as
following optimisation problem [5]

min
Ω

⎛⎝p ·
I∑

ï=1

J∑
j̈=1

f
(
eïj̈ (Ω)

)⎞⎠ , (9)

where: Ω = [μ̂(i, j)]—a matrix of pixels from original image; p—suitable large
positive coefficient; f (•)—penalty function and

eïj̈ (Ω) =
∑

i

∑
j

μ̂(i, j) · hï−i,j̈−j − ˆ̃μ(̈i, j̈). (10)
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If a value of coefficient p tends to infinity or in other words is suitably large,
then the solution of (9) tends to the optimal result. Our research has shown that
the following penalty function yields the best result

f
(
eïj̈ (Ω)

)
= λ · ln cosh

(
eïj̈ (Ω)

λ

)
, (11)

and derivation of (11) has the convenient form

f ′
(
eïj̈ (Ω)

)
=

df
(
eïj̈ (Ω)

)
deïj̈ (Ω)

=
1− exp

(
eïj̈ (Ω) /λ

)
1 + exp

(
eïj̈ (Ω) /λ

) , (12)

where: λ—slope coefficient.

2.4 Hopfield-Type Neural Network Realizing Reconstruction
Process

Now we can start to formulate the energy expression

Et = p ·
I∑

ï=1

J∑
j̈=1

f
(
eïj̈

(
Ωt

))
. (13)

which will be minimized by the constructed neural network to realize the decon-
volution task expressed by equation (9). In order to find a minimum of function
(13) we calculate the derivative

dEt

dt
= p ·

I∑
ï=1

I∑
j̈=1

I∑
i=1

J∑
j=1

∂f
(
eïj̈ (Ωt)

)
∂
(
eïj̈ (Ωt)

) ∂
(
eïj̈ (Ωt)

)
∂μ̂t (i, j)

dμ̂t (i, j)
dt

. (14)

If we let

dμ̂t (i, j)
dt

= −p
I∑

ï=1

I∑
j̈=1

∂f
(
eïj̈ (Ωt)

)
∂
(
eïj̈ (Ωt)

) ∂
(
eïj̈ (Ωt)

)
∂μ̂t (i, j)

= −p
I∑

ï=1

I∑
j̈=1

f ′
(
eïj̈ (Ω)

)
hij ,

(15)
equation (14) takes the form

dEt

dt
= −

I∑
i=1

J∑
j=1

(
dμ̂t (i, j)

dt

)2

. (16)

The structure of the recursive neural network performing the reconstruction
process consists of two layers and is depicted in Fig. 3.
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Fig. 3. The structure of the designed Hopfield-type neural network

3 Experimental Results

A mathematical model of the projected object, a so-called phantom, is used to
obtain projections during simulations. The most common matematical phan-
tom of head was proposed by Kak (see eg. [3]). In our experiment the size of the
image was fixed at I × J = 129 × 129 pixels. A view obtained from this

Fig. 4. A view obtained from the mathematical model of the cross-section of the skull

mathematical model is depicted in Fig.4. The discret approximation of the in-
terpolation operation expressed by equation (4) takes the form

ˆ̇pp(s,ψ) =
L/2−1∑
l=−L/2

p̂p(l,ψ) · I(s− lΔp
ψ). (17)
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The interpolation function I (Δs) can be defined for example as linear inter-
polation function

IL(Δs) =

{
1

Δs

(
1− |Δs|

Δs

)
if |Δs| ≥ Δs

0, if |Δs| > Δs

(18)

or the Dirichlet kernel of order 2L

ID(Δs) =
sin (πΔs)

2Lsin (πΔs/2L)
. (19)

where s = (icosψΔp
α + jsinψΔp

α).
In Fig.5 we show views of images obtained after the back-projection operation

using above presented interpolation functions. The image was next subjected to

a) Linear interpolation b) Dirichlet interpolation

Fig. 5. Images obtained after the back-projection operation: a) the linear interpolation

function; b) the Dirichlet kernel

a process of reconstruction using the Hopfield-type neural network presented
in section 2. The Euler’s method (see eg. [8]) was used to approximate (15) in
following way

μ(i, j)t+1 := μ(i, j)t +Δt

⎛⎝−p I∑
ï=1

I∑
j̈=1

f ′
(
eïj̈ (Ω)

)
hïj̈

⎞⎠ , (20)

where eïj̈ is expressed by (10) and Δt is a sufficient small time step.
The progress in reconstruction process is shown in Fig.6.
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Linear interpolation Dirichlet interpolation

100 iterations

1000 iterations

5000 iterations

Fig. 6. Progress in reconstruction process using a mathematical model of the cross-

section of the skull

4 Conclusions

The performed simulations demonstrated a convergence of the image reconstruc-
tion from projections algorithm based on the Hopfield-type neural network de-
scribed in this work. In both cases of interpolation functions the reconstructed
images in Fig.6 have satisfactory level of quality after about five thousand iter-
ations. Therefore, one can say that at this point the image is reconstructed and
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the process can be stopped. The Dirichlet interpolation is more time consuming
and gives no advanteges in quality. Then linear interpolation seems to be more
adequate in this application. Although our procedure is time consuming, the
hardware implementation of the described neural network structure could give
incomparable better results than other reconstruction methods.
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Abstract. We present our results on the prediction of leukemia from
microarray data. Our methodology was based on data mining (rule in-
duction) using rough set theory. We used a novel methodology based on
rule generations and cumulative rule sets. The final rule set contained
only eight rules, using some combinations of eight genes. All cases from
the training data set and all but one cases from the testing data set were
correctly classified. Moreover, six out of eight genes found by us are well
known in the literature as relevant to leukemia.

1 Introduction

In our research we used data mining methodology, based on rough set theory, to
predict leukemia on the basis of gene expression monitoring by DNA microarrays.
Microarray technology has provided biologists with the ability to simultaneously
study thousands of genes comprising a large part of the genome. The develop-
ment of this promising technology has motivated interest of its use in clinical
diagnosis and drug discovery. The key step of these types of applications is to
identify subsets of genes, often referred to as biomarkers, which distinguish cases
with different labels, e.g., different tumor types, cancer versus non-cancer, re-
sponse to therapy. In addition, these biomarkers are potential drug targets for
treatment since they are relevant to the disease under study.

In our data set there were 72 leukemia cases including 47 acute myeloid
leukemia (AML) and 25 patients with lymphoblastic leukemia (ALL). The data
set contains the expression levels of 6817 human genes measured by Affymetrix
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high-density genechips. Following Golub et al. [5], the data set was split into
38 training cases (27 ALL and 11 AML) and 34 testing cases (20 ALL and 14
AML).

Distinguishing ALL from AML is critical for successful treatment of leukemia
patients since the two types require chemotherapy to concentrate on different
regimens. It has been found the cure rates arise and unwarranted toxicities are
diminished if the subtypes have been correctly classified.

The data set has been widely used in classification and feature selection papers
in the literature. Using 50 informative genes, Golub et al. [5] were able to predict
29 of the 34 testing cases using a weighted voting scheme. Their model was not
able to predict the remaining five instances. Lee [14] used a hierarchical Bayesian
model to select five genes and then perform predictions on the testing data.
Only one case was misclassified. Yeung et al. [24] proposed a Bayesian model
averaging method for gene selection and classification of microarray data. They
also misclassified one case. Nguyen and Rocke [16] reported 1–3 classification
errors on the testing data set using 50–1500 selected genes. They used partial
least squares to reduce the dimension and logistic discrimination and quadratic
discrimination analysis to classify the instances. Since one case (#66) has been
consistently misclassified in the literature, it has been suggested that the case
might be incorrectly labeled [24].

2 Data Mining Tools

The main tool for our experiments was the MLEM2 ( Modified Learning from
Examples Module, version 2) rule induction module of the LERS (Learning from
Examples based on Rough Sets) data mining system, [6, 7, 8, 9].

In the first step of processing the input data file, the data mining system
LERS checks if the input data file is consistent (i.e., if the file does not contain
conflicting examples). If the input data file is inconsistent, LERS computes lower
and upper approximations [17, 18] of all concepts. Rules induced from the lower
approximation of the concept certainly describe the concept, so they are called
certain [6]. On the other hand, rules induced from the upper approximation of
the concept describe the concept only possibly (or plausibly), so they are called
possible [6].

LEM2 learns the smallest set of minimal rules, describing the concept. The
module LEM2 of LERS is most frequently used since—in most cases—it gives
best results. LEM2 explores the search space of attribute-value pairs. Its input
data file is a lower or upper approximation of a concept, so its input data file is
always consistent. In general, LEM2 computes a local covering and then converts
it into a rule set. We will quote a few definitions to describe the LEM2 algorithm.

The LEM2 algorithm is based on an idea of an attribute-value pair block. For
an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all
cases from U such that for attribute a have value v. For a set T of attribute-
value pairs, the intersection of blocks for all t from T will be denoted by [T ].
Let B be a nonempty lower or upper approximation of a concept represented by
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a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
t = (a, v) if and only if

∅ �= [T ] =
⋂
t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection
of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

(1) each member T of T is a minimal complex of B,

(2)
⋃

t∈T [T ] = B, and

T is minimal, i.e., T has the smallest possible number of members.

The procedure LEM2 is presented below.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G �= ∅

begin
T := ∅;
T (G) := {t|[t] ∩G �= ∅} ;
while T = ∅ or [T ] �⊆ B

begin
select a pair t ∈ T (G) such that |[t] ∩G|
is maximum; if a tie occurs, select a pair t ∈ T (G)
with the smallest cardinality of [t];
if another tie occurs, select first pair;
T := T ∪ {t} ;
G := [t] ∩G ;
T (G) := {t|[t] ∩G �= ∅};
T (G) := T (G)− T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T };
G := B − ∪T∈T [T ];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T };
end {procedure}.
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MLEM2 is a modified version of the algorithm LEM2. The original algorithm
LEM2 needs discretization, a preprocessing, to deal with numerical attributes.
MLEM2 recognizes integer and real numbers as values of attributes, and la-
bels such attributes as numerical. For numerical attributes MLEM2 computes
blocks in a different way than for symbolic attributes. First, it sorts all values
of a numerical attribute. Then it computes cutpoints as averages for any two
consecutive values of the sorted list. For each cutpoint c MLEM2 creates two
blocks, the first block contains all cases for which values of the numerical at-
tribute are smaller than c, the second block contains remaining cases, i.e., all
cases for which values of the numerical attribute are larger than c. The search
space of MLEM2 is the set of all blocks computed this way, together with blocks
defined by symbolic attributes. Then MLEM2 combines attribute-value pairs rel-
evant to a concept and creates rules describing the concept. In addition, MLEM2
handles missing attribute values during rule induction [9]. The previous version
of MLEM2, LEM2, induced certain rules from incomplete decision tables with
missing attribute values interpreted as lost. Recently, MLEM2 was further ex-
tended to induce both certain and possible rules from a decision table with some
missing attribute values being lost and some missing attribute values being ”do
not care” conditions, while attributes may be numerical.

3 Classification System

The classification system of LERS is a modification of the bucket brigade algo-
rithm [1, 11]. The decision to which concept a case belongs is made on the basis
of three factors: strength, specificity, and support. They are defined as follows:
strength is the total number of cases correctly classified by the rule during train-
ing. Specificity is the total number of attribute-value pairs on the left-hand side
of the rule. The matching rules with a larger number of attribute-value pairs
are considered more specific. The third factor, support, is defined as the sum of
scores of all matching rules from the concept, where the score of the rule is the
product of its strength and specificity. The concept C for which the support,
i.e., the following expression∑

matching rules R describing C

Strength factor(R) ∗ Specificity factor(R)

is the largest is the winner and the case is classified as being a member of C.
In the classification system of LERS, if complete matching is impossible, all

partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any
partially matching rule R, the additional factor, called Matching factor (R), is
computed. Matching factor (R) is defined as the ratio of the number of matched
attribute-value pairs of R with a case to the total number of attribute-value
pairs of R. In partial matching, the concept C for which the following expression
is the largest
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partially matching

rules R describing C

Matching factor(R) ∗ Strength factor(R)

∗ Specificity factor(R)

is the winner and the case is classified as being a member of C.
Every rule induced by LERS is preceded by three numbers: specificity,

strength, and the rule domain size (the total number of training cases matching
the left-hand side of the rule).

4 Rule Generations

Ordinarily, in data mining just one rule set is induced. In our research we
used a novel approach to data mining based on the idea of inducing many rule
generations.

The original rule set is the first generation rule set. In our rule induction
method, dominant attributes involved in the first rule generation were excluded
from the data set and then the second rule generation was induced from such
prepared, new data set. The procedure was repeated iteratively.

The idea of inducing many rule generations is not always feasible. However,
for microarray type of data, where the number of attributes (gene expressions)
is so large compared with the number of cases, it is quite natural.

Obviously, the first rule generation is, in general, more valuable than the
second rule generation, the second rule generation is more valuable than the
third rule generation, etc.

Let us illustrate the rule generation method on the leukemia data set. The
first rule generation, called First.r, was

1, 27, 27
(X95735, -674..994) –> (label, ALL)
1, 11, 11
(X95735, 994..6218) –> (label, AML)

After removal of the attribute X95735 from the original data set, the second
rule generation, called Second.r, was

1, 25, 25
(M27891, -376..946.5) –> (label, ALL)
2, 2, 2
(M27891, 946.5..1419.5) & (M31166, -22..83.5) –> (label, ALL)
2, 1, 1
(M27891, 946.5..1419.5) & (M55150, 1346..2693) –> (label, AML)
1, 10, 10
(M27891, 1419.5..17863) –> (label, AML)

As is clear from a close inspection of Second.r, among the four rules two are
outliers (the second and the third rules). Such rules were deleted. However, to
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compensate for such a rule deletion, remaining rules in the same rule genera-
tion were compensated by increasing their strength. The dominant attribute of
Second.r was M27891. This attribute was additionally deleted from the original
data set. Thus, two attributes were missing: X95735 and M27891. From that
new data set the third rule generation was induced (called Third.r)

2, 27, 27
(M31166, -22..83.5) & (D88422, -9..658) –> (label, ALL)
2, 11, 11
(M55150, 1346..2693) & (M77142, -20..80.5) –> (label, AML)

The process continued until the cumulative rule sets, described in the next
section, were not better in terms of the error rate.

5 Cumulative Rule Sets

Rule generations were gradually collected together into new rule sets. For exam-
ple, from the first and second rule generations, a new cumulative rule set, called
Two.r was created:

1, 2, 27
(X95735, -674..994) –> (label, ALL)
1, 3, 25
(M27891, -376..946.5) –> (label, ALL)
1, 4, 11
(X95735, 994..6218) –> (label, AML)
1, 6, 10
(M27891, 1419.5..17863) –> (label, AML)

Note that rule strengths were changed. We are using here a few mechanisms to
change rule strengths. Normally, all rules from First.r would have rule strengths
twice as large as rule strengths from Second.r. But the original Second.r had
outliers, so we increase each rule strength for rules from a new Second.r by
two. Additionally, following the method presented in [10], we increase the rule
strength for every rule describing AML (the weaker concept) multiplying it by
two, since the leukemia data set is imbalanced. Thus, the strength of the second
rule is 1+2, the strength of the third rule is 2×2, and the strength of the fourth
rule is (1 + 2)× 2.

Similarly, the cumulative rule set Three.r, created from First.r, Second.r and
Third.r was

1, 3, 27
(X95735, -674..994) –> (label, ALL)
1, 4, 25
(M27891, -376..946.5) –> (label, ALL)
2, 1, 27
(M31166, -22..83.5) & (D88422, -9..658) –> (label, ALL)
1, 6, 11
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(X95735, 994..6218) –> (label, AML)
1, 8, 10
(M27891, 1419.5..17863) –> (label, AML)
2, 2, 11
(M55150, 1346..2693) & (M77142, -20..80.5) –> (label, AML)

Here, initially all rules from First.r had strengths equal to three, rules from
Second.r had strengths equal to two, and rules from Third.r had strengths equal
to one. Additionally, we compensate the strength for every rule from Second.2
by adding two for lack of outliers. Finally, we multiply the resulting strength for
every rule describing AML by two to take into account that the training data
set is imbalanced.

6 Experiments

Results of our experiments are presented in Tables 1–2. Table 1 shows the total
number of errors for both data sets: training and testing and for consecutive rule
generations. Note that three errors for the rule set Second.r on the training data
set are caused by deletion of the two weak rules (outliers).

Table 1. Number of errors for rule generations

Number of errors on

training data set testing data set

First.r 0 4

Second.r 3 5

Third.r 0 8

Fourth.r 0 6

Fifth.r 0 6

Sixth.r 0 10

Table 2 also presents the total number of errors for the training and testing
data sets, but for the cumulative rule sets. The simplest cumulative rule set with
the smallest number of errors for the testing data set was Four.r:

1, 4, 27
(X95735, -674..994) –> (label, ALL)
1, 5, 25
(M27891, -376..946.5) –> (label, ALL)
2, 2, 27
(M31166, -22..83.5) & (D88422, -9..658) –> (label, ALL)
2, 1, 27
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Table 2. Number of errors for cumulative rule sets

Number of errors on

training data set testing data set

First.r 0 4

Two.r 0 3

Three.r 0 2

Four.r 0 1

Five.r 0 1

Six.r 0 2

(D88422, -9..658) & (M21551, -47..398.5) –> (label, ALL)
1, 8, 11
(X95735, 994..6218) –> (label, AML)
1, 10, 10
(M27891, 1419.5..17863) –> (label, AML)
2, 4, 11
(M55150, 1346..2693) & (M77142, -20..80.5) –> (label, AML)
2, 2, 11
(M77142, -20..80.5) & (U46499, 156.5..3107) –> (label, AML)

7 Conclusions

First of all, our final rule set Four.r is very simple and it classifies well all cases
from the training data set and all but one cases from the testing data set. Genes
from the rule set Four.r are characterized in Table 3. Cross-references are cita-
tions of papers in which the respective gene was identified as a gene relevant
for leukemia. Number of references from Table 3 is the number of the references
that were retrieved by PubMed and PubMed Central query consisting of the
gene name and the word ”leukemia”.

Most of these genes that have been found are relevant to leukemia. Zyxin
(encoded in X95735) possesses LIM domain which is known to interact with
leukemogenic bHLH proteins (TAL1, TAL2 and LYL1) [23]. Cystatin C (CST3)
expression, measured by reverse transcription polymerase chain reaction (RT-
PCR), confirmed that the gene was significantly increased in AML patients [19].
TSG-14 plays a critical role in controlling acute inflammatory response in part
via the modulation of tumor necrosis factor (TNF)-alpha expression [20]. Cys-
tatin A (acid cysteine proteinase inhibitor, i.e., ACPI) is a natural inhibitor of
cysteine proteinases. It has been suggested that an inverse correlation exists be-
tween cystatin A and malignant progression [13]. M21551 encodes neuromedin
B, which is known to be readily hydrolyzed by neutral endopeptidase, a common
acute lymphoblastic leukemia antigen [4]. TIA-1, encoded in M77142, has been
found to be a good diagnostic marker for certain type of cell leukemia [15].
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Table 3. Relevant genes found by LERS

Gene ID Gene name Description Cross- Number of

references references

X95735 Zyxin Zyxin [2, 3, 5, 12, 21] 23

M27891 CST3 cystatin C (CST3) [2, 3, 24] 5

gene, exon 3

M31166 TSG-14 tumor necrosis factor- 3

inducible (TSG-14)

mRNA. Tumor necrosis

factor inducible gene

D88422 cystatin A Gene for cystatin A [2, 12] 16

M21551 nuromedin B mRNA [21] 8

M77142 TIA-1 polydentylate binding [2] 42

protein (TIA-1) mRNA

M55150 fumarylacetoacetate [2, 3, 5, 12] 4

hydrolase mRNA

U46499 MGST1 microsomal glutathione [2, 3, 22] 4

transferase
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Abstract. In the paper the method of using the ensemble of dipolar
trees for survival prediction is presented. In the approach the random
forest is applied to calculate the aggregated Kaplan-Meier survival func-
tion for a new patient. The induction of individual dipolar regression
tree is based on minimization of a piece-wise linear criterion function.
The algorithm allows using the information from censored observations
for which the exact survival time is unknown. The Brier score is used to
evaluate the prediction ability of the received model.

1 Introduction

The development of prognostic tools is one of the major tasks in survival analysis.
The physicians are concerned not only with the prediction of the exact survival
time for a given patient but also with discovering the factors that influence the
survival. The most common statistical method used in analysis of survival data
is Cox’s proportional hazard model [4]. Its application is limited by additional
assumptions required for the analyzed phenomenon. This limitation concerns
also other statistical methods. If the requirements are difficult to obey some other
techniques are adopted. Among them artificial neural networks and regression
trees are considered as ones of the most promising tools.

The analysis of survival data may be treated either as the regression or clas-
sification task. In both cases the problem how to treat censored data arises.
Censored observations include incomplete knowledge about the exact time of
event occurrence. We only know that the true survival time is not less than their
follow-up time.

The proposed algorithms of regression trees induction include modifications
which allow coping with censored data. Its application in survival analysis aimed
at identifying subgroups that are homogeneous in their survival experience.
Marubini et al. [13] proposed an approach based on Cox’s proportional haz-
ards model and partial likelihood approach. Similar method was developed by
Ciampi et al. [3]. Davis and Anderson [5] assumed an exponential model for the
survival distribution and as a goodness-of-split criterion exploited exponential
log-likelihood. Krȩtowska [12] proposed induction of the multivariate tree based
on the minimization of a dipolar criterion function.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 909–918, 2006.
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The problem that arises while analyzing the results calculated on the base
of the single tree is instability, especially in discovering the risk factors. To sta-
bilize the predictions, the ensembles of several models are used. Hothorn et al.
[8] proposed boosting survival trees to create aggregated survival function. The
approach proposed by Ridgeway [14] allows minimizing the partial likelihood
function (boosting Cox’s proportional hazard model). The Hothorn et al. [9] de-
veloped two approaches for censored data: random forest and gradient boosting.
Breiman [2] provided the software that allows induction of the random forest for
censored data.

In the paper the random forest consisting of dipolar survival trees is analyzed.
The method of building the ensemble of trees is based on the approach proposed
by Hothorn at al. [8]. The method enables calculation the aggregated Kaplan-
Meier survival function for a new patient. The Brier score [7] is used to evaluate
the prediction ability of the received model.

The paper is organized as follows. Section 2 describes the survival data and
introduces the idea of Kaplan-Meier survival function. In Section 3 induction of
dipolar survival tree is presented. Section 4 contains the algorithm how to build
the aggregated survival function based on random forest. Experimental results
are presented in Section 5. The experiments were carried out on the base of two
real datasets. The first one contains the feature vectors describing the patients
with primary biliary cirrhosis of the liver [6], the other includes the information
from the Veteran’s Administration lung cancer study [10]. Section 6 summarizes
the results.

2 Survival Data

Let T 0 denotes the true survival time and C denotes the true censoring time
with distribution functions F and G respectively. We observe random variable
O = (T,Δ,X), where T = min(T 0, C) is the time to event, Δ = I(T ≤ C) is a
censoring indicator and X = (X1, ..., XN) denotes the set of N covariates from
a sample space χ. We observe the learning sample L = (xi, ti, δi), i = 1, 2, ..., n,
where xi is N -dimensional covariates vector, ti - survival time and δi - failure
indicator, which is equal to 0 for censored cases and 1 for uncensored.

The distribution of random variable T may be described by the marginal
probability of being event free up to a time t > 0 (S(t) = P (T > t)). The
estimation of the survival function S(t) may be done by using the Kaplan-Meier
product limit estimator [11]. The Kaplan-Meier function is calculated on the
base of learning sample and is denoted by Ŝ(t):

Ŝ(t) =
∏

j|t(j)≤t

(
mj − dj

mj
) (1)

where t(1) < t(2) < . . . < t(D) are distinct, ordered survival times from the
learning sample L, in which the event of interest occurred, dj is the number
of events at time t(j) and mj is the number of patients at risk at t(j) (i.e.,
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the number of patients who are alive at t(j) or experience the event of interest
at t(j)).

The ’patients specific’ survival probability function is given by S(t|x) =
P (T > t|X = x). The conditional survival probability function for the new
patient with covariates vector xn is denoted by Ŝ(t|xn).

3 Dipolar Survival Tree Induction

Hierarchical and sequential structure of a tree recursively partitions the feature
space. The tree consists of terminal nodes (leaves) and internal (non-terminal)
nodes. An internal node contains a split, which tests the value of an expression
of the covariates. In the proposed approach the split is equivalent to the hyper-
plane H(w, θ) = {(w,x) :< w,x >= θ}. For given covariate vector x, the
result of the test is equal to 0, if the inner product < w,x > is less then θ
and 1, otherwise. Each distinct outcome of the test generates one child node,
which means that all non-terminal nodes have two child nodes. A terminal node
generates no descendant.

The tree induction aims at establishing the structure of the tree (the number
of internal nodes) and the values of hyper-planes parameters. The proposed
algorithm [12] is based on the concept of dipoles [1]. The dipole is a pair of
different covariate vectors (xi,xj) from the learning set. Mixed and pure dipoles
are distinguished. Mixed dipoles are formed between objects that should be
separated, while pure ones between objects that are similar from the point of
view of the analyzed criterion. The aim is to find such a hyper-plane H(w, θ)
that divides possibly high number of mixed dipoles and possibly low number of
pure ones. It is done by minimization of the dipolar criterion function.

Two types of piece-wise linear and convex penalty functions ϕ+
j (v) and ϕ−

j (v)
are considered:

ϕ+
j (v) =

{
δj− < v,yj > if < v,yj >≤ δj

0 if < v,yj >> δj
(2)

ϕ−
j (v) =

{
δj+ < v,yj > if < v,yj >≥ −δj

0 if < v,yj >< −δj
(3)

where δj is a margin (δj = 1), yj = [1, x1, . . . , xN ]T is an augmented covariate
vector and v = [−θ, w1, . . . , wN ]T is an augmented weight vector. Each mixed
dipole (yi,yj), which should be divided, is associated with function ϕm

ij (v) being
a sum of two functions with opposite signs (ϕm

ij (v) = ϕ+
j (v)+ϕ−

i (v) or ϕm
ij (v) =

ϕ−
j (v) + ϕ+

i (v)). For pure dipoles that should remain undivided we associate
function: ϕp

ij(v) (ϕp
ij(v) = ϕ+

j (v) + ϕ+
i (v) or ϕc

ij(v) = ϕ−
j (v) + ϕ−

i (v)). A
dipolar criterion function is a sum of the penalty functions associated with each
dipole:

Ψd(v) =
∑

(j,i)∈Ip

αijϕ
p
ij(v) +

∑
(j,i)∈Im

αijϕ
m
ij (v) (4)
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where αij determines relative importance (price) of the dipole (yi,yj), Ip and
Im are the sets of pure and mixed dipoles, respectively.
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time

S
(t

)

Fig. 1. An example of survival tree

The rules of dipoles formations depend on the purpose of our research. As-
suming that the analysis aims at dividing the feature space into such areas,
which would include the patients with similar survival times (see Fig. 1), pure
dipoles are created between pairs of feature vectors, for which the difference of
failure times is small, mixed dipoles - between pairs with distant failure times.
Taking into account censored cases the following rules of dipole construction can
be formulated:

1. a pair of feature vectors (xi,xj) forms the pure dipole, if
- σi = σj = 1 and |ti − tj | < η

2. a pair of feature vectors (xi,xj) forms the mixed dipole, if
- σi = σj = 1 and |ti − tj | > ζ
- (σi = 0, σj = 1 and ti − tj > ζ) or (σi = 1, σj = 0 and tj − ti > ζ)

Parameters η and ζ are equal to quartiles of absolute values of differences between
uncensored survival times. The parameter η is fixed as 0.2 quartile and ζ - 0.6.
The hyper-planes in the internal nodes of the tree are computed by minimization
of dipolar criterion function, starting from the root. The function in a given node
is designed on the base on those feature vectors that have reached the node. The
induction of survival tree is stopped if one of the following conditions is fulfilled:
1) all the mixed dipoles are divided; 2) the set that reach the node consists of
less than 5 uncensored cases.
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4 Random Forest Algorithm

The random forest method [8] allows estimation the conditional survival function
Ŝ(t|xn) on the base of k learning samples (L1, L2, . . . , Lk) drawn with replace-
ment from the given sample L. For each learning sample Li (i = 1, 2, . . . , k) the
set of observations Li(xn) which are close to covariates vector xn is distinguished.

The dipolar survival tree is calculated for each learning set Li, i = 1, 2, . . . , k.
The covariates vector xi is included to the set Li(xn) when it belongs to the same
leaf of the survival tree as xn itself. Having k sets Li(xn), aggregated sample
LA(xn) is built:

LA(xn) = [L1(xn);L2(xn); . . . ;Lk(xn)]

The aggregated conditional Kaplan-Meier survival function, calculated on the
base of the set LA(xn) can be referred to as ŜA(t|xn).

To summarize the above considerations, the random forest algorithm leading
to receive the aggregated survival function is as follows:

1. Draw k bootstrap samples (L1, L2, . . . , Lk) of size n with replacement from
L

2. Induction of dipolar survival tree T (Li) based on each bootstrap sample Li

3. Build aggregated sample LA(xn) = [L1(xn); L2(xn), . . . , Lk(xn)]
4. Compute the Kaplan-Meier aggregated survival function for a new observa-

tion xn: ŜA(t|xn).

For the evaluation of prediction ability of the method the Brier score intro-
duced by Graf at al. [7] was used. The Brier score as a function of time is defined
by

BS(t) = 1
n

∑N
i=1(Ŝ(t|xi)2I(ti ≤ t ∧ σi = 1)Ĝ(ti)−1 +

(1− Ŝ(t|xi))2I(ti > t)Ĝ(t)−1) (5)

where Ĝ(t) denotes the Kaplan-Meier estimator of the censoring distribution. It
is calculated on the base of observations (ti, 1− δi). I(condition) is equal to 1 if
the condition is fulfilled, 0 otherwise.

5 Experimental Results

The analysis was conducted on the base on two datasets. The first data is from
the Mayo Clinic trial in primary biliary cirrhosis (PBC ) of the liver conducted
between 1974 and 1984 [6]. A total of 424 PBC patients, referred to Mayo Clinic
during that ten-year interval, met eligibility criteria for the randomized placebo
controlled trial of the drug D-penicillamine. The first 312 cases in the data set
participated in the randomized trial and contain largely complete data. The
additional 106 cases did not participate in the clinical trial, but consented to
have basic measurements recorded and to be followed for survival. The analysis
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was done on the base of 418 patients described by the following features: age,
sex, presence of edema, serum bilirubin in mg/dl, albumin in gm/dl, platelets
per cubic ml/1000, prothrombin time in seconds, histologic stage of disease. The
number of days between registration and the earlier of death, transplantation,
or study analysis time in July 1986 was available.
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Fig. 2. Kaplan-Meier estimator G(t) of the censoring distribution G(t) = P (C > t);
Brier score for selected values of t

In Fig. 2 Kaplan-Meier estimator of the censoring distribution together with
the Brier score received for selected values of time (1, 2, 3..., 10 years) are
presented. We can see that the Brier score values are quite small for the lower
values of time and increase over time. The maximum value of Brier score for
t=10 years is equal to 0.14.

In Fig. 3 we can observe the differences between Kaplan-Meier survival func-
tions for 50 years old women and men with two different levels of serum bilirubin
and four histologic stages of disease. Other features, which were not considered
in the analysis, were fixed to their median values: absence of edema; albumin =
3; platelets = 251; prothrombin time = 11.

The impact of the level of serum bilirubin for survival can be observed in
the figures. The survival for patients with lower value of serum bilirubin is much
better than for patients with the value equal to 5. Taking into account two upper
figures (see Fig. 3) one can see that the differences between survival functions for
the first three histologic stages are not significant. The worse survival prediction
is for men with histologic stage 4 (median survival time equal to 4079 days). The
survival prediction for serum bilirubin equal to 5 is worse in all analyzed cases.
For men we can see significant differences between the function for the first his-
tologic stage and other stages. Median survival time is equal to 3244, 1657, 1478
and 1462 [days] for the consecutive histologic stages. The survival functions for
women with different stages of disease are more diverse. The best prediction is
for the first stage and is getting worse as the stage number increases. Median
survival time is equal to 3358 (1st stage), 2081, 1297 and 1152 for the 4th his-
tologic stage. We can say that women response better for the given treatment
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Fig. 3. Kaplan-Meier survival functions for women (w) and men (m) with two different
values of serum bilirubin (b=0.5 and b=5) for each histologic stage of disease

for the first and second stage of disease. For the third and fourth stage of disease
better survival prediction is for men.

The other analyzed dataset contains the information from the Veteran’s Ad-
ministration (VA) lung cancer study [10]. In this trial, male patients with ad-
vanced inoperable tumors were randomized to either standard (69 subjects) or
test chemotherapy (68 subjects). Only 9 subjects from 137 were censored. Infor-
mation on cell type (0 - squamous, 1 - small, 2 - adeno, 3 - large), prior therapy,
performance status at baseline (Karnofsky rating - KPS), disease duration in
months and age in years at randomization, was available.

In Fig. 4 the Brier score for selected times (0, 50, . . . , 950 days) and estimated
curve of censoring distribution for VA lung cancer study are presented. In contrast
to the PBC dataset, the Brier score values decrease over time. It is due to the small
number of censoring cases in the dataset. The shape of functionG(t) suggests that
there are no censored cases with survival times greater than 250 days.

The analysis aims at discovering the factors that influence the survival. Ther-
apy, KPS and cell type were taken into account. The estimated survival functions
for 50 years old patients without prior therapy and five months of disease dura-
tion are shown in Fig. 5.

The results suggest that the cell type does not influence the survival, especially
when the standard therapy is applied. Median survival times (Table 1) obtained
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Fig. 4. Kaplan-Meier estimator G(t) of the censoring distribution G(t) = P (C > t) for
VA lung cancer study; Brier score for selected values of t
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Fig. 5. Kaplan-Meier survival functions for standard (s) and chemotherapy (ch) with
two different values of KPS (KPS=30 and KPS=70) for each cell type

for different cell types (with the same values of the remaining attributes) do
not differ significantly. The only difference may be observed for patients with
chemotherapy with KPS equal to 70. The survival function received for patients
with squamous cell type indicates better prognosis (median survival time equal
to 112 days) than for other patients (median survival times equal to 72, 53 and
83, respectively).



Random Forest of Dipolar Trees for Survival Prediction 917

Table 1. Median survival times for VA lung cancer study

Cell type
0 1 2 3

Standard th.
KPS=30 16 12 13 19
KPS=70 117 112 117 139

Chemotherapy
KPS=30 19 18 19 24
KPS=70 112 72 53 84

Significant differences between survival curves are visible for different values
of KPS. As we can see the survival functions obtained for either standard and
test chemotherapy for KPS equal to 30 are similar. The median survival time
varies from 12 to 24 days for patients with large cell type and chemotherapy.
Much better prognosis is for patients with performance status at baseline equal
to 70. The smallest median survival time is for patients with adeno cell type and
chemotherapy (53 days) and the best one for individuals with large cell type and
standard therapy (139 days).

6 Conclusions

In the paper the random forest consisting of dipolar survival trees was analyzed.
The applied method enables calculation of the aggregated Kaplan-Meier survival
function for a new patient. The survival tree induction as well as the estimation of
aggregated survival function enables using the information from censored cases.

Experiments were carried out on the base of two real datasets. The first one
contains the feature vectors describing the patients with primary biliary cirrhosis
of the liver, the other includes the information from the Veteran’s Administration
lung cancer study. The method was used to analyze the influence of histologic
stage and serum bilirubin for the survival of patients with primary biliary cir-
rhosis of the liver and the influence of therapy, KPS and cell type for survival of
patients form VA lung cancer study. The goodness of prediction was calculated
using Brier score. As it was noticed, the values of the Brier score for the first
dataset are increasing over time. It may mean that the prediction is better for
short time prognosis, but on the other hand the percentage of censored cases
increases over time, what also affects the value of Brier score. The VA lung can-
cer dataset contains only 6% of censored cases with respectively short follow-up
time. The Brier score values are increasing over the first, short period of time
and then starting to decrease. In this case, the method performs well even for
long time prognosis.
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Abstract. It is presented a concept of using ontological models as a
form of medical knowledge representation for computer-aided interpre-
tation of medical images. The models are based on hyper-relations link-
ing the concepts of visual objects, visualized medical objects and related
non-visualized real objects. It is shown that due to the algebra of hyper-
relations such ontological models provide a possibility to describe large
variety of situations being of particular interest in image interpretation
tasks. It is defined an association area of a given concept. In the case of
visual objects this makes possible characterization of a class of questions
that within the given ontological model can be posed and answered by
interpretation of the visual objects under examination.

1 Introduction

Interpretation of images is aimed at logically based answering questions concern-
ing the visualized objects: their nature, behavior, relations to other objects in
a given environment, etc. [1] Advanced computer-aided interpretation of images
related to any application area should be based on resources of knowledge about
the real world (or its part) under examination. A computer-readable, structured
knowledge of this type constitutes an ontology of the world. According to [2], a
formal description of the ontology can be given by a quadruple:

O = [C,R,A, T op] (1)

where C is a non-empty set of concepts (including the relation concepts), R is
a set of all assertions in which two or more concepts are related to each other
and A is a set of axioms ; among the relations a taxonomy of all concepts with
the highest-level concept Top is defined. A concept means here an abstract rep-
resentation of any real or abstract object, person, event, process, etc. which can
be distinguished and about which some statements (logically validated proposi-
tions) can be formulated.

Despite a generality of the above-given definition of ontology which suits well
to the solution of many information retrieval, text processing, knowledge man-
agement, e-business, automatic control and other tasks it seems that for image
interpretation purposes it should be extended and modified. First, the classical
concept of relation should be replaced by a more general concept of hyper-relation
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(in the sense proposed in [3]), including relation as its particular case. Second,
hyper-relations should be considered as constituting a sort of composite formal
structures consisting of hyper-relations of various levels. Third, in practice, some
domain ontologies related to some areas of interest, i.e. limited to some parts
and/or to selected aspects of the world, should be considered. That is why in
this paper a specific, oriented to image interpretation, approach to ontologies is
presented. In this approach a basic role is played by ontological models. Basic
concepts and perspectives of using ontological models to image interpretation
were indicated in [4]; in this paper they are presented in a more extended form.

2 Ontological Models

We start with presentation of several examples of typical questions that may be
posed in connection with interpretation of some medical images:

– Is the light structure visible in the left-upper part of the mammogram of a
spiky form?

– Is the visible structure typical for advanced cancerous changes?
– Is the detected cancerous structure morphologically adjacent to any blood

artery in the breast?
– Does the detected structure need a biopsy in order to prove its cancerous

character?
– Is the cancerous structure recommended to be medically treated by radio-

logical or by surgical means?

etc. It can be observed that five types of questions have been represented here:
1st the ones concerning the details of images under observation, 2nd concerning
the relations between the details in the image and the visualized objects, 3rd

concerning relations among several visualized objects, 4th concerning the visu-
alized objects and some related to them external objects, in the image directly
non-visible, and 5th concerning relations among external objects related to some
other objects visualized in the image.

Answering any type of questions within a given objective area needs using
due ontological models from an adequate domain-oriented ontology. The last,
denoted by Θ, is here considered as a composition of a finite set of ontological
models {Mκ}, κ = 1, 2, . . . , k, describing a given area of interest from some
strongly defined points of view:

Θ = [{Mκ}, H ], (2)

H denoting a set of constraints imposed on the models. Each ontological model
is given by a pair:

Mκ = [Cκ, {rκ,i}] (3)

where Cκ is a subset of concepts, and {rκ,i} is a finite subset of relations de-
scribed on finite Cartesian powers of Cκ . Relations are here considered in a large



Interpretation of Medical Images Based on Ontological Models 921

sense that will be explained in the next section. Then two types of constraints
may be contained by H : 1st having the form of additional relations imposed on
selected subsets of {Cκ}, and 2nd the ones in the form of super-relations imposed
on some combinations of relations of various models Mκ.

For image interpretation purposes the following classes of objects (and related
concepts) should be taken into account:

◦ Visual objects i.e. any geometrical, morphological, statistical etc. details or
structures occurring in the image under examination;

◦ Visualized real objects i.e. those existing in real world, represented by visual
objects in the examined image;

◦ Related objects i.e. objects, processes, relations etc. not visible in the exam-
ined image but in certain sense related (depending, caused, influencing etc.)
to the visualized objects.

Consequently, the following categorization of ontological models for image
interpretation can be established:

1) visual objects oriented models,
2) visual objects - visualized real objects oriented models,
3) visualized real objects oriented models,
4) visualized real objects - related objects oriented models,
5) related objects oriented models.

They may be distinguished among them homogenous models, based on rela-
tions between concepts of the same class, and heterogenous models, based on
relations linking concepts of different classes.

Visual objects oriented models are a domain of investigation of structural
image analysis methods [5, 6, 7]. Such models, related to visual structures only,
are not able per se to help answering questions concerning physical or biological
meaning or the nature of observed real objects. However, if certain structures in a
strongly defined context can be considered as visualization of some real objects
then a second-type relationship is established. This type makes it possible to
interpret the observed image details in the higher-level terms associated with
real world concepts, as it will be shown below.

Some relations of {rκ,i} may establish taxonomies of the concepts of Cκ. A
taxonomy is then represented by a tree whose root corresponds to Cκ as a whole
and the leafs represent the subsets of the lowest hierarchical level concepts:
their single (individual) exemplifications, admitted values of concepts defined as
parameters, etc. The middle-level nodes correspond to taxonomic subclasses of
concepts. Other relations of {rκ,i} can be then described on taxonomic subclasses
of concepts.

3 Relational Structures for Image Interpretation

As mentioned above, a classical definition of a n-th order relation as a subset:

rκ ⊆ C1 × C2 × . . .× Cn, (4)
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where C1 × C2 × . . .×Cn is a Cartesian product of a linearly ordered family of
sets, is not quite suitable to the description of widely understood relationships
occurring in the reality. For example, a configuration of a finite number of points
located on a circular contour of finite diameter on a plane cannot be easily
described as a fixed-order relation between points on the plane.

This shortcoming can be overcome by replacing the concept of relation by
hyper-relation, as formally defined in [3]. Roughly speaking, a first-type hyper-
relation (h-relation) described on a finite family of sets {Cν}, ν = 1, 2, . . . , n, is
a sum of any relations described on any subfamilies of {Cν} used in any linear
orders.

We call syndromes of h-relation the satisfying it strings of elements. As syn-
dromes of h-relation are thus admitted strings of elements drawn from any and
in any way linearly ordered subfamilies of {Cν}. In particular, if only one linear
order in {Cν} is fixed and only one Cartesian product described on it is taken
into account then the h-relation becomes a relation in the classical sense. On the
other hand, a fully symmetrical h-relation (i.e. such that together with any its
syndrome it is satisfied by all its permutations) is equivalent to a hyper-graph in
the sense of Berge [8] described on the sum of sets C =

⋃
ν Cν considered as the

set of its nodes.
For any given set C it can be defined a set UC of all possible strings of elements

drawn from all possible and in any possible ways linearly ordered subfamilies of
C. We call UC an universal extension of C. For example, if C = {a, b, c} then

UC = {[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a],
[a, b], [b, a], [a, c], [c, a], [b, c], [c, b], [a], [b], [c]}

Any h-relation described on C is thus a subset of the universal extension UC .
Denoting by 2UC a family of all possible subsets of UC including UC itself and
an empty subset $ one can define an algebra of h-relations as the algebra of
subsets of UC . This gives us the possibility to describe any h-relation on the
given basis C in several ways: 1st by a direct listing of its syndromes, 2nd as a
subset of syndromes of another h-relation described on C, 3rd as an algebraic
combination of some other h-relations described on C and 4th by selection of its
syndromes from UC using corresponding logical tests.

The concept of h-relation together with the algebra of h-relations provide us
with effective and flexible tools for construction of ontological models. The tools
are also universal in the sense that basic types of statements like: factographical,
inferring, deontical or evaluating, usually stored in factographical databases can
be represented as syndromes of h-relations [18].

Let us consider an ontological model Mκ given by (3). It will be taken into
account a concept ui ∈ Cκ belonging to Mκ. It may occur in the syndromes of
some h-relations of {rκ,i} together with some other, associated with it concepts
uj ∈ Cκ. To each ui in Mκ it thus may be assigned a subset Si ⊆ Cκ of all
concepts associated with ui; it will be called an association area of ui. The last
idea has a simple interpretation in pattern recognition, as it shows the following
example.
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Example
It is considered a system of epithelial neoplasms early detection by a computer-

aided analysis of microscopic cytological images. For this purpose an ontological
model based on two types of concepts will be taken into account: C1 - a selected
part of a medical taxonomy of diseases [10], C2 - a set of parameters describing
the form of cells and of their clusters in cytological specimens [11]. Typical ex-
amples of the concepts are:

C1: neoplasma epitheliale benignum, neoplasma epitheliale, carcinoma, etc.
C2: object specific area, Feret diameter, elliptic shape factor, etc.

For the sake of simplicity the parameters can be discretized, for example:

C2,1 (object specific area) ={very small, small, moderate,. . . , extremely large}.

Therefore, we put C2 = [C2,1, C2,2, . . . , C2,k]. A heterogenous ontological
model is based on a h-relation linking the levels of visualized and visual ob-
jects. For this purpose it is considered a linearly ordered family of sets F =
[C1, C2,1, C2,2, . . . , C2,k]. A general structure of syndromes of the h-relation will
be as follows:

s = [σ, γα, γβ, . . . , γτ ]

where σ ∈ C1, γα ∈ C2,α, γβ ∈ C2,β ,. . ., γτ ∈ C2,τ and C2,α, C2,β , . . . ,2,τ are
selected components of C2 taken without changing the order established in F.

The syndromes to each type of epithelial neoplasm assign a set of values of
cells’ parameters sufficient to conclude on a given certainty level that this type
of neoplasm occurs in the given cytological specimen. Let us assume that the h-
relation is given, and a certain i σ∈C1 (say, denoting carcinoma) is considered.
Then Si ⊆ C2,1 × C2,2 × . . . × C2,k represents a similarity class of observations
assigned to the class σi •

Let us take into account a concept ui and its association area Si. Let uj ∈
Si be another concept, associated to the former one. Then we can take into
consideration its association area Sj. Of course, ui and uj both belong to the
intersection Si ∩ Sj . However, they may exist some concept, say um ∈ Sj \ Si,
not directly but through uj associated to ui. They extend the association area
Si The difference S′

i,j = Sj \ Si thus can be called an extension of Si induced
by the associated concept uj . The sum of all such extensions induced by all
concepts uj ∈ Si will be called a second-order association area of ui. In similar
way the third-, fourth- and higher-order extended association areas of ui can
be defined. A practical sense of this is such that if a certain concept us belongs
to an extended m-th order associated area of ui than it exists a chain of at
most m concepts connected with ui by syndromes of relations or hyper-relations.
If this condition is satisfied then an answer is possible by periphrases of the
corresponding relations between the associated concepts. Of course, not all so-
obtained answers are of practical value for the users. Therefore, they need an
additional pragmatic validation.
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4 Conclusions

Formal ontologies are a suitable form of knowledge representation for computer
interpretation of images. In any given medical application area they can be rep-
resented by an adequate collection of ontological models. The models should be
based on sets of concepts related to visual objects extracted from images, visu-
alized medical objects, and related to them non-visualized objects. Ontological
models should describe relationships between the concepts. For this purpose it
is desirable to use hyper-relations as an extension of classical relations. On the
basis of hyper-relations it is possible to outline an associative area of any iden-
tified visual object within which reasonable questions concerning this object on
the basis of the ontological model can be answered. This indicates a real way to
the design of computer-aided medical image interpretation systems.
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Fuzzy Logic in Stuttering Therapy
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Abstract. Artificial intelligence (AI) was always widely explored by
medical systems. We follow the trend, and try to use AI techniques to
develop Orator – a system that would be helpful in a therapy of stutter-
ing patients. The paper describes very shortly the background and the
solution of intelligently controlling therapy parameters. Logopedist and
patients opinions are shown as the evaluation of developed system.

1 Stuttering – The Short Introduction

Speech fluency is a natural speech flow. The four basic factors make speech
considered to be fluent:

1. Continuity – it basically tells if the pauses are in syntactically and semanti-
cally right places of the speech stream.

2. Rate, expressed in syllables per second, tells how fast do we speak.
3. ”Rhythm of speech is the sense of the flow of speech one gets from the stress,

duration and timing of syllables. In English, stressed syllables, which are
longer, louder, and higher-pitched than unstressed syllables, occur at more
or less equal intervals interspersed with one or more unstressed syllables.”[1].

4. Effort is the physical and mental power that one uses to produce a speech.

Stuttering is a complex multi-dimensional speech fluency disorder [2]. It involves
disorders in all four factors mentioned above. What is interesting, persons who
stutter usually have tendency of trying to speak ”too fast”, but unattended
blocks just make them unable to do so. The most common observed type of
stutters are [1, 8]:

– Repetitions of sound, syllable, word or phrases: I t-t-talk like this; I ta-ta-talk
like this; I talk talk like this; I talk I talk like this.

– Sound prolongation: I aaaaate my lunch.
– Blocks: I . . . . . don’t know – the inability to produce audible speech at the

beginning of an utterance or word (tense pause) or in the middle of a word.

There are many theories trying to explain the stuttering phenomenon[2, 3]: Phys-
iological, Psychological, Linguistic, and Neurological. It is observed that most
of those who stutters seem to try to speak very fast ”to say everything before
a block occurs”. Fluency training aims to change this strategy and teach them
to speak slow, but do it fluently[1]. Very interesting technique making stutterers
speak just slightly slower, is chorus speaking. The variation of this technique

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 925–930, 2006.
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is called Delayed Auditory Feedback (DAF), it involves producing echo for a
stuttering person, so he hears himself with a little delay[4, 5, 7]. The similar
technique to DAF is Frequency Altered Feedback (FAF), it involves produc-
ing pitch-shifted echo for the stutterer. Person using FAF simply hears himself
speaking in higher or lower tone. The most effective is technique merging the
two – FAF and DAF, therefore we propose the system Orator with frequency
altered and delayed auditory feedback.

2 The Orator System

The Orator system is a PC software that can also act in the same way as
a traditional DAF device. It implements sound filters necessary to carry on
echo-therapy, those are: echo effect, reverb effect and chorus effect. However,
unlike traditional DAF device, Orator can also adjust all the therapy parameters
automatically, and ”tune” them adaptively to the patient. Those parameters are
controlled adaptively in real time basing on information about training progress.
There are three basic components of the system: Stuttering Detector – it analyses
sound and detects whether stuttering occurred or not; Therapy Controller –
a component controlling parameters of therapy according to therapy progress;
Provider – a component providing Delayed Auditory Feedback – delay, reverb
and chorus effects.

The Orator can work in two modes of interaction with patients: manual and
automatic.

In the manual mode user uses sliders to adjust parameters of therapy. The
system acts virtually the same as a traditional DAF device. There are four basic
parameters: Master volume – the global feedback volume; Echo delay; Reverb
volume; Chorus volume.

In the automatic mode there are no sliders at all, since the therapeutic session
is fully automatically controlled. Anyway before starting a session patient has
to go through three simple steps to setup and calibrate the system, those are:

1. Choosing initial volume, so the system will not hurt his ears.
2. Recording noise sample for noise filtering component – noise filtering is un-

fortunately necessary if we do not use high-end microphone and sound card.
To perform FFT noise filtering a noise sample has to be recorded beforehand,

3. Reading three sentences of text provided to calibrate the stuttering detection
component.

After these three steps the system is ready to use, and does not really interact
with the patient through other than auditory channel. The patient task is just
to talk or read some text laudly, the system will adjust all the parameters itself.
The flowchart in Fig. 1 presents an overview of the whole process of detecting
stutters in voice. In the paper we focus on the methods of stuttering detection
and automatic control of therapy applied in the Orator. Our stuttering detection
system is based on two measures scattered in time: wave energy, and spectral
distance. Using them we calculate the repetition signal [6] which represents quite
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well repetitions in recorded sound as far as they can be observed in spectrum. The
next task is to find patterns characteristic for stuttering in the repetition signal.
We tested SOM neural networks for this task, but the results were not good.
This was probably because stutters are usually surrounded by blocks that are
simply silence (see Fig. 2), but unfortunately SOM network did not distinguish
them from normal pauses, and it was usually yielding stutter at ends of words
where pause was starting.

Fuzzy logic approach
Many observations show that during a simple syllable or sound repetition stut-
ter, the repetition signal looks like in the Fig. 2. Those observations have also
a theoretical base. The graph represents double stutter – a double sound rep-
etition (that is represented by the peaks) that is interleaved by speech blocks.
Speech block is simply a silence and hence is represented as a very low plateau
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Fig. 2. Syllable repetition stutter characteristic features
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on repetition signal graph. Such repetition stutters can be used as a base for the
stuttering classifier. Fuzzy logic seems to be a right tool for solving not sharply
defined problems, such as finding mentioned above pattern. For finding the pat-
tern just two rules were necessary. The rules are as simple as follows (Fig. 3
shows used fuzzy sets):

if (Peak1 IS High) and (Peak2 IS Low) and (Peak3 is High) then SingleStutterDetected;
if (SingleStutterDetected) and (Peak4 is Low) and (Peak5 is High) then DoubleStutterDetected;

Observations show that patterns similar to single stutter occur also in fluent
speech so relying on them will not give the best discrimination results. However,
patterns described by double stutter rule can be rarely observed in fluent speech
whereas they are very common in stuttering. Hence when evaluating numerical
value of stuttering level we give double stutter ten times bigger stuttering dis-
crimination value than when single stutter is detected. We assume simple ramp
and triangular membership functions defined on a value of relative peak height.
The used numerical values were found after numerous experiments. Such a fuzzy
classifier works well enough to provide quality data for the control component.
We feed control component with long term moving average of stuttering level,
so single false alarms or not detected stutters does not play important role in
the quality of long term moving average. Moreover the controller is self-tuning
so the stuttering level does not have to denote any objective measure, but just
should be able to tell if a person is stuttering less or more than some time ago.
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Fig. 3. Peak height fuzzy set

The Therapy Controller was implemented as a fuzzy logic controller. As an
input value for the controller we provide long term moving average of stutter-
ing measure provided by the Stuttering Detector, the output values are just
delay and volume of the echo. A part of Perkins’ stuttering therapy program
described in [2] was used as a base for automatic therapy control component.
The idea how to control single therapeutic session was consulted with logopedist.
The general idea is that we should start the session with 250ms delayed echo,
and decrease it every time we observe significant progress, by the end of the ther-
apeutic session we should also fade out volume, to give the patients impression
that at the end they are speaking without help of the system, and so they can
carry on with fluent speech when they walk away from the computer. Session
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progress is a vital measure determining the how the component should act. The
progress is calculated as the difference between current stuttering level and the
last checkpoint stuttering level expressed in percent. Checkpoints are points in
therapeutic session when we consider therapy stage to change. Five basic therapy
stages were highlighted, those are: starting stage, early stage, middle, advanced
and final stage. Another measure playing important part in fuzzy rules of the
controller is significance of progress. This is the relation between change in stut-
tering level and maximum stuttering level observed in the current session. This
measure makes the controller relative changes sensitive, whereas the absolute
values of stuttering level are insignificant. Such design was necessary since the
absolute stuttering measure provided by stuttering detector might vary among
different people even if they stutter more or less the same. Quite simple fuzzy
rules describe the way the controller works:

if Significance is small or medium then TherapyDelta is zero;
if Significance is large and Progress is negative then TherapyDelta is negative;
if Significance is large and Progress is zero then TherapyDelta is zero;
if Significance is large and Progress is positive then TherapyDelta is positive;
TherapyStage = TherapyStage + TherapyDelta;

if TherapyStage is starting then Delay is very_large;
if TherapyStage is early then Delay is large;
if TherapyStage is middle then Delay is medium;
if TherapyStage is advanced then Delay is small;
if TherapyStage is final then Delay is very_small;
if TherapyStage is starting then Volume is very_large;
if TherapyStage is early then Volume is very_large;
if TherapyStage is middle then Volume is very_large;
if TherapyStage is advanced then Volume is large;
if TherapyStage is final then Volume is small;

The changes of controlled variables (delay and volume) are smoothed by short
term moving average to prevent rapid changes that would be hearable to the
user. This makes the delay and volume adjustments slow enough so they do not
disturb a patient nor grab his attention. Defined the fuzzy controller does not
need very high quality input data (the stuttering level) to perform well. This
makes the system still effective even if stuttering detector does not detect all
the different types of stutters. The Orator system gives patients possibilities of
everyday echo-based therapeutic sessions what is very imortant for achieving
good and stable results.

3 Summary

The developed Orator system was proved to be useful in therapy of real patients
in Psychological and Pedagogical Clinic No. 1 in Wroclaw. It is difficult to provide
objective measures of how the software really influences the therapy process, but a
subjective logopedists opinions provide a feeling how the system performs. Bellow
an important opinion is quoted: ”Orator application is highly useful in therapy of
stuttering children, particularly the fact that a child can use it at home. Everyday
work is very important for the therapy results and traditional echo-correction de-
vices are often unavailable for our patients because they are simply too expensive.
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Fig. 4. Fuzzy sets for the therapy controller

The option of automatic echo delay control seems to be interesting and promising.
Therapeutic session carried out with it seems to give much better results than one
carried just with a traditional device. I recommend the Orator system to every logo-
pedist using delayed auditory feedback in therapy of his patients.” (K. Marszewska,
Logopedist from Psychological and Pedagogical Clinic).

The stuttering detection component can be improved either by fine tuning
the fuzzy sets or introducing some more sophisticated rules into fuzzy stuttering
detector, or by using completely different approach.
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Abstract. The development of DNA array technology makes it feasible
to cancer detection with DNA array expression data. However, the re-
search is usually plagued with the problem of “curse of dimensionality”,
and the capability of discrimination is weakened seriously by the noise
and the redundancy that are abundant in these datasets. This paper
proposes a hybrid gene selection method for cancer detection based on
clustering of most similarity tree (CMST). By this method, a number of
non-redundant clusters and the most discriminating gene from each clus-
ter can be acquired. These discriminating genes are then used for training
of a perceptron that produces a very efficient classification. In CMST,
the Gap statistic is used to determine the optimal similarity measure λ
and the number of clusters. And a gene selection method with optimal
self-adaptive CMST(OS-CMST) for cancer detection is presented. The
experiments show that the gene pattern pre-processing based on CMST
not only reduces the dimensionality of the attributes significantly but
also improves the classification rate effectively in cancer detection. And
the selection scheme based on OS-CMST can acquire the top most dis-
criminating genes.

1 Introduction

The development of DNA array makes it feasible to cancer detection with DNA
array expression data. In cancer detection, the research is usually plagued with
large number of gene variables versus the small number of records of experiment,
which is known as the “curse of dimensionality”. The gene patterns selection
and the determination for the number of most discriminating patterns are very
important issues to cancer detection.

Feature selection is the process of choosing the most appropriate features
when creating the model of the process [1]. In cancer detection, many feature
selection methods were used to obtain the appropriate gene patterns. In Veer’s
approach [2], the genes were correlated against the disease outcome and then
ranked; and a set of 70 genes was then identified. In Shipp’s approach [3], signal
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noise ratio was used to identify 30 genes. Cho et al. evaluated the performances
of feature selection methods systematically[4]. These methods reduced the noise
but co-expressing redundancy among genes as they were applied across the entire
data set [5, 6]. The gene patterns selection methods based on clustering [7, 8, 9]
were proposed to deal with this issue. Mateos et al. proposed a way of reducing
the dimensionality of the dataset by pre-clustering gene expression patterns [8].
Then, the average expression values of the clusters of co-expression genes were
used with a supervised neural network for classifying the experiment conditions.
In Conde’s approach [9], a hierarchical based self Organizing Maps (SOM), the
Self Organizing Tree Algorithm (SOTA), was used to group gene expression
profiles into a number of clusters, and the average values of these clusters were
used for training of a perceptron to classify the gene expression profiles of the
conditions. However, these schemes are sensitive to the noise and outlier.

In this paper, the approach of gene selection based on clustering of most
similarity tree(CMST)[10] is proposed to cancer detection. Firstly, CMST is used
and many clusters, in which the redundancy is minimized from each other, are
produced. Then the most informative and discriminating gene is selected from
each cluster with feature selection method as used in the entire data set, which
removes the noise and outlier in the cluster. This proposed scheme can efficiently
eliminate the disturbance of redundancy and noise. Hence it improves the quality
of representative genes in the classification of experiment conditions with gene
expression data. These discriminating genes are used to train a perceptron that
produces a very efficient classification.

How to determine the number of discriminating gene patterns is also a topic
in the field of cancer detection. In the proposed schemes, the number of gene pat-
terns for cancer detection is pre-fixed arbitrarily. Different from these schemes,
in this paper the Gap statistic [11] with similarity measure is used to determine
the most optimal similarity measure in CMST, and the gene selection based
on the optimal self-adaptive CMST (OS-CMST) is proposed. The experiment
shows that this scheme can acquire the top most discriminating genes without
inputting parameters.

The paper is organized as follows. Section II describes the related methodolo-
gies on gene pattern pre-processing in gene classification and cancer detection.
Section III presents the gene clustering of most similarity tree(CMST), the gene
clustering of optimal self-adaptive CMST(OS-CMST) and the hybrid method
of gene selection based on CMST/OS-CMST. In Section IV, the cancer detec-
tion scheme is described , and thorough experimental results with the Alizadeh’s
dataset [12] are presented.

2 Related Methodologies

Information gain (IG) is a measurement to the correlation between the viable
and the classes. According to the IG, the genes are ranked and selected. It is
described using following formula:
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IG(gi, cj) = P (gi, cj)log
P (gi, cj)
P (gi)P (cj)

+ P (gi, cj)log
P (gi, cj)
P (gi)P (cj)

(1)

where P (cj) is the number of features in class cj , P (gi) and P (gi) are the numbers
of features when are induced and regressed respectively.P (gi, cj) is the number
of cases when the gi is induced in class cj , and P (gi, cj)is the number of cases
when the gi is regressed in class cj .

Signal-to-noise ratio (SNR)is a calculated ranking number for each variable
to define how well this variable discriminates different classes. In gene selection
the following formula is used:

SNR(gi, cj) =
μ(gi, cj)− μ(gi, cj)
σ(gi, cj)− σ(gi, cj)

(2)

where μ(gi, cj) and μ(gi, cj) are the mean values of gi for the samples in cj and
not in cj respectively and σ(gi, cj) and σ(gi, cj) are the corresponding standard
deviations.

The Self Organizing Tree Algorithm (SOTA) is a hierarchical version of Self
Organizing Maps(SOM). It is a divisive method and constructs a hierarchical
relationships among the entities(here the gene expression profiles in the dataset).
The genes clustering resolution is obtained according to the level of the tree
constructed by SOTA. In Ref.[9],to reduce the dimensionality the average values
of these clusters are used for the training of a perceptron to classify the conditions
in DNA microarray gene expression data.

3 Gene Selection Based on CMST/OS-CMST

In this section a hybrid method for gene selection is introduced to cancer detec-
tion. Firstly, the clustering method of CMST/OS-CMST is used to partition the
genes into some clusters. Secondly, in each cluster the genes are ranked using
Information gain(IG)/Signal-to-noise ratio (SNR), and then the representative
gene is selected. It can eliminate the affection of redundancy and noise efficiently
and improve the accuracy of cancer detection.

3.1 Gene Clustering of CMST/OS-CMST

The algorithm of CMST is based on the idea of equivalence relation and equiv-
alence classes in set theory and graph theory. There is an equivalence relation R
to objects gi,gj in cluster C,

R = < gi, gj > |gi, gj ∈ C. (3)

If R is an equivalence relation to cluster C, below characters will be satisfied.

< gi, gi >∈ R, ifgi ∈ C. (4)

< gj, gi >∈ R, if < gi, gj >∈ R ∧ gi, gj ∈ C. (5)
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< gi, gk >∈ R, if < gi, gj >∈ R

∧ < gj , gk >∈ R ∧ gi, gj , gk ∈ C. (6)

According to the equivalence relation R, the equivalence classes [gi]R, where
gi is the representative object in its classe, can be obtained from the objects
domain G. All objects in G are partitioned effectively by these classes. The most
similarity tree is an extensive method of equivalence relation theory combined
with graph theory.

Let G = {g1, g2, ..., gn} be a set of genes, and a member of the set gi =
{gi1, gi2, ..., gim},where gij is the jth character of the ith gene in the gene ex-
pression data. The similarity measure between gene gi and gj is defined as
SM(gi, gj) = sij ,

sij =

m∑
k=1

|gik − gi||gjk − gj |√
m∑

k=1
(gik − gi)2 ·

m∑
k=1

(gjk − gj)2
(7)

where gi = 1
m

m∑
k=1

gik,gj = 1
m

m∑
k=1

gjk. And the similarity measurement matrix,

SMM, is built and SM(gi, gj) is its ij th element.
A most similarity tree T<v,e>is a weighted graph built with SMM, the

weight of an edge in this tree is the similarity of the two connecting neigh-
bor vertexes. There exist a path between two vertexes in the tree and the path
weight,PW (gi, gj), is the least weight of edge via this path.

In gene domain G, the relation R(λ,G) of similarity measure is defined as:

R(λ,G) = < gi, gj > |PW (gi, gj) > λ ∧ gi, gj ∈ G. (8)

If the relation R(λ,G) satisfies the three characters above, it is an equivalence
relation. A partition of G with relation R(λ,G) groups genes into clusters. In
each cluster, the similarity measure of pair of genes is greater than λ.

A simple method for clustering is to remove the edge in which its weight is
less than the customized threshold λ. In each cluster, the relation of R is the
equivalence relation with similarity measure of λ.

Suppose the gene data set G, according to similarity measure λ, has been clus-
tered into k clusters C1, C2, ..., Ck, with Cr denoting the indices of observations
in rth cluster, and nr = |Cr|.

Let WSr be within similarity of cluster |Cr|.

WSr =
∑

gi,gj∈Cr∧gi �=gj

SM2(gi, gj), (9)

Where WSr is the sum of pairwise squared similarity measures for all genes in
rth cluster. And AS(λ) is set as follows.

AS(λ) =
k∑

i=1

1
ni
WSi. (10)
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The idea of our approach is to standardize the graph of log(AS(λ)) by comparing
it to its expectation under an appropriate null reference distribution. Hence we
defined that

Gap(λ) = E∗(log(AS(λ))) − log(AS(λ)). (11)

where E∗(log(AS(λ))) is estimated by an average of B copies log(AS(λ)∗), each
of which is computed from a Monte Carlo sample g∗1 , g

∗
2 , ..., g

∗
n drawn from the

reference distribution. For convenience, the reference distribution used here is
generating each reference feature uniformly in the range of the observed values
for that feature.

E∗(log(AS(λ))) =
1
B

∑
b

log(AS(λ)∗b) (12)

sd(λ) =

√
1
B

∑
b

(
log

(
AS(λ)∗b

)
− 1
B

∑
b

log
(
AS(λ)∗b

))2
(13)

s(λ) = sd(λ)

√
1 +

1
B

(14)

where sd(λ) denotes the standard deviation of the B Monte Carlo replicates
log(AS(λ)∗) , account for the simulation error in E∗(log(AS(λ))). Using this,the
similarity measure is chosen to be the greatest one that makes Equ.(15) satisfied.

Gap(λi) ≥ Gap(λi+1)− s(λi+1). (15)

3.2 Gene Selection Based on CMST/OS-CMST

Gene selection based on CMST/OS-CMST is a hybrid method to select the top
most discriminating genes for cancer detection. Firstly, the clustering method of
CMST/OS-CMST partitions the genes into some clusters, in which there is little
redundancy between the genes from different clusters. Secondly, in each of the
most similarity clusters the genes are ranked using IG/SNR, and the representa-
tive genes are selected. These genes have the character of discriminating the class
of samples in the corresponding cluster furthest, which eliminate the affection
of noise and outlier efficiently. Then the genes selected as the two steps above
are used to train the classification model. The hybrid method of gene selection
combines the strongpoints of different data processing methods at muti-steps,
so it has merits with least redundancy and non-sensitive to outlier and noise.

The algorithm of gene selection based on CMST/OS-CMST is implemented
as follows:

1) Construct the similarity measurement matrix SMM according to the simi-
larity measure of genes, SM(gi, gj) = sij .

2) Depict all the genes gi,gi ∈ G.
3) Connect the edge of the genes according to the rank of the similarity mea-

sure, the two genes with greatest similarity measure are selected and con-
nected with a weighted edge, weight(gi, gj) = SM(gi, gj), if it is guaranteed
that there is not a loop, a most similarity tree is built, and the number of
edges of the tree is |T |.
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4) If CMST is used, remove the edge whose weight is less than the inputting
threshold λ and go to step 13.

5) Rank the |T | similarity measures λ, the weight of edge, in the tree by sort
descending.

6) For each similarity measure λi, 1 ≤ i ≤ |T |.
7) Cluster genes in the tree T giving within similarity measure AS(λi).
8) Generate B reference data sets and build B most similarity trees.
9) Cluster genes in each of the B most similarity trees according to similarity

measure λi giving within similarity measures AS(λi)b, 1 ≤ b ≤ B.
10) Compute the Gap statistic Gap(λ) = E∗(log(AS(λ))) − log(AS(λ)) and

s(λi).
11) Until Gap(λi) ≥ Gap(λi+1)− s(λi+1), else go to step 4.
12) λi is selected as the most optimal similarity measure threshold, and the

genes is clustered using CMST with similarity measure λi .
13) IG/SNR is used to these clusters and the top most discriminating genes

are selected for cancer detection.

4 Experiments

4.1 Cancer Detection with Gene Selection Based on CMST

We applied this hybrid gene selection method of CMST and IG/SNR for classi-
fying cell lines on the Alizadeh’s dataset [12], which includes nine different types
of cell lines. In the experiment we compared the classification results to that of
using pre-processing of SOTA[9], IG and SNR via entire genes.

This experiment composes of two parts. In the first part, SOTA,IG and the
hybrid method of CMST and IG are used to select the gene patterns respectively.
The numbers of gene patterns with SOTA and IG are customized to 15,40 and
75 respectively.In the second part,SNR is used instead of IG. The numbers of
gene patterns with SOTA and SNR are customized to 12,35 and 72 respectively.
In both parts, the number of clusters by CMST is chosen to be the closest
one to the corresponding number of gene patterns produced by other methods.
Then these patterns are used for the training of a perceptron with a single input
layer with k (the number of gene patterns) input nodes and nine nodes in the
output layer, corresponding to the nine types of cell lines of Alizadeh’s data.
The weight-update rule is used as follows:

Δwij = η ∗ (D − Y ) ∗ xi (16)

where Δwij is the weight update from node i to unit j,η is the leaning rate
and is set to 0.5, D is the desired output, and Y is the actual output,xi is the
input from node i. The classification results are tested through the leave one out
method for validation and shown in table1 and table2.

From table1 and table2, we can see that the classification accuracies with
gene selection of our hybrid method are better than with the pre-processing by
SOTA, IG and SNR at different numbers of gene patterns. The reasons are as
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Table 1. Classification results with different gene patterns selection methods(SOTA,
IG,CMST)

Cell line Total
SOTA IG CMST SOTA IG CMST SOTA IG CMST

(15 ) (15) (14) (40) (40) (38) (75) (75) (76)

No.1 46 41 39 43 42 40 45 42 40 43

No.2 2 1 1 2 2 1 2 2 1 2

No.3 2 1 1 1 1 1 2 1 1 1

No.4 10 8 6 8 9 8 10 8 6 9

No.5 6 5 5 6 4 5 6 5 4 6

No.6 6 5 5 5 5 4 5 4 5 5

No.7 9 8 7 8 9 8 8 8 6 8

No.8 4 3 3 3 3 3 3 3 2 4

No.9 11 9 8 10 10 8 9 9 7 9

Total 96 81 75 86 85 78 90 82 72 87

Table 2. Classification results with different gene patterns selection methods(SOTA,
SNR,CMST)

Cell line Total
SOTA SNR CMST SOTA SNR CMST SOTA SNR CMST

(12 ) (12) (11) (35) (35) (36) (72) (72) (70)

No.1 46 40 37 42 41 39 45 41 38 44

No.2 2 1 1 2 2 1 2 1 2 2

No.3 2 2 1 1 1 2 2 1 1 1

No.4 10 8 6 9 9 7 9 7 8 8

No.5 6 4 6 5 5 5 6 5 4 5

No.6 6 4 4 5 5 4 5 5 4 5

No.7 9 8 7 8 9 7 8 8 4 7

No.8 4 3 3 4 3 4 4 2 2 4

No.9 11 9 7 9 8 8 10 10 8 10

Total 96 79 72 85 83 77 91 80 71 86

follows:firstly, there is a lot of redundant information in the gene dataset which
composes of 4026 genes. The redundancy is included in the selected genes by
IG and SNR via whole dataset and some discriminating genes are missed. Sec-
ondly, the noise and outlier are abundant in the gene expression dataset. The
gene patterns pre-processed by SOTA for classification are disturbed severely
and the classification accuracy is weakened. However, Our approach combines
the strongpoints of different data processing methods at different steps. It elim-
inates redundancy and removes noise simultaneously, so the accuracy of cancer
detection is improved.
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4.2 Cancer Detection with Gene Selection Based on OS-CMST

In cancer detection, the accuracy doesn’t increase as the number of gene patterns
increases, which are shown in table1 and table2. When the number of clusters is a
magnitude between 38 and 55, it achieves the peak value. In all the proposed gene
selection methods, the number of gene patterns for cancer detection is pre-fixed
by the researches arbitrarily. In this experiment, OS-CMST is used to produce the
global optimal clusters,withminimized similarity and least redundant information
from each other. From Fig.1, the most appropriate number of clusters is 46, which
is estimated by the Gap statistic. In Ref.[9], one appropriate number of clusters is
44 via method of exhaustion with the pre-processing by SOTA .
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λ

G
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(λ
) 

Fig. 1. Gap statistic with similarity measure threshold λ on clusters using CMST, the
numeric near the label circle is corresponding number of clusters to this threshold

Then IG/SNR is used to select the most representative gene from each clus-
ter for the training of the perceptron with a single input layer with 46 input
nodes, which is 44 by SOTA, and nine nodes in the output layer. The results of
classification with the most discriminating gene patterns, which pre-processed
by SOTA, IG/SNR via the entire genes and our hybrid method respectively,
are in table 3. The expression in the second row is the same as the last row in
table 1. Table 3 shows that the classification based on the hybrid gene selection
of OS-CMST and IG gains the exciting results and the efficiency is 94 out of
96, which is better than the accuracy by pre-processing with SOTA, while using
IG via the entire genes is 86 out of 96. And using SNR the accuracy is only
82 out of 96, while combined with OS-CMST the accuracy advances to 92 out
of 96.
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Table 3. Classification of cell lines with gene patterns pre-processed by SNR,IG, SOTA
and the hybrid method respectively

Total SNR IG SOTA OS-CMST(SNR) OS-CMST(IG)

96 82 86 91 92 94

5 Conclusion

In this paper we present a approach of gene selection based on CMST/OS-
CMST for cancer detection. This hybrid approach combines the strongpoints
of different data processing methods.The experiment results indicate that this
scheme can eliminate the redundancy and noise efficiently,acquire the top most
discriminating genes and generate the better cancer detection accuracy. Also
the OS-CMST based gene selection approach can obtain the most optimal gene
patterns for cancer detection without parameters.
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Abstract. Automatic annotation of medical texts for various natural
language processing tasks is a very important goal that is still far from
being accomplished. Semantic annotation of a free text is one of the
necessary steps in this process. Disambiguation is frequently attempted
using either rule-based or statistical approaches to semantical analy-
sis. A neurocognitive approach for a nonambiguous concept mapping is
proposed here. Concepts are taken from the Unified Medical Language
System (UMLS) collection of ontologies. An active part of the whole
semantic memory based on these concepts forms a graph of consistent
concepts (GCC). The text is analyzed by spreading activation in the
network that consist of GCC and related concepts in the semantic net-
work. A scoring function is used for choosing the meaning of the concepts
that fit in the best way to the current interpretation of the text. ULMS
knowledge sources are not sufficient to fully characterize concepts and
their relations. Annotated texts are used to learn new relations useful
for disambiguation of word meanings.

1 Introduction

The Unified Medical Language System (UMLS) is a collection of 88 medical
knowledge sources. The most recent edition of UMLS (2005AB ed.) contains 1
196 265 unique concepts, each labeled by a Concept Unique Identifier (CUI),
and 2 873 310 unique phrases (SUI) [1]. Annotation of texts requires mapping
of noun phrases, words, abbreviations and acronyms discovered in the unstruc-
tured text to the unique UMLS concepts. The MetaMap software (MMTx) [2]
is frequently used to discover UMLS concepts in texts. The software has been
developed by experts in the U.S. National Library of Medicine, a part of the
National Institute of Health. The MetaMap algorithm is rather slow and quite
complicated. It is aimed at discovering all possible terms in the text without
carrying much about ambiguity of the output. As a result some words are given
many annotations, listing all possible meanings and various phrases they appear
in, making the semantic search even more difficult than with the raw text.

The goal of our research is to overcome these drawbacks and create fast,
precise and unambiguous concept mappings. There are many statistical, pattern
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recognition and syntactical approaches to the general word sense disambiguation
(WSD) problem [3], but most experiments have been conducted on a small scale,
while the number of medical concepts that need to be taken into account exceeds
one million. Moreover, although some word meanings are easily distinguishable
other are quite difficult to capture and even human annotators agree only in no
more than 80% [4]. Despite that fact experts have no problem with understanding
medical or technical texts. The only system capable of language understanding
at the human competence level is the human brain, and it should be the source
of inspirations for development of semantic annotation systems.

General philosophy of our neurocognitive approach to natural language pro-
cessing (NLP) is presented in the next section. To approximate formation of
primed semantic subnetwork providing interpretation of the text graphs of con-
sistent concepts (GCCs) are constructed. The concept mapping algorithm, pre-
sented in the third section, is based on this approach, although many other
variants and applications are possible [5,6,7]. The algorithm for phrase sense dis-
ambiguation that adds new relations and determines relations strength between
concepts with the use of prior knowledge and the acquisition of new knowledge
are also discussed in this section. The last section contains conclusions and future
plans.

2 Neurocognitive Approach to NLP

Analysis of texts, independent of the purpose, requires three main steps:

– recognition of tokens, or mapping from strings of letters to unique terms;
– resolving ambiguities, grouping terms into phrases and mapping them to

concepts;
– semantic representation of the whole text capturing relations among enti-

ties that are involved, facilitating inferences, and thus understanding and
answering questions about its content.

These three steps roughly correspond to the function of three kinds of human
memory [8]: recognition memory, semantic memory and episodic memory. NLP
research usually ignores this fact, focusing on formal approaches (grammar, log-
ics, statistical correlations). Neurocognitive approach to NLP follows inspirations
from brain science focusing on approximated models of memory and other neu-
ral processes. The long-term goal is to reach human-level competence in natural
language processing.

Recognition memory helps to ignore most spelling errors. As long as the first
and the last letter of the word is not changed even severely distorted texts con-
taining wrods wtih many paris of letres trasnpoesd is read without much troubles,
a phenomenon that is of interest to spammers and cognitive scientists. It is rather
obvious that context and anticipation plays a major role in correct recognition.
Although we do not consider problems at the recognition level here unstructured
medical texts need a lot of data cleaning. Lexical Systems Group of the US Na-
tional Library of Medicine has developed a spelling suggestion tool Gspell and
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the SPECIALIST lexicon containing many biomedical terms and general English
words, that Gspell is using to provide suggestions. Without the use of context
and understanding the topic of the text Gspell makes many spelling suggestions,
although humans recognize a single term, frequently paying no attention to the
misspellings. It is clear that recognition memory cannot be separated from other
memory systems, doing much more than just searching for similar terms in the
lexicon. Reading text leads to priming effects: expectation and anticipation of a
few selected words, and inhibition of many others that do not come to our mind.

The semantic priming (SP) phenomenon has been known in cognitive psy-
chology since more than 30 years (see the review in [9]). Each word excites brain
subnetworks that encode different meanings of that word [10]. In such coding
identical phonological representations of words may be shared among several
concepts without leading to any problems. Words that have been processed ear-
lier (context) have already activated many brain subnetworks, increasing the
probability of a particular meaning of the new concept, and inhibiting all other
meanings. This competition, leading to inhibition of subnetworks coding alterna-
tive meanings of the word, makes it hard to think about alternatives when one of
the meanings (interpretations) fits really well to the current context. Statistical
language processing models applied to a large text corpus used for training allow
for prediction of the next word in a sequence with high reliability [11], partially
capturing this anticipation, although statistical algorithms do not approximate
well real brain processes behind this phenomenon. Anticipation may help to
disambiguate word senses, facilitating the mapping of terms into concepts.

Semantic memory encodes in the activity of brain’s subnetworks information
about objects and concepts, together with their properties and relations. Formal
models of semantic networks, computational structures inspired by psychological
ideas about semantic memory, are known since more than 30 years [8,12,13,14].
Semantic networks are used in artificial intelligence as knowledge representation
tools [15,16] and may provide a model to approximate functions of biological
semantic memory (SM). Each node in semantic network is in fact a subnetwork,
with similarities and associations between concepts resulting in sharing some
parts of the subnetworks. Activations of semantic subnetworks are responsible
for semantic priming, building an episode that may be memorized and retrieved
later, reinstating a particular configuration of brain activities, or an episode.

Episodic memory is based on semantic relations of concepts found in the ana-
lyzed text, understanding or rough categorization of the text topic, and binding
different entities in a specific way for this particular text. Our assumption here is
that a simple model of episodic memory may be provided by priming the seman-
tic network during text reading, forming an active subnetwork of main concepts
found in the text, their mutual relations and their relations to concepts form-
ing background knowledge that has not been explicitly mentioned. One way to
achieve it is to scan the text to find main, unambiguous concepts that form the
skeleton of the active subnetwork, and add other concepts selecting the mean-
ing that increase overall consistency. In this way graphs of consistent concepts
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(GCCs) may be formed, capturing the meaning of the text and facilitating its
unambiguous annotation. Some relations are not defined directly at the level of
relations between individual concepts, but at the higher ontological level (this
is probably done by the non-dominant hemisphere, where representations of
abstract concepts may be stored [17]. UMLS contains Semantic Network, but it
has only 132 highest level broad subject categories (Semantic Types).

An alternative to the network model is provided by vector space models, for
example the High Dimensional Semantic Space memory model [18]. An ambigu-
ous word, for example cold, corresponding to several different concepts (UMLS
Methathesaurus has 6 senses of cold) is represented by 6 different vectors. Each
vector component measures statistical co-occurrences of each particular word
sense to all other lexicon terms, defining how likely it is that this term will
appear in the context window of a given word. To select the correct sense the
context window is used to find how similar is a given vector representation to
the current context. This approach has been used with some success in general
word sense disambiguation tasks. Vector models may be understood as an ap-
proximation to the activation of network nodes, and the search for consistent
concepts that is used in the GCC algorithm may be formulated as the search for
vectors that create smallest volume.

Memory-based process are rarely acknowledged in natural language processing
research. Semantic Knowledge Representation (SKR) project at the National
Library of Medicine (NLM) has a very ambitious goal [19], although it is only
loosely inspired by psychological ideas about semantic memory, rather then being
a model of semantic memory as implemented by the brain. Yet it is obvious that
without recognition, semantic and episodic memory understanding texts would
not be possible. Each concept has numerous properties and relations that are
encoded in the structure of subnetworks that encode it in the brain [10]. Our goal
should be to approximate some of these processes. This leads to the extension of
the idea of semantic networks [12,13,15,16], providing a model to approximate
functions of biological semantic memory (SM). Concepts should be represented
by distributed subnetworks that contain phonological representations and by
semantic extensions of these representations, linking to all the properties of a
given concept and to all concepts that may be associated in some way with them.
Two main processes in such networks are spreading activation and competition.
Competitive processes should not be considered as the “winner-takes-all” only,
as there are many winners and the activity of the whole subnetwork providing
consistent interpretation of the text being analyzed is growing.

The challenge is to collect sufficient knowledge about concepts and their re-
lations that allows humans to understand language and to interpret texts. The
largest collection of ontologies combined by specialists is available in medical
domain. UMLS ontologies have hierarchical structures and thus do not provide
strong concept descriptions. An expert knows much more about basic medical
concepts than can be found in the UMLS. Thus UMLS may serve only as a poor
approximation to the real semantic memory. Relations contained in the UMLS
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may be represented as excitatory connections between concepts. UMLS (2005AB
edition) contains 4 435 387 unique relations but it is not a comprehensive medical
encyclopedia, so a lot of relations are missing. It is not clear how to score most
relations because only co-occurrence relations in UMLS are numerical and all
others are logical. Lack of knowledge about concept properties and relations is
the major obstacle to annotate in an unambiguous way clinical texts.

To approximate formation of primed semantic subnetwork providing inter-
pretation of the text, graphs of consistent concepts (GCCs) are constructed. An
algorithm for adding new relations and determining relations strength between
concepts with the use of prior knowledge is described below

3 Concept Mapping Algorithm

UMLS includes three main modules used in our approach: GSPELL, a tool for
spelling correction; and two UMLS Knowledge Sources: Specialist Lexicon, a
general lexicon that includes both common English words and biomedical vo-
cabulary; Methathesaurus, describing biomedical and health-related concepts, a
very large, multi-lingual and multi-purpose vocabulary. Overall the whole UMLS
installation needs 26 GB of storage space. The GCC algorithm uses only part of
UMLS. For normalizing and varying terms following files from the SPECIALIST
LEXICON are used: DM.DB, SM.DB, LRABR, LRAGR, LRNOM, LRSPL. For bind-
ing concepts with phrases and sources the following file are used: MRCONSO.RRF,
MRXNS ENG.RRF.

In order to map a noun and verb phrases to concepts TreeTagger software
[20] is used to annotate text with parts of speech (POS). Every word (EUI)
in a text is mapped to its normalized form (WUI) - a singular noun. Unique
string identifiers (SUI) are composed in turn from normalized words (WUI).
Every phrase (SUI) has on average 2.4 different CUIs associated with it. The
following schema for mapping is used:

EUI 3→WUI 3→ SUI 3→ CUI

Figure 1 presents a simplified schema for mapping a text to concepts. Words
in that example are already normalized.

Fig. 1. A simplified schema for mapping normalized words to concepts
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In order to map phrases (SUI) to concepts (CUI) following algorithm was
used:

1. Assign part of speech tags to every token.
2. Map all the words to their normalized forms.
3. Scan normalized words from the end of the text.
3a. If a POS tag matches one of the symbols:

CD,RB,JJ,N,VV,LS,SYM
start scanning the text from the current position
towards beginning of the text,
add words to a phrase that match mentioned POS tags
until there is a phrase that is not in the UMLS.

3b. Resume after position where last UMLS
phrase was found.

4. Finish when at the beginning of the text.

This is a very fast and simple mapping algorithm. The following text from
ultrasonography dictation has been mapped to a concept space:

Fever, left flank pain, pyelonephritis. The right kidney is
normal in sonographic appearance with no evidence of scarring,
hydronephrosis or calculi. It measures XXXX cm which is normal
for patient’s age. The left kidney is enlarged. It measures xx
cm in length. No focal areas of abnormal echogenicity or scarring
are seen. No hydronephrosis or calculi are identified. Images of
the bladder demonstrate no abnormality. Enlargement of the left
kidney which may suggest acute pyelonephritis. This could also
represent a normal variant. Normal appearing right kidney.

The algorithm found 30 concepts in this text, 11 of which are ambiguous.
Next step is to find which SUI 3→ CUI, or phrases map to concepts. In order to
disambiguate SUI phrases relational table from UMLS (MRREL.RRF file) is used.
This file contains 5 499 792 unique relations, with the same relations found in
many different ontologies. Some relations are rather peculiar and appear only in
one specialized ontology, while important relations are found in many ontologies.
A weight matrix for all relations is constructed. Following definitions are used:
N(CUIi) – number of occurrence of a CUIi concept in the relational table,
C(CUIi, CUIj) – number of co-occurrences of CUIi and CUIj concepts in the
relational table row, W = {wij} – matrix storing weights between ith and jth
concept. The weights are defined as conditional probabilities:

wij = P (j|i) =
C(CUIi, CUIj)
N(CUIi)

(1)

Once a text is mapped to a set of ambiguous concepts a graph of consistent
concepts is created, with nodes corresponding to concepts and edges to relations.
Each node corresponding to the concept found in the text has an initial activity
ai(t = 0) that spreads to other nodes according to W matrix:

ai(t+ 1) = αai(t) +
∑

j

wijH(aj(t)) (2)
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Fig. 2. Example of a graph of consistent concepts after 4 iteration of spreading acti-

vations

where H is the Heaviside step function and α is a spontaneous decay parameter.
Similar function was considered in [21]. The main problem for spreading activa-
tion in networks without inhibition is to prevent the infinite growth of all node
activities. α decays should be sufficiently large to achieve this; all experiments
in this paper are with α = 0.73.

Propagation of activations in the semantic network should lead to the decay of
concepts that are not supported by other active concepts. After a few iterations
only most consistent concepts forming the GCC graph should have activations
above certain threshold. These concepts should give the right sense of a phrase
(SUI). Figure 2 shows an example of the GCC graph after 4 iterations.

The initial weights created from UMLS relations help to disambiguate phrases
only in a limited way. The UMLS is a big but quite general knowledge base, and
it frequently lacks more specific knowledge. Enriching UMLS relations means
simply adding N(CUIi) and C(CUIi, CUIj) for all pairs of concepts from an
annotated text. For pilot purposes two small radiology corpuses were created.
For knowledge acquisition Cincinnati Children’s Hospital Medical Center clini-
cal texts from radiology were used. These texts are dictated by physicians and
changed into a text form by medical voice recognition software. 60 of those doc-
uments where chosen for manual annotation and divided in two parts. Every set
of documents has 30 chest x-ray dictations for 6 different diseases. Special web
application was created with an easy to use interface that allows a specialist
to annotate a text. Figure 3 shows the main interface done with Asynchronous
JavaScript And XML (AJAX) technology [22].

In order to check the usefulness of this approach pilot project accuracy mea-
sure that focuses only on the ambiguous mappings was used. If the maximally
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Fig. 3. Influence of learning on CUI selection

Fig. 4. Example of a graph of consistent concepts with enriched UMLS relations

activated CUI corresponds to the manually chosen CUI then a correct recogni-
tion is counted. Overall Corpus I has 140 ambiguous phrases and Corpus II 301
ambiguous phrases. Table 1 shows comparison of accuracies with no training,
training using Corpus I and training using Corpus II. The second corpus seems
to be much more difficult to learn but overall results are promising.

The initial weights were able to give maximum activation to only 64% of
correct concepts but manually adding the relations found in the radiology corpus
to this toy example gave perfect disambiguation in all cases. Figure 4 shows the
GCC graph after adding new co-occurrence relations. This figure presents more
compact and consistent graph. Only the right senses of the phrases (SUIs) have
maximum activation potential.
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Table 1. Comparison of GCC disambiguation accuracies with and without additional

training

no training training
Corpus I Corpus II

Corpus I 79% 96% 86%

Corpus II 57% 64% 79%

4 Conclusions

General neurocognitive approach to the natural language processing has been
described and an algorithm for nonambiguous medical concept mapping, based
on this approach, has been presented. Unfortunately even with the use of ULMS
parsed clinical texts showed that many relations needed for correct annotations
are still missing. A software tool for enriching UMLS relation by creating man-
ually annotated texts and learning from them has been presented. Experiments
performed on two small corpuses showed significant influence of additional knowl-
edge on the disambiguation performance of GCC graphs.

Annotation of unstructured medical texts is quite difficult. Sometimes the
UMLS mappings do not make sense for medical experts. In such cases they have
additional CUI to choose: None of the mentioned (Fig. 3). This means that
none of the CUI that are mapped to a SUI should be included in the graph (or
they should at least have a very small activation). This and many other issues
remain still to be investigated.

GCCs are a promising tool for Natural Language Processing tasks. They pro-
vide a better approximation to brain processes then vector models, yet com-
putationally they are relatively simple, using only a single vector with node
activations and a weight matrix estimating strength of relations. There may
be many variants of GCC-based algorithms, with different strategies for initial
node activations and subsequent activation spreading, weighting of relations, and
overall consistency scoring evaluations. To add new knowledge large manually
annotated corpus should be created, and better concept descriptions created us-
ing medical textbooks and dictionaries (the problem of automatic creation of
semantic memory has been considered in [6]). Combining ideas from cognitive
neuroscience with ideas from medical information retrieval literature algorithms
that reach human level performance should finally be achieved.
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Abstract. In this paper we perform a t-test for significant gene expression 
analysis in different dimensions based on molecular profiles from microarray 
data, and compare several computational intelligent techniques for classification 
accuracy on Leukemia, Lymphoma and Prostate cancer datasets of broad insti-
tute and Colon cancer dataset from Princeton gene expression project. Classifi-
cation accuracy is evaluated with Linear genetic Programs, Multivariate  
Regression Splines (MARS), Classification and Regression Tress (CART) and 
Random Forests. Linear Genetic Programs and Random forests perform the best 
for detecting malignancy of different tumors. Our results demonstrate the poten-
tial of using learning machines in diagnosis of the malignancy of a tumor.  

We also address the related issue of ranking the importance of input features, 
which is itself a problem of great interest. Elimination of the insignificant inputs 
(genes) leads to a simplified problem and possibly faster and more accurate 
classification of microarray gene expression data. Experiments on select cancer 
datasets have been carried out to assess the effectiveness of this criterion. Re-
sults show that using significant features gives the most remarkable perform-
ance and performs consistently well over microarray gene expression datasets 
we used. The classifiers used perform the best using the most significant fea-
tures expect for Prostate cancer dataset. 

1   Introduction 

Though most cells in our bodies contain the same genes, not all of the genes are used 
in each cell. Some genes are turned on, or “expressed” when needed. Many genes are 
used to specify features unique to each type of cell. Microarray technology looks at 
many genes at once and determines which are expressed in a particular cell type. Us-
ing DNA microarray analysis thousands of individual genes can be spotted on a single 
square inch slide. DNA targets are arrayed onto glass slides (or membranes) and ex-
plored with fluorescent or radioactively labeled probes [1]. Obtaining genome-wide 
expression data from cancerous tissues gives insight into the gene expression varia-
tion of various tumor types, thus providing clues for cancer classification of individ-
ual samples. One of the key challenges of microarray studies is to derive biological 
insights from the unprecedented quantities of data on gene expression patterns. Parti-
tioning genes into closely related groups has become an element of practically all 
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analyses of microarray data [2]. But identification of genes faces with many chal-
lenges. The main challenge is the overwhelming number of genes compared to the 
smaller number of available training samples. In machine learning terminology, these 
data sets have high dimension and small sample size. And many of these genes are ir-
relevant to the distinction of samples. These irrelevant genes have negative effect on 
the accuracies of the classifier. Another challenge is that DNA array data contain 
technical and biological noise. Thus, it is critical to identify a subset of informative 
genes from a large data that will give higher classification accuracy.  

Many methods have been proposed in the past to reduce the dimensionality of gene 
expression data [3]. Several machine learning techniques have been successfully ap-
plied to cancer classification using microarray data [4]. One of the early methods is a 
hierarchical algorithm developed by Eisen et al. [5]. Other popular algorithms, such as 
neural networks, K-Nearest Neighbor (KNN), support vector machines, kernel based 
classifiers, genetic algorithms and Self-Organizing Maps (SOM) are widely applied 
for tumor classification [3, 6]. 

In this paper, we extract different dimensional gene data based on t-test and apply 
Regression Splines (MARS), Classification and Regression Tress (CART) Random 
Forests and Linear Genetic Programs (LGP) to extracted datasets, and compare the 
classification accuracy on microarray data.  

This paper is organized as follows: section 2 presents gene expression data and t-
test analysis to extract key features; section 3 introduces to the problem of feature 
ranking. Datasets used for experiments and gene data selection specific to the datasets 
used is described in section 4. Section 5 introduces Multivariate Regression Splines 
(MARS) and section 6 Classification and Regression Tress (CART). Random forests 
are described in section 7. A brief introduction to Linear Genetic Programs (LGP) is 
given in section 8. Classifier performance is presented in section 9. Summary and 
conclusions are given in section 10. 

2   Gene Expression Data Selection 

For a given classifier and a training set, the optimality of a gene identification algo-
rithm can be ensured by an exhaustive search over all possible gene subsets.  For a 
data set with n genes, there are 2n gene subsets. Due to the high dimension of microar-
rays data, it is impractical to search whole space exhaustively. In our experiments, we 
choose the significant data based on Student’s t-test. 

2.1   Student’s t-Test 

Student’s t-test deals with the problems associated with inference based on “small” 
samples. The unpaired t method tests the null hypothesis that the population means re-
lated to two independent, random samples from an approximately normal distribution 
are equal [7].  

Under the assumption of equal underlying population means, if t < 0, “P(T <= t) 
one-tail” gives the probability that a value of the t-Statistic would be observed that is 
more negative than t. If t >=0, “P(T <= t) one-tail” gives the probability that a value 
of the t-Statistic would be observed that is more positive than t. “t Critical one-tail” 
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gives the cutoff value so that the probability of observing a value of the t-Statistic 
greater than or equal to “t Critical one-tail” is Alpha. 

“P(T <= t) two-tail” gives the probability that a value of the t-Statistic would be 
observed that is larger in absolute value than t. “P Critical two-tail” gives the cutoff 
value so that the probability of an observed t-Statistic larger in absolute value than “P 
Critical two-tail” is Alpha. 

Assuming unequal variances, eqation 1 is used to determine the statistic value t and 
equation 2 is used to calculate the degrees of freedom, df: 
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3   Feature Ranking 

The feature ranking for microarray gene expression data is similar in nature to various 
engineering problems that are characterized by: 

 Having a large number of input variables x = (x1, x2, …, xn) of varying degrees of 
importance to the output y; i.e., some elements of x are essential, some are less 
important, some of them may not be mutually independent, and some may be 
useless or irrelevant (in determining the value of y) 

 Lacking an analytical model that provides the basis for a mathematical formula 
that precisely describes the input-output relationship, y = F (x) 

 Having available a finite set of experimental data, based on which a model (e.g. 
neural networks) can be built for simulation and prediction purposes  

 Excess features can reduce classifier accuracy 
 Excess features can be costly to collect 
 If real time classification is important, excess features can reduce classifier oper-

ating speed independent of data collection 
 If storage is important, excess features can be costly to store 

4   Experiments 

Leukemia, Lymphoma and Prostate cancer data sets are obtained from broad institute 
[19]. Colon cancer data set is obtained from Princeton gene expression project [20]. 
Significant gene data obtained from t-test is used for measuring the performance of 
the classifiers. Fifty percent of the data is used for training and the rest is used for 
testing. Leukemia data set has (37 training samples and 38 testing samples).  Lym-
phoma data set has (40 training samples and 39 testing samples). Prostate data set has 
(52 training samples and 52 testing samples).  Colon data set has (32 training samples 
and 32 testing samples). 
 



954 S. Mukkamala, Q. Liu, R. Veeraghattam, and A.H. Sung 

Data sets used in our experiments.  

 Leukemia data set comes from a study of gene expression in two types of acute 
Leukemia: 48 acute lymphoblastic Leukemia (ALL) samples and 25 acute mye-
loblastic Leukemia (AML) samples. It was studied in [15]. 

 Lymphoma data set consists of 58 diffuse large B-cell lymphoma (DLBCL) sam-
ples and 19 follicular lymphoma (FL) samples. It was studied in [16]. The data 
file, lymphoma_8_lbc_fscc2_rn.res, and the class label file, lym-
phoma_8_lbc_fscc2.cls are used in our experiments for identifying DLBCL and 
FL.  

 Prostate data set in [17] contains 52 prostate tumor samples and 50 non-tumor 
prostate samples.  

 The Colon data set in [18] consists of 40 tumor and 22 normal colon tissues. 

4.1   Gene Data Selection Based on t-Test 

Different thresholds are set in our experiments and different dimension of the most 
significant gene data are extracted as feature space. Figure 1 (a, b, c, d) shows the di-
mensions of the filtered significant data according to different p-value thresholds for 
Leukemia, Lymphoma, Colon, and Prostate data sets.  

 
 

(a) (b) 

(c) (d) 

Fig. 1. The dimensions of filtered significant data for Prostate (a), Leukemia (b), Colon (c), 
and Lymphoma (d) data sets, respectively. The p-values of filtered data are smaller than the 
corresponding thresholds in x-label. Figure 1 (a, b, c, and d) indicates that the significance lev-
els of Prostate, Lymphoma and Leukemia data sets are higher than Colon data set. 

5   Multivariate Adaptive Regression Splines (MARS)  

Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression pro-
cedure that makes no assumption about the underlying functional relationship  
between the dependent and independent variables. Instead, MARS constructs this re-
lation from a set of coefficients and basis functions that are entirely “driven” from the 
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data [8]. The method is based on the “divide and conquer” strategy, which partitions 
the input space into regions, each with its own regression equation. This makes 
MARS particularly suitable for problems with higher input dimensions, where the 
curse of dimensionality would likely create problems for other techniques [8,9]. 

The MARS Model: the basis functions together with the model parameters (esti-
mated via least squares estimation) are combined to produce the predictions given the 
inputs. The general MARS 
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Where the summation is over the M nonconstant terms in the model, y is predicted as 
a function of the predictor variables X (and their interactions); this function consists 

of an intercept parameter ( oβ ) and the weighted by ( mβ ) sum of one or more basis 

functions ( )Xhm [9]. 
Model Selection: after implementing the forward stepwise selection of basis func-

tions, a backward procedure is applied in which the model is pruned by removing 
those basis functions that are associated with the smallest increase in the (least 
squares) goodness-of-fit. A least squares error function (inverse of goodness-of-fit) is 
computed. The so-called Generalized Cross Validation error is a measure of the 
goodness of fit that takes into account not only the residual error but also the model 
complexity as well. It is given by 
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with cdC += 1 . 
Where N is the number of cases in the data set, d is the effective degrees of free-

dom, which is equal to the number of independent basis functions. The quantity c is 
the penalty for adding a basis function. Experiments have shown that the best value 
for C can be found somewhere in the range 2 < d < 3 [9]. 

6   Classification and Regression Trees (CART)  

CART builds classification and regression trees for predicting continuous dependent 
variables (regression) and categorical predictor variables (classification) [10].  

The decision tree begins with a root node t derived from whichever variable in the 
feature space minimizes a measure of the impurity of the two sibling nodes. The 
measure of the impurity at node t, denoted by i(t), is as shown in the following  
equation: 
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Where p(wj | t) is the proportion of patterns xi allocated to class wj at node t. Each 
non-terminal node is then divided into two further nodes, tL and tR, such that pL , pR 
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are the proportions of entities passed to the new nodes tL, tR respectively. The best 
division is that which maximizes the difference given in:  

)()()(),( RRLL tpitpititsi −−=Δ                           (9) 

The decision tree grows by means of the successive sub-divisions until a stage is 
reached in which there is no significant decrease in the measure of impurity when a 
further additional division s is implemented. When this stage is reached, the node t is 
not sub-divided further, and automatically becomes a terminal node. The class wj as-
sociated with the terminal node t is that which maximizes the conditional probability 
p(wj | t). Each of the terminal node describes a data value; each record is classifies 
into one of the terminal node through the decisions made at the non-terminal node 
that lead from the root to that leaf [8,10]. 

7   Random Forests 

A random forest is a classifier consisting of a collection of tree structured classifiers 
{h(x, k), k=1, …} where { k} are independent identically distributed random vectors 
and each tree casts a unit vote for the most popular class of input X . The common 
element in random trees is that for the Kth tree, a random vector k is generated, in-
dependent of the past random vectors 1,… k-1 but with the same distribution; and a 
tree is grown using the training set and k, resulting in a classifier h(x, k) where x is 
an input vector. For instance, in bagging the random vector  is generated as the 
counts in N boxes resulting from N darts thrown at random at the boxes, where N is 
number of examples in the training set. In random split selection  consists of a num-
ber of independent random integers between 1 and K. The nature and dimensionality 
of  depends on its use in tree construction. After a large number of trees are gener-
ated, they vote for the most popular class [11]. 

The random forest error rate depends on two things: 

 The correlation between any two trees in the forest. Increasing the correlation in-
creases the forest error rate. 

 The strength of each individual tree in the forest. A tree with a low error rate is a 
strong classifier. Increasing the strength of the individual trees decreases the for-
est error rate.  

8   Linear Genetic Programming (LGP)  

Linear Genetic Programming (LGP) is a variant of the genetic programming tech-
nique that acts on linear genomes. The linear genetic programming technique used for 
our current experiment is based on machine code level manipulation and evaluation of 
programs. Its main characteristic, in comparison to tree-based GP, is that the evolv-
able units are not the expressions of a functional programming language (like LISP); 
instead, programs of an imperative language (like C) are evolved [12,13,14].  

In the automatic induction of machine code by GP, individuals are manipulated  
directly as binary code in memory and executed directly without passing through an 
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interpreter during fitness calculation. The LGP tournament selection procedure puts 
the lowest selection pressure on the individuals by allowing only two individuals to 
participate in a tournament. A copy of the winner replaces the loser of each tourna-
ment. The crossover points only occur between instructions. Inside instructions the 
mutation operation randomly replaces the instruction identifier. 

In GP an intron is defined as part of a program that has no influence on the fitness 
calculation of outputs for all possible inputs. Fitness F of an individual program p is 
calculated as 
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i.e., the mean square error (MSE) between the predicted output ( oij
pred ) and the de-

sired output ( oij
des

) for all n training samples and m outputs. The classification error 

(CE) is defined as the number of misclassifications. Mean classification error (MCE) 
is added to the fitness function while its contribution is determined by the absolute 
value of weight (w) [12]. 

9   Classifier Performance  

We applied MARS, CART, Random forests and LGPs to Leukemia (6,27,53), Lym-
phoma (7,28,55), Colon (7,15,27,54) and Prostate (6,26,52) cancer data sets, for  
detecting malignancy of a tumor with different data dimensionalities given in the pa-
renthesis.  Classification accuracies are summarized in tables 1 to 4. Table 1 summa-
rizes Leukemia classification accuracies of MARS, CART, LGP and Random forests 
on 6, 27 and 53. Table 2 summarizes Prostate cancer classification accuracies. Table 3 
summarizes Colon cancer classification accuracies. Table 4 summarizes Lymphoma 
cancer classification accuracies.   

Detection rates and false alarms are evaluated for the cancer data sets, and the ob-
tained results are used to form the ROC curves. The point (0,1) is the perfect classi-
fier, since it classifies all positive cases and negative cases correctly. Thus an ideal 
system will initiate by identifying all the positive examples and so the curve will rise 
 

Table 1. Leukemia Classification Accuracies 

 No of Features 
 6 27 53 
 Class 

1 
Class2 Class 1 Class2 Class 

1 
Class2 

MARS 75 100 83.33 76.92 100 84.62 

CART 95.83 92.3 91.66 92.3 91.66 92.3 

LGP 100 100 100 100 100 100 

Random For-
ests 

91.66 100 95.83 100 95.83 100 
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Table 2. Prostate Cancer Classification Accuracies 

 No of Features 
 6 26 52 
 Class 1 Class2 Class 1 Class2 Class 1 Class2 

MARS 44 92.31 60 96.15 88 92.31 

CART 64 92.3 60 96.15 60 96.15 

LGP 92 92.31 96 96.15 100 96.15 

Random Forests 68 92.3 80 88.46 80 88.46 

Table 3. Colon Cancer Classification Accuracies 

 No of Features 

 7 27 54 

 Class 1 Class2 Class 1 Class2 Class 1 Class2 

MARS 63.64 80 81.82 85 81.82 80 

CART 36.36 95 36.36 95 36.36 95 

LGP 81.82 90 81.82 90 81.82 90 

Random Forests 63.63 90 81.81 80 72.72 85 

Table 4. Lymphoma Cancer Classification Accuracies 

 No of Features 
 7  28 54 
 Class 1 Class2 Class 1 Class2 Class 1 Class2 

MARS 100 44.44 79.31 77.78 96.55 33.33 

CART 86.2 88.88 96.55 55.55 96.55 55.55 

LGP 100 100 96.55 100 100 100 

Random Forests 89.65 100 96.55 88.88 96.55 88.88 

to (0,1) immediately, having a zero rate of false positives, and then continue along to 
(1,1). Classification accuracies of the best feature set for different cancer classifica-
tions are given in Figures 2, 3, 4, and 5. Figure 2 summarizes the classification  
performance of classifiers for Leukemia cancer dataset using 6 features. Figure 3 
summarizes the classification performance of classifiers for Prostate cancer dataset 
using 52 features. Figure 4 summarizes the classification performance of classifiers 
for Colon cancer dataset using 27 features. Figure 5 summarizes the classification per-
formance of classifiers for Lymphoma cancer dataset using 54 features. LGP per-
formed the best for all the datasets with different feature dimensionalities. 
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Fig. 2. Classifiers Performance on Leukemia 
Dataset Using 6 Features 
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Fig. 4. Classifiers Performance on Colon  
Dataset Using 27 Features 
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Fig. 3. Classifiers Performance on Prostate 
Dataset Using 52 Features 
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Fig. 5. Classifiers Performance on Lymphoma 
Dataset Using 27 Features 
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Fig. 6. Performance of MARS on Most Sig-
nificant Features of Leukemia 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

False positives

T
ru

e 
p
o
si
ti
ve

s 7

28

54

 

Fig. 8. Performance of CART on Most Sig-
nificant Features of Lymphoma 
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Fig. 7. Performance of LGP on Most Signifi-
cant Features of Prostate Cancer 
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Fig. 9. Performance of RF on Most Signifi-
cant Features of Colon Cancer 
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Comparison of classification accuracies of most significant features based on t-test 
is given in Figures 6-9. Performance results of MARS on most significant features of 
Leukemia cancer dataset are summarized in Figure 6. Performance results of LGP on 
most significant features of Prostate cancer dataset are summarized in Figure 7. Per-
formance results of CART on most significant features of Lymphoma cancer dataset 
are summarized in Figure 8. Performance results of Random forests on most signifi-
cant features of Colon cancer dataset are summarized in Figure 9. 

10   Summary and Future Work 

Although the performance of the four methods used is comparable in all datasets, we 
found that linear genetic programs and Random Trees achieved consistently the best 
results. MARS performs very closely to CART.  

LGP performs the best using 6 features for Leukemia dataset and 7 features for Co-
lon and Lymphoma cancer datasets. For Prostate cancer dataset LGP performs the 
best using 52 features. 

The classifiers used in this paper showed comparable or better performance in 
some cases when compared to the ones reported [artificial neural networks, clustering, 
support vector machines, etc] in the literature using the same datasets. Our results 
demonstrate the potential of using learning machines in diagnosis of malignancy of a 
tumor. As a future work we plan to use large datasets of patients. As more inputs are 
added, feature selection will have to follow a more stringent scrutiny.  
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Abstract. This paper demonstrates that AI methods - in particular,
linguistic mechanisms of semantic meaning reasoning can be applied to
the development of intelligent IT systems. They also facilitate an in-
depth analysis of the meaning presented in DDS information systems.

This paper also presents the IT mechanisms of object meaning de-
scription on selected examples of spinal cord image analysis. The proce-
dures for such semantic reasoning are based on the model of cognitive
resonance. These have been applied to the task of interpreting the mean-
ing of selected diagnostic images from the central nervous system as an
intelligent analysis module in IT systems. The application presented in
this paper is of a research character and it serves the preparation of
efficient lesion detection methods applied to a dataset originating from
magnetic and resonance examinations of the spinal cord structures.

1 Introduction

DSS systems (Diagnostic Support Systems) are currently very popular due to
their wide diagnostic possibilities. In this paper we shall show an example of
a system that was prepared not only to diagnose, but one that is also oriented
towards the issues of cognitive analysis and the understanding pathological le-
sions taking place in the area of central nervous system. Particular attention is
paid to disease lesions in the spinal cord.

Every medical image constituting a type of primary component for diagnostic
IT systems is subject to analysis. The objective is to determine whether there
is any important disease lesions observed in the patient’s analysed organ or
whether there are no such changes (i.e. the patient is healthy). If there are any
such lesions, their type is analysed and the system directs its functions towards
determining what disease the patient has. DSS systems operate on the basis of
three main rules:

– Image transformation in order to obtain the best possible content quality
and substance which the image carries,

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 962–971, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– Image analysis in order to get the image properties in the form of a feature
vector,

– Image recognition in order to classify all features of the analysed image.

DSS systems proposed in earlier research were used, among others, for pan-
creas as well as for kidney and heart disease diagnosis. Their functioning is based
on medical image recognition methods [4] (fig. 1).

Fig. 1. Medical image recognition diagram

Due to the fact that DSS systems develop very rapidly, an attempt was made
to construct a new class of such systems using in their operation the mechanisms
of cognitive analysis. The said are to be directed at attempts to automatically
understand the semantics of analysed images, and therefore at their content
meaning interpretation.

2 Cognitive Analysis in Information Systems

Cognitive analysis used in IT systems is very often based on the syntactic ap-
proach [5]. For the purpose of meaning image interpretation it first uses a pre-
processing operation usually composed of:

– Image coding by means of terminal elements of the introduced language,
– Analysed object shape approximation, as well as,
– Filtration and pre-processing of the input image.

As a result of the execution of such stages it is possible to obtain a new image
representation in the form of hierarchic semantic tree structures and subsequent
production steps of this representation from the initial grammar symbol [3]. An
intelligent cognitive system distinguishing at the stage of pre-processing image
data must, in the majority of cases, perform image segmentation, identify prim-
itive components and determine spatial as well as semantic relations between
them. An appropriate classification (also machine perception) is based on the
recognition of whether a given representation of the actual image belongs to
a class of images generated by languages defined by one of possible number of
grammars. Such grammars can be considered to belong to sequential, tree and
graph grammars while recognition with their application is made in the course
of a syntactic analysis performed by the system [3,4].

In the most recent research on intelligent information systems it was observed
that the recognition of an analysed image alone is insufficient since more and
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more frequently there is a postulate to direct the intelligent information systems’
possibilities so that they are able to perform the operation of automatically
understanding image semantics. In order to enable such reasoning, the techniques
of artificial intelligence are used. Apart from a simple recognition of an image
they enable one that also extracts important semantic information allowing for
a meaning interpretation, i.e. machine understanding.

This process relates only to cognitive information systems and it is a lot more
complex than with pure recognition. This is due to the fact that in this case the
flow of information goes clearly in two directions. In this model the stream of
empirical data, as contained in the sub-system and aimed to register and analyse
the image, interferes with the stream of generated expectations [3,5].

Between the stream expectation, generated for every hypothetical image and
the data steam that is obtained by means of analysis of the currently considered
image, there must be a special interference. As a result of this some coincidences
(of expectations and features found on the image) gain on importance while
others (both compliant and non compliant) lose their importance. This inter-
ference leads to a cognitive resonance, which confirms one of certain possible
hypotheses (in the case of an image whose content can be understood) or makes
it possible to determine that there is a discordance, which cannot be removed,
between the currently perceived image and all other Gnostic hypotheses with an
understandable interpretation. The second case stands for a failure of automatic
image understanding.

Cognitive information systems function based on the cognitive resonance phe-
nomenon which belongs only to these systems and differentiates them from other
intelligent IT systems [3]. The application and use of such systems can be mul-
tiple due to wide possibilities offered to them by contemporary science. Never-
theless the greatest possibilities for the use of cognitive IT systems are currently
offered by the medicine. This is due to the fact that there are more and more
diseases in on-going pathological processes in individual organs and a growing
number of detection cases as well as diagnosing these diseases. Medical images
belong to some of the most varied data and they contain extremely deep and
important (among others, for the patient’s fate) meaning interpretation. Cogni-
tive information systems could certainly also serve many other fields of science
and everyday life, should an attempt be made to develop intelligent information
systems in the field of economics, marketing, management, logistics, military
affairs by adding the process of understanding the analysed information or data.

3 Artificial Intelligence Techniques in DSS Diagnostic
Systems

In the state-of-the-art development trends of intelligent IT systems it has been
noticed that the pre-processing, analysis and classification (recognition) opera-
tions on the examined data are no longer sufficient. On the other hand, there is
a more and more frequent postulate to direct them at the operation of automatic
meaning understanding, as carried by the analysed and transformed data, for
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example the semantics of the analysed medical images. The human mind has
incomparably greater perception capacities than a computer even with the best
software so that it can reach such meanings appropriate for the observed objects
or analysed data infinitely better than a machine. Nevertheless also machine
understanding techniques are slowly being improved and with time they could
be used for the performance of a more complex reasoning process, one relating
to the significance of data collected rather than just for their simple analysis. In
order to enable IT systems such semantic reasoning based on data, advanced IT
techniques are used. These techniques, apart from simple information analysis
and possible classification (recognition) of data destined for analysis, make it
possible also to extract important semantic information from them, ones that
point to meaning interpretation. At the current stage of development, data se-
mantic analysis is always set in some pre-determined context. It is impossible for
a computer to discover simultaneously the analysis objective and its result. This
means that systems currently built can undertake an attempt at understanding
data with some a priori pre-definition of what the understanding is supposed
to serve. This must be differentiated from a situation in which a human being,
coming across a new situation analyses it in many respects; the outcome of the
analysis could be completely unexpected conclusions standing for a complete
mental consideration of a given situation, i.e. its complete understanding. Re-
ferring to a frequently quoted example of semantic analysis of some specified
medical images one can expect that the computer, after an analysis of X-ray
image will ’understand’ that the patient suffers from some kind of disease. This
would not be achievable applying only the technique of automatic image recogni-
tion. On the other hand, a human being looking at the same image can, of course,
do the same by diagnosing (the diagnosis being the same as the computer would
have made or a different one). However, only a man can understand something
totally unexpected, for example that an image is bad in quality because the
X-ray machine was out of focus and that the examination must be repeated.
The first type of understanding is well set in the context of medical examina-
tion. It is therefore available both for a medical doctor and for an appropriately
programmed computer. The latter requires going outside the framework of an
a priori defined scenario and for the time being it is available only for humans.

The main objective of the considerations presented in this paper is to focus
the Reader’s attention only at the first, easier way of interpreting data under-
standing process (for example, of images). Still even this process is a lot more
complex than just data analysis and their possible recognition. Information flow
in the second case is clearly two-sourced and two-directional (just like in the
cognitive understanding process model, as taking place during eye perception).
In the model considered here, the empirical data stream is collected and stored
in a sub-system whose objective is to register and analyse the data the which
the analysed IT stores and processes in accordance with its destination; this in-
terferes with a stream of automatically generated expectations concerning some
selected features and data properties. The source of this expectation stream is
the knowledge resources located in the system. It is a basis for the generation
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of semantic hypothesis while the knowledge source are people (experts), from
whom the knowledge was obtained and adjusted appropriately for being used in
automatic reasoning process.

The terms and conceptual basis of the above-defined approach is a new knowl-
edge field, the so-called cognitive analysis. Currently it is better known in the
context of psychological scientists’ analyses examining human cognitive pro-
cesses. It is also known in the context of hypotheses about the nature of rea-
son and rationality, as examined by philosophers dealing with the epistemology,
gnoseology and semiotics foundations as well as criteriology by D. J. Mercier
and other advanced intellectual trends. To a smaller degree, however, was it so
far used in science itself [3].

4 DSS System Model for Perceptual Central Nervous
System Image Analysis

In this chapter we shall propose, as an example of intelligent IT system, a med-
ical model of IT system supporting diagnosing. The selected system conducts
intelligent analysis of image data relating to pathological lesions in the central
nervous system, related both to selected disease units of the spinal cord [3]. This
model will be based on the construction and the operating rule of DSS systems
(Diagnostic Support Systems). Due to the fact that the issue of occurrence of
disease units in the spinal cord is extremely extensive, some selected patholog-
ical phenomena, representative of central nervous system disease types will be
presented.

The main element of a correctly functioning IT system supporting the medi-
cal image diagnostics is, in accordance with the concept presented in this paper,
analysis preparation of a cognitive method of disease units and pathological le-
sions as occurring in the spinal cord. The cognitive analysis contained in the
DSS-central nervous system is aimed to propose an automatic correct interpre-
tation method of these extremely complicated medical images, ones resulting
from imaging parts of the nervous system. Such images are difficult to interpret
due to the fact that various patients have various morphologies of the imaged
organs. This is true both of the correct state and if there are any disease le-
sions. The nervous system, similarly as most elements of the human body, is
not always correctly built and fully developed from the birth. The anatomy and
pathomorphology differentiate between a number of developmental defects of the
central nervous system. It often occurs that this system for the first couple of
years functions correctly and only after some time there are some troubles with
its functioning, demonstrated by the child’s behaviour and feeling: seen either
as a single symptom or as a widespread disease. All kinds of troubles occurring
in the central nervous system, identified with disease units of the spinal cord are
clinically diagnosed and subject to diagnostic procedure based mainly on image
diagnostics. Due to small differentiation in the absorption of X-rays by the dis-
tinguished medical structures of the brain (for example, by the while and grey
substance) as well as due to the fact that the whole central nervous system is
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hidden behind bones (of the scull and backbone) which strongly attenuate X-
rays, the main role in image examinations of the central nervous system is cus-
tomary assigned to NMR topography (Nuclear Magnetic Resonance) labelled
also zeugmatography or most frequently the MRI method (Magnetic Resonance
Imaging) - imaging based on the nuclear magnetic resonance phenomenon.

Magnetic resonance makes it possible to obtain maps of density distribution
(the so-called topography) primarily of hydrogen atom nuclei (protons) and of
these protons’ relaxation time. Owing to the application of a projection cor-
responding to the tomography technique (computational reconstruction of the
examined parameter distribution based on many multi-directional probing) the
NMR image can be obtained on any cross-section of the body. Hydrogen is a con-
stituent of water making up 60-70% of living organisms; it is also a constituent
of all organic compounds. It is worth remembering that fats have an extremely
high amount of hydrogen. Information obtained about its distribution inside the
organism is the basis for image construction: the images differentiate tissues with
regards to the degree of their hydration or fat content. Proton density and their
relaxation times can be mirrored by brightness (i.e. greyness degree) of points on
the given map. The method of magnetic resonance offers a lot more contrasting
soft tissue images then X-ray images. In the case of many diseases it can also
show more precisely the difference between a healthy tissue and one that was
changed by disease.

All the analysed images of spinal cord were, before their proper recognition,
subject to segmentation and filtration procedures. Their aim was to extract
from among other image elements important elements of the spinal cord [3].
Structures shown in this way were then subject to cognitive analysis stages
using the grammar described below.

In order to analyse disease lesions of the spinal cord, the following attributed
grammar has been proposed:

Gsc = (ΣN , ΣT , P, ST ) (1)

where:

ΣN - stands for a set of non-terminal symbols (intermediary in the process of
image description generation),

ΣT - stands for a set of terminal symbols (final symbols describing shape fea-
tures),

P - stands for a production set,
ST - stand for the grammar start symbol.

ΣN = {SPINE LESION, SPINAL STENOSIS, SPINAL DILATATION,
SPINAL TUMOR, N, D, S}

ΣT = {n, d, s}

Apart from these, the following meaning was given to terminal elements present
in the description:

n∈[-11◦, 11◦], d∈(11◦, 180◦), s∈(-180◦, -11◦),
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Table 1. Production set defining changes in the Gsc grammar

Pathological lesion Grammar rules Semantic actions

1. SPINE LESION → SPINAL DILATATION
Dilation/cyst 2. SPINAL DILATATION → D N S Lesion = spinal dilatation

D N
D S

3. SPINE LESION → SPINAL TUMOR
Neoplastic tumours 4. SPINAL TUMOR → D S D S Lesion = spinal tumor

S D S N
S D S D
D S D N

5. SPINE LESION → SPINAL STENOSIS
Stenosis, compression 6. SPINAL STENOSIS → S N D Lesion = spinal stenosis

S D
S N

7. N → n | n N Lesion features =
Elements of the 8. D → d | d D location,
detected lesions 9. S → s | s S length,

diameter,
quantity,
severity.

ST = SPINE LESION,
P production set has been defined as in table 1 below:

The proposed grammar makes it possible to detect various kinds of spinal
cord or meningeal stenoses characteristic for neoplastic lesions and inflammatory
processes of the spinal cord. Figure 2a presents an image of the spinal cord with
a visible deformation; figure 2b shows the spinal cord image after binarisation
while figure 2c depicts the diagram of the spinal cord. The red area represents
the area of occurrence of the anomalies within the structure of the spinal cord.
The set of yellow chords, cross-cutting the spinal cord in subsequent points
perpendicularly to its axis, as shown on figure 2c which demonstrates how the
width diagram was made.

Spinal cord width diagram (figure 2c) presents, in the most concise form,
the results of spinal cord morphology analysis. It is the most precious source
of information when one is looking for pathological lesions and it contains all-
important data about the examined fragment of central nervous system. At
the same time it ignores all spinal cord image details unimportant from the
diagnostic point of view, as presented on figure 2a.

To give an example, the spinal cord MR image, as presented above in figure 2
will be subject to (on figure 3) a diagnostic description of pathological lesions
detected in the spinal cord. Image 3 presents an example of results obtained by
the author in the course of examinations for a given disease case. The results
presented here have been achieved by the application of attribute grammar and
they are an example of the cognitive approach to the medical data considered
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Fig. 2. Spinal cord: a) deformed, b) after binarisation, c) spinal cord width diagram

Fig. 3. Diagnostic description of spinal cord lesions with AVM syndrome detected as

a result of cognitive analysis

here. The type of lesion detected here has been assigned based on its location and
on morphometric parameters determined by the grammar semantic procedures.

The example above (and many others, obtained as a result of research [3])
present the results of semantic meaning interpretation of the analysed and de-
tected pathological lesions occurring in the spinal cord.

5 Conclusions

In order to perform meaning analysis on spinal cord images with the use of
a linguistic mechanism as described in this paper, the MISA (Medical Image
Syntax Analyser) computer system has been developed. This enables the analysis
and classification of spinal cord images analysed in this paper.

The application efficiency of cognitive analysis procedures, using this system,
has been presented in a table and it is directed towards comparing the results
obtained from the use of this system with those that one can consider as a correct
diagnosis (table 2).
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Table 2. The efficiency of cognitive analysis methods directed towards discovering and

understanding selected disease phenomena in the central nervous system

Number of Number of correctly Cognitive analysis
The analysed disease lesion examined images recognised images efficiency [%]

(lesions)

Spinal cord dilation 2 2 100

Cysts 18 17 94

Neoplastic tumours (extra- 27 25 93
and intramedullary)

Stenoses (amputations) and 14 12 86
spinal cord compression

Spinal cord degeneration 23 20 87

Total 84 76 90,5

These results are obtained as a result of the application of semantic analysis
algorithms conducted in reasoning modules of the proposed system and based
on semantic actions assigned to structural rules.

The research conducted by the author, based on the analysis of images with
pathological lesions in a part of the central nervous system, the spinal cord, have
demonstrated that cognitive data analysis can be a factor that significantly en-
riches the possibilities of contemporary information systems. In particular, the
described research has demonstrated that an appropriately built image gram-
mar enables the conduct of precise analysis and the description of medical im-
ages from which important semantic information can be gained on the nature
of processes and pathological lesions as found in the patient’s spinal cord. It is
worth emphasising that the results described in this paper have been obtained
following the cognitive process, simulating an experts’ method of thinking: if
one observes a deformation of the organ shown by the medical image used, then
one tries to understand the pathological process that was the reason for the ap-
pearance of deformations found. One does not perform a mechanic classification
for the purpose of pointing out more similar samples on the pathological image.
Moreover, the research conducted has demonstrated that for cognitive analysis
attempts (on the central nervous system) it is possible to apply it on sequential
grammar- based linguistics.
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Abstract. Decision Tree (DT) technology with its sequential decision
process composed of hard thresholds applied to individual features is
often not an optimal choice. But DTs are typically credited with being
predictive structures that a domain specialist can interpret as opposed
to a black-box neural network, for example. There are two anticipated
classes of benefit when Artificial Intelligence technology is applied to
medicine: automation of decision making and enhancement of medical
knowledge. In this paper we present the use of Bayes-ian averaging as
a principled approach to optimal classifier systems using DT technology
in which a confidence rating can be associated with every predicted re-
sult. However, averaging over an ensemble of DTs causes the problem
that such an ensemble becomes uninterpretable. Thus we also present a
procedure for extracting interpretable archetype DTs. We demonstrate
these innovations by application to Trauma data.

1 Introduction

A ubiquitous paradigm is the need to make decisions such as clinical diagnoses
or prognoses on the basis of certain observable attributes. This paradigm can be
cast as a classification problem: sets of specific attribute values map individually
to one of the possible classes of interest. Thus a set of attribute or feature values
such as age, weight, blood pressure may be mapped to the classes hypertension
or not-hypertension.

When the desired mappings cannot be analytically formulated, they are de-
rived from examples. Statistics and Artificial Intelligence (AI) offer a variety of
techniques for deriving a mapping exemplified by a set of examples [1], [2], [3],
[4], [5].

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 972–981, 2006.
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Apart from the difficulties that naturally arise from the conjunction of sen-
sitive, potentially life-threatening, medical decisions and computer technology,
the sought-after mappings are seldom simply and unambiguously present in the
set of examples. There is a variety of reasons for this: natural person-to-person
variability; the desired classification is vitally dependent upon unacknowledged
feature values; the classification associated with each set of feature values is of-
ten equivocal; the feature values themselves are unlikely to be uncorrupted or
even measured consistently over the period of time needed to amass enough data
samples; some feature values will be expert assessments and these will vary with
both time and individual experts.

Decision trees (DTs) [1], [2], [3], [4], [5] are a prime example of an inductive AI
technology that also offers interpretability to the user, and in this paper we will
examine this claim as well as the use of DTs as powerful medical decision-making
systems in their own right. We will explore these aspects in the specific medical
context triage cast in terms of the above-described paradigm: will a given person
(age, weight, etc.) survive certain injuries? The sets of feature values map to the
categories lived or died which will be used, in the context of an automated
system, to predict likely survivability as a result of traumatic injury [6]. But in
the context of medical knowledge about decision making in the face of traumatic
injury we would hope to learn about how to refine and optimize human decision
making, e.g. what are the important features, and what is the simplest, most
powerful way to combine them in order to make a fast and accurate prediction?

In general, extracting the desired mapping from the sample data can be viewed
as one of fitting a mathematical model to the sample data. The mathematical
models might be neural networks such as multi-layer perceptrons (MLP) [5]. By
fitting a model to the data we mean tuning the variables, or parameters, of the
particular family of models chosen in order to optimize the performance of the
trained model. The tuning is achieved using a training set of data samples and
a learning algorithm, the goodness of fit achieved is typically measured by the
accuracy of the tuned model on a test set of data samples.

This straightforward view of model fitting yields a single model, say, an MLP
with a specific parameters values set. It is most likely that other parameter
settings in the MLP family of models will be similarly optimal, perhaps with
respect different regions of the general mapping sought. Thus, two different op-
timal models might be identically accurate in terms of the percentage of test
samples correctly classified, but on non-identical subsets of the test samples.
Additionally, as optimality of a specific fit is judged by test-set accuracy, a dif-
ferent specific fit might prove optimal on a different test set.

One way around this awkward problem of reliance on a potentially suboptimal
spe-cific fit is to work with an average classification generated by a collection of
differ-ently optimized models [5], [7], [8]. The blossoming field of Multi-Classifier
Systems (MCS) can be viewed as one rich and varied attack on the problem of
suboptimal models [9], but a relatively new and principled approach is through
Bayesian averaging.
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2 Bayesian Model Averaging

Bayes rule has long been known and used in limited ways as a basis for construct-
ing classifier systems [5], [7], [8]. Full implementation of Bayesian systems has
been hampered by the need to compute certain integrals that are analytically
intractable. But now with advances in the computational power readily avail-
able coupled with appropriate progress in Markov Chain Monte Carlo (MCMC)
methods, accurate approximation of the Bayesian integrals has become a prac-
tical reality [7], [8]. By this means, we are able to integrate out of the classifier
system any dependence on specific settings of the model parameters, and by fol-
lowing Bayesian principles we can be assured that our results are truly optimal
within the constraints of the model chosen and the data set available. In addi-
tion, we use the set of classification results (from which our Bayesian average
will be calculated) as a basis for computing a confidence rating for the averaged
result produced.

A state of the art Reversible Jump (RJ) MCMC method [10] applied to an
appropriate formulation of Bayesian DTs permits a computationally expensive
but efficient selection of optimal specific DT models from within the range of
all DT models of the type specified (in our case binary DTs). Full details of
this procedure have been presented elsewhere [7], [8], and for current purposes
we need only consider the specific strategies that we imposed to facilitate this
investigation and the nature of the DTs generated.

During sampling from the Markov Chain, the parameters of the chosen clas-
sifier model (binary DTs with k terminal nodes to be used for classification) are
drawn from the given proposal distributions in order to provide a new candidate
model [7], [8], [13]. The candidate is accepted or rejected according to a Bayes
rule calculated on the given data D. Thus, for the m-dimensional input vector
x, data D and parameters θ, the class posterior distribution p(y|x,D) is

p(y|x,D) =
∫

p(y|x, θ,D)p(θ|D)dθ ≈ 1
N

ΣN
i=1p(y|x, θi,D) (1)

where p(θ|D) is the posterior distribution of parameters θ conditioned on data
D, and N is the number of samples θi taken from the posterior distribution.

3 Averaging and Interpretability of Optimal DTs

While the Bayesian basis for our procedures guarantees the optimality of the
averaged results, the concept of the average DT, which would presumably be the
DT (and hence the explanation) underlying the optimal system performance, is
non-simple. What DT is the average of a set of DTs? As the question appears
to have no sensible answer, we face a challenge if we wish to use the power of
the Bayesian average approach and also capitalize on the interpretability of DTs
[11,12].

We propose and illustrate a strategy for extracting readily interpretable and
maximally informative DTs from the population, the MCS, which constitutes
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the optimal average. We call these archetypal DTs (ADT), i.e., DTs that cover
most of the training examples classified as confident and correct.

Clearly the classification confidence is maximal, equal to 1.0, if all the classi-
fiers assign a given input to the same class, otherwise the confidence is less than
1.0. The minimal value of confidence is equal to 1/C if the classifiers assign the
input datum to the C classes in equal proportions. So for a given input x and class
c, the classification confidence is the population χ of classifiers that assign x to c.
We can define a given level of the classification confidence, χ0 : 1/C ≤ χ0 ≤ 1, for
which the cost of misclassification is small enough to be accepted. Then for the
given input, the outcome of the MCS is said to be confident if the ratio χ ≥ χ0.
Clearly, on the labeled data we can distinguish between confidentandcorrect
outcomes and confidentbutincorrect outcomes [13]. These latter outcomes of
the MCS may appear due to noise or overlapping classes in the data.

The task is to find DTs that cover a maximal number of the training samples
classified as confident and correct while the number of misclassifications on the
remaining samples is minimal. To find such a DT set, we can remove the conflict-
ing examples from the training data and then select the DTs with a maximal
cover of the training samples classified by the DT ensemble as confident and
correct.

Thus the main steps of the archetype selection procedure are as follows:

Amongst a given Bayesian DT ensemble find a set of DTs, S1, which cover a
maximal number of the training samples classified as confident and correct
with a given confidence level χ0.
Find the training samples which were misclassified by the Bayesian DT en-
semble and then remove them from the training data. Denote the remaining
training samples as D1.
Amongst the set S1 of DTs find those which provide a minimal misclassifi-
cation rate on the data D1. Denote the set found as S2.
Amongst the set S2 of DTs select those whose size is minimal. Denote the
set of such DTs as S3. The set S3 contains the desired DTs.

The above procedure finds one or more DTs and puts them in the set S3. These
DTs cover a maximal number of the training samples classified as confident and
correct with a given confident level χ0. The size of these DTs is minimal and
any of them can be finally selected for interpreting the confident classification.

4 Application to the Trauma Data

This section describes the experimental results obtained by applying the pro-
posed above technique on the Trauma data collected in the Royal London
Hospital.

4.1 The Trauma Data

The Trauma data used in our experiments consist of 316 labeled examples of
difficult cases for the clinicians deciding on the survival rate. These data contain
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Table 1. The features of Trauma data

Variable Name Type

x1 Age Continuous
x2 Gender (0, 1)
x3 Injury (0, 1)
x4 Head injury (0, 6)
x5 Facial injury (0, 4)
x6 Chest injury (0, 6)
x7 Abdominal injury (0, 5)
x8 Limbs (0, 5)
x9 External injury (0, 4)
x10 Respiration rate Continuous
x11 Systolic BP Continuous
x12 GCS eye (0, 4)
x13 GCS motor (0, 6)
x14 GCS verbal (0, 5)
x15 Oximetry Continuous
x16 Heart rate Continuous

the 16 features listed in Table 1. This table lists such features as Age, Respira-
tion rate, Systolic Blood Pressure (BP), Oximetry (%) and Heart rate, which
are continuous; the remaining features, such as Glasgow Coma Score (GCS),
are nominal. 210 data points randomly selected from the original data form a
training dataset and the remaining 106 form a test dataset. The survival rates
are 0.47 and 0.56 for the training and test datasets, respectively.

Using our Bayesian averaging over 5000 DTs, we obtained a misclassification
rate of 13.2 by applying the procedure described in section 3 we found the set
S3 which contains 21 DT involving a minimal number (9) of splitting nodes.
From these 21, 10 DTs misclassified 14.1but only by 0.94can obtain a minimal
misclassification rate equal to 13.21

The resultant ADT is presented in Figure 1. Each interior, or splitting, node
provides a specific question that has a YES/NO answer, and two branches.
The DTs are depicted with the positive response to the specific question corre-
sponding to the branch that is labeled with the question; the negative response
corresponds to the other branch.

4.2 Interpretability of the Archetypal DTs

As an explanation of the Trauma decision process, the DT was judged to be
biologi-cally plausible and a general fit with what would be expected from a
clinical perspec-tive. It seems to be picking out brain injury (Head score and
GCS), bleeding (Systolic BP and heart rate) and preexisting physiological reserve
(age) as important factors.

The main causes of death after injury are brain damage and bleeding. The
early stage of the DT seems to be saying: if you have a severe head injury, it does
not matter whether you are bleeding (reflected in physiological disturbance) or
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Fig. 1. An ADT with 13.2% of misclassification rate on the test data

not, you are likely to die. If you have not got a severe head injury, the amount of
physiological distur-bance (bleeding or respiratory distress) and your capacity to
respond to that disturbance becomes important. Head injury, the first splitting-
node decision, fits with what we know about brain injury being a huge influence
on the patients outcome: even if you stop the bleeding the patient will still die.
It is interesting that there is a second group of patients that have a head injury
score of less than 5 and a normal heart rate where GCS motor response becomes
important. This decision structure is suggestive of hypoxic brain injury, and
this hypothesis could be further explored by reference to the case notes of the
individuals concerned.

With respect to Figure 1, we note that the way the two age nodes are used is
very in-teresting because current injury models [6] use only one with a cutoff at
55 years. We know that the extremes of age are very different in almost all areas
of medicine, so the fact that there are two decision points, one for old and one
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for young, fits well with such preconceptions. The slight surprise is that there is
not a younger cutoff, because preteen children have better outcomes, but there
may be too few cases in this age range for the modeling process to identify this
effect in the available dataset.

Overall, it is interesting that little seems to be contributed by the anatomical
input features (i.e. the Injury Severity Scores for each body area), apart from
head injury. The nationwide cost of this must run into millions of pounds, and
yet this DT appears to tell us that we need only look at the head and abdomen.
Currently, 150 hospitals each spend about 10000 annually on data collection - in
salaries. The system will soon be enlarged to all 300 hospitals in the UK. This
will result in a total cost to the NHS of about 3 million each year, so decreasing
the amount of data that is required could make significant financial savings.

4.3 The Feature Importance

In Figure 2, we can see that such features as Age (x1), Head injury (x4), Ab-
dominal injury (x7), Systolic BP (x11), and GCS motor (x13) are used in the
Bayesian DTs on average more frequently than the others. In contrast, feature
External injury (x9) is used with a less frequency.

Additionally, we can see from the error bars that the posterior weights of some
features (e.g., for Head injury, x4, Chest injury, x6, and Heart rate, x16), have a
high variance. Such wide deviations may be caused by variations in the training
examples within the 5 fold cross-validation.

Trauma care is an area of medicine where there is an existing predictive model
and the factors influencing survival are relatively well understood [6]. The set
of features ranked on their posterior weights as shown Figure 2 reveals a good
correlation with those factors that clinicians regard as important for their pa-
tients. Brain injury does not heal, so outcome is directly and strongly related to
the extent of brain injury, seen in the high rankings for head injury and GCS
motor (which is known to be the most relable of the three components of the
GCS). The ability of the body to cope with injury is directly related to age (for
example, there is a rough rule of thumb in burns patients that if the percentage
body area burnt plus age exceeds 100, the patient will die). The importance of
age is seen in its high rank.

5 The Comparison of Performances

In this section we compare our technique of extracting an ADT with the Bayesian
averaging (BA) and the maximum a posteriori (MAP) techniques described in
[12]. The comparison is made in terms of misclassification within 5 fold cross-
validation on the real-world medical data sets known as Pima and Wisconsin
[14] as well as the Trauma data. All these data sets are 2-class problems. The
numbers of the labeled examples in the Pima, Wisconsin, and Trauma data
sets were 768, 683, and 316, while the numbers of features were 8, 9, and 16,
respectively.
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Fig. 2. Posterior weights of the features averaged within 5 fold cross-validation

Table 2. The misclassification rates on the test datasets within 5 fold cross-validation

Techniques Pima Wisconsin Trauma

BA 27.7 ± 6.5 3.8 ± 4.5 13.1 ± 7.5
ADT 26.7 ± 7.5 3.2 ± 3.9 14.1 ± 7.7
MAP 27.8 ± 8.4 3.9 ± 2.8 18.5 ± 2.6

Table 3. The sizes of DTs within 5 fold cross-validation

Techniques Pima Wisconsin Trauma

BA 17.8 ± 1.1 11.3 ± 1.8 12.5 ± 1.0
ADT 17.6 ± 3.9 9.6 ± 6.6 10.6 ± 3.6
MAP 21.7 ± 2.4 14.2 ± 6.5 16.8 ± 1.7

The Bayesian DT ensemble technique ran with the pruning factor set equal to
5. The number of burn-in and post burn-in samples, and sampling rates, were set
to 10000, 5000, and 7, respectively. The proposal probabilities for birth, death,
change-split, and change-rule were set to 0.1, 0.1, 0.2, and 0.6, respectively.
The proposal distribution for the change moves was Gaussian with mean 0 and
variance 1.0.

The misclassification rates of the above three techniques, BA, ADT, and MAP,
are shown in Table 2.

Clearly, in the theory, the BA technique should provide fewer misclassifications
than the ADT and MAP techniques. In our experiments, however, we can ob-
serve that all these techniques have nearly the same misclassification rates within
5 fold cross-validation. Nevertheless, comparing the average rates of misclassifi-
cation, we can see that the BA and ADT techniques slightly outperform the MAP
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technique. At the same time, the average misclassification rates of the BA and
ADT techniques are almost the same.

Table 3 shows the sizes of DTs induced in our experiments within 5 fold cross-
validation. From this table we can certainly conclude that the ADT technique
provides shorter DTs than the MAP technique.

6 Conclusions

Decision trees, particularly when set within a framework of Bayesian averag-
ing, prove to be powerful automatic classification systems which in the Trauma
domain, at least, outperform the traditional automatic decision structures in
terms of classification uncertainty [13]. In addition, a Bayesian averaging ap-
proach offers the possibility of an estimate of the confidence to be attached to
every prediction.

However, perhaps more importantly DT classifiers are said to be preferred (in
con-trast to, say, neural net classifiers) because they are interpretable, and this
property will facilitate the use of DT classifiers to extract useful knowledge about
the optimal decision processes within the application domain. The biological
plausibility of DTs may well be more acceptable to clinicians than a black box.

Because an average DT does not appear to be a sensible concept with respect
to interpretability of the optimal decision processes, a selection procedure for
extracting ADTs from Bayesian-averaged collections was proposed and demon-
strated. The selected tree was judged to be a useful explanation of the Trauma
decision process. Ojective evidence for useful explanatory power was provided
in terms of both a subse-quent focus of attention on specific input features (e.g.
the age cutoff) that resulted in the extraction of new knowledge about the role
of this feature, and objective confirmations of the roles of certain features, e.g.,
age as a reservoir of capacity to survive, and lack of useful value in certain injury
classifications.
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Abstract. The eigen fuzzy set of a given fuzzy relation often corresponds to an 
occurrence of invariability in natural sciences. By determining the fuzzy rela-
tions as connections between pairs of symptoms we utilize the greatest and the 
least eigen fuzzy sets in order to find the estimates of the medicine effectiveness 
levels. 

1   Introduction 

The existence of the greatest eigen fuzzy set of a fuzzy relation was confirmed in the 
80-ties of the twentieth century [4, 7, 8, 9]. In the latest investigations the scientists 
have proved that even the least eigen fuzzy set can be generated for the given relation 
[1, 2, 5]. The eigen fuzzy sets have already been applied to the evaluation of medicine 
action levels when considering the medicine influence on clinical symptoms [3, 6]. 

We continue the last item by accomplishing an own proof of the existence of the 
least set especially, which differs from the conceptions formulated in [1, 2, 5]. The 
theoretical discussion, which concerns eigen sets, constitutes the contents of Section 
2. In Section 3 we introduce the medical problem that involves applications of eigen 
fuzzy sets. Finally, a simple medical exercise is solved in Section 4 to give an image 
of the functional utility of the presented model. 

2   Theoretical Assumptions of Eigen Fuzzy Problem 

A particular result of a relation composition is known as the eigen set of a fuzzy rela-
tion [7, 8]. 

Assume that },...,{ 1 nxxX =  is a finite set of real numbers. The eigen fuzzy set of 

the fuzzy relation XXR ×⊆  is a set XA ⊆ , which satisfies AAR = . 
R is the fuzzy relation determined as XXR ×⊆  with the membership function 

[ ]1,0:),( →×′ XXxxRμ , xx ′, ∈ X. It is proved that the eigen fuzzy set XA ⊆ , 

XxA :)(μ  [ ]1,0→ , which is a part of the equation ARA = , exists [7, 8, 9]. 

We define the set A0 with 0)(
0

axA =μ , )),(max(min0 xxa R
XxXx

′=
∈∈′

μ  for all x∈X.  
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The fuzzy connection 00 ARA =  is a true equality because of =′)(
0

xRAμ  

=′)),(),((min(max
0

xxx RA
x

μμ =′)),(,(min(max 0 xxa R
x

μ ,min( 0a )),(max xxR
x

′μ == 0a  

),(
0

xA ′μ  Xxx ∈′, . Hence, A0 is an eigen fuzzy set of R.

 The next introduced set A1 is identified by its membership function given by  

),(max)(
1

xxx R
Xx

A ′=′
∈

μμ  (1) 

for all x´∈X.  
The fuzzy sets, which are members of the sequence (An)n, in which 

,,,, 11
2

123
1

112
n

nn RARAARARAARARAA ====== +  (2) 

exist for all integers n>0. 
The sets satisfy the inclusions 

.1210 AAAAA nn ⊆⊆⊆⊆⊆⊆ +  (3) 

To prove (3) we apply the mathematical induction. On the basis of the definition of 
A0 we conclude that 10 AA ⊆  since )),(max(min)(

0
xxx R

xx
A ′=′

′
μμ )),(max xxR

x
′≤ μ  

)(
1

xA ′= μ . We deduce that even 12 AA ⊆ . By conveying, for every x`∈X, that 

=′=′ )()(
12

xx RAA μμ )),(),((min(max
1

xxx RA
Xx

′
∈

μμ )(),(max
1

xxx AR
Xx

′=′≤
∈

μμ , we state 

that 12 AA ⊆ . 

We shall now prove that the assumption 1−⊆ nn AA  induces the conclusion 

nn AA ⊆+1 , n∈N, since .111 nnnnnn AARARAAA ⊆↔⊆→⊆ +−−  

The set A0 is the eigen set of R. A1, the other set proposed by (1), rarely is a solu-
tion of the restriction 11 ARA = . If nn ARA = , for An being a member of the se-

quence of sets given by (2), then we will allege that An is the expected greatest eigen 
set of the relation R, which often differs from A0. The set A0 is the least set in the 
chain of sets in (2) and all sets included between A1 and An are not eigen. 

Suppose that 1210 AAAAAA nnkn ≠≠≠===≠ ++ , then the composition 

RAn  leads to == − RRARA n
n

1
1 .11 nn

n AARA == +  

An is thus the greatest eigen fuzzy set (GEFS) of R provided that An = An+1.  
We recall that membership degrees of An+1 are calculated as 

)),(),((min(max)()(
1

xxxxx RA
Xx

RAA nnn
′=′=′

∈+
μμμμ  (4) 

for each x´∈X. 
It can be desirable to find the smallest eigen fuzzy set of a given fuzzy relation as 

well. In spite of some accomplished investigations of the topic [1, 2] let us propose 
the own contribution as the following proof of the least eigen set existence. 

We preserve the unchanged set A0 with 0)(
0

axA =μ  for all x∈X, where =0a
 

)),(max(min xxR
XxXx

′
∈∈′

μ . A0 is the eigen set of R as it has been proved before.  
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The set A1 gets now new membership degrees determined as 

),(min)(
1

xxx R
Xx

A ′=′
∈

μμ  (5) 

for all x´∈X.  

We propose the same sequence of fuzzy sets (An)n, ,1
112 RARAA ==  

,2
123 RARAA == ,, 11

n
nn RARAA ==+  which fulfill inclusions 

.0121 AAAAA nn ⊆⊆⊆⊆⊆⊆ +  (6) 

The boundary inclusion 01 AA ⊆  in the chain is true because of the inequality 

)(
0

xA ′μ )),(max(min xxR
xx

′=
′

μ )),(min xxR
x

′≥ μ )(
1

xA ′= μ . 

To confirm the reliability of other inclusions in (6) we return to the assumptions of 
the mathematical induction. In order to check that 21 AA ⊆  we thus notice that 

=′=′ )()(
12

xx RAA μμ )),(),((min(max
1

xxx RA
Xx

′
∈

μμ ),(min xxR
Xx

′≥
∈

μ )(
1

xA ′= μ , x`∈X.  

The last structure is equivalent to 21 AA ⊆  since )(
1

xA ′μ ≤ )(
2

xA ′μ . 

The induction assumption nn AA ⊆−1  is used in the proof to obtain the conclusion 

1+⊆ nn AA . We start with nn AA ⊆−1  to compose with R both sides of the inclusion as 

RARA nn ⊆−1 , which is comparable to 1+⊆ nn AA . 

The set A0 is the eigen set of R but A1 seldom is regarded as eigen. Let us assume 
that An is a member of the sequence listed in (6) and that it fulfils nn ARA =  for 

.0121 AAAAAA knnn ≠===≠≠≠ ++  Then An will be the least eigen set (LEFS) 

of the relation R, which is different from A0. 
In order to evaluate GEFS and LEFS we adopt a procedure, which consists of the 

following steps: 

Algorithm 1 

1.  Find the set A1, 
2.  Set the index n=1, 
3.  Calculate RAA nn =+1 , 

4.  3 step  toGo1
,

?

1 1

→+=→→
=→→+ +

= nnNo
AAYesnn n

AA  

in which A1 is computed either by the application of (1) or by the choice of (5). 
The relation R keeps the given fuzzy set invariant, which apparently fits to a medi-

cal appearance when a medicine has no more effect in the curative process.  

3   Eigen Sets in Effectiveness Levels of Drugs 

Let us assume that characteristic qualitative symptoms of a morbid unit are found in a 
sample of patients. After the treatment some symptoms should disappear entirely 
while the other symptoms are still present. 
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Let us denote a non-fuzzy set of symptoms by S = {S1, …, Sn}. 
An estimation of the maximal level is possible by employing a fuzzy relation Rmax, 

which is created according to the formulation: “The action of the drug on the jth symp-
tom is equal or stronger than on the kth one, j, k = 1, …, n”. The membership degree 

),(
max kjR SSμ  indicates the strength of the relationship between the jth and the kth 

symptom.  
If m and p denote the number of examined patients respectively the number of pa-

tients who fit for the definition of Rmax when comparing the medication effects for Sj 
and Sk, then we will compute the membership degrees ),(

max kjR SSμ  as [3] 

m

p
SS kjR =),(

max
μ  

(7) 

for j, k = 1, …, n. 
Suppose that “–“ is assigned to the lack of a symptom after the treatment and “+” 

designates its presence in patient after the medication. The sign patterns “– –“ and “– 
+”, counted with respect to the pair Sj, Sk in the group of m patients help us to appreci-
ate p. For the pairs (Sj, Sj), j = 1, …, n, the value of p is computed as a number of 
recoveries from Sj. 

The relation Rmax has the greatest eigen fuzzy set Amax, which is defined in the uni-
verse S as 

maxmaxmax ARA = . (8) 

Amax is found as the result of Algorithm 1, in which A1 is defined by (1). The rela-
tion, designed in accordance with the statement: ”The drug acts equally strongly or 
more strongly on the jth symptom than on the kth one” has its eigen set as an un-
changeable component of the equation (8). We thus conclude that membership de-
grees of Amax show the level “the drug action on the considered symptoms is not 
stronger”. Moreover, we are able to accept this level as optimal since Amax is the 
greatest solution of (8) in the sense of the greatest membership degree values. 

An estimation of the minimal medicine effect is connected with forming another 
fuzzy relation Rmin proposed as a clue:”The action of the drug on the jth symptom is 
equal to or weaker than on the kth one, j, k = 1, …, n.” The suggested formula of cal-
culating membership degrees of Rmin is Eq. (7) to which the sign configurations “– –“ 
and “+ –“ are attached. 

The relation Rmin also generates its own, this time the least, eigen fuzzy set Amin that 
constitutes a compound of an equation 

minminmin ARA =  (9) 

To decide Amin we perform the steps of Algorithm 1, which includes A1 computed 
by the action of (5). 

Amin does not change its membership degrees after the next composition with Rmin: 
“The drug affects equally or more weakly the jth symptom compared to the kth one”. 
Then membership degrees of the least eigen set, associated with symptoms S1, …, Sn, 
indicate the minimal level of the medicine effectiveness. Amin, as the least eigen set of 
 



986 E. Rakus-Andersson 

Rmin, provides us with the statement ”the action of the medicine on the considered 
symptoms cannot be weaker”. 

The values of )(
min jA Sμ  and )(

max jA Sμ , j = 1, …, n, constitute the borders of an in-

terval, which is treated as the range of the medicine effectiveness for each symptom 
Sj. This should help us in making the judgement of the tested drug usability. 

4   The Medical Example 

The diagnosis D known as a throat inflammation is accompanied by the set of symp-
toms S = {S1 = “sore throat (pain)”, S2 = “temperature”, S3 = “inflammation state”}. 
The physician has prescribed Bayer’s aspirin as a remedy that should improve the 
health conditions in the group of 30 patients suffering from throat inflammation. 

The application of (7) with the sign pattern “– –“ and “– +” gives Amax as 

=
6.06.06.0

8.08.08.0

5.05.05.0

3

2

1

max

321

S

S

S

R

SSS

 

which has the  greatest eigen fuzzy set decided as 

[ ]8.08.08.0max

321

=A

SSS

. 

Equation (7), in which numbers of the associations “– –“ and “+ –“ constitute the 
basis of the p value computations, result in the relation Amin yielded as  

=
6.08.05.0

6.08.05.0

6.08.05.0

3

2

1

min

321

S

S

S

R

SSS

 

which possesses the least eigen fuzzy set  

[ ]6.08.05.0min

321

=A

SSS

. 

By interpreting the membership degrees of Amin and Amax in the percentage scale we 
conclude that Bayer’s aspirin removes S1 in 50%–80% and S2 – in 80%, while S3 
disappears for 60%–80% of the sample of patients.  

5   Conclusions 

As a counterpart of the discussion on the least eigen fuzzy set, we expand the own 
conception of the proof to confirm that the least eigen set exists. 
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The greatest and the least sets of fuzzy relations have been employed to approxi-
mate the optimal level of a medicine efficacious power. We have obtained the medi-
cine action intervals evaluated for each symptom. 

In constructing the relations we regard pairs of symptoms to learn about their  
influence on each other. Even if we appreciate effectiveness levels for individual 
symptoms, we will be aware of the complex dependency among symptoms, which 
influences single ranges. This aspect of complexity is an advantage of fuzzy research 
when comparing fuzzy results to computations of statistical ranges that do not con-
sider interactions among the examined objects. 
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Abstract. We propose a novel method of active spectral segmentation
of cardiac ventricle by application of Bayesian inference adapted to con-
tour detection in speckled ultrasonographic cardiological data. We dis-
cuss the advantages and limitations of this method and describe possible
further developments.

1 Introduction

Ultrasonography is the most commonly used imaging modality in cardiology. The
delineation of cardiac walls and cavities is important from the point
of view of analysis of ventricle contractions. More recently, with the advent
of elastography and cardiac strain-rate imaging, this delineation is even more
of interest [2,3,4,5,7]. However, the properties of ultrasonic cardiac tissue and
blood images sometimes make the delineation of cardiac cavities difficult [10].
There is a need for new methods resulting in better ventricle contour reconstruc-
tion. Below presented is a new approach to ventricle contour detection using an
application of spectral method similar to that proposed by Li and Hero [9] and
driven by Bayesian constraint [8]. The preliminary implementation of proposed
method has been already successfuly applied to noisy CT data of the brain with
aneurysm [12].

2 Methods

2.1 Application of PDE’s in Shape Reconstruction

Let g = g(θ) be a noisy radial function defined in 2D spherical coordinates.
The function g is called the polar edge map and can be estimated by a rough
object edge detection method like basic thresholding or watershed algorithm.
The method is valid only for star-like objects with circumference described by
g. To find function f(θ), the smooth representation of g, serving in fact as an
approximation of the desired active shape, we need to apply a method directly
revealing f by minimizing the energy functional:

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 988–997, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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E(f, g) = μ

∫
S

Y (f, g)dΩS +
∫

S

Z(f)dΩS (1)

In the above equation Y denotes the distance between the function f and
polar edge map g, Z measures the reconstruction smoothness and μ is respon-
sible for the tradeoff between fidelity of reproduction of the actual contour
and smoothness, dΩS is a differential shape element on the unit circle. Setting
Y (f, g) = (f(θ) − g(θ))2 and Z(f) =‖ ∇ ‖2, where ∇ is the gradient operator
the energy functional becomes

E(f, g) =
∫

S

μ(f(θ)− g(θ))2dΩS +
∫

S

‖ ∇ ‖2 dΩS (2)

E(f, g) can be further minimized over f by the usage of calculus of variation
to determine an Euler-Lagrange equation for a stationary point of the above
energy functional. This procedure yields the following equation:

∇2f − μ(f − g) = 0 (3)

This is an elliptic equation of Helmholtz type. Our case of spherical coordi-
nates is also Helmholtz-like. Moving the g term to right hand side and expressing
it using previous values of f yields the following linearized form:

α∇2fn+1 − fn+1 = gfn (4)

which can be easily solved by the fast spectral method, with α = 1/μ. The
dependence of gfn on g and other data is the essence of our approach and is
explained throughout next subsections.

2.2 Bayesian Edge Map Determination

The edge map determination is based on Bayesian approach and provides the
best choice among all others taking into account the risk associated with each
one and mutual relationship between choices.

Let P (Ei/I) denote the required probability of the most appriopriate edge
in our existing data set. This is conditional probability as it depends on the
contents of I. P (Ei/I) is the probability of the fact that the I point belongs
to the edge Ei knowing the value of intensity of this point. Let P (I/Ei) be a
probability of how much the value or intensity of a point is depending on edge
Ei. This term serves as a kernel. P (Ei) is simply the probability of existence of
the edge Ei among all other detected edges. Then the required probability can
be found by solving the Bayes rule:

P (Ei/I) =
P (I/Ei)P (Ei)

P (I)
=

P (I/Ei)P (Ei)∑
i P (I/Ei)P (Ei)

(5)

P (I) is a sum of all probabilities P (I/Ei) weighted by P (Ei) and thus re-
maining constant. P (I) is only a normalizing term and can be excluded from
further analysis. The standard way of solving the equation is the maximization of
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Fig. 1. Part of the ultrasonic image of ventricle and valves

the right hand side over the parameter Ei and then maximization of the found
solution over all accesible data. The former procedure is known as maximum
likelihood (ML) and the latter as maximum-a-posteriori (MAP ). The P (Ei) is
a prior and we put our a priori knowledge inside it.

In practice we are estimating the P (I/Ei) from the histogram of I along
given radius from centroid to a point on circumference of some bounding box.
The histogram is shrank in such a way that each bin is equal to the edge size
assuming that each expected edge covers the same number of intensity levels.
After calculation of the probability over all edges Ei we are performing ML step
what allows to estimate the most probable edge in I. Then the MAP is done by
searching for maximum over the data itself, and usually the first maximum in
P (I/Ei) is detected as an edge. The P (Ei) is simply a constant value. Having
this knowledge we can easily determine the position of edge in I even if the data
is highly corrupted by noise.

Performing the classification of P (E/I), G = classification(P (E/I)), we
estimate G, which is Bayesian constrained edge map. Calculating it for each θj

we find the representation of initial estimate of the polar edge map, g(θ) = G(θ).

2.3 Fast Spectral Method

The spectral methods are widely used for all kind of problems that can be
expanded into Fourier series and solved in Fourier space. For the purpose of
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Fig. 2. The image with superimposed ventricle contour using Bayesian constrained

spectral segmentation for μ=110

this study, following [9] we adapt Cheong’s method [1] to solve the equation 3.
We express the Laplacian operator ∇2 in polar coordinates, assuming the unit
radius:

∇2 =
1

sinθ

δ

δθ

(
sinθ

δ

δθ

)
(6)

Both functions, f and g are defined on the computational grid (θi), where
θi = π(j+0.5)/J . J is the number of points along the cavity circumference high
enough to engage all points covered by g. Each point in g may be now expressed
by its discrete cosine transform (DCT) representation yielding

g(θi) =
J−1∑
n=0

gncosnθi (7)

with gn being simply the coefficients of discrete cosine transform. Applying 6
into 3 we can write the equation 3 as an ordinary differential equation (ODE):

1
sinθ

δ

δθ

(
sinθ

δ

δθ
f(θ)

)
= μ[f(θ)− g(θ)] (8)

which yields an algebraic system of equations in Fourier space:
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Fig. 3. Bayesian estimation of the most probable contours

pn−2fn−2 − pnfn + pn+2fn+2 = μ
[1
4
gn−2 −

1
2
gn +

1
4
gn+2

]
(9)

where

pn−2 =
(n− 1)(n− 2) + μ

4
, pn =

n2 + μ

2
, pn+2 =

(n + 1)(n+ 2) + μ

4
(10)

after substitution of 7 into 8 and expressing f in the same way as g (eq.7). The
index n = 1, 3, ..., J − 1 for odd n and n = 0, 2, ..., J − 2 for even n. The system
of equation 9 may be now expressed as a double matrix equation:

Bef̂e = Aeĝe, Bof̂o = Aoĝo (11)

with subscripts e for even and o for odd n, f̂ and ĝ denote the column vector
of expansion coefficients of f(θ) and g(θ), respectively. B is a tridiagonal matrix
containing the left hand side of equation 9 and A is tridiagonal matrix with
constant coefficients along each diagonal corresponding to right hand side of 9.

2.4 Data Processing

The shape reconstruction is done in two steps. Firstly, we analyze the data and
classify the most probable edges according to given benchmarks. This is realized
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Fig. 4. The comparison of simple optimized thresholding segmentation together with

the proposed one. The global character of structure is much better preserved by the

new method.

by Bayesian procedure described previously. Secondly, the equation 4 is solved
in an iterative way, and in each step the right hand side term is updated by its
current approximation obtained by inverse DCT (IDCT) from the cosine expan-
sion coefficients derived from the residuals remaining after substraction of the
initial estimation of edge map and currently found solution, obtained by IDCT
from the vector fn. The calculated set of expansion coefficients fn+1 serves for
the reconstruction of fi, the representation of g on the certain level of approx-
imation i. This function carries the information about the structure of the real
edge on a given scale i. Summing all partial functions fi we recover the required
smooth approximation to g, recovering the most probable edge map.

2.5 Experimental Data

The algorithm has been applied to a number of ultrasonograhic cardiac images.
A centroid was calculated for each scan and then the final analysis of contour was
done. The data was collected from a healthy volunteer, using an Ultramark ATL
scanner equipped with a 3.5 MHz phased array probe. The data was sampled at
20 MHz rate.
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Fig. 5. The subsequent iterations of PDE approaching the final contour. From top left

to bottom right there is 1st, 2nd, 3rd and 4th step of active segmentation.

3 Results

Figures 1 and 2 shows the results of application of our method to ultrasonic
cardiac scans. Figure 1 shows the example raw ultrasonic data. Its Bayesian
constrained spectral segmentation with low level of details is shown in Figure 2.
Figure 3 serves an example of the Bayesian inference on edge detection applied
to raw data. The comparison between a simple thresholding segmentation with
a threshold of the best choice and the segmentation proposed throughout this
paper is also shown and displayed on Figure 4.

To illustrate the algorithm performance we have imaged all subsequent steps
of PDE iteration that provide the curve approaching the real contour. Figure 5
presents 4 steps of solving the PDE, the last is corresponding to the best fit
of found contour to the real one and is also a final solution. Figure 6 contains
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Fig. 6. The final iterations of PDE approaching the final contour. On the left there is

the contour reconstructed by our method with μ=50, on the right there is the same

image segmented with μ=80.

the final solutions of PDE, equivalent to the best representation of required
structure, derived for different values of μ parameter responsible for the quality
of reconstruction.

4 Discussion

The noisy nature of the ultrasonic images makes segmentation of such data a
complex task. From anatomical study and other modalities we know the shape
of explored structure [11]. This structure is usually weak in ultrasonic data but
may be recovered due to its global properties [10]. Some knowledge can also be
revealed through Bayesian inference. The precise tuning of such method is com-
plicated and depends on the proper choice of priors and parameters describing
the smoothness of a fit, a recovered structure and the level of noise and linear
and nonlinear distortion. Some minor imperfections in the final segmentation are
easily noticed, for instance those in non perfect recovering of right-upper, upper
and upper-left borders of the cardiac ventricle, but they may be overcome by
introduction of more complex priors into Bayesian inference on edge detection.
Such research based on multiscale analysis of data content [6] is currently carried
out providing promising preliminary results and serves as a clue for futher de-
velopement of the method. There is also a possibility to incorporate multimodal
priors based on models derived from data acquired by complementary technique
like MRI [10]. Another approach is to use knowledge from an anatomical data
base.

The segmented structure corresponds to a cardiac ventricle. During the car-
diac cycle the ventricle is changing its dimensions very considerably. A very ac-
tive region of left atrioventricular valve (mitral valve) makes the circumference
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open and hence some approximation is necessary. We treat this region artifi-
cially as a boundary between mitral valve and cardiac ventricle what results in
the imperfections mentioned above.

Main advantage of our methodology is detecting a global structure instead of
only the local details as in simple thresholding techniques. This directly leads
to global parametrization of shape required for elastography. Another kinds of
base functions, like wavelets, may be applied to represent the global structure
of object.

Finally, the modifications of MAP and ML steps may be introduced. Increas-
ing the data region over that currently used along given radius for the MAP
step, or incorporating the information obtained by edge filters into the MAP
step, also increase the probability of proper edge detection and decrease that of
the fake one to insignificant level.

5 Conclusions

The new method presented here combines fast spectral method and Bayesian
inference. The method is well suited for the analysis of noisy and disturbed data
like that obtained by ultrasonography although some tuning of the algorithm
performance is still required. The main limitation is the requirement of radial
description of the object structure.
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Abstract. In the paper a model of a rule in medical diagnosis is pro-
posed. The Dempster-Shafer theory of evidence and fuzzy sets are im-
plemented in the rule representation. The basic probability assignment
describes certainty of the rule. Fuzzy sets model the rule premises. The
diagnosis is indicated by the belief and the plausibility measures. Thresh-
olds are used to adjust the significance of the rules and quality of observa-
tions. The suggested methods are verified for databases of thyroid gland
diseases: the database found in the Internet and individually gathered
data, as well as simulated data and the iris plants database.

1 Introduction

Rules are usual representation of medical knowledge in diagnosis support sys-
tems. They model dependence among symptoms and diagnoses. Their represen-
tation is crucial as it determines diagnostic inference of the systems. Usually,
heuristic rules have the following form:

IF X1 is X1
l , and . . . , and Xn is Xn

l THEN Dl, (1)

where X i are medical parameters (e.g. laboratory tests), X i
l are linguistic vari-

ables that describe values of the medical parameters (e.g. ’high’, ’normal’), and
Dl is a diagnosis. Such rules are often provided with certainty factors as it can
be observed in medical indices [3] or in expert systems [5]. The IF-THEN de-
pendence of the rule (1) is usually defined in terms of conditional probability or
fuzzy implication. In case of conditional probability, the premise of rule (1) has
to be either true or false, which means that linguistic variable X i

l is replaced
with a single value or an interval. Hence, instead of the premise ′X i is X i

l
′ we

have xi = xi
0 or xi ∈ [xi

1, x
i
2], where xi is a possible value of the X i parameter,

and xi
0, x

i
1, x

i
2 are values specific for a test (e.g. laboratory norms). Then, the

rule (1) becomes:

IF x1 = x1
0, and . . . , and xn ∈ [xn

1 , x
n
2 ] THEN Dl. (2)

The premise of rule (2) is either true or false, depending on the evidence, and
norms of the parameter X i are constant. Thus, the representation (2) of the rule
(1) is somewhat simplified. Still, it is convenient, and for that reason often used.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 998–1007, 2006.
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Certainty factor for the rule can be easily defined as the conditional probability
P (Dl/X

i, . . . , Xn), yet it is difficult to calculate in practice.
If we use fuzzy rules for (1) representation, then Xl is described by the fuzzy
membership function μl(x). The truth of the premise can be defined in the [0, 1]
interval, and norms can be described by fuzzy sets. Still, if a fuzzy implication
resembles the link between the premise and the conclusion, then the Dl has to
be also fuzzy. Thus, instead of (1) we have the following diagnostic rule:

IF X1 is X1
l , and . . . , and Xn is Xn

l THEN R is RDl
, (3)

where R stands for the disease risk and RDl
is the linguistic value of the risk,

represented by the μl(r). The formulation (3) is awkward because of a lack of
μl(r) domain. An ’artificial’ domain, which can be defined, is difficult to interpret
for physicians.

Pure probabilistic and fuzzy approaches have many other important draw-
backs that concern dependence of symptoms or significance of a symptom for a
diagnosis. Thus, the aim is to propose the suitable representation of the diag-
nostic rule comprising the following features:

– simultaneous representation of fuzzy and crisp statements in a premise of a
rule

– separate representation of premise imprecision and rule uncertainty;
– exact representation of rule conclusions;
– applicability in an inference that is intuitively clear for physicians.

Numerical calculations necessary for the diagnosis determination have to be
simple, quick and reliable. The paper presents solutions of the mentioned prob-
lems that can be implemented in a diagnosis support system.

2 Materials and Methods

2.1 Rule Definition

The Dempster-Shafer theory of evidence (DST) can be particularly convenient
for the diagnosis support [2]. The theory neglects dependence of symptoms, so
troubles with the conditional probability calculation can be avoided. In the DST
a basic probability assignment (BPA) is defined for a set of focal elements [2]. In
the diagnosis the focal element corresponds to the premise of the rule, including
one or several symptoms. Thus, the premise pj ≡ ′X is Xl

′ creates the single
focal element al

j. The conjunction of premises ′Xj is Xj
l andX

k is Xk
l
′composes

a complex focal element al
i = {pj, pk}, where pk ≡ ′Xk is Xk

l
′. Hence, the rule

(1) can be written as:
IF al

i THENDl. (4)

It must be stressed that THEN in the rule (4) does not denote an implication.
It denotes the fact of assigning the conclusion to the focal element. The set of
rules (4) defined for the chosen diagnosis Dl makes a knowledge base of this
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diagnosis. Thus, the Al set of focal elements (Al = {al
i}, i = 1, ..., nl) refers to

the Dl diagnosis. The BPA is defined for the knowledge base as [2]:

ml(f) = 0,
∑

al
i∈Al,

i=1,...,nl

ml(al
i) = 1, (5)

where ml is the BPA for the l− th diagnosis, f denotes the focal element ’none
of the l − th diagnosis symptoms is present’ and nl is the number of rules (4).
The BPA value for the i− th rule, i.e. ml(al

i), may stand for its certainty factor.
Each focal element is defined using one (in case of the single focal element) or
several (for the complex focal element) membership or characteristic functions.
The single symptom occurs when for the observed value xi∗ of the X i parameter
the membership function value is greater than a threshold, i.e. μl(xi∗) ≥ η, or
characteristic function χl(xi∗) equals 1. The η threshold resembles a level of ig-
norance of the symptom formulation. If η is small (still greater than zero), even
dubious symptoms are considered during the inference. For big η the inference
is limited to the surest symptoms. The ml(al

i) can be determined as the normal-
ized frequency of the al

i symptom occurrence for training data among Al set of
symptoms. Hence, BPA:

ml(f) = 0,
∑

al
i∈Al,

ηi≥ηBP A

ml(a) = 1, (6)

where ηBPA is the threshold for the BPA calculation and ηi is the certainty level
of the i− th rule premise. For the single focal element the certainty level:

ηi = μl

(
xi∗) , or ηi = χl

(
xi∗) , (7)

where χl is the characteristic function of symptom’s presence. It equals 1 when
xik∗ ≡ ′present′ or 0 when xik∗ ≡ ′absent′. For the complex fuzzy focal elements

ηi = min
j
μl

(
xij∗) , (8)

where μl

(
xij∗) refers to the j− th condition of the i− th premise. The complex

elements al
i = {pj , pk} may include fuzzy and crisp premises, for instance: pj ≡

′XjisXj
Dl

′ ≡ ′X1 is high′, pk ≡ ′Xk isXk
Dl

′ ≡ ′Xk is present′. In such a case

ηi = min
(
μl(xij∗), χl(xik∗)

)
. (9)

It is also possible to match a fuzzy observation and the fuzzy premise. In that
case the certainty level for the single focal element equals:

ηi = max
xi

min
(
μl(xi), μ∗l (x

i)
)
, (10)

where μ∗l (x
i) denotes an evidence given by the membership function of a fuzzy

set. The possibility to enter a fuzzy evidence can be an important new qual-
ity in the diagnosis support. For instance, such patient’s symptoms like rapid
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exacerbation of disease manifestations can be easily represented. All in all, the
following generalization of (7)-(10) definitions is possible:

ηi = min
j

max
xij

min
(
ψl(xij), ψ∗

l (xij)
)
,

ψl(xij) = μl(xij), or ψl(xij) = χl(xij),
ψ∗

l (xij) = μ∗l (x
ij), or ψ∗

l (xij) = μl(xij∗), or ψ∗
l (xij) = χl(xij∗),

or ψ∗
l (xij) = δl xij∗ ,

(11)

where δl xij∗ stands for the singleton of the observed value xij∗.
Hence, the rule (1) becomes finally:

IF al
i THEN Dl with certainty m(al

i)
al

i ≡ ′XisX1
l

′ or al
i ≡ (′XisX1

l
′, and . . . , and ′XisXn

l
′), (12)

and X i
l is defined by means of μl(xi) or χl(xi). Thus, fuzzy or crisp conditions

occur in the premise of the rule (12) and the conclusion Dl remains crisp. In
this way, the rule formulation is identical with (1). Moreover, the imprecision of
the symptom is modeled by μl(xi) separately from the uncertainty of the rule
defined by the m(al

i). In general case al
i∩al

k �= ∅ for i �= k i.e. the same symptom
may repeat several times in different focal elements. Despite of this feature, the
BPA calculation is easy, as the DST neglects dependence of al

i and al
k. For each

diagnosis a set of rules (12) has to be created.

Fig. 1. Membership function determination
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2.2 Membership Functions

Membership functions that are used in (12) can be defined in a dialog with an
expert (a physician) or during training data investigation. The second manner
is described in details in [6]. Here only a brief explanation is given. Training
data for two competitive diagnoses create two samples (see Fig.1) Theoretical
distributions of the samples can be found. They intersect at a point. The inter-
section (xcros) as well as lower and upper quartiles (qilow, qiup) of the samples
create points for determination of membership functions. The xcros resembles
the point of crossover of two membership functions. It has been assumed that
membership function values in this point equal 0.5, while in quartiles they equal
1. When more than two diagnoses are considered, the process proceeds for the
next two partly overlapping distributions. During calculations a modification of
the membership functions has been also tried. It turned out that membership
functions with slightly steeper slopes and a wider interval of maximal values
worked better. Hence, finally qilow − 0.7(qilow − xcros) and qiup + 0.7(xcros − qiup)
points have replaced quartiles.

Expert’s knowledge may also influence membership functions. An expert may
indicate xcros, while training data determine quartiles. However, the membership
function can be determined exclusively on the basis of training data, even if the
data are incomplete and not numerous and an expert is not available.

2.3 Inference

Let us assume that the diagnostic knowledge base includes rules (12), member-
ship functions are defined and BPA are calculated according to (6). Inference
with the knowledge base requires matching patient’s symptoms with the rules.
In case of crisp premise and observation accuracy of matching equals 0 or 1,
while in case of the fuzzy premise the certainty level ηi ∈ [0, 1]. Thus, belief of
the diagnosis can be defined as:

Bel(Dl, ηT ) =
∑

ηi≥ηT ,
i=1,...,nl

ml(al
i), (13)

Plausibility of the diagnosis cannot be defined by means of the min
j

operator in

the certainty level (11). Plausibility concerns all focal elements that are different
from the f focal element. Hence, θi certainty level is defined:

θi = max
j

max
xij

min
(
ψl(xij), ψ∗

l (xij)
)
, (14)

and the plausibility is calculated as:

Pl(Dl, ηT ) =
∑

θi≥ηT ,
i=1,...,nl

ml(al
i). (15)

The threshold ηT in (13), (15) qualifies symptoms that are sufficiently precise
for diagnostic inference. The definitions are extensions of the classical measures
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[2] for fuzzy focal elements. The Bel and Pl values change along with the ηT
threshold modification. Therefore, the threshold should resemble a level of ig-
norance that is allowed during inference. The [Bel(Dl, ηT ), P l(Dl, ηT )] interval
determines credibility of the l − th diagnosis.

2.4 Example

Let us consider diagnostic inference (Fig.2). It is performed for the diagnosis
Dl which rules are listed on the left-hand side and membership functions that
are represented by dashed lines in diagrams. Each rule create a focal element
for which the ml(ai) value is proposed. The focal elements are complex for the
first and third rule and single for the second rule. It should be noticed that the
conjunction of the focal elements, i.e. rule premises, is not empty. Observations
(denoted in the diagrams by solid lines) match premises of the rules. In case
of the first rule the crisp observation match the crisp premise, and the fuzzy
observation (’normal’) match the fuzzy premise (’low’). The certainty levels η1
and θ1 are calculated according to the equations (11) and (14).

Table 1. Values of Bel and P l for different thresholds

ηT Bel P l

[0, 0.5] ml(a1) + ml(a2) + ml(a3) = 1 ml(a1) + ml(a2) + ml(a3) = 1
(0.5, 0.75] ml(a2) + ml(a3) = 0.7 ml(a1) + ml(a2) + ml(a3) = 1
(0.75, 1] 0 ml(a1) + ml(a3) = 0.6

It is worth noticing that ηi ≤ θi. In the second rule the observation which is
the singleton δl 2.25 is compared to the fuzzy set μhigh. The focal element is single
in this case, so η2 = θ2. In the third rule the crisp observation and the fuzzy
premise as well as the fuzzy observation and the fuzzy premise are compared.
Since ηi and θi values are smaller than 1, the Bel and Pl values depend on the
ηT threshold. They are presented in Tab.1. From the example we can learn that
the threshold can be either too low (in the first row of Tab.1) or too high (in the
last row of Tab.1) to infer a reliable diagnosis. Thus, a criterion of the threshold
choice has to be proposed.

2.5 Elaboration of the Final Diagnosis

If all focal elements are single, then Bel(Dl, ηT ) = Pl(Dl, ηT ) and for ηT = 1
the both measures are equal to the conditional probability of the Dl, given the
observed symptoms. This almost never occurs in a diagnostic routine. Belief is
a measure of the diagnosis credibility and is based on the most certain infor-
mation. Plausibility concerns amount of available information. Final conclusion
of the inference is elaborated after comparison of belief values for several di-
agnoses. If ∃ i�=j,

i,j=1,...,N
Bel(Di, ηT ) > Bel(Dj, ηT ) (where N is the number of

possible diagnoses), then the Di diagnosis is announced as the final conclusion.
When maximal Bel values occur for at least two diagnoses, the final diagnosis
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Fig. 2. Inference

cannot be stated. The problem is that for different ηT thresholds both cases (i.e.
Bel(Di, ηT ) superiority and Bel(Di, ηT ) equality) can occur for the same pa-
tient. Thus, among values of the belief measure obtained for different thresholds
only one (let us denote it by Belcomp(Di))should be chosen for the comparison.
The best choice is made according to the Pl measure. Namely, the Bel(Di, ηT )



A Model of a Diagnostic Rule in the Dempster-Shafer Theory 1005

for which ηT is the greatest and Pl value is still the highest is chosen. Let t be
the interval of the threshold values for which the plausibility is maximal, i.e:

η∗T ∈ t⇒ Pl(Di, η
∗
T ) = max

ηT

Pl(Di, ηT ), (16)

then
η∗t = sup t⇒ Belcomp(Di) = Bel(Di, η

∗
t ). (17)

In practice, η∗t is found with some precision (for instance 0.05). Generally,
ηBPA and ηT thresholds do need to be related. Still, both the common sense
and numerical experiments [6] confirm that knowledge should be more accurately
formulated than the symptoms that are used during consultation.

2.6 Databases

The method described in this paper can be useful in a diagnosis support when
training data are incomplete or not numerous. This has been the case of data
gathered during works on the diagnosis support in thyroid gland diseases. Symp-
toms in this problem are crisp and fuzzy. However, the method has been also veri-
fied for numerical data available in the Internet, which are not deficient, but hard
to classify. Moreover, data have been simulated to investigate the problem of de-
signing membership functions. Thus, four kinds of data have been used during
the verification. The first database is available on the Internet: ftp.ics.uci.edu/
pub/machine-learning-data-bases/thyroid-disease,files new-thyr.*. The database
is related to the problem of thyroid gland diseases and the reference [1] provides
its comprehensive statistical analysis. The data are called the ’Internet data’ from
now on. Number of training/test cases for the data have been as follows: hyperthy-
roidism 75/75, euthyroidism 15/20, hypothyroidism 15/15. The data have been
used to check whether the proposed method can be more efficient than statistics in
differential diagnosis of thyroid gland diseases. The second database has been the
well-known Iris Plants Database from http://www.ics.uci.edu. The data has been
divided into 25/25 train/test cases for the three defined categories. The database
is a benchmark in research works and so it has been used to verify correctness of
the proposed method. Next, data have been simulated with comparable statis-
tic parameters to the Internet data. Each diagnostic group has included 100/100
cases. In such a way sets for 50 simulation runs of the method have been prepared.
The simulated data have been used to find out to which extent performance of the
method depends on the coherence of learning and test data and to improve mem-
bership functions. Finally, individually gathered data with the following number
of cases: hyperthyroidism 52/16, euthyroidism 26/26, hypothyroidism 23/23 have
been used.

3 Results

Verification of the proposed method has consisted in an error investigation. The
error is the percentage of wrong diagnoses indicated by the method for the test
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data. Wrong diagnoses have been outputs different from that specified in the
test data as well as undetermined diagnoses (because of belief equality). Clas-
sical methods (ISODATA, fuzzy ISODATA and IF-THEN rule Mamdani-like
inference) have resulted in errors greater than 30% for the Internet database
[6]. Three diagnostic categories have been considered. Authors of statistical in-
vestigations [1] have concluded that several methods have been acceptable for
selection of two categories (e.g. ’hyperthyroidism’ and ’the rest’), but a classifi-
cation for the three categories has always failed. In case of the proposed method
the error found for the Internet data has been reduced to 2.67% when the op-
timum threshold has been chosen. Nine diagnostic rules have been formulated
for each of the categories. The thresholds ηBPA and ηT has been changed in
the [0, 1] interval, with 0.05 step. Generally, better results have been obtained
for thresholds higher than 0.1 and lower than 0.9 and ηBPA > ηT . The error
has been significantly smaller in comparison to the classical methods. Moreover,
it has occurred only in case of euthyroidisim, so patient’s health would not be
jeopardized.

Classification of the Iris Plant Databases has followed the same algorithm. All
combinations of parameters, i.e. 15 rules have been created. Calculations have
resulted in the global error of 5.33% (2 cases wrongly classified in the groups of
versico and virgini) when cases were divided at random for training and test sets.
Still, the proposed method is sensitive for the right choice of training data. It has
been suspected that sound training data may improve classification of doubtful
cases of the test data. Therefore, wrongly classified cases have been attached to
the training data until the error has stabilized (on the level of 6.67%). Thus, all
difficult cases were gathered in one set. Then the learning and test sets has been
exchanged. In this way a division of cases for sound training data and difficult
test data have been made. In such circumstances, the classification of the test
data has been perfect (0% error). It can be concluded that though the error is
not big for random training data, it is better to split the data into two sub-sets
and to select suitable training cases.

Simulations have confirmed that the exact error depends on the training sam-
ple. For the simulated data the error has varied from 1% to 24%, though half
of the samples have resulted in 5%− 13% error, which could be considered as a
satisfactory result. The mean error has been 9.3%.

The individually gathered data have comprised ten crisp and fuzzy parame-
ters. Each parameter has been considered separately and additionally 11 complex
rules have been formulated. The global error has equaled 7.69%. Still wrong di-
agnoses have regarded only one test group - the hypothyroidism, so it could
be suspected that training data for this group have been inadequate. The error
would probably diminish when a better database is gathered.

4 Conclusions

The proposed method of diagnostic rule interpretation makes it possible to rep-
resent a diagnostic rule in the form that is very close to its intuitive formulation
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by experts. It takes advantage of the belief and plausibility measures defined in
the Dempster-Shafer theory of evidence. However, the measures and the basic
probability assignment are defined for fuzzy focal elements, so the the theory
is extended. Uncertainty and imprecision measures in knowledge representation
and inference are also separated. Consequently, all kinds of information: precise
(’yes/no’), measurements and even fuzzy linguistic expressions can be used as
diagnostic inputs. Certainty of the rule can be modeled by the basic probabil-
ity assignment. Imprecision of the symptom is described by a fuzzy set. The
assignment and the fuzzy set are determined using training data, hence rules
are adapted to patients’ data. It means that not only IF-THEN rules, but also
training data compose a knowledge base. Therefore, training data should be se-
lected if we want to ensure high quality of the diagnosis. Still, it not difficult to
choose the suitable cases and the method works for not numerous and incom-
plete data. The method can be even more efficient when a medical expert will
help in rule formulation and will provide ’typical’ training cases. As a result an
effective method of diagnosis support can be implemented.
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Abstract. This paper presents the use of a combined ant colony system
(ACS) and nearest neighbour heuristic (NNH) algorithm in DNA frag-
ment assembly. The assembly process can be treated as combinatorial
optimisation where the aim is to find the right order of each fragment in
the ordering sequence that leads to the formation of a consensus sequence
that truly reflects the original DNA strands. The assembly procedure
proposed is composed of two stages: fragment assembly and contiguous
sequence (contig) assembly. In the fragment assembly stage, a possible
alignment between fragments is determined where the fragment ordering
sequence is created using the ACS algorithm. The resulting contigs are
then assembled together using the NNH rule. The results indicate that
in overall the performance of the combined ACS/NNH technique is su-
perior to that of a standard sequence assembly program (CAP3), which
is widely used by many genomic institutions.

1 Introduction

To understand the whole genetic makeup of an organism, the information re-
garding the entire DNA (deoxyribonucleic acid) sequence is required. DNA is a
double helix comprised of two complementary strands of polynucleotides. Each
strand of DNA can be viewed as a character string over an alphabet of four
letters: A, G, C and T. The four letters represent four bases, which are adenine
(A), guanine (G), cytosine (C) and thymine (T). The two strands are com-
plementary in the sense that at corresponding positions A’s are always paired
with T’s and C’s with G’s. These pairs of complementary bases are referred
to as “base pairs” (bp). With the advent of shotgun genome sequencing tech-
nique whereby the entire long DNA are broken into numbers of small fragments,
which are long enough to be read by present sequencing machines. At present,
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strands of DNA that are longer than 600 base pairs cannot routinely be se-
quenced accurately [1]. At the early stage of shotgun genome sequencing, large
number of overlaped but “unordered” fragments are obtained. Hence, one of
major procedures in a genome discovery project is to assemble these unordered
DNA fragments. The DNA fragment assembly involves finding the right order
of each fragment in the fragment ordering sequence, which leads to the formation
of a consensus sequence that truly reflects the original DNA strands. A num-
ber of deterministic and stochastic search techniques have been used to solve
DNA fragment assembly problems [2]. For instance, Huang and Madan [3] and
Green [4] have used a greedy search algorithm to solve the problem. However, a
manual manipulation on the computer-generated result is required to obtain a bi-
ologically plausible final result. Other deterministic search algorithms that have
been investigated include a branch-and-cut algorithm [5] and a graph-theoretic
algorithm where DNA fragments are either represented by graph nodes [6,7] or
graph edges [8]. The capability of stochastic search algorithms such as a simu-
lated annealing algorithm [9], a genetic algorithm [10,11,12] and a neural network
based prediction technique [13] has also been investigated. The best DNA frag-
ment assembly results obtained from stochastic searches have been reported in
the research efforts by Parsons and Johnson [11], and Kim and Mohan [12] where
genetic algorithms have proven to outperform greedy search techniques in rela-
tively small-sized problems. In addition, the need for manual intervention is also
eliminated.

Although significant results have been achieved, the search efficiency could
further be improved if the redundancy in the solution representation is elim-
inated from the search algorithms [10]. Similar to a number of combinatorial
optimisation techniques, the use of a permutation representation is required to
represent a DNA fragment ordering solution in a genetic algorithm search. With
such representation, different ordering solutions can produce the same DNA
consensus sequence. Since genetic algorithms are parallel search techniques, the
representation redundancy mentioned would inevitably reduce the algorithm ef-
ficiency.

2 Ant Colony System

A search algorithm that does not suffer from the aformentioned effect is an ant
colony system (ACS) algorithm [14], which was originally proposed to solve a
travelling salesman problem (TSP). From literature [10], the underlying DNA
fragment assembly problem can then be treated as an instance of the TSP. The
natural metaphor on which ant algorithms are based is that of ant colonies. Real
ants are capable of finding the shortest path between a food source and their nest
without using visual clues by exploiting pheromone information. While walking,
ants deposit pheromone on the ground, and probabilistically follow pheromone
previously deposited by other ants.

The way ants exploit pheromone to find the shortest path between two points
is portrayed in Fig. 1. Consider a situation where ants arrive at a decision point
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Fig. 1. Ants’ beheviour in probabilistically chosen paths which lead to food source

in which they have to decide between two possible paths for both getting to and
returning from their destination. Since they have no clue about which is the best
choice, they have to pick the path randomly. It can be expected that on average
half of the ants will decide to go on one path and the rest choose to travel on
the other path. Suppose that all ants walk at approximately the same speed, the
pheromone deposited will accumulate more on the shorter path.

After a short transitory period the difference between the amounts of de-
posited pheromone on the two paths is sufficiently large so as to influence the
decision of other ants arriving at the decision point. New ants will thus pre-
fer to choose the shorter path since at the decision point they perceive more
pheromone. To solve the TSP where the best tour (minimising the travelling
distance) is to be reported, the iterative cycle is performed. During each cycle,
an ant (computer agent) is set to start off from a city (node). Utilising the above
ants’ probabilistic behaviour, accumulated pheromone appears on links between
nodes. Ants shall prefer to take links that they have not traversed before. The
iterative cycle will be repeated until reaching a given maximum number of cy-
cles. At the end, all ants will use the shorter path. If the ants have to complete a
circular tour covering n different destinations without visiting order preference,
the emerged best tour will be a solution to the n-city TSP.

3 DNA Fragment Assembly Using ACS and NNH

During an assembly process, the fragments are aligned in order to create a con-
sensus sequence that represents the original or parent DNA strands. An align-
ment between two fragments can be created if there is a portion from each
fragment that together can produce a match between either the same-base or-
dering sequences or the complementary-base ordering sequences. The alignments
of fragments are schematically displayed in Fig. 2. The number of matching
bases between two aligned fragments together with penalties from mismatches
and gaps are generally referred to as the overlap score. The overlap score for an
alignment between two fragments can be calculated using a Smith-Waterman
algorithm [15]. If the search for a possible alignment between a given fragment
and other fragments returns either a relatively low or a zero overlap score, there
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will be gaps in the consensus sequence. In such a case, the consensus sequence
will contain multiple disjoint sequences called contiguous sequences or contigs.

From a combinatorial optimisation viewpoint, the construction of a consensus
sequence is similar to that of a tour in the TSP. This is because each fragment
would have to be in a specific fragment ordering sequence in order for the for-
mation of a consensus sequence to take place. The explanation of the ant colony
system algorithm given in section 2 can then be applied to a DNA fragment
assembly problem by utilising the overlap score, which provides information re-
garding how well two fragments can fit together. This underlying score can be
regarded as the inverse of the distance between two cities in the TSP problem.
In other words, the target of a TSP is to find the shortest circular tour which
links the cities together while the aim of a DNA fragment assembly problem
is to maximise the sum of overlap scores between consecutive fragments in the
ordering sequence.

However, a DNA fragment assembly problem is a special kind of symmetric
TSPs. In brief, distances between cities r and s in the forward and backward
journeys are equal in a symmetric TSP. A factor that makes a DNA fragment
assembly problem a special form of symmetric TSPs is the consideration on
the original parent DNA strand at which the fragment came. Each fragment
used in the assembly process has an equal probability of coming from one of
the two parent DNA strands. With different assumptions on the origin of the
fragment, the resulting overlap score would also be different. With this factor,
there are four possible configurations for obtaining the overlap score between two
fragments. The summary of four alignment configurations is given in Table 1.
From Table 1, during the use of the ACS algorithm if an ant is at fragment
r where the fragment is assumed to come from the forward DNA strand, the
only possible configurations for an alignment with fragment s are configurations
1 and 2. On the other hand, if the fragment r comes from the complementary
strand where the order of base reads must always be in reverse, the feasible
configurations for an alignment with fragment s are configurations 3 and 4. It
remains that the only difference between a TSP and a DNA fragment assembly
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Table 1. Four alignment configurations between two fragments

Configuration Assumption about the Strand of Origin

Fragment r Fragment s

1 Forward Forward
2 Forward Reverse complement
3 Reverse complement Forward
4 Reverse complement Reverse complement

problem is that there would not be a proper alignment between the first and the
last fragments in the consensus sequence that is comparable to the connection
between the first and the last cities in the TSP solution.

Many objective functions can be used to represent correctness of the obtained
consensus sequence. The objective function investigated is a minimisation func-
tion, which is a combination between the number of contigs and the difference in
length between the longest and the shortest contigs. With the use of this objec-
tive function, the solution that has the lesser number of contigs will be regarded
as the better solution. The locations of the beginning and the end of each contig
in the fragment ordering sequence are the locations where the overlap score be-
tween two consecutive fragments is lower than a threshold value. However, more
than one solution generated may have the same number of contigs. If this is the
case, the solution that is the better solution is the one where the difference be-
tween the length of the longest and the shortest contigs is minimal. This part of
the objective function is derived from the desire that the ultimate goal solution
is the one with either only one contig or the fewest possible number of contigs
where each contig is reasonably long.

We make use of a nearest neighbour heuristic (NNH) rule to provide the
initial solution to the ACS algorithm and the ACS local pheromone updating
factor [14]. Let fragment r be the one which is randomly chosen by an ant from
the fragment set. The origin of fragment r (forward or reverse complementary
strands) is also randomly chosen. The candidate fragment s that is best aligned
with fragment r is then located from the remaining fragments. This will pro-
vide both the overlap score and the alignment configuration. The process of
identifying the candidate fragment for an alignment with fragment s is then car-
ried out and the process continues until the last fragment has been used in the
construction of the fragment ordering sequence.

Recall that a fragment that has already been used in the fragment ordering
sequence will be removed from the remaining fragment list. During the last stage
of the assembly process, the overlap score between the last and the first frag-
ments in the ordering sequence will be the value obtained using the alignment
configuration enforced by the choices on the strand of origin for both fragments.
Since the consensus sequence is not circular, the circular fragment ordering se-
quence obtained will be split at the location where the overlap score between
two fragments in the ordering sequence is minimal. From the procedure given,
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the choice of the first fragment in the ordering sequence will dictate how a con-
sensus sequence is formed. For an assembly problem with n fragments, a total
of n consensus sequences can be generated using the NNH rule. Notice that the
strand of origin of the first fragment has no influence on the number of maxi-
mum possible unique solutions that can be generated. This is because changing
the strand of origin of the first fragment will simply result in the reversal of the
strand of origin of all fragments in the ordering sequence.

4 Case Studies

In this paper, the data sets are obtained from a GenBank database at the
National Center for Biotechnology Information (NCBI) [16]. The parent DNA
strands are extracted from the human chromosome 3 where the strands with the
sequence length ranging from 21K to 83K base pairs are utilised. Each fragment
is unclipped (low quality base reads are retained) and has the total number of
bases between 700 and 900. This means that the fragments contain sequencing
errors generally found in any experiments. The data set is prepared such that the
consensus sequence contains either one contig or multiple contigs. The summary
of the data set descriptions is given in Table 2. From Table 2, coverage is the
average number of fragments covering each base pair on the parent strands.

Table 2. Information on the data set

Accession Number AC023501 AC023159 AC005903 AC026318
Base Pair 20,824 34,680 63,949 83,181

Case Study 1 2 3 4 5 6 7 8
Coverage 10 10 5 5 7 6 7 7
Number of Fragments 368 367 279 269 611 591 709 708
Gaps 0 1 0 6 0 1 0 1

5 Methods, Results and Discussions

The ACS algorithm, the NNH rule and a CAP3 program [3], which is a stan-
dard assembly program, have been applied to all eight case studies. In the case
of the NNH search, all possible n solutions with different starting fragments are
generated where n is the number of fragments. The solutions are obtained us-
ing the sum of overlap scores as the maximisation objective. The best solution
is then picked where contigs are produced by assembling aligned fragments to-
gether and applying a majority-vote rule, as illustrated in Fig. 2, for the base
calling purpose. Next, an attempt on DNA contig assembly is made where the
NNH rule is still in use. Similar to the early assembly procedure, all possible
l solutions are generated this time where l is the number of contigs from the
primary assembly stage and the best solution among l solutions are chosen as
the final solution. In contrast, the ACS algorithm runs with the minimisation
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Table 3. Number of contigs from the solutions produced by the NNH+NNH approach,

the ACS+NNH approach and the CAP3 program

Problem Number of Contigs

Parent Strand NNH+NNH ACS+NNH CAP3

AC023501 (21K bp)
No gaps 1 1 1 3
With gaps 2 2 2 4

AC023159 (35K bp)
No gaps 1 11 5 10
With gaps 7 18 11 9

AC005903 (64K bp)
No gaps 1 14 11 3
With gaps 2 14 2 3

AC026318 (83K bp)
No gaps 1 15 15 25
With gaps 2 15 15 25

objective described in section 3 are repeated ten times in each case study. In this
investigation, the parameter setting for the ACS algorithm is the recommended
setting for solving symmetric travelling salesman problems given in Dorigo and
Gambardella [14]. During each ACS run, the initial solution used is randomly
chosen from all n solutions produced by the NNH rule. After all ACS runs are
finished, the best solution is picked and contigs are obtained by assembling frag-
ments together. The contig assembly is then commenced where the NNH rule
is applied. It is noted that since the CAP3 program is deterministic in nature,
the program is executed only one time for each case study. From the assembly
results obtained, two discussion topics can be given: the number of contigs in
the assembly solutions and the quality of the solutions.

5.1 Number of Contigs in the Assembly Solutions

The numbers of contigs obtained from the NNH+NNH approach, the ACS+NNH
approach and the CAP3 program, are reported in Table 3. From Table 3, the
CAP3 program outperforms the ACS+NNH approach in cases 4 and 5 while
the ACS+NNH approach is the best technique in the remaining cases. The re-
sults also indicate that as the problem size increases, the number of contigs
produced by the ACS+NNH approach also increases. On the other hand, there
is no correlation between the problem size and the number of contigs in the
the CAP3 solutions. In overall, the performance of the ACS+NNH approach
is higher than that of the CAP3 program. Furthermore, both NNH+NNH and
ACS+NNH techniques have the same performance in cases 1, 2, 7 and 8 while
the ACS+NNH approach has a higher performance in cases 3, 4, 5 and 6. This
means there is a range on the problem size where the ACS+NNH approach is
better than the NNH+NNH approach.
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Table 4. Assembly errors expressed in terms of the sum of substitution and inser-

tion/deletion errors, and the coverage error

Problem Substitution & Indel Errors (%) Coverage Error (%)

NNH+NNH ACS+NNH CAP3 NNH+NNH ACS+NNH CAP3

AC023501 (21K bp)
No gaps 1.63 1.89 0.13 0.00 0.00 0.00
With gaps 1.62 1.43 0.10 0.00 0.19 0.00

AC023159 (35K bp)
No gaps 1.17 1.57 0.21 8.48 8.22 6.98
With gaps N/A N/A 0.22 N/A N/A 1.10

AC005903 (64K bp)
No gaps 1.08 1.01 0.10 0.45 0.45 2.38
With gaps 1.02 0.97 0.11 0.47 1.22 2.06

AC026318 (83K bp)
No gaps 1.19 1.11 0.39 12.42 7.44 11.08
With gaps 1.19 1.09 0.40 12.23 7.49 10.87

5.2 Quality of the Assembly Solutions

The quality of a contig is measured by the base difference between the parent
DNA sequence and the contig of interest. This difference is expressed in terms of
three types of assembly error: a substitution error, an insertion/deletion (indel)
error and a coverage error. A substitution error appears when a base in one of
two aligned sequences—a parent DNA sequence and a contig in this case—does
not match its counterpart in the other sequence. When a base in one aligned
sequence seems to have been deleted as the result of a divergence of the sequence
from its counterpart, such absence is labelled as a deletion error in the derived
sequence. On the other hand, when a base appears to have been inserted to
produce a longer sequence, an insertion error is labelled in the augmented se-
quence. A deletion in one sequence can thus be viewed as an insertion in the
other sequence. Hence, these two types of error are generally referred to together
as an insertion/deletion error. In contrast to substitution and insertion/deletion
errors, a coverage error is detected when there are bases in the parent DNA
sequence, which are located outside the part of contig that best matches the
parent sequence and thus not covered by any contigs. These assembly errors,
expressed in terms of the percentage of errors out of the total number of bases
in the parent sequence, are tabulated in Table 4. The sum of substitution and
insertion/deletion errors from the ACS+NNH approach is higher than that of
the CAP3 program in all case studies. However, in the first four case studies,
the coverage errors from the CAP3 program are either lower than or equal to
that from the ACS+NNH approach while the solutions that have lower coverage
errors in the last four case studies are produced by the ACS+NNH approach.
It is also noticeable that the errors from the NNH+NNH and ACS+NNH ap-
proaches are very similar in all case studies except for the last two cases where
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the coverage errors of the solutions from the ACS+NNH approach are lower. In
terms of solution quality, the right combination between the ACS algorithm and
the CAP3 program may yield contigs that have even lower assembly errors.

6 Conclusions

A DNA fragment assembly problem is treated as a TSP where a fragment order-
ing sequence conveys a tour that covers all cities while the overlap score between
two aligned fragments in the ordering sequence is regarded as the inverse of the
distance between two cities. The proposed ACS+NNH procedure was compared
with a CAP3 program [3]. The results suggest that the solutions produced by
CAP3 contain a higher number of contigs than the solutions generated by the
ACS+NNH procedure and the quality of the combined ACS/NNH solutions is
higher than that of the CAP3 solutions when the problem size is large.
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Abstract. We investigate a monotone link between Bayesian confirma-
tion measures and rule support and confidence. In particular, we prove
that two confirmation measures enjoying some desirable properties are
monotonically dependent on at least one of the classic dimensions be-
ing rule support and confidence. As the confidence measure is unable to
identify and eliminate non-interesting rules, for which a premise does not
confirm a conclusion, we propose to substitute the confidence for one of
the considered confirmation measures. We also provide general conclu-
sions for the monotone link between any confirmation measure enjoying
some desirable properties and rule support and confidence.

1 Introduction

Knowledge patterns discovered from data are usually expressed in a form of
“if. . . , then. . .” rules. They are consequence relations representing mutual re-
lationship, association, causation, etc. between independent and dependent at-
tributes. Typically, the number of rules generated from massive datasets is very
large, and only a small portion of them is likely to be useful. In order to mea-
sure the relevance and utility of the discovered patterns, quantitative measures,
also known as attractiveness or interestingness measures (metrics), have been
proposed and studied. Measures such as confidence and support, gain [10], con-
viction [3], etc. have been introduced to capture different characteristics of rules.
Among widely studied interestingness measures, there is, moreover, a group of
Bayesian confirmation measures, which quantify the degree to which a piece of
evidence built of the independent attributes provides “evidence for or against”
or “support for or against” the hypothesis built of the dependent attributes [9].
An important role is played by a confirmation measure denoted in [9] and other
studies byf , and by a confirmation measure s proposed by [6]. Both of them
have a valuable property of monotonicity (M) introduced in [12].
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Bayardo and Agrawal [2] have proved that for a class of rules with fixed conclu-
sion, the upper support-confidence Pareto border (i.e. the set of non-dominated,
Pareto-optimal rules with respect to both rule support and confidence) includes
optimal rules according to several different interestingness measures, such as
gain, Laplace [7], lift [13], conviction [3], an unnamed measure proposed by
Piatetsky-Shapiro [16]. This practically useful result allows to identify, the most
interesting rules according to several interestingness measures by solving an op-
timized rule mining problem with respect to rule support and confidence only.

As shown in [12], the semantics of the scale of confidence is not as meaningful
as that of confirmation measures. Moreover, it has been analytically shown in
[4] that there exist a monotone link between some confirmation measures on one
side, and confidence and support, on the other side. In consequence, we propose
in this paper, two alternative approaches to mining interesting rules. The first
one consists in searching for a Pareto-optimal border with respect to rule support
and confirmation measure f , the second concentrates on searching for a Pareto-
optimal border with respect to rule support and confirmation measure s.

The paper is organized as follows. In the next section, there are preliminar-
ies on rules and their quantitative description. In section 3, we investigate the
idea and the advantages of mining rules constituting Pareto-optimal border with
respect to support and confirmation measure f . Section 4 concentrates on the
proposal of mining Pareto-optimal rules with respect to support and confirma-
tion measure s. In section 5, we generalize the approaches from sections 3 and 4
to a broader class of confirmation measures. The paper ends with conclusions.

2 Preliminaries

Discovering rules from data is a domain of inductive reasoning. To start inference
it uses information about a sample of larger reality. This sample is often given in
a form of an information table, containing objects of interest characterized by a
finite set of attributes. Let us consider information table S = (U , A), where Uand
A are finite, non-empty sets called universe and set of attributes, respectively.
One can associate a formal language L of logical formulas with every subset
of attributes. Conditions for a subset B ⊆ A are built up from attribute-value
pairs (a,v), where a ∈ B and v ∈ Va (set Va is a domain of attribute a), using
logical connectives ¬ (not), ∧ (and), ∨ (or). A decision rule induced from S and
expressed in L is denoted by φ → ψ (read as “if φ, then ψ′′) and consists of
condition and decision formulas in L, called premise and conclusion, respectively.

In this paper, similarly to [2], we only consider all minimal rules with the same
conclusion, which can be induced from a dataset. Let us remind that a rule is
minimal if, for a given conclusion, there is no other rule with weaker conditions.

2.1 Monotonicity of a Function in Its Argument

For x belonging to a set ordered by the relation 7 and for the values of g
belonging to a set ordered by the relation ≤, a function g(x) is understood to
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be monotone (resp. anti-monotone) in x, if x1 ≺ x2 implies that g(x1) ≤ g(x2)
(resp. g(x1) ≥ g(x2)).

2.2 Support and Confidence Measures of Rules

With every rule induced from information table S, measures called support and
confidence can be associated. The support of condition φ, denoted as sup(φ),
is equal to the number of objects in U having property φ. The support of rule
φ → ψ, denoted as sup(φ → ψ), is equal to the number of objects in U having
both property φ and ψ; for those objects, both premise φ and conclusion ψ
evaluate to true.

The confidence of a rule (also called certainty), denoted as conf (φ → ψ), is
defined as follows:

conf (φ→ ψ) =
sup (φ→ ψ)
sup (φ)

, sup(φ) > 0 (1)

Note, that it can be regarded as a conditional probability Pr(ψ|φ) with which
conclusion ψ evaluates to true, given that premise φ evaluates to true, however,
expressed in terms of frequencies.

2.3 Bayesian Confirmation Measures f and s

In general, confirmation measures quantify the strength of confirmation that
premise φ gives to conclusion ψ. All confirmation measures take (desired) positive
values in situations where the conclusion of the rule is verified more often when
its premise is verified, rather than when its premise is not verified. For the
confirmation measures a desired property of monotonicity (M) was proposed in
[12]. This monotonicity property says that, given an information system S, a
confirmation measure is a function non-decreasing with respect to sup(φ → ψ)
and sup(¬φ → ¬ψ), and non-increasing with respect to sup(¬φ → ψ) and
sup(φ → ¬ψ). Among confirmation measures that have property (M) there is
confirmation measure f [9] and confirmation measure s [6].

The confirmation measures f and s are defined as follows:

f(φ→ ψ) =
Pr(φ|ψ) − Pr(φ|¬ψ)
Pr(φ|ψ) + Pr(φ|¬ψ)

, (2)

s(φ→ ψ) = Pr(ψ|φ) − Pr(ψ|¬φ). (3)

Taking into account that conditional probability Pr(◦|∗) = conf(∗ → ◦),
confirmation measures f and s can be expressed as:

f(φ→ ψ) =
conf(ψ → φ) − conf(¬ψ → φ)
conf(ψ → φ) + conf(¬ψ → φ)

, (4)

s(φ→ ψ) = conf(φ→ ψ)− conf(¬φ→ ψ). (5)
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2.4 Partial Order on Rules in Terms of Two Interestingness
Measures

Let us denote by �AB a partial order on rules in terms of any two different
interestingness measures A and B. The partial order �AB can be decomposed
into its asymmetric part ≺AB and symmetric part ∼ AB in the following manner:
given two rules r1 and r2, r1 ≺AB r2 if and only if

A(r1) ≤ A(r2) ∧B(r1) < B(r2), or
A(r1) < A(r2) ∧B(r1) ≤ B(r2);

(6)

moreover, r1 ∼AB r2 if and only if

A(r1) = A(r2) ∧B(r1) = B(r2). (7)

2.5 Implication of a Total Order �t by Partial Order �AB

Application of some measures that quantify the interestingness of a rule induced
from an information table S creates a total order, denoted as �t, on those rules.
In particular, measures such as gain, Laplace, lift, conviction, one proposed by
Piatetsky-Shapiro, or confirmation measures f and s result in such a total order
on the set of rules with a fixed conclusion, ordering them according to their
interestingness value.

A total order �t is implied by partial order �AB if:

r1 �AB r2 ⇒ r1 �t r2, and
r1 ∼AB r2 ⇒ r1 ∼t r2.

(8)

It has been proved by Bayardo and Agrawal in [2] that if a total order �t

is implied by support-confidence partial order �sc, then the optimal rules with
respect to �t can be found in the set of non-dominated rules with respect to
rule support and confidence. Thus, when one proves that a total order defined
over a new interestingness measure is implied by �sc, one can concentrate on
discovering non-dominated rules with respect to rule support and confidence.
Moreover, Bayardo and Agrawal have shown in [2] that the following conditions
are sufficient for proving that a total order �t defined over a rule value function
g(r) is implied by partial order �AB:

g(r) is monotone in A over rules with the same value of B, and
g(r) is monotone in B over rules with the same value of A.

3 Pareto-Optimal Border with Respect to Rule Support
and Confirmation Measure f

Due to the semantic importance and utility of confirmation measure f , a ver-
ification of the monotonicity of confirmation measure f in rule support and
confidence has been conducted in [4]. It has been proved that rules maximizing
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confirmation measure f can be found on the Pareto-optimal support-confidence
border. However, the utility of confirmation measure f outranks the utility of
confidence. The confidence measure has no means to show, that the rule is use-
less when its premise disconfirms the conclusion. Such situation is expressed by a
negative value of any confirmation measure, thus useless rules can be filtered out
simply by observing the confirmation measure’s sign. Therefore, we find it in-
teresting to propose a new Pareto-optimal border – with respect to rule support
and confirmation measure f .

An analysis of the monotonicity of confidence in rule support for a fixed value
of confirmation f , as well as in confirmation f for a fixed value of rule support,
has been performed. The following theorems have been proved in [5].

Theorem 1. Confidence is monotone in confirmation measure f .

Theorem 2. Confidence is independent of rule support, and therefore monotone
in rule support, when the value of confirmation measure f is held fixed.

It follows from the above results that rules optimal in confidence lie on the
Pareto-optimal border with respect to rule support and confirmation measure f .
Even more, the Pareto-optimal border with respect to support and onfirmation
measure f is identical with the Pareto-optimal border with respect to support
and confidence.

Consequently, other interestingness measures that are monotone in confidence,
must also be monotone in confirmation measure f , due to the monotone link be-
tween confidence and confirmation measure f . Thus, all the interestingness mea-
sures that were found on the support-confidence Pareto-optimal border shall also
reside on the Pareto-optimal border with respect to rule support and confirma-
tion measure f . We find it valuable to combine those two measures in the border,
as confirmation measure f is independent of rule support, and rules that have
high values of confirmation measure f are often characterized by small values of
the rule support.

A computation experiment showing rules in confirmation measure f and rule
support has been conducted. A real life dataset containing information about
technical state of buses was analyzed. The set consisted of 76 objects described
by 8 criteria and divided into 3 decision classes. For one of those classes a set of
all rules was generated. The values of confirmation measure f and rule support
for those rules were placed on Fig.1. It can be easily observed that the Pareto-
optimal set of rules (marked in Fig.1 by squares) includes rules maximizing
such interestingness measures as confidence, Laplace, lift (marked in Fig.1 by
asterisk), Piatetsky-Shapiro (marked in Fig.1 by a cross).

For rules with a fixed conclusion, mining the set of non-dominated rules with
respect to rule support and confirmation measure f will identify rules opti-
mal according to such interestingness measures as confidence, conviction, lift,
Laplace, Piatetsky-Shapiro, gain, etc. However, if those non-dominated rules are
characterized by a negative value of confirmation measure f , then they must
be discarded because in those rules the premise just disconfirms the conclu-
sion. A final set of rules representing ”‘the best”’ patterns discovered from the
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Fig. 1. Pareto-optimal border with respect to rule support and confirmation measure f

includes rules being optimal in many other measures (technical state of buses dataset)

whole dataset shall be a union of all the non-negative-in-f rules from all the
Pareto-optimal borders (all possible conclusions) with respect to support and
confirmation measure f .

4 Rules Optimal with Respect to Confirmation Measure s

The second confirmation measure that came into the scope of our interest was
confirmation measure s. Similarly to confirmation measure f , it also has the de-
sirable property of monotonicity (M). On the contrary to confirmation measure
f , however, it is dependent on both rule support and confidence. The mono-
tonicity of confirmation measure s in confidence for a fixed value of support, as
well as in rule support for a fixed value of confidence, has been analyzed. The
following theorems have been proved in [5].

Theorem 3. When the rule support value is held fixed, then confirmation mea-
sure s is monotone in confidence.

Theorem 4. When the confidence value is held fixed, then:

– confirmation measure s is monotone in rule support if and only if s ≥ 0,
– confirmation measure s is anti-monotone in rule support if and only if s < 0.

As rules with negative values of confirmation measure s are discarded from con-
sideration, the result from Theorem 4 states the monotone relationship just in
the interesting subset of rules. Since confirmation measure s has the property of
monotonicity (M), we propose to generate interesting rules by searching for rules
maximizing confirmation measure s and support, i.e. substituting the confidence
in the support-confidence Pareto-optimal border with the confirmation measure
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s and obtaining in this way a support-confirmation-s Pareto-optimal border.
This approach differs from the idea of finding the Pareto-optimal border accord-
ing to rule support and confirmation measure f , because support-confirmation-f
Pareto-optimal border contains the same rules as the support-confidence Pareto-
optimal border, while, in general, the support-confirmation-s Pareto-optimal
border can differ from the support-confidence Pareto-optimal border. Moreover,
as measure f , unlikely to s, is a satisfying confirmation measure with respect
to the property of symmetry verified in [8], mining the Pareto-optimal border
with respect to rule support and confirmation measure f still remains a good
alternative idea.

5 Rules Optimal with Respect to Any Confirmation
Measure Having the Property of Monotonicity (M)

A general analysis of the monotonicity of any confirmation measure that enjoys
the property of monotonicity (M) has also been conducted.

Let us use the following notation:

a = sup(φ→ ψ), b = sup(¬φ→ ψ), c = sup(φ→ ¬ψ), d = sup(¬φ→ ¬ψ).

Let us consider a Bayesian confirmation measure F (a, b, c, d) being differentiable
and having the property of monotonicity (M). The following theorems have been
proved in [5].

Theorem 5. When the value of rule support is held fixed, then the confirmation
measure F (a, b, c, d) is monotone in confidence.

Theorem 6. When the value of confidence is held fixed, then the confirmation
measure F (a, b, c, d) is monotone in rule support if:

∂F

∂c
=

∂F

∂d
= 0 or

∂F
∂a −

∂F
∂b

∂F
∂d −

∂F
∂c

≥ 1
conf (φ→ ψ)

− 1. (9)

It is worth noting, that, due to Theorem 6, all those confirmation measures that
are independent of sup(φ → ¬ψ) and sup(¬φ → ¬ψ) are found monotone in
rule support when the value of confidence is kept unchanged.

Theorem 5 and Theorem 6 outline an easy method of verification of existence
of the monotone link between any confirmation measure with the property of
monotonicity (M), and rule support and confidence. Confirmation measures that
positively undergo such verification are, in our opinion, good candidates for
substituting the confidence dimension in the Pareto-optimal border with respect
to rule support and confidence proposed by Bayardo and Agrawal in [2]. Thanks
to the monotonicity of a confirmation measure in rule support and confidence, a
monotone link of that confirmation measure with other interestingness measures
such as lift, gain, Laplace, etc. is assured. Therefore, the Pareto-optimal border
with respect to rule support and a confirmation measure includes rules optimal
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according to the same metrics as the support-confidence Pareto-optimal border.
Due to the fact that the scale of confirmation measures is more useful than that of
confidence, we propose searching for the non-dominated set of rules with respect
to rule support and a confirmation measure with the propery of monotonicity
(M). We find confirmation measure f particularly valuable for its property of
monotonicity (M) and for being a satisfying measure with respect to the property
of symmetry, and confirmation measure s for its property of monotonicity (M)
and its simplicity.

6 Conclusions

Bayardo and Agrawal have opted in [2] for an approach to mining interesting
rules based on extracting a Pareto-optimal border with respect to rule support
and confidence. We have analyzed and described the monotone link between the
confirmation measures f and s, and rule support and confidence. This analysis
has also been extended to a more general class of all the confirmation measures
that have the property of monotonicity (M). The results show that it is reason-
able to propose a new approach in which we search for a Pareto-optimal border
with respect to rule support and a confirmation measure, in particular, we are
in favor of confirmation measure f or s. Consequently, our future research will
concentrate on adapting the “APRIORI” algorithm [1], based on the frequent
itemsets, for mining most interesting association rules with respect to rule sup-
port and either confirmation measure f or s.
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Abstract. This paper presents an entirely original concept of IT sys-
tems construction never published before. It supports the strategic busi-
ness decision-making processes based on cognitive analysis methods. The
essence of this new approach is in that the automatic understanding
methods, tested previously in the area of medical image interpretation,
enhancing the traditional set of automatic analysis and automatic clas-
sification methods, will be used to develop new generation business IT
systems. This paper proposes a holistic concept of a new IT economy
system, which is a significantly enhanced DSS-type system (Decision
Support Systems). The essence of innovations introduced in this paper
is in adding understandable business data to the analysis process of the
said data. Such a system is essentially different from all known DSS-type
systems, it is also different from all approaches to intelligent IT system
construction, as described in the literature like, for example, those based
on neural networks or in the use of expert systems. In this paper we
therefore propose an acronym for the new system labelled UBMSS (Un-
derstanding Based Managing Support Systems). Cognitive methods, on
which the UBMSS concept and construct are based, copy the psycho-
logical and neurophysiological processes of understanding the analysed
data, as they take place in the brain of a competent and particularly
gifted man.

1 Introduction

Intelligent IT systems are currently used in practically all scientific research fields
as well as in technical and medical solutions and, an area not frequently men-
tioned, in military applications. Such systems are also functioning more and more
frequently with greater success in business, which for its daily work uses ear-
lier generation IT systems, i.e. transaction, register and settlement systems, ones
supporting management and facilitating taking decisions. However, the practice
of using IT systems in business process management has gone in a different di-
rection. Modern production, service and trading companies as well as banks and
dispatch companies use IT systems, often highly integrated ones (currently the

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1027–1039, 2006.
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norm are ERP-class systems) and data processing systems excellent from the
point of view of technology but they do not take significant advantage of the
achievements in such disciplines as artificial intelligence or cognitive science. It
is precisely in the use of AI and the cognitive approach that one can find quite a
significant scope of IT innovations that could constitute the source of competitive
advantage.

The premises that led the authors of this paper to formulate some general
recommendations concerning the development and implementation of cognitive
analysis methods in business systems, in particular systems supporting manage-
ment, are expressed in the following statements:

– Nowadays the scope of typical IT systems for management needs is extremely
wide and it relates, among others, to trade, banking, production, services,
logistics and many other fields. In each of these fields typical IT systems
are used by everyone, their use therefore cannot be a factor constituting
competitive advantage.

– IT systems currently in use are dedicated mainly to storing and processing
information for reporting purposes. They enable therefore evaluation as to
how a given company functions currently and what economic results it
achieved in the nearer or more remote past. Such systems are perfect for
making decisions relating to the current running and management of a com-
pany, but they are not a good tool to support more strategic decisions or
ones that are required to develop drastic reorganisation plans or to change
a company’s mission. One could say that an attempt to shape a company
strategy actively based on data supplied by most currently used IT manage-
ment systems is comparable with the driving of a car in a situation where
the driver can only see that section of road in his rear mirror. In other words
the road that he has already travelled.

– IT tools used to support economic short and long-term planning (i.e. econo-
metric models, simulation software and forecasting tools) are, of course, very
useful but they have a major disadvantage. Each can support the evalua-
tion of any idea the user presents and describes. Yet none of these tools
supports the generation of innovative ideas. One could say that IT systems
currently used for management needs can answer any question asked but
they cannot answer questions that have not been asked.

The reason behind the fact that even the most modern IT systems perform
the task of strategic management in such an imperfect and poor way is that
computers, by storing data and playing with information, focus on the form
and in no way get to the content. They do not even try to mine the meaning
contained in the information.

However, as discussed above, this management type for which currently used
IT systems (for example the ERP-class ones) are best adjusted are rather low-
level systems, in particular for tactic management. This is true mainly about
routine management in the conditions of stable and continuous company oper-
ations. To execute more ambitious tasks, in particular to support a strategic
idea generation, it is necessary to have a new IT tool that practically does
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not yet exist on the market of currently used IT techniques. The concept and
construction rules of such new generation business IT systems require scientific
research. This paper aims to initiate and inspire such research.

The details of the proposed concept will be presented in chapter 3. Neverthe-
less one should already suggest now that we are aiming to develop an IT system
capable of using both the form and the content of business information stored
and analysed. Every experienced board member in a large and modern com-
pany will confirm that to manage efficiently, in particular to find and implement
new concepts it is necessary to understand the situation of one’s own com-
pany as well as that of other companies (those co-operating and competing) and
of the whole analysed market segment. Only a businessman who understands
the micro- and macroeconomic situation well can have the courage to propose
innovative changes, often even revolutionary changes. A lack of understanding
weakens the will and courage to act and to take important strategic changes.
However, should there be enough courage, a lack of understanding of all signals
and data could still lead to disaster rather than success.

Later in this paper we shall try to outline the concept forming the basis
for such an automatic economy data understanding system. Such intelligent IT
systems based on cognitive science, developed for the needs of economy and
management, will be the object of this article. Nevertheless, before we try to
describe these systems and propose rules according to which they could operate,
let us have a look at what typical business IT systems are used nowadays in
almost all companies. This is to define the new concept of new generation systems
using the incremental method: by means of showing differences between the new
and the commonly known and used systems.

2 Business IT Systems

Currently the IT systems most frequently used in the field of economics and
management are aimed mainly at enhancing the processes of information on
resources flow management in order to fulfil better the needs of all business
process participants. The most important innovation directions, as introduced
in IT systems are based on the following requirements:

– System, data and process integration,
– Partial system functions unification,
– Improving access to data base for all organisational units,
– Promoting modern data presentation methods (visualisation) in order to

support their analysis,
– Enhancing decision-making processes and decision communication,
– Aiming at module form and openness of the whole system,
– Ensuring a complex character in which the whole system functions,
– Constant improvement of the content and technological advancement,
– Aiming at functional and structural flexibility,
– Ensuring constant compliance with changing system environment elements,

in particular with the current legal state, evolving in compliance with the
adopted legislative procedures [2],
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If we want to propose something new in this article relating to services avail-
able for the users of typical tools making up the business intelligence term, i.e.
data warehouse and OLAP tools (on-line analytical processing), we need to first
mention the modern facilities that already exist. This is necessary to show what
the difference is between them and the approach proposed in this paper. Man-
agement experts and designers of modern IT business solutions have known for
along time that the more demanding system user will not normally limit his
needs to a mere screening of the data obtained and subsequently processed by
the system. Therefore for a long time in the proposed software there were also
various options to analyse collected data. Those were for example statistical,
forecasting options with trend detection features and the use of econometric
model capacities. Such tools are undoubtedly very useful and they are readily
applied. Nevertheless in IT, more than in any other field the saying that ”better
is an enemy good” holds true. Currently only statistical or econometric data
processing techniques used routinely for their analysis are not enough. More
and more often one looks for a deeper sense or the meaning of different data
in the context of considered business strategies; this, however, requires a new
generation tools.

In the next chapter we shall propose such a new generation IT tool using
mathematical linguistics techniques as well as advanced artificial intelligence (in
particular the structural pattern recognition technique). Based on an analogy
with cognitive systems developed for the needs of medical diagnostics for a num-
ber of years now, we shall propose a solution leading to the development of
a cognitive system capable of understanding automatically business data impor-
tant for companies. The foundation for such IT systems, in this paper referred
to as UBMSS systems, is cognitive data analysis based on the process of under-
standing and semantic reasoning. It is developed to copy the reasoning process
taking place in the human brain. Two elements will be of key importance in the
concept presented here:

– Linguistic description of the analysed business data properties,
– Automatic conversion (parsing) of linguistic structures into the meaning

sphere, based on the considered business data analysis. An internal (lo-
cated in the system) knowledge source about the meaning of some specified
phenomena and business processes is involved with this process; it is being
confronted with the currently observed situation and it leads to an under-
standing of the situation pursuant to the so-called cognitive resonance [8],
whose description is to be found in the next chapter.

3 Cognitive Analysis Basis

From the viewpoint of psychological sciences, in the process of understanding
any information obtained by a man, subject to cognitive analysis, there are three
stages:
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– Registration, remembering and coding the information obtained.
– Preserving — a latent stage of natural processes.
– Information reproduction — its scope covers the remembering, recognition,

understanding and the learning of some skills anew [4].

The neurophysiological model of cognitive analysis that we need in this paper
is based on the functioning and operation of large brain fragments that can be
described by examining (among others) large neural group dynamics attractors
(amounting even to millions of neurons), defined in the stimulation area of these
neurons.

Even though there are no identical states of brain surface (for example exam-
ined with EEG), in the dynamics of its activities one can find constant relations
between these attractors, i.e. relatively repetitive dynamic neurophysiological
states. Appropriately mathematically interpreted dynamic states of the brain
are characterised by some deeper relations, which could have their logical rep-
resentation. Correspondence between the state of mind and brain does not refer
to the electrophysiological surface phenomena of volatile nature but it points to
some stability of attractor states.

Let us now try to shift these statements to a cognitive IT system model, of
interest for us and used for business purposes. Its task would be to interpret
facts based on understanding and reasoning conducted in connection with the
semantic content of the processed data.

Every IT system supposed to perform a semantic (directed at the meaning)
analysis of a selected object or the basis of the information must contain some
knowledge necessary to make a correct meaning analysis. Confronting the ob-
tained description of a currently analysed object (that could be, for example,
a specified market situation), a description evaluated pursuant to some features
characteristic for it, with a set of expectations and hypotheses relating to that
state, generated by knowledge based on representation, we obtain the premise to
show the real meaning and sense of the said object, that is to understand it.
This is true for every system capable of understanding any data and information.
This is due to that it is always only the knowledge held previously, i.e. the basis
to generate system expectations, that can constitute the reference point for se-
mantic analysis of features obtained as a result of the conducted analysis of every
object, analysed at the system input. As a result of the combination of certain
features of the analysed objects with expectations generated based on knowl-
edge about its semantic content, we find the cognitive resonance phenomenon
(Figure 1). That is the key to meaning analysis of objects or information [5].

In accordance with the concept developed by the authors over a number of
years, cognitive analysis used in IT systems dedicated to automatic understand-
ing, is based on the syntactic approach. For the purposes of meaning analysis
and interpretation of the analysed object it therefore uses a linguistic descrip-
tion. This allow to create the basis for the automatic generation of (potentially)
an infinite number of various meanings using just a small set of elements, formal
rules (enabling computer application) and axioms; these would form the grounds
for an automatic understanding system.
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Fig. 1. The cognitive resonance phenomenon in the process of the analysed object
understanding

4 UBMSS-Class System: The Concept

We shall now present a proposed structure and operational methods of the al-
ready introduced UBMSS-class system. First, in order to systematise our consid-
erations and to establish a reference point, let us recall a traditional (nowadays
applied in practice) structure of business IT system application: computers are,
obviously, involved since they are the ones that store and process data as well as
analyse data in various ways. Information obtained from such computer systems
is entirely sufficient for an effective management of business processes at the tac-
tical level (as marked jokingly on figure 2). On the other hand, if we talk about
management at the strategic level, we find out that despite automated data
collection, storage and analysis, the task of business meaning understanding of
the said data is in traditional systems the unique area of people (experts). So
is taking and implementation of strategic decisions: this belongs only to people
holding appropriate, high positions. The structure of such traditional IT system,
as presented on Figure 2 will be the starting point to propose a general structure
of an UBMSS-class system.

In such system, whose structure has been presented on figure 3, the initial
processes of storing and pre-processing phenomena taking place in the analysed
business entity, are analogous to the one we are dealing with in the traditional
systems. The only difference is that with the perspective of automatic interpreta-
tion of data analysis process results, one can compute and collect a larger number
of ratios and parameters since the interpreting automaton will not be dazzled
or perplexed by an excess of information. This is what happens when people,
interpreting situations, are ’bombed’ with hundreds of ratios among which they
can hardly find the important ones and then need to make a huge effort in order
to interpret them correctly. There may also be no change to the business process
management at the tactical level. This was left out of figure 3 entirely since the
UBMSS concept does not refer to this level at all.

The difference between a traditional system and the UBMSS one becomes
visible when the computer on itself, without human participation, attempts
to describe the properties and consequences of the ratios computed. The re-
sults of automatic interpretation are expressed in the categories of the applied
description language for the interpreted data properties. The above-mentioned
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Fig. 2. Division of functions between people and computers in a traditional IT system
supporting business decision-making

language is a key element at this stage. It must be designed with great know-
how. Its construction must therefore be based on collecting and systematising
expert knowledge. Referring to the analogy with medical image automatic under-
standing systems, which were earlier said to be the area of some fully successful
implementations of ideas described here, one could say that just like in medical
systems, the basis for the development of the language subsequently used for
semantic image interpretation (and diagnosing a disease) were some specified
changes in the shape of the analysed organs. In the UBMSS-class systems the
basic constructing units of the developed language should be changes of some
specified business indicators.

The lack of changes, both in medicine and in business is usually a factor
calming one down. In accordance with the medical rule, primum non nocere,
and with common sense ”if it isn’t broke don’t fix it”, it commands to refrain
from steering activities. On the other hand, every change in the observed system
and in its environment requires an interpretation in the categories of its meaning

Fig. 3. General UBMSS-class system structure
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since it is the disclosure of the change meaning (which is what a UBMSS-class
system should mainly be used for) that makes it possible for one to understand
its sense: the source of a threat or an arising opportunity. This is one of the main
prerequisites for taking strategic decisions.

Of course, focusing attention on a business index and ratio changes computed
in the input part of the analysed UBMSS-class IT system, as only on those el-
ements, which should be the basic components of an artificial language, is just
the first step. The listing and appropriate categorisation of changes that should
be registered in linguistic business processes corresponded only to the stage at
which one defines the alphabet to be later used to build words and sentences,
i.e. the language main object. In order to make it possible to create from the
elements of this alphabet counterparts of words and sentences for subsequent
use by the UBMSS system to describe the states of business process, which re-
quire understanding and interpretation, calls for an introduction of additional
mechanisms. These mechanisms would enable combining the above-mentioned
sentences into larger units. Therefore, at a level superior to the above-described
alphabet one must build the whole grammar of rules and transformations. This
grammar can be used to create complete languages of description expressing im-
portant content, necessary to understand automatically the analysed processes.

Of course, talking about grammar in this place we mean a formal gram-
mar of an appropriate type. It is similar to those successfully used to define
languages, the key to understand medical images in publications specified in the
bibliography [3, 7].

Analogies one can draw here are didactic and far going, therefore just to give
some background information we shall mention one of them. In medical image
understanding systems we constantly refer to, at our disposal were tools de-
tecting local changes in the shape of some specified internal organs and their
morphologic structures [8]. These were the above-mentioned ABC. To under-
stand the state of a given organ correctly, one needed to add to these graphic
primitives their mutual spatial relations and combine them with anatomy el-
ements. Owing to a definition of rules and the grammar constructs connected
with them, one could combine for example a graphic category ”change of edge
line direction of a specified contour” with a meaning category ”artery stenosis
anticipating a heart failure.”

Similarly, by building into the proposed language grammar the ability to as-
sociate business changes detected in various parts of the managed company and
its environment as well as the possibility to trace and interpret time sequences
of these changes and their correlations, it will be possible, for example, to under-
stand what are the real reasons behind poorer sales of goods or services offered.
As a result it will be, for example, possible to find out about the fact that this is
due to the wrong human resources policy rather than the wrong remuneration
(bonus) system.

After the development of an appropriate language which will (automatically!)
express semantically oriented descriptions of phenomena and business processes
detected in the business unit (e.g. a company) as supervised by the information
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system, a further UBMSS system operation will be very similar to the structure
in which function the medical systems previously built by this system authors,
as described in the previous chapter. The starting point for the business data
automatic interpretation process, the process finishing with understanding their
business meaning, is the description of the current state proposed in the system.
It is expressed as a sentence in this artificial language, built specially for this
purpose. Without going into details (described, among others, in earlier publica-
tions listed in the bibliography) one can say that the above-mentioned language
description for a human being is completely illegible and utterly useless. A typ-
ical form of such notation is composed of a chain of automatically generated
terminal symbols. Their meaning is well based in the mathematically expressed
grammar of the language used. Yet from the human point of view this notation
is completely illegible.

A condition to mine the meanings contained in this notation and to present
them in a form useful, by giving the necessary knowledge necessary to develop
a new strategy concept, to people (those who take decisions at appropriate lev-
els), is to translate these symbolic notation into a notation understandable for
people. For this purpose two elements, shown in figure 3, are necessary.

The first of these elements is duly represented knowledge of people (experts)
who based on their theoretical knowledge and based on practical experience could
supply a number of rules. Those rules state that in some circumstances, whose
meaning interpretation could be described in detail, some particular features
and properties should be found in the input data; those would be described with
the use of a selected language. Now we have a description of the real situation,
generated by tools founding their work on the results of business data analysis;
it is generated with the use of the language we developed. We also have a set of
hypothetical situations that carry some specified meaning connotations, which
came into existence owing to the use of expert knowledge. We can therefore check
in which areas these two descriptions converge (that increases the credibility of
some semantic hypotheses) and in which the descriptions are contradictory. The
latter case forms grounds to exclude other hypotheses and to narrow down the
field of possible meanings.

The process of mutual interference between input information stream and the
stream of expectations generated by an external knowledge source of the system,
whose result is the development of ”resonance peaks” in these areas in which the
real situation ”concords” with some specified expectations. These expectations
result from the knowledge gathered before and in earlier works they have been
called the cognitive resonance. Cognitive resonance happens in the course of
the iteration process of comparison between features computed for input data
and features theoretically forecast. Nevertheless we can also expect a possibility
that the process will not always beconvergent and the result will not always be
unique. Yet in most practical implementations researched by experiments, the
authors have managed to obtain the desired convergence and cognitive resonance
uniqueness. As a result it mined from the input data (in most research the data
was medical images) information necessary to give the data correct interpretation
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in the interpreted meanings area, that is to lead to a situation in which the system
understands the data and that it will be able to suggest to people the correct
semantic interpretation.

The second UBMSS system element specified on figure 3 whose meaning
has to be explained is a parser translating internal description languages into
a form understandable for a human being. Let us remind that the parser con-
cept, treated as a translation automaton steered by the used grammar syntax,
translating some language formulas from an encoded into an executable form,
has been known in IT for a number of years in the context of programming
languages.

In the UBMSS system described here the role of the parser is greater since its
operations are steered to a significant extent by the cognitive resonance mecha-
nism. In fact, in the cognitive system, the parser performs primarily the struc-
tural and meaning entry analysis. These entries were automatically generated in
a special artificial language noting important semantic facts. Nevertheless the
UBMSS system parser performs the above-mentioned meaning analysis as if as
a side action since its basic role in the described diagram. As a translator, it re-
ceives an abstract code as its input. The code describes, in a language developed
especially for this purpose, the current business situation. The output is to be the
meaning of this situation specified in manner useful for men. The need for this
meaning conversion from one language into another results from the fact that
an artificial language developed to generate internal descriptions of the analysed
business phenomena is constructed to obtain uniquely and effectively (automat-
ically!) symbolic entries registering all important business process properties.
These are obtained on the basis of the analysed data. This kind of meaning code
can be built but essentially it is not understandable for people. Were its form
understandable, it would not be very effective in the course of internal analysis
leading to the cognitive resonance outcome.

Luckily, during the translation there is a confrontation between the current
description of the analysed business situation and the model entries resulting
from expert knowledge. As a result of that we obtain the above-mentioned cog-
nitive resonance but also entries generated automatically in this artificial, not
understandable language are converted into entries legible for a human being.
Their interpretation is now understandable. Based on these entries, the out-
come of the parser’s operation, one obtains the necessary knowledge. Subse-
quently, when one already understands what is taking place in the business
system, one can make strategic decisions. No one would dare to transfer the
very last step to the machine. This is among others because there is a need to
take responsibility for the decisions taken and it would be hard to sue computer
software.

5 Test UBMSS-Class System Implementation

The objective of this article was to outline the concept of a new IT cognitive
type system for business applications, referred to as an UBMSS-class system. In
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developing this concept we combined the knowledge about IT systems currently
developed for the management needs and the experience obtained by the authors
developing earlier cognitive systems for medical image understanding. There are
no doubts that the construction of a fully-fledged cognitive system based on the
concept described in this paper will be a difficult and an expensive undertaking;
its test implementation will require considerable funds and great courage. There
is nothing surprising therefore in that in this paper we cannot yet boast of any
description of an operational real-life system belonging to the class analysed
here. This does not mean, however, that the authors have not conducted any
experimental research.

The successful attempt to develop an experimental implementation of the IT
system belonging to the UBMSS consisted of building a lab version of the data
acquisition system originating from the supervision of health services diagnostic
processes and of building for this case the necessary grammar and knowledge
base. The created system was applied for interpretation tasks, i.e. processed data
carrying meaning. The obtained usefulness of correct input data interpretation
in the form of multi-dimensional vectors determining numeric data amounted to
90.5 % [4]. It should be noted, however, that not everything in this pilot version
operated as planned. For this reason there are works conducted on enhancing
the semantic reasoning algorithm on input vectors and there is also research
conducted on the improvement of the cognitive analysis efficiency offered by this
system.

Works are difficult and time-consuming because the UBMSS-class IT cogni-
tive system is a completely new proposal and there is no experience that we
could draw on. Still we claim that this concept has a bright future since, apart
from the development of decision-taking processes, it brings in a new element
to develop interpretation systems and computer understanding of the analysed
data semantics. This is an extremely difficult task but should we be successful
we must be aware that the UBMSS concept, apart from application to business-
type data can also be adopted to interpret patterns in a different context that
require automatic understanding. This could be, for example, the behaviour of
people in the context of elections. This issue, however, is definitely out of the
scope of this paper and it will not be discussed here.

6 Summary

This paper presented the problem of divergence of the contemporary IT systems
capacity, used for management support and business system operations regis-
tration, with the needs imposed by contemporary business upon managers. It
was found that typical IT systems now used (for example, of the ERP class)
couldn’t satisfy all the needs of modern decision-makers. This disparity between
the needs and real capacity can be particularly well seen in connection with the
fact that nowadays the need for computer management support are associated
with a need to make strategic decisions relatively frequently. To make this term
clear let us specify that in this paper we understand that all decisions taken at
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various levels of company management are strategic if they are not limited to
a simple regulation of stable business processes but which induce and impose
changes. Therefore strategic decisions cannot be made solely on the basis of in-
formation about the current state of affairs in the on-going business processes.
Their very essence is changing the state of affairs. For this reason current IT
systems, focused mainly on registration and settlement functions are not a good
tool to support such decision-making processes.

In the core part of this paper we have tried to outline the concept structure
that could be the basis for such an UBMSS-class system dedicated for automatic
business data understanding. We have tried to demonstrate briefly that a will to
build such a system is an objective worth aiming at. Looking at the presented
concept now, from the perspective of this summary, one could wander whether
such system (assuming we shall manage to build it) will not change negatively
the situation of all global economy participants. Such fears are seemingly not
deprived of rational grounds: if every manager, regardless of his or her talents is
able (owing to intelligent computer assistance) to make correct strategic decisions
in difficult economic situations, than the capacity to take optimum decisions will
no longer be a factor giving competitive advantage and many entities could face
a situation more difficult than they experienced so far.

Acknowledgement

This work was supported by the AGH University of Science and Technology
under Grant No. 10.10.120.39.

References

1. Albus, J. S., Meystel, A. M.: Engineering of Mind - An Introduction to the Science
of Intelligent Systems. A Wiley-Interscience Publication John Wiley & Sons Inc.
(2001)

2. Laudon, K. C., Laudon, J. P.: Management Information Systems - Managing the
Digital Firm. Seventh Edition Prentice-Hall International Inc. (2002)

3. Ogiela, M. R., Tadeusiewicz, R.: Artificial Intelligence Structural Imaging Tech-
niques in Visual Pattern Analysis and Medical Data Understanding. Pattern Recog-
nition Elsevier 36/10 (2003) 2441–2452

4. Ogiela, L.: Usefulness assessment of cognitive analysis methods in selected IT sys-
tems. Ph. D. Thesis. AGH Kraków (2005)

5. Ogiela, M. R., Tadeusiewicz, R.: Picture Languages in Medical Pattern Knowledge
Representation and Understanding. in V. Torra, Y. Narukawa, S. Miyamoto (Eds.)
Modeling Decisions for Artificial Intelligence. Lecture Notes in Artificial Intelligence
Springer-Verlag Berlin - Heidelberg - New York 3558 (2005) 442–447

6. Skomorowski, M.: A Syntactic-statistical approach to recognition of distorted pat-
terns (in Polish). UJ Kraków (2000)
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Abstract. The following analytical approaches: queuing network mod-
els, stochastic timed Petri nets, stochastic process algebra, Markov chains
are used in performance eevaluation of multi–agent systems. In this pa-
per, new approach which is based on PERT networks is proposed. This
approach is applied in performance evaluation of layered multi–agent
system. These layers are associated with the following types of agents:
manager, bidder, and searcher ones. Our method is based on approxima-
tion using Erlang distribution. Accuracy of our approximation method
is verified using simulation experiments.

1 Introduction

Information retrieval systems in heterogeneous distributed environment are ones
of the most popular examples of multi–agent systems (MASs). When the infor-
mation retrieval system is developed, performance metrics of information distri-
bution, retrieval and recovery are taken into account.

In order to get better values of performance metrics for MAS, these systems
are combined from agents of different types. There are agents with: complete
knowledge (Fat Agents) and limited knowledge (Thin Agent), mobile agents that
migrate through a net. Additionally, there are hierarchical MAS with different
agents at different hierarchy levels. An appropriate MAS organisation can re-
duce communicating complexity. MAS communication is realised concurrently
in distributed environment.

For MAS , time of delivering a response on client request is significant metric.
This time is combined from the agent activity times and inter–agent communica-
tion times. If new MAS is designed, then according to performance engineering
of software systems [12], performance requirements have to be considered at each
phase of life cycle.

Performance analysis of systems at phases before implementation can be based
on performance models of: components and inter–component communication.
Parameters of these models can be obtained from existing components or on the
base of software engineers intuition. The performance measures for the models
can be found by: analysis or simulation. Now, multi–agent technologies, e.g., [5],
[7], are often based on Unified Modeling Lanuage (UML) [4] or its modifica-
tions. Therefore, approaches that are applied in performance analysis of systems
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designed using UML can be applied in performance evaluation of multi–agent
systems. Hence, the following analytical approaches: queuing network models
[8], stochastic Petri nets [9], stochastic process algebra [11], Markov chains can
be used in performance evaluation of multi–agent systems.

In this paper, the approach, which is based on PERT networks, is proposed.
This approach is applied in performance evaluation of layered multi–agent sys-
tem. These layers are associated with the following types of agents: manager,
bidder, and searcher ones. Our method is based on approximation using Er-
lang distribution. Erlang distribution is one of probability distributions that
are used in evaluation of completion times in PERT networks. Erlang distribu-
tions create the family of distributions with different number of stages. Accu-
racy of our approximation method is verified using simulator. This simulator
has been previously used in simulation experiments with the following multi–
agent systems: personalized information system [1], industrial system [2], sys-
tem with static agents and system with mobile agent [3]. These systems have
been expressed in standard FIPA [6] which the JADE technology [7] is complied
with.

The paper is organized as follows. In section 2, the multi–agent system is
described. Then our approximation method is presented. In section 4, accuracy
of our approximation method is verified by comparison with simulation results.
Finally, there are conclusions.

2 Layered Multi–Agent System

We consider layered multi–agent information retrieval (MAS) system given at
Fig. 1.

The MAS includes: one manager type agent (MTA) as Fat Agent, two bidder
type agents(BTAs) as Thin Agents, Searcher type agents (STAs) as Thin Agents.
One BTA co–operates with a number of STAs.

After receiving a request from an user, the MTA sends messages to the BTAs
in order to inform them about the user request. Then the MTA is waiting for two
responses from the BTAs. Having responses from the BTAs, the MTA prepares
the response for the user.

After receiving a request from the MTA, the BTA sends messages to all STAs
co–operating with this BTA. Then the BTA is waiting for responses from all its
STAs. Having responses from the STAs, the BTA prepares the response for the
MTA.

The STA prepares the response by searching in Data Base (DB). Each STA
is associated with one DB. The probability of finding the response in the DB
is denoted by f_rate. Time unit is second, and it will be omitted. Searching
time is expressed by uniform distribution over the time interval [0, b). Hence,
the expected searching time, provided there is the required information in the
DB, is equal to b/2. With the probability 1− f_rate, the response is not found
in the DB. In this case the searching time is equal to b.
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E n,λ

E n, λ

U b,f_rate
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BTA

MTA

STA

STA

STA
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Fig. 1. Layered multi–agent information retrieval system

Message transmition times between the MTA and the BTA, and between the
BTA and the STA are given by two stage Erlang distributions E2 with parameter
λ = 1 for each stage. Each stage is described by exponential distribution with
this parameter.

3 Erlang Distribution Based Approximation Method

We will explain how the expected value of time of receiving of a response by
the user is approximated. Because of the lack of space some derivations will be
omitted.

Probability distributions of times are approximated by Erlang distribution.
Probability density function and cumulated distribution function of Erlang

distribution with n stages and with parameter λ are given (following [10]) by
expressions:

fEn,λ
(t) =

λntn−1e−λ t

(n− 1)!

FEn,λ
(t) = 1−

n−1∑
i=0

λitie−λ t

i!

Random variable (RV) with this distribution will be denoted by En,λ. This RV
can be interpreted as sum of n RVs with exponential distribution and each with
parameter λ. Expected value and variance for this RV are equal to:

E(En,λ) = n/λ, V ar(En,λ) = n/λ2.
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For the RV T, the squared coefficient of variation (SCV) of the T is defined
by the formula:

SCV (T ) =
V ar(T )
E(T )2

where: E(T ) is the expected value of T , V ar(T ) is the variance of T .
The SCV for the En,λ is equal to SCV (En,λ) = 1/n.
The RV of the STA searching time in the DB will be denoted by Ub. This RV

has the probability density function:

fUb
(t) =

⎧⎪⎨⎪⎩
f_rate · 1/b for t ∈ [0, b)
(1 − f_rate) · δ(t− b) for t = b
0 otherwise

Expected value, variance, and SCV for this RV are given by the following
expressions:

E(Ub) =
b (2− f_rate)

2

V ar(Ub) =
b2 f_rate (4− 3 f _rate)

12

SCV (Ub) =
f_rate (4− 3 f _rate)

3 (2− f_rate)2

Let us consider the approximation of the probability distribution of the RV
X of the length of the time interval between the time instant when the BTA
sends the request to given STA and the time instant when the BTA receives the
response from this STA. This RV is given by the expression:X = En,λ+Ub+En,λ.
We suppose that RVs of transmission times between agents and RVs of searching
processes in the DBs are independent. Hence, expected value, variance, and SCV
for the RV X are expressed by the following formulae:

E(X) = 2
n

λ
+ b− 1/2 b f_rate

V ar(X) = 2
n

λ2 + 1/3 b2f_rate− 1/4 b2f_rate2

SCV (X) =
24n+

(
4 f_rate− 3 f_rate2

)
λ2b2

3 (4n+ (2− f_rate)λ b)2

For multi–agent system described in section 2, the RVs of transmission times
between agents are two stage Erlang distributions with parameter λ = 1 for each
stage, and will be denoted by E2,1.

The RV X is approximated by the RV En,λ (with n stages and the param-
eter λ), and with the SCV = 1/n such that |SCV (X)− 1/n| is minimal. The
expected values of the RVs X and En,λ are equal. Hence, the parameter λ is
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selected according to the equality λ = n/E(X). The variance of the RV En,λ is
equal to V ar(En,λ) = n/λ2.

Let m be the number of STAs associated with one BTA. Let En,λ(i) be such
a RV En,λ that approximates the length of the time interval between the time
instant when the BTA sends the request to ith STA and the time instant when
the BTA receives the response from this STA. In this case, the RV Y of the
BTA waiting time for all responses from STAs is Y = maxi∈{1,...,m}En,λ(i).
Probability density function and cumulated distribution function of the RV Y
are given by the expressions:

fY (t) =
mtn−1e−λ tλn ((n− 1)!− Γ (n, λ t))m−1

((n− 1)!)m

FY (t) =

(
1−

n−1∑
i=0

λitie−λ t

i!

)m

where: Γ (n, λ t) =
∫ ∞

λ t

xn−1 e−xdx is upper incomplete Γ function [10].

The kth moment (noncentral) of the RV Y is obtained by numeric integration
of the following formula:

μ(k)(Y ) = k
∫ ∞

0
tk−1 (1− FY (t)) dt

Then the RV Y is approximated by RV En1,λ1 in the same way as the RV X
has been approximated by the RV En,λ.

The RV of the length of the time interval between the time instant when
the MTA sends the request to given BTA and the time instant when the MTA
receives the response from this BTA is approximated by the RV: Z = E2,1 +
En1,λ1 + E2,1.

The expected value of time of receiving of a response by the MTA (or user),
i.e. response time, is approximated in the similar way as the expected value of
the RV Y has been approximated.

4 Accuracy of the Approximation Method

In the prevoius section, the method of approximation has been shown. In order to
evaluate the accuracy of the approximation method, the simulation experiments
for: the MAS containing m STAs for each BTA, where m = 3, 10 have been
performed. For each MAS, the following values of the probabilities of finding
the response in the DB f_rate = 0.1, 0.3, 0.6, and 0.9 have been considered.
Additionally, the experiments for the following values of the maximal searching
time in the DB b = 2, 4, 8, 16, 32, and 64 have been executed. The transmission
time between agents is given by RV E2,1. Hence, the mean transmission time
between the agents is equal to E(E2,1) = 2, and the mean transmission time in
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both directions, e.g., from the BTA to the STA and from the STA to the BTA,
is equal to E(tr) = 4.

Let the symbol E(b, f_rate) denote the percentage errors of the mean re-
sponse time approximation for the b and for the f_rate.

In Table 1, the percentage errors of the mean response time approxima-
tion E(b, f_rate) for the m = 3, for the b = 2, 4, 8, 16, 32, and 64, f_rate =
0.1, 0.3, 0.6, and 0.9 are given.

Table 1. The percentage errors of the mean response time approximation E(b, f_rate)

for the m = 3, for the b = 2, 4, 8, 16, 32, and 64, for f_rate = 0.1, 0.3, 0.6, and 0.9, for
nmax = 5, 10, 15, 20, 25

�����f_rate
b

2 4 8 16 32 64

0.1 0.1% −0.5% 0.5% 5.5% 11.0% 15.0%

0.3 −0.2% 1.4% 2.7% 6.5% 11.7% 15.9%

0.6 −0.7% 0.1% 2.4% 6.0% 9.7% 13.6%

0.9 −0.1% −0.2% 1.3% 1.8% 6.8% 4.7%

From Table 1 we can derive the following conclusions. The approximation is
better for smaller values of the b because the influence of the RV Ub which is
not the Erlang distribution is smaller. For greater values of the b = 16, 32, 64
the approximation error is the smallest for the f_rate = 0.9. The distribution
of the RV Ub is combined form: the uniform distribution and the Dirac’s delta.
For the f_rate = 0.9, the influence of the Dirac’s delta in this distribution is
the smallest.

Let the percentage error of the mean response time approximation E(b) for
the b be defined by the expression:

E(b) =
|E(b, 0.1)|+ |E(b, 0.3)|+ |E(b, 0.6)|+ |E(b, 0.9)|

4
.

In Table 2, the percentage errors of the mean response time approximation
E(b) for the m = 3, for the b = 2, 4, 8, 16, 32, and 64 are given.

Table 2. The percentage errors of the mean response time approximation E(b) for the
m = 3, for the b = 2, 4, 8, 16, 32, and 64

b 2 4 8 16 32 64

E(b) 0.27% 0.54% 1.71% 4.93% 9.81% 12.31%

Now we will concentrate on the case when the b = 16. Let the symbol Ub,f_rate

denote the RV Ub with the probability f_rate. The RV X of the length of time
interval between the time instant when the BTA sends the message to given
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STA and time instant when the BTA receives the response from this STA is
X16,f_rate = E2,1 +U16,f_rate +E2,1 The mean of the random variable Ub,f_rate

is equal:
E(Ub,f_rate) = f_rate · b/2 + (1− f_rate) · b.

Hence, E(U16,0.9) = 8.8, E(U16,0.1) = 15.2, and as a result E(X16,0.9) = 12.8,
E(X16,0.1) = 19.2. In spite of b/E(E2,1) = 8 and 2 ·E(tr) < E(U16,0.9), i.e., the
uniform distribution of the RV of the searching time in the DB is dominating the
Erlang distribution of the RV of the transmission times, the Erlang distribution
based approximation is good.

The greater the ratio b/E(E2,1) is, the distribution of the RV Ub of the search-
ing time stronger dominates the Erlang distribution of the RV of the transmission
times. Hence, for the greater ratios b/E(E2,1), the approximation error E(b) is
greater.

In Table 3, the percentage errors of the mean response time approximation
E(b) for the m = 10, for the b = 2, 4, 8, 16, 32, and 64 are given.

Table 3. The percentage errors of the mean response time approximation E(b) for the
m = 10, for the b = 2, 4, 8, 16, 32, and 64

b 2 4 8 16 32 64

E(b) 0.77% 1.06% 4.11% 11.71% 21.71% 28.12%

It can be seen that the percentage errors of the mean response time approxi-
mation E(b) for the m = 10 are greater than these errors for the m = 3.

Let us now analyse the accuracy of the approximation as a function of maximal
number of stages of Erlang distributions used in the approximation. In Section 3,
it has been stated that in order to approximate the RV X by the RV En,λ, the
number n of stages is such that |SCV (X)− 1/n| is minimal. When the maximal
number of stages of Erlang distributions used in the approximation is equal to
e.g. nmax = 15 then the approximation is executed in the following way. If the
n obtained from the formula |SCV (X)− 1/n| is such that n ≤ 15 then the RV
used in the approximation has n stages. If otherwise, then the RV used in the
approximation has 15 stages. Sometimes, it is impossible to get the n satisfying
the requirement |SCV (X)−1/n| is minimal because the calculations for the great
n cannot be executed. From the other point of view, it is worth to know whether
the calculations for greater number of stages of Erlang distributions are worth to
execute. In Tables 4 and 4, the approximation error as a function of the maximal
number nmax of stages of Erlang distributions used in the approximation have
been presented.

Let us consider the row of Table 4 for f_rate = 0.3. For the nmax = 15, 20, 25
the percentage errors of the approximation are equal, while for the nmax =
5, 10 these errors are greater. It means that SCV (X) for the approximated
RV X satisfies the inequality 10 ≤ 1/SCV (X) ≤ 15 and the n = 10 is not
sufficient.
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Table 4. The percentage errors of the mean response time approximation E(b, f_rate)

for the m = 3, for the b = 16, for f_rate = 0.1, 0.3, 0.6, and 0.9, for nmax =

5, 10, 15, 20, 25

�������f_rate
nmax

5 10 15 20 25

0.1 30.1% 17.1% 11.3% 8.1% 5.7%

0.3 22.6% 10.5% 6.8% 6.8% 6.8%

0.6 12.2% 6.1% 6.1% 6.1% 6.1%

0.9 5.7% 2.4% 2.4% 2.3% 2.3%

Table 5. The percentage errors of the mean response time approximation E(b, f_rate)

for the m = 10, for the b = 16, for f_rate = 0.1, 0.3, 0.6, and 0.9, for nmax =

5, 10, 15, 20, 25

�������f_rate
nmax

5 10 15 20 25

0.1 47.7% 25.9% 17.4% 12.9% 10.0%

0.3 38.3% 18.3% 12.8% 12.8% 12.8%

0.6 23.3% 13.9% 13.9% 13.9% 13.9%

0.9 13.5% 8.6% 8.6% 8.6% 8.6%

Let us now analyse the row of Table 4 for the f_rate = 0.1. In this case, for an
approximated RV S, the relation 20 < 1/SCV (S) holds. Hence, 20 stages of Er-
lang distribution is not sufficient. The reason is as follows. For the f_rate = 0.1,
in the probability distribution of the searching time, the Dirac’s delta δ is selected
with the probability 0.9. The SCV for the RV with the probability distribution
expressed by the δ is equal to 0. Hence, and in order to approximate this RV
exactly, the Erlang distribution with infinite number of stages have to be used.
Because of X16,f_rate = E2,1 + U16,f_rate + E2,1, Erlang distribution with fi-
nite number of stages can be used in the approximation of the RV X16,f_rate.
However, for the f_rate = 0.1, the influence of the δ is the greatest, and Er-
lang distribution with the greatest number of stages have to be used in the
approximation.

We can conclude that if nmax1 < nmax2 then the approximation error for the
nmax1 is not smaller than the approximation error for the nmax2.

5 Conclusions

The approximation method of the mean response time for the layered multi–
agent information system has been presented. This system has three layers of
agents, namely, manager, bidder, and searcher type ones denoted by the abrevi-
ations MTA, BTA, STA. After receiving a request from an user, the MTA sends
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the messages to the BTAs in order to inform them about the user request. After
receiving a request from the MTA, the BTA sends the messages to the STAs.
The STAs prepare the responses for the BTA by searching in the Data Base
(DB). The probability of finding the response in one DB is denoted by f_rate.
Searching time is expressed by the RV Ub,f_rate with the distribution that is
combination of the uniform distribution over the time interval [0, b) (selected
with the probability f_rate) and Dirac’s delta in b (selected with the proba-
bility 1-f_rate). Message transmission times between the MTA and the BTA
and between the BTA and the STA are given by the random variables (RV) of
n stage Erlang distribution. In verification of accuracy of the method by sim-
ulation experiments, the transmission times are expressed by RV of two–stage
Erlang distribution.

In the approximation method, the RV with n stage Erlang distribution is
used. It has been obtained from the simulation, that the sum of the RV of the
Erlang distribution (representing the transmission time) and the RV Ub,f_rate

of searching time can be approximated by the other Erlang distribution with
suitable number of stages. This is true even if the expected value of the RV
Ub,f_rate is clearly greater than the expected value of the RVs of the transmission
times.

The following conclusions have been obtained.
The approximation is better for smaller values of the b because the influence

of the RV Ub,f_rate which is not the Erlang distribution is smaller. Let the mean
transmission time between the agents in both directions, e.g., from the BTA
to the STA and from the STA to the BTA, be denoted by E(tr). The greater
the ratio b/E(tr) is, the distribution of the RV Ub,f_rate of the searching time
stronger dominates the Erlang distribution of the RV of the transmission times.
Hence, for the greater ratios b/E(tr), the approximation error is greater.

For greater values of the b, the approximation error is the smallest for the
greatest f_rate because the influence of the Dirac’s delta in the distribution of
the RV Ub,f_rate is the smallest.

It can be seen that the percentage errors of the mean response time approxi-
mation for the m = 10 are greater than these errors for the m = 3.

Accuracy of the approximation as a function of maximal number of stages of
Erlang distributions used in the approximation has been studied too.

Many multi–agent systems have layered structure with the following agents:
client assistant, brokers, and execution agents. The presented approximation
method can be used for finding the mean time of response on client request for
this class of systems.
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Abstract. The idea of automating e-commerce transactions attracted a lot of in-
terest during the last years. Multi-agent systems are claimed to be one of promis-
ing software technologies for achieving this goal. In this paper we summarize
state-of-the-art in rule-based approaches to automated negotiations and present
initial experimental results with our own implementation of a rule-based price
negotiation mechanism in a model e-commerce multi-agent system. The exper-
imental scenario considers multiple buyer agents involved in multiple English
auctions that are performed in parallel.

1 Introduction

During last years, interest in e-commerce has shifted from simple Web presence of
a business to advanced use of e-commerce technologies in order to support growth
of business itself — by improving its efficacy and profitability. Therefore, the idea of
automating e-commerce transactions attracted a lot of research interest ([15]).

Most of currently existing e-commerce systems involve humans that make most im-
portant decisions in various activities along the lifeline of an e-commerce transaction.
At the same time, software agents are claimed to be one of the best technologies for
automating e-commerce processes. It is expected that intelligent agents will be able to
substantially reduce (if not eliminate) need for human involvement — in all but most
crucial decisions. In this context, we have set up a project to contribute development of
such an agent system [11]. In particular our project has two main goals: (1) to build a
large-scale implementation approximating an e-commerce environment; (2) to develop
a tool that we will be able to use for modeling various e-commerce scenarios.

E-commerce research proposes that when digital technologies are utilized to mediate
commercial transactions, then the complete process can be conceptualized as consist-
ing of four phases: (i) pre-contractual phase including activities like need identification,
product brokering, merchant brokering, and matchmaking; (ii) negotiation where nego-
tiation participants negotiate according to the rules of a particular market mechanism
and using their private negotiation strategies; (iii) contract execution including activ-
ities like: order submission, logistics, and payment; and (iv) post-contractual phase

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1050–1059, 2006.
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that includes activities like collecting managerial information and product or service
evaluation.

Focus of this paper is on the negotiation phase of a transaction taking place in a
multi-agent e-commerce system that we have started to develop ([11]). As a part of this
work we are interested in endowing our agents with flexibility necessary to engage in
unknown in advance forms of negotiations using rule-based approaches. We start our
presentation with an overview of state-of-the-art of rule representations in automated
negotiations. We follow with a brief summary of the architecture of our proposed sys-
tem that uses a rule-based framework for enforcing specific negotiation mechanisms,
together with a sample scenario. Finally, we discuss some experimental results of our
implementation.

2 Background on Rule-Based Negotiation

Rules have been indicated as a very promising technique for formalizing multi-agent
negotiations ([4,7,8,10,16,18,22,27,28]). When considering design of systems for auto-
mated negotiations it is typically the case that negotiation protocols (or mechanisms)
that define ”rules of encounter” between participants and negotiation strategies that de-
fine behaviors aiming at achieving a desired outcome are distinguished. However, rule
representations were proposed for both negotiation mechanisms ([7,24,16,18,27,28])
and strategies ([10,22,8]). Let us now summarize most important developments in the
area of rule based approaches to automated negotiations.

In our work we follow a rule-based framework for enforcing specific negotiation
mechanisms inspired by [7]. Its authors sketched a complete framework for imple-
menting portable agent negotiations that comprises: (1) negotiation infrastructure, (2)
generic negotiation protocol and (3) taxonomy of declarative rules. The negotiation
infrastructure defines roles of negotiation participants and of a host. Participants
exchange proposals within a negotiation locale managed by the host. The generic ne-
gotiation protocol defines three phases of a negotiation: admission, exchange of pro-
posals and formation of an agreement, in terms of how and when messages should
be exchanged between the host and participants. Negotiation rules are used for en-
forcing the negotiation mechanism. Rules are organized into a taxonomy: rules for
participants admission to negotiations, rules for checking the validity of proposals,
rules for protocol enforcement, rules for updating the negotiation status and informing
participants, rules for agreement formation and rules for controlling the negotiation
termination.

The proposal for formalizing negotiations introduced in [24] goes beyond the frame-
work of [7]. Its authors suggest to use an ontology for expressing negotiation protocols.
Whenever an agent is admitted to negotiation it also obtains a specification of the ne-
gotiation rules in terms of the shared ontology. In some sense, the negotiation template
used by our implementation (see [4]) is a ”simplified” negotiation ontology and the par-
ticipants must be able to ”understand” the slots defined in the template. This approach
is exemplified with a sample scenario. The ontology approach introduced in [24] is
taken further in [23] by investigating how the ontology can be used to tune the negotia-
tion strategy of participant agents. However, paper [24] contains neither implementation
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details, nor experimental results. Furthermore, we were not able to obtain a complete
version of the ontology described in the paper.

In [27,28] a mathematical characterization of auction rules for parameterizing the
auction design space is introduced. The proposed parametrization is organized along
three axes: i) bidding rules – state when bids may be posted, updated or withdrawn;
ii) clearing policy – states how the auction commands resource allocation (including
auctioned items and money) between auction participants (this corresponds roughly to
agreement making in our approach); iii) information revelation policy – states how and
what intermediate auction information is supplied to participating agents.

In [18] authors developed a special declarative language CLP (“Courteous Logic
Programs as KR”) for expressing and reasoning about contracts and negotiations. This
project was a continuation of the Michigan AuctionBot project ([26]), and its authors
focused on the automatic configuration of negotiations based on a contract and showed
how rules generated during the negotiation process can be combined with the partial
contract to form an executable final contract. Background knowledge supporting this
infrastructure was embodied in three CLP rule sets: Auction-Configuration, Auction-
Space, and Auctionbot-Mapping. Auction-Configuration supports reasoning about
alternative negotiation structures and also specifies how to split contract into an ar-
ray of auctions. Auction-Space implements a cleaner, more general parameterization
of the auction design space, imposes constraints and conditional defaults on parame-
ters, and infers auction parameters from higher-level knowledge about the negotiation.
AuctionBot-Mapping maps the Auction-Space parameterization to the existing set of
AuctionBot parameters. Unfortunately, we were not able to find any information about
continuation of this interesting project.

In [16] an implementation of a new rule-based scripting language (AB3D) for ex-
pressing auction mechanisms is reported. The design and implementation of AB3D
were primarily influenced by the parametrization of the auction design space defined
in [27,28] and the previous experiences with the Michigan Internet AuctionBot ([26]).
According to [16], A3BD allows the initialization of auction parameters, the definition
of rules for triggering auction events, the declaration of user variables and the definition
of rules for controlling bid admissibility.

A formal executable approach for defining the strategy of agents participating in ne-
gotiations using defeasible logic programs is reported in [12] and [10]. The approach
is demonstrated on English auctions and bargaining with multiple parties by indicat-
ing sets of rules for describing strategies of participating agents. However, paper [12]
contains neither implementation details, nor experimental results.

In [22] a preliminary implementation of a system of agents that negotiate using
strategies expressed in defeasible logic is described. The implementation is demon-
strated with a bargaining scenario involving one buyer and one seller agent. The buyer
strategy is defined by a defeasible logic program. Note that the implementation reported
in [22] builds on the architecture of negotiating agents previously introduced in [10].
Note also that defeasible logic programs are able to express courteous logic programs
proposed in [18] and yet to support efficient reasoning, which suggest that they might
be the appropriate representation formalism of negotiation strategies.
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The CONSENSUS system that enables agents to engage in combined negotiations
was presented in [8]. CONSENSUS allows agents to negotiate different complementary
items on separate servers on behalf of human users. Each CONSENSUS agent uses
a rule base partitioned into: i) basic rules that determine the negotiation protocol, ii)
strategy rules that determine the negotiation strategy and iii) coordination rules that
determine the knowledge for assuring that either all of the complementary items or
none are purchased. Note that in CONSENSUS the rule-based approach is taken beyond
mechanism and strategy representation to capture also coordination knowledge.

Another interesting work is the open environment for automated negotiations specif-
ically targeted to auctions – auction reference model (ARM, [20]) and its associated
declarative auction specification language (DAL, [19]). It should be noted that, while
not explicitly using rules, a DAL specification actually models the flow of an auction us-
ing a rule-based approach. DAL constructs comprise the following: views, validations,
transitions and agreement generators. Views are analogous to visibility rules, valida-
tions are analogous to validity and protocol enforcement rules, transitions are analo-
gous to update rules and agreement generators are analogous to agreement formation
and negotiation life-cycle rules.

Before proceeding further, let us make the following remark. E-commerce is seen
as one of the key services of modern information society and therefore, the ability of
software agents to discover remote markets and engage in commercial transactions gov-
erned by market mechanisms unknown in advance, is of primary importance. Rules
constitute a very promising approach to describing negotiation processes (see for in-
stance all references cited in this section). However, a key aspect for success of auto-
mated negotiations, that already generated some interest in the research community, is
the development of a truly open rule-based semantic description of the market mecha-
nism [7,4,19,20,24,23]. As our research indicates, we are still quite far from that vision
of software agents needing only minimal pre-compiled knowledge to enable them to
”sense” the negotiation mechanism and ”tune” the negotiation strategy accordingly. It
is exactly this issue that catalyzes our work and that differentiates it from previous
works, making us to proceed further.

3 System Description and Experiment

3.1 Conceptual Architecture

Our system acts as a distributed marketplace in which agents perform functions typi-
cally observed in e-commerce ([11]). E-shops are represented by shop and seller agents,
while e-buyers are represented by client and buyer agents. In Figure 1 we present Use-
Case diagram of the complete system. Outside o bounds of the system we can see
User-Client who will attempt at buying products from one of the e-shops and User-
Seller who tries to sell products in her e-store. Let us now briefly summarize the most
important agents appearing in the system and their functionalities (for a complete dis-
cussion of the system see [3,5,6]). User-Client is represented by the Client Agent (CA).
The CA is completely autonomous and as soon as the decision to purchase product P
is communicated by the User-Client, it will work until either the product is purchased
or, due to the market circumstances (e.g. prices are to high) purchase is abandoned.
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Fig. 1. Use Case diagram of the proposed agent-based e-commerce system

The CA communicates with the Client Information Center (CIC) agent which contains
complete information which e-stores sell which products. For each store that sells the
requested product, the CA delegates a single Buyer Agent (BA) with a mission to be
involved in price negotiations and if successful, possibly attempt at making a purchase
(successful price negotiations result in a product reservation for a specific time period;
after which products that have not been actually purchased are returned to the pool
of products available for sale). Since multiple BAs representing the same CA can win
price negotiations and report to the CA, it is the CA that makes the decision if either of
available offers is good enough to make a purchase. Buyer Agents either migrate to the
negotiation host or are created locally [6]. They can participate in negotiations only if
the Gatekeeper Agent (GA) allows this. The GA utilizes trust information to evaluate
if a given BA should be admitted (BAs that win price negotiations but do not make a
purchase may be barred from subsequent negotiations). The GA is one of agents that
represent that e-store and is created by the Shop Agent (SA). The SA is the central man-
ager of the e-shop. Facilitating the selling process, the SA utilizes the (GA), as well as
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a Warehouse Agent (WA) that is responsible for inventory and reservation management;
and a set of Seller Agents (SeA) that negotiate price with incoming BAs.

In our experiments we considered simplified version of this scenario that involves
a single Shop Agent and n Client Agents CAi, 1 ≤ i ≤ n. The SA is selling m
products P = {1, 2, . . . ,m}. We assume that each client agent CAi, 1 ≤ i ≤ n,
is seeking a set Pi ⊆ P of products (we therefore restrict our attention to the case
where all sought products are available through the SA). The SA is using m Seller
Agents SeAj , 1 ≤ j ≤ m and each SeAj is responsible for selling a single prod-
uct j. Each CAi is using buyer agents BAik to purchase products from the set Pi.
Each BAik is responsible for negotiating and buying exactly one product k ∈ Pi,
1 ≤ i ≤ n. To attempt purchase Buyer Agents BAik migrate to the SA and engage
in negotiations; a BAik , that was spawned by the Client Agent CAi, will engage in
negotiation with seller SeAk, to purchase product k. This simple scenario is suffi-
cient for the purpose of our paper, i.e. to illustrate our rule-based system and show
how a number of rule-based automated negotiations can be performed concurrently.
In this setting, each Seller Agent SeAj plays the role of a negotiation host defined
in [7]. Therefore, in our system, we have exactly m instances of the framework de-
scribed in [7]. Each instance is managing a separate ”negotiation locale”, while all
instances are linked to the Shop Agent. For each instance we have one separate set
of rules together with a negotiation template that describes the negotiation mecha-
nism implemented by that host. Note that each seller may use a different negotiation
mechanism (different form of an auction, or an auction characterized by different pa-
rameters, such as the starting price or the bidding increment). See [4] for the details
of our implementation of this conceptual architecture using JADE ([13]) and JESS
([14]).

3.2 Rule-Based Representation of English Auctions

For the purpose of this paper we have set up our system for a particular negotiation
scenario involving English auctions. Technically, English auctions are single-item, first-
price, open-cry, ascending auctions ([15],[25]). In an English auction there is a single
item (or a collection of products treated as a single item) sold by a single seller and
many buyers bidding against each other for buying that item. Usually, there is a time
limit for ending the auction, a seller reservation price that must be met by the winning
bid for the item to be sold and a minimum value of the bid increment. A new bid must
be higher than the currently highest bid plus a minimal bid increment in order to be
accepted. All the bids are visible to all the auction participants.

The constraints describing English auctions were encoded as a modularized set of
JESS rules. The rules were then used to initialize rule inference engines encapsulated
by the negotiation hosts [4]).

Let us now consider a few sample rules for representing English auctions. These
rules are described informally using a pseudo-code notation that is independent of any
implementation-level language (like JESS).

POSTING-BUYER rule specifies that a buyer participant can post a proposal when-
ever there is an offer already posted by a seller participant.
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POSTING-BUYER
IF

There is a valid proposal Pr of a participant with role buyer ∧
There is an active proposal of a participant with role seller

THEN
Proposal Pr is posted

IMPROVEMENT-BUYER rule specifies that a buyer participant must post a pro-
posal with a price that must overbid the currently highest id with at least a given incre-
ment )that is a parameter of the auction).

IMPROVEMENT-BUYER
IF

Negotiation is on goods A ∧
Bid increment is Inc ∧
Currently highest bid is B ∧
Proposal Pr on goods A with price P was posted by a buyer ∧
P > B + Inc

THEN
Proposal Pr is active

AGREEMENT-FORMATION rule specifies that whenever agreement formation is
triggered, if the currently highest bid is greater than the seller reservation price (that it
is not disclosed to the participants), an agreement is formed between the submitter of
the highest bid and the seller.

AGREEMENT-FORMATION
IF

The currently highest bid is B and was submitted by buyer S1 ∧
There is an active proposal of seller S2 with price P ∧
Negotiation is on goods A ∧
B ≥ P

THEN
An agreement of S1 with S2 to transact goods A at price P1 is formed

3.3 Participants Strategy

Strategies of participant agents are defined in accordance with the negotiation protocol
(i.e. English auctions in this particular setting). Basically, the strategy defines if and
when a participant will submit a proposal depending on what are the values of its pa-
rameters. For the time being we opted for a simple solution: the participant submits a
first bid immediately after it was granted admission and whenever it gets a notification
that another participant issued an accepted proposal. The value of the bid is equal the
sum of the currently highest bid and an increment value that is private to the participant.
Each participant has its own valuation of the negotiated product. If the value of the new
bid exceeds this value then the proposal submission is canceled (given product became
”too expensive” for a given BA). Note that in the case of an English auction there is no
particular strategy for the Seller Agent as it plays only a passive role.
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Agent strategies were implemented in Java as participant agent behaviors ([13]). In
the future we plan to design the system in such a way that strategies will also be repre-
sented in the rule-based form ([10,12]). This will provide us with the required flexibility
to easily add multiple strategies to our implementation. Obviously, in practice, this form
of strategy representation is required only for more involved forms of price negotiations
(where utilization of complicated strategies makes much more sense).

3.4 Experiment

In the experiment we considered m = 10 products and n = 12 clients seeking all
of them, i.e. Pi = P for all 1 ≤ i ≤ 10. The auction parameters were the same for
all auctions: reservation price 50 and minimum bid increment 5. Clients reservation
prices were randomly selected from the interval [50,72] and their bid increments were
randomly selected from the interval [7,17].

In this experiment 143 agents were created: 1 shop SA, 10 sellers SeAi, 1 ≤ i ≤ 10,
12 clients CAi, 1 ≤ i ≤ 12, and 120 buyers BAik, 1 ≤ i ≤ 12, 1 ≤ k ≤ 10, and 10
English auctions were run concurrently. One separate JESS rule engine was also created
for each English auction (therefore a total of 10 JESS rule engines were run in paral-
lel). The average number of messages exchanged per negotiation was approximately
100 and all the auctions finished successfully. This means that a total of more than
1000 messages was exchanged during negotiations. While the total number of agents
and messages is still small (for instance in comparison with these reported in [9], this
experiments indicates that the proposed approach has good potential for supporting ex-
periments on large-scale.

Figure 2 shows messages exchanged between the seller SeA1 and buyers BAi1,
1 ≤ i ≤ 12 that were captured with the help of the JADE sniffer agent.

Fig. 2. Negotiation of a seller with 12 buyers in an English auction
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4 Conclusions and Future Work

In this paper we discussed rule-based approaches for automated negotiation in a model
multi-agent e-commerce systems. Our discussion was supplemented by providing ex-
perimental results obtained using our own implementation of a rule-based price auto-
mated negotiation framework. The results support the claim that rules are a feasible and
scalable technology for approaching flexible automated negotiation in e-commerce.

As future work we plan to: (i) complete the integration of the rule-based framework
into our agent-based model e-commerce system; (ii) to asses the generality of our im-
plementation by extending it to include other price negotiation mechanisms; (iii) to
conceptualize representation and ways to efficiently implement multiple strategy mod-
ules; iv) to investigate the applicability of rule-markup languages ([21]) for devising an
open rule-representation of negotiation mechanisms. We will report on our progress in
subsequent papers.
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Abstract. In this paper, a new version of the Fuzzy-ID3 algorithm is
presented. The new algorithm allows to construct decision trees with
smaller number of nodes. This is because of the modification that many
different attributes and their values can be assigned to single leaves of
the tree. The performance of the algorithm was checked on three typical
benchmarks data available on the Internet.

1 Introduction

Decision trees are commonly used as knowledge representation and an approach
to classification. They are appreciated for their clarity and high accuracy. Many
algorithms designed for buiding decision trees have been proposed. The most
popular are ID3 (Interactive Dichotimizer 3) introduced by Quinlan in 1986 [8],
and its modifications, e.g. C4.5 [9]. Those algorithms allow to create decision
trees from symbolic data, in an easy and effective way. Numerical data, when
applied, must be splitted into limited number of disjoint intervals. The data
present values of the attributes, i.e. features of objects to be classified.

In some classification problems, determination of crisp values of attributes
is not possible or not fully correct. The solution of that problem is the use of
the theory of fuzzy sets and fuzzy logic, introduced in 1965 by Lofti Zadeh [12].
Fuzzy sets may describe uncertain or imprecise phenomenona. The Fuzzy-ID3
algorithm [6],[7], created by Janikow in 1995, combines simplicity and clarity of
decision trees with fuzzy sets which can define linguistic values and allow to use
fuzzy intervals.

There are two main problems related to decisions trees and fuzzy decision
trees. The first is the large size of the tree (number of nodes) in high dimensional
classification tasks. The second problem concerns the structure of the tree. The
tree created according to the ID3 or Fuzzy-ID3 algorithm is a proper structure
for the data representation. However, it is not always the best solution. The main
reason of these two problems is the manner in which the attribute (represented
by a node) to be the best split is chosen; see Fig.1.

In this paper, a modified Fuzzy-ID3 algorithm is presented. According to
this modification, more than one attribute, and more than one linguistic value
of these attributes, may be assigned to single leaves (decision nodes). This
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modification results in obtaining trees with smaller number of nodes. An ex-
ample of such a tree is illustrated in Fig. 4.

The paper is organized as follows. Section 2 presents the ID3 and Fuzzy-
ID3 algorithms. The modified version of the Fuzzy-ID3 algorithm is proposed
in Section 3. Experimantal results are illustrated in Section 4. Final conclusions
are included in Section 5.

In this paper, capital letters denote sets, for instance A, C, E - sets of at-
tributes, classes, and examples, respectively. Cardinalities of the sets are denoted
as |A|, |C|, |E|. Specific attributes, for k = 1, . . . , |A|, are denoted as Ak, and Ak

is a set of values of attribute Ak, so Ak = {ak
l }, for l = 1, . . . , |Ak|, and Ak ∈ A.

Specific classes are denoted as cj , for j = 1, . . . , |C|, and cj ∈ C. Examples are
denoted as ei, for i = 1, . . . , |E| and ei ∈ E. Thus, every example is described as
ei = [a1

i , . . . , a
|A|
i , cji ], where cji ∈ C is the class associated with ei.

2 ID3 and Fuzzy-ID3 Algorithms

This section presents classical and fuzzy versions of the ID3 algorithm introduced
in [8] and [6], respectively. Decision trees are techniques for partitioning examples
into sets corresponding to decision rules.

2.1 ID3 Algorithm

The purpose of the ID3 algorithm is to create a tree structure from an example
set, E, which contains values of attributes, Ak, for k = 1, . . . , |A|, that charac-
terize objects to be classified. In addition, every example includes the class, cj ,
to which the object belongs. These examples are called training examples, and
E is a training set. The tree structure can further be used for classification, data
analysis or knowledge representation.

This algorithm employs the entrophy for determining the discriminatory
power of each attribute. This is applied in order to determine the attribute
that should be chosen to split the node associated with this attribute. The ID3
algorithm is based on the following assumptions [8]:

(1) The root node of the decision tree contains all training examples. Each node
is reqursively split by partitioning its examples.

(2) Every training example belongs to class cj with probability (the relative
frequency):

pj =

∣∣EN
j

∣∣
|EN | (1)

where EN - set of examples in node N , and EN
j - set of examples that belong

to class cj in node N ; EN
j ⊂ EN ⊂ E.

(3) For the data set in current node, N , we compute the information content:

IN = −
|C|∑
j=1

pj log2 pj (2)
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(4) If an attribute, Ak, is chosen as a node, N , of the decision tree, the informa-
tion to be supplied to the subtree corresponding to the node’s branch, i.e.
the path from parent (root) node N ,Ak = ak

l , to a child node, is denoted as
IN |ak

l . The expected information required for the subtree with the attribute
Ak in node N is determined as follows:

IN |Ak

=
|Ak|∑
l=1

∣∣∣EN
ak

l

∣∣∣
|EN | I

N |ak
l (3)

where IN |Ak

is called the weighted entrophy, EN
ak

l

denotes the set of examples

whose attribute value ak
l corresponds to the node’s branch.

(5) The information gained by branching on the attribute Ak at node N is:

G = IN − IN |Ak

(4)

The node is split using the most discriminatory attribute, whose information
gain, determined using (4), is maximal.

The process of splitting tree nodes starts from the root node (as node N), then
repeats, and the algorithm ends when all attributes appear on the path from the
root node to the current node or when all examples in the node come from a
unique class. The fulfillment of the second criterion can leads to overlearning
effect. The threshold τ ∈ [0, 1] can be used to prevent that situation. If the ratio
of the number of examples with the same class to all examples in node N is
equal or greater than this threshold, the node became a leaf. The ID3 algorithm
is presented, in many publications, e.g in [5],[6],[8],[9].

2.2 Fuzzy-ID3 Algorithm

In classical decision trees, created by the ID3 algorithm, atrributes can have only
symbolic or discrete numerical values. In case of fuzzy decision trees attributes
can also have linguistic values (eg. small, warm, low) represented by fuzzy sets.
Fuzzy decision trees have been obtained as a generalisation of classical decision
trees through application of fuzzy sets and fuzzy logic. The Fuzzy-ID3 algorithm
is an extension of ID3 algorithm. The difference between these two algorithms
is in the method of computing the example count in node N . In the Fuzzy-ID3
algorithm the total examples count, PN , in node N are expressed as [6]:

PN =
|DC |∑
j=1

PN
j (5)

where: DC - set of linguistic values for the decision attribute, xi and yi are input
vector and output value, which correspond to attributes and class, respectively,
and the examples count, PN

j , for decision j (class cj) is determined as follows:

PN
j =

|EN |∑
i=1

f (μs(xi), μj(ci)) (6)
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where: f - function employed to compute the value of fuzzy relation (e.g. min,
prod) [2],[10],[11],[13], μs - membership function of Cartesian product of fuzzy
sets that appear on the path from the root node to node N , and μj - membership
function of fuzzy set that determines class cj , for j = 1 . . . , |C|.

Equations (2) and (3) in the Fuzzy-ID3 algorithm takes the forms:

IN = −
|DC |∑
j=1

PN
j

PN
log2

PN
j

PN
(7)

IN |Ak

=

|Ak|∑
l=1

PN |ak
l IN |ak

l

|Ak|∑
l=1

PN |ak
l

(8)

where: PN |ak
l - total examples count in node N containing value ak

l , assuming
that attribute Ak is used to split the node N . Stopping criteria are the same as
in the ID3 algorithm.

2.3 Illustration of Fuzzy Decision Trees

Suppose we want to build a tree to solve a binary classification task with two
attributes (attr1 and attr2 ), and three fuzzy sets (low, medium, high) defined
for each attribute. We know that attribute attr2 is relevant for the solution of
this problem because all examples with value low for this atrribute belong to
class 0 and with value hi belong to class 1 ; see Fig. 1b.

Suppose also that the proportion of examples with these values in the data
set is small. When we compute examples count for each class and total examples
count, for each fuzzy set (attribute value) that can be associated with the child
node of the Root node, we get the values shown in Table 1, where lv stands for
”linguistic value” that is the attribute value.

If we compute the weighted entrophy (8) and information gain (4), for each
attribute, we see that according to the algorithm the best attribute to split is
attr1. The result is a correct representation of the data set, but this is not the

a)

Root

attr1

low

attr2
low

attr2
med

attr2
hi

attr1
med

attr2
low

attr2
med

attr2
hi

attr1
hi

attr2
low

attr2
med

attr2
hi b)

attr2
low

attr1

low

attr1

med

attr1

hi

Root

attr2
low

attr2
hi

Fig. 1. Two possible trees: a) created by Fuzzy-ID3 algorithm, b) the better tree that

can be created for the same problem
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Table 1. The examples count for each class and total examples count in each fuzzy

set that can be associated with the child node of the Root node

lv P
Root|lv
0 P

Root|lv
1 P Root|lv

aattr1
low 14.55 4.20 18.75

aattr1
med 19.27 3.98 23.25

aattr1
hi 4.58 49.95 54.53

aattr2
low 13.23 0 13.23

aattr2
med 23.39 49.85 73.24

aattr2
hi 0 9.24 9.24

best solution that can be achieved for this problem. This is because the algorithm
chooses the best split on average.

The tree created according to the Fuzzy-ID3 algorithm contains thirteen nodes
and is depicted in Fig. 1a. The better tree that can be created for the same
problem contains only seven nodes and is shown in Fig. 1b.

The solution of the problem mentioned above for the crisp ID3 algorithm has
been presented by Friedman et. al.[4]. This algorithm, which is called the Lazy
Decision Tree is very interesting for symbolic or numerical values of attributes,
but it requires a process of creating of a new decision tree for every new example.
In case of fuzzy values, many branches of the tree can be activated. This causes
that number of computations that have to be performed may be too big to build
a new tree for every new example. Therefore, this solution can be inefficient for
fuzzy decision trees.

3 Fuzzy Decision Trees with Multi-Attribute Leaves

In this section, a new version of Fuzzy ID3 algorithm is proposed. The classical
algorithms, described in Section 2 have been designed to create decision trees
with nodes that represent only one attribute value. This algorithm allows to use
more than one attribute value in leaves, so the decision trees contain less number
of the nodes. This algorithm can be called MAL Fuzzy ID3, or MAL FID3, for
short, where MAL stands for Multi-Attribute Leaves.

3.1 MAL Fuzzy ID3 Algorithm

The proposed algorithm introduces some modifications to the tree structure and
to the procedure of creating the tree. We assume that there can be more than one
linguistic value in the leaves of the tree, and also that there can be values of dif-
ferent attributes. This modification allows the use of all values of attributes that
give unambiguous classification as a child of the current node. The membership
of the example, in such a node, can be computed as the maximum values of the
membership functions describing fuzzy sets in this node. We can also use other
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s-norms [10],[11],[2],[13], than the maximum. However, we will achieve better re-
sults when we apply an arithmetic mean value of membership functions.

Let FN denotes a set of values of attributes which can be used to split node N ,
and EN - set of examples that have nonzero membership in node N .

The proposed algorithm is shown below:

Step 1 : In the root of the tree, assume: FN = A and EN = E
Step 2 : From set FN choose these linguistic values that give unambiguous

classification, i.e. for ak
l ∈ FN ; let us define

ΘN
j =

⎧⎪⎪⎨⎪⎪⎩ak
l :

P
ak

l
j∑

m=1,..,|C|
P

ak
l

m

> τ

⎫⎪⎪⎬⎪⎪⎭ for j = 1, . . . , |C| (9)

where P ak
l

j - total example count for class cj , and attribute value
ak

l . For each nonempty set ΘN
j create a new node. Linguistic val-

ues from sets ΘN will not be taken into consideration for further
spliting of the nodes.

Step 3 : From set EN , choose those examples, ei ∈ EN for which the arith-
metic mean value of membership of fuzzy sets describing linguistic
values from ΘN

j is smaller than threshold σ ∈ [0, 1], that is

ΨN =

⎧⎪⎪⎨⎪⎪⎩ei :

∑
ak

l ∈ΘN
j

μak
l
(ei)

|ΘN
j |

< σ

⎫⎪⎪⎬⎪⎪⎭ for j = 1, . . . , |C| (10)

Step 4 : For examples from set ΨN , compute information content accord-
ing to (7).

Step 5 : Compute weighted entrophy (8) for all attributes from FN , and
theirs values which are not included in ΘN

j ; j = 1, . . . , |C|.
Step 6 : Select the attribute maximizing the information gain, G, and split

the node N , using this attribute.
Step 7 : For the nodes created in step 6, set FN+1 = FN \

⋃
j=1,...,|C|

ΘN
j

and EN+1 = ΨN

Step 8 : Repeat steps from 2 to 8 until the stopping criteria are not fulfilled.

3.2 Illustration of MAL FID3 Algorithm on IRIS Data

The application of this algorithm will be presented on the Iris classification
problem [1],[3]. We have to split the iris flowers into three classes representing
iris spieces. Each example is described by four attributes (width and length of
petal and width and length of sepal).

The data set E consists of 150 examples spliting into three classes: Setosa,
Versicolour and Virginica (50 examples from each class). Distribution of the
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examples in the attribute space is presented in Figs. 2 and 3. For each attribute,
three fuzzy sets (representing values: small, medium, large) are defined.

In the begining the set of attribute values contains the following elements:

FRoot =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

aPL
small; aPL

medium; aPL
large;

aPW
small; aPW

medium; aPW
large;

aSL
small; aSL

medium; aSL
large;

aSW
small; aSW

medium; aSW
large;

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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where PL, PW , SL, SW stands for petal length, petal width, sepal lenght, sepal
width, respectively.

Set ERoot includes all 150 examples from set E. According to equations (5)
and (6), we compute the ratio of examples count for each class to total exam-
ples count, for fuzzy sets describing liguistic values from FRoot. The results are
presented in Table 2.

Table 2. The ratio of examples count from each class to total examples count for

all linguistic values

Sepal length (SL) Sepal width (SW)

Value Setosa Versicolour Virginica Value Setosa Versicolour Virginica
small 0.704 0.2432 0.0523 small 0.0766 0.5457 0.3775

medium 0.070 0.5053 0.4239 medium 0.3695 0.2705 0.3599

large 0 0.2405 0.7594 large 0.8231 0.0204 0.1564

Petal length (PL) Petal width (PW)

Value Setosa Versicolour Virginica Value Setosa Versicolour Virginica
small 0.948 0.0520 0 small 0.9036 0.0964 0

medium 0 0.8616 0.1384 medium 0 0.8849 0.1151

large 0 0.2293 0.7707 large 0 0.1424 0.8576

Assuming the threshold τ = 0.87 (values for which the ratio exceed this
threshold are marked as bold in Table 2.), we can create the following sets:

ΘRoot
Setosa =

{
aPL

small; a
PW
small

}
, ΘRoot

V ersicolour =
{
aPW

medium

}
For σ = 0.5, set ΨN contains 102 examples. By executing steps 4 and 5, the

algorithm chooses attribute petal width for splitting the root node. Repeating
the algorithm for each new nonleaf node, we obtain the tree shown in Fig. 4.

Root

Petal length - small
Petal width - small
Class: Setosa

Petal width - medium
Class: Versicolour Petal width - large

Sepal length - small
Sepal length - medium
Sepal length - large
Sepal width - small
Sepal width - medium
Sepal width - large
Petal length - large
Class: Virginica

Petal length - medium
Class: Versicolour or
Virginica

Fig. 4. Decision tree created by MAL FID3 algorithm, for Iris classification problem
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It contains 6 nodes and gives 96% correct classifications. The tree created by
the classical Fuzzy-ID3 algorithm contains 26 nodes and reaches 93% correct
classifications.

4 Other Experimental Results

Three popular data sets, which are available at the UCI Machine Learning Repos-
itory [1], were used in the experiments. Every experiment was repeated twenty
times to get the error ratio, shown in Tables 3-5. These tables present results for
the classical Fuzzy-ID3 algorithm and the MAL FID3. Table 3 concerns the wine
classification problem, with 13 attributes, 3 classes, 128 examples in the training
set and 32 examples in the testing set. Table 4 includes results for the glass
classification problem with 9 attributes, 6 classes, 174 examples in the training
set and 40 examples in the testing set. Table 5 presents results for the heart
desease (medical diagnosis problem), with 10 attributes, 2 classes, 221 examples
in the training set and 40 examples in the testing set. The threshold value, τ ,
and the average number of nodes obtained from 20 experiments are included in
the tables.

As can be noticed for all presented problems, the trees obtained by the MAL
FID3 algorithm, proposed in this paper, are smaller (less number of nodes)
than those obtained by the classical Fuzzy-ID3 algorithm. The error ratios are
comparable for both kinds of the trees.

Table 3. Results for the wine classification problem

Fuzzy-ID3 MAL FID3

τ Average number of nodes Error[%] Average number of nodes Error[%]

0.65 13.1 22.81 9 11.40

0.7 44.85 17.65 13.4 9.68

0.75 111.45 12.50 13.8 8.75

0.8 251.15 10.78 17.2 9.37

0.85 502.55 8.59 33.65 7.03

0.9 974 8.75 80.9 5.31

Table 4. Results for the glass classification problem

Fuzzy-ID3 MAL FID3

τ Average number of nodes Error[%] Average number of nodes Error[%]

0.65 280.45 41 98.95 42.62

0.7 342.95 40.87 192.55 41.25

0.75 386.35 40.87 203.35 40.87

0.8 443.9 41.25 291.6 40.62

0.85 515.6 41.12 313.65 40.12

0.9 591.25 40.62 354.35 41.50
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Table 5. Results for the heart classification problem

Fuzzy-ID3 MAL FID3

τ Average number of nodes Error[%] Average number of nodes Error[%]

0.65 4.57 25 3 17.3

0.7 64.92 23.05 3 18.75

0.75 122.85 22.67 6.78 18.75

0.8 240.14 22.67 39.28 20.70

0.85 374.78 20.52 84 21.77

0.9 477 20.70 167.28 23.92

5 Conclusions

In this paper, a new version of the Fuzzy-ID3 algorithm, called MAL FID3,
is presented. The modification, introduced to the classical Fuzzy-ID3, makes
possible the use of many values of different attributes in the leaves of a tree.
The trees build according to the proposed algorithm are smaller (less number of
nodes) than those created by the classical Fuzzy-ID3 method. For some problems
these trees can produce better classification results.

The purpose of the future works is a further reduction of the size of fuzzy
decision trees and elimination of those fuzzy sets from the leaves that have no
influence on the classification process.
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Abstract. Classic interpolation methods using polynominals or other
functions for reconstruction complex dependences or contours perform
their role well in the case of smooth and relatively regular curves. How-
ever, many shapes found in nature or dynamic relations corresponding
to real process are of very irregular character and the appropriate char-
acteristics are rough and demonstrate a complex structure at difference
scales. This type of curves are numbered among fractals or stochastic
fractals multifractals. In practice it is impossible to approximate them
with the help of classic methods. It is necessary to use fractal methods
for the interpolation. At present the only group of this type of methods
are the ones based on fractal interpolation functions (FIFs) suggested by
Barnsley [1]. However, these methods are burdened with numerous inad-
equacies making it difficult to use them in practice. The study presents
another alternative method of using fractal curves for complex curves
approximation. This method is more adequate than FIF for multifractal
structures interpolation. It generalizes classic notion of an interpolation
knot and introduces non-local values for its description, as for instance
fractal dimension. It also suggests continuous, as regards fractal dimen-
sion, family of fractal curves as a set of base elements of approximation
an equivalent of base splines. In this aspect the method is similar to
the classic B-splines method and does not use Iterated Function Sys-
tems (IFS), as Barnseys method does. It may be determined as a hard
interpolation method aiming at working out an algorithm providing its
effective application in practice, whereas to a lesser degree attention is
paid to mathematical elegance.

1 Introduction

One-dimensional interpolation consists in reconstruction of the given curve or
functional dependence with the help of point pattern (interpolation knots), which
represent this curve or dependence. In majority of the most common methods
polynominals are used for this purpose. The methods of this type are recon-
structed well by smooth curves, not torn, for which the complexity of their
internal structure may be neglected the complexity which becomes apparent
in subsequent magnification. The quality of reconstruction depends on the fre-
quency of sampling the interpolation step and proper selection of interpolating
functions.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1071–1081, 2006.
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However, in many fields of current studies we face the necessity of reconstruc-
tion of more realistic structures of the surrounding world or complex dependences
describing the processes taking place in it. These structures, or characteristics
of real phenomena in majority of cases are not objects or cannot be introduced
with the help of objects derived from classic geometry [2],[3]. In accordance to
the known saying [4]: As Euclidon geometry is the natural way of representing
man-made objects, fractal geometry is the natural way of representing objects
that occur in nature. Even if it is not true, the observation of nature all the
time confirms how right this saying is. Majority of objects found in nature mor-
phological structures in biology, geology, chemistry and physics, the processes
taking place in our surrounding climatic, hydrologic, biological and even so-
cial and economic are of irregular character fractal [5]-[13], more precisely they
demonstrate the properties of stochastic fractals [14]-[16]. This means that they
present a peculiar combination of the activity of deterministic chaos and random
behaviour. Such complex dependences cannot be interpolated with the help of
idealised functional relations and even if classic methods are applied for their ap-
proximation, the obtained results far differ from reality. In extreme cases, due to
complex fractal structure of the reconstructed curve, the notion of interpolation
knot loses sense because one unambiguous value cannot be attributed to it. It is
clearly seen, that fractal structures can be only reconstructed with the help of
other fractal structures or methods generating fractals. The second solution is in
FIF method, in which known way of fractals formation is applied with Iterated
Function System (IFS) [17]-[18].

From among huge number of studies concerning fractal interpolation, nearly
all of them are directly associated with the conception presented by Barnsley or
they are its elaboration [1]. Briefly, in this conception Iterated Function Systems
wn, n =1, 2...N consists of pairs of maps:

wn (x, y) = (Ln (x) , Fn (x, y)) (1)

such, that for the set of interpolation knots (x0, y0) , (x1, y1) , ..... (xN , yN) and
closed interval M = [x0, xN ] ∈ R containing {x0, x1, ...xN} Ln (x) are contrac-
tive homeomorphisms: M →Mn (Mn = [xn−1, xn]):

Ln (x0) = xn−1, Ln (xN ) = xn (2)

|Ln (xi)− Ln (xj)| ≤ c |xi − xj | ∀xi, xj ∈M (3)

for certain 0 ≤ c < 1 . Whereas Fn : F → R (F = M ×R) fulfils:

Fn (x0, y0) = yn−1, Fn (xN , yN ) = yN (4)

|Fn (x, y)− Fn (x, z)| ≤ βn |x− z| (5)

for x ∈M and y, z ∈ R when −1 < βn < 1.
In accordance with Bransley theorem, the above IFS (1) generates a unique

attractor which is a graph of a continuous function f : M → R fulfilling f (xn) =
yn. There comes to the relation:

f (Ln (x)) = Fn (x, f (x)) (6)
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FIF corresponding to IFS form was investigated most thoroughly:

Ln (x) = anx+ bn Fn (x, y) = βny + qn (x) (7)

an =
xn − xn−1

xN − x0
bn =

xNxn−1 − x0xn

xN − x0
(8)

where: qn (x) is an affine map, βn is called a vertical scaling factor. Barnsley
demonstrated that with qn (x) form:

qn (x) = f ◦ Ln (x)− βng (x) (9)

where: f , g - continuous functions (f �= g) , g (x0) = y0, g (xN ) = yN FIF can
be generalized with optional continuous functions. In this way splines can be
obtained in the form of polynominals [19]-[21] or trigonometric functions [22].
The method was extended to enable interpolation of fractal surfaces and three
dimensional objects [23],[24]. Despite success and huge number of studies, both
theoretical and visualizing the possibilities of application in various fields of re-
search, FIF has not become a routinely applied method in interpolation. There
are a few reasons. First of all there are no clear criteria of selection of FIFs and
their coefficients for the given interpolation problems - FIFs can be constructed
in infinitely many ways, each time obtaining different shape of an interpolating
curve. Moreover, the method strongly depends on the choice of interpolation
knots - control points, and its quality is conditioned by large number of such
points. There is one more very important element - FIF is a monofractal, which
significantly limits the possibilities of multifractal curves interpolation. An in-
terpolating curve has one fractal dimension and thus is not able to reflect to the
full a subtle structure of majority of objects found in nature.

It seems that in this situation other, more adequate methods should be ur-
gently searched for. In this study a different approach to the problem of fractal
interpolation has been suggested, based on the application of existing fractal
curves as base splines. Such an approach certainly gives rise to series of problems
and unfortunately not all of them have been solved. Nevertheless, this method
seems to be a perspective one and remains open for further modifications.

2 An Idea of the Suggested Method

The suggested method uses, similarly to classic methods, a principle of sam-
pling with constant or variable step - further on, to make it simple, a con-
stant interpolation step is accepted. However, the term interpolation knot is
generalized and replaced by a value further on called Local Interpolation Win-
dow (LIW). It is an area comprising a fragment of interpolated curve in the
range xi − 1

2Δxi ≤ x ≤ xi + 1
2Δxi around interpolation point xi ; where Δxi

- the window width (Fig.1). Although the window width need not be equal to
the value of interpolation step Δk , it should be adjusted to it - at even step
the window width should be the same for all interpolation points. Whereas, the
window height must be adjusted to the span of the curve in the window, so that
the window would comprise the whole fragment of the curve.
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Local Interpolation Window plays the role of a zone from which informa-
tion is obtained for local reconstruction of a curve. Quantitative characteristics
from LIW area, such as for example local fractal dimension complete the set
of the stored date, on the basis of which the curve is reconstructed with better
or worse approximation. These values are macrocharacteristics of the window
limiting the quantity of data indispensable for curve reconstruction. Their selec-
tion determines not only the quality of interpolation but also the compression
degree. With such a general formulation of the idea of LIW there are not any
restrictions as regards the choice of values characterizing the curve in the win-
dow. Their selection is conditioned only by the accuracy of the method and
inventiveness.

Fractal curves interpolation extorts a priori consideration of the most basic
characteristics of such curves, that is their fractal dimension and in the case of
stochastic fractals - multifractal spectrum. Such a spectrum can be determined
basing on appropriately defined measure enabling to investigate heterogeneity of
the distribution of points on a curve. Let random variable ζ be given. Probability
P, that this variable is in the interval δx around point x determines measure:

μ (Bδx (x)) = P

(
x− δ

2
< ζ < x+

δ

2

)
(10)

It may be e.g. probability that randomly selected curve point is in the area
Bδx (x) . The appropriate measure, the so called Billingsley’s measure [25] for
each point x is defined by the expression:

Gd (x) = lim
δx→0

μ (Bδx (x)) (δx)−d (11)

In generality Gd (x), for an arbitrary value of d can take the values zero and
infinite, there is only one value d = α (x) for which Billingseley’s measure is
finite. This value is called Holder exponent of the point x:

Gd (x) = 0 when d <α (x)

Gd (x) = is finite if d =α (x) (12)

Gd (x) = ∞ when d >α (x)

In the case when points distribution is singular and it occurs in the case of
fractal sets, Holder exponent α (x) determines singularity strength of Gd (x).
Selecting the set of curve points, for which Holder exponent has the same value
Hαi = {x : α (x) = αi} , fractal dimension of this set D (α) = Dim (Hα) can be
determined (Hausedorff dimension). This dependence is called fractal spectrum.

In practice, the interpolated curves have a discrete structure with determined
resolution e.g. in computer algorithms conditioned by the pixel size. In such a
case coarse Holder exponent a point x α (x, δx) is defined (for the interval δx
around point x):

Gα(x,δx) (x) = μ (Bδx (x)) (δx)−α(x,δx) (13)
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α (x, δx) can be determined finding the logarithm for the dependence:

lnμ (Bδx (x)) = α (x, δx) ln δx+ lnGα(x,δx) (x) (14)

and applying a known procedure of determining points in coordinates
(lnμ (Bδx (x)) , ln (δx)) for intervals of different size. Coarse Holder exponent
determines the slope of a straight line fitted using least squares. The procedure
should be applied for each pixel.

Applying approximate approach coarse Holder exponent α (x, δx) can be av-
eraged with intervals representing LIW width:

α (x) =
N∑

i=1

〈α (x, δx)〉Δxi
IΔxi (x) (15)

where IΔxi (x) is the characteristic function of the set Δxi defined as:

IΔxi (x) = 1 when x ∈ Δxi

IΔxi (x) = 0 when x /∈ Δxi (16)

〈α (x, δx)〉Δxi
- mean value α (x, δx) in interval Δxi

As a result, multifractal curve disintegrates, with some approximation depen-
dent on LIW width, into local (in the intervals Δxi) monofractal sets of one
unique value of fractal dimension D (Δxi) = Di in each interval. Prime curve
can be then reconstructed locally with the given fractal curves of appropriate
dimension. In practice the dimension in this case may be calculated for each
window like box dimension, which significantly simplifies calculations.

To increase the accuracy of interpolation a larger number of Holder exponent
discrete values can be assumed in the interpolation window.

Let Δαi = (αi(x)max−αi(x)min)
L−1 , (i - window number, j = 1, ..., L − 1). Then,

the fragment of the curve belonging to the given window disintegrates into L−
1 subsets Sij so that Sij = {x : α (x) ∈ [αi(x)min, αi(x)min + jΔαi)} for j =
1, ..., L− 1. Each determined in this way subset has its unique fractal dimension
Dij = Dim (Sij). In this way fragment of a curve from the given LIW was
treated as discrete multifractal which can be reproduced with L − 1 curves of
appropriate dimension.

It is easy to notice, that in the above presented conception LIW width need
not be equal to the interpolation step. As smaller width, the dead zone between
the windows, becomes reconstructed with the help of base curves from the neigh-
bouring windows. However, the information from this zone, which could increase
the accuracy of the interpolation is needlessly lost. In the case of the window
width greater than the interpolation step in the zone of window overlapping,
there comes to another agreement on the shape and dimension which is defi-
nitely an additional asset in interpolation and wider LIW ensures more infor-
mation and of better quality. However, the window cannot be too wide because
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Fig. 1. Interpolation problem for fractal contour - complex structure of curve at differ-

ence scales and the lack of one unambiguous value y. Here: LIW - Local Interpolation

Window and its Δs - width, Δyi - height; (xi, yi) - coordinates of knots, Di - fractal

dimensions of curve in different windows.

then it loses its local character, what may have a negative effect on the accuracy
of reconstruction.

3 Interpolation Base Curves

The above suggested method requires for the reconstruction of the prime curve a
set of fractal curves which play the role of base elements in reconstruction. These
curves must meet several conditions. Let S, T ∈ R, S = [0, 1], T = [1, 2) and let
K set of continuous in U = S ×R fractal curves KD (x, y), x ∈ S, y ∈ R of the
dimension D such that ∀ D ∈ T ∃ KD (x, y) and sKD (x, y) = KD′ (sx, sy) →
D = D′ , where s ∈ R - scaling factor. The last dependence means that the
scaling operation does not change the fractal dimension. Set K defined like that
fulfils the requirements the base curves should meet.

From among numerous possible to define sets of fractal curves meeting the
above conditions a family of curves based on well known von Koch curve was
chosen. These curves will be called generalized von Koch curve (GKC). A similar
idea to these variations of the von Koch curve is attributed to J. Lighthill by
Mandelbrot [26]. Their fractal dimension changes in a continuous manner in the
interval [1, 2]. Furthermore, when in the case of von Koch curves shrinking factor
remains constant and equals r = 1/3 for GKC it is r = 1

2(1+cos(ϕ)) , where ϕ is
a parameter geometrical sense of which can be seen in fig.2 presenting modified
generator GKC.

Fig. 2. Modification of the generator of von Koch curve. w = 1
2(1+cos(α))



New Interpolation Method with Fractal Curves 1077

Appropriate contraction maps for GKC have the form:

w1(z) = rz

w2(z) = rz exp(iϕ) + r

w3(z) = r(z − 1) exp(−iϕ) + 1− r (17)

w4(z) = r(z − 1) + 1

where z = x+ iy and related fractal dimension:

D =
ln 4

ln [2 (1 + cosϕ)]
(18)

It is worth noticing that maps (17) are contracting for |ϕ| < 2
3π then, for π

2 <
|ϕ| < 2

3π fractal dimension D > 2 and it plays the known role of latent dimension
[27]. Among characteristic cases of GKC (Fig.3) it is worth paying attention to
the case ϕ = 0 then the curve has a form of an elementary segment; ϕ = π

3 -
the curve becomes a classic von Koch curve; ϕ = π

2 - the curve fills the plane
(equilateral triangle).

Fig. 3. Examples of GKC for different ϕ

The above discussed set of curves GKC perfectly meets the requirements de-
termined for fractal base splines, moreover it enables to determine easily fractal
dimension basing on the dependence (18). This set is further used in the sug-
gested interpolation algorithm.

4 Principles of Interpolation

In the suggested method the set of base B-splines, which in classic interpolation
method is formed of third degree polynominals, is substituted with the above
defined set of fractal curves K in the form of GKC - Ki(x, y) . This set will be
called FB-splines.
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Let have a given set N + 1 of interpolation knots (x0, y0, D0,W
p
0 ),

(x1, y1, D1,W
p
1 ),....., (xN , yN , DN ,W

p
N ) corresponding to particular interpola-

tion windows LIW. To simplify, it is further assumed that the windows are
spaced with uniform step size xi+1 = xi + Δx ; yi determines the position of
the window midpoint, Di - fractal dimension of the interpolated curve L in i-
window - further on box dimension was accepted for calculations; W p

i - vector
of additional parameters (p = 1, ..., Z) characterizing the structure of a curve in
i-window - at this stage of considerations the vector was assumed to be W p

i = 0.
Generally, curves Ki(x, y) may subject W p

i to any operations not changing the
fractal dimension, and thus to affine transformations. Finally:

L ≈
N∑

i=0

siKi(x− iΔx, y,Di,W
p
i ) (19)

where fractal curves Ki(x, y) are placed centrally (with maximal value) at inter-
polation points.

In the above expression attention should be paid to the fact that unlike the
classic B-splines method, in which scaling occurs only regarding y, here the
curves are scaled in all directions. Moreover, the summation was determined
symbolically as summation of fractal curves, whereas the way of this summa-
tion must be defined precisely. Investigation of the interpolation problem in
the Cartesian coordinate system (x, y) imposes certain rules - the summation
must concern co-ordinate y treating simultaneously coordinate x as an indepen-
dent variable. Furthermore, a curve resulting from summation must preserve
topological properties of component curves, particularly continuity. Summation
algorithm is presented in fig.4. It is based on a strict principle of summation
curve shifting in the successive summation step from the starting point to the
next one, only to the nearest neighbour on the left or right side connected topo-
logically with the starting point. For instance (Fig.4), from the point (9,g) the
shift in the successive step takes place to point (8,f). On the other hand, the
above principle may be interpreted as the summation of each point of one curve
with each point of the other curve at the established value x. In the algorithm
applied in practice GKC curves were computer generated to pixel level, which
enabled to control strictly the ordering of points in the course of summation.

The scale coefficient sn
j in n-step were calculated iteratively basing on:

yi =
N∑

j=0

sn+1
j yj

(
(i− j)Δx

sn
j

, Dj

)∗

(20)

where: s0j = 1, yi- the given values of interpolation knots, yj(x,Dj) is a set
of y value of curve Kj(x, y,Dj) of the number j for the given value x, where
Kj(x, y,Dj) - starting FB-splines are located centrally at each interpolation
point. The span of base curves 6Δx was accepted for the calculations. In the
expression (20) the possibility of the occurrence of many values y of FB-splines
were taken into account with the established x. Hence:

yn
j (x,Dj)∗ =

1
2
[
sup yn

j (x,Dj) + inf yn
j (x,Dj)

]
(21)
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Fig. 4. Summation algorithm of points of curves in the proposed interpolation method

Iteration average quadratic error is a measure of the calculations accuracy:

δn =
N∑

i=0

⎛⎝yi −
N∑

j=0

yj ((i− j)Δx,Dj)
∗

⎞⎠2

(22)

A well known problem of the lack of data at the ends of interpolation curves
should be taken into account in the interpolation. These values should be addi-
tionally defined.

In the carried out studies, the shape of the interpolating curve between the
knots was found to be strongly dependent on the base line location - x axis,
relative to which FB-splines are generated. The proper choice of this location
ensures the convergence of the iterative process and optimal matching of the
shape. This property can be used creating an additional iterative loop in the
matching algorithm. Selection of appropriate position of x axis results from
minimization of average square error calculated for all curve pixels:

δ(zi) =
∑
m

(yzi
m − yzi

m)2 (23)

where: yz
m, y

z
m - values y of interpolated and interpolating curve, respectively,

where the summation concerns all the values (pixels) x; zi determines different
shift in the successive iteration step of axis x in relation to the initial position.

Attention should be paid to the case when the interpolated curve rapidly
changes values y or fractal dimension in neighbouring LIW then, the iterations
determined by the dependence (20) may not be convergent. In such a case it is
necessary to break interpolation curve into smaller segments and interpolate each
of them independently. The obtained in this way interpolating curves should be
stitched together taking advantage of the fact that the values of these curves on
their ends are not determined - they may be given in optional way.
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Fig. 5. Example of interpolation. On top there is showed digitalized contour of terrain

landscape, which was interpolated. LIW are drowned around each interpolation knots

and there are given values of fractal dimensions. At the bottom there is showed suitable

interpolation curve.

Above an example is presented of an interpolation carried out with the above
described method for digitalized contour of mountain elevation (fig.5). Nine in-
terpolation knots were applied and two not shown which completed the infor-
mation on the curve ends. Initiating GKC had the span 6Δx. The values of
fractal dimension were estimated with standard method [28] as box dimension
in indicated LIW.

5 Conclusion

The initial analysis demonstrated that the presented method of interpolation can
be applied very effectively for reconstruction of natural, fractal profiles or irregu-
lar series of data. The compression coefficient in this case can be extremely high
because loss of information - the result of high compression - is compensated by
more precise determination of non-local characteristics in a wider interpolation
window around the interpolation point. The method can be improved taking into
account greater quantity of additional characteristics in LIW and more precise
analysis of the reproduced curve spectrum.
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2 Informatic Department, Federico Santa Maŕıa Technical University, Chile
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Abstract. Set Covering Problems and Set Partitioning Problems can
model several real life situations. In this paper, we solve some bench-
marks of them with Ant Colony Optimization algorithms and some hy-
bridizations of Ant Colony Optimization with Constraint Programming
techniques. A lookahead mechanism allows the incorporation of informa-
tion on the anticipated decisions that are beyond the immediate choice
horizon. The ants solutions may contain redundant components which
can be eliminated by a fine tuning after the solution, then we explore
Post Processing procedures too, which consist in the identification and
replacement of the columns of the ACO solution in each iteration by
more effective columns. Computational results are presented showing the
advantages to use additional mechanisms to Ant Colony Optimization.

1 Introduction

Set Covering Problems (SCP) and Set Partitioning Problems (SPP) are two
types of problems that can model several real life situations [10]. In this work, we
solve some benchmarks of them with Ant Colony Optimization (ACO)
algorithms and some hybridizations of ACO with Constraint Programming tech-
niques like Forward Checking and Full Lookahead, and Post Processing proce-
dures too.

There exist problems for which ACO is of limited effectiveness. Among them
a prominent role is played by very strongly constrained problems. They are
problems for which neighborhoods contain few solutions, or none at all, and local
search is of very limited use. Probably, the most significant of such problems
is the SPP. Currently, no ACO algorithm has been proposed for SPP, and a
direct implementation of the basic ACO framework is incapable of obtaining
feasible solutions for many standard tested instances [16]. The best performing
metaheuristic for SPP is a genetic algorithm due to Chu and Beasley [6,4]. There
exist already some first approaches applying ACO to the SCP. In [1,14] ACO
has been used only as a construction algorithm and the approach has only been
tested on some small SCP instances. More recent works [13,15,12] apply Ant
Systems to the SCP and related problems using techniques to remove redundant
columns and local search to improve solutions.
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In this paper, we explore the addition to the ACO algorithm of a lookahead
mechanism usually used in complete techniques. Trying to solve larger instances
of SPP with the original AS or ACS implementation derives in a lot of unfeasible
labeling of variables, and the ants can not obtain complete solutions using the
classic transition rule when they move in their neighborhood. In this paper we
propose the addition of a lookahead mechanism in the construction phase of ACO
in order to that only feasible solutions are generated. The lookahead mechanism
allows the incorporation of information about the instantation of variables after
the current decision. The idea differs from that proposed by [18] and [11],
these authors proposed a look ahead function evaluating the pheromone in the
Shortest Common Supersequence Problem and esimating the quality of a partial
solution of a Industrial Scheduling Problem respectively.

Additionally, solving SCP ants may contain redundant solution components
which can be eliminated by a fine tuning after the solution. In order to achieve
this post procedure, we try to implement an hybrid outline based on morphing
procedures [5], which consist in the identification and replacement of the columns
of the ACO solution in each iteration by morphs or more effective columns:
minimum cost and same cover.

This paper is organized as follows: In Section 2, we formally describe SCP and
SPP using mathematical programming models. In Section 3, we present exper-
imental results obtained when applying two basic ACO algorithms for solving
some standard benchmakrs. Sections 4 and 5 present results obtained when
adding a postprocessing procedure and Constraint Programming techniques, re-
spectively, to the two basic ACO algorithms. In Section 6, we present results
when adding both postprocessing procedure and Constraint Programming tech-
niques to the two basic ACO algorithms. Finally, in Section 7 we conclude the
paper and give some perspectives for future research.

2 Problem Description

SPP is the problem of partitioning a given set into mutually independent sub-
sets while minimizing a cost function defined as the sum of the costs associated
to each of the eligible subsets. Its importance derives from the fact that many
real life situations can be modeled as SPP, and in fact many combinatorial opti-
mization problems (such as, crew scheduling, vehicle routing, project scheduling,
and warehouse location problems, to name a few) can be modeled as SPP with
maybe some additional constraints.

In SPP we are given a m×n matrix A = (aij) in which all the matrix elements
are either zero or one. Additionally, each column is given a non-negative cost cj .
We say that a column j covers a row i if aij = 1. Let J denotes a subset of the
columns and xj a binary variable which is one if column j is chosen and zero
otherwise. The SPP can be defined formally as follows.

Min f(x) =
n∑

j=1

cj × xj (1)
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Subject to
n∑

j=1

aij × xj = 1; ∀i = 1, . . . ,m (2)

These constraints enforce that each row is covered by exactly one column.
The SCP is a SPP relaxation. The goal in the SCP is to choose a subset of the
columns of minimal weight which covers every row.

The SCP can be defined formally using constraints to enforce that each row
is covered by at least one column as follows.

n∑
j=1

aij × xj ≥ 1; ∀i = 1, . . . ,m (3)

3 Ant Colony Optimization

Although in the following description the reader is expected to be familiar with
ACO algorithm proposed in [8,7], a brief introduction to ACO may be in place.

ACO is a paradigm for designing constructive metaheuristic algorithms for
combinatorial optimization problems that is inspired by the shortest path search-
ing behavior of real ant colonies. ACO algorithms are based on a colony of arti-
ficial computational agents that work cooperatively and communicate through
artificial pheromone trails. ACO algorithms are essentially construction algo-
rithms: in each algorithm iteration, every ant constructs a solution to the prob-
lem applying a transition rule labeling variables. Once every ant has generated
a solution, it can deposit an amount of pheromone in the solution components.
The pheromone deposited is a function of the solution quality. This information
will guide the search of the remaining ants of the colony in the future.

ACO can be applied directly to the SCP and SPP. The columns are chosen
as the solution components and have associated a cost and a pheromone trail.
Constraints say that each column can be visited by an ant once and only once
and that a final solution has to cover all rows.

A walk of an ant over the graph representation corresponds to the iterative
addition of columns to the partial solution obtained so far. Each ant starts with
an empty solution and adds columns until a cover is completed. A pheromone
trail τj and a heuristic information ηj are associated to each eligible column j.
A column to be added is chosen with a probability that depends of pheromone
trail and the heuristic information. The most common form of the ACO decision
policy when ants work with components is [9]:

pk
j (t) =

τj ∗ ηβ
j∑

l∈Nk

τl[ηl]β
if j ∈ Nk (4)

where Nk is the feasible neighborhood of the ant k. The β parameter controls
how important is η in the probabilistic decision.
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Pheromone trail τj. One of the most crucial design decisions to be made in
ACO algorithms is the modeling of the set of pheromones. In the original ACO
implementation for TSP the choice was to put a pheromone value on every
link between a pair of cities, but for other combinatorial problems often can
be assigned pheromone values to the decision variables (first order pheromone
values) [9]. In this work the pheromone trail is put on the problems componentes
(each elegible column j) instead of the problems connections. And setting good
pheromone quantity is a non trivial task too. The quantity of pheromone trail
laid on columns is based on the idea: the more pheromone trail on a particular
item, the more profitable that item is [14]. Then, the pheromone deposited in
each component will be in relation to its frequency in the ants solutions. In this
work we divided this frequency by the number of ants obtaining better results.

Heuristic information ηj . In this paper we use a dynamic heuristic informa-
tion that depends on the partial solution of an ant. It can be defined as ηj = ej

cj
,

where ej is the so called cover value, that is, the number of additional rows
covered when adding column j to the current partial solution, and cj is the cost
of column j. In other words, the heuristic information measures the unit cost
of covering one additional row. An ant ends the solution construction when all
rows are covered. Figure 1 describe two basic ACO algorithms to solve SCP and
SPP.

1 Procedure ACO_for_SCP_and_SPP
2 Begin
3 InitParameters();
4 While (remain iterations) do
5 For k := 1 to nants do
6 While (solution is not completed)
7 AddColumnToSolution(election)
8 AddToTabuList(k);
9 EndWhile
10 EndFor
11 UpdateOptimum();
12 UpdatePheromone();
13 EndWhile
14 Return best_solution_founded
15 End.

Fig. 1. ACO algorithm for SCP and SPP

Figure 1 describes the basic structure of ACO algorithm to solve SCP and
SPP. In this work, we use two instances of ACO: Ant System (AS) and Ant
Colony System (ACS) algorithms, the original and most famous algorithms in
the ACO family [8]. ACS improves the search of AS using: a different transition
rule in the constructive phase, exploting the heuristic information in a more rude
form, using a list of candidates to future labeling and using a different treatment
of pheromone. ACS has demostrated better performance than AS in a wide range
of problems, Table 1 shows that it occurs in SPP and SCP too.

Table 1 presents results obtained when applying these algorithms for solving
standard benchmarks taken from ORLIB[3]. The first four columns present the
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Table 1. ACO

Problem Rows Columns Optimum AS ACS
sppnw39 25 677 10080 11670 10758
sppnw34 20 899 10488 13341 11289
sppnw26 23 771 6796 6976 6956
sppnw23 19 711 12534 14304 14604
scp41 200 1000 429 473 463
scp42 200 1000 512 594 590
scp48 200 1000 492 524 522
scp51 200 1000 253 289 280
scp61 200 1000 138 157 154
scp62 200 1000 146 169 163
scp63 200 1000 145 161 157

problem code, the number of rows, the number of columns, and the best known
solution for each instance, respectively. The last two columns present the best
cost obtained when appyling AS and ACS, respectively, to solve the benchmarks.

The algorithms has been run with the following parameters setting: influence
of pheromone (alpha)=1.0, influence of heuristic information (beta)=0.5 and
evaporation rate (rho)=0.4 as suggested in [14,15,9]. The number of ants has
been set to 120 and the maximum number of iterations to 160, so that the
number of generated candidate solutions is limited to 19.200. For ACS the list
size was 500 and Qo=0.5.

Algorithms were implemented using ANSI C, GCC 3.3.6, under Microsoft
Windows XP Professional version 2002.

4 ACO with Post Processing

In a postoptimization step, an ant can remove redundant columns that only cover
rows which are also covered by a subset of other columns in the final solution or
apply some additional local search to improve solutions. Solving SCP and SPP
each ant starts with an empty solution and constructs a complete solution by
iteratively adding columns until all rows are covered.

In the application of ACO to other problems, such as the TSP, there are
some differences. For example, the solution construction of the individual ants
does not necessarily end after the same number of steps of each ant, but only
when a cover is completed. Moreover, the order in which columns are added
to a SCP solution does not matter, and that in a solution constructed by the
ants may contain redundant solution components which can be eliminated by a
fine tuning after the solution. In order to achieve this post procedure, we try to
implement different hybrid outlines based on morphing procedures, which consist
in the identification and replacement of the columns of the ACO solution in each
iteration by morphs or more effective columns [5]. Good results are obtained
on a set of SCP benchmark instances with this mechanism. Post processing
locally optimizes the ants solutions and these locally optimized solutions in each
iteration are used in the pheromone update. Table 2 presents results when adding
this postprocessing step to the basic ACO algorithms.
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Table 2. ACO with Post Processing

Problem AS + PP ACS + PP
scp41 438 435
scp42 536 530
scp48 516 499
scp51 264 265
scp61 143 143
scp62 155 152
scp63 150 149

The proposed post processing procedure applied to SCP shows better results
than classical ACO. Better costs obtained are more expensive in time consuming
but never pass the 900 seconds of execution in the worst case. The trade off
between cost and execution time is solved in benefit of the cost.

5 ACO with Constraint Programming

In the original ACO implementation the SPP solving derives in a lot of un-
feasible labeling of variables, and the ants can not complete solutions. Forward
Checking seems to be the easiest way to prevent future conflicts in a constructive
metaheuristic.

Instead of performing arc consistency to the instantiated variables, it per-
forms a restricted form of arc consistency to the not yet instantiated variables.
We speak about restricted arc consistency because Forward Checking checks only
the constraints between the current variable and the future variables. When a
value is assigned to the current variable, any value in the domain of a ”fu-
ture” variable which conflicts with this assignment is (temporarily) removed
from the domain. The advantage of this is that if the domain of a future vari-
able becomes empty, it is known immediately that the current partial solution is
inconsistent.

Forward Checking therefore allows branches of the search tree that will lead
to failure to be pruned earlier than with simple backtracking. Note that when-
ever a new variable is considered, all its remaining values are guaranteed to be
consistent with the past variables, so checking an assignment against the past
assignments is no longer necessary. This reduces the search tree and (hopefully)
the overall amount of work done. But it should be noted that Forward Checking
does more work when each assignment is added to the current partial solution.
Adding Forward Checking to ACO means that columns are chosen if they do
not produce any conflict with respect to the next column to be chosen. Recently,
some efforts have been done in order to integrate Constraint Programming tech-
niques to ACO algorithms for the Job Scheduling Problem [17].

Forward checking checks only the constraints between the current variable and
the future variables. So, why not to perform full arc-consistency that will fur-
ther reduces the domains and removes possible conflicts? This approach is called
(Full) Look Ahead or maintaining arc-consistency (MAC). The advantage of look
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ahead is that it detects also the conflicts between future variables and therefore
allows branches of the search tree that will lead to failure to be pruned earlier
than with Forward Checking. Also as with Forward Checking, whenever a new
variable is considered, all its remaining values are guaranteed to be consistent
with the past variables, so checking an assignment against the past assignments
is not necessary. Look ahead prunes the search tree further more than Forward
Checking but, again, it should be noted that look ahead does even more work
when each assignment is added to the current partial solution than Forward
Checking. Adding Full Look Ahead to ACO means that columns are chosen
using recursively the same ides that Forward Checking and so we detect conflicts
before a solution is completed. Table 3 presents results when adding Forward
Checking and Full Look Ahead techniques to the basic ACO algorithms.

Table 3. ACO with Constraint Programming

Problem AS + FC AS + FLA ACS + FC ACS + FLA
sppnw39 11322 10722 10545 11322
sppnw34 10713 10713 10797 10713
sppnw26 6880 7192 6880 6850
sppnw23 13932 13254 12880 13400
scp41 458 2115 683 842
scp42 574 1990 740 752
scp48 537 1952 731 752
scp51 289 1975 464 526
scp61 155 1081 276 332
scp62 170 1004 280 352
scp63 161 763 209 267

The effectiveness of Constraint Programming is showed to the SPP, the
strongly constrained problem characteristic of this problem does the stochas-
tic behavior of ACO improved with lookahead techniques in the construction
phase, so that almost only feasible solutions are induced, solving the drawback
of pure ACO for the SPP deriving in a lot of unfeasible labeling of variables,
and then can not obtain complete solutions.

The concept of Arc Consistency plays an essential role in Constraint Pro-
gramming as a problem simplification operation and as a tree pruning technique
during search through the detection of local inconsistencies among the uninstan-
tiated variables. We have shown that it is possible to add Arc Consistency to any
ACO algorithms and the computational results confirm that the performance of
ACO is possible to improve with this type of hibridization. This integration im-
proves the process, mainly with respect to success costs instead running times.
Obviously, in ACS a labeling step is simply a value assignment and therefore
cheap. In CP much more is involved in a single labeling step, as it triggers prop-
agation, i.e. a potentially more expensive computational process. But the trade
off in all cases considered is very convenient.

For SCP, the huge size of the search space and the relaxation of the constraints
does ACO algorithms work better than ACO with Constraint Programming
considering the same execution conditions.
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6 ACO with Constraint Programming and Post
Processing

A complementary possibility of implementation is to merge the Constraint Pro-
gramming approach and Post Processing with ACO for the SCP. Although for
SCP the Constraint Programming we showed that not improved ACO, is inter-
esting know the behavior and potential of Post Processing with both. Table 4
presents results when adding Constraint Programming techniques and a post-
processing step to the basic ACO algorithms.

Table 4. ACO with Constraint Programming and Post Processing

Problem AS + FC + PP AS + FLA + PP ACS + FC + PP ACS + FLA + PP
scp41 957 999 873 741
scp42 959 1007 763 776
scp48 1004 797 809 830
scp51 768 733 678 446
scp61 456 422 302 254
scp62 452 504 262 339
scp63 334 484 329

The Post Processing procedure proposed applied to SCP after Constraint
Programming techniques can not improve the results than classical ACO. Con-
sidering the same execution conditions the implementation of ACO with Post
Processing showed the better results with a very appropriate trade off in relation
to the execution time.

7 Conclusions and Future Directions

SCP and SPP problems had been discussed, different solving strategies for these
problems has been presented. It based on Ant Colony Optimization algorithms.
Computational results confirm that the performance of ACO is possible to
improve with some classes of hibridization. We have successfully combined Con-
straint Programming and ACO for the problem of Set Partitioning solving bench-
marks of data sets. Our main conclusion from this work is that we can improve
ACO with CP. And in the SCP problem, improved ACO with Post Processing
procedures showed better results than the original ACO proposal.

Future versions of the algorithm will study the pheromone treatment repre-
sentation and the incorporation of available techniques in order to reduce the
input problem (Pre Processing) and improve the solutions given by the ants
(Post Processing). The ants solutions may contain redundant components which
can be eliminated by a fine tuning after the solution, then we will explore Post
Processing procedures, which consist in the identification and replacement of
the columns of the ACO solution in each iteration by more effective columns.
Besides, the ants solutions can be improved by other local search methods like
Simulated Annealing or Tabu Search.
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Abstract. The aim of the paper is to present a conception of learn-
ing algorithms for discrete manufacturing processes control. A general
knowledge based model of a vast class of discrete manufacturing processes
(DMP) is given. The model is a basis for the method of the synthesis of in-
telligent, learning algorithms that use information on the process gained
in previous iterations as well as an expert knowledge. To illustrate the
presented ideas, the scheduling algorithm for a special NP-hard problem
is given.

1 Introduction

Methods of knowledge representation (KR) are methods for representation of
real world in computer. A lot of the methods have been worked out. They must
be suitable for the modelled area, character of pieces of information (e.g. uncer-
tain, probabilistic or deterministic) and first of all an aim for which the knowl-
edge is to be used. Recently, a lot of investigations referring to knowledge based
control method are carried out because models and knowledge about controlled
processes are the vital parts of the controlling systems. In the knowledge-based
intelligent process planning systems, knowledge acquisition plays significant role.
In order to discover association rules under uncertainty, fuzzy decision tech-
niques and entropy-based analysis methods as well as fuzzy clustering integrated
with variable precision rough set are used [16]. On the other hand e.g. for au-
tonomous unmanned vehicle the system is required being able to dynamically
construct a knowledge structure representing a process under control, meeting
the constraints associated with a particular process. The system should be able
to manage and monitor changes in the structure and derive knowledge about it.
Usually process constraints are specified with temporal logic formulas and mon-
itored using appropriate execution monitor [1]. At the same time KR methods
for computer-aided manufacturing are developed [10], [9]. They are vital for in-
formation system for manufacturing management such as MRPII or/and ERPII.
Each of the system contains components so called shop floor control, especially
referring to control of discrete manufacturing processes and scheduling. However,
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there are no proper optimal control algorithms implemented there. The imple-
mented algorithms use only simple control rules. On the other hand a variety
of discrete processes are described and their optimisation algorithms have been
presented in the scientific literature. The question arises: why there are no these
optimisation algorithms implemented in information management systems, pro-
duced even by the best computer firms such as SAP, Oracle or IFS? According
to the authors one of the reasons is lack of common knowledge representation
method for manufacturing processes control.

The paper deals with knowledge based modelling of discrete manufactur-
ing/production processes and its applications for manufacturing process plan-
ning algorithms. It presents developing of ideas given in [2]. Its aim is 3-fold:

– to present a general, knowledge based model of a vast class of discrete de-
terministic processes that is a class of discrete manufacturing/production
processes (DMP),

– to discuss the model applications, especially for designing algorithms with
gathering information,

– to present exemplary intelligent search algorithm for scheduling some NP-
hard problem.

The control of DMP (scheduling DMP) lies in determining a manner of
performing some set of jobs under restrictions referring to machines/devices,
resources, energy, time, transportation possibilities, order of operation perform-
ing and others. Most of control algorithms are approximate (heuristic) due to
NP-hardness of the optimisation problems. Within the frame of artificial intel-
ligence, one attempts both formal elucidation of heuristic algorithm ideas and
giving some rules for creating them (metaheuristics) [4], [5], [11], [12]. The paper
is connected with this direction of the research. It uses formal model based on a
special kind of the multistage decision process given below.

2 Knowledge Based Model of DMP

Simulation aimed at scheduling of any DMP consists in determining a sequence
of process states and the related time instances. The new state and its time
instant depend on the previous state and the decision that has been realised
(taken) then. Decision determines the job to be performed, resources, transport
unit etc. Manufacturing processes belong to the larger class of discrete processes,
namely discrete deterministic processes (DDP). The formal model of DDP given
in [3], [6], [7] will be here adopted for DMP.

Definition 1. A discrete manufacturing/production process DMP is a process
that is defined by the sextuple DMP=

(
U, S, s0, f, SN , SG

)
where U is a set of

control decisions or control signals, S = X×T is a set named a set of generalized
states, X is a set of proper states, T ⊂ IR+ ∪ {0} is a subset of non negative
real numbers representing the time instants, f : U × S → S is a partial function
called a transition function, (it has not to be determined for all elements of the set
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U × S), s0 =
(
x0, t0

)
, SN ⊂ S, SG ⊂ S are respectively: an initial generalized

state, a set of not admissible generalized states, and a set of goal generalized
states, i.e. the states in which we want the process to take place at the end.

The transition function is defined by means of two functions, f = (fx, ft) where
fx : U ×X × T → X determines the next state ft : U ×X × T → T determines
the next time instant. It is assumed that the difference Δt = ft(u, x, t) − t has
a value that is both finite and positive.

Thus, as a result of the decision u that is taken or realised at the proper state
x and the moment t, the state of the process changes for x′ = fx(u, x, t) that is
observed at the moment t′ = ft(u, x, t) = t+Δt.

Because not all decisions defined formally make sense in certain situations,
the transition function f is defined as a partial one. Thanks to it, all limitations
concerning the control decisions in a given state s can be defined in a convenient
way by means of so-called sets of possible decisions Up(s), and defined as: Up(s) =
{u ∈ U : (u, s) ∈ Dom f}.

At the same time a DMP is represented by a set of its trajectories that start
from the initial state s0. It is assumed that no state of a trajectory, apart from
the last one, may belong to the set SN or has an empty set of possible decisions.
Only a trajectory that ends in the set of goal states is admissible. The control
sequence determining an admissible trajectory is an admissible control sequence
(decision sequence). The task of optimisation lies in the fact of finding such an
admissible decision sequence ũ that would minimize a certain criterion Q.

In the most general case, sets U and X may be presented as a cartesian
product U = U1×U2× . . . Um, X = X1×X2× . . .Xn i.e. u = (u1, u2, . . . um),
x = (x1, x2, . . . , xn). There are no limitations imposed on the sets, in particular
they have not to be numerical. Thus values of particular co-ordinates of a state
may be names of elements (symbols) as well as some objects (e.g. finite set,
sequence etc.). Particular ui represent separate decisions that must or may be
taken at the same time. The sets SN , SF , and Up are formally defined with use
of logical formulae. Therefore, the complete model constitutes a specialised form
of a knowledge-based model (logic-algebraic model). According to it’s structure
the knowledge on DMP is represented by coded information on U , S, s0, f , SN ,
SG. Function f may be defined by means of procedure or by means of rules of
type IF..THEN.

The presented paradigm of knowledge based model consists of the following
main procedures realising rules IF..THEN, utilizes by control algorithms: proce-
dure that generates and examines subsets of possible decisions Up(s), procedures
that realize the function f (in the most cases it is a vector function), i.e. de-
termine the next state (x′, t′) = f(u, x, t), procedures that examine if the state
belongs to the set SN or SG. All the procedures are based on information ac-
quired from three sources: description of manufacturing process that take into
account all its limitation, expert knowledge referring to control rules, results of
computer simulation experiments. The basic structure of DMP (def.1) is usually
created on a basis of process technology description. Basing on additional expert
knowledge (or analysis of DMP) subsets of states can be differentiated, for which
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best decisions or some decision choice rules R (control rules) are known. Simi-
larly, some subsets of advantageous or disadvantageous states for the controlled
process can be determined. Formally, the knowledge allow us restrict sets of
possible decisions Up. Knowledge represented by the basic knowledge structure
DMP (def.1) enriched by expert knowledge creates the knowledge-based model
KBM of DMP. The knowledge can be enriched further as a result of simulation
experiments.

Basing on the model of DMP different classes of algorithms can be formally
defined and analysed. For example in [6], [14], classes of branch & bound algo-
rithms for DMP control optimisation have been differentiated as well as some
rules of automatic creation of lower bounds have been given. In the next section
application of KBM of DMP for intelligent algorithm is presented.

3 Search Algorithms with Gathering Information

The most popular search algorithms consist in generating consecutive, possibly
better and better, trajectories. They use a specially created function or local
optimisation task for the choice of the best decision at each state of the generated
trajectory. The criterion for local optimisation is called a preference function or
simply heuristics. In this section we present a conception of algorithms that gain
information on the process and also use expert knowledge.

In the author’s earlier paper [4], [7], a certain general 3-stage method for de-
signing the heuristic algorithms of this type is proposed. Let us recall it briefly.
At the first stage, one formulates some conditions for the optimal (suboptimal)
solution. They refer directly to subsets of decisions, or/and determine the state
sets that are advantageous (or disadvantageous) from the criterion point of view
or for a possibility of generating an admissible trajectory. At the second stage,
one determines a local optimisation task. In order to do it, the information about
the distinguished, at the first stage, advantageous or disadvantageous states as
well as information on SG, SN and sets of possible decisions is used. As we need
the generated trajectory to run only through the advantageous states and to
avoid the disadvantageous ones, it seems most natural to introduce any measure
of distance in the state space, and to assume some local criterions. It was ex-
plained in [7] that different semimetrics can be used as approximate measures
of distance. Basing on the local change of the global criterion Q and maximiza-
tion (minimization) of the mentioned distances, we obtain the substitute local
problem, usually a multicriteria one. At the third stage, one should determine
the manner of solving the local multicriteria optimisation task. The basic ideas
of multicriteria decision approach [3], [4], [15], can be applied here. For learning
algorithms, however, the most useful are these solving manners that assume pri-
ority or weight coefficients for the particular criterions because these priorities
may be modified during consecutive simulation experiments. Each new gener-
ated trajectory is analysed. If it is not admissible, the reasons of the failure are
examined. For example, it is examined through which subsets of not advanta-
geous states the trajectory has passed. A role of the criterions connected with this
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subsets should be strengthened for the next trajectory i.e. the weights (priorities)
of these criterions should increase. When the generated trajectory is admissible,
the role of the criterions responsible for the trajectory quality can be strength-
ened, i.e. their weights can be increased. Basing on the gained information, the
local optimisation task is being improved during simulation experiments. This
process is treated as learning or intelligent searching algorithm. This conception
has been examined and is presented in [2].

If one posses additional expert knowledge, then a better algorithm would be
proposed. If some state subsets Sdi, i = 1, 2, . . . are distinguished and for these
states some rules for decision choice Ri, i = 1, 2, . . . are given by an expert
then algorithm should verify additionally to which subset the new generated
state belongs and should compute the suitable rule Ri. If rules given by expert
excludes some decisions then the suitable sets of possible decision Up(s) would
be decreased.

Another idea of learning algorithm for some scheduling problem is given in
[8], [13].

4 Example

To illustrate the application of the presented method, let us consider the follow-
ing scheduling problem that takes place when scheduling preparatory works in
mines.

The set of headings in a mine must be driven in order to render the ex-
ploitation field accessible. The headings form a net formally, represented by a
nonoriented multigraph G = (I, J, P ) where the set of branches J and the set
of nodes I represent the set of headings and the set of heading crossings respec-
tively, and relation P ⊂ (I×J×I) determines connections between the headings
(a partial order between the headings). There are two kinds of driving machines,
that differ in efficiency, cost of driving and necessity of transport. The first kind
machines (set M1) are more effective but a cost of driving by means of them is
much higher than for the second kind (set M2). Additionally, the first kind ma-
chines must be transported when driving starts from another heading crossing
than the one in which the machine is, while the second type machines need no
transport. Driving a heading cannot be interrupted before its completion and
can be done only by one machine a time. There are given due dates for some of
the headings. They result from the formerly prepared plan of fields’ exploitation.
One must determine the order of headings’ driving and the machine by means
of which each heading should be driven so that the total cost of driving should
be minimal and each of headings should be complete before its due date.

There are given: lengths of the headings, efficiency of both kinds of machines
(driving length per time unit), cost of a length unit driven for both kinds of
machines, cost of the time unit waiting for both kinds of machines, speed of
machine transport and transport cost per a length unit.

The problem is NP-hard [2]. NP-hardness of the problem justifies the ap-
plication of approximate (heuristic) algorithms. A role of a machine transport
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corresponds to retooling during a manufacturing process, but the time needed
for a transport of a machine depends on a process state while retooling does not.

The process state at any instant t is defined as a vector x = (x1, x2, . . . , xn),
n = |J |. A coordinate xj describes the state of the j-th heading (branch), xj =
(m,Δ, i, s) where m denotes the number of the machine that is assigned to the
j-th heading, Δ denotes the time after which the machine will be accessible, s
is a parameter that defines whether the machine is driving the heading (s = 1),
whether it is transported in the heading (s = 2) whether it is waiting in one of
the heading ends (the nearest heading crossings) (s = 3), i denotes the number
of the heading crossing (node) to which the machine is moving or in which it
is waiting. If there is no machine assigned to the heading then m = 0 and
s = 0. If the driving of a heading has been not started yet, then Δ = ∞
and when it is complete, then Δ = 0. The initial state x0 = (0,∞, 0, 0). For
any state (x, t) one can determine a set of headings that are being driven (J1),
the driving of which is complete (J2), and not started yet (J3). A state (x, t)
belongs to the set of not admissible states if there is a heading whose driving
is not complete yet and its due date is earlier than t. Formally, SN = {(x, t) :
there exists j /∈ J2 such that d(j) < t} where d(j) denotes the due date for the
j-th heading. A state (x, t) is a goal one if all the headings have been driven, i.e.
SG = {(x, t) : ∀j ∈ J, j ∈ J2}.

A decision determines the headings that should be started at the moment
t, machines which should drive, machines that should be transported, headings
along which machines are to be transported and machines that should wait.
Thus, the decision u = (u1, u2, . . . , un) where the co-ordinate uj refers to the
j-th heading and is of the form: uj = (m, q). The symbol m denotes the number
of a machine that is assigned to the heading. The parameter q ∈ {0, 1, 2, 3}
and denotes respectively: waiting, driving, transport and withdrawing of the
machine. When a machine m ∈ M1 is in the node i and should drive the k-th
heading that is not adjacent to the i-th node, then the machine is transported
in the nearest way accessible in the considered state. This way is computed by
the Ford’s algorithm (a polynomial one).

Obviously, not all the pairs (m, q) constitute possible decisions in the state
(x, t). For example, a decision uj = (mk, 1) is possible only when the j-th heading
is both being neither driven nor complete and the machine mk is in the one of
the heading crossing adjacent to the j-th heading. The complete definition of
the set of the possible decision Up(x, t) will be omitted here because it is not
necessary to explain the idea of the algorithm. The detailed description of the
formal model for the considered problem is given in [2].

The algorithm for the solution of the problem consists in generating consecu-
tive trajectories. Each of them is generated with the use of the specially designed
local optimisation task and then is analysed. The information gained as a result
of the analysis is used in order to modify the local optimisation task for the next
trajectory, i.e. for the next simulation experiment. This approach is treated as
learning without a teacher.
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Fig. 1. Block-schema of the algorithm
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The construction of the local optimisation criterion q for the presented exam-
ple is based on two criteria. The first one, denoted as q1 refers to the minimal
increment of the global criterion value, computed from the current to the last
state of a generated trajectory. The second one denoted as q2 takes into account
that the trajectory should pass possibly far from the not admissible states, or
from the states from which there is a little chance to accomplish a goal state.
Thus the local criterion q = q1+bq2, where b is a parameter that is being changed
during simulation experiments.

q1 = ΔQ(u, x, t) +Q′(x′, t′)

where ΔQ denotes the increment of the global criterion Q during a simulation
step, i.e. when the current state (x, t) is changed, as a result of the decision
u, to the state (x′, t′) = f(u, x, t). Q′(x′, t′) is a lower estimation of the global
criterion value for the latter part of the trajectory, i.e. for the part that starts
from the state (x′, t′). This estimation is equal to the lowest cost of the driving
of the remaining headings when the limitations referring to the due dates are
neglected. The lowest cost is computed under assumption that only machines of
the second type (set M2) are applied.

Criterion q2 takes into account consequences of the decision u from the due
date limitations point of view. L(x′, t′) estimates a minimal relative distance
between the new state (x′, t′) and the set of not admissible states SN .

q2 =
1

L(x′, t′)

L(x′, t′) is computed as follows. For the state x′, the set of accessible headings’
crossings is determined, i.e. the crossings from which driving can be started.
There is also determined the set of headings J ′ whose driving has been not
started yet and which have the due dates. For each of the headings, the shortest
time needed for performing it is computed. It is denoted as st(j) where j is
the number of the heading. The time is needed for driving all the headings
that constitute the shortest way from an accessible heading crossing and for
performing the considered heading. It is assumed that the driving is performed by
means of the first kind machines (i.e. the more effective ones) and their transport
to the accessible crossing is neglected. Then, for the each of the headings the
difference d(j) − st(j) − t′ is computed. If any of the differences has negative
value, the generated trajectory cannot be admissible and is rejected. If all the
differences are nonnegative, L(x′, t′) is given by formula:

L(x′, t′) = min
j∈J′

d(j)− st(j)− t′

d(j)− t′
= min

j∈J′

(
1− st(j)

d(j)− t′

)
.

The formula is not applied for the headings that had been determined earlier
on a basis of the expert knowledge or bottom up analysis. Finally the local
criterion q consists of 3 components:

q = ΔQ(u, x, t) +Q′(x′, t′) + b
1

L(x′, t′)
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The value of the criterion q is computed for each u ∈ Up(x, t). This decision u∗

for which the criterion value is minimal is chosen. Then the next state (x′, t′) =
f(u∗, x, t) is generated and the new best decision u ∈ Up(x′, t′) is chosen. If a
newly generated trajectory is admissible and for most of its states the distance to
the set of not admissible states is relatively big, the parameter b can be decreased.
In such a situation the role of the optimisation compound is enlarged. On the
contrary, when the generated trajectory is not admissible, the parameter b should
be increased because then the greater emphasis should be put to the due date
limitations.

The presented conception is an essential extension of the one given in [2].
Computer experiments that have been carried out for the simpler algorithm are
presented in [2]. They confirmed that learning-based approach is very efficient.
Basing on those results one may be sure that the presented algorithm that use
additionally an expert knowledge will be very efficient too.

5 Conclusions

The paper presents a conception of intelligent search algorithms (learning-based
algorithms) for scheduling. A large number of difficult scheduling problems in
manufacturing can be efficiently solved by means of these algorithms. A basis for
the algorithms is a special kind of knowledge-based model of DMP that is given
in the paper. A structure of the presented knowledge representation for DMP
can be used also for another class of optimisation algorithms for DMP, e.g. for
branch & bound ones [6], [14].

It should be pointed out that the presented KR structure is also useful for
creating simulation packages for a large class of discrete processes because the
special form of the model enables one to create the simulation package of a
modular form. Such simulation package of a mixed structure, combining KR and
multiagent system can be used for testing and developing strategies, prepared
for crisis management.

To illustrate the conception, the learning-based algorithm for preparatory
work in a mine is presented.
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Abstract. The aim of the article is to suggest knowledge representation
in modeling pedestrian traffic dynamics using the method of Cellular
Automata. The article also proposes a modified formalization of Cellular
Automata. The formalization enables the introduction of a new automata
class with automata exceeding their classic formula, under which the
condition of a cell depends only on local relations. The extended idea of
the Cellular Automaton makes considering global relations in decision-
making processes possible. The automata class presented here is used in
modeling pedestrian dynamics in crowd.

1 Introduction

The article deals with modeling dynamic phenomena using Cellular Automata.
The idea of a Cellular Automaton is used in many research areas. They are used,
among others, in research on natural phenomena, such as flowing lava [11], forest
fires or modeling water flows, e.g. in the case of an anastomosis river [13]. Other
uses include modeling flora and fauna populations, e.g. growing of foraminifer-
ane [12], simulation of fish shoal movements or simulation of birds flock move-
ment [10]. Since the beginning of the 90-ties, Cellular Automata have been used
in modeling people’s behavior. At the beginning, the research covered modeling
car traffic, then, the modeling of pedestrian traffic dynamics became more and
more common [1]–[9], [14]–[16].

The Cellular Automaton is characterized by the fact that global processes can
be modeled with the use of adequately defined local relation. In order to make
a model using the CA, it is necessary to define a series of ideas such as a set
of cells with its topology, the idea of a cell neighborhood necessary to define
a local transformation as well as the set of cell states and rules which define
local transformation.

The paper aim is three–fold. The first goal is to present a formal description
of CA in such a way that the formalization would cover all the applications of
CA done so far in different phenomena modeling. Simultaneously it would be the
base for creating an extended version of Cellular Automata which are suitable
for new applications. The second goal is to propose a concept of the so-called
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extended Cellular Automata. The third goal is the presentation of using the
extended Cellular Automaton in modeling intelligent behavior of people in the
crowd.

The authors propose a formal description of Cellular Automata, allowing to
broaden the idea of Cellular Automata for many specific applications. The idea
of a new definition of the Cellular Automaton is given in the paper. In this
definition, the state of a cell depends not only on its direct surrounding. The
extended definition of a Cellular Automaton is used, for instance, in the problems
of pedestrian traffic dynamics modeling.

2 Formal Models of Cellular Automata

Two definitions of Cellular Automaton can be found in publications. The first
of them, known as Ferber’s definition says [7]:

Ferber’s definition. Cellular automata are discrete dynamical systems, whose
behavior is completely specified in terms of a local relation.

Another popular definition of the Cellular Automaton according to Weimar,
similarly describes only local relations [17]:

Weimar’s definition. Let us take into consideration four elements: (L, S,
N, f), where: L - Set of cells of the lattice, S - Set of states, N - Set of
neighbors, f - transition function. Additionally, a configuration Ct:L → S
is defined as a function, which associates each state with a grid cell. An
equation of change of a configuration is shown by the equation (1) with the
supplement (2).

Ct+1(r) = f ({Ct(i)|i ∈ N(r)}) (1)

where:

N(r) - set of neighbors of cells r,
r - current cell number,
t - discrete time step t = t+ 1,
i - single cell.

N(r) = {i ∈ L|r − i ∈ N} (2)

Table 1. Weimar’s definition of Cellular Automata

Definition Description
L – consist of discrete lattice of cells

t → t + 1 – evolution takes place in discrete time steps
S – set of ”finite” states

f : Sn → S – each cell evolves according to the same rule
N : ∀c ∈ N, ∀r ∈ L : r + c ∈ L – the neighborhood relation is local and uniform
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Most models based on Cellular Automata, especially those ones which concern
pedestrian traffic dynamics, exceed the CA definitions presented above. Often
the models’ authors point to the lack of adequate formalization. The formalism
presented here assumes the following:

– model uniformity based on an identical definition of neighborhood for all
cells

– grid regularity
– identical for each cell local transformation which assigns state of next cell,

depending on the neighborhood state.

This uniformity makes modeling more complicated processes impossible. A
good example of exceeding the formalism mentioned above can be uniting Cellu-
lar Automata with the Multi-Agent System used in pedestrian traffic simulation
in a shopping center [4], or the use of static potential fields in the evacuation of
passenger liners [6]. In papers [14], [15], [16], which are devoted to the strategic
abilities of pedestrians, both local and global dependence of individual automa-
ton cells are considered. The latter cover, for example, the evacuation process
of a group of people – the problem of choosing the exit form a set of accessible
ones, where the parameters influencing the decision are: distance from the exit,
densification in exit neighborhood (neighborhood having a specific radius) and
dynamics of densification changes in exit neighborhood [15].

Therefore, there is a need to define a new class of automata which enables the
consideration of global relations in the whole grid. The starting point is made
up of classical Cellular Automata. Hence, it is necessary to define them in such
a way, as to make the definition of a new class of Cellular Automata possible on
their base.

2.1 Suggested Formal Model

Here we are going to specify a formal definition of a Cellular Automaton which
will be called by the authors a Cellular Automaton with a constant grid. The
authors suggest a formal model of a Cellular Automaton slightly different from
the most commonly used definitions.

The authors suggest such a formal form that will cover a broader class of
automata than the automaton defined above. Additionally, this form enables,
by making some parts of the definition more precise, to differentiate subclasses
of Cellular Automata. Since the introduced definition is slightly different from
others published so far, a name of a Cellular Automaton with constant grid has
been introduced to make it differ. Also, the name should stress the fact that this
automaton will be used in modeling the systems where the set of cells and their
mutual position will not be changed. Such grid is used when spatial structures
with the topology not changing in time are modeled (roads, compartments etc.).

In order to define automata with a static grid, ideas and denotations intro-
duced for the definition needs will be presented:
The set of cells will be marked by C. In the C set we will define the adjacent
relation Rp ⊂ C × C which has a symmetry property and is an anti-reflexive
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relation, namely ciRpcj ⇔ cjRpci and ∀(ci ∈ C): (ci, ci) ∈ Rp. This relation will
be used to define different grid formats (different topologies in the set of cells).
Especially, it allows to construct irregular grids. By L grid, the set of cells C
with its adjacent relation Rp will be understood, therefore L = (C, Rp).

Each cell has a defined neighborhood. In the model it is assumed that the
definition of neighborhood need not be identical for all the cells of the C set. It
will give a possibility of different defining the neighborhood for some discrimi-
nated cell subsets (e.g. for the cells which will be defined as boundary ones in a
model). The connectivity of a neighborhood set will also be assumed. To define
this connectivity the adjacent relation and the so-called indirect adjacent rela-
tion Rpp defined on its base will be used. Let us say that the cell cj is indirectly
adjacent to ci only, when there is a sequence of cells from cj to ci which are
adjacent cells. It can be formally recorded as equation 3:

cjRppci ⇔ ∃(cj1, cj2, . . . , cjn) such that cj1 = ck, cjn = ci
and cjkRpcjk+1 for j = 1, 2, . . . , n− 1 (3)

By cell ci neighborhood we mean a discriminated set of cells in which each
cell ck is adjacent or indirectly adjacent to the cell ci i.e. ckRppci. Naturally,
ckRpci ⇒ ckRppci and it is easy to show that the indirect adjacent relation is
symmetrical, anti-reflexive and transitive.

Neighborhood will be defined by the use of a function η:C→ 2C , which as-
signs a subset of cells being its neighborhood η(c) to each cell c ∈ C. (2C denotes
a set of all subsets of the set C). The function η will be called a neighborhood
function. Let us notice that the introduction of the neighborhood function en-
ables independent defining neighborhoods having an irregular shape. Of course,
it does not exclude a situation when the neighborhood is defined identically for
all the cells and has a regular shape.

Let us denote a set of cell states as S. The function con:C→ S which assigns
to each cell, its state con(c) = s ∈ S c will be called a configuration. Since the
configuration denotes the states of all the cells, it will be identified with the state
of the whole grid. The set of configurations will be denoted as CON . This set
will correspond to the set of automaton states. We will also use the notation s(c)
to determine the state of the cell [5].

Configuration changes will be defined with the transition function
f :CON → CON which assigns the next configuration to each configuration
f(cont) = cont+1.

The function f is the function of a global change of states. As we we know,
the essence of the cellular automaton lies in the fact that the determination of
a next configuration is done with the locally defined transformation which is
calculated successively for each cell belonging to the grid or for cells from some
subsets (if the state of the remaining cells does not change). In order to define
the transition function, local rules which allow modeling behavior of the whole
system will be introduced.

Let us denote the restriction of function con to the set η(ci) as con/η(ci),
i.e. con/η(ci) is determined only for arguments from the set η(ci) thus deter-
mining states of all the cells belonging to the neighborhood of the cell ci. Let
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r denotes a local transformation that on a base of the i − thcell′s state at the
moment t – st(ci) and its neighborhood configuration cont/η(ci) determines the
state of this cell in the next moment, i.e.: r(st(ci), cont/η(ci)) = st+1(ci). This
local transformation will be called a local rule.

Now, the transition function f can be defined by the repeated calculation of
the function of the local rule r for consecutive cells as shown in (4).

f(cont) = cont+1, such that
∀ci ∈ C: cont+1(ci) = st+1(ci) = r(st(ci), cont/η(ci))

(4)

A Cellular Automaton with a constant grid denoted as CALconst, will be de-
fined as the seventuple (5).

CALconst = (C, Rp, η, S, CON, r, f) (5)

Using generally accepted terminology in the automata theory we can say that
the Cellular Automaton CALconst is a particular kind of automaton without
input CALconst = (X, f), for which the set of states is equivalent to the con-
figuration set X ≡ CON where the configuration con is defined as a function
con:C → S, and f is a transition function f :CON → CON determined by
means of a notion of the local rule and the idea of the neighborhood.

3 Knowledge Representation in Pedestrian Traffic
Dynamics Modeling

It should be stressed that the Cellular Automaton can also be a model of know-
ledge representation about dynamic processes.

3.1 Extended CA Concept in Pedestrian Traffic Dynamics Modeling

We are now going to present an extended model of a Cellular Automaton
CALconst, which is a schema for knowledge representation about certain behavior
of relocating people.

This representation has been suggested to model intelligent behavior of indi-
viduals in a relocating crowd. In order to illustrate the formalism introduced, a
model of intelligent behavior of people, when leaving a room with several exits
by a large group of people, will be presented.

An example of rules which prove intelligent behavior of individual people in
this case is:

– estimating the distance from the exits,
– analyzing the crowd at each exit.

On the base of such analysis, an individual decides to relocate towards this
exit which is best for them. Thus, in the model, the local rule r must regard
the information individual people make their decisions on and represent their
intelligence.
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Let us consider two properties of the introduced the definition of Cellular
Automata which was presented in the earlier chapter. Firstly, the local rule
assignees the next state of each cell depending on its present state and the state
of the neighborhood. Moreover, it changes only the state of this cell. Secondly,
the transition function is determined by the local rule which is calculated for
successive cells and the calculation order does not matter. For the needs of
pedestrian traffic modeling such a model is not sufficient.

Let us introduce the following extension in the model. The local rule will be
defined as a function changing not only the state of one cell but also selected
cells from its surrounding. The local rule will be defined as a function assigning
the next state of the cell not only on the base of its state and the states of the
neighboring cells but also on the base of the states of other discriminated cells.

The local rule, denoted now as rext can be shown as follows: rext:CON →
CON such that: rext(cont/η

∗(c), cont/A)) = cont+1/η
∗(c), where A is an extra

subset of cells, the state of which influences a future state of the cells from the
surrounding, whereas the symbol η∗(c) denotes the so-called full surrounding,
i.e. η∗(c) = η(c) ∪ {ci}.

Let us slightly change the definition of the transition function by assuming
that its calculation algorithm needs to fix the sequence of cell review. Such a
model of the Cellular Automaton will be called Extended Cellular Automaton
and will be denoted as ECALconst.

A simulation model of pedestrian traffic dynamics is a good example of the
use of the above formalization. The presented situation is leaving a large cinema
room by a group of pedestrians [15].

Let us present the room topology (Fig. 1). The room is represented by a
square grid L = (C, Rp) so each cell c is indexed with the use of two indexes ci,j
where 1 ≤ i ≤ imax, 1 ≤ j ≤ jmax, and the values imax and jmax result from the
room and cell sizes. The adjacent relation Rp coincides with the natural adjacent
relation in square grids. For all the cell, Moore neighborhood was assumed as
η(ci).

The following cell subsets are discriminated in the set C:

– exit set denoted as E. Exits can be defined differently. In the discussed model,
the exit corresponds to several cells and is denoted as e. Each exit consists
of a subset of adjacent cells. Thus, e.g. e1 = {c5,6, c6,6, c7,6}.

– the set of cells corresponding to four walls W =W1 ∪W2 ∪W3 ∪W4 where
Wi represents the cells of the i − thwall. For example, the first wall W1 is
defined as W1 = {cij ⊂ C: j = 1 and 1 ≤ i ≤ imax}\e1.

– the set of cells representing the room interior: this set consists of a subset of
cells representing chairs which are obstacles, denoted as O and a subset of
cells being a room for pedestrian traffic denoted as MS.

The set of cell states S = {0, 1} where s(c) = 0 denotes an empty cell and
s(c) = 1 denotes a cell occupied by one person [6]. For all the cell from the set
O s(c) = 1 has been assumed. The size of the cell was calculated on the base of
a field which is averagely taken by a person in a dense crowd, namely 40cm by
40cm.
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In the room a population of people is generated at random. Pedestrian traffic
is registered at discrete time intervals. These people leave the room in discrete
time intervals, through accessible exits.

The pedestrians make a decision about the direction of the movement on
the base of global space information, namely about their direct surrounding
(neighborhood) as well as the whole room, especially about the density of people
near the exits and their distance from them.

People are represented in the model by the cell occupancy s(c) = 1, for c ∈MS
(MS - Movement Space). Their movement depends directly on the state of the
neighborhood (cell occupancy).

Assuming homogeneity of the set of people, the movement is represented by
an identical local rule r. This rule depends on both the state of neighboring cells
con(η(c)) and the state of the cells near the exits.

The subset of cells making up the surroundings of each exit which are distin-
guished in the model corresponds to set A in the rule definition. A new state of
ci belonging to its full surrounding is computed on the base of the rule rext. The
rule for the individual in ci ∈MS, denoted as r(ci) is computed as follows.

1. The cost function cost(ci, ej) for each of the exits ej ∈ E:

cost(ci, ej) = w1dist(ci, ej) + w2dens(ej) (6)

where:
w1, w2 – fixed determined coefficients

dist(ci, ej) – the smallest number of cells which make up the way
from ci cell to any exit cell ej (i.e. the length of such a
shortest way between ci, ck that ck ∈ ej , where the way
w(ci, ck) from ci to ck is a sequence of adjacent cells
linking ci with ck).

dens(ej) – the function characterising crowd density in surrounding
A(ej) around an exit ej , expressed by (7).

dens(ej) =

∑
ci∈A(ej) s(ci)

|A(ej)|
(7)

where:
|A(ej)| – number of cells belonging to the surrounding ej

2. This exit e∗ is selected for which cost(ci, e∗) has the lowest value.
3. The state of the cell surrounding ci, cont/η(ci) is analyzed and an empty

cell cj adjacent to ci and belonging to the way w(ci, e∗) is selected. If there is
no such an empty cell, then an empty cell which is nearest the way w(ci, e∗)
towards the exit e∗ is selected.

4. The state of the cell cj is modified : st+1(cj) = 1.
5. The state of the cell ci is modified : s(ci) = 0.

The transition function modifies cell states iteratively in the determined se-
quence using the rule rext, and:
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– if the cell state changes from 0 to 1,then such a state cannot change during
the time-step-slice (despite later cell reviewing in the time-step-slice).

– if the cell state ci changes from 1 to 0, then it can change again to 1 within
the same time-step-slice.

The modification direction of cell state is defined in the model starting from
the exits inside the room using the ”wave propagation” method [15].

3.2 Model Implementation

Figure 1 shows a topology of the presented model. The topology is described in
previous sections.

A computer application based on the described model has been made. On
Fig. 2 there is shown a room being left by a group of people. People, represented

Fig. 1. Topology of the room described in the model

Fig. 2. An application based on the model. The room is a cinema hall being left by a
group of pedestrians, which are represented by black arrows.
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by arrows are leaving the cinema hall, through three accessible exits. Black cells
inside the room represent chairs. The situation, when the pedestrian cannot move
in the preferred direction is described by an arrow in the red field. A detailed
implementation is described in [15].

4 Conclusions

The article is connected with knowledge representation about dynamic spatial
processes. The knowledge representation uses the idea of a Cellular Automaton.
The first aim of the article was to suggest a new formal definition of the Cellu-
lar Automaton. This definition was to be the base for making different dynamic
models of space problems. The suggested formalization encompass a wider range
of automata than definitions discussed so far. Moreover, the presented formal-
ization makes it possible to classify models more rigorously, to compare them
and also, enables to differentiate subclasses of cellular automata by making some
parts of definitions more detailed.

Since the presented definition is slightly different than others met so far, the
name Cellular Automaton with a constant grid has been introduced to make it
differ. The name should additionally stress the fact that the automaton will be
used in modeling systems with constant space typology.

The next aim of the paper was to present an extended idea and formal defini-
tion of a Cellular Automaton ECALconst making modeling of a broader class of
dynamic processes possible. This idea enables a rigorous presentation of a model
of a broad group of problems connected with pedestrian traffic. The presented
modified formalization of cellular automata enables defining both the basic idea
of a Cellular Automaton, in which the state of the cell and its change depend
only on local relations, and an extension of an idea of a Cellular Automaton by
global properties.

The presented formalism was illustrated with a model for pedestrian traffic
simulation and testing potential strategies. The idea of an extended Cellular Au-
tomaton has been used to present the model of intelligent behavior of individuals
in a crowd.
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Abstract. This paper presents the dense areas based algorithm for
generating fuzzy rules for classification WWW documents. Description
document clusters in the form of fuzzy rules (FR) make possible the
presentation of information in the form fuzzy granules. Moreover, each
cluster might be described by several fuzzy rules. These fuzzy rules can
be used as the knowledge base for searching new information from WWW
resources with regard to specific topics and users’ requirements.

1 Introduction

An enormous growth of the Internet and significant development of telecommu-
nication techniques enable users to access WWW resources. About 11.5 billion
WWW pages have been created until January 2005 [9]. Changeability and large
amount of WWW pages is a big challenge for modern crawlers and search en-
gines. They should reflect WWW resources as accurately as possible and also
hold information about WWW resources as freshly as possible. Complete crawl-
ing entire Web is impossible in reasonable time, no matter which technology is
available at the site where the search engines operate. The ideal crawler should
be able to recognize relevance and importance of Web pages. The crawlers can
order new links extracted from downloaded WWW pages. This can be accom-
plished by using different methods (e.g. measurement similarity between pages
and a current query, amount of the links to point out WWW pages or the most
popular Page Rank). Precise description of these methods as well others may
be found in [6]. To deal with enormous WWW resources these methods are not
enough efficient. One of the possible solutions of this problem can be the use
of methods that are based on focused crawling. This approach makes possible
to avoid areas of WWW resources that are not relevant to the information re-
quirements of the user. Hersovici et al., in paper [11], proposed the shark-search
algorithm of WWW resources. This approach searches WWW resources based
on the assumption that relevant WWW pages usually are in relevant neighbour-
hood. Chakrabarti et al., in paper [4], proposed the focused crawling approach in
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which a crawler selectively discovers pages that are relevant to a pre-defined set
of topics. The topics are specified by using exemplary documents. Rungsawang
et al. [17] proposed the consecutive crawling to take advantage of experience
from earlier crawling process. They build some knowledge base, which are used
to produce better result for the next crawling. The classification process plays an
important role in the scope of information retrieval. In order to classify WWW
pages, different methods are used, such as: k-nearest neighbors algorithm (k-NN),
Naive Bayes, support vector machines (SVM), decision trees, neural networks or
induction of classification rules. Accurate description of these and other methods
may be found in [15], [7], [13], [21]. A classifier can be used to distinguish between
relevant and irrelevant WWW pages or resources, to help in a semi-automatic
construction of large knowledge bases or to classify unknown Web pages to some
predefined categories.

This paper presents an algorithm for fuzzy rules determination, based on
dense areas, for WWW documents classification. This paper is organized as fol-
lows. Section 1 presents an introduction concerning information retrieval. The
next section shortly describes a vector space model for text classification, pre-
processing of WWW pages (parsing, stemming, tokenization of WWW pages),
and most important methods to calculate importance of tokens of WWW pages
and used normalization. A fuzzy inference system, simple fuzzy rules and mem-
bership functions are presented in Section 3. An algorithm for determination of
the fuzzy rules based on dense areas is presented in Section 4. Experiments and
their results are described in Section 5. Final remarks and directions of further
works are outlined in Section 6.

2 Preprocessing of WWW Pages

Preprocessing of WWW pages is performed at the first phase. First of all, the
WWW pages are parsed. The WWW pages are reduced to an unstructured rep-
resentation. This can be achieved by retaining the text enclosed between <html>
and </html> tags. The html tags, part of the text between script tags, some
characters (e.g. %, #, $), numbers and other elements can be removed. The con-
version of strings that encode international characters to standard representation
should be done, if necessary. A well-designed parser ought to have a simple rule
base (including e.g. html tags, script tags), which can be easily modified.

Then, stemming is applied to WWW pages. The stemming process reduces
words to their root form, which become an actual index of terms. One of first
method of this kind is Porter stemming algorithm [16] introduced in 1978. A
new version of this algorithm may be found in [12].

Next, the stop-words are removed from WWW pages. The next phase is the
process of tokenization. In this phase, a list of keywords (terms), in the form of
pairs (term, number of appearance in document), is created. If we have a keyword
dictionary for some languages, we perform reduction of terms. As a result of the
initial process with regard to WWW pages, we obtain a vector space model of
terms in the form
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xi = [xi0, xi1, . . . , xiK−1]T , i = 0, 1, . . . , N − 1

where: N – number of WWW pages, K – number of keywords, xij – number of
appearance of keyword j in document i, for j = 0, 1, . . . ,K − 1.

The vectors of keywords that represent WWW pages reflect a degree of asso-
ciation between keywords and WWW pages in the form of term weights. Most
of methods determine these weights based on statistics. One of the simplest
methods calculates the term frequency (TF) of WWW pages as follows [3]

TFij =
xij

ki
(1)

where ki – number of keywords in document i.
This method is a very poor way to determine the degree of association be-

tween keywords and documents. The term weights can be inversed accord-
ing to the number of occurrences in different documents. In order to achieve
this relationship, we calculate the inverse document frequency by the following
formula [3]

IDFj = log
N

nj
(2)

where nj – number of documents in the collection of N documents in which
keyword j occurs.

The most popular method determining term weights is the product of TF
and IDF , in the form [3]

TFij · IDFj =
xij

ki
· log

(
N

nj

)
. (3)

WWW documents have different sizes. For a short document, possibility of use
a keyword is smaller that for large documents. For large documents, TF achieves
large values. In order to neutralize this unfavorable effect, we can use one of
normalization methods. The most popular method is the cosine normalization,
which gives the following equations, when applied to (1) and (3), respectively

Norm TFij =
xij

ki√
K−1∑
m=0

(
xim

ki

)2
(4)

Norm TFij · IDFj =

xij

ki
· log

(
N
nj

)
√

K−1∑
m=0

(
xim

ki
· log

(
N
nm

))2
. (5)

The number of keywords to represent WWW pages can be restricted by select-
ing those keywords for which the number of occurrences in different documents
is bigger than a certain threshold, P , which depends on the number of WWW
pages. Some of the keywords, for which the frequency of occurrence is too high,
can be removed.
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3 Fuzzy Rules and Fuzzy Inference System

The key point of the issue of focused crawling is searching new information from
WWW resources related to some specific topic or a set of topics. The information
requirements by users, and topic classification of the WWW documents, are
uncertain. We cannot describe these needs by use of the classical set theory and
Boolean logic. In order to catch this non-crisp information, we should apply the
fuzzy logic [23], [24]. In paper [14], Kraft et al., presents different approaches
to fuzzy rules construction. In this paper, we are focusing exclusively on fuzzy
description of classes of WWW documents that belong to specific topics, in the
form of fuzzy rules. These rules can be a part of a fuzzy inference system (FIS).
Precise description of FIS can be found e.g. in [20], [18], [19]. Standard FIS
consists of the following elements: rule base, fuzzyfication unit, inference unit,
defuzzyfication unit. The rules, in the rule base, are of the following form

R(l) : IF x0 is Al
0 AND x1 is Al

1 AND . . . AND xK−1 is Al
K−1 (6)

THEN y is Bl

where: l = 0, 1, . . . , L− 1, so L – number of fuzzy rules; x = [x0, x1, . . . , xK−1]T

– linguistic variables that corresponds to inputs of FIS; Al
i – fuzzy set for input

linguistic variable, for i = 0, 1, . . . ,K − 1, and Bl – fuzzy set that corresponds
to the output linguistic variable y.

For classification tasks, we apply the simpler form of the rules, as follows

R(l) : IF x0 is Al
0 AND x1 is Al

1 AND . . . AND xK−1 is Al
K−1 (7)

THEN y ∈ class c

where c is the number associated with the class corresponding to this rule, c =
0, 1, . . . , C − 1, and C – number of classes; see Section 4.

The inference based on the rule of this type determines the rule activation
degree. Fuzzy set Al

i is defined by Gaussian membership function [20]

μA(xi) = exp
(
−(xi − vl

i)
2

(σl
i)2

)
(8)

or asymmetrical Gaussian membership function

μAl
i
(xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
−(xi−vl

i)
2

(σl
li

)2

)
if xi < v

l
i

exp
(

−(xi−vl
i)

2

(σl
ri

)2

)
if xi > v

l
i

1 if xi = vl
i

(9)

where: vl
i – center, σl – width, σl

r , σ
l
l – right and left parts of width of the

membership functions.
To determine fuzzy rules (8) and (9), it is necessary to calculate the parameters

of fuzzy sets Al
i .



Algorithm for Generating Fuzzy Rules for WWW Document Classification 1115

4 Algorithm for Fuzzy Rules Generation

In [22] Tao et al. provide unsupervised fuzzy clustering algorithm to cluster pixels
in a color image. This algorithm is based on the subtractive clustering algorithm,
proposed in [5], which uses the density function, similar to that expressed by Eq.
(10). The "density" is understood as number of points in the neighborhood. We
modify this algorithm in order to determine fuzzy rules for classification WWW
documents. In this way, we obtain the following algorithm.

Let us denote:
xc = [xc

0,x
c
1, . . . ,x

c
Nc−1]

T , where N c – number of vectors which describe WWW
pages that belong to cluster c, for c = 0, 1, . . . , C − 1; C – number of classes,
xc

i = [xc
i0, x

c
i1, ..., x

c
iK−1]

T , where K – number of keywords (vector length); this
vector includes term weights, dc = [dc

0, d
c
1, ..., d

c
Nc−1]

T – density vector that cor-
responds to individual vectors xc

i which includes information about the number
of other vectors in radius rck, Dl = [Dc0, Dc1, . . . , DcLc−1]T – density vector that
corresponds to membership functions μAcl , where l = 0, 1, . . . , Lc − 1, and Lc –
number of generated rules for class c.

The basic function that describes the density of vectors, also called the density
function, is expressed as follows

dc
i =

Nc−1∑
j=0

K−1∏
k=0

exp

(
−

(xc
jk − xc

ik)2

(rck)2

)
−

Lc−1∑
l=0

Dcl ·
K−1∏
k=0

μAcl
k

(xc
ik) (10)

where membership function μAcl
k

is defined by (8) and (9).
The algorithm that determines fuzzy rules can be presented in the following

steps:

1. Let L = 0;
2. Determine the parameter value, rck, depending on the domain of the input

values

rck =
maxj=0,1,...,Nc−1(xc

jk)−minj=0,1,...,Nc−1(xc
jk)

R
(11)

where R – multiple factor domain of input values (this factor influences on
the number of fuzzy rules and accuracy of classification).

3. Calculate the density function for each vector xc
i , by use of Eq. (10).

4. Determine m such that

dc
m = max

i=0,1,...,Nc−1
(dc

i )

5. If the density value dc
m > 0, then go to step (6), else stop the algorithm.

6. Set initial values of parameters of membership functions μA
′c
k

v
′c
k = xc

mk, σ
′c
k = rck,
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7. Refresh center and width parameters of membership functions μA
′c
k

, using
Eqs. (12), (13) [8]

v
′c
k =

√√√√√√√√
Nc−1∑
j=0

μA
′c
k

(xc
jk) · xc

jk

Nc−1∑
j=0

μA
′c
k

(xc
jk)

(12)

σ
′c
k =

√√√√√√√√
Nc−1∑
j=0

μA
′c
k

(xc
jk) · (xc

jk − v
′c
k )2

Nc−1∑
j=0

μA
′c
k

(xc
jk)

(13)

where k = 0, 1, . . . ,K − 1 and c = 0, 1, . . . , C − 1.
Equation (12) is used to calculate the arithmetic weight-mean of the vectors,
in radius rck, by means of membership function μA

′c
k

.
8. Refresh the value of density dc

m using the following formula

dc
m =

Nc−1∑
j=0

K−1∏
k=0

μ
′c
k (xc

jk)−
Lc−1∑
l=0

Dcl ·
K−1∏
k=0

μAcl
k
(v

′c
k ) (14)

9. Increase the number of rules Lc = Lc + 1
Then, add the new membership function, determined in step 7, as follows

μAcLc−1
k

= μA
′c
k

and the density value obtained in step 8,

DcLc−1 = dc
m

where k = 0, 1, . . . ,K − 1, and K – number of keywords,
10. Go to step 3.

5 Experimental Results

In this paper, the algorithm for determination of fuzzy rules for WWW docu-
ment classification, based on dense areas is introduced. The algorithm was tested
on the set of 568 abstracts of documents that belong to four classes: Artificial
Intelligence (116), Robotics and Vision (92), Systems (202) and Theory (158),
available at WWW server [25]. In the initial process, we obtained 3819 keywords.

Experiments have been performed for selected keyword factor values P from
1 to 60. The number of keywords was determined by selecting these keywords
for which the number of occurrences in different documents was bigger than
threshold P . For each set of keywords, the cosine normalization TFij · IDFj was
calculated in order to create vectors that represent WWW pages. This set of
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vectors have been divided randomly into a training set (95% of all vectors), and
a testing set (5% of all vectors). The vectors from the testing set are not included
in the training set. The process of determination of fuzzy rules has been executed
100 times for different training sets. The results are presented in Fig. 1. The
best average result for training vectors is 96.75% for 551 keywords and 82.14%
for 232 keywords for testing vectors. Then, for 232 keywords (the best set of
keywords for the testing vectors set) the experiments have been done 100 times.
We determined ability of the fuzzy inference systems to correct classification,
depending on different length of the learning and testing sets. This relationship
is shown in Fig. 2. The experiments have been performed for other methods of
calculation of degree of association between keywords and WWW pages, such
as: TF , IDF , normalization TF , TF · IDF .

6 Final Remarks

Correctness of the classification weakly depends on methods of calculation of
term weights, for the algorithm presented in this paper. The results for the
testing vectors are worse than for the training vectors because of huge number
of keywords and the fact that some WWW pages contain only a small subset of
the keywords. Another reason is that some keywords from the testing sets may
not occur in the training sets or may occur very rarely. The effectiveness of the
algorithm for generating fuzzy rules is good even for very small training sets
(63.9% for 30% of all vectors, 52.5% for 20% of all vectors).

In further work, we plan to apply a two-phase algorithm. The first phase can
be used to obtain centers of fuzzy rules in high dimensional keyword space. These
centers can further be used for reduction of the keyword space. In this purpose,
we plan to employ a method based on the Orthogonal Basis of Centroids [2]. The
algorithm of generating the fuzzy rules will be applied once more for vectors in
a low dimensional space at the second phase. We expect that this two-phase
algorithm may improve the results. Some experiments have already been done,
and the improvements observed.
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Abstract. A new possibilistic-logic-based information retrieval model is
presented. Its main feature is an explicit representation of both vagueness
and uncertainty pervading the textual information representation and
processing. The weights of index terms in documents and queries are
directly interpreted as quantifying this vagueness and uncertainty. The
classical approaches to the term-weighting are tested on a standard data
set in order to validate their appropriateness for expressing vagueness
and uncertainty1.

1 Introduction

A model of information retrieval comprises the representation of both documents
and queries as well as a mechanism for their relevance (matching) assessment.
Usually both documents and queries are indexed with some keywords to obtain
required representations. This can be done either manually or automatically.
The words present in a document/query may play the role of keywords or a
controlled vocabulary may be employed.

Whichever indexing mode is assumed vagueness and uncertainty is present in
the process. The former manifests itself in a gradual nature of the relationship
between a document/query and a keyword used to represent it. This is not a
binary relationship: a keyword may be important for the representation of a
document or query to a degree. Such an assumption seems to be quite obvious.
It is now widely accepted and is the point of departure for the vector space model.
Moreover one cannot be completely sure about the exact assessment of such a
importance degree. This uncertainty should be also somehow represented. The
vagueness and uncertainty of the representation in a natural way transfers to
the notion of the relevance of a document for a query. It is a highly subjective
and vague notion. Its automatic assessment definitely adds some uncertainty.

In the logical models [1,2] logical formulae are used for the representation
purposes, and a kind of the logical entailment plays the role of the matching
mechanism. Many approaches of this type are known in the literature that use
various types of logic as their theoretical foundations (for the reviews cf., e.g.,
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[3,4]). A basic logical model may be defined as follows. The queries are repre-
sented as simple formulae of the classical propositional logic built of propositional
variables corresponding to the keywords. The documents are treated as the val-
uations of the propositional variables. A query and a document are recognized
as matching if the formula representing the query is true under the valuation
associated with the document.

Such a basic logical model is well-founded theoretically and provides the user
with a rich formalism for the query expression. Its main shortcomings are im-
plied by the binary nature of the classical logic employed. First of all, it is not
possible to express in a gradual way the importance of particular keywords for
the representation of the documents and queries. Secondly, also the relevance
of a document for a query is here a yes-no notion. On the other hand, as ar-
gued above, both concepts of the importance and the relevance are intrinsically
imprecise and that should be taken into account.

These phenomena are usually modelled using probabilistic approaches. How-
ever, in the context of logical models possibility theory, and in particular pos-
sibilistic logic might offer an interesting alternative. In this paper we propose
a possibilistic logic [5,6] based approach that makes possible an explicit repre-
sentation of vagueness and uncertainty pervading the information processing. In
particular we use an extended version of the possibilistic logic due to Lehmke
[7]. Our main goal in this paper is to check how the well-known term-weighting
approaches of the vector space model are applicable in the context of such a
logical model.

The related research comprises works on fuzzy logic based information re-
trieval approaches (cf., e.g., [8,9,10,11,12,13,14]) and on other non-classical logics
based approaches (cf., e.g., [1,2,4,3,15]). Some preliminary ideas of the approach
presented in this paper may be found in [16].

The organization of this paper is following: section 2 provides basics of the
possibilistic logic and its extension. Section 3 presents proposed model of infor-
mation retrieval and section 4 shows the results of some experiments.

2 Basics of the Possibilistic Logic and Its Extension

The possibilistic logic has been introduced by Dubois, Lang and Prade [5,6].
Here we recall only its basic concepts and limit our discussion to its propositional
version. Moreover we are interested mainly in its semantics.

The starting point is the classical propositional logic which is extended by
the introduction of weighted formulae. The motivation for the introduction of
weights is to make it possible to directly express the uncertainty as to the validity
of a formula: the higher the weight the more certain we are as to the validity of
the formula. This (un)certainty is modeled in the framework of the possibility
theory [17,18] and might be conveniently explained referring to the classical
logical notions of the interpretation and model.

Let us assume an alphabet of our language, i.e., a set A of the propositional
variables. Then, an interpretation (valuation) ω ∈ Ω is a function:
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ω : A→ {0, 1}

assigning the truth values 1 (“true”) or 0 (“false”) to all propositional variables of
the alphabet A. In the classical logic, for a given formula p we distinguish those
interpretations Ωp that make formula p true and we call ω ∈ Ωp models of p.
The characteristic function of the Ωp set may be then written as:

χΩp(ω) = ω(r) (1)

Thus assuming p is true makes the interpretations belonging to Ωp possible and
those belonging to Ω \Ωp impossible. Using the language of the possibility theory
[18,19] we will say that p induces the following possibility distribution on the set
of interpretations Ω:

πp(ω) = χΩp(ω) =
{

1 if ω ∈ Ωp

0 if ω /∈ Ωp (2)

In the propositional possibilistic logic the formulae take the following form:

(p, α) (3)

where α ∈ [0, 1] expresses the lower bound on the degree of certainty of p while
p is still assumed to be either “true (1)” or “false (0)”. The set Ω(p,α) of models
of the weighted formula (3) is fuzzy and its membership function is given by:

μΩ(p,α)(ω) =
{

1 if ω ∈ Ωp

1− α if ω /∈ Ωp (4)

Thus, analogously to (2), a weighted formula (p, α) induces, by definition, the
following possibility distribution on the set of interpretations Ω (cf. (2)):

π(p,α)(ω) = μΩ(p,α)(ω) =
{

1 if ω ∈ Ωp

1− α if ω /∈ Ωp (5)

If the state of knowledge is expressed with a formula (p, α) then the plausibility
of any formula r is defined as the pair of the possibility and necessity measures
(induced by the distribution π(p,α) (5)) of the set of r’s models, i.e., as:

(Π(Ωr),N (Ωr)) (6)

whereΠ andN denote the possibility and necessity measures, respectively, given
by

Π(Ωr) = max
ω∈Ωr

π(p,α)(ω) (7)

N (Ωr) = min
ω/∈Ωr

(1− π(p,α)(ω)) (8)

It may be easily checked that for the formula p, using (5) and (7)-(8) one obtains
for Π(Ωp) = 1 and N (Ωr) = α), i.e., it is to the degree 1 possible that p is true
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and to the degree α necessary that it is true - what is in the accordance with
the postulated interpretation of the weighted formula (3).

If a set of weighted formulae P = {(pi, αi)} is considered then jointly they
induce the following possibility distribution on Ω:

πP (ω) = min
i
π(pi,αi)(ω) (9)

We will use the weighted formulae (3) to express the uncertainty as to the
importance of a keyword for a document or query representation. As we assume
the importance to be a vague concept we will use an extension of the possibilistic
logic for the many valued case as proposed by Lehmke [7]. In this approach the
formulae are still weighted formulae, but the weights are interpreted differently
and referred to as labels. The notation of (3) changes to:

(p, l) (10)

Now the interpretation ω ∈ Ω is a function:

ω : A→ [0, 1]

A label l is interpreted as a fuzzy set of truth values :

μl : [0, 1] → [0, 1]

and (p, l) induces a possibility distribution π(p,l) on the set of interpretations Ω
such that:

π(p,l)(ω) = μl(ω(p)) (11)

For a set of formulae {(pi, li}) (the possibilistic knowledge base) a possibility
distribution induced by all of them jointly, is calculated as previously using (9).

Now the set of models Ωr of any formula r is, in general, fuzzy:

μΩr(ω) = ω(r) (12)

Thus if the state of knowledge is expressed with a formula (p, l) then the pos-
sibility that “r is true to degree α” [19] should be expressed as the fuzzy set τ
such that:

μτ (x) = sup
ω:ω(r)=x

π(ω)

This directly refers to the Zadeh’s concept of the fuzzy truth-value. However it
is inconvenient for our purposes and we use again the pair of the possibility and
necessity values (6) to express the plausibility of the formula r – as suggested,
e.g., in [19]. However this time he formulae (7)-(8) have to be adapted, taking
into account that Ωr is, in general, a fuzzy set:

Π(Ωr) = max
ω∈Ω

min(π(p,α)(ω), μΩr (ω)) (13)

N (Ωr) = min
ω∈Ω

max(1 − π(p,α)(ω), μΩr (ω)) (14)
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Some special labels l of interest here are as follows [7]. The label lT referred
to as “TRUE” has the membership function:

μlT (x) = x (15)

Thus assuming (p, lT ) is expressing the state of knowledge means that more
possible are interpretations giving p a higher truth value. A slightly modified
version of lT referred to as “TRUE with doubt δ” and denoted as lTδ is defined
by this membership function:

μlTδ
(x) =

{
δ ∀x ≤ δ
x ∀x > δ (16)

Assuming (p, lTδ ) is expressing the state of knowledge means that the certainty
of p is somehow limited, thus the possibility of interpretations assigning to p the
truth value lower than δ is equal δ instead of reducing towards 0 as it is the case
of lT .

3 The Model

The following notation will be used:

D = {di}i∈[1,N ] – is the set of documents,
T = {tj}j∈[1,M ] – is the set of index terms (keywords),
q – is a query,
d(tj) – is a weight assigned to the index term tj

in a document d,
q(tj) – is a weight assigned to the index term tj

in a query q.

It is assumed that the documents and queries are indexed using usual term-
weighting approaches (c.f., e.g. [20]). Thus, each index term is assigned a weight
in each document and query. This weight expresses its importance for the rep-
resentation of this document or query. Assuming the weights are normalized we
can readily interpret them as the fuzzy set membership function values expressing
vagueness of the relationship between index terms and documents/queries. We
can further interpret them as the truth values of a many valued logic what is con-
venient from the viewpoint of a logical approach. On the other hand, the results
of the indexing, either manual or automatic, cannot be treated as completely
certain. Thus in the proposed logical model we want to represent the above
mentioned vagueness and uncertainty in a uniform way. In order to achieve that
we propose to employ the extended possibilistic logic in the following way.

As in the basic logical approach a propositional variable pj is associated with
each index term tj . Then, each document and query are represented as sets of
weighted propositions of the extended possibilistic logic:

di = {(pk, lk)}k∈Ki

q = {(pk, lk)}k∈K



A Possibilistic-Logic-Based Information Retrieval Model 1125

which may be interpreted as the possibilistic knowledge bases (cf. previous sec-
tion). Now we will describe how the labels l are constructed.

Documents. Firstly, each document is represented as in the vector space model
using selected term-weighting approach [20]. Thus, for each document d ∈ D
and each index term tj ∈ T a weight d(tj) is computed. Then the weights are
normalized so as to obtain the maximum weight equal 1. Finally, the document
d is represented as a set of weighted formulae (17):

{(pj, l(d(tj))}j=1,...,M (17)

where pj is a propositional variable corresponding to the index term tj and l(u)
is a label with the following membership function (parametrized with u):

μl(u)(x) = 1− | x− u | (18)

Thus, recalling the semantics of weighted formulae, the induced possibility dis-
tribution πj

d on the set Ω “favors” those interpretations ω ∈ Ω that are assigning
pj the truth value close to d(tj). The larger the difference | ω(pj) − d(tj) | is
the less possible the interpretation ω is. The overall possibility distribution in-
duced by the document d represented with the possibilistic knowledge base (17)
is computed using (9).

The motivation for (17)-(18) is such that it is assumed that the weight d(tj)
expresses the importance of the index term tj for the representation of d. However
due to the uncertainty related to the indexing process other levels of importance
are also possible to a degree quantified by (18).

Queries. For a query q and each index term tj ∈ T the normalized weight
q(tj) is computed as in case of documents, although a different term-weighting
approach might be applied. Finally the query q is represented as the following
possibilistic knowledge base:

{(pj , l
T
1−q(tj))}j=1,...,M (19)

where pj is a propositional variable corresponding to index term tj and lT1−q(tj)

is a label of the lTδ type (cf. (16)) with δ = 1− q(tj).
The possibility distribution on ω ∈ Ω induced by the possibilistic knowledge

base (19) representing the query q favors those ω that assign to pj as high truth
value as possible. However, those ω that assign low truth values are still possible
to some degree which is the higher the lower q(tj) is.

The motivation for (19) is such that it is assumed that the index terms used
in the query are treated by the user as very important (to the degree 1). It
may be argued that in case of usually short queries (typical for, e.g., search
engines) there is no need to use less important terms. However, the user might
be uncertain if they are really important (at all!) and thus q(tj) is interpreted as
an expression of this (un)certainty: when q(tj) = 1 the user is completely sure
and lTδ in (19) becomes lT making term tj highly desired, while small q(tj), close
to 0, expresses high uncertainty as to the relevance of tj and thus limiting its
influence on the resulting possibility distribution over Ω.
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Matching degree. In order to compute the matching degree between a docu-
ment and a query we assume the following logical setting. A document is repre-
sented as a possibilistic knowledge base (17) and induces the possibility distri-
bution πd over the set of interpretations Ω defined with (18) and (9). Similarly
a query is represented as a possibilistic knowledge base (19) and induces a cor-
responding possibility distribution πq that in turn is interpreted as defining a
fuzzy set Ωq of the models of the query q such that μΩq(ω) = πq(ω). Then, the
matching degree of a document d against a query q is computed as the pair of
possibility and necessity measures (induced by possibility distribution πd) of the
fuzzy set Ωq. Formally using the formulae (13)-(14) that might be expressed as
follows:

Πj
d(Ωq) =

{
1− q(tj) for q(tj) ≤ 1−d(tj)

2
1+d(tj)

2 for q(tj) >
1−d(tj)

2

(20)

N j
d (Ωq) =

{
1− q(tj) for q(tj) ≤ 1− d(tj)

2
d(tj)

2 for q(tj) > 1− d(tj)
2

(21)

where d(tj) and q(tj) are weights of index term tj in a document d and a query
q, respectively; Πj

d and N j
d are possibility and necessity measures induced by πj

d

related to an index term tj .
The overall matching is expressed as a pair:

(Πd(q),Nd(q)) (22)

such that
Πd(q) = min

j
Πj

d(Ωq)

and
Nd(q) = min

j
N j

d (Ωq)

Having such pairs of numbers it has to be decided how to order the documents
in response to the query. In the experiments reported in the next section we
assume the lexicographic order on the pairs (22). However in the tests we check
the lexicographic order based on the original pairs (Πd(q),Nd(q)) as well as on
the pairs (Nd(q), Πd(q)).

The apparently simple formulae (20)-(21) are in fact quite intuitive. Let us
take a closer look at them considering particular extreme cases of a term tj
weights in a document and in a query.

Case 1: d(tj) and q(tj) are low.
Then both possibility and necessity of match are high. Thus due to (9) the
index term tj has a rather limited influence on the matching. This is definitely
an appropriate behaviour .

Case 2: d(tj) is low and q(tj) is high.
Then the possibility is around 0.5 and the necessity is low. This is surely a
proper indication of the mismatch between the query and the document with
respect to the index term tj . Due to (9) this indication extends to the whole
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query q. This is an effect of the non-compensatory nature of the minimum
operator.

Case 3: d(tj) is high and q(tj) is low.
Then both possibility and necessity of match are high. Thus due to (9) the
index term tj has a rather limited influence on the matching. This is definitely
an appropriate behaviour.

Case 2: d(tj) is high and q(tj) is high.
Then the possibility is high and the necessity is around 0.5. This is an ap-
propriate behavior. The relatively low value of the necessity stems from the
fact of a rather strongly fuzzified values of the index terms weights, both in
the documents and in the queries, as defined by (17) and (19).

4 Experiments

Ideally the labels l in the representations of both documents (17) and queries
(19) should be directly determined by a human user, possibly supported by a
suitable user interface. However in case of documents it is a rather infeasible so-
lution while in case of queries might require an advanced user interface. Thus in
our preliminary experiments with the proposed possibilistic information retrieval
model we use the weights computed using some well known term-weighting ap-
proaches [20] as a basis for the labels appearing in (18) and (19).

In our experiments we are using the Cranfield test collection (cf. [21] for a
description) comprising of 1398 documents and 225 queries. We evaluate the
effectiveness of the retrieval using the R-precision measure for each query, i.e.,
computing the precision of the results at the k-th position of the results list,
where k is equal to the number of relevant documents for given query (the list
of relevant documents for each query is given as a part of the Cranfield collec-
tion). Finally, the R-precision is averaged over all queries. Other measures of the
effectiveness such as 11-point AVP or the Average Precision at Seen Relevant
Documents is also applicable here.

Table 1. R-precision for the Cranfield test collection and various term-weighting
approaches

R-Precision

Documents Queries (P,N) (N,P)

tfx tfx 0.1782 0.1904

tfc nfx 0.1097 0.1106

nxx bpc 0.0581 0.0542

Table 1 lists the results of our experiments for a few selected combinations of
term-weighting approaches for documents/queries. The first and second columns
indicate term-weighting approaches used for docs/queries representation (coding
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of approaches as in [20]). The third column shows R-precision when resulting
documents are ordered first according to the possibility measure and then to
the necessity (cf.(22)). Results in column four are obtained for ordering first
according to the necessity and then the possibility.

The best results has been obtained for the most popular tf × IDF approach
(coded tfx × tfx). For a comparison, using the same term-weighting approach
and the classical vector space model matching via the cosinus measure we have
obtained slightly better results (0.2404). The ordering of the results first accord-
ing to the necessity and then possibility gives slightly better results.

5 Concluding Remarks

We have proposed a new possibilistic model of information retrieval. Its main
feature is an explicit representation of vagueness and uncertainty pervading the
information retrieval process. The results of some preliminary computational ex-
periments using various term-weighting approaches are reported. The results are
not conclusive and definitely a further research is needed. In particular a fur-
ther analysis of the interpretation of the weights as indicators of the uncertainty
and vagueness of the importance of the index terms for the representation of
documents and queries is required.
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Abstract. The purpose of this article is to provide a precise better under-
standing of the Computing-KnowledgeWorking essence and an overview of
the current/future state of its research. The main attention is concentrated
on an autopoietic mechanism of the both Computing, and NaturalKnowl-
edgeWorking techniques. The essence of theories of artificial intelligence
and soft computing as well as Computing-NaturalKnowledgeWorking phe-
nomenon understanding has been analysed. The innovative approach
called “Three information translations”, by means of which it is possible
to realize the information chain “The task of end user . . . computer pro-
gram” in automatic mode, is presented. It is proposed to define precisely
the vocabulary in the forenamed field.

1 Background, Fundamental Notion Definitions and
Computing-KnowledgeWorking Problem Statement

In his last book [1], P. Drucker – the guru of modern management science and
practice – separates (amongst some revolutionary ideas and perspectives) emer-
gence of new category of worker – Knowledge Worker. He says that “the most
important, and indeed the truly unique, contribution of management in the 20th
century was the fifty-fold increase in the productivity of the “manual worker” in
manufacturing. The most important contribution management that needs to be
made in the 21st century is similarly to increase the productivity of “Knowledge
Worker”; (here complex processes of their work called “KnowledgeWorking”; it
concerns both natural, and computational components of knowledge). If the most
valuable assets of a 20th-century company were its production equipment, then
the most valuable asset of a 21st-century institution will be its knowledge workers
and their productivity”. These workers work their mind and character with the
use of their own private production means – their own head to process the special
knowledge in circumstances of common scientific/engineering applications!

In the tutorial [2], it is reminded that “In 1936 Alan Turing laid the theoret-
ical groundwork for modern computing science (along with others, including A.
Church, E. Post, A. Markov), by defining what later became known as a univer-
sal Turing machine (UTM). Apart from the UTM, various other computational
formalisms exist”. Consequently, it was established that the basic theoretical no-
tion of computing is the notion of algorithm, and this means that in automatic

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1130–1139, 2006.
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way only an algorithmic procedure can be executed by computer. In the theory
of artificial intelligence (AI) the Computational Theory of the Mind (CTM) [11]
has been accepted as a basic labor hypothesis, and this means that the mental
processes in live systems have been brought down to simulations of artifacts
formally obtained by computer, which are the “artificial limbs” of relevant live
systems functions. As practice confirmed, Turing test, executed to establish the
level of artificial system intelligence, is controversial [11]. Today, computation is
more than ever ubiquitous, embraces a wide range of topics, and gives rise to
many controversies [2], [3], [6], [7], [8], [15], [16], and [17].

At present, scientists thinking about thinking [3], [8], [11], and [15] seek to
understand, extract, use and abuse the organizational principles of information
processing in natural living system. But live organism architecture is based on
Tensegrity principle [5], which is diametrically opposed to the architecture of
artificial devices, in which the silicon base was usually used. Nevertheless, re-
searchers in this trans-disciplinary field are thus all directly or indirectly con-
cerned with integration of enumerated approaches. On account of the fact that
the problem base-point in understanding the NaturalKnowledgeWorking-Compu-
ting mechanisms phenomenon is automatic computational procedures, it may
well be worthwhile to have the understanding of the following questions. What
models of computation exists? What are their limits? Which problems are solv-
able, which are unsolvable by computers and in nature? Which computational
models are good for which problems? How relevant is the concept of universal
computation for the design of intelligent machines? Does a UTM really capture
the essence of any and all forms of computing? What is the Church-Turing the-
sis? What are the relevant differences between information processing in nature
and in computer science? By the end of the paper, we shall know what compu-
tation is, what it isn’t, and what its limits and applications are. This paper shall
provide the right toolbox of ideas for researchers’ thinking.

2 Algorithm and Computing Fundamentals

Conventional computing is based on 18 discoveries, of which the main one is
the notion of algorithm [12]. It was used in relatively non-complicated program
systems. To higher achievements in modern programming and applications one
can ascribe the development of C++ language (which allows for the design of
systems containing near some millions of code lines [4]) and MPEG-7 (MPEG-
21) standard for multimedia metadata manipulation.

We will count over the basic notions of conventional computing: Logic and
Formal Systems; Alphabets and Words, Grammars, Languages; Functions; State
Machines; Automata; Turing-Neumann computer architecture; Computability,
Unsolvability, Undecidability; Gödel’s Theorem; Church-Turing Theorem; Com-
plexity Theory; Randomization; Church-Turing Thesis; Computation beyond the
Turing-Neumann Computers; Computation and the Brain; Unconventional Com-
puting Mediums; and many more.
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The basic moment is to relate the principles of artificial neural networks func-
tioning [7] to the field of computing (Fig.3) [7], networks obviously do not contain
the processor, or memory in traditional sense and are not traditionally program-
mable but learned. However, the mere fact of artificial neural networks emulation
by means of conventional programming confirms that those networks are pro-
grammable in principle, but by means of structure formalization. This way, the
artificial neural network, is the compound – structured information unit, by
means of which specific mathematical procedures are being realized.

But in author’s opinion, as an effect of joining two computers of Turing-
Neumann architecture, there arises the emergency effect, called the new feature
emergence system function that non-strictly expressed by “1 + 1 > 2 formula”.
In technical self-organizing systems and in natural living organisms, there can
arise synergistic effect (“formula: 1 + 1 >>> 2”). Let’s focus our attention on
the basic fact that autopoietic computing mechanisms in broad sense are real-
ized on the algorithmic level (formal data/knowledge structures manipulation)
and/or specific manipulations of structures providing systems to synergistic (self)
organization.

Natural computing methodologies are based on DNA, amorphous, membrane,
quantum, cellular, molecular, neural, evolutionary computing and various other
proposals of biological/psychological-inspired types for computations that go be-
yond the Turing model. For example, membrane computing is a branch of natural
computing which investigates computing models abstracted from the structure
and functioning of living cells and from their interactions in tissues or higher-
order biological structures. The models considered, called membrane systems, are
parallel, and distributed computing models, processing multi-sets of symbols in
cell-like compartmental architectures. In many applications membrane systems
have considerable advantages – among these are their inherently discrete nature,
parallelism, transparency, scalability and non-determinism.

Live nature does not need traditional programmers. It “programs” by evo-
lution right, which is referred to by term Natural Selection. “I have called this
principle, by which each slight variation, if useful, is preserved” (Charles Darwin,
The Origin of Species, 1859). In that way, Computing-NaturalKnowledgeWorking
phenomenon in broad sense integrates dialectically completely antagonist
conceptions of computing/development. But, in author’s opinion, the two men-
tioned aspects (Computing and NaturalKnowledgeWorking) cannot be univo-
cally brought together. The concern is for NaturalKnowledgeWorking rationally
aided by Computing, the autopoietic possibilities of which grow drastically.

3 Contents of Artificial Intelligence and Soft Computing

At the moment, there exist many branches of science concerning the problem.
They are, for example, AI, Artificial Life (AL), Soft Computing (SC), Fuzzy Log-
ics (FL), Computational Intelligence (CI), Genetic Computing, Natural Comput-
ing, and so forth. Their fields interweave and the names do not reflect the content
such the state of the matter in fields AI, AL, SC, CI are given below.
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In accordance with [10], “AI is a field of science and engineering concerned
with computational understanding of what is commonly called intelligent be-
havior, and with the creation of artifacts that exhibit such behavior.” As AI-
complete tasks are called: Natural Language, Problem Solving and Search,
Knowledge Representation and Reasoning, Learning, Vision, Robotics. In ac-
cordance with the international Journal of Applied Soft Computing, “SC differs
from conventional (hard) computing in that, unlike hard computing, it is toler-
ant of imprecision, uncertainty, partial truth, and approximation. In result, the
role model for SC is the human mind. The guiding principle of SC is: Exploit
the tolerance for imprecision, uncertainty, partial truth, and approximation to
achieve tractability, robustness and low solution cost. The basic ideas underlying
SC in its current incarnation have links to many earlier influences, among them
Zadeh’s 1965 paper on fuzzy sets; the 1973 paper on the analysis of complex
systems and decision processes; and the 1979 report (1981 paper) on possibility
theory and soft data analysis. The inclusion of neural computing and genetic
computing in SC came at a later point”.

At this juncture, the principal constituents of SC are FL, Neural Computing
(NC), Evolutionary Computation (EC), Machine Learning (ML) and Proba-
bilistic Reasoning (PR), with the latter subsuming belief networks, chaos theory
and parts of learning theory. What is important to note is that SC is not a
mèlange. Rather, it is a partnership in which each of the partners contributes
a distinct methodology for addressing problems in its domain. In this perspec-
tive, the principal constituent methodologies in SC are complementary rather
than competitive. Furthermore, SC may be viewed as a foundation component
for the emerging field of conceptual intelligence that conclude: Fuzzy Systems;
Neural Networks; EC; ML; PR. The complementarity of FL, NC, EC, and PR
has an important consequence: in many cases a problem can be solved most
effectively by using FL, NC, EC and PR in combination rather than exclusively.
A striking example of a particularly effective combination is what has come to
be known as “neurofuzzy systems”. Such systems are becoming increasingly vis-
ible as consumer products ranging from air conditioners and washing machines
to photocopiers and camcorders. Less visible but perhaps even more important
are neurofuzzy systems in industrial applications. What is particularly signifi-
cant is that in both consumer products and industrial systems, the employment
of SC techniques leads to systems which have high MIQ (Machine Intelligence
Quotient). In large measure, it is the high MIQ of SC-based systems that ac-
counts for the rapid growth in the number and variety of applications of SC.
The conceptual structure of SC suggests that users should be trained not just in
FL, neurocomputing, genetic programming, or PR but in all of the associated
methodologies, though not necessarily to the same degree.

Topics of the International Journal of Applied Soft Computing are a jour-
nal promoting an integrated view of SC to solve real life problems. “SC is a
collection of methodologies, which aim to exploit tolerance for imprecision, un-
certainty and partial truth to achieve tractability, robustness and low solution
cost. The focus is to publish the highest quality research in application and
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convergence of the areas of FL, NN, EC, Rough Sets and other similar tech-
niques to address real world complexities. Major topics of Applied Soft Comput-
ing cover the following SC and related techniques, interactions between several
SC, and their industrial applications: Fuzzy Computing (C.), Neuro C., Evo-
lutionary C., Probabilistic C., Immunological C., Hybrid Methods, Intelligent
Agents and Agent Theory, Causal Models, Case-based Reasoning, Chaos The-
ory, Interactive Computational Models. The application areas of interest include
but are not limited to: Decision Support; Process and System Control; System
Identification and Modeling; Optimization; Signal or Image Processing; Vision
or Pattern Recognition; Condition Monitoring; Fault Diagnosis; Systems Inte-
gration; Internet Tools; Human-Machine Interface; Time Series Prediction; Ro-
botics; Motion Control and Power Electronics; Biomedical Engineering; Virtual
Reality; Reactive Distributed AI; Telecommunications; Consumer Electronics;
Industrial Electronics; Manufacturing Systems; Power and Energy; Data Min-
ing; Data Visualization; Intelligent Information Retrieval; Bio-inspired Systems;
Autonomous Reasoning; Intelligent Agents. (Author’s remark: All-embracing!?.)

4 Understanding Computing-NaturalKnowledgeWorking

Effective human-computer cooperation is an indispensable phenomenon. How-
ever, human feels and thinks in analogue way, and computer – in digital. An
active constituent of computer is the formal program written by human mind
in a computer language; human differs from artificial system or animal in that
he has his own speech, feels pain, possesses consciousness, has motivation, and
behaves rationally in real world. Human achieves it all by means of mind func-
tioning and knowledge processing in his brain. Besides, computer data process-
ing realizes in algorithmic way on syntax level. In accordance with the CTM,
in human mind knowledge processing the semantic and pragmatic information

Algorythmic (or formalized)
procedures of Computing

Procedures guaranteed
necessary result

Heuristic
procedures
without
result
guaranteeProcedures

guaranteeing
result but without
creation effect

Deductive
heuristic
procedures

Partially
formalized
heuristic
procedure

Intuitive

based on
heuristics

Knowledge
Working

Absolutly heuristic Knowledge Working

Heuristic sphere of actionin the broad senseKnowledge Working

All modern (State-of-the-Art) Knowledge Working

Fig. 1. Structure of Computing-NaturalKnowledgeWorking phenomenon with more de-

tailed accentuation on autopoietic part of the problem
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levels are additionally used. Data structures used in computer are sufficiently
primitive; structures describing natural reality are extremely complicated.

In Fig. 1, 2, 3 the structure of Computing-NaturalKnowledgeWorking phe-
nomenon (based on Z. Rabinovitch idea), computer Metaphor evolution [6], and
computing

Paradigms [7] are given accordingly. Because of a lockage of a paper place, the
contents of the points of the matter are presented in graphical notation (here
and below).

It is interesting to notice three facts. Firstly, Fig.1 – structure does not contain
a rigorous limit between computing phenomenon (realized in artificial environ-
ment) and NaturalKnowledgeWorking (in natural); it has not been said any
about the possibilities of “brute force” approach to solving problems lying on
borderline of the two phenomena. Secondly, there has been noted the tendency
to computer metaphor change and given their generalized characteristics (Fig.2)
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Abstraction Concret
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3
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5

Fig. 2. Input-Output generalized scheme of computing metaphor evolution in the co-

ordination system “Abstraction/Concrete” (based on T. Lewis’s view [6])
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procedures during their automatic computer realization by means of proposed “Tree
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the-art (subjective) estimation)

[7]. What deserves attention is a deeper analysis of the effect of C++ language
elaboration [4], [15]. Thirdly, the phenomenon of cellular computing, connected
with vast parallelism is not strictly located in the accepted coordinate system
(see Fig.3).
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5 Autopoietic Essence of the Three Information
Transformations and the Proposed Terminology

In Fig.5, the author’s original view of organization principles of conventional
intelligent information system is given. A very rough sketch of the basic idea can
be found in [13, Rys.1.2, p. 24]. To realize the End User (EU) of Problem Domain
(PD) of knowledge approach in a (nearly, practically) automatic way by com-
puter, we need to provide the possibility of realization of three necessary informa-
tion translations AIT1-AIT3 (Fig.5). Respectively for each translation, we need
to create active program blocs: COMPILATOR, PROBLEM SOLVER 1g, and
CREATOR 2g respectively. Functions of enumerated blocs are given in Fig.5.
Commercial intelligent informatics systems of the first generation ( 1g) exist. In
Fig.4, contents of interaction procedure between knowledge engineer (KI) and
expert (E) from PD of knowledge is illustrated.

Informatics (Informatics++) � Intelligent Informatics Human Nature Sciences�

Computing NaturalKnowledgeWorking� � � � � � � �������

— ������	�	�	�	�	�	�	�	�	�	��
�
�
�
 � �

Fig. 6. Proposed modern classification of trans-disciplinary sciences based on essence

of the Computing-NaturalKnowledgeWorking phenomenon

In Fig.6, the proposed precise classification of Computing-NaturalKnowledge-
Working phenomenon is adduced as the alternative to existed a great deal of
non-orthogonal notions (for example, such as AI, SC, CI, AL, computation with
words and so forth).

6 Main Study Results

On the base of the study, the following suggestions may be accepted.
6.1. The basic scientific feature is precise vocabulary as well as precise think-

ing. To fulfill John von Neumann’s aphorism “There is no sense being precise
when you don’t even know what you’re talking about” in Computing - Natu-
ralKnowledgeWorking field the use of notions Informatics (or Informatics++),
Intelligent Informatics, Human Nature Sciences has been proposed.

Today, in Intelligent Informatics, methods are used that provide so much “true
intelligence as there is teleportation in Formula-1 races” (A. Plachov phrase).
The main thorough research track must be attributed to the elaboration of
active blocs of the type of problem SOLVER, CREATOR, especially taking into
account the linguistic aspects of strict description of intelligent problems.

6.2. Object-oriented programming and design of algorithmic language C++/
Java type is a quality event because it gives the possibility of designing of reliable
systems with the complexity of some millions code rows.
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Apart from that in C++, there has been realized: a) the possibility of creat-
ing abstract data types for creating complex data structures (for example, like
ones that are AI-formalisms), b) communication between modules by means of
interfaces and not in procedural way, c) programmer by analogy to End User
became End Programmer, that is, he obtained the possibility of programming
independently of hardware features.

6.3. Natural intelligence and artificial one as well as network computing are
things that may be used in common only for effective (systemic and/or synergis-
tic) cooperation with computer. Computer cannot until think, have conscious-
ness, motivation, feel pain, replicate, etc. And what are more computers can not
do: “The most important thing in communication - to hear what isn’t being said
(Peter F. Drucker’ citation)”.

And this deaf angle in mind functioning simulation by means of simulation of
function of their constituents (neurons) will exist until we create the model of
human cell biological life, and then the method and device for SENSE detecting
and processing will not be invented. Unfortunately, the situation in intelligent
informatics is similar to that in P. Drucker’s citation “We know nothing about
motivation. All we can do is writing books about it”.
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Abstract. This paper proposes a new heuristic approach based on the
Particle Swarm Optimization (PSO) for the Multidimensional Knapsack
Problem (MKP). Instead of the penalty function technique usually used
to deal with the constrained problem, a heuristic repair operator utilizing
problem-specific knowledge is incorporated into the modified algorithm.
Computational results show that the new PSO based algorithm is ca-
pable of quickly obtaining high-quality solutions for problems of various
characteristics.

1 Introduction

Particle Swarm Optimization (PSO) is a recently developed meta-heuristic for
NP-hard optimization problems. Based on the simulation of both the movement
of individual of bird flocks or fish schools and their collective behavior as a swarm,
Kennedy and Eberhart[5] introduced the method of PSO in 1995. Applications
to various nonlinear optimization problems have shown the success of PSO[7]. To
solve constrained problems, PSO usually makes use of penalty function technique
in order to reduce the constrained problem to an unconstrained problem by
penalizing the objective function despite ill-conditioning[4,9].

This paper deals with the application of PSO in the field of combinatorial op-
timization (CO) problems, which is a quite rare field tackled by PSO. The con-
strained problem discussed in this paper is the well-known NP-hard CO problem,
the multidimensional knapsack problem (MKP), which can be formulated as:

maximize f =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

rijxj ≤ bi, i = 1, ...,m (2)

xj ∈ {0, 1}, j = 1, ..., n (3)

Equation (1) describes the objective function for the MKP. Each of the m con-
straints described in condition (2) is called a knapsack constraint, so the MKP
is also called the m-dimensional knapsack problem. Let I = {1, 2, ...,m} and
J = {1, 2, ..., n}, with bi > 0 for all i ∈ I and rij ≥ 0 for all i ∈ I, j ∈ J , a well-
stated MKP assumes that pj > 0 and rij ≤ bi <

∑n
j=1 rij for all i ∈ I, j ∈ J .

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1140–1149, 2006.
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MKP can be regarded as a resource allocation problem of m resources and n
objects. Each resource i ∈ I has a burget bi, each object j ∈ J has a profit pj

and consumes rij of resource i. The problem is to maximize the profit within a
limited budget.

MKP is one of the most intensively studied discrete programming problems,
mainly because its simple structure which, on the one hand allows exploitation
of a number of combinatorial properties and, on the other, more complex opti-
mization problems to be solved through a series of knapsack-type subproblems.
Meanwhile, many practical problems can be formulated as a MKP, such as the
capital budgeting problem, allocating processors and databases in a distributed
computer system, project selection and cargo loading, and cutting stock prob-
lems.

This paper utilizes the structure of the binary PSO[6] and combines this
method with a problem-specific repair operator instead of the penalty function
technique to avoid the violations to problem constraints. Experimental results
show that the modified PSO is good at dealing with the specific CO problem.

This paper is organized as follows, the binary PSO algorithm to MKP is
briefly introduced in Section 2. In section 3, the modified PSO algorithm applied
to MKP is proposed, experimental results are shown in the following Section 4,
and a short discussion is presented in Section 5. We end with some conclusions
in Section 6.

2 The Binary PSO Model

2.1 Solution Representation and Fitness Function

In the binary PSO model[6], a potential solution to a problem is represented
as a particle having binary coordinates x = {x1, . . . , xn}, xj ∈ {0, 1} in a
n-dimensional space as illustrated in Fig.1.

j 1 2 3 4 5 . . . n−1 n

xj 0 1 0 0 1 . . . 0 1

Fig. 1. Solution Struction of the Binary PSO

For the application to MKP, xj = 0 means that object j is not selected,
while xj = 1 means that the object is selected. By this solution representation,
we can see that such a solution might not be feasible for MKP. An infeasible
solution is one for which at least one of the knapsack constraints is violated, i.e.∑n

j=1 rijxj > bi for some i ∈ I.
A penalty function technique is normally incorporated to solve the constrained

problem in PSO. For the MKP problem, the fitness function is modified as:

f =
n∑

j=1

pjxj −
m∑

i=1

poslin

⎛⎝Mi

⎛⎝ n∑
j=1

rijxj − bi

⎞⎠⎞⎠ (4)
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where Mi are some big penalty parameters and poslin is a positive linear trans-
form function, which is defined as:

poslin(s) =
{
s s > 0
0 s ≤ 0 (5)

2.2 The Standard PSO with Penalty Function Technique

The standard PSO with penalty function technique (denoted as PSO-P) does
not take care of the feasibility of the solutions generated during the iterations.
The knapsack constraints are totally manifested by the penalty function. By
automatically moving to the coordinates with bigger objective function value
during the iterations, PSO-P is able to find good solutions observing the knap-
sack constraints.

In PSO-P, a number of particles move stochastically among the binary solution
space by flipping various numbers of bits. The position of each particle forms
a solution to MKP, which can be represented as a n-dimensional binary string:
xi = {xi1, . . . , xin}. The velocity of the movement of each particle is defined
as the changes of probabilities that a bit will be in one state or the other,
which is represented as vi = {vi1, . . . , vin}, where vid represents the probability
for particle i to select 1 at bit d. The velocity of each particle is determined
by three kinds of information. One is its velocity value at last iteration, the
second is the record of the position of its previous best performance, denoted as
pi = {pi1, . . . , pin}, which represents the experience of the particle during the
search, the last is the record of the position of the best performance among its
topological neighborhood, denoted as gi = {gi1, . . . , gin}, which represents the
social experiences of the particles during the search. In conclusion, the velocity
for particle i at bit d can be summarized as:

vn+1
id = vn

id + ϕ1r1(pn
id − xn

id) + ϕ2r2(gn
id − xn

id) (6)

where the superscript represents the number of iterations, ϕ1 and ϕ2 are two
positive parameters, r1 and r2 are two randomly generated numbers uniformly
distributed in [0, 1]. Normally, a bound limit Vmax is incorporated to guarantee
the value of the velocity be forced into a boundary [−Vmax, Vmax] for the purpose
of divergence avoidance.

To represent the velocity as the probability for selection of 1, a sigmoid trans-
form function is incorporated to transform the velocity to the range of (0, 1):

S(vid) =
1

1 + exp(−vid)
(7)

The resulting change in position of a particle then is defined by the following
rule:

if rand() < S(vid) then xid = 1
else xid = 0 (8)

The algorithm skeleton of PSO-P is described in Fig.2. An iteration of PSO-P
comprises evaluation of each particle using the modified fitness function of (4),
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and calculations of the pi and gi for every particle, then the velocity is derived
from (6) and particles move to their new positions according to (7) and (8). The
iteration repeated until some termination condition is met, such as a maximum
amount of cycles performed or a satisfied solution is found.

Procedure PSO-P
/*Initialization*/

Input data
Randomly generate initial particles positions and their velocities
Parameter setting

/*Main Iteration Loop*/
While (end condition not met) do

Solution evaluation according to (4)
Calculate pid and gid for every particle
Calculate velocities for every particle according to (6)
Generate new particle positions according to (7) and (8)

End

Fig. 2. Algorithm Skeleton of PSO-P

3 The Modified PSO with Repair Operator

Although penalty function technique works well for most of the applications of
PSO to the constrained problems, it contains some parameter setting problem. If
the penalty parameter values are too high, the optimization algorithms usually
get trapped in local minima. On the other hand, if penalty values are too low,
they can hardly detect feasible optimal solutions. Furthermore, since the penalty
function technique does not use the problem specific information, the final results
are often not satisfied in dealing with CO problems.

This paper proposes a modified PSO with repair operator specially designed
for MKP. The modified algorithm, denoted as PSO-R, is based on the structure
of the binary PSO model described in the previous section, in combination with
a problem-specific repair operator to guarantee feasible solutions. Fig.3 describes
the pseudo code of PSO-R.

Instead of using the penalty function technique, PSO-R incorporates a repair
operator to repair the solutions found by the particles. This idea comes from Chu
and Beasley[1]. The general idea behind this method is described very briefly as
follows.

The repair operator utilizes the notion of the pseudo-utility ratios derived
from the surrogate duality approach. The surrogate relaxation problem of the
MKP can be defined as:

maximize f =
n∑

j=1

pjxj (9)
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Procedure PSO-R
/*Initialization*/

Input data
Calculate surrogate multipliers and pseudo-utility
Sort and renumber data according to decreasing order of pseudo-utility
Generate initial particles positions and their velocities
Parameter setting

/*Main Iteration Loop*/
While (end condition not met) do

Solution repair
Solution evaluation
Calculate pid and gid for every particle
Calculate velocities for every particle
Generate new particle positions

End

Fig. 3. Algorithm Skeleton of PSO-R

subject to
n∑

j=1

(
m∑

i=1

ωirij)xj ≤
m∑

i=1

ωibi (10)

xj ∈ {0, 1}, j = 1, 2, ..., n (11)

where ω = {ω1, . . . , ωm} is a set of surrogate multipliers (or weights) of some
positive real numbers. One of the simplest methods to obtain reasonably good
surrogate weights is to solve the LP relaxation of the original MKP and to use
the values of the dual variables as the weights. In other words, ωi is set equal to
the shadow price of the ith constraint in the LP relaxation of the MKP.

After calculating the surrogate weights, the pseudo-utility is then defined as:

uj =
pj

m∑
i=1
ωirij

(12)

The repair operator consists of two phases that is based on the value of uj .
The first phase, which is called DROP phase, examines each bit of the solution
in increasing order of uj and changes the value of the bit from one to zero if
feasibility is violated. The second phase, which is called ADD phase, reverses the
process by examining each bit in decreasing order of uj and changes the value
of the bit from zero to one as long as feasibility is not violated. To achieve an
efficient implementation of the repair operator, at the initialization step, we sort
and renumber variables of the original MKP problem according to the decreasing
order of their uj ’s. The pseudo-code for the repair operator is given in fig.4.

Although the repair operator takes some extra time at each iteration, from
the description of the procedure of PSO-R, we can see that the computational
complexity of the repair operator, as well as each iteration of PSO-R, is O(mn),
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Repair Operator for PSO-R
Let: Ri = the accumulated resources of constraint i in S
Initialize Ri =

∑n
j=1 rijS[j], ∀i ∈ I

j = n
While (Ri > bi, for any i ∈ I) do /* DROP phase */
if S[j] = 1 then
S[j] = 0;Ri = Ri − rij , ∀i ∈ I
endif
j = j − 1;
endwhile
for j = 1 to n do /* ADD phase */
if S[j] = 0 and Ri + rij < bi, ∀i ∈ I then
S[j] = 1;Ri = Ri + rij , ∀i ∈ I;
endif
end for

Fig. 4. Pseudo Code of the Repair Operator

which is the same as that of PSO-P. So, PSO-R takes just a little computational
time over PSO-P.

4 Experimental Results

Since we have not found any literature concerning the PSO algorithm applied
to the MKP problems, we select some benchmarks of MKP from OR-Library to
test PSO-R, and we compare the results of PSO-R with that of PSO-P.

To make a fair comparison, we set the same parameter values for both the
PSO-R and PSO-P: ϕ1 = ϕ2 = 2, vmax = 2, the number of particles is set
equal to the number of objects of the problem, and we use the ring topology as
the neighborhood structure with number of neighbors set to 2. These parameter
settings are regarded as optimal to the standard PSO algorithms [7].

Fig.5 describes the typical performance of PSO-P and PSO-R on a MKP
instance with 50 objects and 5 resource constraints. The x-axis describes the
number of executed cycles, while the y-axis describes the best fitness value that
is averaged over 30 runs. From this diagram, we can see clearly that PSO-R
outperforms PSO-P with quick convergence to satisfied solution, and with better
solution quality.

Tab.1 shows the experimental results of PSO-R and PSO-P over 7 benchmarks
named mknap1 in OR-Library. All the tests are ran with 500 executed cycles.
The first column indicates the problem index, the next two columns describe
the problem dimension, where n is the number of objects and m is the number
of constraints. The next column is the best-known solutions from OR-Library.
The final 4 columns report the best and average solutions over 30 runs of PSO-
P and PSO-R respectively. For all the 7 instances of mknap1 that we tested,
both PSO-R and PSO-P are able to find good solutions, but PSO-R finds better
solutions than that of PSO-P as the size of the problem increases.
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Fig. 5. Typical Performance of PSO-R and PSO-P

Table 1. Experimental Results of mknap1

No n m
Best PSO-P PSO-R
known Best Avg. Best Avg.

1 6 10 3800 3800 3800 3800 3800

2 10 10 8706.1 8706.1 8570.7 8706.1 8706.1

3 15 10 4015 4015 4014.7 4015 4015

4 20 10 6120 6120 6118 6120 6119.3

5 28 10 12400 12400 12394 12400 12395

6 39 5 10618 10618 10572 10618 10592

7 50 5 16537 16491 16389 16537 16510

We also compare the PSO-R with PSO-P on some bigger size MKP instances
in OR-Library, which are considered to be rather difficult for optimization ap-
proaches. The tested sets are 5.100 and 10.100, which has 5 constraints, 100
objects and 10 constraints, 100 objects respectively. We test first 5 instances of
each set with maximum number of cycles of 2000, and Tab.2 reports the test
results.

The first column of Tab.2 indicates the instance name, the second column is
the best-known solutions from the OR-Library, and the next 4 columns record
the best and average solutions over 30 runs of PSO-P and PSO-R respectively.

From Tab.2 we can see that PSO-R clearly outperforms PSO-P in all the
tested instances. While PSO-P meets some difficulties in dealing with large size
MKP problems, PSO-R is still able to find good solutions. Actually, PSO-R has
found 5 best solutions out of 10 instances.
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Table 2. Experimental Results of 5.100 and 10.100

Instance Best PSO-P PSO-R
Name known Best Avg. Best Avg.

5.100.00 24381 22525 22013 24381 24356

5.100.01 24274 22244 21719 24258 24036

5.100.02 23551 21822 21050 23551 23523

5.100.03 23534 22057 21413 23527 23481

5.100.04 23991 22167 21677 23966 23966

10.100.00 23064 20895 20458 23057 23050

10.100.01 22801 20663 20089 22781 22668

10.100.02 22131 20058 19582 22131 22029

10.100.03 22772 20908 20446 22772 22733

10.100.04 22751 20488 20025 22751 22632

5 Discussion

5.1 PSO Applied to CO

PSO has gained reputation in the field of function optimization problems, but
few encouraging applications are recorded in the field of combinatorial optimiza-
tion problems. The main reason is that the PSO is famous for its robustness
regardless of the type of the fitness function, most of PSO rarely use the char-
acteristic information of the problem instance, which is quite critical in tacking
the combinatorial optimization problems.

Up to our knowledge, there has been no literature available concerning the
application of PSO to MKP. The main purpose of this paper is to propose that
the PSO technique is also effective in dealing with combinatorial optimization
problems, rather than showing that PSO-R is the best algorithm overcoming
MKP. The algorithm methodology, as well as the parameter setting in PSO-
R, is quite normal method directly get from results of other PSO literature,
however, the results presented in previous section are quite promising, indicating
the potential of PSO in dealing with such kind of combinatorial optimization
problems.

5.2 Role of the Repair Operator

The repair operator incorporated in PSO-R plays a critical role in quickly finding
good solutions, this lies in two sides:

First, the repair operator itself improves the solution quality. Although the
repair operator alone acts as a problem-specific greedy search method that can
only find rather poor solutions, in cooperation with standard PSO, the repair
operator acts as a local search to the solutions found by the standard PSO,
which greatly improves the solution quality.

Secondly, the repair operator acts as a filter that makes all the solutions
generated in the iteration being transferred to the feasible solution domain,
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which makes the algorithm search around the quite promising area comparing
to the normal penalty incorporated method.

The utility of a repair operator is important in applying the PSO to MKP.
A good repair operator is critical in quick convergence. To find a good repair
operator in other combinatorial optimization problems will be helpful for the
PSO implementations.

6 Conclusions

This paper proposes a first implementation of Particle Swarm Optimization to
the well-known multidimensional knapsack problem. Instead of the incorporation
of the penalty function technique usually used for the constrained problems, we
utilize a problem-specific repair operator to guarantee feasible solutions at each
iteration cycle.

Computational results show that the modified PSO algorithm outperforms
the standard PSO in MKP problems of various characteristics. Although the
computational results of the modified algorithm are still not as good as the state-
of-art algorithm proposed by Vasquez and Hao [11], the fact of its simplicity,
quickness and that it is able to deal with large size MKP problems indicates its
potential in dealing with such combinatorial optimization problems.

The repair operator technique plays a critical role in finding better solutions
quickly. The procedure of our modified PSO algorithm indicates that this tech-
nique can be implemented in other combinatorial optimization problems. Further
works will be on applying this technique in constrained integer programming
with focus on how to apply the problem-specific information into some repair
operators.
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Abstract. In the self-stabilizing model we consider a connected sys-
tem of autonomous asynchronous nodes, each of which has only local
information about the system. Regardless of the initial state, the system
must achieve a desirable global state by executing a set of rules assigned
to each node. The paper deals with the construction of a solution to
graph coloring in this model, a problem motivated by code assignment
in wireless networks.

A new method based on spanning trees is applied to give the first (to
our knowledge) self-stabilizing algorithms working in a polynomial num-
ber of moves, which color bipartite graphs with exactly two colors. The
complexity and performance characteristics of the presented algorithms
are discussed for different graph classes.

1 Introduction

Self-stabilizing algorithms are a fundamental branch of fault-tolerant computing,
first introduced by Dijkstra [4] in 1974. The resilience of the system guarantees
that the system will reach a desirable state even after a period of malfunction
or an unexpected change of topology. These properties render self-stabilizing
algorithms feasible in contexts where ordinary distributed algorithms prove in-
sufficiently stable, especially when applied in ad-hoc wireless networks [11,15]
and in state-of-the-art systems of nano-electrical sensors placed in a hostile en-
vironment [3]. The most relevant self-stabilizing algorithms deal with assigning
codes or values to nodes and the links between them, thus facilitating commu-
nication and role division of the respective units. In this paper we focus our
attention on the fundamental problem of coloring the system graph in such a
way that neighboring nodes receive different colors and the number of colors used
is as small as possible. This process of graph coloring in a distributed setting
has numerous applications, including such areas as code assignment for wireless
networks [1,11,13].

The model of execution. In all considerations it is assumed that the self-
stabilizing system consists of nodes connected by communication channels. Each
node maintains variables which determine its local state. The global state of the
system is the union of all local states of its nodes. Thus we model a system
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by a connected graph G = (V,E), where vertex set V corresponds to system
nodes and the set of edges E denotes communication links between them. The
algorithm for each vertex v is given as a set of rules of the form if p(v) then
A, where p(v) is a predicate over local states of v and its neighbors, and A is an
action changing a local state of v (a move of v). A vertex v becomes active when
p(v) is true, otherwise v is stable. The execution of the algorithm is controlled by
a scheduler which allows some non-empty subset of active vertices to perform a
simultaneous move defined by the rules for the respective nodes; this is referred
to as a single step. If all vertices of the graph are stable, we say that the system is
stable and the execution of the algorithm is complete. A self-stabilizing system is
one which is able to achieve a legitimate global state starting from any possible
global state [4].

The time complexity of such self-stabilizing algorithms is expressed in terms
of the number of steps of the algorithm, or the number of moves performed by
respective nodes. In this paper the total number of moves performed by all nodes
is treated as the primary measure. This value is closely related to (and never
less than) the number of steps of the system, and may moreover be regarded as
the “energy cost” of performing the stabilization process.

Problem definition and related work. A self-stabilizing algorithm is said to
perform graph coloring if any stable state reached by the system may be inter-
preted as an assignment of non-negative integer color values c(v) to all system
nodes v ∈ V such that c(v1) �= c(v2) if {v1, v2} ∈ E. The goal of optimization is
minimizing the largest color value used.

Self-stabilizing graph coloring algorithms have been intensively studied in lit-
erature. In 1993 Ghosh and Karaata [6] presented an algorithm for coloring
planar graphs with at most 6 colors, assuming that all vertices have unique
identifiers. This result was later improved to allow operation with bounded vari-
able values and without identifiers in [12] and generalized for a wider class of
graphs in [8]. Also in 1993, Sur and Srimani [16] gave an algorithm for exact col-
oring of bipartite graphs. All of the discussed papers prove the finite stabilization
time of the algorithm, but leave bounds on time complexity as open problems.
Later on three algorithms with improved time constraints for arbitrary graphs
were presented in [9], based on a greedy assignment technique. More recently, a
linear-time algorithm for coloring arbitrary graphs with Δ+ 1 colors (where Δ
denotes the maximum vertex degree) was given in [10].

Our results. In this paper we present new graph coloring algorithms which
stabilize in a polynomial number of moves and find optimal colorings for bipartite
(2-colorable) graphs and cacti, thus improving the results of [16]. To achieve the
results we a use recent algorithm for spanning tree construction [14].

We give different versions of the graph coloring algorithm. Depending on
the configuration of the scheduler, the algorithm either operates without vertex
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identifiers (for a system with a central daemon, i.e. when the scheduler allows
the move of at most one vertex at a time, Section 3) or requires unique ver-
tex identifiers (for a system with a distributed daemon, i.e. when no additional
assumptions are made about the scheduler, Section 4). For these cases the num-
ber of moves performed by the algorithms is bounded by O(mn3 diam(G)) and
O(mn3Δdiam(G)) respectively, where diam(G) < n is the distance between the
furthest pair of nodes of the system. Finally, in Section 5 we analyze the perfor-
mance of the presented algorithms color for arbitrary graphs, stating that they
use not more than 2Δ colors, and that this bound is tight even for series-parallel
graphs.

2 Preliminaries: Local State Definition and Assumptions

Let G = (V,E) be the system graph with vertex set V and edge set E. By
n = |V | and m = |E| we denote the number of vertices and the number of edges,
respectively. In addition, let N(v) = {u : (u, v) ∈ E} be the open neighborhood
of vertex v ∈ V , and let deg(v) = |N(v)| be the degree of v. Each vertex has
constant read-only access to the local states of all vertices in its neighborhood
throughout the operation of the algorithm. When performing a move, a vertex
may write to the variables of its local state. The entire move of a vertex is seen
as an atomic operation by its neighbors.

In our approach we provide a semi-uniform algorithm, which means that
exactly one of the nodes of set V , called a root and denoted r, needs to be
distinguished and operate using a different set of rules than the other vertices.
Each node has two local variables f and c, both non-negative integers, which
reflect the two parts of coloring algorithm. State variable c is simply the sought
color of a given vertex.

Variable f is used during the construction of a spanning tree of graph G. A
spanning tree T = (V,E′) of G = (V,E) is a subgraph of G consisting of the
same set of nodes V , but only a subset E′ ⊆ E of edges such that there exists
exactly one path between every pair of nodes in T . In particular, this means
that each vertex v ∈ V other than the root r has exactly one neighbor on the
path connecting v and r in T , known as the parent of v in T . In this context, the
interpretation of variable f is as follows. Consider vertex v and let us choose u
such that f(u) = minw∈N(v) f(w) and u is the first 1 vertex among the neighbors
of v with such a property. If f(u) < f(v) then we say that u is the parent of v and
denote p(v) = u. Other case we say that a parent vertex does not exist for v in
the current system configuration and denote it by p(v) = null. If all vertices save
the root have parent vertices, then the parenthood relation defines the sought
spanning tree T of G. For the distinguished vertex we set permanently f(r) := 0
and c(r) := 0.
1 To be able to say “first” we must assume that the neighbors are somehow ordered.

This is not a strong assumption as long as a node is able to distinguish between its
neighbors. For example, if the neighbors of v are stored in the form of a list, the
order can be given according to the list sequence.
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3 A Graph Coloring Algorithm Under a Central Daemon
Optimal for Bipartite Graphs

The concept of the graph coloring algorithm presented in this section is based on
a simple observation. We use the parity function A : N∪{0} → {0, 1}, defined as
A(c) ≡ c mod 2, to partition the space of colors available for each vertex into
two subsets — the set of even colors {c ∈ N∪ {0} : A(c) = 0} and the set of odd
colors {c ∈ N ∪ {0} : A(c) = 1}.

The constructed algorithm will attempt to assign to each vertex the smallest
possible odd color if the color of its parent is even and the smallest possible even
color when the color of its parent is odd. For a given vertex v such a color is
denoted as γ(v):

γ(v) = min{k ∈ N ∪ {0} : A(k) �= A(c(p(v))) ∧ ∀u∈N(v)k �= c(u)}.

Observe that γ(v) is properly defined iff the parent of v exists; otherwise, we
assume γ(v) = c(v).

We can now write the graph coloring algorithm for the case when the scheduler
selects exactly one active node at a time to make a move, which is often referred
to in literature as self-stabilization under a central daemon. At first glance such
a model can be seen as very strong, however it is equivalent to one where only
local mutual exclusion of neighboring nodes is guaranteed. Moreover, there exist
protocols to convert algorithms designed for the central daemon model to weaker
ones [2,5].

Algorithm 1. Graph coloring under a central daemon

F: if v �= r ∧ f(v) ≤ minu∈N(v) f(u)
then f(v) = maxu∈N(v) f(u) + 1

C: if p(v) �= null ∧ c(v) �= γ(v)
then c(v) := γ(v)

Rule F is the same as that used for constructing a spanning tree in Algo-
rithm 1 [14] and is not affected by other rules, so using results from [14] at most
n diam(G) moves using rule F are possible. Now we will establish a bound on the
number of moves using rule C in between two consecutive moves using rule F.

Let us consider an arbitrarily chosen vertex v. We can distinguish between two
types of moves according to rule C, namely: moves changing the parity of c(v)
which we call alternating moves, and other moves referred to as non-alternating.

Lemma 1. The number of alternating moves is at most n2 in between two con-
secutive moves performed according to rule F.

Proof. Let T = (V,E′) be the forest in G induced the by parent relation p
in such a way that u, v ∈ E′ iff u = p(v) or v = p(u). Observe that in each
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component of T there is exactly one vertex u such that p(u) = null. Let rv

be such a vertex that p(rv) = null and both rv and v belong to the same
component of T , and let [u, v]T denote the only possible path from u to v in T ,
say [u, v] = (u = u0, u1, . . . , uk = v). Let us consider the following function:

ST (v) =

⎧⎨⎩
ST (p(v)) + 1, p(v) �= null ∧A(c(p(v)) �= A(c(v))
ST (p(v)), p(v) �= null ∧A(c(p(v)) = A(c(v))
0, p(v) = null

Intuitively, ST (v) can be considered as the number of edges {w,w′} in the path
[rv, v]T for which color variable c changes parity while moving from w to w′.
Obviously 0 ≤ ST (v) < n. Observe that ST (v) does not depend on f(x) for x /∈
[rv, v]T . Now, let us consider the influence of an alternating move C performed
by x ∈ [rv, v]T on ST (v). As rv cannot make move C, thus x �= rv. There are two
possibilities. First, if v = x, then ST (v) increases by 1. Secondly, if v �= x, then
ST (v) does not change or increases by 2.

Consequently, since the initial value of ST (v) is never smaller than its final
value by more than n and the value ST (v) increases each time when v makes
an alternating move thus v cannot perform more than n alternating moves. The
total number of moves performed is thus not more than n2. �

Theorem 2. Algorithm 1 stabilizes in O(mn3 diam(G)) moves under a central
daemon.

Proof. We can now find a bound on the number of non-alternating moves in
between two consecutive alternating moves. Again, non-alternating moves can
be of two types: those increasing the value c(v) (called increasing moves) and all
other moves (decreasing moves). In between two alternating moves vertex v can
perform at most one increasing move (as the first non-alternating move only).
All following moves are decreasing moves. After the first move the value c(v)
belongs to the set of the smallest deg(v) color values of the given parity; the
number of subsequent decreasing moves is obviously not more than deg(v)− 1.
Consequently, between two alternating moves each vertex performs not more
than deg(v) non-alternating moves, thus the number of all non-alternating moves
between alternating moves is not more than 2m.

Finally, using Theorem 2 and Lemma 1 we have that the algorithm performs
at most 2m non-alternating moves for each of at most n2 alternating moves of
rule C, for each of at most n diam(G) moves of rule F. By multiplying these
values we obtain an upper bound of O(mn3 diam(G)) moves, which completes
the proof. �

Bearing in mind Theorem 2, we know that the system stabilizes, thus let consider
the result of the process.

Theorem 3. Algorithm 1 finds a legal coloring of graph G.

Proof. Suppose that the system is stable, so each node is stable. Hence, according
to rule C, the colors of any two neighboring vertices are different. �
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Theorem 4. Algorithm 1 finds a legal coloring of an arbitrary graph and uses
not more than two colors when applied to bipartite graph G.

Proof. Suppose that the system is stable and consider obtained coloring. Legality
is obvious. It remains to show that if G is bipartite no more than two colors has
been used.

Now, suppose to the contrary, that G is bipartite and Algorithm 1 stabilizes
using more than two colors. Consider a vertex v arbitrarily chosen among of
vertices with the largest value of color c. Observe that for each neighbor u ∈ N(v)
the parity of c(v) and c(u) is different (otherwise G would have to contain an
odd cycle). Thus by property 2 of function A we have c(v) < 2, since otherwise
v would be active due to rule C, a contradiction. �

3.1 Example

In Figure 1 each of the pictures illustrates the states of the vertices in successive
moves. The root vertex is placed in the middle of each picture and active vertices
are marked with bold circles. The state value f of each vertex is given close to
the circle, while the color value is denoted inside it.

(a)

0

0

0

1

1

2

3

3

3

4

(b)

0

0

0

1

1

1

2

3

3

4

(c)

0 0

1

1

1

3

3

34

4

(d)

0

0 0

1

1

3

3

34

4

Fig. 1. Illustration of a process of Algorithm 1 (consult Subsection 3.1)



1156 A. Kosowski and �L. Kuszner

Additional arcs show the parenthood relation between vertices and a straight
pointer indicates the vertex to perform the next move. The algorithm computes a
coloring in three steps and the result is visible in Figure 1(d). It can be observed
that in the case of non-bipartite graphs, as in the example, we cannot expect a
Grundy coloring [7] of G, i.e. such a coloring, that no single vertex may have its
color value decreased without affecting the color other vertices.

4 A Graph Coloring Algorithm Under a Distributed
Daemon Optimal for Bipartite Graphs

When allowing adjacent nodes to perform moves in parallel we introduce vertex
identifiers, i.e. we assume that each vertex v ∈ V is assigned an identifier Id(v)
which is fixed throughout the operation of the algorithm and known to vertex
v and its neighbors. Additionally, in order to allow mutual exclusion between
moves of neighboring vertices, we add a new local variable s(v) ∈ {on, off } to the
state of each vertex, which may be regarded as a generalization of the concept
of a semaphore.

Algorithm 2. Graph coloring under a distributed daemon

F: if v �= r ∧ f(v) ≤ minu∈N(v) f(u)
then f(v) = maxu∈N(v) f(u) + 1

C1: if p(v) �= null ∧ c(v) �= γ(v)
then s(v) := on

C2: if s(v) = on ∧ Id(v) < minu∈N(v){Id(u) | s(u) = on}
then c(v) := γ(v); s(v) := off

Theorem 5. Algorithm 2 determines a legal coloring of graph G in at most
O(mn3Δdiam(G)) moves under a distributed daemon.

Proof. By analogy to the correctness proof of Algorithm 1 we bound the num-
ber of moves using rule F by n logn. Now, observe that rules C1 and C2 from
Algorithm 2 are derived from rule C of Algorithm 1, and may be treated as two
consecutive stages of its execution. First, in rule C1 any vertex v whose color
value is incorrect with respect to any legal state of the algorithm signals its in-
tention of performing a color change by setting s(v) := on . The scheduler may
then select a subset of vertices with a set value s(v) to perform rule C2, which
results in the desired change of color value c(v) and unsets s(v). Observe that
the additional clause Id(v) < min{Id(u) | u ∈ N(v) ∧ c(u) = c(v)} in the condi-
tion of rule C2 serves to prevent parallel moves of neighboring vertices using this
rule. Thus, the proposed algorithm behaves similarly to its counterpart with a
central daemon (Algorithm 1 ) and we can repeat the reasoning from Lemma 1
and Theorem 2. Observe that the additional Δ-factor in the stabilization time
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of algorithm Algorithm 2 results from the fact that certain vertices may have a
set value s(v) and perform rule C2 even when their color value c(v) is legitimate
(since the value γ(v) may have changed after the prior execution of rule C1 for
vertex v due to a move made by one of its neighbors). �

5 Final Remarks

It is important to observe that Algorithms 1 and 2 can be applied to color not
only bipartite graphs, and the established bounds on the number of performed
moves do in fact hold for arbitrary graphs G. Furthermore, careful analysis of
the presented algorithms leads to the following statement.

Corollary 6. Any graph G is colored by Algorithm 1 in at most O(mn3 diam(G))
moves, and by Algorithm 2 in at most O(mn3Δdiam(G)) moves, using not more
than 2Δ colors.

By comparison, general-purpose self-stabilizing algorithms for graph coloring
(e.g. [10]) have been shown to use not more than Δ + 1 colors for any graph;
however, it is possible to construct bipartite graphs which are sometimes col-
ored by exactly Δ + 1 colors. Obviously, no similar pathological cases exist for
Algorithms 1 and 2.

In general, Algorithms 1 and 2 do not color tripartite graphs optimally and it
is possible to construct examples of 3-colorable series-parallel graphs for which
Algorithms 1 and 2 may stabilize in a state using 2Δ colors.

Property 7. There exists a family of series-parallel graphs {Gk} such that for
each Gk we have Δ = k, and Algorithms 1 and 2 may lead to a coloring of Gk

using 2Δ colors.

Proof. Let {Tk} be a family of trees with one selected vertex s(Tk) in each,
defined constructively by the following procedure:

1. Tree T0 consists of one vertex v; s(T0) = v.
2. Tree Tk+1 is formed by adding a new vertex v to the disjoint union of trees⋃k

i=0 Ti, and inserting additional edges {v, s(T0)}, . . . , {v, s(Tk)} to obtain a
tree; s(Tk+1) = v.

Now, series-parallel graph Gk is obtained by adding the root vertex r to tree
Tk, and inserting edges connecting r with all the vertices of Tk. Observe that in
some executions of Algorithms 1 and 2 the spanning tree of Gk will be the star
with center r, and that the algorithm may reach a legal state in which vertex
s(Tk) uses color 2k − 1, thus leading to a 2Δ-coloring of Gk. �

However, it has to be noted that graphs known as cacti (connected graphs such
that each edge belongs to at most one cycle) constitute a highly relevant class of
tripartite graphs for which Algorithms 1 and 2 always determine a nearly-optimal
coloring.
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Corollary 8. A cactus G is always colored by Algorithms 1 and 2 using at most
4 colors.

Proof. It has been shown that both algorithms stabilize, so it is enough to show
that the number of colors used for cacti graphs is at most 4. Let G be a cactus
and T be a spanning tree computed by the algorithm. Consider an arbitrarily
chosen non-root vertex v ∈ G. Let NA(v) = {u ∈ N(v) |A(u)=A(v)}, clearly
c(v) < 2(|NA(v)|+ 1). Suppose that u ∈ NA(v), then u �= p(v) and v �= p(u).

Moreover u does not belong to path [v, r]T , otherwise we would have a path
v = v0, v1, . . . , vk = u, where vi = p(vi−1) for i = 1, 2, . . . , k and f(vi) <
f(vi−1) < . . . < f(v0), a contradiction with p(v) being a neighbor of v such that
f(p(v)) = min{f(w) |w ∈ N(v)}. Similarly, v does not belong to path [u, r]T .

Thus, we have a cycle in G involving u,v,p(v), but G is a cactus, thus the
edge {v, p(v)} is involved in at most one cycle, so there is at most one vertex in
NA(v) and consequently c(v) < 4. Remembering that c(r) is equal to 0 and v
was an arbitrarily chosen vertex, the proof is complete. �

It is difficult to say whether it is possible to construct a single polynomial-time
self-stabilizing algorithm which optimally or near-optimally colors significantly
wider graph classes than Algorithms 1 and 2. Due to the inapproximability of the
3-coloring problem in the classical model, no such algorithm may be constructed
for general tripartite graphs (unless P = NP ). However, for the relatively narrow
3-colorable classes of outerplanar graphs and series-parallel graphs the question
remains open.

From the practical point of view, the algorithms presented in this paper com-
bine the ability to take advantage of bounds on vertex degree Δ and of the
2-colorability of the system graph or its large portions. Colorings obtained for
bipartite graphs, cacti and many other subclasses of planar graphs use a suffi-
ciently small number of colors to merit application in code assignment problems
in real-world conditions.
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Abstract. The generalized net methodology was developed as a counterpart of 
Petri nets. The methodology allows to model different kinds of discrete 
dynamic systems. The basics of the theory of generalized nets is introduced and 
next the algorithm of generalized nets is described. Algebraic aspects of 
generalized nets as well as operator aspects of generalized nets are described. 
At the end, one possible application of generalized nets, namely for neural 
networks is shown. Here a neural network without any aggregation is 
considered. 

Keywords: modeling, generalized nets, knowledge representation, neural 
networks. 

1   Generalized Nets Introduction 

The basic difference between generalized nets and the ordinary Petri nets is the place 
– transition relation [2], in the theory of generalized nets the transitions are objects of 
a very complex nature. The places are marked by   , and the transitions by      .  

Generalized nets contain tokens, which are transferred from place to place. Every 
token bears some information, which is described by token’s characteristic,  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A generalized net transition 
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and any token enters the net with an initial characteristic. After passing a transition 
the tokens’ characteristics are modified.  

The transition has input and output places, as shown in Fig. 1. Formally, every 
transition is described by a seven-tuple 

,,,,,, 21 MrttLLZ ′′′= . (1) 

where 

• { }mlllL ′′′=′ ,,, 21  is a finite, non empty set of the transition’s input places, 

• { }mlllL ′′′′′′=′′ ,,, 21  is a finite, non empty set of the transition's output places,  

• 1t  is the current time of the transition's firing, 

• 2t  is the current duration of the transition active state, 

r  is the transition's condition determining which tokens will pass from the 
transition's inputs to its outputs; it has the form of an index matrix described in [1], 

• M is an index matrix of the capacities of transition's arcs, 
•  is an object of a form similar to a Boolean expression, when the value is true, 

the transition can become active, otherwise it cannot. 
  The following ordered four-tuple 

bXttTKfcAG KkLA ,,,,,,,,,,,,,,, *0
21 ΦΘΘΘ= πππ  (2) 

 is called generalized net if the elements are described as follows: 
• A  is a set of transitions, 
• Aπ  is a function yielding the priorities of the transitions, i.e. NAA →:π , where 

{ } { }∞∪= ,2,1,0N , 

• Lπ  is a function specifying the priorities of the places, i.e. NLL →:π , where 

AprAprL 21 ∪= , and Xpri  is the i -th projection of the n -dimensional set, 

where Nn ∈ , 1≥n  and ni ≤≤1  (obviously, L  is the set of all generalized net 
places), 

• c  is a function providing the capacities of the places, i.e. NLc →: , 
• f  is a function that calculates the truth values of the predicates of the transition's 

conditions (for the generalized net described here let the function f  have the 

value false or true, i.e. a value from the set { }1,0 ), 

• 1Θ  is a function specifying the next time-moment when a given transition Z  can 

be activated, i.e. ( ) tt ′=Θ1 , where tZpr =3 , [ ]*, tTTt +∈′  and tt ′≤ ; the value 

of this function is calculated at the moment when the transition terminates its 
functioning, 

• 2Θ  is a function yielding the duration of the active state of a given transition Z , 

i.e. ( ) tt ′=Θ2 , where [ ]*
4 , tTTtZpr +∈=  and 0≥′t ; the value of this function is 

calculated at the moment when the transition starts its functioning, 
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• K  is the set of the generalized net's tokens, 
• Kπ  is a function specifying the priorities of the tokens, i.e. NKK →:π , 

• KΘ  is a function producing the time-moment when a given token can enter the 

net, i.e. ( ) tK =Θ α , where K∈α  and [ ]*, tTTt +∈ , 

• T  is the time-moment when the generalized net starts functioning; this moment is 
determined with respect to a fixed (global) time-scale, 

• 0t  is an elementary time-step, related to the fixed (global) time-scale, 

• *t  is the duration of the generalized net functioning, 
• X  is the set of all initial characteristics the tokens can receive on entering the net, 
• Φ  is a characteristic function that assigns new characteristics to every token when 

it makes the transfer from an input to an output place of a given transition, 
• b  is a function specifying the maximum number of characteristics a given token 

can receive, i.e. NKb →: . 

The generalized nets with lacking some components are called reduced generalized 
nets. 

2   Generalized Nets Models of Neural Networks 

A multilayer neural network consists of a number of simple processing units called 
neurons. The neurons are arranged in L  layers, each layer is composed of ( )lN  

neurons, Ll ,...,2,1,0= , where ( )0N  denotes the number of inputs. The output of the 

network is equivalent to all the neurons' outputs from the last L -th layer. The 
network output is strictly related to the presented input, subject to the conditions 
resulting from the constancy of the structure (the neuron connections), the activation 
functions as well as the weights. In this way the neural networks realize the following 
simulation, that is 

( )inputNNoutput = . (3) 

The simulation process of neural networks can be modeled by generalized nets 
methodology. In the review and bibliography on generalized nets theory  
and applications [4] we can find a list 353 scientific works related to the generalized 
nets. 

The neurons, which constitute the neural network can be aggregated in many ways, 
e.g. any neuron is treated as a subsystem, or the neurons are aggregated within each 
laser, or neither separate neurons nor layers are distinguished. Here we consider only 
the first case treating each neuron as a separate subsystem. In this case the considered 
neural network consists of NL  subsystems (neurons) described by the activation 
function as follows  

( ))()( lpjlpj netfx = . (4) 
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where  

)1(

)1(

1
)()1()( −

−

=
−= lpi

lN

i
ljlilpj xwnet . (5) 

while ( )1−lpix  denotes the output of the i -th neuron with respect to the pattern p , 

Pp ...,,2,1= , and the weight ( ) ( )ljliw 1−  connects the i -th neuron from the ( )1−l -st 

layer with the j -th from the l -th layer, )(,...,2,1 lNj = , Ll ,...,2,1= . 

It is obvious that the different cases of aggregation of the neural network determine 
different streams of information passing through the system. In the subsequent 
sections we will describe the way of modeling the simulation process of multilayer 
neural networks by generalized nets for these three cases of aggregation. 

The generalized net model of the considered aggregation case is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. The generalized net model of neural network simulation 

 
The model consists of a set of L  transitions, each transition being of the following 

form 

( ) ( ) ( ){ } ( ) ( ) ( ){ } llllllNlllNlll MrxxxxxxZ ,,,,,,...,,,,...,, 2111211 ττ ′= −−− . (6) 

for Ll ,...,2,1= , where ( ) ( ) ( ){ }11211 ,...,, −−− lNll xxx  - is the set of input places of the l -th 

transition, ( ) ( ) ( ){ }lNll xxx ,...,, 21  - is the set of output places of the l -th transition, lτ  - 

is the time when the l -th transition is fired out, while it is assumed that T=1τ  and 

=
−′+=

l

k
kl T

2
1ττ , lτ ′  - is the duration time of firing of the l -th transition, lr  - denotes 

the l -th transition condition determining the transfer of tokens from the transition's 

inputs ( ) ( ) ( ){ }11211 ,...,, −−− lNll xxx  to its outputs ( ) ( ) ( ){ }lNll xxx ,...,, 21 , and has the 

following index matrix form: 
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  ( )lx1  ( )lx2   
( )lNx   

 ( )11 −lx  true  true   true   

=lr  ( )12 −lx  true  true   true  (7) 

       

 ( )1−lNx  true  true   true   

 
where the value true indicates that the tokens representing the neurons can be 
transferred from the i -th input place to the j -th output place, ( )1,...,2,1 −= lNi , 

( )lNj ,...,2,1= , lM  - indicates an index matrix describing the capacities of 

transition's arcs: 
 

  ( )lx1  ( )lx2   
( )lNx   

 ( )11 −lx  1 1  1  

=lM ( )12 −lx  1 1  1 (8)

       

 ( )1−lNx  1 1  1 

 

l  - has a form of Boolean expression ( ) ( ) ( )( )11211 ,...,, −−−∧ lNll xxx  and stipulates that 

each input place ( )1−lix , ( )1,...,2,1 −= lNi , must contain a token that will be 

transferred to the l -th transition. 
The generalized net describing the considered neural network simulation process 

has the following form: 

bYttTKgcAGN KkXA ,,,,,,,,,,,,,,, *0
21 ΦΘΘΘ= πππ . (9) 

where { }LZZZA ,...,, 21=  - is the set of transitions, Aπ  - is a function classifying the 

transitions, this classification giving the priorities of the transitions, i.e. NAA →:π , 

where { },2,1,0=N { }∞∪  - in the considered neural network case this function is 

not valid because the transitions are arranged in a natural way (the asterisk * will be 
used in the subsequent text in order to denote the components of the general net 
structure which can be omitted), Xπ  - is a function describing the priorities of the 

places in the following way: 

{ } ( ) ( ) ( ) ( ) ( ) ( ){ }11111100111 ,...,,...,,...,,,...,,..., −−= LNLNNL xxxxxxZZpr  (10) 

{ } ( ) ( ) ( ) ( ) ( ) ( ){ }LNLNNL xxxxxxZZpr ,...,,...,,...,,,...,,..., 122122112 =  (11) 

( ) ( ) ( ) ( ){ ( ) ( ) ( ) ( )}LNLNNN xxxxxxxxAprApr ,...,,...,,...,,,,...,,,..., 122111100121 =∪  (12) 
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c  - is a function describing the capacities of the places; in our case it is equal 1, for 
( ) LllNi ,...,2,1,0,,...,2,1 == , g  - is a function that calculates the truth values of the 

predicates of the transition conditions, in the considered case ( ) ( )( ) truerg ljlil =−1, , 1Θ  - 

is a function yielding the next time-moment when the transitions can be again 
activated, 2Θ  - is a function giving the duration of activity of a given transition lZ , 

K  - is the set of tokens entering the generalized net, in the considered case there are 
( )0N  input places and each place contains one token; this set can be written as 

( ) ( ) ( ){ }00201 ,...,, NK ααα=  (13) 

Kπ  - is a function describing the priorities of the tokens, here all tokens have the 

same priorities, and it will be denoted by  *  for ( )( )0lK απ , ( )0...,,2,1 Nl = , KΘ  - is a 

function giving the time-moment when a given token can enter the net, i.e. all the 
tokens enter the considered generalized net at the same moment T , T  - is the time 
when the generalized net starts functioning – here it is assumed that the net starts at 
the moment T , when the tokens enter the net, 0t  - is an elementary time-step, here this 

parameter is not used and is denoted by *, *t  - determines the duration of the generalized 

net functioning, that is 
=

′=
L

l
lt

1

* τ , Y  - denotes the set of all the initial characteristics 

of the tokens, the characteristics of tokens describe the information which is carried 
by tokens and changed in transitions,  

( )( ) ( )( ) ( )( ){ }00201 ...,,, NyyyY ααα=  (14) 

where  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )01000 ,,,,1,0,1 iiii imoutFimWimXNNNNy =α  (15) 

is the initial characteristic of the token ( )0iα  that enters the place ( )0ix , 

( )0...,,2,1 Ni = , where 1NN  - the neural network identifier, ( )0N  - the number of 

input places to the net as well as to the transition 1Z  (equal to the number of inputs to 

the neural network), ( )1N  - the number of the output places of the transition 1Z , 

( ) ( )[ ]T
ii ximX 0...,,0,,0...,,0 00 =  (16) 

- is the index matrix, indicating the inputs to the network, of dimension ( ) 10 ×N  in 

which all elements are equal 0 except for the element i  whose value is equal ( )0ix  

(the i -th input of the neural network), 
 

  ( )11x  ( )12x   ( )1Nx   

( ) =0iimW  ( )0ix  ( ) ( )110iw  ( ) ( )120iw   ( ) ( )10 Niw (17)

 
- has a form of an index matrix and denotes the weights connecting the i -th input 
with all neurons allocated to the 1-st layer 
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( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )
T

N

i
NiiN

N

i
ii wxfwxfF =

==

0

1
1001

0

1
1100111 ...,,  (18) 

- denotes a vector of the activation functions of the neurons associated with the 1-st 
layer 

  ( )11x  ( )12x   ( )1Nx   

( ) =0iimout  ( )0ix  ( ) ( ) ( )1100 ii wx ( ) ( ) ( )1200 ii wx  ( ) ( ) ( )100 Nii wx (19)

 
- is an index matrix describing the signal outgoing from the i -th input place, 

( )0...,,2,1 Ni = , to all output places of the 1Z  transition, Φ  - is a characteristic 

function that generates the new characteristics of the new tokens after passing the 
transition; for the transition lZ , Ll ...,,2,1= , there are ( )1−lN  input places 

( ) ( ) ( ){ }11211 ,...,, −−− lNll xxx  and with each place there is associated a single token 

( ) ( ),1...,,2,1,1 −=− lNiliα  having the characteristic 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )1111 ,,,,,1,1 −−−− −= lillilili imoutFimWimXlNlNNNy α  (20) 

where 1NN  - the neural network identifier, ( )1−lN  - the number of input places to 

the net as well as to the transition lZ , ( )lN  - the number of the output places of the 

transition, 

( ) ( )[ ] T
lili ximX 0...,,0,,0...,,0 11 −− =  (21) 

- is the index matrix of dimension ( ) 11 ×−lN  in which all elements are equal 0 except 

the element i  whose value is equal ( )1−lix  - the i -th input value associated with the 

lZ  transition, 

 
  ( )lx1  ( )lx2   ( )lNx   

( ) =−1liimW  ( )1−lix  ( ) ( )lliw 11−  ( ) ( )lliw 21−   ( ) ( )lNliw 1−     (22) 

 
- is an index matrix describing the weight connection between the i -th input places 
with all output places of the lZ  transition,  

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) T
lN

i
lNlililN

lN

i
llilill wxfwxfF =

−

=
−−

−

=
−

1

1
11

1

1
111 ...,,  (23) 

- is a vector of the activation functions of the neurons associated with the l -th layer 
of the neural network 

   ( )lx1  ( )lx2  ( )lNx  

( ) =−1liimout ( )1−lix  ( ) ( ) ( )llili wx 111 −− ( ) ( ) ( )llili wx 211 −− ( ) ( ) ( )lNlili wx 11 −−  (24) 
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- is an index matrix describing the signals outgoing from the i -th input place, 
( )lNi ...,,2,1= , to all output places of the lZ  transition. 

The tokens ( ) ,1−liα  ( ),1...,,2,1 −= lNi  passing the transition lZ  vanish, and the 

new tokens ( ) ,ljα ( ),...,,2,1 lNj =  associated with the output places 

( ) ( ) ( ){ }lNll xxx ,...,, 21  of the transition lZ  are generated, their characteristics being 

described as follows 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )ljlljljlj imoutFimWimXlNlNNNy ,,,,1,,1 1++=α  (25) 

for 1...,,2,1 −= Ll , while  

( )( ) ( ) ( )LjLj imXLNNNy ,,1=α  (26) 

and for these new tokens the values ( )ljx , ( ),...,,2,1 lNj =  are calculated in the 

following way 

( ) ( ) ( )

( )
=

−

=
−

1

1
1

lN

i
liljlj imoutfimX , Ll ...,,2,1=  (27) 

It should be mentioned here that ( )LjimX , ( ),...,,2,1 LNj =  denotes the output of 

the neural network, the final state of the network after ending the simulation process, 
b  - is a function describing the maximum number of characteristics a given token can 
receive; in the here considered neural network simulation process this function has a 
simple form  

( )( ) 1=ljb α , for ( ) LllNj ...,,2,1,...,,2,1 == , (28) 

which means that the characteristic of each token ( )ljα , ...,,2,1=j  ( ) llN , =  

L...,,2,1 , is constructed on the base of the characteristics of all tokens ( ...,,2,1=i  

( )1−lN ) from the previous layer ( ),1−l  Ll ...,,2,1= .  

Due to the above considerations the transitions have the following form 

( ) ( ) ( ){ } ( ) ( ) ( ){ } llllNlllNlll xxxxxxZ *,*,,,,,...,,,,...,, 2111211 ττ ′= −−−  (29) 

for Ll ,...,2,1= . 

The reduced form of the generalized net describing the simulation process of the 
neural network has the following form: 

bYtTKcAGN KX ,,,*,,,*,,,,*,,,*,, *
21 ΦΘΘΘ= π  (30) 

where { }LZZZA ,...,, 21=  - is a set of transitions, Xπ  - is a function describing the 

priorities of the places, c  - is a function describing the capacities of the places, i.e. 

( )( ) 1=lixc , ...,,2,1=i  ( )lN Ll ,...,2,1,0, = , 1Θ  - is a function yielding the next 

time-moment when the transitions can be again activated, ( ) Lltt ll ...,,2,1,1 =′=Θ , 

2Θ  - is a function giving the duration of activity of the transition lZ  ( ) ll tt ′′=Θ 2 , 
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Ll ...,,2,1= , ( ) ( ) ( ){ }00201 ,...,, NK ααα=  - is the set of tokens entering the generalized 

net, TK =Θ  - for all tokens entering the net and at this moment the net starts to 

function, *t  - determines the duration of the generalized net’s functioning and is 
described by (28) or (29), Y  - denotes the set of all initial characteristics of the tokens 
described by 

( )( ) ( )( ) ( )( ){ }00201 ...,,, NyyyY ααα=  (31) 

where ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )011000 ,,,,1,0,1 iiii outFWxNNNNy =α , Φ  - is a characteristic 

function that generates the new characteristics of the new tokens after passing the 
transition, ( )( ) 1=ljb α , for ( ) LllNj ...,,2,1,...,,2,1 == , - is a function describing the 

number of characteristics memorized by each token. 
Such generalized nets with some components missing (the components not being 

valid) are called reduced generalized nets, [2]. In the above version of the generalized 
nets representation of the simulation process of multilayer neural network we preserve 
the parallelism of computation. 

3   Conclusions 

We have described the concept of a generalized nets methodology for modeling 
discrete event systems, and then the concept of index matrix useful for aggregation as 
well as for separation of subsystems.  

Next, as an example we considered the generalized net model representing the 
functioning of the multilayer neural networks - the simulation process of this class of 
networks, and many sophisticated tools of the generalized nets theory have been 
applied.  

Using the applied procedure allows us to construct a subroutine-like, which 
describes functioning of a system – in our case a multilayer neural network. In such a 
subroutine the following parameters like a number of layers, numbers of neurons 
within each layer as well as neuron parameters can be treated as formal parameters. 
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Abstract. The bilevel programming problem (BLPP) has proved to
be a NP-hard problem. In this paper, we propose a hierarchial parti-
cle swarm optimization (PSO) for solving general BLPPs. Unlike most
traditional algorithms designed for specific versions or based on specific
assumptions, the proposed method is a hierarchical algorithm framework,
which solves the general bilevel programming problems directly by sim-
ulating the decision process of bilevel programming. The solving general
BLPPs is transformed to solve the upper-level and lower-level problems
iteratively by two variants of PSO. The variants of PSO are built to solve
upper-level and lower-level constrained optimization problems. The ex-
perimental results compared with those of other methods show that the
proposed algorithm is a competitive method for solving general BLPPs.

1 Introduction

Bilevel programming problem (BLPP) is a hierarchical optimization problem,
which has a second (parametric) optimization problem as part of its constraints
[1]. In such a hierarchical decision framework, the decision maker at the lower-
level tries to optimize his objective under the given parameters from the upper-
level decision maker, who, in turn, determines the optimal parameters so as to
optimize his own objective based on the complete information on the possible
response of lower-level decision maker. Although each player tries to optimize his
own objective without considering others’ objectives, his reasonable choices are
interdependent, and the decision of one player affects the objective and the fea-
sible decision space of others. The bilevel programming model has been applied
to many domains including hierarchical decision process and a wide range of
real-life applications can be transformed into the bilevel or multi-level program-
ming framework, such as economic management[1], toll-setting problem[2], and
transportation network design[3]. The BLPP can be formulated as follows[2]:

min
x

F (x, y) (1)

s.t. G(x, y) ≤ 0 (2)

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1169–1178, 2006.
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H(x, y) = 0 (3)

where, y for each fixed x, is the optimum of the following optimization problem:

min
y

f(x, y) (4)

s.t. g(x, y) ≤ 0 (5)

h(x, y) = 0 (6)

where, x ⊆ Rn, and y ⊆ Rm denote the upper-level and lower-level variables
respectively. F and f are the upper-level and lower-level objective functions,
which are a mapping Rn ×Rm → R. G(x, y) ≤ 0 (g(x, y) ≤ 0), and H(x, y) = 0
(h(x, y) = 0) denote the upper-level (lower-level) constraints. BLPP is a math-
ematical optimization, where the set of all decision variables is partitioned be-
tween x and y, and y is determined as an optimal solution of the lower-level
programming problem parameterized for any given x.

In the past years, many algorithms have been proposed for solving the BLPP,
e.g. methods based on Kuhn-Tucker conditions[4], penalty function methods[1],
fuzzy approach[5], trust region algorithm[6], and metaheuristic[7,8,9]. The most
popular algorithm is that based on Kuhn-Tucker conditions, where the lower-
level problem is replaced by its Kuhn-Tucker condition and a one-level problem
with complementarity constraints is developed. The most proposed methods may
be problem-dependent, and require that the objective of the upper or lower level
problem must be differentiable, or the feasible region must be convex. Because
of such a deficiency, we may not obtain satisfying result while applying them
to real-life applications, especially to the BLPP with nondifferentiable objective
function or nonconvex search space. On the contrary, the metaheuristic needn’t
differentiability of objective functions, any gradient information, or the convex-
ity of search space. In recent years, the metaheuristic has received considerable
attention to its potential as an alternative method for the BLPP, especially for
complex nonlinear BLPP. Some metaheuristics for solving BLPP have been es-
tablished, such as GA[7], simulated annealing[8], and tabu search[9].

As a new metaheuristic, particle swarm optimization (PSO) has proved to
be a competitive algorithm for unconstrained optimization problems compared
with other algorithms such as GA and SA since its introduction by Kennedy and
Eberhart[10]. In this paper, we first extend the application of standard particle
swarm optimization (PSO) to solving BLPP and propose a hierarchical PSO for
solving general version of bilevel programming problem (HPSOBLP). The rest
of this paper is organized as follows. Section 2 introduces the standard PSO.
Section 3 introduces our proposed algorithm in detail. The experimental results
of the proposed algorithm in comparison with other algorithms are reported in
section 4. Section 5 summarizes this paper and shows some future work.

2 Standard Particle Swarm Optimization

PSO is a new adaptive and population-based stochastic optimization algorithm.
In PSO, the individuals manipulate their trajectories toward the best regions of
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their own previous best performance and toward the locations found by members
in their neighbors dynamically and stochastically, and the particles cooperate to
solve the optimization problem through the mutual interaction of individuals.
The position of each particle is represented by a n-dimensional vector in prob-
lem space xi = (xi1, xi2, . . . , xin), i = 1, 2, . . . , N (N is the population size),
and its performance is evaluated on the predefined fitness function related to
the problem. The velocity of the i-th particle vi = (vi1, vi2, . . . , vin) is defined
as the change of its position. The flying direction of particles is the dynamical
interaction of individual and social flying experience. The position change of
each particle is a function of its current velocity vector, the difference between
its current position and the best position found by itself so far,the stochastically
weighted difference between the individual’s current position and the best po-
sition found by any member in its neighborhood. The velocity and position of
i-th particle at time t is updated according to the following two equations:

vi(t + 1) = w · vi(t) + c1 · rand1 · (pi − xi(t)) + c2 · rand2 · (pg − xi(t)) (7)

xi(t + 1) = xi(t) + vi(t + 1) (8)
where, pi = (pi1, . . . , pin) is the best position encountered by i-th particle so far;
pg represents the best position found by any member in the neighborhood of
i-th particle (for local version of PSO) or the whole swarm (for global version of
PSO); t is the iteration counter; c1 and c2 are the acceleration coefficients, which
are the weight of the velocity toward global and local best; rand1 and rand2
are two random numbers in [0, 1]; w is the inertia weight. The inertia weight
controls the impact of previous histories of velocities on the current velocity,
which is often used as a parameter to control the trade-off between exploration
and exploitation in the search space.

3 Hierarchical Particle Swarm Optimization for Solving
Bilevel Programming Problem

In this section, we introduce our proposed hierarchical PSO for solving all classes
of bilevel programming problem, which doesn’t require any assumption of the
property of the objectives or constraints functions. As mentioned in section 2, we
know that most existing algorithms for BLPP are established and implemented
for specific versions of BLPP, or based on some weak or strong assumptions, such
as differentiability or convexity. Here, we propose a new algorithm framework
based on PSO for solving general bilevel programming problem. Unlike tradi-
tional methods, our proposed algorithm is a sequentially optimization method,
which combines two variants of PSO to solve the upper-level and lower-level
programming problems interactively and cooperatively.

3.1 Proposed Algorithm for Solving General BLPPs

As mentioned above, BLPP is a hierarchical and sequential optimization prob-
lem. In consideration of the characteristics of sequential decision, we can con-
struct a hierarchical algorithm framework based on two variants of PSO to solve
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BLPP(HPSOBLP). HPSOBLP solves the BLPP directly by simulating the se-
quential decision procedure of BLPP. The proposed algorithm consists of two
variants of standard PSO (see section 3.2). The main body of our proposed
approach is a variant of PSO (called PSO L described in section 3.2), which
is designed only to solve the upper-level programming problem based on the
follower’s optimal response. Another variant of PSO (called PSO F described
in section 3.2) is embedded in the hierarchical framework to solve the lower-
level programming problem, and obtain the optimal response of the follower for
each given decision variable x of the upper-level programming (x is obtained
by PSO L). The follower’s optimal reaction y is then returned to upper-level
programming problem as the implementation base of PSO L.

In our proposed algorithm HPSOBLP, solving BLPP is transformed to solve
the upper-level and lower-level programming problem respectively while suppos-
ing that the decision variable of upper-level or lower-level is determined respec-
tively. But the solution information is exchanged between two variants of PSO,
and the output of one algorithm is the input of another algorithm, namely y the
output of PSO F is the input of PSO L and x the output of PSO L is the input
of PSO F. These forms a hierarchical and sequential framework. The HPSOBLP
is implemented interactively in the hierarchical structure of the two variants of

Initialization
Initialize the decision variable
x of upper-lelvel programming

x

Program PSO F
Solve the lower-level programming

problem for each given x

y

Program HPSOBLP
Solve the upper-level programming

problem for each given y

(x, y)

Whether termination
condition is met?

Yes

No

x

Stop
Output the optimum of BLPP

Fig. 1. The scheme procedure for HPSOBLP
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PSO. Fig. 1 shows the scheme procedure of HPSOBLP to generate solutions for
BLPP. Such a repeated interaction and cooperation between two variants of PSO
reflects and simulates the hierarchical decision process of BLPP and can solve
BLPP sequentially. The algorithm is tested in section 4. The proposed algorithm
can be used to solve different classes of BLPP, even though complex BLPP with
nondifferentiable or nonconvex objective functions and constraints.

3.2 A Modified PSO for Solving Constrained Optimization Problem

From equation (1)-(6), we know that the upper-level or lower-level programming
problem is a standard constrained optimization problem without consideration
of interaction and interdependency between the leader and the follower. Here
we propose a modified PSO with a new constraint-handling mechanism (namely
above PSO L and PSO F) to solve them(called PSOCO in the following section).

Without loss of generality, here, we choose the lower-level programming prob-
lem as a single independent constrained optimization problem to describe our
proposed algorithm PSOCO when the leader’s decision variable x is given. Here,
we assume that the constraints of lower-level programming are composed of q
inequalities constraints (gi(x, y) ≤ 0, for i=1,. . . ,q), and m − q equalities con-
straints (hi(x, y) = 0, for i = q + 1,. . .,m). In the following sections, the parti-
cles satisfying all the constraints are called feasible particles, otherwise infeasible
particles. Inspired by the basic idea in GA for solving constrained optimization
problems[11], we assume that every feasible particle is better than every infea-
sible one. Under this assumption, all particles violating the constraints (at least
a constraint) will be associated with a bigger fitness than the ones satisfying all
the constraints (for minimization problems). It is also assumed that all infeasi-
ble particles at each generation also have bigger fitness than the worst feasible
particle found over the generations so far. In this paper, we introduce a variable
Worst fit to keep track of the fitness value of the worst feasible particle.

In the PSOCO, all the particles (feasible or infeasible) for a given upper-level
decision variable x are evaluated by the following objective function P (x, y):

P (x, y) =
{
f(x, y) if y ∈ Ω(x)
f(x, y) + r

∑m
i=1 fi(x, y) + ϕ(y, t) if y ∈ S\Ω(x) (9)

where S is the search space. Ω(x) is defined in section 1. r is the penalty coeffi-
cient. fi(x, y) denotes the constraint violation measure of infeasible particles for
the i-th constraint. ϕ(y, t) is the additional heuristic value at time t. The fi(x, y)
and ϕ(y, t) are defined as:

fi(x, y) =
{

max{0, gi(x, y)} if 1 ≤ i ≤ q
|hi(x, y)| if q + 1 ≤ i ≤ m

(10)

ϕ(y, t) = Worst fit(t)− min
y∈S\Ω(x)

{f(x, y) + r
∑m

i=1
fi(x, y)} (11)

Worst fit(t) = max{Worst fit(t− 1), max
y∈Ω(x)

{f(x, y)}} (12)
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where, ϕ(y, t) is an additional penalty for infeasible particles at time t. It means
that any infeasible particle will be given an additional penalty to guarantee that
its fitness value in current generation is worse than the value of Worst fit. The
Worst fit(t) keeps record of the fitness value of the worst feasible particle until
the t-th generation, which is updated dynamically according to equation (12) dur-
ing the implementation of PSO. By using the variable Worst fit(t), the PSOCO
can make all feasible particles better than infeasible particles over the generations.
While the initialization of a particle swarm, the variable Worst fit(t) is set to a
random larger number and updated dynamically over the generations without re-
quirement that there is at least a feasible particle in the initial particle swarm. The
algorithms must handle the constraints of both upper-level and lower-level prob-
lems in order to keep the particles moving in the constraint region and improve
the algorithm convergence.

4 Experiment and Results

To compare the performance of our proposed algorithm with other algorithms,
the HPSOBLP is testing on a series of testing problems. The testing problem
set is composed of different classes of bilevel programming problems, namely
the problems involving linea, quadratic, and nonlinear objective functions. The
complete formulations are shown in the Appendix.

In consideration of computation precision of the computer, a violation toler-
ance ε (a very small positive number) is set for all the constraints. For example,
for a constraint gi(x) ≤ 0, the constraint will be assumed to be violated only if
gi(x) > ε. Otherwise, the constraint is satisfied. Moreover, an equality constraint
can be replaced by two inequalities constraints, namely, gi(x) = 0 is transformed
to gi(x) ≤ 0 and gi(x) ≥ 0. The parameters for the implementation of HPSOBLP
are set as follows: the swarm size Nmax is set to 20 and 40 respectively, the num-
ber of maximum generation Gmax of two subprograms are set to 120 and 30,
both acceleration coefficients c1 and c2 are set to 2 as proposed in literature[10],
inertia weight w is set to decrease linearly from 1.2 to 0.1 as in[12], the max-
imum velocity of particles Vmax is set to the corresponding bounds of decision
variables, the penalty factor r is set to 10, and the violation tolerance ε is set to
7e-5. Moreover, the control parameter Worst fit is initialized to 100000.

With the abovementioned parameters, the HPSOBLP is implemented for 30
runs for each testing problem. The results in terms of the worst(”Worst L”), the
average(”Avg.”), the best(”Best L”), and the standard deviation(”Std.”) of the
upper-level objective value F (x, y) are summarized in Table 1. The lower-level
objective value f(x, y) corresponding to the best, and worst upper-level objec-
tive (namely Best F, and Worst F) are also reported in Table 1. For each testing
problem, it can be seen that the standard deviation of the best upper-level objec-
tive values over 30 trials, and the difference between the Best L and the Worst L
almost equal to 0, which means that the robustness of our proposed algorithm
is very high, and it is a robust algorithm for considered testing instances in this
paper. Note that now there is no suitable testing set of large bilevel programming
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Table 1. Summary of the results of HPSOBLP over 100 runs

No.
F (x, y) f(x, y)

Best L Worst L Avg. Std. Best F Worst F

T1 0 0 0 0 100 100
T2 225 225 225 0 100 100
T3 -14.7578 -13.4538 -14.0391 0.261062 0.206732 -0.59095
T4 -36.0003 -36 -36.0001 5.36e-05 0.249985 0.25
T5 -9.27689 -8.69985 -8.95046 0.12679 -4.75611 -10.0157
T6 -7.95649 -7.66102 -7.78311 0.066825 -1.51518 -0.95865
T7 -11.99851 -11.9978 -11.9981 0.000168 -459.2248 -137.1943
T8 -3.60275 -3.59888 -3.6007 0.000703 -1.98489 -2.00553
T9 -3.92014 -3.91658 -3.91952 0.000645 -1.99292 -2.0819
T10 88.77571 88.7852 88.78349 0.001635 -0.7698 -0.7698
T11 15.44004 16.37004 16.03177 0.217296 2.72798 2.25809
T12 1.99972 2.060783 2.001623 0.006511 24.019 23.8702
T13 2.703942 2.749716 2.741455 0.005005 0.560201 0.559681

problems, and our proposed approach is only tested on some testing problems
with less variables and constraints. The performance of HPSOBLP need to be
tested on large bilevel programming problems and real-world applications.

Table 2. Comparison of the optimums of HPSOBLP with other algorithms

No.
Leader’s objective F (x, y) Follower’s objective f(x, y)

HPSOBLP GA TRM Original HPSOBLP GA TRM Original

T1 0 0 5 100 100 0
T2 225 225 225 100 100 100
T3 -14.7578 -12.68 -12.68 -12.68 0.206732 -1.016 -1.02 -1.016
T4 -36.0003 -29.2 -29.2 0.249985 0.3148 0.3148
T5 -9.27689 -8.92 -8.92 -4.75611 -6.14 -6.05
T6 -7.95649 -7.58 -7.56 -1.51518. -0.574 -0.580
T7 -11.99851 -11.999 -12 -459.225 -163.42 -112.71
T8 -3.60275 -3.6 -3.6 -1.98489 -2 -2
T9 -3.92014 -3.92 -3.15 -1.99292 -2 -16.29
T10 88.77571 88.79 88.79 -0.7698 -0.77 -0.77
T11 15.44004 17 17 2.72798 2 2
T12 1.999972 2 2 24.019 24.02 24.02
T13 2.703942 2.75 2.75 0.560201 0.57 0.57

We compare the results of our algorithm with those obtained by GA [7], trust-
region method[2](abbreviated to TRM) and the methods in the corresponding
original references( abbreviated to Original). Here our method is only compared
with the above three algorithms because there is no results of other traditional
algorithms in the literatures for the considered testing problems in this paper.
The best-found results of HPSOBLP and other three algorithms are reported
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in Table 2. It can be observed that the best-found results of HPSOBLP are
better than or equal to those other algorithms, especially for testing problem
3,4,5,6,10,11 etc.. Note that we do not compare computation time for the ap-
proaches. We believe that it is an unfair comparison for some reasons. First the
authors implement their algorithms on different computers. Second, different al-
gorithms are coded in different structures, which affect the computation time.

In a word, the results show that the proposed algorithm can better solve most
testing problems than other three approaches. The most interesting is that our
proposed approach has solved different classes of BLPPs without any specific as-
sumption or any transformation of the objective or constraints functions. Note
that the above results were obtained under specific violation tolerance. We can
improve the computation precision by decreasing the violation tolerance.

5 Conclusions and Future Work

In this paper, we extend the application of PSO to solving BLPPs, and develop a
hierarchial PSO for solving general BLPPs (HPSOBLP). By simulating the de-
cision process of sequential decision, our proposed algorithm solve general bilevel
programming problems directly without any specific assumption conditions. The
proposed algorithm is a hierarchial algorithm framework combining two variants
of PSO. The variants of PSO are designed to solve the upper-level and lower-
level programming problems iteratively. Through such an interaction between
two variants of PSO, the general BLPPs can be solved effectively. The experi-
mental results comparing with other algorithms are reported and show that the
PSO optimization can also be used to solve BLPPs, and the proposed algorithm
is a competitive approach for solving general BLPPs without any specific as-
sumptions and constraints. Future work will look into application of HPSOBLP
to other testing problems, especially to complex large-scale BLPPs in the real
world. It is also necessary and significant to study the effects of parameters of
standard PSO such as acceleration coefficients on the performance of HPSOBLP.
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Appendix: Testing problems

1. Testing problem one (T1)[13]
min

x
F (x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60

s.t. x1 + x2 + y1 − 2y2 ≤ 40, 0 ≤ x1 ≤ 50, 0 ≤ x2 ≤ 50
min

y
f(x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2

s.t. 2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0
−10 ≤ y1 ≤ 20, −10 ≤ y2 ≤ 20

2. Testing problem two (T2)[14]
min

x
F (x, y) = (x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2

s.t. −x1 − 2x2 + 30 ≤ 0, x1 + x2 − 25 ≤ 0, x2 ≤ 15
min

y
f(x, y) = (x1 − y1)

2 + (x2 − y2)
2

s.t. 0 ≤ y1 ≤ 10, 0 ≤ y2 ≤ 10

3. Testing problem third (T3)[15]
min

x
F (x, y) = −x2

1 − 3x2 − 4y1 + y2
2

s.t. (x1)
2 + 2x2 ≤ 4, x1 ≥ 0, x2 ≥ 0
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min
y

f(x, y) = 2x2
1 + y2

1 − 5y2

s.t. x2
1 − 2x1 + x2

2 − 2y1 + y2 ≥ −3
x2 + 3y1 − 4y2 ≥ 4, y1 ≥ 0, y2 ≥ 0

4. Testing problem four (T4)[16]
min

x
F (x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t. x1 ≥ 0, x2 ≥ 0
min

y
f(x, y) = 1+x1+x2+2y1−y2+y3

6+2x1+y1+y2−3y3

s.t. −y1 + y2 + y3 + y4 = 1, 2x1 − y1 + 2y2 − 1
2y3 + y5 = 1

2x2 + 2y1 − y2 − 1
2y3 + y6 = 1, yi ≥ 0, i = 1, . . . , 6

5. Testing problem five to nine (T5-T9)[17]
min

x
F (x, y) = r(x2

1 + x2
2) − 3y1 − 4y2 + 0.5(y2

1 + y2
1)

min
y

f(x, y) = 0.5[y1 y2]H [y1 y2]
T − b(x)T [y1 y2]

T

s.t. −0.333y1 + y2 − 2 ≤ 0, y1 − 0.333y2 − 2 ≤ 0, y1 ≥ 0, y2 ≥ 0

T5) r = 0.1, H =
1 −2

−2 5
, b(x) =

x1

x2

T6) r = 1,H ,and b(x) is the same as in T5

T7) r = 0, H =
1 3
3 10

, b(x) =
x1

x2

T8) r = 0.1,H ,and b(x) is the same as in T7

T9) r,H is the same as in T8. b(x) =
−1 2
3 −3

x1

x2

6. Testing problem ten(T10)[2]
min

x
F (x, y) = x2 + (y − 10)2

s.t. x + 2y − 6 ≤ 0, −x ≤ 0
min

y
f(x, y) = x3 − 2y3 + x − 2y − x2

s.t. −x + 2y − 3 ≤ 0, −y ≤ 0
7. Testing problem eleven (T11)[2]

min
x

F (x, y) = (x − 5)2 + (2y + 1)2

s.t. −x ≤ 0
min

y
f(x, y) = (x − 1)2 − 1.5xy + x3

s.t. −3x + y + 3 ≤ 0, x − 0.5y − 4 ≤ 0
x + y − 7 ≤ 0, −y ≤ 0

8. Testing problem twelve(T12)[2]
min

x
F (x, y) = (x − 5)4 + (2y + 1)4

s.t. x + y − 4 ≤ 0, −x ≤ 0
min

y
f(x, y) = e−x+y + x2 + 2xy + y2 + 2x + 6y

s.t. −x + y − 2 ≤ 0, −y ≤ 0
9. Testing problem thirteen (T13)[2]

min
x

F (x, y) = (x1 − y2)
4 + (y1 − 1)2 + (y1 − y2)

2

s.t. −x1 ≤ 0
min

y
f(x, y) = 2x1 + ey1 + y2

1 + 4y1 + 2y2
2 − 6y2

s.t. 6x1 + 2y2
1 + ey2 − 15 ≤ 0, −y1 ≤ 0, y1 − 4 ≤ 0

5x1 + y4
1 − y2 − 25 ≤ 0, −y2 ≤ 0, y2 − 2 ≤ 0
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Abstract. This paper presents the idea of recognition of music symbols
to help the blind people reading music scores and operating music nota-
tion. The discussion is focused on two main topics. The first topic is the
concept of the computer program, which recognizes music notation and
processes music information while the second is a brief presentation of
music processing methods including recognition of music notation - Op-
tical Music Recognition technology - based on artificial neural networks.
The short description and comparison of effectiveness of artificial neural
networks is also given.

1 Introduction

Over the past few decades computers developed enormously. Along with the
progress in hardware the researchers have been working hard to bring on com-
puters to the activities of everyday life. Starting from turning raw interfaces to
user friendly communication devices new methods have been studied and de-
veloped to make the computers not only efficient but mechanistic tools (like
typewriters and counting machines) but also interacting with the human part-
ners in an intelligent way. This required, of course, the use of methods that firmly
belong to the domain of Artificial Intelligence.

In this paper we attempt to study an application of methods of Artificial
Intelligence in the real life computer program that is supposed to handle musical
notations. The term ”Artificial Intelligence”, though widely used by computer
researchers, has neither a common definition nor is it uniquely understood by
the academic community. However, it is not our aim to provoke a discussion
on what artificial intelligence is and which methods does it embed. Instead, we
rather use the term in a common sense though in an intuitive way.

Computer-based music processing methods have been developing since sixties,
c.f. [13] and have found their commercial applications during last two decades,
c.f. [5]. Music processing embraces several types of computer programs, including
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MIDI sequencers, AUDIO players and notation editors. However, these kinds
of programs, in their basic forms, cannot be classified as employing artificial
intelligence methods; they are rather simple tools like record players or music
analogs of typewriters. Above and beyond implementation of simple computer
programs for music processing more sophisticated methods have been developed
that truly belong to the field of AI. Two most important areas of utilization
of AI methods are: knowledge representation and processing focused on music
information, and pattern recognition exploited in music notation recognition and
recognition of music in audio form.

Music computer program for the blind is what is possible at the cutting-edge
of technology. There are many commercial programs for recognition of music
notation processing that have been developed during the last decade. In early
nineties MIDISCAN was developed. It was then superseded by the Smart Score
[17], SharpEye and PhotoScore in the forthcoming years. Several notation editors
as Smart Score [17], Finale, Sibelius and many MIDI sequencers were in use for
music processing. There are, however, only a few programs of music processing
for the blind musicians, c.f [16,18].

In this paper we discuss application of artificial intelligence methods in music
education for the blind. The discussion is focused on two aspects of computer
processing of music: information representation and processing and optical music
recognition. We then present a concept of computer aimed specifically at the
blind people.

2 Representation and Processing of Music Information

Knowledge representation and processing is the most important part of any mu-
sic processing system. Music itself is one of human communication languages. It
has extremely high level of sophistication, has not been codified in its wholeness
and is still evolving. Music notation, an emanation of music, is a description of
music in graphical form. Music notation can also be seen as human communica-
tion tool, it is highly complicated, its codification does not describe the whole
notation and it is still evolving (like other tools of human activities). Music pro-
cessing is governed by rules that neither are unique, nor complete, nor certain.
Music processing cast on music notation is characterized by the same features as
music processing. All these features require carefulness in music notation repre-
sentation. In fact, music notation is a two dimensional language in which the ge-
ometrical relations between its symbols if of similar importance that the symbols
alone. Music notation representation format has to store data about symbols,
symbols placement and also contextual information about relative placement of
symbols. Incorrectly design music notation representation will result in difficul-
ties in music processing and even may make such processing impossible.

There are two important aspects related to music representation: structure of
music notation and music description. The first aspect is a derivative of music
structure (title, composer, parts of music piece, instruments, voices, etc.) and of
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Fig. 1. An example of music notation page

geometrical limits of paper sheets (breaking music to measures, systems, pages,
removing silent instruments from systems, etc.), c.f. Figure 1.

Another aspect of music representation is related to information storage about
music notation symbols and their properties. Music notation has complicated
structure with many implicit relations between items of music data. Music sym-
bols vary in size, shape and are arranged in much more complex and confusing
way. In fact, music notation is a two dimensional language in which the geo-
metrical relations between its symbols if of similar importance that the symbols
alone. Therefore any music notation representation has to store data about sym-
bols, symbols placement, properties of symbols, suggestions and indications for
performers, etc. It also must store contextual information about relative place-
ment of symbols and allow for repossessing contextual information indirectly
expressed by the notation.
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3 Acquiring Music Information

Any music processing system must be supplied with music information. Manual
inputs of music symbols are the easiest and typical source of music processing sys-
tems. Such inputs could be split in two categories. One category includes inputs
form - roughly speaking - computer keyboard (or similar computer peripheral).
Such input is usually linked to music notation editor, so it affects computer repre-
sentation of music notation. Another category is related to electronic instruments.
Such input usually produce MIDI commands which are captured by a computer
program and collected as MIDI file representing live performance of music.

Besides manual inputs we can distinguish inputs automatically converted to
human readable music formats. The two most important inputs of automatic con-
version of captured information are automatic music notation recognition which
is known as Optical Music Recognition technology and audio music recognition
known as Digital Music Recognition technology. In this paper we discuss basics
of automatic music notation recognition as a source of input information feeding
music processing computer system.

3.1 Optical Music Recognition

Printed music notation is scanned to get image files in TIFF or similar for-
mat. Then, OMR technology converts music notation to the internal format
of computer system of music processing. The structure of automated notation
recognition process has two distinguishable stages: location of staves and other
components of music notation and recognition of music symbols. The first stage
is supplemented by detecting score structure, i.e. by detecting barlines and then
systems and systems’ structure and detecting other components of music no-
tation like title, composer name, etc. The second stage is designed on finding
placement and classifying symbols of music notation. The step of finding place-
ment of music notation symbols, also called segmentation, must obviously pre-
cede the step of classification of music notation symbols. However, both steps
segmentation and classification often interlace: finding and classifying satellite
symbols often follows classification of main symbols.

Staff lines and systems location
Music score is a collection of staves which are printed on sheets of paper, c.f.
[6]. Staves are containers to be filled in with music symbols. Stave(s) filled in
with music symbols describe a part played by a music instrument. Thus, stave
assigned to one instrument is often called a part. A part of one instrument is
described by one stave (flute, violin, cello, etc.) or more staves (two staves for
piano, three staves for organ).

Staff lines location is the first stage of music notation recognition. Staff lines
are the most characteristic elements of music notation. They seem to be eas-
ily found on a page of music notation. However, in real images staff lines are
distorted raising difficulties in recognition. Scanned image of a sheet of music
is often skewed, staff line thickness differs for different lines and different parts



Methods of Artificial Intelligence in Blind People Education 1183

of stave, staff lines are not equidistant and are often curved, especially in both
endings of the stave, staves may have different sizes, etc., c.f. [5,6] and Figure 2.

Having staves on page located, the task of system detection is performed.
Let us recall that the term system (at a page of music notation) is used in the
meaning of all staves performed simultaneously and joined together by beginning
barline. Inside and ending barlines define system’s structure. Thus, detection of
systems and systems’ structure relies on finding barlines.

Score structure analysis
Sometimes one stave includes parts of two instruments, e.g. simultaneous nota-
tion for flute and oboe or soprano and alto as well as tenor and bass. All staves,
which include parts played simultaneously, are organized in systems. In real
music scores systems are often irregular, parts which not play may be missing.

Each piece of music is split into measures which are rhythmic, (i.e. time) units
defined by time signature. Measures are separated from each other by barlines.

The task of score structure analysis is to locate staves, group them in systems
and then link respective parts in consecutive systems. Location of barlines depicts
measures, their analysis split systems into group of parts and defines repetitions.

Fig. 2. Examples of real notations subjected to recognition
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Music symbol recognition
Two important problems are raised by symbol recognition task: locating and
classifying symbols. Due to irregular structure of music notation, the task of
finding symbol placement decides about final symbol recognition result. Symbol
classification could not give good results if symbol localization is not well done.
Thus, both tasks are equally important in recognizing of music symbols.

Since no universal music font exits, c.f. Figures 1 and 2, symbols of one class
may have different forms. Also size of individual symbols does not keep fixed
proportions. Even the same symbols may have different sizes in one score. Besides
usual noise (printing defects, careless scanning) extra noise is generated by staff
and ledger lines, densely packed symbols, conflicting placement of other symbols,
etc.

A wide range of methods are applied in music symbol recognition: neural
networks, statistical pattern recognition, clustering, classification trees, etc., c.f.
[1,2,4,9,11]. Classifiers are usually applied to a set of features representing pro-
cessed symbols, c.f. [9]. In next section we present application of neural networks
as example classifier.

3.2 Neural Networks as Symbol Classifier

Having understood the computational principles of massively parallel intercon-
nected simple neural processors, we may put them to good use in the design of
practical systems. But neurocomputing architectures are successfully applicable
to many reallife problems. The single or multilayer fully connected feedforward
or feedback networks can be used for character recognition, c.f. [8].

Experimental tests were targeted on classification of quarter, eight and sixteen
rests, sharps, flats and naturals, c.f. Figure 3 for examples music symbols. To
reduce dimensionality of the problem, the images were transformed to a space of
35 features. The method applied in feature construction was the simplest one, i.e.
they were created by hand based on understanding of the problem being tackled.
The list of features included the following parameters computed for bounding
box of a symbol and for four quarters of bounding box spawned by symmetry
axes of the bounding box:

– mean value of vertical projection,
– slope angle of a line approximating vertical projection,
– slope angle of a line approximating histogram of vertical projection;
– general horizontal moment m10,

Fig. 3. Printed symbols of music notation - distortions, variety of fonts
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Table 1. Chromatic symbols recognition rate of selected classifiers

flats sharps naturals Classifier

99.11% 97.98% 98.81% backpropagation 5 - 3 - 2

92.30% 86.81% 91.74% counterpropagation 15 - 8 - 1

96.52% 93.33% 89.11% counterpropagation 25 - 8 - 1

– general vertical moment m01,
– general mixed moment m11.

The following classifiers were utilized: backpropagation perceptron, feedfor-
ward counterpropagation maximum input network and feedforward counterprop-
agation closest weights network. An architecture of neural network is denoted
by a triple input - hidden - output which identifies the numbers of neurons in
input, hidden and output layers, respectively, and does not include bias inputs
in input and hidden layers.

Table 1 presents results for three symbols on music notation: flats, sharps and
naturals, c.f. [9]. Classifier applied: backpropagation perceptron, feed-forward
counterpropagation maximum input network and feedforward counterpropaga-
tion closest weights network. An architecture of neural network is denoted by a
triple input - hidden - output which identifies the numbers of neurons in input,
hidden and output layers, respectively, and does not include bias inputs in input
and hidden layers.

4 Braille Score - Bringing Research to Practice

Braille Score is a computer program to process music information. Braille Score
is an integrated music processing computer program directed to a broad range
of people. It is the part of the project under development in Warsaw University
of Technology. The program together with a man creates an integrated system.
It has special features allowing its usage by blind people. It is intended as a tool
supporting blind people in dealing with music. Its important application could
be placed in music education of blind students. Braille Score directly applies
methods of artificial intelligence in practice. Its main modules deal with music
information acquisition, storage and processing, communication with both blind
people and good eyesight users. Main functions of Braille Score are:

– creating scores from scratch,
– capturing existing music printings and converting them to electronic version,
– converting music between different formats of music representation,
– processing music, e.g. transposing musing to different keys, extracting parts

from given score, creating a score from given parts,
– preparing teaching materials,
– creating and storing own compositions and instrumentation.
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4.1 Representing and Processing of Music Information

A software for music processing is usually built around the model of an elec-
tronic format of music representation. Such a format stores music in a computer
memory, processing it, exchange music data between different music equipment
but also present music in a form of music notation. But from the other side the
proper recognition of music notation is still under development. Information ac-
quired at the stage of pattern recognition has to be stored in the form allowing
for its further usage. This stage is based on the methods of knowledge represen-
tation and processing, c.f. [3,5,15]. The following topics could exemplify music
knowledge storage and processing:

– designing a format of music representation,
– recognizing context relations: inheriting accidentals, linking articulation and

ornamentation symbols to notes, linking lyrics to notes,
– structuring recognized music symbols, grouping notes into chords, grouping

chords into beamed sequences, grouping accidentals into key signatures,
– identifications of rhythmic groupings,
– identifications of voices,
– converting music between different formats of music representation.

4.2 Acquiring Music Information

Braille Score is capable to acquire music information from several sources. Its
main and distinguishable input source is printed music notation, which is sub-
jected to automatic recognition of the structure and symbols. Only limited set of
music notation symbols is intended to be recognized and process in Braille Score
at the current version. The set of recognized symbols includes notes, chords,
rests, accidentals, clefs, bar lines, key signatures, time signatures, change of key
and time signature. Assuming future development of Braille Score, BSF include
wider set of symbols including rhythmic, articulation and ornamentation figures
and other symbols.

Braille Score can also read music information represented in MIDI, NIFF,
MusicXML and Braille Music formats. Conversely, Braille Score can also output
music information to the same sources. This way it is able to exchange music
information with broad range of music software.

4.3 User Interface Extensions for Blind People

Braille Score is addressed to blind people. Its user interface extensions allow blind
user to master the program and to perform operations on music information. The
most important feature of Braille Score is its ability to read, edit and print music
information in Braille format. Blind user is provided the following elements of
interface: Braille Notation editor, keyboard as input tool, sound communicator.

Blind people do not use pointing devices. In consequence, all input functions
usually performed with mouse must be mapped to computer keyboard. Mas-
sive communication with usage of keyboard requires careful design of interface
mapping to keyboard, c.f. [12].
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Blind user usually do not know printed music notation. Their perception of
music notation is based on Braille music notation format, c.f. [10] presented at
Braille display or punched sheet of paper. In such circumstances music informa-
tion editing must be done on Braille music notation format. Since typical Braille
display is only used as output device, such editing is usually done with key-
board as input device. In Braille Score Braille representation of music is online
converted to internal representation and displayed in the form of music nota-
tion in usual form. This transparency will allow for controlling correctness and
consistency of Braille representation, c.f. [12].

Sound information is of height importance for blind user of computer program.
Wide spectrum of visual information displayed on display screen for user with
good eyesight could be replaced by sound information. Braille Score provides
sound information of two types. The first type of sound information collabo-
rates with screen readers, computer programs dedicated to blind people which
could read contents of display screen and communicate it to user in the form of
synthesized speech. This type of communication is supported by contemporary
programming environments. Braille Score uses tools provided by Microsoft .NET
programming environment. The second type of sound information is based on
own Braille Score tools. Braille Score has embedded mechanism of sound an-
nouncements based on own library of recorded utterances.

5 Conclusions

In this paper we describe a concept of Braille Score the specialized computer
program which should help blind people to deal with music and music notation.
The use of artificial intelligence tolls like neural networks can improve the pro-
gram part devoted for the recognition of the music symbols. The first results
with Braille Score show its to be a practical and useful tool.
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Abstract. This paper is focused on a Double Dummy Bridge Problem
(DDBP) which consists in answering the question of how many tricks are
to be taken by a pair of players assuming perfect play of all four sides
with all cards being revealed. Several experiments are also presented in
a variant of DDBP in which the information about to whom of the two
players in a given pair a particular card belongs to is hidden. In con-
trast to our previous works, which were devoted to no trump contracts,
here we concentrate on suit contracts. Several interesting conclusions
are drawn from comparison of weight patterns of networks trained on
no trump contracts only vs. those trained exclusively on suit contracts.
The ultimate goal of this research is to construct a computer program
playing the game of contract bridge using neural networks and other
CI techniques with the basic assumption of using zero-human-knowledge
approach and to learn purely on examples.

1 Introduction

The game of bridge has attracted attention of many AI and CI researchers, e.g.
[1,2,3,4,5]. In particular, some interest was also devoted to DDBP [5,6] which is
regarded as an interesting benchmark problem at initial stage of bridge playing
program’s development.

In this paper we continue our research efforts devoted to DDBP having in
mind the ultimate goal - construction of a bridge playing system without explicit
presentation of any human expert knowledge concerning the game.

It must be emphasized that the rules of the game were not presented in any
form. In all experiments the training data contained only deals (i.e. information
about which player each card belongs to) with target information about the
number of tricks to be taken by one pair of players.

2 Previous Work – No Trump Contracts

In this section we briefly describe previous results obtained for no trump con-
tracts, published in [7,8,9].
� This work was supported by the Warsaw University of Technology grant no. 504G

1120 0008 000.
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2.1 Various Approaches to DDBP

In [7] several neural network architectures were tested in the DDBP (from NS
viewpoint) for no trump contracts. The data was taken from GIB Library [10]
which includes 717, 102 deals with revealed all hands. Additionally the library
provides a number of tricks taken by the pair NS in each contract under the
assumption of a perfect play of all sides.

Several feed-forward perceptron neural networks with logistic activation func-
tion were created, trained using RProp algorithm and tested in JNNS (Java Neu-
ral Network Simulator) environment. In most cases logistic (unipolar sigmoid)
activation function was used for all neurons except for the case of representation
of data using negative numbers, where the hyperbolic tangent (bipolar sigmoid)
activation function was applied.

Two main approaches to coding a deal suitable for neural network input rep-
resentation were applied. In the first approach each card of each hand was rep-
resented by two real numbers: the value (2, 3,. . ., king, ace) and the suit - S
(Spades), H (Hearts), D (Diamonds), C (Clubs). Both real numbers were cal-
culated using a uniform linear transformation to the range [0.1, 0.9] (see [7,8] for
details).

In the other deal representation - which was superior to the above described
one - the positions of cards in the input layer were fixed, i.e. from the leftmost
input to the rightmost one the following cards were represented: 2 of Spades, 3
of Spades, ..., king of Clubs, ace of Clubs. An input value denoted the hand to
which a given card belonged: 1.0 for N , 0.8 for S, −1.0 for W , and −0.8 for E.
The simplest network 52 − 1 accomplished the result (94.15 | 76.15 | 31.29)1,
and the network with one hidden layer: 52 − 25 − 1 improved this score to
(95.81 | 79.95 | 34.02). A slight modification of the above way of coding a
deal consisted in extending the input representation to 104 neurons. The first
52 neurons represented assignment to a pair (value 1.0 for NS pair and −1.0
for WE), and the other 52 ones represented a hand in a pair (1.0 for N or
W and −1.0 for S or E). The simplest network: 104-1 accomplished the result
(94.76 | 77.52 | 32.19), and two-hidden layer network 104 − 30 − 4 − 1, yielded
the result (95.64 | 79.63 | 33.74).

The number of iterations required to learn the training set without overfitting
depended mostly on the way of coding a deal. The networks with the first type
of coding needed a few tens of thousands iterations, and networks with coding
by cards’ assignment only several hundred ones.

A few more ways of coding a deal were also tested, but regardless of the
problem representation it was concluded that with the proposed approach
exceeding the level of (96 | 80 | 34) is a challenging task.

As a point of reference simple estimator based on Work point count (ace - 4
points, king - 3, queen - 2, jack - 1) was proposed. The number of tricks to be
1 Each of the three values denotes the fraction in percent of test deals for which the

network was mistaken, respectively by no more than 2 tricks (94.15%), no more than
1 trick (76.15%), and was perfectly right (31.29%). This notation is used in the whole
paper.
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taken by NS was estimated as (13/40) ∗ points of NS. This estimator achieved
the result of (86.19 | 61.32 | 22.52) which was significantly inferior to the ones
achieved by neural architectures. This result suggests that networks learnt some
additional information besides simple estimation of Work points.

2.2 Analysis of Trained Networks

Except for numerical results it is interesting to explore what is the problem
representation in connection weights of trained networks. A closer look at this
data obtained for 52−25−1 architectures revealed some interesting observations
[8,9].

Firstly, weights of connections between input neurons representing aces and
kings had always the biggest absolute values. This feature was simple to explain
(for humans) - these cards were the most important in the game of bridge,
especially in no trump contracts.

Secondly, in each trained network there were exactly 4 connections from input
to hidden neurons which had absolute values noticeably bigger than all others
(about 25.0 vs less than 7.0). Not surprisingly these favored connections started
from 4 input neurons assigned to aces.

Thirdly, in all networks it was also possible to point out hidden neurons
focused on one particular suit, one neuron per suit. Such neuron had much
bigger absolute values of connections’ weights from inputs representing the suit
than weights’ values from the rest of inputs. These connections are marked using
long-chain lines in Fig. 1.

Another very interesting feature which appeared in all trained networks with
25 hidden neurons was the presence of four hidden neurons each specialized in
five cards from one suit: ten, jack, queen, king, and ace (in Fig. 1 the respective
connections are marked using the dotted line). In all these groups the most
important were queens and kings, jacks were less important, but still much more
relevant than aces and tens. The hypothesis is that these hidden neurons are
responsible for very important aspect of the play of bridge - the finesses.

Finally, there existed hidden neurons with values of connections to the output
close to zero. The authors were unable to find any pattern in their weights of
connections from the inputs. The number of such neurons increased in case of
more complicated networks.

3 Current Experiment – Suit Contracts

The new research results presented in this paper still concern the solution of
DDBP, but, unlike in the previous research, the focus is now on suit contracts.
For comparison with previous results in most cases the same network architec-
tures and similar ways of coding a deal are used. These results are presented and
discussed in section 3.2.

Another interesting issue is to check whether information about the exact
hand location of a given card is really important in the training data, or maybe
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Table 1. Results (in %) obtained for the test sets for 52−25−1 networks. NT denotes

No Trump contracts.

Description Results

NT; input values: N : 1.0, S : 0.8, W : −1.0, E : −0.8 (95.81 | 79.95 | 34.02)

NT; input values: N : 1.0, S : 0.8, W : −1.0, E : −1.0 (95.97 | 80.46 | 34.35)

NT; input values: NS : 1.0, WE : −1.0 (96.07 | 80.88 | 34.66)

Suit contracts; input values: NS : 0.5, WE : −0.5 (98.68 | 87.88 | 40.11)

the above network tested on NT (91.64 | 69.21 | 26.06)

NT and suit contracts; input values: NS : 0.5, WE : −0.5 (97.72 | 84.90 | 37.56)

the above network tested on suit contracts only (98.57 | 87.24 | 39.43)

the above network tested on NT only (94.30 | 75.50 | 30.09)

Spades contracts; input values: NS : 1.0, WE : −1.0 (98.77 | 88.00 | 40.13)

the above network tested on Hearts contracts (59.18 | 39.09 | 14.12)

the above network tested on Diamonds contracts (58.89 | 38.67 | 13.51)

the above network tested on Clubs contracts (58.86 | 38.90 | 13.77)

Hearts contracts; input values: NS : 1.0, WE : −1.0 (98.65 | 87.81 | 40.18)

Diamonds contracts; input values: NS : 1.0, WE : −1.0 (98.66 | 87.68 | 39.96)

Clubs contracts; input values: NS : 1.0, WE : −1.0 (98.73 | 87.90 | 40.02)

it would be enough to locate cards as belonging to either NS orWE pairs. This
issue is discussed in section 3.1.

Finally, it seems worth investigating whether the results are repeatable, i.e.
whether within the ensemble of neural nets the results for a given contract would
be the same. This question is considered in section 3.3.

All results are summarized in Table. 1.

3.1 Hiding Opponents’ Cards in NT Contracts

In previous work with NT contracts and all 4 hands revealed each of 52 input
neurons pointed out the hand to which a given card was assigned, namely input
equal to 1.0 denoted N hand, 0.8: S hand, −1.0: W , and −0.8: E. Let us recall
that 52− 25− 1 network trained using this way of coding achieved the result of
(95.81 | 79.95 | 34.02).

Hiding opponent’s cards was carried out by applying the following values for
hands’ description: N : 1.0, S : 0.8, W and E : −1.0. Results yielded by a
network with the same architecture (52-25-1) were slightly improved: (95.97 |
80.46 | 34.35).

Surprisingly, hiding also information about cards’ assignment in the pair NS,
i.e. using input values: N and S : 1.0, W and E : −1.0, yielded another slight
improvement: (96.07 | 80.88 | 34.66).

These results prove that for data representation chosen in the experiments in-
formation about exact hand location of each card is not helpful and sometimes
even misleading. The explanation of this phenomenon is one of our current re-
search goals.
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Fig. 1. NT contracts. Weights of connections of trained neural network with 25

hidden neurons (52 − 25 − 1). Each circle represents the weight of one connection. If

the circle is placed in the leftmost column, it represents the weight of connection from

hidden to output neuron, otherwise - from input to hidden neuron. The radius of the

circle represents the absolute value of connection weight. Black circles denote negative

and white ones positive weights.

3.2 Suit Contracts

In the experiments with suit contracts a deal was coded in the following way.
Cards of the trump suit had input values equal to 1.0 for players N , S or −1.0
for playersW , E. Cards of other suits: 0.5 for N , S and −0.5 forW , E. When no
trump contract was presented to the network, all cards had input values equal
to 0.5 or −0.5, resp. for NS and WE pairs.

Neural network with 25 hidden neurons trained on 400, 000 examples (100, 000
deals repeated 4 times - once for each trump suit) accomplished the results
(98.68 | 87.88 | 40.11). Testing this network on no trump contracts (not present
in the training set) led to poorer score: (91.64 | 69.21 | 26.06).

When no trump contracts were added to the training and test sets, network
with the same architecture yielded the result of (97.72 | 84.90 | 37.56). Results
of testing this network separately on suit contracts were significantly better
(98.57 | 87.24 | 39.43) than results of tests on no trump contracts only (94.30 |
75.50 | 30.09).

The network trained only on Spades contracts achieved the result of (98.77 |
88.00 | 40.13). Results of testing this network based exclusively on Hearts
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contracts: (59.18 | 39.09 | 14.12), Diamonds contracts: (58.89 | 38.67 | 13.51),
and Clubs ones: (58.86 | 38.90 | 13.77) confirmed the effect of “specializa-
tion”. Furthermore, the networks trained exclusively on other suits yielded sim-
ilar results, i.e. (98.65 | 87.81 | 40.18) for training on Hearts contracts only,
(98.66 | 87.68 | 39.96) for Diamonds contracts, and (98.73 | 87.90 | 40.02) for
Clubs contracts. It is an interesting observation that results of specialized net-
works presented above are on the same level as results of networks trained on all
suit contracts simultaneously. Closer investigation of this counterintuitive effect
is planned in the near future.

The above results imply that no trump contracts and suit contracts
should be treated separately. Connection weights of a network trained using
suit contracts only are presented in Fig. 2. The main difference between this
figure and Fig. 1 representing connection weights of a network trained exclusively
on no trump contracts is visibly bigger relative importance of the lowest cards in
a deal. This observation is also confirmed by Table. 2, where connection weights
of a network without hidden neurons (52-1) are compared. This conclusion is in
line with human bridge players’ experience. Moreover, it is clear from the table
that no significant differences between suits exist which again is a desirable effect.

Coming back to comparisons between Fig. 1 and Fig. 2 there can also be
identified some common patterns in both figures, e.g. cards from aces to tens
are the most important - connections from input neurons representing them to
hidden neurons have the biggest absolute values. It is also possible to point out

Fig. 2. Suit contracts. Weights of connections of trained network with 25 hidden

neurons (52 − 25 − 1). See description of Fig. 1.
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Table 2. Values of connections between neurons of two networks without hidden neu-

rons 52 − 1 trained respectively on no trump and suit contracts. Values were linearly

scaled to interval (0,4).

NT Contracts Suit Contracts

Card’s value S H D C S H D C

2 0.342 0.327 0.329 0.342 1.660 1.670 1.668 1.667

3 0.340 0.334 0.328 0.353 1.664 1.667 1.663 1.660

4 0.347 0.314 0.351 0.345 1.669 1.655 1.669 1.685

5 0.341 0.332 0.341 0.344 1.660 1.673 1.676 1.663

6 0.356 0.349 0.339 0.329 1.684 1.685 1.680 1.688

7 0.380 0.331 0.354 0.356 1.680 1.684 1.687 1.697

8 0.358 0.361 0.375 0.400 1.709 1.719 1.718 1.723

9 0.496 0.469 0.461 0.473 1.782 1.791 1.780 1.783

10 0.660 0.663 0.671 0.684 1.921 1.916 1.918 1.938

J 1.047 1.032 1.056 1.030 2.174 2.167 2.177 2.172

Q 1.676 1.688 1.675 1.656 2.569 2.569 2.572 2.565

K 2.643 2.643 2.677 2.655 3.207 3.210 3.220 3.216

A 3.975 3.971 3.966 3.989 3.982 3.984 3.973 3.995

hidden neurons specialized in one suit, additionally with connections from kings
and queens being the most important.

In summary, it should be emphasized that the above described weight patterns
were observed also when other training sets had been used.

3.3 Reliability of Results

In order to check the reliability of results, 4 networks with one hidden layer of 25
neurons each, differing only by initial, randomly chosen connection weights, were
trained based on the same set of deals. This experiment was aimed at checking
the number of deals from the training set for which all 4 networks would learn
the same number of tricks to be taken by NS.

For no trump contracts all 4 networks estimated the same number of tricks in
61.23% of contracts. In 37.93% of contracts estimated numbers of tricks differed
by 1 trick, in 0.81% by 2 tricks and in 0.03% by 3 tricks. The same experiment for
suit contracts output the following results: for 63.40% of contracts all networks
were unanimous, for 36.56% of contracts there was a 1 trick difference, and for
0.04% of them the difference was equal to 2 tricks.

In 98.13% of testing deals for no trump contracts, and in 99.53% for suit
contracts, real output values of all 4 trained networks differed by no more than
0.06. In these experiments target number of tricks was calculated using a uniform
linear transformation to the range [0.1, 0.9], so value 0.06 was the range of real
output values of networks for each number of tricks.

The results prove that the confidence in the learning process is high, and the
training results are repeatable.
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3.4 Results by the Target Number of Tricks

Results of a network 52− 25− 1 trained on Spades contracts were investigated
in detail in order to test whether the efficacy of the system varies for different
numbers of target tricks. The test set containing 100, 000 deals was divided into
subsets which were then tested individually. Results are presented in Table. 3.

Only the results for 0, 1, 12, and 13 tricks are significantly worse than
the result attained for the whole test set (the last row of the Table). Results
for the other subsets are on the similar level, in spite of considerable differences
in the number of deals in these subsets (e.g. 4, 225 deals with 11 tricks vs. 12, 927
ones with 6 tricks).

Table 3. Results for subsets of a testing set achieved by a network 52 − 25− 1 trained

on Spades contracts

Target number of tricks Number of deals Results

0 1, 138 (93.32 | 66.61 | 12.30)

1 2, 725 (97.39 | 81.21 | 34.53)

2 5, 156 (98.10 | 86.66 | 40.73)

3 8, 043 (98.93 | 88.96 | 41.41)

4 10, 447 (98.94 | 89.04 | 40.36)

5 12, 201 (98.85 | 88.67 | 40.80)

6 12, 927 (99.03 | 88.75 | 41.32)

7 12, 709 (99.10 | 88.99 | 40.50)

8 11, 467 (99.28 | 89.29 | 40.46)

9 9, 618 (99.14 | 89.19 | 42.14)

10 6, 866 (98.89 | 88.45 | 40.58)

11 4, 225 (97.94 | 85.87 | 42.32)

12 1, 935 (97.57 | 81.71 | 31.94)

13 543 (94.66 | 73.85 | 9.39)

All 100, 000 (98.77 | 88.00 | 40.13)

3.5 Sample Deals

Two sample deals are presented in Fig. 3. The first deal (Fig. 3(a)) was included
in the reliability test described in previous section. Each of 4 networks estimated
different number of tricks to be taken by the pair NS, i.e. 5, 6, 7, and 8. A closer
analysis of this deal revealed that the number of tricks for NS in no trump con-
tract depends on information who makes defender’s lead. Defender’s lead from
N or S hand enables to take 8 or 7 tricks, resp. On the other hand, defender’s
lead fromW or E limits the number of tricks for NS to 6 or 5, resp. Information
about defender’s lead wasn’t included in the input data (desired output values
were specified for defender’s lead from W hand). Hence the behavior of neural
networks can be “justified”.

The second deal (Fig. 3(b)) is a successful example of learning suit contracts
- the network predicted grand slam of spades for NS with only 26 points (Work
point count). Please note that also grand slam of Hearts forNS is possible, but in
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(a) (b)

Fig. 3. Sample deals

this case the network yielded only 12 tricks. It is an interesting observation
that the network estimated higher longer suit (Spades) than stronger
one (Hearts).

4 Conclusions and Future Research

Based on the results, it can be concluded that in the DDBP it is advisable to
train neural networks separately for no trump contracts and suit ones.

Reliability tests show that the confidence in training process is high and the
results are repeatable.

Interesting patterns found in figures presenting networks connection weights’
values (Fig. 1 and Fig. 2), and their reasonable explanation based on human
experience in the game of bridge, look very promising and suggest taking into
consideration the possibility of automatic, unguided discovering of knowledge
hidden in connection weights.

Currently we are focused on defining an automatic input data preprocessing
system capable to find functional similarities in deals and based on that allowing
to either preprocess (transform) training data or divide it into subsets suitable
for specialized networks. Similarity of results achieved for subsets of deals with
the same number of target tricks (Table. 3) implies that dividing training set
according to the number of target tricks and then applying specialized networks
to these subsets seems to be a promising direction.

The next “big” step is to advance this research into play phase.
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Abstract. The work described here is part of an ongoing research on the appli-
cation of general-purpose inductive logic programming, logic representation of
wrappers (L-wrappers) and XML technologies (including the XSLT transforma-
tion language) to information extraction from the Web. The L-wrappers method-
ology is based on a sound theoretical approach and has already proved its efficacy
on a smaller scale, in the area of collecting product information. This paper pro-
poses the use of L-wrappers for tuple extraction from HTML in the domain of
e-tourism. It also outlines a method for translating L-wrappers into XSLT and
illustrates it with the example of a real-world travel agency Web site.

1 Introduction

E-tourism is a leading area in e-commerce, with an increasing number of travel agencies
offering their services through online transaction brokers ([12]). They provide to human
users information in areas like hotels, flights, trains or restaurants, in order to help
them to plan their business or holiday trips. Travel information is heterogeneous and
distributed, and there is a need to gather, search, integrate and filter it efficiently ([8]).
Typically, this information is published by dynamically filling-in HTML templates with
structured data taken from relational databases. Therefore, collecting information about
travel resources and converting it to a form suitable for automated processing is an
appropriate task for information extraction using machine learning ([10]).

This paper approaches the problem of mining travel resources using logic wrappers
(L-wrappers) ([1]). As shown in [2], L-wrapper technology was successfully applied to
extract tuples from Web pages written in HTML.

Note that the application of logic representations and machine learning to informa-
tion extraction from the Web is not an entirely new field; several approaches and tool
descriptions have already been proposed and published ([5,6,7,10,11,13,16,18]). In our
opinion, the advantage of our proposal is the use of the right tool for tackling a given
task, i.e. for learning extraction rules it employs inductive logic programming (ILP)
systems ([15]), and for performing the extraction it employs XSLT technology ([4]).

The rest of the paper is structured as follows. First, we give a short overview of
L-wrapper theory. In section 3 we discuss an approach of translating L-wrappers into
XSLT stylesheets. We outline a translation algorithm that is then demonstrated with the
help of an example. In section 4 we present some experiments and discuss their results.
Finally, we conclude the paper, outlining some future research directions.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1199–1208, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 L-Wrappers Background

Web pages (including those publishing travel information) can be regarded as semi-
structured data modeled as labeled ordered trees. A wrapper takes a labeled ordered
tree and returns a subset of tuples of extracted nodes. L-wrappers use patterns defined
as logic rules, which can be learned by using general-purpose ILP systems.

For our purposes, it is convenient to abstract labeled ordered trees as sets of nodes
on which certain relations and functions are defined ([1]). Basically, we define two
relations between tree nodes: the ”parent-child” relation and the ”next-sibling” linear
ordering relation on the set of children of a node. Furthermore, a label is attached to
each tree node, modeling a specific tag from a finite set of tag symbols .

In this framework, a pattern is a labeled directed graph with arc labels specifying
parent-child and next-sibling relationships and vertex labels specifying conditions such
as first child (’f’), last child (’l’), a tag from , or a combination thereof. A subset of the
graph vertices is used for selecting the items for extraction (there is an extraction vertex
for each attribute name in the relational representation of the information source).

According to the model-theoretic semantics of patterns ([1]), a labeled ordered tree is
an interpretation domain for the patterns. Intuitively, patterns are matched against parts
of a target labeled ordered tree. In order to have a successful matching, the labels of pat-
tern vertices and arcs must be consistent with the corresponding relations and functions
defined over tree nodes. The result of applying a pattern to a semi-structured informa-
tion source is a set of extracted tuples. An extracted tuple is modeled as a function from
attribute names to tree nodes, as in standard relational data modeling.

We propose a semi-automatic L-wrapper development process using ILP ([2]). Dur-
ing this process, two useful operations on patterns were defined ([1]): i) pattern simpli-
fication – the process of removing arcs in the pattern directed graph without changing
the pattern semantics; more precisely we can shift one position right an arc labeled with
’c’ in a pattern and we obtain an equivalent pattern. This operation is used to normal-
ize patterns (i.e. to simplify patterns such that the out-degree of every pattern vertex is
at most 1); ii) pattern merging – the process of combining simpler patterns that share
attributes into more complex patterns, that are capable to extract tuples of higher arity
[1]; this is useful to control the process of learning patterns of higher arity.

An L-wrapper can be defined as a set of patterns that share the set of attributes from
the relation scheme of the information source. In this paper we restrict our attention to
single-pattern L-wrappers that can be concisely defined in two steps: i) define the pat-
tern graph together with arc labels that model parent-child and next-sibling relations and
ii) extend this definition with vertex labels that model conditions on vertices, extraction
vertices and assignment of extraction vertices to attributes.

Definition 1. (Pattern graph) Let be a set denoting all vertices. A pattern graph G
is a quadruple A V L a such that V , A V V, L V and a : A c n .
The set of pattern graphs is defined inductively as follows:

i) If v then v v
ii) If G A V L a , v L, and w ui V, 1 i n then a) G1

A (w v) V w (L v ) w a ((w v) n ) ; b) G2 A
(u1 v) (un v)) V u1 un (L v ) u1 un a ((u1 v) c )



Mining Travel Resources on the Web Using L-Wrappers 1201

((un v) c ) ; c) G3 A (w v) (u1 v) (un v)) V w u1 un (L
v ) w u1 un a ((w v) n ) ((u1 v) c ) ((un v) c ) ;

Intuitively, if A V L a is a pattern graph then V are its vertices, A are its arcs, L V
are its leaves (vertices with in-degree 0) and a indicates parent-child and next-sibling
arcs.

Definition 2. (Single-pattern L-wrapper) Let be the set of attribute names. A single-
pattern L-wrapper is a tuple W V A U D a c such that A V L a is a pattern
graph, U u1 u2 uk V is the set of pattern extraction vertices, D is the set
of attribute names, : D U is a one-to-one function that assigns a pattern extraction
vertex to each attribute name, and c : V is the labeling function for vertices.

f l f l f l f l is the set of conditions, where
is a label in the set of tag symbols.

Examples of pattern graphs can be found in figure 2.

3 Translating L-Wrappers into XSLT Stylesheets

The process of information extraction from the Web can be structured into a sequence
of stages ([1,2]): page collection, pre-processing, manual information extraction, con-
version to the input format of the learning program, learning, wrapper compilation,
wrapper execution. This section addresses wrapper compilation, namely the translation
of L-wrappers into XSLT. Actually, we will use a subset of XSLT, called XSLT0 ([3]).

The output of the learning stage is a set of rules. Rules are first converted into graph-
like descriptions as introduced by definitions 1 and 2. These graphs are further pro-
cessed using pattern operations to produce the final graph description of the wrapper.

At this point we apply an algorithm for translating L-Wrappers into XSLT that ex-
ploits the graph-like definition of L-wrappers. The idea is to generate XSLT0 templates
for all the leaf and extraction vertices of the L-wrapper, moving upwards and down-
wards in the graph. The extracted information is passed between templates by means of
template variables and parameters. Here is an informal description of this algorithm:

Step 1. Start from the document root and generate the start template, by moving down-
wards to one of the vertices in L U.

Step 2. Move from the current vertex (say w0) to another vertex in L U (say w1). The
path taken depends on the type of the first vertex: if w0 L then we move first
upwards, to the common ascendent of w0 and w1 and then downwards to w1; if
w0 L then we follow the direct descendent path to w1.

Step 3. Generate a template that will select the content of w0 in case w0 U.
Step 4. Repeat steps 2 and 3 until there are no more unvisited vertices in L U.
Step 5. Generate the final template, which will display the extracted tuples.

Note that if the pattern graph has n vertices (i.e. L n) then this algorithm generates
n 1 templates. Moreover, if there are k n extraction vertices (i.e. U k) then k
templates will generate a new variable.
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4 Experiments

We now demonstrate the use of L-wrappers to extract travel information from the Trav-
elocity Web site (see [17] and figure 1). That Web page displays hotel information
comprising the hotel name, address and description, the check-in and check-out dates,
the types of rooms offered and the corresponding average nightly rate. Adopting the re-
lational model, we associate to this resource the following set of attribute names related
to hotels: name address description period roomtype price .

Fig. 1. An XHTML document fragment and its graphic view

Because of the relatively large number of attributes, we used the pattern merging
approach. This overcomes the difficulty of directly learning tuples with arity greater
than 2 ([2]). The following pairs of attributes were chosen: name address , address
description , name period , period roomtype , and roomtype price .

Then we generated extraction rules for each pair of attributes by using the FOIL pro-
gram ([15]), as described in [2]. The following 5 rules were generated: (NA name,
AD address, DE description, PE period, RO roomtype, and PR price):

extract(NA AD) f irst(AD) td(AD) child(C NA) child(D AD) next(D E) child(F E)
span(C) f irst(D) child(G C) child(H G) next(I H) child(J I) child(K F) child(L K)
child(M J) child(N M) child(O L) child(P O) child(Q P) child(N Q)

extract(AD DE) child(C AD) child(D DE) next(AD E) next(C F) child(G F) child(F D)
f irst(G) text(DE)

extract(NA PE) text(NA) child(C NA) child(D PE) next(E D) child(F E) b(D)
child(G C) child(H G) next(I H) child(J I) child(K J) next(K L) next(L M) child(M N)
child(O F) child(P O) child(N P)

extract(PE RO) child(C PE) child(D RO) next(D E) next(F C) child(G E) child(H F)
next(I G) child(J I) next(K J) f irst(D) child(K L) child(L H)

extract(RO PR) child(C RO) child(D PR) next(C E) next(D F) child(G E) next(H G)
child(I H) next(J I) child(G D) f irst(C) last(F) text(PR)



Mining Travel Resources on the Web Using L-Wrappers 1203

 N1 

 D1 

 H1 

 Q1  M1 

 K1

 L1 

 O1

 P1 

 I1 

 F1 

 E1 

 J1 

 G1 

AD1 

 C1 

NA1

‘c’ 

‘c’

‘c’

‘c’

‘c’

‘c’

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘n’ 

‘n’

Ø 

Ø 

Ø 

Ø 

Ø 

Ø 

Ø Ø

Ø

Ø 
Ø 

Ø

{span}

Ø

{‘f’} 

 F2

AD2  E2 

 C2 

 G2

 D2

DE2 

‘c’ 

‘c’

‘c’

‘c’

‘n’ 

‘n’

{‘f’} 

Ø 

Ø

{text}

Ø 

 K3  L3  M3 

 N3 

 P3 

 C3

AD1

 E3 

 O3 

 F3 

 D3 

PE3

  J3 

  I3 

 G3 

 H3 

NA3 

‘n’ ‘n’ 

‘n’

‘n’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’

‘c’ 

‘c’

‘c’ 

‘c’

‘c’

‘c’ 

Ø 

Ø 

Ø 

Ø 

Ø 

Ø 

ØØ Ø 

Ø 

Ø 

Ø 

Ø

Ø

{text} {b}

 K4   J4 

  I4  G4

 E4  D4 

 L4 

 H4 

 F4  C4 

PE4 

RO4 

‘n’

‘n’ 

‘n’ 

‘n’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

Ø 

Ø 

Ø 

Ø 

Ø 

Ø 

Ø 

Ø 

Ø 

Ø 

{‘f’} 

Ø 

 G5 

  J5 

 H5

 E5  D5  C5  F5 

RO5 PR5 

  I5
‘n’

‘n’ 

‘n’‘n’

‘c’

‘c’ 

‘c’ ‘c’ 

‘c’ 

Ø 

Ø

Ø Ø 

Ø

Ø

Ø {‘l’}

{text}

{‘f’}

Pattern p1 

 N1 

D1,C2 

 Q1 

 K1 

 L1

 O1 

 P1 

F1,G2 

E1,F2 

‘c’ 

‘c’

‘c’

‘c’

‘c’

‘c’ 

‘c’ 

‘c’

‘n’ 

{‘f’} 

Ø

Ø

Ø

Ø

Ø Ø

{‘f’} 

 E2 AD  D2

DE 

H1,H3 

M1,K3

J1,J3 

G1,G3

C1,C3

NA 

‘c’

‘c’

‘c’

‘c’

‘c’ 

Ø

Ø

Ø 

{span} 

{text}

I1,I3 

 L3  M3 

 N3

J4,I5
P3,K4,J5 

O3,L4

F3,H4

D3,C4 

PE

 E3,F4

G4,G5 I4,H5 

E4,E5 D4,C5 

RO

 F5 D5 

PR

‘c’ 

‘c’

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘c’ 

‘n’ 

‘n’ ‘n’ 

‘n’ ‘n’

‘n’

‘n’ ‘n’ 

‘n’ 

Ø

Ø

Ø 

Ø

Ø

Ø 

Ø

Ø

Ø 

Ø

{b} 
Ø 

{‘f’} 

Ø 
Ø 

{‘l’}

{text} 

Ø 

Ø 

Ø

{‘f’, td} 

Ø 

{text} 

Ø

Ø

Pattern p2 

Pattern p5 

Pattern p3 

Merged pattern in normal form 

Pattern p4 

Fig. 2. Patterns and pattern merging



1204 E. Popescu, A. Bădică, and C. Bădică

Table 1. Description of the sample wrapper in XSLT0 pseudocode

template start(/)
return

result(sel address(xp1))
end

template sel address(*)
vardef

varAddress := content(.)
return

sel description(xp2,varAddress)
end

template sel description(*,varAddress)
vardef

varDescription := content(.)
return

sel leaf I1I3(xp3,varAddress,varDescription)
end

template sel leaf I1I3(*,varAddress,varDescription)
return

sel name(xp4,varAddress,varDescription)
end

template sel name(*,varAddress,varDescription)
vardef

varName := content(.)
return

sel leaf E3F4(xp5,varAddress,varDescription,
varName)

end

template sel leaf E3F4(*,varAddress,varDescription,
varName)
return

sel period(xp6,varAddress,varDescription,
varName)

end

template sel period(*,varAddress,varDescription,
varName)
vardef

varPeriod := content(.)
return

sel leaf I4H5(xp7,varAddress,varDescription,
varName,varPeriod)

end

template sel leaf I4H5(*,varAddress,varDescription,
varName,varPeriod)
return

sel roomtype(xp8,varAddress,varDescription,
varName,varPeriod)

end

template sel roomtype(*,varAddress,varDescription,
varName,varPeriod)
vardef

varRoomtype := content(.)
return

display(xp9,varAddress,varDescription,
varName,varPeriod,varRoomtype)

end

template display(*,varAddress,varDescription,
varName,varPeriod,varRoomtype)
vardef

varPrice := content(.)
return

tuple[name varName;
period varPeriod;
description varDescription;
address varAddress;
roomtype varRoomtype;
price varPrice]

end

The patterns corresponding to the above clauses are shown in figure 2. Next we
merged these patterns into a single-pattern L-wrapper and then we translated it into
XSLT0 using the algorithm outlined in section 3. A set of 10 XSLT0 templates was
obtained (see table 1).

XPath expressions xp1, xp2, xp3, xp4, xp5, xp6, xp7, xp8 and xp9 of the wrapper
from table 1 are defined as follows:

xp1 = //*/*/*/*/*/*/*[not(preceding-sibling::*)]/*/preceding-sibling::*[1]
[not(preceding-sibling::*)]/*/preceding-sibling::*[1][not(preceding-sibling::*)
and local-name()=’td’]

xp2 = following-sibling::*[1]/parent::*[not(preceding-sibling::*)]/following-sibling::*/

*/*[local-name()=’text’]
xp3 = parent::*/parent::*/parent::*[not(preceding-sibling::*)]/parent::*/parent::*/

parent::*/parent::*/parent::*/parent::*/*/preceding-sibling::*[1]/
preceding-sibling::*[1]/*/*/preceding-sibling::*[1]



Mining Travel Resources on the Web Using L-Wrappers 1205

xp4 = following-sibling::*[1]/*/*[local-name()=’span’]/*[local-name()=’text’]
xp5 = parent::*[local-name()=’span’]/parent::*/parent::*/parent::*/parent::*/

following-sibling::*[1]/following-sibling::*[1]/*/*/preceding-sibling::*[1]/

*/*/*[local-name()=’b’]/preceding-sibling::*[1]
xp6 = following-sibling::*[1][local-name()=’b’]/*
xp7 = parent::*[local-name()=’b’]/parent::*/parent::*/parent::*/following-sibling::*[1]

/*/preceding-sibling::*[1]
xp8 = following-sibling::*[1]/*/preceding-sibling::*[1][not(preceding-sibling::*)]/*
xp9 = parent::*[not(preceding-sibling::*)]/following-sibling::*[1]/parent::*/

*[not(following-sibling::*)]/preceding-sibling::*[1]/*[local-name()=’text’]

The wrapper actually extracts the node contents rather than the nodes themselves,
using the content(.) expression. There are two possibilities: either the current node is a
leaf and has the tag text attached to it, or it is an internal node. (Note that we assume
there is a special tag text that designates a text element, so that we can treat text and
element nodes of a XHTML document in an uniform way). Thus, in case the current
node is a text element, its actual text is extracted; otherwise the text content of all its
descendants with tag text is extracted. The resulting wrapper expressed in XSLT is
shown in the appendix.

For wrapper execution we can use any of the available XSLT transformation engines.
In our experiments we have used Oxygen XML editor ([14]), a tool that incorporates
some of these engines (see figure 3). The experimental results confirmed the efficacy of
the approach: values 0.87 and 1.0 were recorded for standard measures of precision and
recall.

Fig. 3. Wrapper execution inside Oxygen XML editor

5 Conclusions and Future Work

This paper discusses the application of L-wrapper technology to information extraction
from a travel agency Web site. The positive results of this experiment in the e-tourism
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domain account as a further proof for the generality of the approach. Also, the substan-
tially more complex hierarchical structure of the selected Web pages and the relatively
large number of extracted tuples support the scalability of the proposed technique. How-
ever, the hierarchical structure of information is lost by flattening during extraction. Ad-
dressing this issue is one of our future research directions. At the same time, as future
theoretical work, we are interested in giving a formal proof of the correctness of the
mapping of L-wrappers to XSLT.

References
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A XSLT Code of the Sample Wrapper

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="/">
<result>

<xsl:apply-templates mode="sel_address" select="//*/*/*/*/*/*/*[not(preceding-
sibling::*)]/*/preceding-sibling::*[1][not(preceding-sibling::*)]/*/preceding-
sibling::*[1][not(preceding-sibling::*) and local-name()=’td’]"/>

</result>
</xsl:template>
<xsl:template match="*" mode="sel_address">
<xsl:variable name="varAddress">

<xsl:value-of select="@val"/> <xsl:apply-templates select="*" mode="valtext"/>
</xsl:variable>
<xsl:apply-templates mode="sel_description" select="following-sibling::*[1]/

parent::*[not(preceding-sibling::*)]/following-sibling::*/*/*[local-name()=’text’]">
<xsl:with-param name="varAddress" select="$varAddress"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="*" mode="sel_description">
<xsl:param name="varAddress"/>
<xsl:variable name="varDescription">

<xsl:value-of select="@val"/> <xsl:apply-templates select="*" mode="valtext"/>
</xsl:variable>
<xsl:apply-templates mode="sel_leaf_I1I3" select="parent::*/parent::*/parent::*[not

(preceding-sibling::*)]/parent::*/parent::*/parent::*/parent::*/parent::*/parent::*/
*/preceding-sibling::*[1]/preceding-sibling::*[1]/*/*/preceding-sibling::*[1]">
<xsl:with-param name="varAddress" select="$varAddress"/>
<xsl:with-param name="varDescription" select="$varDescription"/>

</xsl:apply-templates>
</xsl:template>

<xsl:template match="*" mode="sel_leaf_I1I3">
<xsl:param name="varAddress"/> <xsl:param name="varDescription"/>
<xsl:apply-templates mode="sel_name" select="following-sibling::*[1]/*/

*[local-name()=’span’]/*[local-name()=’text’]">
<xsl:with-param name="varAddress" select="$varAddress"/>
<xsl:with-param name="varDescription" select="$varDescription"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="*" mode="sel_name">
<xsl:param name="varAddress"/> <xsl:param name="varDescription"/>
<xsl:variable name="varName">

<xsl:value-of select="@val"/> <xsl:apply-templates select="*" mode="valtext"/>
</xsl:variable>
<xsl:apply-templates mode="sel_leaf_E3F4" select="parent::*[local-name()=’span’]/

parent::*/parent::*/parent::*/parent::*/following-sibling::*[1]/following-sibling::*[1]/

*/*/preceding-sibling::*[1]/*/*/*[local-name()=’b’]/preceding-sibling::*[1]">
<xsl:with-param name="varAddress" select="$varAddress"/>
<xsl:with-param name="varDescription" select="$varDescription"/>
<xsl:with-param name="varName" select="$varName"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="*" mode="sel_leaf_E3F4">
<xsl:param name="varAddress"/><xsl:param name="varDescription"/><xsl:param name="varName"/>
<xsl:apply-templates mode="sel_period" select="following-sibling::*[1][local-name()=’b’]/*">

<xsl:with-param name="varAddress" select="$varAddress"/>
<xsl:with-param name="varDescription" select="$varDescription"/>
<xsl:with-param name="varName" select="$varName"/>

</xsl:apply-templates>
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</xsl:template>
<xsl:template match="*" mode="sel_period">
<xsl:param name="varAddress"/><xsl:param name="varDescription"/><xsl:param name="varName"/>
<xsl:variable name="varPeriod">

<xsl:value-of select="@val"/> <xsl:apply-templates select="*" mode="valtext"/>
</xsl:variable>
<xsl:apply-templates mode="sel_leaf_I4H5" select="parent::*[local-name()=’b’]/

parent::*/parent::*/parent::*/following-sibling::*[1]/*/preceding-sibling::*[1]">
<xsl:with-param name="varAddress" select="$varAddress"/>
<xsl:with-param name="varDescription" select="$varDescription"/>
<xsl:with-param name="varName" select="$varName"/>
<xsl:with-param name="varPeriod" select="$varPeriod"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="*" mode="sel_leaf_I4H5">
<xsl:param name="varAddress"/> <xsl:param name="varDescription"/> <xsl:param name="varName"/>
<xsl:param name="varPeriod"/>
<xsl:apply-templates mode="sel_roomtype" select="following-sibling::*[1]/*/

preceding-sibling::*[1][not(preceding-sibling::*)]/*">
<xsl:with-param name="varAddress" select="$varAddress"/>
<xsl:with-param name="varDescription" select="$varDescription"/>
<xsl:with-param name="varName" select="$varName"/>
<xsl:with-param name="varPeriod" select="$varPeriod"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="*" mode="sel_roomtype">
<xsl:param name="varAddress"/><xsl:param name="varDescription"/><xsl:param name="varName"/>
<xsl:param name="varPeriod"/>
<xsl:variable name="varRoomtype">

<xsl:value-of select="@val"/> <xsl:apply-templates select="*" mode="valtext"/>
</xsl:variable>
<xsl:apply-templates mode="display" select="parent::*[not(preceding-sibling::*)]/

following-sibling::*[1]/parent::*/*[not(following-sibling::*)]/preceding-sibling::*[1]/
*[local-name()=’text’]">
<xsl:with-param name="varAddress" select="$varAddress"/>
<xsl:with-param name="varDescription" select="$varDescription"/>
<xsl:with-param name="varName" select="$varName"/>
<xsl:with-param name="varPeriod" select="$varPeriod"/>
<xsl:with-param name="varRoomtype" select="$varRoomtype"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="*" mode="display">
<xsl:param name="varAddress"/><xsl:param name="varDescription"/><xsl:param name="varName"/>
<xsl:param name="varPeriod"/><xsl:param name="varRoomtype"/>
<xsl:variable name="varPrice">

<xsl:value-of select="@val"/> <xsl:apply-templates select="*" mode="valtext"/>
</xsl:variable>
<tuple>

<xsl:attribute name="name"> <xsl:value-of select="$varName"/> </xsl:attribute>
<xsl:attribute name="period"> <xsl:value-of select="$varPeriod"/> </xsl:attribute>
<xsl:attribute name="description"><xsl:value-of select="$varDescription"/></xsl:attribute>
<xsl:attribute name="address"> <xsl:value-of select="$varAddress"/> </xsl:attribute>
<xsl:attribute name="roomtype"> <xsl:value-of select="$varRoomtype"/> </xsl:attribute>
<xsl:attribute name="price"> <xsl:value-of select="$varPrice"/> </xsl:attribute>

</tuple>
</xsl:template>
<xsl:template match="*" mode="valtext">
<xsl:value-of select="@val"/><xsl:value-of select="’&#x20;’"/>
<xsl:apply-templates select="*" mode="valtext"/>

</xsl:template>
</xsl:stylesheet>
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Abstract. The paper describes a conception of application of the fuzzy
numbers for assessing students progress in learning, knowledge assimi-
lation and abilities. The method of judge is based on operations per-
formed on the fuzzy numbers and fuzzy sets. It has been used for as-
sessing one-choice test and the results have been compared with teach-
ers marks.

1 Introduction

The evaluation units are most important parts of the e-learning systems (ELS)
[1]. They allow teachers presence simulation for an asynchronous mode and en-
able to construct an individual learning path for each student [2]. It will be
good if the decision-making processes of these units are similar teachers ones, so
closely, as it is possible. The expert systems are basis of an evaluation process,
even those ones for a traditional learning/teaching process. In that case, the
teacher uses his own knowledge and own set of rules for assessing each students
progress of learning and progress of his/her ability and for proposing for further
parts of material for study [3]. As in most expert systems, the final information
that is generated as a final mark, is vague (in mathematical sense). It is a verbal
term (a linguistic variable) or a number that is a representative of a numbers
range. It is natural, that we are able to use the fuzzy numbers and the fuzzy sets
for an evaluation process. The traditional methods are mostly used for evalua-
tion in ELS, yet. One teacher or teachers team evaluates students progress. It is
independent of which level of ELS that process takes place on: it may be an eval-
uation of subject course or an evaluation of whole semester or even evaluation of
whole study period. There are some attempts to automate these processes, but
they have been made for close problems, only. In that case a decision about mark
and further individual students path of learning bases on a table of rough rules.
In our opinion, it is not in accordance with a view of an evaluation process that
is made by teacher. The Microsoft or CISCO certification exams are examples
of that kind of evaluation system.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1209–1216, 2006.
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2 Fuzzy Numbers as Representatives of Marking Scale

We would like to suggest a method of validation bases on fuzzy numbers and
fuzzy sets.

Let Aa ⊆ R is fuzzy number [4] that is determined with three parameters:
mL, a, mP . The membership function of it is as follow:

μ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for x < 0

x
a−mL

for 0 ≤ x < a−mL oraz (a−mL) �= 0
1 for a−mL ≤ x ≤ a+mP

5−x
5−a−mP

for a+mP < x ≤ 5 oraz (a−mP ) �= 5
0 for x > 5

(1)

The number Aa we can call trapezoid fuzzy number. Parameter a is called
center ofthe number and parameters: mL and mP are called appropriately:
left and right width of the number. We can write a fuzzy number Aa as follow:
Aa = (mL; a;mP ). A middle point of a fuzzy number Aa is defined as a middle of
a numeric interval in which membership function achieves value 1.The triangular
fuzzy number which has membership function as follow:

μ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for x < 0
x
ã for 0 ≤ x < ã
1 for x = ã
5−x
5−ã for ã < x ≤ 5
0 for x > 5

(2)

we call, that it is generated by the fuzzy number Aa and we write it in symbolic
way as follow: Ãa. The following set of trapezoid fuzzy numbers:

SM = {(2; 2; 0, 5) , (0, 5; 3; 0, 5) , (0, 5; 4; 0, 5) , (0, 5; 5; 0)}

is representation of the marking scale which is applied in polish high schools
(without half-marks). In this case, the marking scale is linguistic variables set,
as follow:

SMling ={no pass mark (2) , pass mark (3) , good mark (4) , very good mark (5)} .

The graphic representation of the fuzzy numbers which are representative for
that marking scale is on Fig.1 below.

There is only one condition for the fuzzy numbers which represent the marking
scale: they have to be decomposition elements of the following trapezoid fuzzy
number: (2, 5; 2, 5; 2, 5) This condition is called total filled scale condition. It
can be written in notation of operations on fuzzy sets as follow:

(2, 5; 2, 5; 2, 5) = (2; 2; 0, 5) ∪ (0, 5; 3; 0, 5) ∪ (0, 5; 4; 0, 5) ∪ (0, 5; 5; 0)

For any marking scale that is represented by fuzzy numbers set: {(mLi; ai;mPi)}
0≤i≤N , total filled scale condition can be written in a broad way as follow:

(2, 5; 2, 5; 2, 5) =
⋃
i

(mLi; ai;mPi) (3)
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Fig. 1. The representation of the fuzzy numbers which are representative for the mark-

ing scale in polish high school

West European marking scale SMEU is the most popular scale. It bases on
six marks:

SMEUling = {F,E,D,C,B,A}
The following set of fuzzy numbers is the representation of this scale:

SMEU = {(0; 0; 0, 5), (0, 5; 1; 0, 5), (0, 5; 2; 0, 5), (0, 5; 3; 0, 5), (0, 5; 4; 0, 5),

(0, 5; 5; 0)}

or, in symbolic way:

SMEU = {A0, A1, A2, A3, A4, A5.}

It is easy to verify, that the total filled scale condition (3) is met for SMEU . All
fuzzy numbers that are elements of this scale (without outermost ones: A0 and
A5) have got the same width. The center and the middle point of each one are
equal (without outermost ones: A0 and A5, too):

∀
0<i<5

ai = ãi ∧ mLi = mPi

Those features seem to be typical for the marking scale, which have been cor-
rectly constructed. The scale with these features is called stable one. A graphic
interpretation for that scale is presented on Fig.2:

Another example of a marking scale is one that is applied in Polish Virtual
University (PUW). The marks of this scale are determined by score intervals
(or percentage intervals). The scores are given to students by teacher. The score
intervals, marks and fuzzy numbers follow them are represented in Table 1.

That marking scale has got an interesting abnormal at pass mark plus : center
of follow fuzzy number is outside the numeric interval in which membership
function achieves value 1: 3, 5 /∈ [3, 75; 4, 0) . It shows that the numeric intervals
are selected unfortunately but it proves also that suggested method of marking
scale representation by the fuzzy numbers is very flexible.

For all fuzzy numbers that are elements of this marking scale, the center of the
number is not equal the middle point of it. This marking scale is not stable. The
rules (algorithms) of relation between score (or percentage or numbers) intervals
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Fig. 2. The fuzzy numbers from SMEU graphic presentation

Table 1. Marking scale that is applied in PUW

Score interval Mark Fuzzy number

[0, 60) No pass mark (2;2;1)
[60, 75) Pass mark (0,3,0,75)
[75, 80) Pass mark plus (-0,25;3,5;1)
[80, 90) Good mark (0;4;0,5)
[90, 95) Good mark plus (0;4,5;0,25)
[95, 100] Very good mark (0,25;5;0)

and trapezoid fuzzy numbers are the most important for the marking scale that
is represented by the fuzzy numbers. In the case of stable scale we can describe
the rules with a function.

3 Fuzzy Numbers and Final Mark Determination

There are a lot of cases then the teacher has to give to the student the final
mark based on the partial marks. Those situations occur during the final or
diploma exams, at the end of each learning period and even if teacher assesses
the complex test.

In that case a two-part algorithm is proposed.
In the first step the fuzzy number that represents the average mark is de-

termined. It is done by calculating the mean of all trapezoid fuzzy numbers
[5] that are representative of the partial marks, according to rules of extend-
ing of mathematical operations from rough sets to fuzzy sets [4]. Let PM ={
A1

P , A
2
P , . . . , A

N
P

}
is the set of the representatives of all partial mark. Then the

trapezoid fuzzy number AP determined by the relation (4):

AP =
1
N
A1

P ⊕
1
N
A2

P ⊕ . . .⊕ 1
N
AN

P (4)

is the representative of the average mark. 1
N is weighting factor of each partial

mark. It is possibly to assign different values to them, but sum of them must be
equal 1:
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AP = w1 · A1
P ⊕ w2 · A2

P ⊕ . . .⊕ wN ·AN
P

and
N∑

i=1

wi = 1.

In the second step two different ways for final mark determination is proposed:

1. If the average mark represents the partial mark in further evaluation
process, then it is suggested leaving it without any changes,

2. If the average mark is a base for the final mark that is represented by the
trapezoid fuzzy number AFM , then we choose from the set of fuzzy numbers
which are epresentative of the marking scale that one for which its
intersection with the triangular fuzzy number that is generated by the middle
point of average mark representative, is normalized fuzzy set:

AFM = Ai
SM :

(
Ai

SM ∈ SM
)

∧
(
h
(
ÃP ∩Ai

SM

)
= 1

)
(5)

Two fuzzy numbers represent the final marks: AP and AP . They are very useful
for the expert systems of ELS. This algorithm seems to be similar to traditional
method that is applied by teachers. It seems to be useful if we should compare
marks that are based on the different marking scale, marks from two different
schools, for example.

4 Fuzzy Numbers and Evaluation of One-Choice Test

It is suggested to apply stable marking scale SMEU for assessing of one-choice
tests which containsN problems. The final marks for each answer are represented
only by two trapezoid fuzzy numbers: A0 (incorrect answer) and A5 (correct
answer). The average mark we obtain according to relation (4):

ATone =
k

N
·A0 ⊕

N − k
N

·A5

where: k is the number of incorrect answers.
The final mark for whole test is determined according to relation (5) and

the final marking scale (SMF ) may be anyone, there is not necessarySMEU , for
example. The proposed method has been applied to assess one-choice test, which
has been carried at the end of one-semester physics course. Test has contained
twenty problems (N = 20). There have been four answers for each question and
only one has been correct. First, the final marks have been determined in the
traditional way with the table of rough decision rules (Table 2).

The proposed method has been applied for assessing the same test. The sta-
ble marking scale (SMEU ) and the marking scale bases on the decision table
(SMDT ) have been applied. The results of both simulations are presented in
Table 3.
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Table 2. The table of decision rules which has been applied for traditional method of

assessing of the one-choice test

Scores interval (N-k) Mark

[0;10] No pass mark 2
[11;15] Pass mark - 3
[16;18] Good mark - 4
[19;20] Very good mark - 5

Table 3. Comparison of two methods of evaluation of one-choice test

Clas- Mark
sical based on AF M

N-k mark (SUEU ) ÃTone ATone SMEU SMDT

0 0.25 (0;0;0,5)
1 0 (F) 0.475 (0,025;0,25;0,475) [0;0;0,5]
2 0.7 (0,05;0,5;0,45)
3 0.925 (0,075;0,75;0,425)
4 1 (E) 1.15 (0,1;1;0,4) (0,5;1;0,5]
5 2 1.375 (0,125;1,25;0,375) [2;2;0,5]
6 1.6 (0,15;1,5;0,35)
7 1.825 (0,175;1,75;0,325)
8 2 (D) 2.05 (0,2;2;0,3) (0,5;2;0,5]
9 2.227 (0,225;2,25;0,275)
10 2.5 (0,25;2,5;0,25)

11 2.725 (0,275;2,75;0,225)
12 3 (C) 2.95 (0,3;3;0,2) (0,5;3;0,5]
13 3 3.175 (0,325;3,25;0,175) (0,5;3;0,75]
14 3.4 (0,35;3,5;0,15)
15 3.625 (0,375;3,75;0,125)
16 4 (B) 3.85 (0,4;4;0,1) (0,5;4;0,5]
17 4 4.075 (0,425;4,25;0,075) (0,25;4;0,5]
18 4.3 (0,45;4,5;0,05)
19 5 5 (A) 4.525 (0,475;4,75;0,025) (0,5;5;0] (0,5;5;0]
20 7.75 (0,5;5;0)

In the next step, 168 real tests that have been assessed in the past with the
table of decision rules, was validated with the fuzzy method. The results are
presented in Table 4.

If we apply to assess the marking scale that bases on the decision table, then
the results are the similar for both way of validation. If we compare the results
based on SMEU and SMDT scales, we see that they are different only for 22
cases and the different is a benefit to students.



A New Evaluation Method for E-Learning Systems 1215

Table 4. The list of the results of validation for 168 real one-choice tests

Number Clas- Mark
of N-k sical based on AF M

tests mark (SUEU ) ÃTone SMDT SMEU

0 0 (0;0;0,5)
2 1 0 (F) (0,025;0,25;0,475) [0;0;0,5]
6 2 (0,05;0,5;0,45)
6 3 1 (E) (0,075;0,75;0,425) (0,5;1;0,5]
8 5 2 (0,125;1,25;0,375) [2;2;0,5]
9 6 (0,15;1,5;0,35)
9 7 2 (D) (0,175;1,75;0,325)
9 8 (0,2;2;0,3) (0,5;2;0,5]
4 10 (0,25;2,5;0,25)
19 11 (0,275;2,75;0,225)
21 12 3 (C) (0,3;3;0,2) (0,5;3;0,5]
19 13 3 (0,325;3,25;0,175) (0,5;3;0,75]
20 14 (0,35;3,5;0,15)
22 15 (0,375;3,75;0,125)
10 16 4 (B) (0,4;4;0,1) (0,5;4;0,5]
2 17 4 (0,425;4,25;0,075) (0,25;4;0,5]
1 18 (0,45;4,5;0,05)
1 19 5 5 (A) (0,475;4,75;0,025) (0,5;5;0] 0,5;5;0]

5 Concluding Remarks

It is possible to apply the trapezoid fuzzy numbers as representative of any
marking scale (SM). We can assess the quality of a marking scale with this
method of representation. The stable scale is well constructed marking scale.

It is possible to determine average mark (AP ) of some partial marks from set{
Ai

P

}
0≤i≤N

with using the rules of extending of mathematical operations from
rough sets to fuzzy sets, even for the weighting factors wi that are different each
other.

It is possible to determine final mark AFM with using triangular fuzzy number
which is generated by average mark ÃP and the features of intersection of fuzzy
sets.

Two fuzzy numbers represent the final marks: AP and AFM in that method.
They are very useful for the expert systems of ELS. This algorithm seems to be
similar to traditional method that is applied by teachers. It seems to be useful
if we should compare marks that are based on the different marking scale.

All those algorithms are tested by using them to validation process of 168
one-choice tests for two different marking scales: one that is applied in polish
high schools and other one that is used in West Europe. The results have been
compared with the teacher’s validation results. Sufficient compliance of those
results is the best confirmation for suggested methods.
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Abstract. In the paper the problem of parameter estimation of input
- output system is discussed. It is assumed that system is described
by the relation known with accuracy to some parameters. The possible
observations of system are described. The estimation algorithm based
on maximum likelihood method is proposed. The presented approach is
illustrated by analytical examples.

1 Introduction

Investigation of computer system for decision process based on knowledge rep-
resentation requires new method of system modeling. Traditional mathematical
model given by system of equation was very convenient for analytical investiga-
tions. Application of computer aided method for processing observations, more
generally knowledge about investigated plant allows to investigate wide class of
models. Particularly, the input - output system may be described by the set of
facts given by logical statements about input and output. Sometimes such a de-
scription is given by expert. The problem is to generalize expert observation and
propose the system description in form of relation defined on set of input and
output. In this case we can formulate the identification problem for system de-
scribed by the relation, similar to the identification of systems described by the
equations [1]. The problem of modeling and identification of systems described
by the relation has been presented in previous works. Particularly in [3] the gen-
eral problem of identification of relational system is presented. In [5] the problem
of optimal model choice is discussed. Some estimation problem is presented in
[6]. Now the application of maximum likelihood method is proposed.

2 System Descriptions

Let us consider the input - output static system with input x and output y. Input
and output are S and L dimensional vectors, respectively. Input and output are
elements of sets X and Y , which are subsets of IRS and IRL spaces, respectively,
i.e.:

x ∈ X ⊆ IRS , y ∈ Y ⊆ IRL.

L. Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp. 1217–1222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The system is described by the set of facts concerning input and outputs. More
precisely, the set of true logical statements about x and y is given. Consequently
the logical function

F (x, y, a) (1)

defined on the set of inputs and outputs is proposed, where F is complex logical
function and a is K – dimensional vector of parameters from set of parameters
A (i.e.: a ∈ A ⊆ IRK). In the system description only such (x, y) from X × Y
may appear, for which the statement (1) is true. In this way the description of
the system is given by the relation defined on X × Y i.e.:

�a = {(x, y) ∈ X × Y ; F (x, y, a)}. (2)

On the relation �a the probability density function

g(x, y, a) (3)

is defined. For example, let sets of inputs and outputs are real numbers and facts
concerning inputs and outputs are the following: input and output are positive
numbers and sum of input and output is not grater than a. Furthermore let us
assume that the probability density is monotonous. For the above system (2)
and (3) have the forms:

�a = {(x, y) ∈ IR2; x ≥ 0 ∧ y ≥ 0 ∧ x+ y ≤ a}, (4)

g(x, y, a) =

⎧⎨⎩2a−2 if x ≥ 0 ∧ y ≥ 0 ∧ x+ y ≤ a

0 otherwise
. (5)

3 System Observations

Now it will be assumed that the description of the system is known with the
accuracy to the parameters, i.e. the functions F and g in (1) – (3) are known but
vector of parameters a must be estimated. To determine vector a, the following
experimental data may be collected:
A – the sequence of input and output measurements of the system are collected,
i.e.:

(xn, yn), n = 1, 2, . . . , N, (6)

where (xn, yn) are n–th measurements of input and output, respectively, N is
number of measurements.
B – the sequence of true logical statements is given, i.e.:

rn = {(x, y) ∈ (X × Y ); fn(x, y)}, n = 1, 2, . . . , N, (7)

where fn is n–th logical statement about input and output. Such a fact may be
given by expert.
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For example from expert we know that input x is in the interval x ∈ [α1n, α2n]
and the output y is in the interval y ∈ [β1n, β2n] , what will be denoted as
observation:

rn = {(x, y) ∈ IR2; α1n ≤ x ≤ α2n ∧ β1n ≤ y ≤ β2n}. (8)

4 Parameter Estimations

The collected data of the form (6) are independent realization of random vari-
ables (x, y) with the probability density function (3). Consequently the likelihood
function has the form:

WA(a,XN , YN ) =
N∏

n=1

g(xn, yn, a), (9)

where XN = [x1 x2 . . . xN ] and YN = [y1 y2 . . . yN ] . Estimate aAN of vector
a is obtained by maximization (9) with respect to a, i.e.:

aAN = ΨA(XN , YN ) → WA(aAN , XN , Y ) = min
a∈A

WA(a,XN , YN ). (10)

Let us come back to the example when sets of inputs and outputs are real
numbers and facts concerning inputs and outputs are the following: input and
output are positive numbers, sum of input and output is not grater than a and the
probability density is monotonous. The relation �a and probability distribution
g(x, y, a) are given by (4) and (5). The respective likelihood function is:

WA(a,XN , YN ) =

⎧⎨⎩2Na−2N if ∀n∈{1,2,...,N} (xn, yn) ∈ �a

0 otherwise
, (11)

and estimator aAN has the form:

aAN = max
1≤n≤N

(xn + yn). (12)

For more general case, when it is assumed that the probability density distri-
bution (3) has the form:

g(x, y, a) =

⎧⎪⎪⎨⎪⎪⎩
(∫

�a

dxdy

)−1

if (x, y) ∈ �a

0 if (x, y) /∈ �a

, (13)

the respective likelihood function is:

WA(a,XN , YN ) =

⎧⎪⎪⎨⎪⎪⎩
(∫

�a

dxdy

)−N

if ∀n∈{1,2,...,N} (xn, yn) ∈ �a

0 if ∃n∈{1,2,...,N} (xn, yn) /∈ �a

, (14)
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than to obtain the estimate aAN , it is enough to solve the following optimization
problem:

aAN → min
a∈A

(∫
�a

dxdy

)
(15)

with constraints:
∀n∈{1,2,...,N} (xn, yn) ∈ �a, (16)

what means that relation must have minimal ”volume” and all true facts must
be included, i.e.:

∀n∈{1,2,...,N} F (xn, yn, a).

For the observations of the form B the true sentence of the form (7) is given.
The probability that it is possible to obtain true observation rn is determined
by the following formula:

Pn(rn, a) =

⎧⎪⎪⎨⎪⎪⎩
∫

rn

g(x, y, a) dxdy if rn ⊆ �a

0 otherwise

. (17)

For further consideration it is assumed that

∀n,m∈{1,2,...,N} rn ∧ rm = ∅ ∨ rn ∧ rm = rn = rm ,

consequently the likelihood function is:

WB(a,RN ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∏

n=1

∫
rn

g(x, y, a) dxdy if ∀n∈{1,2,...,N} rn ⊆ �a

0 otherwise

, (18)

where RN = [r1 r2 . . . rN ] . The estimates aBN of vector a, for the measure-
ments B – type, is obtained by maximization of likelihood function (18) with
respect a, i.e.:

aBN = ΨB(RN ) → WB(aBN , RN ) = min
a∈A

WB(a,RN ). (19)

Let us come back to the system described by relation (4) with probability den-
sity distribution (5). The respective observation are of the form (8). Probability
(17) to obtain observation rn of this form is:

Pn(rn, a) =

⎧⎨⎩
2a−2(α2n − α1n)(β2n − β1n) if rn ⊆ �a

0 otherwise
(20)

The respective likelihood function (18) is:
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WB(a,RN ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Na−2N

N∏
n=1

(α2n − α1n)(β2n − β1n) if ∀n∈{1,...,N}rn ⊆ �a

0 otherwise

,

(21)
and solution (19)

aBN = max
1≤n≤N

(α2n + β2n). (22)

Let us notice that for system described by the relation with probability density
function of the form (13), the estimation problemmay be reduced to the following
optimization task: find such a parameter aBN of the system description, for
which relation �a has the minimal ”volume” and includes each observation rn,
n = 1, 2, . . . , N . Particularly, in this case the likelihood function has the form

WB(a,RN ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∫

�a

dxdy

)−N N∏
n=1

∫
rn

dxdy if ∀n∈{1,2,...,N} rn ⊆ �a

0 otherwise

(23)

and maximization (23) with respect to a is equivalent to the following optimiza-
tion problem:

aBN → min
a∈A

(∫
�a

dxdy

)
(24)

with constraints
∀n∈{1,2,...,N} rn ⊆ �a. (25)

5 Final Remarks

The problem of modeling of system described by the relation has been discussed.
The static system is described by set of fact about input and output. Te set of
true facts gives the relation defined on set of inputs and outputs. In this pa-
per it was assumed that description is known with accuracy to parameters. To
determine unknown model parameters the estimation algorithm was proposed.
Two different kinds of observations were used. The first case corresponds to tra-
ditional measurements, i.e. for given input the output is measured. The other
observations are true logical sentences about inputs and outputs. For both cases
the estimation algorithms based on maximum likelihood method have been pro-
posed. The presented approach is illustrated by simple analytical examples.
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Abstract. Human-designed elevator control policies usually perform
sufficiently well, but are costly to obtain and do not easily adapt to
changing traffic patterns. This paper describes an adaptive distributed
elevator control system based on reinforcement learning. Whereas in-
spired by prior work, the design of the system is novel, developed with
the intention to avoid any unrealistic assumptions that would limit its
practical usefulness. Encouraging experimental results are presented with
a realistic simulator of an elevator group.

1 Introduction

Elevator group control is an important practical problem. Allocating elevators
to passenger calls in real time to optimize certain performance measures (usually
based on passenger waiting or service time) is a hard task in high load conditions.
Typically used control policies are human-designed heuristics based on observa-
tions and performance statistics from running elevator systems and some expert
knowledge about elevator traffic patterns [1,2,3]. Such heuristics give acceptable
performance in most cases, but are difficult and costly to design, whereas they
are still likely to leave space for performance improvement. Moreover, if the el-
evator usage patterns assumed by the designer no longer correctly reflect the
actual traffic in the building, which could have changed due to several reasons,
the performance of a hand-written policy may degrade noticeably. This justifies
the effort to develop adaptive elevator control systems that would not heavily
rely on human knowledge and a priori assumptions about traffic patterns [4].

Elevator control is a sequential decision-making process that suits well to the
reinforcement learning paradigm [5], in which the learner acquires or improves a
policy from a series of direct interactions with the environment. Each interaction
consists in taking an action based on the current state of the environment, and
observing its effects — a real reinforcement value and a next state. The learner’s
task is to achieve an action selection policy that maximizes reinforcement values
in the long term, which means that they can represent delayed evaluation of
the learner’s performance. In several decision-making problems it is quite easy
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c© Springer-Verlag Berlin Heidelberg 2006



1224 T. Walczak and P. Cichosz

to assess long-term performance a posteriori, whereas action utility is neither
known a priori nor can be assessed immediately. This is clearly the case for the
elevator control problem, where the performance of a running control system can
be easily evaluated using any adopted performance criteria, which allows one to
directly to define a reinforcement signal.

This paper presents an architecture of a distributed elevator control system
based on reinforcement learning and experimental results that demonstrate its
performance for a realistically simulated elevator group. The simulator was de-
signed to closely reflect the typical daily usage pattern of a particular real state-
of-the art elevator system installed in one of Warsaw office buildings. Whereas
inspired by prior work by Crites and Barto [6,7], we try to make our control
system better suited to practical limitations (such as elevator dynamics), which
results in a considerably different design.

1.1 Elevator Control

An elevator group consists of several elevator cars servicing a common set of
floors, as illustrated in Figure 1. We consider the most common setup where on
each floor there is one set of up and down buttons for issuing hall calls, common
for all elevator cars. Inside elevator cars there are buttons used to issue car calls,
indicating the target floor.

Fig. 1. Elevator group

The control system is responsible for controlling the operation of each elevator
in the group, which includes making the following decisions:

for a moving elevator: the choice of the next floor in the current direction on
which the elevator will stop,

for a stopped elevator: the choice of the time and direction of moving.

Two kinds of constraints must be preserved in the decision-making process:

constructional: related to elevator construction—e.g., the necessity of deciding
about stopping on a floor in a sufficiently large distance from the floor,

functional: related to functional requirements—e.g., the necessity of servicing
commands of passengers inside the car.
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The objective of an elevator control system is to provide service to all pas-
senger calls and commands and optimize some performance measures (usually
minimize the waiting time for passenger calls and the travel time for passenger
commands). The hardness of the task results from mostly from:

– large state space — there is a huge number of possible combinations of car
calls, hall calls, and elevator positions or move directions,

– asynchronicity of events — hall calls or car calls can be signaled at any time
moment,

– nonstationarity — the rate of incoming calls can change both in short term
(during a day) and in long-term (over several days, weeks or months),

– partial osbervability — the number of passengers waiting on floors and trav-
elling in cars is unknown.

1.2 Reinforcement Learning

The typical learning scenario of a reinforcement learning system consists in re-
peating a sequence of a few simple operations: observing the current state xt,
selecting and performing an action at, and then observing the reinforcement
value rt and the next state xt+τ . Here t is used to denote the time at which
action selection takes place, and τ to denote the time interval after which a sub-
sequent action will be selected. The objective of a reinforcement learning system
is to maximize its reinforcement values in the long term. This is why reinforce-
ment values are often called rewards. A standard performance measure is the
total discounted reinforcement collected over time:∫ ∞

0
e−βtrtdt (1)

where β > 0 determines the rate of discounting, i.e., giving less weight to rein-
forcement values more distant in time. This continuous-time formulation of the
reinforcement learning task follows [8] and is adopted for this paper instead of
its more common discrete-time counterpart since it is well suited to the asyn-
chronicity of events in the elevator system.

For some tasks it may be more natural to define reinforcement in such a way
that minimization would be desired instead of maximization. This will be the
case for the elevator control task considered in this paper. In such tasks rein-
forcement values cam be called punishments or costs rather than rewards. In any
case, the learner’s task is to eventually reach optimal behavior, i.e., consistently
selecting actions that lead to the maximization or minimization of the adopted
performance measure.

Reinforcement learning algorithms usually rely on incrementally adjusting
some value functions defined over the state or state and action space, which for
each state or state-action pair estimate the total future reinforcement values.
The most popular Q-learning algorithm [9], used by our elevator control system,
maintains the Q function which, for each state-action pair 〈x, a〉, estimates the
total discounted reinforcement after performing action a in state x and behaving
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optimally thereafter. The single-step update rule applied at time t2 for state-
action pair from time t1 is:

Qt2(xt1 , at1) := (1− α)Qt1(xt1 , at1) + αΔt1,t2 (2)

where Δt1,t2 is the error value for time t1 calculated at time t2 as:

Δt1,t2 =
∫ t2−t1

0
e−βτrt1+τdτ + e−β(t2−t1) max

a
Qt1(xt2 , a) (3)

under the assumption that t1 and t2 are two consecutive time moments at which
states are observed and action are selected. At time t2, when the next state
observation takes place, the Q-value for the state and action from time t1 is
updated, based on the reward accumulated between t1 and t2, and on the max-
imum Q-value for state xt2 . The step-size parameter α ∈ (0, 1) determines the
extent to which the Q-value is moved.

2 Control System Architecture

The learning elevator control system proposed in this paper is distributed, with a
single separate reinforcement learning system to each elevator. This is illustrated
in Figure 2. There is no direct communication between individual learners. The
idea of using a team of per-elevator controllers rather than a single centralized
controller for the whole group is motivated by the possibility of reducing the
overall task complexity and hence operating in a smaller state space. It is also
noteworthy that, since we assume that the physical operation and performance
measure is the same for all elevators, all subtasks are identical, which permits
using a shared control policy for individual controllers.

Fig. 2. Distributed reinforcement learning system

2.1 State Representation

State information provided to learning controllers has to appropriately reflect
all relevant events happening in the elevator system that can be practically
observed. This includes:
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– awaiting hall calls and their waiting times,
– awaiting car calls and their waiting times for all elevators,
– position of all elevators,
– moving direction of all elevators,
– velocity of all elevators,
– calls to which particular elevators are allocated.

Strictly speaking, the last item in this list actually represents the internal state
of the control system rather than the external environment state, but it can be
considered part of state information from the perspective of individual learners.
It follows from our assumptions about control actions, described below, which
basically consist in assigning an elevator to an awaiting call. This assignment
cannot be changed (until the elevator arrives to the stop of the assigned call)
and therefore can be considered an important state variable.

Assuming the above contents of state information, for an elevator system with
m elevator cars and n floors, we can calculate an estimate the size of the state
space as follows:

– up to n− 1 up hall calls — 2n−1 possibilities,
– up to n− 1 down hall calls — 2n−1 possibilities,
– up to n car calls for each elevator (2n possibilities),
– n possible positions for each elevator (rounded to the nearest floor),
– 2 + 1 possible moving directions for each elevator (up, down, stopped)

which gives (2n−1 · 2n−1 · 2n · n · 3)m. On the other hand, for a single learner in
our distributed architecture the state space size can be estimated as 2n−1 ·2n−1 ·
2n · n · 3, which is still very large, but considerably less than before.

To further reduce the size of the state space, an aggregated state represen-
tation was used, in which a learner receives the number of awaiting hall calls
in both directions and car calls rather than an exact information of calls and
commands for particular floors. These counts of calls and commands are always
relative to the elevator’s current position and direction, respectively, i.e., the
learner receives:

– the number of up and down hall calls from floors higher and lower than the
current position (only not assigned to other cars),

– the number of car calls to floors in the current moving direction.

This is intended to make the aggregation represent possibly most useful state
features for decision-making. It will become more clear why such aggregated
state representation is appropriate when the set of actions is described below.

With aggregation, the size of the state space for a single learner in the dis-
tributed control system can be calculated as follows:

– the number of remaining up hall calls from floors higher than the current
position: at most n− 1 values,

– the number of remaining down hall calls from floors higher than the current
position: at most n− 1 values,
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– the number of remaining up hall calls from floors lower than the current
position: at most n− 1 values,

– the number of remaining down hall calls from floors lower than the current
position: at most n− 1 values,

– the current position: n values,
– the number of car calls in the current direction: at most n− 1 values,
– the current moving direction — 3 values,

which makes the total number of states equal: (n− 1)4 ·n · (n− 1) · 3. This gives
considerable reduction of the size of the state space of individual learners. For
moderate values of n and m this number could permit using a tabular function
representation, given that the number of actually observed states under normal
operation will be usually much less than the above estimate — in an elevator
system that is not extremely overloaded there will barely ever be simultaneously
awaiting hall calls or car calls for more than a few floors.

2.2 Action Set

In related previous work on elevator control through reinforcement learning [6,7]
the authors assumed that the control system takes actions (stop or continue
moving) whenever a moving elevator is in the middle between two consecutive
floors. This is hardly applicable to many practical elevator systems, where the
stopping distance for an elevator moving at full speed is longer than a half of
the distance between floors. Therefore we considered a more realistic approach
with wider applicability, which however makes the learning task more difficult.

The learner assigned to an elevator selects its action whenever the elevator is
stopped on a floor. The action consists in the selection of the target floor—the
next floor on which the elevator will stop again. This selection is subject to the
following constraints:

– no floor to which there is a car call can be skipped, so the target floor is
selected from the range between the current floor and the floor of the nearest
command (if there is one),

– the elevator cannot change direction before servicing all car calls in the
current moving direction,

– the elevator can stop at a floor only if there is a call from this floor or there
is a car call to this floor,

– the elevator cannot stop at a floor if the hall call from this floor has been
already assigned to another elevator (unless there is a command to this floor),

Two additional heuristics incorporated in action selection are the preference for
moving up and assigning incoming calls to an idle stopped elevator whenever
there is one.

The number of available actions is at most equal to the number of floors.
This can result in slower learning than reported in [6,7], for two actions. This
is the cost of adopting more realistic assumptions about action selection. There
is a positive side effect of this decision as well: since the choice of an elevator’s
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next stop is made at its previous stop, the arrival of an elevator to a call can
be announced several seconds beforehand. This is an important merit for large
elevator system, since it gives waiting passengers enough time to go towards the
entry of the arriving elevator.

2.3 Reinforcement Function

The reward function used in this work is based on the definition of reinforcement
for an elevator control system from [6,7]. The reinforcement value is basically
calculated as the sum of squared waiting times for all calls and commands. It
would be therefore more appropriate to call reinforcements defined that way
costs rather than rewards, since obviously they have to be minimized instead of
maximized.

Although all important events in the elevator system occur in discrete time
moments, the intervals between them vary and therefore it is necessary to con-
sider time as continuous. Therefore cost values are assigned to continuous time
moments. For τ ∈ [t1, t2], where t1 is the time of taking an action for an eleva-
tor (i.e., deciding on which floor to stop) and t2 is the time of completing the
action (i.e., actually stopping the elevator on the floor selected at time t1), the
reinforcement value is defined as follows:

rτ =
∑

c

(τ − t1 + wc)2. (4)

where wc is the time period which waiting hall calls. It is important to underline
that although the reinforcement value calculated as above is passed to the learner
that selected its action and time t1 and completed its action at time t2, the
calculation includes the waiting times of all hall calls and car calls, for other
elevators as well.

3 Learning Algorithm

The reinforcement learning algorithm used in our distributed learning system
is the basic Q-learning [9] algorithm, modified to meet two requirements of the
elevator control task, i.e.:

– to act in continuous time, which is achieved by following the approach of [8],
as summarized in Equations 2 and 3,

– to minimize costs instead of maximizing rewards, which is achieved by re-
placing maximization with minimization in Equation 3.

3.1 Continuous Time

In our elevator control system rτ is non-zero in intervals between selecting and
completing an action. According to Equation 4, the total discounted reinforce-
ment for time interval [t1, t2] is:∫ t2

t1

e−β(τ−t1)
∑

c

(τ − t1 + wc)2dτ, (5)
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which can be easily rewritten as:

∑
c

e−βwc

[ 2

β3 +
2wc

β2 +
w2

c

β

]
− e−β(wc+t2−t1)

[ 2

β3 +
2(wc + t2 − t1)

β2 +
(wc + t2 − t1)

2

β

]
.

(6)

3.2 Function Update

By reducing the size of the state-space appropriately, we were able to use tabular
function representation and postpone the investigation of employing function
approximators for future work. For a [t1, t2] interval considered above, the Q-
function for state xt1 and action at1 is replaced at time t2 by:

(1− α)Qt1(xt1 , at1) + α
[ ∫ t2

t1

e−β(τ−t1)rτdτ + e−β(t2−t1) min
a
Q(xt2 , b)

]
, (7)

where α is a step-size parameter.

4 Experimental Studies

The experiments use a realistic simulator of an elevator system, developed by
the authors based on traffic statistics from a physical elevator system.1 The
elevator group consists of 6 elevators servicing 20 floors. There is an express
zone between floors 1 and 7m where there are no stops and elevators travel at
maximum speed. To allow using a tabular function representation rather than
generalizing function approximators for this study, the number of floors in the
simulation was reduced to 18, with call statistics adjusted appropriately. The Q-
learning algorithm was used with roughly optimized parameters (α = 0.1, β =
0.01, Boltzmann distribution-based action selection with temperature uniformly
decreased in the course of learning).

Apart from a learning distributed control system outlined above, a simple,
but good heuristic control policy was implemented and used for comparisons.
This is the best-first heuristic which always picks up the first awaiting call in the
current moving direction to be served. The results of the reinforcement learning
and heuristic algorithms were compared with respect to the mean call service
time and the distribution of call service times.

As one can see in Figure 3 and 4, the learning control algorithm clearly shows
an improvement in mean service time in the course of learning. The improve-
ment is particularly striking for down-calls, but also for up-calls the learning
system outperforms the best-first heuristic after 10 simulated days of learning.
For down-calls, the number of cases with service time between 21 and 81 is re-
duced by moving them to three lower intervals. For up-calls the situation is not

1 The statistics come from an elevator system installed by the OTIS company in the
Warsaw Financial Center building.
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so good, since although some cases are moved from intervals [11, 21) and [21, 41)
to two lower intervals, there is also an increase of the number of up-calls with
service time between 41 and 81. There are 11 up-calls with service time above
60 for reinforcement learning and 2 for the heuristic. For down-calls there are
respectively 27 and 32, so the advantage of reinforcement learning-based control
system is much more evident.
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5 Conclusion

This work has contributed a novel approach to using reinforcement learning for
elevator control. It differs in several important ways from previous approaches
and makes more realistic assumptions, which brings it closer to practical appli-
cability. To achieve this, a distributed control system architecture was designed,
permitting considerable reduction of the state space size. The resulting control
system is capable of online learning and therefore could be used not only to learn
from scratch in simulation, but also to refine or adapt a predefined control policy
in a physical elevator system.
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It is particularly worthwhile to notice that reinforcement learning consider-
ably improved the performance in comparison to a fairly good heuristic even
using very limited state information, which permitted a tabular function repre-
sentation. This demonstrates that our control system architecture and learning
algorithm are reasonably designed and they deserve further investigations. The
most promising direction for such investigations is to employ generalizing func-
tion approximator for function representation to make it possible to scale-up our
solution to larger elevator systems as well as to enhance state information, which
could possibly lead to even more substantial performance improvements.
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Krzyżak, Adam 46
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Red’ko, Vladimir 460
Rehm, Frank 663
Rejer, Izabela 104, 123
Rhee, Phill Kyu 833, 841
Robak, Silva 297
Rolka, Leszek 268
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