
H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 300 – 311, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Trajectory-Based Grasp Interaction
for Virtual Environments

Zhenhua Zhu, Shuming Gao, Huagen Wan, and Wenzhen Yang

State Key Lab of CAD&CG, Zhejiang University
Hangzhou 310027, P.R. China

{cocoon, smgao, hgwan, ywenz}@cad.zju.edu.cn

Abstract. Natural grasp interaction plays an important role in enhancing users’
immersion experience in virtual environments. However, visually distracting
artifacts such as the interpenetration of the hand and the grasped objects are
always accompanied during grasp interaction due to a simplified whole-hand
collision model, discrete control data used for detecting collisions and the
interference of device noises. In addition, complicated distribution of forces from
multi-finger contacts makes the natural grasp and manipulation of a virtual object
difficult. In order to solve these problems, this paper presents a novel approach for
grasp interaction in virtual environments. Based on the research in
Neurophysiology, we first construct finger’s grasp trajectories and detect
collisions between the objects and the trajectories instead of the whole-hand
collision model, then deduce the grasp configuration using collision detection
results, and finally compute feedback forces according to grasp identification
conditions. Our approach has been verified in a CAVE-based virtual environment.

1 Introduction

Virtual environments (VE) provide a platform for users to experience and work with
three-dimensional computer generated scenes just like in real environments. Yet, after
many years of research and development virtual environments are still used mainly as a
visualization tool with some simple or specialized interaction techniques. Although
some finger tracking devices such as instrumented gloves have made natural grasp
interaction possible at least at hardware level, the interaction using a virtual hand as an
avatar has come true only to a very limited extent. It is probably because the use of
multi-finger grasp interaction with a haptic device presents a number of new challenges
over that of single point interaction.

These challenges include: 1) how to simplify collision models in order to get high
update rate for haptic rendering; 2) how to control visually distracting artifacts, such as
interpenetration of a hand and grasped objects, mainly aroused by the interference of
device noise and the discrete control data used for collision detection acquired from
interaction devices; 3) how to model friction and resolve the distribution of finger force
from multiple finger contact points.

Aiming to solve these problems, this paper proposes a simple and novel approach for
users to naturally grasp and manipulate objects via a dexterous hand as an avatar in a
virtual environment.

 Trajectory-Based Grasp Interaction for Virtual Environments 301

The rest of the paper is organized as follows. Related works are briefly reviewed in
the next section. Section 3 overviews the approach. In Section 4, the construction of
grasp trajectories is presented, while issues related to multi-finger grasp interaction
using grasp trajectories is described in Section 5. Experiment results are shown in
Section 6. Some conclusions and future works are discussed in Section 7.

2 Related Works

In virtual environments, real-time collision detection between a dexterous hand and
objects is premier. Although the technology of continuous collision detection ([1] and
[2]) has improved greatly, the requirement of high update rate makes it still expensive
in virtual environments with haptic rendering. So, some discrete collision detection
methods, such as VOXMAP-PONTSHELL [3], Bounding Sphere Tree [4], Axis
Aligned Bounding Box Tree [5], Oriented Bounding Box Tree [6] and Convex Hull
Tree [7] are still preferred. But those discrete methods inevitably arouse
interpenetration.

In order to alleviate the unrealistic vision of interpenetration, Rezzonico et al. correct
hand posture by unfolding the closet proximal joint (wrist side) until the corresponding
sensor is tangent to the object or the joint reaches its limit [8]. Zachmann et al. convert
the problem of natural grasping into a minimization problem for a joint vector under the
constraint that finger-joints (and palm) must not penetrate the object [9].But their
iterative adjustment is time-consuming.

Recently, physical-based dynamic simulation is employed for multi-finger grasp and
manipulation of a virtual object. Based on point collision response forces, Hirota et al
develop a manipulation system [10]. Melder et al. present an approach to allow users to
manipulate a virtual object through multiple PHANToM devices by using friction cone
([11], [12] and [13]). Borst et al. develop a system to support natural whole-hand
interactions in a desktop-sized workspace [14]. Yet, all of these methods are not very
stable and sometimes face difficulties when grasping or manipulating objects.
Therefore, approaches dependent on heuristic analysis of grasp stability or user intent
are still applicable. Iwata et al. consider whether an object is captured by testing 16
points on a hand model [15]. Maekawa et al provide two finger grasp conditions to
manipulate objects in virtual environments [16]. Piater et al. determine grasp
configurations by using visual features [17]. Tzafestas et al. take into account the
unilateral nature of the contacts and the limitations due to static friction to identify
whether grasp is still maintained [18].

3 Overview of the Approach

Before outlining our approach, we narrow down the discussion scope of this paper
within pinch, based on users’ common operations performed in virtual environments
and at the same time for the sake of reducing interaction complexities between a hand
and virtual objects. Therefore, consistent and independent fingertip motion for
reach-to-grasp movements is fully utilized here. According to the research result of
Neurophysiology "For reach-to-grasp movements to a variety of objects, fingertip

302 Z. Zhu et al.

motion was quite similar. The movement tended to follow a particular curved path."
[19], our approach first constructs each fingertip’s grasp trajectory and then detects
collisions between objects and trajectories. Subsequently, the fingers’ automatic
contact conditions are estimated and the grasp configurations of the relevant fingers are
deduced according to the collision detection results. Finally the finger feedback forces
when grasping or manipulating an object is computed based on grasp identification
conditions. Overall, the approach is composed of the pre-processing stage and the
running stage, whose schematic overview is shown in Fig.1.

 Pre-processing:

Construct each

fingertip’s grasp

trajectories

Running:

Detect collisions between

trajectories and objects

Estimate fingertip automatic

contact conditions

Configure hand’s grasp posture

Compute the feedback force for

each finger

Identify grasp conditions

Fig. 1. Schematic overview of the approach

4 Construction of Grasp Trajectories

To gain real-time performance in virtual environments, most traditional methods have
to maintain two kinds of hand models, one for display and the other, much simpler, for
detecting collisions. Although two kinds of hand models could speed up collision
detection, the simplified collision model, discrete control data used for collision
detection and the interference of device noise will more or less lead to interpenetration
of the hand into grasped objects.

The research result of Neurophysiology mentioned in Section 3 provides us a new
promising way to solve this problem. In this section, we will put our emphasis on the
construction of a fingertip’s grasp trajectory, while leave the issue of how to use
trajectories to control the visually distracting artifacts to the next section.

Similar to the method presented in [19], the construction of finger’s grasp
trajectories is described as follows:

 Trajectory-Based Grasp Interaction for Virtual Environments 303

1) Manually select a point in each fingertip surface as a seed point for that finger.
The point should be located in the center of the fingertip’s surface, where we
think the first contact generally happens when pinching an object (Fig.2).

Fig. 2. Seed points on five fingertip

2) Ask a user to participate in a grasping task and his finger joint angles acquired
from CyberGlove® are recorded at approximately 50 Hz. The process is
repeated several times to eliminate the side effect of some accidental factors such
as device noises as far as possible.

3) Simulate the user’s grasping process and generate the motion of the seed point for
each finger with those recorded joint angles. The seed point’s motion trajectory is
regarded as a grasp trajectory for that finger.

4) Approximate the grasp trajectory of each finger with a series of line segments.
We pick up a number of recorded finger’s joint angles as critical joint angles and
the positions of seed point corresponding to those joint angles are computed to
form critical points on the grasp trajectory. All of these critical points form a
series of line segments to approximate the grasp trajectory tightly (Fig.3).

We have to admit that the approximation will result in some inaccuracies both in
detecting collision and determining the grasp configuration of the finger. Fortunately,
we can control these inaccuracies by determining the number of these critical points on
the trajectory. Moreover the speed of collision detection between an object and a series
of line segments is obviously far faster than that of collision detection between an
object and a curve.

Fig. 3. Line segments to approximate grasp trajectories

5 Grasp Interaction

Fig.4 presents the process of a dexterous hand interacting with an object we are
conceiving, and more details will be described below.

304 Z. Zhu et al.

Not satisfied

Not satisfied

Not satisfied

No collision

Satisfied

Satisfied

Satisfied

Collision

Detect collision between

trajectories and the object

Estimate automatic

contact conditions

Deduce grasp

configuration of fingers

Identify grasp conditions

Grasp and manipulate

the object

Not satisfied

Not satisfied

No collision

Satisfied

Satisfied

Collision

Detect collisions between

trajectories and the object

Estimate automatic

contact conditions

Identify grasp

conditions

Release the object

(a) The process of grasping an obect (b) The process of releasing an object

Fig. 4. Grasp Interaction between a hand and an object

5.1 Collision Detection Between Trajectories and Objects

The collision detection is performed between objects and the grasp trajectories instead
of the virtual hand. As the grasp trajectory of each fingertip is approximated by a series
of line segments, the problem of collision detection can be therefore converted to
perform an intersection test between the objects and the line segments.

An intersection test between a line segment and an object could be implemented by a
general ray-tracing algorithm [20]. But to accelerate the intersection computation, an
OBB-tree for each object is created. Ray-Box intersections are firstly tested and if a line
passes through all Ray-Box intersection tests, a Ray-Triangle intersection is performed
(An object is represented by mesh in this work). For Ray-Triangle intersection, the
algorithm presented by Möller [21] is applied, while for Ray-Box intersection, the
Mahovsky’s algorithm [22] is employed. The algorithm makes use of Plücker
coordinates and tests the ray against the edges comprising the silhouette of the box
instead of testing against individual faces so that the technique’s performance is up to
93% faster.

 Trajectory-Based Grasp Interaction for Virtual Environments 305

5.2 Automatic Contact Estimation

When pinching, an automatic contact condition is provided to estimate whether fingers
contact an object, since it is difficult to predicate when the fingers will contact the
object. At first, the line segment intersecting with an object is found during collision
detection and then an auxiliary plane passing the start point of the intersecting line
segment and perpendicular to the line segment is created to divide the space into the
positive and negative subspaces respectively. If the seed point on the fingertip resides
in the positive subspace, an automatic contact condition is thought to be satisfied and
the corresponding finger will be automatically moved to contact the object. Otherwise,
the corresponding finger is still allowed to move along its trajectory. The condition is
illustrated in Fig.5.

 -

+

 -

+

(a) Seed point in negative sub-space (b) Seed point in positive sub-space

Fig. 5. Illustration of automatic contact estimation

5.3 Grasp Configuration Deduction

After it has been estimated that one finger should be automatically moved to contact a
virtual object, it is necessary to determine the grasp configuration of that finger.
Without iteratively adjusting finger’s posture, our method is able to deduce the grasp
configuration of the finger immediately. During our construction of finger’s trajectory,
the flexion/extension of the distal inter-phalangeal (DIP), proximal inter-phalangeal
(PIP), and metacarpal-phalangeal (MCP) joints as well as its corresponding abduction,
such as Ring-Middle abduction, are recorded and represented as a set of angles (θn1, θn2,
θn3, θn4) for each critical point Pn. As illustrated in Fig.6, the grasp configuration of the
finger could be deduced based on these data as follows:

1) For the finger whose grasp trajectory intersects with an object on the point Cn,
determine a variable t that makes

Cn = Pn-1 + t×(Pn – Pn-1) (1)

2) Get corresponding joint angles (θn-11, θn-12, θn-13, θn-14) about Pn-1 and (θn1, θn2, θn3,
θn4) about Pn;

306 Z. Zhu et al.

3) Compute approximate joint angles (θc1, θc2, θc3, θc4) about Cn by using linear
interpolation:

θcx = θn-1x + t×(θnx –θn-1x) (x = 1,2,3,4) (2)

4) Apply (θc1, θc2, θc3, θc4) to formulate the grasp configuration of the finger, i.e. the
flexion or extension of DIP, PIP and MCP and the abduction.

Cn

Finger

Deduced finger

configuration

Pn-2 Pn-1

Pn

Pn+1

Pn+2

Fig. 6. Illustration of deducing finger’s grasp configuration

5.4 Finger Force Computation and Feedback

The finger force responding to collision and being fed back to a user is generated, when
collision happens. Realistic finger feedback forces are very important to enhance users’
immersion experience in virtual environments. In this paper, the feedback force for each
finger is computed according to the relationship between the dexterous hand and the
object collided with and two kinds of computation models are presented. One is grasping
force computation model, which is utilized when the dexterous hand contacts the object
but does not grasp and manipulate it. The other is manipulating force computation
model, which is used when the dexterous hand grasps and manipulates the object. No
matter which one is used, the feedback forces will finally be mapped to the user’s
fingertips through CyberGrasp, a haptic feedback device developed by Immersion Corp
using its application programmer interface (API): vhtCyberGrasp->setforce() [23].

5.4.1 Grasping Force Computation
For force calculation at a single finger, we refer to the penalty-based force computation
model. The force generated on each finger is calculated by utilizing the Hooke’s law:

 F = (Kf × d) N (3)

Where d is the penalty depth, namely the distance from the collision point to the seed

point on finger’s surface along the vector N , and Kf is the stiffness coefficient of the
object collided with.

 Trajectory-Based Grasp Interaction for Virtual Environments 307

5.4.2 Manipulation Force Computation
Most often, besides the grasping force, object’s gravity also has an effect on finger
force distribution when an object is manipulated. Considering force effects alone, we
observe that the effect of the object’s gravity on a finger is relevant to the angle between
the grasping force of the finger and the gravity of the grasped object. The bigger the
angle, the larger the force received by the finger. So, we allocate the gravity of the
object to fingers using dynamic weights, described as follows, and then feed them back
to the user plus the grasping forces calculated before.

1) For the i-th contact finger, the angle αi between the grasping force F and the

gravity force G is calculated.

2) For the i-th contact finger, its new feedback force, 'F , is calculated as:

 'F = F + (αi/Σαi) G (4)

5.5 Multi-finger Grasp Identification

In order to judge which finger force computation model should be used, some
conditions must be provided. Here, both elementary and advanced grasp identification
conditions are given. Actually, these conditions could also be used to identify the state
of the hand. More details refer to [24].

5.5.1 Elementary Grasp Identification
Elementary grasp identification condition is employed to preliminarily determine
whether the hand is able to grasp an object, when collision occurs between them. The
condition is that object must be contacted by the thumb and any other finger of the
hand. Obviously, if a user wants to grasp an object later, the elementary grasp
identification condition must be first satisfied.

5.5.2 Advanced Grasp Identification
Elementary grasp identification condition only preliminary differentiate whether the
hand is able to grasp an object. It is advanced grasp identification conditions that
determine whether the user could manipulate an object via the dexterous virtual hand
from physical aspects.

Considering that the forces exerted on the grasped object include not only press but
also friction, which is variable, before describing the advanced conditions, the
following two suppositions are introduced:

1) If the forces exerted by the dexterous hand on the object can counteract its gravity
force in Z-Axis and the forces’ directions can balance in X or Y axis, then the
object can be manipulated.

2) The direction of the i-th finger’s friction is identical with the negative direction of
the projection of the gravity vector of the object on the contact plane (For each
contact point, we define a plane passing the point and perpendicular to the
direction of the grasping force as the contact plane) and its magnitude ranges
from 0 to fimax (fimax = μFi, where Fi is the grasping force of the i-th finger to the
object, μ is the static friction coefficient, and fimax means the i-th finger’s
maximum static friction.).

308 Z. Zhu et al.

According to the above suppositions, the advanced conditions are given as follows:

1) The inequation below should be satisfied.

∑
=

≥++
k

i 1
zimaxziz 0 G)f (F (5)

Where k is the number of contact fingers, Fiz (fimaxz) is the z-component of Fi
(fimax). The physical meaning behind this condition is that the forces the virtual
hand exerts on the virtual object could counteract its gravity.

2) If one finger has a force component along the positive direction of X-axis
(or Y-axis), there must be another finger which has a force component along the
negative direction of X-axis (or Y-axis) and vice versa. The physical meaning
behind this condition is that the virtual object could resist any impulse from
X (or Y) direction.

6 Experiment Results

We have implemented the approach in a CAVE-based virtual environment using the
CAVELib™. The CAVELib™ is a powerful API that provides the cornerstone for
creating robust interactive three-dimensional (i3D) environments [25]. An Ascension 6
degrees of freedom (DOF) tracking sensor is used for tracking user’s hand motion. The
CyberGlove® and the CyberGrasp® [23] are used to capture finger motions and

Finger Force

Joint Data Position and Orientation

Projected Image

USER

6DOF Tracker CyberGrasp Projector

Collision Detection

Grasp posture determination

Finger Force

Calculation

Grasp condition Identification

Automatic contact estimation

CyberGlove

Image

Rendering

Fig. 7. Architecture of implementation

 Trajectory-Based Grasp Interaction for Virtual Environments 309

provide force feedback respectively. The program runs on an SGI Onxy2 (with 4 CPUs
and 2 IR4 graphic pipelines). High-resolution stereo images are projected onto four
imaging surfaces of the CAVE by four projectors. The overall architecture of the
implementation is illustrated in Fig.7.

Fig.8 shows a virtual one-cylinder motor assembly scene we created to test the
presented method. The virtual assembly scene is comprised of some common
mechanical components such as nuts, bolts. A dexterous virtual hand as well as the
proposed grasp interaction is used to perform assembly tasks, and four grasp actions are
displayed in Fig.9. Fig.10 gives a snapshot of a user’s hand when performing virtual
assembly tasks with the CyberGrasp® in our CAVE-based environment.

Fig. 8. One-cylinder motor assembly scene

 (a) (b) (c) (d)

Fig. 9. Grasp interaction with different mechanical components: (a) a nut; (b) a crank; (c) a
gasket and (d) a piston

Fig. 10. A snapshot of performing a virtual assembly task using CyberGrasp®

7 Conclusion and Future Work

Natural grasp interaction and its realistic vision play important roles in enhancing
users’ immersion experience in virtual environments.

310 Z. Zhu et al.

In this paper, a trajectory-based approach to grasp interaction is presented. The
approach is based on the research result of Neurophysiology and enables a user to grasp
and manipulate an object naturally with a dexterous virtual hand. Unlike some
traditional methods which totally rely on computer performance to alleviate visually
distracting artifacts, our approach can control artifacts by determining the proper
number of sampling points on the grasp trajectories. Moreover, automatic contact
estimation conditions, grasp identification conditions, and the grasp configuration of
the virtual hand can be determined rapidly utilizing the grasp trajectories, which will
inevitably save time for more realistic finger feedback force computation, given that the
requirement of update rate in haptic rendering is up to 1 KHz.

Future works will include: 1) to propose more reasonable conditions for grasp
identification and 2) to provide more realistic force computation model.

References

1. S. Redon, A. Kheddar and S. Coquillart. CONTACT: arbitrary in-between motions for
continuous collision detection. In Proceedings of IEEE ROMAN’2001, Sep. 2001.

2. S. Redon, A. Kheddar and S. Coquillart. Fast Continuous Collision Detection between
Rigid Bodies. In proceedings of Eurographics 2002. September 2002

3. McNeely W, Puterbaugh K, Troy J. Six Degree-of-freedom Haptic Rendering Using Voxel
Sampling. In Proceedings of Siggraph 1999, LosAngeles, CA

4. Palmer I, Grimsdale R. Real-time collision detection for animation using Sphere-Trees.
Computer Graphics Forum 1995, 14(2):105-116

5. Zachmann G. Optimizing the Collision Detection Pipeline, In Proceedings of the First
International Game Technology Conference(GTEC), Hong Kong, 18-21 January 2001

6. Gottschalk S, Lin M, Manocha D. OBB-Tree: A Hierarchical Structure for Rapid
Interference Detection, the Proceedings of ACM SIGGRAPH’96, 1996:171-180

7. Ehmann S, Lin MC. Accurate and Fast Proximity Queries between Polyhedra using Convex
Surface Decomposition. In Proceedings of the Eurographics Conference, Manchester,
2001:500-510

8. S. Rezzonico, Z. Huang, R. Boulic, N. Magnenat Thalmann, D. Thalmann, Consistent
Grasping Interactions with Virtual Actors Based on the Multi-sensor Hand Model, Proc.
2nd Eurographics workshop on Virtual Environments, Monte Carlo.

9. G.Zachmann and A. Rettig, “Natural and Robust Interaction in Virtual Assembly
Simulation,” presented at Eighth ISPE International Conference on Concurrent
Engineering: Research and Application, Anaheim, 2001

10. K. Hirota and M. Hirose, Dexterous Object Manipulation Based On Collision Response.
Presented at IEEE Virtual Reality, Los Angeles, 2003

11. W.S.Harwin and N. Melder. Improved Haptic Rendering for Mult-Finger Manipulation
Using Friction Cone based God-Objects. Proceedings of Eurohaptics Conference, 2002.

12. N.Melder, W.S.Harwin, P.M.Sharkey. Translation and Rotation of Multi-Point Contacted
Virtual Objects. Proceedings of Eurohaptics 2003 pp 218-227

13. N.Melder and W.S.Harwin. Extending the Friction Cone Algorithm for Arbitrary Polygon
Based Haptic Objects. Proceedings of the 12th International Symposium on Haptic
Interfaces for Virtual Environments and Teleoperator Systems, Chicago, 2004.

14. Christoph W. Borst and Arun P. Indugula. Realistic Virtual Grasping. Presened at IEEE
Virtual Reality 2005 pp. 91-98.

 Trajectory-Based Grasp Interaction for Virtual Environments 311

15. H. Iwata. Artificial Reality with Force-Feedback: Development of Desktop Virtual Space
with Compact Master Manipulator. Computer Graphics, vol. 24, pp. 165-170, 1990.

16. Maekawa, H. and JM Hollerbach. Haptic Display for Object Grasping and Manipulating in
Virtual Environment. Proc. of Int. Conf. on Robotics and Automation, pp. 2566-2573, 1998

17. Justus H. Piater. Learning Visual Features to Recommend Grasp Configurations. CMPSCI
Technical Report 2000-40. July 2000

18. Costas S. Tzafestas. Whole-Hand Kinesthetic Feedback and Haptic Perception in Dexterous
Virtual Manipulation. IEEE Trans. on Sys. Man and Cybernatics, 33(1):100-113, January
2003

19. D. G. Kamper, E. G. Cruz and M. P. Siegel. Stereotypical Fingertip Trajectories During
Grasp. Journal of Neurophysiology 90: 3702-3710, 2003

20. T.Whitted, An improved Illumination Model for Shaded Display, Comm ACM Vol.32, No.
6, 1980

21. Möller T. Trumbore B. Fast, Minumum Storage Ray-Triangle Intersection Journal of
Graphics Tools, 1997, 2(1):21-28

22. Jeffrey Mahovsky, Brian Wyvill, Fast ray-axis aligned bounding box overlap tests with
Plücker coordinates. Jour-nal of Graphics Tools: JGT, 2004, 9(1):35-46

23. Hand SDK, last visit: Aug 20, 2005, http://www.immersion.com
24. Z. Zhu, S. Gao, H. Wan, Y. Luo and W. Yang. Grasp Identification and Multi-Finger Haptic

Feedback for Virtual Assembly. In Proc. Of DETC'04 Salt Lake City, Utah USA, 2004
25. CAVELib Manual, last visit: Aug 20, 2005, http://www.vrco.com/CAVE_USER

	Introduction
	Related Works
	Overview of the Approach
	Construction of Grasp Trajectories
	Grasp Interaction
	Collision Detection Between Trajectories and Objects
	Automatic Contact Estimation
	Grasp Configuration Deduction
	Finger Force Computation and Feedback
	Multi-finger Grasp Identification

	Experiment Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

