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Abstract. Natural grasp interaction plays an important role in enhancing users’ 
immersion experience in virtual environments. However, visually distracting 
artifacts such as the interpenetration of the hand and the grasped objects are 
always accompanied during grasp interaction due to a simplified whole-hand 
collision model, discrete control data used for detecting collisions and the 
interference of device noises. In addition, complicated distribution of forces from 
multi-finger contacts makes the natural grasp and manipulation of a virtual object 
difficult. In order to solve these problems, this paper presents a novel approach for 
grasp interaction in virtual environments. Based on the research in 
Neurophysiology, we first construct finger’s grasp trajectories and detect 
collisions between the objects and the trajectories instead of the whole-hand 
collision model, then deduce the grasp configuration using collision detection 
results, and finally compute feedback forces according to grasp identification 
conditions. Our approach has been verified in a CAVE-based virtual environment. 

1   Introduction 

Virtual environments (VE) provide a platform for users to experience and work with 
three-dimensional computer generated scenes just like in real environments. Yet, after 
many years of research and development virtual environments are still used mainly as a 
visualization tool with some simple or specialized interaction techniques. Although 
some finger tracking devices such as instrumented gloves have made natural grasp 
interaction possible at least at hardware level, the interaction using a virtual hand as an 
avatar has come true only to a very limited extent. It is probably because the use of 
multi-finger grasp interaction with a haptic device presents a number of new challenges 
over that of single point interaction.  

These challenges include: 1) how to simplify collision models in order to get high 
update rate for haptic rendering; 2) how to control visually distracting artifacts, such as 
interpenetration of a hand and grasped objects, mainly aroused by the interference of 
device noise and the discrete control data used for collision detection acquired from 
interaction devices; 3) how to model friction and resolve the distribution of finger force 
from multiple finger contact points.  

Aiming to solve these problems, this paper proposes a simple and novel approach for 
users to naturally grasp and manipulate objects via a dexterous hand as an avatar in a 
virtual environment.  
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The rest of the paper is organized as follows. Related works are briefly reviewed in 
the next section. Section 3 overviews the approach. In Section 4, the construction of 
grasp trajectories is presented, while issues related to multi-finger grasp interaction 
using grasp trajectories is described in Section 5. Experiment results are shown in 
Section 6. Some conclusions and future works are discussed in Section 7. 

2   Related Works 

In virtual environments, real-time collision detection between a dexterous hand and 
objects is premier. Although the technology of continuous collision detection ([1] and 
[2]) has improved greatly, the requirement of high update rate makes it still expensive 
in virtual environments with haptic rendering. So, some discrete collision detection 
methods, such as VOXMAP-PONTSHELL [3], Bounding Sphere Tree [4], Axis 
Aligned Bounding Box Tree [5], Oriented Bounding Box Tree [6] and Convex Hull 
Tree [7] are still preferred. But those discrete methods inevitably arouse 
interpenetration. 

In order to alleviate the unrealistic vision of interpenetration, Rezzonico et al. correct 
hand posture by unfolding the closet proximal joint (wrist side) until the corresponding 
sensor is tangent to the object or the joint reaches its limit [8]. Zachmann et al. convert 
the problem of natural grasping into a minimization problem for a joint vector under the 
constraint that finger-joints (and palm) must not penetrate the object [9].But their 
iterative adjustment is time-consuming. 

Recently, physical-based dynamic simulation is employed for multi-finger grasp and 
manipulation of a virtual object. Based on point collision response forces, Hirota et al 
develop a manipulation system [10]. Melder et al. present an approach to allow users to 
manipulate a virtual object through multiple PHANToM devices by using friction cone 
([11], [12] and [13]). Borst et al. develop a system to support natural whole-hand 
interactions in a desktop-sized workspace [14]. Yet, all of these methods are not very 
stable and sometimes face difficulties when grasping or manipulating objects. 
Therefore, approaches dependent on heuristic analysis of grasp stability or user intent 
are still applicable. Iwata et al. consider whether an object is captured by testing 16 
points on a hand model [15]. Maekawa et al provide two finger grasp conditions to 
manipulate objects in virtual environments [16]. Piater et al. determine grasp 
configurations by using visual features [17]. Tzafestas et al. take into account the 
unilateral nature of the contacts and the limitations due to static friction to identify 
whether grasp is still maintained [18]. 

3   Overview of the Approach 

Before outlining our approach, we narrow down the discussion scope of this paper 
within pinch, based on users’ common operations performed in virtual environments 
and at the same time for the sake of reducing interaction complexities between a hand 
and virtual objects. Therefore, consistent and independent fingertip motion for 
reach-to-grasp movements is fully utilized here. According to the research result of 
Neurophysiology "For reach-to-grasp movements to a variety of objects, fingertip 
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motion was quite similar. The movement tended to follow a particular curved path." 
[19], our approach first constructs each fingertip’s grasp trajectory and then detects 
collisions between objects and trajectories. Subsequently, the fingers’ automatic 
contact conditions are estimated and the grasp configurations of the relevant fingers are 
deduced according to the collision detection results. Finally the finger feedback forces 
when grasping or manipulating an object is computed based on grasp identification 
conditions. Overall, the approach is composed of the pre-processing stage and the 
running stage, whose schematic overview is shown in Fig.1. 

 Pre-processing: 

Construct each 

fingertip’s grasp 

trajectories 

Running: 

Detect collisions between 

trajectories and objects 

Estimate fingertip automatic 

contact conditions 

Configure hand’s grasp posture 

Compute the feedback force for 

each finger 

Identify grasp conditions 

 

Fig. 1. Schematic overview of the approach 

4   Construction of Grasp Trajectories 

To gain real-time performance in virtual environments, most traditional methods have 
to maintain two kinds of hand models, one for display and the other, much simpler, for 
detecting collisions. Although two kinds of hand models could speed up collision 
detection, the simplified collision model, discrete control data used for collision 
detection and the interference of device noise will more or less lead to interpenetration 
of the hand into grasped objects.  

The research result of Neurophysiology mentioned in Section 3 provides us a new 
promising way to solve this problem. In this section, we will put our emphasis on the 
construction of a fingertip’s grasp trajectory, while leave the issue of how to use 
trajectories to control the visually distracting artifacts to the next section.  

Similar to the method presented in [19], the construction of finger’s grasp 
trajectories is described as follows:  
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1) Manually select a point in each fingertip surface as a seed point for that finger. 
The point should be located in the center of the fingertip’s surface, where we 
think the first contact generally happens when pinching an object (Fig.2). 

 

Fig. 2. Seed points on five fingertip 

2) Ask a user to participate in a grasping task and his finger joint angles acquired 
from CyberGlove® are recorded at approximately 50 Hz.  The process is 
repeated several times to eliminate the side effect of some accidental factors such 
as device noises as far as possible. 

3) Simulate the user’s grasping process and generate the motion of the seed point for 
each finger with those recorded joint angles. The seed point’s motion trajectory is 
regarded as a grasp trajectory for that finger.  

4) Approximate the grasp trajectory of each finger with a series of line segments. 
We pick up a number of recorded finger’s joint angles as critical joint angles and 
the positions of seed point corresponding to those joint angles are computed to 
form critical points on the grasp trajectory. All of these critical points form a 
series of line segments to approximate the grasp trajectory tightly (Fig.3). 

We have to admit that the approximation will result in some inaccuracies both in 
detecting collision and determining the grasp configuration of the finger. Fortunately, 
we can control these inaccuracies by determining the number of these critical points on 
the trajectory. Moreover the speed of collision detection between an object and a series 
of line segments is obviously far faster than that of collision detection between an 
object and a curve.  

 

Fig. 3. Line segments to approximate grasp trajectories 

5   Grasp Interaction 

Fig.4 presents the process of a dexterous hand interacting with an object we are 
conceiving, and more details will be described below. 
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(a) The process of grasping an obect                  (b) The process of releasing an object 

Fig. 4. Grasp Interaction between a hand and an object  

5.1   Collision Detection Between Trajectories and Objects  

The collision detection is performed between objects and the grasp trajectories instead 
of the virtual hand. As the grasp trajectory of each fingertip is approximated by a series 
of line segments, the problem of collision detection can be therefore converted to 
perform an intersection test between the objects and the line segments. 

An intersection test between a line segment and an object could be implemented by a 
general ray-tracing algorithm [20]. But to accelerate the intersection computation, an 
OBB-tree for each object is created. Ray-Box intersections are firstly tested and if a line 
passes through all Ray-Box intersection tests, a Ray-Triangle intersection is performed 
(An object is represented by mesh in this work). For Ray-Triangle intersection, the 
algorithm presented by Möller [21] is applied, while for Ray-Box intersection, the 
Mahovsky’s algorithm [22] is employed. The algorithm makes use of Plücker 
coordinates and tests the ray against the edges comprising the silhouette of the box 
instead of testing against individual faces so that the technique’s performance is up to 
93% faster. 
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5.2   Automatic Contact Estimation 

When pinching, an automatic contact condition is provided to estimate whether fingers 
contact an object, since it is difficult to predicate when the fingers will contact the 
object. At first, the line segment intersecting with an object is found during collision 
detection and then an auxiliary plane passing the start point of the intersecting line 
segment and perpendicular to the line segment is created to divide the space into the 
positive and negative subspaces respectively. If the seed point on the fingertip resides 
in the positive subspace, an automatic contact condition is thought to be satisfied and 
the corresponding finger will be automatically moved to contact the object. Otherwise, 
the corresponding finger is still allowed to move along its trajectory. The condition is 
illustrated in Fig.5. 

 - 

+ 

             

 - 

+ 

  
(a) Seed point in negative sub-space                     (b) Seed point in positive sub-space 

Fig. 5. Illustration of automatic contact estimation 

5.3   Grasp Configuration Deduction 

After it has been estimated that one finger should be automatically moved to contact a 
virtual object, it is necessary to determine the grasp configuration of that finger. 
Without iteratively adjusting finger’s posture, our method is able to deduce the grasp 
configuration of the finger immediately. During our construction of finger’s trajectory, 
the flexion/extension of the distal inter-phalangeal (DIP), proximal inter-phalangeal 
(PIP), and metacarpal-phalangeal (MCP) joints as well as its corresponding abduction, 
such as Ring-Middle abduction, are recorded and represented as a set of angles (θn1, θn2, 
θn3, θn4) for each critical point Pn. As illustrated in Fig.6, the grasp configuration of the 
finger could be deduced based on these data as follows: 

1) For the finger whose grasp trajectory intersects with an object on the point Cn, 
determine a variable t that makes 

Cn = Pn-1 + t×(Pn – Pn-1) (1) 

2) Get corresponding joint angles (θn-11, θn-12, θn-13, θn-14) about Pn-1 and (θn1, θn2, θn3, 
θn4) about Pn; 
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3) Compute approximate joint angles (θc1, θc2, θc3, θc4) about Cn by using linear 
interpolation: 

θcx = θn-1x + t×(θnx –θn-1x) (x = 1,2,3,4) (2) 

4)  Apply (θc1, θc2, θc3, θc4) to formulate the grasp configuration of the finger, i.e. the 
flexion or extension of DIP, PIP and MCP and the abduction. 

 

Cn

Finger 

Deduced finger 

configuration 

Pn-2 Pn-1 

Pn 

Pn+1 

Pn+2 

 
Fig. 6. Illustration of deducing finger’s grasp configuration 

5.4   Finger Force Computation and Feedback 

The finger force responding to collision and being fed back to a user is generated, when 
collision happens. Realistic finger feedback forces are very important to enhance users’ 
immersion experience in virtual environments. In this paper, the feedback force for each 
finger is computed according to the relationship between the dexterous hand and the 
object collided with and two kinds of computation models are presented. One is grasping 
force computation model, which is utilized when the dexterous hand contacts the object 
but does not grasp and manipulate it. The other is manipulating force computation 
model, which is used when the dexterous hand grasps and manipulates the object. No 
matter which one is used, the feedback forces will finally be mapped to the user’s 
fingertips through CyberGrasp, a haptic feedback device developed by Immersion Corp 
using its application programmer interface (API): vhtCyberGrasp->setforce() [23]. 

5.4.1   Grasping Force Computation 
For force calculation at a single finger, we refer to the penalty-based force computation 
model. The force generated on each finger is calculated by utilizing the Hooke’s law: 

 F  = (Kf × d)  N  (3) 

Where d is the penalty depth, namely the distance from the collision point to the seed 

point on finger’s surface along the vector  N , and Kf is the stiffness coefficient of the 
object collided with.  
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5.4.2   Manipulation Force Computation 
Most often, besides the grasping force, object’s gravity also has an effect on finger 
force distribution when an object is manipulated. Considering force effects alone, we 
observe that the effect of the object’s gravity on a finger is relevant to the angle between 
the grasping force of the finger and the gravity of the grasped object. The bigger the 
angle, the larger the force received by the finger. So, we allocate the gravity of the 
object to fingers using dynamic weights, described as follows, and then feed them back 
to the user plus the grasping forces calculated before. 

1) For the i-th contact finger, the angle αi between the grasping force  F  and the 

gravity force  G  is calculated.  

2) For the i-th contact finger, its new feedback force, 'F , is calculated as: 

 'F = F + (αi/Σαi)  G  (4) 

5.5   Multi-finger Grasp Identification 

In order to judge which finger force computation model should be used, some 
conditions must be provided. Here, both elementary and advanced grasp identification 
conditions are given. Actually, these conditions could also be used to identify the state 
of the hand. More details refer to [24]. 

5.5.1   Elementary Grasp Identification 
Elementary grasp identification condition is employed to preliminarily determine 
whether the hand is able to grasp an object, when collision occurs between them. The 
condition is that object must be contacted by the thumb and any other finger of the 
hand. Obviously, if a user wants to grasp an object later, the elementary grasp 
identification condition must be first satisfied. 

5.5.2   Advanced Grasp Identification 
Elementary grasp identification condition only preliminary differentiate whether the 
hand is able to grasp an object. It is advanced grasp identification conditions that 
determine whether the user could manipulate an object via the dexterous virtual hand 
from physical aspects. 

Considering that the forces exerted on the grasped object include not only press but 
also friction, which is variable, before describing the advanced conditions, the 
following two suppositions are introduced: 

1) If the forces exerted by the dexterous hand on the object can counteract its gravity 
force in Z-Axis and the forces’ directions can balance in X or Y axis, then the 
object can be manipulated. 

2) The direction of the i-th finger’s friction is identical with the negative direction of 
the projection of the gravity vector of the object on the contact plane (For each 
contact point, we define a plane passing the point and perpendicular to the 
direction of the grasping force as the contact plane) and its magnitude ranges 
from 0 to fimax (fimax = μFi, where Fi is the grasping force of the i-th finger to the 
object, μ is the static friction coefficient, and fimax means the i-th finger’s 
maximum static friction.).  



308 Z. Zhu et al. 

According to the above suppositions, the advanced conditions are given as follows: 

1) The inequation below should be satisfied. 

∑
=

≥++
k

i 1
zimaxziz 0  G )f  (F     (5) 

Where k is the number of contact fingers, Fiz (fimaxz) is the z-component of Fi 
(fimax). The physical meaning behind this condition is that the forces the virtual 
hand exerts on the virtual object could counteract its gravity. 

2) If one finger has a force component along the positive direction of X-axis  
(or Y-axis), there must be another finger which has a force component along the 
negative direction of X-axis (or Y-axis) and vice versa. The physical meaning 
behind this condition is that the virtual object could resist any impulse from  
X (or Y) direction. 

6   Experiment Results 

We have implemented the approach in a CAVE-based virtual environment using the 
CAVELib™. The CAVELib™ is a powerful API that provides the cornerstone for 
creating robust interactive three-dimensional (i3D) environments [25]. An Ascension 6 
degrees of freedom (DOF) tracking sensor is used for tracking user’s hand motion. The 
CyberGlove® and the CyberGrasp® [23] are used to capture finger motions and  
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Fig. 7. Architecture of implementation 
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provide force feedback respectively. The program runs on an SGI Onxy2 (with 4 CPUs 
and 2 IR4 graphic pipelines). High-resolution stereo images are projected onto four 
imaging surfaces of the CAVE by four projectors. The overall architecture of the 
implementation is illustrated in Fig.7.  

Fig.8 shows a virtual one-cylinder motor assembly scene we created to test the 
presented method. The virtual assembly scene is comprised of some common 
mechanical components such as nuts, bolts.  A dexterous virtual hand as well as the 
proposed grasp interaction is used to perform assembly tasks, and four grasp actions are 
displayed in Fig.9. Fig.10 gives a snapshot of a user’s hand when performing virtual 
assembly tasks with the CyberGrasp® in our CAVE-based environment.  

 

Fig. 8. One-cylinder motor assembly scene 

    
      (a)               (b)              (c)              (d)  

Fig. 9. Grasp interaction with different mechanical components: (a) a nut; (b) a crank; (c) a 
gasket and (d) a piston 

 

Fig. 10. A snapshot of performing a virtual assembly task using CyberGrasp® 

7   Conclusion and Future Work 

Natural grasp interaction and its realistic vision play important roles in enhancing 
users’ immersion experience in virtual environments.  
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In this paper, a trajectory-based approach to grasp interaction is presented. The 
approach is based on the research result of Neurophysiology and enables a user to grasp 
and manipulate an object naturally with a dexterous virtual hand. Unlike some 
traditional methods which totally rely on computer performance to alleviate visually 
distracting artifacts, our approach can control artifacts by determining the proper 
number of sampling points on the grasp trajectories. Moreover, automatic contact 
estimation conditions, grasp identification conditions, and the grasp configuration of 
the virtual hand can be determined rapidly utilizing the grasp trajectories, which will 
inevitably save time for more realistic finger feedback force computation, given that the 
requirement of update rate in haptic rendering is up to 1 KHz. 

Future works will include: 1) to propose more reasonable conditions for grasp 
identification and 2) to provide more realistic force computation model. 
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