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Preface 

The 24th Computer Graphics International Conference (CGI 2006) was held during 
June 26–28, 2006, in Hangzhou, China. This volume contains 39 full papers and 39 
short papers accepted by CGI 2006. CGI conference was initially founded by the 
Computer Graphics Society in 1983 and has now become a widely recognized, 
high-quality academic conference in the field of computer graphics. Recent CGI 
conferences were held in New York (2005), Crete (2004), Tokyo (2003), Bradford 
(2002), Hong Kong (2001) and Geneva (2000). 

The CGI 2006 Program Committee received an overwhelming 387 submissions 
from many countries worldwide. China and Korea contributed many enthusiastic 
submissions. Based on the strict review comments of international experts, we selected 
38 full papers and 37 short papers for presentations.  

The main topics covered by the papers in this volume include: 

• Digital geometry processing and meshes 
• Physically based animation 
• Figure modeling and animation 
• Geometric computing and processing 
• Non-photorealistic rendering 
• Image-based techniques 
• Visualization 

We are grateful to all the authors who submitted their papers to CGI 2006, to the 
international Program Committee members and external reviewers for their valuable 
time and effort spent in the review process, and members of the Organizing Committee 
for their hard work which made this conference successful. Finally, we would like to 
thank the National Natural Science Foundation of China and K. C. Wong Education 
Foundation, Hong Kong, for their financial support. 

Hans-Peter Seidel, Tomoyuki Nishita, Qunsheng Peng 
Program Co-chairs 

Nadia Magnenat-Thalmann, Yunhe Pan, Heung-Yeung Shum 
Conference Co-chairs 
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Abstract. The Wang Tiles method is a successful and effective tech-
nique for the representation of 2D-texture or 3D-geometry. In this paper
we present a new method to fill Wang tiles with a 2D-FON distribution
or a 3D-geometry in order to achieve a more efficient runtime. We extend
the Wang Tiles method to include information about their position. We
further demonstrate how the individual tiles are filled with different in-
tensities by using the FON distribution. Additionally, we present several
new methods to eliminate errors between the tile edges and the different
resource areas applying FON and corners relaxation techniques.

1 Introduction

Modelling and visualization of large complex scenes of plants is a difficult and
time consuming task. For example, the storing of plant compositions is extremely
difficult because a square kilometer of forest consists of millions of plants, hun-
dred of thousands of small trees, and numerous small scrubs. To model intricate
natural scenes, several methods already exist in computer graphics. The primary
method was introduced in [1]. A new stochastic algorithm was non-periodically
presented to cover the area with a small set of Wang Tiles [2, 3]. This method
provides Wang Tiles with the efficiency of being re-usable tiles, which in turn
allows for rendering larger areas of complicated textures, patterns or prelighted
geometry at more efficient runtime. Wang Tiles are a set of squares in which
each edge of each tile is colored. Matching colored edges are aligned to tile an
area. In [1] a set of eight tiles were used to cover an area, and a 2D Poisson Disk
distribution was applied to fill the tiles. The aim is to render beautiful and real-
istic natural scenes. We use four sets or more of tiles instead of one set. Each set
of tiles consists of eight tiles. All sets of tiles share the same color coding. How-
ever, they differentiate from each other through the intensity of the distributions
on the tiles. In the final tiling and scene, rsp., the intensity of the distribution
depends on the terrain or on the amount of the resources in which the tiles are
positioned. For example, the intensity of the distribution of the plants in an area
with poor resources differs from those in the area with rich resources. Applying
this method enables to generate large differences in the intensity of the plants in
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two areas. To eliminate this problem, we use several sets and apply some kind
of super sampling (antialiasing) method for the selection of the matching sets.

Often plant positions form a 2D Poisson Disc Distribution: each object is
presented by a circular area in which are no other objects and in which no other
areas overlap. This is done due to what happens in nature when plants prevent
other plants to grow in their vicinity. To model this behaviour, we applied the so-
called FON (Field-Of-Neighbourhood) distribution model [4]. In the FON model
each object is presented in a circular area. The size of this circle depends of the
size of the object and of the terrain or the amount of resources.

2 Previous Works

There have been different approaches for accelerating of rendering for complex
models. Many approaches aimed to avoid visual artifacts which have been re-
peatedly created using simple methods.

One of these approaches is the rendering of complicated natural scenes through
the application of the Wang Tiling Method [1, 2, 3] in which a limited set of
tiles is used to layout a possibly infinite plane. We combined this model with an
ecosystem simulation model, the so-called FON (Field Of Neighbourhood)
Modell by Berger und Hildenbrandt in [4] and [5]. This model is an individuum-
based model and describes a circular zone of the area of influence around the
plant. The radius of this area determines the distance in which the neighboring
plants influence each other. In [6] the radius of this zone is specified by a non-
linear function which depends from the basal radius of the plant, the size of the
plant, the amount of resources needed by the plant, and the area necessary to
provide the resources.

Modelling of Complex Ecosystems: In some earlier works [7, 8, 9] nature was
rendered using artificial mechanisms. Other scientists [10, 11] tried to imitate the
actual natural processes. Both approaches are still used and many natural and
other complex phenomena were modelled in [12, 13, 14]. In [15, 16, 17] most im-
portant factors that influence the shape, the structure, and the development of a
plant were modeled. The first work that simulated the competition and the de-
velopment of the plants was published by [18]. Lane and Prusinkiewicz extended
this work and developed a new method called Multiset L-Systems that was used
for the description of the competition between plants. In [19] is described how
plants grow in groups, and how the communities compete for resources. In [20], a
new method was introduced for the visualization and simulation of the develop-
ments of a plant group. In this method, the plant competition for resources was
presented as a symmetric and asymmetric competition. Asymmetric competition
takes place when plants differ in size or in type.

3 Our Method

To tile an area, we apply the Wang Tiling Method. A Wang Tile set consists
of square tiles with color-coded edges. The squares cannot be rotated. A valid
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(a) (b) (c)

Fig. 1. a) Tile set; b) Valid tiling; c) four sets of Wang tiles with different distribution
intensity

tiling of the infinite plane consists of any number of copies from the set laid
down such that all continuous edges have matching colors. (s. Fig. 1).

3.1 Tiling

In this work we use four sets or more, each consisting of a set of eight tiles. Each
set resembles the other in the color at the edge of the tiles, and differentiates
itself from the others through the intensity of the distribution in the tiles. The
reason for the use of of four or more sets of tiles with different intensity on
the edges is as follows: From Fig. 2(a) it can be seen that the area as well as
the different levels of resources differ for different terrains. Consequently, the in
the white circles marked tiles from Fig. 2(b) contain different numbers of plants
although all marked tiles have the same edge color. In order to receive a soft
border between two different resource areas, and at the same time to position

(a) (b) (c) (d)

Fig. 2. (a) area covered with five intensities of the resources; (b) the edges of the
resulting tiling match, different intensities are applied; (c) a window is centered around
the sampled value (i, j); (d) a filter kernel is multiplied with each respective sampled
value
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the tiles matching the set of tile I ′ in the area, we apply an image operator for
averaging. The intesnsity I ′(i, j) is computed as:

1
M

Si+k∑
p=Si−k

Sj+k∑
q=Sj−k

I(p, q)h(Si − p, Sj − q) (1)

Whereby (i, j) indicates the tile in the position (i, j) (see Fig. 2(a)), S is a
scaling factor, and h is a filter of the dimension k. The selection of the set order
is easy to understand and to realize, however, it is computationally expensive.
In Fig. 2(a)-(b) a window is centered over an sampled value and a weighted
sum of products is achieved by means of multiplication of each sampled value
with the respective weight in the filter. The weight can be adjusted in order
to implement differing filter kernels. The digital filtering continues in that the
window is moved through n = k ∗ k sampling value and the next weighted sum
of products is computed.

The use of a 3× 3 window indicates that nine sampled values are part of the
final tile computation. On the other hand, the use of a 7× 7 windows includes
a computation of 49 integer multiplication. The result of this computational
expense is obvious. For a virtual 3 × 3 window filter, a filter on tiles in the
virtual image can be positioned, in that step-by-step three super-sampling tiles
are used. M is computed by the following equation:

M =
2k∑

p′=0

2k∑
q′=0

h(p′, q′) (2)

Here, I is the sampling value of the level of the resources in a tile. In order to
determine this value in a tile, the resources from different positions in certain
tiles are sampled. The average of these sampled resources levels is designated to
be the sampled value.

3.2 FON Distribution

In order to fill each individual tile with different intensity, we use the already
mentioned FON Modell Distribution. In this model each individual plant has a
circular zone of influence (ZOI), the radius of the zone determines the distance
in which the individual plant influences the neighboring plant.

Each individual plant is identified in the tile through its position, size, and the
age. Additionally, each plant has a FON influence zone. To determine the FON
influence zone, a non-linear function of the basal radius is applied [4] (s. Fig. 3).

RFON = a (Rbasal)b (3)

RFON is the radius of the FON influence zone of the individual plant. Rbasal is
the radius of the individual plant (Fig. 3). a and b are constants and depend on
the intensity of the resources in the ground and of the intensity of the light in
above-ground. Typically a has the range of [12, 133] and b ∈ [1.2, 2.3].
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Fig. 3. The FON model. The zone of influence (RF ON) depends on the diameter of
the trunk.

(a) (b) (c)

Fig. 4. In (a) represents the intensity of the resources. In (b) the FON-Tile Method is
applied. In (c) shows the noice between the tiles.

Application of the tiles and the FON Distribution in Fig. 4 produces the
result in subfigure (b). Subfigure (a) shows an image map of the intensity of
the resources in the ground. In (b) is shown that the intensity of the plants
in the resource-poor areas is less than in the resource-rich areas. As a result of
implementing the averaging, we can derive a gradual change of that the intensity
of the plants between two different regions.

3.3 FON Relaxation

In Fig. 4(c)we note that an uneven distribution at the tile borders is produced.
In order to eliminate this error, we apply the FON relaxation method at the
edge of the tiles.

The FON relaxation method is applied to test whether the FON-zone of plants
positioned at the edge of one tile overlap with the FON-zone of the plants posi-
tioned at the edge of the neighboring tile, and whether the FON-zone of one plant
is smaller or larger than that of the neighboring plant at a certain threshold. If
the test is positive, the plant must be removed from the respective tile.

In Fig. 5 it is shown that plant number one passed the test and has to be
removed from the tile. On the other side the test was not passed for plant
number two, and therefore it can remain in the tile. If we compare Fig. 4(c) with
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Fig. 5. The circles are presented in two conditions at the edge of the tiles. The first
circles is smaller than the other one. The second circle is larger than the other one.

Fig. 6. As a result of implementing the FON relaxation in (c) (Fig. 4), the noise
between the tiles was removed.

Fig. 6, we note, that the distribution of the plants is now more even. However,
the price is that some small amount of computation has to be done during the
tile-based layout.

3.4 Relaxation of Corners

From Fig. 7 we note that the difference of the plant intensity between the tile A
and the tiles B, C und D creates corners. These corners produces a non-realistic
appearance about the appearance of the plants in the scene. To eliminate this
unwanted appearance, we apply the relaxation method to tile A. The implemen-
tation of the this relaxation method is divided into the following steps:

1. It is tested whether tile A produces corners This happens when the intensity
in A differs from the intensity in B, C und D.
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Fig. 7. The intensity corners between the tiles A and tiles B, C and D

Fig. 8. Distribution of the tiles A into two parts U and O

2. The tile A is divided into two diagonal parts (lower part U and upper part O)
in order to be filled with two different intensities. For example as in (Fig. 8).

3. The intensity in part U will not be changed. against it the intensity in part
O depends on the intensities in tiles B, C und D. The arrangements of B,
C und D control the definition in the set order in part U .

4. Fon-relaxation is applied between diagonal parts.

The application of the last four steps in Fig. 4(c) results in an evenly natural
plant distribution without corners in Fig. 6.
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4 Implementation

Implementation of this method results in a good quality of a natural scene, so
that the noise between the tiles and the noise between the two different resource
areas are improved. Additionally, this scene is rendered in real-time. To imple-
ment this method, we use a discrete system of several sets. The implementation
of these systems can be divided into the following steps:

1. We produce different sets of tiles. Each set differs in plant intensity from the
other.

2. each plant is presented in two circles. The first represents the size of the
plants, and the second represents the FON-zone of the plant.

3. We apply the Wang-Tiling method for different sets in order to cover the
area.

4. In order to eliminate the noise between the tiles, we apply the FON-relaxation
method.

5. In order to remove the corners between the tiles, we apply the corner relax-
ation method.

The plants used in this approach were modelled with the Xfrog Software [21],
and were then imported into our systems as POVRAY MESH2 in Fig. 9 and
Fig. 10.

Fig. 9. This image shows the rendering of a scene of a meadow and flowers applying
the tiling method with different intensities of resources

Fig. 10. In this image different resource intensities in a field of sunflowers are shown

5 Results

We introduced a fine efficient method to render natural scenes with a more real-
istic appearance. The use of more sets of tiles with different intensity produces
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Fig. 11. In this image different resource intensities in African landscape are shown

Fig. 12. In this image different resource intensities in African landscape from other
camera position are shown
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Fig. 13. In this image different resource intensities in Amazon landscape are shown

scenes that have a more natural appearance (see Figs. 9 and 10). The imple-
mentation of the FON-relaxation and corner relaxation in one scene produces
smooth edges between the tiles and a gradual transformation between two dif-
ferent resource intensities (Figs. 11, 12 and 13).
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Abstract. We present a new type of mosaic, the multi-layered stack
mosaic with photographs of rotated objects. Our algorithm uses multi-
layered Photomosaics with database enrichment by element rotation. The
benefit of this algorithm is that an artist can not only produce a digital
mosaic with a relatively small database without degrading the quality
of the mosaic, but that the Multi-layered Stack Mosaic also generates
unique and strong artistic expressions which gives an illusion of piled
stackable objects. Since the result has a unique visual style, we intend to
exhibit our mosaic images at galleries such as the Epson Color Imaging
Contest and the CAU Art Center1.

1 Introduction

The mosaic is an intriguing subject in computer graphics because it involves sci-
entific and artistic research simultaneously. The mechanism of traditional mosaic
creation is based on the visual perception of artists. Although it is difficult to
quantify, the process is systematic and methodical. In recent years, many mosaic
schemes for generating free-form 2D images have been suggested in the area of
non-photorealistic rendering. In 1996 Robert Silvers devised the concept of Pho-
tomosaics [1] in which one big picture is generated from thousands of smaller
pictures. These pictures are then placed in patterns like traditional mosaics, and
each cell is an actual photograph. Each tile of a Photomosaic contains a photo-
graphic image, causing perceptual confusion in the observer in a delightful way.
The perceptual range changes from elements to the whole and vice versa. How-
ever, for producing quality Photomosaic artwork, an abundant image database
must be prepared making this one of the most laborious aspects of Photomo-
saics. What makes this worse is that every picture may have its own copyright
1 This work was supported by grant No. (R01-2005-000-10940-0) from the Basic Re-

search Program of the Korea Science & Engineering Foundation.
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license. We will present a new type of mosaic scheme which contains elements
of stacked and rotated objects. Although our algorithm is an outcome of scien-
tific research, we also focus on the artistic side of mosaics with regard to visual
expression. In other words, our goal is not only producing quality mosaics with a
limited picture database size, but also creating beautiful and impressive mosaics
as art. This paper is organized as follows: related research of mosaics are pre-
sented in the next section; in section 3, we analyze and evaluate our algorithm;
in section 4, resulting images will be presented.

2 Related Research and Issues

As we can judge from the thousands of years of history, the mosaic is one of the
oldest methods of artistic expression. Various mosaics, in which a large image is
formed by a collection of small images can be created depending on the type of
tiles used and the restrictions in their placement [2][3][4]. In the case of each tile
as meaningful subject, for example, Guiseppe Arcimboldo [5] in 16th century,
and Chuck Close in 20th century [6] have the common feature of multi-range
perceptive target sizes. This type of mosaic is revised again by Robert Silvers in
his Photomosaics, a collection of small images that are arranged in a rectangular
grid and form a larger image in the distance. This has strong expression because
there is no photograph that is absolutely free from the photographer’s opinion.
When we use photographs as elements of mosaics, the mixed perceptual range
provides pleasurable games and challenges for the observer. A rich photograph
database is the essential condition to produce good Photomosaics. This huge
database is not only hard to build, but also extremely expensive to use due
to the fact that each picture may carry a copyright license. There are some
well known tricks to reduce the number of pictures in the library, such as self
duplication by flipping or resizing images, or by changing color value, but the
damaged images can degrade the quality of Photomosaics because each element
is as an important perceptual subject in relation to the whole image. We seek
to prevent the loss of the each picture’s significance.

3 Method Overview

The method we present in this paper is divided into two primary steps.

– Rotate the object to improve the possibility of a better match. The meaning
of each photograph has to be preserved and garbage data due to rotation
has to be minimized.

– Fill the empty space (hole) that is produced in the above step, with multiple
layers.

Each step is important to visualize the unique style of the suggested mosaic.
This also improves the likeness of two images, a source image and an output
mosaic image, so we can get a better output result compared to the conventional
Photomosaics algorithm under the same database conditions especially when the
database size is small.
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3.1 Objects Rotation

Image Selection Process. The Photomosaic algorithm is used for image selec-
tion and database management[10]. It does not attempt shape or edge analysis.
Rather, it seeks to minimize a distance measure based purely on differences of
pixel values that are its red, green, and blue components [12]. The original im-
age is divided into rectangular blocks of the same dimensions as the tiles. The
algorithm scans the blocks of the original images from left to right and top to
bottom, replacing each block with a tile before considering the next. Thus, each
pixel in each cell of the original image is compared with each pixel of every
picture in the database. However, it takes a huge amount of time to search for
the best image [10][11]. As suggested by Silver, to improve the speed we use an
index system that reduces candidate images. With this Photomosaic algorithm,
each block of the original image will be replaced with the best matching; in other
words the most similar photograph in the database. There is no color correction
in this process.

Aw×h is the image’s rectangular blocks as a matrix while T k
w×h is tile k as a

matrix, and Ar(i, j), Ag(i, j), Ab(i, j) are the red, green and blue components
of a given pixel. The Photomosaic algorithm seeks to minimize the following
distance over all tiles in the library.

d=mink

⎡
⎣

w∑
i=1

h∑
j=1

∣∣Ar(i, j)−T k
r (i, j)

∣∣+∣∣Ag(i, j)−T k
g (i, j)

∣∣+∣∣Ab(i, j)−T k
b (i, j)

∣∣
⎤
⎦

(1)

To increase the variety measure of the generated Photomosaics, two modifi-
cations are made to the basic algorithm. First, a limit is imposed on the number
of times a tile can be selected. Second, a minimum distance is required between
any two copies of a tile. To implement these changes, the count and last selected
position is maintained for each tile [10].

Rotation Sampling Rate. The traditional Photomosaic algorithm does not
alter the database so the quality of the output image depends on the number
of collected images. We suggest that without collecting extra images we can im-
prove the result by enriching the library; by rotating photographs in the library.
Theoretically we could reproduce infinite copies of each image with this trick,
but the fact is that rotated images are very similar with each other, so the ro-
tation does not effectively enrich the library when the angle is close between
images. Note that more pictures are not always better because this will slow
down the database searching time. Therefore, it is important to find a balance
between quality and price although the best case varies depending on a type of
project. It is clear that a dense sampling rate will guarantee the best result, but
the degree of improvement is not linear. We show the relation between sampling
rate and similarity of two images in this section. As we can see the follow-
ing test, the steep improvement becomes negligable with finer samples. To test
under the harshest environment, we limit the picture database to one hundred
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Fig. 1. Part of the coins that are used for artworks. The small coins and big coins are
mixed to reduce patterns.

Fig. 2. 2PI/N Sampling (N=1 Left), (N=128 Right) the finer sampling, the better
output

coins produced by the United States mint office. The pictures do not have to be
circular in shape, but this shows the features of our algorithm more easily.

Depending on the type of images used in the test, the number in the table
will be changed but the rate of increase remain constant. Average color distance
means the average distance of each corresponding pixel between the original
image and the output image in green, red and blue components

Suitable Object for Rotation. Rotating photographs generates problems.
Traditional Photomosaics place a photograph in a rectangular cell. This naturally
matches with rectangular shaped pictures in the database. When we rotated
pictures, two main problems appear. First, as we can see from Figure 3, it spoils
the contents of a photograph, and second, it generates unwanted data in the cell.
The unwanted data has two types, first is garbage data or empty space (hole)
which is the red part, ’A’, and the other is the data loss part truncation which
is the blue area, ’B’, in the Figure 3.

Most pictures are intolerant to rotation because they have a definite orienta-
tion. When an image is rotated, it becomes an obstacle to perceive the picture
as a meaningful object. The conditions for a safe image, when it is rotated, are
as follows (Figure 4).
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Fig. 3. Rotation of a picture destroys the meaning of the photograph. Image rotation
generates unwanted data in the cell-’A’ and data loss-’B’.

Fig. 4. Rotation of a coin image. Sampling rate is 30 degree. It produces 11 more
images from the original image.

Fig. 5. Left images show examples of Tolerant Objects by rotation. Right image shows
data loss by rotation. The object should be in the inscribed circle area in the cell to
prevent any data loss by truncation.

The first type of images that are rotation invariant are of objects that are
viewed from above. (Figure 5 Left). The second type are ones that have less
data loss and produce less garbage data by rotation. Valid data is contained in
a circle inscribed in the cell (Figure 5 Right). As we can see from Figure 4, the
object ’Coin’ satisfies these conditions.

When the cell is a square and an object in a photograph is a circular shape,
this produces the least unwanted data because the two conditions maximize the
trustable area; the inscribe circle area is the only trustable data.

3.2 Stacking Objects – Multilayering with Angled Grid System

Angled Grid System. The method in the previous section inevitably produces
garbage data. The inscribed circular area is the region we may trust in a square
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Fig. 6. Single layer. White area is the ’Empty space’(left). Double layers , less ’empty
space’ than the single layer(center). Multilayer eliminates the empty space from top to
bottom, 1 layer, 2 layers, and 3 layers stacked (right).

cell. The other area in the cell, we define as empty space (hole), because that area
has no information. Due to the law of simplicity in Gestalt theory [7] we can still
recognize the larger image without trouble. However, there is a way to improve
the quality of mosaic when we use the empty space aggressively by replacing
the empty space with the information from other layers [8]. The angled grid
system was designed for this process. The blocks in traditional Photomosaics
are aligned along horizontal and vertical lines, and this is suitable because the
photograph in each block is rectangular in shape and should be aligned upright
to be recognized. This makes output images uniform (e.g Figure 6). The angled
grid system has two advantages. First, it eliminates empty space efficiently when
the layers are stacked. Second, it produces fewer patterns. The degree of grid
rotation is free as long as it does not produce significant patterns while covering
empty space well. As we can see from Figure 6, multi-layering in various angles
not only covers the empty space but also produces a strong illusion of randomly
stacked objects.

Multiple Layers. How Many? Using multiple layers has two important roles.
First it improves the quality of the mosaic, and second, it gives the effect of piling
objects. As we can see from the Figure 6, multilayering covers the empty space
effectively. The question is, how much it will improve the quality when another
layer is added?

The right of Table 1 shows a similar result to what we saw in the section
3.1. More layers produce better output, but too many layers cost too much
rendering time while only improving output quality slightly. More than three
layers do not help the quality much, so in general we use three layers to produce
the artworks shown. When we define x as the similarity between the result and
the original image, we can expect that single layer mosaics describe a similarity
as (PI/4 × x) because the inscribe circle area is the trustable area. When we
apply the multilayer mosaic method, the empty space of each cell is eliminated
and we can expect a better result than the single layer. The multilayer mosaic
without the empty space is 4/PI times better than the single layer mosaic. In
other word, we can expect a similarity to traditional Photomosaics without using
rectangular, uniformed tiles.
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Table 1. Average color distance value of pixels with each rotation sampling rate(left).
The more layers, the better quality(right).

Sampling Rate Avg. distance Number of layers Avg. distance
2PI/1 34.994 1 29.673
2PI/2 32.466 2 27.318
2PI/4 31.659 3 26.066
2PI/8 31.018 4 25.535

· · · · · · 5 25.206
2PI/64 30.105 · · · · · ·
2PI/128 30.103 · · · · · ·

3.3 Shadow

The multilayer mosaic generates the spatial order in elements. Applying a shadow
effects to them creates a stronger illusion of depth. For shadow effects, we treat
each layer as a two dimensional thin film rather than a three dimensional object.
We simply spread out the edge of each object and darken the edge area. This
simple process creates a very strong sense of depth.

Fig. 7. Before adding shadows to each layer vs. After adding shadows to each layer

4 Result

4.1 Circular Objects – e.g. Coins

Figure 9 and 10 are two artworks made using the suggested algorithm. Two
hundred coin images are used, and the rotation sampling rates are ten degrees.
We used three layers for these images. These artworks received an award from the
Epson Color Imaging Contest, a competitive international contest in traditional
photography. This suggests the judges were convinced that these images are real
photographs. It was a unique experience because the output has both artistic
and technical issues. To verify the quality of the algorithm and to prove the
artistic value of the images, we showed the results to public to be judged by
experts trained in the arts.
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Fig. 8. B,C,D shows empty space as red color

4.2 Non-circular Objects – e.g. Human Body

As we mentioned in Section 3.1.3 the objects in our library do not have to be
circular in shape as long as the valid data is inside of inscribed circle area (Figure
8-A). A circular object has the biggest valid data area, but it does not guarantee
the minimum color difference between original source image and output mosaic
image. The most important part of this algorithm is that we do not want to solve
all the problems in a single layer because the other layers will help to complete
the mosaic. The more layers, the less empty space that remains. Figure 8 shows a
non-rectangular shaped object. In the case of coins, we defined the empty space
as non-inscribed circle area (Figure 8-B), but for these pictures we define the
empty space as the non-object area in red (Figure 8-C,D).

Figure 11 is an example mosaic produced by the suggested algorithm. We used
three layers and a library with eighty pictures. None of them is a circular-type
object, so we blue-screened the background when we shot the figure of a female
dancer. This dancer mosaic was selected for the Shichon-Seoul Art Festival 2004
main poster.

5 Conclusion and Future Work

The Multi-layered stack mosaic algorithm with photograph rotation improves
image quality, especially when the database is limited. We also tested this new
mosaic style by opening it to the public with a gallery exhibition [9]. The exhi-
bition was successful and the images were well received. However, some people
complained that they are too mechanical. Therefore, in future work, we hope to
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Fig. 9. Whisky. 200 coins of database.
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Fig. 10. Mosaice of a girl with a bag. 200 coins of database.
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Fig. 11. As we can see detailed ’A’ area, pile of small pictures of a dancer makes
smooth curve in bigger mosaic picture.
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refine this algorithm with a flexible grid to create a more natural looking collage.
This will be a challenge because the algorithm has to understand the substance
of each object. The study of how artists select objects for painting is essential
to move on to the next step of art in science.
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Abstract. A novel approach for appearance and geometry completion
over point-sampled geometry is presented in this paper. Based on the
result of surface clustering and the given texture sample, we define a
global texture energy function on the point set surface for direct texture
synthesis. The color texture completion is performed by minimizing a
constrained global energy using the existing texture on the surface as
the input texture sample. We convert the issue of context-based geom-
etry completion into a task of texture completion on the surface. The
geometric detail is then peeled and converted into a piece of signed gray-
scale texture on the base surface of the point set surface. We fill the holes
on the base surface by smoothed extrapolation and the geometric details
over these patches are reconstructed by a process of gray-scale texture
completion. Experiments show that our method is flexible, efficient and
easy to implement. It provides a practical texture synthesis and geometry
completion tool for 3D point set surfaces.

1 Introduction

As numerous 3D surface scanning devices are available in recent years, 3D scan-
ning has become a major approach for acquiring the shape of complex 3D objects.
However, obtaining a fine and usable 3D model from the acquired surface sam-
ples is still a difficult task. Due to occlusions, low reflectance, measure error in
the scanning, the acquired geometry is frequently imperfect, that is, it contains
holes. In addition, large holes may also be introduced by some surface editing
operations. These holes have to be filled in a manner not only conforming to
the global shape of the entire surface but also exhibiting its primary geometric
detail. At the same time the color texture of the defective surface should also be
repaired consistently.

Compared with the problem of inpainting and texture synthesis of 2D image,
the geometry completion and texture synthesis on 3D point-sampled geometry is
more challenging for many reasons. The point sampling is irregular and does not
give rise to a regular parameter domain as the image. In addition, the similarity
measurements between the point sets are difficult to define. In this paper, we pro-
pose a novel method for appearance and geometry completion on point-sampled
surface, our major contributions are as follows:

Firstly, Based on global optimization we present a novel texture synthesis
producing smooth texture synthesis effects while keeping the intrinsic structures

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 24–35, 2006.
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of the sample texture over the point-sampled geometry. By regarding the tex-
tures on the existing surface as the input texture sample, the texture completion
can be accomplished by optimizing a constrained global texture energy func-
tion. Secondly, By performing a mean curvature flow we derive the base surface
of the sampled geometry. We define the geometric details as the displacement
between the surface and its base surface. The geometric details are then peeled
and converted into a signed gray scale texture attached to the base surface for
the downstream processing. Thirdly, our approach reconstructs the geometric
details on the smooth patch by implementing texture completion in the gray
scale texture space, therefore some troublesome operations such as similarity
measurement, rigid transformation of the 3D points set are avoided.

By applying the above algorithms we can achieve consistent context-based
completion and can deal with more complex boundary condition compared with
the texture and geometry completion algorithms employing PDE. Furthermore,
by converting the 3D geometry completion into the task of 3D texture comple-
tion, we are able to further utilize a wealth of currently available surface texture
synthesis and completion technique to serve our purpose.

2 Related Works

There has been a number of works focused on Example-based texture synthesis
for 3D surface. A comprehensive survey is outside the scope of this paper. It is
found that most of existing texture synthesis algorithms on 3D surface are mesh
oriented. Since texture synthesis algorithms on meshes normally make use of the
topology information, they cannot be applied to the point set surface directly.
By now, few works are focused on texture synthesis over point set surface. In
our scope, Alexa et al. [1] and Clarenz et al. [2] showed some texture synthesis
results on point set surface as the application of their algorithm. Recently, geom-
etry completion focused on repairing the uncompleted meshes or point-sampled
surface has received much attention in computer graphics. Lots of works have
been presented, and these methods can be mainly divided into two categories
according to the strategies they adopted.

One strategy is to create a smooth patch covering the hole-region and satis-
fying the boundary conditions. [3] used globally supported radial base functions
(RBFs) to fit data points by solving a large dense linear system, [4] proposed
a hierarchical approach to 3D scattered data interpolation with compact RBFs.
Davis et al. [5] constructed a volumetric signed distance function around the sur-
face samples, and then applied an iterative Gaussian convolution to propagate
adjacent distance values to patch the holes. Liepa [6] proposed a hole filling tech-
nique to interpolate the shape and density of the surrounding mesh. Verdera et al.
[7] extended a PDE-based image inpainting technique to 3D geometry meshes.
Ju [8] constructed an inside/outside volume using octree grids for any model
represented as a polygon soup, then the holes were repaired by contouring.

The other strategy is to repair the holes according to the context information
so that the geometry detail can be reconstructed at the same time. Sharf et al. [9]
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introduced a context-based method which extended the texture synthesis tech-
niques from 2D image to 3D point-based models for completing the defective
geometry models. Pauly [10] presented a method using a database of 3D shapes
to provide geometric priors for regions of missing data. Lai et al. [11] proposed
a method of geometric detail synthesis and transferring for meshes based on the
concept of geometry images. Park et al. [12] restored both shape and appear-
ance from the incomplete point surfaces by conducting a local parameterization
to align patches and then solved a Poisson equations on 2D domain for warping
the patch to cover the hole region. Minh et al. [13] transformed the 3D geome-
try synthesis problem into the 2D domain by parameterizing surfaces, and then
solved the geometry completion problem with an interactive PDE solver.

3 Texture Synthesis

Recently, Kwatra et.al [14] presented an approach for 2D texture synthesis based
on global optimization of texture quality with respect to a similarity metric
based on Markov Random Field (MRF) similarity criterion. In this section, we
extend this method to point-sampled surface. As the point surface is irregularly
sampled in 3D, it is difficult to define such a kind of global texture energy on
point-sampled geometry. Preprocessing of the point set surface is necessary as
the preparation.

The point-sampled geometry M = {p1, p2, ...pn} is firstly clustered into uni-
form patches {Co,i} that are the units for further computing. The neighboring
patches are overlapped to make it less computationally expensive for comput-
ing the energy, furthermore, avoid the synthesized texture getting blurred in
regions where there is a mismatch between the overlapping clusters. We then set
up a global continuous direction field on the point set surface to conduct local
parameterization for each patch. By building up the correspondence between
irregularly 3D sampling points and the regular 2D texture samples, the global
texture energy can be defined directly on the surface and to be optimized.

3.1 Surface Clustering

We first utilize the hierarchical clustering algorithm [15] to split the point cloud.
The point cloud M is then divided into a number of subsets {C′

i}. Nevertheless,
these initial clusters contain sharp edges and corners, as shown in Fig.1(a). Let
y

′
i be the centroid of the cluster C′

i. To get a more even distribution of clusters,
we find neighbor Ni = {j : 0 <= ‖y′

j − y
′
i‖ < r} for each point y

′
i. For each

point sample pi ∈ C′
i, we locate y

′
j ∈ Ni that is the nearest to pi, and then pi is

adjusted to the new cluster Cj . Therefore, the partitioning result of the entire
point set is reformed to uniform clusters {Ci}, as illustrated in Fig 1(b).We then
grow each {Ci} and form the new generated clusters {CO,i}, such that each CO,i

overlaps with its neighboring cluster CO,j . Within a band of width h. In our
experimentation we set h = 0.5 · d, where d is the average radius of the clusters
{Ci}. In Fig1. (c), the green color indicates the overlapped area of adjacent
clusters, in Fig1. (d), the parameter h takes a larger value.
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(a) (b) (c) (d) (e)

Fig. 1. Surface clustering of point-sampled geometry. (a) Initial clustering, (b) uni-
form clustering, (c) overlapped cluster with small overlapping parameter, (d) Larger
overlapping area, (e) The texture synthesis result.

3.2 Global Optimized Surface Texture Synthesis

We establish the texture energy function directly on the point set surface in
several steps. We first define the global energy on the point-sampled surface.

Let yi be the centroid of the cluster CO,i. By applying the method presented
in [1], we can establish a global direction field on the point set surface Y =
{y1, ...ym}. Based on the direction field and the tangent plane computed by
covariance analysis, we set up a local frame for each cluster CO,i to facilitate the
local parameterization.

Let νi be the direction of yi, and ni be the normal of yi. We define νi the
up direction and μi = νi × ni the right direction for the texture, as shown in
Fig. 2(a). A local frame {μi, νi, ni} is then established. We project the vectors
from yi to all surrounding points xi in the cluster ∈ Co,i onto the tangent plane of
yi. The resulting vectors are normalized and multiplied by the distance between
yi and pi(Fig. 2(a)). In this way we preserve the distance information between
the points on the surface to some extent.

(a) (b) (c) (d)

Fig. 2. the construction of the grid for each patch (cluster). (a) Local parameterization
by projection, (b) regular grid G generated on the parameterization domain, (c) to
generate the sample texture from user specified region. (d) mean curvature flow.

Now a regular parameterization gridGi of n×n centered on yi with the interval
of h on the tangent plane is generated for each CO,i, Gi aligns with the direction
νi as up vector and the μi as right vector (Fig.2(b)). The parameter at each grid



28 C. Xiao et al.

(a) (b) (c) (d)

Fig. 3. Some texture synthesis results based on the global optimization

point tij is obtained by interpolating the parameters of points in the surrounding
cells. So with the regular grid Gi, the correspondence between irregularly 3D
sampling points and the regular 2D texture samples can be built for defining the
global texture energy. Let X = {Gi} denote the surface parametric space over
which we want to compute the texture energy and Z denote the input texture
sample. Let Zi be the vectorized pixel neighborhood in Z whose appearance
is most similar to Gi under the Euclidean norm. Then, we define the texture
energy over X to be

Et(x; {Zi}) =
∑
p∈Y

‖ Gi − Zi ‖2 (1)

Similar to the algorithm presented in [14], we use the EM-like algorithm to
optimize the texture energy over X . We modify the E and M steps to account
for the specific feature of the discrete point set.

The M -step of our algorithm minimizes (1) with respect to the set of in-
put neighborhoods {Zi}, keeping Gi fixed and for each Gi, we find its nearest
neighbor Zi from Z.

In the E-step, we need to minimize (1) w.r.t. Gi. We resolve it in a way differ-
ent from [14]. Once we find the closest input neighborhood Zi for each Gi, the
texture intensity at point pi enclosed in Gi can be obtained using bilinear inter-
polation. Suppose cluster CO,i and CO,j overlap with each other, some points
will be contained in both CO,i and CO,j . Each of the common points may take
possibly different intensity values from Gi and Gj . The minimization procedure
assigns each common point an intensity value that is equal to the average of the
original values in CO,i and CO,j . Since the intensity at the common point has
changed, the intensity at tij in Gi is updated which is used for the next M -step.

The energy of the synthesized texture will converge after a number of iter-
ations. Fig.1 (e) is the result using our method, and Fig.3 shows more results.
Multi-scale synthesis can also be performed in our approach by adjusting the
grid Gi(n× n).

4 Color Texture Completion

In this section, we complete the color texture of the point-sampled geometry
with a constrained texture synthesis algorithm, and the completed color texture
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should be consistent with the surrounding existing texture. We select a user
specified region D on the existing surface to serve as input sample texture. For
each point pi in D, similar to the method presented in section 3.3, we find its
neighborhood Ni and build a colored regular Grid Zi of n × n, as shown in
(Fig.2(c)). The set {Zi} is used as the input texture for color completion.

To make the boundary between the completed and original regions impercep-
tible, similar to the controllable image synthesis [14], we add a additional term to
Eq.(1) to achieve a general constrained energy function for texture completion.

Et(x; {Zi}) =
∑
p∈Y

‖ Gi − Zi ‖2 +
∑
k∈ϕ

(x(k)− xc(k))2 (2)

In our approach, ϕ is the set of boundary points, or the set of boundary clusters
which contain some boundary points, xc is a vector containing the current color
values at the boundary points.

(a) (b) (c) (d)

Fig. 4. Texture completion. (a)Original point model,(b)defective texture model, (c)the
defective regions is covered by the clusters,(d)completed texture point model.

Note that to generate a seamless boundary texture, the cluster set {CO,i}
should be chosen to cover the color defective regions and contain the boundary
points, as shown in Fig.4(c).As shown in Fig.4(b), the region enclosed by the
blue curve is used for generating the sample texture, the red patch is the re-
gion to be completed, the result is shown in Fig.4(d). In Fig.5, we present the
completion result with isolated islands left on the flawed region. With our con-
strained texture filling technique, the result is consistent with islands as well as
the boundary of the existing surface color. This situation is difficult to handle if
one applies the Poisson equation interpolation method [12].

5 Geometry Detail Encoding

The geometric detail is an important attribute of a surface. It is defined as the
difference between the original point-sampled surface and its base surface. In our
method, the base surface is built by smoothing the point set surface. Covariance
analysis on local point cloud can be applied to estimate various local surface
properties, for example, normal ν0 and the curvature σn at each point pi on the
point set surface[15]. Based on the normal and curvature, we are able to define a
curvature flow equation[16]. The basic idea of defining such a diffusion flow is to
allow the point moving along the normal with a speed equal to the curvature σn
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(a) (b) (c)

Fig. 5. (a) The original Chameleon model, (b) corrupted texture model with islands,
(c) the completed texture

as shown in Fig.2 (d). Since the position of a point is adjusted along the normal
direction, the proposed curvature flow will not introduce undesirable point drift-
ing over the surface. The curvature flow equation is an isotropic smoother and
a low frequency base surface can be received applying this filtering operator.

5.1 Encoding Geometric Details as Texture

Assume that the surface M is filtered, yielding a base surface M ′. Let p ∈M ,p′ ∈
M ′ is its corresponding point, and n′ is the normal at point p′. Let δ =‖ p− p′ ‖
be the geometric detail of point p. Let dire = (p − p′) · n′, if Dire ≥ 0, then
sign = 1, else sign = −1. We define c′ = sign· ‖ p − p′ ‖ as the the signed
gray-scale of p′.

Once the normal n′ and signed gray-scale c′ of p′ are obtained, its geometry
information is approximately reconstructed as p = p

′
+c′·n′. Using this technique,

a surface M is reconstructed by the base surface and the signed gray-scale C
which approximates M . The normal information of the reconstructed points can
be recomputed using the minimum spanning tree [17].With the mean curvature
flow filter, the reconstructed surface from the signed geometric gray level is a
good approximation to the original surface, as shown in Fig.7. With different
iteration times for the mean curvature flow, various frequency band of geometric
detail can be extracted effectively and efficiently.

6 Geometry Completion

Similar to the color texture completion, the completed geometry should keep
consistent with the surrounding geometry and the boundary between the com-
pleted and existing regions should be continuous. Using a hierarchical compactly
supported basis functions [4], we first complete the base surface by smoothed
extrapolation, as shown in Fig.6(d). Further, the geometry detail on the base
surface patch should be reconstructed.

6.1 Context-Based Geometry Completion

Using the method presented in previous sections we can complete the signed
gray-scale texture on the patched smooth surface (Fig.6 (e)). The completed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Overview of our entire processing pipeline for geometry completion. (a) The
defective bunny model, (b) the base surface of (a), (c) the signed gray-scale texture on
the base surface. Pseudo color is used to illustrate the value clearly. Red color indicates
the largest gray-scale value, while the blue indicate the least value, (d) completed base
surface, (e) the completed signed gray-scale texture in pseudo color, (f) the final result
of geometry completion, (g) RBF interpolation of (a), (h) the original bunny model.

signed gray-scale texture is then converted back to geometric details (Fig.6 (f)),
and the context-based geometry completion is achieved. This procedure is re-
garded as a reverse procedure of the geometric detail encoding.

Let p ∈M with normal n, p′ is its corresponding point on M ′ with normal n′.
We interpolate the defective base surface M ′ to get the completed base surface
N ′. Suppose Ω′ = N ′ −M ′ is the newly constructed patch which is consistent
with the boundary of the M ′, we then complete the texture C′ of Ω′ based on
the existing texture on M employing the technique presented in section 4. For
each point ν′ ∈ Ω′ with normal n′, let c′ be its synthesized signed gray-scale, the
reconstructed location is defined as ν = ν′+c′ ·n′, its normal can be recalculated
using the technique described in [17]. Using this approach, the completed patchΩ
captures the context information of the existing surface. Compared with other
geometry completion approach [9] that added points by rotating, translating,
and possible warped copies of points from another region, our approach is more
efficient, controllable and easy to implement.

Assume N be the reconstructed surface based on N ′ and its signed gray-scale.
Ω, M and N are all continuous inside their interior region. When we adopt the
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(a) (b) (c) (d)

Fig. 7. Surface reconstruction from the signed gray scale texture. (a) Original Bunny
model M , (b) Smoothed Bunny model M ′, (c) Signed gray-scale texture in pseudo
color C, (d) Reconstructed surface M .

points from M and the other points from Ω in the final completion result, small
crack may occur in the boundary region between Ω and M . To resolve this
problem, we modify the normal of the boundary points in Ω′.

Suppose p is a boundary point on M , and p′ is its corresponding point on base
surface M ′ with normal n′ = (np′

x , np′
y , n

p′
z ). Let δ = (δx, δy, δz) be the normalized

vector of the difference vector p− p′. The vector difference Δμp′ between δ and
n′ is defined as Δμp′ � (Δp′

x , Δp′
y , Δp′

z ) � (δx − np′
x , δy − np′

y , δz − np′
z ).

We define a band with radius d around the boundary of the smoothed surface
patch Ω′. For each point q′ = (xq′ , yq′ , zq′) with normal nq′ = (nq′

x , n
q′
y , n

q′
z ) in

the band, we find its nearest point p′ on the boundary of M ′. Let the distance
between p′ and q′ be s, we set the weight ω = (d− s)/d, then the normal nq′ of

q′ is adjusted as (nq′
x , n

q′
y , n

q′
z ) � (nq′

x + ω ·Δμp′
x , nq′

y + ω ·Δμp′
y , nq′

z + ω ·Δμp′
z ).

By normalizing above vector we get its modified normal n, then the geometry
position of q′ can be reconstructed as q = q′+c′ ·n. As the completed base surface
N ′ is continuous, its normal is also continuous. In addition, the completed texture
C is continuous around the boundary region. By using this technique, we are
able to produce a continuous surface around the boundary and the holes are
filled consistent to the existing surface(Fig.6(f)).

6.2 Geometry Completion with Structure Propagation

The synthesis order of geometry completion is also important. By augmenting
texture synthesis with some automatic guidance or interactive guidance, it can
significantly improves the quality of completion by preserving some salient struc-
tures. Similar to Sun et. al. [18], we propose a geometry completion method based
on structure guided synthesis. The missing structure information is specified by
extending a few curves or line segments from the known regions to the unknown
regions, then the patches along these user-specified curves in the unknown re-
gion is synthesized using patches selected around the curves in the known region
by using a global optimization. After the salient structure is completed, the
remaining regions can be completed. In our method both the salient structures
and remaining missing regions are completed based on the constrained global
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Geometry completion with structure propagation. (a) Original Venus model,
(b) uncompleted Venus M , (c) the base surface M ′ of M , (d) the geometry detail of
M is converted to the signed gray-scale texture on M ′, (e) One red line specified by
the user in completed base surface, the yellow region is the structure region needed
be synthesized firstly. (f) intermediate result after synthesizing structure and texture
information along the user-specified line, (g) final result after filling in the remaining
unknown regions. (h) Result of geometry reconstruction.

optimization. As shown in Fig.8, we want to fill the missing geometry on the
Venus. The user specifies the important missing texture structure by extending
a few curves from the known to the unknown regions on the base surface, the
signed gray-scale texture along the specified curves in the unknown region is
first completed with structure guided synthesis and the other regions are then
completed by texture optimization.

6.3 Geometry Completion with Detail Cloning

Our method also provides a seamless geometry cloning tool for surface based
detail cloning. The missing region of one model can be completed with the geom-
etry details of other models as the geometry texture. The user specifies a source
region S in an arbitrary surface and the missing region D on target surface.
By smoothing the source region S, we get its signed gray-scale texture. Using
the constrained optimization texture completion technique described in above
sections, the signed gray-scale texture is adopted as the input texture sample to
complete the texture of the smooth patch filling hole D. After converting the
gray-scale texture back to the geometric detail, we obtain the cloning result as
shown in Fig.9. The defective region of model Lady is completed by transferring
the geometric details of the bob region on model Venus.
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(a) (b) (c) (d)

Fig. 9. Geometry completion based on geometry transfer. (a) Original lady model, (b),
uncompleted lady model, (c) the sample model Venus, (d) the completion result.

7 Implementation and Results

The proposed algorithm was implemented on a Microsoft Windows XP PC with a
Celeron 2.00GHz CPU and 1.00GB RAM. The computational complexity of our
approach is dominated by the process of texture synthesis which is based on the
nearest neighbor search. In the example shown in Fig.3, there are 240,000 points
in the Stanford Bunny, the execution time per iteration takes 8-10 seconds, and
the total execution time is 10-12 minutes for about 50 iterations. In the context-
based geometry completion stage, the execution time is much less as the patched
region is much smaller. In fig 6, there are 22,000 points in the patched regions,
it takes less than one minute to accomplish the texture completion operation. In
our experiments, there are usually about 300 points in each overlapped cluster,
the scale of the synthesized texture can be controlled by adjusting size of the
regular grid G.

8 Conclusion and Future Work

We have presented a novel approach for appearance and surface content com-
pletion for the acquired 3D data set based on global optimization. We transform
the task of surface content completion into that of surface texture completion.
The major benefit is that it is flexible and efficient to implement. Our system
can be extended to the mesh models easily. Further research will be focused
on performing a user controllable non-uniform clustering so that the scale of
synthesized texture can vary progressively through the point cloud.
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Abstract. In this paper we argue for our NPAR system as an effec-
tive 2D alternative to most of NPR research which is focused on frame
coherent stylised rendering of 3D models. Our approach gives a highly
stylised look to images without the support of 3D models, and yet they
still behave as though animated by drawing, which they are.

First, a stylised brush tool is used to freely draw extreme poses of
characters. Each character is built up of 2D drawn brush strokes which
are manually grouped into layers. Each layer is assigned its place in a
drawing hierarchy called a Hierarchical Display Model (HDM). Next,
multiple HDMs are created for the same character, each corresponding
to a specific view. A collection of HDMs essentially reintroduces some
correspondence information to the 2D drawings needed for in-betweening
and, in effect, eliminates the need for a true 3D model.

Once the models are composed the animator starts by defining key-
frames from extreme poses in time. Next, brush stroke trajectories defined
by the keyframe HDMs are in-betweened automatically across intermedi-
ate frames. Finally, each HDM of each generated in-between frame is tra-
versed and all elements are drawn one on another from back to front.

Our techniques support highly rendered styles which are particu-
larly difficult to animate by traditional means including the ‘airbrushed’,
scraperboard, watercolour, Gouache, ‘ink-wash’, and the ‘crayon’ styles.

We believe our system offers a new fresh perspective on computer
aided animation production and associated tools.

Keywords: Artist driven, stylised modelling, stylised animation, com-
puter animation, computer-assisted animation, NPR, NPAR.
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1 Introduction

Motivation. Although 3D animation is a popular form, because of the indirect
nature of the interaction model, many details are extremely hard to construct
and animate, while it is much simpler to design very convincing lookalikes in
2D. For example, ask a modeler to make an animation of a walking dinosaur
and watch another artist draw a much more fancy 2D version during the time
needed to start up the designer’s favourite 3D software.

The difference between 2D and 3D modelling is even more apparent when
subtle animation effects (artistic expressions, caricatures, . . . ) are involved. The
stylistic possibilities afforded by 2D animation mean that 2D animations can be
rich in a way which is seldom achieved by 3D animations (even with significantly
more effort).

It is our contention that this overhead is unnecessary. Figure 1(a) shows a 2D
image rendered without the use of a 3D model; it is inexpensively animatable,
open to visual modification to suit the animator’s individual style, yet still ‘highly
rendered’ in appearance.

(a) (b) (c) (d)

Fig. 1. Snapshots of highly stylised animations. a) Highly rendered 2D image c© Beb
Deum/CALON. b) Mouse raising its head in an airbrushed style. c) Death in the guise
of the ‘Grim Reaper’ in an Oriental black ink style. d) Stalin character drinking tea in
a scraperboard style.

Contribution. We present here a system which is an effective 2D alternative
to most of NPR research that is focused on frame coherent stylised rendering
of 3D models. It supports 2D drawing instead of stylising strokes on 3D geome-
tries. Furthermore, it relies on the simulation of natural materials and processes
involved in making brush-strokes.

Our approach gives a highly stylised look to drawn animation but also allows
an artist to give a 3D-like look to images yet they still behave as though animated
by drawing, which they are. We believe our system offers a new fresh perspective
on computer aided animation production and associated tools.

A series of examples are shown in Figure 1. We emphasise that at no time any
3D modelling is performed and in particular no 3D models are used to support
the rendering of the images, scenes and animations we show.

Approach. Technically the challenge is to achieve stable rendering across
frames. Artists find it difficult to achieve temporally coherent lighting and shad-
ing effects, potentially resulting in jittery, unpleasant imagery. To achieve such
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consistency the simulation is associated with the trajectory of the brush stroke
itself and these brush trajectories are in-betweened across frames so the artist
needs only to paint up a single frame. The brush trajectories are thus in-
betweened and the simulation reproduced, possibly requiring some ‘touching up’
in more distant frames. While the method of managing consistency is essentially
the same across all simulations, individual simulations may require different con-
trols to manage different evolutions of effects like texture behaviour.

Paper Organisation. This paper is structured as follows. Section 2 surveys
work we consider related to ours. Section 3 describes the data path to be followed
to create highly stylised animations. In Section 4 we show some examples. Finally
Section 5 is our conclusions section in which we also discuss our results and set
the contexts for future work.

2 Related Work

In this section we elaborate on work we consider related to ours.

2.1 The Traditional Approach to Drawn Animation

Broadly speaking, traditional animation is defined as a technique in which the
illusion of movement is created by depicting a series of individual drawings on
successive frames. Unlike live action, where the camera is running continuously,
each frame of an animation film is shot one by one. Moreover, as characters are
separated into several layers, each single frame might consist of numerous layers
stacked up together.

What we give here is an account as it might be in a large industrial studio. The
overall work can be thought of as falling into two phases, that of pre-production or
design (15% of the total effort) and production (about 85%). The stages are story
development, Leica reel test, scene staging, exposure sheet preparation (which
completes preproduction); then drawing, line test, ink-and-paint, rostrum camera
stage (otherwise known as composition), and sound-track synchronisation or
‘synch’ (which completes production).

The drawing process itself is done in three phases: (i) lead animators draw
the most significant images, which are referred to as extreme frames or poses,
containing the major features of the action; (ii) assistant animators produce key
frames between the extreme frames, hence detailing the desired animation action;
while (iii) lessexperiencedanimators (in-betweeners)areresponsible forcreatingall
the remaining in-between frames of the animation, resulting in a smooth sequence
of drawings. Drawing these frames is known as ‘in-betweening’ or ‘tweening’.

We refer to Patterson & Willis [1] and Preston Blair [2] for readers interested
in an in-depth explanation.

2.2 The Use of Computers in Drawn Animation

By far the most common use of computers in drawn animation is in the stage
which in a feature film would be referred to as postproduction, namely the
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inking, painting and compositing of the artwork, as discussed in the previous
section. Generally speaking they are not used earlier in the data path although
there is a small proportion of studios whose style is well-suited to automatic
in-betweening and use it. Software to support artists to produce in-between
drawings are becoming more widely used but these just provide on-line support
for making the drawings, checking and line testing on the assumption that a
sequence of drawings is going to be produced by hand. On the whole, animators
do not like automatic in-betweening precisely because they want to break the
rules in some way on just about every frame.

In-Betweening. In-betweening is effected on the basis of one of two models:
shape-based (e.g., Reeves [3], Sederberg & Greenwood [4], Ranjian [5] and Kort [6])
and skeleton-basedmethods (e.g. Burtnyk & Wein [7], Shapira & Rappoport [8] and
Jinhui Yu [9]), which are often used in combination. The skeleton-based methods
use an articulated skeletal structure which is normally layered to reflect the order
in which the skeleton elements are encountered but may sometimes exceptionally
be retained as a 3D entity, then layered on the basis of view-dependency. Each
skeletal element in the view-dependent form will have a shape associated with it
and this will follow the movements of the skeleton which is defined in terms of the
movements of the skeletal joints. There is the issue of the control of the skeleton
which can be determined by motion capture or manual posing.

The shapes associated with the skeletal elements can themselves be in-be-
tweened using such techniques as Moving Reference Points (MRPs) [3]. A MRP
reflects common animator’s practice in selecting a point on the drawing and
describing its trajectory in 2D with associated timing. A set of MRPs subdivides
a line into segments which in its original formulation implicitly define a 3D patch
of which the evolution of the segment is a 2D projection. The segment is initially
oriented by the movement of the skeleton, then re-shaped according to the MRP
trajectory as mapped into the 2D space defined by the skeleton element itself.

More recently, Kort presented a rule-based method for computer aided in-
betweening [6]. The content of each key drawing is analysed and classified into
strokes, chains of strokes and relations that hold among them. Rules decide what
parts of different drawings may be matched. Finally, generated animation paths
between corresponding strokes determine the resulting in-betweens.

Rotoscoping. When artwork is animated from film or video footage this is re-
ferred to as rotoscoping [10] and typically rotoscoped artwork differs significantly
in timing and behaviour from drawn animation. Rotoscoped artwork, however,
is ‘trapped’ by being too realistic: since the underlying outlines are rendered too
accurately, a very realistic silhouette is generated which we especially want to
avoid.

Non-photorealistic Animation and Rendering. It is fair to say that our
work intrudes into the area generally known as Non-photorealistic Animation
and Rendering (NPAR). We do not build 3D models so we do not render in the
conventional sense, and the work of Hays and Essa [11] comes closest to what



40 F. Di Fiore et al.

we do. However, Hays and Essa use photographic images as source material,
analyse them down into brush-strokes decorated with parameters which may be
interpreted in different ways to achieve different appearances, then use optical
flow analysis to determine how to interpolate the brush-strokes. In our approach
the artist applies the strokes to obtain the visual effect wanted — which requires a
real-time simulation — then an in-betweener interpolates the stroke trajectories.

While the idea of simulating the physical effects of drawing tools has been
presented before [12, 13] it is also the case that the stability of the renderings in
animation has been identified as a continuing research problem. Existing meth-
ods of toon rendering [14, 15] and painterly rendering [16, 17, 18] have to build 3D
models or infer them [19]. Such approaches swiftly run into being too ‘3D-ish’:
the enforcement of the geometric, illumination and shading rules of the model of-
ten give a salient sense of the 3D aspects of a scene inappropriate to the intended
staging the animator seeks. Of course a view-dependent layered model [20] could
be extracted from an underlying 3D model but that still doesn’t help us when
we want the idea of the 3D in an scene to be unobtrusive or even exaggerated.
In the end, rendering directly from a drawing means that shading, texturing and
lighting (e.g. highlights) are all mixed up together and so are wholly a product
of the artist’s vision with an appearance finally determined by the last brush
stroke. In 3D they are all separate and for the most part independent, making
reworking a technical guessing game. How, for example can one manage the be-
haviour of the textures if you want them to be part of the animation? With
direct control this is possible but models and interpretations of models make the
problem far more difficult.

2.3 The Limits of Traditional 2D Animation

Our work has been focused on topics which are very hard to impossible for ani-
mators to do by hand and are the sorts of things animators would like to have
automated. These include highly-rendered strip cartoon (bande dessinnée) styles
with faux lighting and shading effects, ‘difficult’ materials which are visually ap-
pealing, and some aspects which are currently impossible to handle in animation.
These include: avoiding ‘boiling’ or instabilities on highly rendered images, (e.g.
smooth airbrush style, Carte à Gratter Noire, childrens’ book illustrations, wa-
tercolours etc.), and topics like very slow movements and varying perspectives on
complex mechanisms which we are not tackling here. In fact these last are best
handled using explicit modelling whether or not wholly 3D. Childrens’ books in
particular often contain beautiful, highly rendered images which give the story
much of their charm but they are often made with materials which are impos-
sible to manage in animation by manual means or are impracticably expensive
to animate. The methods we describe here are aimed at making this potential
business a practical proposition.

While abandoning 3D models seems a retrograde step [21] in view of the
elaborate machinery which 3D graphics and animation provide, our argument
is that it is that very machinery which gets in the way when an artist turns
to achieve a given look or staging. So far we have focused on giving artists
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direct access to intuitive, even familiar, methods for deriving the finished look
although the extended structures they have built need controls of their own to
keep the creative process manageable and this is an on-going task. The examples
we show here are all studies carried out for the express purpose of understanding
how to provide convenient and productive interface to these techniques and the
evaluations of the experiences of creating these examples are themselves data we
are currently interpreting. For example, many of the rendering techniques impose
secondary patterns in the form of textures and these, too, need to be the subject
of animation management processes. For example the Carte à Gratter Noire style
imposes a texture in the form of the prevailing directions of the scraper tool as
it cuts the surface. On a static background they take up orientations which vary
only as the notional camera position moves but on a foreground object they will
reorient not only to match the virtual camera but also the movements of the
foreground character as it is affected by plays of light and shadow. The problem
here is not what the textures do in the foreground or the background but what
happens where the textures join. One imagines an intermediate area in which
the behaviour of the texture is the dominant character and it has to somehow
integrate foreground and background. While an artist can decide what to do here
no obvious 3D model, as is often invoked to deal with issues of varying lighting
in NPAR, comes to mind.

3 Data Path of Highly Stylised Drawn Animation

In this section we describe the data path to be followed to create highly stylised
animations.

3.1 Overview

Figure 2 depicts a schematic overview of the main parts of the data path.
Starting from a blank canvas, a stylised brush tool (simulating a particular

style) is first used to freely draw extreme poses of characters. Each drawing of an
extreme pose is built up of a collection of 2D drawn strokes which are manually
grouped into layers. Each layer is assigned a place in the Hierarchical Display
Model (HDM).

Next, multiple HDMs are created for the same character, each instance corre-
sponding to a specific view (another extreme pose) of the character. A collection
of HDMs essentially reintroduces some correspondence information to the 2D
drawings needed later for in-betweening and, hence, substitutes for a true 3D
model.

Once the extreme poses are properly composed, the animation phase can start.
The animator first defines keyframes by specifying extreme poses/HDMs in time.
Next, corresponding brush trajectories defined by the HDMs of the keyframes are
then in-betweened automatically across intermediate frames. Finally, each HDM
of each generated in-between frame is traversed and all elements are drawn one
on another from back to front.
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Fig. 2. Schematic overview of the main parts of the data path

The following subsections describe the data path in detail. We start with
a description of how to simulate highly rendered styles which are particularly
difficult (if not impossible) to animate by traditional means (being traditional
2D handcrafted techniques or traditional 3D animation techniques). Next, the
different stages of the data path are elucidated: modelling, manipulating and
animating stylised drawings.

3.2 Simulation of Highly Rendered Styles

As we are interested in creating stylised animations, all simulated styles will be
based on drawing using a free-form sketching tool [22] which is similar to what
is available in any professional-standard vector drawing program.

In our system the creation of a stroke is done interactively by sampling a
stylus along the trail of the stroke. Our freeform curve model is that of a Bézier
chain. However, instead of approximating the Bézier chain by polylines, purpose-
made drawing primitives are employed including paint and air brushes, crayon
textures, cross hatched strokes, and pigment particles. All these drawing prim-
itives fully utilise graphics hardware including multi texturing and anti-aliased
rendering. This way the artist gets visual feedback immediately. The following
subsections give an overview of the realised highly rendered styles.
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Airbrush. Figure 3 depicts the pipeline of the paintbrush tool [23]. The tool
creates three objects: (i) a colour layer with (ii) a mask, and (iii) a tempo-
rary bitmap layer. Depending on the user input from the canvas, the tool ren-
ders the brush into the mask. Circular brushes have the following parameters:
radius, opacity, and softness. The mask is a greyscale image used to mask
painting. Using this mask, the colour layer is rendered into the working layer.
Rendering the colour just copies the colour into the destination layer. Brushes
can overlap each other and will create more opaque areas. An airbrush not
only releases paint on movement, but at regular intervals while the stylus is
down.

Fig. 3. Pipeline of the airbrush tool

(a) (b) (c)

Fig. 4. a) Pressure sensitive
scraperboard paintbrush. b–c)
Cross hatched strokes.

Scraperboard (Carte à Gratter Noire). For the Carte à Gratter Noire style
the airbrush tool is adapted. Instead of the circular brush that is procedurally
created using the softness and radius parameters, the user is allowed to import
a sequence of textured bitmaps which are used as one pressure sensitive Carte
à Gratter Noire paintbrush (Figure 4(a)). Figure 4(b) illustrates the effect of a
spline made out of cross hatched strokes while Figure 4(c) shows how the pressure
controls which brush from the image is used. Furthermore, because the brushes
are not circular anymore, an option is available, which links the orientation of
the brush to the direction of the stroke.

Crayon. For the crayon style, a paper height map model [18] is used to represent
the rough texture of the paper which is frequently used when drawing with chalk
sticks. The chalk sticks themselves are simulated using an 1D alpha texture.

Using the points of the strokes, along with width and pressure values, a mesh
is created representing the geometry of the strokes [24]. Using the paper height
map and the stroke’s pressure values, the mesh is coloured using the colour of
the chalk stick. Furthermore, an additional 1D alpha texture is used representing
the cross section of the chalk stick in order to simulate the soft edges some chalk
sticks have (see Figure 5).

Watercolour/Gouache/Ink. The watercolour painting system employed [25]
targets the real-time interactive creation of watercolour images. This is in con-
trast to most existing work on watercolour applications, which is mostly focused
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Fig. 5. Schematic overview of the crayon and
chalk stick rendering algorithm

Fig. 6. The canvas model with a
layered design

on automatic generation of painterly-style watercolour images from input im-
ages. The simulation adopts stable fluid dynamics algorithms to transfer pig-
ment densities and water quantities on top of the canvas. Heuristic rules handle
the deposition of pigment within the irregularities of the canvas surface, as well
as the evaporation, absorption and capillary diffusion of water inside the canvas
structure.

The canvas model has a layered design, consisting of three active layers (shal-
low, surface and capillary layer) and an unlimited number of passive layers,
which are considered to contain previously drawn strokes that have dried and
no longer participate in the simulation, except in the final step when the canvas
is rendered (Figure 6).

First, some sort of brush puts a mixture of water and pigment onto a paper
canvas. At this instant, the paint fluid acts like a flow of water, carrying pigment
particles. This ‘fluid body’ is modelled using the Navier-Stokes equations. At
some point, depending on the paper fabric, the water will be absorbed into the
paper and spread throughout the paper structure. As the pigment particles are
too large to be absorbed, they will be deposited on the surface and possibly
picked up by the paint fluid later on.

Although the brushes and techniques used in Oriental paintings are very dif-
ferent from those in Western painting, the mechanics of pigment and water are
quite similar. For Oriental paintings such as shown in Figure 1(c), the canvas is
generally more textured and more absorbent, and the dense black carbon parti-
cles are smaller and able to diffuse into the paper. The former property is easily
expressed in a watercolour simulation by generating a rougher canvas texture
and using a higher absorption constant. Despite the fact that the canvas model
does not simulate pigment particles inside the canvas structure, ink diffusion can
still be handled by the top layer and produce the typical feathery pattern. The
palette consists of very dark pigment with high density.
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3.3 Modelling Stylised Drawings

Starting from a blank canvas, the artist starts by using one brush tool (corre-
sponding to one of the styles described in Section 3.2) and freely drawing extreme
poses of characters. This corresponds to the drawing of extreme frames by lead
animators in traditional animation (see Section 2.1). Each character is built up
of a collection of 2D drawn strokes which are imposed one on another. As is
illustrated in Figure 7 this process of drawing characters and objects very much
resembles traditional painting: first, a basic (rough) image is drawn, and this is
followed by adding detail stroke-by-stroke.

Fig. 7. Overview of the drawing process

While each stroke could be placed on a single layer it is far more efficient
to group these together into a few layers which would tend to be in-betweened
together. In fact layers can be grouped together in the usual way in a drawing
hierarchy known as an Hierarchical Display Model (HDM). Figure 8 shows a
representation for an HDM for the ‘Stalin’ figure in Carte à Gratter Noire. If
each drawing component is thought of as a leaf element the composition steps
are shown on the left. Each node of the HDM is the potential recipient of a
channel stream which redefines any parameter that might be there, for example
an orientation transformation like rotate about an arbitrary axis or a parame-
terised warp. Typically an animator will make a series of reference drawings to
define the action. An example is shown in Figure 9 below. Note that these are
all breakdown poses, at least 4 frames apart so the action covers only 2 seconds.
In some cases, particularly for figures and heads, it is desirable to make a series
of view-dependent studies, for a standing human figure at 45o angles all round

Fig. 8. Stalin drinking a cup of tea. a) Hier-
archy Display Model (HDM). b) All separate
elements.

Fig. 9. Sequence showing a dive off
the end of a pool from a sitting posi-
tion c© Les Orton 2005
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and horizontally, ±45o vertically (and optionally views from above or below).
Hierarchies for these are all constructed and these give the rendering order for
the elements of the character.

In our system, multiple HDMs for the same character can easily be created
by using techniques described in [26] and [6] or simply by altering a duplicate of
the original HDM. Each HDM corresponds to a specific view of the character.
Consequently, a collection of HDMs for the same character forms the main set of
entries of an electronic model sheet for that character and, in effect, substitutes
for a true 3D model. Using model sheets like this is usually referred to as 2++D
modelling — not 2D but not really 3D either. A collection of HDMs essentially
reintroduces some 3D information to the 2D drawings (see Figure 10). Besides
brush strokes, other elements can be part of a HDM having its own place in
the hierarchy. For example, if lighting and texturing needs to be altered system-
atically this can be done by adding another layer and managing that layer to
provide the desired effect. This will be exemplified by a step by step overview of
building up a Carte à Gratter Noire version making use of masks and lighting
effects. To start the drawing, an area is filled with white strokes (Figure 11(a)).
Next, invisibility masks (b) are added to ensure the correctness of the silhou-
ettes. These masks are built up from vectors, without any texture association.
Each of these masks will also have its own time line and its independent place in
the hierarchy tree. Similar to traditional animation the animator does need to
care herself/himself about lighting and shadowing effects by applying the correct
densities to create the desired dark and light regions. In this case the anima-
tor added some extra layers (c) to obtain a hazy effect (d). These ‘hazy layers’
separate the different parts and give them a feeling of depth.

Fig. 10. Three HDMs each depicting a specific view of the same character

3.4 Manipulating Stylised Drawings

In this section, we will introduce some tools that enable the animator to manip-
ulate the drawings on a higher level than altering single brush strokes.

We successively implemented a grouping tool, transformation tools, and defor-
mation tools. Each of these tools can operate on both the whole drawing and on
a user selected part of the drawing. Existing applications manipulate drawings
on a per-pixel basis which results in artifacts because the manipulated parts are
cut out and then pasted at a new position. In contrast, due to the use of curve
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(a) (b) (c) (d)

Fig. 11. Example of applying masks and defining lighting effects

Fig. 12. Subsequent images of a deformation process

primitives, manipulations can also be performed on parts of the drawn charac-
ter. In our case the manipulation tools (translate, rotate, scale, deform, . . . ) only
affect the control points selected by the grouping tool and so the animator has
local control over the drawing while preserving the continuity and connectivity
of strokes. As most transformations are rather straightforward to implement,
we only highlight the use of locally interpolating subdivision surfaces on model
elements in order to realise deformations on the characters to be animated. The
locally interpolating nature allows precise control over the shape of the surfaces:
the surfaces are attached to specific parts of the hierarchical models, so the de-
formation realised only affects the control points of the brush strokes targeted.
Figure 12 shows the deformation process in action on an airbrushed cat: (a)
positioning of top level subdivision surface grid, (b) an additional subdivision
step, (c) deformation of the surface and hence the underlying control points of
the targeted brushes (in this case: those of the left hind leg), and (d) the final
deformed result.

3.5 Animating Stylised Drawings

In the previous sections (Sections 3.3 and 3.4) we focused on the modelling
and manipulation of highly stylised drawings. Once the models are properly
composed, the animation phase can start:

(i) the animator has to define keyframes by specifying extreme poses in time;
(ii) all brush trajectories defined by the keyframes are then in-betweened au-

tomatically across intermediate frames, creating intermediate HDMs;



48 F. Di Fiore et al.

(iii) all HDMs (extreme as well as intermediate) are traversed and all strokes
are drawn one on another from back to front.

Regarding the second step two issues need to be addressed: (i) the correspon-
dence problem should be solved, and (ii) a suitable in-betweening algorithm
should be employed. This will be explained in the following subsections.

Correspondence Problem. The use of Hierarchical Display Models (HDMs)
to represent various instances (i.e. extreme poses) of a particular drawn image
also lends itself to easily find a correspondence between them.

Drawing a collection of HDMs, each depicting a different view of the same
character, is currently implemented by using similar techniques as described in
[26] and [6] or simply by altering a duplicate of the original HDM (see Section
3.3). As a result, two subsequent HDMs share a large number of subparts and
attributed elements (e.g., brush strokes), yet have a different drawing order, and
so there is a 1-to-1 mapping between these elements. For the strokes which have
no correspondences in the next or previous predefined view, fade-in and fade-out
is used in a similar matter to Hays [11].

Furthermore, as our freeform curve model to represent brush strokes is that
of a Bézier chain, the curve control points are what are interpolated when in-
betweening different instances of the same brush stroke.

In-Betweening Algorithm. As we already have a correspondence between
HDMs and a mapping of the shared accompanying elements (e.g., brush stroke
parameters), any in-betweening algorithm found in the literature (Section 2.2)
could be employed.

In the current system, we use a wholly 2D based ‘Moving Reference Point’-
inbetweener [26] (based on Reeves’ MRP-inbetweener [3]) which, however, lacks
the vices that Reeves reports. The Coons patch algorithm used by Reeves some-
times contorts when trying to obey cross-boundary constraints in the absence
of twist vectors, producing ‘clicks’ in the behaviour. As a result, interpolated
curves sometimes fold over in the interior of the patch. This contortion can
only be controlled by specifying an additional straightforward keyframe con-
straint. However, Reeves pointed out that it was often necessary to specify
many more static keyframes than were wanted when using their version of
MRP.

In our implementation, the animator can control the interpolation between
more than two keyframes with as many moving points as necessary — by de-
fault, each control point is treated as a MRP. This means we have a set of 2D
patches, each defining the trajectory and timing between two extreme frames.
At run-time, interpolated versions of the patches are created so the MRPs do
not necessarily follow the exact paths defined by the patches but instead can
follow an intermediate path. As a result, our MRPs do not necessarily pass
through all defined keyframes and hence ‘clicks’ are eliminated in the animated
sequence.
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4 Examples

In the following subsections several ways to animate are discussed: pose-to-pose
animation, step-ahead animation, and performance-driven animation.

4.1 Pose-to-Pose Animation

Drawing or setting up key poses followed by drawing or creating in-between
images is referred to as pose-to-pose animation. This is the basic computer
keyframe approach to animation and is excellent for fine-tuning, timing, and
planning out the animation ahead of time. First, the animator starts with de-
veloping/planning the extreme poses of the characters in the modelling phase.
Next, once the animator has created the extreme frames, s/he only has to spec-
ify keyframes. Finally, the automatic in-betweening method comes into play and
generates the desired animation.

The pictures in Figure 13 display an airbrushed cat starting to run. For the
animation of the cat the different extreme frames (about 30) were created using
the subdivision free-form deformation tool. Afterwards, pose-to-pose animation
was used to in-between these keyframes. The background is a 3D background.
For the airbrushed mice flying on a paper airplane (Figure 14) about 15 ex-
treme frames were used. 20 extreme frames were involved to create the Gouache
simulation of waving flags as shown in Figure 16.

Note that the complexity of the animation involved determines how many
extreme poses have to be provided by the animator and thus how much of the
in-betweening is left to the system.

4.2 Step-Ahead Animation

In straight-ahead animation the animator draws or sets up objects one frame at
a time in sequential order until the sequence is complete. In this way there is one
drawing or image per frame that the animator has setup. This approach tends
to yield a more creative and fresh look but can be difficult to time correctly,
and tweak. Our system supports straight-ahead animation by making use of
the subdivision freeform deformation tool (see Section 3.4) which permits the
simultaneous control of many MRPs.

Figure 15 shows that it is possible to control the movement of scraperboard
rendering both within a shape and around it in a coherent way. For this Carte
à Gratter Noire animation only step-ahead animation was employed as com-
plex movements are involved: rising smoke transforming itself into an evanescent
creature.

4.3 Performance-Driven Animation

The example shown in Figure 17 depicts an animation of a human face which
was integrally driven by externally gathered facial motion data. After processing
the facial motion data and generating a HDM for each frame, the animation
was rendered in a crayon style. Note that for this animation we deliberately
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Fig. 13. Airbrush - animation of an airbrushed cat starting to run

Fig. 14. Airbrush - excerpt of a stylised 2D movie

Fig. 15. Scraperboard - rising smoke transforming into an evanescent dragon

Fig. 16. Gouache - excerpt of a sequence depicting waving flags

Fig. 17. Crayon - some snapshots of an animated sequence of a human face
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introduced a ‘shower-door’ effect by superimposing a paper-like structure on
the canvas. We believe this ‘shower-door’ effect would be the case as well when
creating a real physical chalk animation. In addition, the paper texture could be
animated as well thereby mitigating the shower-door effect to some extent.

5 Conclusions

In this paper we introduced techniques and tools to draw, manipulate and ani-
mate new forms of stylised animation in computer assisted animation production.
We focused on realising highly rendered styles which are particularly difficult (if
not impossible) to animate by traditional means including the ‘airbrushed’ style,
the scraperboard (‘scratched card’ or ‘Carte à Gratter Noire’) style, the ‘water-
colour / gouache’ style, and the ‘crayon’ (chalk) style.

The introduction of the physical simulation of materials without reference to
3D models has many implications for animation. It is apparent that the produc-
tion values of 3D animation can be approached if desired or that styles utterly
unlike 3D, yet relying and retaining complex textures and structures, can be
handled quite stably. While this has a direct commercial value, making possi-
ble many projects which were not possible before, it has a wider value in not
only allowing styles which artists have wanted to use in animation for a long
time but also to allow effects deemed impossible before, acetates which ‘take’
watercolour or ink washes, etc. Many strip cartoon styles, which often have quite
high-quality artwork in them, imaginatively if unrealistically staged, have been
thought unanimatable precisely because of the problem of frame-to-frame sta-
bility. No longer.

Discussion. Traditional brush strokes are pixel based and so can be applied
immediately which is a cheap operation in terms of processing power. Highly
rendered strokes, on the other hand, are based upon curves which are fitted to
user input in real-time. As a reference to the geometry of the strokes is stored,
they can be animated easily and the brush properties can be changed after they
are applied. One issue with highly rendered strokes, however, is the high fill
rate which makes the real-time requirement for the drawing process difficult to
achieve without graphics acceleration.

The tools and techniques described also create different ways of looking, at
the digital tools (created by engineers, but destined to be used by animators,
artists and illustrators), at the rigidity of configuration of certain digital ‘tradi-
tions’ inherited from 3D (the timeline, for example), as well as at the relevance of
certain fundamental working practices that require a rather laborious apprentice-
ship. Moreover, these techniques also point to abundant and fruitful exchanges
between software engineers and artists in an attempt to find solutions to these
various problems.

Future Work. We have limited ourselves in this paper to the issue of character
drawing and backgrounds only where it has been a matter of rendering style
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and supporting it. Composition is an equally important component of the model
and we will be returning to this topic to do it proper justice in due course. The
reader should be thinking about simulation of the acetate stack, the separation
of colour and illumination, and all the many effects which a Rostrum camera is
capable of with real physical materials.

Also to be fair to 3D NPR techniques, there are aspects of lighting and pro-
portion that 3D models can give which are difficult to imagine for non-skilled
artists. In the future we want to explore the suitability of a system that com-
bines the 2D capabilities of our system with 3D shading results shown as a visual
reference only.
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Abstract. In this paper, we propose a novel mesh deformation approach via ma-
nipulating differential properties non-uniformly. Guided by user-specified mate-
rial properties, our method can deform the surface mesh in a non-uniform way
while previous deformation techniques are mainly designed for uniform mate-
rials. The non-uniform deformation is achieved by material-dependent gradient
field manipulation and Poisson-based reconstruction. Comparing with previous
material-oblivious deformation techniques, our method supplies finer control of
the deformation process and can generate more realistic results. We propose a
novel detail representation that transforms geometric details between successive
surface levels as a combination of dihedral angles and barycentric coordinates.
This detail representation is similarity-invariant and fully compatible with ma-
terial properties. Based on these two methods, we implement a multiresolution
deformation tool, which allows the user to edit a mesh inside a hierarchy in a
material-aware manner. We demonstrate the effectiveness and robustness of our
methods by several examples with real-world data.

1 Introduction

Mesh deformation has been widely studied in computer graphics. Most existing tech-
niques, such as freeform deformations, multiresolution techniques and recently intro-
duced differential domain methods are mainly designed to propagate the deformation
imposed by the user evenly into the influence region. However, real world object often
contains parts with different materials. Given outside forces, for a certain part how it de-
forms is determined by its corresponding material properties. Using material-oblivious
deformation techniques to edit objects with non-uniform material properties often pro-
duces implausible results with unnatural shape artifacts.

In this paper, we present a novel mesh deformation technique that allows the surface
mesh to be deformed in a non-uniform way. It is based on material-dependent Pois-
son equations and supplies non-uniform controls in both the propagation process and
the reconstruction process. The user is involved into the deformation process by set-
ting material properties to indicate non-uniform regions while the rest takes the default
value. These user-specified material properties guide the propagation of local trans-
formations as well as the reconstruction to absolute coordinates. Our method inherits
the advantages of differential domain methods and provides more flexible control of
the deformation process. In particular, surface details can be well preserved during the
deformation, and in a material-aware manner.

To facilitate the editing of large meshes, we further extend our non-uniform defor-
mation technique into a multiresolution version. Multiresolution techniques have been

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 54–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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proved to be powerful to process gigantic models. However, lack of material-dependent
mechanism prevents existing multiresolution deformation approaches to be adapted for
our purpose. Instead we propose a novel detail representation that transforms geo-
metric details between successive surface levels as a combination of dihedral angles
and barycentric coordinates. This detail representation is similarity-invariant while ex-
isting representations, such as local frame displacements [1, 2, 3] and displacement
volumes [4], are rigid-invariant. More importantly, the similarity-invariant detail rep-
resentation is fully compatible with material properties. Based on it, the user can edit
the simplified base mesh with our single-resolution non-uniform editor and obtain the
detailed result automatically.

The rest of this paper is organized as follows. After briefly reviewing the prior arts
with a focus on multiresolution techniques and differential domain methods in Sec-
tion 2, we present the non-uniform deformation technique in Section 3. In Section 4
we elaborate how to perform non-uniform deformations in the multiresolution context.
We demonstrate that more realistic results can be generated with the help of material
properties in Section 5. Finally, we draw conclusions and point out possible future work
in Section 6.

2 Related Work

Our approach builds on recently introduced differential domain methods [5] that repre-
sents surface details as differential properties. These approaches manipulate differential
properties and reconstruct vertex coordinates via solving a sparse linear system. They
have a valuable feature that geometric details can be well-preserved during the editing
process. Since differential properties are only translation-invariant, they must be prop-
erly transformed according to user interactions. The determination of local transforma-
tions can be achieved by either explicit interpolation [6, 7, 8] or implicit fitting [9]. Zhou
et al. [10] extend the Laplacian coordinates to the volumetric graph to address prob-
lems with large mesh deformations. However, all of these approaches regard the edited
mesh to be made up of a uniform material, thus lacking of additional control of the

(b) (c) (e)

(a)

(d)

Fig. 1. Mesh deformation with non-uniform control. (a) is the original model; (b) is the color plot
of user-specified materials, the green region is the handle and the blue region is the constraint; (c)
and (d) are results generated with and without non-uniform control respectively; (e) is the result
generated with the non-uniform propagation but with the uniform reconstruction.
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deformation process. Based on this observation, we extend differential domain me-
thods to supply position-dependent control by incorporating user-specified material
properties.

In the context of boundary constraint modeling, Botsch and Kobbelt [11] propose a
freeform modeling framework based on a family of linear differential equations. They
point out that the deformation in certain direction can be enhanced by explicitly shrink-
ing the underlying parameter domain in the same direction, which affects the discretiza-
tion of Laplacian operator consequently. Our method achieves more general control of
the deformation by allowing the user to specify per-face material properties, which im-
plicitly modifying the domain mesh in a non-linear manner. Material properties have
also been considered by Popa et al. [12] to control the propagation of local transfor-
mations. Our method differs in the way that we also consider material properties in the
reconstruction process (See Figure 1).

Multiresolution technique has been introduced into computer graphics community
for more than ten years [13]. Some approaches depend on semi-regular meshes [1]
while others work on irregular meshes directly [2, 3, 11]. Most multiresolution editing
techniques manipulate a static surface hierarchy, but vertex connectivity of the base sur-
face [14] or the hierarchy itself [15] can also be dynamically rearranged during large
deformations. These approaches share a common aspect that geometric details between
successive levels are encoded as local frame displacements. These displacements can
be scalars along the normal directions [16] or vectors [1, 2, 3]. Since local frame dis-
placements are handled individually, the reconstructed detailed surface may have unnat-
ural volume changes when the base surface endures large deformations. Consequently,
Botsch and Kobbelt [4] propose to use displacement volumes instead. Displacement
volumes are kept locally constant during the reconstruction process to preserve volume
and avoid local self-intersections. However, both local frame displacements and local
volumes do not support material-dependent reconstructions, making us exploring a new
detail representation.

3 Mesh Editing with Non-uniform Control

Previous differential domain methods deform surfaces in a material-oblivious way. In
this section, we present how to enhance these techniques by incorporating user-specified
non-uniform materials. With the non-uniform control mechanism, the deformation
process can be tuned in a finer granularity than previous differential domain methods.
Therefore, more realistic results can be generated easily.

3.1 Material-Dependent Poisson Equation

A simple form of Poisson equation have been successfully applied to the context of
mesh editing [6]. In physics a more general form of this elliptic equation is used to
describe the phenomena of steady-state heat conduction in a 3D solid medium. Com-
monly, the exact form in 3D Euclidian space is

ΔκT =
∂
∂x

(
κx
∂T
∂x

)
+
∂
∂y

(
κy
∂T
∂y

)
+
∂
∂ z

(
κz
∂T
∂ z

)
=−qv. (1)
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Here T is a steady-state temperature field, qv is the source term in the interior. And κx, κy

and κz are speed functions, namely thermal conductivities along three axial directions.
Therefore, different solid medium results different steady-state temperature field even
under the same set of boundary conditions. This basic observation motivates us to use
material-dependent control for differential mesh editing.

In this paper we only consider isotropic materials, i.e, κx = κy = κz = κ . When
κ is constant, Eq. (1) describes a uniform material case which is applied in [6]. In
the following we explore the Poisson equation defined on surfaces with non-uniform
materials, and the thermal conductivity κ is a scalar field on manifold surface.

Since we adopt triangle meshes as the underlying surface representation, we have
to discretize material-dependent differential operators on 2-manifold meshes. For this
purpose, we first briefly review the uniform case, i.e., the standard differential operators
used in [6]. Given a piecewise linear scalar field f (v) = fiφi(v) defined on a 3D mesh,
the gradient operator is defined as ∇ f (v) = fi∇φi(v), where fi is the scalar value on
vertex vi, φi(v) is the piecewise linear basis and∇φi(v) is its gradient. Given a piecewise
constant vector field w, the divergence of the vector field w is defined as

∇ ·w(vi) = ∑
T∈NT (vi)

AT∇φT
i ·w, (2)

where NT (vi) is the adjacent triangle set of the vertex vi and AT is the area of the triangle
T . Combining the gradient operator and the divergence operator, we get the Laplacian
operator

Δ f (vi) =
1
2 ∑

j∈Nv(vi)
(cotαi j + cotβi j)( fi− f j), (3)

where Nv(vi) is the adjacent vertex set of the vertex vi, αi j and βi j are two opposite
angles of the edge (vi,v j).

Now we extend the above procedure to the material-dependent case. We assume
that the material property κ is a piecewise constant function i.e., κ ≡ κT in a triangle
T . Note that the thermal conductivity terms are attached after first partial differential
operator in Eq.1. We thus define material-dependent gradient of basis φi(·) as κT∇φT

i .
In other words, the gradient of the pieces linear basis is resized according to its material
property. Then we can represent the material-dependent divergence operator as

∇κ ·w(vi) = ∑
T∈NT (vi)

κT AT∇φT
i ·w, (4)

and the material-dependent Laplacian operator as

Δκ f (vi) =
1
2 ∑

j∈Nv(vi)
(κ2

j−1 cotαi j +κ2
j cotβi j)( fi− f j). (5)

Given the guidance field w and boundary conditions fi = f ∗i ,vi ∈ ∂Ω , we get the
material-dependent Poisson equations:

Δκ f = ∇κ ·w. (6)
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3.2 Non-uniform Propagation

To ensure visually desirable deformation results, local transformations imposed by user
interactions must be propagated (weighted with a fall-off function) into the region of in-
terest (ROI) smoothly. Inspired by [7], we consider the material-dependent propagation
as a analogy of the heat conduction in a non-uniform medium. Here, material prop-
erties are interpreted as their thermal conductivity. The scalar field function f guided
the propagation process can be computed by the following material-dependent Laplace
equation:

Δκ f = 0, (7)

where Δκ is material-dependent Laplacian operator (See Eq. 5).
Actually, the propagation field f is equivalent to the steady-state temperature field

with boundary temperatures set to be 1 on handle vertices and 0 on constrained vertices.
f is also the minimizer of the following energy function:

min
f

∫
Ω
‖κ(ω)∇ f ‖2dω , (8)

where κ(ω) is the user-specified material property as thermal conductivity. Intuitively,
if the user wants to keep some regions as rigid as possible, he/she can set the material
properties of these regions with a large value. On the contrary, if the user expects certain
regions to be freely deformed, he/she can set them with a small value.

After the propagation field f is solved, we use it as the fall-off function to weight
local transformations. For rotation transformation, we use f to multiply the rotation
angle while for scaling transformation, we adopt f to linearly interpolate between the
scaling ratio r and 1 (no scale). Then we combine these local transformations together
according to the user-selected transformation option.

3.3 Non-uniform Reconstruction

The propagation process assigns a local transformation to each triangle and we obtain
guidance vectors by applying it to original gradient vectors. Unlike [6], we consider
material properties in the reconstruction process as well. The Poisson mesh solver used
in [6] can be regarded as a special case of our material-dependent one. Our method is
equivalent to the minimization of the following energy:

min
f

∫
Ω
κ2(ω)‖∇ f −w‖2

dω . (9)

Note that the material-dependent Laplacian operator (cf. Eq. 5) defined on a domain
mesh M with a non-uniform material can be regarded as a standard one (cf. Eq. 3)
defined on another domain mesh M

′
with a uniform material. The relationship between

M and M
′

lies in for each edge (vi,v j), the following equation is satisfied:

κ2
j−1 cotαi j +κ2

j cotβi j = cotα
′
i j + cotβ

′
i j. (10)

From this aspect, we can think of that material properties act as the modifying factors
of the original domain mesh M.
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3.4 The User Interface

We adopt the handle-based editing metaphor. During editing, the user selects the region
of interest (ROI) and deforms the mesh by manipulating a small region inside the ROI,
called handle. The user manipulates the handle with a 9 degree-of-freedom manipulator.
Besides this editing interface, we design a simple pick-and-drag interface that only takes
the pure translation of the handle as the input. In addition, user can paint different parts
of ROI with different colors that represent corresponding materials. After the user drags
the handle, our method automatically induces the necessary rotation and scaling for the
ROI as well as the handle itself.

EC H

H'

D

Fig. 2. Illustration of the determination of local transformations from the handle movement

The basic idea of determining the rotation and scaling from the handle movement
comes from the Hermite interpolation, as shown in Figure 2. Let C denotes the center
of the boundary connecting constrained vertices and free vertices, H denotes the center
of handle vertices and H

′
denotes the new center of handle vertices after translation.

Note that the three points C, H and H
′

can uniquely determine a plane provided they
are not degenerate. The rotation axis a can be easily determined by the cross product

of two vectors
−→
HC and

−−→
H
′
C. The scaling factor s is defined to be the ratio between

the length of
−−→
H
′
C and that of

−→
HC. The left problem is to define the rotation angle. We

consider the circle passing through two points C and H
′
and tangent to the vector

−→
HC at

the point C. Then, we define the rotation angle θ to be 	 (HEH
′
), where the point E is

the intersection of the line
−→
HC and the perpendicular bisector of the line

−−→
H
′
C. Actually,

the angle θ is twice the angle 	 (HCH
′
). Therefore, we do not need to construct the

circle at all. Provided the three points C, H and H
′

are coplanar, we simply ignore the
rotation transformation. We supply several options to support different combination of
these local transformations. These estimated local transformations are propagated into
the ROI (See Section 3.2) to generate guidance fields and the deformed surface mesh is
reconstructed with Poisson equations (See Section 3.3).

4 Multiresolution Non-uniform Editing

The multiresolution paradigm is an efficient way to deforming large meshes with com-
plex geometric details. Typically, a multiresolution editing framework consists of three
major components - the decomposition component, the reconstruction component and
the deformation component. Since the non-uniform control of mesh deformation is the
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focus of this paper, in this section we show how to achieve this goal in the multires-
olution scenario. Note that the decomposition component is independent to material
properties as a pre-processing step while the rest two are material-dependent.

4.1 Mesh Decomposition and Detail Encoding

Aiming at editing large meshes, we employ the Progressive Mesh (PM) [17] to rep-
resent the surface hierarchy. A PM is created by recursively applying edge-collapse
operations to a detailed input mesh. In a PM representation, the edge-collapse and the
vertex-split are atomic operations for the decomposition component and the reconstruc-
tion component respectively. Note that in both operations, only the central one or two
vertices’ coordinates are modified while all the rest do not change their position. This
observation is particularly important since it allows us to localize the detail encoding
and decoding procedures only with respect to the local stencil of a given edge.

After the surface hierarchy is created, geometric details between successive lev-
els need to be encoded. Geometric details are typically defined as the difference be-
tween the original geometry and the approximated smoothed geometry. We consider
the membrane surface as the smoothed approximation, which can be obtained by solv-
ing a Laplace equation defined on the local stencil of the given edge e, denoted as L(e)
with Dirichlet boundary conditions given by vertex coordinates on the boundary ∂L(e).
Since only two free vertices in the local stencil, the corresponding Laplace equation is
a linear system with two equations:[

a b
b c

][
v1

v2

]
=
[

u1

u2

]
, (11)

where a, b, c come from Eqn. 3 and u1 and u2 are boundary conditions.
We adopt the original geometry to define the Laplacian operator so that we can

smooth the geometry without affecting the underlying parameterization [18]. The cor-
responding weights used to define the Laplacian operator can be stored or computed on
the fly, trading off speed versus memory. After the smoothed approximation is solved,
we define the detail coefficients between a pair of triangles coming from the original
geometry and the smoothed approximation respectively (see Figure 3).

Generally speaking, locating one detail triangle T1 = (w1,w2,w3) with respect to the
corresponding base triangle T2 = (v1,v2,v3) can be decomposed into two steps, which
are summarized by nine independent parameters (x,y,z,θ1,θ2,α1,β1,α2,β2) (See Fig-
ure 3). The first step aligns the vertex w1 to the vertex v1 and the offset vector is (x,y,z).
The second step rotates the triangle T1 along the axis dir defined by the cross product
of the normal vector n2 and n1 so that both triangles are co-planar. The rotation angle
θ1 is equivalent to the dihedral angle between the two triangles. For the sake of the
reconstruction process, we need to encode the axis dir with respect to the base triangle
as well. Since the vector dir is co-planar with the base triangle T2, it can be located by
rotating the vector v2− v3 around the axis n2 with a rotation angle θ2. After the sec-
ond step, we get the rotated detail triangle T

′
1 = (w

′
1,w

′
2,w

′
3) that lies in the same plane

with triangle T2. Now we can record the coordinates of vertices w
′
2 and w

′
3 with re-

spect to the triangle T2 = (v1,v2,v3) and results in the rest four barycentric coordinates
(α1,β1,α2,β2).
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Fig. 3. Encoding a detail triangle T1 w.r.t. a base triangle T2

Actually, since our reconstruction method can automatically determine the position
of the detailed triangle from the base one, we do not need to record the offset vec-
tor (x,y,z). Therefore, our similarity-invariant detail coefficients consist of the rest six
parameters (θ1,θ2,α1,β1,α2,β2).

4.2 Detail Reconstruction

After the user performs a material-dependent deformation on a base mesh, we need
to reconstruct pre-recorded geometric details with respect to user-specified material
properties. There are two issues concerning material-dependent detail reconstruction
process. The first one is that material properties specified on the low-resolution mesh
should be up-sampled. The second one is each refinement step should take the (up-
sampled) material properties into account. We present our solutions in the following
paragraphs in details.

Specifically, after a vertex-split operation is performed, we immediately up-sample
the material properties. The material property of a newly-split triangle is set to be the
weighted average of its adjacent triangles. We adopt the invert-distance as the weighting
scheme. Then, a three-step reconstruction process is employed to reconstruct geometric
details from previously encoded detail coefficients. The first step is to generate the
approximated smoothed geometry by material-dependent Laplace equation(Eqn. 11)
with new Dirichlet boundary conditions given by the deformed base surface. Now we
can retrieve the detail triangles from the corresponding base triangles one-by-one. In
fact, the second step is carried out in the reverse order of the encoding process. First,
we determine the intermediate detail triangle T

′
1 = (w

′
1,w

′
2,w

′
3) using the barycentric

coordinates (α1,β1,α2,β2) with respect to the base triangle T2 = (v1,v2,v3). Note that
the vertex w1 is superposed on the vertex v1. Then, the axis dir is obtained by rotating
the vector v2−v3 around the axis n2 with the rotation angle θ2. Finally, the intermediate
detail triangle T

′
1 is rotated around the axis dir with the rotation angle −θ1, resulting in

the detail triangle T1.
Since the detail triangles have been extracted from the corresponding base triangles

independently, the third step is to glue them together and generate the consistent vertex
position for the central two vertices come from the vertex-split operation. To serve
for the purpose, a local material-dependent Poisson equation is employed. We gather
gradient vectors from broken detail triangles as the guidance field, which determines
the vertex position together with the new boundary conditions:
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[
aκ bκ
bκ cκ

][
v1

v2

]
=
[

u
′
1 + w1

u
′
2 + w2

]
, (12)

where aκ , bκ and cκ come from Eqn. 5, u
′
1 and u

′
2 are new boundary conditions, w1 and

w2 are the material-dependent divergence of vertex v1 and v2 respectively.
Although multiresolution techniques [3] have been employed in the Poisson-based

mesh solver [6] for acceleration, our framework differs in the way that it can auto-
matically adapt geometric details to a scaled base surface via incorporating similarity-
invariant detail representation. Moreover, our detail reconstruction method is particu-
larly suitable to material-dependent multiresolution editing while previous methods are
generally difficult for this purpose.

5 Results and Discussions

Based on techniques presented in Section 3 and Section 4, we implement a multiresolu-
tion editing tool for surface meshes. It can work on the single-resolution mode as well
as the multi-resolution mode. Our editing tool can run interactively for moderate models
with around 20k vertices in the single-resolution mode. In the multi-resolution mode,
comparing with local frame displacements, our material-aware detail-reconstruction
runs about 10-20% slower.

When editing CAD models, material properties can help certain feature regions to be
better preserved. Figure 1(c) demonstrates such a task. The central feature region of the
Mechpart model need to be preserved during the resizing of the main body. We achieve
this goal by painting these feature regions with a large material valued 5 and perform
non-uniform deformation with our technique.

Changing the value of material properties can lead to different deformation effects
under the same user interaction. Figure 4 demonstrates several results obtained with
different material settings. The default value of material properties is set to 1 and we
have found the range [1,5] is enough to simulate most of real world material-dependent
deformations. We incrementally paint material properties on the crus part and the foot
part with the value 2, and on the thigh part with the value 5. At the same time, we get
more and more realistic results as shown in Figure 4 (b), (c) and (d).

(a) (b) (c) (d)

Fig. 4. Deforming the right leg of the Man model with different material settings
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(a) (b)

(c) (d)

Fig. 5. The ability of similarity-invariance is over-looked in existing detail representations

Figure 5 illustrates and compares results obtained with different detail representa-
tions. We simplify the Elephant model (Figure 5 (a)) and reconstruct geometric details
from a uniformly shrunken base mesh (Figure 5 (b)). This experiment is fairly sim-
ple, but we can clearly distinguish the difference between the result generated with our
method (Figure 5 (c)) and that with local frame displacement (Figure 5 (d)). Note that
fine details around the elephant’s ear are not well-preserved in Figure 5(d) due to the
lack of adaptation to arbitrary scaling. Figure 5 (c), (d) are zoomed in two times for
better visualization.

Figure 6 shows the Armadillo model kicking a soccer, which is generated with the
multiresolution editing mode. We decimate the original model (170k vertices) to a
simplified version (15k vertices). We perform three non-uniform edits on the both hands
and the right leg of the simplified model. The detailed edited version is automatically
reconstructed by our tool with the help of similarity detail coefficients and material
properties. See our video submission for the whole editing process.

(a) (b) (c) (d)

Fig. 6. After applying three non-uniform deformations, the Armadillo model (a) is now ready to
kick a soccer (b). (d) is the visualization of material properties on the detailed mesh, which are
automatically up-sampled from material properties specified by the user on the base mesh (c).
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6 Conclusions and Future Work

In this paper, we propose a novel technique to deform the surface mesh non-uniformly
by incorporating user-specified material properties. This goal is achieved by overload-
ing previous material-independent discrete differential operators and Poisson equations.
Moreover, we allow multiresolution mesh editing in a material-aware manner by incor-
porating a novel similarity-invariant detail representation. Several real world examples
demonstrate that plausible material-dependent deformation results can be generated by
our method easily. As pointed out in Section 3.3, designing a tailored domain mesh for
a specific deformation task is a valuable research direction.
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Abstract. This paper presents a novel skeleton-based method for de-
forming meshes, based on an approximate skeleton. The major difference
from previous skeleton-based methods is that they used the skeleton to
control movement of vertices, whereas we use it to control the simplices
defining the model. This allows errors, that occur near joints in other
methods, to be spread over the whole mesh, giving smooth transitions
near joints. Our method also needs no vertex weights defined on the
bones, which can be tedious to choose in previous methods.

1 Introduction

Mesh deformation is widely used in computer animation and computer modeling.
Many techniques have been developed to help artists deform body shapes for 2D
and 3D characters, such as free-form deformation (FFD), differential methods,
simplex transformation methods, and skeleton-based methods.

The latter use a ‘skeleton’, in which two or more ‘bones’ meet at each joint, to
control shape deformation. This allows intuitive control, naturally describing the
way in which many objects, e.g. animals, deform: the muscles and other tissues
follow motions of the underlying bones. Such methods are usually controlled by
an user-specified skeleton, rather than the exact medial axis. However, traditional
skeleton-based methods are widely criticised for requiring a tedious process of
weight selection to obtain satisfactory results. Seemingly, there is no criterion
for weight selection which is universally applicable to all cases.

This paper presents a novel mesh deformation method which combines the
skeleton-based method and the simplex transformation method, with two main
differences from traditional skeleton-based methods. Firstly, we use the skeleton
to drive the transformation of simplices, rather than vertices as in previous
methods. Secondly, we avoid the use of any weights, yet our approach still gives
high quality results.

Our approach can be applied to 2D and 3D meshes. Our inputs are the initial
mesh, the initial skeleton—a set of straight line segments connected together at
joints, and the deformed skeleton. The output is the deformed mesh.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 66–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The main steps of our method are as follows:

– Decide which bone of the skeleton controls each simplex.
– Find the transformation relating the initial and final position of each bone,

and apply it to the simplices under its control.
– Use optimisation to stitch the simplices together while keeping each simplex

transformation as close as possible to the value calculated above.

Our main contribution is to provide a skeleton-based deformation method
which does not require a tedious weight adjustment process, yet which gives
very good results. Our key new idea is to use the bones to control mesh sim-
plices instead of mesh vertices, and hence to take advantage of the connectivity
information between vertices. To achieve this, we also present a segmentation ap-
proach to determine the correspondence between mesh simplices and the bones.

2 Related Work

One of the best known methods for carrying out deformation, widely used in
commercial software, is FFD. The classic FFD method [1] encloses a shape in
an elastic control lattice, such as a Bézier volume, or a more general lattice [2],
then deforms the volume by moving the control vertices: as a result, the shape
inside is deformed.

Differential deformation methods have recently become popular [3, 4, 5, 6].
Laplacian coordinates [3] are used to represent surface detail as differences from
the local mean. Poisson mesh methods [6] manipulate gradients of the mesh’s
coordinate functions and then reconstruct the surface using the Poisson equation.

Simplex transformation is another approach to deformation and morphing.
The use of global transformations combined with matrix decomposition was
proposed in [7] as a means to carry out morphing. This method was extended to
local transformations by [8], in which meshes are stitched using an optimization
method. Simplex transformation has also been used with surface triangle meshes
to perform deformation learnt from existing examples [9, 10].

None of the above methods take into account the way in which shapes’ features
are naturally controlled. However, the shape and movement of an animal is
determined by its skeleton, so the latter provides an intuitive approach to control
the deformation of animal-like shapes. Such concepts are also referred to as
skinning, envelopes or skeletal subspace deformation [11].

Existing skeleton-based algorithms define the final position of a point as a
weighted sum over its initial position projected into n moving coordinate frames,
corresponding to the n bones. Its position p′ after deformation is:

p′ =
n∑

k=1

wkpMk, (1)

where p is its initial position, Mk is a transformation matrix that transforms
bone k from its initial position to its new position, and wk is the weight of
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this point relative to bone k. Because each point is controlled by several bones,
careful choice of weights wk is needed to avoid self-intersections, especially near
the joints, and to keep the surface smooth. Appropriate weight selection is an
extremely tedious problem if done manually. Much research has focused on how
to calculate appropriate weights [12, 13], or how to learn weights from exam-
ples [11, 14], but no single method works well in all cases [15]. As a result, [15]
proposes that each component of the matrix Mk is given a separate weight to
provide maximum flexibility, instead of a single weight for the whole matrix.
Clearly, this means even more weights must be adjusted, To do so, this method
calculates weights from a class of basic deformation shapes.

The underlying problem here is that each point is updated independently
using Eqn. 1, which requires the wi to be carefully chosen to avoid gaps and
artifacts. However, the points are embedded in a shape, and are related; the
mesh provides connectivity information, but it is not directly used. We do so, to
our advantage. By retaining skeleton-based control, we still have a natural and
easily-understood approach. By using the connectivity information, we avoid the
above weight adjustment problem and instead solve a linear equation to perform
a similar task. This simpler approach still gives high quality results.

There has been much work on skeleton construction and segmentation, ei-
ther independently, or doing both at once [16, 17, 18, 19]. We focus on how to
segment the model from a given skeleton, as often artists wish to create the
skeleton themselves. [19] proposed creating the skeleton and segmentation itera-
tively, but this changes the skeleton during iteration. [17] showed how to derive
a segmentation from a given skeleton using space-sweeping method, but this
does not work well if the skeleton is coarse. We give a new effective method to
segment the model which considers both spatial distance, and the shortest path
distance in the mesh, between each simplex and the bones.

We provide basic concepts concerning simplex transformations and skeletons
in Section 3. We first apply our method to 2D triangle meshes in Section 4, then
3D triangle meshes in Section 5. We give conclusions in Section 6.

3 Simplex Transformations and Skeletons

Simplices are triangles in 2D and tetrahedra in 3D. Given two simplices S1 and
S2 in some space, there exists a unique transformation that changes S1 into S2.
In 2D, this can be written as: vi = Rui + T , where the matrix R represents
rotation and shape change information, T is a translation vector, ui are the
vertices of S1, and vi are the corresponding vertices of S2. R and T can be
calculated from the vertex coordinates of S1 and S2, by first finding R using
R = V U−1, where in 2D, V =

[
v1 − v3 v2 − v3

]
, U =

[
u1 − u3 u2 − u3

]
, and

in 3D, V =
[
v1 − v4 v2 − v4 v3 − v4

]
, U =

[
u1 − u4 u2 − u4 u3 − u4

]
. Having

found R, T can now be calculated.
The mathematical skeleton, or medial axis, is generally quite complex even for

simple 3D shapes, and is sensitive to small perturbations of the shape boundary.
It can also contain sheets rather than lines. For simplicity, most skeleton-based
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deformation methods use an approximate skeleton to control deformation, con-
sisting of articulated straight lines or bones. As noted, often, artists prefer to
create the skeleton by hand since this is easy to do interactively, and allows
appropriate control. The skeleton can also be generated automatically [16, 17].

4 2D Triangle Mesh Deformation

We first consider the case of deforming a 2D triangle mesh in the plane.

4.1 Correspondence Between 2D Triangles and Bones

In our approach, each simplex is controlled by one bone, so we need to segment
the model according to the given skeleton: deciding which bone controls each 2D
triangle is the first step of our algorithm. Only after doing this can we decide
how each triangle should deform. We determine the controlling bone as follows:

1. Calculate the minimum effective distance with penalty from the simplex to
those bones for which it is within range.

2. Decide if the minimum effective distance with penalty is less than a threshold.
(a) If so: the bone with the minimum effective distance with penalty controls

this simplex.
(b) Otherwise: calculate the shortest path distance from the simplex to those

bones for which it is within range. The bone with the shortest path
distance is the control bone.

We now explain the details. Normally, a skeleton lies within the volume defined
by the mesh. However, we require that free ends of bones (i.e. ends not connected
to other bones) must lie just outside the mesh, to ensure that each bone properly
controls all the triangles in its control domain, as explained later.

Consider Fig. 1. AB, AC, and AD are three bones connected at the articulat-
ing joint A. We use range lines to define the border of each bones’ control domain.
The control domain for each bone determines which simplices that bone may
control. If the centroid of a simplex lies within a given bone’s control domain,
the bone is a candidate for the control bone for that simplex; note that the

Fig. 1. Range lines Fig. 2. Range planes
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centroid of a given simplex may lie within the control domain of several bones.
First, we construct range lines for each bone. For free ends of bones, like B, the
range lines are perpendicular rays, like BG and BH. Where several bones meet,
we determine the adjacent bones in both clockwise and anticlockwise directions,
and draw bisecting rays between the current bone and the adjacent bones to give
the range lines, like AE and AF . Each such range line divides the plane into 2
parts, one on the same side as the bone, and one on the opposite side. Given
any point (or simplex), and a bone, if the point (or centroid of the simplex) lies
on the same side as the bone for all of the bone’s range lines, we say the point
(or simplex) is within the range of this bone. We can now determine for which
bones each simplex is within range.

If a given point J is within the range of some bone, we define its effective
distance to the bone as follows (see Fig. 1). We find the corresponding point I
on the bone AB as explained next; we call line IJ an effective line for bone AB.
The direction of ray IJ is found by interpolating the normals of range lines AE
and BG using Eqn. 2 where N denotes the normal to a line:

[(1− tI)NAE + tINBG]× [(1− tI)vA + tIvB − vJ ] = 0. (2)

Here, t parameterises the bone from 0 at A to 1 at B; tI is its value at I. Solving
Eqn. 2 for tI gives the position of point I. We call the distance from J to I the
effective distance from point J to bone AB, or from the corresponding simplex
if J is its centroid.

Deciding which bone has minimum effective distance from a simplex is not by
itself sufficient to decide which bone should control a simplex. For example, if
a man stands with hands by his sides, a point on his waist may have a smaller
effective distance to a hand bone than to any spine bone, but clearly waist
points should be controlled by spine bones. We overcome this problem by using
a penalty δ, equal to twice the overall mesh size. We determine how many outer
edges of the triangulation the effective line IJ intersects, by constructing a binary
tree for the whole mesh using ideas from [20]. We now define the effective distance
with penalty deffpen as deffpen = deff +nδ, where n is the number of intersections,
and deff is the effective distance.

Suppose point J is within the range of several bones, each giving a value for
deffpen. If deffpen from J to some bone is smaller than δ, i.e. IJ does not intersect
the boundary of the mesh, we say point J can be seen from the bone. If J can
be seen by at least one bone, we select the bone that has the minimum deffpen
as the controller of point J , and hence the corresponding simplex.

If the minimum deffpen of J is larger than δ, this means IJ intersects the mesh
boundary. To determine the controller of point J , we calculate the shortest path
from J to each join, using Dijkstra’s algorithm across the mesh, after first finding
the nearest mesh vertex to J and to the end of each bone. (This distance is not
sensitive to the exact connectivity of the mesh). We select the bone with the
minimum shortest path distance, amongst the bones that the point is within the
range of, as the controller of the point. The red lines in Fig. 1 show the shortest
paths from J to bone AB and to bone DK. The controller of point J is bone
DK, since the shortest path distance from J to bone DK is smaller.
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(a) (b) (c) (d) (e)

Fig. 3. (a) 2D Cartoon character (b) Skeleton (c) Skeleton control domain (d) De-
formed 2D skeleton, (e) Deformed cartoon character

Fig. 3(a) shows a 2D cartoon character, Fig. 3(b) shows an appropriate 2D
skeleton and Fig. 3(c) shows, using corresponding colors, which bone controls
each triangle, as determined by the method above.

4.2 Transformation for 2D Bones

Given the initial skeleton, and user-determined deformed skeleton, the transfor-
mation matrix for each bone can be calculated. Fig. 4 shows a bone at A1B1 in
the initial skeleton, and at A2B2 in the deformed skeleton. Normally the bone
transformation matrix does not involve scaling, but later we show how to take
it into account if required.

We translate A1B1 so that A1 is at the origin, the translation vector being
T1. A1B1 is then rotated around the origin to lie in the same direction as A2B2,
θ being the anticlockwise angle of rotation. We then translate A1B1 so that A1
coincides with A2, the translation vector being T2. This transformation process
can be expressed as v

′
= R′(u′ +T1)+T2, where u′ is a point on the bone before

deformation, and v′ is the corresponding point afterwards. The transformation
matrix of this equation is R′, given as usual by

R′ =
[

cos θ − sin θ
sin θ cos θ

]
. (3)

If scaling is desired, we translate A1 to the origin as before, then rotate A1B1
to lie along the x axis using a rotation R1. we then scale A1B1 until it has the
same length as A2B2, using a scaling matrix S:

Fig. 4. 2D Bone transformation Fig. 5. 3D Bone transformation
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S =
[
α 0
0 β

]
. (4)

Here, α represents the scaling along the direction of the bone, determined by
the relative lengths before and after deformation, whereas β represents scaling
in the direction perpendicular to the bone. The animator will usually choose this
to be 1.0, or the same as α, according to his needs. Finally we rotate A1B1 into
the same orientation as A2B2, using a matrix R2 and translate A1B1 until A1
coincides with A2 as before. Overall, we can write v′ = R2SR1(u

′
+ T1) + T2

where the transformation matrix in this step is given by S′ = R2SR1.
We can write the overall transformation matrix between bone A1B1 and A2B2

as the combination of a rotation part and a scaling part:

M ′ = S′R′. (5)

4.3 2D Triangle Mesh Deformation

If every triangle were to transform rigidly in the same way as its controlling
bone, gaps would arise between the triangles controlled by adjacent bones, caus-
ing tears in the object. We must enforce vertex consistency requirements to
prevent this. We do so using an optimization method, while trying to keep each
simplex transformation as close as possible to that of its control bone. For sim-
plicity, as in previous work on simplex transformations [8, 9], we only take into
account the non-translation part of the transformation, and in practice, doing so
provides good results for the deformed shape. An error function is used to repre-
sent the difference between the actual simplex deformation and the deformation
determined by the control bone:

E =
n∑

i=1

Ai‖Mi −M ′
i‖2F , (6)

where F is the Frobenius norm, Ai is the area of the ith triangle, n is the
number of simplices in the mesh, Mi is the actual transformation matrix for the
ith triangle, given by Section 3 and M ′

i is the ideal transformation matrix of this
triangle, given in Section 4.2. We minimize E to get the best deformation results
while ensuring mesh connectivity: the variables in the minimization problem are
the vertex coordinates of the deformed mesh.

This classical quadratic optimization problem can be transformed into a linear
equation by setting the gradient of E to zero, giving

K ′X ′ = d′. (7)

This set of equations can be separated into 2 independent groups corresponding
to the x and y coordinates of the deformed mesh. Furthermore, the coefficient
matrix for each group is the same, providing a more efficient solution than by
treating them as a single system: KX = dx, KY = dy. Here X and Y are the
x and y coordinate vectors of the deformed mesh, of size m, where m is the
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number of vertices in the mesh. K is a sparse m×m matrix, and dx and dy are
vectors with dimension m. Generally, m is small enough that LU-decomposition
provides an efficient solution method. In order to ensure a unique solution, at
least one vertex position should be fixed in advance.

Fig. 3(d) shows a deformed skeleton and Fig. 3(e) the resulting deformed mesh
for the cartoon character in Fig. 3(a). The character’s legs are scaled using a
factor of 2 both along and perpendicular to the the bone, while other parts are
unscaled. The corresponding mesh has 251 vertices, and 0.12s were required to
calculate the result on a 2.4Ghz Pentium 4 machine.

Local self-intersection seldom happens in our method, because the errors near
the joints, which often arise in traditional skeleton-based methods, are spread
from the joints to the neighboring domain by our optimization method.

5 3D Triangle Mesh Deformation

The method used for a 2D triangle mesh can also be extended to a 3D volume
tetrahedron mesh, but in practice surface triangle mesh models are far more
widely used. Furthermore, the latter have far fewer elements than tetrahedron
models and thus require much lower processing times.

5.1 Correspondence Between 3D Triangles and Bones

As in 2D, we use the minimum effective distance with penalty and the minimum
shortest path distance to decide the controlling bone for each triangle.

We now create range planes for bones in 3D, instead of range lines in 2D. In
Fig. 2, AB, AC, AD are three bones connected at joint A. At free ends of bones,
such as B, we create a range plane like P1, through B, and perpendicular to
bone AB. At other ends of bones, such as A, we create a bisection range plane
like planes P2 and P3 corresponding to each other bone meeting at this joint.
Each bone may now have a varying number of range planes, unlike the 2D case
where each bone has exactly 4 range lines.

Again we calculate the effective line from point J to bone AB. We create a
plane P4 that passes both through bone AB and point J . This plane intersects
the range planes in many rays. At each end of the bone, we select the nearest
ray to point J as the range line: these are AE and BG in the example. Thus,
at each joint of the bone we now have one range line. We now interpolate the
effective line from the range lines as before.

Having found the effective line IJ , we can calculate the effective distance with
penalty between the triangle S and the bone as in 2D. The intersection count
n in 3D in computing the effective distance with penalty does not include the
current triangle itself. If the minimum deffpen of J is smaller than δ, we can
decide the controlling bone for this triangle directly by selecting the bone with
minimum deffpen. If the minimum deffpen of a triangle is larger than δ, we calculate
the shortest path distance across the mesh from the triangle to those bones for
which it is within range. The bone with minimum shortest path distance to the
triangle is selected as its controller.
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(a) (b)

Fig. 6. Skeleton (a) and control domain (b) of Dinopet

Fig. 6(a) shows a skeleton for the Dinopet, and Fig. 6(b) shows the control
domain of each bone.

5.2 Transformation for 3D Bones

We now consider how to calculate the transformation matrix for bones in 3D. In
Fig. 5, suppose A1B1, A2B2 represent a bone in 3D before and after deformation.
We translate A1B1 so that A1 coincides with the origin. We then create a unit
vector N based at the origin, perpendicular to A1B1 and A2B2 and rotate A1B1
around N until A1B1 is in the same direction as A2B2; let θ be the rotation
angle. Finally we translate A1B1 until A1 coincides with A2. The transformation
matrix R′ (ignoring the translation) can be calculated in a similar way to the
2D case and is found to be:

R =
a2 + (b2 + c2)cosθ ab(1 − cosθ) + csinθ ac(1 − cosθ) − bsinθ

ab(1 − cosθ) − csinθ b2 + (a2 + c2)cosθ bc(1 − cosθ) + absinθ
ac(1 − cosθ) + bsinθ bc(1 − cosθ) − absinθ c2 + (a2 + b2)cosθ

(8)

where N = (a, b, c). If scaling is also required, we can determine the scale matrix
S as in Section 4.2; the transformation matrix has the same form as Eqn. 5.

5.3 3D Triangle Mesh Deformation

The 3D triangle mesh case is very different from the 2D triangle mesh case,
because a triangle is not a simplex in 3D, nor is there a unique transformation
matrix for changing one triangle into another. [9] gave a clever way of extend-
ing simplex transformation methods to a 3D triangle mesh by constructing a
tetrahedron for each triangle. We follow these ideas, except that we put the new
vertex above the centroid of the triangle rather than over one of its vertices.

We add a fourth vertex to each triangle of both the initial and deformed mesh
to give a tetrahedron. For the initial mesh, the fourth vertex is added in the
normal direction over the triangle’s centroid. Let v1, v2, v3 be the vertices of a
triangle on the initial mesh. The fourth vertex is placed at

v4 =
(v1 + v2 + v3)

3
+

(v2 − v1)× (v3 − v2)√
(v2 − v1)× (v3 − v2)

.
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Fig. 7. Armadillo model

Fig. 8. Dinopet model

Table 1. Statics and timing

Armadillo Dinopet

Mesh Vertices 50852 13324
Segmentation time (seconds) 22.26 3.12
Deformation time (seconds) 68.63 7.83

Note that the above equation is only used to calculate v4 in the initial mesh. v4
in the deformed mesh are determined by the optimisation process.

The 3D triangle mesh is now deformed using the same process as for the 2D
triangle mesh in Section 4.3; Eqn. 7 in 3D separates into 3 independent groups:
KX = dx, KY = dy, KZ = dz. The dimension of the vectors in Eqn. 7 is now
m + k for a mesh with m vertices and k faces. We use the conjugate gradient
method to efficiently solve these large sparse linear equations.

Figures 7–8 illustrate 3D deformation results obtained using our technique.
The first model in each Figure is the original model; others are deformed results
by our method. All results were calculated on a 2.4Ghz Pentium 4 machine.
Table 1 shows the timings of 3D models presented in this paper.

6 Conclusions

We have presented a novel mesh deformation method which combines the
skeleton-based and simplex transformation approaches. We first determine the
transformation for bones of the skeleton, and then transfer each bone’s
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transformation matrix to those simplices it controls. The correspondence
between simplices and bones is determined automatically. We use an optimiza-
tion method to eliminate gaps between triangles controlled by different bones,
while keeping the mesh deformation as close as possible to the deformation of
the skeleton.

The main advantage over earlier skeleton-based methods is that we directly
use the connectivity information in the mesh while they do not. As a result, our
method is much simpler since no weight selection nor any arbitrary parameters
are needed, yet we can achieve high quality results.

We currently only take into account the non-translation part of the transfor-
mation. Although this provides good shape results, we need to arbitrarily fix
one vertex to decide the final position of the deformed model. It would be more
useful to make the deformed mesh automatically follow the deformed skeleton,
and we are investigating including the translation in the Equation system as a
way of doing this.

Our method can be easily adapted to control deformation by moving a few
chosen line segments or vertices embedded in the object, rather than a skeleton.
It can also be extended to twist part of the mesh if required, by defining twist
axes. Space precludes demonstration of these capabilities.
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Abstract. To edit or create the animation of a 3D character model has
always been an important but time-consuming task, since the animator
usually needs to set up the character’s skeleton, paint its binding weights,
and adjust its key-poses. Hence, we propose an animation transfer system
in this paper to take a well-edited character animation as the input.
Then, the system can transfer the skeleton, binding weights, and other
attributes of the given character model to another static model with
only few corresponding feature points specified. The transferring process
is based on a mapping between the space around two character meshes.
In this paper, the mapping is called consistent volume parameterization,
which inherits consistent surface parameterization. Hence, the animator
can start to create a skeleton-driven animation for the new character
model without any prior setting. Moreover, our system is also capable
of cloning a skeleton-driven animation to several other character models
which can be used in a crowd animation.

1 Introduction

3D virtual characters are getting widely used in movies with special visual effects,
computer generated animations, computer games, etc. Animator brings a 3D
character model to life by making plausible and lifelike motions, and one of the
common solutions is to set up the character’s skeleton, paint its binding weights
on the surface, and adjust its key-poses. The skeleton of a character model
consists of a set of bones, which connect each other with a set of joints. Its
binding weights define the binding relationship between its skin (surface of the
model) and the skeleton. This relationship specifies the degree of dependencies
of each vertex on the surface to a set of bones of the skeleton. After the skeleton
and binding weights are well set up, the animator can edit the key-poses by
adjusting the skeleton, then the mesh surface of the character model is deformed
with the adjusted skeleton according to the binding weights. By interpolating
the key-poses, a skeleton-driven animation is generated.

Besides creating an animation of one 3D character model, a crowd animation,
which includes vast amount of 3D character models in a scene, is also widely
used, such as hundreds of guests dancing simultaneously in a royal hall, or hun-
dreds or thousands of soldiers fighting in a battle. As we mentioned above,
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the process of creating or editing a character animation is a time-consuming
task. To create a crowd animation including huge amount of different charac-
ter models is thus extremely tedious. Although we can create only few char-
acter models and repeatedly put the same set of models everywhere in the
scene to form the crowd animation, this method leads to low quality of visual
feelings.

Therefore, in this paper we propose a system to transfer the skeleton of a
given 3D character model to any other models which originally have only mesh
data. Furthermore, the motion data well-edited previously for the given charac-
ter model could also be transferred to the target models, such as binding weights,
key-poses, and texture coordinates, as shown in Fig. 2. Hence, our system makes
it much easier to create a huge amount of character models performing the same
actions in a scene. Besides, the animators can also import the transferred skele-
ton, binding weights, and other data to an animating software for further editing.
The whole system is fully automatic except few feature points are specified by
the user to establish the correspondence between the source model and the target
one at the beginning.

In order to transfer the skeleton from the source character model to the target
one, a mapping between two mesh surfaces is first required. We use cross para-
meterization proposed by Kraevoy and Sheffer in [1] to construct this mapping
relationship. Generally, parameterization refers to mapping a geometry to a do-
main of lower dimension, and makes it easier to be processed. We consistently
parameterize two mesh surfaces to the same base domain, which is basically
a simplicial complex consists of all the user-specified feature points. The sys-
tem then automatically partitions and cross-parameterizes the surfaces of the
two models. Right after the correspondence between the two surfaces is estab-
lished, the consistent volume parameterization, which is a mapping from the
space of the source model body to that of the target one, is generated by us-
ing the 3D mean value coordinates adapted from [2]. The space of a 3D model
body is defined as the space around and inside the model body in this paper.
For each joint of the source model skeleton, which usually lies inside the mesh
surface, a corresponding 3D position is found for the target model by applying
a smooth and continuous function. The skeleton of the source model is thus
appropriately transferred to the target model. Then, the key-poses can be also
transferred through the skeleton transferring. The binding weights and other
attributes of the source model, such as texture coordinates, can be transferred
through consistent surface parameterization which has already been established
before generating consistent volume parameterization.

2 Related Work

In this paper, we take the advantages from several parameterization methods to
develop a best way to construct the correspondence between two or more mod-
els. In order to parameterize a 3D mesh with or without holes to a 2D domain,
most of the methods cuts the mesh surfaces into some patches which are
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homeomorphic to disks. Eck et al. [3] proposed a classic method to parameterize
a model of any topology. The triangular mesh is partitioned using Voronoi
diagram and Delaunay triangulation. However, this method is hard to adapt
into consistent parameterization because the Voronoi sites are selected ran-
domly. Zhou et al. [4] partitioned the mesh without any user specified features.
Their system analyzes the spectrum information along the surface and automat-
ically cut the mesh into some charts according to a stretch-minimizing criterion.
Although this approach gained both the advantage on efficiency and the stretch-
minimization of parameterization, it is still rather hard to be applied to make
correspondence between two or more models.

Cross parameterization or inter-surface mapping refers to the mapping be-
tween two models. Lee et al. [5] used MAPS [6] to get the base domains of two
models after some corresponding feature points and lines are specified by the
user. They then created an inter-surface parameterization between the two mod-
els by mapping the two models to their base domains first, and constructing a
correspondence between the two base domains with user assistance. Praun et al.
[7] provided consistent mesh parameterization to get the inter-surface mapping.
In their method, the user first specifies a common base domain and maps it
to all models manually. Then, the consistent parameterization can be done by
subdividing the base domain for each model. Schreiner et al. [8] established a
common base domain of two models based on the corresponding feature points
specified by the user. They created the common base domain by linking all com-
mon feature pairs together, then used progressive meshes [9] with constraints
to create multiresolution meshes of the path networks and used a coarse-to-fine
mapping optimization method to find a continuous mapping between the mul-
tiresolution meshes. Kraevoy and Sheffer [1] created the common base domain
in a similar way as in [8]. They then used mean value parameterization to map
the vertices of a model to their belonging triangle on the common base domain.
The inter-surface mapping was finally constructed through mapping the base
domains.

In the topic of representing a position in 3D space by other primitives, convex
combination is usually used for parameterization in several different approaches.
It means that every vertex can be represented as a convex combination of its
neighboring vertices. Ju et al. [2] applied the mean value coordinate [10] into
triangular mesh parameterization, and made it possible to represent a vertex in
a closed 3D mean-value domain.

For transferring the animation to other static models, Sumner and Popović
[11] proposed a method to transfer the deformation by first matching the fea-
tures of the inputs and then transforming each triangle with this mapping. Bre-
gler et al. [12] transferred the motion of a 2D character animation to other
3D models by analyzing its affine transformations and key-poses on the plane.
Zhou et al. [13] turned a 3D static model into a solid wire-frame, then the
deformation can be edited according to graphical Laplacian. Their system also
accomplishes the transfer of planar deformation from 2D cartoons. However, all
these animation transfer methods are not able to generate the skeleton or other
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animation data for the target static model, to use the transferred animation for
further editing is not easy. Allen et al. [14] also presented a method which is
able to transfer the skeleton of a 3D human model to other ones. Their method
records the position of each joint with only two or three vertices around, thus it
may introduce great distortion in most of our cases.

3 System Overview

As shown in Fig. 4, our system takes the animated source model and a sta-
tic target one as the input (upper-left two squares in the figure), and requires
the user to specify some corresponding feature points as the first step of the
whole processes (upper-middle). The rest processes of our system are fully auto-
matic. The common base domain derives from the corresponding feature points
on the surface of each model (middle blue-shaded figure in upper-right rectan-
gle). Then, the two input meshes are partitioned and mapped to the common
base domain to construct the consistent surface parameterization (upper-right).
We then apply the 3D mean value coordinates to achieve the consistent vol-
ume parameterization using the constructed consistent surface parameterization
(middle-left). Due to the consistent volume parameterization, the skeleton of
the source model can be transferred to the target one (middle-right), and the
binding weights and other attributes are also copied according to the consistent
surface parameterization to complete the animation transfer process (lower two
figures).

4 Consistent Surface Parameterization

To construct the consistent surface parameterization of two meshes is to find
a correspondence map Mts, so that for each vertex vt

i ∈ Vt, i = 1, ..., Nt of a
target mesh Mt with Nt vertices can have a meaningful position Mts(vt

i) on the
surface of a source mesh Ms with Ns vertices, where Vt is a set of vertices of Mt.
The correspondence position Mts(vt

i) may be a vertex vs
i ∈ Vs, i = 1, ..., Ns of

Ms or inside a triangle of Ms which consists of three vertices in Vs. The quality
of the consistent surface parameterization Mts depends on how much the new
position Mts(vt

i) of each vertex vt
i signifies its original position.

The first step of our system is to specify the corresponding feature points of
two models manually by the user through a typical user interface as shown in
Fig. 3. The feature points should be the vertices of the two models. Hence, we
can define a correspondence map of U pairs of the common feature points as
Mts(vt

i) = vs
i for i = 1, ..., U , where U < Nt, Ns, and vise versa, i.e., Mst(vs

i ) =
vt

i = M−1
ts (vs

i ). After specifying U pairs of the common feature points on the
surfaces of the two models, we adapt Kraevoy and Sheffer’s method [1] to create
the cross parameterization Mts of the two models for the rest vertices vt

i , i =
U + 1, ..., Nt of Mt.
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Fig. 1. The motion of the fat-man model
(left) is transferred to the alien (middle)
and Mario (right) models

Fig. 2. The transferred skeleton and bind-
ing weights

Fig. 3. Few pairs of feature points are
specified on the surfaces of the dog (upper-
left) and triceratops (upper-right) models,
and also for the fat-man (lower-left) and
Mario (lower-right) models

Source Animation

Target Mesh

Feature
Specification

Consistent
Surface

Parameterization

Consistent
Volume

Parameterization

Skeleton
Transfer

Binding Weights and Other Attributes Transfer

Target Animation

Fig. 4. System flowchart of our method

Fig. 5. The meshes are partitioned into
some patches according to the paths of the
base domain. This leads to a meaningful
mapping between the segments of the dog
(upper-left) and triceratops (upper-right)
models, and also for the fat-man (lower-
left) and Mario (lower-right) models.
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Before constructing the cross parameterization of the two models, we first
connect the feature points to establish the base domains Bs and Bt of the two
models Ms and Mt, respectively. The base domains are required to be consistent,
which means that there are one-to-one correspondences among the vertices and
paths of the two base domains. To connect two feature points, we use the Dijk-
stra’s algorithm to trace the shortest paths along the edges between two feature
points on the surface of the mesh and add some Steiner points to subdivide the
edges while tracing if necessary.

When connecting the feature points, we also keep the consistence of the cor-
responding paths on both meshes in each tracing step. Hence, when we connect
two feature points vt

i and vt
j of Mt, we must connect their corresponding feature

points vs
i and vs

j of Ms to check if the two paths are both valid to add to the
base domains Bs and Bt, where i, j = 1, ..., U . To identify a path is valid or not,
we test if it intersects any existing path. The cyclical order of the paths emitted
from one feature point is also compared to those of its corresponding feature
point on the other model to check if they are consistent. The same-sidedness
of a vertex relative to a path is also examined on both models to ensure the
correctness of the topology. If there is no valid path when connecting two fea-
ture points, we will try to add some Steiner points to the faces between the two
feature points, so that a valid path can be found for the two feature points.

Finally, the base domains Bs and Bt of the two models Ms and Mt are con-
structed and guaranteed to be consistent. Then, the two models are partitioned
to be some patches and the number of patches of the two models are the same
as shown in Fig. 5. Moreover, every patch consists of three feature points and
three paths connected the three feature points, so that when replacing the paths
with straight lines, the base domains consist of some planar triangles as shown
in Fig. 6.

The partitioned model is then parameterized to its base domain. Initially,
a mean value parameterization approach in [10] is applied to every patch and
put all triangles of the patch onto the corresponding planar triangle of the base
domain. The corner vertices are fixed on the feature location of the base do-
main, while the interior vertices are placed with barycentric coordinates. The
algorithm then applies a smoothing step to improve the distribution of the pa-
rameterization by refining the shapes of the patches. To avoid too sparse or too
dense distribution on a parameterization which introduces large distortion, the
vertices are shifted to its neighboring patches and thus relax the unbalancing on
the surface.

Finally, we establish the mapping MB
ts between the two consistent base do-

mains Bt and Bs of the two models Mt and Ms by just mapping their patches
one-by-one. Hence, the mapping Mts between the target model Mt and the
source one Ms can be constructed through the following equation:

Mts = Π−1
s ·MB

ts ·Πt,

where Πt refers to the parameterization between model Mt and its base domain
Bt, and so does Πs.
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5 Consistent Volume Parameterization

After the consistent surface parameterization between two models is established,
in this section, a mapping called consistent volume parameterization is then
constructed for the 3D space of two models. For representing the volumetric
space around a surface model, we adapt the 3D mean value coordinates proposed
by Ju et al. [2]. The original 2D mean value coordinates was proposed by Floater
[10], which is used to construct a continuous distribution of an attribute value
f [x] of a weighting function f for all points x inside or outside a planar polygon.
The value can be any kind of data such as color, heat, or texture coordinate.
Ju et al. extended this approach to compute the 3D mean value coordinates
inside a closed triangular mesh.

The mean value coordinates has the following general form:

f [x] =
∑n

i=1 wifi∑n
i=1 wi

,

where f [x] is the interpolated value, wi and fi are the weight and attribute value
of each vertex vi of the closed triangular mesh M . By applying this algorithm, a
set of weights wi are determined to represent the relationship between a specific
position x inside the mesh M and all the triangles that have a projection area
on the unit sphere of x. The value fi on the vertices vi of all these triangles are
interpolated according to the weights wi, and then the value f [x] for x can be
obtained.

To construct the consistent volume parameterization is to define a correspon-
dence map MV

ts, so that for each point xt inside or closely outside the target
closed triangular mesh Mt can have a meaningful position xs = MV

ts(x
t) inside

or closely outside the source closed triangular mesh Ms. Hence, we define the
weighting function fs

i for each vertex vs
i of the source model Ms as the map-

ping position of xt, then we can obtain the mapping from xt to xs through fs
i .

According to the consistent surface parameterization,

fs
i =

∑m

j=1
αjMts(f t

j ),

where αj is the weights for barycentric coordinate and
∑m

j=1 αj = 1, m = 1 or
3. If vt

j is mapped to a vertex vs
i , m is set to be 1, i.e., vs

i = Mts(vt
j), otherwise

m is set to be 3, since vs
i is mapped by a triangle of Mt. Using the 3D mean

value coordinates:

f [xs] =
∑n

i=1 wif
s
i∑n

i=1 wi
,

we define a mapping function xs = Ωs(fs
i ) from the vertices vs

i on the surface
of Ms to one of their interior points xs through the 3D mean value coordinates.

Thus, the consistent volume parameterization is established by interpolating
the mapping value generated by the consistent surface parameterization, and
finding a corresponding position xt around Mt for any specified position xs

around Ms by
xs = Ωs(

∑m

j=1
αjMts(f t

j )),
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and f t
j = Ω−1

t (xt). Hence, the mapping MV
ts between the space of the target

model Mt and that of the source oneMs can be constructed through the following
equation:

MV
ts = Ωs ·Mts ·Ω−1

t .

As shown in Fig. 7, the consistent volume parameterization is constructed
between the two models. For each point of the source (fat man on left side)
model, we can find its corresponding point around the target (Mario on right
side) model. The points inside the models are corresponding joints. Other places
inside the models are also mapped smoothly.

Although we call this method as consistent volume parameterization, it does
not always find a mapping position inside the target mesh for a joint inside
the source. The exception may happen when the source mesh is convex but the
target is not. The mapped position may be closely outside the target surface, but
it still belongs to the volumetric space of the character. Fortunately, the joints
of a skeleton are not necessary to be all inside the mesh surface. The transferred
animation still looks well under this circumstances.

6 Animation Transfer

To transfer the animation data from a skeleton-driven source animation model
to a target static one, we first transfer the skeleton of the source animation
model through the consistent volume parameterization of the two models. Then,
the binding weights and other attributes of the source animation model can be
transferred to the target static one through the consistent surface parameteri-
zation of the two models. Finally, the key-poses are transferred by applying the
same animation data to the generated skeleton of the target model as that of
the source animation model. If an animator wishes to modify the transferred
animation, he or she can use model editing tools to edit the transferred skeleton,
binding wights, key-poses, or other attributes of the target model.

6.1 Skeleton Transfer

The skeleton of a 3D character model is defined to be a set of ”joint and bone”
pairs. The definition basically imitates the skeleton structure of a vertebrate, in
which bones are rigid sticks and connect each other by a set of joints. Each joint
has a rotation vector representing the current direction which the bone connected
to it points toward. Therefore, transferring a skeleton is identical to transferring
the positions of all the joints of a given skeleton to their new positions, and
connects them with bones according to the structure of the original one.

Our system automatically finds the corresponding position of each joint inside
the target model through the consistent volume parameterization. After the
skeleton is transferred from the source animation model to the target static one,
the skeletons of the two models are consistent which means there are one-to-
one correspondences among their joints and bones. Hence, the key-poses of the
source animation model can easily be transferred by assigning the same motion
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Fig. 6. The triangular patches are para-
meterized onto the base domain and form
a pair of coarse meshes with the same
topology of shape

Fig. 7. The graphical representation of
mapping a joint in the center of the head
of the fat man model (left) to a corre-
sponding position inside the Mario model
(right) by applying the 3D mean value co-
ordinates

Fig. 8. A transferred skeleton-driven an-
imation generated by our system. The
skeleton is nicely shaped according to the
character model (upper-left) and the mo-
tion can also be transferred from the fat
man model shown in Fig. 1 (left).

Fig. 9. The binding weights of the black
dog model (upper) is transferred to the
pig (middle) and brown dog (lower) mod-
els. The black dog model is shown in
Fig. 10 (upper) and Fig. 11 (upper), the
pig model is shown in Fig. 11 (middle),
and the brown dog model is shown in
Fig. 10 (lower).

Fig. 10. The motion of the black dog
model (upper) is transferred to the cat
(middle) and brown dog (lower) models

Fig. 11. The motion of the black dog
model (upper) is transferred to the pig
(middle) and can (lower) models
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data, such as the rotation angle of a joint of the source model, to its correspond-
ing joint of the target model as shown in Fig. 8.

6.2 Binding Weights Transfer

The binding weights, like other surface attributes such as texture coordinate, are
assigned to the vertices on the surface of the model. Hence, we can transfer the
binding weights from the source model to the target one through the consistent
surface parameterization as shown in Fig. 9.

7 Results

Fig. 10 and Fig. 11 show the animation transfer results from a black dog model to
a cat model, a brown dog model, a pig model, and a can model, which originally
have only mesh data. Hence, our system works well when the target model has
a shape similar to the source one, as was expected.

According to the experiments, our system processes with a desirable efficiency
in all cases. For a novel user who can use a 3D model viewing system with a
mouse, he or she can use our system with nearly no training in advance. As
shown in Table 1, 15 ∼ 30 features are required to produce a good parameteri-
zation. This takes about 5 ∼ 10 minutes in specifying the corresponding feature
points on the surface of the two models. After the feature specifying stage, our
system is fully automatic. In all cases, the bottleneck of performance is the con-
struction of the consistent surface parameterization. Besides this stage, the rest
processes of our system is typically performed in real-time. As shown in Table 1,
the construction of the consistent surface parameterization consists of partition-
ing two models consistently according to the corresponding feature points, and
parameterizing the patches to the base domain. Although the processing time
of the construction of the consistent surface parameterization requires from sec-
onds to few minutes, this is still extremely tolerable to the user, since it may be
an off-line process. The testing platform is a desktop PC with an Intel Pentium
4 3.4GHz CPU and 1.5GB memory.

Table 1. The performance testing of four pairs of animation transfer, including the time
for partitioning and parameterization, which are the two main steps of constructing the
consistent surface parameterization. The numbers of vertices and faces of the source
and target models and the number of corresponding feature points specified on the
two models are also listed. The dog and cat models are shown in Fig. 10 (upper and
middle), the fat man and Mario models are shown in Fig. 1 (left and right), and the
dog and pig models are shown in Fig. 11 (upper and middle).

time for time for
Source #vertex/#face Target #vertex/#face #feature partitioning parameterization

of Source of Target (sec.) (sec.)
dog 4070/8136 cat 2702/5400 17 50 67

fat man 3426/6848 Mario 2934/5864 25 107 17
dog 4070/8136 pig 5570/11136 22 276 23
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8 Conclusions and Future Work

In this paper, we propose a system to transfer the skeleton and animation data
from a source animation model to a target static one which has only mesh data.
The system requires the user to mark few feature points, and then generates
the output skeleton and animation data for the target model automatically. The
skeleton has a nice shape and can be edited to produce other animation by the
animator by importing the generated skeleton and animation data to a model
editing tool. Our system runs in a range from 30 seconds to 5 minutes, thus
enormously saves the time and work for the animators.

For our future work, there are some possible ways to improve the efficiency
and quality of our system. Surazhsky et al. [15] proposed a robust algorithm
to trace the geodesic directly on the mesh surface, regardless of the topology
below. It is possible to modify our system to partition the meshes according
to this method. From our experiments, the initial poses of the input models
affect the quality of the transferred animation greatly. Inconsistency in initial
poses may distort the distribution and default angles of each joint, and thus
produce animation that is not concurrent to the source. We can add one more
step to automatically adjust the pose of the target model to fit that of the source
after transferring the skeleton. The adjusted model could be treated as a new
input with the new initial pose, so the system may redo the consistent surface
parameterization process again and find some more accurate position for all the
joints, as long as the output animation. Although the feature specification is
regarded necessary, it is still desirable to derive some methods to automatically
detect and specify the common feature points.

Finally, the consistent volume parameterization may benefit a lot of areas
in computer graphics. It is possible to transfer the inside structure of a model
to another, thus may reduce many work in 3D modeling. It can also be used
to transfer the internal texture, layered information, or the structure needed to
shade with translucency.
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Abstract. In this paper, we develop a novel mesh fusion method con-
trolled by sketches, which allows users to construct complex 3D polygon
models fast and easily. The user first cuts needed parts from some ex-
isting objects and puts them in right pose. Then, a radial basis function
(RBF) based implicit surface is adopted to smoothly fuse the parts. To
achieve better shape control for the transition part in fusion, our method
let users using sketches to specify the expected silhouette. After that, the
implicit surface is sampled by particles and meshed into a polygonal sur-
face joining the separated parts into one single model. Compared with
other previous methods, our mesh fusion approach overcomes the topo-
logical limitations and can merge multiple parts together at once.

1 Introduction

Researches for providing a user-friendly modelling system to create complex 3D
models quickly have been with a long history in computer graphics. A lot of works
have been conducted in this area. However, it is still a tedious job even for those
well-trained experts to construct desired models by using current commercial
modelling system, not to say for novices. This paper aims at providing a simple
and intuitive modelling approach for creating a complex 3D mesh model from
the existing 3D polygonal objects.

From investigation (ref. [1]), we know that the sketching interface is still
the most welcome manner for designers to model their creation in a computer
system. Based on this reason, several sketching interfaces have been developed
for modelling 3D objects (see [1, 2, 3]). The authors in [1] presented a system
using intuitive guesses to govern the construction of geometric objects. Igarashi
et al. in [2] extended the idea of [1] to develop a system for modelling 3D
freeform objects in the representation of polygon mesh, while the approach in
[3] implemented a similar sketching interface using variational implicit surfaces.
However, the geometry of objects created in these systems is relatively simple.

For geometry modelling, the Constructive Solid Geometry (CSG) provides an
efficient way to construct complex geometric shapes by applying operations on
primitive objects in a top-down manner. A wide variety of researches have been
conducted in the CSG operations on the models represented in numerous meth-
ods. Unfortunately, it seems hard to directly apply the Boolean operations of

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 90–101, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Screenshots of sketch based mesh fusion: (a) scissoring existing models, (b)
placing the constructive parts together and sketching the silhouette of fusion, (c) spec-
ifying the part of transient surface to be remained, (d) sampling the transient surface by
particles, (e) tessellating the particles into a mesh surface patch joining the separated
parts, and (f) the final result of mesh fusion

CSG in mesh fusion, especially when there is a large hole between the separated
parts to be fused - for instance, the model created in Figure 1. Furthermore, the
robust implementation of Boolean operations on complex polygonal models is
by no means an easy job.

Recently, several approaches [4, 5, 6, 7, 8, 9, 10, 11] in literature took a design
by example way to construct complex 3D models from existing ones. The meth-
ods presented in [4, 5, 6, 7] focused on the cut-and-paste operation on meshes.
They could produce seamless composed models. However, in [4, 5, 6], the joined
objects were required to be topologically equivalent to a disk for the necessary
mapping between source and target models. [7]required the boundary open-
ings of a model lying on a plane and [8, 9]required the boundary openings had
similar topological structures. In [10], input models were cut using intelligent
scissors. Then those cut portions were stitched to form a composition result
by using the method of [5] - so that the boundaries with similar topology are
required. The method presented in [11] was devoted to finding the best place
to clip on two well aligned models then clipping and stitching those retained
model parts. In summary, there are various topological limitations in all above
methods.

In this paper, we present a sketch-based modelling method by a modelling
framework of mesh fusion, where the selected parts from complex models are
merged through a transient implicit surface. The topological limitation in previ-
ous work is overcome in our mesh fusion approach. More specifically, the major
contributions of this paper are as follows.
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– A topology-free mesh fusion scheme is introduced, where a variational im-
plicit surface based on RBFs is conducted as the transient surface to interpo-
late the position and normal constraints on the boundaries of given models.
The transient surface overcomes the topological limitation on the openings
of given models, so that a topology-free mesh fusion result can be achieved
after tessellating the transient surface.

– As only part of the implicit surface belongs to the region to be fused, a new
tessellation method is developed in this paper to triangulate the transient
implicit surface so that the separated polygonal parts are joined smoothly
with triangles with good shapes.

– A novel sketching interface is provided to control the silhouette of the tran-
sient surface through strokes. The shape of the transient surface will follow
the specified silhouette.

In the following, the modelling framework of mesh fusion is first described. Af-
ter that, the sketching interface for scissoring parts and specifying profiles is
introduced. To finally join the constructive parts, the particle-based tessellation
scheme is presented in section 4. After showing the results in section 5, our paper
ends with the conclusion section.

2 Framework of Mesh Fusion

The basic idea of the mesh fusion framework is to construct a transient surface
interpolating the position and the normal constraints on the boundaries of the
scissored models to be fused. To overcome the topological limitation on the
openings, implicit surface is the best candidate for the transient surface. Here, we
use one particular type of variatonal implicit surfaces - the RBF-based implicit
surface to represent the transition surface.

Following [12], the RBF-based implicit surface can be expressed by a weighted
sum of appropriate radial basis functions plus an affine term as

Γ (x) = p(x) +
N∑

i=1

λiφ(‖x − xi‖) (1)

where λis are weights, and {xi = {xi, yi, zi}}N
i=1 are the location constraints,

and p(· · ·) is a linear affine function of position in the form of

p(x) = p0 + p1x+ p2y + p3z.

For the radial basis functions, we commonly use φ(x) = ‖x‖3. For N position
constraints, they can be rewritten as N linear equations as

Γ (xi) = p(xi) + δi +
N∑

i=1

λiφ(‖x− xi‖) = fi (2)
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with i = 1, . . . , N and fi is the function value shown on the location xi. The un-
known λis in above linear equation system can be solved by adding the following
compatible conditions

N∑
i=1

λi =
N∑

i=1

λixi =
N∑

i=1

λiyi =
N∑

i=1

λizi = 0.

It is not difficult to find that in Eq.(2) we add some new scalars, δi. These pa-
rameters are conducted to control the property of the implicit surface defined
by Eq.(2) (ref. [13]). When δi 	= 0, the variational implicit function will approx-
imate the corresponding constraint points rather than interpolate them. Every
position constraint then becomes a weighted average of the interpolating posi-
tion and the regularization position (which is actually a low-pass filtering), so
that the results are smoothed.

Equipped by the above RBF-based implicit surface modelling method, the
framework of topology-free mesh fusion can be elegantly constructed. Taking
the models shown in Figure 1 as an example, we want to fuse the scissored
models in Figure 1(a) into a single object. The mesh fusion result is determined
in three phases.

In the first phase, an initial RBF-based implicit surface Γ is constructed to
smoothly interpolate the boundary openings on the given separated models. To
achieve the position interpolation, every vertex on the openings leads to a linear
equation as shown in Eq.(2), where xi is the Euclidean coordinate of the vertex.
Since the transient surface should exactly pass all the vertices on openings, the
function values of Γ shown on the vertices are zero (i.e.,fi = 0). However, simply
setting these position constraints leads to vanishing side conditions, so that the
surface Γ cannot be determined by Eq.(2). So we also define normal constraints
in the same manner as [14].

In the second phase, the transient implicit surface Γ is adjusted by the user
specified sketches. Our approach allows users to specify the shape of Γ through
strokes (e.g, the strokes given in Figure 1(b)). To embed these inputs into our
mesh fusion framework, the input strokes are first discreted into sampling points
(in the screen plane) and then projected into the 3D space. The transient im-
plicit surface is asked to approximately pass these sampling points. This can
be achieved by adding the projected points into the RBF-based linear equation
system (i.e., Eq.(2)) as position constraints. Note that in order to remove the
dithering which is usually given on the user inputs, we only request the surface
Γ to approximate but not to interpolate the sampling point by using δi 	= 0.

The transient surface constructed so far is represented implicitly in a scalar
function. Therefore, the last phase of our approach is to tessellate the transient
surface into meshes so that the fused polygonal object is finally determined.
However, as mentioned above, only one part of the implicit surface belongs to
the transient region. The transient region and the non-transient region on the
implicit surface Γ are separated by the openings on the given models. A user
stroke is employed to specify the transient region (Figure 1(c)). By this spec-
ification, the tessellation scheme is able to avoid tessellating the non-transient
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region. Besides, for preventing the artificial results, the tessellation scheme is de-
sired to generate well-shaped triangles that are adaptive to the mesh densities on
the models to be fused. Here, we develop a particle sampling based tessellation
method to generate the mesh surface smoothly joining the given models. Figure
1(d-e) show the particles sampled and the tessellation result. Details about tes-
sellation will be presented in section 4 after introducing the sketching interface
in the following section.

3 Sketching Interface

This section addresses the sketching interface implemented for letting users eas-
ily scissor and fuse the given polygonal models. The illustration for all these
sketching tools is given in Figure 2.

Fig. 2. Different sketches in our system: (a) scissoring sketch used for cutting input
models, (b) selecting sketch I for the selection of the remained part, (c) silhouette
sketch specifying the profile of the transition surface, and (d) selecting sketch II used
to select the sampling region of tessellation

3.1 Scissoring Sketching

The scissoring of existing models is governed by user’s strokes. Each stroke is
projected onto the surface of the given model with a user-specified width (r
in pixels) along the current viewing direction. The strokes actually specify an
uncertain region where the cut following the nature seams of the mesh will be
computed. Our implementation follows the intelligent scissoring method pre-
sented in [10] - computing a shorted path on the edges weighted with their
dihedral-angle by using the Dijkstra’s algorithm. The same as [10], the cutting
path passes along the polygonal edges.

3.2 Sketching for Selection

Two types of sketches are implemented in our system for selection. The first one
is adopted to specify the part to be cut off after the cutting path is determined.
The user input stroke is projected onto the model along the viewing direction,
then the selected faces will serve as seeds in a flooding algorithm to determine
the region. When the cutting edges are met, the flooding algorithm stops. The
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second type of selecting sketches is for the tessellation of the transient implicit
surface, Γ . As mentioned above, since only part of Γ needs to be tessellated
to fuse the existing models, we should prevent sampling the undesired regions.
Therefore, the selecting stroke is first discreted into several points, and then the
points are projected onto the implicit surface Γ along the viewing direction. The
projected points then serve as seeds in the particle-based tessellation scheme.

3.3 Silhouette Sketching

This sketching method is employed to control the silhouette of the transient
surface. The user input is gathered as a collection of screen-space points, where
the 2D points arrive at a rate that we cannot control. We resample these points
following the algorithm of [2] so that they are not bunched up too closely.

The planar coordinates of the sampling points are easily determined by the
coordinate transformation between the screen space and the object space. The
same as all other sketching interfaces, the most difficult task is to determine
the depth coordinates. Our solution is as illustrated in Figure 3. The silhouette
sketching is assumed to specify the profile of the transient surface between two
openings. First of all, we find the two openings A and B by the closest boundary
points to the starting and ending points of Plist in the screen plane. The two
ending points PA and PB on the silhouette of these two openings are then
searched. After that, a plane Ω passing PA and PB whose normal vector is
closest to the viewing vector is determined. The depth coordinates of all points
in Plist are finally computed by projecting them onto the plane Ω. The projected
points are then added into the RBF-based linear equation system (i.e., Eq.(2))
to control the shape of the transient implicit surface, Γ .

However, only adding the project points of Plist is not enough. We cannot
ensure that the points falling on the silhouette of Γ . From the definition of
silhouette in computer vision, we know that for a point on a silhouette, the
surface normal on this point is perpendicular to viewing direction. Therefore,
the normal constraints on the points in Plist also need to be added. With the
tangent vector tp at p in the plane Ω and the viewing vector nv, the normal
on a point p is defined by np = tp × nv. The constraint of np is then added
following the manner of the normal constrain on openings in the framework of
mesh fusion - converted into a set of position constraints with a small offset.

4 Transient Surface Tessellation

After the RBF-based implicit surface Γ has been generated, we need to tessellate
the transient region of the surface to construct the final model of mesh fusion.
Based on the requirements of mesh fusion, the tessellation scheme should provide
the following abilities:

– Be able to distinguish the transient and the non-transient regions so that
only the transient part is tessellated.



96 J. Lin, X. Jin, and C.C.L. Wang

Fig. 3. Illustration for determine
the depth coordinate for silhouette
sketching

Fig. 4. Our compound particle
system: red points represent dy-
namic particles, blue ones are
boundary particles, and green ones
are virtual particles

– Be able to construct the mesh compatible to the connectivity of openings on
the scissored models.

– Be able to generate well-shaped triangles adaptive to the meshes on the
models to be fused.

However, previous works rarely satisfy these requirements. Thus, a new tessel-
lation scheme is developed. Our method first samples the implicit surface using
a particle system, and then a triangular mesh surface is reconstructed by these
sampling particles. The methodology of this scheme gives the potential for pro-
viding the above abilities. More specifically, the first one is satisfied as long as
we only sample the transient region, the second ability could be provided by
a constrained triangulation, and the last one is satisfied if we adaptively sam-
ple the transient surface and conduct an element-shape preserved triangulation
method.

4.1 Compound Particle Sampling

First of all, we need to sample the transient region on Γ . Our particle sampling
method borrows some idea from the method of Witkin and Heckbert [15], but
with several necessary modifications and extensions. The same, we also diffuse
particles on the implicit surfaces using the repulsion energy defined between
the particles lying on Γ . For particle i, the energy due to another particle j is
defined as:

Eij = αexp(−‖r
ij‖2

2(σi)2
), (3)

where rij = pi − pj is the vector between the positions of particles, σi is the
particle repulsion radius, and α is a global repulsion amplitude parameter (we
choose α = 6 in all our examples). The totally energy at particle i is defined as
Ei =

∑n
j=1(E

ij + Eji), which leads the repulsion force be proportional to the
gradient of energy with respect to position pi:
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F i = (σi)2
N∑

j=1

(
rij

(σi)2
Eij +

rij

(σj)2
Eji) (4)

By this repulsion force, the velocity of particle i in the diffusion on Γ is computed
by

vi = F i − Γx(pi) · F i

Γx(pi) · Γx(pi)
Γx(pi) (5)

which is just the orthogonal projection of F i onto the surface’s tangent plane
at pi.

Different from [15], three types of particles are defined in our compound
particle sampling scheme:

1. Boundary Particles (e.g., the blue ones in Figure 4): The particles coincide
with the boundary vertices on given models - these particles will keep static
during the particle diffusion.

2. Dynamic Particles (e.g., the ones in red color in Figure 4): The particles
that are dynamically moved on Γ driven by the repulsion forces. The particles
are also adaptively re-sampled through a fission-death procedure.

3. Virtual Particles (coloured green in Figure 4): They will be inserted on
the edge between two neighbouring boundary particles. The virtual particles
also keep static. These particles and the boundary particles will prevent the
dynamic particles from running out the bounded area.

The repulsion energy defined among different types of particles follows the same
formula as in Eq.(3).

The boundary and the virtual particles are first generated on the openings of
given models. Their repulsion radius are assigned as 0.8 times of the average edge
length L̄k on the corresponding boundary k - so that they can provide enough
repulsion forces to prevent the dynamic particles moving outwards the bounded
region. The number of virtual particles defined on a boundary edge with length
L is computed by �L/(εL̄k)� , where ε is a small number usually chosen between
0.05 and 0.1. For better illustration, we adopt ε = 0.3 in Figure 4.

As discussed in section 2, the seed particles generated from user strokes are
then defined as dynamic particles. The initial repulsion radius of each particle
is defined as the average edge length of all the boundary edges. The dynamic
particles are moved on the implicit surface by a diffusion process with the velocity
defined in Eq.(5). At the same time, the dynamic particles are processed by the
following fission-death process when they reach the equilibrium (e.g.,‖vi‖ < 4σi):

– Fission: A dynamic particle is fission if its repulsion radius is greater than
the desired one (i.e.,σ̂i). However, to ensure particles not been moved beyond
the region bounded by boundary/virtual particles, the fission is prevented
when a particle is near boundary or virtual particles.

– Death: A dynamic particle dies if its repulsion radius is too small (e.g.,
σi < 0.5σ̂i ) and R = 1, where R is a uniform random number between 0
and 1 to prevent mass suicide in overcrowded regions.
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In order to let the sampling adaptive to the mesh densities shown on the
boundary of given models, we modify the sampling scheme to be resolution-
dependent. For a dynamic particle i, a different desired radius is defined by

σ̂i = σ̂M
M∑

k=1

(d−2
k L̄k)/(

M∑
k=1

L̄k ·
M∑

k=1

d−2
k ) (6)

where L̄k is the average edge length of boundary k, dk is the distance between
particle i and the centroid of boundary k, and σ̂ is the generally desired radius
(we choose σ̂ as the average edge length of all the boundary edges).

4.2 Triangulation

After sampling the transient surface, we reconstruct the mesh surface by the
sampled particles so that the fused model is obtained. The intrinsic-property
preserved method in [16] is adopted and modified to generate boundary com-
patible triangulations.

Fig. 5. Comparison of fusion with and without silhouette sketching: left column, no sil-
houette is defined; middle column, the generated transient surface by silhouette sketch-
ing is good; right column, more adjustment can be given

5 Results and Discussion

Our first example shown in this section (Figure 5) is employed to compare the
results generated with vs. without silhouette sketching. In the left column of Fig-
ure 5, the transient surface tends to shrink due to the reason that the distance
between two models to be fused is too far. To improve the shape of the fused
object, two strokes are specified in the middle column of Figure 5 to specify the
silhouette of the transient surface so that a much better result is obtained. Fur-
thermore, we can even go on modifying the shape by sketching some new profiles
(see the right column of Figure 5 - a mermaid with bended tail is produced).

The second test (see Figure 6) is to show the effect of the parameter δ con-
ducted in specifying the silhouettes. As mentioned above, letting δ = 0 will
generate a surface interpolating the projected silhouette strokes which usually
include dithering; when using δ 	= 0, smoother results are obtained. Figure 7
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Fig. 6. A comparison of approximation and interpolation schemes with different δ

Fig. 7. Tessellation results from the uniform sampling vs. the adaptive sampling

Fig. 8. The head of bear is cut and
fused onto the rhinoceros

Fig. 9. Two wings cut from the
gargoyle are fused onto the kill-
whale

shows the comparison between the result generated by the uniform particle sam-
pling (letting σ̂i = σ̂ ) and the result from the adaptive sampling (using Eq.(6)).
It is easy to find that the tessellating result with adaptive sampling gives better
triangle-shape near the upper boundary of the fused region (see the part circled
in dash lines in Figure 7). More examples can be found in Figure 8 and 9, where
in Figure 8 the bear head is fused onto the body of a rhinoceros and the two
wings of the gargoyle are cut and fused onto the kill-whale in Figure 9.
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Table 1. Computing time taken in examples

RBF Fitting Tessellation
Figure Constraint Time Particle Time

Number (sec) Number (sec)
Fig. 1 574 0.592 578 4.522
Fig. 8 486 0.409 301 3.810
Fig. 9 330 0.207 250 3.924

We test our examples on a PC with Inter Pentium IV 2.4GHz CPU + 512M
RAM. Table 1 summarizes the timing statistics for these examples. We use the
matcom math library [17] to solve the linear system of RBF fitting (Eq. (2)).

Limitations: The current implementation of our approach presented in this
paper has the following limitations.

– Firstly, seed particles in the tessellation scheme are specified by the region
selecting strokes. In some extreme cases, it could be possible that no point
from the strokes can be projected onto the transient implicit surface. An
automatic method to generate seeding particles is expected.

– The second limitation comes from the assumption in the silhouette sketching.
Our current method assumes that every stroke generates a curve linking to
the endpoints of two openings in the screen plane. This is relative simple. In
a more complex interface, one silhouette can be specified by several strokes
as what is used in charcoal drawings.

– The third limitation of our sketch-based mesh fusion is that it always gen-
erate smooth transient surfaces lacking complex details. It is caused by the
nature of RBF-based implicit surfaces.

6 Conclusions

In this paper, we developed a novel sketch-based mesh fusion interface for cre-
ating 3D models from existing ones. The mesh fusion is controlled by sketches
which are intuitive and are easy to use even for novices. Complex 3D models
can be constructed in a very short time. The developed sketching interface is
based on a modelling framework of mesh fusion, where the transient surface in-
terpolating the boundary openings on the given models is first modelled by a
RBF-based implicit function and then meshed into a polygonal surface by an
adaptive tessellation scheme. Compared to other previous methods, our method
overcomes the topological limitation and multiple parts can be merged together
at once.The limitations listed in Section 5 will be further investigated in our
future research.
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Abstract. In recent years, attention has been paid to particle-based fluid simu-
lation, with several methods being developed to incorporate particle-based sim-
ulation into CG animations. These methods reconstruct water surfaces that are
usually represented by polygons. However, the computational cost of the surface
reconstruction is quite high. Therefore, it is difficult to render the result of the
particle-based simulation at interactive frame rates. To address this, we present a
real-time method for rendering water surfaces resulting from particle-based sim-
ulation. We present an efficient GPU accelerated surface reconstruction method
from particles, sampling the water surface point by point. In addition to rendering
the point based water surfaces, the use of the GPU permits efficient simulation of
optical effects such as refraction, reflection, and caustics.

1 Introduction

The research into fluid simulation is one of the most important research topics in com-
puter graphics. Many methods have been developed for the simulation of fluids such
as water, smoke, and fire [1, 2, 3, 4]. Most of these methods subdivide the simulation
space into grids and solve the Navier-Stokes equations by discretizing the equations,
using the grids to simulate the fluid dynamics. These methods are based on the Eulerian
method. On the other hand, particle-based fluid simulations have been developed that
represent the fluid as particles and calculate the fluid dynamics by solving the particles
dynamics [5]. Particle-based fluid simulation has received attention since this simula-
tion method is free from the numerical diffusions in the convection terms, suffered by
the Eulerian method, and the surface transformation is easy to handle.

One of the methods of visualizing particle-based simulation is to reconstruct the wa-
ter surface by polygons and to render these polygons. The water surface is reconstructed
as follows. Initially, a density function, (or smoothing kernel), is defined with the dis-
tance from the center of the particle as parameter. The simulation space is subdivided
into a grid and the summation of the densities of the particles is calculated at each grid
point. Then the water surface is extracted as an iso-surface by using either the marching
cube [6] or the level set method [3, 7]. To render high quality images of the water sur-
faces, the simulation space must be subdivided into numerous small cells. This indicates
that the computational cost of the density calculation at each cell also increases and thus
the cost of the reconstruction of the water surface becomes quite high. Moreover, many
small polygons are generated from a fully subdivided grid. For the animation of the
particle-based fluid simulation, the processing of enormous numbers of small polygons

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 102–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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compared to the number of screen pixels in each frame results in bandwidth bottle-
necks. Therefore, these problems prevent the particle-based fluid simulation from being
applied to interactive applications such as the preview of the simulation, video games
and virtual reality.

In recent years, point based rendering methods have been developed, using the points
as primitives instead of the polygons [8, 9]. Several methods that are accelerated by the
GPU have been presented [10, 11]. Moreover, a point based method has been developed
for visualizing iso-surfaces [12]. This method demonstrates that the point based visu-
alization method for iso-surfaces can obtain storage and rendering efficiency compared
with standard polygon-based methods.

Particle-based fluid simulation represents the fluid as particles and calculates the
dynamics. Therefore, visualizing the particle-based fluid simulation by using point
primitives is straightforward, since both of the result data of the simulation and the
data from the rendering are unified into points.

This paper presents a fast rendering method, resulting in the particle-based fluid
simulation without explicitly constructing polygons. In this paper, we deal with the
water as a fluid and describe a rendering method for the water, represented by point
primitives. To render the water surface, we have to take into account optical effects due
to water surfaces such as reflection, refraction, and caustics. Rendering these optical
effects is essential to increase realism. We present a fast rendering method for these
effects from water surfaces, represented by points.

The contributions of our method are as follows.

– Fast generation of point primitives, representing water surfaces by using the GPU
– Fast rendering of the water surface, represented by points to obtain optical effects

such as refraction, reflection, and caustics

The rest of our paper is organized as follows. Section 2 describes the related work. In
Section 3, the overview of our method is presented. Section 4 describes the calculation
of the density at each grid point by using the GPU. The method of rendering water
surfaces, represented by points, is described in Section 5. The rendering results of point
based fluid simulation are shown in Section 6. Finally, conclusions and future work are
summarized in Section 7.

2 Previous Work

There have been many methods for visualizing the results of the fluid simulation. These
are categorized into two types. One is to polygonize the iso-surfaces, represented by
implicit functions, and then to render the polygons. Another is to directly render the
implicit surface, without creating polygons. One of the methods to create the implicit
surface using polygons is the marching cube method [6]. Many methods have employed
this marching cube approach to render the water surface [13, 14, 4]. Moreover, a GPU
accelerated iso-surface polygonization method has been proposed in recent years. Mat-
sumura et al. proposed a fast method of iso-surface polygonization using programmable
graphics hardware [15]. Reck et al. developed a hardware accelerated method to
extract iso-surfaces from unstructured tetrahedral grids [16]. Although the marching
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cube method is efficient, representing iso-surfaces by creating polygons requires the
memory for the connectivity information and two different data structures are required
for points and polygons.

Another visualization method for fluid simulation of water involves the rendering of
the iso-surface directly. Enright et al. [3] and Premoze et al. [7] employed a level set
method to represent the water surface. Their methods render the water surface by using
Monte Carlo path tracing methods. Whilst these methods can render realistic images,
the computational cost for the rendering is high.

Although not for the rendering of the results of the fluid simulation, a visualization
method has been developed for iso-surfaces using point primitives. Co et al.
proposed a new algorithm called iso-splatting for rendering iso-surfaces using point
primitives [12]. This method shows that the point based rendering of iso-surfaces can
exceed the traditional polygon based approach such as a marching cube method in time
and space efficiency. This method, however, does not describe the calculation method
of the scalar(density) field, whose computational cost is high.

To solve these issues, we present a novel approach to render the water surface in a
particle-based fluid simulation. In our method, the iso-surface, representing the water
surface, is calculated efficiently by using fluid particles. Then the water surface is sam-
pled, point by point, and rendered by surfels [8]. This makes it possible to unify the
data structure into points in the simulation and then rendering, without the construc-
tion of polygons. Moreover, our method presents a fast rendering method for reflection,
refraction, and caustics by use of the point sampled water surface.

3 Overview

Fig. 1 shows the overview of our method. This method deals with the results of the
particle-based fluid simulation (Fig. 1(a)), calculated by particle-based simulation meth-
ods such as Moving Particle Semi-Implicit(MPS) and Smoothed Particle Hydrody-
namics(SPH). Then the water surfaces, including caustics, are rendered as shown in
Fig. 1(d). To render the water surfaces including caustics, particles that represent the
surfaces must be extracted. Directly rendering the particles representing surfaces is one
solution to visualize the result of the particle-based fluid simulation. However, the num-
ber of particles used in the simulation is usually between about 1, 000 and 100, 000 so
that the number of particles representing a surface is, at most, several ten thousands.
As Muller pointed out, this is not sufficient number to render high quality images [14].
On the other hand, point based rendering methods [8, 9, 10, 11] are designed to render
huge number of points measured by range scanners. Thus, it is difficult to create high
quality images of water surfaces by rendering only the particles used in the simulation.

Therefore, our method generates dense sampled surfels (Fig. 1(c)), representing wa-
ter surfaces from all the particles used in the simulation (Fig. 1(a)). We create a tempo-
rary grid in the simulation space, where the densities of the particles are accumulated
in each grid point (Fig. 1(b)). The density at each grid point is calculated as a density
function.

The cost of the density computation at each grid point is quite high, since it depends
on the number of grid points and the number of particles. We present a fast method for
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(a) result of particle 
    based simulation

(b) calculate density (c) extract surfels (d) render water surface 
      and caustics

Fig. 1. Overview of our method

accumulating densities of particles by using the GPU. Our density calculation method
can be applied not only to the particle-based simulation, but also to the grid based sim-
ulation, since the marching cube method requires the density at each grid. The points
(surfels) on the iso-surface representing the water surface are then extracted. The cal-
culation of surfels on the water surface is explained in Section 4.

The water surfaces are rendered by splatting surfels (Fig. 1(d)). Refraction and
reflection of light is calculated by using refraction and reflection mapping of surfels.
The rendering method of caustics from water surfaces represented by surfels is de-
scribed in Section 5.

4 Generation of Surfels of the Water Surface Using a GPU

This section describes the method for generating dense surfels representing the water
surface by using the particles. We create a grid in the simulation space and calculate the
densities at each grid point by using particles. The simulation space is subdivided into
nx × ny × nz grid points.

The density function F (r, h) in this paper is calculated from the following equa-
tion [17].

F (r, h) =
{ 405

748πh (− 4
9a

6 + 17
9 a

4 − 22
9 a

2 + 1) (0 ≤ r ≤ h),
0 (r > h), (1)

where a = r/h, and where r is the distance from the center of particle to a calculation
point, and h the effective radius of the particle. Although we have used this smoothing
function as a density function for the prototype, other smoothing functions such as the
smoothing kernel of the SPH could also be used as the density function.

The simulation space is located as shown in Fig. 2 and the z-axis is set to be the
vertical direction. A virtual camera is set along the z-axis and the reference point of the
virtual camera is set to be the center of the simulation space. A virtual screen is then set
to be perpendicular to the z axis. The virtual screen consists of nx × ny pixels. Each
pixel corresponds to a grid point on the grid planes perpendicular to the z axis, as shown
in Fig. 2. The pixels in the screen frame buffer consist of R, G, B, and α components.
To calculate the density of each grid point influenced by a particle, we use a metaball
whose center is the position of the particle. The circle of intersection between the grid
plane and the metaball, of effective radius is h, is calculated. The densities of pixels
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Fig. 2. Calculation of densities at each grid point by using splatting

within the circle of intersection are calculated. By drawing the circles of intersection
with the densities and accumulating the densities in the frame buffer, the density of
each pixel, corresponding to each grid point of the grid plane, is calculated by using the
GPU.

The surfels on the water surface are generated using the following steps.

step1. Cluster the metaballs according to the z coordinate of the particle position.
step2. Project the metaballs in each cluster onto the screen and calculate the densities

at each grid point.
step3. Generate the surfels on the iso-surface (water surface).

4.1 Clustering Particles

As shown in Eq.(1), the density contribution from the particle at the grid point is zero,
when the distance between the particle and the grid point is larger than the effective ra-
dius h. To reduce the computational time of the density calculation, the particles whose
density contributions are zero are eliminated. The particles are classified into Nc clus-
ters by using the z coordinates of the particles. Cluster Ck (k is the cluster number)
includes the particles pk whose z coordinate pk

z satisfies zk ≤ pk
z < zk+1. Then the par-

ticles belonging to the cluster Ck are taken into consideration only for the calculation of
the grid points of the grid planes whose z coordinate zi satisfies zk−h ≤ zi < zk+1+h.

4.2 Density Calculation and Generating Surfels

To calculate the density at each grid point, texture-mapped disks are projected onto the
screen corresponding to the grid planes (see Fig. 2). The disk corresponds to the circle
of intersection between the grid plane and the metaball whose center is the particle
and the effective radius of h. The texture mapped onto the disk represents the density
function F on the disk. The densities on the disk are calculated from the distance from
the center of the particle to the grid point using Eq. (1). By projecting the disks of the
particles, intersecting the grid plane, onto the screen, and accumulating the densities,
the densities of the grid points on each grid plane are calculated by using the GPU. In
this calculation, the quantization error problem can occur since the density is quantized
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Fig. 3. Creation of illumination volume

with 8bit precision in most graphics hardware. This problem causes the error of the
accumulated densities by using the GPU. To reduce the error, we use a floating point
buffer for the precise calculation of accumulation of densities.

The disks are rendered by using point sprites. This makes it possible to accelerate the
rendering process by the GPU. The point sprites are hardware functions that render a
point by drawing a square, consisting of four vertices, instead of drawing a single vertex.
The point sprites are automatically assigned texture coordinates for each vertex corner
of the square. This indicates that each pixel inside the point sprite is automatically pa-
rameterized in the square. Therefore, the distance, d, from the center of the particle to
each pixel of the point sprites can be calculated by using the fragment program. By
comparing the distance, d, with the effective radius h, we can determine whether the
pixel is within the circle of intersection or not. The density of the grid point correspond-
ing to the pixel is calculated by inserting the distance, d, into the density function F .
For the density calculation, we prepare a texture whose parameter is the distance from
the calculation point to the center of the particle. The density of the pixel corresponding
to the grid point is efficiently calculated by mapping this texture.

The density is scalar and the pixel of the frame buffer consists of four components.
Therefore, our method calculates circles of intersection between the particle and four
grid planes at once, and renders four disks by storing four densities in the RGB and α
components. After drawing all the disks intersecting the four grid planes, the RGBα
components are read from the frame buffer into the main memory. Then the points
on the iso-surfaces for the four grid planes, corresponding to the RGBα components,
are extracted. The density of the surface is specified by the user. We clear the frame
buffer and draw all the disks intersecting the next four grid planes in the frame buffer.
We repeat this for all grid planes that intersect the metaballs. Therefore, our method
consumes texture memories only for the four grid planes.

The positions of the surfels, si, are set to the positions of these extracted points. The
radius, Ri, of the surfel, si, is assigned and is determined so that there are no gaps
between the surfels. Normal vector, ni, of surfel si is calculated by using the gradient
of the densities. If the distance between the extracted point and neighbor point is larger
than a threshold, we add points on the iso-surface to fill gaps between the surfels.
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5 Rendering Point Based Water Surface

This section describes the rendering method for water surfaces represented by surfels.
To render the water surfaces, a disk is assigned to surfel si. The radius of the disk is Ri

and the disk is perpendicular to normal ni of the surfel. In this section, we first explain
the rendering method of caustics due to water surfaces represented by surfels. Then the
rendering method of water surfaces is described.

5.1 Rendering Caustics for Point Based Water Surface

Our rendering method for caustics is based on Nishita’s and Iwasaki’s methods [18,
19]. In these methods, the water surface is represented by a triangular mesh. At each
vertex, the refracted direction of the incident light is calculated. Then the volumes are
created by sweeping the vectors refracted from the triangle mesh. These volumes are
called illumination volumes [18] (see Fig. 3). Caustics are rendered by accumulating the
intensities of the areas of intersection between the object surface and the illumination
volumes. The intensity, Lq, at point Q of the intersection area is calculated from the
following equation,

Lq(λ) = Li(λ) cos θiiT (θii, θti) exp(−c(λ)lq)FqK(λ) + La(λ) (2)

where λ is the wavelength, which is sampled for RGB components, Li(λ) cos θii is the
intensity of the incident light onto the water surface, T (θii, θti) is the Fresnel transmit-
tance, exp(−c(λ)lq) is the extinction of light from the water surface to point Q. Fq is
the flux ratio and is calculated from the equation Fq = S/Sq, where S is the area of the
triangle mesh of the water surface and Sq is the area of the intersection area between
the illumination volume and the object (see Fig. 3). K(λ) is the reflectance of the object
surface and La is the intensity of the ambient light.

Our method is based on Iwasaki’s method [19] that sets virtual planes (called sample
planes) around the object and calculates the intensities of caustics on the object surface
by using the intensities incident onto the sample planes. The intensities of the sample
planes are calculated by accumulating the intersection triangles between the illumina-
tion volumes and the sample planes.

However, illumination volumes cannot be created, since the surfels representing wa-
ter surfaces have no connectivity. To address this problem, we propose a method for
creating illumination volumes from surfels.

5.2 Creation of Illumination Volumes

To create illumination volumes from the surfels, a virtual screen is set horizontally as
shown in Fig. 3(b).The normal vector and the depth of a point that corresponds to each
pixel, P (x, y), of the frame buffer of the virtual screen are calculated by interpolating
the normal and the depth values of the surfels representing the water surface.

The basic idea to create the illumination volumes is as follows. First, the depth of the
water surface, d(x,y), from the virtual screen is calculated for each pixel, P (x, y). Using
the depth, points s(x,y) on the water surface are obtained. The normal vector, n(x,y),
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Fig. 4. Calculation of normal n(x,y) at point s(x,y) on the water surface, and depth d(x,y) from
point s(x,y) to the virtual screen

of s(x,y) is also calculated by interpolating the normals of the nearby surfels. Then a
refraction vector at s(x,y) is computed. An illumination volume is created by sweeping
the refracted vectors from points s(x,y), s(x+1,y), and s(x,y+1) (or s(x+1,y+1), s(x+1,y),
and s(x,y+1)) that correspond to neighboring pixels. In the following, the calculation
method for the normal and the depth from the virtual camera is explained.

Normal, n(x,y), and depth, d(x,y), at point s(x,y) on the water surface are calculated
from the following equations (see Fig. 4),

n(x,y) =

∑
i g(

ri(s)
Ri

)ni∑
i g(

ri(s)
Ri

)
, d(x,y) =

∑
i g(

ri(s)
Ri

)di∑
i g(

ri(s)
Ri

)
, (3)

where g is a Gaussian function whose parameter is distance, ri(s), between each surfel,
si and s(x,y), and returns 0 if ri(s) is larger than radius Ri.

The calculation of the normal, n(x,y), and depth, d(x,y), is accelerated by using the
GPU. We create the normal map that stores the normal information at each point, s(x,y),
corresponding to each pixel of the virtual screen. The normal map of the water surface
is calculated by splatting the surfels. To create the normal map, calculated from Eq.(3),
the xyz components of normal vector, ni, of surfel, si, are encoded as RGB compo-
nent of the color of surfel. Then the surfels are projected onto the screen with a radially
decreasing Gaussian weight function g( ri(s)

Ri
). The value of Gaussian weight function

g( ri(s)
Ri

) is stored in the α component of pixel, P (x, y), and is used as a blending fac-
tor to calculate Eq.(3). We prepare a 1D texture for the Gaussian weight function. This
texture is mapped onto each surfel and is multiplied by the RGB components of the sur-
fel, corresponding to the normal vector of that surfel. The texture-mapped surfels are
rendered and the resulting colors are accumulated in the frame buffer by using additive
color blending functions. The resulting image is stored as a texture. Normal, n(x,y), at
surface point, s(x,y), corresponding to pixel, P (x, y), is calculated by dividing the RGB

components of each pixel that store the summation of weighted color (
∑

i g(
ri(s)
Ri

)ni),

by the α component that stores the summation of weight (
∑

i g(
ri(s))

Ri
)). This per-pixel

normalization is accelerated by using the fragment program of the GPU. The depth,
d(x,y), is calculated in the same manner. The normal and depth information are read
back to the main memory and the point, s(x,y), and refracted direction of the inci-
dent light onto s(x,y) are calculated. Illumination volumes are created by sweeping the
refracted direction from each point, s(x,y).
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Fig. 5. Rendering water surfaces by surfels

When the illumination volumes are created, caustics are rendered, using Iwasaki’s
method [19]. To render caustics due to water surfaces, sample planes are set around
the objects within the water, and the intensities of caustics on the surface of the object
are calculated by using the illumination distribution on the sample planes. In Iwasaki’s
method, an object is represented by a set of images of the object surface, that are created
by rendering the object between two adjacent sample planes (see Fig. 3). These images
are called the sliced object images [19]. The refracted object with caustics is rendered
by refraction mapping of the sliced object images.

5.3 Rendering Water Surfaces Represented by Surfels

Water surfaces are rendered through the use of a splatting technique. Our rendering
method extends the method proposed by Bostch et al. [10] to take into account refrac-
tion, reflection and caustics. The refraction of an object, with caustics through the water
surface is rendered through the use of refraction mapping of sliced object images. The
reflection of the environment is rendered through the use of reflection mapping. We
use a three-pass rendering approach. Before rendering, we eliminate invisible surfels
by using a backface-culling method. In a first pass, the surfels are rendered only to the
z buffer with all z values having an ε offset added. ε is specified by the user.

In the second pass, the z-buffer update is turned off so that the overlapping surfels
are blended if and only if the difference of their depth values is less than ε. For each
visible surfel, the reflection vector vl and the refraction vector vr of the viewing ray are
calculated (see Fig. 5). We calculate the intersection point PS between the sliced object
image and the refracted viewing ray from the surfel, and the texture coordinate of PS

for the sliced object image. The texture coordinate for the environment map of the surfel
is also calculated. The surfel is rendered by mapping the sliced object image and the
environment map texture onto the point sprite. At each pixel corresponding to the disk
of the surfel, the Gaussian weight function is associated to blend the overlapping surfels.
The RGB components of the pixel are multiplied by the Gaussian weight function by
mapping the texture of the Gaussian weight onto the surfel.

In the third pass, the values of RGB components of each pixel, storing the accumu-
lated weighted color must be normalized by dividing by the value of the alpha com-
ponent that stores the accumulated Gaussian weights. The per-pixel normalization is
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performed by the method described in Section 5.2. This per-pixel normalization results
in high quality images.

6 Results

Figs. 6 and 7 show the result of the MPS simulation rendered by our method. These
figures are stills from an animation of dropping a parallelepiped into the water pool.
The numbers of the points representing the water surface are from 61,500 to 77,000 in
this animation. The average rendering time of these figures is about 0.039 sec (25.5fps).
Our method can render the water surfaces, represented by points, including caustics,
refraction, and reflection in real-time. These images are created on a desktop PC (CPU:
Pentium4 3.4GHz, 2GB memory) with a nVidia GeForce6800 GT. The image size of
these figures is 512 × 512. The size of the virtual screen for creating illumination vol-
umes is 128× 128.

The number of particles used for the simulation is about 210,000. The temporary
grid is subdivided into 2563. The computational time of density calculation from the
particles using the GPU is 0.91 sec. The memory for calculating the density in the GPU
is only 1MB. For the software calculation, the computational time is about 80 sec. That
is, our method using the GPU can calculate the densities about 88 times faster than
the method using the software. The computational time for extracting the surfels on
the iso-surface is about 0.16 sec. Our GPU based method extremely reduces the time
of reconstructing the water surface from the particles compared to the software based
method. The relative difference between the densities calculated by the GPU and those
by the software is about 1.9%. To verify the quantization error due to the GPU based
density calculation, Fig. 8 shows the comparisons of the water surface that is extracted
from the densities calculated by the GPU and that by the software. The image quality of

Fig. 6. Rendering the result of the MPS simulation

Fig. 7. Rendering the result of the MPS simulation viewed from another viewpoint
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(a) (b)

Fig. 8. Comparisons of the water surface generated by using the GPU based density calculation (a)
and the water surface calculated by the software (b)

Fig. 9. Rendering the result of the MPS simulation of making waves

the water surface (Fig. 8(a)) calculated by using the GPU based density calculation is
indistinguishable from that by using the software based density calculation (Fig. 8(b)).

Fig. 9 shows the result of MPS simulation of making waves. These figures show that
our method can extract complex shape of water surfaces. The average rendering frame
rate of these figures is about 21.7fps. The numbers of the points representing the water
surface are from 55,000 to 120,000 in this animation.

7 Conclusions and Future Work

In this paper, we have presented a fast rendering method for the particle-based simu-
lation. To calculate the water surface from the result of the particle-based simulation,
a temporary grid is created and the densities at each grid point by using the particles
are calculated. We accelerate this density calculation by using a GPU based splatting
method. Then the iso-surface is extracted and represented by surfels. The rendering
method has been developed for a water surface, which is represented by the surfels.
Moreover, our method can render the reflection, refraction, and caustics due to the point
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based water surface in real-time. Our method drastically reduces the time of the surface
reconstruction and rendering. This makes it possible to easily preview the result of the
particle-based simulation.

In future work, we plan to develop a method for improving the quality of images of
the water surface by adaptively adding surfels, i.e., we need to add the surfels adap-
tively according to the intensity distribution at the water surface since the number of
the surfels is sometimes insufficient when the light intensities drastically change at the
water surface. Moreover, we would like to develop a method for rendering splashes and
foams using surfels.
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Abstract. This paper describes a method for controlling the multi-phase smoke 
animation that uses Lagrangian particles. Previous methods need several density 
fields to simulate different types of smoke. We use a single field, which is more 
like a natural phenomenon to obtain the interactive motions of fluid. Also, 
whereas existing methods which apply control forces to cells only, we define 
particle forces which enable each particle to move independently towards to tar-
get shape. Additionally, we set up internal target forces which distribute the par-
ticles uniformly within the target shape, no that it is represented more precisely. 

1   Introduction 

The simulation of natural phenomena is now sufficiently realistic to be included in 
digital animations and virtual environments. It is essential that computer animators 
are able to control fluid simulations without having to subordinate their creative inspi-
ration to technical barriers. Recently introduced for controlling fluids [2], [9], [11] are 
efficient and easy to implement. Recent simulations based on three-dimensional Na-
vier-stokes equation are not only realistic but also allow control of the fluid, so that it 
moves toward a target shape. 

Existing methods for controlling a fluid which is moving towards a target shape 
focuses on controlling the shape of the target feature. These methods use a distance 
field to create an additional force which propels the fluid towards the target shape. 
This leads to limitations in achieving various effects, because the direct route to the 
target shape is not always the one that the animator wants the fluid to follow. 

We have therefore chosen a different strategy. Instead of exerting external control 
forces on the fluid at each frame, we adjust the physical properties of the simulation 
space, so that the fluids in this space to follow the required trajectory. We can, for 
instance, simulate smoke which follows the required path towards a target shape, 
while still exhibiting behavior that is interesting and looks natural. This is made pos-
sible by three new terms which we add to the standard flow equations: (i) the control 
forces on a cell that cause the fluid to carry the smoke towards a target shape, (ii) 
particle forces enable each particle to move independently and allow some particles to 
move against the control forces, (iii) internal forces make the particles diffuse uni-
formly within the target shape. 

Our main contributions are, because our method use Lagrangian particle, simula-
tion of different types of smoke and their interactions. 
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The remainder of this paper is structured as follows. In the next section we briefly 
introduce the relevant previous work. In Section 3 we review the standard equations 
commonly used for simulating fluid flow, and Section 4 describes the three new terms 
that we propose. We present a selection of the results we have achieved with our 
technique in Section 5. Section 6 concludes the paper. 

2   Related Work 

Many researchers in the field of computer graphics have used physical-based models 
and computational fluid dynamics (CFD) to simulate fluid flows. We will not attempt 
to provide a complete survey of such methods; the interested reader can find good 
surveys elsewhere [3], [8], [18]. Instead, we focus on the different mechanisms for 
controlling fluid flows. 

Foster and Metaxas [7] allowed animators to control a fluid without knowing all 
about the underlying physics of the simulation, because the low-level details were 
concealed. However, animators using this technique still need some knowledge of 
fluid dynamics, and it does not allow them to manipulate the target shape. 

Treuille et al. [17] proposed a new method to control smoke, using efficient opti-
mization of control forces. This is based on earlier work on controlling rigid bodies 
[16]. Unfortunately, the number of degrees of freedom in fluids is much larger, and so 
this method needs hours of computing time, even for simple two-dimensional target 
shapes such as letters of the alphabet. 

Fattal et al. [2] introduced a new and efficient method to match smoke density 
against user-specified distributions, which involved a model with a driving force term 
and a smoke-gathering term. It achieves much shorter computing times than nonlinear 
optimization. They mentioned about multiphase smoke, but their treatment is simple 
and their technique does not allow different phase to interact each other. 

Following Fattal et al. [2], Hong and Kim [9] proposed another efficient, simple 
method to control a fluid animation, in which a potential field is based on the shape of 
the target. An external force obtained from the negative gradient of the potential field 
enable the smoke to move towards the target shape. 

Shi and Yu. [11] introduced a method based on the level-sets of the smoke, which 
uses velocity constraints on the smoke boundary to match the shape of the target. It 
controls the shape of the more efficiently and effectively the forcing and gathering 
terms required by Fattal et al. [2]. 

All of the methods reviewed above simulated a single phase of smoke. We propose 
a method that matches smoke density against user-specified distributions accurately 
and rapidly. Furthermore, our technique can simulate the interaction of different types 
of smoke by using Lagrangian particles. 

3   Overview 

To simulate smoke motion realistically, we need to use either the Navier-Stokes or the 
Euler equation. We will briefly explain the Euler equation that we use. Let u=u(x, t) 
denote the time-dependent vector field that specifies the velocity of location x on a 
cell at time t and its temporal derivative by ut. The Euler equation that satisfies the 
incompressibility condition can then be written as: 
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fuuu +∇−∇⋅−= pt  (1) 

0=⋅∇ u  , (2) 

where p=p(x, t) is the hydrostatic pressure and f accounts for the external forces that 
affect fluid flow, such as gravity and buoyancy. This external force f is important in 
controlling the fluid, and follows Fattal et al. [2] and Hong and Kim [9]. However, we 
extend the score of there authors’ work by considering multiple target shapes. 

We will describe in detail now f can be used to achieve multiple target shapes, and 
we will propose internal target forces which enable the particles to be distributed 
uniformly within the target shape. 

4   Modified Equations of Flow 

Our approach entails three modifications to Equation 1. Firstly, we add control forces 
acting on each which cell move the fluid that the cell controlling toward target shape; 
secondly, we add particle forces which apply to each particle individually, and may 
appose the control forces; and finally, we add internal target forces to increase the 
accuracy with which the target shapes are achieved. 

These three new terms are controlled by the non-negative parameters , , pc vv  and 

,Iv whose effect is discussed in Section 4.4. 
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T
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4.1   Control Forces Acting on a Cell 

We will now describe the control force FT that influences a cell. To determine the 
control force FT, we need to create a distance field Di (1  i  Pn, where Pn is the num-
ber of target shape). Each cell in the distance field is associated with a value which 
represents the closest distance value to target shape, and the value of cell in the target 
is zero. Figure 1 shows an example of a two-dimensional field. We need to make 
separate distance fields for each target. 

 

Fig. 1. An example of two-dimensional distance field. (The white square is the target shape). 
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After creating the distance fields, we need to calculate the control force FT that will 
make the smoke move toward the target shape. The control force FTi for a target i is 
obtained by calculating the negative gradient of the distance field Di: 

iT D
i
−∇=F  (4) 

Let us denote by the time-dependent scalar field that specifies the smoke density of 
grid at location x and time t as (x, t), and the final smoke density that we require at 
the target shape finally by T(x). The control force FT(x) that acts on the particles in 
cell x at time t is written as FT(x, , T) and is formulated as follows:. 
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where pi is the number of particles in cell x that are moving towards the ith target. 
Consider cell x is Figure 2. If FT1 points towards the target of the blue particles, and 

FT2 points towards the target of the red particles, then the control force on a cell x is 
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The weights 0.3 and 0.7 represent the proportion of blue and red particles in cell x. 

 

Fig. 2. The control forces on a cell 

4.2   Particle Forces 

When there are few particles of a certain type in a cell, they will tend not to follow the 
desired path if they are only subject to the control forces on cell. Therefore we give 
each particle its own force, directed towards its target. 
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We discovered by experiment that the magnitudes of the particle forces should be 
less than that of the control force, to achieve a natural-looking result. The possibility 
remains that a particle while move against the control forces on its cell to the extent 
that it crosses to a neighboring cell (Figure 3). 

 

Fig. 3. Each particle has its own force 

4.3   Internal Target Forces 

Previous methods of controlling fluids [2], [9] are only concerned with propelling the 
fluid towards the target shape. No control forces are defined inside the target. This 
limits the complexity of the target that can be achieved. We overcome the problem by 
means of additional control forces that act on particles inside the target. 

 

Fig. 4. Internal target forces that act inside the target. (Red region is denser than white region). 

),,( T
T x ρρF
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The internal target force FI is defined as: 

 target. theoutside   

 target theinside   

0=
−∇=

I

I

F

F ρ  (6) 

FI is directed towards regions of low particle density inside the target. Its purpose is to 
redistribute particles uniformly within the target shape, so as to achieve detailed fea-
tures of the target shape. 

In Figure 4, the internal target forces act in directions from A and C and toward B, 
because the density at A and C is greater than that at B. 

4.4   Control Parameters 

The simulations produced by our methods are controlled via three parameters: the con-

trol force coefficient cv , particle force coefficient pv , and internal force coefficient Iv : 

cv  
 

This parameter allows the animator to boost or weaken the control 
force, thus affecting the speed at which the simulation progresses 
towards the current target state. 

pv  
 

This parameter determines the rate of particle force. Increasing it 
results show that different types of smoke move independently. If 

pv is bigger than cv , it is less likely for interactive smoke. 

Iv  
 

This parameter determines the rate of internal force. Increasing it 
oscillates results.  

5   Results and Discussion 

We implemented our method in both 2D and 3D using C++ and tested it on a Win-
dows PC with an Intel Pentium IV processor running at 3.0GHz and 1GB of RAM. 
2D simulations were performed a 3002 grid, and each a single time step took 0.5 sec-
onds. 3D simulations were performed a 1003 grid and each time step took about 11 
seconds. The forces FT and FI that we have introduced add about 20 percent to the 
computation time.  

Figure 5-7 show the control of smoke in two-dimensional environment. The input 
was standard bitmap images which were converted to a distance field during preproc-
essing. Figure 5 shows two regions of different-colored smoke moving diagonally 
across each other and ending up in two circular target regions. 

In Figure 6, four types of smoke moves consecutively to two targets. Figure 7 com-
pares images of our technique with image follow from Fattal et al. [2]. The eight im-
ages on the left are close-ups of each of the center of the density field, and the two 
images on the right are the results of each method. In our results, a swirling effect can 
be seen at the center of density field because our method uses a single density field 
which enables each particle to move interactively. 

Finally, Figure 8 shows a three-dimensional animation, using three-dimensional 
polygon models as input data.  
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Fig. 5. Interaction of two types of smoke 

 

Fig. 6. Four types of smoke move towards the ‘CGI’ target and are then modified towards ‘2006’ 

 

Fig. 7. Two types of smoke move from a ‘yin-yang’ shape to targets which are the correspond-
ing Chinese characters. The top row of images shows the motion achieved by our method, and 
the bottom row shows that achieved by the method of Fattal et al. [2]. 
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Fig. 8. Frames from a three-dimensional simulation; the target of the white smoke is a thin 
torus, while the yellow smoke moves to essence the airplane shape 

6   Conclusion 

We have described a technique for animating multi-phase controllable smoke. This is 
a significant improvement on an earlier method that is realized to a single phase. Our 
method allows the animator to specify the desired path. The particles follow it, but are 
also able to move independently. 

Like previous techniques for simulating smoke at [3], [18], our method is easily 
extended to support additional external forces, such as gravity and buoyancy, in addi-
tion to the driving force. It is also possible to add obstacles represented by internal 
boundary conditions. 

One technical extension of this work would be to simulate a controllable multi-
phase liquid such as water and oil using ghost-fluid method such as that described by 
Hong and Kim [10]. 
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Abstract. Although lots of works have been engaged in interactive and
realistic rendering of translucent materials, efficient processing for de-
formable models remains a challenging problem. In this paper we in-
troduce an approximate image-space approach for real-time rendering of
deformable translucent models by taking account of diffuse multiple sub-
surface scattering. We decompose the process into two stages, called the
Gathering and Scattering corresponding to the computations for incident
and exiting irradiance respectively. We derive a simplified all-frequency
illumination model for the gathering of the incident irradiance, which
is amenable for deformable models using two auxiliary textures. We in-
troduce two modes for efficient accomplishment of the view-dependent
scattering. We implement our approach by fully exploiting the capabil-
ities of graphics processing units (GPUs). Our implementation achieves
visually plausible results and real-time frame rates for deformable models
on commodity desktop PCs.

1 Motivation

Nowadays, photo-realistic modeling and rendering have proven to be capable of
simulating the appearances of almost all types of objects, especially those with
ideal diffuse, specular or gloomy materials. Even for the objects with complex
materials like skin, jade, marble and milk, there have been well-established tech-
niques in the computer graphics community. Among them, one challenging task
is the simulation of translucent materials. Translucent objects are not fully trans-
parent and allow light to transport and diffuse through their interiors, making
their appearances somewhat mellow and quite different from other materials.

1.1 Previous Works

Translucency can not be simulated by simply using reflection or transparent
illumination models because it is formed by single and multiple scattering of the
light. As a consequence, to accurately mimic a light transport in a translucent
object, time-consuming path sampling and a lot of multi-integral computations
� Corresponding author.
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are required. Traditional solutions include the finite element methods [1][2][3],
diffusion approximation [4], path tracing [5], bidirectional path tracing [6] and
photon mapping [7].

To make it amenable for real-time processing, sample based rendering tech-
niques are adopted. Hanrahan and his colleagues [5] used Bidirectional Re-
flectance Distribution Function (BRDF) for subsurface scattering, with which
the existing light is assumed to be emitted at the same point as the incident
light on the surface of the object. Later, Jensen and his colleagues [8] introduced
the dipole source method based on a more accurate Bidirectional Subsurface Re-
flectance Distribution Function (BSSRDF) model, which consists of two parts,
namely the exact single scattering and the multiple scattering. Although the di-
pole source method is only suitable for the case where the incident point and the
existing point of the light are on a plane, applying it to an arbitrary surface can
still generate appealing results with appropriate restrictions on the discretization
of the underlying surface [8]. Jensen and his colleagues [9] further proposed an
acceleration technique by employing a hierarchical structure. Thereafter, many
approaches have been introduced for improving the performance by either pre-
computing and reusing the radiance or simplifying the illumination model.

Lensch and his colleagues proposed a texture atlas aided algorithm [10] which
preprocesses the handled geometry to collect the impulse response of each surface
point under subsurface scattering. It separates the response into local and global
parts. The local response is modeled as a filter kernel stored in the textures and
the global response is calculated and stored in the vertices. It is apparent that the
requirement of costly preprocessing limits its application for deformable models.
Recently, Hao and his colleagues [11] implemented a spherical harmonics based
real-time rendering approach. Although visually plausible results are achieved,
it is likely to be fit for undeformable models. The similar situations happen with
the pre-computed radiance transfer (PRT) techniques [12, 13], as they follow
the same pre-computation mechanism which demands too many memory con-
sumptions. More recent work by Sloan and his colleagues [14] allows for local
deformations, while is not sufficient for large and deformable models.

By simplifying the illumination computation, interactive rendering of de-
formable models is made possible at the expense of the loss of image quality.
Mertens and his colleagues [15] proposed a clustering based algorithm which
achieves interactive frame rates even for deformable models. They also proposed
an importance sampling based method, which only consider the local scattering
[16]. Dachsbacher and Stamminger [17] introduced an efficient two-phase image-
space technique by using the shadow map to store the irradiance from the light
sources for latter scattering computation. Due to the limited accuracy of the sam-
pling and filtering provided by the graphics hardware, the results are a little bit
far from perfect. In addition, the algorithm can not simulate all-frequency light-
ing [13] because shadow map is only feasible for point lights and directional lights.

There are also some works on the simulation of inhomogeneous materials.
For instance, Goesele and his colleagues [18] proposed a so-called DISCO
algorithm based on the measured sub-scattering data. Later, Xin Tong and his
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colleagues [19] put forward a quasi-homogeneous material modeling and render-
ing method with a special-purposed sampling device.

1.2 Our Contributions

Based on the investigations on the related literature, we understand that there
are still challenges for real-time rendering of deformable translucent objects.
Most of existing approaches suffer from either efficiency issue such as [14, 13], or
lacking photo-realistic effects like [10, 17], in terms of deformable models.

This paper describes our efforts on boosting the performance and quality with
a new approximate image-space approach. Our method adopts also BSSRDF
model, and mimics most kinds of light sources by integrating the contributions
from point lights, directional lights and the ambient lights. Conceptually, we
decompose the computation of translucency into two stages. In the first stage,
the radiances from all types of lights are collected over the surfaces. We call this
procedure the gathering of irradiance. To facilitate its efficient computation at
runtime, we derive a simplified computational model that is especially adoptable
for the ambient lights. In addition, we employ an intermediate data sheet to store
the gathered incident irradiance.

On the other hand, in our approach the computation of outgoing irradiance
under a given viewpoint is a simplified imitation of the light transport inside the
objects. We denote it as the scattering operation, where the color of each visible
surface point depends on a variable number of lightened source points. This
makes the implementation with current graphics hardware nontrivial because
the rendering pipeline is designed as amenable for gathering operations, where
the destination of each pixel is defined before rasterization. With an attempt to
convert the scattering operations into a gathering procedure in GPUs, one may
implement it at the fragment level. This scheme requires lots of texture lookups
at the complexity of the image resolution. We overcome this inefficiency with
hierarchical sampling scheme.

In the rest of this paper, we first introduce a simplified translucent illumination
model based on a brief overview of the BSSRDF model. We then present the
gathering of irradiance in Section 3. Section 4 describes how to implement the
scattering process in programmable graphics hardware. The experimental results
are presented in Section 5. Finally, we conclude the whole paper and highlight
the future work in Section 6.

2 A Simplified Illumination Model

BSSRDF is a more accurate lighting model than BRDF. While BRDF only con-
siders the link between the incoming light and the outgoing light at the same
point of the surface, BSSRDF can depict the light transport between two differ-
ent points, xi and xo, on a surface. The relationship between the illumination
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at one surface point xi with light distribution at another surface points xo is
expressed as follows [8]:

dLo(xo,
−→ω o) = S(xi,

−→ω i;xo,
−→ω o)dΦi(xi,

−→ω i) (1)

where Lo(xo,
−→ω o) is the outgoing radiance at xo along the direction−→ω o. Φi(xi,

−→ω i)
is the incident flux at xi along the direction −→ω i, and S(xi,

−→ω i;xo,
−→ω o) denotes

the value of BSSRDF. By integrating over all incoming directions and areas, the
total outgoing radiance is computed.

Typically, BSSRDF model considers the effects of two terms, single scattering
and multiple scattering:

S(xi,
−→ω i;xo,

−→ω o) = Sd(xi,
−→ω i;xo, wo) + S(1)(xi,

−→ω i;xo,
−→ω o) (2)

where S(1) and Sd stand for the single and multiple scattering terms respectively.
In fact, a simplification can be made by skipping the single scattering term alone
to simulate the effect of highly scattering materials [9]. Moreover, as multiple
scattering smoothes the incident light from different directions, Sd can be further
approximated by a low-dimensional function, Rd, which depends only on the
incident angle and outgoing position [8], yielding simplified BSSRDF model:

S(xi,
−→ω i;xo,

−→ω o) ≈ Sd(xi,
−→ω i;xo,

−→ω o)

=
1
π
Ft(η,−→ω o)Rd(xi;xo)Ft(η,−→ω i)

(3)

where Ft(η,−→ω i) and Ft(η,−→ω o) denote the fresnel transmission terms. Rd is the
dipole approximation for multiple scattering, indicating how much proportion
of light will be transported from xi to xo on a plane. That is, the dipole source
method converts the part of incoming light at xi, which will transport to xo, to
a couple sources above and over xi (at zv and zr) as Figure 1 depicts.

Fig. 1. The dipole approximation of multiple scattering

The single dipole approximation for multiple scattering is formulated as

Rd(xi;xo) =
α′

4π
[zr(1 + σtrdr)

e(−σtrdr)

d3
r

+ zv(1 + σtrdv)
e(−σtrdv)

d3
v

] (4)
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Here, α′ is the reduced albedo, σtr is the effective transport coefficient, zr and
zv are the distances from the dipole lights to the surface, dr is the distance from
x to the real source, and dv is the distance from x to the virtual source.

We make two assumptions here to simplify the translucent simulation process.
Firstly, we assume the light transfers uniformly in all directions on its surface.
Thus, together with Equation 1 and 3, we obtain:

Lo(xo, wo) =
1
π
Ft(η,−→ω o)B(xo) (5)

B(xo) =
∫

s

E(xi)Rd(xi;xo)dxi (6)

E(xi) =
∫

L(xi,
−→ω i)Ft(η,−→ω i)(−→n i · −→ω i)d−→ω i (7)

Secondly, as the light transmission in translucent objects decays exponentially
with the distance, the far points on the surface make very little contribution to
the current shading pixel and thus can be neglected. Namely, samplings are only
necessary in a small near region of current pixel. Moreover, S varies smoothly
except in the very local region near xo. Consequently, we can discretize the
surface near xo into hierarchical pieces–small in near region, and large in far
region. Thus the E(xi) and Rd(xi;xo) can be treated as constant in each piece.
Equation (6) can be further reformulated as:

B(xo) ≈
∑

i

E(xi)Rd(xi;xo)A(xi) (8)

where the A(xi) is the area of the region surrounding xi, after our surface dis-
cretization.

Finally, suppose that the light varies not very frequently, Equation 7 can be
simplified by discretizing the incident light direction into several basis:

E(xi) =
∑

j

Ej(xi)Ft(η,−→ω j)ψj(xi) (9)

where Ej(xi) is the incident irradiance of xi projected on the basis ψj .

3 The Gathering of Irradiance

With the simplified illumination model, we classify the light sources into two cat-
egories, namely the point or directional lights and the ambient lights. We employ
an intermediate sheet buffer to keep the diffused incident irradiance from all light
sources, called Diffusion Source Map (DSM). Ideally, it should collect all possi-
ble E(xi) for each surface point. Although the representation of DSM is flexible,
one fundamental requirement is that it should facilitate fast neighbor search-
ing for subsequent scattering operations. Accordingly, we propose to generate a
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multi-chart paramerization of the handled surface and keep multiple textures as
DSMs. Depending on the parameriztion manner, the textures can be represented
as plane maps, spherical maps or cubemaps. As a consequence, the searching of
the neighboring regions can be accomplished by the texture look-up operations
in GPUs.

(a) (b) (c) (d)

Fig. 2. Illustration of the DSM for the Bunny model. (a) The Bunny model; (b) The
component for the surface location; (c) The component for the surface orientation; (d)
The component for the incident irradiance

For each element of DSM, we record the surface location, the surface orien-
tation and the sum of the incident irradiance (Figure 2). These attributes are
to be used in the scattering stage. To accumulate the contributions from the
point or directional lights and the ambient lights, we use two auxiliary textures
as described below. With hardware-accelerated texture mapping technique, the
irradiance from the shadow map and the cube map can be accumulated in the
DSM in one rendering pass.

3.1 The Point and Directional Lights

To determine the contributions from each point or directional light to the han-
dled surface, we employ a shadow map for the storage of the irradiance in the
visible surface at the viewpoint of the light source. The shadow map [20] is a
commonly used technique in real-time rendering. Because we do not consider the
decay of the light, this scheme amounts to add a constant value to the irradiance
map a constant value for each light source. Figure 3 illustrates the usage of the
shadow map in the accumulation of the irradiance from the point and directional
lights.

3.2 The Ambient Lights

The second auxiliary texture is a spherical or cubical environment map for stor-
ing the irradiance caused by the ambient lights. We utilize the simplified Equa-
tion (9) to calculate the environmental irradiance at each surface location xi

from multiple lighting directions. The irradiance from ambient lights are deter-
mined by using sphere harmonic method adopted in the PRT (Pre-computed
Radiance Transfer) algorithm [12]. In the preprocessing stage, we compute the
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Fig. 3. The DSM is determined by accumulating the contributions from the point or
directional lights and the ambient lights at each surface location

(a) (b)

Fig. 4. (a) The original environment cube map; (b) Ambient cube map computed by
using spherical harmonic function

basis and coefficients of the sphere harmonic functions and record them as a cube
map. To simulate the ambient light affecting, the cube map is represented as a
texture and kept in the local video memory for efficient processing, as depicted
in Figure 4.

4 The Scattering of Irradiance

After gathering the irradiance from each light source into the DSM, the outgoing
irradiance is to be evaluated at runtime with the derived Equation 8. It requires
lots of texture look-up operations which are a little bit costly in programmable
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Fig. 5. Hierarchical sampling in DSM. The black point denotes the handled surface lo-
cation. Other points with different colors show the sampling locations for the irradiance
computation of the black point.

graphics hardware. For deformable models, this computation has to be performed
at each frame. In practice, there are two ways to implement the scattering process-
ing in GPUs. The first one fulfills the irradiance computation in a per-vertex basis.
We call it the VTF mode, which makes use of the newly introduced vertex texture
fetch feature for accessing the DSM in the vertex processing stage. One of its dis-
advantages is that it requires the model to be well-shaped and uniformly sampled.
In addition, it is quite expensive for large-sized model because the vertex texture
accesses are not efficient yet with current graphics hardware [21]. Therefore, VTF
mode is suitable only for small models. The other mode, called FTF mode, per-
forms the irradiance computation in the fragment processing stage, yielding more
accurate results than that of the VTF mode. Although it has image-space com-
plexity, the early-z-culling feature of graphics hardware favors efficient culling of
hidden surface parts. Our experiments show that the FTF mode leads to higher
performance for large-sized models than the VTF mode.

Note that, uniformly sampling a large neighborhood of each vertex in the
texture space is probably expensive and unnecessary. Thus, we make use of an
hierarchial irradiance accumulation algorithm to efficiently sample the DSM for
the computation of Equation 8. The light scattering of highly scattering translu-
cent objects attenuate exponentially with the distance. Therefore, we do not need
to consider the contributions from very far surface locations. Even for the mod-
erately far surface locations, the irradiance computation can be hierarchically
simplified. Inspired by this investigation, for each handled surface location, we
sample twelve points (shown with red color) on its near neighborhood uniformly,
and eight points (shown with green and blue colors) for moderately far regions.
Figure 5 illustrates this hierarchical scheme, where the black point denotes the
underlying surface location.

5 Experimental Results

We have implemented our algorithms with DirectX 9.0c SDK. Performance has
been measured on a 2.4 GHz P4 system with 2 GB memory and an NVidia 6800
GT video card with 256 MB video memory.
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(a) (b)

Fig. 6. Our results for the buddha model: (a) with one point light; (b) with the point
light and ambient lights

Table 1. Performance statistics for various data sets

Data #T #V FTF VTF
Teapot 2256 1177 48.34 90.72
Buddha 50000 24974 24.59 22.47
Max Planck 50801 25445 32.92 25.68
Bunny 69451 34834 26.15 19.98

We adopted the BSSRDF coefficients presented in [8] for the experiments.
Our hardware implementation integrates several commonly used hardware opti-
mization techniques such as deferred shading and dynamic branching.

We first compared two implementations with and without the ambient lighting
effects. Figure 6 demonstrates the results of both schemes. Although we only
employ a simple cube map for simulating the ambient lighting effects, it still
adds lots of visual realism.

Table 1 lists the performance for various data sets with the FTF and VTF
modes. #T and #V denote the triangle and vertex numbers of the models. Ap-
parently, VTF mode is suitable for small-sized models only. Figures 7 illustrates
the rendering results for these models.

We also tested our approach with a set of morphable models. Note that, our
approach can be applied to deformable models directly without special cares.
Table 2 collects the performance for several morphable models, which are shown
in Figure 8.
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Table 2. Performance statistics for deformable models

Data #T #V FTF VTF
Cube/Machine 13162 6583 41.97 37.18
Rabbit/Bunny 15720 7862 38.13 31.60
Bunny/Egg 50236 25120 25.21 20.54

Fig. 7. Translucent rendering for Teapot (2256 triangles, 1177 vertices, 90fps), Bunny
(69451 triangles, 34834 vertices, 20fps), Buddha (50000 triangles, 24974 vertices, 22fps)
and Max Planck (50801 triangles, 25445 vertices, 25fps) data sets at the image resolu-
tions of 512×512

Fig. 8. The selected frames from a set of morphing models

6 Conclusions and Future Work

This paper presents an efficient image-space rendering approach for highly scat-
tering translucent materials. We divide the simulation procedure into two stages,
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each of which can be efficiently accelerated with GPUs. Because no pre-
computation is involved, our approach is inherently feasible for deformable mod-
els. Despite the simplification of the translucent lighting model, our experimental
results demonstrate desirable translucency effects. With all the proposed acceler-
ation techniques, it achieves real-time frame rates for large-sized and deformable
models.

In our implementations, the ambient lights are approximated with a spherical
harmonic functions evaluated from environmental map. It neglects the scene
occlusions or self-occlusions which lose visual reality in some cases. We would
like to exploit efficient solution to take the ambient occlusion and more general
light sources into account. In addition, we have great interests on the modeling
and rendering of inhomogeneous translucent objects as they are quite common
in real world. Accelerating the rendering with newest hardware features is also
in our near schedule.
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Abstract. In this paper, a new technique is presented for interactive rendering 
of caustics fully processed on GPU. Without any pre-computation required, the 
algorithm can directly render refractive caustics from complex deformable 
transparent objects onto an opaque receiver surface. By the technique we 
accurately trace the path of the photons and calculate the energy carried by the 
photons emitted from the light source, and distribute the energy onto the 
receiver surface according to Gauss basis function. As a result, photorealistic 
caustic image is calculated without post-processing and temporal filtering over 
recent frames. We demonstrate that the interactive caustics can be rendered by 
our method in real-time for non-uniform deformation of both refractive object 
and receiver surface, and at the same time, interactive change of light and 
camera in terms of position and direction could be made. 

1   Introduction 

Transparent materials like glass, ice and water exist widely in our real life. It is a 
ubiquitous physical phenomenon that when transparent objects are illuminated by 
light source such as the sun, caustics will appear on the surface of receiver. The 
caustics are formed by light rays refracted through the refractive object and converged 
on a small region of the receiver surface. This small region appears very bright in 
comparison with other dark region in shadow, so the caustic region produces highly 
immersive visual appeal. Using brute-force ray tracing and photon mapping method is 
easy to perform caustics rendering, however, the computational cost of these offline 
rendering systems is very high due to the intensive calculations required for path 
tracing and intersection testing in the scene geometry space. 

Until recently techniques for applying GPU to interactively rendering refractive 
effects come to emerge. However, almost all these works need pre-computations prior 
to the rendering process, and as a consequence, it was hard to deform the objects 
dynamically through the interaction of users during the rendering phase. Such pre-
computation steps restrict their applications from the domain such as games.  

In this paper, we present a new technique for caustics rendering entirely on GPU 
without any pre-computation performed on CPU. The algorithm allows refraction 
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through double interfaces of a transparent object, and traces the accurate path of the 
rays, which intersect with the front and back face of the transparent object, and further 
intersect with the receiver surface by an efficient ray-surface intersection algorithm. 
In our method, both the refractive object and the receiver surface expressed by 
polygonal meshes can be dynamically deformed at runtime. The calculation of the 
intensity of caustics is physically based on energy transportation and distribution of 
photons. So the caustic image produced by our algorithm is highly smooth without 
any post-processing required such as low pass filtering, or temporal filtering over 
recent frames previously rendered. We support fully dynamic deformation (especially 
non-uniform deformation) of refractive object’s geometry, since no pre-computation 
is involved. This is very important for certain applications, such as games where the 
models need deformation for animation.  

In the remainder of this paper, Section 2 will give a short survey of the related 
work, and Section 3 will present our double surface refraction algorithm in more 
detail. Section 4 describes the caustics rendering algorithm. Rendering results will be 
demonstrated in Section 5. We conclude with a summary of the ideas presented in the 
paper in Section 6. 

2   Related Work 

In this section, we will review some of the earlier work in offline caustics rendering 
and the recent attempts for achieving interactive rendering on GPU. 
Photon mapping, introduced by Jensen[1][2], is a standard technique for rendering 
beautiful caustics. By the method, a photon map is constructed to store the results of 
the photon tracing. The intensity of caustics at a point of the receiver surface is 
computed by estimating the surface area covered by its k nearest neighbors. Variants 
and optimized versions of path tracing algorithms were presented by utilizing CPU 
clusters [3], but the expensive computational costs limit these techniques from real-
time applications. Beam tracing [4] is an important technique to produce physically 
accurate optical caustic effects. Watt [5] applied backward beam tracing to generate 
caustic polygons. Ernst et al. [6] followed this scenario and presented a caustic 
intensity interpolation scheme to reduce aliasing effect for generating smoother 
caustics. Nishita[7] proposed a model based on beam tracing for underwater caustics 
rendering, and the idea was implemented on GPU by Iwasaki et. al. in [8]. 

Concurrently and independently of our work, Shah and Pattanik[9] developed a 
similar method for interactive caustics rendering. By their technique, light is emitted 
using a vertex-tracing approach, and the computation of the intensity and energy of 
caustics was conducted by using the method similar to beam tracing. However, their 
method requires pre-computing the projected area of all triangles, so it does not allow 
non-uniform deformation of the transparent object, although they present a way by 
using key frame configuration for subtle deformations. The method also needs some 
form of filtering to improve the aliasing appearance. 

Recently Wyman[10] offered a new technique for rendering transparent geometry 
supporting double-sided refraction, but his technique requires pre-computing the 
distance along normal for each vertex. As an extension to [10], [11] approximates 
caustics rendering by employing another new computing method for caustic intensity, 
but we may find that the computation in the method is not very accurate, which will 
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be pointed out in the following content. The method also needs low pass filtering to 
improve their aliasing appearance, and a temporal filtering over recent frames has also 
been used to reduce the frame-to-frame popping artifacts. [12] offers an approximate 
ray-tracing technique on GPU with distance impostors, but the impostor had to be 
pre-computed too. 

3   Computation of Ray-Surface Intersection 

Our double-sided refraction algorithm is an extension to the technique by 
Wyman[10]. The key improvement in our technique lies on the more accurate 
computation for the second intersection point of the ray with refractive object, and 
moreover it does not require any pre-computation. 

3.1   Review of the Previous Techniques 

The technique in [10] approximates the second intersection P2 by an interpolation 

between 
V

d  and
N

d  based on incident angle and refracted angle. One limitation of the 

approach is that when the refractive object has high surface curvature or high 
refraction index, the approximation of the second intersection will become less 

accurate. The interpolation just give a coarsely approximate value 2P′ , which may be 

located in the interior or exterior of the refractive object instead of on the boundary of 
the object. 

V
T1 

Eye

N

P1

P2

P2

T2

T2
P2T2

T1

Eye

P1

P2

dV
dN

NV T2

 

Fig. 1. Two erroneous cases of the approximation method in [10] 

As shown in the left of Fig. 1, when the surface curvature is high, the approximated 

value 2P′  would be far away from P2, and the approximated refracted vector 2T would 

be almost opposite to the true vector 2T . And also as shown in the right of Fig. 1, to 

the V-shape object, the approximated value 2P′  is entirely outside of the object, and the 

approximated refracted vector 
2

T ′ is also far away from the true vector 2T .Pre-

computation of 
N

d  is another limitation of the approach. 
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3.2   A More Accurate Ray-Surface Intersection Testing on GPU 

Instead of approximating P2 by interpolation as in [10], we propose to accurately 
compute the ray-surface intersection on GPU by a binary search process. Then the 

pre-computation of N
d  in [10] is no longer necessary. We propose to represent the 

refractive object as two depth images corresponding to the back-facing surface and 
the front-facing surface respectively, and then we compute P2 by ray-intersection 
with these two depth images.  

Our approach needs three passes to compute P2. In the first two passes, we set the 
projection to parallel mode to get the two z-buffers corresponding to the object’s 
backward surface and forward surface, as marked by red and green colors in Fig.2, by 
rendering the refractive object with the depth test set as GL_GREAT and GL_LESS 
respectively. We also output a normal vector texture for each pass. The two z-buffer 
textures will be used as an orthogonally projected depth images to calculate the 
accurate position of P2 by ray-intersection in the third pass. The reason that we use 
orthogonal projection instead of perspective projection during the first two rendering 
passes is that the z-buffer generated from perspective projection is distributed 
nonlinear, and suffers from perspective distortion. Besides, because the backward 
surface is farther from the center of projection than the forward surface is, the 
sampling rate for the backward surface is somewhat low and not enough to represent 
the highly detailed model. Therefore we adopt orthogonal projected depth image to 
compute the ray-surface intersection, which is more accurate than using perspective 
projected depth image. 
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Fig. 2. (a) Ray-intersection computation via binary search,  (b) The path of the photon 

In the third rendering pass, we set the projection mode to perspective and render the 
object with standard depth test. The pixel shader of this pass will transform all the 
vectors(T1,V,and N1) and point P1 to orthogonal projection space by a matrix to make 
the ray-intersection computation in one space. The pixel shader uses a binary search 
to calculate the accurate intersection P2. As illuminated in Fig. 2(a), F is the 
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intersection point of T1 with plane z=1, the far clipping plane in the projection space. 
So given T1, we can loop for a fixed number of steps, and at each step we will get 
closer to the true intersection position P2 and converge quickly to the exact solution. 
In Fig. 2(a), the first iteration result is B1, the midpoint of P1 and F. The blue line 
shows the two z-buffer values(Zf and Zb), which are indexed by texture coordinates 
B1.xy. If Zf B1.z Zb, B1 is still inside the refractive object, otherwise it is outside. 
Because F is outside and P1 is inside, there must be a solution between them. The 
second iteration result is B2, and the third B3 is close enough to the true solution P2. 
Finally we use (P2.x, P2.y) as texture coordinates to index into the corresponding 
normal texture to find P2’s normal N2 to be used to calculate the intersection P3 of 
the ray with the receiver surface. 

The Cg code of the binary search function BS() for calculating P2 is shown below. 

float3 BS(float3 P1, float3 F ) 
{ 

float3 P_inside   = P1; 
float3 P_outside = F; 
int binary_search_steps = 8; 
float3 P2= (P_inside + P_outside) *0.5; 
for( int i=0; i<binary_search_steps; i++) 
{ 

Zf=tex2D(FrontDepthTexture, P2.xy); //The Z value in the front surface 
Zb=tex2D(BackDepthTexture, P2.xy); //The Z value in the back surface 
if (P2.z Zb&&P2.z Zf)   // P2 is inside the object 

P_inside =P2;  
else              // P2 is outside the object 

P_outside =P2;  
P2= (P_inside + P_outside) *0.5; 

} 
return P2; 

} 

Fig. 3 shows a comparison of the rendering quality of double-sided refraction by 
different methods. The resolution of the output image and all the texture buffers is 
512 by 512 for all the methods. And the transparent sphere, whose index of refraction 
is 1.5, is rendered in an environment map. We can see that the rendering quality of 
our method is more accurate and closer to ray-tracing approach than [10], especially 
in the region of silhouette. 

4   Caustics Rendering Algorithm 

Our approach to rendering caustics is a procedure of three-steps: (1). emitting photons 
from the light and tracing photons’ path to obtain a photon buffer; (2). calculating all 
the photons’ contributions into a buffer, called caustic map; (3). projecting this caustic 
map to the final rendering result. 
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(a) 55.33 fps                                 (b) 3.03 fps                                 (c) 61.28 fps 

Fig. 3. Comparison of rendering quality of double-sided refraction by different methods: (a) 
method of [10], (b) ray-tracing, (c) our method 

4.1   Emitting Photons to Obtain “Photon Buffer” 

We emit photons by rendering the refractive object from the light’s view. Through 
each pixel in this light buffer, the light source will emit one photon. This photon will 
transmit through point P1 and P2 on the refractive object, and finally hit the receiver 
surface at P3. The path of the photon is shown in Fig 2(b). 

To trace photon’s path our approach utilizes the same ray-surface intersection 
approach as described in Section 3.2 to computing the intersection point P1 and P2, 
with one additional pass to render the receiver surface in orthogonal projecting space 
to obtain P3. After P2 and N2 are obtained, we need to use binary search again to find 
P3 in the depth image of the receiver surface. Finally in the pixel shader, we output 
P3’s xy coordinates to a buffer, photon buffer, which records the position where the 
photon hits the receiver surface.  

4.2   Computation of Caustics Intensity 

In order to render caustics, the intensity of caustics must be calculated by all the 
rendering approach. Let’s first review the intensity computation method in [11], as 

shown in Fig. 4(a). At first, it calculates the energy 
j

Eα  carried by photon jα , and 

the energy 3pE arriving at P3 in absence of the refractive object. And then it sets the 

intensity of the caustics as 3/
j pE Eα .We may find that the computation here is 

inaccurate, even erroneous in some cases. The reason is that the energy 3pE  arriving 

at P3 in absence of the refractive object has no relationship with the energy of 

j
Eα carried by photon jα . So the ratio is in fact meaningless. Even worse, when the 

point light is inside the same plane as the receiver surface, as shown in Fig. 4(b), the 

solid angle 
3P

ω subtended from the light will be zero, so 
3p

E  will be zero too, then 

the ratio of the two energies would become infinite. While we think that the intensity 
of P3 is related to the focal point (shown as a green point in Fig. 4) of the refractive 
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object, and the solid angle 
3P

ω  should subtend from this focal point instead of from 

the light source as in [11]. So the correct solid angle
3P

ω  should be calculated by 

subtending it from the focal point, instead of from the light as in [11], and also the 

correct intensity 3pI should be calculated based on this correct solid angle. 

Light

Focal point The same plane  
Focal point 

Receiver Surface  
 

Fig. 4. (a). The intensity computation method of [11] (courtesy of Chris Wyman & Scott Davis, 

authors of [11]). (b). When the light and the receiver surface share a same plane, 
3P

ω will  

be zero 

In this paper, we choose to just compute the energy 
j

Eα  carried by photon jα , but 

not the solid angle directly, because it is hard to find the exact focal point of a 
complex refractive object. To obtain the intensity on the caustic receiving surface at 
P3, we make calculation physically through energy transportation and distribution 
inspired by [13]. Assume that each photon in the light buffer carries an initial 
energy, E = I L* Parea(pixel i) where I L is the intensity of the light source, and 
Parea(pixel i) is pixel i’s projected area in the direction of the light source. If  
the refractive object absorbs no energy, E will thus be the energy incident on the 
receiving surface due to this photon hitting, and eventually gets deposited on  
the diffuse receiver surface. And instead of focusing on and burning out one single 
point at P3, it will spread around P3 and extend to the surrounding region. This 
energy splatting procedure corresponds to a physical model that can be represented 
by a Gauss basis function G(u) with local support. So based on the law of energy 
conservation, we distribute the energy E over the surrounding region of P3 according 

to Gauss basis function. We assign the intensity 
iuI at each point iu  in the 

surrounding region of P3 as E* G( iu - P3). 

Finally we accumulate the contributions of all the photons into a buffer, called 
caustic map, in a 2D rendering pass by rendering a 2D regular triangle for each 
photon. This triangle behaves as a photon, and has a Gauss texture. We originally put 
this triangle centered at the left-bottom corner(x= 0, y=0), and then we design a 
vertex shader program to offset the 2D vertex of the triangle, so that the triangle will 
be translated to P3’s orthogonal projection space position(x=P3.x, y=P3.y), which can 
be retrieved in the “photon buffer” by access to the vertex texture in the vertex shader. 
The radius R of the surrounding region extended by the Gauss basis function can be 
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interactively adjusted by users at runtime to make the caustics look sharp or soft. The 
smaller R is, the sharper the caustic will be. Finally graphics hardware will additively 
blend all these 2D triangles, so the intensity contribution from all the photons will be 
accumulated into the rendering buffer, called caustic map, which records the caustic 
intensity, as shown in Fig. 5. 

  

Fig. 5. Two caustic maps of a sphere with different refraction index 

4.3   Projection of Caustic Map to Final Rendering Result 

Finally, we render the 3D scene(both the refractive object and the receiver surface) to 
the frame buffer from the camera’s viewpoint. In the pixel shader, we project each 
pixel of the receiver surface into the caustic map to retrieve an intensity value, which 
is used to modulate the color of the pixel. In this last rendering pass from the camera’s 
viewpoint, the projection is in perspective mode. Therefore, all the images in the 
rendering results of this paper and the attached video were generated by perspective 
projection. 

5   Results 

Our implementation used OpenGL version 1.5 and Cg version 1.4 on a platform with 
an nVidia GeForce 6600 and a CPU of 2.8GHz Pentium IV. Comparison has been 
made on rendering quality of our method with the offline rendering method, photon 
mapping by POV-Ray, as shown in Fig. 6. We can see that the rendering quality of 
our method is very close to the photon mapping, but the rendering speed(53.24fps, or 
0.01878 second per frame) of our method is more than 400 times faster than photon 
mapping (7.82 seconds per frame). Table 1 gives the statistics of rendering speed for 
the scene used in the paper and the attached video. The resolution of all the buffers 
used is 512×512. Fig. 7 shows some dynamic rendering results by our technique on a 
variety of geometries. In Fig 7, (a) and (b) show the change of lighting direction; (c) 
and (d) show the dynamic non-uniform deformation of a sphere; (e) and (f) show the 
change of refraction index of a teapot, and (g) shows the non-uniform deformation of 
the teapot: scaling along x direction only. More demo videos can be downloaded from 
http://lcs.ios.ac.cn/~lbq/Publications.htm. 
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Fig. 6. Comparison of rendering quality: left column is by photon mapping of POV-Ray, while 
right column by our method 

Table 1. Frame rates of our method 

Scene Number of 
triangles 

Static light 
(fps) 

Dynamic light 
(fps) 

Teapot & Dragon 185,208 54.58 22.47 

Dolphin & Dragon 191,240 57.88 23.76 

Sphere & Dragon 188,824 48.63 21.15 

Sphere & Buddha 70,000 83.98 31.74 

Beethoven & Dragon 173,852 49.90 21.91 

Beethoven & Buddha 5,5028 84.98 33.59 

Bunny & Buddha 119,474 49.60 22.38 

Bunny & Dragon 238,298 28.73 13.83 

Dragon & Dragon 337,648 18.41 9.86 

6   Conclusions and Future Work 

This paper presented a practical interactive algorithm for caustic rendering that runs 
entirely on GPU without any pre-computation. It calculates the ray-surface 
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intersection more accurately, and calculates the caustic energy distributed on the 
receiver surface according to Gauss basis function. Our method can achieve 
photorealistic caustic image requiring no post-processing or temporal filtering. In 
addition, the rendering allows change of lighting and viewing direction, as well as 
deformation of the scene at runtime in an interactive rendering speed.  

 
(a)                                          (b)                                            (c) 

 
(d)                                (e)                                                    (g) 

 
(h)                                (i)                                                    (j) 

 
(k)                                (l)                                                    (f) 

Fig. 7. Rendering dynamic caustics (The blue transparent objects cast shadow and caustics on 
the background geometry) 
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Fig. 8. Interactively changing refraction index from low to high 

 

 

Fig. 9. Top: interactively increasing the index of refraction step by step; bottom: interactively 
rotating the blue transparent object 

One limitation of our method is that refractions are limited to two interfaces. For 
refractive objects with higher depth complexity, the rendering results may be not very 
accurate. Another limitation is the under-sampling problem. Since we chose a 
sampling approach to render caustics, the aliasing problem inherited from shadow 
mapping technique can occur under certain configuration. We plan to solve these 
problems in future works and extending our technique to reflective caustics. 
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Abstract. Monte Carlo is the only choice for a physically correct method
to compute the problem of global illumination in the field of realistic im-
age synthesis. Adaptive sampling is an interesting means to reduce noise,
which is one of the major problems of general Monte Carlo global illu-
mination algorithms. In this paper, we make use of the fuzzy uncertainty
existing in image synthesis and exploit the formal concept of fuzziness in
fuzzy set theory to evaluate pixel quality to run adaptive sampling effi-
ciently. Experimental results demonstrate that our novel method can per-
form significantly better than classic ones. To our knowledge, this is the
first application of the fuzzy technique to global illumination image syn-
thesis problems.

1 Introduction

Global illumination plays an important role in realistic image synthesis, and
Monte Carlo based algorithms are the unique choice of physically correct meth-
ods to compute the problem of global illumination [1]. The general Monte Carlo
global illumination methods, including both the view dependent solutions and
the final gathering schemes involved in radiosity, usually employ the baseline
Monte Carlo path tracing (MCPT) [2] to produce the synthetic images pixel by
pixel. MCPT uses sample paths through a pixel to calculate the pixel value by
averaging the sample values, namely the light transport contributions of sample
paths. Figure. 1 illustrates a sample path x for a pixel. The path is constructed
by random sampling a point y0 on the area of the pixel, and tracing a ray through
y0 into the scene and finding the closest hit point y1. The path is continued by
stochastically choosing a direction according to the surface scattering properties
at y1 and identify the next intersection y2, and so successively. The path can
be stopped with an arbitrarily chosen termination probability ti at any intersec-
tion. The radiance contribution L(x) gathered by the path x is calculated with
the Monte Carlo estimator < L(y0←y1) > of the light transported from y1 to
y0: < L(y0←y1) >=< Ldir(y0←y1) > + 1

1−t1
< L(y1←y2) >. < Ldir(y0←y1) >

is the estimator of the radiance from the light source that arrives at y0 after

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 148–159, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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scattering at y1. The estimator < L(y1←y2) > can be solved in the same way as
< L(y0←y1) >. Usually, MCPT gives very noisy images when inadequate sam-
ples are used because of the slow convergence of the Monte Carlo techniques.
Taking a large enough number of samples for each pixel can render images with-
out noise, but it is too time consuming.

Fig. 1. Monte Carlo Path Tracing

Adaptive sampling, which is an interesting tool to lower the global noise level
of the synthesized image without using a fixed number of samples per pixel, is to
try to use more samples for the high noisy pixels discovered by some criterion.
That is, a few samples are taken at first for a pixel, and then the dedicated
criterion or the pixel quality is derived from these samples to determine whether
super sampling is needed or not. The pixel quality estimated from the pixel’s
sample values is the point to do adaptive sampling. Actually, homogeneity of the
pixel’s sample values is the key to feature the pixel quality, due to the stochastic
nature of the Monte Carlo estimation of sample values.

In fact, the difficulty with adaptive sampling is how to locate all of the pixels
where more samples are needed because the variation found by the pixel’s sam-
ple values could not tell us the exact situation with certainty. We furthermore
emphasize the high-level ambiguousness resulted from the human perception of
incompleteness. In this paper, we introduce fuzzy set theory, which is a power-
ful tool to handle fuzzy uncertainty [3], into the context of adaptive sampling
for Monte Carlo global illumination. We make full use of the fuzziness inherent
in image synthesis, and employ sample values within a pixel to define a fuzzy
set. Fuzziness of the fuzzy set is calculated and considered as the pixel quality.
Experimental results show that our new method can achieve much larger im-
provements than previously typical approaches. To our knowledge, this is the
first application of the fuzzy technique to global illumination image synthesis
problems.

The remainder of this paper is organized as follows. In section 2, previous
work on adaptive sampling is described. In section 3, a novel adaptive sampling
method driven by fuzziness is developed and detailed. Implementation and some
results are demonstrated in section 4. Finally, conclusion and some future work
are presented.
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2 Related Work

Adaptive sampling can be traced back to the research on anti-aliasing in ray
tracing [4], for example, Painter and Sloan [5] presented adaptively progressive
refinement on the entire image plane to locate image features and place more
samples along edges. Here we are going to focus on the pixel based approach in
the context of Monte Carlo global illumination.

Based on the root mean square signal to noise ratio (RMS SNR), Dippe and
Wold [6] proposed an error estimate of the mean to do adaptive sampling. Lee et
al. [7] sampled pixel adaptively based on the variance of sample values. Purgath-
ofer [8] used the confidence interval for instructing adaptive sampling. Kirk and
Arvo [9] demonstrated a correction scheme to avoid the bias of variance based
approaches. Rigau, Feixas and Sbert [10] [11] introduced the Shannon entropy
and also the f-divergences as the measure to conduct adaptive sampling.

Mitchell [12], and later Simmons and Sequin [13] utilized the contrast to do
adaptive sampling. Tamstorf and Jensen [14] refined Purgathofer’s approach to
propose the tone operated confidence interval. Bolin and Meyer [15] developed
a perceptually based approach by using a vision model.

All these methods have both merits and limitations. The methods based on
absolutely stochastic estimate neglect the fact that the image or pixel quality
usually depends on the appearance human eyes can observe. Traditionally we can
only get one dimensional vision functions that are often experimentally measured
under reductionistic conditions inside the laboratory, but the practical models
with significant interactions between different dimensions of visual mechanism
are really useful [16]. We can get and use the complex vision model, but the
computational cost is probably a problem with the complex vision model based
adaptive sampling algorithm [17].

Castro, Feixas and Sbert [18] used the word “fuzzy” in their Monte Carlo
radiosity work, but the exact meaning of this word is the probabilistic uncertainty
that is far from the fuzzy uncertainty [19].

3 Fuzziness Driven Adaptive Sampling

The image or pixel quality evaluation is of inherent fuzzy uncertainty, which can
be well managed by the fuzzy set theory. Our motivation is to incorporate the
fuzzy set theory to characterize the refinement metric to do adaptive sampling.

3.1 Intrinsic Fuzziness in Image Synthesis

Perceptually based techniques, a hot field of current computer graphics [20],
maybe a good choice for adaptive sampling, because the images produced by
graphics algorithms are often observed by human eyes. Actually, image or pixel
quality evaluation considering human factors can conveniently act very close
to the human way in higher-levels. Humans often use imprecise but integrated
descriptors when they describe objects [21]. Due to the fuzziness or fuzzy un-
certainty of the human senses, image or pixel quality evaluation is of inherent
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vagueness from the view of a human observer [22]. For example, when the image
created by a Monte Carlo global illumination algorithm is placed in front of a
human being, maybe the one and only possibility of the visual response is given
by words like “too noisy” or “high quality”. Obviously, this is the appearance of
fuzzy uncertainty [23].

The fuzziness management in fuzzy set theory can be used to do a variety of
actions without any crisp measurements and any crisp computations [24] [25].
We are going to incorporate fuzzy set theory to handle the intrinsic fuzziness
existing in the adaptive sampling for Monte Carlo global illumination to do
adaptive sampling efficiently.

3.2 Brief Introduction to Fuzzy Set and Fuzziness

We just review several basic concepts in fuzzy set theory here, in order to explain
our practice in this paper. Please refer to some typical textbooks, such as [3],
for details.

Let U be the universe of discourse. A fuzzy set A is a subset of U , and it is
characterized by a membership function μA(•). The membership function μA(•)
associates to each x ∈ U a membership value from [0, 1], and represents the
grade of membership of x in A. The value of the fuzzy set originates from the
fact that it can deal with imprecise, inexact and uncertain information, which is
always used by a human being when describing objects. The so-called fuzziness
is a measure of uncertainty, and it is the amount of average ambiguity presented
by a fuzzy set. There exist a large number of uncertainty measures for fuzzy sets,
and each is with its own objectives, advantages and disadvantages [23].

3.3 Fuzziness Based Pixel Quality

Pixel value is the average of sample values. So the high or low quality of a
pixel depends on the small or large deviations between sample values and their
average, respectively.

Apparently, “high” or “low”, and “small” or “large” indicate the concept of
fuzziness. We can measure pixel quality by the formal concept of fuzziness in the
fuzzy domain. A fuzzy set X , corresponding to a pixel, is defined as such that the
membership of a sample denotes the big and small degree of the absolute differ-
ence between its value and the pixel value. The smaller the absolute difference is,
the larger the membership value becomes. The fuzzy information associated with
X expresses the average amount of the grade of the small or large deviations be-
tween sample values and the pixel value. As a result, the fuzziness with X charac-
terizes the pixel quality. The bigger the fuzziness is, the lower the pixel quality is.

Assume that we have N sample values Li(1 ≤ i ≤ N) for a pixel. The mem-
bership function for the fuzzy set X is formulated as follows:

μi = μ(Li) = e
− Δ2

i
2β2 (1)

Δi = ‖Li − L‖ (2)
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L =
1
N

N∑
i=1

Li (3)

Here Δi is the color difference between sample value Li and pixel value L. We
adopt the CIELAB color to calculate difference because CIELAB is a percep-
tually uniform color space [26]. The formula 1 manifests a gradual increase in
the deviation, which is described by the common Gaussian function. Since each
sample should belong to the pixel to some possibility degree, the parameter β
is automatically selected to ensure that the membership of any sample is in the
range [0.5, 1]. The β is chosen as such that it can be used to restrict the mem-
bership of a sample to be 0.5, if the color difference between sample value and
pixel value is maximal. We choose Deluca-Termini fuzziness [23], in the normal-
ized form, as our pixel quality measure because it is popularly used in many
engineering fields:

Q =

N∑
i=1

[μi logμi + (1− μi) log(1− μi)]

N log 0.5
(4)

Figure. 2 shows the effectiveness of the fuzziness based measure of pixel qual-
ity. The generated image for a complex scene is produced by MCPT with 400
samples per pixel. The temperature map is the color visualization of pixel fuzzi-
ness in which red color corresponds to high fuzziness (low quality) and blue to
low fuzziness (high quality). Here the pixel fuzziness is calculated by using 200
sample values. Our metric is sensitive to different levels of pixel quality and be-
haves well in difficult areas, for example, the area A shows the detailed color
changes which exhibit varied pixel qualities in this softly shadowed region. Due
to the application of fuzziness measure, our pixel quality metric can take human
factors, or exactly speaking, the high-level human factors, into account, rather

(a) Generated image (b) Temperature map

Fig. 2. Fuzziness visualization
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than only considering the quantified variations between the sample values. For
instance, the pixels in the area B are indirectly illuminated and their pixel vari-
ances would be larger than those of the pixels in the area C that is directly
illuminated. But the area C attracts more from human eyes and behaves itself
in the low level of quality, and this is the situation of our metric. Similarly, the
area D is regarded as a high quality region because the pixel values here are
outside the perceivable range.

3.4 Fuzzy Uncertainty Driven Adaptive Sampling

As the pixel quality measure, the fuzziness defined in Section 3.3 is incorporated
into the Monte Carlo Global Illumination based adaptive sampling. That is to
say, a first batch of pilot samples is used for each pixel to compute the fuzziness
of pixel. Then more batches are employed if the fuzziness is not smaller than the
predefined threshold, and these successive batches will improve the fuzziness or
the pixel quality.

The applied adaptive super sampling procedure is as follows:

STEP 1. An initial batch of NInit stochastically distributed samples at a pixel
is taken and the corresponding color values Li(1 ≤ i ≤ NInit) are estimated to
compute the fuzziness, namely the pixel quality Q (see the formula 4, here the
number of pixel’s samples N = NInit).
STEP 2. The conditional test

Q < Threshold (5)

is operated. Where Threshold is the predefined threshold, which is used to con-
trol whether the super sampling is terminated or not.
STEP 3. Consecutive batches of NAdd additional samples are introduced until
the conditional test is valid. The number of samples is changed by

N = N + NAdd (6)

whenever a batch of NAdd additional samples is used.

4 Implementation and Results

We have implemented the new adaptive sampling scheme for MCPT. We use
the tabulated Gaussian function values and the tabulated power function values
in the calculation of fuzziness, and accordingly our algorithm does not increase
the running time when compared with other methods. Furthermore, the com-
putational cost of our method is even smaller than that of the entropy based
scheme [10]. The parameter Threshold, which is used in the procedure of adap-
tive super sampling, is tuned so that all the result images for each test scene are
obtained with a very similar average samples per pixel. All the synthetic images
are generated without filtering.
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fuzziness reference

contrast variance

Fig. 3. Result images for the test scene 1

fuzziness reference

contrast variance

Fig. 4. Result images for the test scene 2
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fuzziness reference

contrast variance

Fig. 5. Result images for the test scene 3

We compare our method with the two classic ones, the contrast [13] and the
variance [8] [14] based methods. Three test scenes are used for the compar-
isons. The test scene 1 is similar to the famous Cornell box. The complex test
scene 2 and 3 include 24500 and 60000 textured triangles respectively, in diffuse
and glossy scattering attributes. Especially, the test scene 3 is indirect lighting
dominated, and it is very complex from the viewpoint of global illumination
computation. For each of the three test scenes, all the approaches use the same
number of initial samples (8 for the first two scene, 50 for the third scene) and
the same number of additional samples (8 for the first two scene, 15 for the third
scene) to do adaptive sampling to produce the result images.

The reference images of the three test scenes, which are generated by MCPT
using 10000, 40000 and 40000 samples per pixel, are used to judge the quantita-
tive magnitude of errors for the images created by different algorithms. The three
reference images are placed in the following Figure. 3, Figure. 4 and Figure. 5
respectively to assist the visual comparisons of the different produced images.

The images with 200 × 200 pixels for the test scene 1 synthesized by 3 ap-
proaches with average 90 samples per pixel are shown in Figure 3. The highest
global image quality resulted from our method is evident from the observation of
the blue sphere, the shadow regions and the flat red and green walls. For instance,
the most noise reduction can be easily found at the center part of the sphere.
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The images with 256× 192 pixels for the test scene 2 produced by 3 methods
with average 80 samples per pixel are presented in Figure. 4. Our algorithm
achieves the best results, for example, this can be observed from the mirrored
areas, the shadow zones and the green grounds. In particular, we can observe
the big differences from the rightest mirrored pillar.

The images with 250× 250 pixels for the test scene 3 created by 3 algorithms
with average 400 samples per pixel are demonstrated in Figure. 5. The new
scheme outperforms the others, and this is presented from all the parts of the
generated images. For example, the noise reductions arrived at the roof, the
indirect lighting areas and the texture details are very apparent.

Table 1. RMS comparisons for the new method and the contrast based method

RMS Scene 1 Scene 2 Scene 3

Fuzziness 3.84 4.63 4.18
Contrast 7.36 7.47 8.18

RMS-reduce 47.83% 38.02% 48.90%

Table 2. RMS comparisons for the new method and the variance based method

RMS Scene 1 Scene 2 Scene 3

Fuzziness 3.84 4.63 4.18
Variance 4.31 5.34 6.17

RMS-reduce 10.90% 13.30% 32.25%

Table. 1 and Table. 2 show the RMS errors of the above images generated
by different methods respective to the reference images for the three test scenes.
The quantified RMS reductions by the novel method over the two other methods
are also listed in the two tables. The RMS analysis justifies the largest noise
reduction of our method. The RMS reduction of our scheme is from about 11 %
to 49 %. Moreover, we can find that the proposed method can attain more noise
reductions for the more complex scenes. Thus, it is highly promising to use the
novel scheme to render the complex scenes.

In addition, we compare our algorithm with the the entropy based approach
[10]. Two test scenes are used for this time. The test scene 4 is a simple box with
a spot light, and with diffuse and glossy surfaces accounting for different global
illuminated effects. The test scene 5, with multiple and a variety of indirect
illuminated light sources, includes 870000 textured triangles, in both diffuse and
glossy scattering attributes. For each of the two test scenes, all the approaches
use the same number of initial samples (8) and the same number of additional
samples (8) to generate the result images.
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The images with 200 × 200 pixels for the test scene 4 by 2 techniques with
average 100 samples per pixel are given in Figure. 6. The best image quality
resulted from the new method is apparently presented in the indirect lighting
zones, such as the mirror, the shadows, and the upper red and green walls.

The images with 256 × 192 pixels for the test scene 5 by 2 approaches with
average 200 samples per pixel are shown in Figure. 7. The new method performs
better in the complex parts, such as the three pictures hung on the walls, the
floor, the upper walls and the roof.

Table. 3 presents the RMS reductions by the new scheme over the entropy
based method.

reference fuzziness entropy

Fig. 6. Result images for the test scene 4

reference fuzziness entropy

Fig. 7. Result images for the test scene 5

Table 3. RMS comparisons for the new method and the entropy based method

RMS Scene 4 Scene 5

Fuzziness 3.71 9.40
Entropy 8.12 10.59

RMS-reduce 54.31% 11.31%
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5 Conclusion and Future Work

We have presented a new adaptive sampling scheme. The pixel quality measured
by fuzziness is sensitive and discriminating. Implementation results demonstrate
quite better advantages of the novel approach. With the help of fuzzy set theory,
it becomes promising to do adaptive sampling more effectively. To our knowl-
edge, this is the first try to use the fuzzy technique for global illuminated image
synthesis problems. Just as almost all the existing adaptive sampling approaches,
our method is biased. In the near future, the bias embedded in adaptive sampling
would be investigated in a fuzzy way.
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Abstract. Manifold parameterization considers the problem of parameterizing
a given triangular mesh onto another mesh surface, which could be particularly
plane or sphere surfaces. In this paper we propose a unified framework for man-
ifold parameterization between arbitrary meshes with identical genus. Our ap-
proach does this task by directly mapping the connectivity of the source mesh
onto the target mesh surface without any intermediate domain and partition of
the meshes. The connectivity graph of source mesh is used to approximate the
geometry of target mesh using least squares meshes. A subset of user specified
vertices are constrained to have the geometry information of the target mesh. The
geometry of the mesh vertices is reconstructed while approximating the known
geometry of the subset by positioning each vertex approximately at the center of
its immediate neighbors. This leads to a sparse linear system which can be effec-
tively solved. Our approach is simple and fast with less user interactions. Many
experimental results and applications are presented to show the applicability and
flexibility of the approach.

Keywords: Surface parameterization, compatible meshes, least squares mesh,
morphing.

1 Introduction

Surface parameterization can be viewed as a one-to-one mapping from a mesh surface
onto a suitable domain. There are lots of work on surface parameterizations in the lit-
erature [1]. Typically, surfaces that are homeomorphic to a disk are mapped onto the
plane. For closed genus-zero models, the unit sphere is a natural parameterization do-
main. More complicated mesh can be mapped to a coarse simplicial domain such as a
cube or its simplified mesh.

In general, the parameter domain itself will be a surface and so constructing a
parameterization means mapping one surface onto another. This is widely used in
applications such as shape morphing that require compatible meshes or consistent/cross
parameterization [2, 3, 4], i.e., meshes with identical connectivity.

In previous approaches, consistent parameterizations are generally constructed by
partitioning the meshes using a set of consistent cuts and creating an intermediate com-
mon domain [2, 3, 4, 5, 6]. There are many drawbacks for these approaches. It may re-
quire extra user input such as specifying the cut connectivity to partition two meshes
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into a set of consistent patches. This is difficult for many models with dissimilar geom-
etry. Furthermore, the mutual tessellation during optimization process is rather time-
consuming which makes it take a couple of hours to create inter-surface maps between
two meshes.

Unlike previous approaches we try to directly create a one-to-one map between
topologically equivalent models. Our approach thinks of consistent parameterization as
embedding its connectivity graph onto another surface directly. We call it manifold pa-
rameterization for the reason that manifold could refer to plane, sphere, and any other
manifold surface.

Our approach does this task by directly mapping the connectivity of one mesh onto
another mesh surface without any intermediate domain and partition of the meshes.
Considering Fig. 1 for an illustration example, in (c), the connectivity graph of the
mannequin head mesh (a) have been embedded on the surface of the Max-Planck head
mesh (b). Mesh (c) looks the same with mesh (b) in shape but has the same connectivity
with (a).

 

 

 

 

 

( )a ( )b ( )c ( )d

Connectivity Geometry Parameterized Mesh 

Fig. 1. Manifold parameterization: mapping the connectivity of a mesh (a) onto another mesh (b)
directly to obtain a new mesh (c). The new mesh (c) has almost the same geometry with mesh (b)
and has identical connectivity with mesh (a). (d) is the smooth shading of (c).

Our approach is rather intuitive and simple based on least squares meshes [7]. Using
the same notations above, we use the connectivity of Ms by discarding its geometry
information. A subset of the vertices are then constrained to have the geometry infor-
mation of Mt. The geometry of the mesh vertices is reconstructed in a least-square
sense while approximating the known geometry of the subset by positioning each ver-
tex approximately at the center of its immediate neighbors [7]. This leads to a sparse
linear system which can be effectively solved. The location of each vertex in the sub-
set is carefully chosen to be the features and saliency points of mesh Mt so that the
reconstructed surface captures the overall geometric shape of Mt. In this process, no
any geometry information of Ms is used. Since the reconstruction system accounts for
both the given connectivity of mesh Ms and the given geometry of mesh Mt, it yields
a shape which is a consistent parameterization between Ms and Mt.
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To our knowledge, our approach is the first approach to directly generate the con-
sistent parameterization between two manifold meshes without partitioning the meshes
using a set of consistent cuts and creating an intermediate common domain.

2 Related Work

2.1 Mesh Parameterizations

Planar parameterization methods established mappings between non-closed mesh and
planar domains. There have been many methods developed to date, see [1] for a recent
survey. An important limitation of planar parameterization techniques is that it generally
requires that an entire surface be cut into one or more disk-like charts, where each chart
is parameterized independently[8, 9].

A closed genus-zero surface can be parameterized into the unit sphere without any
cuts. Examples of spherical parameterization approaches include [10, 11, 12].

2.2 Consistent Parameterizations

Consistent parameterizations have been done for morphing application in much of the
previous work, see a recent review on consistent parameterizations developed for mor-
phing [13].

The typical approaches for consistent parameterization first parameterize the meshes
on a common base domain and then compute the overlapped triangulations on the based
domain. Sphere is chosen as a base domain for consistent parameterization in [14]. An
inherent limitation is that it can only be applied to closed, genus zero surfaces.

A more general approach is to parameterize the models over a common intermedi-
ate simplicial mesh [5, 2, 3, 4]. The meshes are partitioned into matching patches with
an identical inter-patch connectivity using a set of consistent cuts. Then each patch is
parameterized onto the corresponding face in the based domain.

The work of [5] first constructs simplicial parametrizations from two meshes to their
respective base domains. User assistance is required to form a good map between the
different domain meshes, and this map construction is not robust. The common meta-
mesh is typically a reported 10 times more complex than either original mesh. A set
of genus-zero models is parameterized onto a simplicial complex in [2]. They create
consistent parameterizations by partitioning the mesh based on the connectivity of the
simplicial complex and parameterizing each patch onto the respective simplical com-
plex face. The work of [3] improves the technique of [2] by not requiring the simplicial
complex to be specified a priori. However, their algorithm does not scale well with re-
gard to the number of models to be consistently parameterized. In more recent work [4]
they construct consistent parameterizations between two models without going through
an intermediate domain. To generate a smooth consistent parameterization, they use a
symmetric, stretch based relaxation procedure, which trades high computational com-
plexity for quality of the mapping. However the method is limited to dealing with only
two models and is very slow.

In this paper, we directly map the connectivity of one mesh onto another mesh with-
out any intermediate domain. Our approach needs not partition the meshes so that no
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extra user inputs are required to specify the set of consistent cuts. Our system can easily
construct the consistent parameterization among multiple meshes as shown in Section
5.1. Moreover, our approach is fast and efficient as it only needs to solve a sparse linear
system.

3 Least Squares Mesh

Least squares meshes (LS meshes) are meshes with a prescribed connectivity that ap-
proximate a set of control points in a least-squares sense [7]. For a given mesh connec-
tivity, LS mesh allows that only a sparse subset of the mesh vertices contains geometric
information. The geometry of the mesh is reconstructed in a least squares sense by ap-
proximating the known geometry of the subset and positioning each vertex in the center
of gravity of its immediate neighbors. It can be obtained by solving a sparse linear sys-
tem. The linear system not only defines a surface that approximates the given control
points, but it also distributes the vertices over the surface in a fair way.

We now go through the contexts of LS mesh quickly. For a vertex vi of mesh M , the
following equation defines its smoothness condition:

vi −
∑
j∈i∗

1
di

vj = 0, (1)

where i∗ is the vertex index set of neighborhood vertices to the vertex vi and di is the
valence of vi.

It can be seen that the equations in Eq. 1 of all the vertices form a sparse linear
system. The linear system can be written in matrix form:

LX = 0, (2)

where L is an n× n matrix, known as the Laplacian of the mesh, with elements as:

Lij =

⎧⎨⎩
1, i = j,
− 1

di
, (i, j) ∈ E,

0, otherwise,

X is the n×1 column vector of the corresponding vertices. The above system had been
used in the planar graph drawing [15] and planar parameterization [16].

If the geometry of a subset of the vertices are provided, we can reconstruct the geom-
etry of the rest of the mesh vertices by solving the sparse linear system in Eq. 2 in a
least square sense [7]. If we carefully select the provided vertices as feature points of
the surface, the reconstructed mesh can effectively approximate the original mesh.

Providing the 3D location for some s control vertices {vk = (xk, yk, zk)|k ∈ C},
where C = {i1, i2, . . . , is} is the set of indices. The system reconstructs the positions
of all the vertices v′ of mesh M to minimize the following error functional:

min
X′
‖LX′‖2 +

∑
k∈C

‖v′
k − vk‖2. (3)
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Connectivity 

Geometry 

Fig. 2. Manifold parameterization pipeline: mapping the connectivity of mannequin head model
(Ms) onto David head model (Mt). (a) Two head models (Upper: mannequin head; Lower: David
head) with user markers in blue; (b) LS mesh using the connectivity graph of mannequin head
mesh and user specified control points on the David head mesh; (c) Lower: the feature points
detected by mesh saliency approach [17] shown in pink; Upper: the detected feature points are
mapped onto (b) shown in green; (d) LS mesh using the connectivity graph of mannequin head
mesh and control points including user markers and mapped feature points on the upper mesh of
(c); (e) smooth shading of (d). The mesh (e) has the same geometry with David head model and
has the same connectivity with mannequin head model.

The above functional is quadratic in every vertex and hence its partial derivatives are
linear expressions. The unique minimum is found if all partial derivatives with respect
to the vertices vanish, which results in a sparse linear system as the following:

AX′ =
(

L
F

)
X′ =

(
0
bF

)
= b, (4)

where F is an s×n matrix in which each row contains only one non-zero element used
to constrain the position of the control vertices with the element:

fkj =
{

1, j = ik ∈ C,
0, otherwise, 1 ≤ k ≤ s, 1 ≤ j ≤ n;

and bF is an s× 1 column vector:

bF
k = gik

, 1 ≤ k ≤ s, g = x, y, or z.

Note that the linear system is defined for each component of the coordinates x, y,
and z. The positions of the vertices can be found by solving the sparse linear system in
Eq. 4 in a least square sense as:

X′ = (AT A)−1ATb.
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4 Our Approach for Manifold Parameterization

4.1 Our Approach

Inspired by LS meshes, we develop a new technique for manifold parameterization,
i.e., mapping the connectivity graph of one mesh onto another mesh. Given two man-
ifold meshes Ms and Mt, our goal is to generate a new mesh Mr which has the same
connectivity with Ms and the same geometry with Mt, as shown in Fig. 3.

Our strategy is to use the connectivity graph of Ms and use the constraints of control
points from Mt in the linear system Eq. 4. We need to carefully choose a set of control
points on Mt in order to bring the surface of Mr close to Mt.

 

 

 

 

Connectivity 
of sM  

Geometry
of tM  = + Manifold parameterization 

between sM  and tM  

Fig. 3. Manifold parameterization: mapping the connectivity of Ms onto surface Mt

4.2 User Markers

Usually the consistent parameterization must respect the similar features between the
models. For example, when mapping between two human head models, the mouth must
map to the mouth, the nose to the nose, and so on. This is typically achieved by spec-
ifying the correspondence for a small set of feature vertices by the user, called user
markers, and using a consistent parameterization that preserves the user-defined feature
vertex correspondence.

In our system, the user can easily specify the corresponding marker points on two
given mesh shown side by side. Fig. 2(a) shows two mesh models, the mannequin head
mesh in the upper as Ms and the David head mesh in the lower as Mt, with user speci-
fied corresponding feature points shown in blue.

4.3 Feature Detection

The LS mesh M̄t constructed by the connectivity of Ms and the control points from the
user markers on Mt is shown in Fig. 2(b). It is seen in the figure that the LS mesh is
distorted and bears almost no similarities to the original shape of Mt due to the small
amount of control points.

Usually only a small number of marker paris is specified by the user. Thus we need
find more control points automatically to make the reconstructed M̄t get closer to the
shape of Mt.

Intuitively, the control points should be places in important locations where geomet-
ric detail is present on the surface, such as high curvature points, ridges and valleys, and
the tips of extruding parts.

In [17], the idea of mesh saliency is introduced as a measure of regional importance
for meshes, which is inspired by low-level human visual system cues. Mesh saliency
is defined in a scale-dependent manner using a center-surround operator on Gaussian-
weighted mean curvatures.
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The pink points on David head mesh shown in lower row of Fig. 2(c) are the detected
feature points by approach of mesh saliency.

4.4 Mapping Feature Points

The feature points detected on mesh Mt should be mapped to the constructed mesh M̄t

so that M̄t can be reconstructed using these control points to get closer to the shape
of Mt.

We adopt an intuitive and simple method. Each vertex of the feature points on Mt is
mapped to the closet vertex on M̄t. Note that these closest points are required to be the
vertices M̄t.

It is required that the normals of the feature point on Mt and the corresponding
mapped point on M̄t should have compatible directions in the meaning of that their
inner product is larger than 0. This is to avoid mismatching so that front-facing surfaces
will not be matched to back-facing surfaces. The distance between the mapped pair
points is within a threshold and we use a distance threshold of 10% (measured as a
percentage of the bounding box diagonal) in our experiments.

There might be cases that multiple feature points on Mt are mapped onto one vertex
on M̄t. In these cases, we simply keep the closest pair and discard the other pairs.

It is also noted that simply mapping each feature point on Mt to its closest point on
M̄t will not always result in a very good matching as neighboring parts of Mt could get
mapped to disparate parts of M̄t. To constrain this problem, we use a heuristic criteria
by checking the normal changes in triangles related to mapped points over M̄t. Large
normal variation will penalize the point mapping. In our experimentation this method
can efficiently prevent adjacent parts of Mt from being mapped to disparate parts of M̄t.
As we will see in the following sections, the mismatching cases would seldom occur
for all testing examples after couples of iteration of LS mesh reconstruction as Mt and
M̄t are very close to each other.

To accelerate the minimum-distance matching, we use the ANN library [18] of ap-
proximating nearest neighbor searching, which performs quite efficiently in a linear
time.

The upper figure of Fig. 2(c) shows an example of this mapping. The feature points
(in pink color) on David head mesh shown in the lower figure of Fig. 2(c) are mapped
onto M̄t shown in Fig. 2(b). The mapped points on M̄t are shown in green in the upper
figure of Fig. 2(c). The mapped points are added into control points in LS mesh con-
struction and obtain the mesh M̄t shown in Fig. 2(d). It is seen that the reconstructed
mesh M̄t quickly gets closer to mesh Mt as the number of control points increases.

4.5 Algorithm Steps

We summarize the steps of our approach as following:

Input: Two manifold triangular meshes Ms and Mt.
output: A consistent parameterization Mr between Ms and Mt.
Step 1. Specify some corresponding marker pairs on Ms and Mt manually.
Step 2. Detect the feature points with importance values on Mt by the approach of mesh
saliency.



Manifold Parameterization 167

Step 3. Construct M̄t by LS mesh using connectivity of Ms and markers’ geometry on
Mt as control points.
Step 4. Map the feature points of Mt onto M̄t.
Step 5. Construct M̄t by LS mesh approach using markers’ geometry and mapped
points’ geometry on Mt as control points.
Step 6. Perform adaptive refinements on M̄t and Ms simultaneously.
Step 7. Repeat Step 4 to Step 6 until the approximation error between M̄t and Mt is
within a prior tolerance. Then we get Mr = M̄t.

4.6 Discussion

At the first iteration, as M̄t is generated using only the user markers, the shape is much
different from Mt as shown in Fig. 2(b). Practically we do not use distance threshold in
the process of mapping feature points at the first iteration.

It can be seen that the connectivity ofMs should be dense enough to represent the geo-
metric details ofMt. Or else large distortion will occur. Although the adaptive refinement
can alleviate this occasion, we usually subdivide/refine the mesh Ms at the beginning to
guarantee that there are enough triangles in its connectivity for some examples.

We would like to stress that the quality of the parameterization M̄t strongly depends
on the shape of Ms and Mt and the specified marker pairs. In some cases the con-
nectivity of Ms is not dense enough to represent the geometry details of Mt globally
or locally. In other case there will be skinny triangles on M̄t which cause numerical
problems in many applications. To account for this, we use two adaptive refinement
operators, i.e., edge split and edge flip, to yield the parameterization M̄t representing
the geometry details of Mt with a better triangle shape.

A small quantity of feature points may be detected in some relatively smooth region
of Mt using the computed scale by mesh saliency approach. Then this region can not
be well approximated by LS mesh processing. Thus we select some random vertices in
this region and add these selected random vertices to the set of feature points generated
by mesh saliency.

Furthermore, our algorithm can be easily applied locally. Our system also allows to
consistently parameterized a part of a mesh less than another one, which happens to be
useful in practice.

5 Experimental Results and Applications

We will show some examples illustrating the applicability and flexibility of our mani-
fold parameterization approach in a few exemplary applications. All the examples pre-
sented in this paper were made on a 2.8GHz Pentium IV computer with 1G memory.

5.1 Consistent Parameterizations Between Multiple Meshes

Our approach can be easily used to establishes parameterizations for a set of models. In
Fig. 4, the mannequin head model is parameterized on the other head models. After the
parameterizations, all the head models have identical connectivity with the mannequin
head model.
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Fig. 4. Consistent parameterizations between multiple meshes: all the other head model are para-
meterized using the connectivity of the mannequin head model

5.2 Spherical Parameterization

As we have mentioned in previous sections, if the target mesh Mt has the geometry
of a plane, our approach can be regarded as an approach of planar parameterization; if
the target mesh Mt has the geometry of a sphere, our approach can be regarded as an
approach of spherical parameterization. Fig. 5 shows a spherical parameterization of
Venus head model by setting Mt as a sphere surface.

 

 

 

 

( )a ( )b ( )c

Fig. 5. Spherical paramterization of Venus head model. (a) Venus head mesh model; (b) the spher-
ical parameterization of Venus head model; (c) smooth rendering the spherical parameterization
using the normal from original Venus head model.
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5.3 Mesh Morphing

Establishing a one-to-one mapping between different shapes is the first step in morphing
application. Fig. 6 shows the use of the computed compatible meshes for morphing
between dinosaur and horse models. The morphing examples shown in Fig. 7 between
torus and mug demonstrates our approach’s ability to handle high genus models. Linear
interpolation is used in the above morphing examples. The accompany live video shows
the animation sequence of these morphing.

 

 

 

 

Fig. 6. Morphing sequence between dinosaur and horse models

 
 

 

 

 

    

 

 

Fig. 7. Morphing sequence between torus and mug models

5.4 Texture Transfer

Attributes from different models can be easily transferred through direct parametric
mapping if these models have the consistent parameterizations. Fig. 8 shows a simple
example of transferring texture. The texture of the tiger model is applied to the cheetah
model.

 
 

 

 

( )a ( )b ( )c

Fig. 8. Example of texture transfer. (a) A tiger model with textures; (b) a cheetah model; (c)
transferring texture of (a) onto (b).

Table 1 shows the statistics for the examples shown in the paper, including the vertex
number, the running time, and the Hausdorff distance [19] (with respect to the size of
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bounding box). As we can see, our approach achieves a good combination of speed,
mesh quality, and shape preservation.

Table 1. Statistics including the vertex number, the running time, and the Hausdorff distance
[19] for the examples shown in the paper

Model Vertex# Running Time(s) Distance
Planck (Fig. 4) 10,139 91.5 0.0303
Venus (Fig. 4) 10,139 108.1 0.0051
David (Fig. 4) 10,139 133.3 0.057
Sphere (Fig. 5) 8,628 12.8 0.0063
Horse (Fig. 6) 10,189 10.8 0.0091
Mug (Fig. 7) 38,400 82.5 0.0314
Cheetah (Fig. 8) 22,192 172.4 0.0105

6 Conclusion

A unified manifold parameterization approach is presented in this paper. The connec-
tivity of the source mesh is mapped onto another mesh surface directly without the
intermediate domain and specifying the consistent cuts. Our approach is based on the
least squares mesh. The geometry of the mesh vertices is reconstructed in a least-square
sense while approximating the known geometry of the subset by placing each vertex
approximately at the center of its 1-ring neighbors. Our approach provides a unified
framework for creating consistent parameterization between two manifold meshes with
higher (but same) genus if only a sufficient number of feature points are specified to
define a correspondence between the handles. Many experimental results have been
presented to show the applicability and flexibility of the approach.

The presented approach still has much to do for improvements and extensions. First,
our approach can not guarantee that all the vertices of parameterized mesh M̄t lie
on the surface of the target mesh Mt. A possible way to solve it might be combin-
ing with Turk’s retiling approach [20]. Second, multiresolution solution could be
integrated into the framework to generate higher quality compatible triangulations be-
tween two much dissimilar meshes. Last, it is also much worthwhile to extend our
approach to generate consistent parameterization between manifold surfaces with dif-
ferent topologically genus. We believe that this extension is feasible but not straight-
forward.
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Abstract. In this paper, we apply Nyström method, a sub-sampling
and reconstruction technique, to speed up spectral mesh processing.
We first relate this method to Kernel Principal Component Analysis
(KPCA). This enables us to derive a novel measure in the form of a ma-
trix trace, based soly on sampled data, to quantify the quality of Nyström
approximation. The measure is efficient to compute, well-grounded in
the context of KPCA, and leads directly to a greedy sampling scheme
via trace maximization. On the other hand, analyses show that it also
motivates the use of the max-min farthest point sampling, which is a
more efficient alternative. We demonstrate the effectiveness of Nyström
method with farthest point sampling, compared with random sampling,
using two applications: mesh segmentation and mesh correspondence.

1 Introduction

Spectral methods for data modeling and processing have been well studied in
machine learning and pattern recognition, e.g., for clustering [1, 2] and corre-
spondence analysis [3, 4]. The idea is to derive, from relational data given as a
matrix and typically of high dimensionality, a low-dimensional and information-
preserving spatial embedding based on the eigenvectors of the matrix, to fa-
cilitate the processing or analysis task at hand. Recently, spectral techniques
have been applied successfully to several mesh processing problems, including
spectral decomposition for mesh compression [5], spectral clustering for mesh
segmentation [6], 3D shape correspondence in the spectral domain [7], spectral
sequencing for mesh streaming [8], segmentation [9], and as an aid to surface re-
construction [10], as well as surface flattening via multidimensional scaling [11].

One of the main drawbacks of spectral methods is that they can be computa-
tionally expensive for large data sets since they rely on eigenvector computation
and at times also require a non-sparse matrix, whose construction involves deter-
mining pairwise affinities between a large number of points. Nyström approxima-
tion [12], a sub-sampling and reconstruction technique originated from integral
calculus, has been proposed as a remedy, e.g., for image segmentation [13], but
there lacks a formal analysis of its quality and the influence of the sampling
procedure. So far, random sampling [13, 14] has been used predominantly.

In this paper, we cast Nystöm approximation in the context of kernel PCA
(KPCA), where the samples are treated as training data. The ability of the
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training set to capture the probabilistic distribution of the whole data set in
the feature space induces a way to measure the quality of the Nyström method.
The resulting measure can be derived as a matrix trace, which depends only on
sampled data. This measure is more desirable than the Schur complement [13],
the only known quality measure for Nyström so far. Empirically, we show that
both measures produce consistent evaluation results. Furthermore, our novel
quality measure is more efficient to compute and leads directly to a greedy
sampling scheme via trace maximization. On the other hand, analyses of the
measure show that it motivates the use of a more efficient heuristic sampling
scheme, which turns out to be the max-min farthest point sampling.

The rest of the paper is organized as follows. After discussing previous work,
we describe Nyström approximation and spectral embedding in Section 3. KPCA
is briefly reviewed in Section 4. Relating Nyström to KPCA, we propose our
quality measure for Nyström in Section 5. We then discuss the relevance of our
quality measure to sampling and motivate the use of the farthest point scheme.
In Section 7, we demonstrate experimentally the effectiveness of the Nyström
method and farthest point sampling, compared to random sampling, using two
applications. Finally, we conclude and comment on possible future work.

2 Previous Work

The graph Laplacian operator has been well studied in geometry processing, e.g.,
see the recent survey [15]. In particular, the Fiedler vector, eigenvector of the
graph Laplacian corresponding to the second smallest eigenvalue, has been used
in graph partitioning [16] and mesh sequencing [8]. For the planar mesh graph,
the Laplacian is sparse, for which fast multilevel methods, e.g., ACE [17], can
compute the leading eigenvectors efficiently. However, when many eigenvectors
are needed, e.g., for spectral mesh compression [5], the cost would be too high
for large data sets. In this case, the mesh is often partitioned into smaller pieces
and the operation proceeds in a piecewise manner [5].

Problems such as surface flattening [11], mesh segmentation [6, 9], shape cor-
respondence [7], and most instances of clustering and dimensionality reduction
considered in the machine learning and pattern recognition literature, e.g., [1, 2],
rely on more global relational information. In these cases, an affinity matrix is
defined by applying a Gaussian-like filter to a distance matrix H , where Hij is a
suitably defined distance, e.g., Euclidean [1], geodesic [7, 11], graph distance, or
a combination of them [6, 9], between points i and j in a data set. Computing the
full affinity matrix takes quadratic time and since it is generally non-sparse, it
is computationally expensive to obtain its eigenvectors. Nyström approximation
has been proposed recently to speed up spectral methods in this case [13, 18].

The Nyström method only requires a small number of sampled rows of the
affinity matrix. It solves a small-scale eigenvalue problem and then computes
approximated eigenvectors via extrapolation. One of the main questions is how
to design appropriate sampling schemes to obtain more accurate approximations
of the ground-truth eigenvectors. To the best of our knowledge, this problem has
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not been studied before. So far, random sampling predominates [13, 14] and other
simple schemes, e.g., max-min farthest point sampling [14], have been mentioned
in passing, but with no analysis given.

3 Nyström Approximation and Spectral Embeddings

Applications [16, 7, 2] utilizing spectral embeddings start by building a matrix
which encodes certain relationship, called affinities, between each pair of ele-
ments in a data set. Depending on the application (see Section 7), this matrix
may be transformed and then its eigenvectors and possibly eigenvalues are used
to obtain a spatial embedding of the original data points in the spectral domain.
Computing spectral embeddings is time-consuming due to the quadratic com-
plexity, in terms of the data size, of affinity computation and up to cubic-time
complexity for eigenvalue decomposition. Nyström method [13, 18] is therefore
proposed to overcome this problem via sub-sampling and reconstruction.

Consider a set of n points Z = X
⋃
Y, where X and Y, X

⋂
Y = ∅, are two

subsets of size l and m. Write the symmetric affinity matrix W ∈ R
n×n in block

formW = [A B;BT C], where A ∈ R
l×l and C ∈ R

m×m are affinity matrices for
points in X and Y, respectively; B ∈ R

l×m contains the cross-affinities between
points in X and Y. Without loss of generality, we designate the points in X as
sample points . Let A = UΛUT be the eigenvalue decomposition of A, then the
eigenvectors of W can be approximated, using the Nyström method [13], as

Ū =
[

U
BTUΛ−1

]
. (1)

This allows us to approximate the eigenvectors of W by only knowing the sam-
pled sub-block [A B]. The overall complexity is thus reduced from O(n3), with-
out sub-sampling, down to O(ml2) + O(l3), where l� n, in practice.

The rows of Ū define the spectral embeddings of the original data points from
Z. From (1), we see that the ith row of U , which is completely determined by
A, gives the embedding x̄i of point xi in X and the jth row of BTUΛ−1 is the
embedding ȳj of point yj in Y. If we let λ1 ≥ λ2 ≥ . . . ≥ λl be the eigenvalues of
A, and ȳd

j denote the dth component of ȳj , then equation (1) can be rewritten
as

ȳd
j =

1
λd

l∑
i=1

x̄d
iB(i, j) =

1
λd

l∑
i=1

x̄d
iW (i, j + l), 1 ≤ d ≤ l. (2)

Namely, the embedding ȳj is extrapolated using the coordinates of the x̄i’s,
weighted by the corresponding cross-affinities in B.

With Ū , we obtain an approximation W̄ of the original affinity matrix W ,

W̄ = ŪΛŪT =
[
A B
BT BTA−1B

]
.

Clearly, W̄ replaces block C of W with BTA−1B. Hence it is suggested to
quantify the approximation quality using the norm of the Schur complement ,
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C −BTA−1B. The smaller the norm, the better the approximation. Schur com-
plement has been used as the de facto quality measure for Nyström method [13].

4 Review of Kernel PCA

Suppose that the points in set Z lie in the Euclidean space R
g. Kernel PCA

(KPCA) [19], an extension to the standard PCA, first applies to Z a generally
non-linear mapping φ : R

g → F , where F is referred to as the feature space. Then
the standard PCA is carried out in F on the point set φ(Z) = {φ(zi)|zi ∈ Z}.
Since F may have a very high, possibly infinite, dimensionality, the non-linear
properties of the data Z can be “unfolded” into linear ones. Thus algorithms
that work on linear structures, e.g., PCA, can be effectively applied in F .

The mapping φ is never explicitly given, but implicitly specified by the inner
products between the data and encoded in a kernel matrix K ∈ R

n×n, where
Kij = k(zi, zj) = φ(zi)·φ(zj). Algorithms running in the feature space based only
on inner products can be efficiently executed in the original space by replacing
inner products with the kernel function k. Gaussian radial basis function [19]

k(zi, zj) = e−
d2

ij

2σ2 , dij = ||zi − zj ||2. (3)

is one of the most commonly used kernels. Note that in our applications, we set σ
to the average of all distances computed. Assume that Z obeys a certain proba-
bility distribution and X ⊆ Z is chosen as a training set and centered. Although
φ is not known explicitly, it is still possible to compute the projections x̃i, the
features, of φ(xi) into the space where the basis are the principal components of
the point set φ(X ) = {φ(xi)|xi ∈ X}, as follows. Let L ∈ R

l×l be the upper-left
block of K and L = EΛET the eigenvalue decomposition of L, where eigenvec-
tors, the columns of E, are in descending eigenvalue order. Let er denote the rth

row of E, then the dth coordinate of x̃i is given by x̃d
i = 1√

λd

∑l
r=1 e

d
rk(xr, xi).

This can be seen as a “black box”, which returns the feature x̃i for any given
point xi. If the training set X characterizes the distribution well, it is then
reasonable to apply it to yj ∈ Y similarly,

ỹd
j =

1√
λd

l∑
r=1

ed
rk(xr, yj) =

1√
λd

l∑
r=1

ed
rK(r, j + l). (4)

It can be seen that the embedding of ỹj in the feature space can be constructed
using the eigenvector entries of the sub-kernel L, weighted by the kernel entries
defined between the xi’s and the yj’s. Here it is worth noting that a resemblance
between KPCA and Nyström approximation (2) is emerging.

5 Quality Measure for Nyström Approximation

While the affinity matrix W defines spectral embeddings and the kernel K is
used in KPCA, both matrices can be seen as an implicit definition of relations
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between data points. Equating W with K and comparing equation (2) with (4),
we see that ȳd

j and ỹd
j have essentially identical expressions up to a scaling factor

λ
−1/2
d ; this fact has been previously noted in [18] as well. Therefore, Nyström

approximation can be considered as a process of running KPCA on new patterns
through a training set. In this section, we investigate the approximation quality
of Nyström method in the context of KPCA.

5.1 Quality Measure as a Matrix Trace

Considering the Nyström method in the context of KPCA, we treat the sample
set X as the training set. Thus points in X are first mapped into the feature space
F and then the features corresponding to points in Y are approximated. In this
setting, a good training set X for accurate Nyström approximation should be a
set that, as stated in Section 4, reflects the same probability distribution function
as Y. This implies that φ(Z) and φ(X ) should roughly lie in the same space.
To this end, we stipulate that an accurate Nyström approximation necessitates
that the sum of squared distances from all the φ(zi)’s to the space spanned by
the φ(xi)’s be small. Now we derive our quality measure.

Denote by Σ the covariance matrix of the point set φ(X ). Note that although
the φ(xi)’s can be high-dimensional, the rank of Σ can be no larger than l =
|φ(X )| and Σ has at most l eigenvectors (ξ1, ξ2, . . . ξl), corresponding to non-zero
eigenvalues. Let P = [ξ1|...|ξl], then the squared distance from φ(zi) to the space
spanned by the φ(xi)’s (equivalently, the column space of P ) is

ρi = ||φ(zi)− PPTφ(zi)||2 = ||φ(zi)||2 − ||PPTφ(zi)||2,

where PPT is the orthogonal projection operator which projects any vector into
the column space of P . Hence we wish to minimize the objective function

n

i=1

ρi =
zi∈X

ρi +
zj∈Y

ρj

=
l

i=1

||φ(xi)||2 −
l

i=1

||PP T φ(xi)||2 +
m

j=1

||φ(yj)||2 −
m

j=1

||PP T φ(yj)||2 .

Note that
∑l

i=1 ||φ(xi)||2 +
∑m

j=1 ||φ(yj)||2 =
∑n

i=1 ||φ(zi)||2 =
∑n

i=1 Kii. Also,∑l
i=1 ||PPTφ(xi)||2 =

∑l
i=1 ||φ(xi)||2 =

∑l
i=1 Kii. For our purpose,K is derived

using the Gaussian kernel (3), thus the diagonals of K are constant 1. As a result,
the first three terms of the objective function are constant, given that the size
of X is fixed. Our goal is then reduced to maximizing the quantity

Γ =
m∑

j=1

||PPTφ(yj)||2 =
m∑

j=1

(PTφ(yj))T (PTφ(yj)). (5)

Denote by U1, U2, . . . , Ul the eigenvectors of A, as first defined in Section 3. Note
that since we now make no difference between K and W , A is also the upper-left
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block of K. It is known [19] the principal component ξi of φ(X ) can be written

as a linear combination of the φ(xi)’s, i.e. ξi =
∑l

d=1 λ
− 1

2
i Ud

i φ(xd). We then have

ξT
i φ(yj) =

∑l
d=1 λ

− 1
2

i Ud
i [φ(xd) · φ(yj)] =

∑l
d=1 λ

− 1
2

i Ud
i k(xd, yj). Therefore

PTφ(yj) = [ξ1|. . . |ξl]Tφ(yj) = [ξT
1 φ(yj)|. . . |ξT

l φ(yj)]T = (UΛ− 1
2 )TBj ,

where Bj is the j-th column of B. Thus (5) is simplified to

Γ =
m∑

j=1

BT
j UΛ

−1UTBj = tr(BTA−1B), (6)

where tr(·) denotes the matrix trace. When Γ attains a larger value, in the feature
space, points in Z lie closer to the space spanned by X . Consequently, Nyström
method achieves a better approximation. Thus Γ provides a quality measure for
Nyström method. The time complexity for computing Γ is O(ml2) + O(l3). In
practice, l� n and can be regarded as a constant. Throughout our experiments
(Section 7), we set l = 10. Next, we empirically verify the accuracy of Γ against
Schur complement and then use it to derive a heuristic sampling scheme.

5.2 Comparison with Schur Complement

Typically, the norm of the Schur complement C−BTA−1B, defined in Section 3,
is used to measure the approximation quality of Nyström. But the time complex-
ity involved would be O(n2), since C is required. For efficiency, C should never
be computed fully; this excludes the possibility of using the Schur complement
on the fly as a measure to supervise the sampling process. On the other hand,
Γ does not suffer from this problem and is much more efficient to compute.
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Fig. 1. Only 4% of the red markers lie in the
second and fourth quadrants. This shows
the consistence between Γ and the norm of
the Schur complement, in evaluating sam-
pling schemes for Nyström approximation.

Quality-wise, let us use the Schur
complement as the ground truth to
evaluate the accuracy of Γ , empiri-
cally. In each run of our experiment,
a set of points is generated using
a Gaussian distribution. From these
points, two sample sets S1 and S2
of equal size are randomly chosen.
We check whether the two measures
would rank the two sample sets con-
sistently. Denote by η(Si) and γ(Si)
the approximation error values result-
ing from using the norm of the Schur
complement and Γ , respectively, on
sample set Si. We plot, as a red
marker, the position of the 2D point
(η(S1)− η(S2), γ(S2) − γ(S1)). Obvi-
ously, the marker would appear in the
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first or third quadrant if and only if the two approaches had produced the same
ranking of the sample sets. In Fig. 1, results from 100 test runs are shown. Evi-
dently, almost all points lie in the first and third quadrants. This verifies, exper-
imentally, the robustness of Γ as a quality measure for Nyström approximation.

6 Sampling Scheme

Depending on the application, different sampling strategies for Nyström method
may be considered. But so far random sampling [13, 14] has been the norm.
Random sampling may work well when the sample size is sufficiently large. But
large sample size will increase the workload. In the applications we discuss in
Section 7, we wish to take few samples while still achieving good performance.

6.1 Greedy Sampling Based on Γ

As verified in Section 5.2, Γ provides a good quality measure for Nyström
method. Furthermore, due to its simplicity, it can also be used on the fly to guide
a greedy sampling procedure. Specifically, each time a new sample is added, its
affinities to the remaining points are maintained. This way we always know the
current A and B, the within-sample and cross-sample affinities. To select the
next sample, we consider all the un-sampled points. For each point, the current
B and A are updated accordingly and the new Γ is computed. The new sample
is the one which maximizes Γ . Our experiments show that this greedy scheme
works quite well and fast since a very low sampling rate can be used. However,
it can be made more efficient without computing Γ explicitly, as we show below.

6.2 The Max-Min Farthest Point Sampling Scheme

To further speed up the greedy sampling scheme without sacrificing much of its
quality, we propose to use a heuristic which would not require explicit compu-
tation of Γ . This is made possible by examining the mathematical properties of
Γ . Based on the cyclic property of matrix trace operation, we know that

Γ = tr(BTA−1B) = tr(A−1BBT ) = tr(A−1
m∑

j=1

BjB
T
j ).

When m is large, entries ofM =
∑m

j=1 BjB
T
j are close to each other. If we rewrite

M ≈ τ11T, with τ ∈ (0,m) a fixed value, then Γ ≈ τtr(A−111T) = τ1T(A−11).
Observe that there are two conditions for Γ to attain a relatively large value.
The first is to have a large 1T (A−11). Note that A−11 gives the coefficients of
the expansion of 1 in the space whose basis are the columns of A. Moreover, the
diagonals of A are 1 and its other entries lie in (0, 1). It is easy to show, in 2D,
that the sum of these coefficients, 1T (A−11), is no larger than l. The maximal l is
obtained when A’s columns are the canonical basis of the Euclidean space. This
is generalizable to arbitrary dimensions. In order for A’s columns to be close to
the canonical basis, the off-diagonal entries should be close to zero. Thus samples
should be taken mutually far away from each other.
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The second condition is to have a larger τ . To this end, entries of B should
be large, meaning that the distances from the samples to the remaining points
should be small on average. When a sufficient number of sample points are
distributed mutually far away, the average distances from the remaining points to
the sample points tend to converge, making this condition much less influential.
Our experiments also verify that the first condition plays a dominant role.

Stimulated by the first condition, we propose to use the more efficient max-min
farthest point sampling scheme for Nyström method, which works as follows:

1. Randomly pick a point q and find p which is farthest away. Switch p and q
and repeat. After several iterations, p is chosen as the first sample s1. This
procedure will most likely place s1 close to an extremity of the point set.

2. At step i, a new sample si is chosen as the one which maximizes the minimum
distance (hence “max-min”) to the previous samples s1, s2, . . . , si−1.

The significance of having the quality measure Γ is that it induces a greedy
sampling scheme, which dramatically speeds up the spectral embedding as a very
low sampling rate can be used. Moreover, it provides an underlying motivation
for using farthest point sampling at an even lower computational cost.

7 Applications

Now we apply Nyström method with max-min farthest point sampling to two
applications and evaluate the results both numerically and visually.

7.1 Mesh Correspondence

A recent variant to the classical mesh parameterization problem is to compute
a cross parameterization [20] between two meshes directly, where mesh corre-
spondence, computed over sets of selected features on the two meshes, is often
the first step. Currently, most methods [20] rely on manual feature selection and
correspondence. Spectral techniques have been proposed in the past to com-
pute correspondence between feature points on two 2D images [4, 21] and they
can be applied to find the much needed initial mapping between mesh features
as well [7]. In this section, we apply Nyström method to a simple 3D exten-
sion of one such spectral correspondence algorithm by Shapiro and Brady [21].
Specifically, pairwise similarities between data points are given by the L2 dis-
tances between their spectral embeddings and best matching is used to recover
correspondence.

Instead of using Euclidean distances [21] to define the affinities, we use geo-
desic point-to-point distances on the meshes to better handle articulated shapes.
We also make two modifications to the original algorithm as follows. First we
use only the leading k eigenvectors of the affinity matrix to compute the spectral
embeddings and secondly, we scale the eigenvectors with the square root of the
corresponding eigenvalues. Both modifications have been shown to improve the
correspondence in the case of 3D meshes [7].
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In Fig. 2(a) we show the effect of applying Nyström method to the above
algorithm. In these experiments, we fix k = 6 and choose only 10 samples on
meshes of 500 triangles. To visualize the correspondence, we use color coding of
vertices. If X and Y are the two meshes to be matched, we first assign colors to
every vertex in Y ; we carefully assign colors so that different parts of the mesh are
colored differently. Then, we set the color of every vertex of X to be the color of
the matching vertex in Y . Thus a good correspondence induces similar coloring
in the two shapes. Also shown is a comparison between random and farthest
point sampling. Clearly, the matching obtained using Nyström approximation
with farthest point sampling is comparable to the ground truth, which is the
matching computed via eigen-decomposition of the full affinity matrix. Fig. 2(b)
shows more correspondence results obtained using Nyström approximation on
larger meshes (4000 triangles), with the same k and sample size.

(a) (b)

Fig. 2. Results from spectral mesh correspondence. (a) Top row: ground truth, without
sampling. The next two rows show results using Nyström, with farthest-point and ran-
dom sampling, respectively. Inconsistent coloring at badly matched points for the latter
are highlighted by circles. (b) Results for larger meshes (4000 faces) using Nyström and
farthest point sampling. Shapes on the left are matched with those on the right. As we
can see, with only 10 samples, we already obtain excellent correspondence results.

Note that results shown in Fig. 2(a) and 2(b) are subjective. Evaluating a
dense correspondence objectively is non-trivial since the ground-truth correspon-
dence is not known and is impractical to establish manually for large data sets. To
present a more objective evaluation, we use the following trick. We first construct
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Fig. 3. Plot of correspondence error against
mesh size. Nyström with farthest point
sampling has comparable performance to
the un-sampled case.

a series of decimated meshes using
QSLIM [22]. Then we find the corre-
spondence between the original mesh
and a decimated version. Since QS-
LIM does not alter the position of un-
decimated vertices, the ground-truth
correspondence can be trivially com-
puted from a decimated mesh. The
correspondence error at a vertex is de-
fined as the geodesic distance between
the found matching point for the ver-
tex and its ground-truth matching
point. In Fig. 3, the total error is plot-
ted for all vertices against the size
of the mesh. This plot is averaged
over several meshes. Again, it can
be seen that Nyström method, when
combined with farthest sampling, has comparable performance to its much more
costly counterpart, where the full affinity matrices are used and the eigenvectors
are accurately computed.

7.2 Mesh Segmentation

In part-type mesh segmentation [23], the goal is to decompose a mesh shape
into its constituent components according to human intuition. Since mesh seg-
mentation can be considered as a problem of clustering mesh faces, spectral
clustering becomes applicable. In the work of [6], spectral embeddings of faces
are first derived from the intrinsic geometric property of the shape, followed by a
K-means clustering in the spectral embedding space. The rationale behind this
approach is that face clusters in the embedding space correspond to parts of the
shape. In [6], sub-sampling is not conducted and all pairwise distances have to
be computed and converted into affinities. Subsequently, the eigenvectors of the
affinity matrix are computed to find the face embeddings. Although it is possible
to lower the workload by computing only the leading eigenvectors, it is still pro-
hibitive for large meshes, since computing pairwise distances alone would take
O(n2 logn) time for an n-face mesh.

Alternatively, we can apply max-min farthest point sampling and Nyström
method to approximate the spectral embeddings of faces. Supposing that the
sample size is l, we only need to compute the distances from the l sample faces
to the remaining faces since only the sub-block [A B] of W is needed. The whole
process for computing the embeddings then takes O(ln logn) time. Since l � n,
the computational overhead is dramatically reduced.

Fig. 4 presents several segmentation results using Nyström method with far-
thest point sampling, where parts are indicated by different colors. As we can
see, the segmentation results are quite intuitive even at a very low sample rate
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of 10. Table 1 reports the timing. Compared with the results in [6], which only
handles meshes of size up to 4000 faces, in about 30 seconds, the improvement
is quite evident.

Table 1. Statistics of segmentation experiments on a 2.2 GHz Pentium machine with
1.0 GB RAM. Note that since iterative 2-means, instead of a single K-means, is used
on the horse and hand bone models, their running time is relatively higher.

Model Heart Igea Headless Smile Horse Hand bone
Face # 1619 2000 32,574 34,712 39,698 65,001
Part # 4 3 7 5 8 7
Time (s) 0.03 0.07 2.23 3.32 6.86 9.67

(a) Headless (b) Smile (c) Horse (d) Hand bone

Fig. 4. Segmentation results. We test the effectiveness of Nyström method for both
K-means (a, b) and iterative 2-means (c, d). Farthest point sampling is used.

(a) Heart [0.75] (b) Heart [1.06] (c) Igea [0.636] (d) Igea [0.99]

Fig. 5. Comparison of segmentation results under different sampling schemes. (a, c)
are results when random sampling is taken; (b, d) are obtained using farthest point
sampling. The numbers in brackets are the Γ values divided by the number of faces.

In Fig. 5, we compare the performance of Nyström method under random and
farthest point sampling. It is easy to see that Nyström method works much better
with farthest point sampling. Also shown in this figure is that a better sampling
(indicated by a larger Γ value) leads to a more meaningful segmentation. For the
two pictures, (b) and (d), produced using Nyström and farthest point sampling,
no visually differences from those obtained in [6] can be observed.
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8 Conclusion and Future Work

In this work, we study the approximation quality of Nyström approximation,
an important approach for speeding up kernel based algorithms. To overcome
the difficulty of investigating the method directly, we cast it in the context of
KPCA. With the help of the geometric intuition offered by the KPCA framework,
a simple yet accurate quality measure for the Nyström method is derived. This
quality measure can be used on the fly to guide a greedy sampling process
for better approximation. To improve efficiency, we analyze its mathematical
properties and motivate the use of the max-min farthest point sampling scheme.
We apply Nyström method and farthest point sampling to two mesh processing
algorithms, correspondence and segmentation, to demonstrate their effectiveness.
At the same time, we also experiment with applying the same framework to
spectral sequencing with positive results achieved. But due to limited space, we
shall report those results elsewhere.

One possible future work is to consider in more detail the relationship between
KPCA and Nyström method when various preprocessing procedures are applied
to the affinity matrix. Another improvement is to study how different kernels,
such as Gaussian, exponential kernel and polynomial kernels, would influence
the behaviors of the Nyström method. It is also interesting to come up with
application-based evaluation for the effectiveness of Γ . With mesh segmentation
as an example, it is desirable to be able to measure the segmentation quality
quantitatively so that the approximation performance of Nyström method can
be evaluated based on the final result directly.
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Active Contours with Level-Set for Extracting
Feature Curves from Triangular Meshes
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Abstract. In this paper, we present a novel algorithm that extracts
feature curves from triangular mesh domains. It is an extension of the
level-set formulation of active contour model in image space to trian-
gular mesh domains. We assume that meshes handled by our method
are smooth overall, and feature curves of meshes are thin regions rather
than mathematical curves such as found in mechanical parts. We use a
simple and robust scheme that assigns feature weights to the vertices of
a mesh. We define the energy functional of the active contour over the
domain of triangular mesh and derive a level-set evolution equation that
finds feature regions. The feature regions are skeletonized and smoothed
to form a set of smooth feature curves on the mesh.

1 Introduction

Triangular meshes are one of the most widely-used representation schemes in
computer graphics for the shape of 3D objects. For applications of triangular
meshes such as simplification, deformation, remeshing, fairing and morphing, fea-
tures on triangular meshes provide very important information in manipulating
the meshes. In other applications such as NPR (Non-Photorealistic Rendering),
mesh features such as a silhouette or a contour, play an important role. Conse-
quently, there have been increased research efforts towards the development of
methods for feature extraction in triangular mesh domains.

It is the research of computer vision and image processing that has devel-
oped various methods that extract features and detect edges in image space.
The active contour model, also known as Snake [8], is one of the most widely
and frequently used methods. In early research, the active contour models were
designed using explicit curves such as B-spline curve. One of their critical prob-
lems is that the results heavily depend on the user-created initial curves. In
order to remedy this problem, many researchers [2, 3, 11] have extended the
active contour models using implicit curves such as level-sets [14]. In computer
graphics, several researchers [13, 10, 6, 1] presented feature extraction methods
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Triangular mesh Feature weight Feature region Feature curve Smooth 
feature curve 

Fig. 1. Outline and dataflow of our algorithm. The model in the example is the Stanford
Bunny model, and the target feature is valley curve. The feature weights are colored
in blue, and the feature regions in yellow.

in triangular mesh domains by extending the active contour models for image
space to mesh space. They used explicit curves such as B-spline curves [10] or
line segments [1, 13, 6].

For the first time in computer graphics, we formulate a level-set formulation
of active contour over triangular meshes, in order to devise novel a feature curve
extraction algorithm on triangular meshes. We assume that meshes handled by
our method are smooth overall, and feature curves of meshes are thin regions
rather than mathematical curves such as found in mechanical parts. Hence our
formulation is “region-oriented” in that the features are not represented by the
curves defined by the zero-level sets but by the regions inside those curves. So,
we develop efficient algorithms that skeletonize the feature regions into a set of
line segments and smooth them. We extract three kinds of feature curves from
meshes, that is, “ridge curves”, “valley curves”, and silhouettes. The algorithm
for extracting feature curves in this paper is composed of the following steps
(See Figure 1):

1. Estimating feature weights: For each vertex of the mesh, assign weights
or likelihoods that the vertex belongs to ridge, valley, or silhouette.

2. Evaluating feature regions: Find the vertices that belong to the feature
regions by executing the active contour model. .

3. Extracting feature curves: Extract a set of linear curves from the feature
regions by computing skeletons from them. The piecewise linear curves are
called feature curves.

4. Smoothing feature curves: Smooth feature curves.

This paper is organized as follows. In Section 2, we review related research. In
Section 3, we describe a scheme that assigns feature weights at each vertex. In
Section 4, we describe how the problem of finding feature regions in 3D meshes
can be formulated as the “minimum partition problem” and develop methods to
extract feature curves from feature regions in Section 5. In Section 6, we present
the implementation results of our proposed algorithm. Finally, we draw conclu-
sions and suggest the directions of future work in Section 7.
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2 Related Work

2.1 Active Contours in Triangular Mesh

Milroy et al. [13] suggested a method of moving a snake directly on 3D meshes.
It was devised to perform an edge-based segmentation over a 3D mesh. Surface
differential properties are estimated at each vertex, and curvature extrema are
identified as possible edge points. Small closed contours are defined within the
regions to be segmented, and the contour is inflated until it is trapped by edge
points. Lee and Lee [10] proposed a method which projects a region surrounding
a snake on the 3D mesh on to the rectangular 2D domain, moves the 2D snake
using one of the methods developed for image snakes, and then maps the 2D
snake back on to the 3D mesh. Jung and Kim [6] have also proposed a snake-
based feature extraction scheme for triangular meshes. Jung and Kim [6] have
also proposed a snake-based feature extraction scheme for triangular meshes.
Unlike Lee and Lee, they move the snake directly on the surface of the 3D
mesh, until the snake stops at the feature curves which are defined in terms
of curvature. This method automatically modifies the topology of the feature
curve to suit the geometry of the object. Bischoff et. al. [1] proposed a snake
on triangular meshes by representing snakes as a piecewise linear curve whose
vertices lie on the edges of the mesh.

2.2 Threshold-Based Methods

Watanabe and Belyaev [19] proposed a stable feature detection scheme for tri-
angular meshes. They use a new approximation algorithm for the mean and
Gaussian curvature of a mesh, which are combined in a nonlinear way. They
extract feature regions by applying a threshold-based filtering scheme to
extremes of curvature. Then they skeletonize the resulting feature region to dis-
criminate narrow feature regions including valley, ridges, and creases. Pauly et al.
[15] have put forward a multi-scale feature extraction scheme for point-sampled
surfaces. These authors select feature candidates through principal component
analysis, and build initial feature curves by using hysteresis threshold to com-
pute a minimum-cost spanning tree. The initial feature curves are subsequently
smoothed by active contour models.

3 Assigning Feature Weights

We derive formulae that assign feature weights at each vertex. Instead of previous
schemes [9, 12, 18] that require intensive computation and produce unstable
results, we approximate curvatures of each vertex by the hinge angles of that
vertex. The hinge angles of a vertex are the hinge angles of the edges incident to
the vertex. The hinge angle of an edge is the angle between the normal vectors
from the two faces adjacent to the edge. The angle of an edge is positive when the
edge is convex, negative when the edge is concave. The ridge feature weight of a
vertex v, that is, the likelihood that the vertex belongs to a ridge is represented
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by the maximum hinge angle of the vertex. Similarly, the valley feature weight of
a vertex is represented by the minimum hinge angle of the vertex. The silhouette
weight for a vertex is represented by the angle between the view vector and the
normal vector at the vertex. Figure 2 shows a mesh colored by ridge, valley, and
silhouette feature weights.

(a) (b) (c) 

Fig. 2. Mesh colored by feature weights: (a) valleys (blue); (b) ridges (red); (c) silhou-
ettes (greed)

We denote the feature weight of a vertex v as u(v). The hinge angle of an inci-
dent edge e is denoted by d(e). Let the set of edges incident to v be {ev1 , ..., evn}.
We define the feature weights differently depending on on the kinds of features
to detect, as follows:

u(v) =

⎧⎪⎪⎨⎪⎪⎩
max

1≤i≤n
{ d(evi ) }, for extracting ridges,

min
1≤i≤n

{ d(evi ) }, for extracting valleys,

max
1≤i≤n

{1− |n(evi ) ·V|}, for extracting silhouettes,

where V is the view vector, and n(e) is a normal vector associated with edge
e, which is the average of the normals to the adjacent faces of the edge. The
operator · in v ·w denotes an inner product between v and w.

4 Active Contours on Triangular Meshes

We formulate the problem of extracting feature curves from meshes as the “min-
imum partition problem” [3]. This problem was formulated as a particular case
of the image segmentation problem. Given an image, the minimum partition
problem comes down to finding a curve C such that the region inside C and the
region outside C are each homogeneous as far as possible and thereby the curve
C forms a sharp boundary. This problem is formulated as an energy minimiza-
tion problem. We can formulate the same problem over a 3D mesh once we have
assigned weights to each vertex of the mesh.
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We assume that meshes handled by our method are smooth overall, and fea-
ture curves of meshes are thin regions rather than mathematical curves such
as found in mechanical parts. So, what is considered feature is not the sharp
boundary between two regions of homogeneous curvatures, but the homogeneous
region with high curvatures. Because we want feature curves, we need to extract
skeletons from feature regions.

In the case of image, the partitioning approach has advantage in that it can be
used for images in which the gradients of image intensity are difficult to estimate.
But in the case of mesh, we have to assume that the curvatures of vertices are
available as basic values of vertices, which plays the same role as the intensities
of pixels in images. It is unclear how we can find features unless the vertices of a
mesh do not have curvature-like values available. So, assuming that curvatures
of vertices are available, we could have formulated a classical curve evolving
equation that moves the curve toward the boundary of a feature region. Then
why would we use the mesh partitioning approach? It is because it is difficult to
move exactly to “edges”, that is, at the vertices with high curvatures, by means
of the classical curve evolution equation.

The classical curve evolution equation contains the “edge-detector” function
or stopping function [3] which is strictly positive in homogeneous regions and is
supposed to be near zero on the edges. In practice, the edge-detector function,
which is inversely proportional to the image gradient (in image space) or curva-
ture (in mesh space), is never near zero at the edges, and the curve would not
arrive exactly at the edges. Moreover, the curve evolution tries to find “strong
edges” by local search without paying attention to the neighborhood of the
edges; How much strong an edge should be in order to be a strong edge can be
determined only when the neighborhood of the edge is taken into account. So, it
is a good strategy to consider an edge as edge when it decomposes a mesh into
two regions of homogeneous curvatures. In fact, even in image space in which
good estimates of intensity gradients are available, the partitioning approach has
advantage in general for finding feature curves around objects.

4.1 Energy Functional for the Active Contour in Triangular Mesh

We represent a triangular meshM as a tuple of {V , E , T }, where V denotes a set of
vertices, E denotes a set of edges, and T denotes a set of triangles. A region onM,
denoted as ω, is defined as a cluster of connected vertices. We denote the boundary
of the region as C (C = ∂ω), which is a piecewise linear closed curve onM.

In our formulation the energy functional F is composed of four terms F1, F2,
F3, F4 that define the energy functional for the active contour in triangular mesh
space. The first two terms of F are F1(C) and F2(C), defined by the following
Equations, respectively:

F1(C) =
∫

inside(C)
|u(v) − c1|2dv.

F2(C) =
∫

outside(C)
|u(v) − c2|2dv.
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In the above Equations, C denotes a curve on the mesh, c1 the average feature
value of the vertices inside(C), and c2 the average feature value of the vertices
outside(C). Note that u(v) denotes the feature value assigned to a vertex v ∈ V .
We introduced formulas for assigning feature values to vertices in Section 3. If we
want to extract ridge, valley, or silhouette curves from a given mesh, we assign
ridge, valley, silhouette feature values to vertices, respectively.

The remaining terms of F , i.e., F3 and F4 represent the area inside(C) and
the length of C, respectively:

F3(C) = Area(inside(C)) ≈ |{v|v ∈ inside(C)}|,
F4(C) = Length(C) ≈ |{v|v ∈ C}|,

where |{ }| denotes the number of vertices that belong to the set { }. In summary,
the energy functional F for the active contour on triangular mesh domains is
defined as the weighted sum of the four terms, F1, F2, F3, and F4.

F (C) = νF3(C) + μF4(C) + λ1F1(C) + λ2F2(C). (1)

The curve C that minimizes F (C) decomposes the domain M into the region
inside C and the region outside C, which are homogeneous as far as possi-
ble. In the case of meshes assumed in this paper, feature curves appear in the
form of thin regions. So, not the boundary between two homogeneous regions
of curvatures, but the homogeneous region with high curvatures is considered
feature.

4.2 Level Set-Based Formulation of the Energy Functional

Now we derive a level-set formulation of the energy minimization problem de-
fined in the above section. The level set formulation can handle “merging and
breaking” of evolving feature curves automatically, so that it allows a topology-
adaptable and initialization-independent solution in extracting features. When
we assign level set values on the vertices of a triangular mesh, C, inside(C) and
outside(C) are represented by the following Equation.

φ(v) > 0, for v ∈ inside(C) = ω

φ(v) = 0, for v ∈ C = ∂ω

φ(v) < 0, for v ∈ outside(C) = ωc.

To represent the terms in the energy functional F using a level set formulation,
we introduce the Heaviside function H(x) and the delta function δ0(x) defined
in the following Equations, respectively [3, 20].

H(x) =
{

1, x ≥ 0
0, x < 0

δ0(x) =
d

dx
H(x).
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Using the Heaviside function and the delta function, F1 and F2 are redefined as
follows:

FLS
1 (φ) =

∫
V
(u(v) − c1)2H(φ(v))dv.

FLS
2 (φ) =

∫
V
(u(v) − c2)2(1 −H(φ(v)))dv.

Given a level set function φ, c1 and c2 are computed as

c1 =
∫
V
u(v)H(φ(v))dv/

∫
V
H(φ(v))dv

c2 =
∫
V
u(v)(1 −H(φ(v)))dv/

∫
V
(1−H(φ(v)))dv

Area and Length terms are redefined as follows:

FLS
3 (φ) = AreaLS{φ ≥ 0} =

∫
V
H(φ(v))dv.

FLS
4 (φ) = LengthLS{φ = 0} =

∫
V
|∇H(φ(v))|dv =

∫
V
δ0(φ(v))|∇φ(v)|dv.

In summary, the energy functional FLS(φ), which is a level set-based formulation
of F , is represented as follows:

FLS(φ) = ν FLS
3 (φ) + μ FLS

4 (φ) + λ1 FLS
1 (c1, φ) + λ2 FLS

2 (c2, φ)
=
∫
V {μ δ0(φ(v))|∇φ(v)| + ν H(φ(v)) + λ1 (u(v) − c1)2H(φ(v))

+ λ2 (u(v)− c2)2(1−H(φ(v)))}dv. (2)

The level set function φ that minimizes FLS(φ) decomposes the mesh into
two regions of homogeneous curvatures.

4.3 Numerical Solution on Triangular Mesh Domains

To find a level set function φ that minimizes F (φ), we need to compute the
gradient ∂F

∂φ of the energy functional F (φ). It is derived [3, 17, 20] as follows:

∂F

∂φ
= −{ μ δ0(φ(v)) · div

(
∇φ
|∇φ|

)
− νδ0(φ(v))

−λ1δ0(φ(v))(u(v) − c1)2 + λ2δ0(φ(v))(u(v) − c2)2} (3)

Here ∇φ is the gradient of φ, and div
(

∇φ
|∇φ|
)

is the divergence of the vector
∇φ
|∇φ| . It is known [3, 17] that the function φ that minimizes functional F (φ) can
be found by moving φ, starting from an initial value, in the direction of the
negative gradient −∂F

∂φ .
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This method is called the gradient decent method, and it is formulated by the
following evolution equation:

∂φ

∂t
= −∂F

∂φ
(4)

Here time t is an artificial time representing the iteration involved in the
optimization process.

The numerical equation for the evolution equation 4 is obtained [14, 17] as
follows:

φn+1(v) = φn(v) + Δt δ0(φ(v)) · [μ div

(
∇φ(v)
|∇φ(v)|

)
− ν

− λ1(u(v) − c1)2 + λ2 (u(v) − c2)2] (5)

Now to solve the level set evolution equation (5), we need to estimate
div
(

∇φ(v)
|∇φ(v)|

)
numerically. To do so, we first define the coordinate system at

vertex v. Let (e1, e2) be the orthogonal unit vectors defining the coordinate sys-
tem set up on the tangent plane Tp(v) at v (See Figure 3 (b)). To approximate
div
(

∇φ(v)
|∇φ(v)|

)
, we use the forward, backward, and central difference operators,

Δei
+ , Δei− , Δei

c , respectively, along the directions of the axes. We have:

div

(
∇φ
|∇φ|

)
=
(

∂

∂e1

(
φe1

A0

)
+

∂

∂e2

(
φe2

A0

))
=
(
Δe1−Φ1(v) + Δe2− Φ2(v)

)
(6)

Here (φe1 , φe2 ) are partial derivatives of φ in the directions of the coordinate
axes. A0 = |∇φ| =

√
φ2

e1
+ φ2

e2
, and Φ1(v) and Φ2(v) are approximations of φe1

A0

and φe2
A0

, respectively, and are defined as follows:

Φ1(v) =
Δe1

+ φ√
A1

=
(φe1

+ − φn(v))/he1
+√

A1
,

Φ2(v) =
Δe2

+ φ√
A2

=
(φe2

+ − φn(v))/he2
+√

A2
,

where A1 and A2 are defined (See Figure 3 ) as follows:

A1 = (Δe1
+ φ)2 + (Δe2

c φ)2 = ((φe1
+ − φn(v))/he1

+ )2 + ((φe2
+ − φe2− )/(he2

+ + he2− ))2

A2 = (Δe1
c φ)2 + (Δe2

+ φ)2 = ((φe1
+ − φe1− )/(he1

+ + he1− ))2 + ((φe2
+ − φn(v))/he2

+ )2

Here φei
+ = φ(v + hei

+ei), and φei− = φ(v − hei−ei). The value of φ(v + hei
+ei) is

obtained by linearly interpolating the values of vertices in the 1-ring neighbor-
hood of the vertex v. To do so, we project the vertices of 1-ring neighborhood of
v onto Tp(v) (See Figure 3 (a)). We denote the vertices of 1-ring neighborhood
of v as v1, ..., vN−1 and the vertices projected onto Tp(v) as vp

1 , ..., vp
N−1.
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Suppose e+1 is surrounded by two vectors (vp
i − v) and (vp

i+1 − v) (See Figure
3 (b)). The value of φe1

+ is obtained by interpolating φ(vi) and φ(vi+1), and the
value of he1

+ by interpolating (|vp
i − v|) and (|vp

i+1 − v|), according to the
following Equations (See Figure 3 (c)):

φe1
+ =

θbφ(vi+1) + θaφ(vi)
θa + θb

he1
+ =

θbhi+1 + θahi

θa + θb
=

θb|vp
i+1 − v| + θa|vp

i − v|
θa + θb

Tp(v) 

(a) 

v

v1 
p

v6 
p

v4 
p

v2 
p

v3 
p

v5 
p

(b) 

e1
+

e2
+

e1
-

e2
- v1 

p
v6 

p

v4 
p

v2 
p

v3 
p

v5 
p

(c) 

e1
+

φi

φi+1

θa 

θb 

hi+1

hi

φ e1
+h 

e1
+

Fig. 3. (a) vp
i is the projection of vertex vi on to the tangent plane Tp(v) at the vertex

v. (b) The coordinate system (e1, e2) defined on the tangent plane Tp(v). (c) The
interpolation of φe1

+ and he1
+ by using the values associated with the neighbor vertices

vi+1, vi.

4.4 Implementation of the Active Contours

We use a signed distance function to initialize the level set function. Of course,
the level set function is initialized differently depending on whether ridge, valley,
or silhouette is looked for. The initial level set function φ0 is initialized in two
steps. In the first step, φ0(v) is assigned 1.0 at each vertex v whose feature value
is greater than a seed threshold. Then, φ0(v) is assigned max(L,−dist(v)) at the
remaining vertices v. Here L is the lower bound for φ0, and the dist(v) is the dis-
tance of v from the nearest vertex whose φ0 value is positive. We use −10.0 for L.

5 Extracting Feature Curves

5.1 Skeletonization

We extract feature curves from the smoothed feature regions by exploiting a
peeling-based skeletonization algorithm [7, 16], which removes a vertex in a re-
gion repeatedly until the remaining vertices form a set of skeleton curves of the
region. In such skeletonization strategies, the results of the algorithm depend on
the order of vertex removal. In our method, vertices with lower feature weight
values are removed first. The remaining vertices are those with highest feature
weights, that is, highest curvatures in our case. The resulting skeleton curves are
smoothed by applying the minimization algorithm suggested in Section 5.2.
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5.2 Smoothing

The extracted feature curve is a piecewise linear curve that connects the vertices
on triangular mesh, and it may not be smooth. We call the non-smooth feature
curve as a raw feature curve. We smooth a raw feature curve by finding the
smooth feature curve so that it is sufficiently smooth and deviates from the raw
feature curve as little as possible. In other words, we define the internal and
“external” energy to the potential smooth curve and minimize them to find the
smooth feature curve.

Internal energy. Let C = ( q0, ..., qn−1 ) denote the potential smooth feature
curve, where qi lies within or at the end of edges of the mesh. The internal energy
I of the curve is defined as follows:

I =
n−2∑
i=0

|qi − qi+1|2.

External energy. Let the distance between a point qi on the potential feature
curve and the corresponding raw feature curve R = (r0, ..., rm−1) is defined as
follows:

d(qi,R) ≡ min
j
{d(qi, rj) | rj ∈ R},

where d(qi, rj) is a mesh-dependent distance between qi and rj .
The external energy E of the potential feature curve is defined as follows:

E =
n−1∑
i=0

d2(qi,R).

A point qi on the potential feature curve lies within or at the end of an edge in
the mesh, and the candidate edges are extremely limited. So we can find easily
qi’s that minimizes I + E, and hence determine the smooth feature curve.

6 Implementation and Results

We implemented the proposed algorithm on an IBM PC computer with Pentium
IV 2.0 GHz CPU and 512 MB main memory. We tested five models: A Bunny, a
Buddha, a Dragon, a Horse, and a Venus from Stanford University’s Computer
Graphics Laboratory 3D scanning repository. We measured the computation
time as the sum of three three parts: a) time for initialization, b) time for exe-
cuting the active contours, and c) time for skeletonization and smoothing. Table 1
illustrates the complexity of the models and the required computational time.

Figure 4 illustrates the feature-curves extracted from the models. An impor-
tant fact that affects the performance of the model is the seed threshold that
determines the initialization of the level set function. To determine a proper seed
threshold, we apply histogram analysis of the feature values and select a feature
value in the highest 5 % as the seed threshold.
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Table 1. The time complexities for the tested models

Model # of Estimating Computing Extracting Smoothing Total
Vertices Feature Weights Feature Regions Feature Curves

Bunny 35,952 6.8 4.9 13.6 8.3 33.6
Buddha 32,331 13.8 4.2 27.3 12.7 58.0
Dragon 22,998 8.5 3.7 18.4 6.7 37.3
Horse 48,485 19.3 6.5 37.4 15.2 78.4
Venus 67,173 25.9 8.3 49.8 21.1 105.1

Buddha Bunny Dragon Horse Venus 

Fig. 4. Smooth feature curves on five models. Note that red curve denotes a ridge, blue
curve denotes a valley, and green curve denotes a silhouette.

7 Conclusions and Future Work

In this paper, we presented a novel algorithm that extracts features on triangular
mesh domains by extending the level-set active contour model devised for image
to mesh. The proposed algorithm provides a generalized framework for extracting
various feature curves such as ridges, valleys and silhouettes from triangular
meshes without user’s initialization.

Possible future work is as follows. This algorithm can extract features that
have semantic meaning defined by shape information or prior knowledge. If we
can combine a particular knowledge base and the proposed algorithm, we can
provide more intelligent feature extraction algorithm. The another extension is to
provide more opportunities to users in controlling the feature extraction process.
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Abstract. In this paper, we introduce a novel approach to denoise
meshes taking the balanced flow equation as the theoretical founda-
tion.The underlying model consists of an anisotropic diffusion term and a
forcing term. The balance between these two terms is made in a selective
way allowing prominent surface features and other details of the meshes
to be treated in different ways. The forcing term keeps smoothed surface
close to the initial surface.Thus the volume is preserved, and most im-
portant, the shape distortion is prevented. Applying a dynamic balance
technique, the equation converges to the solution quickly meanwhile gen-
erating a more faithful approximation to the original noisy mesh. Our
smoothing method maintains simplicity in implementation and numeri-
cal results show its high performance.

1 Introduction

Mesh de-noising is an active research area in digital geometry processing. Ac-
quired 3D models are often noisy no matter if they are generated with high-
fidelity scanners or are extracted from volume data. To facilitate a robust and
efficient geometry process, these acquired models need first to be de-noised. Many
authors have focused on mesh de-noising. However, it still remains a challenge to
remove the noise while preserving the geometric features of the underlying sam-
pled surface, such as edges and corners. Besides the elementary function of noise
removal, a good mesh-filtering algorithm should have the following properties.
(1) feature preservation; significant sharp feature such as edges and corners of
a surface should not be blurred after being smoothed. (2) volume-preservation;
the denoised shape should maintain the shape volume without manifest change.
In addition, the smoothed model should be faithful to original model without
distortion. (3) anti-vertex drifting; vertices should keep close to their original
position without noticeable drift,otherwise,the regularity of the mesh will de-
creases.

The focus of our work is aimed at the above three problems. There are two
terms in our model: the diffusion and the forcing term. The diffusion term
simulates a well-posed anisotropic flow. A curvature operator for feature de-
tection is embedded in this term, the curvature operator is calculated on the
Gaussian-filtered mesh which makes the anisotropic flow mathematically well
posed. Therefore, the undesired deformation or degeneration of the mesh, that
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usually happened during anisotropic filtering,is avoided. With the forcing term,
the algorithm converges to a solution that is very close to initial mesh, thus the
volume is preserved. The balance between these two terms is made in a selective
way, in which prominent surface features and other finer details of the mesh
are treated differently. Our algorithm moves vertices along the normal direc-
tion, thus, limiting the effects of vertex-drift. Compared with other smoothing
techniques [5, 7, 8], Our model defines the shape operator and balanced flow op-
erator for 3D surfaces explicitly in terms of a discrete surface, thus eliminates
the need of complex computation. Consequently, the side effects introduced by
using higher order approximations are avoided in our small stencil of operators.

1.1 Related Works

Many papers on mesh smoothing have been presented in recent years. Mesh-
denoising methods are mostly inspired by image denoising approaches. Peng et
al. [10] applied locally adaptive Wiener filtering to meshes. Both Fleishman et
al. [2] and Jones et al. [1]used bilateral filtering for smoothing surfaces based on
the idea of bilateral filtering for gray and color images [9]. The main difference
between these two methods is in the surface predictor. More specifically, Jones
et al. [1] took the distance between the point and its projection onto the plane of
a neighboring triangle, whereas Fleishman et al. [2] took the distance between a
neighboring point and the tangent plane. To smooth a mesh, Fleishman et al.[2]
performed several filtering iterations, while Jones et al.[1]smoothed a surface in
a single pass.

One of the most common techniques for mesh filtering is the diffusion-based
algorithm. Most of these methods also obtain their ideas from image denois-
ing approaches. Based on the definition of the Laplacian operator on images,
Taubin [3] introduced signal processing on surfaces. Desbrun et al. [4] extended
this method to irregular meshes by improving the constancy of the discrete op-
erator on arbitrary meshes, to acquire stable numerical smoothing schemes, they
introduced an implicit discretization of geometric diffusion, the vertex-drifting
problem is prevented as the position of vertices are adjusted in the normal direc-
tion. Ohtake et al. [12] extended the Laplace geometry smoothing by combining it
with mesh regularization. While all these methods are isotropic, that is, smooth
noise and salient features are treated without discrimination, some important
features are blurred.

By modifying the diffusion coefficient at the edges, Perona et al. [13] proposed
an anisotropic diffusion method to obtain an efficient edge detector for image
processing. Based on this pioneered work, many feature-preserving smoothing
method have been presented recently. Desbrun et al. [5] introduced Anisotropic
diffusion for height fields, Clarenz et al. [7] extended the Anisotropic diffusion
for meshes by formulating and discretizing the anisotropic diffusion. Taubin [14]
and Tasdizen et al.[15] apply anisotropic diffusion to smooth the normal field
of the mesh surfaces. By combining the limit representation of Loop’s subdi-
vision for triangular surface meshes and vector functions on the surface mesh,
Bajaj et al.[8] arrived at a discretized version for the established anisotropic
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diffusion problem in the spatial direction and achieved impressive results. Re-
cently, Hildebrandt et al. [16] presented an anisotropic meshes filtering approach
based on prescribed mean curvature flow (PMC). Other mesh-denoising meth-
ods have also been presented to improve the performance of the traditional
approaches[17, 18, 19].

2 Well-Posed Anisotropic Flow

As an isotropic shape smoothing technique similar to Laplacian filtering, Des-
brun et al. [4] proposed a mean curvature flow that dispersed the noise of a
smooth mesh appropriately by minimizing the surface area. Assume that N1(i)
is the 1-ring neighbors of vi, their approach adopts the following mean curvature
flow equation:

∂vi

∂t
= −κ̄ini (1)

where κ̄ini is the curvature normal. A normalized version can be used in an
explicit integration for quick smoothing:

(κ̄ini)normalized =
1∑

j(cotαj + cotβj)
·
∑

j∈N1(i)

(cotαj + cotβj)(vj − vi) (2)

where αj and βj are the two angles opposite to the edge eij in the two triangles
having the edge in common. Unlike the Laplacian of the surface at a vertex, which
has both normal and tangential components, mean curvature flow is a noise
removal procedure that does not depend on the parameterization. Curvature
flow smoothes the surface by moving vertices along the surface normal with a
speed equals to the mean curvature κ̄ . So the unpleasing side effects such as
vertex drifting are avoided.

This approach provides a good result for mesh smoothing. However, most
meshes acquired from 3D scanning tools contain prominent features such as
corners and ridges, which will be blurred using this isotropic denoising approach.
Therefore, a preferred filtering algorithm should get rid of the noise, meanwhile
preserving prominent edges. For this reason, we would like to resort to the idea of
the anisotropic image smoothing methods [13]that have been studied extensively
in image restoration.

If κ̄i , i.e. local curvature of vertex vi has a large value, then this vertex is
considered as an features vertex. Anisotropic mesh smoothing should slow down
the smoothing process in regions with prominent features, while other regions
with low curvature are smoothed out quickly. Therefore, one natural idea is to
present the following anisotropic curvature flow:

∂vi

∂t
= −g(|κ̄ini|)κ̄ini (3)

where g(s) ≥ 0 is a non-increasing function, satisfying g(0) = 1 and g(s) → 0
when s→∞. Here we set g(x) = 1/(1 + K ∗ x2) , where K is a parameter that
can be tuned by the user to control the diffusion speed.
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(a) (b) (c) (d) (e) (f)

Fig. 1. (a) Noisy model, (b) Mean curvature flow, (c) Naive anisotropic flow, (d) Well-
posed anisotropic flow, (e) Volume-preserving flow, (f) Well-balanced flow

(a) (b)

Fig. 2. (a) Original noisy curve, (b) smoothed curve. It can be seen from the illustra-
tions that shape operator defined on the smoothed surface is more accurate.

Unfortunately, this anisotropic curvature flow equation (3) is not an most
appropriate equation for meshes smoothing, since undesired results such as de-
generation of the mesh will be produced when dealing with seriously noisy meshes
using this method, as illustrated in Figure.1(c).

What causes this problem? Evaluating geometric features directly based on
the original noisy surface is inappropriate, Since it is difficult to discriminate
the noise vertex and the feature vertex on the noisy surface,as illustrated in
figure 2,the vertex ki and vertex kj . we would like to define the diffusivity coef-
ficient g on an alternative filtered surface as shown in figure 2(b). In this paper,
we adopt the Gaussian filter to pre-filter the current surface M , although many
other filters can be employed. Then, we employ curvature κH evaluated on the
filtered mesh M

′
σ used for feature detection, where σ is Gaussian filter width. By

substituting |κ̄ini| with |κH(Gσ∗u)|,where κH is computed using the formulation
(2), we present the following well-posed Anisotropic flow equation.

ut = g(|κH(Gσ ∗ u)|)(−κ̄n) (4)

where Gσ is a convolution kernel(here, a Gaussian function),Gσ(x)=e−
x2

2σ2 , σ is
the noise standard deviation, which is also called the scale . We call model (4) the
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“Well posed anisotropic model”. The term |κH(Gσ ∗ u)| is the local estimate of
|κH(u)| used for more accurate curvature estimate. The term g = g(|κH(Gσ ∗u)|)
is used for geometric feature detection and controls the diffusion speed. Using this
model, undesired deformation is avoided, as shown in Figure 1(d), and promi-
nent features like boundaries are kept, while noisy and are smoothed.Similar
technique capturing shape to obtain more reliable detection of features based on
a smoothed shape is also used in meshes smoothing. For example, to make a ro-
bust estimator, Jones et al.[1] modified the estimators by smoothing the normal
which also corresponds to a simple Gaussian smoothing.

3 Volume-Preserving Flow

Both Laplacian smoothing and mean curvature flow tend to minimize surface
area. Although well-posed anisotropic flow can be used for selective smoothing,in
essence,it is a flow equation that is not energy preserving. Therefore, this method
will also introduce shrinkage when it is used as mesh smoother. As anisotropic
diffusion method does not seek an optimal solution of any kind, hence, we would
like to find a flow model that has an optimal and stable solution, and converges to
the solution quickly. Many techniques have been applied to eliminate the shrink-
age. These methods whether heavily require fine-tuning [3] or is global re-scale
operation[4],whereas de-noising is a local operation.Therefore these algorithm
are not optimal approaches for volume preservation.

Motivated by the Nordstrom [21],we modify the equation (4) by introducing
the forcing term (I−u), where I is the original mesh surface. The term (I−u) has
the property of preserving u(x, y, z, t) close to the initial mesh I(x, y, z): we add
the term (I−u) to the well-posed equation(4) and propose the following equation:

ut = g(|κH(Gσ ∗ u)|)(−κ̄n) + (I − u) (5a)

Since our interest is in the steady state solution, the initial condition of above
equation can also be replaced by an arbitrary initial condition.

u(x, y, z, 0) = χ(x, y, z) (5b)

In all our experiments , we set the initial condition u(x, y, z, 0) = I(x, y, z).The
steady state of this initial value problem (5a,5b)is a solution of following
equation:

u = I + g(|κH(Gσ ∗ u)|)(−κ̄n) (6)

The continuity control function g plays the role of the diffusivity.
We call the system (5a), (5b)the “Volume-preserving flow” model. The solu-

tions of this model are well behaved, in that they do not stray too far away from
the original mesh surface I , unless forced to by the initial condition χ; even if
so, they eventually approach the range of I as t→∞ .

Intuitively, the forcing term I−u has the effect of locally moderating the diffu-
sion as the diffused surface u diffuses further away from the original mesh I. The
following physical representation of this initial value problem further confirms
this belief: Let Ω be a thin anisotropic annular solid of some material resting
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on top of another solid Ω0 of some (other) material as in figure 3(a). Suppose
that the space and time varying thermal conductivity of Ω is given by ag,where
the constant a is the coefficient of heat transfer between Ω and Ω0. If the initial
temperature at each point p of Ω is given by χ(x, y, z) , and the temperature
distribution of Ω0 is fixed with the value I, then u represents the space-and
time-varying temperature of Ω . By introducing the forcing term (I − u), the
estimated image function u is guaranteed to be a faithful approximation of the
original surface function I. The forcing term I − u performs the role of drawing
the anisotropic diffused u back to I .

(a) (b) (c)

Fig. 3. (a) Physical models of volume-preserving flow, (b) The flow diffusion band of
the original surface. (c) Dynamically updated flow diffusion band.

From the volume-preserving flow, we can draw the conclusion that the solution
u will converge, and is restricted within the flow diffusion band B of the original
surface I, as illustrated in figure 3(b). Therefore,the volume-preserving model
produces an estimated surface function, whose range is contained inside that of
the original function. The performance of the anisotropic diffusion is confined to
the flow diffusion band B of the original surface I:

inf
ξ∈B

I(ξ) ≤ u(x, t) ≤ sup
ξ∈B

I(ξ) ∀x ∈ B for any t <∞

Therefore the resulted model’s volume is well preserved, as shown in Figure 1(e).
In particular, Let M

′
be the corrupted models of the original smooth meshes

M0 formed by adding random noise. The initial value χ in formulation (5b) is
replaced by M

′
, I is substituted by M0 , then the solution u will converge to M0 .

We present one special example to substantiate the idea, which is showed
in Figure 4. Let p be a vertex on the original surface M0 (Figure 4(b)) , and
p

′
be its corresponding vertex on the solution u (Figure 4(f)) . Let dist(pi, p

′
i) be

the distance error between pi and p
′
i and Ev =

N∑
i=0

dist(pi, p
′
i)/N is the average

distance error. The radius of the bounding box of model Octa-flower is 16.17, the
volume of the original mesh is 1565.16. The volume of the solution u is 1567.21
and the average distance error Ev is 0.12. The numerical results suggest that
the solution u converge to the original surface M0 ,which further confirms the
results achieved in Volume-preserving flow.

Note that here we only take a special example to confirm the belief that the so-
lution u of Eq.(5) converges to a faithful approximation of the original surface I.
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(a) (b) (c) (d) (e)

Fig. 4. Volume-preserving flow. (a) Original model Octa-flower M0 , (b) Corrupted
ModelM

′
. The solution converge to M0 as shown in the sequence (c), (d), (e), (f).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Dynamic volume preserved flow, (a) original model, (b) Corrupted model, (c)
Volume-preserved flow, (d) Well-balanced flow, (e) Error visualization of Well-balanced
flow, (f) Dynamic balanced flow, (g) Error visualization of Dynamic balanced flow, (h)
Error visualization of different noise level

Of course,in all the other examples, we take I as the original noised meshes. By
adding the forcing term I−u to formulation (5), we bring the well-posed diffusion
method to an appealing sense of optimality, therefore intuitively explains its excel-
lent properties such as volume preserving ,as illustrated in Fig.1(e) and Fig.5(c).

4 Well-Balanced Flow

To denoise models with relative low noise, we can receive satisfactory results
with several iterations meanwhile preserving the volume. Whilst to deal with
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corrupted model with heavy noise, desirable smoothed result cannot be obtained,
as shown in Figure1 (e), Figure 5(c), the noise has not been smoothed completely.
As all the vertices are drawn back to its original position without distinction, the
anisotropic curvature flow cannot work very well in the error diffusion band B .

Motivated by the idea based on well-balanced flow equation [20], we improve
the equation (5) further by the following balanced flow equation.

ut = g(|κH(Gσ ∗ u)|)(−κ̄n) + (1− g(|κH(Gσ ∗ u)|))(I − u)
u(x, y, z, 0) = I(x, y, z) (7)

where I(x, y, z)is the original mesh surface, and (1 − g)works as a moderated
selector of the diffusion process. We call the above equation “well-balanced flow
equation ”. Thus, the proposed model is capable of selectively applying the Well-
posed model in the areas of the mesh where feature preservation is required. This
model is also capable of forcing the smoothed mesh to remain close to the initial
mesh surface I in the features areas where g → 0 . On the other hand, in
homogenous areas g → 1 , the forcing term will have weak effect, which allows
for a better finer detail smoothing of the meshes.

This simple change of the Volume-preserving flow model generates high per-
formance filtering results, as shown in Fig1 (f), Fig 5(d), where the noise is
removed and the prominent features are preserved well. The concept is straight-
forward and the model has appealing physical interpretations. Much more, the
computational scheme is simple and is efficient for the implementation.

In the proposed model, the users can tune two parameters to control the per-
formance: The first one is the Gaussian filter width σ, which plays dual roles.
One is to pre-filter the surface to obtain more accurate mean curvatures evalu-
ation used for feature detection, the other role is to make our proposed method
mathematically well-posed and more robust. The second one is the constant K,
which also carries dual roles : one is to allow the function g(s) to carry out a
moderated selection to balance between the diffusion term and the forcing term,
the other is to allow the anisotropic diffusion.

5 Dynamic Balanced Flow

Although well-balanced flow is an optimal process, the flow diffusion band B
of initial surface is broadened as the noise is increased, leading to increasing
inaccuracy of the solution. We introduce a dynamic flow algorithm to address
this problem. The key ingredient of the techniques is that instead of setting I the
fixed original noisy surface M , we would like to dynamically update I with the
immediate generated solution u , which can be described in brief as following.
After every L iterations we achieve the immediate fairing surface uL , then
the original I is replaced with uL , the iteration process goes on. With several
such repetitions, satisfactory results are received. The motivation for applying
this technique is that when dealing with severely corrupted models, the original
I should be dynamically updated with the newly generated uL surface after
several iterations. The anisotropic flow equation will be performed in a thinner
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flow diffusion band B
′
, as illustrated in Figure 3(b)that is, flow diffusion band

Bis also updated dynamically according to the dynamically updated I. As the
updated flow diffusion band B

′
is contained in the original flow diffusion band B,

the accuracy of solution is increased and the volume is naturally conserved. This
computational mechanic provides another important advantage: the balanced
state is dynamically broken, the original I is dynamically updated, and the flow
equation converges to the solution quickly. Dynamic balanced flow is especially
suitable for denoising severely noisy surface.

As show in Figure 5, it takes 7 iterations for both well-balance flow and
dynamic balanced flow to smooth the corrupted Mannequin(Figure 5(b))(I is of
course set as the noisy model Figure 5(b)). As for dynamic balanced flow we set
L = 3. Figure 5(e) is the distance error visualization between the corresponding
vertices of the smoothed model(Figure (d))performed by Well-balanced flow and
original smooth model (Figure (a)). Figure 5(g) is the distance error visualization
between the corresponding vertices of the smoothed model(Figure (f))performed
by Dynamic balanced flow and original smooth model (Figure (a)). These results
show that the result from dynamic flow is more faithful approximation. Figure
5(h) illustrates the average error comparison of all vertices performed using well-
balanced flow and dynamic balanced flow for various noise levels, which shows
that dynamic balanced flow always generates more faithful results with different
level of noise. The experimental results also show that dynamic balanced flow
converges to the solution faster than well-balanced flow.

6 Implementations

We have demonstrated the results of the balanced flow diffusion algorithm and
compared them with several other smoothing algorithms.

As have pointed out in previous section, there are two parameters at the
disposal of the users to tune the performance. The Gaussian filter width σ is
also called the standard deviation. In this paper, the Gsussian filter performs
based on the 1-ring of the vertices. Let L be the arithmetic mean of the edge
lengths of the neighboring vertices of vertex v , then we set σ = εL, whereεis a
user-selected value. To process seriously noisy model, the parameter σ is usually
set to a relatively large value to capture the accurate features of the models.
Similarly, to preserve or enhance the prominent features such as shape edges of
Cube model, we would assign a relatively large value for the parameter K .

One benefit of anisotropic diffusion is the ability to iteratively enhance edges
and corners whilst prevented shape distortion. In Figure 6, we can observe that
the edges of the cube with 11k triangles are preserved and sharpened. The noise
is smoothed out and the face is smoothed into a flat plane. At the same time,
the volume is also preserved. The original volume is 7.730, while the resulting
volume is 7.695. Both mean curvature method [4]and the bilateral method [2]will
cause obvious shrinkage whilst the non-iterative method [1]is also not necessar-
ily volume-preserving. In this example it takes 6 iterations using the dynamic
balanced flow while the iterations also depend on the step length.
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(a) (b) (c) (d) (e)

Fig. 6. (a) original model, (b) Mean curvature flow [Desbrun99], (c) Bilateral method
[Fleishman03], (d) Non-iterative method [Jones03]. (e) Dynamic balanced flow.

(a) (b) (c) (d)

Fig. 7. (a) Original model, (b) Corrupted model, (c) Dynamic balanced flow, (d) Non-
iterative method [Jones03]

(a) (b) (c) (d) (e)

Fig. 8. (a) original mesh, (b) Dynamic balanced flow, (c) mean curvature flow [Des-
brun99]. (d) Bilateral method [Fleishman03], (e) Non-iterative method [Jones03]. Data
courtesy of Alexander Belyaev.

Figure 8 shows the results of applying the proposed method to a scanned
model. We also show a comparison with above-mentioned three methods. The
model has 17,000 vertices, and it was smoothed in 7 iterations using our method.
In figure 8(b), compared with others methods, observe that the features, for
example , the features around the mouth, are well preserved. The vertices with
large error are treated as outliers and thus are not smoothed out in our method,
while the noise is smoothed out.

The non-iterative method is not able to perform iterative enhancement in
a single pass, resulting in a slightly different overall appearance, figure 8(e).
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Moreover, the property of the non-iterative method makes it highly dependent
on the choice the neighborhood while our methods traditionally uses only the
1-ring neighborhood. Their method estimates the new position of each vertex
based on the predictions from its spatially nearby triangles, and in particular,
when dealing with such meshes as Figure 7(b), the smoothed mesh will change
shape (Figure 7(d)). Since our method allows the anisotropic diffusion flow to be
restricted to the flow diffusion band of the original surface, the result is faithful
to original model as shown in Fig 7(c).

Our method also has some disadvantages compared with [2] and [1]. Since bal-
anced flow diffusion seeks an optimal solution, compared with these two methods,
relatively more iterations are required, while the iterations also depend on the
step length. In addition, the only property of the mesh that these two methods
use is the topological information, and therefore, the algorithms can be adapted
to point based geometry. Specifically, the non-iterative techniques can be per-
formed on arbitrary “triangle soups”, while our method is difficult to smooth
“triangle soups” due to the curvature normal calculation (2).

7 Conclusions and Future Work

We have presented a novel approach to mesh filtering taking the well-balanced
flow equation as the theoretical foundation. The algorithm converges to the so-
lution of interest and seeks to find an optimal solution. The proposed model is
mathematically well posed and robust. Our approach has such desirable proper-
ties as noise removal, features preservation, and automatic volume-preservation,
as well as anti-vertex drifting. Balanced flow diffusion is simple, practical as well
as having intuitive physical interpretations. In the future work we will extend
our approach to the filtering of the point-sampled geometry.
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Abstract. In this paper, we propose a novel U-System-based approach
for representing and matching similar shapes. U-system is a complete or-
thogonal piecewise k-degree polynomials in L2[0,1]and it has some good
properties,such as regeneration,convergence by group. Using U-system
with finite items, it can be realized to accurate representation of shapes.
This paper make shapes analysis in theory. We experimentally demon-
strate that U descriptors are more suitable for representing and matching
2D shapes than Fourier descriptors.

1 Introduction

Large image databases are more and more used in many application areas, such
as advertising, architectural and engineering design, fashion, medical diagnosis,
journalism, crime prevention, and land analysis. This has motivated growing
research interest on efficient and effective methods enabling the matching of im-
ages on the basis of their content from large databases. With respect to other
features, like color and texture, shape is much more effective in semantically
characterizing the content of an image [1] [2] [3] [4]. However, properly repre-
senting and matching shape information are still challenging tasks. The problem
of representing them so as to allow the implementation of efficient and effective
matching and retrieval methods is still not solved in a satisfactory way. The
scenario is further complicated when invariance, with respect to a number of
possible transformations, such as scaling, shifting, and rotation, is required [5].

Among the different approaches that are available for the representation of
shape information, those based on the Discrete Fourier Transform (DFT) de-
scribe the outside contour by means of a limited number of coefficients in the
frequency domain. It has to be observed that, since DFT derive from Fourier
system [6][7], they cannot accurate represent commonly shapes information by
using finite items.such as the phenomena of Gibbs(see Fig.1) [15][16].So Fourier
system are not suitable for shapes analysis for images [15][17].

In 1980s, Qi and Feng created a class of complete orthogonal functions. It
is composed of a series of k-degree piecewise polynomials and called k-degree
U-system[8]. It includes not only smooth functions but also discontinuous ones.
In fact, Walsh-system is the special case of U-system, i.e. 0-degree U-system.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 209–220, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Comparing Fourier transform with U system

Slant transformation, which is commonly used in the digital image processing, is
the 1-degree discrete U-system. Based on the special properties of the structure,
after many complex signals are decomposed by U-system, they are exactly re-
generated with finite items in U-system. This is the most important properties of
U-system.It means that U-system are conducive to express shapes information.

In addition, in [19], Qi and Feng study a similar idea on the triangle. Using
these theories, in [9], motivated by in the work in [8], Micchelli and Xu had done
some interesting work. This indicates the application foreground of U-system
[9-13].

In this paper, we propose a novel U-system-based approach for shape analysis.
U system can accurate represent shapes by using finite items. So U system are
suitable for shapes analysis. Moreover, we analyze frequency and normalized
frequency properties of shapes in theory.In the end, some experimental results
are given.

2 The k-Degree U-System

k-degree U-system is the class of complete orthogonal functions in L2[0, 1].where
k = 0, 1, 2, 3, ...

U1
k,k(x), U2

k,k(x), ..., Uk+1
k,k (x), U1

k,k+1(x), U2
k,k+1(x), ..., Uk+1

k,k+1(x),
U1

k,k+2(x), U2
k,k+2(x), ...

U2j−1
k,n+1(x) =

{
U j

k,n(2x), 0 ≤ x < 1
2

U j
k,n(2− 2x), 1

2 < x ≤ 1

U2j
k,n+1(x) =

{
U j

k,n(2x), 0 ≤ x < 1
2

−U j
k,n(2− 2x), 1

2 < x ≤ 1

j = 1, 2, ..., (k+1)2n−k, n = k+1, k+2, ... where U1
k,k(x), U2

k,k(x), ..., Uk+1
k,k (x) are

the front k+1 items of Legendre polynomials. U1
k,k+1(x), U2

k,k+1(x), ..., Uk+1
k,k+1(x)

are the piecewise polynomials,and orthogonal with each other and U1
k,k(x),

U2
k,k(x), ..., Uk+1

k,k (x). The value, at the discontinuous point, is the arithmetic
average value of two sides limit.

In k−degree U-system, the n + 1th group includes (k + 1)2n−k functions. In
turn, we take 2n−k as a “class”, The result includes k + 1 “classes”.The ith is
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gotten with some items of “squish-repeat” of U i
k,k+1. U

i,j
k,n+1 is the jth function of

ith “class” of n+1th group in U-system, where i = 1, 2, ..., k+1; j = 1, 2, ..., 2n−k;
n = k + 1, k + 2, ... In order with “group-class”, k-degree U-system is:

U1
k,k(x), U2

k,k(x), ..., Uk+1
k,k (x), U1

k,k+1(x), U2
k,k+1(x), ..., Uk+1

k,k+1(x),

U1,1
k,k+2(x), U1,2

k,k+2(x), ..., U1,2n−1

k,k+2 (x), U2,1
k,k+2(x), U2,2

k,k+2(x), ..., U2,2n−1

k,k+2 (x),

... ... Uk+1,1
k,k+2 (x), Uk+1,2

k,k+2 (x), ..., Uk+1,2n−1

k,k+2 (x),

U1,1
k,k+3(x), U1,2

k,k+3(x), ..., U1,2n−1

k,k+3 (x), U2,1
k,k+3(x), U2,2

k,k+3(x), ..., U2,2n−1

k,k+3 (x), ...

......

When k = 0, 1, 2, 3, the partial figure of U-system are shown in Fig. 2. It is
obvious that Walsh-system is the 0-degree U-system.

Fig. 2. k−degree U-system (when k=0,1,2,3)

It is noticeable that, for a given function F, let

Pn+1F =
n∑

i=0

aiUk,i

let Pn+1F is the best L2-approximation to F from the space span(Uk,j)n
0 . Thus

we have
lim

n−→∞ ||F − PnF ||2 = 0, F ∈ L2[0, 1]

lim
n−→∞ ||F − PnF ||∞ = 0, F ∈ C[0, 1]

These denote that Fourier-U series have the properties of L2-convergence, com-
pleteness and convergence uniform by group.

If F is a piecewise k-degree polynomial, which has some discontinuous points
on x = q

2r (q and r are integers), it can be exactly represented with finite
items of Fourier-U series.This important property is called “Fourier-U series
regeneration”.
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3 U Transform and Its Properties for Shapes

3.1 Orthogonal Representation of Parametric Shapes

Let t ∈ [0, 1],for simplicity, we take one degree U-system as an example. Assum-
ing that the interval [0,1] is divided into 2n sub-intervals. Then, approximation
function is represented: Ff (t) = fi(t). Where t ∈ [ i

2n ,
i+1
2n ), i = 0, 1, ..., 2n. Let

P (t) =
(
x(t)
y(t)

)
=

2n+1−1∑
i=0

λiU2n+1−1(t)

The shapes are represented parametric polynomials:{
x(t) = Fx(t)
y(t) = Fy(t)

Where λj =
∫ 1
0 P (t)Ujdt, for j = 0, 1, 2, ..., 2n+1 − 1.P (t) can be exactly rep-

resented by the given Ff (t) with finite items. So we call λj as U-transform
coefficient,also call as frequency spectrum of P (t) . Especially, when j = 0 , we
call λ0 as “DC” term. The “energy” of P (t) is defined as following:

E = (
n∑

j=0

λ2
j )

1
2

3.2 The Properties of Frequency Spectrum

According to the above defined λj =
∫ 1
0 P (t)Ujdt, for j = 0, 1, 2, ..., 2n+1 − 1.

have the following properties.

Theorem 1. The above defined λjhave the basic properties in geometric trans-
formation.

(i)Translation transformation

if P
′
(t) = P (t) + P0 then λ

′
j = λj + P0δk, where δk =

{
0, k 	= 0
1, k = 0

(ii)Scale transformation
if P

′
(t) = αP (t) then λ

′
j = αλj . where α is the scale factor.

(iii)Rotation transformation
if [P

′
(t)T , 1] = [P (t)T , 1]A then [λ

′
j , 1] = A[λj , 1]. where T demotes trans-

pose of a matrix, A is rotation matrix.

Theorem 2. Energy is invariant in rotation for the same shapes.

In order to make the frequency satisfy the invariance in rotation, translation,
scale transforms, it can be defined normalized frequency as following:

NFj = ||λj ||
||λ1|| ,j = 1, 2, ..., n

Theorem 3. Normalized frequency is invariant in rotation, translation, scale
transforms for the same shapes.
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3.3 U Descriptors

In this section,we will give the discrete case for U-transformation.so it can be
defined U descriptors and discussed some relative properties.

Polygonal curve, which is gotten by sampling, is commonly expressed as fol-
lowing: z(n) = x(n)+ iy(n), n = 0, 1, ..., N−1. Where i2 = −1. For convenience,
we take the 1-degree U-system as example to introduce U descriptors and their
properties. For simplification, Uk is the kth base in 1-degree U-system. The co-
efficients λ(k) of U transformation are called U descriptors trough formula as
following:

λ(k) =
N−1∑
n=0

z(n)Uk(
n

N − 1
), 0 ≤ n ≤ N − 1 (1)

z(k) =
1
N

N−1∑
k=0

λ(k)Uk(
n

N − 1
)−1, 0 ≤ k ≤ N − 1 (2)

Theorem 4. The defined U descriptors above have the basic properties in geo-
metric transformation.

(i)Translation transformation
if z1(n) = z(n) + z0 then λ1(k) = λ(k) + Nz0δ(k), where

δ(k) =
{

0, k 	= 0
1, k = 0

(ii)Scale transformation
if z1(n) = αz(n) then λ1(k) = αλ(k) where α is the scale factor.
(iii)Rotation transformation
if z1(n) = z(n)eiθ then λ1(k) = λ(k)eiθ where θ is the rotation angle.

Similarly, it can be defined normalized U descriptors in order to make the U
descriptors satisfy the invariance in rotation, translation, scale transform.

du(k) =
||λ(k)||
||λ(1)|| , k = 1, 2, ..., N − 1.

Theorem 5. Normalized U descriptors are invariant in rotation, translation,
scale transform.

Theorem 5 indicates that normalized U descriptors can have some applications
in shapes analysis.

3.4 Comparing Shapes Descriptors

The standard approach [3][20] to compare signals −→z and
−→
z′ makes use of the

Euclidean distance, i.e.

L2(−→z ,
−→
z′ ) =

√√√√N−1∑
k=0

|−→zk −
−→
z′k |2
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Accordingly, we may define measurement method of shapes similarity.
Let duS1(k) and duS2(k) denote the normalized U descriptors of the two

shapes S1 and S2, respectively, and the similarity of the two shapes S1 and S2
defined as follows:

Dis = ||duS1(k)− duS2(k)||2 =

√√√√N−1∑
k=1

|duS1(k)− duS2(k)|2

It is easy to see that the smaller the Dis-value is, the more similar the shape
is. vice versa. Especially, when Dis = 0, it shows that S1 and S2 are same.

4 The Method of Matching Shapes

Fig.3 presents a general step of our methods.Starting from a boundary descrip-
tion obtained through a shape extraction algorithm, we first parameterize the
boundary to obtain a discrete complex signal.Then, and the U descriptors of the
signal are computed. Finally, these coefficients are normalized so as to achieve
the invariance we are interested in and are then stored in the database. At query
time, the shape descriptor of the query object is obtained in the same way. The
two descriptors are then compared using the Euclidean distance.

Fig. 3. Basic step for matching shapes

5 Experimental Results

In this section, we will give some experimental results.

Experiment 1. In this experiment, we used images from an existing data base
[22][23]. These images are the boundary of 128×128 pixel sized black and white
images, The Spectrum and normalized spectrum are shown in below fig.4 for
different 10 fish shapes. The Euclidean distance of 10 shapes in the U-system
are shown in table 1.



Matching 2D Shapes Using U Descriptors 215

Fig. 4. Shapes analysis for 10 fishes

Table 1. The Euclidean distance of 10 shapes in the U-system

dis F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
F1 0 15.574 13.5 12.655 16.169 8.9393 10.062 7.9639 15.691 16.239
F2 15.574 0 2.4586 6.3221 0.20227 13.703 17.859 10.362 0.66006 0.72838
F3 13.5 2.4586 0 2.8324 3.2713 10.765 14.838 8.3386 1.8579 3.5179
F4 12.655 6.3221 2.8324 0 6.9038 7.2808 11.228 4.5853 5.7705 6.8536
F5 16.169 0.20227 3.2713 6.9038 0 14.691 18.815 11.361 0.38495 0.90847
F6 8.9393 13.703 10.765 7.2828 14.691 0 4.1531 1.8295 12.566 14.268
F7 10.062 17.859 14.838 11.228 18.815 4.1531 0 5.6437 16.692 18.362
F8 7.9639 10.362 8.3386 4.5853 11.361 1.8295 5.6437 0 9.6048 12.077
F9 15.695 0.660066 1.8597 5.7705 0.38495 12.566 16.692 9.6048 0 0.24734
F10 16.239 0.72838 3.5197 6.8536 0.90847 14.268 18.362 12.077 0.24734 0
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Experiment 2. In this experiment, the group of images consists of 7 tools. Their
normalized spectrum results are shown in Fig.5. The Euclidean distance of 7
shapes in the U-system are shown in table 2.According to their the Euclidean
distance, matching of tools are shown in Fig.6.The first column shows the best
match, second column the second-best match and so on. As the matching of any
shape with itself matches 0, the fist column also represents the shapes to be
matched.

Fig. 5. Shapes analysis for 7 tools

Table 2. The Euclidean distance of 7 shapes in the U-system

dis T1 T2 T3 T4 T5 T6 T7
T1 0 0.76836 3.7036 2.2414 0.019327 2.7259 1.4794
T2 0.76836 0 3.965 2.1644 0.33331 3.0702 2.7543
T3 3.7032 3.965 0 1.6308 4.0936 1.1396 3.1096
T4 2.2414 2.1644 1.6308 0 1.6477 0.61201 1.8556
T5 0.019327 0.33331 4.0936 1.6477 0 2.7848 2.2994
T6 8.9393 13.703 10.765 7.2828 14.691 0 4.1531
T7 1.4794 2.7543 3.1096 1.8556 2.2994 2.1324 0

6 Conclusions and Future Work

We introduced a new way to represent and compare shapes based on U-system.
Using U-system with finite items, it can be realized exactly representation of
shapes. So U-system is suitable for shapes analysis. In theory, we have proved
that normalized frequency and normalized energy for the same shapes are
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Fig. 6. Matching of tools

invariant in geometric transforms, such as rotation, translation, scale transforms.
Examples show the usability of the proposed method.

In the theories and applications of communication and signal processing, U-
system is the basic and important math tool. So, Future work will focus on
improvement of our algorithm and on the influence of alternative difference mea-
sures besides the Euclidean distance.
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Appendix

(1) The proof of theorem 1

Proof. Here, we only give the proof of translation transform. The others are
similar. if P

′
(t) = P (t) + P0 then

λ
′
j =

∫ 1

0
(P (t) + P0)Ujdt

=
∫ 1

0
P (t)Ujdt +

∫ 1

0
P0Ujdt

= λj + P0δk

where δk =
{

0, k 	= 0
1, k = 0

(2) The proof of theorem 2

Proof. Supposed shapes rotated by θ circled coordinates axes x, then x
′

=
x cos θ − y sin θ,y

′
= y cos θ + x sin θ,

So (λj)
′
x =

∫ 1
0 (x(t) cos θ − y(t) sin θ)Ujdt

= cos θ
∫ 1
0 x(t)Ujdt − sin θ

∫ 1
0 y(t)Ujdt

= (cos θ)(λj)x − (sin θ)(λj)y.
The same as, (λ

′
j)y = (cos θ)(λj)y − (sin θ)(λj)x.

So ((λ
′
j)x)2 + ((λ

′
j)y)2 = ((λj)x)2 + ((λj)y)2.

That is , E
′
= E.

(3) The proof of theorem 3

Proof.
Let λ

′
j be obtained fromλj , λjtranslated byP0 and scaled by γ. The corre-

sponding λ
′
j is

λ
′
j =

∫ 1
0 γ(P (t) + P0)Ujdt

= γ[
∫ 1
0 (P (t)Ujdt +

∫ 1
0 P0Ujdt]

= γ(λj + P0δk), where δk =
{

0, k 	= 0
1, k = 0

So NF
′
j =

||λ′
j ||

||λ′
1||

= ||λj||
||λ1|| = NFj .

that is, normalized frequency is invariant in translation, scale transform.
Similarly, it is easily proved that normalized frequency is invariant in rotation

transform.

(4) The proof of theorem 4

Proof. Here, we only give the proof of translation transform. The others are
similar.
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if z1(n) = z(n) + z0 then

λ1(k) =
N−1∑
n=0

z(n)Uk(
n

N − 1
) +

N−1∑
n=0

z0Uk(
n

N − 1
)

= λ(k) + z0

N−1∑
n=0

Uk(
n

N − 1
)

= λ(k) + Nz0δ(k)

So, λ1(k) = λ(k) + Nz0δ(k), δ(k) =
{

0, k 	= 0
1, k = 0

(5) The proof of theorem 5

Proof. Let z
′
(n) be a shape obtained from z(n): z

′
(n) translated by z0 , rotated

by θ, and scaled by γ . The corresponding normalized U descriptors of z
′
(n) is

λ
′
(k) =

N−1∑
n=0

(z(n) + z0)γeiθUk(
n

N − 1
)

= (
N−1∑
n=0

(z(n) + z0)Uk(
n

N − 1
))γeiθ

= (
N−1∑
n=0

z(n)Uk(
n

N − 1
) +

N−1∑
n=0

z0Uk(
n

N − 1
))γeiθ

= (λ(k) + Nz0δ(k))γeiθ, δ(k) =
{

0, k 	= 0
1, k = 0

So du
′
(k) = ||λ′

(k)||
||λ′(1)|| = ||λ(k)||

||λ(1)|| = du(k), that is, normalized U descriptors are
invariant in rotation, translation, scale transform.
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Abstract. This paper proposes a novel shape representation “electric
force features”, which is based on electric field theory. This representa-
tion has several benefits. First, it is invariant to scale and rigid transform.
Second, it can represent complex and ill-defined models because of its
physical background. 3D model supposed as charged body, we get the
electric field force distribution by placing some testing charges around
the 3D model. The force distribution is the feature of the 3D model.
Orientation invariance is achieved by calculating the spherical harmonic
transform of this distribution. The experiments illuminate that this rep-
resentation has high discriminating power.

1 Introduction

With the development of advanced 3D hardware and software, such as laser range
finder and stereo, 3Dmax, AUTOCAD, and the rise in computational processing
power, the types of 3D models are increasing fast. So it leads us to the need to
compare and recognize 3-D models. Object comparison is the key technique in
applications such as shape similarity based 3-D objects matching, recognition
and categorization [FM][OO][SM][TV].

The difficulty of automatic annotation[MK] demonstrates the advantage of
using shape-based matching methods over text-based methods for retrieval of
3D models.

Many features are characteristic of 3D models, such as shape, color and tex-
ture. As the color and texture information tend to be affected by the envi-
ronment, the shape of 3D models carries the basic information of 3D models.
Geometric models include boundary and voxel representation, CSG trees, point
clouds, range images and implicit functions, among which polygonal mesh is the
most common way of representing 3D models.

The shape descriptors are usually extracted from the geometric models to
be used directly for comparison. Ideally, these descriptors should be scale and
rigid transform invariant, capable of good discriminability, robust to noise, and

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 221–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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independent of specific geometric representations. Not many current descriptors
fit all these criteria.

In this paper, electric field theory is used to define a kind of electric force
features. 3D models being assumed as charged object, we get the electric force
distribution by setting many fixed testing electric charges around the 3D model.
According to the uniqueness principle, the electric force distribution is the fea-
ture of the 3D model. In order to achieve oriented invariance, we translate the
electric features to spherical harmonic representation, and then construct matrix
descriptor. Examples are included.

The rest of this paper is organized as follows. After summarizing related ap-
proaches in Section 2, we describe the electric principal theory in Section 3.
Section 4 illustrates the electric force features vector and spherical harmonic
representation. In Section 5, we present some object comparison and retrieval
results. We provide concluding remarks in Section 6.

2 Relative Work

Some most related shape matching methods will be discussed briefly In the
following.

Osada et al. [OF] introduce and compare shape distributions. The main idea is
to randomly select points on the surface of a 3D model, compute certain geomet-
ric proper-ties including distance, angle, area, volume, and create a histogram of
obtained values. They evaluate the similarity between the models using a pseudo-
metric which measures distances between distributions. The authors suggest that
the best choice of the geometric function is D2 (the distance between two random
points on the surface). In their experiments the D2 shape distribution measuring
distances between random surface points is most effective.

The skeletons of 3D models are extracted using the topology-based approach
in [HS][SS]. And then some graph matching algorithms are used for shape com-
parison. Al-though these approaches are flexible and can be used for matching
deformable models, the time-consuming nature prevents the methods from real
time applications. And, the topology matching process is difficult to accelerate,
which will be problematic for large databases.

Vranić et al. [VS] propose the use of feature vectors based on spherical har-
monic analysis. They uses ray casting from the centroid of a model in the di-
rections per latitude and longitude to estimate 3D shape. Then distances from
the centroid to the intersection points in each concentric shell are used to define
the spherical functions. The methods employed by articles [LS][LP] improve this
kind of feature.

In [QH], Quan et al resolve image identify from the electric field position.
Detection techniques and the corner points achieve the edge of binary image by
polygonal ap-proximation, and then the electric field characters are derivate. By
normalizing observation points, they get the feature vector.Effective is confirmed
through deduction and experiments.
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3 Electric Field Theory

Each electrically charged object generates an electric field, which permeates the
space around it, and exerts pushes or pulls whenever it comes in contact with
other charged objects. The electric field around an object with electric charge
is unique. The electric field is related to the object’s size, the density of electric
charge and the shape of the object. And this electric field is responsive for the
object. So, if there is any difference between the objects, the electric field around
the objects varies correspondingly. We can differentiate the object according to
the electric field.

Fig. 1. Intensity of electric field

Intensity of electric field created by the object with continue charges is:

E =
∫
S
dE =

∫
S

dq
4πε0r2

r (1)

where dq = σds ,σ is the density of electric charge, ε0 is coulomb’s constant. r is
the distance between the position and the integral cell, r is the direction vector.

And multiple charge particles is:

E =
∑
i

Ei =
n∑
i

dq
4πε0r2i

ri (2)

The Coulomb’s law describes the force exerted by electric field. The force of
charge q in the electric field is:

F = E · q (3)

4 Electric Force Features

In this section, we introduce the Electric field force features-harmonic represen-
tation for 3-D shapes. The electric force features have the invariant properties
and can sufficiently testify 3-D shape similarity estimation.
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4.1 Electric Field Around the 3D Model

In this section, the electric field simulated by the 3D model is illustrated.
The polygonal meshes are used to represent 3D models. And we can iterate

through all polygons splitting them into triangle. In what follows, we illustrate
the problem by using triangle mesh representation.

We regard a given triangle mesh as consisting of a set of triangles T =
{T0, T1, T2, · · · , Tm−1},Ti ∈ R3,where m is the number of triangles.

Given by a set of vertices P = {pi|pi = (xi, yi, zi) ∈ R3, 0 ≤ i < n},where n
is the number of vertices.

And a list of indices of three vertices for each triangle L = {(Ai, Bi, Ci)|Ai, Bi,
Ci ∈ {0, 1, 2, · · · , n− 1}, 0 ≤ i < m}.

Calculate the triangle mesh area:area={tri area0, tri area1, · · · , tri aream}.
The total area of the model mesh is:

Area =
m−1∑
i=0

tri areai (4)

Every triangle mesh area is normalized using the total area,

no tri areai =
tri areai

Area
(5)

Let tri ceni = (cxi, cyi, czi),i = 0, 1, · · · ,m − 1 be the centroid of the ith
triangle mesh.

The electric field of 3D model is made up of a set of electric particles, which
are located at the centroid of triangle mesh, and the charge of each particle is
proportionate to the area of the triangle mesh.
{ele pari|Loc(ele pari) = tri ceni, Cha(ele pari) = ε0×no tri areai, 0 ≤ i <

m} , Loc(·) represents the location of the particle, and Cha(·) is the charge of
the particle.

The intensity of point p(x, y, z) in the electric field can be obtained from
Coulomb’s law:

Ex =
m∑

i=0

ε0 × no tri areai × (x− xi)
((x − xi)2 + (y − yi)2 + (y − yi)2)

3
2

(6)

Ey =
m∑

i=0

ε0 × no tri areai × (y − yi)
((x − xi)2 + (y − yi)2 + (y − yi)2)

3
2

(7)

Ez =
m∑

i=0

ε0 × no tri areai × (z − zi)
((x − xi)2 + (y − yi)2 + (y − yi)2)

3
2

(8)

where ε0 is coulomb’s constant,i = 0, 1, 2, · · · ,m− 1.

4.2 Setting the Testing Charge

In order to get the electric field features, we set some testing electric charge
around the 3D model.
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First, calculate the centroid of the model,

X = {(x,y, z)|x =
M100

M000
,y =

M010

M000
, z =

M001

M000
} (9)

Where,Mlpq =
L∑

i=0

P∑
j=0

Q∑
k=0

xl
i × yp

j × zq
k.

Second move the center of mass of mesh models to the origin of the coordinate
system,Scaled by the max radius, the model is translated into the unit sphere.

pi =
1
δ
× (pi −X) (10)

where,δ is the radius of the farthest vertice.

Fig. 2. Testing electric charge positioning

Then define the sampling points,{(r, θi, φj)|θi = (i+0.5)× π
Ns

, φj = (j+0.5)×
2π
Ns

, 1 ≤ i, j ≤ Ns},where,Ns ∈ Z+ is called sampling rate.
Which is illustrated in fig. 2.

4.3 Calculation of the Electric Field Force

We set testing charges on the testing point. The charge of testing charge is
tc0 = tc1 = · · · = tcn−1 = q0, n = Ns ×Ns.

Then the force of testing charge in the electric field is calculated as follow,
X = r × cosφ× sin θ, Y = r × cosφ× cos θ, Z = r × sinφ.

Then,

F x(θ, φ) =
m∑

i=0

ε0 × no tri areai × q × (x− xi)
((x − xi)2 + (y − yi)2 + (y − yi)2)

3
2

(11)
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F y(θ, φ) =
m∑

i=0

ε0 × no tri areai × q × (y − yi)
((x − xi)2 + (y − yi)2 + (y − yi)2)

3
2

(12)

F z(θ, φ) =
m∑

i=0

ε0 × no tri areai × q × (z − zi)
((x − xi)2 + (y − yi)2 + (y − yi)2)

3
2

(13)

F r(θ, φ) = ((F x)2 + (F y)2 + (F z)2)
1
2 (14)

then we get four feature vectors: {F x(θi, φj)},{F y(θi, φj)},{F z(θi, φj)},
{F r(θi, φj)},i = 1, 2, · · · , Ns − 1, j = 1, 2, · · · , Ns − 1.

4.4 Spherical Harmonic Transform

Spherical harmonic decomposition is used to translate directional shape features
to rotation invariant forms.

We give two main mathematical properties of spherical harmonic in the fol-
lowing. You can find more detailed descriptions in [PH][HR].

Property 1: A spherical function f(θ, φ) could be decomposed as a series of
spherical harmonic functions Y m

l (θ, φ)

f(θ, φ) =
∞∑
l=0

l∑
m=−l

al,mY m
l (θ, φ) (15)

Property 2: The harmonics with a fixed l constitute a subspace under rotation
transforms:

R(Y m
l (θ, φ)) =

∞∑
l=0

al,tY
t
l (θ, φ),

l∑
t=−l

|a2
l,t| = 1 (16)

Here, R is an arbitrary rotation.[LS][LP]
Now, the component of electric field force and the resultant force can be

regarded as spherical function defined on the unit sphere respectively.
Using spherical harmonic analysis, the electric field force can be expressed:

F (θ, φ) =
∞∑

l=0

l∑
m=−l

fl,mY m
l (θ, φ) (17)

where Y m
l (θ, φ) is spherical harmonic,fl,m =< F (θ, φ), Y m

l (θ, φ) >.
We suppose that F (θ, φ) is limited frequency, and first N frequency is used.
We get formula (18)

F (θ, φ) =
N∑

l=0

l∑
m=−l

fl,mY m
l (θ, φ) (18)

The electric field force harmonic representation is defined on the base of spher-
ical harmonic coefficients. It is a matrix descriptor E.
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E = {ai
l}4×N (19)

Where,ai
l =
√∑l

m=−l f
i
lm(θ, φ).

By the above definition, ai
l is the energy sum of the F i(θ, φ), i ∈ {x, y, z, r}

in the frequency l . It is proved that the descriptor is invariant to rotation,
translation and scaling.

The L2-norm is used to measure the dissimilarity between two different feature
matrices. That is:

Dissimilarity =

√√√√ 4∑
i=1

Ns∑
l=0

(ai
l − âi

l)2 (20)

The calculating electric field force time is proportional to the number of the
testing charge, te = O(N2

s ×M) , while the time needed for spherical harmonics
transform can be expressed as tsh = O(N3

s ) . We can write the total time com-
plexity as ttotal = O(N2

s ×M) +O(N3
s ) , where Ns is the sampling rate, and M

is the number of the triangle mesh of the model.

5 Experiments

In this section, we illuminate the retrieval results of our method (EFSH), which
is implemented on our prototype 3D retrieval system. The 113 models, which we
use, come from Princeton shape benchmark.

Fig. 3. Precision-recall curve. The blue curve is the result of Zernike moments, and the
red is the result in this paper.
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Fig. 4. Examples of 3-D object retrieval. In each row, the first model is the input sample
object, the others is the most similar object retrieved on order. The word under the
picture is the name of the model.
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The features of the models in the database are precomputed and stored. In
the experiment, the sampling rate is 256. The average time spent is computing
descriptor is about 168.448 second for each model. This performance is tested
on P4 2.0GHZ PC with 256 MB memory.

Because spherical harmonic transform is also used in Zernike moments, we
compare our method with Zernike moments. The average precision-recall curves
over all classes are shown in fig. 3. Including Zernike moments (blue curve) and
EFSH (red curve). We can see that EFSH has much better performance than
Zernike moments descriptors.

And some of the retrieval results are demonstrated in fig. 4.

6 Conclusions and Future Work

In this paper, we study the 3D model retrieval from the point of view of physics,
present the electric field force-based descriptor of 3D model, and construct ro-
tated invariant using spherical harmonic transform.

The major advantage of our method is that it avoids the instability and am-
biguity in specifying the intersections of rays. Because the shape descriptor pro-
posed in this paper is from physical point, it gets a spherical function on the
basis of electric theory, and apples spherical harmonics to achieve invariant,it
suits complex, ill-defined polygon-soup models, and then suitable for many spe-
cial applications of 3D shape retrieval.

There are two major shortcomings: (1) it only captures the global shape, and
(2) it is dependent on the shape and distribution of the meshes of the models.

In the future, we would like to test the performance of our shape descriptor
on large available 3D shape repositories, which contains more general 3D models
than our experiment database.
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A Novel Data Hiding Algorithm Using Normal Vectors  
of 3D Model 

Chung-Hsien Chang, Chung-Ming Wang, Yuan-Yu Tsai, and Yu-Ming Cheng  

Institute of Computer Science, National Chung Hsing University, Taichung, Taiwan 
{cschang, cmwang, cuckoo, s9156048}@cs.nchu.edu.tw 

Abstract. This paper presents a novel data hiding algorithm for 3D polygonal 
models whose vertices have given normal vectors. The key idea of our  
algorithm is to embed messages by adjusting the normal vector of a vertex ac-
cording to the pivot vector. All vertices in a 3D model can be embedded with 
multiple-bit payloads by using multiple pivot vectors. The distortion is meas-
ured by the angle between the adjusted normal vector and the original normal 
vector to distortion. A distortion coefficient is also introduced to control the dis-
tortion rate during the embedding process. Experimental results demonstrate 
that our algorithm can achieve high data capacity (up to 12 bits per normal  
vector), and is robust against rotation, translation, and uniform scaling attacks. 

1   Introduction 

Data hiding is embedding data in other harmless messages and does not allow anyone, 
except those with the secret key, to detect the secret message. Data hiding [5, 8] usu-
ally uses digital multimedia data, such as movies, music, and images, as cover media 
to embed hidden information. Preferred data hiding algorithms embed as much data as 
possible and form the stego model with as little distortion as possible. There are dif-
ferent representations used for three-dimensional (3D) models. A 3D model can be 
described as a set of parametric curves or a collection of defining functions. For ex-
ample, the equation x2+y2+z2=1 describes a sphere with a unit radius in 3D space. 
More commonly, polygonal meshes are used to represent a 3D model. The normal 
vector assigned at a vertex is generated automatically in the shading process. Some-
times, to describe the curvature of a surface more precisely, given normal vectors will 
be associated with vertices. Thus, a vertex in 3D model can be defined as a set of six 
floating point numbers. For example, x y z x y zP P P N N N where ( )x y zP P P is the 

position of the vertex and ( )x y zN N N is the normal of the vertex. Recently, many 

data hiding and watermarking algorithms have been presented for 3D models. Most of 
them support polygonal models [1, 2, 3, 6, 7, 11] while a few of them are for point-
sampled geometries [4, 10]. Although embedding data into the topology and geometry 
of models has been explored extensively, its counterpart for normal vectors has not 
been explored as much as it deserves.  

In this paper, we propose a new data hiding technique for 3D models whose verti-
ces have given normal vectors. For each vertex, we embed a payload by adjusting the 
direction of its normal vector. We use one or multiple pivot vectors as keys for  
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embedding and extracting data. The angle between a pivot vector and normal vector is 
used to determine embedded information. The more pivot vectors are involved, the 
more payloads we can embed. This scheme allows our method to achieve a huge 
capacity for data hiding. In our algorithm, we leave the position information un-
tainted. Therefore, our method is robust against rotation, uniform scaling, and transla-
tion attack. 

This paper is organized as follows: section 2 discusses related works. The proposed 
algorithm including the information embedding process and extracting process is 
presented in section 3. Section 4 shows experimental results using several models. 
Conclusions and future work are described in the final section. 

2   Related Work 

Many watermarking and data hiding techniques have been proposed on 3D models. 
Aspert et al.[1] proposed an approach which transformed Wagner’s watermarking 
technique[11] into a data hiding algorithm for 3D polygonal meshes. They use small 
displacements of the vertices in the model to embed the information. Recently, Maret 
and Ebrahimi[6] made some improvements to [1, 11] by increasing the embedding 
capacity and reducing the complexity of data extraction. They increased the capacity 
by adapting the embedding process to the sample distribution in the similarity-
transform invariant space. They reduced the complexity of message extraction by 
making use of a similarity invariant space.  

Cayre and Macq[3] described an algorithm for 3D polygonal models in the spatial 
domain. The message was embedded within the model topology and the key idea 
was to consider a triangle as a two–state geometrical object. They established a list 
of admissible triangles from the cover model. The position of a vertex in each admis-
sible triangle was changed or not, according to the embedding bits. Wang and 
Cheng[9] presented a more efficient approach. They considered every vertex of a 
triangle as a message vertex and adopted a triangle neighbor table and an advanced 
jump strategy to assign embedding order to the message vertex quickly. They also 
defined a metric of distortion evaluation which helped them forecast and control the 
distortion rate. 

Cotting et al.[4] presented a watermarking approach for point-sampled geometry. 
They embedded watermarks into the low frequency components, and employed statis-
tical methods based on correlation to analyze the extracted watermarks. Wang and 
Wang[10] proposed two data hiding approaches for point-sampled models. They 
established a list of intervals for each axis according to the secret key, and embedded 
a bit into each interval by changing the points’ position. They also used a list of macro 
embedding primitives to achieve higher data capacity.  

Most of the abovementioned works presented for data hiding or watermarking are 
based on the topology and geometry of models. We propose a novel data hiding algo-
rithm that exploits the feature of those 3D models which have given normal vectors. 
This algorithm provides a huge capacity and resists rotation, translation, and uniform 
scaling attacks. 
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3   The Proposed Algorithm 

3.1   Basic Idea 

There are two vectors N and V  in 3D space and V  is denoted as a pivot vector. 
When we want to embed a one bit payload “0”, we modify N as N ′  
where 02mod)(cos 1 =⋅′− VN . The arccosine function returns an angle, denoted as 

α , in degree where °≤≤° 1800 α . If N ′  meets the condition 

12mod)(cos 1 =⋅′− VN , a one bit payload “1” is hidden in N ′ . Geometrically speak-

ing, we categorize the integer part of the angle between a pivot vector and a normal 
vector into odd and even regions. The odd region indicates that “1” is hidden, and the 
even region indicates “0”. Figure 1 shows the embedding space formed by a pivot 
vector, 

pV . The embedding criterion subdivides the spherical embedding space into 

several regions. A  is in the blue embedding region whose embedding pattern is “1”. 
B  is in the yellow embedding region whose embedding pattern is “0”. That means 
“1” and “0” are hidden in A  and B  respectively. To simplify the illustration, we only 
show the hemi-spherical embedding space and magnify the scale of one degree. Each 
region has a corresponding embedding pattern. In figure 1, the blue region has em-
bedding pattern “0” and the yellow region has embedding pattern “1”. If  V  is the 
same in the cover model and the stego model, it is easy to extract the hidden message 
by testing whether the angle between N  and N ′  is even or odd. When we use multi-
ple pivot vectors, we can embed a multiple-bit payload by modifying N  to meet the 
same criterion for various pivot vectors simultaneously and sequentially. 

3.2   Embedding Process 

First, we construct a unique coordinate for a model. 
gcP  is the geometric center of all 

vertices in the model. The closest vertex to 
gcP  is 

1cP .  
2cP  is the second closest . 

3cP  is 

the third closest, and so on until 
21 cc PP  and 

31 cc PP  are not parallel. Then we use 
21 cc PP  

as X-axis and 
3121 cccc PPPP ×  as Z-axis to construct a right-handed coordinate system 

for this model. Once this unique local coordinate system, denoted the pivot coordinate 
system, for our model is constructed, we set up the number of pivot vector npv depend-
ing on how many bits we want to hide in a normal vector. The pivot vectors are cho-
sen in respect to the pivot coordinate system. We denote all pivot vectors as 

10 −= pvpi niwhereV . The embedded payload is represented as a bitstream given 

by N
ib )( , where 

0121 bbbbb
pvpvpv nnn −−

are N binary words of npv bits each. The embed-

ding procedure modifies the cover normal vector N  to N ′  so that N ′  must match  

102mod)'(cos 1 −=⋅= −
pvpii ntoiwhereVNb  (1) 

Figure 2 shows the embedding space formed by two pivot vectors. The embed-
ding pattern “00” is hidden in the green region, “01” in the yellow region, “10” in the 
pink region, and “11” in the orange region. In our algorithm, every vertex in the 
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model can be used to hide data. If a model has nvertex, we can hide at most npv * nvertex 
bits in it. The embedding order is simply assigned by the loading order. Conse-
quently, we only use the required number of vertices to hide the data, and leave the 
others unchanged. 

 

Fig. 1. The embedding space formed by a pivot vector 

 

Fig. 2. The embedding space formed by two pivot vectors 

1pV

2pV

pV
A

B
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Fig. 3. The unbalanced embedding space formed by two pivot vectors that are too close 

 

Fig. 4. Three pivot vectors form the balanced embedding space 

Any modification causes distortions and distortions grow with npv during the em-
bedding process. To control the distortion rate, we introduce a coefficient, denoted as 
distortion coefficient β  and N∈β . We modify (1) to  

102mod)'(cos 1 −=⋅= −
pvpii ntoiwhereVNb β  (2) 
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The distortion coefficient subdivides one degree into β  parts. Thus, it is easy to con-

trol distortions by employing a larger β . Since each adjustment to the normal vector 

depends on the pivot vectors, each pivot vector must be chosen carefully. If two pivot 
vectors are too close, they will form an unbalanced embedding space. That means the 
area of each embedding region will vary widely, which may cause serious distortion. 
Figure 3 shows an unbalanced embedding space formed by two pivot vectors that are 
too close. In such cases, the cover normal vector will be over modified. To avoid this, 
any pair of pivot vectors will be restricted by  

1 1
1 2

1
cos ( ) cos ( )V V

β
− −⋅ >  (3) 

Figure 4 illustrates three pivot vectors, (1,0,0), (0,1,0), and (0,0,1), forming a bal-
anced embedding space. Since it is difficult to find N ′ analytically, we use a brute-
force method. N  is treated as the pole of a spherical coordinate. β/1  is the increment 

for both the azimuthal angle and polar angle. The Following is the pseudo-code of our 
algorithm: 

BuildPivotCoordinate( ); 
for(i=0; i<NUM_VERTEX_USED; i++) 
{ 
 BuildLocalCoordinate( N ); 

 for(j=0; j<NUM_PIVOT_VECTOR; j++) 
  Pivot2Local(

piV ); 

found= false; 

 theta =
β
1 ; 

 do 
 { 

  for( phi = 0; phi < 360 && !found; phi +=
β
1 ) 

  { 
   

tmpN =Spherical2Cartesian(theta, phi); 

   Code = 0; 
   for(k = 0; k < NUM_PIVOT_VECTORS; k++) 
   { 

    angle[k] = 1cos ( )*tmp pkN V β− ⋅ ); 

    code += (angle[k] mod 2)* 2k; 
   } 
   if(target == code) 
    found = True; 
  } 

  theta += 
β
1 ; 
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 } while ( !found && theta <= 90); 
Local2Pivot(

tmpN ); 

 AdjustNormal( N ,
tmpN ); 

} 

3.3   Extracting Process 

Since the positions of vertices are not changed during the embedding process, the 
pivot coordinate system remains the same for the cover model and the stego model. 
To be able to extract the payload from a model, the payload extractor will need to 
know the number of embedded vectors and all pivot vectors. In addition, the distor-
tion coefficient β  used during the embedding process is also needed. It is easy to 

reconstruct the pivot coordinate system used in the embedding process. Thus, the 
embedded message in each normal vector is extracted by  

102mod)'(cos 1 −=⋅= −
pvpii ntoiwhereVNb β  (4) 

The extracting process consists of some simple calculations whose processing time is 
negligible. 

4   Experimental Results 

We implemented the proposed algorithm using Microsoft Visual C++ programming 
language, and collected the experimental results on  a personal computer with Pen-
tium IV 3GHz processor and 512 MB RAM. Figure 6 shows the models used in this 
paper. Bunny, figure 6(a), has 35947 vertices and 69451 faces. Hand, figure 6(b), has 
327323 vertices and 654666 faces. Dragon, figure 6(c), has 437645 vertices and 
871414 faces. Happy-Buddha, figure 6(d), has 543652 vertices and 1087716 faces.  

Table 1 is the result of embedding data in four different models. Each vertex is 
embedded with a 1 bit payload. It shows that even with a 30,000 bit payload, it only 
takes 0.8 second to hide the payload in the Bunny model. The processing time is pro-
portional to the length of the payload. Embedding data in other models provides simi-
lar results. It takes 0.13, 0.17, and 0.23 second to hide the payload in the Hand, 
Dragon, and Happy-Buddha models.  

For data hiding applications, one of the most important criteria is the embedding 
capacity. In our algorithm, the normal vector of each vertex in 3D model can be em-
bedded with multiple-bit information depending on the number of pivot vectors. In 
table 2, Bunny is used as a cover model where 1,000 vertices are used to hide data and 
the distortion coefficient is set to 1. If we hide 1 bit payload in each vertex, 1,000 bits 
of payload are embedded. The processing time is 0.03 second. The distortion is 0.951 
degree. When we increase the number of bits embedded in each vertex, the processing 
time and distortion will also increase. However, embedding even up to 12 bits per 
vertex can still be done under a reasonable processing time. As a result, our method 
significantly increases the embedding capacity.  
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Table 1. Embedding data on 3D models. Each vertex is embedded with 1 bit. The distortion 
coefficient is 1. 

Processing time (sec.) Payload (bits) 

Bunny Hand Dragon Happy-

Buddha 

5000 0.11 0.13 0.17 0.23 

10000 0.22 0.25 0.33 0.44 

15000 0.39 0.44 0.48 0.65 

20000 0.48 0.52 0.63 0.84 

25000 0.62 0.66 0.78 1.02 

30000 0.80 0.89 0.97 1.20 

Table 2. Embedding data on Bunny. 1,000 vertices are used. The distortion coefficient is 1. 

Bit(s) per vertex Payload  

(bits) 

Processing  

time (Sec.) 

Average  

distortion(deg.) 

1 1000 0.03 0.951 

2 2000 0.13 0.975 

3 3000 0.26 1.097 

4 4000 0.58 1.367 

5 5000 1.11 1.755 

6 6000 2.00 2.432 

7 7000 3.42 3.580 

8 8000 5.68 4.916 

12 12000 40.15 23.237 

Table 3. Embedding data on Bunny. 1,000 vertices are used. Each vertex is embedded with 8 
bits. There are 8,000 bits embedded in the Bunny model. 

Distortion  

coefficient 

Processing time (Sec.) Average  

distortion (deg.) 

1 5.68 4.916 

2 10.25 2.411 

3 14.98 1.518 

4 20.80 1.247 

5 25.06 0.985 

10 49.05 0.469 
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The other important criterion is the imperceptibility. When we embed payloads in 
most data hiding algorithms, we change the cover model and cause distortion. In our 
algorithm, we use the average of those angles between normal vectors of the cover 
model and those of the stego model to estimate the distortion caused by the embed-
ding process. The distortion rate rises as embedded payload per vertex increases but 
we can use the distortion coefficient to control it. In table 3, we embed 8 bits in each 
vertex, and the distortion coefficient is 1. It causes 4.916 degrees of average distor-
tion. Setting the distortion coefficient to 10, it takes 49.05 seconds and causes only 
0.469 degrees of average distortion.  

In figure 5, we use the Bunny model which contains 35,947 vertices. Figure 5(a) is 
the cover model. Figure 5(b) which embedded 3 bits per vertex looks slightly differ-
ent from 5(a) and its distortion is 0.84 degree where the distortion coefficient is 1.  
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. (a) Bunny has 35,947 vertices and 69,451 faces. (b) There are 3 bits of data hidden in 
each vertex. The distortion coefficient is 1 and the distortion is 0.84 degree. (c) There are 6 bits 
of data hidden in each vertex. The distortion coefficient is 1 and the distortion is 2.58 degree. 
(d) There are 6 bits of data hidden in each vertex. The distortion coefficient is 5 and the distor-
tion is 0.28 degree. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. The cover models used in this paper. Bunny, figure 6(a), has 35947 vertices and 69451 
faces. Hand, figure 6(b), has 327323 vertices and 654666 faces. Dragon, figure 6(c), has 
437645 vertices and 871414 faces. Happy-Buddha, figure 6(d), has 543652 vertices and 
1087716 faces. 

When 6 bits are embedded in one vertex, the distortion is 2.58 degrees and it is obvi-
ously distinguishable from the cover model. However, figure 5(d) shows impercepti-
ble distortion by using 5 as the distortion coefficient. Its distortion is only 0.28 degree. 
Larger distortion coefficients take more time but it reduces more distortion as well. 
Furthermore, when we apply transformations such as rotations, translations, and uni-
form scalings, to our stego models, the hidden payload can still be extracted with no 
error because the relationship between the normal vectors and the pivot coordinate is 
not changed during such transformations. Figure 6 shows the four models used in our 
algorithm. 

5   Conclusion and Future Work  

This paper presents a data hiding algorithm to embed messages on 3D-models whose 
vertices have given normal vectors. The main feature of our algorithm is huge  
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embedding capacity. Every vertex in a 3D model can be used to hide a multiple-bit 
payload. According to our experimental results, it can hide 12 bits of payload per 
vertex. The extracting process is very simple. In our experiments, the extracting proc-
ess always takes less than 0.1 second. Therefore, the processing time is almost negli-
gible. We also introduce the distortion coefficient to control the distortion rate during 
the embedding process. Our algorithm resists basic geometric transformations such as 
translation, uniform scaling, and rotation.  

We use a brute-force method to locate the embedding region. Although it can get 
the resolution in a couple of seconds, it is hard to perform further analysis such as 
distortion rate forecasting. Future work will focus on finding the embedding region 
analytically and increasing robustness to resist other attacks. 
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Abstract. This paper tackles a particular shape matching problem: given a data
base of shapes (described as triangular meshes), we search for all shapes which
describe a human. We do so by applying a 3D face detection approach on the
mesh which consists of three steps: first, a local symmetry value is computed
for each vertex. Then, the symmetry values in a certain neighborhood of each
vertex are analyzed for building sharp symmetry lines. Finally, the geometry
around each vertex is analyzed to get further facial features like nose and fore-
head. We tested our approach with several shape data bases (e.g. the Princeton
Shape Benchmark) and achieved high rates of correct face detection.

1 Introduction

Due to the fast development of new 3D scanning and modelling techniques, the num-
ber and complexity of surfaces which Computer Graphics deals with is currently dra-
matically increasing. Because of this, the retrieval and search of shapes in the internet
becomes an important and challenging issue. Shape matching aims in choosing shapes
of certain characteristics out of a shape data base. These characteristics are usually the
similarity to a given shape which is described either as a particular surface, a sketching,
or a rather abstract description [1]. Recently, a number of shape matching approaches
have been developed which are based on shape histograms [2], extended Gaussian im-
ages [3], spherical extend functions [4, 5], shape distributions [6], spherical harmonics
[7], light fields [8], 3D Fourier transforms [9], the topology of Reeb graphs [10], or
anisotropy [11]. A part-in-whole approach was introduced by [12] which allows search-
ing 3D models with parts matching a query.

The problem we want to tackle in this paper is a particular shape matching problem
which can be formulated as follows:

Problem 1. Given a data base of shapes, get all which describe a human.

The main application of this problem relates to the applications of shape matching in
general: imagine a user who wants to build up a virtual 3D scene of many different
humans in different positions. Instead of modelling them, he or she may search the
internet for appropriate shapes.

Figure 1 shows a number of shapes which obviously describe humans in different
positions and states of completeness. Contrary, figure 3 shows a number of shapes which
do not describe humans. Note that the above-mentioned shape matching approaches
detect significantly different shapes in the examples of figure 1. This is due to the fact
that we did not make any assumption about the position of the human body. Arms and
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legs may be outstretched (figure 1 (a)) or bent (figure 1 (b)), merged with the rest of the
body (figure 1 (c)) or even non-existing at all (figure 1 (d), (e)). Since shape matching
algorithms are sensitive against these features, they tend to give a higher similarity for
instance between the shapes in figures 1 (a) and 3 (c) than between the shapes 1 (a)
and 1 (c). Hence, the above-mentioned shape matching approaches are not suitable for
problem 1.

Our starting point for a solution of problem 1 lies in the assumption that a shape
describing a human should contain the human’s face. (In fact, this seems to be the only
property which all examples of figure 1 have in common.) Hence we can reformulate
problem 1 to

Problem 2. Given a data base of shapes, find all shapes which contain a human’s face.

Note that problem 2 does not make any assumption about size and location of the face.
Neither it does about size and resolution of the model. The only assumption we use is
that – if the shape describes a human – only one human (and nothing more) is contained
in the shape. We also assume that the shapes are described as triangular meshes, and – if
a face is present – the part of the mesh representing the face has a disc-like topology, i.e.,
it is a manifold without holes. Then problem 2 appears to be a face detection problem
for triangular meshes.

A variety of algorithms for detecting faces in images has been developed which
roughly can be classified into knowledge base methods [13, 14], feature based methods
[15, 16], template matching [17], and appearance based methods. Having these algo-
rithms available, a straightforward approach to detect faces on meshes is to render the
meshes from different view points and then apply 2D face detection methods on the
resulting images. However, this approach appears to be not reliable because of two rea-
sons: First, there is no control about how many and which view points to choose for
rendering. Second, there is no texture information in the mesh which gives for instance
different colors for a face and the surrounding hair. Because of this, we have to apply
face detection approaches which work directly on the meshes.

A well-researched problem on triangular meshes is the problem of face recognition
[18, 19, 20, 21]. For this class of problems an a-priory knowledge about the location of
a face is assumed. In this sense, our problem 2 can be considered as a preceding step of
3D face recognition.

The face of a human is approximately mirror-symmetric. This fact – already used for
face detection in 2D images [22] – gives the key of our approach: we search for face
symmetry lines as shown in figure 2 (a).

The paper is organized as follows: Section 2 describes our detector for the case that
the size (given by a radius) of the face is known. Section 3 extends this to the case of an
unknown radius of influence. In section 4 we apply our algorithm to several representa-
tive data sets. Section 5 draws conclusions and mentions issues in future research.

2 Our Approach – Single Search Radius

Symmetry is a feature which is well-researched in Computer Vision both for images
and for 3D objects. Generally, two kinds of symmetry can be distinguished: rotation
and mirror symmetry where for our purposes we are interested in the last-named.
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Fig. 1. A collection of human shapes

Fig. 2. (a) A face with a symmetry axis. (b)
Sampling the surface around vertex v. (c) The
mirror axis corresponding to rotation index iR.

Fig. 3. Non-human shapes

Fig. 4. Some meshes and their symmetry fields

For 2D images, most of the existing work considers symmetry as a binary feature
(i.e., and object is symmetric or not [23, 24]). In addition, [25, 26, 22, 27] compute sym-
metry as a local feature and apply it to detect faces in 2D images. For 3D objects, mirror
symmetry is usually considered as a global feature. This means that a main symmetry
plane is searched [28], or all symmetry planes through the center of gravity are eval-
uated [29]. What we need for our purpose is a local symmetry detection on a surface.
This means that we need two pieces of information for each surface point: the strength
of local symmetry ("how symmetric is the surface at a certain point?"), and the best
symmetry axis. These values depend on the choice of a search radius r: only the parts
of the surface with a distance smaller than r are incorporated in the local symmetry
analysis. Thus, the evaluation of local symmetry is always connected to a particular
choice of r. The best detection of a symmetry line in a face can be expected if r is ap-
proximately half the diameter of the face. If r is larger, other parts of the human body
influence the analysis while a smaller r detects too many symmetry lines on a face.

In this section we describe our symmetry-based face detection approach for the case
of a particular given symmetry radius r. This means that we decide whether or not
the mesh contains a face of approximately the diameter 2r. For doing so, we start to
compute symmetry values for each vertex.

2.1 Computing the Symmetry Field

Let M be a triangle mesh with vertices V (M). For each vertex v ∈ V (M), pv denotes
the vertex position, while nv is the (exact or estimated) normal in v. Then let dist(p,d)
denote the minimum (signed) distance of point p along direction vector d to the surface
defined by M, where dist(p,d) =∞ if there is no intersection. We compute dist(p,d)
by a raytracing approach using a kd-tree.

For each vertex v of the mesh, we sample a height field on a circle in the tangent
plane through pv by measuring the distance in normal direction to the mesh at a number
of sample points (figure 2 (b)). In order to discard small-scale variations of the normals,
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we use an average surface normal ñv of all vertices which have an Euclidian distance
smaller than r:

ñv =
∑u∈Nv wunu

‖∑u∈Nv wunu‖
with Nv = {u ∈V (M) : ‖pv−pu‖ ≤ r}, (1)

where wu is the total area of the triangle fan surrounding vertex u. ñv can be considered
as a strong smoothing at v. Now, we choose two orthogonal normal vectors xv and yv

which are perpendicular to ñv. We sample the height field in this plane on nC concentric
circles where nR sample points are placed equidistantly on each circle (we used are
nC = 8 and nR = 64). This way we get all sample points as

sv(iC, iR) = pv +
iC + 1

nC
· r · cos

(
iR
nR
·2π
)
·xv +

iC + 1
nC

· r · sin

(
iR
nR
·2π
)
·yv (2)

for iC = 0, ...,nC−1 and iR = 0, ...,nR−1. We can compute the height map hv at each
sample point as

hv(iC, iR) = dist(sv(iC, iR),−ñv). (3)

Using this, measuring the symmetry of the surface surrounding v is quite straightfor-
ward. As illustrated in figure 2 (c), each rotation index corresponds to a mirror axis that
can be used for symmetry analysis. Basically, we simply have to compare the sample
values on the one side of the mirror axis with the values on the other side. Since we want
to constrain the analysis to the surface close to v, we limit the valid height map values
to the range [−r,r]. Hence for each mirror axis, defined by rotation index iR, we define
a set of valid mirror pairs Mv(iR) = {(iC, iR1, iR2) : hv(iC, iR1) ∈ [−r,r]∧ hv(iC, iR2) ∈
[−r,r]∧ iR2 = 2iR− iR1−1}. Now we can measure the error between both sides of the
mirror axis by computing the mean difference between the sample values of all mirror
pairs:

ev(iR) =
1

|Mv(iR)| ∑
(iC,iR1,iR2)∈Mv(iR)

‖hv(iC, iR1)−hv(iC, iR2)‖ (4)

To get a meaningful symmetry measure from this value, we normalise it by dividing
it by the maximum difference of valid height map values. We define the symmetry
measure of v as:

sv = 1−
min

iR∈{0,...,nR−1}
ev(iR)

max
(iC,iR)∈Dv

hv(iC, iR)− min
(iC,iR)∈Dv

hv(iC, iR)
(5)

where Dv = {(iC, iR) ∈ {0, ...,nC−1}×{0, ...,nR−1} : h(iC, iR) ∈ [−r,r]} is the set of
valid samples. Furthermore, we can compute the normal of the corresponding mirror
plane as follows: First, we get the rotation index iv = argminiR∈{0,...,nR−1}ev(iR) and the

corresponding rotation angle αv = (iv− 1
2 ) · 2π

nR
+ π

2 . Finally, we get the symmetry plane
normal:

mv = cos(αv) ·xv + sin(αv) ·yv. (6)
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Fig. 5. (a) Smooth surfaces are highly symmet-
ric. (b) Symmetry decrease in human faces.

Fig. 6. The extracted symmetry lines

2.2 Analysis of the Symmetry Field

As expected, the symmetry values are high for vertices located close to the horizontal
center of a human face (see figure 4). Furthermore, the symmetry values are very low
for most of the other vertices on the face. This results in a sharp line of high-symmetry
vertices running from the forehead over the nasal bone to the mouth. Figure 5 (a) shows
that other areas are detected to have a high symmetry as well. In the following section,
we provide an algorithm that can be used to extract those significant areas.

2.3 Extracting Symmetry Features

Let sym(p,d) denote the linearly interpolated symmetry value at the intersection point
between the mesh surface and the ray from p along d. Analogically to the height map
hv, we can sample the symmetry values around a vertex v:

σv(iC, iR) = sym(sv(iC, iR),−ñv) (7)

This function uses the same sample distribution as hv. We want to extract those parts
of the symmetry field that form narrow areas of high symmetry, bordered by areas
of low symmetry. More precisely, we want to measure how much the symmetry values
decrease in both directions orthogonal to the symmetry plane at vertex v. We can project
every sample point into the symmetry plane normal mv (i.e. compute its signed distance
to the symmetry plane) and normalise it with respect to the symmetry radius r, obtaining
a scalar value:

dv(iC, iR) =
(sv(iC, iR)−pv) ·mv

r
(8)

For each side of the mirror plane, we can define a set of two-dimensional points:

Rv = {(dv(iC, iR),sv−σv(iC, iR)) : (iC, iR) ∈ Dv∧ iC <
nC

2
∧dv(iC, iR)> 0}

Lv = {(dv(iC, iR),σv(iC, iR)− sv) : (iC, iR) ∈ Dv∧ iC <
nC

2
∧dv(iC, iR)< 0}

(9)

The first coordinate of each point corresponds to the normalised distance of sample
(iC, iR) to the symmetry plane. The second coordinate is the difference between the
symmetry value of v and the symmetry value of sample (iC, iR), where this difference
is negated in Rv. The reason for this negation will become clear in the next step. Note
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that only samples whose circle index iC is smaller than nC
2 are considered because it has

turned out that the decrease of symmetry in human faces ranges from the face center
approximately to half of the symmetry radius (see figure 5 (b)). In the next step, we fit a
line through origin to the points in Rv∪Lv. Since we negated the symmetry coordinates
of the points in Rv, the gradient of the line will be positive if the symmetry decreases in
both directions. The value of the gradient is computed as follows:

gv =
∑(d,s)∈Rv∪Lv d · s
∑(d,s)∈Rv∪Lv d2 (10)

The complete extraction process is depicted in figure 7. Expressed graphically, gv weak-
ens the large high-symmetry areas of the symmetry field mentioned above and intensi-
fies the narrow lines of high symmetry as found in human faces (figure 6)). Interestingly,
a common threshold seems to exist for all human faces that can be used to classify a ver-
tex (more precisely its surrounding surface) as symmetric or non-symmetric. Provided
that the symmetry radius r matches approximately the size of the face, by marking only
those vertices whose gradient value gv exceeds the threshold, a complete line of vertices
running from the root of the nose to the nose tip is marked for all kinds of human faces
(see figure 11). In our implementation, we used the threshold tSym = 0.06. This way, the
number of potential face vertices has been decimated by a large amount and we even
have an indication for the orientation of the face (symmetry plane direction mv) as well
as for the size of the face (radius r).

2.4 Analysis of the Face Geometry

In the following section, we examine the surrounding surfaces of all vertices that have
been classified symmetric. More precisely, we try to find out if these vertices are located
on the nose tip of a human face. Given a potential “nose tip vertex” v, we know that the
corresponding face has two possible up-directions:

u1
v = ñv×mv and u2

v =−ñv×mv (11)

From now on, the up-vector is simply referred to as ua
v since the algorithm works ana-

logically for u1
v and u2

v .
First we analyse the curves running horizontally from the nose over the cheeks as

illustrated in figure 8 (a). Since the curves may run both over the left and the right side,
we define a direction vector db

v with d1
v = mv and d2

v = −mv. Given the number of
curves nY , the iY -th curve is defined by

ca,b
v (iY ,x) =

1
r

dist(pv +
iY

nY −1
· r

2
·ua

v + x ·db
v,−ñv). (12)

First of all, we measure how far the potential nose sticks out of the face with respect
to the cheeks (figure 8 (b)):

noseheighta,b
v =

1
nY

nY−1

∑
iY =0

(ca,b
v (iY ,

r
2
)− ca,b

v (iY ,0)) (13)
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Next, we measure the mean nose width. For each curve, we define the width as the
position within the range [0, 3

4 r] where the curve gradient is maximal (figure 8 (c)).
Given nX samples per curve, we get the mean nose width

nosewidtha,b
v =

1
nY

nY−1

∑
iY =0

wiY (14)

with wiY = 3
4nX

argmaxiX∈{1,...,nX}(c
a,b
v (iY , iX

nX
· 3

4 r)− ca,b
v (iY , iX−1

nX
· 3

4 r)).
All curves should begin with a bulge and end with a relatively flat region. Figure 10

(a) shows how we can measure two heights on the curve whose difference gives us a
meaningful value. By computing the mean value of all curves we get

nosecurvea,b
v =

1
nY

nY−1

∑
iY =0

(ca,b
v (iY ,wiY +

r
4
)− ca,b

v (iY ,0)

−|ca,b
v (iY ,wiY +

r
2
)− ca,b

v (iY ,wiY +
r
4
)|).

(15)

The nose and the cheeks are quite smooth and contain no cracks. We cope with this
fact by fitting a quadratic B-spline to each curve and measuring the error, as illustrated
in figure 10 (b). Let splinedista,bv (iY ) denote the maximum height difference between
curve iY and its corresponding B-spline. Then the mean smoothness error is defined as:

f acesmoothnessa,b
v =

1
nY

nY−1

∑
iY =0

splinedista,bv (iY ) (16)

The nose bridge is relatively smooth and contains no cracks. Hence we measure
the maximum distance between the nose profile and the straight line from the nose
tip to the root (figure 10 (c)). Given the nose profile as height function nosea

v(y) =
1
r dist(pv + y ·ua

v,−ñv), we can define the line as

noselinea
v(y) = y ·

nosea
v(

3
4 r)

3
4 r

(17)

We suspect the nose root of being located at a distance of 3
4 r upwards the nose tip. Then

we can measure the error with

nosesmoothnessa
v = maxdist(nosea

v ,noselinea
v) (18)

Noses stick out of the face, especially with respect to the region directly below the
nose tip (figure 10 (d)). Thus, we measure the minimum distance to this spot.

nosebottoma
v =

1
r

min
iX∈{−nX ,...,nX}

dist(pv−0.2 · r ·ua
v +

iX
2nX

r ·mv,−ñv) (19)

Next, we measure the smoothness of the forehead by sampling the heights of a rec-
tangular region on the forehead (figure 9 (a)):

headsmoothnessa
v =

maxH−minH
r

(20)
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with H = dist(pv + (1.3 + 0.2 iY
nY−1 r)ua

v + 0.5 iX
nX

mv, ñv) : (iX , iY ) ∈ {−nX , ...,nX} ×
{0, ...,nY −1}}.

Another feature of human faces is the convexity of the forehead (figure 9 (b)). Hence
we compute the difference between the central and outer height of the forehead:

headconvexitya,b
v =

1
r
(dist(pv +1.3 ·ua

v +0.8 ·db
v ,−ñv)−dist(pv +1.3 ·ua

v ,−ñv)) (21)

The last property we examine are the eyes. Depending on the mesh resolution the
eyes are described more or less detailed, but the eye-sockets should always be present.
As figure 9 (c) shows, the eye-sockets are located deeper in the head than the forehead.
We scan the region where the eye is assumed and compute the difference between the
largest height value and the height of the forehead center:

eyedeptha,b
v =

1
r
(max{dist(pv +(0.5 + 0.4

iY
nY−1

r)ua
v +(0.2 + 0.3

iX
nX−1

)db
v ,−ñv) :

(iX , iY ) ∈ {0, ...,nX −1}×{0, ...,nY −1}}
−dist(pv + ua

v ,−ñv))
(22)

Using all the measures defined above, we impose the following set of constraints that
need to be fulfilled if a vertex v is located on the nose tip of a human face:

noseheighta,1
v > cNH ∧noseheighta,2

v > cNH ∧
nosewidtha,1

v < cNW ∧nosewidtha,2
v < cNW ∧

nosecurvea,1
v > cNC ∧nosecurvea,2

v > cNC ∧
f acesmoothnessa,1

v < cFS∧ f acesmoothnessa,2
v < cFS ∧

eyedeptha,1
v > cED∧ eyedeptha,2

v > cED∧
headconvexitya,1

v > cHC ∧headconvexitya,2
v > cHC∧

nosesmoothnessa
v < cNS ∧nosebottoma

v > cNB ∧headsmoothnessa
v < cHS

(23)

The parameters cNH–cHC are supposed to be constant for all meshes and can be
trained (manually) with a database of human and non-human meshes (see section 4).

3 Our Approach – All Radii

Up to now our face detection approach was based on a particular choice of the search
radius r: this way faces of the approximate diameter 2 r are detected (or excluded) on
a mesh. In fact, all thresholds and parameters of the approach are tuned to depend
exclusively on r. For the complete solution of problem 2, we would have to apply the
algorithm for all r. However, the following observations lead to the results that only a
certain number of search radii have to be checked: First, the face detection algorithm
appears to be rather stable against small variations of r. In fact, a face with a diameter
f d is generally detected for any choice of r between 0.7 f d

2 and 1.2 f d
2 . Second, giben

the size d of the whole mesh (which we estimate by the length of the diagonal of the



250 W. von Funck, H. Theisel, and H.-P. Seidel

minimal enclosing bounding box), the diameter f d of the face is limited to a certain
interval. If the mesh describes a complete stretched-out human, we can estimate the
size of the face to be not smaller than 5% of the size of the mesh ( f d ≥ 0.05d). On
the other hand, if the mesh describes only a face, then the size of the mesh and the face
coincide ( f d ≤ d). Because of this, for each mesh we check 32 different search radii
r0,...,r31 which are chosen as r0 = 0.05 d

2 , r31 = 0.7 d
2 , and the remaining ri are placed in

a quadratic distribution between r0 and r31 allowing a higher density for smaller radii.
This way our algorithm becomes independent of any parameter.

4 Applications and Results

We trained the parameters cNH–cHC of the geometry constraints manually using the
Princeton Shape Benchmark and found the following configuration: cNH = 0.2, cNW =
0.4, cNC = 0.2, cFS = 0.2, cNS = 0.1, cNB = 0.1, cED = 0.1, cHS = 0.2, cHC = 0.01.
In order to test our approach, we applied it to several shape databases: The Princeton
Shape Benchmark [30] (our training database), the CCCC database [5], the Utrecht
database [31] and the aim@shape database [32]. Altogether, we tested 4429 meshes.
Most of the databases provide shape classifications like “human”, “human_arms_out”,
“head”, “face”. However, these classifications are inappropriate for our purpose due to
the following reasons: many of the shapes classified as human have holes (figure 14 (b))
or don’t contain human faces (figure 14 (c)). Therefore, we identified the human faces
in each database manually in order to evaluate the algorithm.

The Princeton Shape Benchmark consists of 1814 meshes. We identified 141 human
faces without holes. Many of these faces are very coarse and have non-human features
(figure 14 (a)). For this database, the algorithm detected 51 meshes to be human. All
detected shapes are indeed human, i.e. no non-human mesh was found. The CCCC
database contains 1841 meshes. We identified 49 valid faces, our algorithm detected
20. Again, no “wrong” face was detected. The Utrecht database consists of 684 meshes
and contains no human face. The algorithm correctly detected no face in this database.
Finally, we applied the algorithm to 90 high-resolution meshes of the aim@shape repos-
itory. 16 meshes have human faces, where 6 faces contain holes or are incomplete. The
algorithm detected 12 faces (figure 13) – although two detected faces contain holes –
and there was no incorrect detection.

The evaluation shows that the algorithm is able to detect humans in different states
of completeness: complete bodies (figure 12 left), incomplete bodies, heads and single
faces (figure 12 right). For a better visualisation, the application automatically displays
“glasses” on each detected face and marks the nose tip red. Furthermore, there was
no incorrect detection in all tested meshes. However, the algorithm cannot detect faces
with non-human features like non-convex foreheads, or faces hidden by masks, glasses
or hair. There were totally 11 non-detected meshes with one of these properties. The
remaining meshes that have not been detected are very coarse (figure 14 (a) shows some
examples): the number of face triangles lies between 50 and 400 and averages to 150.
In contrast, the average triangle number of the detected faces amounts approximately to
4000, i.e. the algorithm requires a certain resolution of the face meshes in order to work
reliably. The computing time for our approach is approximately linear to the number of



Shape Matching Based on Fully Automatic Face Detection on Triangular Meshes 251

Fig. 7. 1.+2. Sampling of symmetry values. 3.
Each sample is transformed to a 2D point (x
= distance to symmetry plane, y = symmetry
difference). 4. Fitting a line.

Fig. 8. (a) The curves that are analysed. (b)
Computing the nose height. (c) The nose
width w.

Fig. 9. (a) Measuring the forehead smooth-
ness. (b) The human forehead is convex. (c)
The eyes are located deeper in the head than
the forehead.

Fig. 10. (a) Δh1 − Δh2 is used to compute
nosecurvea,b

v . (b) We fit a quadratic B-spline to
the curve. (c) The deviation between the nose
profile and the straight line is very low. (d) The
nose tip sticks out.

Fig. 11. Marked vertices

Fig. 12. Faces detected in complete bodies
(top) and incomplete bodies (bottom)

Fig. 13. Faces in the aim@shape database

Fig. 14. Faces that could not be detected
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vertices in the mesh: an AthlonXP 2400+ processor with 512 MB RAM took approx. 15
minutes for a mesh with 20000 triangles, 40 minutes for 60000 triangles, and 70 minutes
for 100000 triangles. Since in our application scenario each mesh of a data base has to
be checked only once and the result can be stored with the mesh, our algorithm can be
considered as a preprocess of a web-search for meshes describing humans.

5 Conclusions

In this paper we made the following contributions: We introduced a domain-specific
shape matching approach which is based on a fully-automatic face detection on trian-
gular meshes. To decide whether a mesh contains a human face, each vertex undergoes
a three-step test for being part of a face. This test is repeated for different radii of in-
fluence to ensure that faces of arbitrary scaling are detected. We trained the parameters
of our algorithm and applied it to a number of different shape databases. No wrong
face was detected. In general, we detected most faces as long as they did not contain
holes and had a sufficently high triangular resolution. We conclude that, given that the
meshes describe human faces in enough detail, the algorithm is able to differentiate
between human and non-human meshes very reliably. For future research we intend to
make the algorithm more robust against holes in the meshes, since a number of meshes
comes with holes in the eye and mouth regions.
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Abstract. Among many skin color sources, hemoglobin and melanin compo-
nents are regarded most significant in determining the final color of human skin.
In extracting the two components, this paper proposes to use a more intuitive
color model, HSV, than the RGB color space. For 3D rendering, we propose a
novel method to reconstruct the fine-scale structure (normal map) of the human
skin from a single highly specular image, or from a pair of highly specular and
diffusive images. In the shape-from-shading algorithm, several photos varying
light positions should have been taken to compute the normal of diffusive sur-
faces; which, however, was hardly the case for capturing fine skin structure since
the human subjects cannot keep still while taking many photos. Therefore, our
approach rids us of the difficult task to register several images.

1 Introduction

We often see digital actors replacing human actors in recent movies. To make them look
more realistic, more cares have to be taken to reproduce human skin color and texture.
So far, the easiest way was to map a skin image onto the 3D mesh of face. However,
since the source image already contains a certain illumination (i.e., the illumination
present at the capture) applying additional lighting model, such as Phong shading [3],
tends to be unrealistic. Texturing human faces through matching between 2D textures
and the target face mesh can be found in [9].

Therefore, we could easily get down to a conclusion that the digital camera images
for the texture map first have to be decomposed into more primitive components for
the later synthesis. One interpretation to this decomposition can be found in [10]. In
that paper, Tsumura et al. take two photos: ‘surface plus body reflection’ and ‘body
reflection’ as [1] also did using linear polarization filters. The body reflection part is
then separated into three: melanin, hemoglobin, and shading [10]. They then obtained
surface reflection from the two photos. However, their final goal was to synthesize the
image again in 2D space (i.e., no need for 3D mesh of a face), there was no need to
further analyze the surface reflection; rather, they added the surface reflection part to
the final image synthesized from the two body reflected images.

Their approach to separate skin color is based on RGB color model; first they seek
a plane in the RGB cube closest to the colors sampled from a user selected skin re-
gion in a single skin image; subsequently, we call the plane sought above color plane.
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Within this plane two vectors regarded most independent for the samples are found,
through independent component analysis (ICA). All the colors in the image are then
projected onto the color plane along the direction vector, (1, 1, 1), implying illumina-
tion effect from a white light source, and projected again to the two vectors from ICA;
those are considered imitating hemoglobin and melanin respectively. One crucial prob-
lem of using RGB color model is that the direction of the color plane changes as the
sample region changes. When the normal of the color plane is tilted largely from the
illumination direction, projected color values can be out of the color cube; in this case
the user has to give different region for the sampling. Therefore, their approach cannot
produce absolute quantity of the pigments for the different human subjects; rather, it
produces relative quantities varying from one subject to the other. Moreover, the RGB
color model does not properly represent continuous hue and saturation value, the two
independent axes sought could not properly represent saturation change of the two skin
components.

[6] have done work on capturing BRDFs from the images coming from a calibrated
digital camera with subjects wearing a pattern. [1] measures skin reflectance properties
using video cameras. To extract the surface normal they applied color space analysis
technique to row resolution images (i.e. 720x480 pixels) taken with light sources lo-
cated in different positions. Their concern was not in extracting fine-scale structure like
wrinkles of the skin as the image resolution implied; image registration in pixel-by-pixel
level was not necessary. Since very high resolution images (e.g. 3000x2000 pixels) are
required to capture the fine-scale skin structure, their method can be hardly used.

There has been much work in the area of realistic facial rendering. However, only a
few results have been published on capturing or synthesizing fine-scale skin structure.
[4] used silicone mold employed in cosmetology to capture fine-scale skin structure.
Using the shape-from-shading algorithm (for a survey on this, see [13]), they could
recover the normals from the images taken after the silicone mold with varying light
sources. Since the samples taken from a mold are small, a texture synthesis algorithm
(i.e. [11, 2]) is performed for whole area of the face. [5] use Voronoi diagram to repre-
sent the different skin cells; geometric diversity is obtained using pseudo-fractal subdi-
vision in the Voronoi procedure. Meanwhile, [12] use Delaunay triangulation in texture
space. The edges of the triangles are raised or lowered to create hight field which is then
used as a bump map.

Contributions: This paper contributes in two parts: pigment separation and normal ex-
traction from skin images. For the former, we propose a novel method for separating
pigments in the HSV color model, which results in two pigment maps: hemoglobin and
melanin map. The color plane perpendicular to the value axis contains all hue and sat-
uration values; color planes from different human subjects or from varying sampling
regions are different only in their brightness. Since HSV color wheel (i.e. the circu-
lar cross section of the HSV color cone, the color plane) well sorts out its hue values
radially around the center of the wheel, the way human perceives color object can be di-
rectly applied to find out the two independent color vectors to separate the skin pigment,
without counting on a statistical method such as ICA. Moreover, a consistent color sep-
aration across different human subjects can be made on the HSV color wheel because of
its capability to contain most hue and saturation values and its inherent sorting function.
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For the latter, we developed a novel method to recover fine-scale skin structure (nor-
mal map), which requires one only one image; thereby, the seemingly impossible or
very time consuming task to register the facial images can be avoided. Moreover, us-
ing additional materials such as silicone mold as [4], which is not as welcome by the
human subjects as just photographing, can be avoided too. Our approach reads in only
one image for the normal map computation: the image after high-pass filtering the ‘sur-
face plus body reflection’, or the image with only surface reflection. The normal at each
pixel of the image is then decided by the inverse of a specular illumination model.

Paper Organizations: In Section 2, we discuss the the photographing environments
for the experiments we have carried out and describes overall pipeline of our approach.
Next, we describe our algorithm to separate the diffuse map using HSV color model
in Section 3. In section 4, our method to extract fine-scale normal map from a single
image is detailed; the results from this paper are shown in Section 5.

2 Overview

We take the first photo in the environment as illustrated in Fig.1; polarization filters are
positioned in front of both the camera and the light sources. For the second photo, we
rotated the polarization filter of the camera 90 degrees. If we take only two photos, it
is highly probable that the two images are not properly registered. Therefore, we take
more than ten photos in short time by rotating the filter in front of camera and choose a
pair of photos best registered.

The two photos represent, respectively, body plus surface reflection and body reflec-
tion. We separate the body reflection image into hemoglobin map, melanin map using
HSV color model. Using the images taken, we compute the surface reflection by sub-
tracting the body reflection from the body plus surface reflection. We apply a high-pass
filter to the body plus surface reflection to separate the a detailed map. We then try to
compute the normal map from the surface reflection and from the detailed map. This
process is shown in Fig.2.

subject

vertically aligned

polarizer

light

horizontally aligned

polarizer

Fig. 1. Photographing environment
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body reflection

surface plus
body reflection

surface reflection

hemoglobin melanin

normal map
by method2

high-pass filtered normal map
by method1

+

-

Fig. 2. Overview

3 Skin Color Decomposition Using HSV

We now explain how to separate the body reflection image using the HSV color model.
The HSV color model is commonly used in computer graphics applications because of
its similarities to the way humans tend to perceive color. HSV color consists of three
components: hue, saturation, and value. One visualization method of the HSV model is
the cone. In this representation, the hue is depicted as the color wheel of a 3D cone. The
saturation is represented by the distance from the center of a circular cross-section of
the cone as shown in Fig.3 (2), and the value is the distance from the apex of the cone
representing the brightness. HSV color space can also be modeled as cylinder, which is
mathematically accurate; however, this is not practical because the number of visually
distinct saturation levels and hues decreases as the value approaches black.

The user selects a sampling region, R, within the body reflection image, as shown
in Fig.3 (1). RGB color values, (ri,gi,bi), of the pixels, pi ∈ R, are mapped to HSV
color space: (hi,si,vi). Since v, the third component of the HSV color, indicates the
luminance we average them: va = ∑vi/n, where n is the number of the samples. The
circular cross section (h,s,va) can then be used as a color plane onto which the sample
colors are projected along (hi,si,vi) vector, as shown in Fig.3. This projection is the big
difference from that of [10], who used (1,1,1) vector in RGB cube, which is assumed to
be the color of the light source; ours always map a valid color value in the hue/saturation
plane, but theirs not always, in particular when the projection plane is tilted largely from
the direction, (1,1,1), implying illumination effect from the light source.
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(1) Sampling region (2) HSV color space (3) Circular cross section

s

h

v a
v

projected samples

Fig. 3. (1) The user draws the sampling region. (2) The circular cross section, (h,s,va), is com-
puted by averaging the brightness values of the samples. (3) The sample colors are projected
along the direction, (hi,si,vi) onto the circular cross section.

Fig. 4. Two different planes in RGB cube corresponding to each sampling region

Fig.4 shows two color planes computed by using principal component analysis
(PCA) as in [10], corresponding to the different sampling regions. Unlike the cross
sectional planes located in the RGB color cube, in HSV we could simply choose a cir-
cular cross section orthogonal to the v axis. It was acceptable because most perceptible
colors can be represented within this. It is notable that, in RGB color model, the two
color planes produce different shape of data distribution from one sampling region to
the other as shown in Fig.4. Meanwhile, in HSV, the cross sections have almost the
same data distribution across different sampling regions.

Hemoglobin and melanin pigments are separated by projecting the colors onto the
color plane to two independent axes. To do this, first we need to infer the two indepen-
dent vectors from Fig.3 (3).

In HSV, the sample colors are distributed nearly in the same area of green to red
hues and the color wheel well sorts out hue radially around the center of the wheel.
Therefore, it becomes easy for the user to perceive where the independent color vec-
tors are; this can be procedurally done simply by radially searching the hue values,
that encompass the samples, on the cross section around the center point, as shown in
Fig.5. Unless the user specifies non-skin area (e.g. hair) for sampling, this does not fail
the job. In [10], the two independent vectors have been found via a statistical method,
independent component analysis (ICA). ICA was somewhat necessary for the blind
source separation; in the RGB cross sections unlike the HSV cross sections the indepen-
dent vectors are not salient. However, the outcome from the ICA does not necessarily
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Fig. 5. Color samples on a HSV color wheel and two independent vectors found by searching the
hue values encompassing the samples

ICA in RGB space Radial searching in HSV

Fig. 6. Hemoglobin map from ICA in RGB space (left), and from radial searching (right) for the
same samples

correctly represent varying saturation, which corresponds to the quantity change of each
pigment. As noted above, this is why HSV color model invented. Fig.6 compares the
two methods; it can be noticed that our method yields the hemoglobin map closer to
real hemoglobin distribution of the human subject.

4 Fine-Scale Normal Map

We now explain our method to extract the fine-scale normal map from the input images
mentioned in Section 1: high-pass filtered image or surface reflection image. Our basic
idea can be explained with the aid of Fig.7 and Fig.8. Geometry of the final model in
Fig.7 can be interpreted as the result of adding the fine-scale geometry to the underlying
geometry. Interestingly, this fine-to-coarse change in geometry can also be found within
the images with different lighting setup as in Fig.8: the top left image (body reflec-
tion) does not show the fine-scale geometry, but the top right image (surface plus body



260 D.H. Kim and M.-J. Kim

fine scale skin 

structure

underlying

geometry

Fig. 7. Fine-scale skin structure versus underlying global geometry

reflection) shows both the underlying geometry and the fine-scale geometry together.
It can be presumed that the fine-scale geometry can be better seen after subtracting the
first image from the second, or, after just removing the image portion of low frequency
(i.e. smooth tone of the top right figure). The resulting images after these operations are
shown in the bottom of Fig.8.

For the surface reflection image or the high-pass filtered image, our illumination
model is defined for each pixel as follows:

α(H ·N)1/ρ = I, (1)

where each variable is defined as following: N is the unknown surface normal, L is
the light vector, and H is the half vector between L and the camera vector E such that
H = Ê + L. I is the intensity value of the pixel. This can be depicted by Fig.9. Here
we pose two assumptions that the camera vector, the light vector, and z axis are the
same and the image gradient never vanishes (i.e., ∇I 	= 0). The former assumption is
especially plausible since we are extracting the normals from a single image.

After rewriting Eq.1 as
(H ·N)1/ρ = I/α, (2)

we know that the left term is no larger than one because H and N are unit vector.
Therefore, the right term of Eq.2 can be restated as I/M, where M is the local maximum
of I. Since H is in the same direction with z axis, the left term can be written as (Nz)1/ρ ,
where Nz indicates the z component of the unknown normal. Now, Nz is given by

Nz = (I/M)ρ . (3)

For the remaining part of the unknown normal vector, we use the image gradient, ∇I.
This can be justified simply by differentiate Eq.2:

1/ρ(Nz)1/ρ−1∇Nz = ∇I/M. (4)

From the above equation, we could notice that ∇Nz has the same direction as ∇I. We
assume that ∇Nz has the same horizontal direction with the unknown normal N. That
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Fig. 8. Top Left: body reflection image. Top Right: body + surface reflection. Bottom Left: Image
computed by subtracting the body reflection from the body plus surface reflection. Bottom Right:
Image after high-pass filtering the the body plus surface reflection.

H E L

local maximum M

z

N

^

Fig. 9. Assumption on the light vector, camera vector, and local geometry of the surface. Note
that the normal at peak is in z direction.

is, we use ∇I for the horizontal component of the normal. Although this assumption is
not generally true, it is valid for the local geometries we have assumed in Fig.9, such as
sphere, ellipsoids. The normal vector can then be computed as follows:

N =−
√

1−Nz
2 · ∇̂I + Nz · ẑ.
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5 Results

Fig.10 is the result of the normal map computation of Sect.4 for the two images shown
in Fig.8. It is notable that sharp features are better preserved in the normal map obtained
from the surface reflection image, but some higher frequency fine-scale structures such
as pores are somehow exaggerated. Meanwhile, high-pass filtered image can better be
used to extract high frequency features such as pores.

Fig.11(a) shows the results after composing the hemoglobin map and the melanin
map, which are shown in Fig.2. Completely removing shading effect from the image
(i.e., by projecting the color values onto the color plane) does not produce realistic
image to be used as a diffuse color texture, therefore, we added a slight amount of
shading effect by remembering each projection path.

Fig.11(b) has been used for the later 3D image rendering as a color texture. Fig.11(c)
could not be used because it contains too much dark shades already, e.g., near nose;

(a) (b)

Fig. 10. (a) Normal map with the surface reflection in Fig.8: it reveals sharp features such as
crease better. (b) Normal map with the high-pass filtered image in Fig.8: it yields a smoother
normal map.

(a) (b) (c)

Fig. 11. (a) Result adding hemoglobin map and melanin map virtually with no shades. (b) After
adding a slight amount of shading; compare this with the body reflection (c).
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Fig. 12. Left: Normal map from the high-pass filtered image. Right: Normal map from the surface
reflection.

this could result in redundant shading from 3D lighting. Fig.12 shows the result after
rendering a 3D model with the normal map from the surface reflection and the high-pass
filtered image, respectively, left to right in Fig.8.

6 Conclusion and Future Work

We have presented techniques to model and render realistic human facial image: in
extracting the two skin pigment maps, hemoglobin and melanin, this paper proposes
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to use a more intuitive color model, HSV. We also developed a method to recover fine
scale skin structure, which requires only one image; this tackles the problem of using
shape-from-shading algorithm, which needs many registered photos. To obtain fine-
scale geometry from one image, we formulated an inverse specular illumination model.

For the future work, we are considering developing more accurate illumination
model for the normal extraction; in fact, we have used some assumptions which could
have been quite unrealistic for coarse-scale geometry. However, as the realism of skin
structure can be somewhat mimicked by, for example, using voronoi diagram, these
assumptions could be applied without losing realism.
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Abstract. We introduce an efficient approach for representing a human face us-
ing a limited number of images. This compact representation allows for mean-
ingful manipulation of the face. Principal Components Analysis (PCA) utilized 
in our research makes possible the separation of facial features so as to build 
statistical shape and texture models. Thus changing the model parameters can 
create images with different expressions and poses. By presenting newly  
created faces for reviewers’ marking in terms of intensities on masculinity, 
friendliness and attractiveness, we analyze relations between the parameters and 
intensities. With feature selections, we sort those parameters by their impor-
tance in deciding the three aforesaid aspects. Thus we are able to control the 
models and transform a new face image to be a naturally masculine, friendly or 
attractive one. In the PCA-based feature space, we can successfully transfer ex-
pressions from one subject onto a novel person’s face. 

1   Introduction 

There have been many techniques developed for image compression by catching 
statistical information with encoders. Representative methods are fractal, wavelet, 
Differential Pulse Code Modulation and the most recent version of JPEG for still 
imagery [1]. However, almost all conventional methods captured the information in 
only one particular image. When we have a set of similar images, PCA should be an 
excellent technique in dimension reduction as well as in novel-image creation [2] [3]. 
After conducting a statistical analysis on the image dataset, the dimensions of the 
images are greatly reduced by mapping each image onto particular eigen-vectors with 
eigen-decomposition. Thus shape and texture models can be represented as a sum of 
average vectors and weighted variances along eigen-vectors. The weights, i.e., the 
parameters of the models, are normally referred to as “modes”. Modifications on 
these modes help learn relations between the variances of parameter values and 
changes in facial image expressions. 

It is of great interest to find the reason for those preferable faces. Do viewers’ 
physical conditions affect their judgment? What kind of features can be observed 
from one’s face, hatred, love, or happiness? Are there any relations between these 
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features and facial attributes? Current solutions to these questions can be divided into 
two categories: geometry-based and psychology-based approaches. 

The geometry-based methods are mainly concerned with geometric measurements, 
such as the distance between the eyes, the eye width and the context location of the 
nose. In the representative literature of [4], fractal geometry analysis is conducted on 
facial images and a female “attractive” face is created according to fractal rules. Art-
ists such as Leonardo and Dürer also provide some criteria in this field [4]. Moreover, 
expression ratio images were proposed to map one person’s expression details to a 
different subject’s face. Given the feature point motions of an expression, this method 
requires an additional input of a different person’s image with the same expression 
[5]. For situations where expression ratio images are unavailable, a geometry-driven 
facial expression synthesis approach based on feature point positions of an expression 
is more applicable [6].  

Psychology-based approaches mainly argue the relations between attractiveness 
and symmetry, averageness as well as nonaverage sexually dimorphic features, i.e., 
the hormone markers [7]. They also analyze the relationship between female viewers’ 
menstrual shift and their choice of male faces for dominance and short-term mates 
[8]. And certain researchers find that “shape normalized faces” and “texture normal-
ized faces” are more attractive and younger than original faces [9]. 

In [10], a technique for defining facial prototypes supports transformations along 
quantifiable dimensions in “face space”. Shape and color information are used to per-
form predictive gender and age transformations. Flexible models are also introduced 
for identification and coding of facial images [11]. In [12], linear object classes are 
learnt from a basis of 2D prototypical views and then used for 2D image synthesis. 

Based on the above literatures, we try to combine geometry-based and psychology-
based approaches as well as to imbibe ideas from [11] and [12] for our research. The 
basic idea is to utilize PCA as applied in [13] for building statistical shape and texture 
models with a facial image database. Utilizing these models, we can thus create more 
novel images with different expressions and poses. After some reviewers mark these 
images in terms of masculinity, friendliness and attractiveness, we can thus analyze 
the relations between parameter values and the facial expressions with certain feature 
selection scheme. This knowledge can thus help us transform a new face image to be 
more masculine, friendly or attractive. We can also introduce a neutral face image 
into the eigen-space and transfer different expressions among faces. 

We organize our paper as follows. Section 2 is for building parameterized shape 
and texture models, where section 2.1 is to introduce the image database, section 2.2 
for triangulation of facial images, 2.3 to present the PCA, 2.4 to build the models, and 
2.5 is to interpret the effects on facial expressions after changing parameter values. In 
section 3.1, we present the survey results as well as feature selection scheme. In 3.2, 
we utilize the feature space to transfer expressions from one subject onto a novel face 
image. And we conclude our paper and mention some future work in section 4. 

2   Parameterized Facial Models 

In this section, we will introduce how to build statistical shape and texture models. 
We will also interpret the changes on facial expressions with parameter adjustments. 
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2.1   Database of Facial Images 

We need parameterized facial models which can represent great differences in shape 
and texture vectors among images; therefore in our experiment, we take facial photos 
from 8 males of different ethnicities as shown in first row of Fig. 1. For each person, 
we take his photos with different expressions and poses. From all these images, we 
select 112 ones into our final database which can represent the maximum variances in 
facial expressions and poses. 

All the face images are taken at the same lighting condition. Since the facial parts 
in the originally taken images are different in their scale, poses and locations, firstly 
we need to perform similarity transformation so as to get normalized images [14]. 

 

Fig. 1. Our database: different subjects with different expressions 

2.2   Triangulation of Facial Images 

To get texture vectors of faces, the first step is to get feature points of face contours. 
We define 44 control points for the human face, such as nose tip, eye and lip contours, 
middle chin, and so on. These points are the solid dots in Fig. 2. Besides these control 
points, we also define another 70 points among the solid dots to describe the detailed 
contours. These points well represent the main action units of expressions and are 
marked as hollow dots in Fig. 2 [15] [16].  

Based on similarity transformations, we acquire the transformed coordinates of 
these 70 points in all the images of the database to reduce manual work of registering 
points. Therefore, for each image in the database, only 44 control points are located 
manually but locations of other 70 points can be decided automatically [17] [18]. 

 

Fig. 2. Feature points on the average face as well as the triangulations 
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With the 114 control points, we triangulate the average human face into 209 small 
triangles, as can be found out in Figure 2. In the eye, nose, and mouth portions, we 
create more triangles than we make in other parts so as to represent facial appearances 
in greater detail. The point selection is better than MPEG-4 in creating new faces 
from our experiments [19]. 

2.3   Principal Components Analysis 

Principal components define a projection that catches the maximum amount of varia-
tion in a dataset and is orthogonal to the previous principle component [2]. 

 

Fig. 3. Principal components analysis 

After conducting eigen-decomposition in Fig. 3, we find two orthogonal vec-
tors, i.e. principal component I (PC1) and principal component II (PC2). We ob-
serve that the main difference in the dataset is distributed along PC1, while less 
obvious differences lie on PC2. Therefore, data X can be approximated by 

1' PCbXX ⋅+= . 

2.4   Parameterized Shape and Texture Models 

After we get the shape and texture vectors for each training image, we build the pa-
rameterized shape and texture models in equation 1: 

s sS S b= +Φ ,  t tT T b= +Φ  (1) 

where S and T is the average shape and texture vectors, sΦ and tΦ are eigenvec-
tors for shape and texture models respectively. And bs and bt are shape and texture 
parameters [19]. 31 out of 228 principal components selected represent 99.23% 
variances in the original dataset. And we keep 93.95 of texture variance with the 
PCA. 

Here we separately adjust shape and texture parameters to create new shapes and 
textures. Then we morph the new textures into new shapes with thin-plate splines [19]. 
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2.5   Interpretation of Parameter Values 

In this session, we interpret the effects of adjustments in shape and texture parame-
ters. This analysis helps create images of different appearances for psychological 
analysis. 

We increase the first element value in the bs from equation (1) and keep other ele-
ments to be zero. Then we warp the average texture T to the new shape contour and 
acquire the smoothly transformed image sequence in first row of Fig. 4. 

 

 

 

Fig. 4. Changes in expression and pose by changing parameters 

The most obvious difference among images of first row in Fig. 4 is in the pose. 
With the changes of head pose, the proportion of upper face size to the lower size also 
differs. Another less significant change in this sequence is the mouth shape. 

Second row of Fig. 4 shows the transformation of facial shapes by changing the 
second element in bs. Though the viewing direction changes, the proportion in these 
faces keeps the same. 

Changing bs(1) and bs(2) simultaneously can lead to transformations in third-row 
images of Fig. 4, where face poses and proportions are simultaneously modified be-
cause of the alternation in coordinates of both the outer and inner control points. 

Therefore we find that pose transformations with changes in different modes equal 
to the sum of transformations in each mode transformation. Therefore, after we learn 
more relationships, we can combine them together so as to perform more complicated 
transformations on faces. 

Now another series of experiments is to increase the value of elements in the tex-
ture parameter vector bt from equation (1).  

In first row of Fig. 5, the main shift lies in the facial hair, the cheek, the beard as 
well as the mouth. Basically the general change is from a bonny boy with dark eyelid, 
thick eyebrow, black beard and small nose to a fleshy man with light eyelid, thin eye-
brow, no beard and big nose. And a light smile keeps on every face in this sequence. 

In second row of Fig. 5, generally the face becomes more Asian alike during the 
process. Also the mouth opens gradually during the changes of the parameter, which 
leaves an impression of light smiling. 
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Fig. 5. Expression changes with the variance on first three texture parameters 

In the third row of Fig. 5, main difference lies in the mouth area besides changes in 
eyebrow, skin color and extent of flesh cheeks.  

Then how about changing the elements in shape and texture parameter vectors at 
the same time? Fig. 6 shows the effect of facial expression changes after we increase 
values of bs(1) and bt(1) simultaneously. 

Fig. 6. Changes with the increment of first texture parameter 

The alteration in Fig. 6 represents the combinatorial effects, i.e. the pose change 
and cheek variance. 

These analyses can thus direct the creation of novel faces we need if only faces in 
our dataset are as different as possible. This is due to the fact that our models can 
represent most of the differences in shape and texture and can produce novel images 
which are outside of our dataset. 

3   Manipulation on Novel Faces 

In this part, we are addressing applications based on the information we learnt from 
the previous reconstructions and analysis. 

3.1   Making Chubby and Skinny Faces 

Manipulating faces to be chubby or skinny ones is widely applied in facial image 
processing as well as in face recognition. 



 Comprehending and Transferring Facial Expressions 271 

Suppose our datasets are in a Gaussian distribution, then adding a new data into the 
space will not change the distribution. Thus we can replace the mean shape and tex-
ture vectors in equations (1) by those from a novel image. Then we perform transfor-
mations on our new facial images by changing the model parameters. 

According to previous analysis, the 1st and 3rd texture parameters represent an ef-
fect of changing chubby faces. We also learn that modifications of the 14th and 17th 
shape modes play a significant role in getting skinny faces. By increasing these pa-
rameter values for a novel face, we achieve the transformed images as in Fig. 7. 

As observed from Fig. 7, the transformed face (g) looks skinnier than (d), which is 
chubbier than (a), the previously neutral face. 

 
(a)                            (b)                           (c)                            (d) 

 
(e)                           (f)                           (g)  

Fig. 7. (a) Neutral face, (b ~ d) chubby and (e ~ g) skinny faces 

3.2   Comprehension on Expression 

The parameterized model introduced above brings us a good approach for creating 
facial images with different contours as well as expressions. These images are also a 
good source for image understanding. We discuss the relations between parameters 
and viewers’ understanding on masculinity, friendliness and attractiveness. 

3.2.1   Collection of Survey Results 
We applied the parameterized shape and texture model to create 58 images in differ-
ent expressions. Then we presented these pictures to 59 volunteers from 8 different 
ethnicities, half of which are females. They were asked to mark each image on mascu-
linity, friendliness and attractiveness. After deleting those obviously improper results, 
finally we get 1004 data on each aspect. 

The first step in processing these datasets is to standardize them so as to reduce 
personal differences in scales of scoring. 

The next step, also the key process, is to find the sequence of those parameters’ 
importance in deciding the created images on masculinity, friendliness and attractive-
ness. Here we use feature selection to solve this problem. 
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3.2.2   Feature Selection 
Feature selection aims at picking out some original input features (i) for performance 
issues by facilitating data collection as well as compressing storage space and proc-
essing time, (ii) to perform semantics analysis for understanding the problem, and (iii) 
to improve prediction accuracy [20]. 

According to [21], [22], and [23], feature selection approaches can be divided into 
three categories: filters, wrappers and embedded approaches. The filter model relies 
on general characteristics of the training dataset to select some features without in-
volving any learning algorithm [24]. The wrapper model requires one predetermined 
learning algorithm in feature selection and uses its performance to evaluate and de-
termine which features are selected [24]. The embedded approaches simultaneously 
determine features and classifier during the training process [20]. 

Wrapper models tend to find features better suited to the predetermined learning 
algorithm resulting in superior learning performance, but it is also computationally 
expensive compared to the filter model [25]. 

Concerning the above analysis, we apply ReliefF, a filter model, to be the attribute 
evaluation approach for our dataset. ReliefF is an extension to Relief, which is to 
estimate the relevance of features according to how well their values distinguish be-
tween the instances of the same and different classes that are close to each other [24]. 
It randomly samples a number of instances from the training set and updates the rele-
vance estimation of each feature based on the differences between the selected in-
stance and the two nearest instances of the same and opposite classes [24]. 

For search method, we utilize Ranker to discover the final sequence of model pa-
rameters. Ranker, used in conjunction with attribute evaluators, attributes by their 
individual evaluations [26]. 

In our experiments, we use the WEKA software for feature selection [26]. This free 
software is a collection of machine learning algorithms for data mining tasks: data-
processing, classification, clustering, association and data visualization. It provides us 
a complete scheme: ReliefF for attribute selection, and Ranker for searching. After 
processing our datasets with WEKA, we achieve the ranking sequence of model pa-
rameters in determining masculinity, friendliness and attractiveness as in Table 1, 
where si represents the ith shape parameter, while ti denotes the ith texture parameter. 

Table 1. Ranking sequences of model parameters in determining the three aspects 

Mascu. s2 t2 s3 s1 t1 t5 s6 t3 s5 s4 t6 s8 s7 t7 t4 
Friend. t3 s1 s2 t5 t6 s4 t2 s3 t1 s6 t4 s5 t7 s8 s7 
Attrac. s2 t3 s4 s6 t2 t5 s5 t6 s1 s7 t1 s8 t7 t4 s3 

3.2.3   Face Transformation Results 
By changing the first 15 shape (si in Table 1) and texture parameter values (ti in  
Table 1) according to the feature selection result in Table 1, we create the transformed 
images based on a neutral boy’s face shown in Fig. 8.  

After presenting these four images to our volunteers again, 92.1% of them agreed on 
masculinity in the second face, 89.3% volunteers believed the third image is friendlier 
than the first one, and 83.6% viewers considered the last one to be more attractive. 
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Fig. 8. Neutral, masculine, friendly and attractive faces 

3.2.4   Transferring Facial Expressions 
We notice that a feature space has been constructed after we perform PCA on our 
dataset. To make use of this space, we also attempt to transfer expression changes 
from one person’s faces onto another subject. This can be explained by Fig. 9. 

 

PC1 

PC2

PC3

Neutral2

Neutral1

Expression2

Expression1

FN: 

 

Fig. 9. Illustration of expression transfers in feature space 

In Fig. 9, we simplify the explanation on N-Dimensional feature space into that in 
a 3-D space, where PC1, PC2 and PC3 denote the first three eigen-vectors of our data-
set. “Neutral1” represents the reference person’s neutral face, and the “Expression1” 
denotes the person’s face with certain expression. Then the directed vector from 
“Neutral1” to “Expression1” can denote the facial expression changes. 

Mappings from the directed difference vector onto each eigen-vector correspond to 
various weights on each feature vector. Then we can contribute these weights to 
“Neutral2”, which denotes a target neutral face. The contribution creates the final 
“Expression2” as shown in Fig. 9.  

Figure 10 provides one good example for this expression transfer. Besides our  
previously collected facial image database, we asked another volunteer to make up 
angry, disgust, feared, surprised and sad faces. Then we perform the calculation on 
contour vectors in the feature space. The novel neutral face in Figure 10 is out of our 
database. After performing the contribution, we reconstruct the transformed faces by 
warping previous face patch to the transformed shape contours.  
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The whole procedure is automatic except for the manual work on locating contour 
points. We find that better expressions can be captured by controlling the transforma-
tions on different facial parts. For example, we can increase the weights on mouth 
area to make the transformed face in a more surprised way. 

 

Fig. 10. Neutral, angry, disgust, feared, surprised and sad faces 

4   Conclusions and Future Work 

The main role of this paper is to disclose the relations between model parameters and 
subjective understanding on facial images concerning masculinity, friendliness and 
attractiveness. Applications include transforming a novel face image to be more mas-
culine, friendly or attractive as well as transferring expressions from one subject’s 
face onto another one’s.  

To avoid the disadvantages of conventional approaches, we do not rely on the 
geometric measurements but conduct much analysis on the shape and texture mod-
els’ parameters. Specifically, we apply the face-space to leap over the complicated 
and normally inaccurate geometric measurements of distances and ratios on human 
faces. 

The PCA-based model is an excellent source for creating images of many differ-
ences in their contour and texture vectors. It is also robust in image compression. 

We separate shape and texture models so that the two models can create more 
faces. This should be an important improvement to previous approaches [14]. 

We received a large dataset from a survey and well analyzed the relations be-
tween parameter values and subjective understanding on the created faces. This 
knowledge helps us create a masculine face from the original neutral face image. 
Similar approaches also work for creating friendly and attractive faces out of a 
neutral one. 

Based on the feature space, we also successfully transfer facial expressions from 
one subject’s face onto another face. This is not a simple adding or subtraction as it 
seems to be, but an important manipulation in feature space. 

Although Table1 provides the ranking of model parameters, it is not easy to decide 
the exact values for them. We are going to try another approach called expressional 
image synthesis controlled by emotional parameters [28]. Borrowing the idea from 
expression transfer, we can also perform transfer on masculinity, friendliness and 
attractiveness if we can have such reference faces. Moreover, since mouth in the neu-
tral face is always closed, we need to add teeth to transformed faces when the trans-
formation leads the mouth to be widely opened. 
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Abstract. We present a learning-based 3D facial expression mapping
technique that preserves facial expression details and works in real time
for even high resolution meshes. Our approach is inspired by a pre-
viously developed technique called deformation transfer [1]. The de-
formation transfer technique preserves facial expression details but its
computational overhead makes it not suitable for real time applications.
To accelerate computation, we use a piecewise linear function to rep-
resent the mapping from the direct motion (the difference between the
expression face and the neutral face) to the motion obtained by the defor-
mation transfer method. This piecewise linear function is learned offline
from a small set of training data. The online computation is thus reduced
to the evaluation of the piecewise linear functions which is significantly
faster. As a result, we are able to perform real time expression mapping
for even high resolution 3D meshes.

1 Introduction

How to synthesize convincing 3D facial expressions has been an interesting yet
challenging problem in computer graphics. Facial expressions exhibit not only
feature point motions, but also subtle changes in illumination and appearance
due to skin deformation (e.g., facial creases and wrinkles). These details are
important visual cues, but they are difficult to synthesize.

Recently, Sumner and Popović[1] developed a technique named deformation
transfer that is capable of transferring 3D facial expression details from a per-
former to a target face model. One drawback of this technique is that its compu-
tation overhead makes it difficult to be used in real time applications. Given the
rapid development of real time high resolution 3D scanning technology [2, 3, 4],
people will soon be able to capture a performer’s dense 3D facial expressions and
animate a virtual face model in real time. To this end, it is necessary to be able
to transfer 3D facial expressions in real time while preserving expression details.

To accelerate computation, we propose to use a piecewise linear function to
approximate the mapping from the direct motion, which is the difference be-
tween an expression face and the neutral face, to the motion obtained by the

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 277–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



278 M. Song, Z. Liu, and B. Guo

deformation transfer technique. The advantage of the piecewise linear function is
that its evaluation is very fast. Thus we are able to perform real time expression
mapping for even high resolution 3D meshes.

2 Related Work

There has been a lot of research in facial animation. It is virtually impossible to
enumerate all of them. The book by Parke and Waters [5] provides an excellent
survey.

Expression mapping (also called performance-driven animation) has been a
popular method for generating facial animations [5, 6, 7, 8]. In addition to the
deformation transfer work, there has been a lot of research done in the last a
few years to improve the basic expression mapping technique.

Liu et al. [9] proposed a 2D technique, called the expression ratio image (ERI),
that is able to map one person’s expression details to a different person’s face
image.

Pighin et al. [10] parameterized each person’s expression space as a convex
combination of some basis expressions and proposed mapping one person’s ex-
pression coefficients to those of another person. This technique was later on
extended by Pyun et al. [11] who used radial basis functions to parameterize the
expression space.

Noh and Neumann [12] developed a technique to automatically find a corre-
spondence between two faces based on small number of user-specified correspon-
dences. They also developed a new motion mapping technique that adjusts the
direction and magnitude of the motion vector based on the local geometries of
the source and target model. So far, we have not seen any work that applies this
technique to transferring 3D expression details for high resolution meshes.

Zhang et al. [13, 14] proposed a technique to synthesize facial expression details
of the target face model (2D or 3D) based on the feature point motions of a
performer. It requires example expressions of the target face model.

3 Basic Facial Expression Mapping

The basic facial expression mapping method is very simple and has been a pop-
ular method for generating facial animations. For example, this technique was
used to produce some of the facial animations in the renowned film “Tony de
Peltrie”.

Let Gs,n denote a source subject’s neutral face mesh and assume it has N
vertices. We use the same notation Gs,n to denote the 3N dimensional vector
consisting of all the vertex coordinates. Let Gs,e denote an expression mesh of
this person. Let Gt,n denote a target person’s face mesh. Assuming there is a
vertex correspondence between Gs,n, Gs,e, and Gt,n, the basic facial expression
mapping works simply by computing the difference vector of Gs,e and Gs,n, and
adding it to t,n. That is, the expression mesh for the target model is obtained by

Gt,e = Gt,n + Gs,e −Gs,n (1)
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This method is simple to implement and is fast. One drawback is that it creates
artifacts when applied to high resolution meshes. Fig. 5 shows the results ob-
tained by the basic expression mapping. In the first and second expressions, we
can see the artifacts around cheekbone area. In the third and fourth expressions,
the mesh is not smooth on the regions near the external eye corners.

4 Deformation Transfer

Deformation transfer technique, which was proposed by Sumner and Popović
[1], provides a solution to this problem. It estimates the target vertex motion
(Gt,e −Gt,n) by optimizing a global objective function. Fig. 6 shows the results
generated by the deformation transfer technique. There are almost no visible
artifacts while the facial expression wrinkles are transferred nicely.

One drawback with the deformation transfer technique is that it is compu-
tationally expensive. Even though LU-decomposition can be done just once, for
each frame it needs to evaluate the fourth vertex for each triangle and perform
back substitution (the user is referred to [1] for details). According our measure-
ment, it takes more than one second per frame on a mesh with 19142 vertices
and 37551 triangles on a 3.0GHz processor. How to accelerate the computation
while preserving the motion quality is the focus of this work.

5 Learning-Based Expression Mapping

To accelerate computation, we propose to use a piecewise linear function to
approximate the mapping from the difference vector to the motion obtained by
the deformation transfer technique.

Let Ωs denote the space of difference vectors of the source person’s facial
expressions. That is

Ωs = ∪e{ΔGs,e} (2)

where ΔGs,e = Gs,e − Gs,n, and e ranges over all possible expressions of the
source person.

Let Π denote the deformation transfer function. That is, for any given expres-
sion e,Π(ΔGs,e) is the motion obtained from the deformation transfer algorithm.

Let vs,n,j and vs,e,j denote the coordinates of vertex j in Gs,n and Gs,e,
respectively, where j = 1, · · · , N . Denote Δvs,e,j = vs,e,j−vs,n,j . Let Pij(Δvs,e,j)
denote the deformation transfer result for vertex j.We wish to approximate Πj

with a linear transformation. In other words, we’d like to find a 3× 3 matrix Aj

such that
Πj(Δvs,e,j) = AjΔvs,e,j (3)

for all expression e. In practice, it is impossible to find a single matrix Aj that
works for all expressions. Therefore, we classify the expression space into multiple
classes, and estimate a 3× 3 matrix for each class. The 3× 3 matrix is the linear
approximation of the deformation transfer function for the expressions in that
class. In this way, we obtain a piecewise linear approximation of the deformation
transfer function.
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5.1 Training

Given a set of training data of the source object’s expressions, let ΩT
s denote the

set of difference vectors corresponding to the training expressions. We use the
K-Nearest-Neighbor (KNN) classifier [15] to classify ΩT

s into K classes where K
is specified by the user. Therefore,

ΩT
s = ∪K

k=1Ω
T
s,k (4)

where ΩT
s,k is the kth class.

Suppose there are IK expressions in ΩT
s,k and ΩT

s,k = {ΔGi : i = 1, · · · , Ik}.
For each ΔGi in ΩT

s,k, let Δvi
j denote its component corresponding to vertex j,

that is,
ΔGi = (Δvi

1, Δvi
2, · · · , Δvi

N )T (5)

Let Δ∗Gi be the resulting motion vector of deformation transfer, and

Δ∗Gi = (Δ∗vi
1, Δ

∗vi
2, · · · , Δ∗vi

N )T (6)

For each vertex j, we would like to find a 3× 3 matrix Ak
j , such that

Δ∗vi
j = Ak

jΔvi
j , i = 1, · · · , IK (7)

We use a linear least square method to solve equation (7) and obtain Ak
j .

Thus we obtain a piecewise linear approximation of Π .

5.2 Data Interpolation

After training is done, for each new expression, we could simply compute its
class index, and for each vertex, apply the corresponding linear transformation
in that class to obtain the vertex motion for the target mesh. One drawback with
this nearest-neighbor approach is that when a source expression, which is at the
border of two classes, slowly changes to the other group, there will be a sudden
jump on the target expression. The sudden jump is due to the fact that the linear
transformation matrix suddenly changes from the first class to the second class.

One remedy to this problem is to use data interpolation, that is, a weighted
sum of the results from multiple classes.

For each class ΩT
s,k, let ΔGk denote its mean vector, where

ΔGk = (Δv1,k, Δv2,k, · · · , ΔvN,k)T (8)

Let ΔG denote any given new expression where

ΔG = (Δv1, Δv2, · · · , ΔvN )T (9)

For each vertex j, the weight for class ΩT
s,k is defined as

cj,k =
Δvj ·Δvj,k

|Δvj ||Δvj,k|
(10)
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Fig. 1. Overview of learning based method

The interpolated motion for the target model is

ΔvL
t,j =

K∑
k=1

cj,kA
k
jΔvj∑K

k=1 cj,k

, j = 1, · · · , N (11)

Note that in equation (10), we use the angle between two vectors to measure
the similarity instead of using the Euclidean distance. The reason is that matrix
Ajk is much more sensitive to direction changes than magnitude changes. From
our experiments, we observe that in general if matrix Ak

j works well for one
motion vector, it also works well for the scaled version of this vector.

Finally, to handle the case when a test expression is far away from all of the
class centers, we use a weighted sum of ΔvL

t,j (equation (11)) and the direct
motion, that is, the final motion for the target model is

Δvt,j = wsΔvj + (1 − ws)ΔvL
t,j (12)

where ws is a function of the distance between ΔG and the class center ΔGk,
k = 1, · · · ,K, and is defined as follows. Denote

Dist(ΔG) =
∑K

k=1(ΔG−ΔGk)(ΔG−ΔGk)T

K
(13)

ws is set to be

ws =
δ(ΔG)(ΔG)T

Dist(ΔG) + (ΔG)(ΔG)T
(14)

where δ is a predefined constant between 0 and 1.
Fig. 1 is a summary of the learning based method.
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6 Vertex Correspondence

Before we perform expression mapping, the source mesh and target mesh needs
to have vertex correspondence. Sumner and Popović [1] proposed a method to
compute vertex correspondence between two meshes of arbitrary objects (not
necessarily face meshes). Due to the fact that they have to handle general meshes,
their method needs human interventions and is quite tedious. Since face model
has a much more constrained structure, we use a GPU-accelerated [16] face mesh
re-sampling approach.

First, a set of face feature points are marked manually on both the source
and target meshes. Fig. 2 shows the feature points that we use. Second, a global
transformation (scale, rotation, and translation) [17] is computed to globally
align the marked source and target mesh. Third, for each mesh, we create a 2D
image called mesh image. The mesh image is created by projecting each vertex
on a cylinder (i.e. cylindrical projection) while the (x, y, z) coordinate is encoded
in the (r, g, b) color channels. Fig. 3 shows an example of a mesh image. The two
mesh images are then pixel-aligned by a triangulation-based image warping [9].
This step is done by GPU. To re-sample the source mesh so that its topology is
the same as the target mesh, for each vertex on the target mesh, we find its pixel
location on its mesh image. At the same location in the source’s mesh image, we
obtain its (x, y, z) coordinates from the color channel.

Fig. 2. Feature points

Fig. 3. A 3D mesh and its mesh image
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Fig. 4. Face correspondence

Fig. 4 shows a result of the vertex correspondence. The source mesh (a) and
target mesh (b) have different topology. (c) is the re-sampled mesh of the target
mesh. The re-sampled mesh (c) looks the same as the original target mesh.
But its topology is the source mesh’s topology. The entire process of vertex
correspondence computation including mesh image generation, image warping,
and mesh re-sampling, takes less than 2 seconds on a pair of meshes each with
approximately 20000 vertices and 40000 triangles.

7 Experiment Results

To validate our approach, we have implemented the basic expression mapping,
deformation transfer, and the learning-based technique. We performed experi-
ments on the 3D facial expression sequence captured by a structure-light based
3D capturing system which was developed by Zhang et al. [4]. There are about
300 frames in total. We select 30 frames as the training data and use the rest of
the frames as the test data. The training expressions are classified into 6 classes,
that is, K = 6 . We find that δ = 0.6 works well in general. We first empir-
ically select 6 representative expressions from the training images as shown in
Fig. 8. The rest of the training images are classified into these 6 classes through
a K-nearest-neighbor technique.

Fig. 5. Basic expression mapping
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Fig. 6. Deformation transfer based expression mapping

Fig. 7. Learning based expression mapping

Fig. 7 shows the experiment results of the learning based expression mapping
method which is compared with the basic expression mapping results in Fig. 5
and the deformation transfer results in Fig. 6. We can see that the results from
the learning-based method are much better than that of the basic expression
mapping. Its quality is very close to the deformation transfer algorithm.

Fig. 9 shows experiment results on another target mesh. Again, the quality
of the results from learning based method is close to the quality of the results
obtained by deformation transfer method.

We have applied the three techniques on a video sequence with 120 frames.
The accompanying video material contains 3 video clips each corresponding to
a different method.

We have also measured average CPU time for a total of 120 frames on a ma-
chine with Pentium IV 3.0 GHz with 512MB memory. There are 19142 vertices
and 37551 triangles. For the deformation transfer, we perform LU decomposi-
tion [1, 18] as a pre-processing step, and its computation time is not included.
For each frame, we only include the time for evaluating the right hand side
and performing back substitution. The average CPU time per frame for basic
expression mapping, deformation transfer, and learning based method are 0.0152
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Fig. 8. Samples of the training set

Fig. 9. Results comparison among the three methods. (From top to bottom: Basic
expression mapping, deformation transfer based expression mapping and learning based
expression mapping).

seconds, 1.3253 seconds, and 0.1074 seconds, respectively. We obtain more than
one magnitude of speed up over the deformation transfer method.

Furthermore, we have measured the difference between learning based expres-
sion mapping results and deformation transfer results. The average difference
between the results of learning based method and those of deformation trans-
fer is (0.054460, 0.021996, 0.418960) (corresponding to (x, y, z) components). In
comparison, the average difference between the results of the basic method and
deformation transfer is (0.605108, 0.244402, 4.655119).
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8 Conclusion and Future Direction

We have developed a novel learning-based facial expression mapping technique.
It is significantly faster than the deformation transfer algorithm while the re-
sulting facial expression quality is close to the results obtained from deforma-
tion transfer. We have shown experiments on high resolution 3D expression
sequences.

In the future, we would like to integrate our technique with a real time 3D
facial expression capturing system so that we can perform live demonstrations
of high resolution real time 3D expression mapping.

We are planning on further reducing computation by using a locally weighted
sum to reduce the number of the summation terms in equation 12.

It is quite tedious to manually mark the feature points on the meshes. We
would like develop an automatic feature point detection system on 3D meshes.
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Abstract. This paper describes an experiment that was conducted to evaluate 
three interaction techniques aiming at interacting with large virtual environments 
using haptic devices with limited workspace: the Scaling technique, the 
Clutching technique, and the Bubble technique. Participants were asked to paint 
a virtual model as fast and as precisely as possible inside a CAVE, using a 
“desktop” haptic device. The results showed that the Bubble technique enabled 
both the quickest and the most precise paintings. It was also the most appreciated 
technique. 

1   Introduction 

Haptic interfaces were shown to greatly enhance interaction with Virtual 
Environments (VE) [1, 2]. Most of the current haptic interfaces are well suited for 
"desktop" applications, in which the dimensions of the visual display of the virtual 
environment do not exceed the size of the haptic workspace of the manipulated 
device. However, with large immersive systems – such as CAVE [3], RealityCenter 
or Holobench – becoming more common, the potential haptic interaction becomes 
limited to a small portion of the VE. 

To overcome the mismatch between the haptic and the visual workspaces, several 
software interaction techniques have been developed. In the present paper, we 
compare the uses of three of these interaction techniques: the Clutching technique [4], 
the Scaling technique [5], and the Bubble technique [6]. The proposed experiment is 
based on a task of  3D painting in which participants were asked to paint a virtual 
model in a large VE as fast and as precisely as possible, using a desktop haptic 
device. 

Therefore, this paper starts with an overview of related work in the field of 3D 
interaction techniques designed for haptic interaction with a VE that is larger than the 
workspace of the haptic device. Then we report on the experiment conducted to 
compare the uses of the three aforementioned techniques. The paper ends with a 
general discussion, a conclusion and a description of future work. 
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2   Related Work 

Several software solutions were proposed as interaction techniques to overcome the 
limitations of current haptic devices when interacting with large VEs [4-6]. 

A first interaction technique is based on the concept of clutching [4]. It is inspired 
by the use of a classical 2D mouse. When reaching the limits of the mouse’s 
workspace, the user may lift (declutch) the mouse, in order to put it down on a new 
location (clutch). This technique was implemented in haptic APIs (Application 
Programming Interface) such as in the VIRTUOSE API from Haption [7]. When the 
user reaches an uncomfortable posture with the force-feedback interface, he/she may 
declutch and freeze the virtual cursor in the VE by pressing a button. Then he/she can 
move the haptic device, reach a more comfortable position, and then clutch again by 
releasing the button to unfreeze the virtual cursor. 

A second interaction technique is the scaling technique, introduced by Fischer and 
Vance [5] who integrated a PHANToM 1.5 haptic interface in the C6 (a CAVE-like 
system). They used an amplification of the user’s motion, i.e. a motion scaling 
between the haptic workspace and the VE [8]. The link between the two spaces is 
defined by a scaling factor equal to the ratio: ‘largest dimension of the workspace of 
the haptic device’ to ‘largest dimension of the virtual environment’. 

 

elastic force 
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Fig. 1. Control modes according to cursor position 

A third interaction technique is the Bubble technique developed by Dominjon et al. 
[6]. The Bubble technique is based on a hybrid position/rate control [9, 10]. Position 
control is used around the central position of the haptic device, for fine positioning, 
while rate control is used at the boundaries of the device, for coarse positioning. The 
boundary between the position-control zone and the rate-control zone is visually 
displayed as a semi-transparent sphere, looking like a soap bubble (see Fig. 1). The 
boundary is also haptically displayed by applying a radial force when crossing the 
surface of the bubble. The user may thus "feel" the inner surface of the bubble and 
slide on it. Furthermore, thanks to force-feedback of the device, the Bubble technique  
simulates the use of an elastic device when the cursor is rate-controlled (i.e. outside 
the bubble) [6]. 
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3   Comparison of the Clutching, the Scaling and the Bubble 
Techniques in a Large Virtual Environment 

To compare the uses of the three aforementioned techniques, we have conducted an 
experiment based on a task of 3D painting. In this task, participants were asked to paint 
a 3D virtual model as fast and as precisely as possible. The performance of participants 
was recorded in terms of task completion time and quality of the final painting. At the 
end of the experiment, a preference test was also proposed, in which participants had to 
choose their favourite technique according to several subjective criteria.  

3.1   Participants 

15 participants aged from 22 to 46 (mean=28, sd=6) took part in this experiment. Six 
of them were females. All of them, except one, were right-handed. None of them had 
known perception disorders, and all participants were naïve to the purpose of the 
present experiment. 

3.2   Experimental Apparatus 

 

 

Fig. 2. Experimental set-up 

3.2.1   Haptic and Visual Displays 
We used a generic “desktop” haptic device: the PHANToM Premium 1.0 (see Fig. 2) 
from SensAble Technologies [11]. A small spherical cursor was manipulated in the 
VE via the PHANToM (see Fig. 3). It was used to apply paint directly on the virtual 
model, as if a brush was embedded at the tip of the PHANToM. Thanks to the force-
feedback of the device, participants were also able to feel the contact between the 
cursor and the virtual model.  

The PHANToM was placed inside a 4-screen CAVE-like display (see Fig. 2). For 
simplicity reasons, only one screen was used to display the virtual environment. This 
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screen was a 3x3m rear-projected screen. The visual feedback was displayed at a 
frequency of 120 Hz, in monoscopic conditions. The visual display of the virtual 
environment consisted in a 3D model of a face to be painted (see Fig. 4), and a button 
bar which was used to change the paint colour. Six colours were available: yellow, 
blue, green, pink, red, and brown. The face model was displayed in the centre of the 
screen, in front of the participant. The button bar was located on the left-side, near the 
border of the screen. 

 

Fig. 3. Close-up view of the Bubble in case of contact and painting of the virtual model 

3.2.2   Interaction Techniques Compared 
Four interaction techniques were implemented for the purpose of the experimental 
evaluation. 

(a) Motion Amplification 
The motion amplification technique (Scaling) is described by Fischer and Vance in 
[5]. It is based on a reduced Control/Display ratio, i.e. a scaling between the user's 
motion (Control) and the motion of the virtual cursor (Display).  

The scaling factor, world_haptic_scale, is defined in [5] as: the largest dimension 
of the workspace of the haptic device (max_workspace_size) divided by the largest 
dimension of the virtual environment (max_virtual_size), as in Equation (3). 

sizevirtual

sizeworkspace
scalehapticworld

_max_

_max_
__ =                            (3) 

In our experimental conditions, max_workspace_size was equal to 10cm (which 
prevents the PHANToM endpoint from colliding with its base) and max_virtual_size 
was equal to 3.5m. This resulted in a world_haptic_scale equal to 1/35. 
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(b) Clutching Technique 
The clutching technique (Clutching) was designed as in [7]. Participants had to press 
the space bar of a keyboard – placed on the table in front of them – to declutch the 
virtual cursor from the PHANToM. As the space bar remained pressed, the cursor 
remained declutched and the participant could freely move the PHANToM, without 
any consequence on the cursor. Then, once the PHANToM extremity was positioned 
at a comfortable position (e.g. near the centre of its workspace), the participant could 
release the space bar and then re-clutch the cursor and the PHANToM. 

(c) Bubble Technique 
The Bubble technique (Bubble) was implemented as described in [6] (see related 
work). The radius of the bubble was set to 5cm, and the velocity vector applied to the 
cursor when in rate control was calculated as in Equation (2), with K set to 0.03 N-3.s-1

 

(see Fig. 1). 

rRDKV .)( 3−=      (2) 

(d) Bubble Technique with Camera Motion  
In this second implementation (BubbleCam), the Bubble technique was implemented 
with a camera motion (see Fig. 4), as described in [6]. The camera is thus linked to the 
bubble, which allows to keep the main zone of interaction (i.e. inside the bubble) in 
front of the participant. 
 

 

 

Fig. 4. Reaching the button bar using the Bubble technique without (top) and with (bottom) the 
camera metaphor 

We intentionally did not mix several of these basic techniques. For example, using 
a Clutching technique with a Scaling factor (C/D ratio smaller than 1) could have 
reduced the need for clutching by increasing the cursor travel distances when 
clutched. This consequently, could have increased the global performance in terms of 

bubble 
cursor 

step 1 step 2 step 3 

step 1 step 2 step 3 
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task completion time. In the same way, using a C/D ratio smaller than 1 with the 
Bubble technique would probably result in the similar increase of the global 
performance. Our intention was here to test and compare the possibilities of each 
"raw" technique (the technique as described in the literature) separately, in order to 
find out their main advantages and drawbacks distinctly. 

3.3   Method 

We selected a painting task which requires both to reach distant regions and to move 
to accurate positions in the 3D space. The painting task was to be performed in a large 
environment, as fast as possible and with a maximum precision. Such a task seems 
close to the current perspectives and developments in the artistic domain, concerning 
either painting or sculpture applications. 

Participants were standing in front of the large screen. The PHANToM force-
feedback device was placed on a table in front of them at a 110 cm height. They 
placed the index finger of their dominant hand inside the extremity (tip) of the 
PHANToM.  

A learning phase was proposed, in which they were invited to read a set of 
instructions about the experiment and the apparatus. They were then demonstrated 
how to use the PHANToM and how to apply painting on the model. They had an 
unlimited period of time to get used to the technique and to the task before they began 
their final painting. 

The experiment was then divided into 2 separate parts: one painting task, and one 
preference test.  

In the painting task, participants had to paint selected parts of the virtual model. 
Three techniques were possibly used: the motion amplification technique (Scaling), 
the clutching technique (Clutching), and the Bubble technique without camera motion 
(Bubble). (The BubbleCam technique was eliminated here in order to limit the 
number of factors in the experimental plan). The 15 participants were divided into 3 
groups. Each group used only 1 technique among the 3 possibilities. In other words, 
each interaction technique was used for painting by 5 participants. 

Participants were then instructed to paint selected parts of the model with given 
colours as fast and as precisely as possible. They were asked to entirely paint each 
zone, without crossing their borders. The order and colours were the same for each 
participant. They first had to paint the mouth in red, then the nose in green, the 
eyebrows in blue, the eye in brown, the scar in pink and finally the ear-ring in yellow. 

The preference test was passed immediately after the painting task. It consisted in 
a free evaluation of the 4 possible interaction techniques, i.e. the 3 techniques 
mentioned above plus the BubbleCam technique. Participants tested the 4 techniques 
in an arbitrary order for 2 minutes each. They were then allowed to re-test the 4 
techniques at their will. 

The experiment ended with a subjective questionnaire in which participants had to 
rank the 4 techniques according to 4 criteria: (1) global appreciation, (2) cognitive 
load, (3) physical tiredness, and (4) precision for painting. 

The global experiment lasted about 40 minutes including the learning phase and 
breaks. 
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3.4   Collected Data 

Three data were collected for each participant after the painting task: 

1. the total time needed to perform the painting (in seconds); 
2. the painting time (in seconds), i.e. the time when the participant was actually 

painting the model; 
3. the resulting painted model (the 2D texture of the painted surface of the 3D 

model). 

After the preference test, the rankings of the 4 interaction techniques, according to 
the subjective criteria were also collected in the questionnaire. 

3.5   Results 

3.5.1   How Did the Interaction Technique Affect Performance of Participants? 
The performance of participants was analysed in terms of time (i.e. duration to 
perform the task) and precision (i.e. quality of the resulting painting, as compared to 
the original model). 

Total task completion time and painting time 
We computed a Multivariate Analysis of Variance (MANOVA) on two performance 
indicators: the total time (time to complete the whole task), and relative painting time 
(proportion of time devoted to the  painting, i.e. painting time divided by total time). 
The between participants factor was the interaction technique used during the painting 
test (Scaling vs.  Bubble vs. Clutching). There was a significant main effect of the 
interaction technique (Lambda Wilks=0.316; F(4,22)=4.283, p<0.01). The quickest 
completion of the task was achieved first with the Bubble technique (mBubble=810.9 
sec., sd=137) and then with the Scaling technique (mScaling=830.3 sec., sd=164) 
whereas 1.5 more time was necessary with the Clutching technique (mClutch=1209.3, 
sd=410). 

Due to the relatively small number of participants and to the similar duration for 
the Bubble and Scaling techniques, the subsequent ANOVA (analysis of variance) 
test on the total time showed a not significant trend (F(2,12)=3.547, p<0.06). 
However, post-hoc test indicated a significant difference between Clutching and the 
other two techniques for the total time to complete the task (corresponding Fischer 
PLSD comparisons at p<0.05). 

We observed a different schema concerning the proportion of time devoted to 
painting. With the Bubble technique, participants painted during 90.6% of the time 
(sd=14%), whereas they only spent nearly half of the total time in painting with the 
other two techniques (mClutch=63.0%, sd=30; mScaling=61.1%, sd=31%) (see Fig. 
5). The ANOVA test was highly significant (F(2,12)=5.884, p<0.02). Post-hoc tests 
indicated a significant difference between Bubble and Scaling for the relative painting 
time (Fisher PLSD comparison at p<0.05). 

Quality of painting 
The 15 resulting paintings were analysed and ranked according to the following three 
indicators: 
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1. the quantity of white space remaining unpainted inside the areas to be painted; 
2. the quantity of paint overlapping the edges of the areas to be painted; 
3. the quantity of paint outside the area to be painted. 

The three rankings corresponding to the three indicators were summed for each 
painting. This provided a unique grade for each painting. A final grade was then 
computed for each technique, by averaging the five grades of the five paintings made 
with the same technique (i.e. for one group of participants). A small final grade meant 
precise and high quality of painting, whereas a high final grade meant a poor quality 
of painting (see Fig. 6). 
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Fig. 5. Time needed to perform the painting 

 

Fig. 6. Examples of paintings made by participants 



296 L. Dominjon et al. 

We performed an ANOVA using the interaction technique as a between-
participants factor. We found a significant main effect of the interaction technique on 
the quality (i.e. grade) of the painting (F(2,12)=14.270, p<0.0007). Participants 
obtained the poorest quality of painting with the Scaling technique (mean grade for 
Scaling: mScaling=39, sd=4.3). The best performances were found with the Bubble 
technique (mBubble=15, sd=10). A slightly lower quality of painting was observed 
with the Clutching technique (mClutching=18, sd=8). A posteriori test shows that 
Scaling differs significantly from the other two techniques (Fisher PLSD tests 
significant at p<0.002). 

3.5.2   How Did Participants Subjectively Evaluate the Different Techniques? 
We performed a mixed-design MANOVA on the four subjective dimensions used to 
rank the four proposed techniques: global appreciation of the techniques, cognitive 
load, physical tiredness, and precision for painting. 

The between participants factor was the technique tested during the painting task. 
The within participants factors were the four techniques evaluated: Scaling, Bubble, 
Clutching and BubbleCam. 

We found that subjective evaluations of participants differed significantly 
depending on the interaction technique (Lambda Wilks=0.302; F(12,119)=5.697, 
p<0.0001). However, no significant effect of the first phase of the experiment 
(painting task) was found on the second phase (subjective evaluation). Thus, the 
technique the participants used during the painting task had no impact on the 
technique they preferred during the preference test (Lambda Wilks=0.982; F(8,90) 
n.s.). 

Subsequent ANOVA demonstrated significant differences between interaction 
techniques for every criterion: global appreciation (F(3,48)=16.382, p<0.0001), 
cognitive load (F(3,48)=11.454, p<0.0001), physical tiredness (F(3,48)=13.645, 
p<0.0001), and precision for painting (F(3,48)=15.902, p<0.0001). 

Post-hoc tests showed that the Bubble and BubbleCam techniques were 
significantly better appreciated than the other two techniques (Scaling and Clutching) 
for the global appreciation dimension (mBubble=1.8, sd=0.77; mBubbleCam=1.8, 
sd=0.94; mClutch=3.0, sd=0.93; mScaling=3.6, sd=0.63; corresponding Fisher PLSD 
comparisons significant at p <0.0004), as well as for the level of cognitive load 
(mBubble=1.7, sd=0.59; mBubbleCam=1.9, sd=1.0; mClutch=3.1, sd=1.0; 
mScaling=3.3, sd=0.9; corresponding Fisher PLSD comparisons significant at p 
<0.001). The Bubble and BubbleCam techniques were also significantly more 
appreciated concerning physical tiredness (mBubble=1.9, sd=0.64; mBubbleCam=1.7, 
sd=1.0; mClutch=2.9, sd=0.88; mScaling=3.5, sd=0.64; corresponding Fisher PLSD 
comparisons significant at p <0.004). Quite the same schema was found for the last 
criterion, i.e. the precision of the interaction technique, for which Bubble and 
BubbleCam were again the best rated techniques (mBubble=mBubbleCam=1.9, 
sd=0.80). The Clutching technique was less appreciated than the two previous ones 
(mClutch=2.4, sd=1.1) although post-hoc tests did not show any significant difference 
between the techniques. Finally, the rankings of the Scaling technique were 
significantly worse than the three other techniques (mScaling=3.7, sd=0.80; 
corresponding Fisher PLSD comparisons at p<0.0001). 
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To summarize (see Fig. 7), the Scaling technique was systematically rated as the 
worst technique. The Clutching technique was also poorly evaluated except for 
precision for which it was estimated as efficient as both Bubble and BubbleCam. The 
two implementations of the Bubble technique were systematically rated as the best 
techniques, and it seemed difficult to distinguish between them. 

1

1.5

2

2.5

3

3.5

4

global
appreciation

cognitive
load

physical
tiredness

precision

A
ve

ra
ge

 r
an

ki
ng

 o
f t

he
 te

ch
ni

qu
e

Scaling Bubble

Clutching BubbleCam

 

Fig. 7. Average ranking of every technique according to the 4 subjective criteria 

3.6   Discussion 

The performance data of the painting task illustrate an interesting property of the 
Bubble technique as compared with the Scaling and the Clutching techniques. Indeed, 
this technique seems to be optimally designed for tasks requiring both precise activity 
and large gestures in VEs. 

On the one hand, with our technique, participants used more than 90% of their time 
for performing the painting, while with the other two techniques they were painting 
for only 60% of the total time. Thus, our technique provided the best ratio between 
navigation and fine operations in large virtual environments. On the other hand, the 
participants needed less time to complete the task with the Bubble technique than with 
the Clutching technique, and they needed about the same time as the Scaling 
technique. But even if the Bubble and the Scaling techniques required the same 
completion time, the resulting painting performance was drastically different: the 
Bubble technique was associated with the best results, and the Scaling technique was 
associated with the poorest ones. Furthermore, the quality of painting obtained with 
the Bubble was still equivalent (and even slightly better) than the one obtained with 
the Clutching. 

This suggests that the technique used may affect the strategy adopted by the 
participants. The Scaling technique resulted in short completion time but in poor 
quality of painting, whereas the Clutching technique resulted in a great quality of 
painting but in a long completion time. In the case of the Scaling technique, speed 
was favoured against precision maybe because precision generated a high cognitive 
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load for the participants. In the case of the Clutching technique, the opposite effect 
was observed:  the precision was favoured versus speed, maybe because the speed 
constraint would also be highly overloading. 

With the Bubble technique, none of these strategies seemed to be privileged. This 
resulted in the ability to achieve a precision similar to the Clutching technique while 
spending the same amount of time than with the Scaling technique. 

The Bubble and BubbleCam techniques were substantially preferred by the 
participants as compared to the other two techniques for all subjective criteria. The 
global appreciations of the Bubble and BubbleCam techniques were equivalent, 
indicating that they both globally provided the same comfort of use. Nevertheless, 
the BubbleCam technique has some advantages. We indeed noticed that most 
participants spontaneously painted the whole ear of the model when using the 
BubbleCam technique, during the preference test. The ear was actually hidden in  
the main view (see Fig. 3). Thus, the use of the camera metaphor made it possible for 
the participants to navigate and reach some parts of the model in a more convenient 
view. This suggests that the use of the BubbleCam technique has a direct impact on 
the tasks the participants can potentially perform. For instance, we used a virtual 
scene which was as large as the virtual display (here a CAVE like system). Unlike 
the other techniques, BubbleCam could also be used in other conditions, i.e. with a 
visual display smaller than the virtual scene (e.g. displaying a whole town at scale 1 
in a CAVE). Indeed, the camera motion could be used to navigate inside the VE and 
reach any part of it, keeping the visual focus on the zone of interest (zone of haptic 
interaction). Moreover, since the camera is attached to the bubble when using the 
BubbleCam technique, a higher co-location of haptic and visual spaces is possible, 
which could be interesting to use in immersive systems such as a Workbench or a 
CAVE. 

4   Conclusion 

We have conducted an experiment to compare the uses of three techniques to interact 
with large virtual environments using haptic devices with a limited workspace: the 
Scaling, the Clutching and the Bubble technique. Our results showed that the Bubble 
technique could be successfully used to perform 3D painting tasks involving 
simultaneously large movements and precise positioning. The 3D painting task 
enabled us to observe the users’ performance in terms of both the time needed to 
achieve the task and the quality of the resulting painting. The Bubble technique was 
found to lead to both a greater accuracy in the painting and a lower completion time. 
Furthermore, users reported a higher level of satisfaction with the Bubble technique 
than with the two other interaction techniques. 
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Abstract. Natural grasp interaction plays an important role in enhancing users’ 
immersion experience in virtual environments. However, visually distracting 
artifacts such as the interpenetration of the hand and the grasped objects are 
always accompanied during grasp interaction due to a simplified whole-hand 
collision model, discrete control data used for detecting collisions and the 
interference of device noises. In addition, complicated distribution of forces from 
multi-finger contacts makes the natural grasp and manipulation of a virtual object 
difficult. In order to solve these problems, this paper presents a novel approach for 
grasp interaction in virtual environments. Based on the research in 
Neurophysiology, we first construct finger’s grasp trajectories and detect 
collisions between the objects and the trajectories instead of the whole-hand 
collision model, then deduce the grasp configuration using collision detection 
results, and finally compute feedback forces according to grasp identification 
conditions. Our approach has been verified in a CAVE-based virtual environment. 

1   Introduction 

Virtual environments (VE) provide a platform for users to experience and work with 
three-dimensional computer generated scenes just like in real environments. Yet, after 
many years of research and development virtual environments are still used mainly as a 
visualization tool with some simple or specialized interaction techniques. Although 
some finger tracking devices such as instrumented gloves have made natural grasp 
interaction possible at least at hardware level, the interaction using a virtual hand as an 
avatar has come true only to a very limited extent. It is probably because the use of 
multi-finger grasp interaction with a haptic device presents a number of new challenges 
over that of single point interaction.  

These challenges include: 1) how to simplify collision models in order to get high 
update rate for haptic rendering; 2) how to control visually distracting artifacts, such as 
interpenetration of a hand and grasped objects, mainly aroused by the interference of 
device noise and the discrete control data used for collision detection acquired from 
interaction devices; 3) how to model friction and resolve the distribution of finger force 
from multiple finger contact points.  

Aiming to solve these problems, this paper proposes a simple and novel approach for 
users to naturally grasp and manipulate objects via a dexterous hand as an avatar in a 
virtual environment.  
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The rest of the paper is organized as follows. Related works are briefly reviewed in 
the next section. Section 3 overviews the approach. In Section 4, the construction of 
grasp trajectories is presented, while issues related to multi-finger grasp interaction 
using grasp trajectories is described in Section 5. Experiment results are shown in 
Section 6. Some conclusions and future works are discussed in Section 7. 

2   Related Works 

In virtual environments, real-time collision detection between a dexterous hand and 
objects is premier. Although the technology of continuous collision detection ([1] and 
[2]) has improved greatly, the requirement of high update rate makes it still expensive 
in virtual environments with haptic rendering. So, some discrete collision detection 
methods, such as VOXMAP-PONTSHELL [3], Bounding Sphere Tree [4], Axis 
Aligned Bounding Box Tree [5], Oriented Bounding Box Tree [6] and Convex Hull 
Tree [7] are still preferred. But those discrete methods inevitably arouse 
interpenetration. 

In order to alleviate the unrealistic vision of interpenetration, Rezzonico et al. correct 
hand posture by unfolding the closet proximal joint (wrist side) until the corresponding 
sensor is tangent to the object or the joint reaches its limit [8]. Zachmann et al. convert 
the problem of natural grasping into a minimization problem for a joint vector under the 
constraint that finger-joints (and palm) must not penetrate the object [9].But their 
iterative adjustment is time-consuming. 

Recently, physical-based dynamic simulation is employed for multi-finger grasp and 
manipulation of a virtual object. Based on point collision response forces, Hirota et al 
develop a manipulation system [10]. Melder et al. present an approach to allow users to 
manipulate a virtual object through multiple PHANToM devices by using friction cone 
([11], [12] and [13]). Borst et al. develop a system to support natural whole-hand 
interactions in a desktop-sized workspace [14]. Yet, all of these methods are not very 
stable and sometimes face difficulties when grasping or manipulating objects. 
Therefore, approaches dependent on heuristic analysis of grasp stability or user intent 
are still applicable. Iwata et al. consider whether an object is captured by testing 16 
points on a hand model [15]. Maekawa et al provide two finger grasp conditions to 
manipulate objects in virtual environments [16]. Piater et al. determine grasp 
configurations by using visual features [17]. Tzafestas et al. take into account the 
unilateral nature of the contacts and the limitations due to static friction to identify 
whether grasp is still maintained [18]. 

3   Overview of the Approach 

Before outlining our approach, we narrow down the discussion scope of this paper 
within pinch, based on users’ common operations performed in virtual environments 
and at the same time for the sake of reducing interaction complexities between a hand 
and virtual objects. Therefore, consistent and independent fingertip motion for 
reach-to-grasp movements is fully utilized here. According to the research result of 
Neurophysiology "For reach-to-grasp movements to a variety of objects, fingertip 
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motion was quite similar. The movement tended to follow a particular curved path." 
[19], our approach first constructs each fingertip’s grasp trajectory and then detects 
collisions between objects and trajectories. Subsequently, the fingers’ automatic 
contact conditions are estimated and the grasp configurations of the relevant fingers are 
deduced according to the collision detection results. Finally the finger feedback forces 
when grasping or manipulating an object is computed based on grasp identification 
conditions. Overall, the approach is composed of the pre-processing stage and the 
running stage, whose schematic overview is shown in Fig.1. 

 Pre-processing: 

Construct each 

fingertip’s grasp 

trajectories 

Running: 

Detect collisions between 

trajectories and objects 

Estimate fingertip automatic 

contact conditions 

Configure hand’s grasp posture 

Compute the feedback force for 

each finger 

Identify grasp conditions 

 

Fig. 1. Schematic overview of the approach 

4   Construction of Grasp Trajectories 

To gain real-time performance in virtual environments, most traditional methods have 
to maintain two kinds of hand models, one for display and the other, much simpler, for 
detecting collisions. Although two kinds of hand models could speed up collision 
detection, the simplified collision model, discrete control data used for collision 
detection and the interference of device noise will more or less lead to interpenetration 
of the hand into grasped objects.  

The research result of Neurophysiology mentioned in Section 3 provides us a new 
promising way to solve this problem. In this section, we will put our emphasis on the 
construction of a fingertip’s grasp trajectory, while leave the issue of how to use 
trajectories to control the visually distracting artifacts to the next section.  

Similar to the method presented in [19], the construction of finger’s grasp 
trajectories is described as follows:  
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1) Manually select a point in each fingertip surface as a seed point for that finger. 
The point should be located in the center of the fingertip’s surface, where we 
think the first contact generally happens when pinching an object (Fig.2). 

 

Fig. 2. Seed points on five fingertip 

2) Ask a user to participate in a grasping task and his finger joint angles acquired 
from CyberGlove® are recorded at approximately 50 Hz.  The process is 
repeated several times to eliminate the side effect of some accidental factors such 
as device noises as far as possible. 

3) Simulate the user’s grasping process and generate the motion of the seed point for 
each finger with those recorded joint angles. The seed point’s motion trajectory is 
regarded as a grasp trajectory for that finger.  

4) Approximate the grasp trajectory of each finger with a series of line segments. 
We pick up a number of recorded finger’s joint angles as critical joint angles and 
the positions of seed point corresponding to those joint angles are computed to 
form critical points on the grasp trajectory. All of these critical points form a 
series of line segments to approximate the grasp trajectory tightly (Fig.3). 

We have to admit that the approximation will result in some inaccuracies both in 
detecting collision and determining the grasp configuration of the finger. Fortunately, 
we can control these inaccuracies by determining the number of these critical points on 
the trajectory. Moreover the speed of collision detection between an object and a series 
of line segments is obviously far faster than that of collision detection between an 
object and a curve.  

 

Fig. 3. Line segments to approximate grasp trajectories 

5   Grasp Interaction 

Fig.4 presents the process of a dexterous hand interacting with an object we are 
conceiving, and more details will be described below. 
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(a) The process of grasping an obect                  (b) The process of releasing an object 

Fig. 4. Grasp Interaction between a hand and an object  

5.1   Collision Detection Between Trajectories and Objects  

The collision detection is performed between objects and the grasp trajectories instead 
of the virtual hand. As the grasp trajectory of each fingertip is approximated by a series 
of line segments, the problem of collision detection can be therefore converted to 
perform an intersection test between the objects and the line segments. 

An intersection test between a line segment and an object could be implemented by a 
general ray-tracing algorithm [20]. But to accelerate the intersection computation, an 
OBB-tree for each object is created. Ray-Box intersections are firstly tested and if a line 
passes through all Ray-Box intersection tests, a Ray-Triangle intersection is performed 
(An object is represented by mesh in this work). For Ray-Triangle intersection, the 
algorithm presented by Möller [21] is applied, while for Ray-Box intersection, the 
Mahovsky’s algorithm [22] is employed. The algorithm makes use of Plücker 
coordinates and tests the ray against the edges comprising the silhouette of the box 
instead of testing against individual faces so that the technique’s performance is up to 
93% faster. 
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5.2   Automatic Contact Estimation 

When pinching, an automatic contact condition is provided to estimate whether fingers 
contact an object, since it is difficult to predicate when the fingers will contact the 
object. At first, the line segment intersecting with an object is found during collision 
detection and then an auxiliary plane passing the start point of the intersecting line 
segment and perpendicular to the line segment is created to divide the space into the 
positive and negative subspaces respectively. If the seed point on the fingertip resides 
in the positive subspace, an automatic contact condition is thought to be satisfied and 
the corresponding finger will be automatically moved to contact the object. Otherwise, 
the corresponding finger is still allowed to move along its trajectory. The condition is 
illustrated in Fig.5. 

 - 

+ 

             

 - 

+ 

  
(a) Seed point in negative sub-space                     (b) Seed point in positive sub-space 

Fig. 5. Illustration of automatic contact estimation 

5.3   Grasp Configuration Deduction 

After it has been estimated that one finger should be automatically moved to contact a 
virtual object, it is necessary to determine the grasp configuration of that finger. 
Without iteratively adjusting finger’s posture, our method is able to deduce the grasp 
configuration of the finger immediately. During our construction of finger’s trajectory, 
the flexion/extension of the distal inter-phalangeal (DIP), proximal inter-phalangeal 
(PIP), and metacarpal-phalangeal (MCP) joints as well as its corresponding abduction, 
such as Ring-Middle abduction, are recorded and represented as a set of angles ( n1, n2, 

n3, n4) for each critical point Pn. As illustrated in Fig.6, the grasp configuration of the 
finger could be deduced based on these data as follows: 

1) For the finger whose grasp trajectory intersects with an object on the point Cn, 
determine a variable t that makes 

Cn = Pn-1 + t×(Pn – Pn-1) (1) 

2) Get corresponding joint angles ( n-11, n-12, n-13, n-14) about Pn-1 and ( n1, n2, n3, 
n4) about Pn; 
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3) Compute approximate joint angles ( c1, c2, c3, c4) about Cn by using linear 
interpolation: 

cx = n-1x + t×( nx – n-1x) (x = 1,2,3,4) (2) 

4)  Apply ( c1, c2, c3, c4) to formulate the grasp configuration of the finger, i.e. the 
flexion or extension of DIP, PIP and MCP and the abduction. 

 

Cn

Finger 

Deduced finger 

configuration 

Pn-2 Pn-1 

Pn 

Pn+1 

Pn+2 

 
Fig. 6. Illustration of deducing finger’s grasp configuration 

5.4   Finger Force Computation and Feedback 

The finger force responding to collision and being fed back to a user is generated, when 
collision happens. Realistic finger feedback forces are very important to enhance users’ 
immersion experience in virtual environments. In this paper, the feedback force for each 
finger is computed according to the relationship between the dexterous hand and the 
object collided with and two kinds of computation models are presented. One is grasping 
force computation model, which is utilized when the dexterous hand contacts the object 
but does not grasp and manipulate it. The other is manipulating force computation 
model, which is used when the dexterous hand grasps and manipulates the object. No 
matter which one is used, the feedback forces will finally be mapped to the user’s 
fingertips through CyberGrasp, a haptic feedback device developed by Immersion Corp 
using its application programmer interface (API): vhtCyberGrasp->setforce() [23]. 

5.4.1   Grasping Force Computation 
For force calculation at a single finger, we refer to the penalty-based force computation 
model. The force generated on each finger is calculated by utilizing the Hooke’s law: 

 F  = (Kf × d)  N  (3) 

Where d is the penalty depth, namely the distance from the collision point to the seed 

point on finger’s surface along the vector  N , and Kf is the stiffness coefficient of the 
object collided with.  
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5.4.2   Manipulation Force Computation 
Most often, besides the grasping force, object’s gravity also has an effect on finger 
force distribution when an object is manipulated. Considering force effects alone, we 
observe that the effect of the object’s gravity on a finger is relevant to the angle between 
the grasping force of the finger and the gravity of the grasped object. The bigger the 
angle, the larger the force received by the finger. So, we allocate the gravity of the 
object to fingers using dynamic weights, described as follows, and then feed them back 
to the user plus the grasping forces calculated before. 

1) For the i-th contact finger, the angle i between the grasping force  F  and the 

gravity force  G  is calculated.  

2) For the i-th contact finger, its new feedback force, 'F , is calculated as: 

 'F = F + ( i/ i)  G  (4) 

5.5   Multi-finger Grasp Identification 

In order to judge which finger force computation model should be used, some 
conditions must be provided. Here, both elementary and advanced grasp identification 
conditions are given. Actually, these conditions could also be used to identify the state 
of the hand. More details refer to [24]. 

5.5.1   Elementary Grasp Identification 
Elementary grasp identification condition is employed to preliminarily determine 
whether the hand is able to grasp an object, when collision occurs between them. The 
condition is that object must be contacted by the thumb and any other finger of the 
hand. Obviously, if a user wants to grasp an object later, the elementary grasp 
identification condition must be first satisfied. 

5.5.2   Advanced Grasp Identification 
Elementary grasp identification condition only preliminary differentiate whether the 
hand is able to grasp an object. It is advanced grasp identification conditions that 
determine whether the user could manipulate an object via the dexterous virtual hand 
from physical aspects. 

Considering that the forces exerted on the grasped object include not only press but 
also friction, which is variable, before describing the advanced conditions, the 
following two suppositions are introduced: 

1) If the forces exerted by the dexterous hand on the object can counteract its gravity 
force in Z-Axis and the forces’ directions can balance in X or Y axis, then the 
object can be manipulated. 

2) The direction of the i-th finger’s friction is identical with the negative direction of 
the projection of the gravity vector of the object on the contact plane (For each 
contact point, we define a plane passing the point and perpendicular to the 
direction of the grasping force as the contact plane) and its magnitude ranges 
from 0 to fimax (fimax = Fi, where Fi is the grasping force of the i-th finger to the 
object,  is the static friction coefficient, and fimax means the i-th finger’s 
maximum static friction.).  
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According to the above suppositions, the advanced conditions are given as follows: 

1) The inequation below should be satisfied. 

=

≥++
k

i 1
zimaxziz 0  G )f  (F     (5) 

Where k is the number of contact fingers, Fiz (fimaxz) is the z-component of Fi 
(fimax). The physical meaning behind this condition is that the forces the virtual 
hand exerts on the virtual object could counteract its gravity. 

2) If one finger has a force component along the positive direction of X-axis  
(or Y-axis), there must be another finger which has a force component along the 
negative direction of X-axis (or Y-axis) and vice versa. The physical meaning 
behind this condition is that the virtual object could resist any impulse from  
X (or Y) direction. 

6   Experiment Results 

We have implemented the approach in a CAVE-based virtual environment using the 
CAVELib™. The CAVELib™ is a powerful API that provides the cornerstone for 
creating robust interactive three-dimensional (i3D) environments [25]. An Ascension 6 
degrees of freedom (DOF) tracking sensor is used for tracking user’s hand motion. The 
CyberGlove® and the CyberGrasp® [23] are used to capture finger motions and  
 

 

Finger Force 

Joint Data Position and Orientation 

Projected Image 

USER 

6DOF Tracker CyberGrasp Projector 

Collision Detection 

Grasp posture determination 

Finger Force 

Calculation 

Grasp condition Identification 

Automatic contact estimation 

CyberGlove 

Image 

Rendering 

 

Fig. 7. Architecture of implementation 
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provide force feedback respectively. The program runs on an SGI Onxy2 (with 4 CPUs 
and 2 IR4 graphic pipelines). High-resolution stereo images are projected onto four 
imaging surfaces of the CAVE by four projectors. The overall architecture of the 
implementation is illustrated in Fig.7.  

Fig.8 shows a virtual one-cylinder motor assembly scene we created to test the 
presented method. The virtual assembly scene is comprised of some common 
mechanical components such as nuts, bolts.  A dexterous virtual hand as well as the 
proposed grasp interaction is used to perform assembly tasks, and four grasp actions are 
displayed in Fig.9. Fig.10 gives a snapshot of a user’s hand when performing virtual 
assembly tasks with the CyberGrasp® in our CAVE-based environment.  

 

Fig. 8. One-cylinder motor assembly scene 

    
      (a)               (b)              (c)              (d)  

Fig. 9. Grasp interaction with different mechanical components: (a) a nut; (b) a crank; (c) a 
gasket and (d) a piston 

 

Fig. 10. A snapshot of performing a virtual assembly task using CyberGrasp® 

7   Conclusion and Future Work 

Natural grasp interaction and its realistic vision play important roles in enhancing 
users’ immersion experience in virtual environments.  
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In this paper, a trajectory-based approach to grasp interaction is presented. The 
approach is based on the research result of Neurophysiology and enables a user to grasp 
and manipulate an object naturally with a dexterous virtual hand. Unlike some 
traditional methods which totally rely on computer performance to alleviate visually 
distracting artifacts, our approach can control artifacts by determining the proper 
number of sampling points on the grasp trajectories. Moreover, automatic contact 
estimation conditions, grasp identification conditions, and the grasp configuration of 
the virtual hand can be determined rapidly utilizing the grasp trajectories, which will 
inevitably save time for more realistic finger feedback force computation, given that the 
requirement of update rate in haptic rendering is up to 1 KHz. 

Future works will include: 1) to propose more reasonable conditions for grasp 
identification and 2) to provide more realistic force computation model. 
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Abstract. Pen-based user interface has become a hot research field in recent 
years. Pen gesture plays an important role in Pen-based user interfaces. But it’s 
difficult for UI designers to design, and for users to learn and use. In this pur-
pose, we performed a research on user-centered design and recognition pen ges-
tures. We performed a survey of 100 pen gestures in twelve famous pen-bases 
systems to find problems of pen gestures currently used. And we conducted a 
questionnaire to evaluate the matching degree between commands and pen ges-
tures to discover the characteristics that a good pen gestures should have. Then 
cognition theories were applied to analyze the advantages of those characteris-
tics in helping improving the learnability of pen gestures. From these, we ana-
lyzed the pen gesture recognition effect and presented some improvements on 
features selection in recognition algorithm of pen gestures. Finally we used a 
couple of psychology experiments to evaluate twelve pen gestures designed 
based on the research.  It shows those gestures is better for user to learn and 
use. Research results of this paper can be used for designer as a primary princi-
ple to design pen gestures in pen-based systems. 

1   Introduction 

Pen-based user interface is one of the main styles in Post-WIMP user interface. It has 
become a hot research field in recent years. It is designed on the Pen-Paper metaphor 
which is a universal and fundamental way for capturing daily experiences, communi-
cating ideas, recording important events, conducting deep thinking and visual  
descriptions. Researches on pen-based user interface intend to make these traditional 
activities computable while retaining the flexibility and fluidity of normal pen and 
paper. Consequently, with the assistance of computing resources, people can achieve 
easier manipulations to information, such as maintenance, modification, retrieval, 
transferring, further processing and analysis. Many famous systems have built in this 
field, such as Tivoli [1], LiveBoard [2], SILK [3], DENIM [4], Cocktail Napkin [5], 
Flatland [6], Classroom 2000 [7], ASSIST [8], Teddy [9]. Currently, some corpora-
tions like Microsoft and Apple, have push pen-based interaction techniques in their 
operating system, such as Windows XP Tablet PC Edition [10] and Mac OS X Tiger 
[11]. In these systems, Pen Gesture plays a very important role. Pen Gesture is a hand 
make mark used to give a command to a computer. It is a single stroke indicates the 
operation, the operand, and additional parameters [12] [13]. In pen-based user inter-
face, user uses pen gesture to perform various tasks, such as text editing, sketch  
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modeling, UI design, 3D manipulation and navigation, etc. Long has performed a 
survey of gesture usage from PDA users. It showed that users think gestures are pow-
erful, efficient, and convenient. And users want more gestures in applications [14]. 

Unfortunately, there are little pen gesture design guidelines or theories currently 
existing. So it’s hard for designers to design pen gestures in systems. Consequently, 
gestures used in systems are hard for user to learn and remember. From Tivoli, we can 
see that the problem with gestures is that “novice users may not remember them [1]”. 
Long’s survey also revealed that users often find gestures difficult to remember, and 
they become frustrated when the computer misrecognizes gestures [14]. In the pur-
pose of helping designing gestures with good learnability, and high recognition accu-
racy, we performed a serial of research work. 

First, we conduct a survey of single-stroke gestures currently used in systems. The 
survey is based on observation and usage of twelve famous pen-based systems. From 
the survey, we divided pen gestures into three categories: pen gestures with “iconic-
ness” property [15] (A pen gesture with iconicness property can be considered as that 
the shape of the gesture is dependent in part on the meaning of the command which 
the gesture represent.). Pen gestures represented by the first character of command 
name, and pen gestures with no obvious relation with command it represented. A 
questionnaire is conducted to evaluate the matching degree between commands and 
different categories of gesture. It can be used to discover the characteristics that 
“good” gestures should have, and to find characteristics as the foundation of pen ges-
ture classification. Then double-code theory [16] and other cognition theories are 
applied to analyze the advantages of those characteristics in helping improving the 
learnability of pen gestures.  From these, we analyze the pen gesture recognition ef-
fect from user-centered viewpoint, and present some improvements on features selec-
tion in recognition algorithm of pen gestures. Finally we use a couple of psychology 
experiments to evaluate twelve pen gestures designed based on the research.  Compar-
ing with other pen gestures that perform same tasks currently used in pen-based  
systems, it shows those gestures is better for user to learn and use. 

The rest of this paper is organized as follows. After discussing related work, we 
describe the survey and questionnaire we conducted. After them, we analyze how to 
improve the learnability and recognition accuracy of pen gestures. And we depict the 
two experiments on pen gestures we designed. Finally, the conclusion is concluded. 

2   Related Work 

Some existing tools and recognition methods can support creating pen gestures. Rubin 
presented GRANDMA [12], a tool that dramatically reduces the effort involved  
in creating a gesture-based interface to an application. Starting with an application 
with a traditional direct manipulation interface, GRANDMA lets the designer specify 
gestures by example, associate those gestures with views in the interface, and specify 
the effete each gesture has on its associated views through a simple programming 
interface. Zhao Rui presented concepts and techniques about incremental recognition 
to support gesture recognition in gesture-based and syntax directed editors [17]. The 
essential idea of his concept is the tight integration between on-line pattern  
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recognition and diagram parsing. The incremental recognition strategy improves not 
only the recognition performance, but also the directness of gestural interfaces.  

Peter Tandler proposed to give incremental gesture recognition to provide immedi-
ate feedback while drawing pen gestures [18], giving feedback continuously while 
users draw, as this allows immediate correction of minor mistakes.  

Allan Chris Long developed gdt [19], a prototype gesture design tool that is loosely 
based on Agate. gdt are visualizations intended to help designers discover and fix 
recognition problems. It allows designers to enter and edit training examples, train the 
recognizer, and recognize individual examples.  

Tools and recognition methods build the basis on how to create and training pen 
gestures. But it can not help designers on how to design pen gestures with good learn-
ability and memorability. Currently, there are some researches in this field.  

Allan Chris Long performed a survey of PDA users [14]. It intended to illuminate 
the problems users have and benefits users enjoy with gesture-based user interfaces. 
From the results of the survey, he concluded that: users value gestures yet problems 
with gestures remain; users demand more gestures; and Newtons are used largely as 
notebooks whereas Pilots are used mostly has personal datebooks and addressbooks. 
The results of the survey provide insight for designers of pen-based user interfaces 
and related tools. 

Axel Kramer described an initial classification of interactive characteristics of two 
dimensional gestures in interactive systems [20]. Such a classification describes one 
design space for the usage of two-dimensional gestures in interactive systems and 
thus presents possible choices to system designers. Empirical researchers can make 
use of such a classification to make systematic choices about aspects of gesture based 
systems that are worth studying. Finally, it can serve as a starting point for drawing 
parallels and exploring differences to gestures used in three-dimensional interfaces. 

Allan Chris Long performed a pair of experiments to determine why users find 
gestures similar [21]. From these experiments, he has derived a computational model 
for predicting perceived gesture similarity that correlates 0.56 with observation. He 
incorporated the results of these experiments into Quill [15]. Quill can help designers 
create and improve gestures. It is designed to allow designers with no expertise in 
gesture recognition or in psychology to create gestures that are easy for the computer 
to recognize and that people will not easily confuse with one another. 

Allan Chris Long also performed an experiment to determine what factors affect 
gesture memorability [15]. This experiment showed iconicness to be the single most 
important factor for gesture memorability, which is consistent with memorability of 
other objects. Based on the partial success of prediction based on geometry, he be-
lieves it may be possible with more data to partially predict memorability.  

3   Survey on Pen Gestures 

The survey is based on observation and usage of twelve famous pen-based systems, 
including Windows XP Tablet Edition[10], Mac OS X Tiger[11], Newton[22], Palm 
OS[23], Cinema Listing Application [24], Tivoli[1], Quickset[25], Teddy[9], 
SILK[26], Air Traffic Control[27], CADesk [28], MindManager [29]. These systems 
can be divided into five fields: Text Editing, Ink Editing, sketch modeling & 3D  
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manipulation, UI designs and Air Control. We have investigated 100 pen gestures in 
these systems. These gestures can be divided into three categories. First category is 
pen gestures with “iconicness” property. Second category is pen gestures represented 
by the first character of command name. Third category is pen gestures with no obvi-
ous relation with command it represent. For example, ‘Delete’ command is used in 
lots of pen-based system. It can be represented by three pen gestures: , , . 
First gesture simulates scissors. Second gesture is the first character of ‘Delete’. And 
we can not find any relation between the ‘Delete’ command and the third gesture. In 
100 gestures, we found 64 gestures have iconicness property. 12 gestures are repre-
sented by the first character of command name. 24 gestures have no obvious relation 
with command they represented. We also found two main problems of pen gestures 
from these systems. First, one gesture is applied in different systems in same field to 
do different commands. For example, and  are used as “Scroll up” command 
and “Scroll down” command in Tivoli. These two gestures are also used in Mind-

manger as “Zoom in” command and “Zoom out” command.  is used as “Undo” 
command in Air Traffic Control, and used as “Delete” command in Quickset. Once 
user needs to use both systems, he will easily do wrong operations in each system. 
And it will make him confused with the relation between pen gesture and command. 
Second, different gesture categories are designed in one system. For example, gesture 

 and  are used in SILK [26]. Gesture  used to perform “Delete” command.  
is used to perform “Copy” command.  is in first gesture category which simulate 
scissors.  is in second gesture category which is the first character of the word 
“Copy”. Pen gestures in different gesture categories applied in one system make user 
confused and influenced his learning and memorizing ability.  

From the survey, we consider that there should be a uniform gesture design princi-
ple for designers. And gestures in different gesture categories shouldn’t be designed 
in one system. 

4   Questionnaire 

In order to validate whether pen gestures with “iconicness” property help to improve 
their learnablity, we conducted a questionnaire to evaluate the matching degree be-
tween commands and pen gestures, to discover the characteristics that user-centered 
pen gestures should have. 

We chose 20 text editing commands and pen gesture candidates to each command. 
These pen gestures came from two sources, one source is from pen-based systems 
currently used, the other is from our own design through group discussion. Based on 
these commands and corresponding gesture candidates, we designed a questionnaire 
to evaluate the matching degree between commands and gestures, and to discover the 
characteristics that “good” gestures should have and to set up the foundation for the 
gestures’ classification by characteristics. 

In our questionnaire, participants were assumed editing an electronic document 
with a pen and performing editing tasks with pen gestures. One document contains 20 
items. Each item has an editing task. And each task has 4 pen gesture candidates listed 
which are related to the task. Participants were asked to sort the pen gestures by the 
rule that the most matching pen gesture should be arranged to the first, the second 
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most matching gesture to the second, and so on. Simultaneously, participants were 
also asked to give the reasons why the first gesture is the best one.  

Our participants were selected from postgraduates. They are all skilled in using 
computer and Microsoft Office. And they are familiar with editing tasks listed in our 
questionnaire. We had totally sent out 60 questionnaire forms and received 58. From 
received questionnaires, we made a statistic analysis with SPSS. Then, we analyzed 
the reasons participants expressed, and classified these reasons. These classifications 
can indicate the characteristics which they think good gestures should have.  

Iconicness. 90% and more participants held that pen gestures with visual meaningful 
related to commands are easy to be remembered and learned. 

Operating easily. Over 50% participants considered that easy operating gestures 
should have some characteristics. First, it should be operated conveniently. Second, 
it’s better to draw one pen gesture in one stroke. Third, pen gestures should be de-
signed as a curve.  

Good-looking on figures. About 10% participants like gestures of close curve. Some 
participants like comfortable and good-looking gestures. 

From results, we can see that over 90% participants consider iconic is an important 
characteristic for good pen gestures. In next chapter, we will conduct a survey on 
single-stroke gestures currently used in pen-based systems, to investigate the current 
using status of pen gestures with this characteristic. 

5   Pen Gesture Learnability Analysis 

According to the results, “iconic” pen gestures are more learnable by participants. It is 
probably because these gestures are visual and meaningful, and are easier to connect 
the meanings of commands. Dual Coding Theory [16] can give a good explanation. 

The point of the fact that participants learn the pen gestures is that they need to 
form gestures’ representation of imagery in their minds at first, and then store them 
into long-term memory by rehearsal. At the same time, participants need not only to 
remember the gestures, but also to connect the gestures, which can cause participants 
to form representation of imagery in their minds, and the matching commands, which 
can cause participants to form prepositional representation in their minds. The dual 
coding theory proposed by Paivio assumes that there are two cognitive subsystems, 
one specialized for the representation and processing of nonverbal objects/events (i.e. 
imagery), and the other specialized for dealing with language.  

Paivio also postulates two different types of representational units: “imagens” for 
mental images and “logogens” for verbal entities. Logogens are organized in terms of 
associations and hierarchies while imagens are organized in terms of part-whole rela-
tionships. Dual Coding theory identified three types of processing how two systems 
can been connected: (1) representational, the direct activation of verbal or non-verbal 
representations, (2) referential, the activation of the verbal system by the nonverbal 
system or vice-versa, and (3) associative processing, the activation of representations 
within the same verbal or nonverbal system. A given task in our experiment  
may require all of the three kinds of processing. As we can see, verbal system and 
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nonverbal system can be associated together in terms of referential connections be-
tween logogens and imagens. If stimulus such as pen gestures and commands can 
improve the connections, these two systems will also have cumulate improve effect 
for the users’ remember to the stimulus. For our design, the gestures directed clearly, 
object-metaphor and established by usage, can not only benefit users’ representation 
of imagery, but also benefit referential connections between two systems. So they are 
easy to remember. 

From the viewpoint of Norman [30], when a user performs a task, his processing 
ability is limited by two factors: the processing resources available and the quality of 
data available. There is a trade-off between resources and data quality. Because lots of 
resources required in a task will cause heavy cognitive load. A primary design objec-
tive should be to minimize resource consumption by improving data quality. But the 
data quality improvement relies on training for the task. So lots of time will be spent. 
How to get high data quality without spending lots of time in training? Pen gesture 
with “iconicness” property gives us a good solution. The information presentation 
style in those gestures is analogous to natural working style in paper. It makes use of 
human’s knowledge about the natural working environment which exists in human’s 
mind for many years. So when a user interacts with those pen gestures, he will feel 
familiar with such interaction context. And the interaction efficiency will be  
increased. 

6   Pen Gesture Recognition Effect Analysis 

Besides learnability, recognition effect is another important factor that influences the 
usability of pen gesture. It is typical perceptual process for people to recognize ges-
tures. This process of recognition is to compare the sensory information in a gesture 
sample with the relative information stored in people’s long-term memory, and to 
determine the best match between items in long-term memory and the sensory infor-
mation. In this paper, we do not design a new recognition algorithm for pen gesture. 
Instead, we applied a widely used algorithm from Rubine [12] as our recognition 
algorithm for pen gestures. And based on it, we will analyze Rubine’s feature set, and 
improve the feature set to gain higher recognition accuracy. 

Rubine’s algorithm takes a statistical approach to recognition, based on a set of 
measurable geometric features about the pen gesture, including features about initial 
angle, length of bounding box diagonal, angle of bounding box diagonal, distance 
between first and last points, angle between first and last points, length, total angle 
traversed, sum of absolute value of angle at each point, sum of squared angle at each 
point (sharpness), square of maximum speed, duration etc. Rubine chose these fea-
tures because they relate to observable geometric properties, which is helpful for 
people understand the recognition [15].  

We built a tool for designing and recognizing pen gestures based on Rubine’s  
algorithm. It is used to collecting samples, recognizing samples and evaluation. The 
algorithm is nearly ideal if the set of samples and the Mahalanobis distance [33] is 
small. But after lots of testing, we found some problems about the algorithm. And we 
add some improvements on it.  
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The Feature of Point of Intersection 

When we designed two kinds of pen gesture shown in figure 1, we found that the last 
kind is used to being recognized as first kind. Though the set of sample has been ad-
justed several times, the problem still exists. Figure 2 is two strokes input by user that 
has wrong recognition result. And we found that the Mahalanobis distance of two 
strokes is between 20 and 30. It is far smaller than 150: the normal value of rejecting 
recognition. 

         

Fig. 1. Two kinds of pen gesture 

      

Fig. 2. Two samples with wrong recognition result 

It makes us know that the features between samples and the average value of  
recognition result are very close. And after carefully check of our set of sample, the 
possibility of the problem caused by the wrong or tousy samples are excluded. It is 
confusing because user considers these two kinds of pen gesture is dissimilarity. The 
most obvious feature is that the first kind of pen gesture has one close circle, the sec-
ond kind has two.  

After we analyze Rubine’s algorithm, we found that f9, f10, f11 in Rubine’s fea-
ture set are related to curvature property of pen gesture. From figure 2, we can see 
that in two samples, the closed circles in pen gestures sketched are all not roundness. 
It can be considered as composed of a part of arc and a section of curve with low 
curvature. It is possible that the feature about f9, f10, f11 in the second kind of pen 
gesture is same as the first kind. That’s the reason why high wrong recognition rate 
exist between these two kinds of pen gestures. 

In order to solve the problem, we added a new feature to Rubine’s feature set. We 
select the property: num of point of intersection in the stroke to judge the num of 
close curve in a pen gesture. There are some reasons for us to select the feature. First, 
it’s a nature feature for human to judge the num of close curve in a stroke. Second, it 
can completely solve this kind of problem we discussed. Third, it can be calculated 
easily. After adding the feature, we still use the same set of samples to build new 
classifier. We found that the problem is disappeared. At the same time, the recogni-
tion accuracy of other pen gestures is not influenced obviously. 

The Size of Samples 

Rubine’s algorithm does not use stroke normalization. The algorithm uses the weight 
of different features to embody the influence of difference between sample sizes. If 
the difference is obvious, the weight of angle of bounding box diagonal, length, and 
distance between first and last points will be small. If the training environment and 
application environment is different. It’s possible that the value of specific feature can 
not embody the right weight. Then the recognition accuracy will be influenced. We 
found this problem when we use hand-hold devices to test pen gestures that were 
trained on pc. The rejected recognition rate of some pen gestures is over 20% on 
hand-hold devices. However, those gestures can be nearly 100% recognized correctly 
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on desktop pc. The reason is that the point num in one kinds of pen gesture in differ-
ent environment is very different. The input area and display resolution on desktop pc 
is far higher than on hand-hold devices. Therefore, the point num of same kind of pen 
gesture input on desktop pc is far more than on hand-hold devices. And it result in the 
bounding box diagonal, length, distance between first and last points is very different.  

There are two methods to solve the problem. The first method is to training pen 
gestures on hand-hold devices to build new classifier. The second method is to do 
stroke normalization before building classifier. The first method isn’t a good choice 
because every new application environment will cause additional work to training and 
building new classifier. The second is good that it can eliminate the influence of dif-
ference between sample sizes on Rubine’s feature set. Therefore, the user did not care 
what size of the pen gesture he should input, he just focus on the inner geometric 
features of the pen gesture. 

7   Evaluation 

In these experiments, we compared the pen gestures with “iconicness” property re-
lated to commands designed by us, the gestures designed by A Chris Long [15], and 
gestures used in pen-based systems, to see which kinds of gestures is benefit to users 
on learnability. Correspondingly, we built three groups: visual-gestures group, crite-
rion-gestures group and general-gestures group. We selected 12 editing commands 
from foregoing questionnaire investigation. Commands and related pen gestures in 
three groups are listed in Table 1. 

Table 1. The experimental materials 

Commands undo redo rotate select 
all 

align 
left 

align 
right 

visual-gestures group 

    
criterion-gestures group 

    
general-gestures group 

    
Commands cut zoom 

in 
zoom 
out 

scroll 
up 

scroll 
down

delete 

visual-gestures group 

    
criterion-gestures group 

    
general-gestures group 
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Fifty one sophomore and junior volunteers were recruited from a university. All 
participants took part in the first experiment, and forty seven participants took part in 
the second experiment. Experimental procedure in practice was as follows. 

The first experiment was to ask participants to remember the matching experimen-
tal materials, which was used the anticipation method in memory research. When 
participants were coming into the experimental room, the experimental experimenter 
distributed them into three different process levels by the way of randomizing en-
tirely. Before the experiment was beginning, the experimenter presented experimental 
instruction. Then, participants did exercises. When the experiment was beginning, the 
experimental software presented the matching materials of commands and gestures by 
2 seconds per matching material, which was the stage of presentation. Each partici-
pant should learn twelve matching materials in one process level and try their best to 
remember these materials. Afterwards, the stage of test started. In this stage, the soft-
ware only presented commands’ name, and asked participants to recall the gestures, 
then drew them onto the screen with the stylus. After four seconds, the software gave 
a right feedback to participants. At the same time, the experimenter had the task to 
check participants’ responses. If their responses were right, the experimenter wrote 
“ ”; else, wrote “×”. If participants couldn’t recall all gestures right in one serial, 
experimenter should asked them to do another serial, until they can recall all gestures 
right in two continuous serials. 

The second experiment was to measure participants’ retention of memories. Par-
ticipants came into the experimental room again at intervals of 48 hours since the first 
experiment ended. This procedure was similar to the first one. However it directed 
into the stage of test, without the stage of presentation. 

The data was imported into SPSS and MS Excel for analysis. Times of learning 
experimental materials are the main index of gesture’s learnability. We first compared 
the different among times of learning three materials in the first experiment. We then 
analyzed the data by Nonparametric Tests for 2 Independent Samples.  

According to the results, we can see that there are no statistically significant differ-
ences between the learning times of visual-gestures group and of criterion-gestures 
group in first experiment, which indicates that there are no significant differences 
between the learning effect of visual-gestures group and of criterion-gestures group in 
first experiment. However, the learning times of visual-gestures group are signifi-
cantly less than of general-gestures group, which indicates that the first learning effect 
of visual-gestures group is better than of general-gestures group.  

We analyzed participants’ mean percent rates of right response for their every 
learning time in the first experiment. The results are shown in figure 3. 

Then we analyze times of learning three materials in the relearning experiment. 
According to the results, we can see that the learning times of visual-gestures group 
are higher significantly than those of criterion-gestures group and those of general-
gestures group, which indicates that the relearning effect of visual-gestures group is 
better than those of criterion-gestures group and those of general-gestures group. 
According to the results, it also indicates that the relearning effect of criterion-
gestures group is better than those of general-gestures group. The results are shown in 
figure 4. 
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Fig. 3. Result in the first experiment               Fig. 4. Result in the second experiment 

Cooper considered that good habitual usages can be learned only one time [34]. 
We measured the gestures which 95% percent and more participants could response 
rightly and could be right continuously. We named these gestures as one-time-learned 
gestures. The formula for the memorial retains is as follows. 

Percent of the memorial retains = 100% * (times of the first learning – times of re-
learning)/times of the first learning. 

According to this formula, we calculated memorial retains at intervals of forty-
eight hours between two experiments, then, compared whether there are significantly 
different among these three gestures’ groups. We can see that the memorial retains of 
visual-gestures group are higher significantly than those of criterion-gestures group. 
And they are also higher than those of general-gestures group, but it doesn’t access to 
the significant levels. There are no significant differences of memorial retains be-
tween criterion-gestures group and general-gestures group.  

8   Conclusion 

In this paper, we performed a research on user-centered design and recognition to 
improve the learnability and recognition accuracy of pen gestures. Firstly we per-
formed a survey of 100 pen gestures in twelve famous pen-bases systems to find 
problems of pen gestures currently used. And we conducted a questionnaire to evalu-
ate the matching degree between commands and pen gestures to discover the charac-
teristics that a good pen gestures should have. Then cognition theories are applied to 
analyze the advantages of those characteristics in helping improving the learnability 
of pen gestures. From these, we analyze the pen gesture recognition effect and present 
some improvements on features selection in recognition algorithm of pen gestures. 
Finally we use a couple of psychology experiments to evaluate twelve pen gestures 
designed based on the research.  It shows those gestures is better for user to learn and 
use. Research results of this paper can be used for designer as a primary principle to 
design pen gestures in pen-based user interfaces. 
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Abstract. The main challenges of realistically simulating the displace-
ment of humanoid pedestrians are twofold: they need to behave realis-
tically and they should accomplish their tasks. Here we present a field
potential formalism, based upon boundary value problems, that allows a
group of synthetic actors to move negotiating space, avoiding collisions,
attaining goals in prescribed sequences while at same time producing
very individual paths. The individuality of each pedestrian can be set
by changing its inner field parameters. This leads to a broad range of
possible behaviors without jeopardizing its task performance. Simulate
situations as behavior in corridors, collision avoidance and competition
for a goal are presented and discussed.

1 Introduction

The use of synthetic actors able of acting as autonomous agents in applications
involving virtual environments is becoming more and more common [1]. Suitable
skills for those actors (often simulating human beings) include: a realistic appear-
ance, the ability to produce natural movements, and the aptitude to reasoning
and act in an unforeseeable way.

To simulate the behavior of human beings, it is usual to consider system archi-
tectures implemented in layers. The lowest one deals with the rotation of each
body joint. The intermediary level is responsible for encapsulating composed
movements that bring together a set of single joint motions. These movements
can represent simple tasks (e.g. stand-up, sit-down, take something, give a step)
that used together can provide a higher abstraction level, so called behaviors
(e.g. open the door, walk from one position to another one, etc). Finally, the
higher abstraction motion layer (cognitive) involves a reasoning mechanism that
makes decisions and commands actions in view of the context information (e.g.
position, orientation, and distance to target) and humanoids intentions, beliefs
and desires.

In a previous work [2] we presented a well succeeded proposal for the imple-
mentation of the cognitive level using the BDI (beliefs, desires and intentions)
architecture to simulate autonomous agents reasoning. However, good solutions
for lower level behaviors may also be investigated. Such solutions should preview
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not just a handy manner to specify complex tasks based on simple ones, but also
to consider the addition of expressiveness on those tasks.

The simulation of virtual humans moving into a synthetic world involves
mainly the environment specification, the definition of the agent initial posi-
tion as well as its target position in the world (also called goal). By setting those
parameters, a path-planning algorithm can be used to find a trajectory to be
followed. However, in a real world, if we consider several persons (all in the same
initial position) looking for achieving the same target position, each individual
path followed will be different. Even if we have the same task, the strategy used
for each one to reach his/her goal will depend on his/her physical constitution,
personality, mood and reasoning.

In this paper we propose a path-planning approach based on boundary value
problems to find paths between an initial and a target position in a dynamic
environment. The paths found by our algorithm are smooth and variable, de-
pending on the individual characteristics of each agent, which can be dynamically
changed.

The paper is organized as follows. In Section 2 we presented some related
work on path-planning techniques for virtual humans. Section 3 describes our
path planner based on harmonic functions and Section 4 presents our main
contribution, involving the extensions for the basic method. In Section 5 we
deeply explain the way we implemented the method and in Section 6 we present
our results. Finally, in Section 7 we present the conclusions and point out some
future work.

2 Related Work

Motion planning methods have been largely studied by the robotics community.
As in this paper our focus is on its use for simulating human beings behaviors
while walking, we limit this Section scope for the works involving humanoids
animation.

Lengyel et al. [3] have published one of the first articles on the subject of mo-
tion planning as a computer graphics problem. Their work presented a solution
for the classical Piano Movers problem based on the use of standard graphics
hardware to rasterize obstacles and generates the configuration space. The mo-
tion path produced by the planner is minimal with respect to the Manhattan
distance metric and includes rotations and translations.

In order to generate more realistic results and allows its use in real-time
applications, several authors proposed motion planning solutions based on two
steps. In general, the first step is dedicated to define a valid path, while the
second adapts this path in order to generate a more realistic movement. Kuffner
[4] proposed a technique with the first step dedicated to the path-planning and
the second to the path-following. The 3D scenario is projected in 2D and the
humanoid treated as a disc, reducing the planning problem to a 2D problem.

Metoyer and Hodgings [5] proposed a similar technique also based on two
steps. In their method, the characters have a pre-defined path to follows and
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this path is smoothed and slightly changed to avoid collisions by using force
fields.

The development of randomized path-finding algorithms, specially the PRM
(Probabilistic Roadmaps) [6] and RTT (Rapidly-exploring Random Tree) [7], al-
low the use of large and most complexes configuration spaces, generating paths
most efficiently. In this way, the challenge becomes more the generation of re-
alistic movements than finding a valid path. Choi et al. [8] proposed the use
of a captured movements library associated to the PRM to generate realistic
movements in a static environment. Despite the fact the path maps should be
generated in a pre-processing phase, the results are very realistic.

Thanks to the researches in robotics, the path-planning problem is almost
solved. However, in the computer graphics domain, to find a natural and realistic
way to move a character is as important as to find a path between two points.
The most part of the works developed since now propose methods based on two
separate phases. In the next sections we present our own proposal for generating
realistic paths based on a single phase.

3 Harmonic Functions Path Planner

Whether it is a human being, a robot or a synthetic actor the action of moving
from an initial position to a goal position in space consists of at least two stages:
a planning stage when a path is devised; and an implementation stage when the
path is followed by the moving agent. The first stage deals with a combination of
concepts like efficiency, risk avoidance, computability, etc. To the second stage
belongs the series of routines or corrections that the agent has to perform to
adapt its motion when the predefined path cannot be followed due to unpre-
dictable changes in the agent’s surrounds, or in case of robotics, due to machine
limitations.

In a seminal work in the field of robotics, Khatib [9] proposed a method that
fuses these two stages in a very elegant way. He considered that instead of look-
ing for a good path and trying to control the agent’s movement around it a
good planner should provide a potential field, or a force field (its gradient), that
expanded the whole region of manoeuvre, producing a continuum of alterna-
tive paths. The potential field is devised to incorporate obstacles and goals, and
should guide agent at all times indicating the best direction to follow. Its most
straightforward implementation is a simple superposition of fictitious forces: ob-
stacles forces that repel the agent to prevent collisions; and target forces that
attract the agent. Such superposition is not always successful since for some en-
vironment configuration the agent can end up trapped in local minima before
reaching the target.

Up to this date, the best way to produce a potential field that is free from
local minima is through the numerical solution of a convenient partial differential
equation with boundary conditions - a boundary value problem (BVP). The
boundary conditions are central to the method indicating which regions in the
environment are obstacles and which are targets.
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The first proposal in this direction was made by Connolly and Grupen [10] and
it is called the method of the harmonic functions. In their method the potential
fields are the solutions of the Laplace’s equation - whose solutions are called
harmonic functions

∇2 p(r) =
∑

i

∂2p(r)
∂x2

i

= 0 (1)

where r is the environment coordinates. The Laplace’s equation does not present
local minima, and that is why it was chosen. They also proposed boundary
conditions such that the potential should be one in the contours of the obstacles
and zero in the region of the target. Setting up the value of the function in the
boundaries is called a Dirichlet boundary condition in the language of a BVP.

The agent uses the gradient descent of this potential to determine the path
that connects its current position to the target. As there is only a minimum
defined in target position, it exists exactly one path from any point to the po-
tential to the target. This method is formally complete, i.e., if there is a path
that connects the agent position to the target it will be found. The resulting path
is smooth and safe and it minimizes the collision probability with the obstacles.

4 Beyond Path Planner Based on Harmonic Functions

Laplace’s equation is not the only partial differential equation that generates
functions without local minima. In [11], Trevisan et al. came up with a framework
for exploratory navigation based on a family of potential field functions that does
not possess local minima. The authors suggest the following equation

∇2 p(r) + εv.∇p(r) = 0 (2)

for handling sparse environments, where v is a bias vector and ε is a scalar.
The addition of the term εv∇p breaks the symmetry of vector field generated
by Laplace’s equation increasing the system performance in sparse environments
during the exploration process.

The central contribution of this paper is to use the Equation 2 for generating
different behaviors (illustrated in this work through the path followed by each
agent) for several agents in a known environment. As discussed before, if the
agent is controlled by a vector field produced by harmonic functions, it will
always tend to follow a path that minimize the collision probability with the
obstacles, i.e., in an indoor environment the agent will tend to follow a path
equidistant to the walls, as shown in Figure 1(a). This behavior is not always
adequate to simulate humanoid motion since it looks very stereotyped.

The adjustment of the vector v can produce a path close to the walls, as shown
in Figures 1(b) and (c). The vector v, also called behavior vector, can be seen
as an external force field that counteract the natural tendency of agent moving
away from the obstacles. The parameter ε can be understood as the strength or
influence in following the direction defined by vector v instead of the direction
produced by harmonic functions.
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Fig. 1. Different paths followed by agents using Equation 2: (a) path produced by
harmonic potential, i.e., with ε = 0; (b) with ε = 0.8 and v = (1, 0); (c) with ε = 0.8
and v = (−1, 0); and using the same vector v = (1, 1) and different values to the
parameter ε (0.4, 0.8, 1.2, 1.6, 2.0, 2.4 and 7.2)

Figure 1(d) shows the results obtained in several experiments that use differ-
ent ε and the same vector v = (1, 1). This flexibility allows to develop different
and interesting behaviors to generate realistic humanoid motion during the nav-
igation process. In our case, we simulated several agents with different v and ε
and put them into a known environment to perform a couple of navigation tasks.

5 Implementation

In this section, we present the global environment representation, the structure
of the agents that act on the environment, as well as the mechanisms used to
control each agent behavior.

5.1 Environment Global Map

The environment is represented by a set of homogenous meshes {mk}, where
each mesh mk is associated to a target ok and has Lx × Ly cells, denoted by
{ck

i,j}. Each cell ck
i,j corresponds to a squared region centered in environment

coordinates r = (ri, rj) and stores a particular potential value pk
i,j . These maps

are used by the harmonic path planner (see Section 3) to assist the agent to
reach a specific target.

Each mesh mk has the potential values of its cells relaxed independently using
the Equation 1. After the convergence, the map mk stores a potential field that
is used to reach the target ok. This procedure is performed before the simulation
starts and we consider that the environment is surrounded by obstacles in order
to delimit the agent navigation space.

5.2 Agent Local Map

Each agent ak has one map amk that stores the current local information about
the environment obtained by its sensors. This map is centered in the current
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agent position and represents a small fraction of the global map, nearly 10% of
the total area covered by the global map.

The map amk has lkx × lky cells, denoted by {ack
i,j} and can be divided in

three regions: the update zone (u-zone); the free zone (f-zone) and the border
zone (b-zone), as shown in Figure 2(a). In a similar way, each cell corresponds
to a squared region centered in environment coordinates r = (ri, rj) and stores
a particular potential value apk

i,j .

Fig. 2. (a)Agent Local Map. The white, light gray and dark gray cells comprise the
update, free and border zones, respectively. (b,c)Agents acting in the real environment.
Each agent senses the environment, updates its local map (b) and navigates towards
the target o1 (c).

The area associated to each agent map cell is smaller than the area associated
to the global map cell. The main reason is that the agent map is used to produce
a refined motion, hence, the smaller cell size the better the quality of motion;
while the global map is used only to assist the long-term agent navigation.

5.3 Updating Local Maps Using Global Maps

Each agent ak has a well determined goal ogoal(k) (the function goal maps the
agent number k into its current target number. In this description, we will con-
sider that each agent must reach only one target. The extension to multiple
targets is straightforward and will be commented in Section 5.5), a particular
vector vk, that controls its behavior, and a εk that determines the influence of
vk. The same goal, v and ε can be designated to several agents.

When the agent ak navigates the environment, it uses its sensors to perceive
the environment and to update its local map with the information about the
obstacles and other agents. The agent sensors set a view cone with aperture α.
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Figure 2(b) sketches a particular instance of the agent local map. The u-zone
cells {ack

i,j}, inside the view cone, with obstacles or agents have their potential
value set to 1. Obstacles are not considered in the u-zone out of the view cone.
This procedure assures that dynamic or static obstacles behind the agent do not
interfere in its future motion.

The agent ak calculates the global descent gradient on the cell in the global
map mgoal(k) containing its current position. The gradient direction is used to
generate an intermediate goal in the border of the local map setting the potential
values to 0 of a couple of b-zone cells. While the other b-zone cells are considered
as obstacles having their potential values set to 1. In Figure 2(c), each agent
calculates the global gradient in order to project an intermediate goal in its local
map. As the agent local map is delimited by obstacles, the agent is pulled towards
the intermediate goal using the direction of its local gradient. The intermediate
goal helps the agent ak to reach its target ogoal(k) while allowing it to produce
its particular motion.

In some cases, the target ogoal(k) is inside both the view cone and the u-zone,
and consequently, the local map cells associated are set to 0. The intermediate
goal is always projected even if the target is mapped onto the u-zone otherwise
the robot can easily get trapped because the robot would be taking into con-
sideration only the local information about the environment, in a same way as
traditional potential fields [9].

The f-zone cells are always considered free of obstacles, even when there are
obstacles there. The absence of this zone may close the connexion between the
current agent cell and the intermediate goal due to the mapping of obstacles in
front of intermediate goal. When this occurs, the robot gets lost because there
is no information coming from the intermediate goal to produce a path to reach
it. The f-zone cells handle the situation permitting always that the information
about the goal is propagated to the cells associated to the agent position.

After the sensing and mapping steps, the agent updates the potential value
of its map cell using a discrete version of Equation 2,

apk
i,j =

1
4
(apk

i−1,j + apk
i+1,j + apk

i,j−1 + apk
i,j+1) +

εk

8
((apk

i+1,j − apk
i−1,j)v

k
x + (apk

i,j+1 − apk
i,j−1)v

k
y ) (3)

where vk = (vk
x, v

k
y ) is the vector that controls the behavior of agent ak and

εk ∈ [−2,+2] and represents the influence of vector vk. The local potential is
partially relaxed [12] and the agent calculates the gradient descent of its position
in the local map amk by

dgradk =
(
(ack

px+1,py
− ack

px−1,py
)/2, (ack

px,py+1 − ack
px,py−1)/2

)
where px = �lkx/2� and py = �lky/2�, and it follows the direction θk calculated
by θk = arctan(dgradk

x, dgrad
k
y) where arctan(., .) is the inverse tangent taken

in the interval [−π,+π].
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5.4 Characterizing the Agent Behavior

In the real world, even if several people have the same goal, the strategy used
for each one to reach it will depend on different factors as: physical constitution,
personality, mood, and reasoning. In Figure 1 we shown we can simulate differ-
ent behaviors by setting both the behavior vector v and ε differently for each
agent. In this first example we kept the variables constant during the animation,
however we can produce more interesting behaviors dynamically changing vector
v and ε. For instance, the vector v can be controlled by a function defined by
the user, as in Figure 3. Even with this new complex behavior, which simulates
a drunk agent, the resulting potential guarantees that the robot reaches safely
the target.

(a) (b)

Fig. 3. Paths followed by agents using different equations that control the behavior
vector v: (a) v = (1, sin(ω ∗ t)); (b) v = (1, sin(ω ∗ t) + sin(ω/2 ∗ t)), with ω = π/18
and t the current simulation step

We can change v in a regular periodic fashion, as shown above, but it does
not need always to be the case. We can consider an agent that randomly changes
its behavior vector. Each new value of v is kept constant during an also random
time interval.

5.5 Algorithm

In this section we present the algorithm that implements the concepts shown
before and produce the humanoids simulation.

1. computes all the environment global maps (one for each possible goal ok)
2. for each agent ak, defines the behavior vector vk and εk. Each variable can

be either static or dynamic. If a variable is chosen to be dynamic then the
function that controls it must be specified.

3. for each agent ak do (asynchronously)
(a) reads its sensors in order to detect static and dynamic obstacles
(b) updates its map with local information about the obstacles and other

agents
(c) computes the global gradient descent and generates the intermediate

goal
(d) updates the potential field
(e) computes the local gradient descent and follows the gradient direction
(f) while not reaching the target ogoal(k) repeat the steps from (a) to (f),

otherwise stops moving
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The first two steps are performed in a pre-process phase. In relation to the
step 3, each agent executes independent and asynchronously the actions from (a)
to (f). This algorithm considers each agent must reach only one target. However,
the agent can be in charge of reaching several targets orderly. In this case, the
step (f) must be changed to

(f) while not reaching the target ogoali(k) repeat the steps from (a) to (f), oth-
erwise if goali(k) = goallast(k) then stops moving. Else repeats the process
with the next target ogoali+1(k).

6 Results

In order to illustrate the potentialities of our path-planning approach we made
some experiments considering a realistic situation. Taking into account the sce-
nario described bellow, we have induced some agents’ behaviors to verify some
considerations made before, as: how to accomplish the same task in different
ways; or how different agents avoid collisions, for example. In another set of
tests we have ran the algorithm considering a variable number of agents with
random objectives, behaviors and velocities. Our goal with these experiments
was to verify the motion diversity. Finally, we made some considerations about
performance.

We consider a small park in a town (see Figure 4). It has five accesses, a lake
in the middle and a popcorn-cart in the south. Characters in the simulation can
simply cross the park or stop to buy a popcorn bag and continue their walking.
It is a quite familiar real scenario; the large open area makes easy and clear
the simulation of different agents behaviors that will not be constrained by an
excessive amount of obstacles; by simulating a group of agents walking in the
park it is easy to verify the collision avoidance with dynamic obstacles (here
represented as other agents).

The set up for this scenario involves the statement of six possible goals, one
for each park access and another in front of the popcorn-cart. We will need to
compute 6 environment global maps. In our tests, we used a matrix with 60x60
cells to represent global maps and a matrix with 11x11 cells for the agent local
maps.

The first situation induced by us consists in simulating the behavior of 4 agents
while accomplishing the same task. The agents are initially disposed somewhere
in the park access west and their task consists on go to the popcorn-cart and
after, to quit the park by the access north. Figure 4 illustrates the results of an-
imation. Each agent accomplishes its task individually without the intervention
of the others. The small square specifies the moment where the agent 3 changes
its behavior vector v.

Figure 4(b) shows the same task of Figure 4(a), but in this case all the agents
are moving at the same time, therefore they compete for the targets. The paths
drawn in these two figures are slightly different and these differences are duo the
collision detection and avoidance between the agents.
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Target o2

Target o1

Target o2

Target o1

(a) (b) (c)

Fig. 4. Four agents individually accomplishing the same task (a) and accomplishing
the same task concurrently (b). Agent 1: v = (−0.707, −0.707), ε = 0.8 and step = 0.6
cells per frame; agent 2: v = (0.707, 0.707), ε = 0.8 and step = 0.5 cells per frame; agent
3: initially v = (sin(ω ∗ t), 1), changing to v = (0.707, 0.707) after some time, ε = 0.8
and step = 0.35 cells per frame; agent 4: ε = 0, and step = 0.46 cells per frame.(c)
Simulation of a set of 12 agents walking around the park with random behaviors.

Figure 5 shows two frames of the animation of two agents. One agent walks
from the north to the south while the other one walks from the south to the
north. Using our algorithm we automatically avoid the collision between the
two agents, since each agent is considered as a dynamic obstacle by the other.
However, the final path definition can be more or less natural, depending on the
parameters definition. In the sequence presented on Figure 5(a), we set ε as 0.
In this way, the behavior vector v is not considered. For the animation shown in
Figure 5(b), both agents begins the animation with ε = 0.0. When the proximity
is detected, the behavior vector v of each agent is oriented orthogonally to the
collision direction, forcing the movement to its right direction. At the same time,
the ε becomes equal to 0.6.

(a) (b)

Fig. 5. Two collision avoidance animation sequences produced with different values for
the behavior vector and ε

Finally, we generated some animation sequences without searching to repro-
duce any specific behavior. In those sequences we used 12 agents, ε = 0.8 for
all agents and the components of v randomly varying between -1 and 1. The
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agents step size are also randomly defined between 0.3 and 1.0 cells per frame.
The initial and final positions for the agents are arbitrarily chosen. The agents
can begin its movement from any valid position in the environment and its goal
is one of the 6 possible target positions described before. Figure 4(c) shows a
frame of one of the animation generated by us.

7 Conclusions and Future Work

This article presents a new approach for generating pedestrian behavior using
path planning based on numerical solution of boundary value problems. We
demonstrate that the correct adjustment of behavior vector and the parameter
ε, that determines the vector influence, can produce interesting behaviors, as
illustrated in Figures 1 and 3. These behaviors can be interchanged to produce
complex motions, as shown in Figure 4, oriented to the agent personality. In
this work, we do not implement the agent personality. This step is actually in
progress and will be shown in our future submissions.

The guiding potential of Equation 2 is free of local minima what constitutes a
great advantage when compared to the traditional potential fields. Furthermore,
the method proposed is formally complete and generates smooth and safe paths
that can be directly used in mobile robots. The local information gathered by
agent sensors allows treating the dynamic obstacles, as other agents navigating
in the environment.

We handle the usual costs associated to BVP calculations by using small
local maps, instead of a large map that cover all the environment, for each
agent. This permits to have several agents acting in the environments while
keeping an acceptable running time. Even with only local information about the
environment, the intermediate goals computed from the environment maps add
global information about the agent target in order to treat conveniently local
minima and to allow the agent to reach its target.

Another drawback is that the potential gets flat far from the target position
due to numerical precision. In these regions, the gradient is very small to provide
useful information to guide the robot. In this case, the robot can easily get lost.
We have successfully overcome this problem by using intermediate goals in the
flat region.

In the future, we intend: to test different path planners to minimize the com-
putational cost associated to the environment global map; to develop an architec-
ture to be implemented into the GPU to reduce the potential time computation;
and to develop an efficient data structure to compact the environment informa-
tion, such as quadtree, and an efficient algorithm to access this information in
real-time.
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Abstract. In recent years, large scale distributed virtual environments
(DVEs) have become a major trend in distributed applications, mainly
due to the enormous popularity of multiplayer online games in the enter-
tainment industry. Since architectures based on networked servers seems
to be not scalable enough to support massively multiplayer applications,
peer-to-peer (P2P) architectures have been proposed as an efficient and
truly scalable solution for this kind of systems. However, the main chal-
lenge of P2P architectures consists of providing each avatar with updated
information about which other avatars are its neighbors. We have de-
noted this problem as the awareness problem. Although some proposals
have been made, none of them provide total awareness to avatars under
any situation.

This paper presents a new awareness method based on unicast com-
munication that is capable of providing awareness to 100% of avatars,
regardless of both their location and their movement pattern in the vir-
tual world. Therefore, it allows large scale DVEs based on P2P archi-
tectures to properly scale with the number of users while fully providing
awareness to all of them.

1 Introduction

In recent years, large scale distributed virtual environments (DVEs) have become
a major trend in distributed applications, mainly due to the enormous popu-
larity of multiplayer online games in the entertainment industry. These highly
interactive systems simulate a 3-D virtual world where multiple users share the
same scenario. Each user is represented in the shared virtual environment by
an entity called avatar, whose state is controlled by the user through a client
computer. The system renders the images of the virtual world that each user
would see if he was located at that point in the virtual environment. Hundreds
and even thousands of client computers can be simultaneously connected to the
DVE through different networks, and even through Internet. DVE systems are
currently used in many different applications [30], such as civil and military dis-
tributed training [20], collaborative design [29] and e-learning [4]. Nevertheless,
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the most extended example of DVE systems are commercial, multiplayer online
game (MMOG) environments [5, 14, 27, 2, 33].

Architectures based on networked servers have been during last years the
major standard for DVE systems [30, 16, 35, 17, 9]. In these architectures, the
control of the simulation relies on several interconnected servers. Client comput-
ers are assigned to one of the servers in the system. In these architectures, each
new avatar represents an increase not only in the computational requirements of
the application but also in the amount of network traffic. Due to this increase,
networked-server architectures do not properly scale with the number of existing
users, particularly for the case of MMOGs [1].

Although techniques like Frontier Sets [34] have been proposed for structured
environments and small scale online games, these solutions cannot be extrapo-
lated to massively multiplayer online games. The most adequate scheme in order
to provide good scalability for large scale DVE systems seems to be P2P architec-
tures, and several online games based on P2P architectures have been designed
[22, 21, 8]. Nevertheless, P2P architectures must face awareness problem. This
problem consists of ensuring that each avatar is aware of all the avatars in its
neighborhood [32]. Solving the awareness problem is a necessary condition to
provide a consistent view of the environment to each participant. Effectively,
if two neighbors avatars are not aware of such neighborhood, they will not ex-
change messages about their movements and/or changes, and therefore they will
not have the same vision of the shared environment. Thus, providing awareness
to all the avatars is a necessary condition to provide consistency (as defined
in [36, 7, 28, 31]). However, it is not a sufficient condition. Even when using a
awareness method that determines at each moment which other avatars must
each avatar exchange messages with, time-space inconsistencies can arise among
different avatars because of clock drifts and/or network delays [36]. Awareness
is crucial for MMOGs, since otherwise abnormal situations could happen. For
example, a user provided with a non-coherent view of the virtual world could
be shooting something that he can see although it is not actually there. Also,
it could happen that an avatar not provided with a coherent view is killed by
another avatar that it cannot see.

In networked-server architectures, the awareness problem is easily solved by
the existing servers, since they know the location of all avatars during all the
time. Each avatar reports about its movement (by sending a message) to the
server where it is assigned to, and the server can easily decide which avatars
should be the destinations of that message by using a criterion of distance.
There is no need for a method to determine the neighborhood of avatars, since
servers can easily do this task.

However, in DVE systems based on P2P architectures the neighborhood at-
tribute must be determined in a distributed manner, in such a way that aware-
ness is provided to all avatars during all the time. Currently, several strategies
for providing awareness in DVE systems based on P2P architectures have been
proposed [11, 13, 18, 12, 10, 8]. Unfortunately, some of this proposals [13, 18, 8]
are based on multicast communications,therefore being unsuitable for MMOGs,
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the most extended type of large scale DVE systems. The methods proposed in
[11] and [12] do not guarantee awareness to all avatars (they do not provide a
awareness rate of 100 %), since these methods do not guarantee proper neighbor
discovery in all the possible cases [10]. Finally, the method proposed in [10] seems
to provide full awareness. However, this proposal has not been evaluated neither
on a real system nor with a simulation tool. The high number of neighbors that
each avatar needs to communicate with in order to provide awareness suggests
that this method is not able to provide full awareness in a scalable way.

In this paper, we propose a method that provides full awareness to large
scale DVE systems based on peer-to-peer architectures in an actually scalable
way. Performance evaluation results show that the proposed algorithm can pro-
vide full awareness in a large scale DVE system, even when avatars follow non-
uniform movement patterns and they are unevenly distributed in the virtual
world. Therefore, this algorithm can allow P2P architecture to become an actu-
ally efficient solution for large scale DVE systems like massively MMOGs.

The rest of the paper is organized as follows: Section 2 analyzes the existing
proposals for providing awareness in DVE systems based on P2P architectures.
Section 3 describes the proposed algorithm and how it improves the weaknesses
of the existing proposals. Next, Section 4 presents the performance evaluation of
the proposed method. Finally, Section 5 presents some concluding remarks and
future work to be done.

2 Background

Peer-to-peer architectures were proposed some years ago for DVE systems [6].
However, during last years most of DVE systems have been designed following a
networked-server architecture, and a lot of research has been targeted to improve
the performance of DVE systems with this architecture [30, 25, 15, 3]. Neverthe-
less, the expansion of MMOGs has made large scale DVE systems to become
usual, and networked-server architectures seem to lack scalability to properly
manage the current number of avatars that these system can support (up to
some hundred thousands of avatars [5]). As a result, some studies have proposed
again the use of P2P architectures [11, 13, 18, 10, 12], since this schemes seems to
be the most scalable one. Nevertheless, before a P2P architecture can be used
to efficiently support large scale DVE systems, the awareness problem must be
still solved.

Some proposals use multicast communications to guarantee awareness [13, 18].
Although multicast greatly improves scalability, it is hardly available on the In-
ternet, which is the natural environment for multiplayer online games. Therefore,
this scheme cannot be used in most of large-scale DVE systems.

The solutions proposed in [11] and in [12] use unicast communication, but
they do not provide total awareness. For example, the method proposed in [11] is
capable of providing a awareness rate of 95%. However, a awareness rate of 100%
is crucial for MMOGs, since it guarantees that no faults like being killed by an
”invisible” avatar will occur. The reasons that keep this scheme from providing
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full awareness are on one hand that it limits the number of neighbors that a
given avatar can see. When avatars move following a non-uniform movement
pattern, some regions of the virtual world can be crowded. In this case this
scheme cannot guarantee awareness. On the other hand, in this proposal the
awareness of a given avatar i depends on the spatial location of the neighbors
of avatar i. If the location of these neighbors is not uniform around avatar i,
some other avatars could approach i without being detected by the neighbors of
i. This case is particularly frequent when avatars follow non-uniform movement
patterns. Something similar could happen if the method proposed in [12] is used,
as described in [10].

A different approach uses Frontier Sets to provide awareness in DVE systems
simulating a structured virtual world [34]. Nevertheless, in this approach aware-
ness is based on exchanging information between each pair of avatars. Those
avatars not having any frontier between them must exchange information about
their location and actions 10 times per second, while those avatars having a
frontier between them must check this frontier every 5-10 seconds. This mas-
sive exchange of information is very costly in terms of scalability. As a result,
this proposal does not show that full awareness is guaranteed while maintaining
scalability.

Finally, the method proposed in [10] is based on the use of Voronoi diagrams,
and it seems to provide full awareness. However, the use of Voronoi diagrams
makes this method require each avatar i to communicate with a high number
of avatars, even though they are located far away from i and they have a small
Area Of Interest (AOI) [30]. This feature suggests that this method is not able to
provide full awareness in a scalable way. In fact, this proposal lacks a performance
evaluation (either on a real system or with a simulation tool) that shows an actual
scalability of the method while providing a 100% of awareness. Therefore, the
efficiency and scalability of this proposal cannot be stated.

3 A New Awareness Method: COVER

In order to provide awareness to a given avatar i, the propose method (called
COVER) involves all the avatars surrounding i up to the second level of neigh-
borhood, like the method proposed in [10]. The first-level neighbors of an avatar i
are those avatars in the DVE system in whose AOI avatar i appears. The second-
level neighbors of i are all the neighbor avatars of the first-level neighbors of i.
In order to avoid cyclic relationships (redundant messages), if a second-level
neighbor is also a first-level neighbor, then it is not considered as a second-level
neighbor. Each time an avatar i moves, it sends an updating message to each of
its first-level neighbors. These neighbors in turn propagate the updating message
of i to the second-level neighbors of i.

Unlike the methods proposed in the previous section [11, 10], COVER classifies
avatars in two categories: covered or uncovered. Each avatar checks its classi-
fication each time it moves and each time that any of its neighboring avatars
moves. We denote an avatar i as covered if its first or second-level neighbors
are located in such a way that the intersections of their AOIs totally cover the
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AOI of i. Otherwise, it is considered as an uncovered avatar. COVER method
offers auto-awareness to covered avatars, because no avatar can approach them
without being detected by their neighbor avatars.

Unlike the method proposed in [11], our approach provides awareness also
for uncovered avatars, by means of using supernode avatars. These avatars play
multiple roles, acting not only as simple avatars but also as pseudo-servers [30].
Supernodes represent an upper layer in the awareness scheme, and they provide
the required scalability while ensuring a awareness rate of 100%. Supernodes are
responsible of providing awareness to the uncovered avatars in their surround-
ings, and they are initially designated by the entity in charge of the initialization
of new avatars (denoted as Loader [26] or Bootstrap server [11]) when they join
the DVE system. At boot time, the loader divides the 3-D virtual scene into
square sections called regions. For each region, the closest avatar to the geo-
metric center of each region is selected by the loader as the supernode for that
region. From that instant, supernodes are responsible of providing awareness to
those uncovered avatars that are located within their regions. Uncovered avatars
must send their updating messages not only to their neighbors, but also to the
corresponding supernode of the region where they are located. In this way, su-
pernodes can notice uncovered avatars when another uncovered avatar(s) cross
their AOI. The auto-awareness of covered avatars ensures that before a covered
avatar k can enter the AOI of an uncovered avatar i, another uncovered avatar
j will cross the AOI of i. Therefore, this scheme does not require supernodes to
notice uncovered avatars about the movement of covered avatars, significantly
reducing the communications required for providing awareness.

As an example, figure 1-left shows a 2-D region containing five avatars, repre-
sented as dots, and their respective AOIs, represented as circumferences around
the dots. In this region avatars B, C, D and E are uncovered avatars. Since the
circumference around avatar A is totally covered by the AOIs of avatars D, C
and E, avatar A is classified as a covered avatar. Also, in this case avatar A
has been chosen as supernode of the region (we have represented supernodes by
depicting their AOI with a thicker circumference), and therefore this avatar will
receive updating messages from all the uncovered avatars in this region (the rest
of the avatars).

COVER limits the maximum number of uncovered avatars which are simulta-
neously connected to the same supernode. This parameter is called MNUA, (for
Maximum Number or Uncovered Avatars). Whenever MNUA is exceeded, the
supernode divides that region in four different subregions and computes a new
supernode for each subregion, based on the criterion of geometric distance to the
center of the subregion. Once the division has been performed and a new supern-
ode is selected for each subregion, the uncovered avatars in each subregion are
re-assigned to the new supernodes. It is worth mention that the criterion used for
selecting new supernodes does not distinguishes between covered or uncovered
avatars. When the system is running, this mechanism defines a dynamic quad-
tree structure where each supernode has four sons. Two or more supernodes are
brothers if they have been generated in the same division operation. Brother
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Fig. 1. An example of a virtual scene composed of a single region where a covered
avatar is the supernode at the same time (left). As more avatars come into the scene
a division into four (center) or more regions (right) can be performed.

nodes are constantly monitoring each other to detect if the total number of un-
covered avatars located in the four regions is under MNUA. In this case, a fusion
operation is performed. In this operation the four brother subregions are joined
to become a unique, larger region, and a new supernode for the new region is
computed based on the same criterion of distance to the geometric center of the
resulting region.

As an example, figure 1-center shows the evolution of figure 1-left when the
proposed scheme is applied and the MNUA parameter has value of six avatars.
Since three more avatars have joined the system and the MNUA value has been
exceeded, the supernode has divided the region in four subregions. In this case,
the resulting supernodes are now avatars A, D, E, and G. These brother su-
pernodes monitor the total number of uncovered avatars in the zones that they
control. COVER method does not require that supernodes exchange the position
of the avatars in their respective regions, like networked-server architectures do
[30, 3]. This key issue allows COVER method to limit the amount of messages
generated to provide awareness.

In order to offer full awareness to those avatars located at the borders of differ-
ent regions (denoted as critical avatars), secondary supernodes are used. Critical
avatars are defined as those uncovered avatars whose AOIs intersect with more
than a single region. Critical avatars should send updating messages not only
to the supernode managing the region where they are located, but also to the
supernodes managing the adjacent regions. These supernodes show uncovered
avatars located in different regions, and they are considered as secondary su-
pernodes for critical avatars. Figure 1-center shows that avatar B and F must be
considered as critical avatars, because the area of their AOI exceed the limits of
the subregion where they are located. The solution for this situation is to force B
to send the updating messages not only to supernode A, but also to supernodes
D and E, as discussed below. In the same way, avatar F must send updating
messages to the four supernodes.

Following with the same situation, figure 1-right shows the result of the pro-
posed awareness scheme when it is a applied to a larger DVE system composed
of thirty avatars. It shows the behavior of the proposed technique and how the
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different levels of the quad-tree structure are dynamically generated. In this
figure, there are several avatars whose AOI intersect with different regions or
subregions. These are critical avatars.

4 Performance Evaluation

We propose the evaluation of generic DVE systems by simulation. Concretely, (as
we did for the case of DVE systems based on networked-server architectures [25])
we have developed a standalone simulation tool, denoted as SimPeerDve (SPD),
that models the behavior of a generic DVE system based on a P2P architecture
as a set of independent avatars. These avatars are located within a seamless 3D
virtual world [1] following three different and well-known initial distributions:
uniform, skewed and clustered [15, 25]. Starting from these initial locations, in
each simulation avatars perform 100 iterations. Each iteration consists of each
avatar independently moving into the scene. Iterations are performed at the typ-
ical rate of 1 avatar movement every 2 seconds [15, 24, 23]). We have considered
three different movement patterns: Changing Circular Pattern (CCP) [3], HP-All
(HPA) [9] and HP-Near (HPN) [19]. CCP considers that all avatars in the virtual
world move randomly around the virtual scene following circular trajectories.
HPA considers that there exists certain “hot points” where all avatars approach
sooner or later. This movement pattern is typical of multiuser games, where
users must get resources (as weapons, energy, vehicles, bonus points, etc,) that
are located at certain locations in the virtual world. Finally, HPN also considers
these hot-points, but only avatars located within a given radius of the hot-points
approach these locations. We have chosen the number of 100 iterations (move-
ments) for a simulation because it is the number of movements that the most dis-
tant avatar needs to reach the center of the square virtual world. For evaluation
purposes, we have considered the nine possible combinations of the three initial
distributions of avatars in the virtual world and the three movement patterns.

Using SimPeerDve, we have performed experimental studies to evaluate the
performance of the proposed technique. For comparison purposes, we have sim-
ulated the awareness method proposed in the previous section and also the
awareness method proposed in [11], since this method currently provides the
best awareness results for DVE systems based on P2P architectures (as stated
above, the method proposed in [10] has not been evaluated). In order to ensure
that the evaluation is performed under the worst case, SimPeerDve allows the
overlapping of different avatars at the same location of the virtual environment.
Although this situation would be erroneous in a real environment, it allows us
to increase the number of avatars located in a given region of the virtual world
beyond the limits of a real environment. If awareness is provided under such
circumstances, then awareness is guaranteed under real conditions.

Figure 2-left shows the evaluation results for the awareness method proposed
in this paper (labeled as COVER) as well as for the awareness method described
in [11] (labeled as K(x-x)), under all the possible combinations of initial distri-
butions and movement patterns of avatars. This figure shows a representative
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example of the experiments performed with a DVE system composed of 1000
avatars. On the X-axis this figure shows the iteration number of the simulation
performed, and on the Y-axis it shows the percentage of awareness. This figure
shows that for a large scale DVE configuration the method described in [11] only
is able to provide a high percentage of awareness (around a 85%) under the uni-
form movement pattern. For the rest of combinations of initial distributions and
movement patterns of avatars, the method proposed in [11] provides a awareness
rate below 50%. The worst results of this method are provided for the combi-
nation of a clustered initial distribution of avatars and HPA movement pattern,
being lower than 10% at the end of the simulation. The reason for this behavior
is that for non uniform movement patterns, avatars are unevenly distributed in
the virtual world most of the simulation time. Under this situation, the proba-
bility that a given avatar i has one or more unknown neighbors crossing its AOI
increases, since its known neighbors of i also tend to be unevenly distributed
around the AOI of i. The use of supernodes avoids inconsistencies under such
situations when using COVER method.

Fig. 2. Left: Percentage of awareness provided for all combinations of initial distribu-
tions of avatars and movement patterns. Right: Total number of messages exchanged
by avatars during the simulations when using COVER method.

In order to show that COVER method provides total awareness without in-
creasing the number of messages exchanged by avatars, figure 2-right shows the
number of messages sent during the simulations whose awareness rates are sum-
marized in figure 2-left. The plots in this figure show the number of messages
exchanged when using COVER method for the different combinations of initial
distributions and movement patterns of avatars. Since the method proposed in
[11] limits the number of neighbors that a given avatar can communicate with,
the number of messages sent when using this method is not comparable with the
number of messages sent when using COVER method. All the simulations whose
results are shown in this figure have been performed in a DVE system composed
of 1000 avatars. Each point in the plots represents the average value of messages
sent by all the avatars in the DVE system during the last 10 iterations.

In order to show the scalability of COVER method, we have also studied the
number of messages sent and received by supernodes under different movement
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patterns and for simulations performed with different numbers of avatars. For
the sake of shortness, we present here the results for those combinations of initial
distributions and movement patterns of avatars that show the largest (skewed-
HPA) and the smallest (unif-CCP) number of messages exchanged among avatars
in figure 2-right. Concretely, figure 3-left shows the average number of messages
handled (sent or received) by each supernode in the system during the simula-
tions performed under the combination of a uniform initial distribution of avatars
and CCP movement pattern. Each point in these plots is computed as follows:
after each iteration in a simulation, the number of supernodes in the system as
well as the number of messages sent and received by supernodes are counted,
and the average number of messages per supernode (ANMS) is computed. Since
the number of supernodes dynamically varies, when the simulation finishes, the
average value of the 100 ANMS values (each simulation is composed of 100
iterations) is computed. This is the value represented in each point in the plots.

Fig. 3. Number of messages handled by supernodes for the uniform-CCP (left) and
skewed-HPA (right) combinations

Figure 3-right shows the average number of messages handled by each su-
pernode in the system during the simulations performed under the skewed-HPA
combination, the one requiring the largest number of messages exchanged among
avatars. The shape of the two plots in this figure is similar to those in figure 3-
left, showing a flat slope. The average number of messages handled by each
supernode remains within a range of values between 13 and 19, showing that the
proposed method scales well with the number of avatars in the system. More-
over, when comparing this figure with figure 3-left, we can see that this range of
values is approximately the same for both figures. That is, the behavior of the
proposed method does not depend on the movement pattern nor on the initial
distribution of avatars in the virtual world. This feature is a key issue to provide
an actually scalable awareness method, but it has not been shown in any of the
currently proposed methods.

5 Conclusions and Future Work

In this paper, we have proposed a new awareness method for large-scale DVE
systems based on P2P architectures, denoted as COVER. Unlike the currently
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proposed methods, COVER uses two kind of neighbors to provide awareness,
normal neighbors and supernodes. While the former ones provide awareness to
avatars in the same way other methods do, the latter ones allow to provide
awareness to those avatars that are isolated or not completely surrounded by
other avatars. This key feature allow to provide full awareness (awareness to
100% of avatars), regardless of the distribution of avatars in the virtual world.

Performance evaluation results show that the proposed method is able to pro-
vide full awareness to large scale DVE systems composed of up to 1000 avatars,
regardless of both the movement pattern and the initial distribution of avatars
in the virtual world. This results have not been shown by any of the currently
proposed methods. Due to the quad-tree segmentation algorithm used to select
new supernodes, neither the movement pattern of avatars nor the initial distri-
bution of avatars have a significant effect on the number of messages sent by
avatars as simulations proceed. Evaluation results also show that this number
remains with a flat slope, even for those movement patterns that in the last it-
erations tend to group avatars in certain points of the virtual world. This result
indicates that the proposed method properly balances the workload generated
to provide awareness to all avatars. Also, performance evaluation results show
that the number of messages handled by supernodes does not increase as new
avatars are added to the DVE system. This scalability is achieved by selecting
new supernodes when MNUA parameter is exceeded and merging several su-
pernodes into a single supernode when adjacent supernodes manage less than
MNUA avatars.

As a result, we can conclude that COVER method provides full awareness to
large-scale DVE systems based on P2P architectures in a scalable and efficient
way.
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Abstract. In this paper, a novel motion editing tool, called the state
feedback dynamic model, is proposed and demonstrated for the ani-
mators to edit the pre-existing motion capture data. The state feed-
back dynamic model is based on the linear time-invariant system (LTI).
Compared with previous works, by this model, the animators need only
modify a few keyframes manually, and the other frames can be adjusted
automatically while preserving as much of the original quality as possible.
It is a global modification on motion sequence. More important, the LTI
model derives an explicit mapping between the high-dimensional motion
capture data and low-dimensional hidden state variables. It transforms a
number of possibly correlated joint angle variables into a smaller number
of uncorrelated state variables. Then, the motion sequence is edited in
state space, and which considers that the motion among joints is corre-
lated. It is different from traditional methods which consider each joint
as independent of each other. Finally, an effective algorithm is also devel-
oped to calculate the model parameters. Experimental results show that
the generated animations through this method are natural and smooth.

1 Introduction

High-quality articulated figure animations are widely used in the movie and
video games. Due to the complexity of the human configurations, generating
new motions from the existing data is still one of the most challenging tasks in
the computer animation. In the past years, the motion may be created by the
skilled animators with the aid of the software tools. The motion capture data
used for computer animation is relatively new and now is beginning to become
widespread. Motion capture is the recording of the human body movement.
The recorded performance can be applied to a computer-generated character
to make the character move in the same way as the performer moved. Its main
advantage is that it allows the production of both complex and realistic motions.
Its disadvantage is the visibility, and the recorded data lack of flexibility.

In order to achieve the desirable animation, usually, the animators have to
modify some keyframes manually in original motion sequence. But it is still a
difficult problem to naturally generate intermediate frames between keyframes.
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Traditional methods, such as keyframe interpolation and motion displacement
mapping [1, 2], can generate the intermediate frames automatically. However,
these methods consider each joint as independent of each other. It is not reason-
able for real human motion. For example, the ankle angle and the hip ankle are
usually correlated when human walking.

Recently, Y.Li et al. [3] employ the linear dynamic system to model a motion
sequence, which is called motion texton. They draw samples from the white noise
to change the details of a specific motion texton. Their algorithm also allows
animators to edit motion texton while preserving same dynamic property. But
one may not obtain the desirable poses through it.

In this paper, we propose a novel technology, called state feedback dynamic
model, to edit the motion sequence. By our model, the animators need only
modify a few keyframes manually, and the other frames can be adjusted auto-
matically while preserving as much of the original quality as possible. The LTI
model derives an explicit mapping between the high-dimensional motion capture
data and low-dimensional state variables. Then, the motion sequence is edited
in state space, which considers that the motion among joints is correlated. It is
also a global modification on motion sequence. This work is different from the
former one by Y.Li et al. [3]. Our model can naturally change the dynamic prop-
erty of the original system to satisfy the practical demands through controlling
the input signal of system. Our work extends previous investigations in the area
about using LTI to synthesize complex human animation.

The remainder of this paper is organized as follows. In the next section, we
review the related works. In section 3, we introduce the linear time-invariant
system and use it to construct the motion model. In section 4, we introduce
the state feedback dynamic system to edit motion sequence, and provide an
effective solution to solve the optimization problem. In section 5, we show the
experimental results. Finally, we discuss the results in section 6.

2 Related Work

Motion editing is to alter the raw motion capture data to satisfy the geometry or
spatial constraints. Recently, the focus is on editing and reusing existing motion
data. Many techniques have been developed to tackle it. An excellent review and
comparison of such methods is provided by Gleicher [4]. But these methods may
not be distinguished each other clearly.

2.1 Linear Time-Invariant System

Linear time-invariant system is the most important dynamic systems in reality.
It is true because it represents the idealization of the processes encountered
in real life. Y.Li et al. [3] use the linear time-invariant system to model the
motion texton. This technique is also used to capture the dynamic textures
[13]. Eugene Hsu et al. [14] employ the method to represent stylistic differences.
The relationship between the input style and output style are described by the
linear time-invariant system.
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2.2 Motion Displacement Mapping

Displacement mapping [1, 2] provides a method to change the shape of a signal
locally through a displacement mapping, while maintaining the continuity and
preserving the global shape of the signal. It is widely used by the animators to
alter the motion sequence. Its basic advantage is that the animators need only
modify a few keyframes. A spline curve is fitted through these displacements for
each degree of freedom involved. A new motion can be created by adding a special
motion into the original motion. Lee and Shin [12] employed the displacement
mapping in the interactive motion editing. Their approach combined a hierarchi-
cal curve fitting technique with a new inverse kinematics solver. Through this,
one could obtain the new motion with the desired features from the pre-existing
motion capture data. But the displacement mapping assumes that each joint is
independent, which is not reasonable for real human motion.

2.3 Motion Signal Processing

Motion signal processing [1, 2, 5, 6] is to investigate the motion data in the fre-
quency domain. Bruderlin and Williams [1] treated data as a sampled signal.
They presented a number of different signal processing techniques to synthesize
the human animation. Unuma et al. [5] proposed using the Fourier analysis to
model the human figure animation with emotion. Fourier expansions of the ex-
perimental motion data are a basis, and based on this, the method can be used
to interpolate or extrapolate the human locomotion. Pullen and Bregler [6] also
use frequency analysis to divide the data into different bands. Furthermore, the
high pass-band of motion sequences is used to enhance the details of anima-
tion in the missing information in the partial key-frame data. Signal processing
method provides a global animation control. It is an important method to edit
motion capture data.

2.4 Spacetime Constraints

There are continuing interests in the studies of human motion by the spacetime
constraints, which is firstly introduced by Witkin and Kass [7]. The solution for
creating animation is a physically valid motion satisfying the ”what” constraints
and optimizing the ”how” criteria. It has been proved to be a valuable approach
for creating lifelike animation. Cohen [8] showed that the spacetime constraints
are a useful technique for creating physically based and goal directed motion
of linked figures. Liu et al. [9] made use of it to investigate the motion of a
linked figure to achieve the given tasks. Gleicher and co-workers employed this
method to solve the problem of the constraint-based motion editing [10, 11]. But
the spacetime constraints method requires great mathematical complexity and
computational cost.

Our intention is similar to the work by Y.Li et al. [3]. But we extend their work
on using LTI model for motion editing. Animations can be easily created from
pre-existing motion capture data by modifying a few important keyframes. More-
over, we provide a novel technology to editing motion sequence while considering
the correlation between joint angles. It is different from the above approaches.
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3 Motion Dynamic Model

3.1 Motion Data Representation

Motion data are sampled at a sequence of discrete time instances with a uni-
form interval. These data consist of a sequence of frames denoted by m(t) =
(p(t), q1(t), q2(t), ..., qN (t)), where p(t) ∈ R3 and q1 ∈ S3 respectively describe
the position and orientation of the root segment. qn ∈ S3 denotes the orientation
of joint n with respect to its parent at frame t, and N is the number of joint.
The joint rotation angles are presented by quaternions and parameterized with
exponential map [16, 17]. Then we define as follows:

yt = (p(t), log(q1(t)), log(q2(t)), ..., log(qN (t)))) (1)

Where are the angles of all the joints including the root orientation and root
position.

3.2 Linear Time-Invariable System(LTI)

LTI model has a wide application area in our environment. It can model a
complex physical system based on observable signal. In this paper, we used it
for motion editing. Linear dynamic system is also called the state-space models.
The state space representation of a system with m inputs, p outputs, and k
hidden state variables is written as,{

xt+1 = Axt + Bμt + ωt

yt = Cxt + Dμt + υt

(2)

Where

ωt ∼ N(0, Q), υt ∼ N(0, R), dim(A) = k × k

dim(B) = k ×m, dim(C) = p× k, dim(D) = p×m

In general, k � p . Equation (2) drives an explicit mapping between the high-
dimensional motion data and low-dimensional state variables. It transforms a
number of possibly correlated joint angle variables into a smaller number of un-
correlated state variables. In Equation (2), the first equation is called the state
equation and the second equation is called the observation equation. In this
model, xt is the hidden state variable, μt is the input vector, and yt is the out-
put observation represented by Equation (1). A is the state transition matrix,
B is the input matrix, C is the output matrix, and D is the feedforward matrix.
The k-vector and p-vector are the random variables representing the state evo-
lution and observation noises, respectively, which are temporally uncorrelated
and independent Gaussian noise, with a mean of zero and covariance matrices
denoted by Q and R .
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3.3 Learning Model Parameters

Equation (2) describes the relationship between the input μt and output yt . For
an pre-existing motion sequence, it can be regarded as an independent dynamic
system only excited by the initial state x0 with a zero-input, i.e. μt = 0. Then
Equation (2) can be simplified as,{

xt+1 = Axt + ωt

yt = Cxt + υt

(3)

The unknown parameters in Equation (3) are A, C, R, Q, and x0 , where x0
denotes the initial state. Only yt is the known parameter. The model parameters
{A,C, x0} can be obtained by EM algorithm [15].

4 Algorithm for Motion Editing Based on LTI

Our purpose is to take a motion that has the basic form as we want. It should be
adjustable to satisfy some specific or unsatisfied need. Some keyframes may also
be modified by animators. Traditional methods, such as keyframe interpolation
or motion displacement mapping, provide a solution to solve the problem. But
in these methods each joint is considered to be independent. Therefore, the
animation created by these approaches may lose some correlation among the
joints. In our editing of the motion sequence, we consider the joints correlation
to preserve the content of the original motion. Our approach is an improvement,
rather than a replacement of above mentioned techniques.

When a motion sequence is edited, the original dynamic system can be affected
by the external stimulus. The problem of motion editing can be regarded as
designing suitable input signal to achieve desired output . In other words, the
original motion sequence can be edited through controlling the input of the
dynamic system. From a viewpoint of control theory, it is to design the controller
to accomplish a desired task. Usually, the state feedback dynamic system is
used to finish it [19]. Finally, an effective algorithm for designing state feedback
dynamic system is illustrated as follows.

4.1 State Feedback Dynamic Model

In the following, we use the state feedback dynamic model [19] for motion editing.
Then, the input μt in Equation (2) is given by

μt = Kxt (4)

K is the feedback matrix which is m×k . Then, Equation (2) can be rewritten as,{
xt+1 = Axt + BKxt + ωt

yt = Cxt + DKxt + υt

(5)
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For a pre-existing motion capture data, the model parameters in Equation (5)
can be easily obtained from Equation (3). Unfortunately, the parameters can
not be acquired at the same time. In the practical application, it is very dif-
ficult to solve the Equation (5). In order to simplify computation, we take an
approximation of Equation (5),{

xt+1 = Axt + pt + ωt

yt = Cxt + Gxt + υt

(6)

Where

pt = BKxt, G = DK

dim(pt) = k × 1, dim(G) = p× k

The main difference between Equation (5) and Equation (6) is that the state
equation is generalized. This generalization is not strict for Equation (5).

But it simplifies the computation, and it transforms the original complex
optimization problem into two quadratic optimization problems while preserving
good animation results. The detail of algorithm is illustrated in section 4.2.

4.2 Algorithm for Motion Editing

We consider the problem of motion editing as the design of a controller. In the
following, we will introduce an effective algorithm to solve the unknown model
parameters {pt, G, xt} in Equation (6).

Suppose that some keyframes in the original motion sequence are modified by
the animator. Step 1 is to choose the bound in the original motion sequence to
be adjusted. In step 2, we divide the area into several segments at keyframes.
Then every segment is denoted by a state feedback dynamic system, which has
the same parameters {A,C} but different parameters {pt, G, xt} . In order to
ensure the frame coherence and avoid glitches in the animation, every keyframe
modified by animator is used as the last frame of front segment and the first
frame of next segment as constraints.

For each segment, we use (ym, yn) to denote the first frame and the last frame
and substitute it to the original (ym, yn) . There are three kinds of possible cases
between them:

Case 1 when (ym = ym, yn 	= yn), only the last frame is modified.
Case 2 when ( ym 	= ym, yn 	= yn), the first frame and the last frame are

modified simultaneously.
Case 3 when ( ym 	= ym, yn = yn), only the first frame is modified.

In order to obtain the model parameters {pt, G, xt} , we transform the difficult
problem into two quadratic optimization problems. One is the optimal state
estimation model to compute the parameters {pt, xt}, and the other optimal
objective is measuring the kinematic smoothness for solving the parameter G.
Then, the whole process of solving is decomposed into two sub-processes.
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In the following, we will introduce the detail of the algorithm to calculate the
parameters of the state feedback dynamic model, including xm, pm , pm+1 ,...,
pn−1 and G in Equation (6).

Optimal State Estimation Model. For one segment, computing the unknown
parameters pm , pm+1 ,..., pn−1 from the given parameters {A, xm, xn}, m < n
is a numerical problem of constrained optimization. An optimal state estimation
objective function is defined as,

h(pt) =
n−1∑
t=m

‖pt‖2 (7)

Subject to c(pt) = 0

Where

c(pt) = ‖xn − (An−mxm + An−m−1(pm + ωm)
+ · · ·+ A(pn−2 + ωn−2) + (pn−1 + ωn−1))‖2 (8)

The Levenberg-Marquart optimization and quadratic penalty methods [18] can
be combined to solve the Equation (7). Then the original constraint optimization
problem can be converted into unconstraint one by introducing penalty into
objective function. We define

HM (Pt) = h(pt) + M · c(pt) (9)

Where M is a positive penalty parameter. Now we describe the algorithm to
minimize the Equation (9).

Function: StateEstimate(xm, xn, A)
Initialize: p0

m, p0
m+1, . . . , p0

n−1, ωm, ωm+1, . . . , ωn−1;
ε > 0, M0 > 0, e > 1;
k ← 0;

Repeat:
Min HMk

(pk
t );

(Using Levenberg-Marquart Method and quadratic
penalty methods):
Then find optimal parameters:
pk+1

m , pk+1
m+1 . . . , pk+1

n−1;
if(Mk · c(pk+1

t ) < ε)
{

Refer Equation (6), calculate:
xm+1, xm+2, . . . , xn−1;
Return : xm+1, xm+2, . . . , xn−1;
Stop;

}
else
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{
Mk+1 ← e ·Mk;
k ← k + 1;

}
end(if)

End (repeat)

Kinematic Smoothness. From the above statement, the parameters
pm, pm+1, . . . , pn−1 in Equation (6) can been solved if we gave the parame-
ters {A, xm, xn}. But the parameter G is still unknown. A measurement of the
kinematic smoothness is essential in the animation synthesis algorithm. It can
ensure the frame coherence and avoid glitches in the animation. We measure
smoothness with the magnitude of the second-order derivative of:

f(G) =
n∑

t=m

‖ÿt(G)‖2 (10)

Subject to g1(G) = 0, g2(G) = 0

Based on Equation (6), where

g1(G) = ‖ym − (C + G)xm − νm‖2 (11)
g2(G) = ‖yn − (C + G)xn − νn‖2 (12)

To approximate the time derivatives of yt , we use the finite difference formulas,

ÿt =
yt+1 + yt−1 − 2yt

h2 (13)

with h the time interval between the samples. Combining Equation (6) and
Equation (13), we obtain:

ÿt =
(C + G)(xt+1 + υt+1 + xt−1 + υt−1 − 2(xt + υt))

h2 (14)

Then the objective function f(G) can also be written as,

f(G) =
∑n

t=m ‖(C + G)(xt+1 + υt+1 + xt−1 + υt−1 − 2(xt + υt))‖2
h4 (15)

We introduce the penalty function into Equation (15). The objective function
f(G) can also be written as,

F (G) = f(G) + M ·
2∑

i=1

gi(G) (16)

The Equation (16) is a quadratic function which is similar to the Equation (9).
The Levenberg-Marquart optimization and quadratic penalty methods can also
be used to minimize the Equation (16). Then, the algorithm for motion editing
is illustrated as follows.
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LTIModelParameter(ym, yn, A, C)
Initialize: G0, ε > 0, νm, νm+1, . . . , νn;

k ← 0;
Repeat:

Refer Equation (6), Calculate;
xk+1

m = (C + Gk)+(ym − νm);
xk+1

n = (C + Gk)+(yn − νn);
((C + Gk)+ is pseudo-inverse matrix)
StateEstimate(xk+1

m , xk+1
n , A);

( Return xk+1
m+1, x

k+1
m+2, . . . , x

k+1
n−1)

Gk+1 = argminF (G);
(Using Levenberg-Marquart Method and quadratic
penalty methods):
f2 = F (Gk+1);
if(k = 0)
{

f1 = f2;
k ← k + 1;

}
else if (f1 − f2 > ε)
{

f1 = f2;
k ← k + 1;

}
else
{

return: xm, xm+1, . . . , xn−1, xn, G;
Stop;

}
end(if)

End (repeat)

From above algorithm, we can easily obtain the rotation angle of each joint
through exponential map. But the generated motion sequence may have foot
skating. We use Kovar’s algorithm [20] as our footskate cleanup algorithm.

5 Results

Our approach in this paper is general and can be used in various motion analy-
sis and motion editing. In our 3D examples, the motion data is captured at
a high frequency of 60 Hz. The human model is composed of 17 joints, a to-
tal of 54 DOFs, including 3 DOFs for the root global position located at the
pelvis. The root orientation and joint angles are all represented by quaternion.
We perform experiments on an Intel Pentium PC (P4 2.6GHz processor and 512
MB memory).
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Walking to Running. In this experiment, the original walking motion in Fig.1
has 63 frames. The frame 42 is modified to bow-walking posture and, simulta-
neously, the last frame is modified to running. A total of 41 frames, which are
from 23th frame to 63th frame, are chosen to be adjusted. We divide it into
two segments which are presented by two state feedback dynamic systems. It
totally takes approximately 5.2 minutes to get the model parameters, and the
hidden state variable is presented by a 13-dimension vector. The editing result
is illustrated on the bottom of Fig.1.

Fig. 1. The top and bottom rows are respectively the original and generated motion.
Two original keyframes in the rectangles are modified manually to desired poses (from
top to bottom). The remaining frames of the original motion sequence are then adjusted
to bottom ones through our method automatically. The generated motion is natural
and smooth.

Kicking Ball. In Fig.2, the motion of the kick soccer has 45 frames. Only the
amplitude of the last frame is modified to be larger. We choose 20 frames (26th
frame to 45th frame) to be adjusted and one state feedback dynamic system is
used. In the example, the dimension of parameter is 11, and the computation
cost is 2.3 minutes. The editing result is showed in Fig.2.

Fig. 2. The top row is the original motion of kicking ball, and the last frame in rectangle
is modified manually to desired poses (bottom row). Then large amplitude kicking ball
motion (bottom row) can be created naturally.

Picking Up. This experiment shows that our motion editing method adjusts
the picking up motion in animation (Fig.3). The top row is the original motion.
It has 38 frames. The first frame, 21th frame, and the last frame are modified
to the desired poses manually. Then, the original motion sequence is divided
into two segments, and two state feedback dynamic systems are used to model
them. The generated animations in bottom row illustrate that the whole motion
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Fig. 3. The top row is the original motion of picking up something, and three keyframes
in rectangles are modified manually to the desired poses (bottom row). Then the whole
motion sequence (bottom row) can be adjusted automatically.

sequence is adjusted naturally. In this example, it costs 4.5 minutes to obtain
the model parameters, and the dimension of parameter is 8.

6 Discussion

In this paper, we have proposed a novel technique, i.e. the state feedback dynamic
model, to create animations from the input motion sequence. Animators need
only modify a few keyframes, and the remaining motion sequence can be adjusted
automatically. The shortcoming of our approach is that the position constraints
can not be directly incorporated into our model. It would be a key problem to
be solved in the future.

Compared with previous works, our method has following advantages:
Firstly, the motion sequence is edited in low-dimensional state space, and it
considers the correlation of the motion among joints. Secondly, it can natu-
rally and smoothly change the dynamic property of original motion, through
controlling the input signal, to achieve desire animation. This is a global mod-
ification on motion sequence. Thirdly, the animators need only modify a few
important keyframes. Intermediate frames can be generated automatically while
preserving original motion quality. This will largely reduce the work of animator.

Our work take a step forward to reuse existing motion capture data. Experi-
mental results also demonstrate that it can create natural and smooth animations
according to the desire of the user.

Acknowledgements

We would like to thank our colleagues in virtual human group for the fruitful
discussion on animation synthesis. This research is supported by National 973
project (2002CB312104); Key project of international technology cooperation
(2005DFA11060); Key Project of NSF (60533070 ); NSF of China (60573162,
60403042, 60473002); 863 Plan of China (2005AA114010); National Special Item
for Olympics (Z0004024040231, Z0004027040331); Beijing Natural Science Foun-
dation (4051004,4062032); and Knowledge Innovation Project (20056380) of In-
stitute of Computing Technology, Chinese Academy of Sciences.



Motion Editing with the State Feedback Dynamic Model 359

References

1. A. Bruderlin and L. Williams.: Motion signal processing. In Proceedings of ACM
SIGGRAPH 95. 1995, 97-104

2. Witkin, A, Popovic, Z.: Motion Warping. Computer Graphics( SIGGRAPH 95).
Vol. 29, No. 4, August 1995, 105-108

3. Yan Li, Tianshu Wang, Heung-Yeung Shum.: Motion Texture: A Two-Level Sta-
tistical Model for Character Motion Synthesis. ACM Transactions on Graphics.
21(3)(2002):465-472

4. Gleicher M.: Comparing constraint-based motion editing methods. Graph Models
63(2001):107-134

5. M. Unuma, K. Anjyo, and R. Takeuchi.: Fourier principles for emotion-based hu-
man figure animation. In Proceedings of ACM SIGGRAPH 95, 91-96

6. K. Pullen,C. Bregler.: Motion Capture Assisted Animation: Texturing and Synthe-
sis. Proc SIGGRAPH 2002, 501-508

7. Andrew Witkin and Michael Kass.: Spacetime constraints. Computer Graphics
(SIGGRAPH 88). 22(1988):159-168

8. Michael F. Cohen.: Interactive spacetime control for animation. SIGGRAPH 1992,
293-302

9. Zicheng Liu, Steven J. Gortler, and Michael F. Cohen.: Hierarchical Spacetime
Control. SIGGRAPH 1993, 35-42

10. Gleicher, M.: Retargetting motion to new characters. SIGGRAPH 1998, vol. 32,
33-42

11. Michael Gleicher.: Motion Editing with Spacetime Constraints. Proceedings of the
1997 Symposium on Interactive 3D Graphics. 1997, 139-148

12. Lee, J., Shin, S. Y.: A hierarchical approach to interactive motion editing for
human-like figures. SIGGRAPH 1999, 39-48.

13. S. Soatto, G. Doretto, and Y. N. Wu.: Dynamic textures. In IEEE International
Conference on Computer Vision. 2001, 439-446

14. Eugene Hsu, Kari Pulli, Jovan Popovi.: Style translation for human motion. ACM
Transactions on Graphics (TOG). Volume 24, Issue 3, 2005, 1082 - 1089

15. Ghahramani, Z. and Hinton, G.E.: Parameter estimation for linear dynamical sys-
tems. University of Toronto Technical Report CRG-TR-96-2, 6 pages, 1996

16. Jehee Lee, Jinxiang Chai, Paul Reitsma, Jessica Hodgins, and Nancy Pollard: Inter-
active Control of Avatars Animated with Human Motion Data. ACM Transactions
on Graphicsvolume 21, number 3, 2002, 491-500

17. F. S. Grassia.: Practical parameterization of rotations using the exponential map.
Journal of Graphics Tools, 3(3)(1998):29-48

18. J. Nocedal and S. Wright.: Numerical Optimization. Springer Verlag 1999
19. Gene. F. Franklin, J.David.Powell, Abbas. Emami-Naeini.: Feedback Control of

Dynamic Systems (4th Edition). Prentice Hall, 2002.
20. Lucas Kovar, John Schreiner, Michael Gleicher.: Footskate cleanup for motion cap-

ture editing. In Proceedings of ACM SIGGRAPH Symposium on Computer Ani-
mation. 2002, 97-104



H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 360 – 371, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Content-Based Human Motion Retrieval  
with Automatic Transition 

Yan Gao1, Lizhuang Ma1, Yiqiang Chen2, and Junfa Liu2 

1 Department of Computer Science & Engineering 
Shanghai Jiao Tong University 

No. 1954, HuaShan Rd., Shanghai, P.R.C(200030) 
gaoyan73@hotmail.com 
ma-lz@cs.sjtu.edu.cn 

2 Institute of Computing Technology, Chinese Academy of Sciences 
Beijing, China 

yqchen@ict.ac.cn 
jfliu@jdl.ac.cn 

Abstract. This paper presents a framework for efficient content-based motion 
retrieval. To bridge the gap between user’s vague perception and explicit mo-
tion scene description, we propose a Scene Description Language that can 
translate user’s input into a series of set operations between inverted lists. Our 
Scene Description Language has three-layer structures, each describing scenes 
at different levels of granularity. By introducing automatic transition strategy 
into our retrieval process, our system can search motions that do not exist in a 
motion database. This property makes our system have potentials to serve as 
motion synthesis purpose. Moreover, by using various kinds of qualitative fea-
tures and adaptive segments of motion capture data stream, we obtain a robust 
clustering that is flexible and efficient for constructing motion graph. Some ex-
perimental examples are given to demonstrate the effectiveness and efficiency 
of proposed algorithms. 

1   Introduction 

Motion capture is an increasingly popular approach for synthesizing human motion. 
As rich repertoires have become available in motion database, example-based ap-
proaches have been explored to synthesize novel motions either by blending similar 
motions [1] or by rearranging unlabelled motion clips [2,3]. Only recently, motion 
capture data have become publicly available on a larger scale [e.g. 4], driving the 
need for efficient indexing and retrieving methods.  

The objective of motion retrieval is to identify and extract those motion clips from 
a large motion database that are in some sense similar to a query motion. The query 
motions are usually short clips, which represent specific actions. If the query motions 
include too many sequences of actions, retrieval results are likely to be no hits. Usu-
ally, a long motion is comprised of a sequence of short motion clips that have specific 
semantics. It is desirable to automatically construct transitions during motion re-
trieval. In this paper, we present a framework for content-based motion retrieval, 
which incorporates motion transition scheme into retrieval process. Our methods 
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combine advantages of motion rearrangement and motion retrieval so that can search 
motions inexisted in a database according to user’s high-level control.  

Some motion graph-liked systems [2,3,5] can synthesize new and realistic motions 
from example motions through reordering motion clips. The key of such systems is 
how to automatically construct a graph that encapsulates connections among different 
pieces of motions. The construction of such graph needs compare every pair of F 
frames in the database to locate candidate transitions, which involves O(F2) opera-
tions. The bad scalability makes it infeasible for large data sets even though pre-
computing strategy is adopted. Moreover, as Kovar etc. [2] pointed out, it remains a 
problem that how to automatically set appropriate transition thresholds for different 
motion types in an unlabelled database.  

Suppose there are F frames in a motion database. Then the total operations for 
comparing every pair of the F frames are about F2/2. If we have a way to divide all 
frames in the database into different categories, e.g. 1000 categories each with same 
frames, the total operations will be about 1000*(F/1000) *(F/1000)/2=F2/1000/2, 
which is just 1/1000 of the original computation amounts. That is, clustering gives us 
an efficient way to reduce computation costs for constructing a transition graph. 
Moreover, by dividing the motion database into different categories, we can set each 
category with different thresholds according to its motion numbers automatically. 
However, it is also a challenging problem for finding an effective clustering algorithm 
to handle the high dimensions of human motions. 

Our work involves three main contributions. First, we propose a robust clustering 
algorithm to divide the unlabelled motion database into different classes. By  
constructing transitions in each class separately, we can reduce most operations of 
comparing the similarity between different frames in motion graph-liked systems. 
Second, we introduce a transition strategy into motion retrieval process so that we can 
retrieve motions inexisted in the database. For example, suppose we want to retrieve a 
walking motion with 10 steps but no such motions exist in the database. By construct-
ing transitions at one walking step, we can find desired motions. The third main con-
tribution of our work is to present a Scene Description Language, which can describe 
user’s sketchy idea about desired motions effectively. 

2   Related Work 

Data-driven motion synthesis. A number of graph-based approaches to motion syn-
thesis have recently been developed that can piece together example motions from a 
database. Kovar and his colleagues [2] generated a graph structure from motion data 
and used branch and bound search for path synthesis. Arikan and Forsyth [5] used a 
hierarchy of graphs to represent connectivity of a motion database and perform ran-
domized search strategy for synthesizing a new motion subject to temporal and posi-
tion constraints. Lee et al. [3] represented captured motion data with a two-layer 
structure, and provided effective user interfaces for interactive character control. All 
these approaches allow transitions between individual motion frames rather than clus-
ters of motions, which are computationally infeasible for large data sets.  
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Recently, many researchers try to combine the idea of motion blending and pos-
ture rearrangement. Kim et al. [8] identified and clustered the elemental movements 
of the example motions based on their rhythmic pattern. Unfortunately, this method 
is not applicable to non-rhythmic motions. Park et al. [1] modelled labelled motion 
clips as a motion transition graph of which every node represents a set of param-
eterized example motions of the same type and each directed edge represents the 
transition from a motion to a motion. However, the authors did not address how to 
obtain the labeled motion clips to construct the motion transition graph. Kwon and 
Shin [9] decomposed the example motions into groups of motion segments to con-
struct a hierarchical motion transition graph by footstep patterns. Their method used 
only footstep pattern to classify motion segments, making it not suitable for motion 
types other than locomotion. Instead, our qualitative geometric features are related 
to a broad spectrum of motion types, making our method applicable to general mo-
tion types.  

Content-based motion retrieval. So far, there are few literatures on content-based 
motion retrieval. Liu et al. [11] partitioned the motion library and constructed a mo-
tion index tree based on a hierarchical motion description that uses joint angles as 
feature vectors. Chiu et al. [10] constructed an index map for each skeletal segment 
according to its segment-posture distribution through SOM clustering. Keogh et al. 
[12] described the first technique for indexing time series with invariance to uniform 
scaling. Motion data are regarded as multi-dimensional time series that are indexed by 
bounding envelopes. However, all these techniques relied on numerical local cost-
measures to compare motions, making them not meet the demand of searching logi-
cally similar motions. 

To the best of our knowledge, Kovar and Gleicher [6] first proposed a way for 
identifying logically similar motions in a database through multi-step search process. 
Such DTW based technique is infeasible for large data sets due to its O(n2) complex-
ity. Muller et al. [7] grasped spatio-temporal invariance in geometric features and 
induced segments, allowing for exact matchings at the segment level. The time and 
space required to build and store their index structure are linear, opposed to DTW-
based strategies, which are quadratic. In this paper, we adopt their index structure but 
introduce a pre-computation scheme to speed up motion retrieval process. 

3   Geometric Features and Adaptive Segmentation 

In siggrapgh 05, Müller et al. [7] introduce a class of qualitative boolean features 
expressing geometric relations between body points of a pose. These geometric fea-
tures are designed to characterize a broad spectrum of motion types. We used the 
same features as them except “right/left foot fast” features. According to the author’s 
opinion, threshold of such features is set relatively low to robustly discriminate stand-
ing still from the feet moving at all. We use “right/left foot plant” features instead, for 
which are richer semantics-related than the old ones. We adopt both velocity and 
duration time thresholds to identify footplants semi-automatically. All features that 
we used are listed in table 1 as follows: 
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Table 1. The four sets of features 

F1 
left/right knee bent(F1

1/F1
2), legs crossed (F1

3), left/right foot plant(F1
4/F1

5), left/ 
right foot front(F1

6/F1
7) 

F2 
left/right foot raised(F2

1/F2
2), left/right leg sideways(F2

3/F2
4), left/right elbow bent 

(F2
5/F2

6), left/right hand fast (F2
7/F2

8) 

F3 
arms crossed(F3

1), hands touching(F3
2), left/right hand in front(F3

3/F3
4), left/ right 

hand raised (F3
5/F3

6), left/right arm sideways(F3
7/F3

8) 

F4 
torso bent(F4

1), root fast (F4
2), left/right hand touching any leg (F4

3/F4
4), left/right 

hand touching head or neck (F4
5/ F4

6), left/right hand touching hip area (F4
7/ F4

8) 

Geometric features can be referred to as a feature function F: fP )1,0(→ , where P

is a pose, denotes the set of poses, and f is the total feature numbers. We say that 
two poses P1, P2 are F-equivalent if the corresponding feature vectors F(P1) and F(P2) 
coincide, i.e. F(P1)=F(P2). Denote a motion capture data stream by D. Then, an F-run of 
D is defined to be a subsequence of D consisting of consecutive F-equivalent poses, and 
the F-segments of D are defined to be the F-runs of maximal length. The sequence of F-
segments of D induces a sequence of feature vectors, which we refer to as F-feature 
sequence of D and denote F(D). About this section, more details are discussed in [7]. 

4   Transitions Construction 

We assume the user has a database of unlabelled motion capture data in a standard 
skeletal format. We introduce a transition scheme to enhance motion retrieval ability 
so that resulting hits may include concatenated novel motions inexisted in the data-
base. For example, consider a query consisting of three segments A, B and C. How-
ever, there are only examples, including (A, B) or (B, C) sub-sequences respectively, 
in the database. Obviously we cannot retrieve any hits if we do not introduce transi-
tion strategy at B. 

4.1   Pruning the Segments 

Kovar et al. [2] pruned their motion graph by computing the strongly connected com-
ponents (SCCs) of every subgraph in order to generate arbitrarily long streams of 
motion of the same type. In their approach, every frame of original data has to be 
associated with a set of labels. In contrast, we regard each inverted list as a subgraph 
and use the following rules to prune these segments with bad transition potentials in 
it. As a result, the construction of motion transitions graph can be greatly speeded up. 

1. The motion segments with too few frames (less than a threshold T) should be 
deleted because they are hard to find suitable transition points. 

2. The inverted list with few segments in it should be emptied for its bad connectivity. 
3. The first and last few motion segments of the original motions should be deleted 

because they are dead ends. 
4. The motion segments with feet on the fly (both F1

4 and F1
5 are false) should be 

deleted because such motions have to preserve their own dynamics features. 
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4.2   Detecting Candidate Transitions 

If we classify a database into small sets and locate candidate transitions in it sepa-
rately, we can reduce large numbers of comparison operations. However, the curse of 
dimensions in motion capture data hampers the effectiveness of current clustering 
algorithms. 

Recall that our geometric features are semantically rich, which give a rough outline 
to characterize a broad spectrum of different motion types. In consequence, they provide 
an intuitive metric for clustering motion frames. Each boolean features bisection the 
space of possible end-effector locations into two pose-dependent sub-space so that the 
whole database is divided into 231 categories, each corresponding to an inverted list. 
Though not all segments in a category are definitely similar, similar segments ought to 
be in the same category. Note here we ignore the case that postures lie at the boundary 
of neighboring sub-spaces. Now we only need compare the similarity between each pair 
of frames in a same category without introducing any extra data structure. 

4.3   Selecting Transition Points 

After computing the distance between each pair of frames, local minima below a user-
defined threshold are considered as potential transition points. Usually, the threshold 
is picked as an acceptable tradeoff between having good transitions (low threshold) 
and having high connectivity (high threshold). However, as Kovar et al. [2] pointed 
out, different kinds of motions should have different fidelity requirements. It remains 
a problem for the unlabelled motion data that how to set different motion types with 
different thresholds.   

By dividing the database into a set of small categories, we can select suitable 
threshold for each category respectively. The numbers of motion segments in every 
category indicates the frequency of such kind of motion appeared in the database. 
This also provides a natural way to weigh the degree of people’s familiarity with this 
motion type. In general, people have a keener sense of what motions in a bigger cate-
gory should look like than these motions in a smaller category. We use a piecewise 
linear function to model the relation between the threshold and the segment numbers 
of a category, seeing figure 1. 

Note we select a bit high thresholds to ensure good connectivity. We also maintain 
a flag for each transition node to indicate whether it is used. When user selects lower 
thresholds for some categories through interaction, we do not need compute transi-
tions again but set the nodes whose distances less than thresholds unused. 

threshold

segment numbersSmin Smax

tmax

tmin

 

Fig. 1. Relation between threshold and segment numbers of a category. We set Smin=30 and 
Smax=2000, tmin=3*Dmin and tmax =10*Dmin, where Dmin is the minimum distance between all 
pairs of consecutive frames in the database. 
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5   Indexing and Retrieval 

5.1   Indexing and Searching 

In general situations, user would like to mask out certain aspects of irrelevant body 
areas to avoid a large number of false negatives due to over-specification. Muller et 
al. [7] proposed the concepts of fuzzy query and fuzzy hit to deal with such situations. 
However, a specific movement usually involves only a few geometric features. It 
means that many union operations of the inverted lists are needed to constitute fuzzy 
sets. To avoid these operations, we add a value 2, which means don’t care, to each 
geometric feature. This also provides an intuitive way to describe a query motion for 
user. 

Now Feature function becomes F: P->(0,1,2)f and accordingly we have 331 inverted 
lists totally. It is infeasible for both time and storage requirement to compute and store 
331 inverted lists in advance. Here we adopt divide-and-conquer scheme to reduce the 
overall numbers of inverted lists just as [7]. The process is as follows: we divide the 
set of 31 boolean features into the four sets F1  (7 features), F2 (8 features), F3 (8 fea-
tures), and F4 (8 features) as indicated by Table 1. We then construct separate indexes 
I1, I2, I3, and I4. Now the amount of inverted lists is reduced to (37+38+38+38). The 
trick is that we only store (27+28+28+28) basic inverted lists on disk and merge the 
additional (37+38+38+38) - (27+28+ 28+28) inverted lists from them at initialization 
time. Here we give a comparison to the performance between our indexes with these 
of [7]. The storage required for our indexes is about 1/6 of [7] (27+28+28+28 inverted 
lists to 211+212+28 inverted lists). In addition, our method reduces (211+212+28)-
(27+28+28+28)=5504 times of disk I/O operations instead of (37+38+38+38) - (27+ 
28+28+28)=20974 times of merging operations between the basic inverted lists. The 
overall time for building our indexes is also reduced relative to [7] because the time 
for reduced I/O operations outweighs that for the additional merging operations. 

Our indexes also improve the performance of retrieval in comparison with [7]. This 
can be seen from the amount of reduced union operation of the inverted lists. As 
Müller et al. [13] mentioned, in view of efficiency, it is important to have both few 
lists (leading to few merging and intersecting operations) and short lists (leading to 
fast merging and intersecting operations), which are mutually exclusive demands. 

They gave their conclusion that a choice of f�[8: 12] results in a good tradeoff be-
tween these two requirements. 

However, in general, fine features, i.e., feature functions with many components, 
induce segmentations with many short segments, whereas coarse features lead to a 
smaller number of long segments. For example, suppose we have induced 2m inverted 
lists from m boolean features. After introducing a new feature fm+1, each of 2m in-
verted lists will derive two children lists by setting fm+1 to 0 or 1 respectively. By lf we 
denote the father list’s length and by lc1, lc2 the two children lists, respectively. Obvi-
ously, we have lf ≤  lc1 + lc2, i.e. more features lead to longer lists on average. Recall 
that user usually selects a few features to look for a specific motion class and leaves 
the others unspecific. In such situations, the indexes in [7], which divide the set of all 
31 boolean features into the three sets Flower(11 features), Fupper(12 features), and Finter-

action(12 features), also involve too many union operations. For example, it is easy to 
prove by induction that if one wants to obtain an inverted list with m unspecific  
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features, 2m-1 union operations between 231 inverted lists are needed. Now suppose 
user only selects 2 features in Fupper and leaves the others unspecific. Then 211+212-

2+28-3=3325 union operations and 2 intersection operations are needed at each step of 
retrieval opposite to our 3 intersection operations. That is, Müller et al.’s indexing 
method does not fulfill the pre-computing capability fully. 

5.2   Scene Description Language 

Often, the user will only have a sketchy idea of which kind of motion to look for in 
the motion database, for example “a walking step followed by right hand punch”. As 
Müller et al. [7] pointed out, vaguely specified motions such as kicking, punching, or 
clapping can often be specified by a very small set of basic geometric constellations. 
They gave an experiment to characterize sketchy query such as “right foot kick fol-
lowed by a left hand punch”, as shown in Figure 2. Müller et al. [7] process such 
kinds of geometric scene descriptions by first querying for each progression sepa-
rately and then suitably intersecting the retrieved hits to account for cooccurrence 
conditions. 

 Instead, we present a Scene Description Language to handle scene definition prob-
lem more effectively. Our Scene Description Language includes three-level struc-
tures, which are word, movement and scene. The basic unit word has 31 bits, each 
corresponding to one geometric feature. Given a query as a sequence (V1, V2, …, VN) 
of fuzzy sets, each fuzzy set Vl, Nl ≤≤1 can be represented by a word. The defini-
tion formula of a word is as: name =(***…***), where name is the alias, = means 
denote by, and * (0,1,2). A movement, comprising of a series of words, is used to 
represent a specific motion such as kick, punch, a walking step and so on. The key-
words of movement include start, next, step, fuzzy, null, and end. Among them, start 
and end represent the first and last fuzzy set V1 and VN, respectively. Next indicates 
the next fuzzy set. Null is used to assign a null word. Step indicates the query content 
at current step in multi-step querying. Fuzzy means that one-mismatch is allowed 
between two consecutive words, which handles the overlapping fuzzy sets. The defini-
tion formula of a movement is as: name=({step 1=} start: word1, {fuzzy,} 
{next=word2, {fuzzy,}… {fuzzy,}, next= wordn-1,} {fuzzy,} end= wordn | {step 2 =}…), 
where name is alias, the items in {} is choice items. We maintain a movement library 
so that the basic movements can be reused. 

lowered raised lowered

straight bent straight bent st raight

*

*

back

bent straight bent

back

*

*

'rfoot'

'rknee'

'lhand'

'lelbow'

front

 

Fig. 2. Scene description for the movement “right foot kick followed by a left hand punch” in 
[7]. The symbol * indicates that a constellation is unspecified. Arrows indicate which constella-
tions are to occur simultaneously. 
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A sequence of movements can generate complicate scenes. The keywords of scene 
include start, next, cycle, concatenate, transition, null, and end. Among them, start 
and end represent the first and last movements, respectively. Next indicates the next 
movement. Null is used to assign a null movement. Cycle represents the repetition 
times of a movement for cyclic motions such as the step numbers in a walking motion. 
Concatenate is used to concatenate the consecutive movements. Transition represents 
that transitions occur at current movement. The definition formula of a scene is as: 
(start: movement1, {cycle(m): movement2,} {next: movement3, …, next: movementn-3,} 
{ concatenate: movementn-2 ,} {transition: movementn-1,} end: movementn), where the 
items in {} is choice items and m is the repetition times. 

In figure 3, we explain the scene of figure 2 using a Scene Relation Graph so that it 
can be translated into our Scene Description Language efficiently. From figure 3, we 
can see that the overlapping between “rknee bent” and “rfoot raised” of the scene in 
figure 2 is conducted effectively by adding a possible node “rknee straight & rfoot 
raised”. This corresponds to one-mismatch case in [7] and we use fuzzy keyword to 
express it. We use the keyword concatenate to specify the relation “kick followed by 
punch”, which means that the frame intervals between two consecutive movements 
are no more than a threshold L. We depict the same scene using our Scene Descrip-
tion Language in figure 4. 

lowered
straight

lowered
straight

bent
raised

straight
lowered
straight

raised
straight

kick

back
straight

back
bent

front
straight

back
bent

back
straight

punch

front
bent

front
bent

bent

 

Fig. 3. Scene explanation for the movement “right foot kick followed by a left hand punch” in 
figure 2. The dot line rectangle represents uncertainty. 

K_Straight & F_Lower: word1=(2022222202222222222222222222222)

K_Straight & F_Raise: word2=(2022222212222222222222222222222)

H_Back & E_Bent: word3=(2222222222221222220222222222222)

H_Front & E_Straight: word4=(2222222222220222221222222222222)

kick=(start: word1, next:word5, fuzzy, next:word2, next:word5, \
         fuzzy, end: word1)

rknee bent: word5=(2122222222222222222222222222222)

punch=(start: word3, fuzzy, next:word4, fuzzy, end: word3)

scene1=(start: kick, concatenate: punch,end: null)  

Fig. 4. Our scene definition for “right foot kick followed by a left hand punch”. Denote “rknee 
straight” by K_Straight, “rknee bent” by K_Bent, “rfoot raised” by F_Raise, “rfoot lowered” by 
F_Lower, “lhand front” by H_Front, “lhand back” by H_Back, “lelbow bent” by E_Bent, and 
“lelbow straight” by E_Straight. 
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6   Experiments and Results 

We tested our algorithm on a database D from CMU [4] containing roughly 2,556,000 
frames of motion capture data (sampled at 120 Hz). The experiments are performed 
on a Pentium PC (Pentium 4 1.8GHz processor and 768MB memory). 

6.1   Indexing 

The total size of  represented in the text-based AMC motion capture file format was 
2.01 GB. Assistant storage for files recording footplant information is 1.22 MB. Index 
sizes are linear in the number of segments extracted from the database, which are 
drastic reduced relative to the database size. For example, the whole F-index  
contained 186237 segments, requiring 1.6 MB of storage. Among them, F1-index,  
F2-index, F3-index and F4-index required 695 KB, 287 KB, 468 KB, and 186 KB of 
storage, respectively. The total indexing time is linear in the number of frames. To 
create an index file, the running time spent on reading motion files is 1353s, the fea-
ture extraction time is 180s, and the inverted list build-up time is 71s. However, such 
time is needed only at the database build-up time. At system initialization time, it 
takes 55s to build up indexes by reading data from the index file.  

6.2   Retrieval 

The running time to process a query depends heavily on the query length and the 
number of the resulting hits. In an experiment, we posed 10000 random queries for 
each of 3 query scenarios to our indexes in comparison with the performance in [7], 
see table 2. 

Table 2. The average query time of ours in comparison with that in [7] 

 query 1-9 hits 10-99 hits >=100hits 

|Q|=5 25 37 95 
|Q|=10 27 49 108 Ours 

|Q|=20 36 57 121 
|Q|=5 23 29 291 

|Q|=10 28 35 281 [9] 

|Q|=20 42 35 294 

From table 2, we can find that improvement of retrieval performance for our algo-
rithm is more notable in case many hits exist in results.  This is because in general the 
more hits in results mean that the fewer features are selected for query. Therefore, our 
pre-computing strategy can reduce more union operations during retrieval process. 

Figure 5 shows 8 hits out of resulting 23 hits for a “kicking” motion (retrieval time: 
19 ms) in a query-by-example mode, where only the four features F1

1/F1
2 and F2

1/F2
2 

have been selected, see table 1. Out of these, 7 hits are actual kicking motions. The 
remaining 16 hits are dancing moves containing kick-like component. A manual in-
vestigation of the motion database showed that there are 17 reported kicks in the  
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database as well as other kick-like motions. The missing motions are caused by the 
over-exactness of motion description in query-by-example mode. Further reducing the 
number of features by selecting only F1

2 and F2
2 induces 3-segment query sequence 

and results in 700 hits, comprising various kinds of kick-like motions. Using the mo-
tion description in figure 4 instead, all “kicking” motions are included in the resulting 
138 hits, opposite to 700 hits in the query-by-example mode. This shows that our 
Scene Description Language benefits to overcome the shortage in query-by-example 
mode that is apt to induce fuzzy sets of either over-coarseness (too few selected fea-
tures) or over-exactness (too many selected features). 

       
(a) (b) 

Fig. 5. (a) Selected frames from the 8 query-by-example hits for a squatting motion. Query 
motion is green.  (b) Selected frames from the 16 hits using the scene description in figure 4. 

We regard each inverted list as a category and construct a motion transition graph 
among the frames of it, respectively. To maintain the size of the transition graph at an 
acceptable level, we remain only N nearest neighboring transition points for each 
frame and prune the others. We select N=20 and T (in rule 1)=10 as our configura-
tions for constructing transition graphs. The running time for loading transition graphs 
from a transition file is about 230s at system’s initialization and 29828s for building. 
Comparing with Kovar’s method [2] (a running time of roughly 25 minutes to locate 
all candidate transition points for a subgraph containing only 6000 frames), our algo-
rithm shows good scalability for much larger database.  

We test the transition ability of our system. We using (F1
6=1&F1

7=1), (F1
6=1&F1

7=0), 
(F1

6= 1&F1
7=1), (F1

6=0&F1
7=1) as our queries and set the cycle times to 30 and 50 to 

retrieve walking motions with 30 and 50 steps, respectively. There are 9 resulting hits 
for 30-steps walking motions but no hits for 50-steps. After introducing transition at the 
20th step, we obtain 135 30-setps walking (retrieved time: 6s) and 7 50-steps (retrieved 
time: 8s) walking motions in results. The results are shown in figure 6. 

     
(a)                                     (b)                                           (c) 

Fig. 6. (a) The source walking motions 1. The yellow skeleton shows the beginning frame and 
the red one is the transition point. (b) The source walking motions 2. (c) The resulting walking 
motions that transit from 1 to 2 automatically. The black line is root trajectory. 
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7   Discussion 

In this study, we propose a novel framework for constructing a content-based human 
motion retrieval system. Our main contribution of this work is that we combine the 
framework of motion retrieval with motion graph, making our retrieval system with 
the potentials for motion synthesis purpose. By using geometric features as clustering 
metric, we reduce the computation costs of transition construction greatly, making it 
applicable to a database even more than 106 frames. Another contribution is the intro-
duction of Scene Description Language, which bridges the gap between user’s vague 
perception and explicit motion scene description. 

For future work, we will incorporate motion-blending scheme in our transition con-
struction. We also plan to employ statistical methods to automatically identify expres-
sive geometric features from typical example motions. Moreover, we want to design 
an expendable structure so that user can expend the feature set efficiently. 
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Abstract. Direct volume rendering (DVR) is an effective way to visualize 3D
vascular images for diagnosis of different vascular pathologies and planning of
surgical treatments. Angiograms are typically noisy, fuzzy, and contain thin ves-
sel structures. Therefore, some kinds of enhancements are usually needed before
direct volume rendering can start. However, without visualizing the 3D struc-
tures in angiograms, users may find it difficult to select appropriate parameters
and assess the effectiveness of the enhancement results. In addition, traditional
enhancement techniques cannot easily separate the vessel voxels from other con-
textual structures with the same or very similar intensity. In this paper, we pro-
pose a framework to integrate enhancement and direct volume rendering into one
visualization pipeline using multi-dimensional transfer function tailored for visu-
alizing the curvilinear and line structures in angiograms. Furthermore, we present
a feature preserving interpolation method to render very thin vessels which are
usually missed using traditional approaches. To ease the difficulty in vessel se-
lection, a MIP-guided method is suggested to assist the process.

1 Introduction

Prevention and treatment of vascular diseases can be improved if prompt and precise
diagnosis can be performed with the aid of sophisticated vascular image visualization
techniques. In practice, clinicians visualize the vascular images slice by slice or using
the MIP. However, it is time consuming and difficult to realize the 3D structures. Less
obvious structures may not be revealed because of other bright objects in the MIP. It
cannot give the perception of depth and thus physical reality is lost as a result. Sev-
eral recently published clinician studies [3] comparing DVR with surface rendering and
MIP confirm that it is a more effective technique for angiography. Unlike other images,
angiograms have several characteristics which make them difficult to visualize using
traditional methods. First, the vessel intensity value is not fixed and is different in dif-
ferent types of images. The contextual objects may appear as bright structures and the
intensity of vessels is suppressed after rescaling. Even the same vessel may have differ-
ent intensity values in different parts. This makes it difficult to classify the vessels by
mere intensity for visualization. Another challenge is the small vessels which are dim
and obscure. They can be barely recognized even with the help of MIP. As the contrast
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of the vessels is small, it is difficult to separate simply by thresholding. Thinning or
over-segmentation of vessels are common and noise is introduced into the final result.
Furthermore, the vessels are usually accompanied by background structures which are
not relevant but present an obstacle to classification. Removal of these contextual struc-
tures is difficult due to the potential overlapping between the intensity value intervals
of different objects and vessels.

In this paper, we integrate filtering techniques into the visualization process un-
der the framework of multi-dimensional transfer function. Segmentation and rendering
processes are combined so that various visualization goals can be achieved by users with
a higher flexibility. Besides, as we found that rendering of small vessels is problematic
using conventional approaches, we proposed a new interpolation method to preserve
the thin features. A MIP-guided selection method is suggested for vessel selection.

This paper is organized as follows: We introduce the previous work related to vas-
cular image visualization in Section 2 and describe our framework which integrates
both enhancement and visualization processes using multi-dimensional transfer func-
tion in Section 3. MIP-guided vessel selection method is explained in Section 4. A new
feature preserving rendering approach is covered in Section 5. We demonstrate some
experimental results in Section 6 and conclude our work in Section 7.

2 Previous Works

2.1 Extraction and Enhancement

Segmentation of vessels in medical images is important for diagnosis of the pathology
of vessels. There are many promising segmentation methods developed, although none
of them can outperform the others in every medical image modality. Recently, Kirbas
and Quek [9] have done a survey on vessel extraction techniques. However, most of
them are not fully automatic and require a certain degree of human interaction. For
better visualization and diagnosis, vessel enhancement is another important issue. Dif-
ferent techniques for enhancement are reviewed in [18].

2.2 Visualization

Traditional approaches only show the planar cross-sections through the data volume.
However, it is inefficient as only a small portion of the vessels is revealed in each slice.
Curved Planar Reformation [7] tried to generate a cross-section through the centerline
of the vessels. The correctness of the plane depends on the accuracy of the estimation of
centerlines. Techniques based on the fusion of different rendering methods have been
proposed. They use adaptive methods on the vascular image according to certain prede-
fined criteria. In the two level volume rendering approach of Hauser et al. [4], different
rendering techniques are selectively used for different parts of a 3D image. All the re-
sults of subsequent object renderings are then combined. Zhou et al. [19] developed a
system to realistically render the region of focus, while data outside the region are ren-
dered by NPR approaches. VesselGlyph [15], on the other hand, fused DVR and CPR
in their solution according to the distance to the centerlines.
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2.3 Multi-Dimensional Transfer Function

Multi-dimensional transfer function (MDTF) was first proposed by Levoy [11] who
added the gradient as the second dimension to the transfer function in order to classify
the boundaries of different classes of objects. Various approaches focusing on the use
of the first and second derivatives in the design of the transfer function, such as semi-
automatic transfer function generation [8] and manipulation widget design [10] have
been investigated. Sato et al. [13] used more complicated classification rules to identify
different structures and incorporated them into the feature space design of transfer func-
tion. Huang et al. [6] recently proposed a shaped-based approach for the segmentation
of thin structures. Other related works like [5] tried to classify features using different
types of parameter.

2.4 Thin Structure Rendering

The width of the vessels from different image modalities and resolutions can be quite
different. Some of the small vessels can be as small as one voxel wide. In this case,
displayed image is not satisfactory using the typical rendering approach. Aliasing effect
and poor re-sampling results of the small vessels have to be handled. Dong et al. [1]
proposed to find the presence of fine structures in a preprocessing stage by gradient
estimation and render them with normal reconstruction. Their focus is on depiction of
fine details and texture on a surface. The work of Sen et al. [14], although not directly
related to fine structure rendering, tackled the aliasing problem of texture magnification
using some sophisticated interpolation method. It is similar to the aliasing problem of
small vessels.

3 Multi-Dimensional Transfer Function Design

Owing to the complexity of angiograms, they cannot be effectively visualized using 1D
transfer function. It is hard to determine the nature of the voxel by considering only the
intensity. Vessels and other contextual structures may be misinterpreted in this mapping.
Several ambiguous cases are summarized as follows.

First, two voxels with the same intensity are considered as the same class of objects
in 1D mapping. However, it is possible that voxels with the same intensity represent
different objects at different locations because of the overlapping of intensity interval of
different object classes. Second, even if the voxels with the same intensity are proximate
to each other, they may be of different classes. Due to the partial volume effect, a voxel
may consist of different classes of structures(vessel and context). The voxels with the
same intensity should not always be mapped to the same class. Lastly, in most cases,
the intensity range of vessels is very small and overlaps with other classes. It is very
difficult to distinguish the vessels in the intensity profile.

Therefore, we choose to extend the transfer function to higher dimension in order
to resolve the uncertainty and limitations in the 1D approach. Previous work of Kniss
et al. [10] indicated the importance of multi-dimensional transfer function in extracting
materials and boundaries. Simply using derivatives as the second dimension of feature
space [8] is not effective in our case. The gradient map of the angiogram can only
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show the boundary of different structures. The vessel response is relatively weak and
cannot be distinguished from other contextual structures. This indicates that we should
not only consider the boundaries of objects but also the contextual information or other
higher level details of the objects in order to reveal the object of interest. In this paper,
we focus on the problems arising from angiograms of different modalities and design a
proper feature space for effective visualization of the vascular structures.

3.1 Filtering Techniques

As mentioned in Section 2.1, various kinds of vessel filtering techniques have been
proposed mainly based on the characteristics of vascular structures. In this paper, we
use a curvilinear structure filter and a line filter to assist the process of visualization.

Filter for Curvilinear Structure. Vessels are considered as curvilinear structures by
the filter and strong responses are generated at locations where similar structures are
likely to be present. Among those filters in this category, vesselness measurement based
on Hessian is adopted as it is widely used [12][13] and we found that it can reveal the
tabular structures of vessels more precisely. The eigenvalues of the Hessian matrix are
used to determine locally the likelihood of the presence of vessels. This helps discrim-
inate the vessels from other contextual structures and recover those corrupted vessels.
The Hessian matrix is given by

H =

⎛⎝ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞⎠ (1)

where partial second derivative of image I(x) is represented by Ixx, Ixy, etc. For each
point of the image, the second order structure of intensity variation is captured by
the matrix and the corresponding eigenvalues and vectors which are represented by
λ1,λ2,λ3 and e1,e2,e3 (whereλ1≥ λ2 ≥ λ3), can be computed. By analyzing the eigen-
values, different local structures can be predicted. The thin line structure of vessels
results in a small λ1 and large negative λ2 and λ3. To signify the line-like structure of
vessels in the filter response, we use the line structure similarity measure suggested by
Sato et al. [12] which is given by L = f (λ1,λc)×λc, where λc = min(−λ2,λ3) and

f (λ1,λc) =

⎧⎪⎪⎨⎪⎪⎩
exp(− λ 2

1
2(α1λc)2 ) if λ1 ≤ 0,λc 	= 0

exp(− λ 2
1

2(α2λc)2 ) if λ1 > 0,λc 	= 0

0 if λc = 0

(2)

By applying the filter, unrelated contextual structures can be removed. However, the
performance depends on whether the filter scale is proper or not. It turns out that only
vessels of a similar size can give a significantly high response. As we are dealing with
the problem of small vessels, the smallest filter size is chosen. Users can selectively
choose different filter sizes in their preferences for different visualization goals.

Filter for Line Structure. Although the result of structural filter is pretty good, there
are artifacts due to imperfect values of filter parameters or the variation of background
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tissue of the original image. These factors reduce the detectability of the small vessels.
Uneven or unclear response and fragmentation can be found along the vessel. Refine-
ments should be done on the response to connect those disconnected vessels and sup-
press those single bright voxels of noise. There are many line filters proposed which are
quite similar in nature. The enhancement method proposed by Sun and Parker [16] is a
simpler one and therefore can ease the burden of computation for real-time visualiza-
tion. The idea is to find out the local mean of every line segment passing through the
voxel of interest, while all the line segments are within a cubic kernel centered at the
voxel. The local maximum mean (LMM) is defined as the maximum of the local means.
By assigning the LMM to the previous response, the overall response is strengthened,
especially for the vessel voxels.

LMM(vecx) = max j=1,...,13 {Ld(vecx, j)} (3)

where

Ld(vecx, j) =
1
k

k/2

∑
l=−k/2

S(vecx, j, l)

However, the simplicity of the method comes with drawbacks. Bright vessels are widened
and small vessels at bifurcation are blurred. Besides, the improvement is less significant
for the dim vessels, therefore, an amendment is made to the original method.

To avoid the thickening of bright vessels, voxel intensity should not be raised signif-
icantly by a nearby single bright voxel. This can be done by lowering the intensity of
other context voxels during the mean calculation. The context voxel can be identified by
a threshold which is sufficiently lower than the intensity of the vessel. This can balance
and suppress the increase of the final result due to the bright voxel. The original vessel
is not affected as the highest mean does not change if it is connected with other bright
voxels along the vessel. To suppress the context intensity, we can use a simple formula

I′(x) =
{

I(x)× (T−I(x)
T )c if I(x) < T

I(x) if I(x)≥ T
(4)

where T is the threshold value and c is the constant for the power function used in
the intensity transformation. After applying the filtering methods described in the last
two sections, we can get a clear filter response image which highlights and reveals the
structure of the vessels in the original image. It can be added to the feature space of the
vessel and participate in the transfer function and rendering process.

3.2 Interface

Recall that it is difficult to use a 1D transfer function to classify the vessels from the
context due to the overlapping of intensity interval. As the intensity interval of vessels
is small and not obvious compared with other background structures, it brings about
difficulties in finding an optimal transfer function for visualization. Therefore, we use
the multi-dimensional transfer function approach to ease the difficulties. Instead of us-
ing gradients [17] or derivatives [10], the aforementioned filtering response is treated
as the second feature. To allow easy manipulation, we provide a 2D transfer function
interface in which a user can define a transfer function by creating a polygonal region
on the plane (Fig. 1(a)).
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(a)

Response

Intensity

R

R

T

c1 c2

(b)

Fig. 1. (a) Interfaces of our system; (b) 2D transfer function Interface

We can simplify the searching process by starting with a set of parameters. First,
we define an approximate intensity range R of the vessels. The semi-automatic transfer
function generation approach [8] can be a good initial guess which usually covers a
larger interval than we need. Another range R’, which is a smaller interval within R
and can be more confidently classified as vessels, is defined. As a vessel would give a
reasonably high response value, we can classify those voxels in the range R but not in
range R’ with a threshold defined by a curve or line. The transfer function is shown in
Fig. 1(b). The curve is controlled by a threshold value T and a constant c. Users can
manually change these parameters or directly manipulate the shape of the function in
order to get a better visualization result.

3.3 Framework

In a typical medical imaging system, the dataset is first preprocessed with different
image processing tools and is subsequently put into the pipeline of visualization. This
separated architecture reduces the users’ interactivity in the course of finding a proper
view for their visualization goals. Besides, the result of image processing cannot be

I I'

Anisotropic
Diffusion

Curvilinear
Filter

Line Filter

Parameter
Adjustment

Filter
Response

Multi-dimensional
Transfer Function

Rendering
Processing

Fig. 2. A diagram of the visualization framework
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accurate or proper for visualization without the interactive adjustments from users. For
example, the preprocessed image may be suitable for visualizing large structures but
not tiny vessels in certain regions. This indicates the need for better integration of both
processes in order to accomplish the visualization goals of different users. Fang et al.
[2] suggested a transfer function model in this spirit to fuse the processes. We adapt
their hybrid approach for our purpose (Fig. 2). Instead of applying the filtering oper-
ations directly to the displayed image, the operations are performed on the responses.
We consider the responses as the output of the image-based transfer function which is
defined by F:I→I’ where F = fn⊗ fn−1⊗·· ·⊗ f1.

As users can interactively change the parameters of the filter, it provides higher flex-
ibility. Without this, the result would be affected by poor preprocessed results. To avoid
deterioration of performance due to filtering processes, the original method tries to re-
lieve the computational cost by restricting the processes only on visible regions and
voxels used for rendering. In our case, we restrict them by the first dimension of the
transfer function. As vessels occupy only a small intensity interval and region, which
are much less than 10% of the total number of voxels, this allows the process to be done
more efficiently in real-time.

4 MIP-Guided Selection

The visualization result depends on viewers’ concerns and therefore a proper user se-
lection is a critical starting point for conveying results in an expected way. However, it
is difficult to specify a region of interest in a volume data using a 2D interface. Instead
of performing the selection on each slice, we use the MIP to assist the process as it
can provide useful information about the location of vessels. The idea is that the small
vessels are usually projected on the MIP due to the relatively high intensity, but not on
the direct volume rendered images. By choosing pixels belonging to vessels on the MIP,
the corresponding voxels in the volume can be selected. Conventional region growing
techniques can be applied to the selected voxels and a proper region which can capture
the vessels is defined.

4.1 Depth Encoding

Vessels which are spatially close and have similar intensity values can lead to ambiguity.
Without the depth information, it is difficult to identify the vessels individually and they
are perceived as a clutter of connected vessels (Fig. 3(a)). To solve this problem, we
encode the depth information using a spectrum of colors. First, we generate a depth
map according to the distance of the voxels from the viewing plane. The depth map is
encoded with colors and then composited with the mono-color MIP. This allows users
to identify different vessels which overlap in the MIP. In our experiment, we use a color
spectrum between red and blue to deliver depth cues (Fig. 3(b)). The twisted vessels
in the MIP can be identified clearly. Without the aid of depth encoding, it is difficult
to classify a vessel in the fuzzy context. By considering the color difference, users
can select a vessel at different depth levels and understand the connectivity between
vessels.
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(a) (b) (c) (d)

Fig. 3. MIP images: (a) Original; (b) Color encoded; (c) User selection; (d) Region growing

4.2 Modification on MDTF

In addition to the scalar intensity and vesselness measure, the distance to the selected
voxels should be considered. We add this as another parameter to the MDTF. The
opacity is adjusted accordingly and is increase near the selected regions. This opacity
modulation can reflect the selection of users by highlighting the region of interest. The
structure of the selected vessel (Fig. 4) which is otherwise occluded by other vessels can
be shown clearly in the result. Actually, colors can also be adjusted based on the same
principle. This method is also very useful for rendering those thin vessels of interest.

(a) (b)

Fig. 4. Results of DVR: (a) Original; (b) Result of opacity modulation based on user selection

5 Feature Preserving Interpolation

The intensity along the narrow and weakly connected part of the vessel is uneven and
it is rendered in a ripple shape. Thin vessels may become invisible at certain viewing
angles although they actually exist in the image. The reason for this artifact is that we
cannot guarantee that a good sampling point can always be found along the rays from
all angles. Although a ray passes through the vessel, the distance of the sampling point
to the vessel varies from different viewing angles. We cannot guarantee that the sam-
pling value is always close to the vessel’s intensity. Therefore, part of a small vessel
occasionally darkens or even becomes invisible from certain viewing angles. The arti-
facts can be attributed to the interpolation method used in the rendering process and can
be reduced by increasing the sampling rate so that the chance of getting a representative
sample point is increased. However, this is expensive and still cannot solve the prob-
lem of uneven density distribution. The basic problem is that the trilinear interpolation
method in a typical rendering process has no idea of the existence of vessels (or more
precisely, it does not know whether the voxels are connected within a cell). For exam-
ple, the two diagonal voxels are weakly connected in the cell in Fig 5. The sampling
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value cannot truly reflect the situation if they are actually connected. This is a serious
problem for small vessels. Inspired by Sen [14], we use a new interpolation method to
preserve the connectivity of thin vessels.

C1

C6

C7

C5

C4 C8

C3

C2

(a)

S1

S2

(b)

S1

S2

(c)

Fig. 5. Shaded voxels are the diagonal vessel voxels in a cell. The arrows are the rays passing
through the cell and the circles on the rays are the sample points. A representative sample point
S1 is found in (b) but not in (c). However, intensity of S1 in (b) still falls out of the intensity range
of vessel after interpolation.

5.1 Interpolation Method

Our proposed rendering method takes weak connectivity into consideration. For the
weakly connected vessels, we render them using a special interpolation method. Our
objective is to ensure that the sampled intensity does not drop to a value lower than
those of the connected voxels. A simple solution is to perform a linear interpolation
between the two connected voxels for every connectivity. The intensity along the line
changes smoothly from one voxel to another. Then, the intensity of the sampling point
is the value of the projected point of the sampling point on the line.

I(Ps) =

{
I(ci)×dist(P′s ,ci)+I(c j)×dist(P′s ,c j)

dist(P′s ,ci)+dist(P′s ,c j)
if dist(P′s ,Ps)≤ R0

ITrilinear(c1, . . . ,c8) if dist(P′s ,Ps) > R0

(5)

where c1, . . . ,c8 are the voxels of the cell, Ps is the sampling point and P′s is the projected
point of Ps on line cic j of the vessel. R0 is the radius parameter used to control the width
of the vessel. It should be a value large enough to ensure that at least one sampling
point can be found in this cell when a ray passes through this vessel volume from any
angles. For the volume outside the defined region, we can use the trilinear interpolation
method.

5.2 Connectivity

We have to define the connectivity between voxels such that the vessels can be rendered
accurately. If we only consider the intensity of the voxels, ambiguity may arise. For
example, two voxels may be from two separate vessels or the same vessel. Therefore, we
try to use the filter responses to predict the existence of connectivity. First, we identify
the vessel voxels according to their response values. Then, we check the likelihood of
connectivity by measuring the similarity of their structures. If these voxels have similar
response value, we treat them as connected vessels. This criterion can be written like
this:
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Definition 1. Cell C = [c1, . . . , c8], where ci is a corner of C. For every pair of ci and

c j, find Rdi f f (i, j) = |R(ci)−R(c j)|
min(R(ci),R(c, j)) where ci and c j, are in diagonal. If Rdi f f (i, j) <

T hreshold, connectivity exists between i and j.

As the diagonal voxels may be connected indirectly with a voxel which is on the same
edge with each connected voxel, the connectivity is preserved in the original interpo-
lation method. Therefore, we can ignore these connectivity cases. There may be more
than one connectivity in a cell. Performing interpolation for all the lines of connectivity
is expensive and unnecessary. We only perform interpolation on the nearest edge to the
sample point. For example, if the number of vessel voxels in a cell is quite a few (say,
more than 4), we can assume that the vessels dominate the cell and the original inter-
polation can reveal the connectivity among them. In practice, we can get an improved
result by considering only the case of 2-3 voxels.

6 Experimental Results

In order to demonstrate that our approach can reveal the thin vessel structures and dis-
card the unrelated structures and noises, two medical datasets are tested in our experi-
ment. The first medical dataset is a 3D rotational X-ray angiographic image (3DRA) of
size 256×256×256. It shows the abdominal region of a patient. In the MIP (Fig. 6(a)),
we find many thin vessels which are obscured by the other tissues. Fig. 6(b) and 6(c)
show the results of applying 1D TF and no suitable transfer function can be found af-
ter many trials. In Fig. 6(b) we adjust the transfer function to a higher intensity range
so that noise is minimized. It can clearly show the large vessels but thin vessels are

(a) (b) (c)

(d)

Fig. 6. 3DRA images: (a) MIP image; (b)(c) Results using 1D TF; (d) Result using MDTF
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missed. In the right image, all the missing thin structures are revealed by broadening
the intensity range. However, it is accompanied with noise and other tissues. This is
due to the overlapping of the intensity intervals between vessels and soft tissues, which
make it difficult to classify the vessels using 1D TF. We apply the MDTF with enhanced
features to visualize the data (Fig. 6(d)). The feature response allows us to classify am-
biguous voxels with similar intensity. By choosing a proper transfer function using the
2D interface, the result is better than the previous images. The noise, which has low
response value, is greatly suppressed. Most of the small vessels are revealed clearly in
the image.

(a) (b) (c) (d)

Fig. 7. Brain MRA: (a) MIP image; (b)(c) Results of using 1D TF; (d) Result using MDTF

(a) (b) (c) (d) (e)

Fig. 8. Results using conventional approach (a) (b) (d) and feature preserving approach (c)(e)

In addition, a more complicated TOF MRA image is tested (Fig. 7). It is a 512×
512× 52 brain image consisting of skull and brain matters. The vessels are small and
dim and are embedded in different locations of the brain. Similar to the previous case,
1D TF cannot give a good result (Fig. 7(b) and 7(c)). Our result preserves more details of
the vessels while keeping the noise at minimum. As the brain image is noisy and fuzzy
(Fig. 7(a)), some regions of the brain with similar structures may be misinterpreted as
vessels and introduce noise. It is impossible to remove them completely. However, the
improvement is obvious in the comparison of our result with the original one.

Finally, we show the result of our feature preserving rendering method. Fig. 8(a)
shows a small vessel extracted from the 3DRA data. The width of the vessel is about
1-4 voxels. In the conventional approach, vessels which are actually connected become
broken or even invisible at certain viewing angles due to a poor sampling value being
retrieved with the interpolation scheme (Fig. 8(b) and 8(d)). By using our method, the
thin and weakly connected vessels can be seen clearly at any angle (Fig. 8(c) and 8(e)).
As a representative sampling point is guaranteed to be found within a pre-defined radius,
a strong connectivity is established without thickening the vessel.
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7 Conclusion

This work presents a framework for visualization of vascular images. We integrate the
enhancement process and visualization pipeline using multi-dimensional transfer func-
tion. Segmentation of small vessels is difficult and cannot be easily achieved by using
1D transfer function. The enhancement techniques help classify the curvilinear and line
structures of vessels during the interactive visualization process. Thin vessels are high-
lighted and visualized. Also, we use a new feature preserving interpolation method to
render the thin vessels. This ensures that the thin vessels can be seen clearly at any
viewing angle and are not affected by poor sampling results of conventional interpola-
tion methods. Moreover, we suggest a MIP-guided selection of vessel which helps users
specify the structure of interest and deliver a better result based on the selection.
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Abstract. Most existing techniques of foreground extracting work only
in interactive mode. This paper introduces a novel algorithm of auto-
matic foreground extraction for special object, and verifies its effective-
ness with head shoulder images. The main contribution of our idea is to
make the most use of the prior knowledge to constrain the processing of
foreground extraction. For human head shoulder images, we first detect
face and a few facial features, which helps to estimate an approximate
mask covering the interesting region. The algorithm then extracts the
hard edge of foreground from the specified area using an iterative graph
cut method incorporated with an improved Gaussian Mixture Model.
To generate accurate soft edges, a Bayes matting is applied. The whole
process is fully automatic. Experimental results demonstrate that our
algorithm is both robust and efficient.

1 Introduction

Foreground extraction is a long lasting topic in computer vision and graphics.
Early research focused on fast and precise interactive segmentation tools. In-
telligent Scissors [6], Snakes [4] and Level sets [5] are several typical methods,
which present hard edges. Then, matting techniques were developed to get soft
edges with a transparent alpha mask. Poission [9] and Bayes [8] matting are
the two representative algorithms. Recently, researchers attempt to enhance the
automatization [1], [2], [3]. In [3], an intuitive user interface is suggested, but
is still complex for some images. [2] present the up-to-date technique on im-
age cutout, which only requires the user to draw a rectangle surrounding the
desired object. Fully automatic foreground extraction is still a big challenge to-
day. It seems impossible to develop a universal algorithm to recognize the shape
of interested object out of complex background, because objects in the world
vary greatly. We must take the knowledge of the foreground objects into ac-
count. Fortunately, many objects have their certain characteristics which help
to locate those objects’ outline. Many detection techniques for special objects,
such as car, face, text, etc., have been proposed. Those detection results will
facilitate automatic image segmentation. Based on above analysis, we present
a novel framework for fully automatic foreground extraction of special objects.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 385–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Our paper focuses on making the most use of prior knowledge to select more
precise sample set of the background and foreground, remove unwanted pieces
and retrieve lost patches.

Our algorithm has three stages. First, we locate some obvious features on the
object and get its probable outline by the prior knowledge of the object. With
these information, we secondly apply an iterative Graph cut algorithm based
on improved Gauss Mixture Model (GMM) to estimate the foreground over the
mask and generate the hard edges. Thirdly, along a narrow strip around the hard
edges, Bayesian matting is used to refine the cutout boundary and generate the
final soft edges.

Human face and body are the most familiar things in our life, whose extraction
is significant and meaningful. So we choose the head shoulder images as examples
to validate our algorithm. Its prior knowledge can be represented as facial organ,
which can be obtained with face detection and features locating.

The main contribution of this paper is that we introduce a novel, robust
algorithm to extract foreground automatically for special objects, in which we
make full use of the prior knowledge as strong constraint. This work is of great
significance for those embedding devices without interactive tools, such as digital
cameras and mobile phones.

2 Related Work

For automatic image cutout, there are few achievements up to now. We will de-
scribe briefly and compare several representative interactive image cutout tech-
niques, which focus on presenting convenient interactions. In addition, GMM
will be addressed briefly which will be improved in the next section.

Image Cutout. Several early image segmentation methods have been applied
in commercial products, such as Snakes [4], Level sets [5] and Intelligent Scissors
[6], all of which are interactive tools. Users first define an initial contour. Then
driven by different forms of energy minimization, these contours can be refined
and snapped to the image edges iteratively. The main disadvantage of above
methods is that the final segmentation result depends on the initialization heav-
ily, especially in camouflage. Excessive interaction also limits their application.

Recently, a powerful image segmentation technique Graph cut [1] is presented.
Graph cut poses image cutout as a binary labelling problem, which means that
each pixel p belongs to either foreground or background. Define Lp as the trans-
parency of p. If p belongs to foreground, denote it as Lp = 1; otherwise Lp = 0.
Guided by the observed foreground and background greylevel histograms, the
solution L, i.e. a segmentation, can be obtained by minimizing a Gibbs energy
E(L) with the form:

E(L) = U(p, Lp) + V (p, Lp) (1)

where the first term represents penalty energy for pixel labelling and the lat-
ter term is the smoothing term indicating the interaction between neighboring
pixels. Usually U(p, Lp) and V (p, Lp) can be defined as follows:
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U(p, Lp) = λ ·
∑
p∈P

−lnh(p;Lp), (2)

V (p, Lp) =
∑

(p,q)∈N

e− (Ip−Iq)2

2σ2 ·|Lp − Lq|
dist(p, q)

(3)

in which λ is a weight between the penalty energy and the smoothing term,
(p, q) ∈ N means p, q are neighboring pixels, h is the color distribution, Ip is
the grey value of pixel p, σ is a constant and dist(p, q) is the Euclidean distance
between p and q. Minimization of E(L) is done by using a standard minimum
cut algorithm. More details about the Graph cut algorithm can be found in [1].

GrabCut [2] extended Boykov’s algorithm on several aspects to improve the effi-
ciency and reduce user interaction. Firstly, it replaces color histograms with GMM
to achieve more accurate color sampling. Secondly, it adopts an iterative Graph
cut procedure to substitute for the one-shot minimum cut estimation. It requires
only a rectangle surrounding the desired object for foreground extraction, which
is the most automatic algorithm for foreground extraction up to now. However,
the algorithm is not robust enough since it samples background and foreground
in a imprecise region, so further interactions are still needed in many cases.

Lazy Snapping [3] is another fine Graph cut based cutout algorithm. It sepa-
rates coarse and fine scale processing, making object specification and detailed
adjustment easy. In the coarse process, the image is clustered adaptively and
Graph cut is applied to these clusters to generate an initial segmentation fast.
While in the fine process, a set of user interface tools is designed to provide
flexible control and editing. To obtain satisfactory results, usually the exigent
interaction is also unavoidable.

Above approaches mainly focus on the hard segmentation, which can not
get smooth edge information, whose results can not be composed with another
image smoothly. Some work has been addressed in the soft segmentation [7],
[8], [9], which endows the pixel around the boundary with continuous alpha
values. Usually, for these approaches, a user-supplied trimap T = {TF ;TU ;TB}
is needed, where TF is the user specified foreground, TB is background and TU is
the the unknown region whose alpha values are to be solved. Bayes matting [8]
models the color distributions with oriented Gaussian covariance, and relies on a
Bayesian approach to solve the matting problem. Poisson matting [9] formulates
the problem as solving Poisson equations with the matte gradient field.

Gaussian Mixture Model (GMM). GMM is a type of probability density
composing of a set of Gaussian models. The GMM with K Gaussian models is:

p(ω|x) =
K∑

k=1

αkG(x;μk, σk) (4)

where α1, ..., αk is the mixing proportions satisfying ΣK
k=1αk = 1, μk, σk is the

mean value and covariance of kth Gaussian model. A commonly used approach
for determining the parameters of GMM is the Expectation-Maximization(EM)
algorithm [10].
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3 Head Shoulder Cutout Algorithm

The process of automatically extracting foreground of head shoulder pictures
is divided into three steps: make a rough mask with the face detection and
feature location techniques; extract the hard edges of the foreground with the
constraints of the mask by Graph cut; refine the result and generate soft edges
with matting.

3.1 Face and Feature Detection

Face and facial feature detection have been studied for many years, with many
techniques proposed [15], [16], [18]. A detailed comparison and survey on face
detection algorithms can be found in [15]. Among the face detection methods,
learning-based algorithms have demonstrated excellent results. Recently, P. Viola
[18] presented an efficient and robust method with AdaBoost and integral image.
We adopt an improved Adaboost algorithm to search the face candidate in head
shoulder image.

In order to enhance the detection ratio and performance of Adaboost algo-
rithm, we make two improvements. First, an adaptive Gauss mixture skin color
model is employed to ignore those non-skin regions, and canny filter is used to
reduce those chaos regions. Second, in Adaboost algorithm, when the number
of features exceeds 200, the distribution of face and non face classes in Harr-like
features space almost completely overlap in later stages of the cascade training.
In order to solve this problem, PCA feature is introduced in the later stages of
cascaded training. Adaboost with PCA can get much higher detection ratio than
that without PCA at the same false alarm ratio.

Further, we also employ Adaboost algorithm to locate eye corners and mouth
corners based on the detected face, and apply VPF [13] algorithm to locate jaw
and jowl feature points. The whole process abides to the idea of LFA [14], which
enhances the efficiency and increases detection ratio. In general, we detect 9
feature points: eye corners, mouth corners, left/right jowl and jaw.

3.2 Face Mask

With the help of the the detected face and features, we create a mask to define
the region of interest in the image, which indicates the approximate position of
the head and shoulder. This mask will strongly constrain the whole Graph cut
process to emphasize foreground, remove fractional pieces and unwanted patches,
and retrieve the lost foreground.

Candide is a wire-frame face model to define a basic facial structure, which has
been popular in video coding research for many years [19]. The new variant of
this model is also compliant to MPEG-4 Face Animation. We adopt the frontal
projection of Candide to assist in constructing the face mask, as shown in Fig.1.
The green points denote the detected features and the blue ones are estimated
with Candide. The region surrounded by the pink polygon demonstrates the
approximate face area and the half ellipse adhering to the face mask denotes the
shoulder position. Besides, the proportions of all parts are also fixed.
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In Fig.1, the area covered by face mask and the half ellipse is deemed as
the estimated initial foreground served for the further Graph cut, while the
rest region is the background. Obviously, this initial samples selection of back-
ground/foreground is more accurate than previous semi-automatic approaches.

Fig. 1. The head and shoulder mask. The green points are automatically detected and
the blue ones are estimated with Candide model; Some length proportions are also
labeled, wherein h, w represent the length and width of the face respectively.

3.3 Color Distribution

GMM is a widely used model for the description of color distribution. Based on
that, we propose a new model, named multi-GMM, to achieve more robust effect.

When colors in an image are complicated, a single GMM doesn’t fit well.
As is shown in Fig. 2(b), if we model all the colors with a single GMM, it is
significantly inaccurate in the pink region. This would further lead to a poor cut
between the foreground and background. In such case, we split the model into 4
separate GMMs, as show in Fig. 2 (c), according to the distances between each
Gaussians. In our algorithm, we use this multi-GMM to model the foreground
and background color distributions. We firstly employ the algorithm in [17] to
determine the proper number of color clusters. Secondly, we group the clusters
into multi-GMM. For the initialization of each GMM, we use LBG [22] algorithm,
which generates more precise initial value compared to the splitter [20] and k-
means [21] methods. Then we apply EM algorithm [11] to get our GMMs.

Sampling all pixels within the mask to construct the multi-GMM is not neces-
sary and results in great mistake since the mask is just a rough estimation of the
head shoulder position. To reduce the affection of above problem and decrease
the computational complexity for constructing multi-GMM, we adopt the sam-
pling principles as follows. First, in general cases, the central area of the mask
and half ellipse should belong to foreground doubtlessly, which is deemed as
foreground without sampling (Φ in Fig. 3 (a)). This area is almost worthless for
the segmentation. On the contrary, it may bring some false cut patches. More-
over, sampling this region costs a lot to construct the color model. Second, the
region near the boundary of the mask and half ellipse is the unknown area (Ω in
Fig. 3 (a)). The narrow strip near the boundary will be sampled sparsely while
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gradually becoming dense away from the boundary; the sampling ratio is lowest
on boundary. Third, similar to the central region, the region (Ψ in Fig. 3(a))
near the image border is certainly the background, so its sampling ratio should
be low or zero.

(a) (b) (c)

Fig. 2. Multi-GMM. (a) Color clustering; (b) Colors modeled with a single GMM; (c)
Colors modeled with multi-GMM, each of which represents a different color.

(a) (b)

Fig. 3. Pixel sampling principles. (a) The thick yellow and light yellow area represent
the high and low sampling area separately, while the blank means non-sampling; (b)
visualizes the sample function.

We adopt the probability density function of F -distribution to guide us sam-
pling the foreground/background:

PF =
Γ (m+n

2 )
Γ (n

2 )Γ (m
2 )

n
n
2 m

m
2

x
n
2 −1

(nx + m)
m+n

2

(5)

where Γ is the Gamma distribution, the parameters m, n determine the sam-
ple principle (we set m, n to 10 in our experiment ). The gradual changing of
sampling ratio is visualized as Fig 3. In (a) the thick yellow area represents
a high sampling ratio and the light yellow region is lower, whereas the blank
means non-sampling; (b) visualizes the sampling function, reflecting the rela-
tion between the sample ratio and the distance of a certain area to the pink
boundary.

In addition, we divide the whole interested object into multiple sub-regions,
so that we can reduce color cluster number, generate more fitting color model
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and speed up as well. For head shoulder photos, we divide them into two sub-
regions of head and shoulder, in which shoulder mask can be adaptively created
based on the head clustered result. While for other special objects, we can divide
different number of sub-regions according to its physical structure.

3.4 Image Cutout

With the multi-GMM obtained, an improved Graph cut algorithm is employed
to cut out the head and shoulder from the pictures.

For a clear description, we define the pink curve C in Fig. 3 (a) as the contour
consisting of the outer edge of the face mask and its adhering half ellipse. We
represent the sampled pixel set out of C as Pb, the interior set as Pf . Obviously,
for the pixel belonging to Pb , the farther from C, the more probable it is
background. The same for the sampled pixel of Pf . This fact is imposed in
Graph cut by appending prior weight function to the penalty energy term of the
Graph cut objective function.

For a pixel p, dis(p) denotes the Euclidean distance from p to C. If p belongs
to Pf , define D(p) = dis(p) as the distance from p to the contour; otherwise,
define a negative D(p) = −dis(p) as its oriented distance to C. We adopt a
normalized function W (p, Lp) as the prior coefficient with the form:

W (p, Lp) =

{
1√
2π

∫ p

−∞ e−
x2
2 dx + 1

2 , Lp = 0
1 , Lp = 1.

The Gibbs energy of (1) is modified as:

E(L) = W (p, Lp)U(p, Lp, Gp) + V (p, Lp) (6)

where W (p, Lp) acts as the intensity to emphasize the constraint of prior knowl-
edge and is valued as the displacement of the distribution function of the stan-
dard normal distribution for Lp = 0. It takes effect on the background energy
or foreground energy. For background energy, if p belongs to Pf , its background
energy is reduced, otherwise increased.

U(p, Lp, Gp) derived from U(p, Lp) of (1) is the new penalty energy incorpo-
rated with GMM by substituting the pixel’s weighted Gaussian distributions:
Gp for the color distribution in monochrome image. It can be formulated as:

U(p, Lp, Gp) = λ ·
∑
p∈P

[−ln(
n⊙

i=1

αi(p)
li∑

j=1

βijG(p, μij , σij))] (7)

in which λ inherited from (1). n represents the number of GMM and li means the
number of Gaussians contained in ith GMM. The symbol

⊙
represents whether

p belongs to ith GMM. In our color multi-GMM distribution, each pixel p only
belongs to a GMM in general, assumed as kth (k ∈ [1, n]), then αk(p) is set to 1,
others set to zero. βj is the coefficient of jth Gaussian’s probability weight among
ith GMM and is computed by dividing the sample number in jth Gaussian by
the pixel number contained in ith GMM.
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We adopt an iterative method to solve E(L). It starts with minimizing E(L)
with the standard minimal cut algorithm, and regards the cutout result as
the initial estimation of the foreground/background for the next iteration. Af-
ter every iteration, the multi-GMM is applied again to model the color data
of the new estimated foreground/background. Since after every iteration the
estimated foreground/background becomes more accurate, the iteration is
convergent.

For each iteration with our new form of Gibbs energy, the pixels on estimated
foreground/background is resampled and clustered by LBG algorithm, then EM
optimization is performed. The rules for computing W (p, Lp) holds unchanged,
so the distance D(p) for every sample is computed only once.

3.5 Matting

Image matting used to generate soft edges, and is especially useful for transparent
objects, such as hair and feathers. We perform Bayesian matting along the hard
edges generated with above Graph cut. The unknown area of trimap is generated
by dilating along the hard edges with a constant width (we set 12 pixels in our
experiments), while interior and exterior strip regions are labeled as foreground
and background separately.

Note that, to enhance the efficiency of our algorithm, Graph cut can be im-
plemented on the down-sampled image, whereas the matting algorithm is per-
formed on the original image, which doesn’t basically affect the last results in
principle.

4 Experimental Results

We have tested our algorithm with 263 normal upright head shoulder pictures
with over 70% success ratio on an Intel Pentium IV 2.4GHz PC with 512MB
main memory under the Windows XP operating system. The detection costs 1-2
seconds, cutout stage costs 1-3 seconds and matting takes 1-3 seconds.

Fig. 4(b), (e) show the poor cutout results without the constraint of prior
weight function W (p, Lp) while solving the objective function E(L). The reason
lies in that the color distribution of foreground is similar to its nearby back-
ground. (c), (f) are the right cutout results by taking the constraint of prior
knowledge into account.

Fig. 5 demonstrates the iterative process of solving E(L). Here we give the
cutout result of the head part step by step as (b), (c) and (d). On the other hand,
although the facial detection result (a) is not fully exact inducing inaccurate
mask, our algorithm can generate proper cutout (e) as well.

Fig. 6 shows the matting effect of the hair. Fig. 7 presents some other exam-
ples. Fig. 8 composes a cutout result with a different background smoothly.

A few of the above pictures are fetched from the papers: [2] and [23]. We
also selected a few samples from our test library, and submitted them with our
prototype system to the online submission web page, the user can implement it
and test the pictures according to the user instruction.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. The constraint of prior knowledge. (a), (d) are the original images; (b), (e) are
the cutout results without the constraint of W (p,Lp), (b) loses a few pieces and (e)
generates some unwanted patches; (c) (f) are the results taking account of W (p,Lp).

(a) (b) (c)

(d) (e)

Fig. 5. The process of iteration. (a) The original image with detected feature points;
(b), (c) and (d) show the iterative results of head; (e) The last cutout result.
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(a) (b) (c)

(d) (e)

Fig. 6. Bayes matting. (a) The original image; (b)(c) The cutout matte and result with
hard edge; (d)(e) The matting result corresponding to (d).

Fig. 7. Some other results of our algorithm. The upper row shows four original head
shoulder pictures and the lower row presents the corresponding cutout results.

(a) (b) (c)

Fig. 8. One cutout and composite example. (a) The original picture; (b) The cutout
result; (c) The composite result.
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5 Conclusions and Future Work

We have presented a novel approach to automatically extract special object and
verified it with head shoulder images. The key point is how to make full use
of prior knowledge of the object to estimate the region of interest, model the
foreground and background color distributions and implement a robust and rapid
Graph cut algorithm. The main advantage of this approach is that it requires
no user interactions.

Although initial experiments generated some encouraging results, our ap-
proach is not yet robust enough to handle all cases. One main problem is that
our face detection algorithm has not considered the cases of rotation and vary-
ing of lights, which affects the results sometimes. To resolve this problem and
abide this tolerance is a future work. Besides, the speed is not fast enough yet.
The extraction process costs 2 to 5 seconds in general. Our future works include
the following aspects. The processing, with the GMM construction and Graph
cut can be optimized to a real-time speed. We are also doing some research on
extraction of the full body. In addition, similar to the head shoulder images, the
automatic extraction of other special objects, such as cars, trees, animals, can
be applied.
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Abstract. The visualization of 3D volume data of proteins synthesized by quan-
tum mechanics is a new topic and is of great importance in modern bio-
computing. In this paper, we introduce our primary attempts on the volume 
visualization of the 3D macro-molecular scalar field. Firstly, we transform one 
protein molecular structure into a regularly sampled 3D scalar field according to 
the theories in quantum chemistry, in which each node records the combined ef-
fect of different actions in protease. We then exploit volume rendering tech-
niques to find the macro-structure inside the data field based on a convenient 
mapping mechanism. We also propose an improved transfer function mode,  
facilitating the flexible visualization of the 3D protein data sets. Finally, com-
bined with the iso-surface extraction technique, our approach allows for interac-
tive exploration of the potential “tunnel” region which exhibits biological sense. 
With our approach, we show the escape route of water molecules hidden in the 
HIV-1 protease, which conforms to the experimental results. 

1   Motivation 

One challenging problem in life science is to understand the functions of proteins. 
Based on the hypothesis that the 3D protein structure uniquely determines its func-
tion, researchers try to explore the protein structure for the prediction of its functions. 
The difficulty in predicting the structure and function of proteins has led to the emer-
gence of numerous approaches. Generally speaking, these methods can be divided 
into two classes. On one hand, the real structure can be measured by techniques of  
X-ray crystallography and NMR[9]. 3D structural prediction is accomplished by simi-
larity comparison[4]. However, it can not provide a long dynamic sequence of the 
underlying proteins due to the limited image resolution. On the other hand, the protein 
structure can be simulated by many computing techniques[1]. Although the size of 
protein is within several tens of nanometers, many interesting properties can be faith-
fully analyzed by quantum mechanics. This scheme can provide dynamic simulation 
of proteins. 

In the last decade, many synthesized protein data became available with the boost 
of the computing ability. And lots of methods have been developed to achieve the 
overall electron density distribution of bio-molecules. Visualizing this type of data set 
is quite helpful for exploring the underlying mechanism of proteins. Note that the 
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simulation data are usually scalars in 3D space, which can be regarded as a 3D vol-
ume data. Although there are several well-established volume visualization ap-
proaches for visualizing scalar data, there still exist some practical problems in terms 
of the domain knowledge of the molecular graphics. 

In this paper, we introduce our efforts on visualizing the quantum mechanics simula-
tion data of proteins by direct volume rendering techniques. The main challenges lie in: 

1) The data are usually of very small values with dynamic range, such as [0,10-10]. 
Typically, the handling data value in volume rendering should be within the inter-
val of [0,255]. How to automatically adjust the small floating values to be in an 
appropriate range is an interesting problem. 

2) The 3D volumetric data have both negative and positive values, which has special 
physical significance. Scientists would like to see different parts of them and the 
crossing region. Thus we need a method to distinguish the different parts auto-
matically. 

3) When some portion of the whole data is difficult to be investigated, we need a 
user-friendly interface to allow the users adjust the parameters for different region 
of interest (ROI). 

The rest of this paper is organized as follows. We will briefly review the related 
work in Section 2. Our approach and the experimental results are introduced in Sec-
tion 3. We conclude the whole paper in Section 4. 

2   Related Work 

With the attempt to explore the complex structures of proteins, researchers have de-
veloped several molecular visualization software packages. Graphics visualization 
tools, such as RasMol[26], VMD[23], PE[25], can interactively display the molecule 
in a variety of representations. Existing geometric representations include wire-frame 
bonds, cylinder stick bonds, alpha-carbon trace, space-filling spheres, macromolecu-
lar ribbons (either smoothly shaded solid ribbons or parallel strands), hydrogen bond-
ing and point surface representations. These representations provide geometrical and 
topological information according to the types of atoms and corresponding distance. 
And they offer biologists a quite good means to intuitively describe the overall shape 
of molecule, backbone of protein and secondary structures. However, they are not 
able to provide the whole-scale volume rendering capabilities for synthesized protein 
data set.  

The synthesized protein data by quantum mechanics are inherently a kind of  
volumetric data set. To efficiently process and visualize these data sets, volume visu-
alization is highly required. There are a number of publications on volume visualiza-
tion[3][8][21]. Sine 1980s, volume visualization has experienced a development from 
simple rendering techniques to advanced processing, analysis and data mining. To 
achieve high quality of direct volume rendering, researchers keep exploring effective 
transfer functions, especially for semi-automatic and automatic algorithms. Extracting 
effective volumetric features, such as geometrical and topological properties is one 
commonly used technique[2][5][6][7][10][12][13][15][17][20]. However, most of 
them work on medical images directly.  
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On the contrary, there are much less works dedicated to the visualization of synthe-
sized molecular data. Shigeo et al[19] proposed an automatic transfer function in 
volume visualization by extracting volume skeleton tree, which consists of volumetric 
critical points and their connectivity. Recently, Qiao et al[22] presented a hardware-
accelerated direct volume rendering system for visualizing multivariate wave func-
tions in semi-conducting quantum point simulations. Sameep et al[18] explored  
features from electron density data from molecular dynamic simulation by statistical 
iso-value analysis and designed an effective transfer function to visualize the anoma-
lous structures from regular Si system. 

3   Our Approach 

Following the quantum chemical theory[11], we transform one protein molecular 
structure into a regularly sampled 3D scalar field, in which each node records the 
combined effect of different actions in proteins. The scalar values are usually sepa-
rated into two parts: positive and negative ones, each possessing special physical 
meaning. The so-called “nodal surfaces” refers to the region where the wave function 
crosses zero. Scientists would like sometimes to see the positive region, the negative 
region, as well as the "nodal surfaces". Thus we need to calculate the two ranges of 
scalar data falling into the negative and positive number sets respectively. The loca-
tion of zero is the watershed for the “nodal surfaces”. The synthesized data calculated 
by the wave function for protein molecule are very small and highly dynamic. For 
instance, the electron density data of HIHIP (High Potential Iron Protein)[20] may fall 
into the range of [0,10-10]. Thus, the first step for viewing the data is to transform the 
raw data to an appropriate range to color index.  

Let Vs denote the whole data set. We adopt the logarithmic function to represent it. 
As the domain of the logarithmic function should be greater than zero, the mapping 
should be considered separately as follows:  

 

The range of the new volume data  Vs 
’
    is then mapped into the color range of 

[0,255]. We assign the red and blue color to positive and negative values respectively 
which ensures that the two parts besides the “nodal surfaces” is distinguished. We 
experiment with the HIHIP HOMO orbital data and charge density data from a part of 
the active site of HIV protease 1A30 in water solution[24]. The size of the former 
data set is 64×64×64, and the latter is 28×20×20. Fig.1 shows the results of direct 
volume rendering by ray casting algorithm. The red and blue colors represent positive 
and negative data respectively, where different distribution of the correspondence 
physical quantities can be easily watched.  

We observed that when rendering the whole data sets, the resulting images become 
rather confused if there is no appropriate transfer function. It does not work well when 
we intend to view some important information hidden inside a cluster of data but we  
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Fig. 1. (left)The rendering result for HIHIP volume data; (right) The rendering result for HIV-1 
volume data 

do not know where they are, in this case, trial and error will be done. It usually needs 
to manually adjust opacity transfer function by interactive editing tools painstakingly 
and inevitably. We simplify this operation when viewing the whole volume as well as 
a focused region. We design a composite transfer function by combining a global 
function with a local function. The global transfer function is responsible for viewing 
the whole range of the data set and the local transfer function makes the salient re-
gions distinct.  

Let  fg and  fl denote the global function and local one respectively, then the model 
of composite function  f  can be described as: 

 

where Sp is the location we are interested in and w is the local dynamic range. Local 
information around Sp thus can be accentuated without modifying the original global 
one.  The composite transfer function is modified by just moving the slider of Sp, 
which simplifies the interactive operation on transfer function modification. 

For the sake of simplicity, we assume that the global function is  fg = ax + b;  x [0, 
Smax], and the local function is a piecewise widget shape function, where Smax = 0.2, as 
shown in Fig.2.  
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Fig. 3. (left) when applying  the global transfer function; (right) when applying the composite 
transfer function 

 

 
(c)  Iso-surface mode                              (d)  Semi-transparent mode 

Fig. 4. (a-b) Traditional illustrations of the structure data of the HIV-1 protein (drawn by 
Chem3D); (c-d) The 3D volume rendering results of a part of the active site of HIV-1 protein in 
water solution 

When Sp moves within the range of the whole scalar values, we can easily obtain 
the new opacity transfer function and see the scalar values near Sp. We experiment 
with the data set of SOD, which is an electron density map of active site of superoxide 
dismutase enzyme[20], as illustrated in Fig.3. The right picture is rendered by com-

(b) The wire-frame mode (a) The alpha-carbon trace mode 
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bining the global transfer function used in Fig.3 (left) with a local one, in which tear-
drop shapes and clumps of atomic density are seen. 

We also examined the HIV-1 protease data with the ray casting[16] and 3D texture 
slicing approach[14] respectively. The first algorithm is used to accomplish the iso-
surface like volume rendering (Fig.4(c)). We employed the 3D texture slicing ap-
proach in a semi-transparent mode (Fig.4(d)). Compared to traditional illustration 
methods (Fig.4 (a-b)), the visualization results are very useful for the exploration of 
the spatial energy distribution of the proteins. Specifically, we show the escape route 
of water molecules hidden in the HIV-1 protease, which conforms to the experimental 
results[24]. 

4   Conclusions and Future Work 

The 3D volume data of proteins synthesized by quantum mechanics is highly dynamic 
and contains negative and positive values. Their visualization is of great importance 
in modern bio-computing. In this paper, we introduce a convenient mapping mecha-
nism to support efficient direct volume rendering of these data sets. We propose an 
improved transfer function mode, resulting in flexible visualization of the 3D protein 
data sets. 

There are higher requirements on exploring the underlying relationship between 
protein structure and function. Detection and visualization of useful features hidden 
behind the synthesized data is one challenging problem. As a result of our initial ef-
fort, we envision to research on the domain associated visualization techniques and to 
develop new data mining methods for protein simulation data. 
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Abstract. A second order forward differences based subdivision depth
computation technique for extra-ordinary Catmull-Clark subdivision sur-
face (CCSS) patches is presented. The new technique improves a previous
technique in that the computation of the subdivision depth is based on
the patch’s curvature distribution, instead of its dimension. Hence, with
the new technique, no excessive subdivision is needed for extra-ordinary
CCSS patches to meet the precision requirement and, consequently, one
can make trimming, finite element mesh generation, boolean operations,
and tessellation of CCSSs more efficient.

1 Introduction

Research work for subdivision surfaces has been done in several important areas,
such as surface parametrization [6][10][11][14], surface trimming [7], boolean op-
erations [1], mesh editing [13], and error estimate/control [3][12]. For instance,
given an error tolerance, [3] shows how many times the control mesh of a Catmull-
Clark subdivision surface (CCSS) patch should be recursively subdivided so
that the distance between the resulting control mesh and the limit surface patch
would be less than the error tolerance. This error control technique, called sub-
division depth computation, is required in all tessellation based applications of
CCSSs. [3]’s subdivision depth computation technique for regular CCSS patches
is optimum. However, for an extra-ordinary CCSS patch (a patch with an extra-
ordinary vertex), since the subdivision depth computed by [3] depends on first
order forward differences of the control points, its value could be bigger than
what it actually should be and, consequently, generates excessive mesh elements
for regions that are already flat enough.

In this paper we will present a new subdivision depth computation technique
for extra-ordinary CCSS patches. The new technique is based on the second order
forward differences of an extra-ordinary patch’s control points.. The computed
subdivision depth reflects the patch’s curvature distribution, not its dimension.
Hence, with the new technique, no excessive subdivision is needed for regions
that are already flat enough and, consequently, trimming, finite element mesh
generation, boolean operations, and tessellation of CCSSs can be made more
efficient.
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2 Problem Formulation and Background

Given the control mesh of an extra-ordinary CCSS patch and an error tolerance
ε, the goal here is to compute an integer d so that if the control mesh is iteratively
refined (subdivided) d times, then the distance between the resulting mesh and
the surface patch is smaller than ε. d is called the subdivision depth of the surface
patch with respect to ε. Before we show the computation technique, we need to
define related terms and review related techniques for regular CCSS patches.

2.1 Catmull-Clark Subdivision Surfaces

Given a control mesh, a CCSS is generated by iteratively refining (subdividing)
the control mesh to form new control meshes [2]. The refining process consists
of defining new vertices (face points, edge points and vertex points) and con-
necting the new vertices to form new edges and faces of a new control mesh.
The limit surface of the iteratively refined control meshes is called a subdivision
surface because the mesh refining (subdivision) process is a generalization of
the uniform bicubic B-spline surface subdivision technique. Therefore, CCSSs
include uniform B-spline surfaces and piecewise Bézier surfaces as special cases.
Actually CCSSs include non-uniform B-spline surfaces and NURBS surfaces as
special cases as well [9]. The control mesh of a CCSS patch and the new control
mesh after a refining (subdivision) process are shown in Figures 1(a) and (b),
respectively. This is a conceptual drawing, the location shown for a new vertex
might not be its exact physical location.

(a)

F

V

(b)

edge point

face point

vertex point

New edge

F

F F

F00

10 11

01

Fig. 1. (a) Control mesh of an extra-ordinary patch; (b) new vertices and edges gen-
erated after a Catmull-Clark subdivision

The given control mesh will be referred to as M0 and the limit surface will
be referred to as S̄. For each positive integer k, Mk refers to the control mesh
obtained after applying the Catmull-Clark subdivision k times to M0.

The power of CCSSs comes from the way mesh vertices are connected. If the
number of edges connected to a mesh vertex is called its valence, then the valence
of an interior mesh vertex can be anything ≥ 3, instead of just four. Those mesh
vertices whose valences are different from four are called extra-ordinary vertices
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to distinguish them from the standard or regular mesh vertices. Vertex V in
Figure 1(a) is an extra-ordinary vertex of valence five. An interior mesh face is
called an extra-ordinary mesh face if it has an extra-ordinary vertex. Otherwise,
a standard or regular mesh face. Mesh face F in Figure 1(a) is an extra-ordinary
mesh face. we assume all the mesh faces in M0 are quadrilaterals and each mesh
face of M0 has at most one extra-ordinary vertex. Otherwise, simply perform
the subdivision step twice on the given control mesh.

For each interior face F of Mk, k ≥ 0, there is a corresponding patch S in
the limit surface S̄. F and S can be parametrized on the same parameter space
Ω = [0, 1]×[0, 1] [10]. F is a bilinear rule surface. S is a uniform bicubic B-spline
surface patch if F is a regular face. However, if F is an extra-ordinary face then
S, defined by 2n+ 8 control points where n is the valence of F’s extra-ordinary
vertex, can not be parametrized as a uniform B-spline patch. In such a case, S
is called an extra-ordinary patch. Otherwise, a regular patch or standard patch.
The control mesh shown in Figure 1(a) is the control mesh of an extra-ordinary
patch whose extra-ordinary vertex is of valence five.

2.2 Distance and Subdivision Depth

For a given interior mesh face F, let S be the corresponding patch in the limit
surface S̄. The control mesh of S contains F as the center face. If we perform a
subdivision step on the control mesh, we get four new mesh faces in the place of
F. This is the case no matter F is a regular face or an extra-ordinary face (see
Figure 1(b) for the four new faces F00, F10, F01 and F11 obtained in the place
of the extra-ordinary face F shown in Figure 1(a)). Since each of these new faces
corresponds to a quarter subpatch of S, we shall call these new faces subfaces of
F even though they are not pyhsically subsets of F. Therefore, each subdivision
step generates four new subfaces for the center face F of the control mesh.
Because the correspondence between F and S is one-to-one, sometime, instead
of saying performing a subdivision step on S, we shall simply say performing a
subdivision step on F.

The distance between an interior mesh face F and the corresponding patch S
is defined as the maximum of ‖F(u, v)− S(u, v)‖:

DF = max (u,v)∈Ω ‖F(u, v)− S(u, v)‖ (1)

where Ω is the unit square parameter space of F and S. DF is also called the
distance between S and its control mesh. For a given ε > 0, the subdivision
depth of F with respect to ε is a positive integer d such that if F is recursively
subdivided d times, the distance between each of the resulting subfaces and the
corresponding subpatch is smaller than zero.

2.3 Subdivision Depth Computation for Regular Patches

A regular patch is a standard uniform bicubic B-spline surface patch. Therefore,
the computation process for a regular patch is the same as the computation
process for a standard uniform B-spline surface patch. We review the evaluation
of the distance between a B-spline patch and its control mesh first.
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Distance Evaluation. Let S(u, v) be a uniform bicubic B-spline surface patch
defined on the unit square Ω = [0, 1] × [0, 1] with control points Vi,j , 0 ≤
i, j ≤ 3, and let L(u, v) be the bilinear parametrization of the center mesh face
{V1,1,V2,1,V2,2,V1,2} (see Figure 2):

VV

V V21

22

11

12

V

V

V

V

30

33

03

00

L (u)

S(u,v)

L1(u)

2

2(v)L
_

L1(v)
_

Fig. 2. Definition of L(u, v) = (1 − v)L1(u) + vL2(u) = (1 − u)L̄1(v) + uL̄2(v)

L(u, v) = (1− v)[(1 − u)V1,1 + uV2,1] + v[(1 − u)V1,2 + uV2,2], 0 ≤ u, v ≤ 1.

The distance between S(u, v) and L(u, v) satisfies the following lemma [3].

Lemma 1. The distance between L(u, v) and S(u, v) satisfies the following in-
equality

max
0≤u,v≤1

‖L(u, v)− S(u, v)‖ ≤ 1
3
M

where M is the second order norm of S(u, v) defined as follows

M = max
i,j
{ ‖2Vi,j −Vi−1,j −Vi+1,j‖, ‖2Vi,j −Vi,j−1 −Vi,j+1‖ } (2)

Recurrence Formula for Second Order Norm. Let Vi,j , 0 ≤ i, j ≤ 3, be
the control points of a uniform bicubic B-spline surface patch S(u, v). We use Vk

i,j

to represent the new control points of the surface patch after k levels of recursive
subdivision. The indexing of the new control points follows the convention that
Vk

0,0 is always the face point of the mesh face {Vk−1
0,0 ,Vk−1

1,0 ,Vk−1
1,1 ,Vk−1

0,1 }. The
new control points Vk

ij are called the level-k control points of S(u, v) and the
new control mesh will be called the level-k control mesh of S(u, v).

If we divide the parameter space of the surface patch, Ω, into 4k regions as
follows:

Ωk
mn = [

m

2k
,
m + 1

2k
]× [

n

2k
,
n + 1
2k

], 0 ≤ m,n ≤ 2k − 1

and denote the corresponding subpatches Sk
mn(u, v), then each Sk

mn(u, v) is a
uniform bicubic B-spline surface patch defined by the level-k control point set
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{Vk
pq | m ≤ p ≤ m + 3, n ≤ q ≤ n + 3}. Sk

mn(u, v) is called a level-k subpatch of
S(u, v). Let Lk

mn(u, v) be the bilinear parametrization of the center face of Sk
mn’s

control mesh, {Vk
pq | p = m + 1,m + 2; q = n + 1, n + 2}. We say the distance

between S(u, v) and the level-k control mesh is smaller than ε if the distance
between each level-k subpatch Sk

mn(u, v) and the corresponding level-k bilinear
plane Lk

mn(u, v), 0 ≤ m,n ≤ 2k − 1, is smaller than ε. A technique to compute
a subdivision depth k for a given ε so that the distance between S(u, v) and the
level-k control mesh is smaller than ε is presented in [3]. The following lemma is
needed in the derivation of the computation process. If we use Mk

mn to represent
the second order norm of Sk

mn(u, v), i.e., the maximum norm of the second order
forward differences of the control points of Sk

mn(u, v), then the lemma shows the
second order norm of Sk

mn(u, v) converges at a rate of 1/4 of the level-(k − 1)
second order norm [3].

Lemma 2. If Mk
mn is the second order norm of Sk

mn(u, v) then we have

Mk
mn ≤

(
1
4

)k

M (3)

where M is the second order norm of S(u, v) defined in (2).

Subdivision Depth Computation. With Lemmas 1 and 2, it is easy to see
that, for any 0 ≤ m,n ≤ 2k−1, we have

max
0≤u,v≤1

‖Lk
mn(u, v)− Sk

mn(u, v)‖ ≤ 1
3
Mk

mn ≤
1
3

(
1
4

)k

M (4)

where Mk
mn and M are the second order norms of Sk

mn(u, v) and S(u, v), respec-
tively. Hence, if k is large enough to make the right side of the above inequality
smaller than ε, we have

max
0≤u,v≤1

‖Lk
mn(u, v)− Sk

mn(u, v)‖ ≤ ε

for every 0 ≤ m,n ≤ 2k−1. This leads to the following subdivision depth com-
putation process for a regular CCSS patch [3].

Theorem 3. Let Vij , 0 ≤ i, j ≤ 3, be the control points of a uniform bicubic
B-spline surface patch S(u, v). For any given ε > 0, if

k ≥ � log4(
M

3ε
) �

levels of recursive subdivision are performed on the control points of S(u, v) then
the distance between S(u, v) and the level-k control mesh is smaller than ε where
M is the second order norm of S(u, v) defined in (2).
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3 Subdivision Depth Computation for Extra-Ordinary
Patches

In the following, we will define second order forward difference patterns to be
used for an extra-ordinary patch and derive a recurrence formula for the corre-
sponding second order norm, like the one used for a regular patch in Section 2.

3.1 Second Order Norm and Recurrence Formula

Let Vi, i = 1, 2, ..., 2n + 8, be the control points of an extra-ordinary patch
S(u, v) = S0

0(u, v), with V1 being an extra-ordinary vertex of valence n. The
control points are ordered following J. Stam’s fashion [10] (Figure 3(a)). For
convenience of subsequent reference, we shall call the control mesh of S(u, v)
Π = Π0

0 . By performing a subdividion step on Π , one gets 2n+ 17 new vertices
V1

i , i = 1, ..., 2n + 17 (see Figure 3(b)). These control points form four control
point sets Π1

0 , Π1
1 , Π1

2 and Π1
3 , representing control meshes of the subpatches

S1
0(u, v), S1

1(u, v), S1
2(u, v) and S1

3(u, v), respectively (see Figure 3(b)) where
Π1

0 = {V1
i | 1 ≤ i ≤ 2n + 8 }, and the other three control point sets Π1

1 , Π1
2

and Π1
3 are shown in Figure 4. S1

0(u, v) is an extra-ordinary patch but S1
1(u, v),

S1
2(u, v) and S1

3(u, v) are regular patches. Therefore, second order norm similar
to (2) can be defined for S1

1, S1
2 and S1

3.
To define a second order norm for S, one needs to choose appropriate second

order forward differences from Π . For the second order norm to be recursively
defined, second order forward differences that are required in the child control
meshes should also appear in the parent control mesh. For instance, 2V1 −
V4 −V8 and 2V1 − V2 − V6 should be chosen for Π because these patterns
are required for Π1

1 and Π1
3 , respectively. On the other hand, for a recurrence

formula to hold effectively, second order forward differences that are not required
in the child control meshes should not be used in the parent control mesh either..
For instance, one should not choose 2V1 −V2 −V8 for Π because this pattern
is not required in any of Π1

1 , Π1
2 or Π1

3 . Therefore, for those cases that involves
the extra-ordinary point V1 as the center point, one should only consider

2V1 −V2i −V2(i%n+2), 1 ≤ i ≤ n. (5)
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1 1
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0

0
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1 2

3

Fig. 3. (a) Ordering of control points of an extra-ordinary patch. (b) Ordering of new
control points (solid dots) after a Catmull-Clark subdivision.
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Fig. 5. (a) Vicinity of the extra-ordinary point. (b) The extended remaining part.

To ensure the boundary of the vicinity of the extra-ordinary point is covered
(Figure 5(a)), one should consider

2V2(i%n+1) −V2i+1 −V2(i%n+1)+1, 1 ≤ i ≤ n. (6)

One also has to consider second order forward differences that cover the extended
remaining part (Figure 5(b)). There are ten of them (actually twelve, but two
of them have been used in (6)). So, totally, 2n+ 10 (n+ 10 when n = 3) second
order forward differences should be considered for Π and the second order norm
of S, M = M0, is defined as the maximum norm of these 2n + 10 second order
forward differences:

M = max{ { ‖2V1 −V2i −V2(i%n+2)‖ | 1 ≤ i ≤ n } ∪

{ ‖2V2(i%n+1) −V2i+1 −V2(i%n+1)+1‖ | 1 ≤ i ≤ n } ∪

{ ‖ 2V3 − V2 − V2n+8 ‖, ‖ 2V4 − V1 − V2n+7 ‖, ‖ 2V5 − V6 − V2n+6 ‖,

‖ 2V5 − V4 − V2n+3 ‖, ‖ 2V6 − V1 − V2n+4 ‖, ‖ 2V7 − V8 − V2n+5 ‖,

‖ 2V2n+7 − V2n+6 − V2n+8 ‖, ‖ 2V2n+6 − V2n+2 − V2n+7 ‖,

‖ 2V2n+3 − V2n+2 − V2n+4 ‖, ‖ 2V2n+4 − V2n+3 − V2n+5 ‖ } }

(7)
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Following this definition, one can define a similar second order norm, M1, for
the control mesh of S1

0. In general, for any k ≥ 0, we can define second order
norm similar to (7) for Sk

0 and Sk+1
0 . The second order norms of Sk

0 and Sk+1
0

are denoted Mk and Mk+1, respectively. We have the following lemma for Mk

and Mk+1. The proof is shown in the complete version of the paper [4].

Lemma 4. For any k ≥ 0, if Mk represents the second order norm of the extra-
ordinary sub-patch Sk

0 after k Catmull-Clark subdivision steps, then Mk satisfies
the following inequality

Mk+1 ≤

⎧⎪⎪⎨⎪⎪⎩
2
3Mk, n = 3

0.72Mk, n = 5

(3
4 + 8n−46

4n2 )Mk, n > 5

Actually, the lemma works in a more general sense, i.e., if Mk stands for the
second order norm of the control mesh Mk, instead of Πk

0 , the lemma still works.
The second order norm of Mk is defined as follows: for regions not involving
the extra-ordinary point, use standard second order forward differences; for the
vicinity of the extra-ordinary point, use second order forward differences defined
in (7). The proof is essentially the same.

3.2 Distance Evaluation

To compute the distance between the extra-ordinary patch S(u, v) and the center
face of its control mesh, L(u, v), we need to parameterize the patch S(u, v) first.

Note that by iteratively performing Catmull-Clark subdivision on S(u, v), we
get a sequence of regular patches { Sm

b }, m ≥ 1, b = 1, 2, 3, and a sequence
of extra-ordinary patches { Sm

0 }, m ≥ 1. The extra-ordinary patches converge
to a limit point which is the value of S at (0, 0) [5]. This limit point and the
regular patches { Sm

b }, m ≥ 1, b = 1, 2, 3, form a partition of S. If we use
Ωm

b to represent the parameter space corresponding to Sm
b then { Ωm

b }, m ≥ 1,
b = 1, 2, 3, form a partition of the unit square Ω = [0, 1]×[0, 1] (see Figure 6) with

Ωm
1 = [ 1

2m , 1
2m−1 ]× [0, 1

2m ], Ωm
2 = [ 1

2m , 1
2m−1 ]× [ 1

2m , 1
2m−1 ],

Ωm
3 = [0, 1

2m ]× [ 1
2m , 1

2m−1 ].
(8)
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2

2
2

3
2

1
3
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ΩΩ

Ω

Ω Ω

Ω
Ω

Fig. 6. Ω-partition of the unit square
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The parametrization of S(u, v) is done as follows. For any (u, v) ∈ Ω but (u, v) 	=
(0, 0), first find the Ωm

b that contains (u, v). m and b can be computed as follows.

m(u, v) = min{�log 1
2
u�, �log 1

2
v�}

b(u, v) =

⎧⎨⎩
1, if 2mu ≥ 1 and 2mv ≤ 1
2, if 2mu ≥ 1 and 2mv ≥ 1
3, if 2mu ≤ 1 and 2mv ≥ 1

(9)

Then map this Ωm
b to the unit square with the mapping: (u, v)→ (um, vm) where

tm = (2mt)%1 =
{

2mt, if 2mt ≤ 1
2mt− 1, if 2mt > 1 . (10)

The value of S(u, v) is equal to the value of Sm
b at (um, vm), i.e., S(u, v) =

Sm
b (um, vm) . Let Lm

b (u, v) be the bilinear parametrization of the center face of
Sm

b ’s control mesh. Since Sm
b is a regular patch, following Lemma 1, we have

‖Lm
b (u, v)− Sm

b (u, v)‖ ≤ 1
3
Mm

b

where Mm
b is the second order norm of the contol mesh of Sm

b . But the second
order norm of Sm

b is smaller than the second order norm of Mm, Mm. Hence,
the above inequality can be written as

‖Lm
b (u, v)− Sm

b (u, v)‖ ≤ 1
3
Mm. (11)

So the maximum distance between the original extra-ordinary mesh L(u, v) and
the patch S(u, v) can be written as

‖ L(u, v)− S(u, v) ‖ = ‖ L(u, v)− Lm
b (um, vm) + Lm

b (um, vm)− S(u, v) ‖

≤ ‖ L(u, v)− Lm
b (um, vm) ‖+ ‖ Lm

b (um, vm)− Sm
b (um, vm) ‖

(12)
where 0 ≤ u, v ≤ 1 and um and vm are defined in (10). Since the second term
on the right hand side can be estimated using (11), the only thing we need to
work with is ‖L(u, v)− Lm

b (um, vm) ‖.
It is easy to see that if (u, v) ∈ Ωm

b then (u, v) ∈ Ωk
0 for any 0 ≤ k < m where

Ωk
0 = [0, 1

2k ] × [0, 1
2k ]. Ωk

0 corresponds to the subpatch Sk
0 . This means that

(2ku, 2kv) is within the parameter space of Sk
0 for 0 ≤ k < m, i.e., (2ku, 2kv) =

(uk, vk) where uk and vk are defined in (10). Consequently, we can consider
Lk

0(uk, vk) for 0 ≤ k < m where Lk
0 is the bilinear parametrization of the center

face of the control mesh of Sk
0 (with the understanding that L0

0 = L). What we
want to do here is to write the first term on the right hand side of (12) as

L(u, v)− Lm
b (um, vm) = L0

0(u, v)− L1
0(u1, v1) + L1

0(u1, v1)− L2
0(u2, v2)

+ L2
0(u2, v2)− L3

0(u3, v3) + L3
0(u3, v3)− L4

0(u4, v4)

+ · · ·+ Lm−1
0 (um−1, vm−1)− Lm

b (um, vm)

(13)
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and get an estimate for its norm by estimating the norm of each consecutive pair
on the right hand side. We have the following two lemmas. The proofs of these
lemmas are shown in the complete version of the paper [4].

Lemma 5. If (u, v) ∈ Ωm
b where b and m are defined in (9) then for any

0 ≤ k < m− 1 we have

‖ Lk
0(uk, vk)− Lk+1

0 (uk+1, vk+1) ‖ ≤
1

min{ n, 8 }Mk

where Mk is the second order norm of Mk and L0
0 = L.

Lemma 6. If (u, v) ∈ Ωm
b where b and m are defined in (9) then we have

‖ Lm−1
0 (um−1, vm−1)− Lm

b (um, vm) ‖ ≤
{ 1

4Mm−1, if b = 2

1
8Mm−1, if b = 1 or 3

where Mm−1 is the second order norm of Mm−1.

By applying Lemmas 5 and 6 on (13) and then using (11) on (12), we have the
following lemma. Proof of this lemma is shown in [4].

Lemma 7. The maximum of ‖ L(u, v)−S(u, v) ‖ satisfies the following inequality

‖ L(u, v)− S(u, v) ‖ ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M0, n = 3

5
7M0, n = 5

4n
n2−8n+46M0, 5 < n ≤ 8

n2

4(n2−8n+46)M0, n > 8

(14)

where M = M0 is the second order norm of the extra-ordinary patch S(u, v).

Since the coefficient in the third case (4n/(n2 − 8n + 46)) is smaller than the
coefficient in the second case (5/7), we can combine these two cases into one
case (5 ≤ n ≤ 8) to make the above expression (14) simpler.

3.3 Subdivision Depth Computation

Lemma 7 is important because it not only provides us with a second order norm
based simple mechanism to estimate the distance between an extra-ordinary
surface patch and its control mesh, it also allows us to estimate the distance
between a level-k control mesh and the surface patch for any k > 0. This is
because the distance between a level-k control mesh and the surface patch is
dominated by the distance between the level-k extra-ordinary subpatch and the
corresponding control mesh which, accoriding to Lemma 7, is
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‖ Lk(u, v)− S(u, v) ‖ ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mk, n = 3

0.72Mk, 5 ≤ n ≤ 8

n2

4(n2−8n+46)Mk, n > 8

where Mk is the second order norm of S(u, v)’s level-k control mesh, Mk (see
the remark at the end of Section 3.1 for the definition of Mk). By combining the
above result with Lemma 4, we have the following subdivision depth computa-
tion theorem for extra-ordinary surface patches.

Theorem 8. Given an extra-ordinary surface patch S(u, v) and an error toler-
ance ε, if k levels of subdivisions are iteratively performed on the control mesh
of S(u, v), where

k =
⌈
logw

M

zε

⌉
with M being the second order norm of S(u, v) defined in (7),

w =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
2 , n = 3

25
18 , n = 5

4n2

3n2+8n−46 , n > 5

and z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, n = 3

25
18 , 5 ≤ n ≤ 8

2(n2−8n+46)
n2 , n > 8

then the distance between S(u, v) and level-k control mesh is smaller than ε.

(a) (b) (c) (d)

Fig. 7. Examples: (a) an extra-ordinary CCSS mesh face of valence 3, (b) limit surface
of the control mesh shown in (a), (c) an extra-ordinary CCSS mesh face of valence 5,
(d) limit surface of the control mesh shown in (c)
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4 Examples

Some examples of the presented distance evaluation and subdivision depth com-
putation techniques are given in this section. In Figures 7(a) and 7(c), the dis-
tances between the blue mesh faces of the control meshes and the corresponding
limit surface patches are 0.16 and 0.81, respectively. For the blue mesh face
shown in Figure 7(a), the subdivision depths for the error tolerances 0.1, 0..01,
0.001, and 0.0001 are 2, 7, 13, and 19, respectively.. For the blue mesh face shown
in Figure 7(c), the subdivision depths for the error tolerances 0.1, 0.01, 0.001,
and 0.0001 are 7, 14, 21, and 28, respectively. Note that in the previous approach
[3], the subdivision depths for these error tolerances are 9, 24, 40, and 56, re-
spectively. Hence, the new approach presented in this paper indeed improves the
previous, first order norm based approach.

5 Conclusions

A new subdivision depth computation technique for extra-ordinary CCSS patches
is presented. The new technique computes the subdivision depth based on norms
of the second order forward differences, not the first order forward differences, of
the patch’s control points. Hence, the computed subdivision depth reflects the cur-
vature distribution of the extra-ordinary patch, not its dimension. Our result also
points out that as long as the design objective can be achieved, one should try
to use extra-ordinary vertices with smaller valence because, according to Theo-
rem 8, smaller valence gives higher convergence rate and, consequently, smaller
subdivision depth for the same precision.

Although the new technique improves the previous approach [3], it is not clear
if the new approach is optimum for extra-ordinary CCSS patches. This will be
a study direction in the future.
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Abstract. This paper presents an approach for embedding regular analytic 
shapes within subdivision surfaces. The approach is illustrated through the con-
struction of compound Spherical-Catmull-Clark subdivision surfaces. It starts 
with a subdivision mechanism that can generate a perfect sphere. This mecha-
nism stems from the geometric definition of the sphere shape. Thus, it comes 
with a trivial proof that the target of the construction is what it is. Furthermore, 
the similarity of this mechanism to the Catmull-Clark subdivision scheme is ex-
ploited to embed spherical surfaces within Catmull-Clark Surfaces, which holds 
a great potential for many practical applications. 

1   Introduction 

This paper presents an approach for embedding regular geometries within free-form 
features. As an illustration, Catmull-Clark subdivision surfaces [3] are considered for 
representing free-form features and circles and spheres represent regular analytical 
shapes. The technique easily covers other conical shapes as well.  

A first exposure to subdivision techniques raises several obvious concerns (also  
see [15]): 

1  The limit curve (or surface) is usually stored as a huge set of vertices and 
faces, as opposed to a clean mathematical function. This raises an obvious 
concern for space limitation.  

2  Continuity at various regions of the curve (or surface), especially at irregular 
spots or junctions, cannot be improved beyond a certain limit. 

3  The limit curve (or surface) is tied up very tightly to (in fact, it is a function 
of) the initial control polyhedron as well as the rules and coefficients of the 
corresponding subdivision scheme. 

For item 1), research is already published on exact evaluations of subdivision sur-
faces at arbitrary parameters and, in theory; one can obtain limit positions analytically 
in a single step. The technique is applicable to all stationary subdivision schemes. 
While for item 2), research is still continuing on establishing subdivision schemes 
with higher order continuity for control meshes with arbitrary topology. 
                                                           
* Correspondence author. 
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Item 3) is also of particularly concern. In fact, obtaining a particular surface that 
the designer has in mind, from a particular control polyhedron, could be quite difficult 
with a given subdivision scheme. This might be the reason why, there has been plenty 
of research targeting well-known subdivision schemes in an attempt to modify or 
adapt its subdivision coefficients in order to meet user design constraints that would 
be difficult or impossible to satisfy without special treatments [8].  

Other attempts have also been going on for the development of unified subdivision 
schemes and combined subdivision schemes with added capacity in modeling various 
engineering objects [14, 17, 21].  

In summary, the general tendency seems to be leaning toward gaining more flexi-
bility. The desired degree of flexibility exists, for example, in domains such as sculp-
ture, where one is able to come up with more than one statue from a given raw stone. 
The circle and the sphere design problems are just two cases in prospect. In the con-
text of subdivision, the following are two possible scenarios for added flexibility: 

1  Trace the reverse process, starting from the desirable surface hoping to reach 
an initial control polyhedron whose subdivision will lead there. 

2  Manipulate the subdivision coefficients hoping for a positive outcome, which 
leads to the development of improved subdivision schemes, new subdivision 
schemes, and unified and combined subdivision schemes.  

Active research in both areas may be found in the literature. Some of that is re-
viewed in the subsection below in connection with the reported work of this paper,  

2   Related Literature 

Many recent recursive subdivision schemes associate the success of their formulation; 
automatically it seems, with the ability to generate a perfect circle (or a perfect 
sphere) as the limit of subdivision of a control polygon (or of a control polyhedron). 
The monotony with which this association is repeated gives the impression that gen-
erating a perfect circle or a perfect sphere is a goal that is worth pursuing in its own 
right. 

Beets et al. [2] introduce, in a quite readable presentation, a novel subdivision 
scheme that locally tends to minimize variation of curvature. This scheme is able to 
produce a circle, and a generalization of that is able to generate spherical regions. 
Chalmovianský and Jüttler [5] describe an interpolating refinement procedure which, 
through approximation of adjacent points and the corresponding normals and by iter-
ated application, is able to reproduce a circle.  Morin et al. [11] make their starting 
point higher-order differential equation which results in corresponding subdivision 
masks. This way, they were able to come up with a subdivision scheme unifying 
known subdivision rules for cubic B-splines and splines-in-tension and a certain class 
of trigonometric functions. This scheme is able to reproduce circles. A generalization 
of that is able to produce surfaces of revolution. 

Nasri et al. [12] present an algorithm that is able to generate a piecewise circular 
spline curve from an arbitrary control polygon. This is used in conjunction with the 
Doo-Sabin subdivision scheme [6] to blend subdivision surfaces with other surfaces 
having circular boundaries.  This is about the closest work in this brief review in line 
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with the research we are pursuing in this paper.  Nasri and Farin [13] describe a  
modification of Chaikin’s algorithm able to produce rational piecewise curves. Their 
modification is able to produce a circle from a give square. They cite the inability of 
Chaikin’s algorithm to do that as a disadvantage. 

Sabin [15], in a general argument regarding the shortcoming of present-day subdi-
vision schemes, cites their inability to produce a perfect circle as a target for criticism. 
This argument agrees with our point of view presented above. Sabin and Dodgson 
[16] describe a geometry-sensitive variant of the 4-point subdivision scheme that can 
generate a circle regardless of the spacing of the initial data. 

Warren and Weimer [20] provide an excellent introduction to subdivision tech-
niques, including subdivision-based approaches for defining regular features. Warren 
and Schaefer [19] also describe a general framework for defining surfaces of revolu-
tion using subdivision techniques (also see [18]).  

In subdivision-based modeling, special rules can also define creases and sharp fea-
tures. Combined subdivision schemes may also connect subdivision surfaces with 
other analytical features. This paper presents another approach for blending subdivi-
sion surfaces with regular features. 

2.1   An Alternative Approach 

We designate as type T0 shapes that are regular. These are shapes that have precise 
analytic expressions (e.g. circles and spheres). By contrast, we designate as type T1 
other freeform surfaces that can be generated by a subdivision scheme, for example. 

In this context, it is not at all clear why one should go to extremes in trying to gen-
erate T0 surfaces as T1 surfaces, except to be able to embed them seamlessly within 
the latter ones. To this end, pretending that the analytic expression of T0 surfaces is 
not there, whenever it actually is, always seems like throwing away valuable re-
sources, while exploiting the analytic expression of the surface always seems to be the 
more natural approach. In other words, one should try to make the best use of any 
available information that can help in achieving the computational goals.   

Along these lines, regardless of the type subdivision scheme being used, we seem 
to need to flag the current patch being subdivided to distinguish the type of surface 
being targeted (T0 or T1), in order to apply the appropriate subdivision rules. For 
patches of free-form features T1, we apply the respective subdivision rules. For 
patches with regular features T0, we develop a simple mechanism to construct them.  

As one might expect, this mechanism stems from the geometric definition of the 
shape. This also comes with a simple mathematical proof that the target of the con-
struction is what it is. The mechanism can easily be generalized to other analytic and 
regular shapes. Furthermore, the mechanism mimics some well-known subdivision 
schemes. This makes it straightforward to embed those regular shapes with free-form 
shapes at the limit of subdivision of those schemes. 

This paper is structured as follows. Section 3 presents a corner-cutting scheme that 
can easily generate a circle. However, since generalizing this scheme to the sphere 
case does not seem to be straightforward, section 3 also presents a corner-creation 
scheme that can generate a circle and a sphere. Section 4 discusses the similarity of 
this latter scheme with some of the better know subdivision schemes and provides 
further illustrations. Section 5 demonstrates how these similarities help in embedding 
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regular shapes with free-form shapes, by intersection, blending and interpolation. 
Finally, section 6 provides conclusions and other useful suggestions for further work. 

3   An Interpolatory Subdivision for Regular Shape Construction 

In this section, we present a subdivision mechanism that can minimize the effort that 
goes into constructing regular analytic shapes. This uses the geometric information 
available in those shapes. The method resembles those used for direct grid generation 
of analytic objects. The literature covering spherical grid generation is vast and those 
methods can produce grids of very high quality. 

3.1   The Corner Cutting Scheme 

Given are a square (S) with centre O (see Fig. 1) and a circle (C) centered at O and 
embedded in (S). Since (C) is tangent to the edges of (S), start by cutting the corners 
of (S) so that the newly arising edges are constantly tangent to (C) at their midpoints. 

This process parallels the Chaikin’s algorithm [4] for curves and Doo-Sabin’s for 
surfaces. The success of this scheme rests on how efficiently it can be applied and on 
whether it is applicable in all stages of the process down to the limit curve or surface. 

In Fig. 2, A is the centre of the sphere whose radius is R and B is a selected corner 
of the engulfing polyhedron and BC is an edge incident on that corner. The point D is 
on AB such that |AD| = R. Parametrically, D = (1-u)A + uB, where u = R / |AB|. 

 

R
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Fig. 1. The Corner-Cutting Process 
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Fig. 2. Subdividing for a Circle 

The plane (P) orthogonal to AB and cutting AB in D also cuts BC in E, which is 
determined by the following expression: E = (1-v)C + vB, where v = AB·CD/AB·CB, 
where “·” is the vector scalar product. Accordingly, v does not exist when BC is par-
allel to (P). Moreover, E lies outside the segment [B..C], when v is outside the range 
[0..1]. Thus, for the corner-cutting scheme to work in practice, it is important to make 
sure that the above two situations do not take place at any stage during the application 
of this process. 

The Circle Case. Fig. 1 illustrates that the maintaining distance R from O to each of 
the resulting edges will be sufficient to ensure that the limit curve is a circle of radius 
R centered at O. An alternative starting control polygon could be an equilateral trian-
gle (see Fig. 3). In both cases, the initial control polygons will gradually and consis-
tently converge to a limit circle.  
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Note however that reaching a circle at the limit of the corner cutting process de-
pends on a uniform way of cutting these corners. The same is probably true for the 
sphere and for other analytic objects. 

 

Fig. 3. An Alternative Starting Polygon 
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R

 

Fig. 4. Subdividing for a Sphere 

The Sphere Case. The initial control polyhedron (see Fig. 4) is a cube, where the 
distance from the centre O to each of the faces is a constant R.This is projected to be 
the radius of the sphere, limit of the subdivision. The same can perhaps be said when 
the starting polyhedron has fewer number of vertices and faces than a cube; e.g., a 
regular prism (see Fig. 5). 

 

R

 

Fig. 5. The Regular Prism Alternative 
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Fig. 6. The Edge-Cutting Process 

In both cases, the scheme makes necessary the repeated use of an edge-cutting pro-
cedure (see Fig. 6). The formula here is identical in format to the one used in the cor-
ner-cutting scheme. For example, the intersection point c of the plane (P) with the 
edge AC is given by c = (1-w)C + wA, where w = OM·CA/ OM·CN. 

When the cube is subdivided this way, it will be sufficient to maintain R as the dis-
tance from O to each of the resulting faces. If this relation is maintained at every sub-
division step all the way to the limit surface, then surely the limit surface will be a 
sphere of radius R centered at O. 

The method presented in this subsection forms a corner-cutting scheme similar to 
the topological rule of the Doo-Sabin scheme [6]. It is workable and in fact produces 
good results for circles. However, it is difficult to manage for the case of surfaces.  

3.2   The Corner-Creation Scheme 

An alternative approach is to start from a square or a cube and proceed by shifting the 
midpoint of every edge out toward the target point on the limit circle, which is now  
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Fig. 7. The Circle Case 

engulfing the initial polygon (see Fig. 7). This subdivision method is interpolatory, as 
opposed to the previous one, which is approximatory. 

This is somewhat reminiscent of the Catmull-Clark [3] (and also perhaps of the 

Butterfly [7], or maybe 2  [9]) subdivision scheme. It is the first similarity that we 
are particularly targeting for the benefit of the embedding techniques discussed be-
low. Note here that the starting control polygon in this case can be any control poly-
gon on condition that its vertices are interpolated by the target circle. 

With the existence of the centre of the circle (or the sphere), storing the radius is 
not necessary, as it is the distance from the centre to any of the vertices of the polygon 
(or polyhedron). This technique can easily be extended to apply as well to other type 
T0 curves or surfaces such as ellipses, cones, cylinders, torii, etc.  

The Circle Case. Given the distance R from C to A and from C to B (see Fig. 7), the 
midpoint M of AB is stretched so that R = |CX|. Repeating the process on AXB leads 
to an arc of a circle centered at C and passing by A and B. With C being the centre of 
the triangle (T) and R the distance from C to any of the corners of (T), performing the 
process on each edge of (T) results in a circle centered at C and engulfing (T). The 
same can be said about the square in the same figure. 

The Sphere Case. In Fig. 8, given that R is the distance from C to A, from C to B and 
from C to D, the centre G of the triangle ABD is stretched so that the distance from C 
to Y is also R. Repeating the process on the resulting polyhedron leads to a section of 
a sphere centered at C and passing by the points A, B and D (also see Fig. 9).  
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Fig. 8. The Sphere Case (1) 
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Fig. 9. The Sphere Case (2) 
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It is worthy to mention that one may also use a non-uniform polygon in case of 
curves and a polyhedron with arbitrary topology for the subdivision shown in  
Figs. 7-9, and not just be limited to triangular faces or quadrilateral faces. 

Further Discussion. The geometrical approach pursued in this paper has the advan-
tage that it comes together with a trivial mathematical proof that the resulting limit 
curve is exactly that of a perfect circle. Moreover, the sphere generalization problem 
is just a generalization of the above approach to the 3-dimensional space, which is 
another assurance of its validity. 

Additionally, it has a simple and, hopefully, efficient implementation that closely 
resembles some of the well-known subdivision schemes. This approach works in a 
sense that it will generate a subdivision surface that will converge on a perfect sphere, 
circle, ellipsoid, torus, etc. It can also reach the desired shape from a variety of initial 
control polyhedrons, using a variety of subdivision rules. 

However, some work remains to be done regarding the corresponding subdivision 
coefficients of the scheme, in order to break away from the geometric intuition of this 
solution. However, seeing relevant work in this area, such coefficients are more likely 
to be non-linear. 

The approach discussed in this section (3.2) is interpolating. The topological sub-
division rules that might be followed can come from various possible directions: 

• The topological rule is similar to that of Catmull-Clark [3], if both face points 
and edge points are inserted. 

• The topological rule is a 2  [9] subdivision, if only a face point is inserted. 
• The topological rule can also be based on Loop [10] or butterfly [7] subdivi-

sions, if only edge vertices are created and triangle meshes are involved.  

We can be certain now that the existence of the extraordinary points on the surface 
will not affect continuity, as this will be counterweighted by the existence of the ten-
sion parameter; which is R in this case. In fact, we are going to get a perfect sphere at 
the end, no matter which choice we may follow.  

Reflecting a little bit on the last point, one can see that the subdivision coefficients 
need not be analyzed for verifying continuity, because the method comes ready with a 
mathematical proof that the limit surface is what it is. As such, this will be sufficient to 
assure the continuity of the resulting surface. Extraordinary corners might arise in all 
cases of the topological rules mentioned above, but there will be a unified formula for 
computing the newly inserted points (that would only be depending on the topology).  

The method presented in this subsection forms an interpolating scheme relying on an 
edge splitting and a face splitting procedures, but the topological rule is similar to that of 
Catmull-Clark subdivision. Fig. 8 and Fig. 9 produce perfect spheres using this method. 
In addition, here are some other ideas and a summary for spherical surface subdivision 
(also good for circles). All approaches discussed here should be simple to implement: 

• There are various topological rules that we can use. One topological rule is 
similar to that of Catmull-Clark subdivision and another one is a 1-4 splitting 
for triangular meshes similar to that of Loop subdivision [10]. One may also 

apply other topological rules, such as 2   [9]. 
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• There are two geometric rules are involved. One is the production of an edge 
point similar to that shown in Fig. 7, and the other one is for the production of 
a face point as shown in Figs. 8-9 (but need to know the centre of the sphere). 

• The starting control mesh can be any mesh with two or more faces whose ver-
tices are on the sphere (may start from a cube for a complete sphere). 

4   Embedding Regular Shapes with Catmull-Clark Surfaces 

While one may use various topological rules as indicated earlier, this section focuses 
on Catmull-Clark subdivision and its subdivision and blending with spheres. Embed-
ding regular shapes within freeform surfaces is more interesting than just constructing 
isolated regular shape modeling, even more so when the subdivision rules are not so 
complicated and are easy to use! 

This situation is commonly found in engineering objects, such as the definition of 
a piecewise surface with regular shape and free-form shape as a single subdivision 
surface. Embedding the first within the second may occur as a crease feature or as a 
radius blending.  

The general idea is that subdivision is performed using different rules for different 
parts of the mesh, which heads towards subdivision-based modeling of compound 
shape with regular geometry spherical and/or others) and free-form geometry as a 
single subdivision surface.  

According to our approach, constructing a hybrid regular-freeform surface starts 
from a control mesh where faces are designated as contributing to a regular or a free-
form surface from the start. The construction of the hybrid surface will have plenty to 
gain from the similarities between both schemes.    

In fact, the F-vertex of a face will be determined according to CC-subdivision rules 
if the face is labeled as a CC-face, and the F-vertex will be determined according to 
the S-Subdivision if the face is labeled as an S-face. On the other hand, determining 
which subdivision rules to apply when calculating the E-vertex of an edge and the V-
vertex of a vertex will depend on the type of faces connected to the edge or to the 
vertex, because this is where the two types of surfaces may meet. 

Obviously, when all the faces connected to an edge (or to a vertex) are of the same 
type, the resulting E-vertex (or V-vertex) is calculated according to rules correspond-
ing to this type. However, the decision about how to subdivide when the types of 
meeting faces differ will determine how the regular surfaces are embedded within 
free-form faces. 

Finally, what remains to be decided is how to label the faces of the next subdivided 
mesh. In fact, remembering that the corner-creation scheme is interpolatory, a face is 
labeled as an S-face if all its vertices belong to the same sphere, otherwise it is a CC-
face. We distinguish two kinds of situations that are commonly encountered in practice: 

• when the CC-surface intersect with an S-surface; 
• when the CC-surface blends with an adequate degree of continuity with the S-

surface. 
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4.1   Regular and Freeform Intersection 

This can be seen as intersecting a circular shape with a normal uniform cubic spline, 
or as intersecting Catmull-Clark surfaces with spherical and other regular shapes. This 
should be of interest for engineering applications. 

It is important to keep in mind here that the intersection problem is addressed in 
this subsection and it leads to crease features at the intersection of the free-form fea-
ture and the regular feature. However for blending, a smooth connection is expected 
between the two features. 

S-Faces Intersection. Keeping in mind that the intersection of two different spheres 
is a perfect circle, and since the corner-creation scheme is interpolatory, the only thing 
that remains to be determined is how to calculate the E-vertex of the edge correspond-
ing to such spheres is calculated.  

In Figs. 10, 11 and 12, H is the midpoint of the edge common to the two faces cor-
responding to the spheres centered at C1 and C2 respectively. The E-Vertex in this 
situation is a point I whose position is calculated as follows (see Figs. 10, 11): 
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Fig. 10. Two S-Faces Intersection (1)
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Fig. 11. S-Faces Intersection (2) 

 

 

Fig. 12. S-Faces Intersection (3) 
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Intersecting an S-Face with a CC-Face.  Keeping in mind that the intersection  
of a sphere with a CC-surface is a curve on the spherical surface, and since the  
corner-creation scheme is interpolatory, the only thing that remains to be determined 
is how to calculate the E-vertex of the edge corresponding to such situation is  
calculated. 

In Figs. 13, 14, 15 and 16, the E-Vertex D need to be located to intersect the CC-
face on the side of A with the S-face corresponding to the sphere centered at C and of 
radius R. The position of D is calculated as follows (see Fig. 13 and Fig. 14): 

 

D = (1 – t)A + tB, D = A + (B – A)t, |CD| = R, 
(xA+ (xB–xA)t – xC)2 + (yA + (yB–yA)t – yC)2 = R2 

(xA – xC)2 + (yA – yC)2 + ( (xB – xA) 2 + (yB – yA) 2) t2 
+ 2 ((xA – xC) (xB – xA) +  (yA – yC)  (yB – yA))t = R2 
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Fig. 13. S-Face - CC-face Intersection (1) 
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Fig. 14. S-Face - CC-face Intersection (2) 

 

Fig. 15. S-Face – CC-face Intersection (3) 

 

 

Fig. 16. S-Face - CC-face Intersection (4) 

4.2   Regular and Free-Form Blending 

This can be seen as blending a circular shape with a normal uniform cubic spline, or 
as blending Catmull-Clark surfaces with spherical and other regular shapes. This 
should be of interest for many applications (see Figs. 17, 18 and 19). 
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Fig. 17. S-Faces Blending 

 

 

Fig. 18. S-CC-faces Blending (1) 

 

 

Fig. 19. S-CC-face Blending (2) 

It is important to keep in mind here that smoothness should be guaranteed when a 
spherical surface blends with another surface of the same type or of another type. 

It is in the case of blending where the interplay between subdivision rules of the 
CC-scheme and the S-scheme has its maximum advantage. This provides a clue for 
performing Boolean-like operations on any surfaces. 

In fact, in the case of blending, both the V-vertex at a mixed edge and the V-
Vertex at a mixed vertex have to be determined. To insure smoothness in this region, 
we simply adopt the CC-rules in both situations. 

4.3   Curves on Composite Subdivision Surfaces 

With the subdivision scheme we are suggesting, the interpolation of points and curves 
on a spherical surface is pretty straightforward [1]. Moreover, blending such curves 
with adjacent curves on the Catmull-Clark Surface comes with little or no effort (se 
illustration in Fig. 20). 

 

Fig. 20. Curves on Composite Subdivision Surfaces 

5   Conclusions and Further Work 

This paper presents an interpolatory corner-creation scheme which may be used to 
generate circular and spherical surfaces with ease. The scheme resembles the subdivi-
sion rules of the Catmull-Clark subdivision scheme. This resemblance is exploited to 
generate compound surfaces of both kinds. 

The approach being suggested in this paper can also be extended to other subdivi-

sion surfaces, such as Loop[10] and 2  [9], and other regular analytic curves and 
surfaces such as ellipsoids and torii.  
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Abstract. We present a novel adaptive radial basis function network
to reconstruct smooth closed surfaces and complete meshes from non-
uniformly sampled noisy range data. The network is established using a
heuristic learning strategy. Neurons can be inserted, removed or updated
iteratively, adapting to the complexity and distribution of the underly-
ing data. This flexibility is particularly suited to highly variable spatial
frequencies, and is conducive to data compression with network repre-
sentations. In addition, a greedy neighbourhood Extended Kalman Filter
learning method is investigated, leading to a significant reduction of com-
putational cost in the training process with desired prediction accuracy.
Experimental results demonstrate the performance advantages of com-
pact network representation for surface reconstruction from large amount
of non-uniformly sampled incomplete point-clouds.

1 Introduction

Nowadays, digitisation techniques such as range scanning devices are widely used
for model acquisition in the domains of sculptures, archaeological artifacts, engi-
neering CAD-CAM prototyping, medical and geophysical imaging, and scientific
visualisation. However, sampling complex real-world geometry from a particular
viewpoint almost always yields surface reconstruction imperfections, in particu-
lar “holes”. Faithful reproduction of incomplete meshes in the presence of holes
and data noise is a ubiquitous problem for scientific visualisation and engineering
modelling.

Efficient and reliable surface reconstruction requires a functional representa-
tion residing in a low dimensional and, therefore, computationally manageable
feature space. Inspired by advances in radial basis functions (RBFs) for solving
function approximation and pattern classification problems [1, 2], in this paper,
we present a new approach that adapts the advantages of the RBFs to the frame-
work of neural networks. The proposed hybrid RBF-network aims to satisfy
the desirable criteria of speed, functional representation compactness, robust-
ness to data noise, and adaptivity to highly variable spatial densities and data
complexity.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 430–441, 2006.
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2 Geometric Modelling from Point Clouds

Most implicit shape reconstructions from point clouds are based on Blinn’s idea
of blending local implicit primitives [3] by using Gaussian blobs, signed distance
functions, union of spheres or patches to meet the boundary conditions [4, 5, 6].
Such approaches could work well for holes that are small compared to the geo-
metric variation in the surface.

The RBFs allow another approach due to their good global generalisation
abilities in function approximation and simple topological structure [7, 8]. These
properties make RBFs well suited for accommodating irregular scattered data
distributed across large, irregular holes, requiring neither object topology con-
straints nor a priori shape knowledge. However, problems of computational cost
in high dimensional parameter space and approximation accuracy remain, par-
ticularly for locally sharp features, since RBF solutions are global in nature.
Consequently, fitting and evaluating RBFs by means of nonlinear least squares
optimisation for large data sets is challenging for most present PCs.

The multi-scale RBF [9] employs locally supported basis functions within
coarse-to-fine hierarchy in order to achieve efficient adaptivity to underline geo-
metric variation. In [10], the authors utilise error controlled octree subdivi-
sion as partition strategy to adapt to the local complexity of shape. It allows
selection of piecewise quadratic functions to capture local variation. Smooth
blending and weighting between subdivisions are then applied for surface
reconstruction. In [11], an objects surface is defined implicitly as set of zero-
valued RBF thin-plate splines fitted to the given surface data. Greedy methods
for fitting and evaluating RBFs are explored to reduce the number of RBF
centres required to represent a surface. A hierarchical network reconstruction
[12] attempted to use multi-scale coarse-to-fine RBF subnetworks to achieve
desirable accuracy. However, neurons in the network were located evenly on
pre-defined regular grids for each layer, allowing predetermined increasing res-
olution scales at higher layers. The network structure was fixed a priori, based
on pre-knowledge of the training data. The lack of adaptivity to the under-
lying data could necessitate large numbers of neurons to meet a desired
accuracy [13].

We concentrate in this paper on a hybrid adaptive RBF network algorithm.
The employed topological model of the network has benefitted from concepts
found in the self-organising sequential learning of the resource-allocating net-
work (RAN) [14, 15, 16]. The novelty of the proposed RBF network is that
neurons can be located and adjusted iteratively in full dimension according
to the distribution and complexity of the underlying data. This adaptivity is
particularly suited to cases of highly varying spatial density and provides the
possibility of compact representations using networks. Furthermore, we report
a greedy learning algorithm that uses a local-based neighbourhood extended
Kalman filter (NEKF), leading to significant computation reduction in the
training process.
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3 An Adaptive RBF Network

3.1 The RBF Network Topology and Adaptivity

A typical feed-forward RBF network is shown in Fig. 1. It has a simple struc-
ture composed of an input layer of i independent inputs x(x1, ..., xi), a hidden
layer with K radial basis functions φk(x). The network output f(x) is a linear
combination of RBFs and takes the form

f(x) = a0 +
K∑

k=1

akφk(x) (1)

where ak is the real-valued weight of kth RBF connecting to the output, and
a0 is the bias term. Gaussian radial functions, acting as nonlinear kernels of
the hidden layer, monotonically decrease with the distance from their centre,
and they are local and finite, giving a significant response only in a central
neighbourhood. Therefore, Gaussian RBFs of the form

φk(x) = exp
(
− 1
σ2

k

‖x− μk‖2
)

(2)

are used in our study to interpolate irregularly distributed noisy data on re-
stricted surfaces. In Eq. (2), ‖.‖ denotes the Euclidean norm, μk locates the cen-
tre of the kth neuron, and σk (standard deviation) denotes its width (coverage).

2 (x)Φ (x)KΦ1(x)Φ

1x 2x ix

1a
2a Ka

(x)f0a

Fig. 1. The RBF network topology

The adaptivity of the network derives from the flexibility of structure con-
struction and parameter evaluation. The network starts with no hidden units.
At each learning step: 1) the network grows one neuron, where necessary, based
on the “novelty” of the input observation; 2) if the “novelty” criteria are unsat-
isfied, resulting in no newly added neuron at this instance, a subset of neuron
parameters are adjusted in full dimension in accordance with a neighbourhood
extended Kalman filter (NEKF) algorithm; 3) network compaction is obtained
by pruning “pseudo” neurons that consistently make little contribution to the
network output. The remainder of this section describes the learning process in
these three stages.
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3.2 Network Growth

In the case of surface reconstruction from 3D point clouds, the training set
T = {xn, zn}N

n=1 consists of normalised and randomised 3D point data. The N

pairs of 2D points xn = [xn, yn]T are network inputs having associated zn as
outputs. The distribution of the N points xn is irregular.

The network starts with no hidden unit. It grows by inserting a new hid-
den unit if the current observation {xn, zn} satisfies the following three novelty
conditions:

Condition 1: the input of the observation is far away from all existing neurons:

dn = ‖xn − μnr‖ > ηn (3)

where μnr is the neuron centre nearest to the current input xn, and ηn indicates
the scale of neuron resolution in network space.
Condition 2: the network prediction error for the current learning observation
is significant:

|en| = |zn − f(xn)| > E (4)

where E denotes the desired accuracy of the network approximation.
Condition 3: the prediction error within a sliding window W is significant:√∑n

i=n−(W−1) e
2
i

W
> Erms (5)

where Erms is the threshold to ensure smooth network growth.

The algorithm begins with ηn = ηmax, ηmax being chosen as the largest scale
of interest in the input space. It decays exponentially according to

ηn = max{ηmaxγ
n, ηmin}, 0 < γ < 1, (6)

until it reaches ηmin. The decay constant γ indicates the speed of the process, and
ηmin represents the desired neuron resolution of the network. The exponential
decay of the distance criterion allows fewer neurons with large widths (smoother
basis functions) initially. With increasing number of observations, more functions
with smaller widths are recruited to refine the approximation.

When the three conditions are met, a new neuron is inserted into the current
network of K units, with the following parameters at the position coincident at
input xn:

μK+1 = xn

aK+1 = en

σK+1 = ψ ‖xn − μnr‖
(7)

where ψ is an overlap factor between hidden units, and the number of units
K + 1 is renamed as K.
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If an observation does not satisfy the novelty criteria Eq. (3) ∼ Eq. (5), no new
hidden unit is added. Instead, an EKF-based learning method, described below,
is utilised to adjust the network parameters to best fit the current observation.

3.3 Sequential Learning by Neighbourhood EKF

Classical methods for updating network parameters in nonlinear networks use
least mean squares (LMS) or gradient descent (GD) [14, 17]. To avoid expensive
nonlinear optimisation and achieve a global minimum, we employed the Ex-
tended Kalaman filters (EKF) that have a more compact structure and better
accuracy [15, 16, 18, 19, 20]. The EKF usually updates all network parameters for
all neurons w = [a0, a1, μ

T
1 , σ1, ..., aK , μT

K , σK ] at each learning step; we therefore
refer to it as global EKF (GEKF). The computational complexity of the GEKF
is O(A2) per learning step, where A denotes the number of parameters [18]. In
our case, each neuron has four network parameters, represented by two scalars
ak and σk, and one neuron centre μk in 2D, as wk = (ak, μ

T
k , σk). Therefore, the

computational cost of global EKF is O((4K)2) per learning step for updating all
K hidden units.

To avoid the high computational cost of the global EKF, we utilise a local
approach, called neighbourhood EKF (NEKF). At each learning step, only a sub-
set of network parameters wn =

{
a0,wni

∣∣wni = (ani , μ
T
ni
, σni), i = 1..Bn

}
of

Bn neighbour neuron(s) around the nth observation are updated. A neighbour
neuron is selected, if it is 1) the nearest neighbour to the current observation;
or 2) within a distance threshold D from the current observation. The computa-
tional cost of neighbourhood EKF is reduced to O

(
(4Bn)2

)
. The minimum cost

can be O (constant) in the extreme case when only the first criterion is applied
(Bn = 1) to update the nearest neighbour at each learning step. Experimental
results show this improvement leads to considerable reduction of the computa-
tion load in network training compared to the GEKF or GD. It also obtains good
accuracy, competitive with the GEKF and the GD, by consistently employing
further-to-nearer refinement towards local fidelity (Ref. Section 4.4).

Using the neighbourhood EKF, we update the selected network parameters
wn = {a0,wni}B

i=1 at the nth instance by

wn = wn−1 + Knen (8)

where en = zn − f(xn) is the prediction error at the nth observation (xn, zn),
and Kn is the Kalman gain matrix calculated by

Kn = Pn−1Bn

[
Rn + BT

nPn−1Bn

]−1
(9)

in which Rn is the variance of the measurement noise, Bn = ∇wnf(xn) is the
gradient matrix of the function f(xn) with respect to the parameter vector wn,
and Pn is an error covariance matrix, which is updated by

Pn =
[
I−KnBT

n

]
Pn−1 + qI (10)

where scalar q determines the allowed random step in the direction of the gra-
dient vector.
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3.4 Network Pruning

The network size can become large when using only the above growth strategy,
possibly leading to network overfit. To avoid this and obtain a compact network,
a pruning strategy is applied [16]. Pruning removes those hidden units that make
an insignificant contribution to the network output over a number of consecutive
training observations. The pruning strategy is defined as follows:

For the current observation (xn, zn), compute the outputs of each hidden unit
on

k , k = 1..K:

on
k = ak exp

(
−‖xn − μk‖2

δ2
k

)
. (11)

Calculate the normalised output values rn
k over the largest absolute hidden unit

output:

rn
k =

on
k

max(on
1 , o

n
2 , ..., o

n
K)

. (12)

If rn
k < ρ for W consecutive observations, then the kth node is removed, where

ρ is the pruning threshold.

4 Experimental Results

We have implemented the proposed adaptive RBF network algorithm in C++.
We tested the algorithm on 3D surface reconstruction from the range images
obtained from the Signal Analysis and Machine Perception Laboratory (SAMPL)
of Ohio State University [21]. The range images were acquired by a Minolta
scanner at image pixel resolution of 200× 200. The scattered data are typically
irregularly sampled with varying spatial densities. They contain measurement
noise and holes.

In order to apply the RBF network, actual surface data stored in a 200 ×
200 matrix associated to their locations were normalised and re-sampled in a
random order. Such a normalised random sequence was used as a training set
T = {(xn, yn, zn) |xn, yn, zn ∈ [0, 1], n = 1..N } of N 2D observation inputs xn =
[xn, yn]T and outputs zn.

4.1 Mesh Repair and Surface Reconstruction

Figure 2 shows examples of surface reconstruction. Typical network parameters
used in the experiments were: desired accuracy E = 0.01 (Eq. 4); Erms = 0.01
in a sliding window W = 1000 (Eq. 5); largest scale of interest ηmax = 0.4 in
the normalised space; neuron resolution ηmin = 0.01 for an average distribution
density 1/200 of the range data. The decay constant was set as γ = 0.999 (Eq. 6)
for an even sparse-to-dense spread of neurons in network space. The overlap fac-
tor ψ (Eq. 7) was chosen to reflect the spatial correlation and frequency varying
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(a) angel (b)

(c) brain (d)

Fig. 2. Surface reconstruction: incomplete rendered meshes in the left column, repaired
meshes in the right column

complexity in an image. For the examples in Fig. 2, we set ψ = 0.7 for the brain
and valve images which contain high spatial frequency, while ψ = 0.9 was cho-
sen for the angel and teletubby with relatively small geometric variation in the
surface. The pruning threshold was set to ρ = 0.001 for 1000 consecutive obser-
vations (Eq. 12). From Fig. 2, we observe that Gaussian RBF networks provide
extraordinary inter/extrapolation capabilities to: 1) smoothly reconstruct sur-
faces from non-uniformly sampled data with highly variable spatial frequencies;
2) smoothly blend and repair between raw noisy data to fill irregular holes that
are large compared to the geometric variation in surfaces; 3) smoothly extend
surfaces where there is no data by extrapolation.

Figure 3 illustrates the effectiveness of adaptive network learning using the
example of angel reconstruction in Fig. 2(b). Figure 3(a) shows that at the start
of training, neurons were steadily added to the network, and prediction error
reduced rapidly as shown in Fig. 3(b). When the network tended to a desired
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accuracy after 5000 learning steps with about 800 units, the pruning strategy
worked effectively to control network growth. “Pseudo” neurons, wrongly added
due to noise points or exhibiting insignificant action were detected and removed
based on observations over a period of learning instances.
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Fig. 3. Learning process of the angel reconstruction in Fig. 2(b)
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Fig. 4. Structure of output neurons for the reconstructed angel in Fig. 2(b) at display
ratio 3:1

Figure 4 shows the distribution, width and weight of neurons in the resulting
network representation. Neurons are represented by circles in normalised space
at display ratio 3:1. For intuitive visualisation of neurons distributed in 2D net-
work space associated with 3D geometry of the underlying data, we display the
neurons in 3D space with their corresponding vertical z values estimated from
the network. In Fig. 4(a), we used the radius of a circle to indicate neuron width.
The maximum width is 0.33 for the angle example. In Fig. 4(b), we used the
diameter of a circle to represent the absolute value of a neuron weight, with the
maximum weight 0.92. We observe that distribution and density of neurons are
highly adaptive to the complexity of the underlying data. Some neurons with
large widths or high weights could often be generated initially for smooth bases
within specified data ranges. Although there is an inherent tendency by the
greedy algorithm to favour absorption of lower frequencies before higher ones,
smaller neurons consistently refine the smoothness against fidelity to the local
data so as to guarantee a coarse-to-fine optimality.
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4.2 Data Compression

Data compression is achieved during adaptive learning. Table 1 presents network
compression results from the reconstructions in Fig. 2, in which N stands for the
number of 3D points in each range image of Fig. 2 left, and K denotes the number
of neurons in the generated network representation. Storage compression rate is
calculated by 3N : 4K, since each neuron has 4 parameters. The prediction error

ē of the network is the average of absolute errors on all training points 1
N

N∑
n=1

|en|.

Table 1. Data compression and accuracy

range number of number of compression prediction
image points N neurons K rate error ē

angel 14,089 1345 7.9 .0059
brain 20,634 1964 7.9 .0043

4.3 Smooth Approximation

An exact surface reconstruction from scattered data is usually, but not always,
desirable. A smooth approximation may be useful when the data are corrupted
with noise, or contain excessive details that would require sub-sampling. The
proposed network provides a capability of reconstructing surfaces at different
resolution levels. This can be achieved by appropriately choosing the neuron
resolution ηmin. Figure 5 demonstrates surface reconstruction at varying res-
olution and detail. Water-tight meshes with desired accuracy in Fig. 5(d) are
smoothly completed at ηmin = 0.01 with K = 1345 neurons.

4.4 Comparison of Learning Algorithms

The computational cost of network training is mainly determined by the learning
algorithm used for updating network parameters. We tested and compared the
proposed neighbourhood EKF (NEKF) algorithm with two common learning
methods, the gradient descent (GD) [17] and the global extended Kalman filter
(GEKF). The comparison was executed on a Pentium 4 PC with 3GHz CPU
and 512MB of RAM.

We used randomly sampled subsets from the angel data in Fig. 2(a) as training
sets. Each trial had 4500 points. From the results, we found prediction errors
of the three learning methods were very similar in terms of decreasing speed
and accuracy achieved. However, the training time used at each learning step
with increasing number of neurons, shown in Fig. 6 obtained on average from
10 randomly sampled trials, varies largely. To demonstrate the nature of the
NEKF, the result presented for NEKF in Fig. 6(c) was obtained for the extreme
case of updating only the nearest neighbour at each learning step, with very
small increase of prediction error. We observed for GEKF the very high cost of
8.5 seconds for updating about 590 units towards the end of network training
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(a) ηmin = 0.1, K = 62 (b) ηmin = 0.05, K = 182

(c) ηmin = 0.03, K = 408 (d) ηmin = 0.01, K = 1345

Fig. 5. Surface reconstruction of the angel data in Fig. 2(a) at varying resolutions

0

2

4

6

8

10

1 9 44 138 363 592
number of neurons

tr
ai

n
in

g
 t

im
e 

(s
)

(a) GEKF

0

2

4

6

8

10

1 11 42 141 404 675
number of neurons

tr
ai

n
in

g
 t

im
e 

(m
s)

(b) GD

0

0.1

0.2

0.3

0.4

0.5

1 12 40 145 409 691
number of neurons

tr
ai

n
in

g
 t

im
e 

(m
s)

(c) NEKF

Fig. 6. Training time comparison executed on a Pentium 4 PC in C++
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(Fig. 6(a)), with GD using around 8 milliseconds (ms) for 670 units (Fig. 6(b)),
while NEKF spent an average of 0.14ms throughout the training process until
690 units were involved (Fig. 6(c)). Compared to GEKF, the computational load
of NEKF was dramatically reduced by a factor 105.

5 Conclusion

We presented an adaptive RBF network using a heuristic learning strategy to
interpret non-uniformly sampled scattered data and to complete surfaces from
noisy range images. The network is established by adaptively locating neurons
accompanied by a pruning strategy, reflecting the fidelity of underlying data.
The full dimensionality of network parameters, corresponding to location, weight
and width for each neuron, is refined iteratively. Compared to approaches us-
ing pre-defined fixed network structures, the greedy learning strategy provides
a significant flexibility that is particularly suitable for highly variable spatial
frequencies. It consequently guarantees the possibility of data reduction derived
from only a subset of novelty points. Additionally, instead of using global EFK
or GD to update network parameters at each learning step, we developed a
neighbourhood EKF learning algorithm. This improvement led to a remarkable
reduction on computation load and achieved desired global accuracy by provid-
ing local fidelity. Experimental results demonstrate that the network approach
proves fruitful line of surface reconstruction with repaired incomplete meshes,
geometric formulation and compression with potential applications in scientific
visualisation and engineering modelling.
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Abstract. There are a number of applications in computer graphics and
computer vision that require the accurate estimation of normal vectors
at arbitrary vertices on a mesh surface. One common way to obtain a
vertex normal over such models is to compute it as a weighted sum of the
normals of facets sharing that vertex. But numerical tests and asymp-
totic analysis indicate that these proposed weighted average algorithms
for vertex normal computation are all linear approximations. An open
question proposed in [CAGD,17:521-543, 2000 ] is to find a linear combi-
nation scheme of the normals of the triangular faces, based on geometric
considerations, that is quadratic convergence in the general mesh case.
In this paper, we answer this question in general triangular mesh case.
When tested on a few random mesh with valence 4, the scheme proposed
by this paper is of second order accuracy, while the existing schemes only
provide first order accuracy.

1 Introduction

Many algorithms in image processing, computer vision and computer graphics
rely on the computation of surface normals. For example ([4, 11, 12]), shading
an object is to simulate the behavior of light incident on its surfaces, and it is
necessary to calculate normal vectors on the surfaces of the object for shading it.
Since objects do not contain surface inclination in vertex-based representation, a
normal vector for each vertex must be estimated from the relative position of its
neighboring vertexes. Since the early 1970s, graphics researchers have produced
several algorithms to compute vertex normals. These algorithms differ substan-
tially from each other, but they all have in common the notion of weighting
adjacent face normals in some fashion, that is, the formula of the vertex normal
computation is of the following form:

n =
∑n

i=1 ωini

‖
∑n

i=1 ωini‖
(1)
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where the weight ωi for normal ni depends only on edge lengths and enclosed
angles, and ni is the face normal of the ith face (see fig.1). Various weights have
been proposed for that purpose. Here, we decide to take a closer look at some of
them that are widely used. The first vertex normal algorithm, which we will refer

Fig. 1. One-ring of a vertex, edge, tangent vector, angle, vertex normal and facet normal

to as the mean weighted equally (MWE) algorithm, was introduced by Henri
Gouraud [6] in 1971. In his algorithm, ωi = 1, that is, the normal of each adjacent
facet contributes equally to the vertex normal. In 1998, however, Thurmer and
Wuthrich [10]found that the results of the Gouraud’s method strongly depend
on the topology of the mesh around the vertex being processed. To improve the
accuracy of the vertex normal computation method suggested by Gouraud, they
proposed a new method for computing vertex normals which is mathematically
more accurate and is referred to as “Mean Weighted by Angle” (MWA). In
their algorithms, ωi = αi, where αi is the angle between the two edge vectors
ai = VVi and ai+1 = VVi+1 of the ith facet sharing the vertex. Unlike MWE,
MWA suggested that facets which are “attached” to a vertex normal should have
their contribution to the vertex normal weighted by the angle of the triangle that
the vertex is part of. Not long after Thurmer & Wuthrich proposed their new
vertex normal algorithm, in 1999, Max [8] suggested assigning non-equal weights
deriving from the geometry. In his non-equal weighted vertex normal algorithm,
which is referred to as the mean weighted by sine and edge length reciprocals
(MWSELR), the weight ωi = sin αi

aiai+1
,ai = ||ai||, and the weight proposed in

his paper give the correct normals for a polyhedron inscribed in a sphere. His
formulation accounts for the differences in size of the facets surrounding the
vertex by assigning larger weights for smaller facets, which he found helped
handle the cases when the facets surrounding a vertex differ greatly in length.
In addition, Max also presented several other vertex normal algorithms besides
MWSELR, and we will list these here for brevity. The weights are ωi = aiai+1,
ωi = 1

aiai+1
, and ωi = 1√

aiai+1
. Recently, Chen and Wu [3] found from the theory

of curvatures of regular surfaces, two triangles with equal area may have different
effect on normal vectors computation, which indicates that the area-weights need
to reflect this observation. Therefore, they proposed a so-called centroid-weight
algorithm (CW), in which wi = ||gi − P ||−2 where gi is the center of mass
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of the triangle �ViVVi+1. They claimed that the centroid-weights reflect its
mathematical or physical meaning.

Jin et al in [7] investigate the above-mentioned vertex normal computation
algorithms except for CW algorithm. They found that the most accurate algo-
rithm depends on the class and that for some classes, in absolute sense, none
of the available algorithms is particularly good. All that they can recommend
is to increase the spatial sampling frequency when possible. In fact, numerical
tests and asymptotic analysis indicate that the existing weighting schemes for
mesh normals behave asymptotically similar, converging linearly in general and
quadratically for a wide class of regular vertices (see [2]).

An open question raised by Meek and Walton [9] is to find a linear combination
of the normals of the triangular faces, based on geometric considerations, that
approximates the normal of the general surface mesh to second order accuracy. In
this paper, we will answer this question. To obtain more accurate normal calcu-
lation, we should considers the more geometric contribution of each facet beside
the edges and angles of adjacent triangles. In this paper, we will construct a sec-
ond order approximation scheme for normal computation by adding a geometric
contribution. Numerical results are given to support the theoretical results.

2 The New Weights

Since MWSELR accounts for the difference in size of these facets by assigning
larger weights for smaller facets, and Max claimed that this algorithm is supe-
rior to other popular weighting methods by testing the algorithm on random
cubic polynomial surfaces, so the weight that we shall present will be based on
MWSELR. Furthermore, We will consider another geometric contribution due
to the following observation. As we know, if the rate of change of the tangent
vector is more fast, then the change of the normal vector along this tangent di-
rection is more sensitivity. This seems to indicate that the weights need to reflect
this observation, that is, in the non-equal weighted vertex normal algorithm, we
should also consider the ||T′|| as a new geometric contribution of each facet.
See Fig. 2, given a dense mesh M interpolating a smooth surface S and a mesh
vertex V , let V1,V2, ...,Vn be the immediate neighbors of V, ordered counter-
clockwise with respect to the chosen normal. In the MWSELR, if two triangles
�ViVVi+1 and �V′

iVV′
i+1 have the same normal vector and are congruent,

then they will have equal contributions to the resulting normal vector. However,
from the above analysis, �ViVVi+1 and �V′

iVV′
i+1 should have different ef-

fect on estimation of the normal vector at point V. Because of ||T′|| = k(s),
where k(s) is the normal curvature of the geodesic gi(s) connecting V and Vi,
this suggests that we should chose the weights:

wi =
sinαi

aiai+1kiki+1
(2)

in equation (1), and so we may obtain a more accurate algorithm for the vertex
normal vector.
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Fig. 2. They have the same effects under MWSELR, but they have different effect on
vector normal vector under our weight

3 The Estimation of Normal Curvature

In the above defined weights, however, we don’t know the value of the normal
curvature ki, hence, at present, we can not compute the normal vector by means
of (1) and (2) without the estimation value of ki. In this section, we will give a
first order approximation value of normal curvature ki.

See Figure 2, for each edge VVi, consider the geodesic curve gi(s) parame-
terized by arc length s, connecting V and Vi, gi(0) = V, gi(si) = Vi, where
si = V̂Vi is arc length. For each geodesic gi(s), consider its Darboux frame
{Ti,Bi,N}, where N and Ti is the unit surface normal and the unit tangent
vector at V, respectively, and Bi = N × Ti. Given the above curve gi(s), we
have the well known Frenet equations

dTi

ds
= kiN,

dBi

ds
= τiN,

dNi

ds
= −kiT− τiB.

where τi is geodesic torsion of gi(s). Differentiating the curve gi(s) with respect
to its arc length s, then yields

g′i =
dgi

ds
= Ti; g′′i = kiN; g′′′i = k′iN− k2

i T− kiτiB

and so on. Now we can use Taylor expansion to express

ai = g(si)− g(0) = sig
′
i +

s2i
2
g′′i +

s3i
6
g′′′i = Ti(si −

s3i
6
k2

i + O(s4i ))

+ N(
1
2
s2i ki +

1
6
s3i k

′
i + O(s4i )) + Bi(−

1
6
s3i kiτi + O(s4i )). (3)

Since (N,Ti,Bi) is an orthogonal basis, we can compute the length ai of ai in
terms of si by

ai = ||ai|| = si −
s3i
24

k2
i + O(s4i ).

Substituting the expansion of si into the formula (3) for ai and dividing by ai

yields (see also [1])

ai

ai
=Ti(1−

a2
i

8
k2

i + O(a3
i ))+ N(

1
2
aiki+

1
6
a2

i k
′
i+ O(a3

i ))+ Bi(−
1
6
a2

i kiτ+ O(a3
i )).
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Let βi be the angle between Ti and Ti+1 (indices taken modulo n), see Figure 1.
Now we can compute the normal of an incident triangle at V as ( see also [1])

ai

ai
× ai+1

ai+1
= N(1 + O(a2

i , a
2
i+1))

+ Bi(−
ai+1

2 sinβi
ki+1 + O(a2

i , a
2
i+1))

+ Bi+1(
ai

2 sinβi
ki + O(a2

i , a
2
i+1))

+ (Ti + Ti+1)O(a2
i , a

2
i+1).

Since αi = βi + O(a2
i ), the above equation can be written as

ai

ai
× ai+1

ai+1
= N(1 + O(a2

i , a
2
i+1))

+ Bi(−
ai+1

2 sinαi
ki+1 + O(a2

i , a
2
i+1))

+ Bi+1(
ai

2 sinαi
ki + O(a2

i , a
2
i+1))

+ (Ti + Ti+1)O(a2
i , a

2
i+1). (4)

By simple computation, we obtained

<
ai−1

ai−1
,

ai × ai+1

‖ai × ai+1‖
>=

1
2
ai+1ki+1

sinαi−1

sinαi
− 1

2
aiki

sin(αi−1 + αi)
sinαi

+
1
2
ai−1ki−1 + O(ai−1, ai, ai+1). (5)

Hence, if we remove the last term from the right hand side of equation (5), we
obtain the n equations with n knowns k∗i (i = 1, 2, ..., n;n > 3), which are first
order approximations of ki, that is,

<
ai−1

ai
,

ai × ai+1

‖ai × ai+1‖
>=

1
2
ai+1k

∗
i+1

sinαi−1

sinαi

− 1
2
aik

∗
i

sin(αi−1,i)
sinαi

+
1
2
ai−1k

∗
i−1. (6)

where αi−1,i = αi−1 + αi and the lower indices are taken modulo n. The above
linear systems (6) can be represented in matrix form as the following matrix
equation

Ax = b, (7)

where

x =

⎛⎜⎜⎜⎝
a1k

∗
1

a2k
∗
2

...
ank

∗
n

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
x1
x2
...
xn

⎞⎟⎟⎟⎠ ,b =

⎛⎜⎜⎜⎜⎝
< a1

a1
, a2×a3
‖a2×a3‖ >

< a2
a2
, a3×a4
‖a3×a4‖ >

...
< an

an
, a1×a2
‖a1×a2‖ >

⎞⎟⎟⎟⎟⎠ ,
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and

A =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − sin α1,2
sin α2

sin α1
sin α2

0 · · · 0 0
0 1 − sin α2,3

sin α3

sin α2
sin α3

· · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 0 · · · − sinαn−2,n−1
sin αn−1

sin αn−2
sin αn−1

sin αn−1
sin αn

0 0 0 · · · 1 − sin αn−1,n

sin αn

− sin αn,1
sin α1

sin αn

sin α1
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, the weights wi can be written as

wi =
sinαi

xixi+1

As we known, if the matrix A is nonsingular, then the above equation (7) has a
nonzero solution, and we get the first order approximation value (k∗1 ,k∗2 ,...,k∗n)
of (k1, k2, ..., kn). But, at the same time, from equation (7), we can also obtain
an important information, that the stability of algorithm (1) depends on the
vertex angle of the mesh, that is, the condition number of matrix A depends on
the vertex angle αi. If the distribution of the vertex angles makes the matrix A
ill-conditioned, then the accuracy may be only first order, and in this case, this
algorithm is degenerative.

4 Quadratic Convergence and Numerical Experiments

It is easy to prove that algorithm (1) with (2) and ni = ai

ai
× ai+1

ai+1
defined in (4)

is a second order approximation of the real normal N. In fact, substituting the
expansion (4) of ai

ai
× ai+1

ai+1
and (2) into

∑n
i=1 ωini, we have

n∑
i=1

ωini =
n∑

i=1

(Nωi −Bi
1

2aiki
+ Bi+1

1
2ai+1ki+1

+

ωi(N + Bi + Bi+1 + Ti + Ti+1)O(ai, ai+1)2) (8)

Since the lower indices are taken modulo n, that nn+1 = n1, (8) can be written
as

n∑
i=1

ωini =
n∑

i=1

(Nωi + ωi(N + Bi + Bi+1 + Ti + Ti+1)O(ai, ai+1)2)

where Wi is a linear combination of vectors N,Bi,Bi+1,Ti,Ti+1. If w1 +w2 +
...+wn 	= 0, a good approximation for the vertex normal N defined in (1) would
look like this:

n =
∑n

i=1 ωini

‖
∑n

i=1 ωini‖
= N + WO((a1, a2, ..., an)2),

where W =
∑n

i=1 ciWi(ci are constants), and this is second order accuracy
scheme.
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The second aim of this section is to exhibit the numerical behaviors of the
vertex normal calculation scheme proposed by this paper, and determine whether
it quadratic converges numerically to the exact normal vector. In our numerical
examples, the approximation are found using heightfield data, which are two-
dimensional arrays of height values, and are commonly used to store terrain or
water surface data, and are also commonly used for calculating bump maps.
In this case, the vertex valence n are taken to be 4, and the equations can be
written as

AK = b

where the matrix

A =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 sin α1,2
− sin α2

sin α1
sin α2

0

0 1 sin α2,3
− sin α3

sin α2
sin α3

sin α3
sin α4

0 1 − sinα3,4
sin α4

sin α4,1
− sin α1

sin α4
sin α1

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

the vector

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1k
∗
1

a2k
∗
2

a3k
∗
3

a4k
∗
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

< a1
a1
, a2×a3
‖a2×a3‖ >

< a2
a2
, a3×a4
‖a3×a4‖ >

< a3
a3
, a4×a1
‖a4×a1‖ >

< a4
a4
, a1×a2
‖a1×a2‖ >

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To show the numerical convergence, we take several two variable functions
as artificial heightfield data over xy-plane as surfaces in R3 so that the exact
normal vector can be easily computed. Both the exact and approximated normal
vectors are computed at some selected domain points qij = (xi, yj) ∈ [0, 1]×[0, 1].
These points are chosen as (xi, yj) = ( i

20 ,
j
20 ) for i = 1, · · · , 19, j = 1, · · · , 19.

The domain around qij is triangulated locally by choosing 4 distributed points:

qk = qij + rk(cos θk, sin θk), (9)

where rk = r(1 + 0.0001 ∗ k), θk = (k − 1 + 0.0001 ∗ k)2π/4,k = 1, · · · , 4,
then we map the plane triangulation onto the surfaces by the selected bivariate
functions. The convergence property and the convergence rate are checked by
taking r = 1/8, 1/16, 1/32, · · ·. The functions we use are the following
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F1(x, y) = 0.75 exp{−(9x− 2)2 − (9y − 2)2

4

+ 0.75 exp{−[
(9x+ 1)2

49
+

(9y + 1)
10

]}

+ 0.5 exp{−(9x− 7)2 − (9y − 3)2

4
}

− 0.2 exp{−[(9x− 4)2 + (9y − 7)2]},

F2(x, y) =
1.25 + cos(5.4y)
6 + 6(3x− 1)2

,

F3(x, y) =
exp
{
− 81

16

[
(x − 0.5)2 + (y − 0.5)2

]}
3

,

F4(x, y) = ((
8
9
)2 − (x− 1

2
)2 − (y − 1

2
)2)

1
2 − 1

2
,

The numerical experiments show that as r → 0, the maximal error of the ap-
proximated vertex normal computed by our algorithm over the above mentioned
local triangulations and the exact vertex normal computed from the continuous
surfaces defined by Fj tend asymptotically to the form ek(Fj , r) := Ckjr

k for
a constant Ckj and an integer k. Table 1-4 show the asymptotic maximal error
e0(Fj), e1(Fj) and e2(Fj)(j = 1, 2, 3, 4).

Table 1. The Asymptotic Maximal Errors ei(F1, n)(i = 0, 1, 2)

1/r e0(F1) e1(F1)/r e2(F1)/r2

8 2.434794e+000 1.947835e+001 1.558268e+002
16 2.743809e-001 4.390095e+000 7.024152e+001
32 7.004962e-002 2.241588e+000 7.173081e+001
64 1.357551e-002 8.688325e-001 5.560528e+001
128 3.372997e-003 4.317436e-001 5.526318e+001
256 8.461392e-004 2.166116e-001 5.545258e+001
512 2.118293e-004 1.084566e-001 5.552977e+001
1024 5.303229e-005 5.430507e-002 5.560839e+001
2048 1.329102e-005 2.722001e-002 5.574658e+001
4096 5.423823e-006 2.221598e-002 9.099664e+001
8192 2.716222e-006 2.225129e-002 1.822826e+002

Table 2. The Asymptotic Maximal Errors ei(F2, n)(i = 0, 1, 2)

1/r e0(F1) e1(F1)/r e2(F1)/r2

8 9.321696e-002 7.457357e-001 5.965886e+000
16 2.648828e-002 4.238126e-001 6.781001e+000
32 6.827666e-003 2.184853e-001 6.991530e+000
64 1.719685e-003 1.100598e-001 7.043828e+000
128 4.306928e-004 5.512868e-002 7.056471e+000
256 1.077086e-004 2.757340e-002 7.058792e+000
512 2.692294e-005 1.378455e-002 7.057687e+000
1024 1.031466e-005 1.056221e-002 1.081570e+001
2048 5.265508e-006 1.078376e-002 2.208514e+001
4096 2.777209e-006 1.137545e-002 4.659384e+001
8192 2.247672e-006 1.841293e-002 1.508387e+002
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Table 3. The Asymptotic Maximal Errors ei(F3, n)(i = 0, 1, 2)

1/r e0(F1) e1(F1)/r e2(F1)/r2

8 2.452809e-002 1.962247e-001 1.569798e+000
16 6.101349e-003 9.762158e-002 1.561945e+000
32 1.527159e-003 4.886909e-002 1.563811e+000
64 3.833783e-004 2.453621e-002 1.570317e+000
128 9.669281e-005 1.237668e-002 1.584215e+000
256 2.460076e-005 6.297794e-003 1.612235e+000
512 6.364165e-006 3.258453e-003 1.668328e+000
1024 1.702576e-006 1.743437e-003 1.785280e+000
2048 6.361572e-007 1.302850e-003 2.668237e+000
4096 2.730245e-007 1.118309e-003 4.580592e+000
8192 1.868947e-007 1.531041e-003 1.254229e+001

Table 4. The Asymptotic Maximal Errors ei(F4, n)(i = 0, 1, 2)

1/r e0(F1) e1(F1)/r e2(F1)/r2

8 1.575054e-001 1.260044e+000 1.008035e+001
16 5.278866e-002 8.446185e-001 1.351390e+001
32 1.381857e-002 4.421942e-001 1.415022e+001
64 3.479125e-003 2.226640e-001 1.425050e+001
128 8.726080e-004 1.116938e-001 1.429681e+001
256 2.191618e-004 5.610541e-002 1.436299e+001
512 5.527276e-005 2.829965e-002 1.448942e+001
1024 1.405792e-005 1.439531e-002 1.474080e+001
2048 3.634249e-006 7.442941e-003 1.524314e+001
4096 9.684482e-007 3.966764e-003 1.624787e+001
8192 3.971585e-007 3.253523e-003 2.665286e+001

From these numerical results (see the above tables, e0(Fj , r)/e0(Fj , 2r) � 4 =
22, r = 1

8 ,
1
16 , ...,

1
4096 ; j = 1, 2, 3, 4.), we can draw the following conclusion for

the irregularly distributed domain vertices: the approximate normal converges
in the rate O(r2).

5 Conclusions and Further Work

By intuitive differential geometry observation and asymptotic analysis, we present
a quadratic approximation scheme for vertex (its valence n > 3) normal over gen-
eral triangular mesh, and find that the stability of second order scheme depends
on the vertex angles. If the vertex angles are not well-posed, then this kind of sec-
ond order algorithm is not appropriate for noisy data (but least squares methods
are appropriate in this case.). Because, in this case, the second order scheme may
be degenerative, and may be only of first order accuracy. In addition, since our
approach need to solve a linear system, compared to the explicit scheme, our al-
gorithm is more time-consuming. So, we will look for more concision and more
robust second order approximation schemes for the vertex normal vector.
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Abstract. In virtual colonoscopy, it is crucial to generate the camera path 
rapidly and accurately. Most of the existing path generation methods are 
computationally expensive since they require a lengthy preprocessing step and 
the 3D positions of all path points should be generated. In this paper, we 
propose a visibility-based automatic path generation method by emulating the 
ray propagation through the conduit of the colon. The proposed method does 
not require any preliminary data preprocessing steps, and it also dramatically 
reduces the number of points needed to represent the camera path using control 
points.  The result is a perceivable increase in computational efficiency and 
easier colon navigation with the same level of accuracy. 

1   Introduction 

Colon cancer is among the leading causes of cancer deaths, yet it can be cured by 
proper treatment and early detection. The colon examination usually resorts to the 
invasive methods such as optical endoscopy and barium enema. In optical endoscopy, 
the inspector examines the inner surface of the colon by manipulating a small camera 
at the tip of an optical probe. Controlling the camera requires great skill and precision, 
and the examination of the entire colon takes a long time. Also, the invasion of a 
probe is uncomfortable, as well as demanding a lengthy preparation step and causing 
contagion and bleeding [1-2]. In barium enema, the inspector examines the contrast 
material adhering to the colon wall using X-ray radiographs. In this examination, the 
patient needs to go through a serious discomfort and the polyp detection sensitivity is 
not as good as that of optical endoscopy. 

Virtual colonoscopy as an alternative can ease a lot of difficulties in the 
conventional methods. Also, this method enables higher sensitivity and specificity of 
the examination as well as reducing the discomfort that the patient should bear [3-6]. 
With the recent introduction of multi-detector CT, the CT processing has become 
remarkably fast and the polyp detection sensitivity is enhanced [7]. In contrast to 
optical endoscopy, a virtual camera can move in any direction to thoroughly examine 
the colon improving the efficiency of diagnosis [8]. 

In current virtual colonoscopy, the camera path should be determined in prior to 
the examination process. The center position of the colonic section is to be 
                                                           
* Corresponding author. 
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determined on each 2D image by a skilled physician, and these positions are to be 
interpolated for virtual navigation. It takes a long time to determine all the center 
positions for the entire colon sections, necessitating an automated path finding 
scheme since the average colon length usually measures over 1.5m and the conduit of 
colon is tortuous. A topological thinning algorithm can be used to eliminate the 
outermost layer of the segmented colon images reconstructed in 3D, until the 
centerline voxels are finally left over [3][9]. While the path defined by this method is 
accurate in the geometric sense, the path finding time could be excessively long to 
carry out all the necessary processing of the entire segmented voxels. The navigation 
path calculation can be done by using the shortest-path algorithm suggested by 
Dijkstra with a lengthy preprocessing step. However, the preprocessing and searching 
for all the points on the path takes a long time [10-12]. 

In this paper, we propose an efficient path generation method by emulating the 
propagation of rays through the conduit of colon. The proposed method can be 
executed in runtime without any preliminary data processing steps. Instead of 
generating all points of the path, it generates only a small number of control points to 
represent the camera path to increase computational efficiency. Experiments were 
performed to illustrate the effectiveness of the proposed scheme. Since the path is 
determined based on the visibility, the virtual camera moves along a path on which 
the navigator can inspect the colon with the least eye-strain. 

2   A Visibility-Based Automatic Path Generation Method 

The path generation scheme proposed in this paper is to be carried out in the 
following steps. First, the seed point is provided by the physician on a 3D volume 
rendered image of a colon and the starting position and direction of the initial 
reference ray is determined. Next, control points of the optimal path are to be found 
by using the algorithm of simulating ray propagation. Finally, the camera path is 
generated by interpolating these control points in both forward and backward 
directions and will be merged together to make the final navigation path. 

2.1   Initializing the Reference Ray 

The path generation algorithm begins by determining the starting position and 
direction of the reference ray. First, the physician defines the seed point on the 2D 
projection image. A 2D image coordinate should be transformed into a 3D object 
coordinate by propagating a ray along the direction perpendicular to the image plane. 
Two intersection points between the ray and the colon walls are found. The center 
point between two intersection points is the optimal starting position of the reference 
ray. Rays are progressed in all visible directions from the starting position and the 
intersection points between the ray and the colon wall are found. The direction in 
which the ray can reach the farthest from the starting point is regarded as the direction 
having the highest visibility from the starting point. This direction will be taken as the 

direction of the initial reference ray, ),( 000 φθdR . 
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2.2   Making the Look-up Table for Expanding a Virtual Sphere 

The procedure for a path generation can be accelerated by employing a look-up table. 
In our method, a virtual sphere will be located on the newly generated control point, 

candidateP , and the radius of the sphere will be expanded by 1 voxel at a time. The 

contact point between the expanding sphere and the colon wall will be found as 
shown in Fig. 3(c). A pre-calculated look-up table can aid in this procedure. The pre-
calculated look-up table contains relative coordinates from the center of the sphere in 

the order of increasing distance from the center point. The surface point, sphereP  can 

be obtained by adding the relative coordinates in the offset table(OT) to the 

coordinate of candidateP  as shown in Eq. (1). 

))(_  ),(_ ),(_( izOTiyOTixOTPP candidatesphere += . (1) 

In Fig. 1, the distance between each integer vertex ( )ji,  and the origin (0, 0) can 

be calculated and round off, and the vertices having the same D value are to be lined 
up in the 2-D space. An offset table is then constructed by storing the vertices in 
order, as shown in Fig. 2. This table can be used to accelerate the expansion of the 
disk on the x-y plane, and the same thing applies for the sphere in the 3-D space. 

    

Fig. 1. Listing the points having the same D value (illustration for the first quadrant only) 

 

Fig. 2. An example of 2D offset table 

2.3   The Path Generation Procedure 

Control points representing the path are successively calculated by applying following 
procedures shown in Fig. 3. The preliminary preparation of this procedure is to 
generate the starting position and direction of the reference ray as described in Section 
2.1. In the first step, the direction having the maximum visibility with respect to the 
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starting point, 0P , along the ray, R  is found. The mathematical representation of the 

ray can be given as follows. 

),(0 φθdRlPR ⋅+= , (2) 

where dR  is the direction of a ray, and l  is the propagated length of a ray. We 

progress a ray, R  around the reference ray, ),( 000 φθdR  in the following range. 

1010 kk +≤≤− θθθ , 1010 kk +≤≤− φφφ , (3) 

where the parameter, k1 represents the field of view. As the ray is progressed around 
the reference ray, the intersection point between the ray and the colon wall is 
determined. The intersection point having the maximum distance from the starting 
point is regarded as the point having the maximum visibility. In other words, this 
position is where the viewer can see the farthest from the viewpoint without being 

blocked by the colon wall. In Fig. 3(a), maxP  is calculated as the maximum visibility 

position with respect to 0P  and ),( 000 φθdR . As previously stated, the parameter k1 

from Eq. (3) represents the field of view. When k1 is large, the field of view becomes 
broader since visibility is determined with a larger range of view directions. However, 
the path generation time is prolonged. When k1 is small, the opposite case happens. 
The optimal value of k1 needs to be determined empirically.  

In the next step, candidateP  is selected on the line between 0P  and maxP  using Eq. 

(4) as shown in Fig. 3(b). The parameter, k2 controls the distance between control 
points in the neighborhood. When k2 is large, a smaller number of control points will 
be needed to represent the whole colon and the path generation becomes faster. 
However, the path accuracy could be poor with large values of k2 especially in the 
narrow regions of the colon, since a single control point represents a larger range of 
the colon. When k2 is small, the opposite case happens. The optimal value of k2 needs 
to be determined empirically. 

)( 0max20 PPkPPcandidate −⋅+=  . (4) 

The accuracy of the point determined by the visibility criterion, candidateP , can be 

further enhanced in the procedure. First, a virtual sphere is expanded around candidateP  

to find the intersection points between the expanding sphere and the colon wall, as 
shown in Fig. 3(c). For expanding the sphere, we add a displacement vector to the 

point, candidateP  and generate surface points using the offset table described in Section 

2.2. When the expanding sphere encounters the colon wall, the intersection point is 

labeled as contactP . contactP  must satisfy the angle criteria in Eq. (5). α  is the angle 

between the lines candidatecontact PP −  and 0PPcandidate −  in Fig. 3(c). In Eq. (5), the 

parameter, k3 sets the range of α  in the vicinity of 90 degree. This condition prevents 
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contactP  from being located in front of the path, especially for complicated colon 

sections. The optimal value of k3 should also be determined empirically. 

390 k<°−α , 
0

01 )()(
cos

PPPP

PPPP

candidatecandidatecontact

candidatecandidatecontact

−−
−⋅−= −α . (5) 

After finding a set of contact points by expanding a sphere, we progress a ray from 

each contact point in the set, contactP , through candidateP  to the colon wall on the 

opposite side. This is done to find a new intersection point, 2contactP , between this ray 

and the colon wall as shown in Fig. 3(d). A set of midpoints can be determined using 

each set of contactP  and 2contactP . Finally, the control point for the navigation path, 

finalP , is determined by finding the average of these middle points. The next control 

point is generated with the new starting position, finalP , and new reference ray 

direction 0PPfinal −  by applying the steps illustrated in Fig. 3. The cubic spline 

method is used to interpolate the control points to have the final navigation path. 

 
Fig. 3. The procedure for a path-generation 

3   Experimental Results 

The proposed method was tested on an Intel Pentium IV PC with a 2.4 GHz CPU and 
1.0 GB of main memory. Four sets of CT scans were examined using the image data, 
which has 512x512 pixels in x, y dimension and 213 ~ 579 slices.  

The proposed path generation scheme does not require segmenting the colon from 
other organs, and the segmentation is only for the visual display. The initial seed point 
is to be set on the volume rendered image in Fig. 4(a). Fig. 4 is shown to represent the 
starting point that is located at the center of the colonic section. 

To find optimal parameters for the proposed method, we considered the path 
generation ratio in Eq. (6). A reference path was chosen manually by an expert for 
comparison. The path generation ratio is defined as the ratio of the total number of  
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(a)                                   (b)                                   (c)                                (d) 

Fig. 4. The starting point (a) on the 3D volume rendered image (b) on the axial image (c) on the 
coronal image (d) on the sagittal image 

points on our interpolated path intersecting each slice, to the total number of points 
on the reference path intersecting each slice within the error bound, 3mm. 

100

sliceeach  ngintersecti 

path reference on the points ofnumber 
path reference on the points ingcorrespond from

bounderror  e within thsliceeach  ngintersecti 

path dinterolateour on  points ofnumber 

  ratio[%] generationPath ×=
. (6) 

Table 1 summarizes the path generation time and ratio by varying k1 with fixed 
other values. Large values of k1 yield high path generation ratio. However, the 
increase of the path generation ratio becomes insignificant when k1 is raised over 30°, 
and we suggest 30° for an optimal value of k1. Table 2 shows the path generation time 
and ratio by varying k2 with fixed other values. While small k2 yields a better path 
generation ratio, the improvement becomes marginal for the values of k2 below 0.5,  
 

Table 1. The path generation time and ratio by varying k1 (k2 = 0.5, k3 = 30°) 

 The path generation time The path generation ratio 
 k1 20° 25° 30° 35° 40° 20° 25° 30° 35° 40° 

Average 14 20 25 29 32 68.31 70.01 72.96 73.33 74.05 

Table 2. The path generation time and ratio by varying k2 (k1 = 30°, k3 = 45°) 

 The path generation time The path generation ratio 
 k2 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 

Average 32 28 25 19 15 97.92 97.24 96.90 77.34 66.50 

Table 3. The path generation time and ratio by varying k3 (k1 = 30°, k2 = 0.5) 

 The path generation time The path generation ratio 
 k3 30° 40° 45° 50° 60° 30° 40° 45° 50° 60° 

Average 25 23 25 26 16 72.96 91.61 96.90 92.44 70.37 
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which is chosen as an optimal value for k2. Table 3 shows the path generation time 
and ratio by varying k3. The path generation ratio is the best around 45°, which is 
chosen as an optimum for k3. 

The average path generation time is 25 seconds and the average path generation 
ratio was 96.90% as shown in Table 3. Our fast algorithm has dramatically reduced 
total processing time from about 10 minutes [13-14] to seconds. The path is slightly 
off from the reference path in the large-area cross section of a colon but well within 
an allowable range. Fig. 5 shows the control points and the interpolated path. The 
control points are uniformly distributed along the colon centerline to model the shape 
of the colon efficiently and accurately. The generated path is located around the center 
region of the colon. 

  
(a)             (b) 

Fig. 5. Generated control points and the interpolated path of subject 1 (a) in the anterior view 
(b) in the left view 

4   Conclusion 

In this paper, we proposed an automated path finding algorithm to be used in virtual 
colonoscopy. The proposed method uses a fast algorithm to emulate the propagation 
of ray, eliminating the time-consuming preliminary procedure. The proposed method 
requires a small number of control points to represent the whole navigation path that 
is properly aligned along the centerline of the colon. The experimental results on four 
clinical datasets show that the navigation path is generated rapidly and that the path is 
located in the center of the colonic section for an effective clinical examination. The 
computational efficiency was enhanced without sacrificing the accuracy using the 
proposed algorithm. Also, the proposed method is able to smooth out the camera path 
so that the eyestrain on the inspector can be minimized. Our method can be 
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successfully applied to a wide range of applications that require path generation for 
virtual navigation. 
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Dynamic Medial Axes of Planar Shapes
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Abstract. In this paper a computational model called dynamic medial
axis (DMA) is proposed to describe the internal evolution of planar
shapes. To define the DMA, a symbolic representation called matching
list is proposed to depict the topological structure of the medial axis.
As shown in this paper with provable properties, the DMA exhibits
an interesting dynamic skeleton structure for planar shapes. Finally an
important application of the proposed DMA — computing the medial
axis of multiply-connected planar shapes with curved boundaries — is
presented.

1 Introduction

The medial axis of a planar shape Ω ⊂ R
2 is the closure of the set of points in

Ω that have more than one closest point among the boundary points ∂Ω of Ω.
The medial axis was first introduced by Blum [2] to capture biological forms of
shape. It provides an important skeleton structure of the shape that has found
rich applications; See [7] for an overview.

In this paper a computational model called dynamic medial axis (DMA)
is proposed for planar shapes. The depiction of DMA is symbolic in nature.
Experimental results are presented, showing that the DMA offers an interesting
dynamic skeleton structure inside the planar shapes. An important application
of DMA is also studied.

2 Preliminaries

Let Ω be a connected and bounded domain in R
2 and ∂Ω be its boundary. The

simple closed curve that bounds the unbounded connected component in R
2 \Ω

is called the outer loop of Ω. The rest curves in ∂Ω are called the inner loops.
The number h of the inner loops is called the genus of Ω. A domain Ω is simply
connected if it has no inner loops, i.e., h = 0; otherwise, it is multiply connected.

Each loop in ∂Ω is composed of a finite number of real analytic curve segments.
The curve segments are oriented such that when one walks from their starting
points to end points, the interior ofΩ always lies to the left side. For each loop, its
constituting curve segments are separated by vertices. A vertex is called convex
if its interior angle is less than π; otherwise it is concave. The set of boundary
entities of ∂Ω is defined as a union of all curve segments together with all concave
vertices. Each boundary entity is parameterized in a one dimensional interval.
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Let Dr(p) denote the closed disk of radius r centered at p. A disk Dr(p) ∈ Ω
is called a maximal disk if ∃Ds(p) ∈ Ω containing Dr(p), then Ds(p) = Dr(p).
Let D(Ω) be the set of all maximal disks in Ω. The medial axis of a planar shape
Ω is defined as

MA(Ω) = {p ∈ Ω | ∃Dr(p) ∈ D(Ω)},
and the medial axis transform of Ω is defined as

MAT (Ω) = {(p, r) ∈ Ω × (R+ ∪ {0}) | ∃Dr(p) ∈ D(Ω)}.

Both MA(Ω) and MAT (Ω) have the structure of geometric graphs [3]. The
edges in the graph of MA(Ω) are trimmed bisectors of two boundary entities
[4, 5]. The contact set C(p) of p ∈ MA(Ω) is defined to be the set of ∂Dr(p)∩∂Ω.
Each element in C(p) is called a contact point of p. The medial axis points
p ∈ MA(Ω) can be characterized by the number n of the elements in C(p): a
point p is called a terminal point if n = 1, or a branch (or bifurcation) point if
n ≥ 3. A branch point is regular if n = 3; otherwise it is irregular.

3 Dynamic Medial Axis

Consider a planar shape Ω. Let Ω be partitioned into two sub-shapes Ω1 and Ω2
by introducing a straight line L in Ω. Refer to Fig. 1. Without loss of generality,
assume L to be horizontal with range [0, 1] and its left endpoint to coincide with
the origin. Denote the right endpoint of L by νL. To recover the original shape Ω
evolutively from Ω1 and Ω2, the line L is shrunk by moving the vertex νL from
initial position x = 1 to the origin x = 0. Let Ω(x) symbolize this dynamically
changed domain Ω when the abscissa of νL is x, 0 < x ≤ 1. To ensure that the
domain Ω(x) is topologically correct, L is deemed to be special as compared to
other entities in ∂Ω due to its orientation: it is a double-sided edge with both
sides facing the interior of Ω(x). We can interpret L as a wedge in ∂Ω(x) with
a zero width, as illustrated in Fig. 1. In the following, we denote the upper and
lower edges of L as L+ and L−, respectively.

Let L={L+,L−} and Lν = {L+,L−, νL}. Conceivably when the x-coordinate
of νL continuously changes, so does the associated medial axis MA(Ω(x)). We
call this continuously deformed MA(Ω(x)) the dynamic medial axis (DMA).
An example of DMA is shown in Fig. 2.

vL vLL L+

L−

Fig. 1. The separator L as a special combinatory boundary entity



462 K. Tang and Y. Liu

The first observation on DMA is that the difference between MA(Ω1) ∪
MA(Ω2) and MA(Ω) is obviously localized in those medial axis points (shown
in red color in Fig. 2) related to the separator Lν . It is readily seen that
these medial axis points constitute the boundary of the Voronoi cell VC(Lν)
of Lν (shown shaded in Fig. 2). To analyze the combinatorial and topological
structures of DMA, we first establish a symbolic representation of the medial
axis.

Fig. 2. The dynamic medial axis Ω(x)

3.1 Symbolic Representation Using Matching Lists

Definition 1. ∀p ∈ MA(Ω), the contact points in the contact set C(p) of p are
called matching points to each other; p is called the MA-center of its contact
points.

We use match() to denote this matching relation, i.e., given a contact point
c ∈ C(p), match(c) = C(p) \ c (ref. Fig. 3). Let π(Ω) represent the union of all
matching relations on ∂Ω.

p
r

c1

c2c3C(p) = {c1, c2}

match(c1) = c2

p
r

c1

c2

C(p) = {c1, c2, c3}
match(c1) = {c2, c3}
match(c2) = {c1, c3}
match(c3) = {c1, c2}

Fig. 3. The matching relationship

Definition 2. A twice-differentiable curve segment e(u), u ∈ (0, 1), is said to be
singular if it contains at least one point having a positive curvature maximum;
otherwise it is non-singular.

Given a singular curve entity in a loop of ∂Ω, we can segment it into non-
singular entities by introducing vertices at points of positive maximal curvature.
Hereafter domain Ω will be assumed to consist of non-singular curve segments.
By Corollary 1 in [6], matching points in non-singular ∂Ω always belong to
different boundary entities.
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Definition 3. Let E(u), u ∈ (0, 1), be a parameterized boundary entity in ∂Ω.
A consecutive portion α defined by [u1, u2] ⊂ (0, 1) on E is called a maximum
matching interval (MMI) on E, if (1) all matching points match(E(u)) : u ∈
[u1, u2] belong to another same boundary entity, say E′, and (2) for an arbitrarily
small value ε > 0, the matching points match(E(u)) of either u ∈ [u1 − ε, u2] or
u ∈ [u1, u2 + ε], fall into at least two different boundary entities.

Let match(α) designate the set of matching points of an MMI α ⊂ Ei. A simple
argument can show that match(α) must also be an MMI itself, say β ⊂ Ej , i 	= j.
The two MMIs α and β form a matching pair. Let {Ei, Ej} denote a pair of
matching entities.

Lemma 1. If Ω is simply connected, then between any pair {Ei, Ej} of matching
entities, there exists one and only one matching pair {α, β} of MMIs.

Proof. Due to limited pages, we omit the simple proof here. ��

By Lemma 1 there is a unique pair of MMIs {α, β} in any matching entities
{Ei, Ej}. The medial axis points contributed by {α, β} constitute a continuous
trimmed bisector which we denote as χ = τ(Ei, Ej) ⊂ MA(Ω). Ei and Ej are
called the source entities of χ.

Fig. 4. Matching list: ∂Ω = {E0, E1, · · · , E19} and Φ(E0) = {E19, E10, E9, E6, E4, E3}.
The medial axis points contributed by Φ(E0) and E0 is shown in red.

Definition 4. Let a, b, c be three distinct points on a same loop in ∂Ω with a
consistent orientation. Point b is said to be in front of c with respect to a, denoted
as b ≺a c, if when one staring at a walks along the loop with the predefined
orientation, point b is encountered before c. Furthermore, if points a, b, c lie on
three distinct entities Ea, Eb, Ec, then Eb is said to be in front of Ec with respect
to Ea, denoted as Eb ≺Ea Ec.

The above defined “in front” relationship induces an ordering on the bound-
ary entities of any loops in ∂Ω. Let {α1, α2, · · · , αm} be the set of sorted
MMIs of (0, 1) on an entity E0(u), u ∈ (0, 1), and {E01, E02, · · · , E0m} be the
matching entities contributing to {α1, α2, · · · , αm}. Induced from the ordering
of {α1, α2, · · · , αm}, the list Φ(E0) = {E01, E02, · · · , E0m} is also ordered (in
the second subscript) with respect to E0 (the first subscript); we call Φ(E0) the
matching list of E0. See Fig. 4 for an illustration.
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3.2 Topological Structure of DMA
Definition 5. Given a continuously changed domain Ω(x), two dynamic medial
axes DMA(xi) and DMA(xj) are said to be topologically equivalent to each
other if the separator Lν has the same matching list Φ(Lν ) in Ω(xi) and Ω(xj).
In such a case, xi and xj are also said to be topologically equivalent to each
other, denoted by xi ∼ xj.

The equivalent relation ∼ induces a topological partitioning in the linear space
Lν(x), x ∈ (0, 1), i.e., X is partitioned into a set of equivalent classes [x]∼ =
{x′ ∈ X : x′ ∼ x} which form a quotient space X/ ∼= {[x]∼ : x ∈ X}. The
transition between equivalent classes [x]∼ can be geometrically characterized by
critical points in X , i.e., when νL moves towards the origin, DMA(x) remains
topological equivalent until the matching list Φ(Lν) undergoes a change.

3.3 Computing/Updating DMA
First, consider the case with L+. The case with L− can be analyzed similarly.
Let SL+ = {x1, x2, · · · , xm} be the set of sorted delimiting points of the MMIs
in L+. When νL crosses a delimiting point xi, the change in Φ(Lν) is easily
seen to be limited to the boundary entities other than L+ that offers matching
points to xi. Let E and E′ be such two boundary entities. Generally there exists
an arbitrarily small value ε > 0 such that the interval (xi − ε, xi) ∪ (xi, xi + ε)
contains no delimiting points. When xi is crossed, only four matching lists, Φ(E),
Φ(E′), Φ(νL) and Φ(L+), are altered.

Let SL+ be implemented by a stack whose top element always has the largest
abscissa and POP(SL+) symbolize the stack operation that pops out the top
element. The following codes, taking constant time, carries out these changes:

Procedure Update delimiting(SL+)
Begin

xs ← POP(SL+));
If xs �= nil then begin

E, E′ ← the two entities offering mating points to xs;
Delete L+ from Φ(E′);
Delete E′ from Φ(L+);
Add νL into Φ(E) at the position before L+;
Add E as the first element into Φ(νL);

EndEnd

Now consider the case with νL. Suppose at x = x0, an MMI disappears in νL;
that implies for an arbitrarily small positive ε, in the interval x ∈ (x0, x0 + ε), ,
νL contributes a trimmed bisector χ of nonzero length which shrinks to a point
at x = x0. Refer to Fig. 5a. Let c1 and c2 be the branch points delimiting χ.
Let χ1 and μ1 be another two bisectors meeting χ at c1, χ2 and μ2 meeting
χ at c2. Since χ reaches zero length, at x = x0, the four bisectors χ1, χ2, μ1,
and μ2 meet at a common irregular branch point c∗ as shown in Fig. 5b. x0 is
referred to as a vanishing point. Let {E,E1} and {E,E2} be the source entities
contributing μ1 and μ2, respectively. If the intersection of untrimmed μ1 and
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μ2 exists, it must be the irregular branch point c∗. Let C∗ be the contact circle
∂Dr(c∗), (c∗, r) ∈ MAT (Ω). Among the two intersection points of x-axis and
C∗, the one with smaller abscissa is the vanishing point x0.

(a) x = x0+ε (b) x = x0 (c) x = x0−ε

Fig. 5. Vanishing point identification

In addition to matching lists, the remaining vanishing points may also undergo
changes after crossing a vanishing point. Let Φ(νL) = {E1, E2, · · · , Ek} when
νL = x. Let Ψ(νL) = {χ1, χ2, · · · , χk} be the corresponding bisectors associated
to νL, χi = τ(Ei, νL), 1 ≤ i ≤ k. Suppose x0 of χi is the first vanishing point
in SνL(x) to be crossed. When x0 is crossed, Ei is removed from Φ(νL), so is χi

from Ψ(νL). In SνL(x) two bisectors adjacent to χi, i.e., χi−1 and χi+1, if they
exist, need to be examined for updating their vanishing points. For χi−1, the
updated vanishing point is the intersection of τ(Ei−1, Ei−2) and τ(Ei−1, Ei+1).
For χi+1, the two contributing bisectors are τ(Ei+1, Ei−1) and τ(Ei+1, Ei+2).

Let INSERT(p, SνL) symbolize the operation that inserts a new vanishing
point into SνL . The procedure Update vanishing(SνL) summarized below car-
ries out the vanishing point update of DMA:

Procedure Update vanishing(SνL)
Begin

x0 ← POP(SνL));
If x0 �= nil then begin

χ0 ← the bisector in Ψ(νL) that contributes x0;
χ1, χ2 ←the preceding and succeeding bisectors of χ0 in Ψ(νL);
E ← the source entity (other than νL) of χ0;
E0, E1 ← the two preceding entities of E in Φ(νL);
E2, E3 ← the two succeeding entities of E in Φ(νL);
Delete E from Φ(νL);
Delete νL from Φ(E);
Insert E2 into Φ(E1) between E and νL;
Insert E1 into Φ(E2) between νL and E;
If any of the vanishing points of χ1 and χ2 exists then begin

Delete them from SνL(x);
End
p ← τ (E1, E0) ∩ τ (E1, E2);
If p �= nil then begin

INSERT(p, SνL);
End
p ← τ (E2, E1) ∩ τ (E2, E3);
If p �= nil then begin

INSERT(p, SνL);
End

EndEnd

By implementing SνL as a stack, the above codes take O(log kν) time, where
kν ≤ n′ is the maximum number of elements in SνL(x) and n′ is the number
of elements in ∂Ω1 ∪ ∂Ω2. By combining the updating on both delimiting and
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vanishing points, the computation of DMA is summarized with the following
pseudo-codes, which take O(n′ log kν) time:

Procedure DMA(Ω1, Ω2, Lν)
Begin

Do begin
xL+ ← POP(SL+));
xL− ← POP(SL−));
xSνL ← POP(SνL));
If (xL+ = ∅ and xL− = ∅ and xSνL = ∅) then Exit
Else begin

If (xL+ ≥ xL− and xL+ ≥ xSνL) then
Update delimiting(SL+);

Else If (xL− > xL+ and xL− ≥ xSνL ) then
Update delimiting(SL−);

Else
Update vanishing(SνL);

End
End
For every entity E in ∂Ω Do begin

If any L+, L− or νL exists in Φ(E) then
delete it from Φ(E);

End
End

4 Applications

An important application of the proposed DMA is to compute the medial axes
of a non-simple planar shapes with curved boundaries [1]. Referring to Fig. 6,
two ideas are involved. First, given a multiply connected shape Ωm, it can be cut
into a simply connected shape Ωs by introducing artificial separators. After com-
puting the medial axis of Ωs, applying the proposed DMA technique removes

Cut a multiply connected shape Ωm into Ωs using separators Medial axis of Ωs

Removal of L4 Removal of L3 Removal of L2 Removal of L1

Fig. 6. Compute the medial axis of a multiply connected curved shape
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the separators from Ωs and thus offers the medial axis of Ωm. Secondly, given a
simply connected shape Ωs, let Ωs be recursively cut into two halves Ωs

1 and Ωs
2

until reaching a fundamental shape which contains only two non-singular bound-
ary entities in addition to a separator. The following codes are readily seen:

Procedure MA simple domain(Ωs)
Begin

If shape Ωs is not fundamental
(Ωs

1 , Ωs
2 , Lν) ← PARTITION(Ωs);

MA simple domain(Ωs
1);

MA simple domain(Ωs
2);

DMA(Ωs
1 , Ωs

2 , Lν);
Else

Compute MA(Ωs);
End

Theorem 1. Given a multiply connected planar shape Ωm with genus h and
n curved boundary entities, its medial axis can be constructed in O(Kn log kν +
hn log kν) time, where K is the depth of recursion in the execution ofMA simple
domain(Ωs) and kν is the maximum number of vanishing points incurred in the
procedure Update vanishing(SνL).

Fig. 7. More experimental results

5 Conclusions

In this paper a dynamic skeleton structure called DMA is proposed to describe
the internal evolution of planar shapes. Detailed combinatorial and topologi-
cal structures of DMA are analyzed. An important application of DMA on
computing medial axes of multiply-connected curved planar shapes are also pre-
sented. Future work includes exploiting the full potential of the proposed DMA
in the applications of biological shape analysis (ref. Fig. 7).
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Abstract. This paper proposes a new steganography algorithm for 3D models 
using a spatial subdivision technique. Our algorithm first decomposes the 
bounding volume of the cover model into voxels based on a Binary Space Parti-
tioning (BSP) tree. The voxels are then further categorized into eight subspaces, 
each of which is numbered and represented as three-digit binary characters. In 
the embedding process, we first traverse the BSP tree, locating a leaf voxel; 
then we embed every three bits of the payload message into the vertex inside 
the leaf voxel. This is realized by translating a vertex's current position to the 
corresponding numbered subspace. This technique is a substitutive blind extrac-
tion scheme, where messages embedded can be extracted without the aid of the 
original cover model. This technique achieves high data capacity, equivalent to 
at least three times the number of the embedded vertices in the cover model. In 
addition, the stego model has insignificant visual distortion. Finally, this 
scheme is robust against similarity transformation attacks. 

1   Introduction 

Steganography is the art of communicating in a way which hides the existence of the 
communication. Compared with watermarking, which is a process for protecting 
copyright ownership, steganography is a technique that hides messages inside a host 
media in a way that does not allow any one, except those with the secret key, to even 
detect that there is a second secret message present. Therefore, the main application 
for steganography is the covert communication and digital multimedia data, such as 
movies, music, and images, which are often used as host media to embed information, 
usually denoted as the payload [7, 12]. Obviously, steganography algorithms tend to 
require higher data capacity but they can lead to relatively poor robustness. 

With the development of various 3D applications and computer animation, many 
steganography and watermarking schemes have been presented for 3D models. Most 
of them support polygonal models [1, 2, 3, 6, 8, 9, 10, 13, 14, 16, 17] while a few of 
them are for point-sampled geometries [5, 15]. However, unlike the large data hiding 
capacity in a 2D image, the data hiding capacity for 3D models remains bottlenecked 
at a smaller capacity. 
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In this paper, we propose a new steganography technique for 3D models using a 
spatial subdivision technique. Our scheme supports both polygonal models and point-
sampled geometries. Specifically, we decompose the bounding volume of the cover 
model into voxels based on a BSP tree data structure. The leaf node of the tree data 
structure corresponds to a 3D space, known as a voxel. The tree data structure is trav-
ersed in search of leaf nodes, where a payload can be embedded by changing the 
positions of vertices. Since the edge information for the polygonal model is not used 
in the proposed scheme, it can be extended to point-sampled geometries. Our scheme 
is simple and can achieve high data capacity with little visual distortion. Similarly to 
previous 3D data hiding algorithms [3, 14, 15], our scheme is robust against similarity 
transformation attacks, including rotation, translation, and uniform scaling. 

This paper is organized as follows. Section 2 illustrates the process for the BSP tree 
construction, and section 3 presents the proposed data hiding technique. Section 4 
shows the experimental result, followed by the conclusion and future work in section 5. 

2   The Binary Space Partitioning Tree Construction 

The first step before both the data embedding and data extracting procedures is to 
construct a BSP tree to decompose the bounding volume of the model into voxels. 
First, we describe an overview of the BSP tree construction. Second, we present the 
approach to ensure that the bounding volume of the stego model have the same orien-
tation and similarity with that of the cover model. This can also ensure that the identi-
cal BSP tree will be produced in the embedding and the extracting processes. Finally, 
the BSP tree construction is illustrated in our implementation.  

A BSP tree represents a recursive, hierarchical partitioning, or subdivision, of  
n-dimensional space into convex subspaces. The BSP tree construction process takes 
a universal space and partitions it by any hyperplane that intersects the interior of that 
space. In a three-dimensional space, the universal space is normally a bounding vol-
ume of a 3D model, and the hyper-plane is normally a three-dimensional plane which 
normal is parallel to one of axes. The result of the partition is two new subspaces that 
can be further partitioned by a recursive application of the method.  

The BSP tree construction strongly depends on a model’s initial bounding volume 
since different bounding volumes will result in different BSP trees. In addition, a 
stego model may be under similarity transformation attacks, including rotation, trans-
lation, and uniform scaling. These attacks may produce different bounding volumes 
between a cover and a stego model, resulting in different BSP tree structures. There-
fore, we need to ensure that the bounding volume of the stego model has the same 
orientation and similarity as that of the cover model. As a result, the BSP tree data 
structure constructed by the stego model will be the same as that of the cover model. 

To ensure the same orientation of the bounding volume, we adopt principal compo-
nent analysis [11] to produce a coordinates system of the 3D cover model. Thus, when 
the coordinates system of the stego model are calculated in the extracting process, we 
can operate the alignment, together with the coordinates system of the 3D cover model, 
to obtain a bounding volume oriented to that of the cover model. After the coordinates 
system of the 3D model is available, we then transform all vertices of the 3D cover 
model to the new coordinates system. Obviously, the new coordinates system has a 
new origin, PCAO, which is a gravity center of the 3D model; it also has three basis 
vectors, which are the three principal axes, called PCAX, PCAY, and PCAZ. 
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However, for the similarity of the bounding volume, all the vertices will be 
searched with the maximum and minimum values on each principal axis. Then these 
vertices NVBV, at least two and at most six in 3D models, are used to construct the 
initial bounding volume, and the payload message is not embedded. Thus, even after 
uniform scaling attack, the bounding volume will be scaling proportionally.  

For example, in Figure 1a the model consists of nine vertices, which are on the 
new coordinates, PCAX and PCAY. From the above description, P1, P2, P3, and P4 will 
be used to construct the bounding volume. The reason is that they have the minimum 
and maximum X and Y values separately. These vertices will produce two boundary 
points, BVM and BVm. In this instance, the diagonal length of the bounding volume, 
VBV, can be derived by calculating the distance between them. 

Next, we begin the recursive partition step. In this step, we first select a partition 
plane, say PL1, parallel to the PCAX-axis. This plane subdivides the bounding volume 
in half, producing two new subspaces, YPCA+  and YPCA− . The sign “+ ” represents 

the positive side of the partition plane, while the sign “− ” indicates the negative side. 
To choose the next partition plane PL2, we apply a rule that it must be perpendicular 
to the previous partition plane. Thus, the second partition plane subdivides each of the 
subspaces in the PCAX direction. As a result, four subspaces are generated after the 
second partition, each of which may have a different volume because of the position 
of the partitioning plane. To simplify the situation, we divide the bounding volume at 
each node equally in our implementation. This process continues recursively until we 
reach the pre-defined termination criteria, which ends the partition of the subspaces. 
In the example, the termination criteria is that the maximum diagonal length of sub-
spaces in the leaf node must be less than 2-4 times the diagonal length of the original 
bounding volume. Note that a voxel will be not divided into sub-voxels when no ver-
tices are within the voxel. As a result, each vertex is inside an individual subspace as 
shown in Figure 1a. In addition, each vertex always belongs to one leaf node in the 
BSP tree as shown in Figure 1b. The point C, which is located at the center of the 
bounding volume, is the initial node of the BSP tree. Note that the leaf nodes that 
have no vertices are discarded in the Figure 1b, such as the subspace S.  

(a) (b) 

Fig. 1. An example of 2D BSP tree subdivision and its corresponding BSP Tree structure 
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There are many termination criteria that can be used to construct the BSP tree, such 
as the maximum diagonal length of the subspace in the leaf node, the maximum level 
of the leaf node, and the maximum number of vertices allowed in the leaf node. 

3   The Proposed Technique 

This section describes a new steganography technique for 3D models. The embedding 
data process takes as inputs a 3D cover model, the payload, and the secret key. This 
process produces a stego model. In contrast, the extracting data process takes the 
stego model and secret key as inputs to extract the payloads. 

3.1   The Embedding Data Process 

Once the BSP tree is constructed, we traverse the BSP tree to its leaf nodes to locate a 
voxel in which only a vertex of the cover model is located. For the leaf node with 
more than one vertex, no modification is employed for all vertices in that voxel. 
Thereafter, we subdivide the space of the voxel into smaller subspaces according to 
the magnitude of Cmax, which represents the maximum bits that can be embedded into 

each vertex of the cover model. Let 2 maxCm =  be the number of subspaces that are 
subdivided. Figure 2 demonstrates a situation where four subspaces can be generated 
when Cmax is set to two. Each subspace is numbered using a two-bit string, namely, 
00, 01, 10, and 11. We acquire every two-bit string from the payload message and 
embed them into the vertex of the cover model. For example, in Figure 2, the vertex A 
currently is inside the 00-subspace, where we intend to embed the two-bit payload 
message “00.” We let the vertex stay where it is, since the numbered subspace is co-
incident with the payload message. However, if we want to embed the two-bit pay-
load message “10,” then we must translate the position of the vertex from its current 
01-subspace to the new 10-subspace, the vertex A'. This translation represents a status 
change for this vertex, and thus a message is embedded. The translation is based on a 
symmetric reflection with respect to the X-axis, Y-axis, or their combinations. Obvi-
ously, when we extend the method to 3D space, every vertex is able to have three bits 
of payload message embedded, since we can set Cmax with a magnitude of three. 

 

Fig. 2. Embedding two bits of data into the active vertex A by translating to the appropriate 
numbered positions 

3.2   The Extracting Data Process 

The purpose of the extracting data process is to recover the payload properly, given 
the stego model. This process is similar to the embedding process except that the 
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input model is the stego model rather than the cover model. First, the BSP tree con-
struction process illustrated in Section 2 is employed. Recall that the stego model will 
be aligned in that process using the PCA coordinates system of the stego model to-
gether with that of the cover model. Then we also transform all vertices of the stego 
model to the PCA coordinates system of the cover model and the bounding volume 
can be also derived from the boundary vertices. Next, the BSP tree can be recon-
structed by the termination criteria. We then traverse the BSP tree to its leaf nodes to 
locate a voxel in which only a vertex of the stego model is located. Finally, the pay-
load message can be extracted by checking the status of the vertex within that voxel. 

4   Experimental Results 

We implemented our technique using Microsoft Visual C++ programming language. 
We also performed experiments to validate the feasibility of our algorithms. Results 
were collected on a personal computer with a Pentium IV 2.4 GHz processor and 256 
MB memory. 

For our test, we took five polygonal models as the cover model. The results for all 
models are shown in Table I. MV means the number of the vertices which are within 
the same voxel. The payload message consists of a “random” 01 bit stream. In our 
implementation, Lmax was no restriction, Vmax was set to 0.05% to avoid visual distor-
tion, and Cmax was set to three. Therefore, the capacity is three times the number of 
embedded vertices, which is derived by subtracting the number of the vertices that are 
within the same voxel and the number of boundary vertices from the number of verti-
ces in the 3D model. The embedding order for the vertices is decided by the in-order 
traversal order for the BSP tree; while the distortion between the cover and stego 
models is measured by using Hausdorff distance (HD) [4].  

To test the robustness of our scheme, we randomly rotate, translate, and uniform 
scale each 3D model. The experimental results show that no error is in the extracted 
secret payload. One thing that deserves mention is the number precision of the model 
which is under the shrink attack; this is a kind of uniform scaling attack. Errors will 
be produced because some information about the model is missing without enough 
number precision. 

Figure 3 shows the relationship between Vmax and the BSP tree construction time, 
data embedding time, model distortion, and the ratio of the vertices within the same 
voxel for some models. In Figure 3a the BSP tree construction is terminated when the 
ratio of a voxel’s diagonal length in a leaf node over VBV is less than Vmax. Obviously,  
 

Table 1. The results for our test models 

Model Nvertices Nfaces VBV HD TimeBSP TimeEmb NVBV MV Capacity 
Venus-Body 19847 43357 50.2959 0.008208 0.781 0.063 6 223 58854 

Bunny 35947 69451 2.6634 0.000461 1.860 0.110 6 2 107817 
Horse 48485 96966 0.2722 0.000046 2.312 0.156 6 10 145407 
Rabbit 67038 134074 84.0099 0.014208 3.532 0.203 6 4 201084 

Venus-Head 134345 268686 0.1558 0.000027 7.609 0.391 6 0 403017 
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Fig. 3. The relationship between Vmax and the BSP tree construction time, data embedding time, 
model distortion, and the ratio of MV for all test models 
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the BSP tree construction time is inverse proportional to Vmax. A large Vmax means 
the voxel in the leaf node can have a larger size and BSP tree construction can 
achieve the termination criteria earlier. In Figure 3b the data embedding time in-
cludes the tree traversal time and the time for changing the status. A large Vmax 
makes the BSP tree smaller and tree traversal time is also less. However, the time 
required for constructing the BSP tree and for data embedding is less than four 
seconds and 0.5 seconds respectively for models with fewer than 70,000 vertices. 
This demonstrates the efficiency of the proposed method. In Figure 3c, the model 
distortion is relative to the diagonal length of the bounding volume. To avoid severe 
distortion, the value of Vmax is usually small and the size of the leaf node will be 
also small. This reflects the fact that the maximal distortion is less than the value of 
Vmax. The small values in the model distortion indicate that the stego models have 
insignificant visual difference in quantity. In Figure 3d, these vertices MV that are 
within the same voxel cannot embed any message since their extracting orders are 
unknown. To avoid prominent visual distortion, Vmax has to be small, and we set it 
at 0.05% in our test models. As a result, the ratio corresponding to such Vmax is less 
than 5%. This indicates that we can make use of a total of 95% of the vertices in our 
test models for data hiding. 

5   Conclusion and Future Work 

In this paper, we proposed a new steganography algorithm for 3D models using a 
spatial subdivision technique based on a Binary Space Partitioning (BSP) tree. Our 
scheme is a substitutive blind approach in the spatial domain; it is simple to imple-
ment. The data capacity in bits achieved is at least three times the number of the em-
bedded vertices in the cover models. The capacity can be higher by carefully selecting 
the parameter representing the maximum bits that each embedded vertex of the 3D 
model can embed. In addition, we estimated the complexity of our scheme where it 
only requires several seconds to construct a BSP tree for a complex model. Our 
scheme can also be adapted to point-sampled geometries. 

We use Vmax as the termination criterion in our technique. However, this will result 
in multiple vertices within one voxel. In future, it would be wise to use several tech-
niques to decide the data embedding/extracting order for these vertices to increase the 
data capacity. Furthermore, extending our technique to a fragile watermarking scheme 
based on the unique tree properties is also a research problem that deserves to be 
investigated.  
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Abstract. The existing Collaborative Virtual Environment (CVE) systems have 
limited scalability due to the constraints in computer processing power and 
network bandwidth of participating hosts. In this paper, we propose a new 
approach for heterogeneous internet based users to construct large-scale CVE 
(LCVE) system: Mobile Agent Based Framework for LCVE (MACVE). In 
MACVE, the system workloads are decomposed into independent and fine 
grained tasks. The tasks are modelled as mobile agents which are not bound to 
any fixed nodes as the traditional CVE architectures do. As the mobile agents 
can migrate or clone dynamically at any suitable participating host include 
traditional servers and qualified user hosts, the system workloads can be 
distributed more pervasively to avoid potential bottleneck. This improves the 
scalability of LCVE. Experiments results have demonstrated the scalability of 
our proposed approach.  

Keywords: CVE, scalability, mobile agent, network architecture. 

1   Introduction 

Collaborative Virtual Environment (CVE) is a shared 3D virtual world for the 
geographically dispersed people to interact with each others. In a CVE, participants 
are provided with graphical embodiments called avatars that convey their identity, 
presence, location, and activities to others. They are able to use these avatars to 
interact with the contents of the world and to communicate with one another using 
different media including audio, video, graphical gestures, and text in real-time[1]. 
CVE has many promising applications, such as military war simulation, medical or 
industrial team training, collaborative design and engineering, virtual shopping malls, 
virtual libraries, distance learning and Internet-based multi-user VR game. 

Constructing a large-scale CVE (LCVE) system, which contains a large number of 
virtual entities and supports large number of concurrent users, is challenging because 
of the heterogeneous computing and network capability of each participating host. 
One of the key research issues in CVE is scalability. To solve the scalability issue in 
CVE, two types of communication architecture are adopted in the existing systems: 
peer-to-peer (P2P) model and multi-server model.  
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In the P2P architecture, there is no central server to manage the whole CVE. Each 
individual peer program exchanges data directly with other peer programs and 
maintains its own copy the VE state. By adopting IP-Multicast, this type of system 
can be scalable, such as NPSNET[2], DIVE[3], SPLINE[4], SCORE[5], etc. 
However, CVE systems with peer-to-peer architecture may not be suitable for 
supporting heterogeneous peers, such as the Internet users, since their network 
connection speed and computing power may vary greatly which will lead to difficulty 
in maintaining the consistency of the virtual world; the stability of peer computer 
hosts and their network connections also make persistency maintenance difficult.  

In the multi-server architecture, the CVE is managed by multiple servers. Each 
participant exchange data with one or more servers, which can effectively manage the 
consistency and persistency of the CVE and the servers also can function as proxies to 
do the computation intensive jobs for the participants[6]. The workload on the servers 
may include: (1) delivering the static scene data to each participant; (2) processing and 
routing the participant’s messages to maintain a consistency CVE state and delivering 
this consistent CVE state to newly arriving participants; (3) recording the state changes 
happening in the CVE to maintain its persistency. We defined these workloads on all 
the servers as system workloads/tasks. The successful multi-server CVE systems 
include RING[7], NetEffect[8], Community Place[9], CyberWalk [10,13], and some 
commercial multiplyer network games, such as EverQest[11], Ultima Online[12], etc. 
However, the scalability is not easy to realize for CVE systems with multi-server 
architecture, because certain servers may become bottleneck due to the unpredictable 
workloads on them, even through dynamic load distribution or balance are adopt in 
some systems. 

In this paper, we proposed a new approach to construct LCVE: Mobile Agent 
Based Framework for LCVE (MACVE). 

2   Design of MACVE 

To effectively distribute the system workloads, firstly, the expected system tasks of a 
LCVE should be independent and fine grained. In MACVE, we model a LCVE as a 
group of collaborative agents. Each agent is a software component to assume an 
independent task to provide a certain service for the system. Agents collaborate with 
each other to maintain the entire LCVE system.  

To improve the system scalability, MACVE allows all agents to be mobile without 
bonding to any fixed host. As the system scales up, agents will be able to clone or 
migrate to any suitable participating host (include Trusted User Nodes) to provide 
more services. The mutual independence of services and hosts provide large 
flexibility to utilize the computing and network resource of the system efficiently. Our 
proposed framework fully takes advantages of such flexibility via Agent Resource 
Management, Computing Resource Management, Database Resource Management, 
VE Content Management and VE Directory Management, which will be discussed in 
the following paragraphs.  

Our framework is divided into three Layers: Resource Layer for System Resource 
Management, Content Layer for VE Content Management and Gateway Layer for VE 
Directory Management as illustrated in Figure 1. Each layer is composed of multiple 
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collaborative mobile agents to achieve the management tasks. To ensure the system 
reliability, the critical system agents would migrate and reside in grid nodes.  

 

Fig. 1. Overall Architecture 

2.1   System Resource Management  

The bottom layer is Resource Layer which manages the distribution of Mobile 
Agents, System Computing Nodes and the Database in the system. This layer is 
further subdivided into three parts: ARM (Agent Resource Management), CRM 
(Computing Resource Management), and DRM (Database Resource Management).     

2.1.1   Agent Resource Management 
In a LCVE system, there are many agents running at different hosts. To manage all 
these agents effectively to achieve pervasive workload distribution, we use Agent 
Resource Management (ARM).  

ARM is realized by an ARM Agent which functions as an Agent Code Repository, 
Agent Monitor Center, and Agent Command Center. Each kind of agent code should 
register at ARM Agent who manages these codes and guarantee the consistency and 
integrity of the agent code running in the whole system. When agents begin to run, 
they register their network locations and running states at ARM Agent. So the ARM 
Agent provides a directory for all running agents. When Agents execute some 
operations, such as cloning or migration, ARM Agent will record the Agent Operation 
Event log. As an Agent Command Center, ARM Agent can also send commands 
dynamically to launch agents, transfer agents and clone agents, update agents to new 
versions, kill agents etc. to manage the LCVE system at runtime.    

Since ARM Agent only deal with the messages related to agent command 
information, which is small size and not frequent traffic, there is little chance for an 
ARM Agent to become a bottleneck. Even the remote chance happens; ARM Agent 
can clone and migrate to redistribute its load.  

2.1.2   Computing Resource Management 
To effectively manage all the participating hosts to share the system load on demand, 
we propose Computing Resource Management (CRM).   

A typical LCVE system consists of a large number of computer hosts connected 
through networks. Each host is called a participating node. Based on the functional 
roles of each participating node, we classify them into two main categories: User 
Nodes and Service Provider Nodes. User Nodes refer to any user host participating in 
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the LCVE. Service Provider Nodes refer to the nodes belonging to the LCVE system 
owner. 

User Nodes are further classified into Normal User Nodes and Trusted User Nodes. 

• Normal User Node is a host that only allows a user to navigate and interact with 
virtual entities or other users in the CVE. 

• Trusted User Node is a host that not only functions as a Normal User Node, but 
also has spare capacity in terms of computing power, memory and network 
bandwidth to host mobile agents to run on it. It should at least meet the minimum 
capability and security requirements set by the LCVE system.  

Service Provider Nodes are further classified into Controlling Nodes and DB Nodes. 

• Controlling Node is a host provided by the system owner, which assumes multiple 
system computing tasks to manage a LCVE system and maintain the multiuser 
collaborative interactions in a consistent, persistent, and evolving LCVE. 

• DB Node is a host provided by the system owner, which provides the database 
support for the LCVE system.  

Since Controlling Nodes and Trusted User Nodes are used to share the workload of 
the LCVE system, we classify both of them as System Computing Nodes (SC Nodes).  

In MACVE, the system computing tasks are shared not only by the Service 
Provider Nodes as most conventional LCVE systems do, but also by Trusted User 
Nodes. When a Trusted User Node log off, it transfer all the agents running on it to 
other SC Nodes. However, because it is less stable, a Trusted User Node may crush 
before it successfully transfers all the agents on it. MACVE has an agent recovery 
mechanism to restart the losing agent from the state before it crushes which will be 
discussed in Section 2.4. Thus, system computing tasks can be pervasive to more 
participating nodes. We define the computing resource in a LCVE system as the 
computing and network capability of all the joining SC nodes in the system.  

CRM is responsible for managing the system computing resource so that each 
system task will receive enough computing resources. There maybe thousands of SC 
Nodes in a LCVE system. To improve the efficiency of data communication between 
the SC Nodes, the nodes are grouped according to their IP addresses. The nodes near 
to each other are allocated to the same group. Each group will have a Group Manager 
Node to reasonably distribute system workloads among the nodes in this group.  

CRM is achieved by multiple Node Agents, Group Manager Agents, and a CRM 
Agent whose relationships can be illustrated as Figure 2.  

A Node Agent runs in each SC Node which monitors computing load and network 
traffic of that node. When this node’s workload reaches its threshold, Node Agent will 
decide whether to transfer certain mobile agents in this node to other node or to clone 
certain mobile agents to other node to alleviate this node’s workloads. A Group 
Manager Agent runs at the Group Manager Node which is a SC Node designated by 
the CRM Agent. It will search for suitable nodes in the group. If it can not find a 
suitable node within its own group, the Group Manager Agent will negotiate CRM 
Agent to find a suitable node in other groups. The CRM Agent manages all the Group 
Manager Agents. When joining the LCVE system, every SC Node will register with 
the CRM Agent. CRM Agent allocates the SC Node to a group. 
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Fig. 2. Relationships of Agents for CRM 

2.1.3   Database Resource Management 
In order to support large VE content, the database is distributed to different DB 
Nodes. As the system evolves, new DB Nodes can be added into the system at any 
time. DRM is achieved by multiple DB Agents and a DRM Agent, which is 
responsible for managing the distributed DB. It provides a uniform interface for 
agents at content layer and gateway layer to access the system database.  

2.2    VE Content Management 

In MACVE, The VE is spatially divided into several manageable continuous regions. 
Each region maybe further divided into cells depending on the requirement of the VE 
contents. Each cell is a basic unit for VE content downloading, communication, 
consistency and persistency. And a set of multicast groups are assigned to a cell to 
achieve the communication in the cell.  

 

Fig. 3. VE Management 

The management of the VE is in correspondent with the above Region-Cell 
hierarchy, which is achieved by Region Agents, Cell Agents, Consistency Agents and 
Persistency Agents as illustrated in Figure 3.  

Region Agent only maintains the hierarchical relationship between itself and its 
Cell Agents. It does not maintain the VE contents.  
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A Cell Agent has two basic components: Scene Data Cache Manager and Scene 
Data Delivery Manager. Scene Data Cache Manager loads the scene data of a cell 
from the DB Agent and maintains local cache for them. Scene Data Delivery Manager 
delivers the scene data to users when the users need it. Because the scene data always 
has large volume, this kind of data is bandwidth and time consuming. Scene Delivery 
Manager implements the algorithm to delivery the most needed data with its 
appropriate level of detail timely, such as predictive pre-fetching or multi-resolution 
caching mechanism, etc. 

A Consistency Agent has three basic components: Concurrency Control, Cell State 
Manager, and Intelligent Message Router. Concurrency Control guarantees there is no 
conflicts when multi-user access a same virtual entity concurrently. Cell State 
Manager maintains the real-time VE state of the cell and delivers the state to newly 
arriving users. Intelligent Message Router implements different interaction 
management strategies and route the message to different multicast groups.      

A Persistency Agent has two basic components: Cell State Manager, Cell State 
Recorder. Cell State Manager maintains the real-time VE state of the cell. In a LCVE, 
the Persistency Agent and Consistency Agent usually run at different SC Node, so the 
Cell State Manager of Persistency Agent is also a real-time backup of the cell state for 
the Consistency Agent. If Consistency crushes, new Consistency Agent can get the 
latest cell state from its Persistency Agent. Because Consistency Agent and 
Persistency Agent subscribe to the same multicast group, the duplicated Cell State 
Manager at both agents will not create the any extra traffic to compromise the system 
scalability. Cell State Recorder sends the cell states data to DB Agent to save them 
periodically to maintain the persistency of the cell.  

2.3   VE Directory Management 

Since the management of VE is decentralized, it needs a directory service to locate a 
place in VE, search a Virtual Entity or a user in VE, etc. VE Directory Management 
provides such services. VE Directory Management is achieved by a group of Gateway 
Agents, which pervasive on different well-known Controlling Nodes on the Internet. 
When a user wants to enter the VE, the user node agent connects to a nearest Gateway 
Agent which directs the user to its intended destination in the VE. Gateway agent also 
provides user registration, authentication and user log record service.  

2.4   Agent Recovery Mechanism in MACVE 

In MACVE, the system workloads can be shared by the Trusted User Nodes. 
However, User Nodes tend to have less stability compared with Service Provider 
Nodes. So MACVE provides a mechanism for the agent recovery.  

In MACVE, the management of all agents is organized by a tree-structure, such as 
Group Manager Agent manages the Node Agents which belong to the same group; or 
Region Agent manages its Cell Agents. The agent at the parent position is called the 
Parent Agent and the agent at the child position is called Child Agent. The Parent 
Agent is responsible for monitoring the proper execution of its Child Agents. Every 
Child Agent sends a “heartbeat” message (a living message) periodically to its Parent 
Agent. If the Parent Agent receives no heartbeat from the Child Agent within a 
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timeout, it detects the crush of the Child Agent. The Parent Agent will ask the ARM 
Agent to send a new Child Agent to other available nodes to resume the system tasks. 

For system stability reason, Persistency Agent of a cell is not allowed to be 
transferred to Trusted User Node, because it maintains the backup of the snapshot of 
the current cell state. When a Trusted User Node crushes and result in a Consistency 
Agent lost, the newly launched Consistency Agent will get the latest cell state from 
the corresponding Persistency Agent at the System Controlling Node. Thus, it will 
remove the impact of the crushes of Trusted User Node to allow effective recovery of 
the lost Consistency Agent. 

3   System Prototype and Experimental Results  

We have developed a prototype system to conduct experimental studies and evaluate 
MACVE. The prototype includes three parts: 11 types of Mobile Agents for different 
system workloads; a Mobile Agent Environment (MAE) for supporting agent 
migration and clone; and a web based client user interface for user navigation and 
interaction. 

Our experimental CVE consists of 12 cells. Each cell is populated with interactive 
entities and concurrent users. Users in the CVE can add or remove or interact with 
entities and chat with each other. We have developed a RobotGroup to simulate a 
certain number of concurrent users, which send out messages for each simulated users 
at a constant rate. In the whole CVE, we collect experimental data for various number 
of concurrent users and virtual entities. Figure 4 is the screenshot of user interface 
during our experiment with 1000 concurrent users and 5000 virtual entities.  

To study the agent migration impacts on CVE users, we do experiments to study 
the effect of number of concurrent users and the number of entities in a cell on the 
migration time spans of a Consistency Agent. The reason we choose to study 
Consistency Agent migration is that its migration is most complex among all types of 
agents and it has most impacts to users. 

 

Fig. 4. Screenshot of MACVE User Interface 
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The migration of a Consistency Agent includes 3 steps: (1) transferring the agent 
code to the destination; (2) synchronizing the agent state; (3) shifting the agent 
control. Transfer & Synchronization Time measures the time required to transfer the 
agent code and synchronize the agent state. The Transfer & Synchronization process 
will not directly affect users’ collaborative interaction in the CVE as it can be done in 
a separate thread while the CVE system tasks are performed by the current mobile 
agents.  Handover Time measures the time required to shift agent control which will 
affect users’ collaborative interaction in the CVE. Thus it is particularly important to 
evaluate the delay caused by the Handover Time.  

As shown in Figure 5, we observe from our experiment that the Transfer & 
Synchronization Time increases with the increase of the number of current users, 
whereas the Handover Time is relatively stable which is 425.0 ms when the concurrent 
user number reaches 1000 in a cell. In Figure 6, we observe that the Transfer & 
Synchronization Time increases with the increase of the number of entities, whereas 
the Handover Time is relatively stable which is 344.4 ms when the number of entities 
in the cell reaches 3000. A temporary short delay of less than half a second in updating 
scene state caused by the Handover Time will have little impact on the performance of 
a CVE with a large number of concurrent users and virtual entities. We found from the 
experiment that the users would not feel the migration of the  
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Fig. 6. Consistency Agent Migration Time 
on Entity Number 

Consistency Agent as the user interaction with the LCVE will not be affected 
during the agent transfer and synchronization period while the agent control handover 
time is short enough to avoid apparent interruption. 

Our experiments show that Consistency Agent migration does not affect the real-
time interaction of the CVE users, and so do other types of agents. Therefore, our 
proposed MACVE will improve the scalability of LCVE without compromising its 
performance. 

4   Conclusions and Future Work  

In this paper, we have proposed a fully distributed mobile agent framework --
MACVE as a new approach to construct LCVE. In MACVE, the system tasks are 
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decomposed into a group of collaborative mobile agents. By migrating and cloning 
these agents at System Controlling Node and Trusted User Node, the system 
workloads are distributed pervasively. Our experiments have demonstrated its 
effectiveness in supporting large number of concurrent users with real-time 
interaction in LCVE. In our future work, we will develop real-time self-learning 
intelligent decision making methods for different mobile agents to optimize the 
scalability and extensibility of LCVEs.  
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Abstract. Automatic generation of tiling patterns with the symmetry
of the extended Picard group in three-dimensional hyperbolic space is
considered. We generate the patterns by repeating the fundamental pat-
terns created in the fundamental region to all other equivalent regions.
We also produce such a kind of tiling patterns in the unit sphere by
conformal mappings. The method provides a novel approach for devis-
ing exotic symmetric tiling patterns from a dynamical system’s point of
view.

1 Introduction

People have long been fascinated with symmetric patterns arising in nature,
and artists have been creating intriguing works associated with variant kinds of
symmetries [1], [2]. The Dutch artist, M. C. Escher, popularized the perception
of symmetry in art. Escher was good at creating symmetric artistic works by
taking advantage of the simultaneous sense of symmetry and the bizarre. He
often considered planar crystallographic symmetries and hyperbolic symmetries
in his works, for example, see his Circle Limit I-IV series of works [3], [4].

Symmetries are expressed by relationships between the points in the consid-
ered geometrical object, but symmetries can be understood more precisely by
means of group theory [5], [6]. Actually a symmetric tiling is related to a par-
ticular group. For instance, a repeated pattern in the Euclidean plane is related
to one of the seventeen wallpaper or crystallographic groups [6], [7], whereas
a repeated pattern in the hyperbolic plane is related to one particular hyper-
bolic group [8], [9]. As a matter of fact, Escher had significant interaction with
mathematicians who studied group theory, for example, he kept contacting with
Coxeter, a famous mathematician in the same age. As a result, he made many
valuable artistic works. Modern considerations with the aid of computers have
become prolific, see for example [7], [8], [9], [10], [11]. In recent years, auto-
matic generation of symmetric tiling patterns by means of computers attracts
many mathematicians’ interest. Wallpaper repeating patterns [7] and hyperbolic
repeating patterns [9] are generated by visualizing dynamical systems’ chaotic
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attractors and by making use of the properties of the considered dynamical sys-
tems respectively.

The automatic generation of symmetric patterns associated with the modu-
lar group in two-dimensional plane and the Picard group in three-dimensional
hyperbolic space were considered in Chung et al [12] and [13] respectively. The
Picard group contains the well-known modular group as its subgroup. The mod-
ular group is the most widely studied of all discrete groups due to its many
connections with other branches of mathematics, especially with number theory.
Chung et al generated many symmetric patterns with the modular group and
the Picard group in their series papers. They proposed algorithms to generate
tiling patterns from a dynamical system’s point of view. By constructing some
particular dynamical systems which satisfy the symmetries of the considered
groups elaborately, the authors created many exotic patterns. But the construc-
tion of dynamical systems seems rather complicated and tedious. As a result,
the proposed method is not easy to manipulate and generalize.

Ye et al [14] considered the extended modular group first to construct tiling
patterns in two-dimensional space. It is well-known that the extended modular
group consists the modular group as its subgroup with index 2. The symmetries
appearing in the tiling patterns derived from the dynamical systems equivariant
with the extended modular group are more than those with the modular group.
It was also demonstrated that the construction of tiling patterns with the sym-
metries of the extended modular group is easier compared with the modular
group. Furthermore the created tiling patterns are more beautiful usually. The
reason lies in the fact that the extended modular group’s fundamental region is
only one half of the modular group’s, as a result, it is easier to make the patterns’
color vary continuously at the boundaries of the fundamental region.

In this paper, we extended the approach presented in [14]. We propose a
fast algorithm for the generation of tiling patterns with the symmetry of the
extended Picard group P1, which contains the Picard group P as a subgroup of
index 2. It is easy and convenient to obtain unlimited varieties of tiling patterns.
In section 2, we introduce some preliminaries about quaternion representation
and the extended Picard group. Mappings equivariant with the extended Picard
group are constructed in section 3. In section 4, we present a coloring scheme to
generate tiling patterns with the symmetries of the extended Picard group.

2 Quaternion Representation and the Extended Picard
Group

Quaternions were first presented by Hamilton in 1843. Much attention has been
paid to quaternions since the mid 20th century. Let Z,R,C and H be the sets
of integers, real numbers, complex numbers and quaternions, respectively. A
quaternion z is expressed as the form z = x + yi + rj + sk, or equivalently,
z = (x, y, r, s), where x, y, r, s ∈ R; i, j and k are square roots of -1 such that the
following equalities [15]

ii = jj = kk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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It is easy to show then that the multiplication of the quaternions satisfies the
associative law but not the commutative law. Quaternions also satisfy z = x −
yi− rj − sk, |z|2 = zz = x2 + y2 + r2 + s2, and z−1 = z

|z|2 = (x−yi−rj−sk)
|z|2 .

We can denote the upper half-space H3 as H3 = {(x, y, r)|(x, y, r) ∈ R3, r >
0}. It is convenient to use H3 in the form of quaternions with the k-part being
0: H3 = {x+ yi + rj| x, y, r ∈ R, r > 0}.

The Picard group P is the set of all fractional linear substitution transforma-
tions on H3 [15]

w = γz = (az + b)(cz + d)−1, (1)

where γ ∈ P, w, z ∈ H3, a, b, c, d ∈ Z + Zi = Z2, ad− bc = 1. The elements of P

are generated by the following four generators [13]

αz = z + 1 = (x + 1) + yi + rj, βz = −z−1 =
1
|z|2 (−x + yi+ rj),

ξz = z + i = x+ (y + 1)i + rj, ηz = izi = −x− yi + rj.

If the transformation κ ( κz = −z = −x + yi + rj) is added into the Picard
group, we will get the extended Picard group P1, which is generated by the five
generators α, β, ξ, η and κ. It is obvious that P is a subgroup of P1.

Chung et al [13] had shown in the generated colored patterns that the gen-
erators α, ξ and η of the Picard group make the periodicity in x direction, the
periodicity in y direction and two-fold symmetry in the cross section parallel to
x − y plane. More exactly, the cross section parallel to x − y plane will own c2
symmetry in the unit region I = {(x, y, r)|(x, y) ∈ [−1, 1] × [−1, 1], r = r0},
and consequently the whole cross section I1 = {(x, y, r)|r = r0} will have the
symmetry of the wallpaper group p2. In this paper, we extend one generator κ
into the Picard group. The generated patterns will then exhibit reflectional sym-
metry with respect to y axis, and therefore in the unit region I, the symmetry
of the patterns changes from c2 to d2, while in the whole plane I1, the patterns
will have the symmetry of the wallpaper group pmm. We refer to [5], [6], [7] for
more details about the wallpaper groups.

The extended Picard group acts on the upper half hyperbolic space H3 onto
itself. We next consider the fundamental region of the extended Picard group. A
fundamental region is a connected set whose transformed copies under P1 cover
the entire space without overlapping except at the boundaries.

Let U = {z = (x, y, r)|0 ≤ x ≤ 1
2 , 0 ≤ y ≤ 1

2 , |z| ≥ 1}, then one can show that
U is a fundamental region of the extended Picard group P1.

Automatic generation of symmetric patterns of the extended modular group
was proposed in Ye at al [14]. As the group action of (1) is an extension of the
extended modular group on the upper half-plane, the tessellation in the x − r
plane of H3 exhibits the symmetry of the extended modular group. Fig. 1(a),
(b) show the tessellations at different cross sections of H3.

Tessellation in the hyperbolic three-dimensional space can also be expressed
elegantly in the Poincaré model that contains all the points of the open unit
sphere
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S = {z ∈ R3|z = (x, y, r)T , |z| < 1}.
The upper half-space is related to the Poincaré model by the conformal mapping
Π as

v = Π(z) =
(z − j)
(1− jz)

,

where z ∈ H3 and v ∈ S2. One tessellation in the Poincaré model is shown in
Fig. 1(c).

(a) (b) (c)

Fig. 1. (a) Tessellation in the upper half-space: |x| ≤ 1, |y| ≤ 0.8, 0.0001 < r ≤ 1;
(b) Tessellation in the upper half-space: |x| ≤ 1, |y| ≤ 0.8, 0.0001 < r ≤ 0.25; (c)
Tessellation in the Poincaré model: x2 + y2 + r2 < 1

3 Mappings Equivariant with the Extended Picard
Group

3.1 Equivariant Mappings

Let Γ be a group. We consider F̂ (z) which maps H3 onto H3

zi+1 = F̂ (zi), zi ∈ H3, i = 0, 1, 2...

F̂ (z) is called a Γ -equivariant mapping if

F̂ (γz) = γF̂ (z), ∀z ∈ H3 and γ ∈ Γ.

In the process of constructing equivariant mappings F̂ , we first restrict our con-
sideration to iterative mappings F in H3, i.e.

F (z) = F1(z) + F2(z)i + F3(z)j,

whereF1(z), F2(z), F3(z) ∈ R. In order to avoid the orbit of F falling into R3\H3,
we then define the following mapping

F (z) =
F (z), if F3(z) ≥ 0,

F1(z) + F2(z)i − F3(z)j, if F3(z) < 0.

It is easy to show the following theorem.

Theorem 1. If F (z) is a mapping equivariant with P1, then F̂ (z) is also a
mapping equivariant with P1 .
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3.2 Construction of P1-Equivariant Mappings F (z)

We now turn to consider the construction of P1-equivariant mappings F (z). We
first construct F (z) in the fundamental region.

Theorem 2. Suppose F (z) is a P1-equivariant mapping in U . Let z ∈ A, where
A is one of the four planes x = 0, x = 1

2 , y = 0, y = 1
2 in U , then we have

(a) F (z) ∈ A. (b) F (z) = 1, if |z| = 1.

Proof. (a) Firstly, we show the case x = 0. In this case, z = κz, and therefore

F (z) = F (κz) = κF (z)

which implies F1(z) = 0, i.e., F (z) ∈ A. As for the other cases, it is also easy to
prove by the facts z = ακz for z = 1

2 + yi+ rj, z = κηz for z = x+ 0i+ rj, and
z = ξκηz for z = x + 1

2 i + rj.
(b) If |z| = 1, then z = κβz,

F (z) = F (κβz) = κβF (z), κF (z) = βF (z).

As a result, we have |F (z)| = 1. ��

We rewrite F (z) as the form F (z) = z + f(z). By theorem 2, we obtain

f1(0 + yi+ rj) = f1(
1
2

+ yi + rj) = 0, f2(x + 0i+ rj) = f2(x +
1
2
i + rj) = 0.

Consequently we may express f1, f2 as the following forms

f1(x, y, r) = g1(x)h1(x, y, r), f2(x, y, r) = g2(y)h2(x, y, r),

where gi(0) = gi(1
2 ) = 0, and hi(x, y, r) (i = 1, 2) are arbitrary.

It is free to construct f3. We can choose

g(x, y, r) = |F (z)|2 = (x + f1)2 + (y + f2)2 + (r + f3)2.

It follows from the fact g(x, y, r) = 1 if |z| = 1 that we may write g(x, y, r) to
be the form, for instance,

g(x, y, r) = |z|2

which implies f3 can be written as

f3 =
√
g(x, y, r)− (x + f1)2 − (y + f2)2 − r.

Finally, we extend F (z) from the fundamental region U to the entire space
H3

F (z) = γ−1F (γz), z /∈ U,

where γ ∈ P1 is such that γz ∈ U , that is,

F (z) =

{
F (z), if z ∈ U,

γ−1F (γz), if z /∈ U, γz ∈ U.
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(a) (b) (c)

Fig. 2. Three tiling patterns in the upper half-space: (a) |x| ≤ 1, |y| ≤ 0.8, 0.0001 ≤
r ≤ 1; (b) |x| ≤ 1, |y| ≤ 0.8, 0.0001 ≤ r ≤ 0.25; (c) Circular truncated cone in the
upper half-space with top radius 0.6, bottom radius 1.0 and 0.0001 ≤ r ≤ 1

(a) (b) (c)

Fig. 3. (a) Cylindrical body in the upper half-space with radius 0.6 and 0.0001 ≤ r ≤ 1;
(b) Cut Cube in the upper half-space with cut point (0.3, 0.3, 0.2).; (c) Half unit sphere
in upper half-space: x2 + y2 + r2 < 1

(a) (b) (c)

Fig. 4. Three tiling patterns in the Poincaré model: (a) x2 + y2 + r2 < 1; (b) an
one-eighth cut; (c) an one-fourth cut
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4 Coloring Scheme

Motivated by the coloring scheme presented in [13], we make some modifications
in the experimental. The orbit of F (z) is defined as the iterated sequence of
points {z0, z1, z2, ...}. Fixing one integer k, we compute the distance D between
zk and zk−1. D is define as

D(z1, z2) =
(x1 − x2)2 + (y1 − y2)2 + r21 + r22

2r1r2
.

Then D is invariant under P1, i.e., for all γ ∈ P1, z1, z2 ∈ H3, D(γz1, γz2) =
D(z1, z2). Since the distance D is invariant under P1, the symmetric points z
and γz will have the same color. It follows that the generated tiling patterns
also exhibit the symmetry of P1. In the experiment, we choose the following
mappings

g1(x) = a1x(x − 0.5), g2(y) = a2 sin(2πy),

hi(x, y, r) = bi sin(2π(x + y + r)), i = 1, 2,

f1(x, y, r) = g1(x)h1(x, y, r), f2(x, y, r) = g2(y)h2(x, y, r), g(x, y, r) = |z|2,
f3(x, y, r) = g − (x + f1)2 − (y + f2)2) − r, F (z) = z + f1 + f2i + f3j. (2)

The corresponding tiling patterns with the extended Picard group in three-
dimensional hyperbolic space are shown in Figs. 2-3. The tiling patterns in the
Poincare model are demonstrated in Fig. 4. We note that all the figures are
depicted by the P1-equivariant mapping F̂ (z) with F (z) defined as (2). The
parameters are a1 = a2 = b1 = b2 = 0.2.

5 Conclusion

Thanks to the advancement of computer graphic techniques, one can easily cre-
ate fascinating and beautiful tiling patterns by iterating some simple mappings
equivariant with the extended Picard group. A fast and new algorithm is pro-
posed to automatically generate colored tiling patterns with the symmetry of
the extended Picard group. Compared with the algorithm proposed in [13] for
producing tessellation associated with the Picard group, the algorithm presented
here is more easy and convenient to manipulate without requiring to construct
complicated dynamical systems which satisfy the symmetry of the extended Pi-
card group. We could produce unlimited variety of symmetric tiling patterns
by just changing the mappings easily and could also produce different kinds of
tiling patterns both in three-dimensional hyperbolic space and the unit sphere by
conformal mappings. The fractal tiling patterns reveal more artistic appearance.
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Abstract. This paper proposes a keyframe extraction method based on a novel 
layered curve simplification algorithm for motion capture data. Bone angles are 
employed as motion features and keyframe candidates can be selected based on 
them. After that, the layered curve simplification algorithm will be used to re-
fine those candidates and the keyframe collection can be gained. To meet dif-
ferent requirements for compression and level of detail of motion abstraction, 
adaptive extraction parameters are also applied. The experiments demonstrate 
that our method can not only compress and summarize the motion capture data 
efficiently, but also keep the consistency of keyframe collection between simi-
lar human motion sequences, which is of great benefit to further motion data re-
trieval or editing. 

1   Introduction 

Both in traditional hand-drawn [1][2] and computer animation [3], keyframes play a 
central role and can be used to produce final animation sequence. The keyframes 
contain the most meaningful information, which is the abstract representation of the 
whole animation sequence and is very useful for compression, browse (summariza-
tion) and reuse. 

In recent years, Mocap system results in amount of realistic human motion data and 
is widely used in various applications. However, Mocap data are captured in a high 
frame rate and require huge storage space. So keyframe extraction technique is impor-
tant for storage (compression), retrieval, browse (summarization) and reuse for human 
Mocap data. This paper focuses on keyframe extraction technique for human motion 
capture data. Keyframe collection should meet the following requirements: 

• Keyframe collection should be able to summarize original motion efficiently 
while satisfying certain compression ratio. 

• Keyframe collection can be used to reconstruct the original motion sequence as 
precisely as possible. 

• Keyframe collection should keep the consistency between similar motions, 
which is convenient for following retrieval and editing operation. 

Furthermore, two aspects should be considered besides keyframe extraction method 
itself. The first one is how to represent human motion and the second one is how to 
evaluate results of extraction. An effective motion feature representation is a key to 
extract satisfied keyframes, which has effect not only on results of extraction but also 



 An Efficient Keyframe Extraction from Motion Capture Data 495 

on the algorithm’s efficiency in running time. There are two evaluation criteria for 
keyframe extraction: error requirement and compression ratio. Almost all of available 
keyframe extraction methods extract keyframes by specifying error requirements 
[4][5][6]. Different error requirement results in different compression ratio.  

Here we propose an efficient keyframe extraction method by which keyframe col-
lections extracted are able to not only summarize and compress original human mo-
tion effectively, but also guarantee consistency between similar motions.  

2   Related Work 

Keyframe extraction techniques have been extensively explored in the research field 
of computer vision in which keyframes are used for video browsing and content-
based video retrieval applications [7][8][9]. Similarly in recent years motion segmen-
tation techniques are developed to extract distinctive motion clips from very long 
Mocap sequences and videos [10][11].  

Besides the summarization ability, keyframes extracted from motion sequence 
should be used to reconstruct the original motion data as precisely as possible. But 
this reconstruction ability can not be achieved by the techniques mentioned above. To 
our knowledge, there are very few methods have been explored to extract keyframes 
from Mocap data sequence.  

The simplest idea for keyframe extraction from Mocap data sequence is uniform 
sampling, but this method suffered from the over-sampling or under-sampling. Adap-
tive sampling methods extract keyframes according to performer’s pose changes 
rather than motion time, which result in less keyframes in motion segments with less 
pose changes and more keyframes in motion segments with great pose changes. Lim 
et al. [6] treated Mocap data as high-dimensional curves and then applied a simple 
curve simplification algorithm to extract keyframes. But this method extracts key-
frames regardless of human motion’s geometric meaning so that extracted keyframe 
collection cannot guarantee the consistency between similar motions. In addition, 
error parameter should be specified manually before using those methods to extract 
keyframes. 

Liu et al. [4] proposed a clustering-based method to extract keyframes adaptively. 
They assigned each frame to a corresponding cluster by the similarity. Then all of the 
first frames in those clusters compose keyframe collection. Park and Shin [12] chose 
quaternion as their representation for motion data and utilized PCA and k-means 
clustering to linearize quaternions and cluster them. Then they used scattered data 
interpolation to extract keyframes from clustered motion data. Huang et al. [13] pro-
posed a constrained matrix factorization method for animation keyframe extraction, 
which result in a compact version of the original data. 

In order to deal with Mocap data, several motion feature representations have been 
proposed. Liu et al. [4] applied a hierarchical motion representation. Lee et al. [14] 
described a two-layer structure for representing human Mocap data. These two repre-
sentations generalize motion data, but motion physical features cannot be represented 
clearly. Chui et al. [15] proposed local spherical coordinates relative to the root orien-
tation as the segments posture of each skeletal segment. But the skeletal segment is 
represented by two parameters which cannot benefit to observe posture of each  
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skeletal segment. Mueller et al. [16] introduced 31 Boolean features expressing geo-
metric relations between certain body points of a pose. This method can represent 
well motion’s physical feature, but the number of features is too large. 

Comparing with most previous methods of keyframe extraction and motion feature 
representation, there are four important features in our proposed approach: (1) We 
represent motion sequence by bone angles which are effective features for keyframe 
extraction operation; (2) A novel layered curve simplification algorithm is developed 
for keyframe extraction which is very simple and can generate keyframes collection 
more quickly; (3) The keyframes extracted by our method can be used to reconstruct 
original motion sequence precisely; (4) Our keyframe extraction method guarantees 
the consistency between similar motions, which is very useful for keyframe based 
motion retrieval applications.  

 

Fig. 1. Human skeleton and segments 

3   Motion Feature Representation 

A simplified human skeleton model is defined as Figure 1(a), which contains 16 joints 
that are constructed in the form of tree. 9 bones are extracted as the objects to repre-
sent motion feature, including 8 bones in human limbs and a central bone that is con-
nected by root and chest joints as a reference bone (see Figure 1(b)). Each bone is 
defined as a vector from the upper joint to the lower joint in human skeleton. For 
every limb bone, bone angle is defined as the angle between the limb bone and the 
central bone. Given a limb bone ( )kB , its bone angle at the ith frame is defined as 
follow: 

( ) ( )

(k) 1
i ( ) ( )

B B
cos ( ),  k 1,..,8

B B

k center
i i

k center
i i

− ⋅= =  (1) 

wh e re  
( )

B
center

i  represents the central bone at the ith frame and θ  is in the interval 
[0, ]π . Consequently, by calculating 8 bone angles, the ith frame of human motion is 

represented by an 8-dimension angle vector: (1) (8)( ,..., )i i iF θ θ= . 
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4   Kyeframe Extraction 

The human motion data represented by bone angle vectors can be treaded as trajectory 
curve in 8D bone angle space, and then keyframes can be extracted by approximating 
this high dimension motion curve. Figure 2 illustrates the trajectories of bone angles 
of right leg that is composed of right upper leg and right lower leg in a walk motion 
with 20 frames. We can see that the changes of bone angles of right leg describe well 
the movement of right leg in motion sequence. The postures at those extreme points 
can be selected as candidate keyframes because they are the most informative repre-
sentatives of right leg’s movement. According to all bone angles’ changes, candidate 
keyframes can be obtained through collecting those frames at which local extreme 
points occur. 

 

Fig. 2. Trajectories of bone angles of right leg in a walk motion with 20 frames. Yellow and 
blue curves show changes of the upper leg and the lower leg respectively. The extreme points 
on curves which correspond the extreme postures are marked by red circles and their corre-
sponding postures are marked by blue circles. 

In the process of human’s movement, there are two phenomena: (1) The extreme 
points of different bone angles may not occur at the same time, but in a certain time 
interval; (2) There is some noise when human motion is being captured, which leads 
to some posture’s distortions. 

These phenomena result in that there are some candidates so near to each other and 
those candidates should be merged. On the other hand, due to existence of some mo-
tion clip with less bone angles’ change, there are some adjacent candidates that are 
distant. For higher error requirement or stronger ability to summarize human motion, 
one or more frames should be selected as keyframes between those candidates. 

Inspired by the simple curve simplification (SCS) algorithm [6][17], we propose a 
layered curve simplification (LCS) method to refine our candidate keyframes. The 
LCS algorithm statement is as follow: Given two sequence data sets M  and 
C : { | 1,..., }iM F i N= = , (1) ( )( ,..., )m

i i iF x x= , C M⊂ , 1, NF F C∈ , try to find a sequence data 

set K  which approximates curve of M  under curtain error requirement, where 
K M⊂  and elements in K  should be in C  as more as possible. To solve this prob-
lem, M  and C  can be treated as curves in m -dimension space and they can be com-
bined and constructed into a two-layer structure. The higher layer is C  and the lower 
layer is M . In the beginning, we run SCS on the upper layer to find K . If the result-
ing approximation cannot satisfy the error requirement, then SCS runs on the lower 
layer. Those newly gained points at which curve is sub-divided would be inserted into 
the upper layer. After then, SCS runs to the upper layer again. This procedure is  
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recursively repeated until the resulting approximation satisfies the error requirement 
specified for the given distance criterion. By running the SCS method to each layer 
alternately, the data set K  would be gained finally. 

5   Adaptive Extraction Parameters 

In most applications users only have idea about the number of keyframes they do not 
care the value of extraction parameter which result in the actual number of keyframes. 
Here we employ adaptive extraction parameters to solve this problem. 

Given the desired keyframe number which is set by user, if actual keyframe nuber 
is more than desired value, δ  increases and the increase rate is _ ( _ (0,1))inc incδ δ ∈ . 
Otherwise, δ  decreases and the decrease rate is _ ( _ (0,1))dec decδ δ ∈ . There are 
several factors that affect the convergence of the number of keyframes: (1) Greater 
initial value of δ  and smaller change rate of δ  lead to slow convergence of desired 
keyframe number; (2) Greater change rate of δ  lead to the oscillation of actual value 
around desired value of the number of keyframes severely; (3) The actual value is 
oscillating around desired value of the number of keyframes in a small neighborhood, 
but the actual value cannot converge completely. 

So if the changes of dδ  are in the same direction in two consecutive loop, dδ  in-
creases to speed the change of dδ . And when the actual value is oscillating around 
the desired value, dδ  decreases to relieve the oscillation. The new dδ  can be calcu-
lated as follows: 

2 2( ) 1 ( 1) , ( ) 1 1inc decf d d f d dδ δ δ δ= − − = − −  
(2) 

A maximum oscillation number will be defined as a condition to jump out from the 
infinite oscillation. 

 

Fig. 3. Keyframe sequences extracted from human motions: (a) kick; (b) wave and walk; (c) 
punch twice; (d) run; (e) Keyframe collections for step-up motion with different number of 
keyframes. From bottom to top, the number of keyframes is 14, 10, 7 and 5 respectively. 

6   Experiment Results 

We captured more than 100 real human motion sequences with different motion types 
at 60Hz frame rate as our testing collection and implement our method by Matlab® 
which runs on an Intel Pentium 4 2.6GHz computer with 512 MB memory. 
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Fig. 4. (a) layered curve simplification based method (LCS); (b) simple curve simplification 
based method (SCS); (c) uniform sampling method (US); (d) walk with excessive arm swing; 
(e) normal walk; (f) walk with body leaning towards back; (g) shambling walk 

As shown in Figure 3, our method can select extreme and important transitional 
postures from motion sequences with different motion types and different keyframe 
numbers precisely.  

In Figure4(a)-(c), one non-periodical motion, jump-up, is demonstrated to make a 
comparison among different methods. We can see that under the same compression 
ratio, LCS achieves the best result, and the result of SCS is better than that of US. 

In Figure 4(d)-(g), keyframe sequences of four similar motions correspond to each 
other basically. And comparing Figure 3(b) with Figure 4(d)-(g), we found that LCS 
also can get corresponding keyframes in those conditions that some motions are dis-
similar in motion style but similar in the movements of parts of human body. 

Table 1. Initial parameters and results of extraction. *Actual value of _ incδ  approaches 1 but 
is not equal to 1. 

ID 1 2 3 4 5 
Motion (frames) M1 (33) M1 (33) M2 (80) M3 (209) M3(209) 
#Keyframes 

(desired/actual) 
5/5 5/5 7 / 7 8/8 20 / 19 

δ (initial/actual) 100/0.497 0.01/0.485 1/0.4149 1/0.274 0.5/0.165 

_ incδ (initial/actual) 0.01/1* 0.9/1* 0.9/0.9 0.01/0.992 0.01/0.141 

_ decδ (initial/actual) 0.01/0.141 0.9/0.564 0.01/0.873 0.9/0.564 0.9/0.174 

# Loops 28 11 4 16 197 
Time (s) 0.172 0.062 0.015 0.359 3.547 

# Oscillation 8 2 0 6 100 

Table 1 gives the initial parameters and results of extraction in the experiments. 
M1, M2 and M3 correspond to the (d), (b), (c) motions in Figure 3, and the maximum 
of the oscillation number is 100. We can see that the convergence of keyframe num-
ber is independent of initial parameters. Even for those that have too many frames and 
reaches the maximum of oscillation number (Experiment 5), our algorithm’s running 
time is acceptable. Consequently, initial values of the algorithm’s parameters can be 
defined at random in their range of value. It is noticed that δ  is often in the interval 
(0,1) when the algorithm terminates, so initial value of δ  is usually defined at random 
in the interval (0,1).  
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Fig. 5. (a) Motion reconstruction. The red, green and blue dot lines represent the original X, Y, 
and Z rotation values of RightShoulder joint in a punch motion. Green block is keyframe and 
solid line is reconstructed motion data. Here we use the piecewise cubic Hermite interpolation 
polynomial algorithm for reconstruction [18]; (b) Reconstructed sequence of punch motion. 
Greens represent the keyframes. Reds represent the postures which are reconstructed from 
keyframes; (c) Reconstructed error at different compression ratios. 

Figure 5(a) compares the original motion data with reconstruction data which are 
generated from keyframes extracted by our method. Figure 5(b) shows the recon-
structed sequence of this punch motion. Figure 5(c) shows the curve of reconstructed 
error at different compression ratios. Here we use the root mean square distance be-
tween the original and reconstructed motions to present the reconstructed error. 

7   Conclusions and Future Work 

The main contributions of this paper are: (1) bone angles as human motion feature 
representation, by which human motion’s extreme postures are searched regardless 
of the motion type and style; (2) layered curve simplification method to refine can-
didate keyframe collection that comprises of extreme postures, which benefits com-
parison among the similar motions and can be used for multiple applications; (3) 
adaptive extraction parameters method by which keyframes can be extracted by 
specifying desired keyframe number instead of any other abstract extraction  
parameter.  

Our keyframe extraction method can be used for multiple applications including 
motion ummarization for browsing, keyframe based motion retrieval, motion com-
pression and reconstruction and keyframe based motion synthesis. 

Currently by all of existing methods (including ours), users are required to specify 
the desired keyframe number and then system return the results, which requires that 
the users should have sufficient experiences and related knowledge to get a satisfied 
keyframe collection. So in future work we will try to find an extraction method and an 
evaluation mechanism to get keyframe collection with proper keyframe number  
automatically. 
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Abstract. The genome is the gene complement of an organism and it
comprises the information of the entire genetic material of an organism.
Many researchers use the whole genome alignment method to detect a
genomic meaning between genomes. In this paper, we introduce a new
method for whole genome alignment with LOD(Level-of-Detail) repre-
sentation. It helps us to understand a relationship between two genomes
and determine candidate sets from the whole genome alignment result.

1 Introduction

Alignment is the procedure of comparing two or more genome sequences by
searching for a series of individual characters or character patterns that are in
the same order in the sequences. The alignment method is especially important
in bioinformatics. The ultimate goal of bioinformatics is to enable the discovery
of new biological insights. Biological information can be discovered in biological
sequences with the alignment method.

It helps us to assign functions to unknown proteins, determine the relationship
of organisms, identify structurally and functionally important elements, and aid
in the development of other insights [1, 2]. Similarities between large similar
regions are determined by the whole genome alignment, and many researchers use
this method to discover genomic information. An important thing is a detection
of gene cluster or gene team identified as a result of the whole genome alignment.
The gene cluster is a set of genes which tends to represent groups of gene with a
functional relationship even if they are not contiguous. There are several methods
for detecting gene clusters. However, currently the algorithms for finding gene
clusters require strong and artificial constraints.

These analyses are difficult due to the huge size of genomes and alignment
result. Figure 1 clearly illustrates this problem. The resolution of the snapshot
in Figure 1 is 800 by 600 pixels, so one pixel corresponds to about 6000 bases
of a given genome sequence. Figure 1 (a) shows the visualization of the whole
genome alignment between two genomes, B. subtilis(4.2Mbp) and B. halodu-
rans(4.2Mbp), and (b) shows the local visualization of (a). In Figure 1 (b), the
259 alignment pairs in a local region of B. subtilis are visible, and the similar
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sequences are spread all in the area(the entire region) of B. halodurans. However,
this feature cannot be seen in (a) due to the large size of genomes and alignment
pairs. So, we use filtering methods to determine the important sets of similar
subsequences out of the subsequences being compared. Since the amount of an
input alignment result can be decreased by filtering, the analysis of the genome
alignment can be accomplished more easily.

(a) alignment result between (b) local visualization of alignment pairs
B. subtilis and B. halodurans. on 413,033 ∼ 754,418 of B. subtilis.

Fig. 1. Snapshot of the whole genome alignment at AlignScope

In this paper, we introduce a new method for the whole genome alignment
with LOD(Level-of-Detail) representation to get candidate sets from the whole
alignment result. We developed the system AlignScope to provide for this [3].

2 LOD(Level-of-Detail) Representation

2.1 Preliminary

A set of alignment pairs can be determined through the alignment process and
these pairs are ordered according to their physical positions in each of the in-
put sequences. Figure 2 shows the structure of alignment pairs between two
sequences U and L. Each alignment pair consists of two aligned subsequences on
two sequences. Let an alignment pair be ai = (up, lq), and up and lq be sequences
aligned with each other on U and L, respectively. up is the p− th gene on U and
lq is the q − th gene on L in keeping with physical position of each sequence.

u1 u2 u3

1 8 11 15 21 26

3 7 14 19 23 30

U

L
l1 l2 l3

a1

a2

a3

Fig. 2. Example of alignment pairs between two sequences U and L

In order to represent alignment pairs, we use the ordered bipartite graph
structure. A graph is a mathematical structure that is widely used to describe
the relationships among different objects.
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Definition 1. A simple graph or multigraph G is bipartite graph, if its ver-
tices can be partitioned into two sets(called partite sets) U and L in such a way,
that no edge joins two vertices in the same set [5]. ��

Definition 2. An ordered bipartite graph is a bipartite graph (U, L, E) with
some linear orderings on U and L [6]. ��

Each alignment pair ai in Figure 2 is represented by an edge, and the aligned
subsequences of each alignment pair are represented by two nodes. Therefore,
alignment pairs can be converted into a graph and graph algorithms, which are
well defined, can be used to analyze the whole genome alignment.

2.2 Construction of the LOD Structure

Clustering can be considered the most important unsupervised learning problem.
In this paper, we use a hierarchical clustering method to represent a whole
genome alignment with LOD structure. The crucial step of hierarchical clustering
is selecting the next cluster(s) in order to split or merge. It starts with each case
in a separate cluster and then combines the clusters sequentially, reducing the
number of clusters at each step until only one cluster is left. When there are N
input data, this involves N − 1 clustering steps, or fusions. The our clustering
algorithm consists of the following steps;

1. Construct an ordered bipartite graph Gorder using input alignment pairs.
The two node groups are divided by two input genomes.

2. Assign each edge in a Gorder to a base cluster. If there are n edges initially,
there will be n clusters at the start.

3. For finding the nearest pair, we construct the Delaunay graph based on edges
using a Gorder, and then make a Minimum Spanning Tree Tmst using the
constructed Delaunay graph. (This procedure will be explained later.)

4. Sort the edges in a Tmst using the weight of each edge.
5. Merge the two nodes based on an edge according to the weight of each edge

of Tmst. In the merging step, the two nearest nodes are merged. This is the
basic procedure of hierarchical clustering and this produces a clustering tree.

In our method, we construct the Delaunay graph using an ordered bipartite
graph to find the nearest two alignment pairs. The Delaunay graph is a special
type of triangulation. Its main characteristic is that for each circumscribing circle
of a triangle formed by three nodes, no other nodes of the graph can be contained
in the interior of the circle. The adjacent nodes of a node can be determined
using Delaunay graph and the Delaunay graph is the base for constructing a
Minimum Spanning Tree. A Minimum Spanning Tree is a spanning tree with
the weight which is less than or equal to the weight of every other spanning tree.
Consequently, the nearest node of each node can be derived using Minimum
Spanning Tree. The method of constructing the Delaunay graph and Minimum
Spanning Tree is as follows:
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1. Let an edge in a Gorder be a node for constructing Delaunay graph. The posi-
tion of each node is a coordinate with the locations of two aligned sequences
of an alignment pair.

2. Construct the Delaunay graph from generated nodes of step 1.
3. Construct the Minimum Spanning Tree of a generated Delaunay.

3 Complexity of an Alignment Cluster

Generally, the character of a graph can be expressed by the “number of edge
crossings”. In graph drawing, the number of edge crossings is minimized, because
crossings significantly decrease the readability of a drawing. And we can know
whether a cluster is a parallel or reverse using the number of edge crossing.

Figure 3 shows examples of the number of edge crossings of each cluster.
In Figure 3 (a), the cluster is parallel, so, the number of edge crossings is 0.
Therefore, the cluster in Figure 3 (a) is better than (b) in terms of a graph
drawing. However, biologically, the information in the cluster in Figure 3 (b)
can be detected. Since the order is completely reversed to the order of (a), the
order of genes between the two genomes is highly conserved. It provides strong
evidence of a close evolutionary relationship between the two input genomes.

Figure 4 shows a real gene team between B. subtilis and B. halodurans. We can
see that the order of genes in B. subtilis is the reverse of the order of genes in B.
halodurans [3]. In this case, the number of crossings is large but it is very impor-
tant feature biologically, since the gene team seems to evolute inversely between
B. subtilis and B. halodurans. Therefore, each cluster needs to be visualized with
the measure for this concept.

A measure,“alignment complexity”, comp(ai) and comp(cj), can be defined
for each alignment pair, ai and cluster cj . The alignment complexity of a cluster
is the average of all of the comp(ai)’s in the cluster. This figure represents the

c1

a1 a2 a3 a4
a5

a6

c2

a1

a2 a3 a4
a5

a6

(a) a parallel cluster (b) a reversed cluster

Fig. 3. Example of the number of edge crossings in a cluster

Fig. 4. Example of a gene team between B. subtilis and B. halodurans
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degree that the order of genes between the two genomes is conserved or random.
An order of genes in a cluster is highly conserved, when the order of genes on
one genome is the inverse or equal to the other genome. Otherwise, if there is
no continuous order between two or more genes in a cluster, the order of genesis
highly random.

An alignment complexity of an alignment pair ai between two genomes U
and L is defined by three alignment pairs ai−1, ai and ai+1 which are sorted
by physical positions on U . Let the three alignment pairs be ai−1 = (ui−1, lp),
ai = (ui, lq), and ai+1 = (ui+1, lr). The alignment complexity may be different
when we sort alignment pairs by genome L and then consider the order of aligned
sequences on a genome U . The formal definition of the alignment complexity for
ai as follow: Let two variables, s and t, be defined as 2 or 1 to divide an order of
alignment pairs in a cluster that is parallel or reversed (Equations (1) and (2)).
If a comp(ai) > 0, the alignment pair is parallel according to equation (3).

s = 2, (if (q − p) ≥ 0) or 1, (if otherwise) (1)
t = 2, (if (r − q) ≥ 0) or 1, (if otherwise) (2)

comp(ai) = (−1)s · 1/2|q−p| + (−1)t · 1/2|r−q| (3)

The range of the alignment complexity is [−1, 1]. If an order of genes in a
cluster is highly conserved, the absolute value of alignment complexity of the
cluster is 1. When the alignment complexity of a cluster is 0, the order of genes
in the cluster is highly random. Figure 5 shows an example of an alignment
complexity for the alignment pair. The alignment complexity for two alignment
pairs, a2 and a8, will be calculated. In comp(a2), the two alignment pairs a1 and
a3 will be considered. Similarly, in comp(a8), two alignment pairs a7 and a9 will
be considered. So, comp(a2) is a 1 and comp(a8) is a 3/8.

a1 a2
a3

a4
a5

a6

a7

a8

a9

a10

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

cluster c3cluster c2cluster c1

Fig. 5. Example of alignment complexity for an alignment pair

If there are just two alignment pairs ai and ai+1, let the alignment complexity
of each alignment pair be a double value of the complexity of a neighboring
alignment pair. So, comp(a10) = 2 · (−1)2 · 1/21 = 1.

Now the alignment complexity of three clusters, c1, c2, and c3, will be calcu-
lated and compared with the number of edge crossing. Considering the number
of edge crossings, the number of edge crossings in a cluster c1 is the smallest
and that of c2 is the largest. Biologically, c1 and c2 are more conserved than c3.
However, the clusters cannot be divided according to the degree of conservation.
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Otherwise, the alignment complexity of a cluster is useful for recognizing the
degree of conservation. The alignment complexity of each cluster is computed as
follows:

– comp(c1) = 1
3 · 3

i=1 comp(ai) = 1. The number of edge crossings is 0.
– comp(c2) = 1

3 · 6
i=4 comp(ai) = −1. The number of edge crossings is 3.

– comp(c3) = 1
4 · 10

i=7 comp(ai) = 0.53125. The number of edge crossing is 2.

The absolute value of the alignment complexity is used for this. The absolute
value of comp(c1) and comp(c2) is 1, and the value of comp(c3) is 0.53125. As
can be seen the closer the absolute value of the alignment complexity is to 1,
the more conserved the cluster is. So, two values can be determined by using
the alignment complexity. One is the complexity of a cluster and the other is
whether the cluster is parallel or reversed.

4 Experiments

Our algorithm has been tested on several genomes. The first data set is a group
of three prokaryote genomes, A.fulgidus and M.thermautotrophicus. Figure 6
shows the LOD representation of the clusters at several LOD levels between
these two genomes using AlignScope. The LOD levels range from 0.0 to 1.0.
If the level is 0, clusters which contain one alignment pair will be seen, and
they are input alignment pairs. Otherwise, a cluster which contains the whole
input alignment pairs at level=1 will be seen. It is worth noting that the global
structure of clusters becomes clear and vivid. Figure 7 shows other examples of
LOD representation between B. subtilis and E. coli K12 using AlignScope.

AlignScope provides the filtering method with the alignment complexity of
each cluster. Figure 8 shows examples for detecting the conserved clusters be-
tween B. subtilis and B. halodurans using AlignScope. The several conserved

Fig. 6. Example of LOD representation between A.fulgidus and M.thermauto-
trophicus
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Fig. 7. Example of LOD representation between B. subtilis and E. coli K12

Fig. 8. Examples for detecting conserved clusters using AlignScope

regions according to the alignment complexity can be seen. Figures 8 (b) shows
the detected clusters when the absolution of alignment complexity was larger
than 0.9. It is highly conserved and the order of genes between the two genomes
is reverse and the number of alignment pairs is 27.

5 Conclusion

In this paper, we proposed a new method for visualizing the whole genome align-
ment. A novel visualization tool for the whole genome alignment would be very
useful for understanding genome organization and the detecting candidate sets
from all of the data so that it can be easily analyzed by using various meth-
ods, such as detecting gene teams and regions with conserved orders of genes
between the two genomes. AlignScope is easy to use in a computer environment
and helps with understanding the relationship and conserved regions between
two genomes. Our system is freely available on http://jade.cs.pusan.ac.kr/ align-
scope. The main features of AlignScope are as follows:

– AlignScope provides intuitive controls for the visualization of the whole
genome alignment at any simplified level.
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– AlignScope is fast since we construct Delaunay graph and minimum spanning
tree when computing hierarchical clustering. This improves the intractability
between biologist and bioinformatics software.

– By using AlignScope, the candidate sets of conserved regions such as gene
teams in the whole genome can be easily found.
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Abstract. We present a data hiding algorithm for 3D models. It is based on a 
substitutive procedure in the spatial domain. We propose a Virtual Multi-Level 
Embed Procedure to embed information based on shifting the message point by 
its virtual geometrical property, the order of which is assigned by principal 
component analysis. We have defined and validated an effective metric of 
distortion anticipation, which can help us easily anticipate and control the 
distortion rate. Experimental results show that the proposed technique is efficient 
and secure, has high capacity and low distortion, and is robust against affine 
transformations. It provides a reversible method and has proven to be feasible in 
data hiding. 

1   Introduction 

Whereas classical cryptography is about protecting the content of messages, data 
hiding, or steganography, is about concealing their very existence [1].  

With the development of various 3D applications and computer animation, many 
data hiding and watermarking schemes have been presented for 3D models [2], [3], [4], 
[5], [6], [7], [8]. However, research in data hiding has not kept pace with the advances 
of point-sampled geometries, even though some data hiding and watermarking schemes 
have been presented for conventional 3D polygonal models.  

This paper presents an efficient, secure, high capacity, low distortion, and robust 
against affine transformations data hiding algorithm for 3D Models. Because we only 
consider point information of 3D models, our approach is well suited to point-sampled 
geometries and 3D polygonal models, for which type we discard topological information. 
We propose a Virtual Multi-Level Embed Procedure (VMLEP) that can embed at least 
three bits per point. In addition, we define a specific metric for distortion anticipation. 
Experimental results show that the proposed technique is feasible in data hiding. 

In section 2, related work is described. In section 3, we present our algorithm. 
Experimental results are shown in section 4, followed by a brief conclusion in section 5. 

2   Related Work 

Several information hiding schemes for 3D models have been proposed. However,  
only a few watermarking approaches [7], [8] consider point-sampled geometry. 
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Unfortunately, only one data hiding approach [6] for point-sampled geometry has been 
proposed. 

Wang and Cheng [5] proposed an efficient data hiding scheme for 3D triangle 
meshes. Their scheme, which is a blind scheme in the spatial domain, extends 
significantly the stego-system proposed by Cayre et al. [3], [4]. However, their scheme 
requires information of edge connection. As a result, the scheme is suitable to 3D 
triangle meshes, but is not appropriate to point-sampled geometry. Our method, on the 
other hand, works in both cases. Without the help of mesh connectivity, we would need 
a more sophisticated method to decide the embedding sequence list. Furthermore, the 
embedding method must not distort the list. Consequently, we use principal component 
analysis (PCA) [9] to decide the list, and we add a little advanced random noise to 
achieve higher capacity. Finally, embedding that relies on the angle between triangle 
planes is not still appropriate to point-sampled geometry, because such embedding can 
cause larger distortion for a larger radius. To solve this, we embed messages based on 
the arc length, which can efficiently avoid apparent distortion and yet still be useful for 
distortion control. 

Research presented by Wang and Wang [6] seems to be the only source for data 
hiding on point-sampled geometries. Their scheme uses a PCA and symmetrical swap 
procedure. This algorithm suffers two drawbacks in the areas of capacity and 
processing time. As to the first, the data capacity in bits generally achieves only about 
half of the number of points in the models. Second, their scheme is inefficient; for 
example, for a model with around 35,947 points, the time required to embed data is 
approximately one minute. In contrast to this approach, our scheme can hide three bits 
per point. For a model with around 35,947 points, the time required to embed data is 
less than 0.7 second. 

3   The Proposed Technique 

This section describes the proposed algorithm for data hiding for 3D models (see Fig. 1). 

 

Fig. 1. An overview of the embedding and extraction procedures 

3.1   Information Embedding 

Path. To embed information, we must choose a sequence list (called a path in the 
following). We adopt PCA to produce three principal axes of the 3D model. We then 
translate the original points' coordinate system to a new coordinate system. Obviously, 

Path VMLEP
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(Recovery key) 
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Storage Registration
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Message 
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the new coordinate system has a new origin, which is a gravity center of the 3D model; 
it also has three basis vectors, which are the three principal axes. The first principal axis 
is the Cp1-axis, the second principal axis is the Cp2-axis, and so on. Next, we sort points 
according to coordinate values of the Cp1-axis. For security reasons, we employ a secret 
key to generate random sequence numbers for the embedding path. 

However, the problem arises when two or more points have almost the same 
abscissa on the Cp1-axis. To solve this problem, we add advanced random noise (ARN) 
to these points to achieve higher capacity. We shift these points which have almost the 
same abscissa on the Cp1-axis parallel to the direction of Cp1-axis depending on the 
ARN, which makes these points have different abscissas on the Cp1-axis. Finally, since 
the VMLEP is robust against affine transformations and it is impossible to distort the 
sequence list resolved by PCA, we easily maintain this path at the extracting procedure 
when we keep the secret key, three principal axes, and the gravity center of the cover 
model. 

Virtual Multi-Level Embedding Procedure (VMLEP). We consider every point of 
a model as a message point. To embed information in every point, we propose a 
VMLEP, which includes Sliding, Extending, and Arching. In VMLEP, we embed the 
information by modifying the message point based on virtual geometrical properties; it 
guides the change of the position of the orthogonal projection of the message point on 
the virtual base, height of the virtual triangle, and arc length of the virtual circle. 

Pm''

Pm

Pe''Pe

B0
B1
B0
B1
B0
B1

(b)Pg Ps Px

Pv

virtual edge 
B1B0

Pg PxPs'Ps

2Pm Pm'

virtual base    (a)

Ps PxPg

Pm'''PmPr E3

(c)

E3

r
Ps

Pm''' Pm
d

a
i

virtual circle 
(d)

 

Fig. 2. (a) Sliding level of the VMLEP. (b) Extending level of the VMLEP. (c) Arching level of 
the VMLEP. (d) Virtual circle used on arching level. 

First, we treat the gravity center of the cover model as a base point Pg and assume a 
base point Px was extended from it; see equation 1. 
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where p∈{-1, 1} is the pseudo random number sequence (PRNS) generated from a 
secret key. The m is the multiple of the unit vector of the Cp1-axis, which can resolve a 
virtual base. For simplicity, we chose 0.001 as the m in the following experiments. 
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In the sliding level, we let every point of a model be a message point Pm, and assume 
a virtual triangle PgPxPm. Each virtual triangle is treated as a two-state geometrical 
object. The position of the orthogonal projection of the virtual triangle summit Pm on 
the virtual edge PgPx is denoted as Ps. Extending the QIM concept to triangles, the PgPx 
interval is divided into two sets, and both sets have s subsets. If Ps

∈B0, then we 
consider the triangle is in a ‘0’ state; otherwise, Ps

∈B1, and the triangle is in a ‘1’ state 
(see Fig. 2(a)).  

The Pm Pm' mapping is a symmetry across the closest axis orthogonal to PgPx that 
intersects the border of the closest subinterval belonging to Bi; the shifted distance 
between Pm and the closest axis is denoted as , which  conforms to equation 2: 

s

xg PP

α
α

×
≤
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.
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Since we must keep the sequence list resolved by PCA after embedding procedure 
exactly the same as before, in the worst case two points may be shifted toward each 
other, which makes it possible for both points to change their order after their shift. To 
avoid this problem, we define the minimum distance of abscissa on the Cp1-axis 
between any two points as d and let the s conform to equation 3: 
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If we prefer to recover the original state of a message point, it is necessary to store an 
extra bit for every bit of the message, which is called the recovery key. The recovery 
key is set to 1 if the state of the interval is changed and 0 otherwise. 

Similarly, we apply the same basic idea to the extending level and embed messages in 
the height of the virtual triangle. First, let a point Pv and the line defined by Pv and Px be 
orthogonal to line PgPx; we define the state of the virtual triangle by the position of the 
orthogonal projection of the virtual triangle summit Pm on the virtual edge PvPx, which 
position is denoted as Pe. In addition, we define r as the interval distance ratio and  as 
the interval distance. We also divide the PvPx interval into two sets (see Fig. 2(b)). We 
prefer to use the ratio of PgPx to control movement of the message point (see equation 4). 

xgr PP×= ββ  (4) 

We can achieve this procedure by the following system of equations: 
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The shift of this level is perpendicular to the Cp1-axis, which should not change the 
abscissa on the Cp1-axis. It is impossible to distort the sequence list resolved by PCA.  

Finally, we apply the same concept to the arching level and embed messages in the 
arc length of the virtual circle. First, we assume a reference point Pr by equation 6. 
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Both virtual triangles PgPxPm and PgPxPr form two individual planes. We define 
the degree of the angle between the two planes as . Let E3 be a plane with the normal 
vector PgPx and Pm, Ps, Pm''' be the points on the same E3 plane (equation 7). 

0),,( =−−−⋅
mmm PPPxg zzyyxxPP  (7) 

Next, we assume that the point Ps is the center of a virtual sphere and the radius of it 
is |PgPx| (replaced by r in the following explanation). Based on the virtual sphere, we 
can obtain a virtual circle on the E3 plane, then an arc length resolved by the radius r 
and angle  denoted as a (see equation 8). In addition, we define r as the arc interval 
length ratio, and i as the arc interval length (see equation 9). We also prefer to use the 
ratio of PgPx to control the i here. In this level, we can simply embed or extract our 
secret messages based on the a. We can obtain the real shift distance d on this level by 
equation 10, where  is the variation of angle introduced by the change of the arc 
length.  
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Similarly, we treat the i as the interval length in this level and divide the arc length 
into two sets. As a result, we can fine tune the a by adding or subtracting the i, which 
leads to the change of angle  based on equations 7, 8, 9 and 11 (see Fig. 2(c) and 2(d)). 
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To embed messages i (i=0 or 1) in the virtual circle, two cases occur: 

No modifications are needed.mod 2 :   a
i

i

if B
γ
γ

∈
 

( )
θ

π
γγ

ϕ
γ
γ

−
××

×+×°
=∉

r

p
Bif ia

i
i

a

2

360
  :2mod

 
.
 

(12) 

The shift is a circle round the Cp1-axis, which should not change the abscissa on the 
Cp1-axis. Consequently, it is impossible to distort the sequence list resolved by PCA.  

In fact, every method of these levels is not limited to embedding one bit per point. Te 
real limitation is data representation precision. For instance, in the sliding level, when 
we divide the PgPx interval into 2s (s  1) sets, we can embed s bits into each set. Let 
Bmax be the maximal number of bits actually embedded and Npoint be the number of 
points in the model. We can then state the following equation on our scheme: 

int3 pomax NsB ××=  . (13) 

Data Storage. In this step, the stego model and the recovery key are created. In 
addition, we keep three principal axes and the gravity center of the cover model to 
establish the same path during the extraction procedure. Furthermore, three principal 
axes and the gravity center of the stego model are retained to align the potentially 
attacked stego model during the registration process. Our approach achieves 
reversibility based on a recovery key which is constructed during embedding and kept 
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private for retrieving the perfect original 3D model. Since the VMLEPs shift every 
message point symmetrically, if we prefer to recover the original state of a message 
point, it is necessary to store an extra bit for every bit of the message, and its size is 
exactly the same as the message size. Certainly, it should be compress using some 
lossless compression algorithms. In this way, reversibility is only granted to the holder 
of the recovery key and the secret key. 

The VMLEP algorithm was developed to decrease distortion and increase capacity 
with respect to the human visual system (HVS). Recall that the sliding level embeds 
messages by shifting the message point Pm toward Pm'; the maximal distance of the 
shift is denoted as 2 max. The maximal distance of the shift of the extending level and 
arching level is  and dmax. As a result, the message point will be shifted toward the 
diagonal point in a box in the worst case. Here Sdist denotes the maximal distance of the 
shift: 
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Fortunately, the Sdist is always much smaller than the real distortion (see Table 1), 
since the probability of the three worst cases happening at the same point is rare and 
never happens in every point. In fact, the Sdist is somewhat similar to the Hausdorff 
distance, but always larger, and it is useful for anticipating and controlling the 
distortion rate. 

3.2   Information Extracting 

First, the new three principal axes and the gravity center of the potentially attacked 
stego model and the three principal axes and the gravity center of the original stego 
model have to be aligned using PCA, which leads to some affine transformations. After 
that, it produces the un-attacked stego model, which is the same as the original.  

Since the remaining procedures of the algorithm are symmetrical, we easily extract 
the message using the method mentioned above if we have the help of the secret key, 
three principal axes, and the gravity center of the cover model. 

4   Experimental Results 

We implemented the proposed technique using C++ programming language. Results 
were collected on a computer with a Pentium IV 2GHz processor and 512 MB memory. 

Table 1. For point-sampled geometries, we chose 32 as the s, 0.01 as the r, and 0.02 as the r  

distortion time cost (sec) 
cover model points 

embedded 
messages 

(bits) 
Sdist / bounding 

diagonal 
RMS / bounding 

diagonal embed extract 

turbine blade 882,954 2,648,862 1.082×10-4 6.690×10-6 17.001 10.562 
rabbit 67,038 201,114 5.408×10-4 5.902×10-5 1.296 0.812 
horse 48,485 145,455 3.954×10-5 1.957×10-5 0.937 0.578 
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Table 2. For 3D polygonal models, we chose 32 as the s, 0.01 as the r, and 0.02 as the r  

distortion time cost (sec) 
cover model vertices faces 

embedded 
messages 

(bits) 
Sdist / bounding 

diagonal 
RMS / bounding 

diagonal embed extract 

happy buddha 543,652 1,087,716 1,630,956 2.327×10-5 2.200×10-6 10.344 6.484 
dinosaur 56,194 112,384 168,582 8.311×10-4 3.200×10-5 1.079 0.672 

venus body 19,847 43,357 59,541 3.580×10-6 1.020×10-6 0.375 0.235 

 

 
Cover 

 
Cover 

 
Stego   

 
Stego 

Fig. 3. From left to right, stego models are listed in the following order: rabbit and dinosaur 

Model details, distortion, and processing time are detailed in Tables 1 and 2. As 
expected, no errors are found in the recovered messages. As a result, we exploit the 
feature of 3D more: every point can be represented by at least three bits in the three 
dimension space. Visual results of the stego models are shown in Fig. 3. The RMS 
values and visual appearance of images showed insignificant distortion for the models. 

From the security point of view, finding the three principal axes and the gravity 
center of the cover model, getting the path over the model with secret key, and 
obtaining the p value of PRNS, m, s, r and r are the challenges for an attacker. Just by 
looking at these issues, it is clear that our scheme is secure in the cryptographic sense. 

Finally, we estimate the complexity by giving execution times, as shown in Tables 1 
and 2. The time cost is very low, despite the embedding and extracting processes.  

5   Conclusion 

In this paper we have presented a data hiding algorithm for 3D models. Our technique 
provides data hiding with efficiency, security, high capacity, low distortion, reversibility, 
and robustness against affine transformations. Because we just consider the point 
information of 3D models, our approach is well suited to point-sampled geometries and 
3D polygonal models, for which type we discard topological information. 

Our scheme is fast; for a model with around 48,485 points, the time required to 
embed data is less than one second, and it takes about seventeen seconds even if the 
model has around 882,954 points. Extracting the messages without assistance of the 
key is virtually impossible. This problem is NP-hard in the cryptographic sense. Since 
our VMLEP shifts message points with respect to the HVS, we can easily anticipate 
and control the distortion rate. This process naturally leads to higher capacity and lower 
distortion. In addition, it recovers the perfect original model with the exact information 
that has been stored. We have demonstrated the feasibility of our technique for 
steganographic applications. 
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Abstract. Mesh chartification is an important tool for processing
meshes in various applications. In this paper, we present a novel fea-
ture sensitive mesh chartification technique that can handle huge meshes
with limited main memory. Our technique adapts the mesh chartification
approach using Lloyd-Max quantization to out-of-core processing. While
the previous approach updates chartification globally at each iteration of
Lloyd-Max quantization, we propose a local update algorithm where only
a part of the chartification is processed at a time. By repeating the local
updates, we can obtain a chartification of a huge mesh that cannot fit into
the main memory. We verify the accuracy of the serialized local updates
by comparing the results with the global update approach. We demon-
strate that our technique can successfully process huge meshes for appli-
cations, such as mesh compression, shape approximation, and remeshing.

1 Introduction

Recently large polygonal meshes acquired by 3D scanning devices have become
widely available. Processing these large meshes may be difficult or even impos-
sible with existing mesh processing tools running on a fixed-size main memory.
To handle large meshes, out-of-core algorithms have been introduced, where the
whole mesh is not loaded into the main memory at the same time.

A simple but effective approach for out-of-core processing is to divide a huge
mesh into several small pieces that can fit into the main memory. Then a mesh
processing tool can be applied to each piece with a small memory footprint.
Out-of-core algorithms based on mesh cutting or clustering have been proposed
for mesh simplification [1, 2, 3] and mesh compression [4, 5].

Mesh partitioning for out-of-core processing can be obtained by dividing a
large polygonal mesh into small pieces using the coordinate axes or voxel grids.
However, in this case, the partitioning result does not reflect mesh features, which
may degrade the performance of the processing. Hence, a feature-sensitive out-
of-core mesh chartification technique will be a useful tool to improve the results
of out-of-core processing.

Mesh chartification has been an active research area and used for numerous
applications, such as texture atlas generation [6, 7], shape simplification [8], and
shape decomposition [9]. Mesh chartification decomposes a mesh into charts,

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 518–529, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where each chart consists of faces with similar properties. Excellent chartifi-
cation techniques have been proposed, most of which try to generate flat and
compact charts with features aligned at the chart boundaries. Unfortunately,
these techniques assume the whole mesh can be accessed for processing at the
same time and are not directly applicable to large meshes that cannot fit into
the main memory.

In this paper, we propose a feature sensitive out-of-core chartification tech-
nique. Our technique adapts previous mesh chartification methods [7, 8] based
on Lloyd-Max quantization to partition large meshes with limited main mem-
ory. The previous methods globally update chartification at each iteration of the
Lloyd-Max quantization. In contrast, our technique locally updates the current
chartification by considering only one chart and its neighborhood at a time. The
chartification of the whole mesh is gradually updated by repeating the local up-
date. We verify with experiments that the results of our technique are as good
as those of the previous global update. As application examples, we show that
the chartification results can be effectively used for mesh compression, shape
approximation, and remeshing.

2 Related Work

2.1 Mesh Chartification

Mesh chartification techniques can be roughly classified into cluster merging and
region growing algorithms. However, all the algorithms assume that the whole
mesh resides in the main memory and cannot be used for out-of-core processing
of large meshes.

A cluster merging algorithm consists of two steps: pair selection and merging
[10, 11]. After evaluating the merging cost of each cluster pair, the algorithm
selects and merges the pair having the minimum cost. After merging, the cost
for the new cluster is updated and the process is repeated.

Lloyd-Maxquantization,which is awell-knownpartitioning algorithm,hasbeen
widely used for data clustering and quantization [12, 13]. Sander et al. [7] intro-
duced the Lloyd-Max quantization algorithm to mesh chartification, and Cohen-
Steiner et al. [8] applied Lloyd-Max quantization for shape approximation.

2.2 Out-of-Core Algorithms

Several out-of-core techniques have been developed for simplification of huge
meshes. Hoppe [1] segments a given mesh into charts and simplifies each chart
independently while preserving the boundary edges. After independent simplifi-
cation of charts, charts are merged and boundaries are simplified. Lindstrom [2]
simplifies large meshes by vertex clustering. This algorithm can simplify large
meshes with small overhead, but the connectivity and topology information are
not utilized and removed. Isenburg et al. [3] proposed a local simplification tech-
nique. At each step, a small part of the mesh is partially loaded and simplified.
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To compress large scanned meshes, Ho et al. [4] introduced an out-of-core
compression technique. The technique partitions an input mesh into several ex-
clusive charts and compresses charts independently with the Touma-Gotsman’s
algorithm [14]. The technique also maintains the gluing information to attach
neighbor charts during decompression. Isenburg et al. [5] proposed an out-of-
core data structure which is composed of small clusters. During compression,
only necessary clusters are loaded into main memory and unnecessary clusters
are released.

3 Out-of-Core Chartification

3.1 Overall Process

In this paper, we propose an out-of-core algorithm for feature sensitive char-
tification of large meshes. Our algorithm is based on Lloyd-Max quantization
for meshes [7], which consists of two steps: region growing and seed recompu-
tation. The region growing step creates a set of charts from given seeds. The
seed recomputation step computes a new seed for each chart. The two steps are
repeated in tandem until the terminal conditions are satisfied. However, for the
region growing, we have to maintain the merging costs of all faces to neighbor
regions. Thus, if an input mesh is too large to fit into the main memory, we can-
not execute chartification with such a global approach. To enable chartification
of large meshes, we propose a local update scheme for Lloyd-Max quantization.
The basic idea is to keep a partial mesh in the main memory for processing
which contains a subset of charts.

The overall process of the proposed out-of-core chartification algorithm is
illustrated in Fig. 1. At the beginning, each chart is stored independently in
a file. At the iterative optimization stage, we read and keep a few charts in
the main memory, which are the selected chart and its neighborhood. We then
update the charts in main memory by region growing similar to the original
Lloyd-Max quantization. After updating the charts, we write and remove them
from the main memory. By repeating this local update with varying selected
charts, we can simulate the global update of chartification with limited main
memory.

To bootstrap such repeating updates, we need an initial chartification. Pre-
vious methods [7, 8] randomly generate initial chartifications. In this paper, to

Fig. 1. Overall chartification process with local updates
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achieve better results, we adopt the previous out-of-core chartification based
on spatial subdivision [4, 5]. In addition, we execute post-processing to remove
annuli charts along with charts that are too small or too big.

During the region growing step, a cost function is used to determine the
conquered order of faces, and the shapes of charts are determined by the cost
function. In this paper, we use cost functions proposed in [7] and [8]. To reflect
mesh features in chartification, the cost functions incorporate the normal vari-
ations among faces. If we want other properties of charts, other cost functions
can be used without changing the framework of the proposed algorithm.

4 Local Update Algorithm

4.1 Local Update

To update a chartification with Lloyd-Max quantization, the seeds are reposi-
tioned to the centroids of the current charts and the charts are recomputed with
new seeds. In our out-of-core chartification method, the seed repositioning and
chart recomputation are locally performed on a chart and its neighborhoods (see
Fig. 2). With a local update, the boundary of the center chart is aligned with
the features and the boundaries of neighbor charts are partially updated. In
this paper, we call the previous algorithms [7, 8] the global update whereas our
method is called the local update.

(a) before (b) after

Fig. 2. Local update of chartification: In (b), tiny black triangles are recomputed seeds

4.2 Update Ratio

In practice, for the global update scheme, a few iterations are sufficient for the
convergence to optimal results [8]. Similarly, we use the number of iterations
as the stopping condition for the local update scheme. However, it is difficult
to count the number of updates in our framework. The boundaries of neighbor
charts are partially updated in a local update and thus keeping track of update
counts is not simple.

To resolve the problem, we define the update ratio of a chart. For a chart C,
the update ratio is initially zero and increased by VC with a local update, where

VC = Npn/Nn.
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Npn is the number of neighbor charts of C which has been involved in the local
update. Nn is the total number of neighbor charts of C. For example, in Fig. 2,
the update ratio of the center chart is increased by one and the update ratios
of the neighbor charts are increased by the amounts less than one. If we want
to obtain a result similar to that by n iterations of the global update, we repeat
the local update until all charts have update ratios larger than n.

4.3 Chart Selection

In the iteration of local updates, the order of charts to be selected as the center
chart influences the final result. A straightforward way is to select a chart whose
update ratio is the minimum. However, such approach does not consider the
effect of a local update on the neighbor charts and may cause over-updating of
a neighbor chart if the chart already has a large update ratio. In this paper,
we define the priority to determine the order of local updates as the average of
update ratios of a chart and its neighbors. This priority considers the overall
update ratio of a partial mesh that will be involved in a local update.

4.4 Local Update with the k-Ring Neighborhood

In Fig. 2, we only consider the center chart and its 1-ring charts for a local
update. However, when the sizes of charts are relatively small, we can store a
larger number of charts in the main memory. That is, we can process a center
chart and its k-ring neighbor charts simultaneously. In this case, the priority
to select the next chart to be processed can be computed as the average of the
update ratios of the center and its k-ring neighbor charts, which constitute the
region to be affected by a local update.

When we update a chart with its k-ring neighbor charts, the chart and its (k−
1)-ring neighbor charts are fully updated and their update ratios are increased
by one. That is, a larger number of charts are fully updated with this approach
than with the local update of 1-ring neighborhood. Consequently, we can reduce
the required number of iterations for local updates, which alleviates the overhead
by file I/O and decreases the processing time.

4.5 Boundary Straightening

Some applications of mesh chartification need smooth and compact chart bound-
aries. To provide such results, we straighten chart boundaries after chartification.
For each boundary shared by two adjacent charts, We find the shortest path from
a corner vertex to the opposite one. To enhance the performance and maintain
the shape features captured in the chartification process, a banded region is des-
ignated along the current boundary and the shortest path is calculated within
the region. The banded region is defined by the k neighborhoods of the current
boundary vertices.

Fig. 3 shows the effect of boundary straightening. Boundaries in Fig. 3(a) are
created by chartification. Fig. 3(b) is the result of straightening, which shows
smoothed boundaries.
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(a) before (b) after

Fig. 3. Chart boundary straightening

4.6 Local Minimum

Usually chartification algorithms based on region growing suffer from local min-
ima. During a chart update, a growing chart region cannot jump through high
curvature features. Suppose several seeds reside in the same region which is sur-
rounded by features in the chartification process. Then, the charts from the seeds
cannot escape the region and we are left with unnecessary charts which could
have merged into one chart. Similarly chartification cannot capture a feature if
no seed is placed in a region surrounded by the feature. To avoid such local min-
ima, Cohen-Steiner et al. [8] insert or delete charts incrementally and introduce
region teleportation, which is similar to vector splitting for scattered data [15].

In this paper, we adapt the solutions in an out-of-core way. In the local update
step, we simulate chart deletion by comparing the local chartification quality
before and after deleting a chart. The quality of a chartification can be measured
by the sum of face distances from the seeds, which will be discussed in Sec. 5.1.
If the distance sum after chart deletion is less than before, we perform the
incremental chart deletion. In that case, we also perform the incremental chart
insertion, constituting a region teleportation. To insert a chart, we place a new
seed on the face with the maximum region conquering cost.

5 Experimental Results and Applications

5.1 Chartification Comparison

Fig. 4 shows the comparison of the chartification results from global and local
update schemes. For the global scheme, we globally update all charts five times
from the initial chartification. For the local scheme, we apply the local update
to all charts one by one and repeat this process five times. Note that in the local
scheme, each chart is updated more than five times because a chart is changed
when the chart itself or its neighbor is selected as the center chart of a local
update. The cost function used for region growing is the one proposed in [7].
In Fig. 4, we can see that the chartification results of the local scheme are as
good as the global scheme even though only local information is used for chart
update.
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(a) global update (b) local update

Fig. 4. Comparison of global and local update schemes

Table 1. Comparison of chartification quality: The quality was measured by the aver-
age of the face cost sums of charts

global update scheme local update scheme
# iterations 1 2 3 4 5 1 2 3 4 5

feline 8.09 5.90 5.47 5.35 5.39 5.48 5.47 5.46 5.32 5.27
skull 73.34 63.91 61.24 59.39 59.06 58.18 57.49 57.35 57.28 57.34

Table 2. Statistics of local updates with different k-ring neighborhoods

# local max # vertices total # processing
model # faces # charts k-ring updates in memory loaded faces time

1-ring 524 44,508 9,058,446 11m 36s
dragon 800,000 300 2-ring 151 139,234 7,262,000 9m 54s
happy 1-ring 976 17,324 11,534,091 14m 3s

Buddha 1,082,760 600 2-ring 277 42,834 9,387,228 12m 27s
xyzrgb 1-ring 949 109,125 76,532,952 2h 12m 13s
dragon 7,218,906 600 2-ring 273 201,488 60,236,558 2h 2m 31s

Table 1 numerically compares the chartification quality between the global and
local update schemes. The chartification quality is measured by the average of
the face cost sums of charts. Once the chartification has been finished, each face
has the cost (distance) from the seed of the chart it belongs to. The sum of the
face costs of all charts is minimized when Lloyd-Max quantization is converged
[16]. Hence, we can consider the average of the face cost sums of charts as the
measure of the convergence for the iterative chart updates. Table 1 shows that
the local updates result in smaller values of the measure, which is natural when
we recall that a chart is updated more often with local updates than with global
updates for the same number of iterations.

In Table 2, we also compare the chartification results of the 1-ring and 2-ring
update strategies. In the experiment, the local update process was continued
until the update ratios of all charts were larger than five. Table 2 shows that the
2-ring update strategy utilizes the main memory more efficiently and as a result,
the file I/O overhead and processing time are decreased. The computation time
was measured on a Windows PC with a Pentium D 3GHz CPU and 1GB memory.
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5.2 Mesh Compression

Our out-of-core chartification technique can be used for effectively compressing
large polygonal meshes. Choe et al. [17] proposed a framework for random ac-
cessible mesh compression, where a necessary mesh part can be decompressed
without decoding other parts. By combining our out-of-core chartification tech-
nique with the framework, we can apply random accessible compression to large
meshes that cannot fit into main memory.

To achieve a good compression ratio in the random accessible mesh com-
pression framework, two properties of charts are important: planarity and com-
pactness. Planar charts enable effective prediction in geometry encoding and
shorter chart boundaries help achieve a better compression ratio. Hence, for the
chartification for random accessible mesh compression, we use the cost function
proposed in [7]. In Fig. 5, the first column shows the chartification results for
the compression framework. In the experiments, local updates were performed
until the update ratios of all charts were larger than five.

Table 3. Statistics of compression examples: The compression ratios were obtained
with the random accessible mesh compression framework [17]

compression ratio (bit/v)
model # vertices # charts with spatial subdivision with our approach

connect. geometry total connect. geometry total
dragon 400,000 271 2.04 16.71 18.75 1.99 16.58 18.57

happy Buddha 541,366 581 2.57 20.99 23.56 2.55 20.73 23.28
xyzrgb dragon 2,933,046 578 0.99 5.86 6.85 0.93 5.71 6.64

lucy 14,027,868 1,184 2.07 16.06 18.13 2.05 15.67 17.72

Table 4. Timing data of mesh compression examples: The chartification was obtained
with the cost function proposed in [7]

initial iterative
model # vertices # charts chartification local update compression

dragon 400,000 271 5m 9s 10m 43s 1m 20s
happy Buddha 541,366 581 6m 50s 13m 12s 1m 40s
xyz rgb dragon 2,933,046 578 1h 55m 2h 30m 7m 45s

lucy 14,027,868 1,184 3h 15m 8h 55m 32m 30s

The compression results for several models are summarized in Table 3. To
show the effect of chartification on the compression framework, we compare the
compression results from the chartification obtained by spatial subdivision and
the chartification obtained by our technique. We can see that the compression
ratio is improved for every example because our chartification is better in terms
of planarity and compactness of charts. Table 4 shows the timing data for mesh
chartification and compression, which were measured on a Windows PC with a
Pentium D 3GHz CPU and 1GB memory.
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Fig. 5. Chartification and shape approximation results: The first column shows the
chartification results for compression, the second column shows the chartification re-
sults for shape approximation, and the third column shows approximation meshes

5.3 Shape Approximation

Cohen-Steiner et al. [8] proposed an excellent shape approximation technique
which obtains an approximation mesh from the original mesh using mesh
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Table 5. Timing data of shape approximation examples: The chartification was ob-
tained with the cost function proposed in [8]

initial iterative approximation
model # vertices # charts chartification local update mesh generation
dragon 400,000 789 5m 9s 10m 50s 2m 5s

happy Buddha 541,366 1,472 6m 50s 15m 30s 2m 54s
xyz rgb dragon 2,933,046 709 1h 55 m 3h 35 m 16m 31s

lucy 14,027,868 1,615 3h 15 m 31h 30 m 1h 56m

chartification. In this technique, the vertices, edges, and faces of an approx-
imation mesh correspond to the corner vertices, chart boundaries, and chart
interiors, respectively. Our out-of-core chartification method can be used to ex-
tend the shape approximation technique to process huge meshes. The resulting
approximation mesh will nicely reflect the features of the original mesh. Note
that the previous out-of-core mesh partitioning based on spatial subdivision [4]
is not proper for this purpose because it does not generate feature-sensitive
chartification.

In [8], to approximate a chart with a plane, the normals of faces in a chart
should be similar to each other. Hence, the cost function used for region growing
in [8] measures the variation of a face normal from the representative normal
of a chart. In Fig. 5, the second column shows the chartification results with
this cost function and the third column shows the shape approximation results.
Table 5 shows the timing data of the shape approximation examples. Again, in
the experiments, the local update process was continued until the update ratios
of all charts were larger than five.

5.4 Remeshing

Our feature sensitive out-of-core chartification technique can be used to pre-
form effective remeshing of very large meshes with limited memory. Once char-
tification has been obtained for a given mesh, we keep the chart boundaries
and just modify the sampling and connectivity of inner vertices of each chart

(a) before (b) after

Fig. 6. Remeshing example
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during the remeshing process. With this approach, we can expect to obtain a
remeshing result that nicely preserves the features of the original mesh because
the chart boundaries are aligned with high-curvature features. For remeshing of
chart interiors, we adopt the explicit surface remeshing technique [18], which can
separately remesh chart interiors while keeping the chart boundaries.

Fig. 6 shows an example. In Fig. 6(b), the mesh generated by the remeshing
has a simple and regular structure. Although we have reduced the size of the
given mesh by a half, the new mesh still contains the original shape features.
In addition, no artifacts are visible around the boundaries between charts even
though each chart has been remeshed independently.

6 Conclusion and Future Work

In this paper, we introduced a feature sensitive out-of-core chartification tech-
nique for large polygonal meshes. To process huge meshes, our out-of-core al-
gorithm keeps only a partial mesh in the main memory at a time and locally
updates chartification. To verify the validity of our approach, we showed that
the results of our local update scheme are as good as the previous global update
scheme.

In the current implementation, after each local update, updated charts are
written to the hard disk and released from the main memory although some of
them can be used for successive chart updates. If we maintain a cache of charts in
the main memory, we will be able to reduce the overhead by unnecessary file I/O.
The design of a cache structure for the charts which improves the performance
of out-of-core chartification is an interesting future work.
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Abstract. In this paper, we propose a new method for simulating reactive mo-
tions for motion capture animation. The goal is to generate realistic behaviors 
under unexpected external forces. A set of techniques are introduced to select a 
motion capture sequence which follows an impact, and then synthesize a be-
lievable transition to this found clip for character interaction. Utilizing a parallel 
simulation, our method is able to predict a character's motion trajectory under 
dynamics, which ensures that the character moves towards the target sequence 
and makes the character’s behavior more life-like. In addition, the mechanism 
of parallel simulation with different time steps is flexible for simulation of mul-
tiple contacts in a series when multiple searches are necessary. Our controller is 
designed to generate physically plausible motion following an upcoming mo-
tion with adjustment from biomechanics rules, which is a key to avoid an un-
conscious look for a character during the transition. 

1   Introduction 

Reproducing human motion with realistic responses to unexpected impacts in a  
controllable way is challenging work in motion synthesis. Data-driven character ani-
mation, such as those based on motion capture or keyframed data can produce very 
natural-looking animation. Although there are some available techniques for editing 
and modifying existing data, data-driven techniques are not suitable for modeling the 
complex interactions between dynamically interacting characters. Under certain cir-
cumstances, for example, creating a believable response following an unexpected 
impact, modifications are particularly difficult. In our paper, we present a novel 
method for incorporating unexpected impacts into a motion capture animation 
through physical simulation. This process determines the best plausible time to return 
the character to an available motion from the motion library for the remainder of the 
dynamic response to the interaction. 

2   Previous Work 

Previous work on synthesizing complex animation has concentrated on either  
reproducing animation from motion data by kinematics, or by physically modeling the 
interacting characters using dynamics. A number of researchers focused on techniques 
that synthesize new motion by processing and editing existing motion. Motion  
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blending is the simplest motion editing technique, and it is widely used to perform 
transitions between motion segments [1, 2]. Some later researchers explored more 
complicated blending weights to produce better transitions and create parameterized 
motions by interpolating between the example motions [3, 4]. Kovar et al. [5] pre-
sented an approach for generating controllable motion by constructing a motion 
graph. Our motion search method is similar to these efforts; however, we compare the 
initial simulated trajectory with motion capture sequences from motion library, based 
on a simplified distance metric by decreasing the numbers of joints in frame-to-frame 
comparison. 

A number of researchers have used physical simulation to generate motion for a 
wide variety of human behavior. Physical controllers have been successfully designed 
for specific human motions such as walking, running, vaulting, cycling, etc [6, 7]. 
Faloutsos et al. [8] introduced a composition framework to create many basic behav-
iors, such as balancing, falling, standing, sitting and these work in conjunction with a 
virtual stunt person. However, because of the complexity of dynamic controller de-
sign, and the lack of rules for human motion, it is difficult to achieve robust results by 
using only physics without the guide of motion data. 

A small number of researchers presented an approach that combined physics and 
motion capture data with goals similar to ours’. Oshita and Makinouchi [9] used a 
tracking controller on inputting motion data to simulate the motion of a human when 
heavy luggage was suddenly attached to the back of the body. Similar work presented 
by Shapiro et al. [10] and Mandel [11] introduced hybrid methods, which allowed a 
character to be controlled to switch between physical simulation and kinematic mo-
tion data whenever necessary. The most closely related work was presented by Zor-
dan et al. [12]. Zordan and his colleagues utilized a passive and active simulation to 
generate physical plausible motion, which depended upon a rewinding mechanism 
and then blended with the final motion. In their work, the results reported focused on 
heavy contact with burst impact and showing limited contacts of interactions. Con-
versely, we use a parallel simulation process to allow the simulated character to re-
ceive multiple contacts in series, providing more flexible opportunities for characters 
to be actively controlled between simulation and motion capture data. 

3   Dynamics Model 

To create believable responses and generate realistic motion conform to laws of phys-
ics, we first have to set up a dynamics model according to motion capture data. We 
map the recorded data to the character with an articulated model. The virtual character 
is presented as an articulated figure of a series of body parts connected by joints. The 
character we choose includes 15 joints; the same number of joints is used in our ki-
nematic model. Each joint is specified as either a revolute or a spherical joint, with 
one or three degrees of freedom respectively . The size of each part of the character’s 
body is determined by its skeleton from motion capture data. Stretchy tissues such as 
tendons and ligaments, which cause passive spring and damper forces around joints, 
are accounted in our dynamics model. Tendons and ligaments act as spring-like ele-
ments that dampen motion. It is worth noting that these passive generalized forces are 
used extensively in natural locomotion to reduce energy consumption, increase  
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stability and simplify the control [13]. Each joint is attached with a linear spring  
and damper. We use the freely available NovodeX physics SDK to simulate rigid 
body dynamics and resolve collisions between the simulated characters and the  
environments. 

Under normal conditions, the character animates according to the motion capture 
data, such as walking and running. At the same time, our system detects and reports 
contacts between the characters and environments. Physical simulation is required 
when the effects of a collision or impulse change the character’s state. The momen-
tum of the character is preserved when it switches from motion data to physical simu-
lation, so that the motion can be exchanged smoothly. 

4   Motion Search 

Once a response is generated and the motion is to switch into physical simulation, we 
have to search for a transition-to motion capture sequence from our motion library, 
which can be used both as the target motion for our physical simulation and the se-
quence to play following the impact as soon as possible. Our motion search depends 
on the following two processes: simulated trajectory prediction and motion selection. 

4.1   Simulated Trajectory Prediction 

In the first step of motion search, a simulated trajectory should be obtained for motion 
comparison. Unfortunately, it can not be achieved until the simulation is finished. To 
solve this conflict, a parallel simulation mechanism is used with one special simula-
tion process to forecast the simulation results and obtain the simulated trajectory. This 
prediction simulation, which starts at the same time as normal simulation, has a rela-
tive small time step compared to normal simulation (a 0.0016 seconds time step in 
most of our examples). We use multithread in implementation. Two identical scenes 
are created, so that they do not interact with each other. Therefore, we do not need to 
rewind back and conduct a secondary simulation, and our approach is feasible to 
simulate multiple contacts in series. After obtaining the simulated trajectory, we com-
pare the simulated data with the sequences in our motion library to find the desired 
sequence, as well as the precise time and root transformation which aligns the found 
sequence with the simulated trajectory.  

4.2   Motion Selection 

Our search algorithm is similar to those suggested previously for reordering motion 
capture data in the motion comparison. As motion comparison is the most time- con-
suming part of this kind of system, we ignore some of the joints (such as wrists and 
ankles) in our calculation comparison, which have less influence in frame-to-frame 
motion, to reduce the time consumption.  In our motion search, the distance metric is 
modeled most closely to the one introduced by Kovar et al. [5]. The distance metric, 
D(fs, fm) is computed between the simulation and test motion capture sequences using 
joint positions of the poses in a small transition time window starting at fs0 and fm0. 
The purpose of computing the metric over a window of frames is to ensure that  
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velocity mismatches between the two frames are penalized in the calculated metric. 
The size of the window is chosen as the amount of time of a typical transition. Within 
windows, the distance function for pairs of frames fsi and fmi is computed as the 
weighted sum of distances between the positions and orientations of matching body 
parts. The distance between two windows is found as the sum of distance between the 
corresponding frame pairs. The metric is shown as following equation:  
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Where ws is the size of the transition window, J is the number of joints in the charac-
ter (Because ankle, wrist and neck joints have been ignored, only J-5 joints are used 
for distance calculation), Pj(fsi) is the global position of joint j at frame fsi and j(fsi) is 
the orientation. The weights wpj and w j scale the linear and angular distance for each 
body. As differences in the positions of the limbs can be more easily modified when 
computing the transition motion, we assign high weights to the trunk parts and use 
lower ones for limbs. And T(fs0, fm0) is the coordinate transformation that aligns the 
roots in the first frames of each window. To increase the efficiency of the search func-
tion, we simplified the distance metric calculation by decreasing the numbers of joints 
in frame comparison. In addition, the metric is computed as a weighted sum of dis-
tances between the positions and orientations of each joint rather than sum of squared 
differences. 

5   Reactive Human Motion Simulation 

While searching the desired next-play motion capture sequence, it is necessary to 
generate reactive motion to fill in the gap between the two motion capture sequences 
before and after the transition. This transition motion should be computed in a physi-
cally plausible manner which is consistent with the found motion and meet the desired 
state as closely as possible.  

5.1    Physical Simulation of Human Motion 

We use a parallel simulation mechanism, as previously described, to predict the simu-
lated trajectory as well as generate the final simulated motion. The predicted trajec-
tory is used to find the target motion capture sequence. At the same time, we create a 
normal simulated motion by using a joint-torque controller, which is informed the 
target motion sequence. Most of the time in physical simulation, the torque controller 
follows a blended sequence of joint angles, blend, from the previous motion capture 
segment to the next. The controller uses a typical PD-servo at each joint to compute 
torques as 

( ( ) ) ( )s blend cur d curk t kτ θ θ θ= − − −  (2) 

Where ks and kd are stiffness and damping gains respectively. The stiffness gain con-
trols the strength of the spring while the damper gain adjusts how smoothly the joint 
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arrives at the desired value. To fit different state requirements, these gains are not set 
fixed values any more in the transition, for example, falling sideways has lower gains 
for shoulder joints than falling forward does. cur and 

cur
θ correspond to current joint 

angles and velocities. The desired sequence to be tracked by the controller, blend(t), is 
generated on the fly by blending the intermediate postures from the two motion cap-
ture sequences before and after the transition. By using this dynamic controller, the 
simulated motion follows the blending trajectory, moving toward the desired body 
posture over the course of the transition gap. However, human body usually displays a 
remarkable ability to quickly respond to unexpected impacts and generates protective 
behaviors to avoid injury when a loss of balance occurs, such as corrective steps to 
keep balance. It would behave unrealistically to let the character just follow the blend-
ing trajectory. 

5.2    Biomechanics Inspired Adjustment  

In order to make the character behave more lifelike, we add some active control for 
generating physically plausible recovery responses and protective behaviors inspired 
from biomechanics lecture. The main action is to absorb the shock of the impact by 
using arms. Researchers in the biomechanics community have looked at unexpected 
and trained responses to slips induced by various perturbations[14, 15].  

In our design, we focus our active control on upper limbs. Because the aim of this 
work is not to respond to small impacts that could be resolved with a corrective step 
or other reactive responses, we make no attempt to use the ankle and hip strategies 
commonly used by humans to maintain balance under small perturbations. Addition-
ally, we do not expect the simulation to return to a balanced posture but try to switch 
back to appropriate motion sequence. So, the control problem is simplified. We gen-
erate reactive responses and protective behaviors consistent with the upcoming mo-
tion in three phases: reactive recovery, protective response and posture  
settling.  

After an unexpected impact, arms are actively controlled to track the predicted 
landing location of the body and generated protective behaviors to avoid injury. The 
control strategy is similar to those generated protective behaviors by using continuous 
pose controller [11]. Controlling the arms actively is to intersect the wrists with the 
line between the shoulder and its predicted landing position. Therefore, the accuracy 
of predicted falling direction of the character and the corresponding shoulder landing 
position is very important to produce natural behaviors. Benefited from our parallel 
simulation, the predicted trajectory of a character could be obtained accurately. The 
relative angels of the shoulder joint are determined by the vector 

1humerus
V  and 

2 humerus
V  as 

illustrated in Figure 1. 
Lastly, the controller tries to drive and settle the character to the desired posture of 

the found motion capture sequence following the intermediate blended sequence. 
From the physics-based simulation we generate a believable response motion, and 
then smoothly transfer this motion into the target sequence. We blend this motion 
with the found motion sequence by using interpolation to remove remaining  
discontinuities. 
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Fig. 1. An illustration of how the target joint angles of the shoulder are determined during a fall 

6   Experimental Results 

By using the system described, we implement a number of experiments to evaluate 
the feasibility of our system under a variety of initial conditions.  Figure 2 shows a 
set of reactive responses when a character falls down after encountering an unex-
pected obstacle. During the falling process, arms of the character are controlled to 
generate convincing human behaviors: arms are rapidly elevated backward and 
outward in an attempt to stabilize the forward displaced COM after collision, and 
then adjust to track the predicted landing location of the body and generate protec-
tive behaviors to avoid injury. Figure 2 also shows a side-by-side comparison of 
the biomechanical inspired controller with the ordinary PD controller. The control-
ler, with biomechanical adjustment, generates more realistic behaviors during  
impacts.  

 

Fig. 2. A side-by-side comparison of the biomechanical inspired controller driven behaviors 
with ordinary PD controller 

(a) Biomechanical inspired controller driven behaviours 

(b) Ordinary PD controller driven behaviours
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7   Discussion and Conclusions 

In this paper, we present a method to select a motion capture sequence designed to 
follow an impact and synthesize a believable transition to this found clip for interact-
ing characters. The prediction of initial simulated trajectory is vital to smoothly per-
form a transition from physical simulation to motion capture data. The posture of the 
simulated character after an impact can not be easily predicted, because interactions 
and external forces with the environment are different in every impact. One of the 
contributions of our work is the adoption of parallel physical simulation, which helps 
to find the target motion capture sequences and generate simulated motion to fill the 
gap between the beginning of an interaction and the time before transition-to clip is 
played. The search for target motion sequences is critical to ensure our simulated 
motion in a conscious way.  

Although our approach has been effective on generating realistic and dynamic mo-
tion, there still remain several areas for improvement. First, our controller was de-
signed to generate physically plausible motion following an upcoming motion with 
adjustment from biomechanics rules, which is a key to avoid an unconscious look for 
a character during the transition. These biomechanical-based characteristics can adjust 
the simulated motion in a physical manner consistent with the upcoming motion. 
However, they are limited when the simulated character is actively controlled to re-
spond to external perturbations inconsistent with the motion moving towards the de-
sired posture. Additionally, our controller is able to generate protective behaviors 
when a complete loss of balance occurs in simulation. However, it can not account for 
taking corrective steps that could keep balance. Nevertheless, we provide a good 
initialization of generating physical and reactive response for interacting characters, 
which can be further improved by other animation approaches. 

Acknowledgements 

Many thanks to all reviewers for helping us improve this work and its presentation, to 
Dr. Rynson W.H. Lau and Dr. Weidong Geng for their helpful discussion and re-
marks. This research work is co-founded under Project 973 (grant NO: 
2002CB312100), NSFC (grant NO: 60533080) and Microsoft Research Asia (MSRA) 
Regional Theme Project 2005. 

References 

1. Lee, J.,Shin, S.Y.: A hierarchical approach to interactive motion editing for humanlike 
figures. the 26th Annual Conference on Computer Graphics and Interactive Techniques, 
(1999) 39-48 

2. Witkin, A.,Popovic, Z.: Motion warping. the 22nd Annual Conference on Computer 
Graphics and Interactive Techniques, (1995) 105-108 

3. Gleicher, M.: Comparing constraint-based motion editing methods. Graphical models, 
Vol.63 (2001) 107-134 

4. Park, S.I., Shin, H.J.,Shin, S.Y.: On-line locomotion generation based on motion blending. 
the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM 
Press, (2002) 105-111 



 Simulating Reactive Motions for Motion Capture Animation 537 

5. Kovar, L., Gleicher, M.,Pighin, F.e.e.: Motion graphs. ACM Transactions on Graphics, 
Vol.21 (2002) 473-482 

6. Hodgins, J.K., et al.: Animating human athletics. ACM Computer Graphics,(1995) 71-78 
7. Wooten, W.L.: Simulation of Leaping, Tumbling, Landing, and Balancing Humans. Doc-

toral thesis. Georgia Institute of Technology (1998) 
8. Faloutsos, P., Panne, M.v.d.,Terzopoulos, D.: Composable controllers for physics-based 

character animation. ACM SIGGRAPH 2001. ACM Press, (2001) 251-260 
9. Oshita, M.,Makinouchi, A.: A dynamic motion control technique for human-like articu-

lated figures. Eurographics 2001, (2001) 192-202 
10. Shapiro, A.,Pighin, F.: Hybrid control for interactive character animation. the 11th Pacific 

Conference on Computer Graphics and Applications, (2003) 455-461 
11. Mandel, M.: Versatile and interactive virtual humans: Hybrid use of data-driven and dy-

namics-based motion synthesis. Master's thesis. Carnegie Mellon University (2004) 
12. Zordan, V.B., et al.: Dynamic response for motion capture animation. ACM SIGGRAPH 

2005. ACM Press, (2005) 697-701 
13. Liu, C.K., Hertzmann, A.,Popovi´c, Z.: Learning Physics-Based Motion Style with Nonlin-

ear Inverse Optimization. ACM Transactions on Graphics, Vol.24 (2005) 1071-1081 
14. Hsiao, E.T.,Robinovitch, S.N.: Biomechanical influences on balance recovery by stepping. 

Journal of Biomechanics, Vol.32 (1999) 1099-1106 
15. Rogers, M.W., et al.: Triggering of protective stepping for the control of human balance: 

age and contextual dependence. Congitive Brain Research, Vol.16 (2003) 192-198 



H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 538 – 545, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Real-Time Shadow Volume Algorithm  
for Subdivision Surface Based Models 

Min Tang1, Jin-Xiang Dong1, and Shang-Ching Chou2 

1 College of Computer Science, Zhejiang University, 
310027, Hangzhou, China 

{tang_m, djx} @zju.edu 
2 Computer Science Department, Wichita State University,  

67260-0083, Wichita, KS, USA 
chou@cs.wichita.edu 

Abstract. This paper presents a purely hardware-accelerated shadow volume 
algorithm for subdivision surface based models. By introducing SP (subdivision 
patterns), all procedures, including subdivision evaluation, silhouette extraction, 
shadow volume generation, and shadow rendering are executed on GPU 
(Graphics Process Units) efficiently. This not only alleviates the burden of 
CPU, but also guarantees the consistency of data among different processing 
stages. This also makes it possible to integrate some special effects imposed by 
other shaders, e.g., displacement mapping or vertex texturing, with the shadow 
volume algorithm. Experiments show that the algorithm is efficient, robust, and 
can be easily extended to other subdivision schemes and parametric surfaces. 

1   Introduction 

Shadows emphasize the direction of light source, make the related position of objects 
obvious, and enhance the reality of scenes. The shadow algorithms can be categorized 
mainly into two groups: shadow mapping and the shadow volume techniques. The 
shadow mapping method [ ] is an image space algorithm. Its accuracy/resolution is 
limited by the size of the shadow map. The shadow volume algorithm was first  
proposed by Crow [2] and is an object space algorithm. For its high accuracy, it has 
become the de factor standard of shadow generation algorithms. With the gradual evo-
lution of graphics hardware, many researchers have made improvements on the 
shadow volumes algorithm to boost its efficiency and to enhance its robustness.  
The shadow volumes algorithm is composed by following stages: silhouette extraction, 
shadow volume generation, stencil buffer updating, and shadow rendering based on the 
stencil buffer. In [3], the Z-Fail algorithm is used to overcome the disturbance caused 
by the font clipping plane which occurs frequently in the Z-Pass algorithm, and a two-
sided stencil test is taken to improve the efficiency of stencil buffer updating. 

Currently, all the extensions of the original shadow volume algorithm are mainly 
focus on dealing with polygonal models, the curved models defined by parametric 
surfaces or subdivision surfaces have to be converted to facet models before being 
processed. 
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Our contribution: We use Subdivision Pattern (SP) as a tool to build a purely hard-
ware-accelerated shadow volume algorithm for subdivision surface based models. By 
using SPs, the whole pipeline, including subdivision surface evaluation, silhouette 
extraction, shadow volume generation, and shadowed scene rendering, are fulfilled on 
GPU. The only data needs transferred from CPU to GPU are the control meshes. No 
read-back is needed. All the data used in the difference stages are stored on GPU. 
This not only ensures the data consistency, but also avoids the communication latency 
between CPU and GPU. Another benefit of our method is that other special effects 
imposed by GPU shaders, e.g., displacement mapping or vertex texturing, can be 
integrated naturally and efficiently. This is hard for previous methods. 

Organization: We first review the related work in Section 2. Then we present an 
overview of our shadow algorithm (Section 3). As an important component of our 
algorithm, the silhouette extraction method on GPU is discussed in Section 4. A com-
parison with previous GPU based silhouette extraction methods will also be made in 
this Section. Then the shadow volume generation method is presented in Section 5. 
The implementation details and some experiment results will be presented in Sec-
tion 6. Conclusions are drawn in Sections 7. 

2   Related Work 

With the maturation of modern GPU, especially its programmability, researchers are 
striving to implement the whole lifecycle of the shadow volume algorithm on graph-
ics hardware. In [4], the stages including silhouette extraction and shadow volume 
generation, which are formally implemented on CPU, have been integrated into a 
purely hardware-accelerated algorithm. But for lacking a fast data read-back mecha-
nism from GPU to CPU, its efficiency is limited. Paper [5] presents an implementa-
tion of the shadow volume algorithm on GPU using Cg. All the edges are drawn as 
degenerated quadrangles. In a vertex shader, silhouette edges are identified, and the 
corresponding quadrangles are extended to shadow volumes. It can render shadowed 
scenes at an interactive speed. [6] presents a good survey about shadow volume algo-
rithms, and also discusses some implementation details with OpenGL and DirectX. 
All the above methods focus on polygonal models. For curved models, they must be 
facetted before being processed. 

Subdivision surfaces are widely used in Computer Graphics and Computer Anima-
tion fields. Subdivision surfaces have been used as a primitive in many graphics ap-
plications. So it makes sense to study the real-time shadow volume algorithm for 
subdivision surface based models. 

Recently many works are focus on subdivision on GPU. Then the resultant can be 
directly used for rendering [7, 8, 9]. In [10], a mesh refinement method using vertex 
shaders is proposed. By using the local information on vertices, the PN surfaces can 
be implemented on various graphics hardware. But it is hard to further processing on 
the refined data. 

3   Overview 

Modern GPU is fast at processing stream data, i.e. at executing the same function on 
every element of the input data set and produce an output data set. On a stream  
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processor, the function is called “Kernel”, and the data set is called “stream”. For our 
application and many other GPGPU applications, it is beneficial to make abstractions 
on the concepts likes vertices, pixels or fragments. It will simplify our design; make 
the design comprehensible and easy for implementation and extension. Fig. 1 shows 
the Kernels we have used: 

Subdivision 
Surface 

Evaluator

Silhouette 
Marker

Silhouette 
Extractor

Shadow 
Volume 

Generator

 

Fig. 1. The Kernel chain involved 

1. Subdivision surface evaluator evaluates the input subdivision surfaces based on 
Subdivision Patterns and produces a vertex texture containing limit positions. 

2. Silhouette marker determines the silhouettes and marks them into a flag texture. 
3. Silhouette extractor extracts the silhouettes from the vertex texture and the flag 

texture. Result is stored into a silhouette texture. 
4. Shadow volume generator generates shadow volumes from the silhouette texture. 

3.1   Algorithm Flowchart 

Our shadow algorithm has following steps: 

1. The control mesh of the subdivision surface based model is broken into patches. 
The data of each patch will be sent to Kernel “Subdivision Surface Evaluator”.  

2. Kernel “Subdivision Surface Evaluator” will use SP (Subdivision Pattern) as a tool 
to generate a vertex texture containing the refined model. 

3. Kernel “Silhouette Marker” and “Silhouette Extractor” take the vertex texture as 
input and produce a silhouette texture containing silhouette information. 

4. Kernel “Shadow Volume Generator” will extrude the silhouettes to shadow vol-
umes.  

5. Then the shadow volumes will be used for shadow rendering. 

3.2   Patching the Control Mesh 

The control mesh is broken up into many patches on CPU. Each patch will be proc-
essed independently. If irregular vertices exist, we need to apply at most two subdivi-
sion operations on the initial control mesh to isolate the irregular vertices. By doing 
so, there is at most one irregular vertex in each patch. A patch consists of a quadran-
gle or a triangle and their surrounding vertices. For Catmull-Clark subdivision, if all 
vertices are regular (i.e., their valences equal to 4), we need to store 16 control points 
for a patch. For Loop subdivision, a regular patch (all vertices with valence equal to 
3) consists of 12 control points. We generate one patch for each facet of the control 
mesh. 
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3.3   Subdivision Pattern (SP) 

For a particular subdivision scheme, a specified subdivision level, and the valence of 
the irregular vertex (if any), we construct a corresponding SP. A SP is a mesh defined 
in unit space. It contains topological information and parametric information. Vertices 
of a SP store parametric information and combination coefficients calculated from the 
parameters. For the Loop subdivision, the vertices of SP contain the barycentric coor-
dinates (u, v, w), where 0 <= u <= 1.0, 0 <= v <= 1.0, 0 <= w <= 1.0, and u+v+w = 
1.0, and also coefficients calculated from the coordinates. For Catmull-Clark subdivi-
sion, data on SP are similar: parameters (u, v), where 0 <= u <= 1.0, 0 <= v <= 1.0, 
and coefficients calculated from the parameters. 

We pack the parameters and coefficients into textures, and make them accessible 
for the Kernels running on GPU. In our application, Kernel “Subdivision Surface 
Evaluator” will use the coefficients. 

3.4   Kernel: Subdivision Surface Evaluator 

For a Catmull-Clark subdivision surface, we use the analytic evaluation method in 
[11]. By projecting the control points into the eigenspace, the limit position can be 
calculated as the weighted combination of the projected control points: 
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where A  is the subdivision matrix, X is the matrix of eigenvector of A , and Λ is 
the diagonal matrix of eigenvalues. To accelerate the computation, we packed the 
terms which are independent of the control points into ),( vuWeight . We have: 
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All the ),( vuWeight  are pre-calculated according to the parameters (u, v) stored on SP.  

The combination of control points and the weights will be performed in the kernel. 

4   Silhouette Extraction on GPU 

Silhouettes are critical for shadow volume generation. What we need are silhouettes 
linked correctly in 3D space. We designed two Kernels “Silhouette Marker” and “Sil-
houette Extractor” to fulfill the task. Kernel “Silhouette Marker” finds out silhouettes 
and uses flags to mark correct link direction. Kernel “Silhouette Extractor” links the 
silhouettes correctly based on the flags. 

The limit vertex attributes of the subdivision surfaces produced by Kernel “Subdi-
vision Surface Evaluator” are organized in regular girds – limit vertex textures. They 
are the input of Kernel “Silhouette Marker” and Kernel “Silhouette Extractor”. 

4.1   Kernel: Silhouette Marker 

For a vertex A in the vertex texture, by symmetry, we only need to consider its con-
nections with the adjacent vertices B, C and D (Fig. 2). We draw a rectangle of the 
vertex texture size on the screen, and the Kernel works on each fragments of it. We  
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A

C
B D

 

Fig. 2. Connections between vertex A and its adjacent vertices in the vertex texture 

use visibility rules to test whether an edge is a silhouette, we also take its orientation 
into consideration. All the information will be save in a flag texture. We use the RGB 
three channels to save the flags for AB, AC, and AD respectively. 

4.2   Kernel: Silhouette Extractor 

After we have identified all the silhouettes and also their connection information, we 
have to link them correctly. To do this efficiently on GPU, we developed a method 
similar to image scaling.  Our approach is to scale the vertex image by a factor of 2 in 
each dimension. We will generate a silhouette texture based on the vertex texture and 
the flag texture. 

Four new vertices A’, B’, C’ and D’ are generated for a vertex A in the vertex im-
age as shown in Fig. 3. A’ is set to A. If AB is marked as a silhouette, then B’ is set to 
B. Otherwise B’ is set to A, so A’B’ shirks to a degenerated edge (AA). Similarly, if 
AC is marked as a silhouette, C’ is set to C, otherwise C’ is set to A. if AD is marked 
as a silhouette, D’ is set to D, otherwise D’ is set to A. 

A B

DC

A

C D

B

 

Fig. 3. New vertices generated by scaling 

Since we marked reverse flags in the flag texture, the situations become more com-
plex. First we exclude the situation where AB, AC and AD all are silhouettes. It is 
incorrect in topology. So there are at most two silhouettes at the same time. Then we 
have enough space to store all the silhouettes, as shown in Fig. 4. 

A B

DC

A =A

C =B D =A

B =D

 

Fig. 4. An example of silhouette extraction (left: input in the vertex texture and the flag texture, 
right: Output in the silhouette texture) 
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5   Shadow Volume Generation 

After we got the silhouettes, it is easy to construct shadow volumes from them. The 
extrusion operation for generating new vertices is shown in following equation: 

∞−+= *)( OXXY  (3) 

Here X is vertices on silhouettes, O is the light position. 

5.1   Kernel: Shadow Volume Generator 

Kernel “Shadow Volume Generator” is designed to do the extrusion on GPU. The 
procedure is similar to scaling the silhouette textures to size 2x1. All the information 
about shadow volumes is stored in shadow volume textures. The data on a shadow 
volume texture can be classified as two parts: the left are vertices on silhouette lines 
and the right are vertices extruded from them. The data layout is shown in Fig. 5. 

For valid silhouettes, edge AB holds BA ≠ , so the quadrangle AA’B’B is part  of  
a shadow volume. For a degenerated edge AB, where BA = , a quadrangle AA’A’A 
degenerated to a line will be extruded. All degenerated quadrangles will be filtered 
out when rendering in fill mode. 

 

Fig. 5. Data layout on a shadow volume texture 

6   Implementation and Results 

We have implemented our algorithm using a NVIDIA GeForce 6800LE GPU (AGP 
8x, 128 MB) on Windows XP/VC++/OpenGL platform. We use Cg to write shaders. 
We use OpenGL extension, FBO (Framebuffer Objects), to render data to textures. 

The left part of Fig. 6 demonstrates the process procedures for models with irregu-
lar vertices. The model has many irregular vertices (valences equal to 3). Two initial 
subdivision operators are needed to isolate the irregular vertices. Here some new 
irregular vertices are generated. The valence of the central vertex is 12. The right part 
of Fig. 6 shows the integration with displacement mapping. A star is stored in the 
displacement map. Its FPS is about 20. The shadow volumes are displayed in trans-
parent mode.  
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Fig. 6. Results of our implementation 

One thing to note is our implementation is far from optimal. There are still spaces 
for improvement. So the results are provided only for reference. More pictures, AVI 
files, source code of shaders, and executable demo program are downloadable from 
this link: http://www.cs.wichita.edu/~tang/RTShadow/rtshadow.htm. 

7   Conclusions 

We propose a serial of Kernels to make the tasks including subdivision surface 
evaluation, silhouettes marking and extraction, shadow volumes generation and ren-
dering are implemented fully on graphics hardware. By implement the whole pipeline 
of shadow volume algorithm for subdivision surface based models, the data can be 
processed efficiently and accurately. It has been proved that our algorithm can be 
easily incorporate with other GPU based effects, i.e. displacement mapping. 

With the rapid evolution of graphics hardware, we can expect the efficiency of our 
method can be further prompted, and can be used for real-time graphics applications 
such as computer game, computer animation, etc. 
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Abstract. A model-based method is proposed in this paper for 3-dimensional 
human motion recovery, taking un-calibrated monocular data as input. This 
method is designed to recover smooth human motions with high efficiency, while 
its outputs are guaranteed to resemble the original motion not only from the same 
viewpoint the sequence was taken, but also look natural and reasonable from any 
other viewpoint. The proposed method is called “Motion trend prediction 
(MTP)”. To evaluate the accuracy of the MTP, it is first tested on some 
“synthesized” input. After that experiments are conducted on real video data, 
which demonstrate that the proposed method is able to recover smooth human 
motions from their 2D image features with high accuracy. 

1   Introduction 

Animation is the production of consecutive images, which, when displayed, conveys a 
feeling of motion [1]. In the past decade, with the rapid development of computer 
technology, computer animation, especially the representation of human body and its 
motion have received great attention, since human animation is quite popular and 
widely employed in many areas, such as games, movies, surveillance, scientific 
visualization, etc. As monocular images and video sequences are easily available, 
many great efforts have been made to reconstruct 3D human motion from them.  

Taylor and Remondina et al. suggested adjusting the posture of a human model 
according to camera calibration information and biomechanical constraints applied on 
the model [2] & [3]. Only orthographic projection is discussed in their approaches. 
Liu et al. and Park et al. made use of the motion library [4] & [5]. In both attempts, a 
large motion library needs to be maintained and updated consistently. In [6] David et 
al. introduced an interactive system which combines biomechanical constraints on 3D 
motion with user interferences to reconstruct motion sequences in 3D. Similarly three 
possibilities for solving inverse kinematics problem during human animation are 
discussed where direct user interferences are involved [7]. Zhao et al. proposed a 
Global Adjustment (GA) system for posture reconstruction [8], where the accuracy 
and the consistency of the recovered postures are only guaranteed in the same viewing 
direction as the original.  

Most existing methods introduce simplifications on human motion or require 
assistance such as user interference, motion library, or multiple cameras are requested 
to gather sufficient information about the original motion. This paper aims to propose 
a novel model-based human motion reconstruction method from un-calibrated 2D 



 Human Animation from 2D Correspondence Based on Motion Trend Prediction  547 

monocular data with very little user interferences (only required for the 1st frame) and 
the human motion to be reconstructed is truly unrestricted. 

The key component of our proposed system is a Motion Trend Prediction (MTP) 
method which aims to recover human posture at every single frame based on 3D 
human body information gathered through posture reconstruction in previous frames, 
except for the 1st frame. Unlike the proposed method for estimating 3D motion of an 
articulated object in [9], in our algorithm the whole skeletal model is always treated as 
a single object to ensure the consistency and smoothness of motions of different body 
parts. Further more, compared to the Kalman or the particle filtering prediction 
tracking algorithm [10], calculations of partial derivatives or an even more 
complicated infrastructure are unnecessary in our algorithm. Through a very small set 
of simple Approach Function (AF) formulas, continuous 3D human postures in a 
motion sequence can be tracked and recovered. The weighting parameter (WP), which 
plays an important role in determining the MTP’s accuracy, can be derived through a 
low-pass filtering process. The proposed MTP method is simple to understand and 
implement, but it can efficiently generate smooth human animation.  

The rest of this paper is organized as follows: the camera model and the 3D 
skeletal model used for motion reconstruction are described in the next section; 
section 3 discussed the key component of our work: the MTP method; experimental 
results are presented and analyzed in section 4; finally a conclusion is drawn in 
section 5. 

2   Models 

A camera model and a human model need to be set up beforehand in the proposed 
system. The camera is assumed to be located at a fixed position in virtual space with 
pre-defined focal length, and it does not require knowledge of the actual cameras 
from which the video sequence is taken since such information is unavailable most of 
the time in reality. This virtual camera is used to calculate the projections of the 
recovered postures, and to enable the comparison with the input 2D correspondences 
for reconstruction refinement. As this project focuses on recovering the whole body 
motion from monocular data, an articulated 3D skeletal model employed in [11] is 
considered sufficient. This skeletal model contains 17 joints and 17 segments. We 
name the 5 leaf joints left wrist, right wrist, left ankle, right ankle and head, all the 
other joints are categorized as intermediate joints, among which pelvis is set as the 
root in the skeletal tree structure. 

For posture reconstruction, the movements of each segment need to be recovered. 
At the current moment, our attention is focused on the 12 more important segments 
which are hip, waist, chest, neck, upper arms, forearms, thighs, and shins, whose 
movement are resulted from proper rotations about their individual starting joints. To 
apply the rotations, 1 to 3 DOF(s) is assigned to each intermediate joint in the world 
coordinate system (WCS), and each of these joint is associated with a local coordinate 
system (LCS) [11]. The only exception is the joint pelvis, which has 6 DOFs (3 for 
translations and the other 3 for rotations), since the translation of the whole body is 
represented by the movement of pelvis. 

According to biomechanical constraints [12] & [13], the rotational constraints of 
each intermediate joint in its associated LCS can be derived. In our system we choose 
to update the constraints employed in [8]. Details can be found in [11]. 
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With above definitions, it is assumed that through proper translation of the pelvis 
and rotations of the 12 segments about each intermediate joint, any human posture 
could be obtained with the skeletal model from its initial pose. 

3   Motion Reconstruction 

In our reconstruction system, the accurate 2D posture correspondence in every frame 
is the only input, and manual adjustment for the 1st frame is always required, as 
described in our prior work [11]. However, such manual adjustment is only allowed 
for the 1st frame. The reconstruction process of all other frames is completely 
automatic and user interference is not allowed and totally unnecessary. 

3.1   The Motion Trend Prediction Method 

Human motion reconstruction is actually a process to reconstruct human posture at 
every frame, which should resemble the original postures in the source video as much 
as possible. During the process two observations about human motion are found  
and analyzed. Based on them, the original Motion Trend Predication method is 
proposed [11]. 

3.2   Improvement of the MTP Method 

Through the original MTP method, the recovered human postures will be guaranteed 
to resemble the original and be consistent in 3D space; however jumpy rotations about 
each intermediate joint may still occur. It is a common knowledge that a certain 
posture could be achieved through different rotational configurations. To achieve the 
real smoothness between recovered human postures, we must also ensure the 
rotational smoothness of each segment. Three considerations are utilized for this 
target. 

Firstly, the rotational orders are fixed for rotations about each intermediate joint. 
Secondly, before recovering the posture at the Kth frame, the searching space of 
rotational angles of each intermediate joint is re-adjusted according to rotational 
configurations obtained from reconstruction at the (K-1)th frame (K•2).2). As human 
motion is generally smooth, the rotational angels of each joint should not change 
sharply between neighboring frames. The above considerations improve efficiency of 
the original MTP method significantly. They also help to ensure the rotational 
continuity of each segment.  

The last consideration is, if the human motions in the input sequences are truly 
smooth, it can be assumed that for any intermediate joint its rotational accelerations in 
three axes of its LCS are always continuous. For such input sequences, a parametric 
formula to strengthen control on rotations of segments about the ith intermediate joint 
can be derived as Rotation Function (RF) shown in Eq.(1): 
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rotational accelerations in three axes of LCS at the Kth and (K-1)th frame respectively. 
These accelerations can be computed through rotational angles obtained from posture 
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reconstruction. If the original human motion is sufficiently smooth, value of such RF 
should approach 0 as much as possible, which means the rotational acceleration 
changes slightly with frames. Therefore RFs can function to ensure smoothness of 
each intermediate joint’s rotations, when the input motions are truly smooth. 

As discussed in [11], the minimum values of AFs guarantee that the recovered 
postures resemble the original from the same viewing direction, and each joint’s 
positions are continuous during frames. Once a proper balance between the 
minimization of each RFi and its corresponding AFi is built up, sound 3D human 
postures can be recovered based on the 2D correspondence input, and thus smooth 
human animation resembling the original in all directions is considered as having 
been obtained. 

3.3   The Balance Between RF and AF 

To generate the best motion reconstruction from 2D monocular correspondence with 
the proposed MTP method, one of the most important considerations is to find the 
balance between the minimization of each RFi and its corresponding AFi. Currently 
the initial balance between the RFi and the AFi for rotation about each intermediate 
joint is set as 100:1 based on experimental data obtained from “synthesized” 
sequences as discussed in section 4, which means that when the minimization of 
100*RFi + AFi is achieved for rotations about each ith intermediate joint the recovered 
posture is deemed the most optimised. However this balance is only applicable when 
the original motion is truly smooth. If any segment’s movement accelerates or 
decelerates sharply during the original motion sequence, feedback routine has to be 
introduced to locate a new balance between the RFi and AFi. The feedback routine is 
based on the following idea: once the unsatisfactory prediction about motion trend of 
a certain segment is made in the current frame it will affect the segment’s posture 
recovery in the subsequent frames; as a result the 2D residuals related to this certain 
segment will not be able to approach 0 when the unsatisfactory motion trend 
accumulates to a certain extend. Therefore a new balance between the RFi and AFi 
need to be established.  

 

Fig. 1. Top: Original postures viewed from the side; Middle: Recovered postures from the same 
view angle (without feedback); Bottom: Recovered postures (with feedback) 
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In Fig. 1 a computer synthesized bowling sequence (100 frames) is presented to 
demonstrate the function of the feedback routine. This sequence is quite long but only 
5 frames (41st – 45th frame) are shown here. The top figure presents original postures 
from the input sequence with a side view, while the middle and bottom are recovered 
postures without and with feedback routine applied. Clearly the results obtained with 
feedback resemble the original motion better.  

Without feedback the motion trend of upper body can not be satisfactory for the 
above sequence. It is found that the wrong motion trend information of upper body is 
actually collected in the 34th frame; it does not show until the 57th frame, as the 
projections of the recovered human postures match their 2D correspondences in 
original quite well between the 34th and the 57th frame. 

With the help of the feedback routine, the contribution of the rotational 
acceleration can be automatically strengthened or weakened during the run time. This 
way the balance between each RFi and AFi can be determined more accurately. 

4   Experiments and Discussions 

In order to generate reliable motion reconstruction, 2D feature information (2D 
correspondence) extracted from the source video must be highly accurate. Any error 
in feature extraction could lead to incorrect 2D configuration of human body 
geometry and 3D recovered human posture. There have been a large number of 
approaches to feature extraction in the image processing and computer vision area 
[14, 15, 16]. However up to date, no technique is able to guarantee the sufficient 
accuracy in feature extraction. Extraction error remains an unavoidable issue. As a 
matter of fact, such inaccuracy is one of the main factors preventing the progress of 
reconstruction technology. Besides, the lack of depth information in monocular image 
source makes it extremely difficult to evaluate the performance of any 3D 
reconstruction algorithm. 

To enable accurate evaluation and assessment of the proposed MTP method, we 
use computer synthesized videos as input to test the MTP before applying it to real 
video data. Currently only monocular sequences with resolution of 640x480 pixels 
and frame rate of 20fps are used. All reconstructions are performed on a Standard 
Desktop (Pentium 4 CPU 3GHz + 3.01GHz, 1G RAM, GeForce FX 5200). According 
to statistics, the average time consumed in posture recovery at every single frame is 
approximately 74.611s without feedback and 103.634s with it. Detailed description 
and statistics of the experiments on computer synthesized data are available in [11], 
from which the accuracy of proposed MTP method is illustrated.  

After the visual and numerical comparison based on synthesized input data, the 
MTP method is applied on real monocular videos to further test its accuracy. Since 
the depth information is not available in such cases, the algorithm can only be 
evaluated through the visual resemblance in the same viewpoint with the original, but 
the smoothness and reasonableness of the reconstructed motion are demonstrated also 
from other viewing directions.  

Due to the page limitation only one real video motion sequence composed of 
walking and squatting (49frames) is presented here in Fig. 2, which is a general 
human motion including body translation. To ensure accurate image feature extraction 
and to reduce unnecessary noises, color labels are stuck to the human object at each 
joint’s position. Image processing techniques such as those mentioned in [17] & [18] 
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are used to extract the 2D joint features from each frame of the video sequences. 
There bound to be errors in the feature extraction due to many factors such as noises, 
which will affect the accuracy of the final 3D reconstructed motion. 

Fig. 2 clearly shows that the recovered postures resemble the original with the 
same view. When viewed from other viewpoints, these postures still appear 
continuous and natural. 

 

 

Fig. 2. Top: Two frames from the input video. Middle: Reconstructed motion - front view. 
Bottom: Reconstructed motion - side view (Walking and Squatting). 

Statistics of 2D residuals at each frame are presented in Fig. 3 as well. The 
maximum value is 6.212234at the 35th frame. This peak residual is very low 
considering the 640*480 image size. Hence the reconstruction output from real video 
sequence can be considered as sufficiently accurate.  
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Fig. 3. 2D Residuals at each frame (Walking and squatting) 
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5   Conclusion 

A model-based technique is proposed in this paper for motion reconstruction from 
un-calibrated monocular video sequences containing unrestricted human motion. The 
technique is named Motion Trend Prediction (MTP). It is based on the ideas that 
human motion in neighbouring frames are generally smooth, therefore 3D human 
body information gathered through posture reconstruction in previous frames could be 
utilized to recover human posture at current frame. To ensure proper evaluation of the 
suggested MTP method, “synthesized” data has been employed for visual and 
numerical comparison between the original and the reconstructed motion. After that 
real monocular video sequences containing unrestricted human motions are used as 
input to test the applicability of MTP.  

The main advantage of the MTP method is that through it a truly wide range of 
monocular sequences could be reconstructed, and there is no requirement for camera 
calibration. All experiment outcomes demonstrate three properties: 1. the recovered 
motion resembles the original from the same direction the video was taken; 2. when 
viewed from any other viewpoint, the recovered motion appears smooth, natural, and 
believable; 3. movements of each and every individual body segments are continuous. 
In fact, experiments on synthesized input (where depth information is available for 
comparison only) show that the MTP is able to generate reconstructions which 
resemble the original motion in 3D. Therefore the proposed MTP method 
demonstrates great advantages over most of the previous methods, when 2D 
monocular data is the only available input.  

As a future work we are planning to introduce control on the leaf joint. Plausible 
motions about hands, feet and head are expected to be simulated. 
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Abstract. In this paper a simple approach is proposed to render crack-
like patterns and animate cracking propagations on surfaces of 3D ob-
jects. With some controllable parameters, generating cracks on an object
with variant visual effects such as bumping or carving is flexible. Besides,
a proposed script system could generate various cracking animation on
3D objects.

Keywords: Crack-like pattern, Rendering, Cracking propagation.

1 Introduction

Many researches on synthesizing the crack pattern focus on simulation of crack
patterns which look like natural ones. However, what and how actually drive
cracking are various and complex. Approximate simulation demonstrated good
visual results but at the expense of huge amount of computation time. Alter-
natively, texturing is used to map a crack pattern on a given 3D object. Some
inherent problems associated with texturing such as memory space requirement
for texture libraries, orientation and scale consistency, the demands of seamless
texturing, and animation of cracking propagation make this approach not be a
straight and easy solution. A simple approach for crack-like pattern generation,
rendering and animating cracking propagation is proposed in this paper.

Our approach is a non-physical approach, namely neither a physical approach
nor a semi-physical solution. A feature pattern is extracted by basic image
process operations from a crack-like pattern ranging from natural patterns, man-
ual drawing patterns, procedural patterns, and so for forth. By tracking the pixel
connectivity in a pattern image, the image could be vectorized and simplified as
a planar graph, called a feature pattern. To generate a crack pattern on an ob-
ject’s surface, the planar graph is transformed onto the surface of the paraboloid
bounding volume of the target object first. Then the intersections between the
3D object and the perspective polygons, formed by the edges of the transformed
graph on the paraboloid bounding volume and corresponding reference points,
construct the crack pattern on the object’s surface. While rendering a crack pat-
tern on a 3D object, a concept similar to bump mapping [1] is used to make
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bumping or carving visual effect flexible. Finally, various animations of cracking
propagation could be produced by proposed script-based traversal schemes.

The rest of paper is organized as follows. Some related works are surveyed
in the section 2. In the section 3, we present the framework and describe each
stage in the framework specifically. The experimental results are illustrated in
section 4. Finally, we conclude the proposed approach and point out some future
works.

2 Related Works

Roughly researches in computer graphics for generating cracks and animat-
ing fractures can be classified into classes: physical approaches and semi/non-
physical approaches. Physical approaches propose a model to represent the struc-
ture of object and to simulate the reaction to internal/external forces, such as
finite element method (FEM) [2, 3, 4, 5], an experimental system [6, 7], or spring
networks [8, 9, 10].

Semi/non-physical approaches dedicated on demonstrating realistic results in
visual rather than physical phenomenon, for example, by observation [11], geo-
metrical rules [12], hybrid schemes [13, 14], projecting [15], or texturing [16, 17].
Some approaches can even have visual effects, such as loss of adhesion and curl-
ing effects of paint peeling [18] and the cracks found on batik wax paintings and
dyeing technique on clothes [19].

3 Proposed Techniques

The framework of crack-like pattern generation and display on 3D objects con-
sists of following stages:

– Applying image processing operations to a given crack-like pattern for ob-
taining a vectorized feature pattern, regarded as a planar graph

– Transforming the planar graph onto the surface of paraboloid bounding vol-
ume of a 3D object.

– Projecting and rendering the crack-like pattern on the surface of the 3D
object.

– Animating cracking propagations using proposed traversal schemes.

3.1 Vectorizing Crack-Like Pattern

Various crack-like patterns can be input images. Basic image processing op-
erations [20], like bi-leveling, segmentation, and thinning mechanism [21], are
applied to identify a raw feature pattern, which consists of discrete pixels. Then
a greedy algorithm is used [15] to construct planar graphs (feature pattern) from
the raw feature pattern (thinned input pattern). After the vectorization, some
attributes, like edge width, vertex degree, user-specified, etc., can be associated
to vertices and edges of the graph to facilitate animation of cracking propagation.
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(a) (b) (c)

Fig. 1. Graph transformation and edge projection. (a) A paraboloid bounding volume
and an object. (b) Projecting edges with multiple reference points: a quad is formed
by an edge e(v1, v2) and corresponding reference points r1 and r2. Edge e′ is the
intersection between the object and the quad. (c) Edge projection in quick preview: an
octahedron is constructed by an edge e(v1, v2) and four jittered vertices {r

′
1, r

′′
1 , r

′
2, r

′′
2 }

of the reference points r1 and r2. Edge e′ is the area in green that will be rendered by
graphics hardware.

3.2 Graph Transformation

To generate a planar graph, G =< V, E >, on a 3D object, corresponding re-
lationship needs to be set up between vertices in G and the surface. This idea
is similar to paraboloid mapping [22]. But instead of generating corresponding
texture coordinates for vertices of the 3D object, vertices in G are transformed
onto the surface of paraboloid bounding volume of the target object first. Then,
all vi(x, y) ∈ V are normalized and translated into v′i(s, t) so that the new
origin locates at the center of planar graph. At last, with a rotation factor
U(u, v, w), where u, v, w ∈ [−4, 4], each v′i(s, t) ∈ V is transformed into a 3D
vertex v′i(x, y, z) by

x
y
z
1

= R

r sin( sπ
2 )

−r sin( tπ
2 )

r cos( sπ
2 ) cos( tπ

2 )
1

, R =

cos( uπ
2 ) − sin( uπ

2 ) sin( vπ
2 ) sin( uπ

2 ) cos( vπ
2 ) 0

0 cos( vπ
2 ) sin( vπ

2 ) 0
− sin( uπ

2 ) − cos( uπ
2 ) sin( vπ

2 ) cos( uπ
2 ) cos( vπ

2 ) 0
0 0 0 1

,

where r is the radius of bounding sphere of the target object; R is the matrix
formed by u, v, and w that is used to rotate the paraboloid volume against axis
X, Y, and Z respectively. Therefore an object could be bounded by a paraboloid
volumes and its mirrored one, as shown in Figure 1a.

3.3 Projecting Crack-Like Pattern

After the graph transformation, all vertices and edges of the planar graph are
transformed on the surface of paraboloid bounding volume. All transformed
vertices are pinch points if users need to directly edit the transformed graph.
These edges are then mapped onto the target object by projecting them to
the surface of the object with respect to corresponding reference points. As
shown in Figure 1b, projected edges are obtained from the intersections of the
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object’s facets and the polygons formed by endpoints of projecting edges and
their corresponding reference points.

Generally a reference point is a point inside the object close to the geometric
center of the object. For isotropic-like and convex-like objects like sphere whose
shape does not much differ from paraboloid may have good results to one ref-
erence point at center, because the projecting edges will be uniformly projected
on the surface of object. For other irregular and complex objects, more than
one reference points are necessary. However, it is not so easy to select reference
points appropriately. A simple and automatic reference points generation is pro-
posed to make edges uniformly projected on the object according to the shape
distribution of object.

3.4 Multiple Reference Points Generation

To conduct nonuniform projection, a set of reference points is used. For uniform
distributed projection, reference points are generated according to the shape
distribution of the target object: we use the vertex mean of the target object,
M(mx, my, mz), vertex variances in three main axises ,{σx, σy, σz}, and an user-
controlled weight W (wx, wy, wz) to generate reference points for approximation
of proper shape distribution. Each normalized vertex vi(s, t) ∈ V of a planar
graph generates a reference point pi(x, y, z) with the same rotation factor U in
graph transformation by

x
y
z
1

=

σxwx 0 0 mx

0 σywy 0 −my

0 0 σzwz mz

0 0 0 1

R

sin( sπ
2 )

− sin( tπ
2 )

cos( sπ
2 ) cos( tπ

2 )
1

,

where R is the rotation matrix as the same in graph transformation. Therefore
the projection is more controllable and specific by modifying reference points.

The user-controlled weight W dominates the result of intersection: if W is
(0, 0, 0), then all edges in E are projected toward M , the center of target object;
if W is anisotropic, the projected pattern will be deformed. If all reference points
are inside the target object, the projected pattern will have the same topology as
the feature pattern; otherwise, some edges or some parts of the feature pattern
will not appear on the surface of the target object. Good reference points could
approximately scatter crack projected on an object with equal distribution.

To provide an interactive environment for users to edit parameters of projec-
tion is a challenge. Projecting transformed 2D crack pattern on an object involves
computation of intersections between perspective polygons and the target object
which hardly be completed in realtime . Therefore, we use a stencil technique
similar to the one used in the shadow volume [23] with hardware acceleration to
have a quick preview and make the interactive control feasible.

3.5 Rendering

Rendering crack patterns on the surface of a 3D object to illustrate realistic
visual effect is not a simple work. However, while taking a look at real crack
patterns, the luminance of surface changes dramatically around the fracture, i.e.,



558 H.-H. Hsieh and W.-K. Tai

one side of the crack edge is lighter, and the other side is darker. This dramatic
change of luminance makes the crack pattern more noticeable. A concept similar
to the bump mapping [1] is used to approximate the visual perception of crack
patterns. Let Np be the normal vector at position p on the surface of an object,
Bp be the bumping vector at p on a given bump map, and N ′ be the perturbed
normal vector, then we can simply have N ′

p = Np + Bp. Considering the Phong
lighting model, we have:

Ip = IaKa + Ii[(N ′
p · L)Kd + Ks(N ′

p ·H)n]
= IaKa + Ii{[(Np + Bp) · L]Kd + Ks[(Np + Bp) ·H ]n}
≈ IaKa + Ii[(Np · L)Kd + Ks(Np ·H)n] + Ii[(Bp · L)Kd + Ks(Bp ·H)n]

(1)

In this approximation, we can divide lighting into two passes, say Ii,N and Ii,B ,
as follow:

Ip ≈ IaKa+Ii[(Np · L)Kd + Ks(Np · H)n]+Ii[(Bp · L)Kd+Ks(Bp · H)n]=Ii,N + Ii,B

(2)

Furthermore, we can have more flexible rendering results, Ii,N⊕Ii,B , by blending
these two passes, namely

Ii,N ⊕ Ii,B = α(p)Ii,N + (1 − α(p))Ii,B, where α(p) ∈ [0, 1]. (3)

Each crack edge is represented by two adjacent quads on the surface of 3D ob-
jects, as shown in Figure 1c. The normal at p on the quad, Bp, will be perturbed
more when position p is closer the crack by the following equation:

Bp = fDc(p)Np + (1−Dc(p))Nq, (4)

Dc(p) =
{

d(C,p)
dMax if 0 ≤ d(C, p) < dMax
1 if d(C, p) ≥ dMax

d(C, p) =
|(c2 − c1)× (c1 − x)|

|c2 − c1|
, C = c1, c2

Where Dc(p) is a weight function defined in the interval [0, dMax], d(C, p)
determines the distance between the crack C and position p, and Nq = Np×

→
c1c2.

The width of quad, dMax, determines how large the cracking effect will be on
the surface of an object.

In equation 4, parameter f is a scaling factor to the vector Np. This makes the
representation of bumping effect more flexible, i.e., having smoother or sharper
visual effect. Opacity parameter, α, in equation 3, can be a constant or a function
of p.

3.6 Animating Cracking Propagation

Animation of cracking propagation can be produced by a sequence of edge tra-
versal on a graph G =< V, E >. Different traversal schemes lead to different
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Table 1. Commands of the proposed script system

Cmd Description
B[n] Propagate with edge connectivity based traversal scheme for n steps.
D[n] Select a path to propagate for n steps.
P[n] Edges in higher priority than n keep propagating.
R[n] Randomly select n vertices as seeds for propagation.
F[n] Spread a force of n within an iteration.
T[n] Continuously enforce a force for n seconds.

(a) (b) (c) (d)

Fig. 2. Some crack-like patterns: (a) a natural Aluminum Oxide crack pattern, (b)
another natural Aluminum Oxide crack pattern, (c) a natural mud crack pattern,
and (d) a Voronoi diagram pattern. Pattern a and b are obtained from website
http://www.physics.utoronto.ca/nonlinear/gallery.html

cracking propagation. We proposed a script-based traversal system to animate
cracking propagation. The scripting system is devised to provide the flexibility of
producing variant combinations of cracking propagation. A script is a sequence
of traversal schemes to iterate, and edge traversal is the consequence of script
iterations. It exploits both the connectivity of graphs and priorities of edges
on the object. External forces are given in script to drive the speed of cracking
propagation. The scripts are applied to the propagation repeatedly until a stable
state. Available schemes in a script are listed in Table 1.

The timing of animation is influenced by given force in iterations of cracking
propagation. The propagation of an cracking edge at time t is

L(t) = (v′ +
Fc × tf

m
− an × tf )t− an

2
t2, (5)

where v′ is the incoming cracking speed from adjacent edges, Fc is the crack-
ing force, tf is the forcing period, and an is an assumed negative acceleration
of cracking propagation due to the resistance. Cracking propagation is progres-
sively estimated frame by frame. For a cracking edge at frame i, the length of
propagation will be L(ti)− L(ti−1).

4 Experimental Results

Four crack-like patterns are used in the experiment, as shown in Figure 2. Two
visual effects are feasible: bumping and carving effects. Figure 3 shows the ren-
dering results of cracks on 3D objects. As experimental results shown a generated
pattern is similar to the original crack-like pattern, and visual effects are obvious
and good for 3D objects.

An animation of cracking propagations using script based traversal schemes is
shown in Figure 4. It shows six representative snapshots from a novel animation
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(a) (b) (c)

Fig. 3. Rendering crack-like patterns on 3D objects: (a) 2b bumped on a teapot, (b)
2c carved on a teacup, and (c) 2d carved on a dragon

(a) (b) (c) (d) (e) (f)

Fig. 4. Six representative snapshots selected from an animation of script based traversal
scheme with pattern 2a

generated by a script. A complex script mixed by many traversal schemes could
animate a novel propagation and could be used on different graphs or 3D objects
to have variety.

5 Conclusion

In this paper, we introduce an approach for crack-like pattern generating, ren-
dering and animation on the surface of a 3D object.

However, there are some limitations in our approach. The projection is not
distortionless. Although multiple reference points balance the distortion of each
reference point, projection is still not suitable for all objects. Due to the lack
of physical material information and detail geometry of cracks, rendering of
cracks depends only on the light position is not enough for realistic real cracks.
Therefore, in the future, the projection model will be improved, and also will be
the illumination model of the crack.
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Abstract. A new adaptive tessellation method for general Catmull-
Clark subdivision surfaces is presented. Development of the new method
is based on the observation that optimum adaptive tessellation for ren-
dering purpose is a recursive error evaluation and globalization process.
The adaptive tessellation process is done by generating an inscribing
polyhedron to approximate the limit surface for each individual patch.
The inscribing polyhedron is generated through an adaptive subdivision
on the patch’s parameter space driven by a recursive error evaluation
process. This approach generates less faces in the resulting approximating
mesh while meeting the given precision requirement. The crack problem
is avoided through globalization of new vertices generated in the adap-
tive subdivision process of the parameter space. No crack-detection or
crack-elimination is needed in the adaptive tessellation process. There-
fore, no mesh element splitting to eliminate cracks is necessary. The new
adaptive tessellation method can precisely measure the error for every
point of the limit surface. Hence, it has complete control of the accuracy
of the tessellation result.

1 Introduction

Catmull-Clark subdivision scheme provides a powerful method for building
smooth and complex surfaces. Given a control mesh, a Catmull-Clark subdi-
vision surface (CCSS) is generated by iteratively refining (subdividing) the con-
trol mesh to form new and finer control meshes [3]. Subdivision surfaces can
model/represent complex shape of arbitrary topology because there is no limit
on the shape and topology of the control mesh of a subdivision surface [3]. But
the number of faces in the uniformly refined meshes increases exponentially with
respect to subdivision depth. Adaptive tessellation reduces the number of faces
needed to yield a smooth approximation to the limit surface and, consequently,
makes the rendering process more efficient.

2 Previous Work

A number of adaptive tessellation methods for subdivision surfaces have been
proposed [9, 1, 13, 10, 4, 14]. Most of them are mesh refinement based, i.e., approx-
imating the limit surface by adaptively refining the control mesh. This approach
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requires the assignment of a subdivision depth to each region of the surface first.
Several other adaptive tessellation schemes have been presented as well [1, 10, 4].
A common problem of these schemes is that they all have to develop complicated
process to prevent the occurance of cracks.

In addition to various adaptive tessellation schemes, there are also applica-
tions of these techniques. In [8] adaptive tessellation method is used to render
terrain and in [7] adaptive tessellation is combined with ray tracing techniques
to generate some realistic scenes. Adaptive tessellation is so useful that an API
has been designed for its general usage [11]. Actually hardware implementation
of this technique has been reported recently as well [2].

A problem with mesh-refinement-based, adaptive tessellation techniques is
the possible over-tessellation problem. Each region, such as a patch, where a
subdivision depth is assigned is uniformly subdivided to the level specified by
the subdivision depth. Since the subdivision depth is computed based on the
largest possible curvature of the region, parts of the region which do not carry
such a large curvature will be unnecessarily subdivided.

Another problem is the so called crack-prevention requirement. Because the
number of new vertices generated on the boundary of a region depends on the
subdivision depth, cracks would occur between adjacent regions if these regions
are assigned different subdivision depths. Hence, such an adaptive tessellation
method needs special mechanism to eliminate cracks. This is usually done by
performing additional subdivision or splitting steps on the region with lower
subdivision depth. As a result, many unnecessary mesh elements are generated.

3 Basic Idea

Given the control mesh of a CCSS and an error tolerance, ε, the goal is to
generate an approximating polyhedron mesh close enough to the limit surface
S(u, v), i.e., within the error tolerance of S(u, v), but with as few mesh faces as
possible, so that the rendering process of S(u, v) can be performed efficiently. An
approximating polyhedron mesh with the least number of mesh faces is called
an optimum approximating polyhedron mesh.

Our first goal is to avoid the possible over-tessellation problem. It is easy to
see that, to achieve such a goal, tessellation process within each patch should
also be performed based on the flatness of each local region. This can be accom-
plished by doing adaptive subdivision on the parameter space of each patch that
is driven by a recursive error evaluation process. Contrary to the mesh refine-
ment based approaches which generate approximating polyhedra from ‘outside’
the limit surface that usually do not interpolate the limit surface, the approxi-
mating polyhedron generated by this approach is an inscribing polyhedron whose
vertices interpolate the limit surface.

For a patch of S(u, v) defined on [u1, u2]× [v1, v2], we approximate it with the
base quadrilateral formed by its four vertices V1 = S(u1, v1), V2 = S(u2, v1),
V3 = S(u2, v2) and V4 = S(u1, v2). If the distance (error) (to be defined be-
low) between the patch and its base quadrilateral is small than ε, the patch is
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considered flat enough and is replaced with the base quadrilateral in the tessel-
lation process. Otherwise, we perform a midpoint subdivision on the parameter
space by setting u12 = (u1 +u2)/2 and v12 = (v1 + v2)/2 to get four subpatches:
[u1, u12]× [v1, v12], [u12, u2]× [v1, v12], [u12, u2]× [v12, v2], [u1, u12]× [v12, v2], and
repeat the flatness testing (error evaluation) process on each of the subpatches.
The process is recursively repeated until the distances (errors) between all the
subpatches and their corresponding base quadrilaterals are smaller than ε. The
vertices of the resulting subpatches are then used as vertices of the inscribing
polyhedron that approximates the limit surface. For example, if the four rectan-
gles in Figure 1(a) are the parameter spaces of four adjacent patches of S(u, v),
and if the rectangles shown in Figure 1(b) are the parameter spaces of the re-
sulting subpatches when the above recursive flatness testing (error evaluation)
process stops, then the limit surface will be evaluated at the points marked with
small solid circles to form vertices of an inscribing approximating polyhedron of
the limit surface.

This is a simple and straightforward process, but the result could be very
significant. Note that each face in the inscribed approximating polyhedron for
a patch is built with the expectation that it is just close enough to the limit
surface but with the maximum possible size. Therefore, if the recursive error
evaluation process can indeed provide precise error estimate, then the approxi-
mating polyhedron mesh generated by this process is optimum or near-optimum
(in case some faces from different sides of a common boundary of two patches
can be merged into a bigger face with the same error size). To ensure that the
approximating polyhedron mesh is precisely constructed, we must also be able to
precisely evaluate a CCSS at any given parameter point. With parametrization
of CCSS becoming available [12, 5], this is always possible now.

1 2

3 4

(b)(a)

Fig. 1. Adaptive subdivision on parameter spaces of patches

Our second goal is to avoid the crack prevention requirement. Due to the
fact that adjacent patches are usually approximated by base quadrilaterals from
different levels of the midpoint subdivision process, cracks could occur between
adjacent patches. For instance, in Figure 2, the left patch is approximated by one
base quadrilateral but the right patch is approximated by 7 base quadrilaterals.
Consider the boundary shared by the left patch and the right patch. On the left
side, that boundary is approximated by a line segment defined by two vertices,
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A2 and A5. But on the right side, the boundary is approximated by a polyline
defined by four vertices, A2, C4, B4, and A5. They do not coincide unless C4
and B4 lie on the line segment defined by A2 and A5. But this usually is not the
case. Hence, a crack would appear between the left patch and the right patch.

Fortunately Cracks can be removed simply by replacing edges of the base
quadrilaterals with appropriate polylines in the tessellation process. Namely,
each edge of a base quadrilateral should be replaced with a polyline defined
with all the new vertices computed for that edge of the corresponding patch or
subpatch. For example, in Figure 2, all the dashed lines should be replaced with
the corresponding polylines. In particular, edge A2A5 of the base quadrilateral
A1A2A5A6 should be replaced with the polyline A2C4B4A5. As a result, the
left patch is approximated by the polygon A1A2C4B4A5A6, instead of the base
quadrilateral A1A2A5A6, in the tessellation process. For rendering purpose this
is fine because graphics systems like OpenGL can handle polygons with any
number of vertices and the vertices do not have to be co-planar. Note that, with
the above approach, there is no need to perform crack detection at all because
the resulting approximating polyhedron contains no cracks. Besides, since this
process does not increase the number of faces in an approximating polyhedron,
the resulting approximating polyhedron is optimum or near-optimum for the
entire CCSS. For convenience of subsequent reference, the process of replacing
edges of base quadrilaterals with new polylines is called a base quadrilateral
replacement process.

A 1

A 5

2C

B 2

A 3

B 4

C 1

A 6
B 3 A 4

B 1

B 5
C 3

4
C 5

A 2

C

Fig. 2. Cracks between adjacent patches (subpatches)

Note that in previous methods for adaptive tessellation of subdivision surfaces
[14, 9, 1, 10], the most difficult part is crack prevention. With the above approach,
this part becomes the simplest part to handle and implement.

4 Flatness Testing (Error Evaluation)

In the flatness testing process, to measure the difference between a patch (or
subpatch) and its base quadrilateral, we need to parametrize the base quadrilat-
eral as well. The base quadrilateral can be parametrized with a simple bilinear
interpolation:

Q(u, v) = v2−v
v2−v1

( u2−u
u2−u1

V1 + u−u1
u2−u1

V2) + v−v1
v2−v1

( u2−u
u2−u1

V4 + u−u1
u2−u1

V3) (1)
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where u1 ≤ u ≤ u2, v1 ≤ v ≤ v2. The difference between the patch (or subpatch)
and the base quadrilateral at (u, v) is defined as

d(u, v) = (Q(u, v)− S(u, v)) · (Q(u, v)− S(u, v))T (2)

The distance between the patch (or subpatch) and the base quadrilateral is the
maximum of all the differences:

D = max{
√

d(u, v) | (u, v) ∈ [u1, u2]× [v1, v2] }.

To measure the distance between a patch (or subpatch) and the corresponding
base quadrilateral, we only need to measure the norms of all local minima and
maxima of d(u, v). Note that Q(u, v) and S(u, v) are both C1-continuous, and
d(V1), d(V2), d(V3) and d(V4) are equal to 0. Therefore, by Mean Value Theo-
rem, the local minima and maxima must lie either inside [u1, u2]× [v1, v2] or on
the four boundary curves. In other words, they must satisfy at least one of the
following three conditions:⎧⎨⎩

∂d(u,v)
∂u = 0

v = v1 or v = v2
u1 ≤ u ≤ u2

⎧⎨⎩
∂d(u,v)

∂v = 0
u = u1 or u = u2
v1 ≤ v ≤ v2

⎧⎨⎩
∂d(u,v)

∂u = 0
∂d(u,v)

∂v = 0
(u, v) ∈ (u1, u2)× (v1, v2)

(3)

For a patch (or subpatch) that is not adjacent to an extraordinary point (i.e.,
(u1, v1) 	= (0, 0)), m is fixed and known (m(u, v) = min{�log 1

2
u�, �log 1

2
v�}).

Hence Eq. (3) can be solved explicitly. With the valid solutions, we can find
the difference for each of them using Eq. (2). Suppose the one with the biggest
difference is (û, v̂). Then (û, v̂) is also the point with the biggest distance between
the patch (or subpatch) and the corresponding base quadrilateral. The patch (or
subpatch) is considered flat enough if√

d ( û, v̂) ≤ ε (4)

where ε is a given error tolerance. In such a case, the patch (or subpatch) is
replaced with the corresponding base quadrilateral in the tessellation process.

For a patch that is adjacent to an extraordinary point (i.e. (u1, v1) = (0, 0) in
Eq. (3)), m is not fixed and m tends to ∞. As a result, Eq. (3) can not be solved
explicitly. One way to resolve this problem is to use nonlinear numerical method
to solve these equations. But numerical approach cannot guarantee the error is
less than ε everywhere. For precise error control, a better choice is needed. In
the following, an alternative method is given for that purpose.

S(u, v) and Q(u, v) both converge to S(0, 0) when (u, v) → (0, 0). Hence,
for any given error tolerance ε, there exists an integer mε such that if m ≥
mε, then the distance between S(u, v) and S(0, 0) is smaller than ε/2 for any
(u, v) ∈ [0, 1/2m]× [0, 1/2m], and so is the distance between Q(u, v) and S(0, 0).
Consequently, when (u, v) ∈ [0, 1/2m] × [0, 1/2m], the distance between S(u, v)
and Q(u, v) is smaller than ε. The value of mε, in most of the cases, is a relatively
small number and can be explicitly calculated [6].

For other regions of the unit square with �log 1
2

u2� ≤ m < mε, eq. (3) can
be used directly to find the difference between S(u, v) and Q(u, v) for any fixed
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m ∈ (�log 1
2

u2�, mε). Therefore, by combining all these differences, we have the
distance between the given extra-ordinary patch (or subpatch) and the corre-
sponding base quadrilateral. If this distance is smaller than ε, we consider the
given extra-ordinary patch (or subpatch) to be flat, and use the base quadrilat-
eral to replace the extra-ordinary patch (or subpatch) in the tessellation process.
Otherwise, repeatedly subdivide the patch (or subpatch) and perform flatness
testing on the resulting subpatches until all the subpatches satisfy Eq. (4).

5 Making Patches Visible to Each Other

Currently, all the subdivision surface parametrization and evaluation techniques
are patch based [12, 5]. Hence, no matter which method is used in the tessellation
process, a patch cannot see vertices evaluated by other patches from its own
(local) structure even though the vertices are on its own boundary. For example,
in Figure 2, vertices C4 and B4 are on the shared boundary of the left and the
right patches. But the left patch can not see these vertices from its own structure
because these vertices are not evaluated by this patch. So, the key here is to
make adjacent patches visible to each other so that new vertices computed by
one patch for the shared boundary can be accessed by the other patch. We call
this process a globalization process.

To make adjacent patches visible to each other and to make subsequent base
quadrilateral replacement process easier, one should assign a global index ID to
each evaluated vertex so that all the evaluated vertices with the same 3D position
have the same index ID. Global indexing allows subsequent processing to be
performed on individual patches but still with a global visibility. We also need
a step called adaptive marking to facilitate the base quadrilateral replacement
process. The purpose of adaptive marking is to mark those points in uv space
where the limit surface should be evaluated. With the help of the global index
ID, this step can be done on an individual patch basis. Initially, all (u, v) points
are marked ‘white’. If surface evaluation should be performed at a point and the
resulting vertex is needed in the tessellation process, then that point is marked
in ‘black’. This process can be easily implemented as a recursive function. A
pseudo code for this step is given below.

AdaptiveMarking(P, u1, u2, v1, v2)
1. Evaluate(P, u1, u2, v1, v2) and AssignGlobalID(P, u1, u2, v1, v2);
2. if (FlatEnough(P, u1, u2, v1, v2)) then MarkBlack(P, u1, u2, v1, v2);
3. else
4. Set u12 = (u1 + u2)/2; v12 = (v1 + v2)/2;
5. AdaptiveMarking(P, u1, u12, v1, v12);
6. AdaptiveMarking(P, u12, u2, v1, v12);
7. AdaptiveMarking(P, u12, u2, v12, v2);
8. AdaptiveMarking(P, u1, u12, v12, v2);

This routine adaptively marks points in the parameter space of patch P. Func-
tion ‘Evaluate’ evaluates limit surface at the four corners of patch or subpatch P
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(a) Uniform (b) Adaptive (c) Adaptive (d) Adaptive

(e) Uniform (f) Adaptive (g) Adaptive (h) Adaptive

Fig. 3. Adaptive tessellation of surfaces with arbitrary topology

defined on [u1, u2]× [v1, v2]. Function ‘AssignGlobeID’ assignes global index ID
to the four corners of P. Function ‘FlatEnough’ uses the method given in Section
4 and Eq. (4) to tell if a patch or subpatch is flat enough. Function ‘MarkBlack’
marks the four corners of patch or subpatch P defined on [u1, u2] × [v1, v2] in
black. All the marked corner points will be used in the tessellation process.

6 Implementation and Test Results

The proposed approach has been implemented in C++ using OpenGL as the sup-
porting graphics system on the Windows platform. Some of the tested results are
shown in Fig. 3. All these testing models have some extra-ordinary points in the
input meshes. For the Venus model, uniform subdivision (Fig. 3(a)) generates
65536 polygons, while with a similar or higher accuracy, adaptive tessellation
only requires 29830, 21841, and 9763 polygons for Fig. 3(b), 3(c) and 3(d) re-
spectively. For the Beethoven model, uniform subdivision (Fig. 3(e)) generates
65536 polygons, while with a similar or higher accuracy, adaptive tessellation
only requires 20893, 15622, and 7741 polygons for Fig. 3(f), 3(g) and 3(h), re-
spectively. Hence the proposed method indeed significantly reduces the number
of faces in the resulting tessellation while satisfying the given error requirement.



Near-Optimum Adaptive Tessellation of General CCSS 569

7 Summary

A new adaptive tessellation method for general CCSSs is presented. The method
is developed for rendering purpose and is based on the observation that optimum
adaptive tessellation for rendering purpose is a recursive error evaluation and
globalization process for indivisual patches. For a CCSS with multi-patches, the
result of our work can be improved by running a post-processor to see if some
faces from different sides of a patch boundary can be merged into a bigger face
with the same error size. However, since the improvement is not significant and
the computation is costly, it might not be worth the effort to do so.

Acknowledgement. Research work of the authors is supported by NSF under
grants DMS-0310645 and DMI-0422126. Data sets for Fig. 3 are downloaded
from the web site: http://research.microsoft.com/∼hoppe .
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Abstract. It has been technically challenging to effectively model and simulate
elastic deformation of spline-based, thin-shell objects of complicated topology.
This is primarily because traditional FEM are typically defined upon planar do-
main, therefore incapable of constructing complicated, smooth spline surfaces
without patching/trimming. Moreover, at least C1 continuity is required for the
convergence of FEM solutions in thin-shell simulation. In this paper, we develop
a new paradigm which elegantly integrates the thin-shell FEM simulation with
geometric design of arbitrary manifold spline surfaces. In particular, we system-
atically extend the triangular B-spline FEM from planar domains to manifold
domains. The deformation is represented as a linear combination of triangular
B-splines over shell surfaces, then the dynamics of thin-shell simulation is com-
puted through the minimization of Kirchhoff-Love energy. The advantages given
by our paradigm are: FEM simulation of arbitrary manifold without meshing
and data conversion, and the integrated approach for geometric design and dy-
namic simulation/analysis. Our system also provides a level-of-detail sculpting
tool to manipulate the overall shapes of thin-shell surfaces for effective design.
The proposed framework has been evaluated on a set of spline models of various
topologies, and the results demonstrate its efficacy in physics-based modeling,
interactive shape design and finite-element simulation.

1 Introduction

Flexible plates and shells are the fundamental geometric structures found in many fields
of applied engineering nowadays. Since physics-based method is of great popularity
for geometric modeling and simulation in CAD/CAM, the simulation of thin-shell ob-
jects is frequently required in modern engineering design practice. However, the model-
ing and simulation of thin-shells have traditionally been treated as two different stages
due to the lack of a common representation scheme. An intermediate data conversion
process is often employed to couple the modeling and simulation, but it may deteriorate
both accuracy and robustness of the whole system. Therefore, an unified representation
would be ideal to overcome such difficulties.

In theory, FEM can provide an approximate solution to the problem of thin-shell
deformation, but it still remains as a challenging problem due to two obstacles: Tradi-
tional finite-element is exclusively defined on planar domain, thus incapable of describe
smooth surfaces and accompanying vector fields of complex manifolds and topologies
without patching/trimming; Thin-shell finite-element must be at least C1 continuous to

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 570–577, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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ensure the convergence of the solution according to Kirchhoff-Love theory. However,
traditional finite-elements, endowed with purely local polynomial shape functions, usu-
ally suffer from the difficulties in enforcing the desired C1 continuity across the element
boundaries.

A number of different approaches have been attempted to combat the aforementioned
obstacles in thin-shell simulation. Due to the inherent difficulties in C1 interpolation,
alternative methods have been proposed to compromise the C1 continuity requirement,
such as degenerated solid elements, reduced-integration penalty methods, and many
others[1, 2].Most recently,Cirak etal. [3]used theshapefunctionsinducedbysubdivision
rules for thin-shell finite-element simulation. Despite their modeling advantages, the
subdivision surfaces do not allow close-form analytic for their basis functions, and have
more unnecessary extraordinary points depending on the connectivity of the control mesh
(instead of the intrinsic topology of the manifold). Another noteworthy FEM presented
in [4] uses Element-Free Galerkin (EFG) method to simulate and analyze Kirchhoff
shells and plates. However, it requires extra efforts to combine the model geometry
with the simulation process via data conversion. In general, all these approaches fail to
provide an effective way to handle thin-shell surfaces with sophisticated topology.

In this paper we articulate a novel framework that naturally couples the modeling
and simulation processes for aribitrary thin-shell surfaces. Spline surfaces are prevalent
in commercial modeling systems because of their unique advantages in shape model-
ing, manufacturing and visualization. With the recent development of manifold spline
theory [5], which enables the flexible construction of splines over any manifold of ar-
bitrary topologies, we particularly introduce a novel thin-shell finite-element based on
triangular B-spline [6] defined over manifold domain. The advantages of our method
over the previous state-of-the-art thin-shell simulation include: First, the shell objects of
arbitrary topology can be easily modeled by manifold triangular B-splines, with a min-
imum number of singular points intrinsic to the topological structures of the manifolds;
Second, the C1 continuity requirement can be easily achieved for triangular B-splines;
Finally, our spline-based primitive naturally integrates geometric modeling with physi-
cal simulation by avoiding unnecessary data conversion and meshing procedure, which
can lead to faster product design and development cycle.

2 Spline Representation of Manifold Surfaces

In [5], Gu, He and Qin systematically build the theoretic framework of manifold spline,
which locally is a traditional spline, but globally defined on the manifold. First, the man-
ifold is covered by a special atlas, such that the transition functions are affine. Then, the
knots are defined on the manifold and the evaluation of polar form is carried out on
the charts. Although on different charts, the knots are different, the evaluation value is
consistent and independent of the choice of charts. Furthermore, the existence of such
atlas depends on the domain topology. This new paradigm unifies traditional subdivi-
sion surfaces and splines.

The geometric intuition of the definition of manifold spline is that first we replace
a planar domain by the atlas of the domain manifold, and then all the constituent
spline patches naturally span across each other without any gap. The central issue of
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(a) domain (b) spline (c) control points

Fig. 1. A genus-3 manifold triangular B-spline. (a) domain manifold with 742 triangles. (b) cubic
manifold triangular B-spline surface. (c) spline overlaid with control points.

constructing manifold splines is that the atlas must satisfy some special properties in
order to meet all the requirements for the evaluation independence of chart selection.

In [5], Gu et al. show that for a local spline patch, the only admissible parameter-
izations differ by an affine transformation. This requires that all the chart transition
functions are affine. Furthermore, they show that given a domain manifold M of genus
g, a manifold triangular B-spline can be constructed with no more than |2g− 2| extra-
ordinary points.

The manifold triangular B-spline can be written as follows:

F(u) = ∑
I

∑
|β |=n

cI,β N(φ(u)|V I
β ), u ∈M (1)

where cI,β ∈ R
3 are the control points. Given a parameter u ∈M, the evaluation can be

carried out on arbitrary charts covering u.
Manifold triangular B-splines have many valuable properties which are critical for

geometric and solid modeling. For examples, manifold triangular B-splines are piece-
wise polynomial defined on the manifold domain of arbitrary triangulation. Therefore,
the computation of various differential properties, such as normals, curvatures, principal
directions, are robust and efficient. The splines have local support, i.e., the movement
of a single control point cI,β only influences the surface on the triangle I and on the tri-
angles directly surrounding I. The manifold triangular B-splines are completely inside
the convex hull of the control points. The degree n manifold triangular B-splines are of
Cn−1-continuous if there are no degenerate knots. Furthermore, by intentionally placing
knots along the edges of the domain triangulation, we can model sharp features easily.
The manifold spline of genus g(≥ 1) has 2g− 2 singular points. See Figure 1 for an
example of genus-3 manifold triangular B-spline.

3 Spline Thin-Shell Simulation

3.1 Elastic Thin-Shell Mechanics

The mechanical response of a spline surface with an attached thickness property can
be computed with the classical Kirchhoff-Love shell theory. In the interest of smooth
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technical flow, let us briefly review the derivation of thin-shell equations. Detailed pre-
sentation of classical shell theories can be found elsewhere in mechanical engineering
literatures.

Thin-shell is a particular form of three-dimensional solid whose thickness is sig-
nificantly small as compared with the other two dimensions. Let X(θ1,θ2) denote the
middle surface of the thin shell, where θ1 and θ2 are the parametric coordinates of the
surface. The generic configuration of the shell can be described as

S = {x ∈ R3|x = X(θ1,θ2)+ θ3X,3(θ1,θ2), −h
2
≤ θ3 ≤

h
2
},

where X,3 is a unit director vector normal to the middle surface of the shell both in the
reference and deformed configuration under the Kirchhoff-Love hypothesis. The inter-
nal energy of the shell depends on the differential quantities of the middle surface, such
as the metric and curvature tensor. Assuming linearized kinematics, the displacement
field of the middle surface is introduced as u(θ1,θ2) = X(θ1,θ2)−X0(θ1,θ2), where
the superscript “0” is used to denote the measurement in the reference configuration.
Thus, the linearized membrane and bending strain tensor can be expressed as:

εi j =
1
2
(X0

,i ·u, j + X0
, j ·u,i), (2)

ρi j =−u,i j ·X0
,3 +(J0)−1[u,1 · (X0

,i j×X0
,2)+ u,2 · (X0

,1×X0
,i j)]. (3)

where J = |X,1×X,2|, X,3 = J−1(X,1×X,2), and |X,3|= 1. Here, the subscripts take the
values of 1 and 2, and a comma denotes partial differentiation. Note that, the derivation
of the membrane and strain is independent of the introduction of the kirchhoff-Love
hypothesis.

Under the assumption of linearity of elasticity, the strain energy density is defined as
follows:

W (u) =
1
2

Eh
1−ν2 Hαβ γδ εαβ εγδ +

1
2

Eh3

12(1−ν2)
Hαβ γδ ραβ ργδ , (4)

in which, the first term is the membrane strain energy density and the second one is the
bending strain energy density. Thus, the overall potential energy is as follow:

E(u) =
∫

Ω
W (u)dΩ + Eext = Eint + Eext ,

where Eint is the internal elastic energy and Eext is the potential of the applied forces.
Following the principle of minimum potential energy, we can get the stable equilibrium
configurations of the thin-shell. The Euler-Lagrange equations corresponding to the
minimum principle may be expressed in the weak form as:

〈DEint(u),v〉+ 〈DEext(u),v〉= 0 (5)

where v is the trial displacement field.
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3.2 Spline Element Discretization

Following the construction of manifold triangular B-splines given in (1), we can extract
the basis functions and write them by:

ϕ l(φ(v)) = ∑
ξ (I,β )=l

N(φ(v)|V I
β ) v ∈M (6)

in which ξ : N×N
3 → N associates each local simplex-spline with an unique global

shape functions it contributes to, φ is the conformal mapping, and φ(v) denotes the
point in the planar domain, mapped from a manifold point v. We will use these expres-
sion in the following discussion, and represent φ(v) by x if necessary.

Thus, we can easily extend the membrane and bending strain tensors from planar
parametric domain to manifold domain and write them in the form:

ε(φ(v)) =
L

∑
l=1

Ml(φ(v))ul , (7)

ρ(φ(v)) =
L

∑
l=1

Bl(φ(v))ul (8)

where Bl are the membrane and bending strain matrices, and {ul, l = 1, . . . ,L} are the
nodal displacement vectors.

Substituting equations (7) and (8) into (5) yields the linear equations developed from
the manifold domain as:

KU = F (9)

where K is the stiffness matrix, U is the collection of nodal displacement [uT
1 · · ·uT

L ]T ,
and F is the nodal force vector. K is a block matrix which can be conveniently assem-
bled by filling in the following 3×3 matrices:

KIJ =
∫

M

[
Eh

1−ν2 (MI)T HMJ +
Eh3

12(1−ν2)
(MI)T HMJ

]
dM

with the constitutive matrix H made of contravariant metric tensors, the definition of
which is available in [3]. The construction of F will be discussed later.

3.3 Implementation Details

Numerical Integration: The thin-shell FEM simulation needs to compute the Kirch-
hoff energy of the deformed shell surfaces. However, the evaluation of the integrations
over arbitrary manifold surfaces has been a challenging problem, which is usually awk-
wardly handled by piecewise parameterizations. With the global conformal mapping
coupled with triangular B-splines theory, we can conduct the integration on an equiv-
alent planar domain instead, and use any established numerical integration techniques.
In our system, the shell elements are selected as the triangles of the tessellation, from
which the triangular spline is constructed. Then we regularly subdivide each element
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into small congruent triangles, and compute the integration using triangle Gaussian
quadratures.

Boundary Condition Handling: To facilitate the process of intuitive geometric de-
sign, we include point-based constraints as the input for our thin-shell simulation sys-
tem. The users are allowed to pick up a group of points on the spline surfaces, i.e.
P0 = {p0

1, p0
2, . . . , p0

n}, and assign them with desired positions after the deformation, i.e.
P = {p1, p2, . . . , pn}, where n denotes the total number of the point constraints. This
linear constraints thus defined can be grouped in a matrix format as:

P0 + Cu = P

where C is an extremely sparse matrix that stores the basis function values at corre-
sponding constraint points P0. To combine the constraints with the Equation (9), we
solve for u in the Null-space of C, such that:

u = Nu′+ u0

where CN = 0 and Cu0 = P−P0. We use gaussian-jordan-elimination-like approach[7]
to construct N, and solve for u0 by either singular value decomposition (SVD) or QR
decomposition method. Due to the extreme sparsity and rank-deficiency of C, such
method is computationally viable to handle point-based geometric constraints.

Level-of-Detail (LOD) Simulation: The shell objects with affluent surface details re-
quires massive number of degrees of freedom (DOF) for accurate geometric modeling.
However, the triangular B-splines models having large number of control points are not
suitable for interactive geometric design. Thus, we incorporate a level-of-detail (LOD)
strategy to accommodate thin-shell deformation of sophisticated models. Any thin-shell
surfaces S can be decomposed to a smooth spline-based surface S0 and a scalar func-
tion d describing the additional displacements, i.e.:

S(x) = S0(x)+ d(x) ·n(x)

where n is the normal vector of S0. Practically, S0 can be estimated by fitting the orig-
inal surface using manifold triangular B-spline with relatively small number of control
points [8]. Then the magnitudes of the fitting errors along the normal directions will
be further modeled as a spline-based function d with more degree of freedoms. For the
LOD simulation of a complicated thin-shell model, our system allows users to sculpt on
the base surfaces S0, then the previously recorded details will be automatically applied
to give the final design results. Figure.2 gives two examples of geometric design with
LOD thin-shell simulation.

4 Results

Our system is implemented on a Microsoft Windows XP PC with Intel Pentium IV
3.0GHz CPU, 1.0GB RAM, and an nVidia GeForce Fx 5600 Ultra GPU. We have run
a variety of examples to verify and test the efficacy and performance of our method.
These examples includes a female face, the stanford bunny, a torus and a kitty. Both the
face and the bunny are LOD-modeled. And both the torus and the kitty models have
non-trivial genus.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. LOD thin-shell simulation (a)(e) the original surfaces with feature details. (b)(f) the base
surfaces with geometric constraints. (c)(g) the base surfaces after thin-shell deformation. (d)(h)
the original surface after LOD thin-shell deformation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)(b) 6 points constraints applied on the torus surface. (c)(d) torus shell after deformation.
(e)(f) the front and side view of the kitty with points constraints. (g)(h) the front and side view of
the deformed kitty shell.

5 Conclusion

In this paper, we propose a novel paradigm that successfully simulates the elastic de-
formation of thin-shell objects. We also provide users with a LOD sculpting tool for es-
thetical geometric design. The experiment results show demonstrate that the proposed
thin-shell FEM method has the following advantages over the traditional ones. It can
easily achieve the C1 continuity requirement, and represent arbitrary thin-shell surfaces
using splines with minimum number of singular points. Our spline-based primitive nat-
urally integrates geometric modeling with physical simulation in the entire CAD/CAM
process, thus unnecessary data conversion and meshing procedure is total avoided. For
future work, we will extend current framework to handling large thin-shell deformation
by considering non-linear elastic energy, and solve the simulation problem in temporal
dimension for animation applications.
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Abstract. This paper proposes a geometry-based technique to control
the target shape and the motion of clouds in computer animation so
that the synthetic appearance of the clouds resembles a specified three-
dimensional shape. The technology for automatically generating this spe-
cial effect has been desired by the movie industry for many years. Our
method is based on ellipsoid decomposition. Firstly, ellipsoids are em-
ployed to approximate a given mesh model which indicates the target
shape of cloud animation. After that, the target object is represented in
a blobby implicit surface using ellipsoidal blobs. Finally, two geometry-
based schemes are introduced to generate the cloud animations with
target shape controlled in two different ways: aggregated from several
pieces of clouds or diffused from one piece of cloud.

1 Introduction

Cloud is an important element of natural scene with their various fascinating
appearances. Moving clouds usually give plenty of space for imagination. We feel
exciting when a cloud in the sunshiny sky resembles the shape of an animal or
some other real objects. The purpose of this paper is to introduce an approach
that can automatically generate the plausible motion for clouds, which resembles
a user-specified 3D shape in the end.

An effective solution will be presented here. Our method involves using blobby
models to approximate the given model and to simulate the metamorphosis
between objects with cloudy appearances. The basic idea lies in the use of an
ellipsoidal blobby model to approximate the shape of a given object. By the
ellipsoidal blobs of a blobby model, it is very easy to control the shape of clouds
during the motion which finally matches the target shape.

Major contributions of this paper include a geometric framework for the 3D
animation of clouds with target shape controlled, an automatic scheme for ap-
proximating a given model by ellipsoidal blobby objects, and two novel geometry-
based schemes for cloud animations — one simulates the motion of clouds in an
aggregation manner while the other in a diffusion way.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 578–585, 2006.
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2 Previous Work

Implicit surfaces are widely used in computer graphics applications. An implicit
surface S is usually defined by a continuous scalar function f(x) with x ∈ $3.
The geometry of S is given by the locus of points at which the function f(x) = 0.
An important class of implicit surfaces is the so-called blobby model [1]. The
implicit functions of these surfaces are the sum of radial symmetric functions
that have a Gaussian profile, which are generally in the form of

f(x) = −t +
n∑

i=1

ωifi(x). (1)

In this formula, the parameter t is the threshold of isosurface S, n is the number
of blobby primitives, ωi is the weight for the ith primitive with default value
1.0, and the function fi describes the profile of a blobby sphere with a particular
center and radius. For a model with complex shape such as a human body, it is a
hard and tedious task to construct blobs for the model manually. Therefore, some
automatic approaches [2, 3, 4] were developed — they all employed spheres as
primitives. As spheres are isotropic, the aliasing errors on sharp or thin features
are relative great when using spherical blobby objects to express the shape of
given models. Thus, we will conduct an ellipsoidal blobby implicit surface to fit
a given model so that the quality of approximation can be improved.

A novel practical method is proposed for automatically approximating polyg-
onal meshes with ellipsoidal blobby models. First of all, the given object M is
decomposed into a set of ellipsoids. The ellipsoids are then employed as initial
primitives in the blobby model. In the following, the isosurface defined by these
ellipsoidal blobs is refined to improve the approximation through a numerical
optimization. Compared with other earlier techniques [2, 3, 4], the approach pre-
sented here is more robust and efficient. Objects with complex topology and
geometry can be automatically approximated by ellipsoidal blobs in our scheme.
This greatly benefits the animation applications.

In computer graphics, there are two categories of works to simulate the gaseous
motion of clouds or smokes. The approaches in one category simulate the physical
process of fluid dynamics [5, 6, 7, 8], and the ones in another category are heuristic
[9, 10, 11, 12, 13, 14]. But none of aforementioned methods are sufficient for our
purpose — to efficiently generate a target shape controlled cloud animation.

Based on the ellipsoidal blobby representation of target shapes, we proposed
two schemes to realize cloud animations, by which controlling the shape and
the motion of clouds becomes an easy task. The first scheme is to simulate
the motion of clouds in an aggregation way by keeping the correspondences
between the ellipsoidal blobs and interpolating the positions and shapes of blobs
using key-frame technique. In the second scheme, we use the results of ellipsoid
decomposition to generate a showing sequence of blobs and then produce the
animation of cloud diffusion which matches the target object.

The rest of the paper is organized as follows. We present the process of ellip-
soid decomposition for a given polygonal model in section 3. Next, the technology
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of using an ellipsoidal blobby model to approximate given objects is detailed in
section 4. After that, we introduce the aggregation and the diffusion based cloud
animation schemes followed by several results of ellipsoidal blobby model approx-
imation and cloud animation. Lastly, the paper ends with the conclusion section.

3 Ellipsoid Decomposition

For a given polygonal mesh, obviously there are many different possible ellipsoid
decompositions. In [15], Stephan and Kobbelt designed an algorithm to find one
candidate among this multitude of decompositions that is locally optimal with
respect to the shape, the orientation and the distribution of ellipsoids. Here, we
follow their method with some necessary modifications to generate the initial
ellipsoidal primitives of a blobby model.

(a) The decomposition by using [15]. (b) The decomposition of our approach.

Fig. 1. Results of ellipsoid decomposition

– To grow the ellipsoid as big as possible, instead of using the exact touching
points p, q, r, s, the authors in [15] employed points p′, q′, r′, s′ which are
obtained by shifting the original points by some small offset ε along normal
direction into the interior of the mesh. However, during our investigation,
we found that processing the points in this manner will make some small
features neglected during the ellipsoid selection because of their small vol-
ume contribution. Therefore, we generate the points p′, q′, r′, s′ by shifting
the original points along normal direction outwards the mesh instead. The
approximation error introduced by this point shifting will be compensated
during the blobby fitting later.

– Furthermore, in the procedure of ellipsoid selection, the geometry signifi-
cance is considered together with the volume contribution. We use the cur-
vature at each seed point as the volume contribution weight so that the
ellipsoids whose volume contributions are small but are important to the
surface features can be selected. It is greatly helpful for preserving small
features on the given model.

– Lastly, for the given model with a very dense mesh, we adopt the vertices
of simplified model (with quadratic error controlled) as the seeds for gen-
erating ellipsoids, instead of randomly selected seed vertices. It is because
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that random selection may result in losing some important features of the
model, but using a good mesh simplification algorithm can preserve them
on original models. In this paper, we adopt the algorithm of [16].

With above modifications, the ellipsoid decomposition result is significantly
improved. For instance, two decomposition results shown in Fig. 1 are from the
original approach [15] and our modification. It is easy to find that ours preserves
the details much better, which provides a good start for the following ellipsoidal
blobby model reconstruction.

4 Reconstruction of Ellipsoidal Blobby Models

With the ellipsoids decomposed from the given mesh model M as input, an
ellipsoidal blobby model Ω approximating M is reconstructed from the ellipsoids
by taking their centres as the skeletons with associated field functions. The
isosurface of Ω approximates the surface of M . After that, the parameters of
blobs in Ω are optimized to improve the approximation.

4.1 Mathematical Representation

Field functions employed in a blobby model can be classified into global and
local ones. In this paper, we choose the following local field function

fi(p) =

{
B2

i (1− r2
i

R2
i
)2, if ri ∈ [0, Ri]

0, elsewhere
(2)

which is originally employed for a spherical blobby model, where i represents
the index of a primitive, ri = d(p, ci) returns the Euclidean distance from a
given point p to the center of blob ci, Ri =

√
e2

i (1 + Ai) defines the influence
region, ei is the radius of ith sphere. Ai and Bi are two parameters that can
be adjusted in a field function — Ai is used to adjust the influence radius and
Bi is conducted to change the shape of fi. Substituting the field functions into
Eq.(1) defines an implicit surface using points as skeletons which is similar to
the function in [4], but provides two more parameters on each field function to
adjust the implicit surface.

When using the field function defined in Eq.(2), all primitives are spheres. We
modified it in the following way to introduce ellipsoidal blobs

fnew
i (q) = fi(Tq) = fi(p) (3)

where T is a transformation matrix to map a point q on an ellipsoid E onto a
point p on its largest inscribed sphere S. In general, an ellipsoid can be repre-
sented implicitly by a matrix Q as [x y z 1]Q[x y z 1]T = 0, and a sphere can
be expressed as [x y z 1]P[x y z 1]T = 0, where P is a matrix. Relating them by
P = TQTT , we can determine the transformation matrix T. The mathematical
representation of an ellipsoidal blobby model is then obtained by substituting
Eq.(3) into Eq.(1).
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4.2 Model Reconstruction

The ellipsoidal blobby model Ω approximating a given polygonal object can
then be reconstructed through an automatic procedure. First of all, we take the
ellipsoids generated by the decomposition presented in section 3 as the initial
blobs — the transformation matrix of each ellipsoid and its largest inscribed
sphere are computed at the meanwhile. After that, a numerical optimization is
conducted to reduce the difference between the isosurface of Ω and the given
model. To accelerate the optimization procedure, the centers of blobs are fixed,
so we have only two parameters to be optimized for each blob. For all the ex-
amples shown in this paper, the isosurfaces are computed on f(x) = 0 with the
threshold parameter t = 1.0. The approximation error on the isosurface of an
ellipsoidal blobby model is improved through a numerical optimization, where
the parameters Ai and Bi of each blob are computed.

Fig. 2. The reconstructed implicit surfaces using spherical (left: with 422 blobs) and
ellipsoidal (right: with 300 blobs) blobby objects respectively

Fig. 2 shows a comparison of the reconstructed blobby models using spherical
blobs vs. ellipsoidal blobs, where the left is the result using a spherical blobby
model defined by 422 blobs and the right one is an ellipsoidal blobby model with
only 300 blobs. From the results, we can easily find that the ellipsoidal blobby
model gives a better result with even less primitives.

5 Cloud Animation

In this section, two schemes are proposed for generating cloud animations with
target shape controlled. The first one simulates a large scale cloud animation
where several pieces of clouds are aggregated into the target shape progres-
sively; in the second scheme, the cloud with a specified target shape is mor-
phed starting from one piece of cloud in a diffusion manner. Both schemes are
geometry-based and can generate cloud animations either automatically or semi-
automatically.
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5.1 Aggregation Scheme

The motion of clouds in an aggregation manner is produced backwards. To
simulate the aggregation, the blobs approximating the target shape are firstly
subdivided into several subsets. Then, the shape of clouds corresponding to each
subset of blobs is modelled at several key-frames during the animation. Finally,
the cloud animation is generated by interpolating the positions and shapes of
blobs between key-frames. An example animation produced by this scheme will
be shown in the following section.

5.2 Diffusion Scheme

Different from the aggregation scheme, in this scheme, the cloud animation is
produced in a forward manner. When we progressively display the ellipsoidal
blobs of a blobby model in some sequence, we can simulate the diffusion effect
of fluid dynamics similar to [8].

To generate a diffusion-like animation, we classify the blobs into three
categories:

– Category I: The initial cloud blob;
– Category II: The cloud blobs represent the target shape roughly;
– Category III: The blobs refine the target shape of clouds.

As the greedy optimization is conducted in the ellipsoid selection (section 3),
the first selected ellipsoid is always with the largest volume (which is classified
to the blob in category I) followed by the ellipsoids adding which leads to the
most significant change of the volume among the rest ones. Thus, except the very
beginning one, the first 10% blobs in the decomposition sequence are classified
into category II while the rest 90% fall into the last category. The blobs of three
categories are consecutively added into the implicit model (defined in Eq.(1)) to
generate the diffusion-like cloud animation.

6 Results

We have implemented the methods proposed in this paper on a PC with standard
configuration (Inter PIV 2.4GHz CPU + 512MB RAM). Our algorithm has been
tested on a variety of polygonal models. Satisfactory results can be robustly
obtained by our implementation. In the following, several examples will be given,
where all the images are rendered by ray tracing.

Figures 3-4 show the experimental results of approximating polygonal meshes
by ellipsoidal blobs. Each figure is arranged in pair, with a polygonal mesh and
its corresponding ellipsoidal blobby model. Fig. 3 gives the bunny implicit surface
defined by 300 ellipsoidal blobs whose mesh consists of 2557 vertices. In Fig. 4,
the polygonal model which has 48486 vertices and the ellipsoidal blobby model
of a horse with 400 blobs are shown.

An example of clouds animated by the aggregation scheme in section 5.1 is
shown in Fig. 5. Eight frames from the animation sequence are selected. The
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Fig. 3. Bunny: a polygonal model (left)
and the implicit surface using ellipsoidal
blobby fitting (right) with 300 blobs

Fig. 4. Horse: a polygon model (left) and
its ellipsoidal blobby representation (right)
with 400 blobs

Fig. 5. The cloud animation forming a dragon shape produced by the aggregation scheme

animation simulates the special effect with several pieces of clouds morphing
into a cloudy dragon.

7 Conclusion

This paper developed a technique for producing cloud animations with target
shape controlled. Our approach is geometry-based. Therefore, compared with
those physically-based modeling methods, the method presented in this paper
is much faster. For a user specified target shape (representing in a polygonal
mesh), we conduct an ellipsoidal blobby model to approximate it. Based on
this blobby fitting, two schemes are introduced to produce the cloud animation.
One scheme simulates the phenomenon that several pieces of clouds aggregate
together to resemble the target cloudy shape, and the other scheme diffuses one
piece of cloud into a cloud with the user specified target shape. Both of these
schemes can efficiently generate realistic cloud animations that mimic the results
produced by the time-consuming physics-based modeling approaches.

The limitation of the proposed approach is that aliasing exists on sharp fea-
tures when using a blobby implicit surface to approximate the shape of a given
polygonal model. Although the ellipsoidal blobs can improve the result in some
degree comparing with the spherical blobs, the approximation does not con-
verge to the discontinuous features even if the sampling rate is increased. This is
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because that the primitives in a blobby model are all continuous. To solve this
convergence problem, some other quadratic primitives with sharp edges/corners
will be considered in our future research.

Acknowledgements

This project is supported by the National Natural Science Foundation of China
(Grant No. 60573153), Natural Science Foundation of Zhejiang Province (Grant
No. R105431), Huo Ying-Dong Education Foundation (Grant No. 91069) and
Program for New Century Excellent Talents in University (Grant No. NCET-
05-0519). The author from the Chinese University of Hong Kong would like to
thank the support from the projects CUHK/2050341.

References

1. J. F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on
Graphics, 1(3):235–256, 1982.

2. S. Muraki. Volumetric shape description of range data using blobby model. Com-
puter Graphics, 25(4):227–235, July 1991.

3. E. Bittar, N. Tsingos, and M. P. Gascuel. Automatic reconstruction of unstructured
3D data: combining a medial axis and implicit surfaces. Computer Graphics Forum,
14:457–468, 1995.

4. X. G. Jin, S. J. Liu, C. C. L. Wang, J. Q. Feng, and H. Q. Sun. Blob-based liquid
morphing. Computer Animation and Virtual Worlds, 16:391–403, 2005.

5. J. T. Kajiya and B. P. V. Herzen. Ray tracing volume densities. Computer Graph-
ics, 18(3):165–174, 1984.

6. A. Treuille, A. McNamara, Z. Popovic, and J. Stam. Keyframe control of smoke
simulations. ACM Transactions on Graphics, 22(3):716–723, 2003.

7. R. Fattal and D. Lischinski. Target-driven smoke animation. ACM Transactions
on Graphics, 23(3):439–446, 2004.

8. L. Shi and Y. Z. Yu. Controllable smoke animation with guiding objects. ACM
Transactions on Graphics, 24(1):1–25, Jan 2005.

9. D. S. Ebert. Volumetric modeling with implicit functions: a cloud is born. In
Visual Proc. of ACM SIGGRAPH’97, page 147, 1997.

10. Y. Dobashi, T. Nishita, H. Yamashita, and T. Okita. Using metaballs to modeling
and animate clouds from satellite images. TheVisualComputer, 15(9):471–482, 1998.

11. T. Nishita and Y. Dobashi. Modeling and rendering methods of clouds. In Pacific
Graphics 99, pages 218–219, 1999.

12. J. Schpok, J. Simons, D. S. Ebert, and C. Hansen. A real-time cloud modeling,
rendering, and animation system. In Symposium on Computer Animation’03, pages
160–166, July 2003.

13. A. Bouthors and F. Neyret. Modeling clouds shape. In Eurograhics’04 (short
papers), 2004.

14. Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. A simple, efficient
method for realistic animation of clouds. In Proc. SIGGRAPH’00, pages 19–28, 2000.

15. S. Bischoff and L. Kobbelt. Ellipsoid decomposition of 3D-models. In Proc.
3DPVT’02, pages 480–488, 2002.

16. M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics.
In Proc. SIGGRAPH’97, pages 209–216, 1997.



Plausible Locomotion for Bipedal Creatures
Using Motion Warping and Inverse Kinematics

Guillaume Nicolas1, Franck Multon1,2, Gilles Berillon3, and Francois Marchal4

1 LPBEM, University Rennes 2, av. Charles Tillon, 35044 Rennes, France
2 IRISA, Campus de Beaulieu, 35042 Rennes, France

3 UPR 2147 CNRS, 44 rue de l’Amiral Mouchez, 75014 Paris, France
4 UMR 6578 CNRS, Faculte de Medecine, 27 Bd Moulin, 13385 Marseille, France

Abstract. One of the main question addressed by paleoanthropologists
is the recovery of plausible motions for extinct species whose knowledge
is generally limited to incomplete bones and skeletons. Calculating loco-
motion for extinct species is mainly based on the direct application of
captured trajectories to numerically reconstructed skeletons. The gait is
judged realistic compared to another if it minimizes energy and preserves
balance. In computer animation, adapting a motion to a skeleton is ad-
dressed by so-called motion retargeting techniques. The goal is then to
ensure that the resulting motion is close to the initial one while dealing
with new bones’ dimensions. In this paper, we adapt methods used in
computer animation in order to solve such a problem. This approach is
based on a two-steps framework: first, a reference motion of the feet is
warped in order to optimize a set of biomechanical general laws, such as
energy and Jerk minimization. Second, the remaining degrees of freedom
(denoted DOF) are calculated thanks to inverse kinematics (denoted IK).
This method is applied on a small woman, a tall man, a chimpanzee and
Lucy (Australopithecus afarensis).

1 Introduction

In computer graphics, retrieving plausible gestures for virtual creatures is gen-
erally performed manually by animators. If this creature is inspired from real
ones, motion capture and films can help the animator to answer this question.
For some other unreal creatures, the animator can also use a comparative ap-
proach assuming its motions may look like those of a real creature. However, we
can assume that the way creatures move is mainly imposed by morphological
parameters and general laws of motion. This question is also available in pale-
oanthropology where researchers have to deal with incomplete fossilized data.

In paleoanthropology, as it is impossible to examine and quantify the loco-
motion of extinct species experimentally, simulation is a promising issue. How-
ever, previous studies generally used pre-assigned kinematics derived from extant
species (human and chimpanzee), but very few individual anatomical data [1][2].
Simulating bipedal locomotion has mainly been investigated in robotics and com-
puter animation. In the former, the goal is mainly to make a robot walk without
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falling without dealing with the naturalness of motion. On the opposite, com-
puter animation has proposed methods to mimic motions of real creatures.To do
so, the methods generally require knowledge on how the creatures walk to en-
sure calculating visually realistic motions. As we do not have examples for such
a motion, we cannot use procedural approaches [3] or any approach requiring
a database of motion, such as adapting a motion to geometric constraints [4],
motion graphs [5], motion blending [6] or statistics-based methods [7].

Although it requires an initial motion, motion retargeting [8]addresses a quite
similar problem. Indeed, this technique is generally used to adapt a motion to
a new skeleton by considering bones dimensions and a set of spacetime con-
straints (such as ensuring foot contact without sliding with the ground). Those
techniques generally use inverse kinematics to solve the spacetime constraints in-
dependently. The IK module is generally embedded in an iterative process that
solves the constraints at some times only and that filters the results until con-
tinuous trajectories are obtained. Other authors [9] have proposed to interpolate
various trajectories of the feet in a database which keys are anatomical para-
meters. However, all the techniques used to solve motion retargeting generally
require knowing a complete reference motion which is subject to discussion for
fossilized skeletons. Moreover, the duration of the support phase can change from
one creature to another and consequently influences the spacetime constraints.

Methods based on motion warping [10] and spacetime optimization [11] could
be considered if the constraints themselves are optimized together with the state
vectors. Recently, approaches based on probabilistic roadmaps were proposed
to animate human-like figures in constrained environments [12][13]. In those
approaches trajectories of selected points of the skeleton are obtained by a motion
planning algorithm while the remaining DOF are calculated by IK. The main
advantage of such an approach is to solve separately external constraints and
joint kinematics. However, probabilistic roadmaps do not take time into account
during the planning process.

In this paper, we propose a new technique based on motion warping for ex-
ternal constraints and IK for the remaining DOF. Motion warping is used to
optimize a reference trajectory of the feet until the resulting motion verifies
general biomechanical laws.

2 Overview

The first step consists in collecting information on bones and the way they are
connected one to each other. This kind of data is generally available whatever
the application. In this paper, we only focus on the lower-part of the body in-
cluding pelvis (3 rotations), thighs (3 rotations) and forelegs (1 rotation) leading
to a vector of dimension 11.In addition to those topological data, joint limits,
footprints and a rest posture are required. For living creatures, all those data
could be retrieved thanks to specific experiments or previous publications. For
fossil species, joint limits can be approximated according to the shape of the
articulations [14].
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Given topological data, an infinity of motions allows displacing the feet from
one footprint to the next one. Among all the possible motions, the system has to
select the one that looks natural. Many biomechanical and physiological stud-
ies [15] state that the internal work Wint evaluated indirectly thanks to the
kinetic energy theorem reflects the amount of physiological energy expended
during motion. It is currently assumed [16] that the work of the ground re-
action force is negligible. Thus applying the kinetic energy theorem leads to:

rotational axes, 
joint limits, 

joint centers, 
masses and inertias...

Footprints,rest
posture, initial traj. 

for the feet

IK Motion
Internal work 

+ Jerk

Motion capture

Digitalization

Animator

Warping
X(a(t))+D(t)

Fig. 1. Overview of the overall process

Wint = ΔEk −mgΔz where Ek is the kinetic energy of the multi-body system,
m is the total body mass and g is gravity. Then, we assumed that a plausible
solution leads to a minimum value of Wint, assuming negative and positive works
require the same amount of metabolic energy [15]:

minθ
1

tf − t0

tf∑
t=t0

|Wint(θ, t)| (1)

where θ is the set of angles applied to the skeleton, t0 and tf are the initial
and final sample of the sequence, and Wint(θ, t) is a function that returns the
instantaneous internal work at time t depending on θ. Minimizing the internal
work may not prevent from peaks of accelerations that do not appear generally
in natural motions. We thus minimize the derivative of the acceleration, called
Jerk:

minθ

tf∑
t=t0

(
d3θ(t)
dt3

)2

(2)

Optimizing such a 11-DOF system is very complex. We propose to decompose
the problem into two sub-problems. First, we search a trajectory for both feet
(Xleft, Xright), assuming symmetry. Hence, the problem only consists in finding
the relative trajectory of one feet in the pelvis reference frame (for example, only
Xleft).

Second, an IK module [17] is used to calculate a plausible motion according to
an imposed trajectory of the feet. It deals with joint limits avoidance, minimiza-
tion of a distance to a rest posture, and energy minimization. The overall process
is depicted in figure 1. In the remaining of the paper, we focus on the selection of
a plausible trajectory for the feet, assuming that IK provides plausible motions.
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3 Selecting an Ankle Trajectory

In order to calculate ankle trajectories, we chose to apply motion warping to
an average captured trajectory called reference trajectory Xa(t). We modify
this trajectory thanks to a three-steps process. First, the whole trajectory is
uniformly time-scaled in order to fit the step frequency imposed by the user.
Second, we set control points at the beginning and the end of the trajectories.
Additional control points are added for each axis, for each null-derivative point.
Let PC be the set of control points for each axis. In a classical human-like
trajectory of the ankle relatively to the pelvis, 5 intermediate control points can
be determined (as depicted in figure 2 for the vertical and longitudinal axes): 2
for the lateral axis, 1 for the longitudinal axis and 2 for the vertical axis. Third,
a global optimization process produces a sequence of offsets for each control
point. The final trajectory of the ankle is then given by: X(t) = Xa(a(t))+Δ(t)
where a(t) is a function that performs dynamic time warping and Δ(t) is a
displacement map added to the resulting trajectory. Both a(t) and Δ(t) depends
on the modification applied to the control points.

Fig. 2. Longitudinal and vertical displacement of the ankle relatively to the pelvis

The main problem is to select a motion for the ankles that ensures going
through the footprints imposed by the user. As X(t) is expressed in the pelvis
reference frame, this constraint could be modeled as follows for the left leg:
−Xl(CP, trFS) + Xr(CP, trFS) = Fr − Fl, where trFS is the time when a right
foot-strike occurs, CP are the control points, Fr and Fl are respectively the next
right and left footprints. This equation states that, when a foot-strike occurs,
the vector between the two ankles must be equal to the one between the two
successive footprints. As the first and last control points correspond to a left
foot-strike, they are directly set to a compatible value. Only the right foot-strike
must be controlled by minimizing the difference between the original and the
new imposed footprints: ΔF = (Fr − Fl)new − (Fr − Fl)old. The system has to
search ΔCP and ΔtrFS :

Δ(CP, trFS) = J(CP, trFS)+ΔF + PF (J)δCP (3)

where J is the Jacobian of function h(CP, trFS)=(−Xl(CP, trFS)+Xr(CP, trFS)).
h returns the 3D vector joining the two ankles (depending on the control points
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CP modeling the trajectory) when the right footstrike occurred trFS. J is com-
posed of three raws and n columns if n is the number of parameters tuned by
the system (time and value of each controlled DOF):

J(CP, trFS) =

⎛⎜⎝
∂hx

∂CP1
. . . ∂hx

∂CPn
∂hy

∂CP1
. . .

∂hy

∂CPn
∂hz

∂CP1
. . . ∂hz

∂CPn

⎞⎟⎠ (4)

In equation 3, PF (J) is the projector operator into the kernel of this function
(I−J+J) and δCP is an additional displacement. This displacement is provided
by the iterative optimization process that tries to modify the control points until
a minimum value of the cost function is found. This optimization process could
be described as follows:

finished = false
while not finished

select next δCP

Xl = Xa + Δ(CP, trF S)
Xr = symmetry(Xl)
Er = IK(Xl, Xr)
finished = (ΔErr < ε)

Function select next δCP is linked to the MultiDirectionalSearch (MDS) opti-
mization method proposed in [18] that consists in displacing and scaling a sim-
plex into the search space. Δ(CP, trFS) is obtained using equation 3. symmetry
is a function that returns the right symmetric trajectory of the ankle knowing
the left one. IK is the inverse kinematics solver used to calculate a plausible
motion according to the resulting trajectories of the ankles. This last function
also returns the corresponding cost, considering both internal work and Jerk.

4 Results

We applied this method to humans, chimpanzee and fossil hominids. We ob-
tained anatomical descriptions of both extant individuals (Homo sapiens and
Pan troglodytes) and the fossil hominid specimen (A.L. 288-1, Australopithecus
afarensis, known as “Lucy”) by virtually building articular chains. To do so, we
developed a procedure that couples a digitalizing process using a Microscribe 3D
(Product of Immersion) and a rearticulating process using the 3DShop software
(Produce of C4W). We use a unique and homologous procedure for both living
and fossil species. From this virtual reconstruction, we extract the joint centers
and the length of each segment.We then apply a frame reconstruction procedure
of each bone, using Bezier curves and obtained a 3D geometric reconstruction
of the chain and a vrml file.

To experiment our approach, we have chosen motion capture data of two
subjects: 121Kg and 1.98m for subject S1, 55Kg and 1.63m for subject S2.

Figure 3 depicts the trajectory of the left ankle in the root reference frame
before (in solid line) and after optimization, for the two subjects. This figure
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Fig. 3. Trajectory of the ankle (lateral view) in the pelvis reference frame for a small
woman and tall man(left view), for a chimpanzee (middle view) and for Lucy (right
view). The reference trajectory is depicted with solid lines.

clearly shows that the shape of the trajectories (in the sagital plane) before
and after optimization are similar. The internal power is also similar for the
reference (22J.Kg−1.min−1) and optimized (20 J.Kg−1.min−1) trajectory. For
both subjects, this trajectory is compressed along the vertical axis, avoiding
expending unnecessary energy for translating up and down the feet during the
flying phase.

Figure 4 is a collection of screen shots obtained for the tall man, the chim-
panzee and Lucy.

In figure 3, the same kind of results is depicted for the chimpanzee. Apply-
ing the reference trajectory leads to 50J.Kg−1.min−1 internal power whereas
optimized trajectory leads to 30 J.Kg−1.min−1. This time, the shape of the tra-
jectory is different. For the chimpanzee, the gain of internal work is high which
demonstrates that the original trajectory was badly adapted to skeleton com-
pared to the optimized one. To sum-up, whereas the optimization leads to few
differences for the two human subjects, this difference increases for the chim-
panzee. Although this is not a formal validation of the method, it shows that it
produces coherent results for those two creatures.

Finally, we experimented our method with the anatomical data of the recon-
structed Lucy (see figure 3). The shape of the resulting trajectory is different
from those obtained for the two humans but is quite similar to the chimpanzee’s
one. The gain of energy is again very high: it decreases from 51J.Kg−1.min−1

to 19 J.Kg−1.min−1. This last value is similar to those calculated for the two
humans. Contrary to humans and the chimpanzee, the optimized trajectory of
the feet increased displacement in the horizontal plane leading to lateral dis-
placements of the feet during the aerial phase.

Fig. 4. Screenshots of walks calculated with our method for two humans, a chimpanzee
and Lucy (from left to right)
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5 Discussion

The work proposed in this paper is preliminary and has obviously some limi-
tations. For example, in this paper, we performed a weighted sum of two cost
functions in order to optimize the trajectory of the feet. But, what is exactly
the influence of the weights on the resulting sequence and what is the adequate
set of weights leading to realistic motions? In future works this question should
be investigated more precisely. Moreover the feet and the upper-body were not
used in our approach. However, in paleoanthropology, it is quite difficult to
have a complete knowledge on the skeleton. In computer graphics where all this
knowledge is available, the method should be extended in order to optimize, for
example, relative trajectories of the wrists while walking.

Despite those limitations, this work is promising and is an interesting alter-
native to simply applying joint angles of living creatures to fossil bones without
taking accurate anatomical knowledge and biomechanical laws into account. Our
approach was first designed for paleoanthropologists where partial knowledge is
available for the creatures. This application has guided the choices presented
in this paper. We are currently validating this tool by comparing the motions
calculated with our method to captured or published data for many various
bipedal creatures. In computer graphics, this approach could be used to calcu-
late plausible movements for imaginary creatures. However, the method should
be first validated on a wider set of subjects and species. It should also consider
multi-legged creatures.
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Abstract. We present a technique for simulating variations in appear-
ance of aerial images at different sun angles. The input to the algorithm
is a single aerial image with information on the orientation of surfaces
in the image. The location, date, and time at which the photograph was
taken are also needed by the algorithm. The appearance of the aerial
image at a new sun angle is synthesized by compensating for the direct
sunlight component in the original image, and then relighting the im-
age with sunlight from the new sun position. Techniques to remove cast
shadows are also described. We demonstrate our results with images, and
animations of changing lighting in aerial photographs as the sun follows
a trajectory across the sky.

1 Introduction

Aerial images are being used increasingly with maps to give people an idea
of the ground truths of a region. Acquiring aerial images is expensive, and is
constrained by time and weather conditions. When people use aerial images to
get an idea of a neighborhood, they may be interested in viewing the region at
various times of the day. For example, if one is trying to purchase a building
or a plot of land in a region, they would like to know the sunshine it receives
at various times of the day and year. The ability to relight aerial images is an
economical alternative to acquiring aerial images under various conditions.

Recently, aerial images are being stitched together and used to augment the
information presented in a map [1, 2]. In these cases regions that change are
regularly updated. This leads to scenarios in which images taken at various
times of day and year have to be stitched together. Seamless stitching of aerial
images is possible if one can relight the aerial images under similar sunlight.
Ability to re-render an aerial image under various illumination conditions can
also find applications in weather simulations and visualization.

In this work we investigate an approach to relight aerial images to capture
the effects of different appearance with times of the day. The specific problem of
relighting aerial images has not been addressed before, however there are some
closely related works. Techniques for relighting of indoor scenes include the works

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 594–605, 2006.
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of Marschner [3, 4], and Beauchesne and Roy [5]. Some approaches have been
developed for relighting of outdoor scenes, most of them require multiple images
from which they recover the reflectance properties for each surface [6, 7] and
then apply the relighting approaches. Most of the techniques assume complete
knowledge of geometry of objects in the scene. Recent work Troccoli and Allen
[8] explores relighting outdoor images. However, their technique uses range scan
data along with overlapping pictures. Preetham et al. [9] have rendered outdoor
scenes using physics based models for the sun and atmospheric phenomena.
These scenes are generated using a path tracer that assumes complete geometric
information of the scene. We develop an approach that is specifically applicable
to aerial images where the position of the sun in the sky and the atmospheric
absorption are the predominant factors that determine the appearance of the
image. We use the image along with with some meta-data (including time stamp
information, location, and elevation) to simulate an aerial scene from different
sun positions. We demonstrate the effectiveness of our approach by generating
videos of aerial views as the sun position changes during of the day.

Our approach makes use of a single image to compute the relighting. We
formulate our knowledge about image formation into a model that will enable
interpretation and manipulation of the image. Section 2 presents the physics-
based image formation model that forms the basis of our approach. Section 3
describes the algorithm we propose to relight aerial images. Aerial images of
urban areas contain buildings that cast shadows. Our relighting algorithm ad-
dresses the problem of simulating lighting due to the new sun position but does
not address the shadow generation problem. However, a fixed cast shadow can
have a disturbing effect on relighting simulations, therefore we propose methods
to remove cast shadows. Two cast shadow removal techniques are described in
section 4. Section summarizes the algorithm. Results are discussed in section
6, and conclusions are given in the final section.

2 Image Formation Model

In this section we describe the light interaction model we consider for the for-
mation of aerial images. This model is applicable to natural and artificial diffuse
surfaces. The radiance I(λ) corresponding to an image pixel is given by

I(λ) = (Ed(λ) + Sky(λ))S(λ) + P (λ) (1)

where λ is the wavelength. Ed(λ) and Sky(λ) are the sun and sky components
of the illumination incident on the surface. S(λ) and P (λ) are the object surface
reflectance and the path-scattered radiance respectively. P (λ) depends on the
depth of the object with respect to the camera and can be neglected for low depth
scenes. Figure 1 illustrates the three components of light involved in aerial image
formation.

The appearance of aerial image changes with the time of the day. This vari-
ation is both in color and intensity. It is primarily due to the variation of sun
illumination Ed(λ) with the sun angle. The sun illumination is modeled as
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Ed(λ) = Eo(λ).T (λ, θz)cos(θ) (2)

where θz is the sun zenith angle. Eo(λ) is the extraterrestrial sun radiance for
a given Julian day. θ is the angle of the sun with the surface normal. T (λ, θz)
is the downward atmospheric transmittance and is dependent on the sun zenith
angle. The Raleigh scattering of the air molecules, Mie scattering of aerosol parti-
cles, ozone and water vapor absorption primarily constitute atmospheric trans-
mittance [10]. The downward atmospheric transmittance T (λ, θz) contributes
to the color variation of the incident sun component. Preetham et. al [9] and
Iqbal [10] describe this phenomenon in a more detailed manner. The cos(θ)
component causes the intensity variation of a surface with the time of the
day.

The aerial images we consider are taken in the Red-Green-Blue (RGB) bands.
The spectral information of the illumination is initially converted to CIE [11]
tristimulus values XYZ followed by conversion to RGB space. After the conver-
sion the equation (1) is re-written as:

Ik = (Ed
k + Skyk)Sk; (3)

where k is one of the three RGB bands. The path-scattered radiance P (λ) is
neglected. Similarly equation (2) is written as

Ed
k = Et

k(θz)cos(θ) (4)

where Eo(λ) and T (λ, θz) are coupled into terrestrial sun radiance Et
k(θz).

Fig. 1. Sun, Sky and path-scattered radiance contributions in image formation

3 Relighting at Different Sun Angles

The task of illuminating the image at different sun angles is broken up into three
constituent sub-tasks:

– determination of orientation for each pixel,
– subtraction/compensation for initial sunlight, and
– relighting the image at a different sun angle.

We describe each of these subtasks in detail in the following subsections.
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3.1 Orientation Determination

The value of sun illumination Ed
k is dependent on the the sun angle and the

orientation of the object surface as shown in (4). The sun angle is obtained
from the time stamp information (meta data) of the image. For orientation
determination of the surface we adopt two different solutions for the landscape
and urban scenes. The details are described in the following sections.

Landscape Images. The aerial images of landscapes used by us were taken by
Pictometry [12]. These images have location and elevation information corre-
sponding to all the pixels in the image. The elevation information was obtained
using the digital elevation model (DEM) data from the USGS [13]. Figures 2(a)
and 2(b) show a landscape image and the corresponding elevation map respec-
tively. We use the elevation map to estimate the orientation for each pixel in the
image. The orientation of a pixel is given by

(∂z/∂x, ∂z/∂y,−1)

where z is the elevation of the pixel. We estimate the partial derivatives at the
pixel (x, y) as

∂z/∂x(x, y) ≈ (z(x + 1, y)− z(x− 1, y))/(2r) (5)
∂z/∂y(x, y) ≈ (z(x, y + 1)− z(x, y − 1))/(2r) (6)

where r is the pixel resolution of the image. We smooth the normals (∂z/∂x,
∂z/∂y) with a Gaussian disk filter to remove sharp edges.
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Fig. 2. Elevation information for a landscape image (a)Landscape image (b) Elevation
map of the landscape image. Red corresponds to high elevation and blue corresponds
to low elevation.

City Images with Buildings. In case of cities with urban areas contain-
ing buildings the orientation of the faces of the building with respect to the
incident light is required. This information is not available with pictometry im-
ages. Therefore, we manually segmented the building walls into parallelograms
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Fig. 3. A Pictometry image with segmented walls

as shown in the figure 3. We assume that all the walls are vertically built which
fixes the zenith angle to pi/2. The azimuthal direction was determined based on
the angle between the adjacent sides of the segmented walls.

We plan to investigate computer vision based approaches to automatically
recognize the orientation of a building face by assuming a Lambertian reflectance
model for the walls.

3.2 Subtraction/Compensation for Initial Sunlight

The original image has to be compensated for the initial sun light and direction.
The initial sun conditions in most photographs can be computed based on its
time stamp and location. The sun facing surfaces can be compensated using
this information. However, we also need to compensate the illumination of the
self-occluded surfaces. This is done by employing the sun-sky ratio as described
in the following subsection.

Calculating the Sun-Sky Ratio. We consider the regions immediately inside
and outside the shadow to compute the sun-sky ratio. We assume that this region
will have the same material. Figure 4 shows the region considered for computing
the sun-sky ratio. Using equation (3) the ratios of pixel intensities for the RGB
bands inside and outside the shadow ρk is given by

ρk = (Ed
k + Skyk)/Skyk = Ed

k/Skyk + 1 (7)

for all the RGB bands. We are interested in the values Kk = Et
k(θz)/Skyk which

is given by
Kk = (ρk − 1)sec(θs) (8)

where θs is the angle between the sun and the surface normal on which the
shadow is incident. In figure 4 the shadow is incident on a horizontal surface.
We take the average value of all the intensity ratios along the edge of the shadow
to get an unbiased estimate of Kk..

The Compensation Equation. The compensated intensity Icomp
k , for the

sun and sky illuminated surfaces is given by

Icomp
k = Ik/(Et

k(θzi)(cos(θi) + 1/Kk)) ≈ Sk (9)
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Fig. 4. Sun-sky ratio is calculated using the pixels in the white bounding box

where θzi is sun zenith angle in the original image. θi is the angle between the
sun and the surface normal in the original image. Similarly, for the self shadowed
surfaces we have

Icomp
k = Ik.Kk/(Et

k(θzi)) ≈ Sk (10)

3.3 Relighting the Image at Different Sun Angles

The final step in synthesizing the image at new sun angles is to recompute the
illumination at each pixel. For this subtask we begin with the compensated image
and compute the pixel values for the new sun angle. The equation for the pixels
on surfaces that are illuminated both by the sun and sky is given by

Inew
k = Icomp

k (Et
k(θznew)cos(θinew) + Et

k(θzi)/Kk) (11)

where θznew is the new sun angle. θinew is the new angle between the sun and the
surface normal in the original image. Similarly, the illumination on self shadowed
surfaces is given by the equation

Inew
k = Icomp

k Et
k(θzi)/Kk (12)

4 Cast Shadow Removal

We can relight the self occluded objects using the techniques described in Sec-
tion 3. However, the issue of cast shadows needs to be addressed. Simulating
the motion of a cast shadow with the sun angle is a difficult task in the absence
of complete geometric information of the aerial scene. However the presence of
a wrong static cast shadow in an aerial image can be disturbing. Therefore, we
need to remove the cast shadows from the original image.

A complete literature survey of all the shadow detection algorithms is pre-
sented in Prati et. al.’ s [14]. An interesting geometry based shadow detection
algorithm is described by Jacobs et al. [15]. We investigate applying a clustering
based technique [16] and also propose a simple sun-sky ratio based technique for
cast shadow removal.

The clustering based algorithm works on the assumption that the same mate-
rial is present on both sides of a cast shadow. The pixels are divided into clusters
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(a) (b) (c)

Fig. 5. Performance of clustering based shadow removal algorithm (a)Original image
(b)Regions selected for the algorithm are shown in blue (c)Clustering based shadow
removal algorithm output

(a) (b) (c)

(d) (e)

Fig. 6. Performance of clustering based and sun-sky ratio based shadow removal algo-
rithm (a)Original image (b) Regions selected for the algorithm are shown in blue (c)
Clustering based shadow removal algorithm output.(d)Regions selected for the algo-
rithm are shown in white (e)Sun-sky ratio based shadow removal algorithm output.

in the RGB space using the K-means clustering algorithm [17]. We identify the
sun pixel clusters and shadow pixel clusters corresponding to each material as-
suming that their centroids are lined up in the color space. We then map the
shadow pixel clusters to sun pixel clusters by shifting the mean and changing
the variance followed by median filtering to reduce the fuzzy boundary artifacts.

We avoid choosing large portions of the image for the algorithm as the clus-
tering of the pixels gets more difficult with increasing number of materials. We
design a system where the user is required to input the region of the image on
which the clustering algorithm will work. Figure 5 shows the original image,
regions selected and the output of the shadow removal algorithm.

Figure 6 shows that the clustering based algorithm gets confused when new
materials are present in the shadow. We propose a sun-sky ratio based technique
as an alternative approach to the clustering based method. We employ the sun-
sky ratio to compensate for the lack of sunlight in the pixels within the cast
shadow.
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We isolate the shadowed regions by thresholding the pixels of the image in the
Hue-saturation-value (HSV) space. Recent work [18, 19] has showed that HSV
color space is more accurate in distinguishing the shadowed regions. We mark a
pixel as shadowed if

Ih < Th ∧ Is < Ts ∧ Iv < Tv

where Ih, Is and Iv are the hue, saturation and value components of the pixel.
Th, Ts and Tv are the thresholds used in the HSV space. However, the choice of
thresholds is manual and is based on the inspection of the image histograms in
hue, saturation and value components.

The sun-sky ratio is computed using the technique described in Section 3.2.
We then compensate the pixels in the shadowed region using the sun-sky ratio.
The compensation equation is given by

Ic
k = Is

kKcos(θs) + Is
k (13)

where Is
k is the intensity of the pixel in the cast shadow. Ic

k is the compensated
pixel intensity and θs is the angle between the pixel surface and the sun. Figure 6
illustrates the result of this algorithm.

Note that there is a intensity mismatch for pixels within the shadow and
outside the shadow. This problem can be alleviated if the mapping between
the actual radiometric value and the intensity of the pixels is considered. Thus,
knowledge of the camera response function can fix the intensity mismatch.

5 Summary of the Algorithm

The algorithm for relighting an aerial image is given by the following sequence
of steps:

1. Determine orientation for each pixel in the image. In case of urban images
containing buildings create manual annotations as shown in section 3.1 to
define the orientation. In case of landscape images use the elevation infor-
mation to determine orientation as described in section 3.1.

2. Compensate for the existing sunlight in the original aerial image by com-
puting sun-sky ratio using pixels near shadow boundaries. The method is
described in section 3.2. Compensation for the initial sun light and angle is
done using equations (9) and (10).

3. Remove cast shadow using one of the algorithms described in section 4.
4. Relight the image for a given sun angle using equations (11) and (12).

6 Results and Discussion

The algorithm proposed in this paper has been implemented in MATLAB. We
relight the image in figure 5(a) for various sun angles at different times of the day.
The cast shadows are removed using the clustering based algorithm presented
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Image relighted for various sun angles. The circular object shown in the pictures
represents the sun (a)Azimuth = 76o, Zenith = 84o(b)Azimuth = 54o, Zenith = 69o

(c)Azimuth = 9o, Zenith = 36o(d)Azimuth = −54o, Zenith = 36o(e)Azimuth = −77o,
Zenith = 85o(f)Azimuth = −88o, Zenith = 88o.

(a) (b) (c)

(d) (e) (f)

Fig. 8. A city image relighted for various sun angles. The circular object shown
in the pictures represents the sun position (a)Azimuth = 76o, Zenith = 84o

(b)Azimuth = 54o, Zenith = 69o(c)Azimuth = 9o, Zenith = 36o(d)Azimuth = −54o,
Zenith=36o(e)Azimuth=−77o, Zenith = 85o(f)Azimuth = −88o, Zenith = 88o.

in Section 3. Manual annotations shown in figure 3 are used for determining the
orientation information. A video of the scene is generated depicting the variation
in illumination for a sun path across the sky.

Figure 7 shows six frames from the video. East is toward the left of the image.
The sun rises at the bottom left of the image, moves toward the top middle
portion during mid-day and sets at the bottom right of the image. The sun
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(a) (b) (c)

(d) (e) (f)

Fig. 9. A landscape image relighted for various sun angles. The circular object
shown in the pictures represents the sun position (a)Azimuth = 76o, Zenith = 84o

(b)Azimuth = 54o, Zenith = 69o(c)Azimuth = 9o, Zenith = 36o(d)Azimuth = −54o,
Zenith=36o(e)Azimuth=−77o, Zenith=85o(f)Azimuth=−88o, Zenith=88o.

is shown as a circular object with the color corresponding to the sun color at
different times of the day. The orientation of the surfaces is observable for the
annotated surfaces. All the other surfaces are assumed to be flat. We see that
faces 1, 3 and 6 as marked in figure 3 are bright in figures 7(b) and 7(c) when the
sun is at the left of the image. These faces get dark in figures 7(d) and 7(e) when
they are in the sun shadow region. The Sun is towards the right of the image in
this case. Faces 2, 5 and 7 are in the shadow region and are dark in figures 7(b)
and 7(c). These faces get brighter in figures 7(d) and 7(e) when they face the
sun. We also see that the figures 7(a) and 7(f) have a hue shifted towards red.
This is due to the color change of the sun during the initial and final stages
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of the day. The algorithm successfully simulates changes in sun color and angle
with the time of the day and relighting of self occluded surfaces. However it does
not make use of complete three dimensional information, and therefore does not
incorporate change in the cast shadows with the sun angle.

We also relight the image 6(a) for a hypothetical sun path. A video is generated
for the sun trajectory and snapshots from the video are shown in figure 8.

Similarly we relight a landscape image in figure 2 for a hypothetical sun path.
The elevation data corresponding to pixels in the image is used to determine
the orientation. In this image East is towards the bottom. The sun rises at the
bottom center of the image, moves toward the center left of the image during
mid-day, and sets at the top center of the image. The change in the shading of
the landscape with the sun angle can be observed in figure 9. The pixels are
shaded based on their orientation. Occlusion is not considered, therefore some
regions facing the sun are illuminated even when they are occluded by other
parts of the landscape.

7 Conclusions

We presented a simple and approximate technique for relighting aerial images
to simulate different times of day. This was achieved by modifying the main
component of lighting in the scene, namely the direct sunlight component. We
also described two cast shadow removal algorithms. Our algorithms need some
manual intervention. We demonstrated our research by simulating a trajectory
of the sun across the sky for aerial images of urban regions and landscapes.
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Abstract. We introduce a new compression algorithm for complex an-
imated meshes of constant connectivity based on the local principal
component analysis. The algorithm segments the animated mesh into
segments using a region growing algorithm and transforms the origi-
nal vertex coordinates into the local coordinate frame of their segment.
This transformation leads to a strong clustering behavior of vertices and
makes each region invariant to any deformation over time. Then each
segment is efficiently encoded using the principal component analysis.
The set of basis vectors and coefficients corresponding to each segment
are quantized and entropy encoded. Experimental results show that our
algorithm yields a significant improvement upon some current coders.

1 Introduction

Computer graphics is producing increasingly sophisticated tools (like Maya, 3D
Studio Max, or Cinema 4D) which can build models with extremely complex
geometric data and create highly realistic animations for different purposes such
as computer games, movies, or scientific applications.

The animations often consist of frames each of which stores an own mesh.
Even if key frame animations are used, the number of meshes that need to
be stored can become large. But often the meshes differ only slightly between
neighboring frames. The meshes contain a large redundancy between frames and
between neighboring vertices in the same frame. With growing scene complexity
it becomes more and more problematic to manipulate such animated meshes in
real-time or to transmit and exchange them over networks. Therefore, efficient
compression algorithms are needed that significantly reduce the storage space
of animated models. A number of techniques have been developed for animated
meshes with fixed connectivity. Lengyel [1] partitioned the mesh into submeshes
and described the motion of the submeshes by rigid body transformations which
are estimated to best match the trajectories of their vertices. Alexa et al. [2]
used principal Component analysis (PCA) to achieve a compact representation of
animation sequences. Karni and Gotsman [3] introduced linear prediction coding
(LPC) to the PCA coefficients to further exploit the temporal coherence. Sattler
et al. [4] proposed a compression scheme that is based on clustered PCA (CPCA).
The mesh is segmented into meaningful clusters which are then compressed
independently using PCA. Prediction and wavelet schemes [5] [6] [7] are also
used to efficiently compress animated meshes.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 606–613, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The animated meshes often exhibit highly nonlinear behavior which is globally
difficult to capture. Locally, the neighboring vertices have a strong tendency to
behave and to move in a similar way. The nonlinear behavior can therefore be
described in a linear fashion by segmenting the vertices of the mesh and by
introducing a local coordinate frame for each segment. Figure 2(b) shows the
path of six points of the dance model in the world coordinate system. Note the
highly nonlinear behavior of the trajectories. Figure 2(c) shows the path of the
points using a local coordinate system (LCS). Note the relative small changes
and the tendency of the trajectory of a single point to cluster.

Contribution. We propose a new compression algorithm for animated meshes
which segments the mesh into segments with a region growing algorithm and
transforms the original positions of the vertices into the local coordinate frame
of their segment. This automatically ”transforms” the nonlinear behavior of the
original vertices into the clustering behaviour which is very well compressable.
The vertex positions will tend to cluster around the same position over time (see
Fig. 2(c)). Thus, the segments themselves are almost invariant to any deforma-
tion. A PCA is then performed on each segment such that the (local) vertex
coordinates are transformed into another basis which allows for very efficient
compression. An error accumulation scheme ensures that the decompression does
not introduce severe artifacts. To our knowledge the combination of local coordi-
nates and PCA has never been performed before. We call our approach Relative
Local Principal Component Analysis (RLPCA) compression. Our algorithm (1)
achieves an increased compression performance, (2) reduces prediction errors to
increase accuracy, (3) is computational inexpensive (compared to a PCA for the
full mesh), and (4) is well suited for progressive transmission.

2 Animation Compression

Figure 1 illustrates an overview of the compression and decompression pipeline.
Given a sequence of triangle meshes Mi, i = 1, ..., F of constant connectivity with
V vertices and F frames (meshes), we first segment the mesh into N segments
where each contains Vi, i = 1, ..., N, vertices.

2.1 Segmentation

Our segmentation algorithm grows regions starting from several seed points. The
regions grow uniformly around the set of selected seed points by first traversing
the closest neighboring vertices until all vertices of the mesh are visited. The
segmentation algorithm consists of three steps:

Step 1 (Initialization) initializes the N pieces Si, i = 1, ..., N , to be empty.
Step 2 (Seed Selection) selects N seeds using the far distance approach [8]

and we associate with each seed one of its incident triangles called seed triangle.
Step 3 (Region Growing) grows the regions starting from the seed trian-

gles. Every region has a queue associated with it which consists of edges who
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Fig. 1. Overview of the compression / decompression pipeline

separate between the interior of the region and the exterior. The queues drive
the growing process. Every edge connects two triangles, one inside the region
and one outside the region called candidate triangle. The vertex of the outside
triangle that does not lie on the edge is called a candidate vertex. The queue
of every region is initialized to the (three) edges of its seed triangle. The edges
of the queues are sorted by the distance of their candidate vertices to the seed
vertex; we use the average of all position of a vertex in all frames as vertex
position. We iterate over all regions and for every region we add the candidate
triangle whose candidate vertex has the lowest distance to the region. We update
the queue by removing the edge and by adding the two remaining edges of the
candidate triangle. The iteration stops if no more edges are in the queues. We
end up with N segments that have Vi vertices each.

2.2 Local Coordinate System

Expressing the vertex locations in a LCF is an optimal way to exhibit the cluster-
ing behavior. It makes the local segment quite invariant over time. We consider
that each region has its own LCF, defined on the seed triangle as depicted in
Fig. 2(a) . The origin o is the center of one of its three edges (typically (p1,p2)),
the x-axis (red arrow) points down the edge (p1,p2), the y-axis (green arrow)
is orthogonal to the x-axis in the plane of the seed triangle and the z-axis is
orthogonal to the x- and y-axis. In contrast to the world coordinate system,
moving the LCF moves the set of vertices relative to the local frame only and
the coordinates of a vertices tend to cluster around one point. The transforma-
tion of a point p to its local coordinates q can be accomplished by an affine
transformation with a translation o and a linear transformation T (orthonormal
matrix): q = T(p − o).

2.3 Principal Component Analysis

Principal component analysis is a statistical technique that can reduce the di-
mensionality of a data set. It determines linear combinations of the original data
which contain maximal variation and represents them in an orthogonal basis.
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Fig. 2. Illustration of the local coordinate frame in each segment (a). The position of
six different vertices over time (illustrated with different colors) are represented with
global coordinates (b) and local coordinates (c).

If we have F frames of 3V dimension each, PCA produces a reduced number
L� F of principal components that represent the original data.

Let Sf
i be the i-th mesh segment in the f -th frame, i = 1, ..., N and f =

1, ..., F . A single mesh segment Si thus consists of F mesh segments (one for each
frame) Si = {S1

i ,S
2
i , ...,S

F
i } where Sf

i represents the vector with the geometry
of the mesh segment i in frame f : Sf

i = (pi,f
1 ,pi,f

2 ,pi,f
3 ,qi,f

4 ,qi,f
5 , ..,qi,f

Vi
)t whose

elements are the world coordinates of the three vertices of the seed triangle used
to construct its own LCF, and the local coordinates of the segmented points.
All Sf

i have the same length 3Vi, and construct a 3Vi × F geometric matrix
Ai =

[
S1

i S
2
i ...S

F
i

]
. A singular value decomposition on Ai is computed to find

Ai = UiDiVt
i where Ui is a 3Vi × F column-orthogonal matrix that forms an

orthogonal basis and contains the eigenvectors of the AiAt
i. Di is a diagonal

matrix whose nonzero elements represent the singular values which are sorted in
decreasing order. To reduce the data set, we pick only the first L eigenvectors
(L can be defined by the user). So, U

′
i = {ui,l, l = 1, ..., L} contains the most

important principal components ui that correspond to the largest eigenvalues.
Then each segment Sf

i is projected into the new basis U
′
i to get a new matrix

of coefficients C
′
i = U

′t
i Ai of size L × F . After performing the PCA for all

N segments Si, we get N new sets of component and coefficient matrices with
different sizes. {U′

1,U
′
2, ...,U

′
N} and {C′

1,C
′
2, ...,C

′
N} respectively.

2.4 Quantization and Arithmetic Coder

For further compression, the floating-point values (32 or 64 bits) are always
quantized to a user specified number of bits per coordinate relative either to the
tight axis-aligned bounding box for each frame or to the largest bounding box
for all frames. In our algorithm, since we have to encode the basis vector values
and the coefficients rather than the vertex coordinates, we use two different en-
coding contexts. The first concerns the matrices and the second the correction
vectors (see sect 2.5). The basis matrix U

′
i and the coefficient matrix C

′
i of each

segment Si are truncated using a fixed number of bits qu and qc (typically qu =
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qc). We first compute the minimums and the maximums values (cmin,i, cmax,i),
(umin,i, umax,i) of U

′
i and C

′
i respectively. Then integer values are straightfor-

wardly derived according to uiq(m, j) = %ui(m, j)/(umax,i − umin,i) · 2qu + 1/2&
and ciq(j, f) = %ci(m, j)/(cmax,i − cmin,i) · 2qc + 1/2&, where m = 1, .., 3Vi,
j = 1, .., L and f = 1, .., F . The resulting integer values of the matrices are en-
coded with an adaptive arithmetic coder [9] and sent with the extreme numbers.

2.5 Local Coordinate Frame Correction

During the decoding, the LCFs should be correctly reconstructed. Currently, the
three vertices p1, p2 and p3 are decoded and the transformation from world coor-
dinates into the LCF is constructed from them (see sec. 2.2). This reconstructed
transformation can contain error which can be significant if a small number of
components is used or a coarse quantization is done. In order to diminish this
error, we simply compute the correction vectors between the original and the
reconstructed three points and quantize them to a user specified number of bits
qΔ relative to the minima extend of the bounding box defined by the maxima
and the minima of all world coordinates. The integers are then encoded and
sent with the PCA details. The errors of the LCFs are then due to quantization
only and are negligible at up to 12 bits quantization. The total number of bits
needed for storing correction vectors is very small. It ranges between 0.01 and
0.5 bits per vertex per frame when the quantization ranges between 12 and 18
bits depending of the number of components and quantization level.

2.6 Decompression

Figure 1 illustrates the decoding process. After receiving PCA details and correc-
tion vectors, we reconstruct the local coordinates of all vertices in each segment.
In the second stage, we decode and undo quantization of correction vectors, build
back the LCFs, and transform the local coordinates back to world coordinates.
Finally, we collect all segments to reconstruct the sequence of meshes.

3 Results

To see the compression skill and the quality of the RLPCA scheme, we measured
the number of bits per vertex per frame (bpvf), and we used the metric dKG

introduced by [3] to measure the distortion in the reconstructed animation with
regard to the original animation. Furthermore, we used the L2 norm to compute
the distortion per frame. We compare the performance of our algorithm against
standard PCA, KG (PCA+LPC) [3], CPCA [4] and the wavelet (AWC) [6].

RLPCA vs. LPCA vs. PCA. To find out the influence of the segmentation
and the local coordinates on the rate and on the reconstruction of animation,
we performed local PCA (LPCA) in the world coordinates as well as in the local
coordinates for a given number of segments and components. The quantization
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(a) (b)

(c)

Fig. 3. Left: Results of error measurement (using L2 norm) of the chicken sequence
using standard PCA and HPCA in the world and the local coordinates (using 15
segments). Right:Reconstructed chicken (frame 220): (a) original, (b) with 25 segments,
(c) with 2 segments, using 20, 15, and 1 component(s) respectively and qu = qc = 16.

level was set to 16 bits. We also compared LPCA with standard PCA. Fig-
ure 4(d) shows that RLPCA has an excellent rate-distortion performance. The
improvement in the dashed red curve is due to the segmentation process and to
LPCA which extracts well the local linear behavior. This improvement increases
when the vertex coordinates were transformed into LCS which forces the coor-
dinates of a vertex to cluster around one point which is well compressable by
PCA. The coding performance improvement over each frame can also be seen
in Fig. 3 (left). Figure 3 (right) shows the reconstruction frame in the chicken
sequence at different numbers of segments and components.

Comparison to other coders. Figure 4 illustrates the comparison to other
methods as rate-distortion curves for the chicken, cow and dolphin animations.
On the first sight, we can see that our approach achieves a better rate distor-
tion performance than the standard PCA, LPC and TG. This result is obvious
since the coding of animation using static mesh compression techniques exploits
spatial coherence only and LPC uses temporal coherence only. On the other
hand the standard PCA approximates the global linearity only and is less ef-
fective for nonlinear animation. Compared to the CPCA and AWC algorithms,
we achieve better or similar results. Figure 4(a) shows that for the cow ani-
mation our method is significantly better than KG and than CPCA depending
on the level of quantization used (32 or 18 bits) and it comes close to AWC.
For the dolphin and the chicken sequences, our method performs better than
the all above methods. This improvement is due to the segmentation of the
model into meaningful parts as well as to the use of local coordinates rather
than world coordinates. On the other side, the RLPCA performs well for the
models with a large number of vertices in contrast to KG. Therefore, by combin-
ing RLPCA with LPC, we might achieve a better compression ratio. From the
computational viewpoint, PCA is computational expensive but in combination
with LPC, it gives a better compression ratio, particularly for a long sequence
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(a) (b)

(c) (d)

Fig. 4. Rate distortion curves for the cow, dolphin, chicken and dance sequences

Table 1. Comparison compression and decompression timings with CPCA

CPCA RLPCA
Models vertices triangles frames bpvf dKG tenc

(sec) tFPS
(sec) bpvf dKG N L tenc

(sec) tdec
(sec)

chicken 3030 5664 400 4.7 0.076 206 214 4.8 0.043 25 20 95 15
2.8 0.139 395 215 3.0 0.107 10 20 88 10

cow 2904 5804 204 7.4 0.16 75 145 6.9 0.39 10 20 41 8
3.8 0.5 59 218 5.2 1.2 6 20 39 7

dolphin 6179 12337 101 - - - - 6.7 0.009 40 10 50 10
- - - - 5.1 0.024 20 10 43 8
- - - - 3.1 0.11 40 5 42 8

dance 7061 14118 201 - - - - 6.9 0.028 50 20 175 23
- - - - 4.0 0.196 50 10 150 15
- - - - 3.3 0.35 30 10 103 12

of a small number of vertices. CPCA outperforms both methods by using robust
segmentation (clustered PCA) but remains expensive. In contrast to that, our
RLPCA uses a simple segmentation and transformation and achieves a similar
or even better compression ratio.

Timings. Table 1 shows the timings in seconds of the coding (tenc) and decoding
(tdec) processes for the four animations with a comparison to CPCA (tFPS for
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display while decoding). We observe that for the chicken model our coder is much
faster and performs better than CPCA. For the cow model, RLPCA is faster
but CPCA gives a better compression ratio. Our timing results are measured on
Pentium 4 with 2.53 GHz and CPCA on AMD Athlon64 XP 3200+.

4 Conclusions and Future Works

We have presented a new animated mesh compression scheme based on PCA and
the use of local coordinates. To exploit the large space-time coherence, the mesh
is segmented into segments and then, the world coordinates of each segment are
transformed into LCS. This step is the key feature and enables the algorithm
to compress an animated mesh efficiently. It exploits the ”local” behavior of the
local coordinates. Finally, a LPCA is performed. Our approach is simple, fast
and achieves a better performance than some current coders. For very long se-
quences, we think that the motion of local coordinates becomes complex and
nonlinear too. Therefore, we plan to develop an adaptive segmentation and en-
code the segments with different numbers of components and quantization levels.

Acknowledgements. We would like to thank Zachi Karni and Hector Briceño
for providing us the animated mesh and Mirko Sattler and Igor Guskov for the
results of their methods. The Chicken sequence is property of Microsoft Inc.
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Abstract. We propose a framework to reconstruct human motion based on 
monocular camera video and motion database. In this framework, we use 
silhouettes for rough motion estimation based on a set of discriminative features 
and search motion database to find out the exact motion clips that meet with the 
video content. We model motion as a first-order Markov process. The transition 
probabilities between motion clips are preprocessed with consideration of the 
continuousness and smoothness of human motion. To eliminate the discontinuities 
between motion clips, we also adopt a seamless motion stitch method using 
multiresolution analysis technique. We verify the effectiveness of our method by 
reconstructing trampoline sports video as an example. The reconstruction results 
are visually comparable to those motions obtained by a commercial motion 
capture system in the premise that similar motions are included in the motion 
database.  

1   Introduction 

The popularities of three-dimensional sports simulation and assistant training systems 
have demonstrated that generating natural human motion is an important problem. 
This problem has been solved by motion capture equipments. Motion capture data 
provides all the detail and nuance of live motion for all degrees of freedom of a 
simulated athlete. However, this solution is far too expensive for commercial use. It is 
also cumbersome, requiring the user to wear over 40 carefully positioned retro-
reflective makers and skin-tight clothing. Moreover, motion capture, as an intrusive 
method, will turn out to be a hindrance to the performance of athletes to some extend. 
On the other hand, video, especially from monocular camera, is the main medium to 
record sport motions. Compared to motion capture data, sports video is easier to 
obtain and non-intrusive. 

In this paper we propose a framework of motion synthesis from monocular camera. 
(Fig.1). In this framework, a motion database is set up with motion capture system 
previously. Given a video, the silhouettes and camera viewpoint are extracted. 
Synthetic silhouettes will be extracted by rendering a three dimensional human model 
at a plane using each frame motion data at the same viewpoint with video. We match 
the real silhouettes with synthetic ones, and corresponding motion clips will be 
retrieved. We keep K-closest matched motion clips and try to find the most probable 
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motion sequence. To ensure the naturalness of results, a motion stitch algorithm is 
applied to stitch the matched clips. Vision processing supplies partial information 
about the user’s movement, and domain knowledge from the motion database 
supplements the necessary information to allow user’s movement to be inferred. 

Video
Motion database

silhouette
sequence

silhouette
clips ( )js t

Extended motion
database

Motion clips
Match

K-closest  matches of
Motion clips

Matched Motion clips

Motion Sequence

Viewpoint
extraction

transit ion
probability

motion stitch

 

Fig. 1. System Overview 

2   Research Background 

2.1   Human Motion Database  

The database must be large enough that good mappings can be found as needed. We 
construct a large and complete trampoline motion database using a Vicon optical 
motion capture system with twelve 120Hz Mx-40 cameras. And we use a standard 
biomechanical marker set with 42 markers. The motion database contains 62 motions 
of trampoline sports, which are 40383 frames in total. Each motion frame contains the 
position and orientation of root node (pelvis) and relative joint angles of 19 joints, 
omitting the finger joints. These joints are head, neck, thorax, waist, pelvis, and left 
and right clavicle, shoulder, elbow, wrist, hip, knee and ankle.  

A motion is a time-varying function which provides a pose of an articulated figure 
at a time. We denote the position of root by a three-dimensional vector and the 
orientations by unit quaternion. We denote a motion by  

1( ) ( ( ), ( ),... ( ),... ( ))i nm t p t q t q t q t=  (1) 
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where 3( )p t R∈ and 1 3( )q t S∈  represent the position and orientation of root node, 

and 3( )iq t S∈  represent the orientation of the i th joints, and n is the number of 

joints plus 1(root orientation).  

2.2   Silhouettes Matching 

The silhouettes from video must be compared to the synthetic ones from three-
dimensional motion database. So the first thing we need to do is extracting camera 
viewpoint from video. Utilizing virtual-true comparison technique of Qiu[8], the 
extrinsic parameters of camera are calculated by using feature 3D reconstruction, by 
which the viewpoint of the virtual scene is adjusted automatically to be the same as 
the video’s.  

How to describe the similarity between silhouettes is key to silhouette matching. 
Our previous work (Qiu [10]) selected one Hu moment and four affine moments as 

global statistical features of silhouette images: 7 1 2 3 4( , , , , )I I I Iφ . We denote the 

sequence of silhouettes from the video as a time-varying signal: 

7 1 2 3 4( ) ( ( ), ( ), ( ), ( ), ( ))s t t I t I t I t I tφ=  (2) 

Given two silhouettes  i 7 1 2 3 4( , , , , )i i i i is I I I Iφ= ,  7 1 2 3 4( , , , , )j j j j j js I I I Iφ=  the 

difference is defined as eulidean distance between silhouette vectors 

( , ) || ||i j i jd s s s s= −  (3) 

Accordingly, the difference between two silhouette signals of equal length L is : 

1 2 1 2
0

( ( ), ( )) ( , )
L

i i
i

d s t s t d s s
=

=  (4) 

We use every frame in motion database to drive the virtue athlete and then synthetic 
silhouettes corresponding with those 3D frames will be gotten. One synthetic silhouette 
corresponds to one frame of motion. Then the feature vector of synthetic silhouettes, as 
defined above, can be computed. We extend the motion database by adding the 
silhouette vectors to the corresponding motion frames. Extended motion database is 

denoted as: 1( ) ( ( ), ( ),... ( ), ( ))n
E synm t p t q t q t s t= . 

By matching synthetic silhouettes with real ones, the corresponding motion data 
will be found. Since at present we use video with fixed camera, the extension of 
motion database needs to be processed only once.  

In our system, we divide silhouette signals both from video and from motion 
database into clips of equal length and then compare the video clips with synthetic 
ones. We find difference between the video clip being matched and each synthetic 
clips using Equation (4), and keep the K closest matches. The length of clips should 
be carefully chosen. Too short clips will turn out to be a heavy burden to path finding 
and motion stitch while too long clips might lead to unsatisfactory matching results. 
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Moreover, in real time application, too long clips will introduce a long delay. In our 
application, the length we choose is 25 frames. 

We save more matching results than the closest match because more consideration 
should be taken than just how close the silhouette clips is to the synthetic ones. We 
must take into consideration which clips come first and next and how smoothness 
between them. 

3   Motion Synthesis 

3.1   Path Finding 

Now we need to find a path to pass through the possible matches and form a 
continuous motion. Our criteria is to choose the path with largest probability. We 
model the motion data as a first-order Markov process, so the transition from one clip 
to the next depends only on the current clip. To measure the transition probability 
between motion clips, we create a probability matrix, the thij component of which 

gives the probability for clip i  to transfer to clip j .  

For the two clips which are consecutive originally, the transition between them is 
likely to be pleasing. So, we set one to the probability between this kind of clips. For 
the clips which are not consecutive, we estimate the probability by measuring the 
difference at the stitching point, that is, the last frame of clip i  and the first frame of 
clip j . Inspired by the work presented in Lee[5], we define the ji th component as: 

  
                               (5) 
 

, 1 ,0 , 1 ,0( , ) ( , )
i iij i l j i l jD d m m d v v− −= +  (6) 

The first term describes the difference between the last frame of clip i  and the first 

frame of clip j . 
,

m
i k

 indicates the pose from clip i  frame k , 0 k l
i

≤ < , l
i

is the 

length of clip i .  The second term describes the difference between the velocities at 

the stitch point. 
,

v
i k

 indicates the velocity of frame k from clip i , 0 k l
i

≤ < . l
i

is 

the length of Clip i .The second term can help us to differ the similar pose from 
different motions, such as jumping upward and falling downward.  

The difference between pose is defined as:  

2 ( ) 1 ( ) 2
, 1 ,0 , 1 ,0 ,0 , 1

1

( , ) log(( ) )
i i i

N
k k

i l j i l j k j i l
k

d m m p p w q q−
− − −

=

= − +  (7) 

The difference between velocities at the stitch point is defined as: 

2
, 1 ,0 , 1 , 2 ,1 ,0( , ) ( ) ( )

i i ii l j i l i l j jd v v p p p p− − −= − − −  (8) 

ij

if Clip ,  are consecutive

exp( -D )          otherwise ij

i j
P

σ
=

 1   
{
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Here, the first subscript is for Clip, the second for Frame, and superscript is for joint. 

For example, ( )
, 1i

k
i lq − is the unit quaternion for Clip i Frame 1il −  Joint k . Weights 

kw  are set to one for important joints such as head, shoulder, elbow, hip, knee and 

root; weights for other joints are set to zero. 

3.2   Motion Stitch 

Now that we have the most probable path, the ends of clips may still have 
discontinuities. A transition might be noticeable if the motion clips simply jumped 
from one to another, so we need to stitch them seamlessly. In this section, we adopted 
a motion stitch algorithm under the framework of multiresolution motion analysis 
proposed by Lee[12]. 

As we know the motion data captured by motion capture system are realistic and 
highly detailed. We decompose the original data into an overall motion signal and a 
sequence of different level of details. Then we respectively stitch the base signals, and 
levels of details. Finally, we compose the stitched base signal and stitched levels of 
details into a stitched highly detailed motion. 

Let AM  and BM  are two motion signals, their multiresolution representations are 

constructed as: 

(0) (0) (1) ( 1)( , ,..., , )N
A A A A AM m d d d −=  (9) 

(0) (0) (1) ( 1)( , ,..., , )N
B B B B BM m d d d −=  (10) 

The stitching result is denoted as CM . Joints coefficients of CM  at the boundary of 

AM  and BM  are set to the average of the last  joint coefficients of AM  and the first 

joint coefficients of BM . Changes made in the boundary will be smoothly 

propagated to the neighboring frames as coefficients of CM  is recovered to highly 

detailed motion data from multiresolution representation. 

4   Experiments 

We implement our method on an Intel Pentium IV 2.8GHz 512MB PC. Experiments 
of our method are done with a trampoline sport video. The reconstructed three-
dimensional motion sequence is shown in Fig. 3. The first column is video sequence, 
the second is the silhouettes extracted from video. The third, the forth and the fifth 
columns are the reconstruction results. The third is the final matched synthetic 
silhouettes, the forth is the corresponding three dimensional motion poses at the same 
viewpoint with the video, the fifth is the same motion poses viewed at a different 
viewpoint. Experiments are also done to demonstrate the effectiveness of motion 
stitch method. (Fig. 2) At the boundary of two clips, they are smoothly stitched and 
the angular (linearly) velocities are also quite fair. 
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(a) left elbow                           (b) left knee                    (c) root position 

Fig. 2. Stitch motion clips. The purple curves are matched motion clips from database. The blue 
are stitched clips. The green are the angular (linear) velocity curves. (a)(b)(c) visualize the 
motion signals corresponding to the y of left elbow, the x of right elbow and the y of root 
position. 

5   Conclusion and Future Work 

We have presented a method of motion synthesis in motion reconstruction based on 
video and verified the effectiveness of our method by trampoline video 
reconstruction. The results are visually comparable with motion capture data recorded 
by motion capture system. The major limitation of this method is that it requires a 
large and high quality motion database that similar motions in video are included. We 
believe that it is not a serious problem because in many applications the types of 
human behavior are limited. Another drawback of our method as it currently stands is 
the method for breaking the silhouette signal into clips. Now we divide the signal into 
clips of equal length. Though we have made the video frame rate be the same with 
motion data, this strategy is somewhat arbitrary. What is important is that both the 
real silhouette signal and synthetic one are broken at analogous locations. We are 
working to remedy this deficiency.  
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Fig. 3. Reconstruction of a trampoline video 
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Abstract. In this work, we address visualization of spatio-temporal data for 
military application. Four different visualization prototypes have been devel-
oped to track the movement of military entities across a land surface over time; 
three more have been developed to track the occurrences of numerous war 
events. We have implemented the prototypes in a software system with a novel 
clock face GUI. Usability tests have been carried out and confirmed the effec-
tiveness of the solution. 

1   Introduction 

As time progresses during warfare, it becomes increasingly difficult for commanders 
to manually analyze and spot patterns inherent in large, complicated sets of battlefield 
data. Limitations of human memory and our inability to compute complex calcula-
tions simply prevent us from performing such complex tasks. It may, perhaps, be wise 
to make use of the powerful computing capabilities of a computer and visual com-
puter graphics to circumvent the problems stated above. The goal of this work is thus 
to research and explore existing solutions which capture and visualize the spatial 
relationships of battlefield entities over time within a single interactive picture. Four 
different visualization prototypes have been developed to track the movement of mili-
tary entities across a land surface over time; three more have been developed to track 
the occurrences of numerous war events (one snapshot in Figure 1(a)). A novel clock 
face GUI has also been designed and implemented to help users of the software query 
the system with time constraints (Figure 1(b)). Usability tests have also been carried 
out on all the visualization prototypes as well as the Time Query GUI to determine 
their applicability and usefulness and to uncover any potential human factors  
problems. 



 Spatio-temporal Visualization of Battlefield Entities and Events 623 

 
(a) 

 
(b) 

Fig. 1. Illustration of the graphics display (a) and clock face GUI (b) 

2   Related Work and Our Contributions 

Different existing techniques which visualize spatio-temporal data are found in [1], 
[2], and [4]. In [5], a common thematic map known as the choropleth map, can repre-
sent different magnitudes of an attribute which changes over time using shaded units. 
Also, the Z-Axis in 3D space can be used to represent time, a technique used in [3]. 
Space represented by the first and second dimensions combined, while time by the 
third dimension in a 3D space is an innovative idea.  

Our work adopts and improves on the techniques described above to serve our pur-
poses. In general, it extends all existing ideas in 2D into 3D; and conducts experi-
ments with all the aforementioned advanced techniques. It results in a plethora of 
spatio-temporal visualization prototypes.  

Unlike most existing work, this work attempts not only to explore and describe the 
various ways of visualization, but also allows potential users to compare and contrast 
these various techniques through a single application and then determine empirically 
how preferred each technique is (or if there was simply no preference) over the others. 

3   Our Work 

3.1   The Clock Face GUI 

To the best of our knowledge, most time query user interfaces make use of widgets or 
visual metaphors such as the timeline/time slider, time dials and calendar controls to 
form a time query. Each of these has limitation(s) that fail to serve the purposes of the 
temporal data being dealt with here. Temporal data in the military context is precise 
and accurate. Timelines and time dials do not allow selection of such precise values. 
A full calendar is space-wasting. Although a dynamic calendar (such as Microsoft’s 
calendar) is space-saving, it only allows selection of a date but not time. Time can 
only be selected by clicking the “increase” or “decrease” button multiple times which 
is inefficient. This motivated us to design a novel time query interface, the clock face 
GUI (Figure 1(b)), that can overcome these limitations to serve our purposes.  
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The clock face GUI combines circular structures with the conventional calendar re-
sulting in a compact, space-saving UI. It consists of three concentric circles each 
representing a particular time unit (Month/Day/Hour). Each circle is color coded to 
guide the user. Two grid lines intersecting at the center of the clock interface divides 
it into four quadrants to reduce search times for a value. 

The clock face GUI together with other controls, form the complete interface to in-
teract with the main display. It allows selection of 1) time moment, 2) time interval, 3) 
time range within a day, 4) battlefield events; and also animation playback functions. 

3.2   The Spatio-temporal Visualization Prototypes 

We describe the seven spatio-temporal visualization prototypes here. Four track loca-
tions (movement) of enemy battlefield entities that change over time while three track 
occurrences of battlefield events over time. The term “battlefield entities” refer to 
army units. Without loss of generality, we present the enemy data only. 

Dot graph: It provides a snapshot of the distribution and strength of each enemy unit 
across the terrain at a particular time moment (Figure 2).  

       

Fig. 2. The dot graph        Fig. 3. The trail graph (with time tags) 

Dots represent enemy units marking their locations on the terrain at some time 
moment, t. Each dot is colored which describes the strength of each unit. Dots on the 
map change color and increase in number over time due to the splitting of a unit. Such 
colored dot maps, hence, are an instance of a choropleth map. 

Trail graph: It gives a snapshot of both the current as well as historical locations of 
each enemy unit in a given time interval. Dots mark a unit’s location on the terrain. 
Curved lines (trails) connect a unit’s historical and current locations together,  
showing movement. Trails approximate the path that a unit moves along. It solves a 
limitation posed by Dot Graph (ie. inability to show historical information). 

This prototype, hence, is an instance of the 2D line plot graph extended into 3D. 
Users may click on the dots to display time tags to reveal time associated with each 
dot. Plotting these time tags on the terrain is analogous to the scatter plot graph. With 
these time tags, it is possible for user to estimate the speed at which a unit is moving. 
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Spoke graph: It functions like the trail graph with some enhancements. A spoke is a 
rod-like structure that extends along the y-axis in 3D space. Spokes were initially 
used to solve a drawback posed by the Trail Graph – inability to distinguish between 
two units that traveled along the same path at different times.  

 

Fig. 4. Spokes to differentiate the enemy 
units 

 

Fig. 5. Spokes to depict time value 

Figure 4 shows how each dot along any trail is elevated by a spoke at a fixed 
height. The height of each spoke was used to identify one enemy unit (moving along a 
trail) from another (moving along another trail). As such, two different units (circled) 
moving along the same path can be distinguished. 

However, it may not seem obvious that height is used to differentiate units. Hence, 
the spokes idiom was modified to depict the time value that an enemy unit was found 
located at some position on the terrain (Figure 5). 

From Figure 5, each spoke drawn along a unique trail now take on different height 
values. User can have an intuitive feel of how much time has elapsed before a particu-
lar unit has moved on to a new location and to predict its speed. The spokes still pre-
serve its ability to differentiate among units moving along the same path (circled).  

Raster graph: Multiple snapshots of locations of enemy units at successive time 
moments (Figure 6) is shown. Raster is a horizontal translucent plane in 3D space. 
This idea came from 2D chess maps. 

   

Fig. 6. The raster graph   Fig. 7. The stacked bar graph 



626 Q. Fong, F.M. Ng, and Z. Huang 

Each raster offers a snapshot of the locations of each enemy unit at a particular 
time. Vertical grey lines drawn through the rasters connect units representing the 
same army unit on each raster. Cyan colored lines depict splitting behavior. Rasters 
are displayed in successive times, allowing comparison of the movement and/or split-
ting behavior of the enemy units between two or more successive times. Such com-
parison is useful in seeing if any unit has remained in its position for a long time by 
looking down at the line projected from the unit in space to the unit on the map. If the 
unit is found on each n raster along this projected line, it means that it has not 
moved/split for the past n successive times. 

The following three graphs are designed to track the occurrences of battlefield 
events.  

Stacked bar graph: Stacked Bar Graph retrieves battlefield events found to be  
associated with a time moment or interval. Then, they are stacked in a vertical bar 
(Figure 7). Each vertical bar “holds” all the events that occurred at the same spatial 
location at a particular time moment or interval. In other words, it is able to convey 
what events occurred and where they occurred at some time moment or interval. To 
some extent, this prototype was inspired by the 2D bar graphs 

Such a simple representation is capable of conveying lots of useful information. 
First, it can depict event recurrence at a location by observing the number of icons 
found in a stacked bar. Second, the events found in a stacked bar are sorted according 
to time, thus, the order of events occurring at a location can be inferred. Third, by 
clicking on an event icon in stacked bar, time tags are displayed. Time tags allow the 
inference of causality relationships between events. 

Grouped links graph: Grouped Links Graph is capable of showing the distribution 
of events across a land surface effectively. It does so by grouping links that link to the 
same type of events on the terrain together (Figure 8). Links are lines joining an event 
icon to a particular location on the map. These links have the same color as that asso-
ciated with the event icon it is joined to and are thus associated with the event that the 
event icon refers to. A link represents an occurrence of the event it is associated with. 
A thicker link means there are more than one occurrence of an event. 

  

Fig. 8. Grouped links graph   Fig. 9. The calendar graph 

One useful feature of this visualization technique is that comparison of the number 
of occurrences of an event with another can be made intuitively (from the degree of 
the “meshing” of links) without having to count the exact numbers. 
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Calendar graph: It retrieves data about battlefield events found to be associated with 
a given time moment or a month and plots them onto a calendar drawn perpendicular 
to the map (Figure 9). 

The calendar displays all the days of a month in rows. All event icons found in a 
row on the calendar are sorted according to time. This graph was inspired by Geo-
Time[3]. Some modifications were made to GeoTime to adapt to the type of data this 
project deals with. 

In GeoTime, event icons are drawn directly above the location at which they oc-
curred on the map. The height of the event icons corresponds to the date on the calen-
dar. Two drawbacks can be observed in GeoTime. First, when the main display is 
rotated, it becomes hard to determine which date each event icon corresponds to be-
cause no link is drawn to connect the icon to the calendar. Second, GeoTime is unable 
to represent the scenario where two different types of events are occurring at the same 
location and at the same time. This is because only one event icon can be drawn 
above a location and mapped to a date on the calendar at any one time. The Calendar 
Graph attempts to improve on these drawbacks to serve its own purposes. 

To solve the first drawback, event icons are directly plotted onto the calendar. To 
solve the second drawback, different types of events that occur concurrently at  
the same locations are represented by their respective icons plotted side by side on the 
same row in the calendar. Each of these icons is connected by a colored line to  
the location where it occurred. With a calendar, time information becomes obvious. It 
is like a neat report showing which events have occurred and at what date/time. 

4   Usability Study 

Our usability tests aim to determine 1) ease-of-use of the clock face GUI, 2) effec-
tiveness of each prototype in conveying spatio-temporal information and 3) to  
uncover any potential human factors problems inherent in the system. A test method-
ology described by [6] was adopted for the tests. 

Medium: Low-interaction method was used in tests on the clock face GUI to deter-
mine if the participants were able to complete certain tasks without any help or prior 
training. A mixture of low- and high-interaction methods was used in the tests on the 
prototypes to collect as many different interpretations of the visualizations as possible 
to determine if they are interpreted according to the original intentions.  

Test specifications: A test has two participants: the test participant and the tester. 
Each test participant has to complete 10 test cases followed by a mini questionnaire. 
The test cases are briefly described as follows: 

Test Cases 1 - 2 on the clock face GUI: They aim to determine the ease of use of the 
clock face GUI. For each task in a test case, the participant selects a given time query. 
Time taken for the participant to do a correct selection is measured using a stopwatch 
and recorded.  

Test Case 3 on the complete clock face GUI: This aims to determine how easily the 
complete clock face GUI can be manipulated to do a given list of tasks.  
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Test Cases 4 -10 on the 7 spatio-temporal visualization prototypes: These require the 
participant to carry out a given task related to the prototype. The participant was then 
asked to describe what the visual graphics is that appear on the main display.  

Choice of participants: Due to the classified nature of the project, only fellow col-
leagues and HYP students within the DSO organization were asked to participate. 
More information about the 8 participants is shown in Figure 10. 

 
(a)       (b) 

 

Fig. 10. Participant information: (a) occupation and (b) age distribution 

Test environment: Human Factors Engineering Lab at DSO@Kent Ridge. No audio 
or video recording was used. 

Test data obtained are collated and analyzed empirically. To make these conclu-
sions apply for a general population, a statistical method called the Student’s T-Test 
for two independent samples was used. In Student’s T-Test, a value known as the test 
statistic, t, is calculated and compared with a value, c, in the T-Table. For any two 
independent samples A and B, if t < c, then the null hypothesis (i.e. meanA = meanB) 
is accepted at some level of confidence. Otherwise, the null hypothesis is rejected (i.e. 
meanA < meanB or meanA > meanB, depending on the values of meanA and meanB 
from the data). From these results, we can make conclusions, at some level of confi-
dence, about some observation that we are investigating over a general population. 

Summary of test results 
Test Cases 1-2: Time taken to select time units across 1, 2 or 3 quadrants in the clock 
face GUI appears to be the same. When a time interval was to be selected, time taken 
to do so generally increases by two to three times. Participants who managed to figure 
out certain shortcuts in selection took less time – at least by half of the time taken by 
non-shortcuts.   

Test Case 3: Participants did not experience any difficulties using the complete clock 
face GUI. Positive responses were given to the clock face GUI in terms of aesthetics, 
ease-of-use, intuitiveness, effective feedback and usefulness. 

Test Cases 4-10: Generally, all test participants gave interpretations for each of the 7 
prototypes similar to the original intentions of the visualization design. Participants 
felt that all prototypes were useful and informative, but not necessarily communica-
tive or intuitive. This concurs with the observation that participants usually take some 
time to study the visualization before giving their interpretations. However, once the 
“studying” stage was over, comments came flowing in. 4C2 binary comparisons were 
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made between 2 prototypes from the set: Dots, Trails, Spokes and Rasters. At 95% 
confidence level, users across a population found Trail Graph more informative and 
useful than Dot Graph but expressed no preference over any prototype in the other 
binary comparisons. 3C2 binary comparisons were made between 2 prototypes from 
the set: Stacked Bar, Grouped Links and Calendar. At 95% confidence level, users 
across a population found Calendar more informative and useful than Grouped Links 
but expressed no preference over any prototype in the other binary comparisons. 

5   Conclusion 

In this paper, we have proposed and implemented a software system to visualize  
spatio-temporal data of a battlefield. Four different visualization prototypes have been 
developed to track the movement of military entities across a land surface over time; 
while three more have been developed to track the occurrences of numerous war 
events over time. A novel clock face GUI has also been designed and implemented. 
Usability tests have also been carried out to determine the applicability and usefulness 
as well as to uncover any potential human factors problems. 
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Abstract. In this paper, a 3D city model generation method is described. At 
first, the ground images around the area of interest are acquired using a camera 
mounted on a GPS device and digital compass, which provide the initial inaccu-
rate pose of each image. An adjacency graph that spatially represents the adja-
cency between images or buildings is built to handle efficiently a huge number 
of unordered image sequences. A set of images with views of the same building 
is automatically grouped, and an optimization algorithm based on SFM corrects 
their poses. Finally, a method of global pose estimation is outlined that can reg-
ister 3D isolated building models in a global coordinate system. We validate our 
approach with a set of experiments on some urban sites. 

1   Introduction 

The reconstruction of large-scale 3D building models is important for a variety of 
applications, such as fly-through rendering and simulations for urban mission  
planning. Many researchers have used aerial images [12], which provide wide area 
coverage, but it often has lack of facade information. 3D range scanning devices have 
provided accurate geometric and photorealistic 3D models [7]. Hybrid approach uses 
ground images and a laser scanner for 3D modeling [5]. Most commercial 3D range 
scanning systems are expensive because of the actuators required for the precise con-
trol of the camera and light projector. 

Modeling from ground view images is a cost-effective means of obtaining detailed 
large-scale urban models. While several practical systems by the user interaction have 
been proposed [2,16], many researchers have also developed Structure from Motion 
(SFM) based algorithms for automatic 3D reconstruction [11,1,8]. Most of the SFM 
based techniques; however, apply to only limited small scales and partial reconstruc-
tion of buildings. Their approach cannot handle multiple image sequences. Sainz et al. 
[3] presented a method that uses a divide and conquer strategy to split the video se-
quences into subsequences. The poses of subsequences are estimated by SFM and 
self-calibration technique, independently. But subsequences have the different of 
internal camera parameters. Sato et al. [4] developed a method that acquires a dense 
3D model of the outdoor scene from multiple image sequences captured by a video 
camera with a wide-angle lens. They use a set of predefined markers and natural fea-
tures to extract external parameters. However,, the acquisition of 3-D positions of the 
markers in real world is a difficult task without any specific device. Furthermore, a 
large number of predefined markers are required for large-scale building modeling.  
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2   System Overview 

So far, we investigate the limitation of classical SFM based system for reconstructing 
large-scale 3D building models. To solve the problem, an efficient method should be 
devised to handle a large number of image features obtained from multiple image 
sequences. Some auxiliary devices will solve the problem. Coorg and Teller [13] used 
spherical mosaics produced from accurately calibrated ground view cameras with a 
GPS device. This system has a difficulty to capture spherical mosaics for a wide area. 
Hence, we propose a simple acquisition system in which a hand-held digital camera 
equipped with a GPS and digital compass is used. The device assists the SFM based 
algorithms, and so a system based on SFM for large-scale site modeling is feasible. 

The system consists of four parts: feature extraction, adjacency graph generation, 
isolated geometry reconstruction, and global pose estimation (see Fig. 1.). We capture 
unordered image sequences with their camera pose information around the area of 
interest. The pose information of each image is roughly acquired from a GPS and 
digital compass. Camera pose estimation and 3D geometry reconstruction of buildings 
are achieved by a classical SFM technique. In this case, the accurate internal parame-
ters of the camera and reliable features among image sequences are required. There-
fore, we extract several reliable features such as lines, corners and vanishing points 
(VPs) by using an enhanced feature extraction scheme. To handle image features, we 
obtain an adjacency graph that spatially represents the adjacency between images with 
views of the same building. Finally, global pose estimation is outlined that can regis-
ter 3D isolated building models in a global coordinate system using a panoramic im-
age or a image sequence. 

This paper is organized as follows: Section 3 explains image feature extraction and 
adjacency graph for 3D reconstruction. Section 4 describes a reconstruction of iso-
lated building geometry, followed by global pose estimation in section 5. Some ex-
perimental results and conclusion are discussed in section 6 and section 7. 

 

Fig. 1. System overview 

3   Image Features and Adjacency Graph 

3.1   Line Segments, Vanishing Point and Corner  

Kesidis and Papamarkos proposed the inverse Hough transform (IHT) for straight-line 
detection and filtering [10]. However, the result is unsuitable for vanishing point 
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computation and corner detection, because the algorithm is not designed to detect 
accurate line segments. Therefore, a modified IHT is proposed. 

Firstly, a classical Hough transform with low resolution Hough cells is used to ob-
tain a set of local maxima. Due to the resolution error, the true line exists within the 
range of ρd−0.5Δρ≤ ρ ≤ρd+0.5Δρ and θd−0.5Δθ≤ θ ≤θd+0.5Δθ, where (ρ,θ) is the parameter 
of the true line, (ρd,θd) is the local maxima, and (Δρ,Δθ) is the size of each cell. We 
expand the cell (ρd, θd) into n×n sub-cells. The best-fit line Lij is then estimated by 
performing IHT for each polar parameter (ρi, θi), where ρi = ρd+ Δρ (i/n-0.5), θi =θd + 
Δθ(i/n-0.5), and 0≤ i, or j≤ n. For all edge points supporting the line Lij, we cut the line 
into separate line segments if the distance between two adjacent edge points is greater 
than εd. To reduce the quantization effect of both the image and the parameter space 
and to eliminate the false line segments due to the low threshold in the Hough trans-
form, we exploit solidity of line segments, which is the number of edge points sup-
porting the line segment divided by its length. If the solidity of the line segment is less 
than εc, then the line segment is considered as noise. All the candidate line segments 
are sorted based on length to find the true local maxima. Finally the longest line seg-
ment is selected and subtracts one from the length of each line segments stored in the 
cells. Repeat this process until the next maximum length of the line segments is less 
than a predefined threshold. Prior to estimating the vanishing point, a group of line 
segments that is parallel in the 3D world needs to be identified. A global line cluster-
ing and vanishing points (VPs) diction algorithm are used based on uniform tessella-
tions of a Gaussian sphere [12]. In order to eliminate superfluous corners in the area 
of uninteresting such as trees, the grouped lines of VPs used to eliminate corner fea-
tures, except for the corner features of a building. This method can be easily executed 
by combining the grouped lines and corner features.  

 
(a)    (b) 

 
(c)    (d) 

Fig. 2. Result of features extraction: (a) Results of line segments extraction (εd=3, εc=0.6) (b) 
Horizontal VP and Vertical VP (the accumulated cells in a Gaussian sphere.), (c) Result of 
Result of (b), and (d) Harris corners (left) and Corners on façade (right) 

3.2   Adjacency Graph Generation 

With respect to the camera calibration using the vanishing points, a recent study  
estimated the camera parameters using two orthogonal vanishing points (OVPs).  
Although Guillou et al. [6] presented a method using two OVPs, under assuming that 
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the principal point is the image center. For a more accurate intrinsic calibration, we 
use a simple, geometrically intuitive method based on radical center estimation [14]. 

Three OVPs and the internal parameters give the camera rotation relative to a 3D 
model. Yet, many images only have two OVPs. Given two OVPs, another vanishing 
point can be easily computed using known intrinsic parameters. Let the vertical and 
horizontal vanishing points and the principal point be U(xu,yu), V(xv,yv) and P(xp,yp). 
Third vector is               ,  where                             T and                             T in the cam-
era coordinate system. The model-to-camera rotation Rmc is defined as follows: 

[ ]wwuuvvmc rrrR λλλ= , or [ ]vvuuww rrr λλλ ., (1) 

where λv, λu, λw are scaling factors. While λu is positive value because ur  is the view 

up vector, there exist ambiguities in the signs of λv, λw because there are four cases for 
the location of the model origin [12], which need to be resolved. We can determine 
the camera-to-world rotation matrix without the ambiguities by using digital compass 
information as depicted in Fig. 3, where (Xm, Ym, Zm), (Xw, Yw, Zw), and (Xc, Yc, Zc) denote 
the model, world, and camera coordinate systems. Yw=Ym by assuming that the archi-
tectures are always vertical. The value θ of the digital compass represents the  
clockwise panning angle from Zw(North) axis to the viewing direction , that is the 
projection of the vector -Zc onto the Xw,Zw plane. The Zw axis after panning motion 
        is denoted by                                in the camera coordinates. The three world 
coordinate axes in the camera coordinates, Xwc, Ywc, Zwc are computed as  

wcwcwcwwcwcuuwc YXZZYXrY ×=×==  and  ,
~

  ,λ . (2) 

From equation (2), the world-to-camera rotation matrix, Rwc = [Xwc, Ywc, Zwc]T. Finally 
we choose any corner point in the building as the model origin. Then the signs of λv 
and λw are determined by comparing vvrλ  with Zwc and Xwc as illustrated in Fig. 5. 

After that, we will resolve the inconsistency during building the adjacency graph.  An 
adjacency graph is built to efficiently handle multiple image sequences. A node in the 
graph includes image as well as feature information; such as VPs, and camera pose 
information from a GPS and digital compass. An edge in the graph then joins two 
nodes if the camera poses are adjacent. Fig. 4 shows an example of the capture con-
figuration. The target architectures are indicated as I, II, III, and IV, plus each solid 
circle and its arrows denote the position and viewing direction of the camera, respec-
tively. Firstly, we assign unique numbers to images by using accession-numbering 
scheme, in which numbers are assigned sequentially as new image is added to the 
image database. For each image, reliable image features are extracted as mentioned 
above section 3.1, and a node is added in the adjacency graph.  

An edge is added for two nodes ni and nj if the following conditions are satisfied: 

{1} Euclidean distance, ndij, is less than εnd.. The node position is obtained from the 
GPS. Quadtree is useful for finding a set of candidate nodes { nj|ndij<εnd } for a node nj.  

{2} The difference between two camera panning angles, dcij, is less than εdc. The 
panning angle is obtained from the digital compass. 

{3} Two nodes have two or more VPs, and the difference between a pair of hori-
zontal VPs, dvij, is less than εdv, which is defined as                                       ,where iar  

is the ath vanishing direction in the ith image.  

),,( fyyxxr cucuu −−= ),,( fyyxxr cvcvv −−=vuw rrr ×=

wZ
~− ( )TwZ θθ cos0sin

~ −=

)/(cos 1
jbiajbiaij rrrrdv ⋅= −
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Fig. 3. Geometric relations between the two VPs 
and the three axes of the digital compass 

 

 

Fig. 5. Inconsistency of model coordinates 

 

 

Fig. 4. Example of Adjacency Graph 

 
(a)                    (b)                 (c) 

Fig. 6. Example of view overlapping ge-
ometry between two-isolated groups: (a) 
MBR2 and MBR3 (b) MBR23, and (c) View 
overlapping. 

In this case, the model coordinates inconsistency needs to be resolved. As illus-
trated in Fig. 5, two pairs of VPs for two nodes have a different relative direction. 
Yet, if Xmi and Zmi have the opposite direction, the two pairs of VPs may actually cor-
respond. The model coordinate system for the node nj is updated and defined in equa-
tion (2). Given the adjacency graph, we extract a panorama group P, in which ∀ni,nj ∈ 
ndij ≅ 0, and all nodes are connected with {2}. Next, a set of connected sub-graphs is 
extracted. Each connected sub-graph defines an isolated group, which can be utilized 
to reconstruct the isolated geometry by using SFM. For the remained nodes, {1} and 
{2} are tested. If both conditions are true, an edge between two nodes is inserted. 
Thereafter, a set of connected sub-graphs is extracted again from the graph. The con-
nected sub-graph defines a connecting group. The panorama or connecting groups are 
used to estimate the global position. The nodes are classified into two types: an intra-
node or inter-node, where an intra-node is in the isolated group, while an inter-node 
is in the panorama or connecting group. In Fig. 4, n53~n64   form a panorama group P1, 
G1~G7 are the isolated groups, and n49~n52 are the connecting group C1. Other nodes, 
n5, n19, n20, and n26 are eliminated. Given the adjacency graph, a set of the isolated 
groups which views the same building is clustered for isolated building reconstruc-
tion. Firstly, the minimum-bounding rectangle, MBRi of each isolated group Gi is  
created. Its one axis is the line between two end nodes of the isolated group. By sum-
mation of the viewing direction vectors for all nodes, the viewing direction, of the 
isolated group Gi is estimated as shown in Fig. 6(a). Secondly, a nearby MBR, MBRj, of 
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the MBRi in the direction of    is found. Then the MBR of two isolated groups MBRij is 
computed. The length of its long axis is used to expand MBRi and MBRj with their 
normal directions, respectively, as shown in Fig. 6(b). The area of the overlapping 
region is then computed. If the area is above εod, two groups are merged.  

4   Isolated Geometry Reconstruction 

In isolated group, the first and second images of an isolated group are used to deter-
mine a reference frame. In order to consistent corresponding, we use RANSAC  
algorithm is used, and then the first and second projection matrices are determined 
using part of a multistage algorithm [8]. The structure is then refined using an Iterated 
Extended Kalman Filter for each point [11]. After we refine reconstructed structures 
through bundle adjustment [1]. To prevent error propagation, we use a divide and 
conquer strategy to split the image sequence of an isolated group into subsequences. 
As such, the poses of subsequences are independently estimated by SFM, and then the 
calibrated subsequences are integrated together. To unify the 3D results from subse-
quences, subsequences are mapped to the GPS position by using equation (3). 

=

N

i sigi
zxs

TmmD
cc

1,,,
),(min

θ
, (3) 

where D(mgi, Tmsi) is Euclidean distance, mgi=(xgi, zgi) and msi=(xsi, zsi) are GPS position 
and camera position. s,θ , and (xc, zc) are scale, Z-axis rotation, translation, respec-
tively. Transformation, T is defined by four parameters. The integration of two subse-
quences is performed in metric space based on the 3D-2D corresponding points. 
Meanwhile, GPS mapping is used to align two subsequences in the world position 
with about the same scaling. Therefore, the integration of subsequences can solve a 
linear equation. In order to apply space-carving algorithm [17], the universal voxel 
space is generated from reconstructed 3D points. The space resolution is Nx×Ny ×Nz = 

(Xmax−Xmin,Ymax−Ymin, Zmax−Zmin)/S, where (Xmax,Ymax,Zmax)T and (Xmin,Ymin,Zmin)T are 3D 
points, and S is the predefined scale.  

5   Global Pose Estimation 

We use the panorama or connecting nodes in the adjacency graph to compute the 
relative posture between two isolated building models. To capture a cylindrical pano-
rama image of a real world scene, we use an image mosaic algorithm [18]. In this 
case, panning rotation only represents the relationship between two images. 

Given the 3D-2D point correspondences between the inter-nodes in the panorama 
and intra-nodes in the isolated group, the relative posture can be estimated between 
two isolated buildings. To do this, a short image sequence between the panorama and 
isolated group is used. It helps us extract automatically the 3D-2D point correspon-
dences. Let the projection matrix from each 3D model to an image of the intra-node nj 
be denoted by Pi =[Rmci| tmci] and Pj =[Rmcj| tmcj], where Rmcj and tmcj are the model-to-
camera rotation and translation of the node ni, respectively. When the six 3D to 2D 
point correspondences with respect to geometries are detected, the projection matrices 
can be estimated. The coordinate transformation from jth to ith model coordinates is 
defined by the following equation  

iv
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where Rij(φ) means the panning rotation from jth to ith model coordinates[18].  

6   Implementation and Some Results 

We have tested our method with some buildings in a University campus. The equip-
ments used in the system are presented in Fig. 7. Fig. 8 shows the result of SFM after 
GPS mapping, where the blue-filled diamonds denote the GPS positions, and the 
yellow-filled diamonds denote the refined camera positions. Fig. 9 shows result of 
volumetric reconstruction. Fig. 10 shows the re-projection error for the three build-
ings, where the length estimated by the length of the camera paths. Fig. 11 shows the 
result of global pose estimation. For the global pose estimation, the building A  in 
Fig. 11 was used as the reference building, where yellow circle, blue-sky circle and 
blue circle and are GPS position, camera position after GPS mapping and camera 
position after global pose estimation, respectively. 

 

Fig. 7. Used Equipments 

 
(a) 

 
(b)                                   (c) 

Fig. 8. Example of SFM: (a) Before GPS mapping, 
(b) After GPS mapping and (c) Integration 

 

 

 

 

Fig. 9. Example of volumetric recon-
struction 

    

Fig. 10. Results of error measurement          Fig. 11. Result of global pose estimation 
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7   Conclusion 

In this paper, we presented a system for reconstructing large-scale 3D buildings using 
ground view images including a GPS and digital compass information. First, a modi-
fied inverse Hough Transform is proposed. By using this method, suitable line seg-
ments are extracted for estimating vanishing points and corresponding corners. In 
order to handle a huge number of images, an adjacency graph is devised. The adja-
cency graph represents the spatial adjacency between images or buildings and is 
automatically generated from a roughly known pose. Finally, a method of global pose 
estimation is outlined that can register 3D isolated building models in a global coordi-
nate system, then a system based on SFM is presented for large-scale site modeling.  
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Abstract. According to the principles of traditional 2D animation tech-
niques, anticipation makes an animation convincing and expressive. In
this paper, we present a method to generate anticipation effects for an
existing animation. The proposed method is based on the visual charac-
teristics of anticipation, that is, “Before we go one way, first we go the
other way [1].” We first analyze the rotation of each joint and the move-
ment of the center of mass during a given action, where the anticipation
effects are added. Reversing the directions of rotation and translation,
we can obtain an initially guessed anticipatory pose. By means of a non-
linear optimization technique, we can obtain a consequent anticipatory
pose to place the center of mass at a proper location. Finally, we can gen-
erate the anticipation effects by compositing the anticipatory pose with
a given action, while considering the continuity at junction and preserv-
ing the high frequency components of the given action. Experimental
results show that the proposed method can produce the anticipatory
pose successfully and quickly, and generate convincing and expressive
anticipation effects.

1 Introduction

Recent progress in computer animation has been mainly focused on synthesiz-
ing realistic motions. Many approaches based on kinematics and dynamics, and
especially recent techniques incorporating live motion capture data, allow us to
synthesize lively animation efficiently. However, realistic motion from those ap-
proaches would not always conclude to success in animation. We can observe
that publicly successful animations adopt the traditional 2D animation tech-
niques even though they are neither physically correct nor realistic. Traditional
2D animation techniques describe and convey the situation to the audiences
more efficiently than physical realism, by the means of exaggeration, anticipa-
tion, reaction, and so on [1].

According to the principles of 2D animation techniques, anticipation makes
an animation more convincing and expressive [2]. Most animators consider an
action as a sequence of the anticipation of the action, the action itself, and
� This research was supported by University IT Research Center Project.
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the reaction [1]. Here, the anticipation is the preparation for the action, and
the reaction is the result of the action. In general, most audiences expect an
anticipatory action before a certain action itself, since the anticipatory action
provides the audiences with visual cues for what are going to happen. Applying
anticipation effects is one of the effective ways for successful animations; however,
it is quite difficult for most animators to achieve. Even for experienced animators,
it is time-consuming process.

To add anticipation effects, we first analyze the given short motion clip and
find the directions of the joint rotations and the movement of the center of
mass for the action to deal with. We then generate an anticipatory pose by
reversing the directions of the given action. The final result is composed of two
motions: one from the initial pose to the anticipatory pose and the other from
the anticipatory pose to the original action. The proposed method in this paper
can be used as a tool for less experienced animators to generate anticipation
effects for producing expressive and convincing animations.

2 Related Work

Since J. Lasseter suggested that the principles of traditional 2D animation tech-
niques can be effectively applicable to 3D animations [2], there have been a few
research results presented. For instance, Opalach and Maddoc used multi-layer
implicit surfaces to incorporate Disney effects such as squash-and-stretch, follow-
through, anticipation, and exaggeration [3]. Rademacher simulated the irregular
deformation observed in 2D animation for a 3D character animation [4]. Li et al.
proposed a technique to deform models together with motion based on artistic
drawings [5]. Bregler et. al tried to track the motion from traditional cartoon
animations, and to retarget the motion onto 3D models [6]. Agarwala suggested
a semi-automatic method to convert a video of a real scene into a cartoon anima-
tion [7]. Chenney et. al applied a squash-and-stretch technique to represent the
rigidity of an object in a physical simulation [8]. Choi et. al proposed a method
to produce anticipation effects for an existing facial animation based on principal
component analysis [9].

There are also some related works to add effects to the pre-existing anima-
tion. Unuma et al. [10] and Bruderlin and Williams [11] independently intro-
duced their approaches to modify animation in the frequency domain to variate
the styles of the animations. Brand and Hertzmann suggested “Style Machine,”
which produces an animation with a variety of styles using hidden Markov mod-
els [12]. Liu et al. used nonlinear inverse optimization to stylize animation in a
physically realistic manner [13]. Hsu et al. developed a mathematical model to
analyze animations with different styles and apply the model to novel animations
for stylizing them [14]. Chi et al. proposed “EMOTE” models which modify the
visual styles of input motion clips based on Labanotation [15, 16]. More drastic
effects, especially passive actions caused by interaction from the world, can be
generated by the method proposed by Zordan and Hodgins [17]. Victor et al.
further improved the technique [18].



Anticipation Effect Generation for Character Animation 641

Unfortunately, within the current knowledge of the authors, there is no known
proposed technique to produce anticipation effects for multi-linked character
animation. This paper presents a method of applying anticipation effects for
character animation based on the visual characteristics of anticipation.

3 Anticipation Effect Generation

The primary visual characteristic of anticipation is that almost every anticipa-
tory action occurs along the direction opposite to the main action. In the physical
sense, we observe that the anticipation can be regarded as the action to make
the motion trajectory longer than that of the main action so that the character
can reach the same energy state at the extreme pose with smaller maximum
force. Therefore, anticipation effects can be obtained by moving the character’s
body, especially its center of mass backward.

Our basic idea to add or exaggerate anticipation effects is to compose an an-
ticipatory pose and to add the part of motion that passes through the pose. Here,
the anticipatory pose has the joint angles rotated in the direction opposite to the
original action and the center of mass of the character is also dragged backward.
The anticipatory motion starts from the first pose of the action of interest and
reaches the extreme pose of the action, passing through the anticipatory pose
while maintaining the motion continuity and geometric constraints.

3.1 Anticipatory Pose

Anticipatory pose of an action can be defined as the pose in which basically
every joint is dragged backward. Moreover, in order to maximize the effect of
anticipation visually and dynamically, we also need to drag the center of mass of
the character backward while maintaining important characteristics of the given
motion by enforcing the geometric constraints, if any. The joint angles can be
dragged backward kinematically in a simple way, but the center of mass cannot
be dragged as easily as the joint angles. Moreover, enforcing the constraints
sometimes prevents us from altering joint angles as we want. Therefore, we divide
this problem into two steps: producing an initial guess with dragged joint angles
and solving the pose with the given center of mass subject to the constraints.

Let t0 and te be the user-specified time instances where the action of interest
starts and reaches the extreme. The pose of a character is represented by the
global position p and orientation q0, and the joint angles qi, 1 ≤ i ≤ n, where
n is the number of its joints. Given the poses at time t0 and te, we compute an
initial guess of the anticipatory pose, pg and qi,g, by extrapolating them:

qj,g = slerp(qj,e, qj,0,−α), where 0 ≤ j ≤ n
pg = (1 + α)p0 − αpe,

(1)

where α is an arbitrarily given constant such that 0 < α ≤ 1. The user can
control the amount of anticipation with this control parameter α. With a larger
α, one can exaggerate anticipation more and he/she can keep the original motion
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better by specifying a smaller α. In our experiments, where we want to maximize
anticipation effects, we set α to one.

Since the initial guess of the anticipatory pose is edited kinematically, it does
not guarantee the translation of the center of mass along the opposite direction.
Moreover, it may not meet the geometric constraints. Therefore, we refine the
initially guessed pose using a nonlinear numerical optimization technique. The
desirable location of the center of mass is defined similarly to the initial guess of
the global position:

ca = (1 + α)c0 − αce, (2)

where c0 and ce are the centers of mass at time t0 and te, and ca is the center
of mass of the desirable anticipatory pose. Given the center of each link pi and
its mass mi, the center of mass of a character is defined as c =

∑
pimi/

∑
mi.

We use average human mass distribution for mi [19].
The energy function for our optimization problem is defined as:

E(p,qi) = wp ‖p− pa‖2 +
∑

i

wi

∥∥log(q−1
i,aqi)

∥∥2
+ ‖ca − c(p,qi)‖2 . (3)

Here, notice that the first two terms are for preserving the initial guess and the
last term for placing the center of mass at the desired location. The weights wi

and wp are set to specify human preference for the corresponding joint motion.
For example, a joint on the spine is not likely rotated as freely as joints on the
shoulder, so we assign larger wi’s for spine joints. In order to incorporate the
geometric constraints specified explicitly, we minimize the energy function with
respect to the constraints:

arg min
p,qi

E(p,qi) subject to fk(p,qi) = ck, (4)

where fk(·) = ck is the given geometric constraints. In our implementation, we
reformulate the constraints with penalty functions and minimize the sum of the
energy and the penalty functions together with the conjugate gradient method,
instead of employing time-consuming constrained optimization techniques.

Since the initially guessed anticipatory pose of the Equation (4) is, in gen-
eral, quite similar to the consequent anticipatory pose, the optimization can be
solved very quickly. According to experimental results, solving the optimization
problem without an initial guess does not produce a proper anticipatory pose
(See Figure 1(d) and (h)).

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. For given poses in (a)(e) and (b)(f) at time t0 and te, anticipatory poses with
and without an initial guess are shown in (c)(g) and (d)(h), respectively
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3.2 Anticipatory Motion

The anticipation motion is generated based on the anticipatory pose and is
plugged into the given motion. By adding anticipation effects, the character first
moves backward to the action so it poses as the anticipatory pose, and then
moves forward to the center of the action. Therefore, we divide the anticipatory
motion into backward motion and forward motion, and generate them separately
while maintaining continuity among them and the following motion.

To synthesize an anticipatory motion, we first need to determine the length
of those two parts. Broadly speaking, the bigger a motion is, the longer time it
takes. Therefore, the length of backward motion must be roughly proportional
to the amount of anticipation effect, which is controlled by α in Equation (1).

Let Le be the length of the time interval [t0 : te] in the given original animation
(See Figure 2(a)). The time instance of anticipation ta is determined by:

ta = wtαLe + t0, (5)

where wt is the user-specified constant to control the length of backward motion
more precisely. In our experiment, we obtained reasonable quality motion by
setting wt with one, that is, the length of backward motion is the same as that
of the action. In terms of the forward motion, we preserve the length of time
interval [ta, te]: t′e = Le + ta. By the backward motion, the amount of rotation
angle of any joint enlarged. Therefore, preserving the length of the forward action
makes the action itself look much faster and more dynamic, which also satisfies
the visual characteristics of anticipation (See Figure 2(b)).

θ

t0 te
t

(a)

t0 ta

t′e

θ

t

(b)

Fig. 2. (a) A typical animation curve without anticipation; (b) that with anticipation

Once the temporal length of the motion is determined, we generate motion
segments interpolating the corresponding start and end poses while maintaining
the continuity at the junction. Since the length of animation is pretty short,
we model the animation curve of both parts as bundles of Hermite curve seg-
ments, which is defined by start and end points and their tangents, due to their
simplicity and control for enforcing continuity.

The first motion segment needs to start with the pose P0 at t0 and end with
Pa at ta. The tangents at the both ends are set to maintain the continuity. In
detail, the tangents at t0 must be the tangents vi,0 at t0 in the original motion
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for i-th joint. The velocity at ta is also set to maintain the continuity between
the curve and the following curve. We set the velocity at ta as vi,a = vi,0, which
we will derive later.

In the forward motion part, we alter only low-frequency components of the
original motion to conserve the motion quality. The high frequency terms of an
individual joint in the given animation are the residuals between the original mo-
tion and the motion curve approximated by a Hermit segment (See Figure 3(a)).
The fitting curve for i-th joint is defined with the poses at t0 and te of the orig-
inal motion and their tangents. The residuals are computed as the rotational
differences between the joint angles from the original motion and those from the
Hermite curve. The deformed curve segment is defined similarly. The Hermite
segment for the deformed curve is defined with Pa and Pe. In order to reduce the
change from the original motion and maintain the continuity, the tangent at the
starting end vi,a needs to be vi,0, and that at the opposite end is vi,e. Adding
the residuals to the deformed curve yields the final animation (See Figure 3(b)).

t

θ

t0 tev0

ve

P0

Pe

(a)

θ

t
t0 ta t′e

v0

va = v0

ve

P0

Pa

Pe

(b)

Fig. 3. Anticipatory motion composition: (a) from a given motion, high frequency
terms are obtained between P0 and Pe; (b) the terms are add to the Hermite interpo-
lation curve of Pa and Pe

3.3 Experimental Results

Figures 4, 5, and 6 show some examples of anticipation effects for given human
motions. During the optimization, some geometric constraints are considered
that the ends of the two hands or feet are constrained to contact on the ground.
We can apply the same process repeatedly to the animation with anticipation,
which can make the animation look more dynamic (See Figure 6(c)).

(a)

(b)

Fig. 4. (a) Running without anticipation; (b) that with anticipation
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(a)

(b)

Fig. 5. (a) Throwing a ball without anticipation; (b) that with anticipation

(a)

(b)

(c)

Fig. 6. (a) Standing up from a chair without anticipation; (b) that with anticipation;
(c) that with double anticipation

4 Conclusions and Discussion

In this paper, we proposed a method of producing anticipation effects for a given
animation. The proposed method is motivated from the visual characteristics
of anticipation frequently shown in traditional animations. Our experimental
results show that the animation with anticipation by the proposed method is
more expressive and convincing. The proposed method can be used as a tool for
less experienced animators to efficiently produce anticipation effects.

The major limitation of the proposed method is that our method relies on
the user interaction to determine the durations of actions. In our experiment,
we found that some users have to spend time to specify the center of action. It
is well known that it is hard to develop a general algorithm to find a unit action
from the given sequence of motion. We believe it will be possible to design a
specialized method to determine the action duration since, in our case, the action
duration is very short and does not need to be accurate. The other problem is
that it is not always easy to control the length of backward motion. If the length
is too short, either the anticipation effect is small, or the backward motion is
too quick. On the other hand, if the length is too long, our method may cause
unnatural motion, since the motion is synthesized with simple mathematical
equations. However, as mentioned earlier, we found that a reasonable length of
the backward action is highly dependent on an original motion.
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Abstract. Mirage is a peculiar nature phenomenon which is caused
by the atmospheric refraction and total internal reflection under special
weather conditions. In this paper, we propose a novel method to model
and render this phenomenon. We first establish their corresponding at-
mospheric temperature models. Then adhering to the physical law, we
calculate the light path and intensity attenuation during its propagation.
To simulate the dynamic effect of mirages, we introduce a dynamic model
based on atmospheric gravity waves. By incorporating GPU acceleration
into the rendering process, different types of dynamic mirages under dif-
ferent conditions can be realistically rendered in real time, demonstrating
the formation, change, and disappear of mirages.

1 Introduction

Mirage is an peculiar natural phenomenon which happens on sea, desert and
road. Mirages are so charming that one had the chance to see them, especially
in desert or at sea, always likes to talk with other people to share his unique
experience and happiness. So realistic simulation of mirages will have much sig-
nificance in science and will be found applications in many areas, such as me-
teorology, scientific visualization, virtual reality, special effects in film, TV and
digital entertainment, etc.

Up to date, relatively few research works have been reported on the realistic
simulation of mirages. In 1977, Khular [1] and Fabri [2] et al. put forward their
explanation to mirage effect based on physics theories. In 1985, Tape et al.
[3] studied the geometrical topological model of light when superior mirages are
formed. In 1990, Berger [4] and Musgrave [5] et al. proposed a ray tracing method
for simulating superior mirages, but they only provided a simple example and the
approach is time-consuming. In 1996, Stam et al. [6] studied the non-constant
atmospheric media and simulated continuous variation of refraction indices. In
1998, Tr̈nkle et al. [7] simulated the mirage at Aegean Sea, but the result is less
convincing. In 2000, Kosa et al. [8] studied the causes of mirages theoretically,
and carried out experiments that simulated mirages on walls. In 2001, Wang [9]
derived the trajectory of light in the atmosphere of linear variation of refractive
index. However, this model is yet a theoretical model of single mirages. In 2004,
Shi [10] simulated the sunset mirage in a simple way. In 2005, Lintus et al. [11]

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 647–654, 2006.
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rendered the mirage effect during sunrise and provided a primary result of their
simulation.

Above works either focus on the theoretically modeling of mirages or simu-
lates one kind of mirage, fail to show the dynamic process of mirages changing
with time and atmospheric conditions, which makes mirages magnificent and
mythical.

Based on the physical theory of mirages, in this paper we propose a novel
method to model and render this phenomenon. We investigate the atmospheric
temperature models of different types of mirages, then calculate the light path
and intensity attenuation during its propagation adhering to the physical rules.
To simulate the dynamic effect of mirages, we present a dynamic model based
on atmospheric gravity waves, and adapting GPU to accelerate the rendering.
With the proposed method, we implement real-time rendering of various real-
istic mirages under diversified conditions, such as above the ocean, in deserts
and on concrete roads. The formation, change and disappear of mirages are
demonstrated clearly.

2 Modeling Mirages

Mirages happens when the temperature near the surface or sea surface is in-
creasing dramatically by heating or decreasing due to the radiation cooling, and
the refraction and total internal reflection of light rays occurs, just as shown in
Fig.1. According to the imaging shape, formation conditions and other factors,
mirages can be mainly classified into four kinds, i.e. superior mirage, inferior
mirage, double mirage and complex mirages(fata morgana).

Fig. 1. The trajectory of a light ray of a mirage at sea surface

So we can establish a physical model for mirages which includes three aspects:
(1)Determining the light path of mirages, which describes the imaging place and
shape of mirage; (2)Computing the light energy attenuation, which is responsible
for the imaging color and intensity of mirages; (3) Developing a dynamic model
of mirages, which simulates its dynamic behave.

2.1 Ray Path of Mirages

Single mirages are the most simple type of mirages. In previous works, the at-
mosphere is divided into many layers, and the variation of atmospheric temper-
ature is simplified as linear, the derived models are not very rational [9]. Here
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we build the continuous model of temperature gradient, which is more fit for the
physical theory.

We take the inferior mirage as an example. According the experiment data
of Khular [1], the variation of refractive index of the air near ground with the
attribute height y can be expressed approximately as: n2(y) = n2

0 + n2
p(1 −

e−αy) where y represents the height above the ground, n0 is the refractive index
at surface, α is a constant, and np is related to the atmospheric temperature
gradient, that is: np = 1 + 131.5

(273.15+T (y) . Where Ty is the temperature profile.
For the typical inferior mirage, the temperature profile, T (y) can be expressed
as[12]:

T (y) = a exp(−y

b
)− cy + d (1)

where the first term in the right of the above equation represents the rapid in-
crease of temperature near the ground. The second term represents the linear
decrease of temperature with the increase of altitude. The parameter d is deter-
mined by the temperature of the ground surface, T1(0), and their relation can
be expressed as: d = T1(0)− a. Under different climatic and terrain conditions,
parameters a, b, c and d can have different values according to different weather
condition and different types of ground.

For one random point in the ray trace, we do its differential coefficient in the
coordinate plane yoz, and can deduce the equation of ray travelling. And then
we can calculate the intersection point between each ray emitted from the object
and z axes, and gain the imaging place of objects.

For the superior mirage which appears on sea scene, the appropriate refractive
index profile would be n2(y) = n2

0 + n2
p(1 − e−αy). By similar method, we can

gain the ray trajectory of the single mirage on the sea.
For the double mirage and triple mirage, the air temperature is not a monotonic

function of the altitude. We also can build the correspondingmodel of temperature
changing.

2.2 Ray Energy Attenuation

Usually the images of objects in mirages scene are not very clear due to the
attenuation of atmosphere.

According to the principle of conservation of energy, and we can easily get:
S1 = S′

1 + S2. Here S1, S′
1, S2 are energy of incidence light, reflection light and

refraction light, respectively.
Based on the Fresnel Formula, the energy of refracted light can be expressed

as:

S2 =
S1

2
[2−(

sin(i1 − i2)
sin(i1 + i2)

)2− (
tan(i1 − i2)
tan(i1 + i2)

)2] (2)

The above equation is the energy attenuation between two adjacent layers. We
can further divide the ray path of mirage into many layer according to the at-
mospheric refraction index, i.e., only if the difference of the refraction index of
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the atmosphere within a certain height is smaller than a threshold, we keep it
as one layer. This method of adaptive layer partition is more precise than the
approach of subdivision by height. Then by applying the above algorithm itera-
tively, we can easily get the last energy of light from the object after refraction
and reflection.

2.3 Atmospheric Scattering Effects

To calculate the total incident energy received by an observer, the effect of
atmospheric scattering should also be considered. That is why the mirages are
always blurred. Rayleigh scattering should be considered here.

The total energy of mirage incident to the eyes of an observer is the sum
of the atmospheric scattering energy (I0) and the attenuated energy from the
objects appearing (S2). S2 can be evaluated with Eq.(9), the intensity of exact
atmospheric scattering can be evaluated by scattering theory[13].

So the total received energy by the eyes of observers is: I = I0 + S2.

2.4 Dynamic Model of Mirages Based on Atmospheric Gravity
Waves

In general, the atmosphere conditions are not stable during the appearance pe-
riod of mirages. That is why mirages are changing and slightly flickering all the
time. Gossard et. al [12] owe this phenomenon to the atmospheric gravity wave.
We use the kinematic equation of gravity wave here. Gravity wave usually travels
in plane y − z (y is the vertical direction, and z is the direction of sight ). The
equation sets are [14]: ⎧⎪⎨⎪⎩

∂u
∂t = − 1

ρ0

∂ρ
∂z

∂w
∂t = − 1

ρ0

∂ρ
∂y − g ρ

ρ0
∂ρ
∂t + w ∂ρ0

∂y = 0, ∂u
∂z + ∂ω

∂y = 0
(3)

where u, w represents the wave velocities in z and y directions, respectively. ρ
and p are the waves of density and pressure, respectively. ρ0 is the reference
density, and is the acceleration of gravity.

According to the value of the perpendicularly varying temperature profiles,
we can solve this equations set, and adjust the imaging position to simulate the
dynamic change of mirages.

Here the influences to mirage induced by atmospheric gravity waves include
two aspects: one is jagged-edge effect by artificial application of a gravity wave
to a static mirage, in which the period is very short; the other one is periodic
transformation effect, which corresponds the long periodic atmospheric waves.

3 Real-Time Rendering of Dynamic Mirages

3.1 Forming the Image of Mirages

In order to simulate mirages in real time, we introduce an improved fast ray
tracing algorithm.
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The classic ray tracing algorithm requests to trace each ray of slight and find
its intersection with the 3D object it first hit in the scene. Nevertheless, in the
picture of a mirage, the background is usually very vague and only the objects ap-
pearing dynamically, in the mirage attract the attention of the observers. More-
over, these objects are located far away from the observers. Thus, in our new ray
tracing algorithm, we omit all the less important objects and project the remain-
ing objects onto a plane which is perpendicular to the ground. During ray tracing,
after passing through the atmosphere along the curved path, each ray of slight
intersects with the vertical plane its intersection is regarded as that with the real
3D object. Finally we render the image, i.e. the virtual image of the mirage.

3.2 GPU Acceleration

We optimize these formulae of mirage models, including refraction path, at-
mospheric gravity waves, and energy attenuation to fit GPU acceleration.

Specifically, during calculating the refraction trace, we get the vertex position
of the actual object through the refraction mode calculation in vertex shader,
the GPU map the vertex position to the imaging position. When performing
the gravity waves calculation step, we get the imaging position of every vertex
from the first step after calculating the effect on the ray of atmospheric gravity
waves and then the vertex position changes to a new one. During the energy
attenuation calculation, we get the imaging position of every pixel, and process
the energy model calculation after finishing that in pixel shader. Having getting
the present of energy of the ray from the second step we store it into the alpha
channel to blend. After that, CPU send an instruction to draw the real objects
in the view frustum after accomplishing the three steps in GPU, and show the
image of mirage scene.

We can also adopt GPU techniques to render the special effects on road,
such as highlight on the car, heat shimmer and depth blur effect. These are all
processed in pixel shader.

4 Results

We built various physical models for different types of mirages, and generated
different mirage scenes on a PC with CPU of PIV 2.4GHz, Nvidia GeForce FX
6600GT graphics card and memory of 1.0GB. The average rendering speed is 60
frames per second. So it meets the requirements of real-time rendering.

Fig.2 shows the comparisons between our simulated results and the photos
of real mirages for the scene of sea, desert and road, respectively. From those
figures, we can see that the simulated results are quite satisfactory. Fig.3 is a
simulated result of dynamic mirage on the sea scene. We can see that when the
temperature gradient distribution is steady, the mirage scene is quite clear (see
the left image of Fig. 3(a)), as the temperature gradient decrease, the mirage will
moves farther and disappear at last(see the left image of Fig. 3(a)). Fig.3(b)(c)
are double mirage and triple mirage. Fig.4 shows the dynamic effects of mirages
in desert and on road, respectively. The “lake” or “wet” road in these frames
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(a)Mirages at sea(left is the simulated result and right is real picture)

(b)Mirages in desert(left is the simulated result and right is real picture)

(c)Mirages on road(left is the simulated result and right is real picture)

Fig. 2. Comparisons between real mirage picture and simulated result

(a) single mirage at sea(left is appearing and right is disappearing)

(b)double mirage and triple mirage at sea

Fig. 3. Simulated dynamic scenes of mirage at sea
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.

Fig. 4. Simulated dynamic scenes of mirage in desert and on road(when moving near,
the mirages are becoming smaller and disappear at last)

is in fact the imaging result of blue sky in the sunny day. When the viewpoint
of an observer moves nearer and nearer, the area of “lake” or “wet road” will
become smaller and smaller and disappear completely at last.

5 Conclusions

In this paper, we propose a novel method to model and render the dynamic scenes
of mirage. We first analyze the physical causes of different types of mirages, and
establish the intrinsic atmospheric temperature models. We then calculate light
path and intensity attenuation during its propagation. To simulate the dynamic
effect of mirages, we present a dynamic model based on atmospheric gravity waves.
The GPU acceleration is also adopted to speed up the rendering process. Finally,
we demonstrate the virtual images of different types of dynamic mirages, such as
the mirages at sea, in desert and on road as well as the formation, change, and dis-
appear of mirages. The average rendering speed reaches to 60 frames per second.

Future works include: building more detailed imaging model of mirage, con-
sidering the multi-scattering and refraction of atmosphere to realistically render
other nature phenomenon, etc.
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Abstract. This paper presents a fast and reliable method to trim non-solution 
regions in an interval ray tracing process. The “trimming algorithm” uses inter-
val analysis to perform rejection tests in a set of pixels simultaneously, instead 
of individual pixels at each time. With this approach, the presented algorithm 
runs faster than the traditional interval ray tracing algorithm. Also, an interval 
algorithm to remove aliasing in the rendering of implicit surfaces is introduced. 
This algorithm obtains better visualizations than the traditional point sampling. 
This algorithm can render thin features that would be impossible to obtain with 
point sampling algorithms. 

1   Introduction 

Interval Arithmetic is a mathematical theory developed by Ramon Moore [1] that has 
been used to solve problems of reliability caused by the floating-point arithmetic of 
computers. Floating-point calculation causes problems of numerical imprecision in 
geometric modeling and computer graphics [2, 3]. A particular application in which 
there are problems of reliability is ray tracing of implicit surfaces. These problems 
arise in the rendering of very special implicit functions with thin features that could 
be missed in the point sampling process. This paper proposes two improvements for 
the interval ray tracing algorithm. First, interval analysis is used to evaluate screen 
regions to perform rejection test over many pixels simultaneously. This implies a 
reduction of the number of intersection test performed in a traditional ray tracing 
algorithm. Secondly, interval analysis can also be used as an alternative for point 
sampling inside a pixel. A ray is infinitely thin, and a pixel covers a finite area. When 
rays are cast through a pixel, there is the possibility that some rays miss parts of the 
surface inside the pixel. With the approach presented in this paper, it is possible to 
evaluate all the area of the surface covered by the pixel instead of considering hits. 
This principle is used to implement an antialiasing algorithm that improves the tradi-
tional interval point sampling. 

1.1   Interval Ray Tracing 

Ray tracing is a process in which rays starting at a point (the camera or eye point) are 
sent through every pixel of a screen. These rays can intersect objects behind the 
screen. In that case, the first intersection point is recorded. In the intersection point, 
the normal of the surface is calculated and used to determine a shade value for the 
pixel. The ray is represented in a parametric way as: 
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p( t ) = c + t (s – c),   t  0 . (1) 

The point c is the camera or eye position. The magnitude s – c indicates the direction 
of the ray and the parameter t represents a fractional distance from c in the direction 
of s - c.  

An intersection test must be performed between the rays and the implicit surfaces. 
Given an implicit function defined by: 

f(x,y,z) = 0 . (2) 

or in vector form: 

f(p) = 0   where  p = (x,y,z) . (3) 

The intersection of the ray with the implicit surface is defined as: 

f(p( t )) = 0,  or,  f(c + t(s - c)) = 0 . (4) 

To develop a reliable intersection test using interval analysis, the ray parameter is 
replaced with an interval T that represents a set of values of t. The equation used to 
find the intersections looks in an interval version as: 

F(T) = F(c + T(s - c)) . (5) 

F(T) is known as the inclusion function of the intersection between the implicit sur-
face and the ray. The result of the evaluation of the inclusion function is an interval. If 
this interval contains zero, a root could exist in the equation for the values of T. In the 
other case, the interval T can be rejected. This means that F(T) gives a reliable tool to 
perform rejection tests. 

1.2   Previous Work 

The requirement of a guaranteed ray tracing process to prevent that the intersection 
test miss thin features of the surface, has been pointed out by authors like Kalra [4], 
Capriani [5] and Mitchell [6]. They argue that point sampling is not a feasible algo-
rithm to perform intersection test with surfaces that have thin features. 

A few authors have proposed interval arithmetic as a solution to this problem, us-
ing different strategies to create reliable intersection test based on interval analysis  
[5, 6, 7, 8].  

Mitchell [6] was the first author to propose an interval algorithm for the ray inter-
section test. He proposed two steps: root isolation and root refinement. Mitchell does 
not use interval arithmetic in the second step because he considered that an interval 
approach for root refinement was inefficient. Capriani et al [5] demonstrated that 
interval arithmetic could be used in both steps of Mitchell algorithm without loss of 
efficiency. They also propose other algorithms as the Newton interval method or 
Alefeld-Hansen method in the ray tracing process. 

Sanjuan-Estrada [7] used a branch-and-bound strategy to make the intersection test 
without root isolation. They applied a rejection test using an interval inclusion func-
tion based on interval arithmetic. De Cusatis [8] suggest the use of affine arithmetic 
instead of interval arithmetic to solve the intersection test. 

The algorithms previously mentioned consider only one interval variable (the ray 
parameter T). Those algorithms work sending one or more rays through every pixel in 
the screen.  
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Kalra and Barr [4] proposed a method for the intersection test based on Lipschitz 
constants. This method is used to prevent that the rays sampled in a pixel miss thin 
features of the surfaces. 

2   Elimination of Screen Space Non-solution Regions 

In this section, an algorithm for a fast trimming of screen regions that do not contain 
intersections with the implicit surface is presented. That is, the algorithm has to iden-
tify regions with pixels that should be shaded with the background color. 

The rays are traced pixel by pixel, which makes ray tracing a slow algorithm. In-
terval arithmetic provides a way to evaluate many pixels simultaneously to accelerate 
the ray intersection process. Instead of a point in the screen, it is possible to take in-
tervals for x and y coordinates to cover a set of pixels. Because the origin is still a 
point, the figure obtained looks like a pyramid instead of a ray (see figure 1). This 
process is similar to the beam tracing process introduced by Heckbert and Hanrahan 
[9] for polygonal objects.  

 

Fig. 1. A pyramid could be traced instead of a single ray to cover many pixels 

The screen regions not trimmed must be ray traced pixel by pixel, because it is 
necessary to know the color for every single pixel. The objective of the trimming 
algorithm is to save time, that is, the algorithm presented is faster than an algorithm in 
which one or more rays are sent for all the pixels in the screen. 

2.1   Mathematical Preliminaries 

Equation (5) shows the inclusion function used to determine if the interval T contains 
roots. Figure 1 shows the new approach, in which s is a box instead of a point. The 
camera position can be in any place in the scene, for that reason, the rays are given in 
an arbitrary coordinate system uvw. The transformation of uvw coordinates to xyz 
coordinates must be an interval arithmetic operation.  

Let Us and Vs be intervals representing a set of pixels of the screen in uvw coordi-
nates. Let ws be the distance from the screen to the origin point c. The result of the 
transformation from uvw coordinates to xyz coordinates is represented as 

S = c + Us u + Vs v + Ws v . (6) 
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where S is an interval. A more detailed explanation of the transformation process 
(without intervals) is given by Shirley [10].   

The inclusion function in our case is presented in the following equation: 

F(T,S) = F(c + T(S - c)) . (7) 

If this condition is not accomplished, the evaluated interval S is rejected. This is used 
to reject a set of pixels that do not have intersections with the implicit function. This 
case occurs when 0 ∉ F(T,S), which means there are no roots for the current values of 
T and S. 

2.2   Algorithm Specification 

With the equation (7), a set of pixels can be evaluated simultaneously with a unique 
intersection test, to determine if they intersect the implicit function. The algorithm 
explained in this section can reject regions without intersections in screen space. In 
other words, the algorithm offers a fast trimming of non-solution zones. The complete 
algorithm is presented in figure 2. 

 box.size = screen.size 
 add box to List_Box 
 for every box in List_Box 
   if width(box)< miminum_box_size 

     add box to Final_List 
     exit for 
   endif 
   S = transform (box) 
   T = (0, ∞) 
   add T to List_T 
   for every T in List_T 
     if  width(T) < ∈T exit for 
     if (0 ∈ F(T,S))  
       bisect T into T1,T2 
       add T1,T2 to List_T 
     endif 
     drop T from List_T 
   endfor   
   if empty List_T  
     bisect box into box1, box2 
     add box1, box2 to List_Box 
   endif 
   drop box from List_box 
 endfor 
 for every box in Final_List 
  for every pixel in box 
   ray tracing pixel and shading 
  endfor 
 endfor 

Fig. 2. Algorithm for trimming non-solution boxes in screen space 
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The algorithm is based in a branch-and-bound strategy. The bisections are per-
formed in both the screen space and in the interval parameter T. The algorithm starts 
making subdivisions of screen space in Us and Vs coordinates to generate boxes. For 
every box, a new branch-and-bound algorithm is started in the interval parameter T. 
Every section of T is evaluated using the inclusion function (7) and the current value 
of S. The sections for which 0 ∉ F(T,S) are rejected. Otherwise, the current interval T 
is subdivided and the evaluation performed in the new intervals.  

The criterion used to stop the subdivision process over the parameter T is: 

(T.Upper_bound – T.Lower_bound) < ∈T . (8) 

where ∈T  is the precision selected to stop the process.  
Using a precision of 10-6, the obtained results are feasible for the example surfaces 

(section 2.3).  
The bisection over the boxes is terminated when a minimum size for the box is 

achieved. This precision represents the minimum accepted size of the box relative to 
the size of the screen, that is: 

(screen size) *∈box = minimum box size . (9) 

The boxes that achieve this precision are stored to be further ray traced. That is, the 
ray tracing will be performed only over the non- rejected boxes that achieve the mini-
mum size box. The ray tracing algorithm used in this paper is called MRF, and it was 
introduced by Sanjuan-Estrada et al [4]. 

The algorithm presented uses a precision of 0.05 over the size of the screen in pix-
els. This precision has proved to be enough to obtain efficient results for the tested 
surfaces (section 2.3). 

2.3   Experimental Results 

The algorithm was tested using four surfaces (see table1 and Figure 5). The surfaces 
were rendered using an Intel Pentium 4, 2.4 GHz. The resolution used to render the 
images was 300 x 300 pixels. In the ray tracing process one ray is cast for every pixel 
and the precision used in the intersection test is 10-6. 

Table 1. Tested implicit surfaces 

Surface Equation 
Sphere x2 + y2 + z2 – 4 = 0 
Blobby x2 + y2 + z2 + sin(4*x) + sin(4*y) + sin(4*z) – 1 = 0 
Steiner (x2*y2 + y2*z2 + z2*x2)2 + x*y*z = 0 
Mitchell 4(x4 + (y2 + z2)2)+ 17x2(y2 + z2) – 20(x2 + y2 + z2) + 17 = 0 

The results of the test are presented in table 2. Trimming time column represents 
the time of the trimming process to reject boxes in which there are no rays intersect-
ing the implicit surface. Next column gives the time of a pixel-by-pixel ray tracing 
over the non-rejected boxes. The sum of both times is represented in total time col-
umn. Finally, the column “only ray tracing” shows the time of a traditional interval 
ray tracing over all the pixels in the screen for every surface.  
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Table 2. Results for the trimming algorithm (time in seconds) 

Using trimming strategy 
Surface 

Trimming time Ray tracing Total Time 
Only ray 
tracing 

% Time 
saved 

Sphere 0.791 40.678 41.469 53.226 22.08% 
Blobby 1.33 62.842 64.172 107.59 40.35% 
Steiner 1.59 92.84 94.43 152.63 38.13% 
Mitchell 3.6 378.02 381.62 544.953 29.97% 

The precision used in the pixel-by-pixel ray tracing process was ∈T =10-6 because 
the results obtained are feasible with that precision. Figure 3 shows the blobby surface 
visualized using different precisions.  

 

Fig. 3. Results for the Blobby surface for different precisions. In the first (left image) ∈T =10-2, 
in the next (center image) ∈T =10-6, finally (right image) ∈T =10-10. With a precision of 10-6, 
the result obtained looks the same as using a higher precision. For a precision of 10-2 (figure 6a) 
the result is not acceptable. 

In table 2, the total time of the algorithm using a trimming strategy summarizes the 
time of the interval ray tracing in the non-rejected boxes and the trimming process 
itself. In all the tested cases, the algorithm using a trimming strategy takes less time 
than an interval strategy based on a ray casting for all the pixels of the screen.  

The intersection test takes more time in pixels corresponding to non-rejected boxes 
than rejected boxes. This is because the intersection test of rays that intersect the im-
plicit surface must reach a smaller precision to obtain the value for the intersection. 
Rays that do not intersect the implicit function are rejected before this small precision 
is reached. Figure 4 shows a color map of the time that the intersection test takes in  
 

 

Fig. 4. Color map to represent the time that intersection test takes in different regions of the 
Steiner surface 
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every pixel in the Steiner surface. The pixels in which the intersection test fails take 
less time than pixels inside the implicit surface. Also note that in all the borders of the 
surface, the algorithm takes the maximum time.  

Summarizing, the trimming algorithm is faster than the traditional interval ray trac-
ing algorithm in the areas without intersections (the blue zones in figure 4).  Table 3 
compares the time spent by the trimming algorithm to reject non-solution boxes and 
the time that a pixel-by-pixel algorithm spends (one ray per pixel) in the same non-
solutions boxes. Figure 9 shows the final results of the trimming and ray tracing algo-
rithm for the tested surfaces. 

Table 3. Comparison of the trimming algorithm and the classical interval ray tracing algorithm 
over the rejected boxes (time in seconds) 

Surface Trimming 
time 

Pixel by pixel 
Time 

% Time Saved 

Sphere 0.791 12.548 93.69 
Blobby 1.33 44.748 97.027 
Steiner 1.59 59.79 97.34 
Mitchell 3.6 166.933 97.84 

 

Fig. 5. Final result of the algorithm for the tested surfaces. From left to right and top to bottom, 
Sphere, Blobby, Steiner, Mitchell surfaces. 

3   Antialiasing Using Interval Analysis 

As was mentioned in section 2, some parts of the surfaces could be missed when 
methods based on point sampling are used. Figure 6 illustrates this situation.  

 

Fig. 6. Point sampling (left) and Sampled pixel using intervals (right). The evaluation in the 
sample points does not indicate the presence of the surface inside the pixel. No matter how 
many regularly distributed rays are sent through the pixel, there will be zones without rays 
traced and some rays could miss the surface. Using intervals, the pixel is subsampled and every 
region is considered in the evaluation of the function. There is no part of the surface missed in 
the evaluation. 
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3.1   Evaluation of the Pixel Area 

Interval analysis can be used to develop an algorithm to “detect” if an implicit surface 
crosses any part of the pixel.  

 function detect_surface(area) 
   S = transform(area) 
   T = (0,∞) 
   add T to List_T 
   for every T in List_T 
     if  width(T) < ∈T exit for 
     if (0 ∈ F(T,S))  
       bisect T into T1,T2 
       add T1,T2 to List_T 
     endif 
     drop T from List_T 
   endfor 
   if empty List_T  
     return false 
   else  
     return T 
   endif 
 endfunction 

Fig. 7. Algorithm to detect when a surface crosses a region of the pixel 

The technique used is this algorithm is similar to the presented in section 2. The proc-
ess is based in a branch and bound strategy, in which the pixel area is subdivided and 
every new area is further evaluated to find out whether it contains part of the surface. In 
this case, the same inclusion function (7) is used to evaluate a region of the pixel. 

When only a ray is considered, the “detection algorithm” will return an intersection 
value. Using point sampling, if the ray misses the surface, there is no way to know if 
the surface crosses the pixel.  

This algorithm is useful to visualize special cases, for example, the intersection of 
implicit surfaces. When two implicit surfaces intersect, the result is a curved line 
without thickness. This line cannot be visualized using point sampling because the 
rays will always miss the line. Using the presented algorithm, only an intersection test 
over the pixel is needed (see figure 8). 

 

Fig. 8. Intersection between implicit surfaces 
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3.2   Antialiasing Strategy 

In this section, the detection algorithm is used to “inform” when a pixel must be 
shaded, that is, if the pixel contains any part of the surface.  

If the detection algorithm finds a part of the surface inside a pixel, a branch-and-
bound process is started over the pixel to generate subpixels. Every subpixel region is 
evaluated to determine if it contains part of the surface. The subdivision process con-
tinues until a subpixel subdivision level is achieved. In that case, the normal at the 
surface is calculated and used to determine the shading color. If the evaluated region 
does not contain any part of the surface, the background color is assigned to the re-
gion. At the end, the shading value for every pixel is calculated according to the color 
and area of every subpixel.  

3.3   Experimental Results 

The described antialiasing algorithm was used to generate a visualization of the Steiner 
surface. This visualization is compared with the traditional interval ray tracing. The 
resulting images are shown in figure 9. In the sampling algorithm, 16 rays are sent for 
every pixel. In the interval antialiasing, the algorithm is stopped when the subdivision 
takes a size equivalent to 1/16 of the pixel area. The time spent by the interval an-
tialiasing is 765.18 seconds, and the sampling algorithm takes 1504.31 seconds. The 
time difference is because the interval antialiasing algorithm verifies if a part of the 
surface is contained in every pixel before the algorithm starts to make subdivisions. In 
the sampling algorithm, 16 rays are sending for every pixel in the screen. 

  

Fig. 8. Comparison of a point sampling algorithm and the interval antialiasing algorithm intro-
duced in this paper. Using only point sampling (left) and using the interval antialiasing algo-
rithm (right). 

4   Conclusions 

In this paper we have introduced several improvements to the ray tracing of implicit 
surfaces, using interval analysis. The first presented algorithm offers an important 
improvement in efficiency. Using intervals to perform intersection tests over regions 
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of the screen is faster than an evaluation of individual pixels. The second algorithm 
improves the quality of the visualization of the surfaces. This is obtained using an 
interval evaluation of all the area of the pixel instead of sampled points. It is not pos-
sible to obtain that kind of improvement using algorithms based on the floating-point 
arithmetic of the computer. 

As future work, we plan to add reflections and refractions to the presented algo-
rithms. The idea is to create a more complete shader, applicable to visualize more 
realistic images. 
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Abstract. The objective of metafile compositing is to retrieve multi-layered 
Windows Metafile command records from a picture file and translate them into 
a set of closed contours in a single layer that delineates a set of contiguous non-
overlapping regions.  Such processing is useful for a variety of engineering 
applications including vector graphic compression and optimization which is 
discussed here.  Primary concerns here are the multitude of degeneracies that 
exist when implementing a geometric algorithm of this nature.  These issues are 
left largely unaddressed in previous literature but can be of substantial 
importance when attempting to develop a robust implementation. 

1   Introduction 

Computer Graphics Metafiles (CGM) have been in use at the Los Alamos National 
Laboratory since early 1977 where these files were later formally designated as an 
international standard by ISO/IEC 8632/I-1:1992[2].  Vector graphics are composed 
of lines and curves defined by vectors, which describe such graphics according to 
their geometric characteristics.  Most CGMs created by illustration packages, etc. 
contain three common phenomena that prevent or make difficult their direct use in 
many common engineering applications.  First, they often contain redundant data 
where portions of some commands overlap areas of previously specified commands 
or even within a single command there may exist duplicate points or self-overlap 
within areas specified by that single command.  Second, because most CGMs result 
from user input there are many instances where combinations of simple commands 
are placed adjacent to one another to effectively create more sophisticated commands.  
Thus, even a simple rendering of a circle may contain thousands of metafile command 
records.  Third, because often the primary goal of a CGM is to produce a raster device 
rendering there is little consistency among how commands are specified (e.g. some 
may use counter-clockwise boundary specifications using winding fill rules while 
others may simply specify a pseudo-medial axis of lines or curves of a particular 
thickness to be created).  Unfortunately, for many image understanding tasks 
consistency is typically quite important.  For example, it may be useful to specify 
regions bounded by closed contours where the interior of such regions always lie to 
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the left of the contour.  Thus, to avoid the pitfalls of rasterization and maintain a 
lossless and useful representation of picture data stored within a metafile it may be 
desirable to eliminate redundancies within vector data.  

2   Vector Graphic Compression and Optimization with 
Compositing Algorithm 

Many existing graphic compression methods such as ABO (Adaptive Binary 
Optimization), GIF (Graphics Interchange Format), PNG (Portable Network 
Graphics) and JPEG etc. do not work well for the compression of vector graphic files 
because these compression methods are based on compressing bitmap graphics with 
either statistical modeling algorithms or encoding algorithms.  After compression, the 
file format is changed and the resolution-independent nature is also lost.  A CGM 
compositing algorithm is proposed here for vector graphic file compression and 
optimization.  In this algorithm there is no loss in the quality of the resulting image.  
Furthermore, the file format is not changed, which means that it is resolution 
independent.  This method has two major advantages: First, applications do not have 
to call other software that supports a new file format as they do with most graphics 
compression applications.  For example, if an application wants to open a JPEG file, it 
has to use extra JPEG related DLLs (Dynamic Link Libraries) to support this.  
Second, after compositing, the file is saved back to its original vector file format, thus 
maintaining its vector features so that geometric transformations such as rotation and 
scaling may be applied subsequently.  Other compression software changes the format 
of the image file.  

The strategy for vector graphic compression using a compositing algorithm is to 
eliminate the substantial redundancies contained within edge data in order to provide 
consistently ordered non-degenerate polygonal data. This is often an issue when 
metafile data is created by graphics artists using illustration packages where human 
factors or error can often introduce such redundancies and degeneracies.   

 

Fig. 1. Part A shows a metafile containing more than 10,000 polygonal objects (237k in 
physical size). Part B shows the same metafile after compositing in which there are now fewer 
than 100 polygon objects (165k in physical size). The images are identical after polygon fill; 
however, the number of records and physical disk size are reduced by 99% and 30% 
respectively.  
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The composting algorithm sequentially takes polygons with filling mode and color 
attributes as input and then outputs a set of consistently formed non-overlapping 
polygons.  The input polygons need not necessarily be regular polygons, i.e. polygon 
vertices may be specified in any order (clockwise or counter-clockwise) and the 
polygon itself might be self-overlapped. The output is order-specified, i.e. the outline 
polygons are in counter clockwise order and any contours indicating holes are 
specified in a clockwise order. After compression with our CGM compositing 
algorithm, redundant records are removed and the output records are recreated in a 
consistent order. Therefore the vector graphic is optimized as a byproduct. Figure 1 
illustrates the wire-frames of a vector file before and after compositing and they are 
visually identical after filling occurs during rasterization.  

3   CGM Compositing Algorithm 

Presented here is a brief overview of the compositing algorithm developed with 
particular emphasis on various degeneracies that may arise. More detailed information 
may also be found in [1][4].  The basic approach is to assume that a scan-line 
traverses the data from top to bottom and then left to right, halting at event points 
indicated by vertices or intersections within the polygonal input data.  This process 
may be further broken down into three main steps as described next.  

3.1   Finding Segment Pairs 

A segment pair is comprised of two segments from the same polygonal region which 
intersect the sweep line and lie on opposite edges of the region which is bounded by 
them (i.e. indicating an area between the two segments that is part of a GDI fill area 
for a particular metafile record or polygonal region based on the CGM filling rules).  
Each segment pair is labeled at each event-point.  It is very easy to find the segment 
pair if the original record uses an alternate edge fill mode.  It can be done by just 
selecting the odd and even segments on the scan-line and pairing them up 
respectively.  If a record uses a winding-rule fill mode, the original drawing direction 
must be stored and the fill depth must also be tracked.  The segment pair has to be 
recalculated at any new event point.  

3.2   Segment Selection, Removal, and Duplication 

Separate segment pools are created for holding segments with different attributes (note: 
a segment’s attributes are inherited from the attributes of its related polygonal object).  
Thus, segments having the same related attributes are grouped into a single pool. A 
polygonal object is said to be younger if it appeared sequentially later within the list of 
metafile records.  If a polygonal object is seen earlier within the sequence, it is 
considered older.  Segment selection and duplication are based on two factors: attribute 
values and the age of the related polygonal object.  For example, for differently colored 
objects, segments that are from younger objects will be selected and duplicated for 
those older objects that are overlapped by them.  Polygonal objects that are fully 
covered by other younger objects do not have their segments selected and placed 
within a segment pool.  If an object is partially covered by other younger polygonal 
objects, the overlapping segments from the youngest object are copied to its associated 
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segment pool and any segments that are overlapped by the region covered by this 
youngest object are removed.  Thus, the sweep invariant for each segment pool is that 
each segment is unique (i.e. no two segments have the same end points).  

3.3   Generating Objects from Each Segment Pool 

The newly generated output polygons have simple polygon properties (Jordan curve 
properties)[7][8]. According the Jordan Curve Theorem[8], a method termed as an 
even-odd test is used for segment traversal; if a scan ray that starts at a left-most 
boundary is projected horizontally to the right, the resulting intersections with 
segments within a segment pool may be numbered.  Specifically, the odd intersections 
(e.g. 1st , 3rd , 5th , etc) are referred to as odd-segments while the even intersections 
(e.g. 2nd , 4th, 6th, etc.) are called even-segments. Based on the odd-even segment test, 
the traversal methods are applied for each segment pool for final polygonal object 
construction. 

3.4   Handling Degeneracies 

The compositing algorithm must handle a variety of degenerate cases present within 
the original input as well as cases that arise at intermediate steps during processing. 
One of the fundamental problems addressed within this work is that of implementing 
theoretically correct algorithms within a computer system that is not inherently capable 
of exact computation. Specifically, inexact floating point number representations that 
are commonly used during mathematical computation within a microprocessor can 
easily cause such algorithms to fail or be completely unreliable.   

Polygonal Object Boundary Intersection: The polygonal object boundary 
intersection algorithm used within the Metafile compositing algorithm is a variation of 
the sweep line intersection algorithm. In addition to the details presented within these 
algorithms [5][6][9][17],  such cases as parallel overlapped segments intersection and 
segments shared end points must be handled specially. For overlapped segments, all 
interior endpoints are counted as intersections. Before an intersection is tested for using 
algebraic predicates[5][6], the end-points of the segments are checked to see whether 
they are identical.  The end-points are reported as an intersection without further 
calculation if they are identical. This reduces the computation cost, but more 
importantly it eliminates a potential discrepancy due to floating point calculation errors 
if multiple segments share a common end-point.  

Segment Selection and Duplication: Let Sface(i) denote the face that is associated 
with segment S belonging to polygonal object i, where polygonal objects are ordered 
by their age. {SLi, SRi} denotes a segment pair where SLi denotes the left segment (of 
the pair) of the ith polygonal object at a specific event point and SRi denotes the right 
segment.  According to the CGM filling method, the following selection and 
duplication rules are defined: 

Hidden Rule:  if Sj  is between any segment pair {SLi,SRi},  Sj will be hidden in either 
of the following two cases: Case 1: j<i  or  Case 2: Attributes(S face(i)) = Attributes(S 

face(j)).  If Sj is hidden, it will not be placed or duplicated into a segment pool. 

Selection Rule: Sj will be moved to a segment pool in either of the following two 
cases: Case 1: Sj is not inside or between any segment pair {SLi, SRi}, or Case 2: Of 
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all segment pairs that Sj lies between, let {SLi,SRi} denote the youngest pair.  If j>i 
and Attributes(Sface(i)) • Attributes(Sface(j)) Sj will be moved. 

Duplication Rule: Of all segment pairs that Sj lies between, let {SLi,SRi} denote the 
youngest pair.  If j>i and Attributes(Sface(i)) • Attributes(Sface(j)), let Sj’ be the 
duplication of Sj where Attributes(S’face(i)) are assigned Attributes(Sface(i)) and Sj’ is 
placed into the associated segment pool.  

When several segments overlap, it is difficult to decide the sequence of pop offs 
and push downs. Because when segments overlap, either of the overlapping segments 
could be the first hit by the scan ray.  In such cases, segments need to be reordered. 
Let {S} be the overlap segments which intersect with the scan ray. Let {Sleft} be the 
segments in S that belong to the left group (i.e. segments that are marked as the left 
segment within their corresponding segment pairs) and similarly, let {Sright} be the 
segments in S that are marked as right segments.  {Sleft} and {Sright} are then sorted by 
their related polygonal object’s age (ascending order, youngest first).  Let Sm and Sn 
denote the youngest segments within {Sleft} and {Sright} respectively.   denotes an 
empty segment set.  Thus, the previously described selection and duplication rules 
may be improved as follows: 

Overlapped Segment Selection Rules  
(1) {{Sleft} –Sm} and {{Sright}- Sn} shall not be selected/moved to any segment pool.  
(2) Sm is NOT selected if any of the following conditions are true:  
(i) if {Sright}     and Attributes(Sface(m)) = Attributes(Sface(n)) ;  
(ii) Sm  is between youngest {SLj, SRj}, if m < j , or Attributes(Sface(m)) = 
Attributes(Sface(j)) . 
(3) Sn is NOT selected if any of the following conditions are true:  
(i) if {Sleft}  •    and Attributes(Sface(n)) = Attributes(Sface(m)) ;  
(ii) Sn is between youngest {SLj, SRj},  if n < j or Attributes(Sface(n)) = 
Attributes(Sface(j)) . 
Overlapped Segment Duplication Rules  
(1){{Sleft} –Sm} and {{Sright}- Sn} shall not be duplicated/copied to any segment pool. 
(2) Sm should be duplicated only if  
       (i)   Sm is not between any segment pair. Or 
       (ii) Sm is between a youngest pair {SLj ,SRj} such that m > j and 
Attributes(Sface(m))  Attributes(Sface(j)) and {Sright}  = . 
(3) Sn can be duplicated only if  
       (i)     Sn is not between any segment pair. Or  
       (ii) Sn is between a youngest pair {SLj, SRj}, such that n > j and Attributes(Sface(n)) 

 Attributes(Sface(j)) and {Sleft}  = ; 

 

Fig. 2. Recorder of Overlap Segments hit by scan ray (i.e. segments have identical end points) 
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Additionally, according to these new overlapped segment selection and duplication 
rules, {Sright} will be processed first then {Sleft}.  In the case of duplication, if there is at 
least one left segment and one right segment overlapping, even if they are not a filling 
pair, they will not be used for duplication.  For selection, only the youngest left 
segment and youngest right segment will be selected.  Let SL2 SL3  SR4 SR6 SL7  SR8 SL8  

SR9 in Figure 2 (a) be overlapping segments where their order represents their 
intersection sequence with the scan ray.  In this case, only SR9 and SL8 will be 
selected if the related face attributes of SR9 and SL8 are different.  However, if the 
attributes of SR9 and SL8 are identical, neither SR9 nor SL8 will be selected or copied.  

4   Experiments and Performance Analysis 

Our CGM compositing application was developed in C++ and tested on Intel 
Pentium® IVPCs.  An online tool was also developed and is at www.geolibs.com.  
The tool allows users to upload individual metafiles and then view the intermediate 
and output results of composting operations on metafiles uploaded. 

 

Fig. 3. Left chart illustrates the different number of records before and after Compositing. The 
right chart illustrates the physical memory size before and after compositing. 

The experimental image set used here was composed of over 10,000 CGMs from 
various sources, including some that were created with commercial illustrator 
software such as Corel Draw®.  Figure 3 show the results of tests made using our 
metafile compositing algorithm.  In each case the numbers on the horizontal axis 
represent group numbers, in which each group contains 30-50 files containing similar 
record counts.  The group numbers are ordered from groups containing small numbers 
of record counts to those containing large numbers of record counts.  Figure 3 
demonstrates how the size of the composited image is reduced after running the 
algorithm.  The average reduction in physical memory size of all the CGM image files 
tested with the algorithm was 23.1%. However, a maximum record size reduction of 
99% was obtained for one of the files, indicating that in some cases a truly dramatic 
degree of image compression can be achieved with the algorithm (Figure 1).  The 
compositing algorithm has a huge impact on the number of records.  That is because 
the records have been optimized in the output file.  In an extreme case, for example, a 
1000 polygon input record might become a one poly-polygon output record. 
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There are two primary factors affecting the performance of the CGM compositing 
algorithm: one is the number of unique object attributes (e.g. colors) within the file 
and the other is the number segments that intersect.  An important feature is that 
performance is not largely dependent on the geometric size or physical memory size 
of the file being processed.  More specifically, the computational complexity of the 
compositing algorithm may be described as follows:  Let N be the number of 
polygonal object edges (i.e. number of segments) and k be the number of intersections 
among those edges.  The number of iterations required for the compositing algorithm 
is N+k.  The worst case cost of each operation (edge selection and copy) is O(logN).  
Therefore the total running time is O((N+k)logN) for segment placement.  Because 
each edge can be copied at most only once, the traversal cost is less than 2*N.  As in 
the original Bentley and Ottmann sweep-line algorithm [5], the cost of finding 
intersections is O((N+k)logN).   

The cost of re-establishing segments in pools is described as follows: Let n denote 
the sum of segments in all segment pools and assume there are k segment pools; let ni 
be a random variable denoting the number of elements placed in segment pool A[i]. 
The worse run time of re-establishing all segments in pools is:   

)( lgn) *n(T(n)
1

2

=
+= k

i inOθ                                            (1) 

Since the probability of a segment being selected into A[i] is 1/k, by taking 
expectations of both sides, (1) can be reduced to: 

)n(/nn/k-n lgn) *n()( 22 θθ =++= knT                         (2) 

Therefore, the total cost of the compositing algorithm is (n(n2).  Practical runtime 
performance cost can be further reduced by using advanced data structures such as 
priority queues and Fibonacci heaps for segment search within pools.  

5   Conclusions 

Vector graphics are becoming ever more prevalent, especially in web-based 
applications (such as scalable vector graphics), where sending large images across a 
network can significantly degrade performance.  An efficient, robust algorithm is 
presented in this paper that compresses and optimizes Vector Graphic images fairly 
economically. Experimentation has shown that the tens of thousands of CGMs tested, 
even those metafiles with hundreds of thousands of records and hundreds of 
thousands of intersections, are typically processed in less than 1 second on modern 
PCs. Future work may include combining optimized record structures to achieve even 
higher compression ratio. 
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Abstract. In digital geometry processing, it is important to preserve
the intrinsic properties of 3D models in geometry editing operations.
One of such intrinsic properties can be described as geometric details.
For point-sampled geometry, combining the Normal Geometric Details
(NGDs) and the Position Geometric Details (PGDs), a useful interac-
tive geometry local editing method is developed. The method deforms
the sample points in a region of interest by manipulating handle points.
In the preprocessing step, a non-local denoising algorithm is applied to
smooth the input noisy point-sampled model and as a postprocessing
step, a new up-sampling and relaxation procedure is proposed to re-
fine the deformed model. The effectiveness of the proposed method is
demonstrated by examples, i.e., the editing operation can deform the
model while respecting the intrinsic geometric details.

1 Introduction

Efficient 3D geometry editing for mesh surfaces or point-sampled geometry
is an active research topic in digital geometry processing
[1, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 17, 18, 20]. It is important to manipulate and mod-
ify 3D shapes while preserving their intrinsic geometric details. In the recent
years several detail-preserving geometry editing techniques are proposed for
meshes and point-sampled geometry, which are multi-resolution approach, dif-
ferential domain approach, and discrete forms approach, etc.

Multi-resolution Approach. In the multi-resolution editing approach, a 3D
model is decomposed into a base shape and a set of geometric details [5, 6, 19].
The geometric details are defined as differences between successive levels in the
multi-resolution hierarchy, and are encoded in the local frames of their lower
level geometry. The base shape can be modified interactively by using various
transformation and deformation. The details are then coated on the base surface
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of different levels. The problem with these methods is that the displacement vec-
tors are manipulated independently at each vertex. Some artifacts may appear
in highly deformed regions because details are not coupled and can not preserved
uniformly over the whole model.

Differential Domain Approach. The Laplacian coordinates are now widely
used in surface detail-preserving editing [1, 8, 10, 18], which are defined as the
difference of a vertex position from the centroid of its local neighbors. They are
invariant under translation, but not invariant under scaling and rotation. Lipman
et al. [8] and Sorkine et al. [15] compensated these limitations by transforming
the local coordinate frame. By extending surface Laplacian coordinates, Zhou
et al. [18] presented a novel technique to process large deformations of mesh
object by using the volumetric graph Laplacian, which provided the encoding of
volumetric details.

Based on discretizing the Poisson equation with proper Dirichlet boundary
condition, Yu et al. [17] manipulate the gradients of the coordinate functions
defined on the mesh, and then propagate the rotation of handle to all the ver-
tices in the region of interest. Sheffer and Kraevoy [14] represent the mesh by
using rotation-invariant pyramid coordinates. However, the reconstruction from
pyramid coordinates to vertex coordinates requires solving a nonlinear system,
which is a time-consuming procedure.

Discrete Forms Approach. Recently, inspired by discrete differential geome-
try and surface fundamental theorem, Lipman et al. [9] introduce a rigid motion
invariant mesh representation based on discrete forms defined on the mesh. This
mesh representation implicitly defines a local frame at each vertex, and the two
discrete forms encode the changes between adjacent frames. It can edit a mesh
with the preservation of its local appearance under some global constraints.

Our Main Contributions. For point-sampled geometry, a useful interactive
geometry local editing method is developed.

– A new normal geometric detail and a new framework of surface editing are
proposed. Our editing approach can preserve both normal geometric details
and position geometric details.

– As a preprocessing step, a non-local denoising algorithm is applied to smooth
the input noisy sampled-point model.

– As a postprocessing step, a new up-sampling and relaxation procedure is
proposed to fine tone the deformed geometry.

2 Define Normal Geometric Details (NGDs) by Implicit
Surface Fitting

The normal geometric detail is based on the Laplacian operator over implicit
surface. The later one interpolates the scattered point clouds and the associated
normal vectors [11].
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(a) (b) (c)

(d) (e) (f)

Fig. 1. The NGDs color map: (a),(d) fandisk model and color map of NGDs; (b),(e)
Stanford Armadillo model and color map of NGDs; (c),(f) dog model and color map
of NGDs

Given a scattered point cloud P = {pi = (xi, yi, zi), i = 1, 2, · · · , N}, and
the associated normal vectors N = {ni = (nxi, nyi, nzi), i = 1, 2, · · · , N}. An
implicit surface S = {p|ρ(p) = 0} can be constructed to interpolate the points
P and the associated normal vectors N, which is:

ρ(p) =
N∑

i=1

ωi(p)〈p− pi,ni〉

where the weight function ωi(p) is:

ωi(p) =
1

‖p−p
i
‖2∑N

i=1
1

‖p−pi‖2

=

∏
j �=i ‖p− pj‖2∑N

j=1
∏

k �=j ‖p− pk‖2

The gradient and Laplacian operators of weight function ωi(p) can be derived
as follows:

∇ωi(pi) = 0, ∇ωi(pj) = 0



676 Y. Miao et al.

and

∇2ωi(pi) = −2 ·
∑
k �=i

1
‖pi − pk‖2

∇2ωi(pj) =
2

‖pi − pj‖2

By using the gradient and Laplacian properties of weight function ωi(p), the
second order Laplacian at sample point pi is:

Δρ(pi) =
∑
j �=i

2
‖pi − pj‖2

〈pi − pj ,nj〉

The above second order Laplacian is adopted to define the normal geometric
details, abbreviated as NGDs:

δ(pi) =
∑

j∈Ni\{i}

2
‖pi − pj‖2

〈pi − pj ,nj〉

where Ni denote the adaptive neighborhood of a regular point pi.
The NGDs record the surface curving degree at each sample point, which

is invariant under rigid transformations, such as translation, rotation, etc. The
color maps for different NGDs are shown in Fig. 1, where different color is
corresponding to different value of NGDs.

3 Detail-Preserving Local Editing for Point-Sampled
Geometry

3.1 Preprocessing: Non-local Denoising Algorithm

Generally, the input point-sampled models are prone to various kinds of un-
desirable noise due to a variety of physical factors and limitations of the data
acquisition procedure. On the other hand, based on the Hermite interpolation
for the scattered point clouds and the associated normal vectors, the normal
geometric details are more sensitive to data with noise. It will be preferable
to denoise the underlying geometry before carrying on further local geometry
editing operation [7, 13, 16].

Based on non-local image denoising algorithm proposed by Buades et al. [2],
a global denoising algorithm for 3D point-sampled geometry is proposed.

For each sample point, a fitting tangent plane is obtained through covariant
method, and a local frame can be constructed based on the tangent plane and
normal. The distance from the sample point to the local tangent plane can be
computed, which is called geometry gray-level value or offset. The main idea
of non-local denoising algorithm is a global weight average scheme, i.e., the
geometry gray-level of each sample point is computed as a weighted average of all
sample points on the whole model. According to the offset of each sample point,
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the underlying geometry can be reconstructed easily by moving each sample
point along its normal direction. Generally, a satisfied model can be obtained
after two or three iterative non-local averaging procedures.

The example with non-local denoising our scanned model is shown in Fig.
2(a) and 2(b).

(a) (b) (c) (d) (e)

Fig. 2. Preprocessing and postprocessing: (a) original scanned model; (b) denoised
model by non-local denoising scheme; (c) poor point-sampled model; (d) refined model
after up-sampling scheme; (e) render refined model

3.2 Detail-Preserving Local Editing

For detail-preserving editing of point-sampled geometry, it is important to mod-
ify large scale features of the underlying object, while keeping its local geometric
details unchanged. In our proposed method, the intrinsic geometric details are
encoded by normal geometric details (NGDs) and position geometric details
(PGDs).

In general, a point-sampled geometry consists of an unstructured point cloud
S = {pi = (xi, yi, zi), i = 1, 2, · · · , N} sampled from a surface S. Each sample
point pi is equipped with the associated normal vectors ni = (nxi, nyi, nzi), i =
1, 2, · · · , N .

During intrinsic editing of point-sampled geometry, it should consider both
normal details and position details. So, the intrinsic geometry is described by
two terms, one is normal geometric details (NGDs), i.e.,

δ(pi) =
∑

j∈Ni\{i}

2
‖pi − pj‖2

〈pi − pj ,nj〉

where Ni denote the adaptive neighborhood of a regular point pi.
The other one is position geometric details (PGDs) or position Laplacian, i.e.,

L(pi) = pi −
∑
j∈Ni

ωP
ijpj ,

∑
j∈Ni

ωP
ij = 1

for each sample point pi, where ωP
ij is the positive weight for point pj .
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To perform detail-preserving editing by using the NGDs and PGDs, user
specify the deformed absolute positions qi, i ∈ {1, 2, · · · , m} for a subset of point
clouds, i.e.,

p′
i = qi, i ∈ {1, 2, · · · , m}

and the system will solve the deformed position of remaining sampled points
{p′

i}, i ∈ {m, m + 1, · · · , K} in a region of interest (ROI) through fitting the
NGDs and PGDs of the geometry S′ = {p′

i, i = 1, 2, 3, · · · , K} to the given
geometric details of input surface S.

The deformed positions of the sample points in ROI {p′
i}, i ∈ {1, 2, · · · , K}

can be obtained by solving the following quadratic minimization problem:

min
p′

α
K∑

i=1

‖δ(p′
i)− δi‖2 + β

K∑
i=1

‖L(p′
i)− Li‖2

+
m∑

i=1

‖p′
i − qi‖2

The first term represents preservation of normal geometric details of deformed
sample points, the second one represents preservation of position geometric de-
tails of deformed sample points, and the third term represents position con-
straints specified by the user. The parameter α and β balance between two
kinds of geometric details, for NGDs and PGDs respectively. They also balance
between the detail-preserving requirement and the position constraints.

After the deformed positions of handle sample points are specified by user, the
deformed positions of sample points in the ROI can be computed by minimizing
the quadratic energy. It can be converted into a quasi-linear system Ax = b,
and can be solved by iterative scheme using the conjugate gradient method to
the associated normal equations (ATA)x = ATb.

3.3 Postprocessing: Up-Sampling Algorithm

After local geometry editing, e.g., stretching or twisting, it may cause some
distortions in the distribution of sample points in the ROI, and can lead to an
insufficient local sampling density. To refine the deformed results, it is necessary
to up-sample the model.

The up-sampling procedure for deformed sampled-point geometry can be de-
composed into three steps:

The first step is to detect hole on the model. For sample point pi, all of
neighbors are projected onto the fitting tangent plane on pi, which are denoted
as {q∗

ij}. The corresponding covariance matrix can be constructed for {q∗
ij},

and two eigenvectors e1
i and e2

i are computed which corresponds to the two
nonzero eigenvalues. The sampling densities along directions e1

i ,−e1
i , e

2
i ,−e2

i are
computed. If the density along one direction is approximate zero, it shows that
pi is on the boundary of the hole, and the geometry should be up-sampled along
the sparse direction. The second step is up-sampling along the sparse direction
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near the hole according to pre-defined density threshold. Finally, to obtain a
more uniform sampling geometry, a relaxation operator will be applied to the
up-sampled object, which re-arranges the sample points on the surface similar
to the relaxation approach proposed by Pauly et al. [12].

The example with up-sampling Max-Planck model is shown in Fig. 2(c) and
2(d,e).

(a) (b) (c) (d) (e)

Fig. 3. Local editing of dog model: (a) dog model; (b) ROI on dog jaw; (c) local editing
result for dog jaw; (d) ROI on dog left ear; (e) local editing result for dog left ear

(a) (b) (c)

(d) (e) (f)

Fig. 4. Local editing of different models: (a) bumpy leg of Stanford Armadillo; (b) face
model; (c) Stanford bunny model; (d) local editing result for Armadillo leg; (e) local
editing result for face model; (f) local editing result for bunny model
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4 Experimental Results

Experimental examples with local editing on dog model is given. The local edit-
ing for dog model contains two steps, the first one is to edit dog jaw (see Fig. 3(c))
and the second one is to edit dog left ear (see Fig. 3(e)). The local editing re-
sults for bumpy leg of Stanford Armadillo, face model, and Stanford bunny with
elongated nose and unfolded ear are shown in Fig. 4.

5 Conclusions and Future Works

In this paper, a new intrinsic geometric representation is proposed —normal
geometric details (NGDs) for point-sampled geometry. Combining the normal
geometric details and the existing position geometric details, a useful interactive
editing approach is developed, which is controlled by handle points and user
specified ROI. The deformation of handle point will be spread to the points in
the ROI by solving a quadratic minimization problem.

A non-local denoising algorithm is also proposed for preprocessing the in-
put noisy point-sampled geometry based on a non-local averaging of all sample
points, and a new up-sampling and relaxation procedure is proposed for post-
processing the deformed model for sake of uniform sampling density.

In the future, more interactive editing and deformation operations based on
geometric details will be investigated, for example, large deformation of point-
sampled geometry, shape interpolation, and morphing, etc. Another future work
may be the investigation of other rigid motion invariant intrinsic representation
of point-sampled geometry.
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Automatic Stained Glass Rendering
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Abstract. Based on artistic techniques for the creation of stained glass, we in-
troduce a method to automatically create images in stained glass stylization of
images. Our algorithm first applies segmentation, and performs region simplifi-
cation to merge and simplify the segments. The system then queries a database
of glass swatch images and computes an optimal matching subset based on color
and texture metrics. These swatches are then mapped onto the original image
and 3D rendering effects including normal mapping, translucency, lead came and
refraction are applied to generate the stained glass output.

1 Introduction

Stained glass is an extraordinary and vibrant medium for creating significant art and
expression using a balance of light source, color and visual perception. This ancient art
essentially includes tracing a pattern onto the glass and the glass is scored and cut. The
artist then grinds the pieces to fit, foils each piece and reassembles, soldering the units
together with lead came (Lead came is made from lead with small amounts of other
metals such as copper, tin, antimony and bismuth) [1].

Gothic or medieval form of stained glass art involves the assembly of a complex mo-
saic of bits of colored glass joined with lead into an intricate pattern. Medieval craftmen
were more interested in illustrating and idea rather than creating more natural looking
art. Hence, when medieval stained glass is viewed, it appears not as a picture, but often
as a network of black lines and colored light [2].

Modern or Tiffany stained glass on the other hand, involves a controlled level of artis-
tic abstraction. Large homogenous regions comprise each glass segment while minute
details are ignored in the final creation of the art piece. The effect of such abstraction
allows one to appreciate the gross form and shape of the object without being distracted
by superfluous features [3]. Our algorithm is largely motivated by modern stained glass
as a tool for artistic abstraction.

Abstraction is often used by artists in visual art for representing objects to be more
identifiable, that is, to some degree, stress the essential rather than the particular [4].
Artists rarely try to faithfully reproduce images, but even when this is the goal, it is
impossible for them to achieve it, because of the intrinsic reproductive limits of the
medium. However, visual abstraction is not always imposed by the medium. It may be
a deliberate choice of the artist. Stained glass artists typically use one glass sample for
each large homogenous region to minimize labor involved in glass cutting and applying
lead came, but also to make the art piece more distinctive and identifiable.

The contribution of this paper is the automatic creation of modern stained glass styl-
ization effects for images (Figure 1). This includes optimizing the segmentation to min-
imize the number of fragmented segments, mapping glass image swatches onto each
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Fig. 1. Automatic stained glass rendering of an image. From left to right: The source image. The
stained glass result generated by our system. An actual stained glass artpiece.

segment based on color and texture properties, applying 3D surface properties such as
normal maps and lead came and using hardware accelerated graphics techniques for
real time rendering of the stained glass results.

2 Related Work

Like many non-photorealistic techniques, our work also draws inspiration from the con-
cept of stylized abstraction of images, preserving the form and shape and minimizing
high level detail [5, 6, 7, 8, 9, 10]. Our algorithm represents another flavor of stylized
image abstraction by applying stained glass techniques as a form of expressive rendering.

Though there exist commercial software like Adobe Photoshop [11], Corel Paint [12],
Glass Eye 2000 [13] that allow users to apply stained glass filters to images, the process
often requires the user to manually split the image into segments and select the degree
of translucency/color and texture for each region and apply leading. This is typically
manually intensive for large sets of images.

On a similar tangent, there has been some work on creating mosaic patterns in im-
ages. While mosaic and stained glass do share some similarities based on segmentation
of the picture, the biggest difference between stained glass and mosaics has to do with
how they use light, and how they are assembled. Stained glass is designed so that light
passes through it, while mosaics are generally used to adorn a surface such as a floor
or wall. Also, mosaics are created by placing small segments or tiles rather than larger
homogenous regions in the case of stained glass [14]. Kim and Pellacini introduce a
new kind of mosaic, called Jigsaw Image Mosaic (JIM), where image tiles of arbitrary
shapes are used to compose the final picture as compactly as possible [15]. Hausner
presents a method for simulating decorative tile mosaics by using centroidal Voronoi
diagrams to arrange points in regular hexagonal grids [16].

Our paper is motivated by the modern looking Tiffany glass style, while previous
non-photorealistic work on stained glass [17], tends to emphasize a more medieval-
style . The novelty in our approach is a glass swatch selection process, based on color
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texture matching rather than cartoonization. Glass image swatches enhance the amount
of interesting variations in color and texture features in the result.

3 The Stained Glass Rendering Process

Figure 2 summarizes the algorithm. We first segment the source image into regions. In
Section 3.1 we discuss the techniques involved in segmenting the image, and combining
adjacent regions based on their spatial distribution of color/intensity. We then retrieve
glass image swatches from a database for each segment in the image based on color and
texture features. These swatches are then enlarged using texture synthesis and replace
the original image segments. These steps are described in Section 3.2. The next step
involves creating normal maps to highlight the textural variations in the image segments
and leading came between segments (Section 3.3). Finally, this image is rendered in real
time with effects such as lighting, refraction, translucency as described in Section 3.4.

Fig. 2. Flowchart of the stained glass rendering process. The algorithm minimizes fragmented and
small segments, matches glass swatches to each segment to create different stained glass patterns.
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3.1 Image Segmentation

In order to create glass fragments in the stained glass rendering of the image, we must
first segment the image. We apply mean-shift image segmentation [18] to decompose
the given image into homogeneous regions. The advantages of this approach include
flexible modeling of the image and noise processes, consequent robustness in segmen-
tation and simplicity of the algorithm.

The segmentation routine takes as input, the parameters: spatial radius hs, color ra-
dius hr, and the minimum number of pixels M that constitute a region. As with other
segmentation methods, choosing optimal parameter values is often difficult. Therefore
we over-segment the image using lower values of hr and M and merge adjacent re-
gions based on color and intensity distributions in a perceptually uniform color space,
CIE-Luv. In practice, values of hs = 7,hr = 6, and M = 150, tend to work well for
over-segmentation for most images.

Our system then performs region simplification by merging similarly colored adja-
cent regions of the segmented image and then smoothening the outlines of the regions.
We first apply a color distance measure called histogram intersection [20] to determine
color similarity between regions. Often the segment boundaries are too noisy, resulting
in a high degree of jagginess that is not typical of modern stained glass. If the segment
outlines are considered to be Bezier curves, reducing the number of control points in the
outlines creates a more optimal collection of smoother curves. The second part of the
region simplification involves the use a vertex reduction technique, which is a simple
and fast O(n) algorithm [21]. Control points with minimum separation are simplified
iteratively until a given tolerance value is met. In practice, we have found that a toler-
ance value of 0.25 tends to work well with most images used in our system. Figure 3
illustrates an example of this technique.

(a) (b) (c)

Fig. 3. Image segmentation. a) The original image b) Applying mean-shift with parameters hs=7,
hr = 6, and M = 150. d) Performing region simplification on (b).

3.2 Swatch Selection

After applying segmentation, we query an image database of glass swatches to map
a subset of swatches to each segment of the image. The collection of swatches com-
prise of 2489 color images from an online image stock database [22]. As the swatches
are 64×64 in dimension, and the image segments onto which they are composited are
often larger (target images are typically 640× 480), we apply texture synthesis using
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graphcuts to enlarge these swatches [23]. Most of the swatches tend to be homoge-
nous, and hence the resulting larger texture synthesized swatches have minimal visual
artifacts.

The method of query we use is a combination of the image segments’ color and
texture information. The color property indicates the significant colors that contribute
to the appearance of an image segment, while the texture property refers to the spatial
property of the segment. Swatch selections using only color features often do not match
high frequency information in the segments. For example, texture features extracted
from a scene of a field of grass can be distinguished from that of trees, whereby color
alone may not provide sufficient determination. Combining both color and texture cre-
ates a more effective characterization of the image content, and is commonly used in
image retrieval [24]. The goal of our work is to also utilize existing colored glass swatch
images, attempting to generate results consistent with stained glass imagery. Figure 4b
illustrates an example when our system applies only color based swatch selection. Al-
though the dominant colors of the swatches chosen are consistent with the colors in the
respective image segment, high frequency details may not be accurately represented.
However, using a combination of color and texture tends to retain this high frequency
information, thus serving a dual purpose of a more accurate abstraction, and interesting
aesthetics.

The swatch retrieval process utilizes histogram techniques to compute color dis-
tances and employs Gabor filters as a channel energy model to compute image tex-
ture. Color matching is done again using histogram intersection. Although there are
several algorithms to compute Gabor filters, our method is based on that of Manjunath
et al [25].

Filtering an image I(x,y) with Gabor filters gmn results in its Gabor wavelet transform
Wmn to be:

Wmn(x,y) =
∫

I(x1,y1)g∗mn(x− x1,y− y1)dx1dy1

The mean and standard deviation of the magnitude |Wmn| are used for the feature
vector. Given an input query of color and textural features of a segment in the image,
the swatches in the database are firstly ranked using color features. Then the top ranked
images are re-ranked according to their texture features. We first select the top 5 best
matched swatches based on histogram intersection and then further refine the retrieved
set by applying Gabor feature vectors to select the top 3 best matched swatches. A
random swatch is then picked from the 3 and mapped onto the input image segment.
Figure 5 illustrates the process.

3.3 Computing Normal Maps and Leading

The results of the segmentation process are then prepared for real-time rendering. The
goal was to demonstrate a realistic representation of a pane of stained glass using pro-
grammable 3D hardware on a typical PC. The examples provided in this paper use an
Nvidia 6600GT and an ATI 9700. The shaders include approximations of the physi-
cal properties of a thin sheet of non-uniform glass including specular bump-mapped
surface, reflection and refraction as well as appropriate appearance of the lead came.
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(a) (b) (c) (d)

Fig. 4. Comparison of swatch selection based on only color and a combination of color and tex-
ture. a) Original image. b) Color based swatch selection. c) One example of color + texture based
swatch selection. d) Another example of color + texture based swatch selection.

Histogram distances dhist from left to right: 0.3224, 0.3775, 0.4224, 0.6893, 0.7013, 0.8633, 0.9422

Gabor feature vectors from left to right: 0.0138, 0.0156, 0.1329, 0.2003, 0.3852

Fig. 5. Using color and texture features to retrieve swatches from an image database given an input
image segment. We first select the top 5 best matched swatches based on histogram intersection
and then further refine the retrieved set by applying Gabor feature vectors to select the top 3 best
matched swatches. A random swatch is then picked from the 3 and mapped onto the input image
segment.

As a preprocessing step, normal maps are constructed for the sample glass swatches
used in the output color image. Since no actual surface texture information is available
for these samples, an approximation is used: each swatch is converted to a greyscale
image and the image gradient intensity was mapped to height and run through a normal-
map generation process. Then, a second pass over the output of the segmentation algo-
rithms copies the texels from the normal maps rather than the glass color images to
create an image representing the approximate texture of the glass surface for all texels
in the segmented image.

Next, information about the lead came is generated in a separate preprocessing step.
This information is generated from the image containing the segment IDs (where each
segment is represented with a unique color). To locate where the lead came should be
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placed, an edge detection filter is run on the ID image to locate the boundaries between
each segment. These edges are dilated slightly to provide a thicker border appropriate
to stained glass. The result of the dilation filter is then again interpreted as a height field
by mapping the image gradient intensity to height and passed through a normal-map
generation process. The grayscale edge image is copied to the alpha channel of the lead
came texture to allow us to blend the segment interiors from the opaque lead border.
The edge detection, dilation, and conversion to a normal map could all be performed
within shaders on the GPU. However in this example, these masks are not dynamic and
therefore results were simply precomputed and stored as textures.

3.4 Real Time Rendering and Shading

These examples provide an approximation of a realistic piece of stained glass suit-
able for real-time rendering. This effect uses two shaders and three passes. The first
shader builds the glass effect from several intermediate terms which are illustrated in
Figure 6. Then the preprocessed per-pixel normal-map generated earlier is used to cal-
culate per-pixel diffuse lighting contributions. The contributions of both reflected light
and refracted light relative to the viewer are also calculated with these surface normals.
These reflection and refraction vectors are used to lookup into a dynamic cube-map of
the environment to provide realistic appearance of the environment. Next, the reflection
contribution is modulated by an approximation to the Fresnel term [26]. Finally for this
pass, the specular contributions are calculated and combined separately using the per-
pixel normals. The alpha component used for compositing to the frame buffer is set to
the specular intensity to prevent the specular highlights being blended with the scene.

Fig. 6. Precalculated inputs (normals, color and alpha mask) for the shader lighting calculations

The final step is to provide the appearance of the lead came between the pieces
of glass. The dilated edge mask is used in a shader program with an additional pass
over the geometry. Any texels within the dilated edges are shaded using lights in the
scene. However, only diffuse lighting with a constant dark blue-grey color is used to
simulate the dull, fully diffuse appearance of real lead. The normal-map calculated from
the dilated edge map is used to give the appearance that the leading is rounded. The
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Original
image

Swatch
mapped

Normal maps Reflection and
refraction pa-
rameters

Specular
parameter

Final stained
glass image

Fig. 7. An example set of input images, their intermediate results and the final rendered stained
glass output

results of this pass are composited with the previous pass using the information in the
alpha channel of the edge mask texture where texels within the lead came are the only
fragments blended into the scene.

4 Conclusion

This paper documents an automated technique that filters an image to create results
stylistically similar to modern stained glass artwork. Our contributions include the use
of image segmentation, selective merging of adjacent segments and the matching of
swatch images to the image segments based on color and texture features. We also
provide several examples of this technique rendered in real time on readily available
programmable PC 3D hardware. We have shown that this technique can be used to
automatically create realistic representations of stained glass as well as capturing some
of the style, vibrancy and expression of the art form.
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Abstract. A vision-based augmented reality visual guidance system is
presented. It utilises naturally occurring point features and does not re-
quire a global reference frame. Keyframes extracted from a training sequ-
ence are used to provide multiple local reference frames. These keyframes
are selected by minimising the uncertainties in structure recovery to find
an optimal tradeoff between narrow and wide baselines.

1 Introduction

Augmented Reality (AR) describes the composition of real and virtual scenes
to add value for a user when performing tasks. Usually, this involves overlaying
computer graphics onto a display which shows real scenes via a visual input.

This paper addresses a navigation task with a tablet computer as the AR
platform. The classic navigation method is with a map and compass. Although
this has served us well, it is nevertheless a cumbersome solution: it is not intuitive
and requires certain skills. Overlaying computer graphics on to a video display
device is ideal for such tasks. It removes the need to learn map reading and other
topographical skills and can be made intuitive where the user just has to follow
directional cues (e.g. arrows, compass, bird’s eye view) which are overlaid onto
the screen. The task of navigation has now become one of follow-the-arrow.

There are several systems in the literature which aim to provide AR tech-
nology to such tasks. Some of these systems use GPS [1], together with inertial
sensors [2] or ultrasound, like the BAT [3] to provide localisation. A vision-
based system has been developed in [4] which utilises ARToolkit. Both the BAT
and ARToolkit systems require the environment to be instrumented. This paper
presents a vision-based system where the only sensor is an inexpensive Firewire
camera which uses natural features found in the environment, thereby eliminat-
ing the need for instrumentation.

In contrast to systems like GPS where the user is localised in a global reference
frame, we show that navigation can still be performed by using only models of
small parts of the world. These models are constructed from keyframes taken
from a training sequence.

Keyframes can be thought of as reference frames scattered in a sequence. We
present a keyframe extraction algorithm based on the geometry of the scene and
by minimising uncertainties in recovered scene structure.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 692–701, 2006.
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Applications which extract keyframes can be broadly split into two types:
video analysis/retrieval and motion related tasks (such as tracking and structure
from motion). We focus on the latter. Some approaches for keyframe extraction
are based on heuristic rules [5], inter-frame feature similarities [6, 7, 8], or a com-
bination of both [9]. The Geometric Robust Information Criterion (GRIC) [10]
model selection is somewhat similar to our technique as it is also based on the
geometry of the scene. The GRIC was applied in [11] to compare between using
a fundamental matrix model or a homography model for the tasks of recovering
structure and matching features. In [12], the GRIC was combined with setting a
threshold of similar inter-frame features for the task of reconstructing 3D mod-
els. In [13], keyframe selection was catered towards a final bundle adjustment
step so that the estimation error of the adjustment was minimised.

1.1 Alternative Techniques

Select Every N Frames: This is the simplest technique to implement, but
is unlikely to produce good results. The obvious pitfall is the assumption of
constant speed. If the camera stops moving, this technique will continue to select
keyframes every N frames. This will lead to frames which have virtually no
translation to be selected and it will lead to an ill-conditioned T. In a scenario
of an accelerating camera, the keyframes selected could have no common or very
little common features. This scenario does not occur only for sequences with
high acceleration; it will occur when the acceleration is greater than the implicit
bound express by N.

Select Frames When Matches Fall Below a Threshold: A threshold of
features is a simple and at times sufficient method of keyframe selection [6, 7].
Firstly, there is the key question of what the threshold should be. Many times, it
may be sufficient to err on the side of caution and set a relatively high threshold
but this selection is quite arbitrary and most times, not well motivated. Sec-
ondly, the threshold largely depends on the environment which the camera is
looking at. If the environment has sections which are not as densely populated
with features as some other sections, then it will be much more difficult to set
a global threshold. One could use a proportional measure rather than an ab-
solute number which will make it slightly more robust but still unsatisfactory.
Using features as a criteria only hints at the notion of uncertainties in pose
estimation.

2 Overview

The task is visual guidance of a user from point A to point B by providing
directional cues with computer graphics overlaid on the user’s tablet computer.
The entire visual guidance system consists of a training and runtime phase.

Training (described in Section 3): The system is brought for a walk from
point A to point B and the camera records this training sequence. Keyframes
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are extracted from this sequence together with the pose displacement between
consecutive keyframes. The use of keyframes reduces both the amount of training
data and the amount of data to be processed during runtime.

Runtime (described in Section 4): When the system is switched on, it enters
an initialisation phase to localise itself to a keyframe. It then provides directional
cues to guide the user to point B. It is assumed that the initialisation location
is close to point A.

3 Training

The classic dilemma involved in choosing frame pairs is the narrow vs wide
baseline problem. Adjacent frames tend to have a high number of matches but
poor motion estimates, i.e. the translation between them is ill-conditioned. As
the baseline gets wider, correspondences tend to be poorer. Therefore, there is
a trade-off involved and an optimal baseline can be found. This is depicted in
Figure 1 where the task is to find the optimal partner for Frame 0. Note how the
number of matches tail off towards the end. A further explanation of the figure
is given in Subsection 3.3.

3.1 Choosing Frame Pairs

Given a calibrated pinhole camera with a stereo pair taken from a scene, the
relationship between corresponding points is expressed by the epipolar constraint
[14]: p′�E p = 0 , where E is the 3 × 3 essential matrix, p is the normalised
homogenous coordinate of a point in one image, (u, v, 1)� and p′ is its associated
point, (u′, v′, 1)� in the other image. With E, the pose R, T between the two
frames can be recovered and has the form E = [T]×R = R[R�T]× , where [·]×
is the anti-symmetric matrix operation. R is a 3 × 3 matrix which describes all
rotations in three-dimensional space and is parameterised by three parameters.
T is the translation vector in x, y, z directions. The essential matrix has only
five degrees of freedom: both R and T have three degrees of freedom but there
is an overall scale ambiguity in T.

3.2 Point Features

FAST features [15] with non-maximal suppression are used as feature points
and local image patches centred on the features are used as feature vectors.
Normalised cross correlation (NCC) is used as the similarity measure to match
features. Three further criterions are used to achieve better matches: Firstly,
matches which do not satisfy the epipolar constraint are discarded. Secondly,
bi-directional married matches are used. These are features which have com-
plimentary matches such that a feature, pi matches best to p′i and p′i also
matches best to pi. Finally, an NCC threshold is also used to further cull
matches.
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3.3 Analysis of Covariances

Pose which is defined as R and T can be written as a transformation matrix:

P =

⎡⎢⎢⎣ R T

0 0 0 1

⎤⎥⎥⎦ . (1)

P belongs to the special Euclidean Lie group, SE(3). A point p in one image
will cast a line in the other image and this line is called the epipolar line. This
line is given by Ep such that for any point x on this line: xEp = 0. For the
epipolar constraint to hold, the match of p which is p′ must lie on this line. An
error function relating the homogenous image coordinates of a match (p,p′) is
defined as the Euclidean distance between p′ and the epipolar line cast by p.
The relationship between the changes of this error and the changes of the six
parameters of the pose is examined. This results in a Jacobian matrix with each
term being

J =
∂d(l(p),p′)

∂αi
, (2)

where d(·) is the Euclidean distance function, l(p) is the epipolar line cast by
p and αi, i ∈ {1, ..., 6} is the six parameters of the SE(3) pose. Therefore,
J is a N × 6 matrix where N is the number of measurements and J�J is a
6 × 6 matrix, which is the first order approximation of the Information Ma-
trix. Strictly speaking, J�J should be J�U−1J where U is the measurement
noise, but for the purpose of comparing different pose estimates where mea-
surement noise is the same throughout, U can be discarded and just J�J
considered.

The Information Matrix is a positive semidefinite matrix and describes a six-
dimensional ellipsoid. The eigenvectors of the Information Matrix are the prin-
cipal axes and the eigenvalues λi = 1√

ri
, where i ∈ {1, ..., 6} and r is the radius.

Therefore, λ ∝ 1
r and since the radius is a measure of the uncertainty which

yields λ ∝ certainty.
The amount of certainty in the pose parameters is present in the diagonal of

the Information Matrix. One of the elements in the diagonal will be small because
of the scale ambiguity, meaning little (highly uncertain) is known. Therefore,
the eigenvalues of the Information Matrix will indicate the amount of certainty
(information) there is in the corresponding eigenvector. One of the eigenvalues
is zero because of the scale ambiguity. With these eigenvalues, it is now possible
to compare the pose estimation between frames pairs.

3.4 Comparing Pose Estimations

Given one frame, F1 and two candidate frames, F2, F3, which candidate will
result in a pose estimation with less uncertainties? The comparison can be done
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by analysing the eigenvalues of the Information Matrix for each frame pair.
Note, there are six eigenvalues since pose has six DOF but only five should be
considered because of the scale ambiguity.

Given pose estimations from frames, denoted by (F1, F2) and (F1, F3), their
respective Information Matrices and eigenvalues, there are several ways of com-
paring them to decide on a better pose estimate:

Min : arg max(min(EV (F1, F2)), min(EV (F1, F3))) ,
Max : arg max(max(EV (F1, F2)), max(EV (F1, F3))) ,

L2Norm : arg max(L2(F1, F2), L2(F1, F3)) ,

where EV (·) is the vector of five eigenvalues and L2 is the L2 Norm. We argue
that the Min comparison is most useful because this will select the highest least
uncertain pose estimate. In other words, if two pose estimates are uncertain, we
want the least uncertain one. Max will most likely only consider the eigenvalues
associated with rotation because rotation is well conditioned by the essential
matrix. It is T which can ill-conditioned. The alternative is to only consider
translation associated eigenvalues in Max. This will give an upper bound of the
certainty on the pose estimation but will neglect the uncertainties present in the
pose estimation. L2 Norm is a compromise between Min and Max. It gives a
general description of the size of the ellipsoid and does not yield useful insights
to the uncertainties. Besides, the L2 Norm value could be dominated by the
largest eigenvalue if the range of eigenvalues is large.
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Fig. 1. Looking for best partner. Left: Partner of Frame 0 is at Frame 36 which is
a distinct peak. Right: Number of matches between Frame 0 and other frames which
pass the epipolar geometry test.

Figure 1 shows the search for the optimal partner frame of Frame 0. Notice
that the close neighbours of Frame 0 yields a high number of matches but their
associated scores are low. This shows the narrow baseline scenario. The number
of matches drop off as the search proceeds further along the sequence. But the
score rises till an optimal point depicted by the peak. The associated frame is
then viewed as the optimal partner frame of Frame 0. In frames where the score
is zero, it means that the number of matches falls below the number of matches
required for essential matrix computation.

A summary of the scheme is as follows: Start at Frame 0, find its optimal part-
ner. Now, find the optimal partner of Frame 0’s partner. This is done recursively
till the end of the sequence.
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4 Runtime

4.1 Initialisation

The initial frame is compared to all key-frames and the number of matches
recorded. The key-frame which yields the highest number of matches is taken to
the closest training frame and the runtime frame is localised to that. Let this
frame be denoted FL. Two other frames, FL−1 and FL+1 are considered and by
comparing the triplet matches between the initial frame, FL and FL−1 and the
triplet matches between the initial frame, FL and FL+1, a frame pair is chosen
as the initial frame pair. At the end of this stage, we have a runtime frame, Fr

localised to a frame pair from training.

4.2 Movement

Let the frames from the localised frame pair be denoted by Fa and Fb where
Fa is towards point A and Fb is towards point B. From training data, Frames
Fa and Fb have a set of matches, Mab and the pose displacement, Pab between
them are known. Note that the magnitude of the translation vector is set to one.

With Mab, Pab and the features of the runtime frame fr, the runtime frame
can be localised with respect to Fa and Fb. It is essential first to find the set
of matches across all of the three frames, Fa, Fb and Fr. Let this set of triplet
matches be denoted by Mabr. There are two ways of viewing this set of triplet
matches. The first is: Mabr = Mar∩Mrb, and the second is: Mabr = Mab∩fr. The
intuition behind the first view is that all three frames are independent of each
other and therefore the set of triplet matches should be the intersection of two
sets of matches, namely Mar and Mrb. This requires three matching functions.
The reasoning behind the other view is that since Fa, Fb and Fr are local to each
other, it is safe to assume that they are not truly independent. The advantage
of the second option is that it yields a considerable increase in speed: Since Mab

is already known from training data, only one matching function where fr is
intersected with Mab is required.

The triplet matches have associated 3D coordinates in the coordinate frame
defined by Fa, Fb. These 3D coordinates are triangulated during the training
phase as well. With Mabr and their associated 3D coordinates, an optimisation
step is required to localise Fr with respect to Fa, Fb. The Levenberg-Marquardt
method is used on each runtime frame to provide the localisation.

4.3 Reweighted Levenberg-Marquardt

The inputs are triplet matches, Mabr and their associated 3D coordinates, X .
The output will be the pose, Pr of the runtime frame with respect to Fa and
Fb. Let μ denote the vector of parameters. The error to be minimised is the
difference between measured image coordinates and predicted image coordinates.
Therefore the error function is the sum of errors of each triplet match. Predicted
image coordinates are obtained by projecting Xi with Pr. For the first frame at
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initialisation, Pr is the Identity matrix. For subsequent frames, Pr is initialised
with the pose estimate from the previous frame.

At each time step (i.e. at each frame), the aim is to compute a Δμ which when
applied to μ will result in a decrease of the error function. Δμ is expressed as

Δμ = [J�J + λI]−1(J�e) , (3)

where J is the Jacobian Matrix of predicted image coordinates with respect to
the six pose parameters, e is a vector of errors and λ is the Levenberg-Marquardt
variable which varies depending on the result of the time step. Using Equation 3
means that each match and its error is treated the same and given the same
weighting. This is fine provided that there are no erroneous matches which re-
sult in large errors. If there are such matches and since the Levenberg-Marquardt
algorithm gives a least-squares solution, the large erroneous errors will skew the
result drastically.

Therefore, a reweighted Levenberg-Marquardt algorithm is used instead. With
the addition of weights, Equation 3 becomes

Δμ = [J�w2J + λI]−1(J�w2e) , (4)

where w is the weight and is a function of e. The idea is that points with large
errors are weighted down and contribute less overall. The weighting function
used was w(e) = 1

σ+|e| where σ is the inlier standard deviation. This yields an
objective function of o(e) =

∫
ew(e)de = |e| + σ log(σ + w(e)), and the sum

across all triplet matches of this function is to be minimised.

4.4 Example

It is best to illustrate the workings of the system with an example in Figure 2.
Let the origin be at Fa, the Euclidean distance between Fa and Fb be one unit
and Pb is known from training. With the Levenberg-Marquardt algorithm above,
the pose Pr can be localised with respect to Fa and Fb. Thus, the distance from
Fa to Fr and Fb to Fr can be easily computed. The translation from Fa to Fr is
merely the translation vector of Pr and the distance is the magnitude of vector
Tr. The displacement from Fr to Fb is given as Prb = Pb P−1

r . Therefore, the

� Fb

� Fr

�Fa

time1

��

� Fb

� Fr

�Fa

time2

��

Fig. 2. Example of runtime frame movement over two time steps. A top-down view
with origin at Fa, horizontal axis represents x-axis, vertical axis represents z-depth.
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distance from Fr to Fb is the magnitude of Trb. When the distance from Fr

to Fb is small enough, we conclude that Fr has “reached” Fb. If Fb is not the
destination frame (i.e. point B), we increment the frame pair, so that the new
Fa is Fb and the new Fb is the following frame.

5 Experiments

The task is to provide visual guidance to a user to aid navigation. This is achieved
by overlaying graphics of directional cues onto a tablet setup.

Each frame pair extracted at training forms a local reference coordinate frame.
The runtime frame moves from one local reference frame to the next. It is by
following this chain of keyframes that the user is guided from points A to B. This
strategy removes the need for a global reference coordinate frame. The hardware
platform used is describes below.

5.1 Hardware

A HP Compaq tablet computer (Figure 3) and a Fire-i Firewire camera was
used. The camera was mounted on an angled bracket so that it would still be
forward facing when the tablet was tilted to a more comfortable viewing angle.

Fig. 3. Tablet with attached camera

5.2 Directional Cues

Two visual cues are presented to the user: A compass which points from Fr to
Fb and a top-down bird’s eye view which illustrates the relative position of Fr

with respect to Fa and Fb (which form the local reference frame). Since Fr is
localised to the reference frame of Fa and Fb, an imaginary tunnel from Fa to Fb

can be projected into the view of Fr. This projected “tunnel” is illustrated by
rendering concentric squares. As the user moves forward, the squares increase in
size, creating the impression that the user is walking in it and Figure 4 illustrates
this. Figure 4 shows left and right translations followed by forward movement.
In addition, it also illustrates the change of local reference frames. The compass
is illustrated as a triangle and it points in the direction of Fb from Fr . The
illustration above the compass is the top-down view of the current position of
all three frames. It depicts the x axis as horizontal and z depth as vertical. The
frames are marked by: Fa(�), Fb(⊥) and Fr(•). This test sequence starts off in
the middle where the user is in the tunnel. This can be seen by the three markers
lining up close to a line. The user then makes a left translation while still having



700 T.S.Y. Gan and T.W. Drummond

the camera forward facing. The left side of the tunnel can now be seen as it is
projected into the view of Fr. As the user moves further to the left, the compass
points further to the right showing the direction of Fb. The respective opposites
can be said when the user moves to the right. The long erroneous match in the
rightmost frame is weighted down significantly and contributes very little to the
pose estimation. After the left and right translation, the user moves forward.
This is illustrated by Fr(•) which was once closer to Fa(�), moving upwards
towards Fb. A transition between one local reference coordinate and the next
occurs at the top two frames. When the transition happens, Fb becomes the new
Fa and the new Fb is its partner from training. Notice that the position of Fr is
topological correct: Behind Fb before the transition, and still before the new Fa

after the transition.

Fig. 4. Left, right and forward movement. The compass points in the direction of
Fb from Fr. The illustration above the compass is the top-down view of the current
position of all three frames illustrating the x and z axes. x axis being horizontal and
z depth being vertical. The sequence starts in the middle frame of the bottom row,
moves left and right and then forwards (towards the top). The markers are Fa(�),
Fb(⊥) and Fr(•). In the starting frame, Fa is at the bottom closest to the compass,
Fr is further up and Fb is at the top.

6 Summary and Future Work

We have demonstrated a vision-based AR visual guidance system with a camera
as its only sensor. It relies on natural features for localisation and does not
require a global reference frame.

A new keyframe extraction algorithm based on the uncertainties of pose recov-
ery was introduced. It utilises epipolar geometry to recover pose and computes
the optimal location on the narrow and wide baseline spectrum when selecting
frame pairs.

Avenues for future work include an in-depth usability study of directional cues,
and other techniques and optimisation to improve robustness of the system.
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Abstract. Despite tremendous work in hair simulation a unified frame-
work for creating realistically simulated hairstyles at interactive rates is
yet not available; the main reason is that complex dynamic and opti-
cal behavior of hair are computationally expensive to simulate. To have
such a framework, it is essential to find optimized solutions, especially
for the various physics-based tasks, which is the main bottleneck in the
simulation. In this paper, we discuss various technical advancements and
achievements that have been made in formulating key techniques to han-
dle the different challenging issues involved in simulation of hair at in-
teractive rates. Effort has been put in all the three modules of the hair
simulation - hair shape modeling, hair dynamics and hair rendering.

Keywords: Hair Simulation, Hair Modeling, Real Time Animation, Vol-
ume Deformation, Interactive Rendering.

1 Introduction

Hair forms an important part of human appearance and is thus essential to be
simulated realistically for creating believable Virtual Humans. Besides believabil-
ity, applications require hair simulation to accommodate varying hairstyles and
visualization processes for which interactivity and real-time rendering are the
key features. To handle the time-constrained situation, usually the techniques
developed have to compromise between interactivity and realistic appearance.
The difficulties in human hair simulation arise due to the number. These issues
make it a challenge for both animating and rendering them with performances
compatible with real-time. Optically, hair has many interesting phenomena such
as anisotropic reflection, strong forward scattering, and translucency. A correct
reflectance model is thus needed to compute reflectance off the individual hair
geometry. To have a unified interactive framework, it is desirable to consider
relations between various hair simulation components and to simulate the col-
lective effect. Further-more, the increasing of the sense of immersion, requires
integrating a haptic interface that provides user with increased degree of freedom
as compared to a mouse and considerably increases the comfort, performance
and productivity. The specific contributions of this paper are:

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 702–710, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– Simplified mechanical model effectively adapted to real time.
– Optimized scattering based rendering algorithm.
– An interactive application, efficiently utilizing animation and rendering.

Fig. 1. Sequence of images demonstrating the potentiality of our optimized framework

The rest of this paper is organized as follows: in the following section, we
give a brief overview of various works done in hair simulation. In Section 3, we
give an overview of our framework methodology. Section 4 is dedicated to our
lattice based mechanical model. Section 5 gives the description of our scatter-
ing based illumination model for rendering at interactive rates. We demonstrate
utilities of our optimized framework for performing hairstyling operation in Sec-
tion 6 followed by the results and discussion on the performance for this unified
hairstyling application in Section 7. We conclude with a survey of avenues of
future work in Section 8.

2 Related Work

Specific advancements have been made in each of these tasks (Hair: modeling,
rendering, animation), an overview of which can be found in [21]. Here we discuss
the recent developments in all the related tasks.

The developed tool, in [20], allows user to choose number of patches, position
them and then individually or collectively modify parameters such as length,
stiffness, blending for the patches. The system in [8] is based on a 2D paint
program interface and color scale images to specify hair characteristics. Some of
the researchers have also presented systems exploiting fluid flow [6] and vector
fields [27] for explicit hair modeling. Other techniques [12][24] use hybrid models
combining benefits of wisp model and strand model. In general, all these systems
result in creating nice static hairstyles, but are too slow to be able to interact
with hairstyles when dynamic behavior is added.

A Wisp technique was defined by Watanabe et al [25], and has been fre-
quently used since with many variations in [3][4][19][26]. Another evolution is to
replace the hairs by approximate surfaces (strips or patches), as done by Koh
et al [13][14], or even volumes that can easily be modeled as polygonal meshes,
such as the thin shell approach of Kim et al [10]. A good example of combining
various approaches developed by Bertails et al [1] is based on wisps tree, and a
similar approach from Kim et al [12] is based on multiresolution clusters. Ad-
vanced Level-of-Detail methods also include combination of strands, clusters and
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strips modeled with subdivision schemes and animated using advanced collision
techniques, as developed by Ward et al. [23]. In the context of fast real-time
applications, cluster and strip models are good candidates.

Kajiya et al. [9], were the first to derive a local anisotropic lighting model
for hair which has been widely adopted for real-time hair rendering. Simulating
self-shadows in hair has been an important contribution of [11] and [16], though
these techniques are not suitable for real-time. Koster et al. [15] intensively
utilize the GPU for fast shadow map computation, though it does not take
animation of the hair into consideration. Mertens et al. [18], efficiently deal
with the issue of shadow in dynamic hair by computing a 3D density field and
storing the samples of the hair density function in a compact way, resulting in
better rendering speed and quality. More recently, Bertails et al [2] presented an
animated hair self-shadowing model based on a 3D light oriented density map,
with computations performed on a standard CPU independent of any GPU, at
interactive rates.

3 Framework Methodology

Hair styling scheme can be divided in two parts: firstly, defining a set of general
characteristics of a hair style, and secondly, varying set of characteristics of an
individual hair. We choose to model hair utilizing the data representation of an-
imation model [22]. This hair modeling technique is divided in two phases. First,
we propose a set of static parameters for hair styling (geometric modifications),
and then we animate using these parameters (update simulation).

Fig. 2. Hair Simulation Framework

In order to increase the user interactivity, we chose to use a haptic interface.
We present a system that provides the user with interactive and easy-to-use tools
for hairstyling. Even though we have used a mechanical model in our simulation,
the system is fast and the user can make modifications at interactive rates. In
addition, the dynamic behavior results in more accurate and realistic simulation,
as it includes influence on the styles due to gravity and other external forces.
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For animation, the system should be compatible with most approaches used
for hairstyle representation and real-time rendering, and offer the designer the
possibility of creating any kind of hairstyle that can robustly be simulated in
any animation con-text. We construct an efficient lattice mechanical deformation
model which represents the volume behavior of the hair strands.

We also aim to have an optimized technique that decreases the complexities
involved in hair rendering and simulates optical effects while incorporating hair
animations at interactive rates. The local illumination of hair is defined by a
Gaussian function adapted to our strip representation of hair. Our method’s
efficiency towards achieving fast shadow updates for animated hair is highly
credited to the division of the pre-processing and the run-time tasks of the
simulation. This contributes to the speedy performance of our illumination model
without any significant degradation in quality.

4 Simplified Mechanical Model for Animating Hair

The challenge in realistic animation of hair is to build a mechanical model of the
hairstyle which is sufficiently fast for real-time performance while preserving the
particular behavior of the hair medium and maintaining sufficient versatility for
simulating any kind of complex hairstyles. The difficulties are overcome through
the design of a hair animation model based on volume deformations, with the
aim of animating any complex hairstyle design in real-time.

4.1 The Lattice Model

We construct a 3D lattice around the head that includes all the hair. During
animation, the lattice is moved according to the head motion. The lattice is
furthermore deformed by mechanical computation.

4.2 The Mechanical Model

A spring-mass approach is used for designing this mechanical lattice deformation
model. A particular kind of interaction force is created that uses as attachment
points any arbitrary point of the lattice, defined by its lattice coordinates. The
attachments of the hair extremities to the skull are modeled by stiff viscoelastic
lattice attachments, which are positioned exactly at the end of each hair. Ad-
ditionally, some “ether forces” are defined between the lattice nodes and their
rest positions defined by the rigid motion of the head. They are mainly aimed at
pulling back the hairstyle to its initial position, ensuring stability of the simula-
tion, as well as modeling some additional stiffness in the hairstyle. Aerodynamic
drag forces are also added in this way.

4.3 Lattice Interpolation

As the lattice is deformed during animation, another issue is to recompute the
cur-rent position of each hair features for each frame. For the best compromise
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between continuity and computation speed, we have selected quadratic B-Spline
curves as interpolating shape functions, which offer second-order interpolation
continuity. In our adaptation, we use linear extrapolation to handle border nodes
so as to decrease deformations for points located outside the lattice. We can take
advantage of the interpolation to enhance the attachment of the hair on the skull
through rigid motion. For each interpolated feature, a deformation coefficient is
defined which is a blending coefficient between the motion defined by the rigid
head motion and the motion defined by the interpolated lattice position.

5 Optimized Hair Rendering Model

Two main optical effects that contribute the most to realistic hair are the
anisotropic reflection and self-shadows. We have used a scattering-based fast
and efficient algorithm that handles both the local specular highlights and global
self-shadow in animated hair at interactive rates as presented by Gupta et al [5].

5.1 Scattering-Based Local Illumination

One of the features of our local illumination model is that it takes into the Fresnel
reflection and orientation of the cuticles on the hair which gives a control on
defining the anisotropy of the hair. We consider the Gaussian function taking into
account slope variations both along the tangent and the bi-normal of the strip
vertices. The model takes care of both the diffuse and the specular reflectance.
Various parameters control the width and the shift of the specular highlights as
well as the sharpness and the anisotropy displayed by the strips.

5.2 Scattering-Based Self-shadow in Hair

Our scattering-based approach considers two functions for shadow contribution
as shown in Figure 4. One function gives a measure of the absorption of light
reaching a hair vertex and the other function considers the scattering from the
hair. Since our shadowing model considers hair densities within the cells rather
than explicit hair geometry, both the functions result in an overall reduced in-
tensity of the hair vertex as visible to the viewer, which gives the shadowing
effect within the hair. Analytically, the absorption term generates self shadows
due to its geometric and translucent nature while the scattering term is an addi-
tional component contributing to hair shading due to its material property. It is
the collective effect of the two components computed for hair that gives light’s
intensity as perceived by the viewer and is correlated to the hair’s shadow color,
giving it a natural look.

5.3 Shadow Refinement in Animated Hair

The approach for incorporating variations in shadow in animated hair assumes
that the hair vertices within a cell at initialization always stay within one cell
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after displacement. This assumption is valid not only from the physical aspect of
the FFD-based animation model but also from real hair animation considerations
where there is coherence among neighboring strands when hair is moving. We
encode the displacement of the particle during animation to give a measure of
variation in hair density in the cells of the rendering lattice.

6 Application and User Interactions

Our main motivation for developing the animation and rendering model is to pro-
vide the user with an easy-to-use set of tools for styling hair with visualization
of variations in dynamic and optical behavior at interactive rates. The system
gives the user freedom to choose tools to modify hair collectively (using guide
hairs) or individually. Using the buttons provided with the PHANToM, the user
can also choose the tool to apply on the selection. For the animation of the
parameters we have proposed different methods:

6.1 Hair Selection

The first step in designing a hairstyle is to select a set of hair. The user can
choose hair via a 2D scalp map or make a more precise selection directly in 3D
using a PHANToM. The selection, via the PHANToM, is done by the position
of the stylus. If the stylus intersects a cell in the lattice, all the hair in that box
are selected. This selection mode is linked to the discretization of the lattice,
and does not allow selecting a set of hair between two cells. But generally, the
hairdresser doesn’t cut hair under long hair. After this selection step the user
can “add” a set of hair using “copy and paste” tool and shift (via haptic) the
duplicate set of hair.

Fig. 3. Cut Hair Sequence

Fig. 4. Hairstyle created using Brushing Tool
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For hairstyling operators, we have limited the animation to only parts where
modifications are applied. Thus, we create a lattice just for the selected set
of hair and only this set is later animated. Limiting the lattice to a specific
section of hair decreases the computational time and allows efficiently using the
geometrics methods. These geometrics modifications don’t change the form of
the lattice. This technique also avoids a computation of self-collision detection
between strips and provides good result in simulation.

6.2 Virtual Scissor

The most important tools for a hairdresser are probably the scissors. In our
technique, we first choose a cut plane for modifying the hair. Several inclided or
curves (like sines functions) planes are proposed. The variety of these cut planes
afford realization of numbers cut types. After, this selection, it is possible to
change the position, orientation via a the 6DOF of the haptic. A mass-spring
system representation is used for all strands in order to simulate drop-ping the
hair cut during the cutting process. The implementation of this modeling is easy,
and allows obtaining good results in short time.

6.3 Virtual Brush

The virtual brushing/waviness tool involves a function of some parameters (ra-
dius, length of curve, direction of the brushing, degree of curl) of strands. Based
on these parameters, a mathematical function is applied on the last node of all
the selected hair resulting in curve hair to obtain visual movement. When simu-
lating waviness, the visual effect is similar to a compressed spring movement from
top to bottom. When brushing, the movement of lattice node is away from the
head and following the direction of the brush. The use of these techniques avoids
us to compute collision between hair and an object (tools, comb for example)and
visual realism is maintained because the simulation seems to be real.

7 Results and Discussion

We have tested our unified hair styling application for creating various hairstyles.
The implementations are done on a workstation with Intel Pentium4 and 3.4 GHz
processor with a 1 GB main memory and a GeForce 6800 graphics card. Our
computation algorithm is written in standard C++ and rendering is done using
the OpenGL API. The initial hairstyle has been created using our in-house home
hairstyler based on fluid dynamics [8].

We ran our algorithm to create short, curly and brushed hairstyles using our
unified framework. We have tested the hairstyles with various complexities of the
mechanical representation and have found that a mechanical model containing
100 attachments and 400 springs built on 343 lattice nodes is fairly accurate
and with fast simulation. The model reacts to collisions with the head and the
shoulder using 7 metaballs. For shadow computation we found that for all the
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hairstyles a lattice size of 128 × 128 × 32 was optimal enough to provide an
interactive frame rate. While performing the user interactions, as the simulation
is limited to only section of the hair to be modified, the average performance is
better.

8 Conclusion and Future Work

We have presented an easily usable framework for animating, rendering with
optimized features for interactive hairstyling. With initial results of our unified
framework being quite promising, we look forward to adding more features for
more interactivity and enhanced visualization. We plan to add more interactivity
as well as “sense of touch” during hair styling.
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Foundation (FNRS).
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Abstract. Modelling high-quality free-form 3D objects is a very time-
consuming task. Recently, hybrid subdivision surface schemes have been
proposed, allowing quads to be used in surface areas with two-directional
symmetry and triangles for the more free-form regions. Until now, this
kind of scheme was rather theoretical, as it was not obvious how to cre-
ate optimal objects with it for e.g. practical animation purposes. We
describe a sketching system for quick 3D modelling using such hybrid
subdivision, starting from user-drawn 2D curves. These curves are trian-
gularized, and a skeleton is calculated, along with the 3D object. This
skeleton can be used to deform the object later on. At the same time, we
try to maximize surface quality, and limit the number of faces and ver-
tices. In cases where only little detail is desired, the resulting objects can
be used directly, while the object’s structure also makes them suitable
for subsequent editing and adding detail, using commercially available
subdivision modellers.

Keywords: subdivision, modelling, sketching, quad/triangle, mesh con-
struction.

1 Introduction and Related Work

Subdivision surfaces have become a common technique for representing sur-
faces. They define a surface as the limit of a series of refinements, starting from
a coarse control mesh. A good introduction can be found in [1]. Until recently,
subdivision schemes were optimized for meshes consisting of either triangles or
quadrilaterals exclusively. In the last years, however, schemes have appeared
which generate good results when applied to meshes which contain both trian-
gular and quadrilateral regions [2], [3]. These kinds of schemes turn out to be
very useful for modelling animations, because there, in symmetric (e.g. cylin-
drical) areas, quads and vertices with valence 4 are preferred, to support the
symmetry. On the other hand, in freeform areas, triangles and vertices having
valence 6 are preferred. Other advantages of the subdivision representation are,
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among others: computational efficiency, support for arbitrary topology, precise
control over the surface, and efficient representation of complex geometry be-
cause of its multiresolution properties. Special purpose editors using subdivision
techniques have been described, e.g. Skaria et al. make use of a modified quadri-
lateral Catmull-Clark subdivision scheme to model specific cartoon faces [4].
Their system can generate a wide variety of cartoon faces.

One of the most well-known 3D sketching systems is Teddy [5]. Teddy is a
sketching interface for designing 3D freeform objects, which creates polygonal
mesh objects out of 2D silhouettes. Afterwards, the same authors extended this
approach to overcome some of the artifacts introduced by Teddy by using a
fairing technique [6]. Other approaches are using implicit surfaces: Karpenko et
al. use variational implicit surfaces as a representation for a free-form modeller
[7]. They take advantage of the implicit representation to support extrusion and
blending.

2 Object Construction

Our approach starts with a closed 2D user-drawn cubic subdivision curve, lying
in the XY plane. This curve is the only user input at the start of the algorithm.
In the preprocessing step, we remove unwanted vertices, and at the same time
we add vertices to facilitate later stages in the construction. The objects are
constructed out of several construction layers, which are parallel to the plane
containing the input curve. The thickness of the object at a particular vertex of
the input curve, is determined as the distance of that vertex to its equivalent
vertex on the chordal axis. In this section we first present some preprocessing
steps on the input curve, along with some construction parameters which can
be used to fine-tune the results. This is followed by the construction of the top
layer, and of the intermediate layers. Finally, we close the object.

2.1 Preprocessing Steps

To start with the algorithm, we begin with triangulating the closed input curve
I, using constrained Delaunay triangulation. Next, we calculate the chordal axis,
by connecting the midpoints of the internal edges of the triangularized control
polygon. Then the axis is smoothed, to limit influence of single vertices.

In the first preprocessing step, we remove the vertices in the control polygon
which make an angle α with their neighbors, close to 180o. Experimental results
suggest that a good threshold is α > 170o. Furthermore, the distance of these
vertices to their corresponding vertices on the axis have to be more or less the
same. A good criterion is that these distances should differ no more than 15
percent, which we determined empirically. In short, in this first step we remove
vertices which do not make sharp angles in the input polygon, and which do not
represent significant changes in thickness in the input polygon.

Secondly, we add extra vertices in regions where there is a large change in
thickness between consecutive vertices. Consider the situation depicted in Fig-
ure 1, with the adjacent vertices a and b. a′ is the vertex on the axis which
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Fig. 1. Adding extra vertices in the input
polygon

Fig. 2. Schematic overview of the
layers

corresponds to a, and the same applies to b and b′. We denote the number of
layers at a vertex v as lv. Let la = |aa′|/ltmax and lb = |bb′|/ltmax, where we
define ltmin as the smallest distance |vv′| for all v ∈ I, and ltmax as ltmin ∗ 3.
Both la and lb must be smaller than or equal to lmax. If this is not the case,
they are set to be equal to lmax. Now, between every a and b, we add (ldiff − 1)
vertices equally distributed between a and b, with ldiff = abs(la− lb). This way,
we avoid extraordinary vertices later on.

2.2 Construction of the Top Layer

The first real construction stage is the creation of the top layer. This top layer
sits on top of all previous layers, which are created afterwards. A schematic view
of the different layers is shown in Figures 2 and 4, where the input curve I is
the lowest layer. Construction of the top layer goes as follows:

Adding Vertices of the Top Layer. For each vertex b ∈ I, we add a vertex
bh in the top layer Lh. We calculate a circular arc Cb with b′ as origin, which
goes through b, and which is orthogonal to the input plane. We obtain bh by
intersecting this circle with a plane Ph,b, which is defined as follows: Ph,b ↔
Z = |bb′| ∗ f . Here f is a scaling factor, which we experimentally set to 0.85,
but it can be adjusted by the user. Without this factor, intersections will always
be found at b′. After doing this for all b, we have a polygon Lh. However, we
do not merely add this polygon to the object. Instead, we divide it into several
quadrangles and triangles, and add these to the final object.

Simplify. In the next stage we remove edges between adjacent vertices of Lh

which have become too short. Very short edges are problematic for surface qual-
ity, and have to be removed. However, this has to be done carefully to prevent
vertices of high valence to appear. For every pair of adjacent vertices a and b in
Lh where |ab| < elmin, we remove that vertex which merges ab with the shortest
adjacent edge. This elmin, which is the smallest allowed edge length, is defined as
1
4∗ the average edge length. However this value is arbitrary and can be adapted
by the user.

Fill the Polygon with Faces. The next step is to fill the polygon at the
highest layer with quadrangles and triangles, in a way which produces optimal
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Fig. 3. Creating an arc Cb, with origin b′

and going through b
Fig. 4. Intersecting Cb with layers L1

through Lh

Fig. 5. Creation of 2 triangles at end vertices of the axis (left), of 2 quads along arms
of the axis (centre), end at crossings (right).

Fig. 6. Adding an extra vertex in the case of an odd number of triangles

surfaces. Here we discern 3 different cases: at the end of the axis, where axes
cross, and along the legs of the axes. First, at the end vertices of the axis, we
create 2 new triangles instead of the original single triangle. This is shown in
Figure 5 (left).

Along the legs of the axis, we start at the end vertices, and for every pair of
vertices q′ and r′ (shown in Figure 5 (centre)), we find the corresponding vertices
o, p, q and r in the polygon, and connect them to form 2 new quads.

It is possible that we will end up with not enough vertices to complete the
construction in this way. In this case, we add a new vertex in the polygon and
resume. This is shown in Figure 6, where originally q was equal to r.

Finally, the last type of triangles we observe in the triangulated input polygon
are intern triangles, where the axis has three branches, which emerge from a ver-
tex placed in the center of the triangle. We replace this triangle by 3 quads which
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are constructed as shown in Figure 5 (right), and which are (o, (o+p)/2, m, (o+
q)/2), (p, (o + p)/2, m, (p + q)/2) and (q, (q + p)/2, m, (o + q)/2).

2.3 Creation of the Sides

The sides connect the lowest layer polygon I, with the top layer Lh. This is done
by placing a number of layers in between, and connecting them, while taking
care not to introduce vertices with very high or low valence.

Calculation of the Intermediate Layers. For every vertex b ∈ I, we cal-
culate bi, where i is the index of the layer where bi belongs to. For every b,
the number of layers at that vertex can differ widely. This number is derived
from the distance |bb′|, and is calculated by: lb = |bb′|/ltmax Also, make sure
this number falls between lmin and lmax. This way, we create a set of layers Li,
containing less and less vertices with increasing value for i. Also, for every layer,
we apply the simplification step mentioned in section 2.2, to remove edges which
have become very short in this step.

Fig. 7. Construction of the sides

Connecting the Layers. With all layers having the same number of vertices,
connecting all layers together is simple: quadrangles can be formed everywhere,
using vertices with regular connectivity, as shown in Figure 7(a). However, since
the number of vertices can vary widely throughout layers, we have to pay atten-
tion not to create vertices with high valence. If for every pair of corresponding
vertices ab and a”b” in subsequent layers, there are never more than 2 new ver-
tices in between, we can use triangles to fix the situation. If, however, there are



716 K. Beets, J. Claes, and F. Van Reeth

more than 2 vertices between a”b”, an extra layer will be created between the
two layers. These situations are shown in Figures 7(b) and 7(c).

There also can be differences in the number of layers between adjacent vertices.
To fix those gaps, we introduce triangles, as illustrated in Figure 7(d). Note that,
because of the first preprocessing step where vertices were selectively inserted
into the input curve, we never have a difference in height larger than 1, since the
height difference between consecutive vertices is now limited.

2.4 Closing the Object

Now we have constructed one half of a closed symmetric object. To close it, we
duplicate the current object, mirror it along the XY plane which contains the
input polygon I, and translate it so that the input polygon and its copy collide
exactly.

3 Editing the Object

We allow the user to edit the generated object after construction, by deforming
the 3D axis. This allows quick manipulation, which makes the system suitable
for quick animations using a keyframing system. Also, our objects have a very
limited number of control vertices (also depending on the number of input ver-
tices), which makes them suitable for editing in commercial 3D modellers. This
way, the user can e.g. easily paint on the objects, or execute advanced operations
on them which might be difficult to obtain in our sketching system. After con-
struction, the created object is symmetric in regard to the XY plane. However,
the user can deform the object easily by moving axis vertices.

4 Surface Quality

As mentioned before, we employ the Quad/Triangle scheme by Stam and Loop
[3]. Due to the construction method, our system generates objects which consist
for the most part of regular quadrilateral regions, where vertices have valence
4. These can be found in the sides of the object, which are constructed by
intersecting the planes with circles. Triangles are used to fill height differences,
and at the end of an axis. By using several construction layers, we can avoid
very high or low valence, and n-gons in the sides, where n is different from 3
and 4. Distances between layers depend on the thickness of the object locally.
In thicker regions there are more layers, which are further apart.

5 Results

Figure 8 shows a quadpod, an imaginatory object, which was created starting
from a simple curve. Afterwards, the user deformed the axis to obtain a bulge
in the center, and to pull down some legs. Figures 9 and 10 show two other
examples.
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Fig. 8. A ’quadpod’ with skeleton Fig. 9. A fish (textured by Xemi Morales)

Fig. 10. A duck

6 Conclusions and Future Work

We presented a system for rapid sketching of free-form 3D objects. To our
knowledge this is the first in literature to create meshes optimized for hybrid
Quad/Triangle subdivision. As described in [3], we achieve surfaces which are
C1 everywhere, have bounded curvature at the quad/triangle border. Further-
more, they can be easily designed by the inexperienced user. At extraordinary
vertices, which we cannot avoid in all situations, we still obtain C1 continuity, but
without curvature continuity. Since we construct an axis through the object, the
technique is very suitable for quick and easy animation using keyframing. Finally,
the coarse control meshes with limited number of vertices make it possible to edit
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the objects in commercially available modellers, in contrast to most other sketch-
ing systems in literature. With respect to future work we are looking into using
subdivision schemes which tend to minimize curvature variations, such as [8].
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Abstract. Rendering the structural color of natural objects or modern
industrial products in the 3D environment is not possible with RGB-
based graphics platforms and software and very time consuming, even
with the most efficient spectra representation based methods previously
proposed. Our framework allows computing full spectra light object inter-
actions only when it is needed, i.e. for the part of the scene that requires
simulating special spectra sensitive phenomena. Achieving the rendering
of complex scenes with both the full spectra and RGB light and object in-
teractions in a ray-tracer costs only some additional fractions of seconds.
To prove the efficiency of our framework, we implemented a “Multilayer
Film” in a simple ray-tracer. However, the framework is convenient for
any complex lighting model, including diffraction or fluorescence.

1 Introduction

Many phenomena and materials, in nature or in industry, have complex opti-
cal effects, namely interference, diffraction, fluorescence, dispersion, phosphores-
cence, etc. These physical effects cannot be rendered with current RGB-based
graphics platforms and software. However, as pointed in [1] and [2], color com-
putations in a renderer have to be performed in spectral space if the output is
to be used for predictive purpose.

To simulate these optical effects, some researches have been focused on the full
spectra representation of light and objects [1]. These methods are not tractable
when a complex scene has to be rendered. Recently in [3], for example, a mul-
tilayer films model is coded with their efficient spectra representation [4] and
implemented in a popular RGB-based renderer. However, the optical effects of
the object presented (insect) are computed independently of its 3D environment,
although they are highly dependent on the lighting conditions of this environ-
ment and interactive with it. Our rendering process overcomes this problem.

Our idea is based on the observation that usually, only a part of a scene
needs to be simulated with a full spectra representation. In Figure 1, only a
part of the insect has a structural color. In Figure 2, the insects are even partly
hidden. In the two figures, color of leaves and flowers, as well as some parts of
the insect itself, are due to pigmentation. Moreover, the light transport needs
� This research was done when Weiming Dong was a visiting student in the Sino
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to be simulated with full spectra representation, only when the optical effects of
the material have a visual impact on other objects.

This paper presents the rendering process of complex scenes with both the
full spectra and RGB light and object interactions. Unlike conventional systems
that perform color calculations with tristimulus color values, our system allows to
embed any kind of representation of the spectra to calculate colors of complex
optical effects. Unlike spectral rendering systems previously proposed [1], our
rendering process allows to use and compute spectra in complex scenes only
when it is needed, i.e. when they have a significant impact in the transport
process, and the final image.

Fig. 1. The Edgar Poe Gold Bug is rendered with a full spectral function representation
while the main part of the 3D scene is computed with RGB models

(a) (b)

Fig. 2. Two examples of our framework
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In the following sections, we first discuss some related works. Then we de-
scribe the color representation models used in our system, and also give the
whole work flow of the render. We show some images generated by our system
and address the advantages comparing with the traditional methods in the fifth
section. Finally we draw the conclusion and discuss about the future work.

2 Related Works

Many works have been focused on developing physically based lighting models
and perceptually based rendering procedures for computer graphics that will
produce synthetic images that are visually and measurably indistinguishable
from real-world images [1][5][6][7]. Greenberg et al. [8] proposed a framework
which subdivided the whole rendering process into three sub-sections: the local
light reflection model, the energy transport simulation, and the visual display
algorithms. Glassner provided a mathematical framework for phosphorescence
and fluorescence [9][2]. Stam [10] developed a reflection models for metallic sur-
faces that handle the effects of diffraction. To accurately simulate the optical
phenomena, Sun et al. [4] proposed a rendering framework which emphasized
real spectra as input, retains full spectral light-object interactions, and gener-
ates spectral images (convertible to RGB images for display). This framework
is capable of handling wavelength-related optical effects including dispersion,
interference, diffraction, and fluorescence, but still very costly, especially when
objects with complex spectrum based materials are present only in a part of the
scene. Another problem is to render the scene users need to set all the object
materials with spectrum, usually it is difficult to get all the spectral data of the
materials in the scene.

An accurate and efficient spectral representation is required in our framework.
Many methods have been proposed like sampling [11][12], linear model represen-
tation [13], and using polynomials [14]. Unfortunately these methods all have
difficulties in balancing the accuracy and efficiency. To overcome the drawbacks
of the previous methods, Sun et al. proposed a composite spectral model by
decomposing all spectra into a smooth background and a list of spikes [15][4][3].
They represented the smooth part with Fourier coefficients and a spike is spec-
ified by its location and height. We also use this spectral representation model
in our framework.

We use Hirayama et al.’s work [16] for rendering objects coated with multilayer
thin films to test our framework. Their method is based on wave optics, and is
able to accurately visualize the optical effects of multilayer films.

In [3], a multilayered films is also proposed. The model has several new nice
properties. However, the complex optical effects of the Morpho Rethenor that is
chosen as an illustration cannot be rendered with an approximated interference
scheme. In fact, the irregularity in the ridge height of the Morpho Rethenor
eliminates the interference among the ridges, which results in the diffuse and
broad reflection of a uniform color [17]. So due to its complex microstructure,
the structural color combines both diffraction and interference in a complex
microstructure.
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3 Efficient Renderer for Rendering Natural Scenes

We develop a new framework for realistic rendering. In this framework, we use
RGB and spectrum together to represent the materials, light sources and the
pixel colors of the synthesized image.

3.1 Materials and Light Sources

First, to simulate the natural phenomena which can not be accurately calculated
with simple RGB models, and protect the efficiency if the objects also have some
RGB oriented properties at the same time, we allow RGB and spectrum to work
together to represent one material, different element of the material can have
different type of representative model. This means that we set the “natural” part
of the material with spectral model and let the other parts still be represented by
RGB. For example, considering an object with both interference effect and simple
diffuse appearance, we integrate the interference part with the related physical
based model (like a spectrum based BRDF model) and define the diffuse value
which is independent of wavelength with RGB.

To synthesize realistic images of natural phenomena, we use light sources
described with spectral power distributions (SPDs) in the scenes which have
spectral effects. Like Sun’s spectrally based framework [4], we also recommend
the using of real spectral data in order to ensure the accuracy of spectral effect
simulation.

At the same time, we also allow RGB light sources in the same scene, this
feature is to facilitate the use of monochromatic light sources and the approxima-
tion of the real light sources when there is no getatable spectral data. The user
can simply choose the RGB color of the light source and convert it into spectrum
in the rendering process. In our system, we use Sun’s method to derive spectra
from colors [15].

3.2 Color Representation

Based on Huygens’ principle of independent propagating of light [18], we sepa-
rately calculate the effect of the light sources, no matter it is an RGB or spectral
light source. Then we integrate the effect together as the final results of the local
illumination. In our system, we decompose the color of one point into two parts:
the RGB part and the spectrum part. Formally the color is the sum of the two
parts. We use it as the intermediate format during the rendering process. The
color of one point x can be written as follows

Colorinter(x) = ColorRGB(x) + Colorspectrum(x)

where ColorRGB(x) is the RGB value generated by the interaction between
the RGB based material elements and the light sources (represented with RGB
model), and Colorspectrum(x) is the spectral effect caused by the spectral ele-
ments of the material.

In fact, for one light source, we first calculate the irradiance of it at the point.
Then the radiance (color) of the point will be evaluated according to the type of
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the material element. If the element is RGB based, we convert the SPD of the
spectral light source into RGB and add the value (radiance) to the RGB part of
the point color. On the other hand, the RGB light source should be converted
to spectrum if the material element is spectrum based. So the color of the point
generated by one light source can be written as

Colorinter(x) =
m∑

i=1

Colori
RGB(x) +

n∑
j=1

Colorj
spectrum(x)

where m is the number of the RGB based material elements, Colori
RGB(x) is

the RGB radiance (represented with RGB model) generated by the light source,
m is the number of the spectral material elements, and Colorj

spectrum(x) is
the spectral value which is computed (represented with spectrum) according to
the spectral function. So we write the final equation of the color at one point
generated by multiple light sources as follows

Colorinter(x) =
N∑

k=1

(
m∑

i=1

Colori
RGB(x) +

n∑
j=1

Colorj
spectrum(x))

where N is the number of light sources in the scene.

3.3 Acceleration

To accelerate the rendering process at run time, we save both the RGB value and
the spectral value of all the light sources in the pre-processing step, so we need
not do the spectrum-to-RGB or RGB-to-spectrum operation when the irradiance
of one point is being calculated. The only work we need to do is to choose the
proper value corresponding to the type of the material element.

4 Rendering Pipeline

The whole rendering pipeline comprises three stages: preprocessing, rendering
and color transformation. In the first stage, the SPD of the spectral light sources
and the spectral functions of the spectral material elements are represented
through loading data from the spectral database. The intensity of the RGB
light sources and the RGB parts of the materials are also set by the user (or
from texture). Then we pre-compute the RGB value of the spectral light sources
and the spectra of the RGB light sources. We save these values together with the
original data. The second stage is most important: here an intermediate image
is generated based on local and global illumination models with ray tracing. The
intermediate image is similar to a color image except that for every pixel the
information is the combination of a spectrum and a RGB value instead of a
color. In the rendering process, when calculating the reflectance intensity, if the
reflectance of the material is RGB based, we need to convert the spectral part
of the reflectance intensity gathered by the reflected ray into RGB. Contrarily,
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if the reflectance of the material is spectrum based, we need to convert the RGB
part of the reflectance intensity gathered by the reflected ray into spectrum. The
same for the transmittance calculation. Finally we transform the spectral part
of the intermediate image into RGB [15] and plus the previous RGB part. This
will generate an RGB image for displaying on the screen.

Compared to previous frameworks [8][4], the intermediate color format, the
separate light-material element interaction and the intermediate image in our
pipeline are new elements. Note that we can also store the spectral part of the
intermediate image as a spectral image like [4] to identify errors for particular
wavelengths and finding effective improvements. On the other hand, compared
with Sun et al.’s [4] framework, we only add a RGB data which can be stored
by three “double” variables for each pixel in the rendering process, the memory
increase will not be a problem.

Table 1. The information of result images

Items Figure 1 Figure 2(a) Figure 2(b)

Triangle Number of Plant 18086 32848 60894
Triangle Number of Insect 49832 49832 49832
Resolution (Pixels) 680 × 680 600 × 600 600 × 600
Our Rendering Time (Seconds) 7.63 12.84 15.97
Sun’s Rendering Time (Seconds) 80.23 188.49 234.13
Our Rendering Time without the Insect (Seconds) 3.12 11.02 13.08
Sun’s Rendering Time without the Insect (Seconds) 45.66 173.38 198.52

5 Results and Discussion

Figure 1 shows a natural scene with an Edgar Poe Golden Bug rendered by our
system, the material is constructed by coating cooper with a 500 nm gold film
[16], and the specular value for the high light is an RGB value 1. The plant and
the background are both constructed with RGB models. A parallel light source
with the spectral distribution of the CIE standard illumination D65 [2] is set
above the plant. It will cause wavelength computation only when the traced ray
intersects with the bug. Figure 2(a) shows one bug on a plant with many flowers.
In this scene, only the the bug is integrated with spectrum based material. The
material is the same as the bug in Figure 1, but the position of the camera and
the light source (also D65) is different. We can see the different appearance of the
iridescence caused by the thin film. Figure 2(b) is another example, we change
the thickness of the gold film to 300nm, one can see the appearance is different
with the previous two images. We can also notice that in the two images of
Figure 2, the insects only occupy a very small part of the scene. Here our system
1 The original insect model was downloaded from http://www.turbosquid.com.

All the plant models used in this paper were downloaded from http://
www.toucan.co.jp/indexE.html
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is much more efficient than the full spectra rendering framework [4] while the
image quality is almost the same. The rendering information of the results is
shown in Table 1. All the images are generated on a PC of P4 3.2GHz and 1GB
RAM. One can see that our system is nearly 15 times faster than the system of
[4]. And we can also see that adding the insect to the scene will only cost a very
few additional time comparing with the whole rendering time if the insect will
only occupy a small part of the rendering window (for Figure 2(a) 1.82 seconds
and for Figure 2(b) 2.89 seconds).

6 Conclusion and Future Work

This paper proposed an efficient framework for realistic image synthesis which
can use real spectral data and RGB value together as input, retains full spec-
tral interactions between lights and the spectral parts of the material of the
objects, and generate images described with a format combining of both RGB
and spectrum. We have shown that this framework suffices to describe the nat-
ural optical effects in realistic image synthesis, and have facilitated its practical
application through a new color representation model - the combination model.
Unifying previous research on traditional and spectral modeling and rendering,
this new framework provides a useful and efficient basis for simulating general
complicated phenomena.

A lot of work is needed to demonstrate the efficiency of the method and to
control the visual impact of the rendering in complex global illuminated envi-
ronments. We plan to implement and test our rendering process in a Photon
Mapping Renderer [19] in complex geometric and physical scenes. Our tests use
the the Thin Film Model for iridescence [16] and the Sun et al.’s dual method
for spectra functions coding [4]. Improvements can be done in theses two ar-
eas. In particular, design a complex biology based micro structure model that
can combines interference and diffraction is still an open problem as well as in
Computer Graphics than in Optical Engineering.
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Abstract. Transfer function is very important for volume rendering. One 
common approach is to map the gradient magnitude to opacity transfer 
functions. However, it catches too many small details.  Gradient vector flow 
(GVF) vectors have large magnitudes in the immediate vicinity of the edges, 
where the GVF vectors keep coordinate with the vectors of the gradient of the 
edge map. While in homogeneous regions where the intensity is nearly 
constant, the magnitudes of gradient vectors are nearly zero and GVF diffuses 
the edge gradient. Because of these aspects, we extend GVF to color space and 
apply it for opacity transfer functions. Experiments show that our method 
enhances edge features and makes a visual effect of diffusing along the edges. 

1   Introduction 

Several data sets become available from projects such as the “Visible Human Project” 
at the National Library of Medicine, the “Whole Frog Project” at Lawrence Berkeley, 
and the “Chinese Digital Human Project” at the Institute of Computing Technology of 
Chinese Academy of Sciences. It’s a big challenge to get realistic volume 
visualization of these photographic volume data sets. 

The currently dominant techniques for volume visualization consist of surface-
based rendering and direct volume rendering [1].  Generally, the first step of surface-
based rendering technique is to reconstruct the surface by 2D contour reconstructing 
method [2] or iso-surface extraction method such as the Marching Cubes algorithm 
[3] or Morse theory [4]. And then surface is rendered after being reconstructed. 
Usually the reconstruction step needs a segmentation performance, which can be very 
difficult. On the contrary, direct volume rendering method maps voxel directly into 
screen space without using geometric primitives as an intermediate representation. 
Ray-Casting method [5], Splatting method [6] and Shear-Warp method [7] are the 
most common direct volume rendering methods. All these algorithms perform the 
following processes. First, assign color value and opacity value to each voxel. Then 
project the voxel into the image plane. Finally compose the projected samples. 

Transfer functions are used to map image properties to visualization characteristics, 
such as color, opacity, and texture. A review of transfer function techniques is given 
in [8]. Many previous studies on transfer function brought out approach by mapping 
gradient magnitude to opacity value. For color image processing is nonlinear, it is 
important to choose an appropriate color space [9]. In [10], Ebert and etc study color 
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spaces for volume rendering, and give some transfer functions by mapping the voxel’s 
color gradient magnitude to opacity value according to the color distance defined in 
RGB color space and CIE LUV color space. The results show that this method can 
generate high quality image which display multi-organs such as fattiness, muscles and 
bones. 

Our work of deriving opacity values is different from traditional transfer function 
approaches in the following ways: 

We map gradient vector flow magnitude to opacity transfer function instead of 
gradient magnitude. Compared with other transfer function, GVF transfer function 
has two main advantages: First, it captures the strong edges information and gets rid 
of the weak edges which may be noise and disturb the whole visual effect.  Second, 
GVF transfer function also catches the details in homogeneous regions. Finally, the 
opacity of the voxel is small when the voxel is near away from the edges, which 
makes a special visual effect.  

We extend GVF model to vector data. Tradition GVF model only deal with scalar 
data and the edge map must be gradient magnitude if it is applied to vector data. We 
extend GVF model using an auxiliary image, which is usually a component standing 
for image luminance in the color space. 

2   Extended GVF 

Gradient vector flow is firstly used to describe external force of snake model [11]. 
Snake model or active contour model [12] is dynamic force model, which draw the 
closed curve or surface to the object edge or surface. The driving forces consist of 

internal forces and extern forces: 
1

int0 extE E E ds= + , where intE are internal forces 

that hold the curve together and keep the curve from bending too much. And extE  are 

external forces that attract the curve toward the object boundaries. There are several 
kinds of external forces, in which the most common are:  

ext ext extE ( , ), E | ( , ) |,E ( , )* ( , )I x y I x y G x y I x yσ= − = − ∇ = − ∇ . 

The basic idea of snake model is to design the external forces to move the active 
contour toward the edges by difference of intensity or intensity gradient. Gradient 
fields have some important properties listed below: First, gradient vectors are normal 
to the edge; Second the magnitudes get the large value in the immediate vicinity of 
the edges. Third, the intensity is nearly constant and the gradient magnitude is nearly 
zero in homogeneous regions. The last two properties result in that capture range of 
the gradient is small and the active contour can not converge to the concave boundary 
such as U-shaped object.  

GVF field is an extern force field that has much larger capture range than any other 
field based gradient has. It diffuses the gradient vectors of an edge map computed 
from the image. For a 2D image, GVF vector V(x,y)=(u(x,y),v(x,y)) is defined by 

minimizing the energy functional,  

22 2| | | |E V f V f dxdyμ= ∇ + ∇ −∇  (1) 
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Where edge map f(x, y) derived from image and has the similar style as the 
common extern forces of active contour model. 

To minimize the energy functional, V is set to be f∇  when | |f∇ is large for the 

second term dominates the functional. The functional is dominated by the first term 
when  | |f∇  is small and V can be slowly-varying vector to get lower energy. GVF 

vector is nearly equal to the gradient of edge map when it is near the edge and then 
diffuses to the homogeneous regions away from the edges. 

As shown in the definition of GVF, edge map f(x, y) is a scalar field. In order to 
calculate GVF vector of color data, the GVF vector can be solved by using the 
calculus of variations:  

2 2 2

2 2 2

( , ) ( , ) ( ( , ) )( )

( , ) ( , ) ( ( , ) )( )
x x y

y x y

u X t u X t u X t f f f

v X t v X t v X t f f f

μ
μ

= ∇ − − +
= ∇ − − +

 (2) 

In Equation(2), only the partial derivatives of the edge map f are used. So the GVF 
model can be extended to vector data field if the partial derivatives of the edge map 
are given. 

Considering that most common color spaces have three components, we suppose 

the edge map is 1 2 3( , , )f f f f= . We define the distance of two vectors in the color 

space as in [10]: 2 2 2
1 1 2 2 3 3( ) ( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))f X f Y f X f Y f X f Y f X f Y− = − + − + − , so  

In equation (3), the sign of partial derivatives need to be confirmed. In this paper 
we introduce the partial derivatives of a reference scalar image fa as an auxiliary data, 

and assign the sign of fa to that of xf  and yf . We take the gray component of RGB, 

I component of HSI and L component of CIELUV as the auxiliary image 
respectively. This approach is feasible because the auxiliary images stand for 
luminary in their respective color space.  

3   GVF Transfer Function 

The design of the transfer function is to classify each voxel into different types. For 
scalar data, the most common method to classify the voxel is to segment data 
according to the data intensity. But for vector data, especially color image data of 
human organize, there are no automatic and reliable approach to segment or classify 
the all the materials. One of the most useful classification methods is by human 
interaction, marking and editing the materials little by little according to the 
professional knowledge of the corresponding field. But in fact it is a time-consuming 
and tedious work. Design of transfer function which maps the image color or intensity 
to opacity value, is a substitute way and has been proofed to be efficient. 

2 2 2
1 2 3

0

2 2 2
1 2 3

0

( , ) ( , )
lim( ) ( ) ( ) ( )

( , ) ( , )
lim( ) ( ) ( ) ( )

x
h

y
h

f x h y f x y
f f f f

h x x x

f x y h f x y
f f f f

h y y y

→

→

+ − ∂ ∂ ∂= = ± + +
∂ ∂ ∂

+ − ∂ ∂ ∂= = ± + +
∂ ∂ ∂

, 
(3) 
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The choice of the color space is very important for transfer function. In [10], the 
color vector distance and gradient are defined to design transfer function in RGB and 
CIELUV color space. The general opacity in the rending process is as 

( * )expopacity vo s= , where s is a factor, exp is an exponent coefficient, and vo is 

gradient magnitude. 
The basic idea of our approach is to take the magnitude of the GVF vector as the 

desired transfer function. We first choose a proper color space. And then produce an 
edge map. Finally we map the GVF vector derived from the edge map to opacity 
transfer function. 

As discussed in section 3, GVF transfer function has the following properties. 
First, it captures boundary of the image where gets a small opacity value. The much 
stronger the boundary is (it means that the gradient magnitude is large), the bigger 
opacity value is. Second, GVF transfer function diffuses the edge gradient to the 
slow-varying region. From equation (1) we know that each GVF vector is dependent 
to the vectors in the region nearby, and GVF transfer function is a global function and 
robust to the noise. On the other hand, the gradient function is local function, and 
each gradient vector is calculated only by the data in its neighborhood.  

4   Results and Discussion 

We introduce RGB, CIELUV and HSI color space in this paper. As opacity is some 
dependent to luminance and the human’s ocular system is more sensitive to 
luminance than color’s thickness, L component of LUV and I component of HIS are 
fit for designing the transfer function.  

We take some notations to denote the different kinds of transfer functions. X-G 
represents gradient magnitude of X component. For instant, L-G is gradient 
magnitude of L component. X-GVF stands for magnitude of GVF vector whose edge 
map is gradient magnitude of X component, and X-GVF2 denotes magnitude of GVF 
vector whose edge map is X component. X-GVF and X-GVF2 differ from their edge 
maps. 

In HSI color space, [0,255]I ∈ and , [0,1]H S∈ . I component is the principal 

component and H and S component can be neglected. The transfer function pairs such 
as (HSI-G, I-G), (HSI-GVF, I-GVF) have the similar visual effects.  

In the following experiments we firstly render some regular geometry volume 
objects. Then we apply our approach to human organ volume data. 

4.1   Simple Object 

Our first experimental materials are some regular volume objects. They are circle, 
rectangle and textured rectangle annulations, as shown in Fig. 1. 

The gradient effect only exists in the region several voxels around the edge and 
gradient transfer function only captures the edge, as shown in Fig. 2a. On the 
contrary, GVF diffuses edge gradient to the homogeneous region away from the 
edges. The opacity is large in the immediate vicinity of edges, and the visual effect is 
much better, as shown in Fig. 2b.  
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a. circle b. rectangle c. textured a. I-G b. I-GVF2 c. I-GVF 

Fig. 1. Source images Fig. 2. Circle 

X-GVF transfer function is gradient magnitude is anisotropic. Gradient operator is 
anisotropic in numerical algorithm and calculating the gradient is an important step in 
the GVF. When the edge map is processed by gradient operator, the anisotropy is 
accumulated. The rendering results show the unhomogeneity of X-GVF transfer 
function, as in Fig. 2c, while X-GVF2 transfer is much better (Shown in Fig. 2b). 

GVF weakens the edges whose gradient magnitude is small. As discussed in 
section 3, E is mainly dominated by the smooth term when | |f∇  is small. We apply 

a transform ( )coeff
out inf f= to the edge map to enhance the weak edge. When 

1coeff < , the weak edge is enhanced. Shown in Fig. 3, Fig. 3a is the map of I-GVF 

and Fig. 3b-d are the figures of I-GVF whose transform coefficients are 1, 1.5, 0.5 
respectively. Shown in Fig. 3d, the weak edges in the bottom of the rectangle are 
enhanced and majority of texture details are maintained. 

    
a.  I-G b. .0 c. 1.5 d. 0.5 

Fig. 3. Enhance edges 

The final rendering results are shown in Fig. 4. 

 
circle LUV-G LUV-GVF LUV-GVF2 rectangle LUV-G 

 
LUV-GVF LUV-GVF2 textured LUV-G LUV-GVF LUV-GVF2 

Fig. 4. Rendering results 
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4.2   Volume Data 

We take takes 128 slices from the thorax section of the Male data set of VHP(slice 
1300 to slice 1427) to form a volume data with size 587*341*128. 

a. source b. L component c. L-G d. L-GVF 

Fig. 5. VHP slice 

To explore the effectiveness of our transfer functions, we choose a slice (slice 
1300, shown in Fig 5-a) to test our approach.  Fig. 5b is L component of the slice 
and Fig. 5c is the gradient of L component. Comparing gradient vector map with 
GVF vector map (Fig. 5d), gradient snaps more weak edges, while GVF catches the 
strong edges and diffuses the edges gradient. The edges of GVF vector map look 
much “thicker”. Observing the close-up figures of L-G and L-GVF in Fig. 6, 
gradient vectors are much disordered while GVF vectors look more regular and 
uniform. 

 

a.. close-up of L-G b. close-up of L-GVF 

Fig. 6. Close-up 

We first give some volume rendering results without any special transfer function, 
as shown in Fig. 7a. And the rendering results with transfer function L-G are shown in 
Fig. 7b. The information in gradient transfer function includes the most of stronger 
edges and lots of weak edges, which makes the large edges inconspicuous and the 
little edges indistinct because of too many edges and little discrimination. 

Compared with gradient transfer function, GVF transfer function captures the large 
edges and diffuses the edges gradient, which makes a special visual effect. The GVF 
transfer functions, especially those whose edge maps are from color intensity, have 
good uniformity because of diffusion effect.  

As discussed in section 4.1, a transform can be taken to the input edge maps. In 
Fig. 7c-f, GVF transfer functions in the same row are the same types, but their edge 
maps have been transformed with different coefficients. The transform coefficient in 
the first column is less than that in the second column. Comparing the rendering 
results, we can find that X-GVF2 with larger transform coefficient has better visual  
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a. original b. L-G 

 
c.  I-GVF2(0.5) d. I-GVF2(1.5) 

 
e. RGB-GVF(0.80) f. RGB-GVF(1.2) 

 
g. L-GVF2 h. RGB-GVF2 

 
i. L-GVF2 j. I-GVF2 

Fig. 7. Rendering Results of VHP slice 

effect, while smaller pre-transform coefficient produces better X-GVF transfer 
function. From the results, we also know X-GVF2 transfer function is better than X-
GVF. Fig 7g-j shows other rendering results of our VHP data. 
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5   Conclusion 

In this paper, we design opacity transfer function based on GVF vector magnitude. 
The experiment shows that choosing the approximate color space, component, and 
pre-transform coefficient, GVF transfer function is better than that based on gradient 
magnitude. GVF transfer function captures and enhances the large edges and diffuses 
them, which make the edges look “thick”.  

Acknowledgment. This work was funded by National Key Basic Research Plan 
(grant No: 2004CB318006) and National Natural Sciences Plan (grant No: 30471744, 
60573154). All the research work is conducted on Dawn 4000A Server Platform of 
Institute of Computing Technology, Chinese Academy of Sciences. And Mrs. Jingcai 
Shi gives us a lot of useful help.  

References 

1. Peter Shirley and Allan Tuchman. Volume visualization methods for scientific computing. 
2. Bernhard Geiger. Three-dimensional modeling of human organs and its application to 

diagnosis and surgical planning. PhD thesis, INRIA, France, 1993. 
3. William E. Lorenson and Harvey Cline. Marching cubes: A high-resolution 3D surface 

construction algorithm. In Proceedings of SIGGRAPH 1987, pages 163--169, 1987. 
4. Milnor, J. W. Morse Theory. Princeton, NJ: Princeton University Press, 1963 
5. M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and 

Applications, vol. 8, no. 5, pp: 29--37, May 1988. 
6. L. Westover, Footprint evaluation for volume rendering. Computer graphics, vol. 24, no. 

4, 1990. 
7. T. Todd Elvins. A Survey of Algorithms for Volume Visualization. Computer Graphics, 

Volume 26, Number 3, August 1992, pp. 194-201. 
8. Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L. S., Martin, 

K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graphics Appl. 
21,3 (2001), 16--22. 

9. G.Sapiro and D.L.Ringach, “Anisotropic Diffusion of Multivalued Images with 
Applications to Color Filtering,” IEEE Trans. Image Processing, vol. 5, no. 11, pp. 1582-
1586, 1996.  

10. D.S. Ebert, C.J. Morris, P. Rheingans, and T.S. Yoo. Designing effective transfer 
functions for volume rendering from photographic volumes. IEEE Transactions on 
Visualization and Computer Graphics, 8(2):183--197, June 2002. 

11. C. Xu and J.L. Prince, “Snakes, Shapes, and Gradient Vector Flow,” IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 7, no. 3, pp. 359-369, Mar. 1998. 

12. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int’l J. 
Computer Vision, vol. 1, pp. 321-331, 1987. 



Quasi-physical Simulation of Large-Scale
Dynamic Forest Scenes

Long Zhang, Chengfang Song, Qifeng Tan, Wei Chen�,
and Qunsheng Peng

State Key Lab of CAD&CG, Zhejiang University, 310027, Hangzhou, China
{lzhang, songchengfang, tanqifeng, chenwei, peng}@cad.zju.edu.cn

Abstract. This paper presents a quasi-physically based approach for
interactively simulating large-scale dynamic forest scenes under different
wind conditions. We introduce theories from the wind engineering, and
model the natural wind field as a stationary stochastic process. To re-
duce the geometry complexities without sacrificing much image quality,
we adopt a hybrid geometry/image representation scheme to faithfully
model the appearance of trees. Some simplified mechanical rules are em-
ployed to compute the movement of such tree models. Three kinds of
level of details concerning the scene geometry, the movement of trees
and the wind field, are exploited to accelerate the simulation. For for-
est scenes with tens of thousands of animated trees, our implementation
with programable graphics hardware achieves visually plausible results
at interactive frame rates on consumer PC platforms.

1 Introduction

Over the past decade, simulation of natural phenomena has become an indis-
pensable requirement for a wide variety of applications including environment
assessment, video games and virtual reality. One of the hot research topics is
the modeling and rendering of large-scale forest scenes. Although lots of ap-
proaches have been extensively studied, the rapidly growing demands on the
scene complexity, the physical fidelity and the visual realism, still overwhelm
the capabilities of current solutions.

The major difficulty of the simulation of large-scale dynamic forest scenes is
of course due to the high complexity in both geometry and appearance. Few
previous approaches can simultaneously meet the requirements of both interac-
tive rendering speed and high image quality. In time-critical applications such
as video games, one common way is to represent trees with billboards. This
technique provides extremely high rendering speed yet poor image quality, and
apparently, cannot support animations of trees. On the other hand, if the image
quality is of primary importance, one may rely on detailed geometric models of
trees. However, as millions of triangles are required to faithfully represent the
shape details of one tree, accurate simulation of physical behavior of a forest
under the wind seems to be a formidable task on today’s PC.
� Corresponding author.
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In this paper, we propose a quasi-physically based approach for interactive
animation of large-scale forest scenes under adjustable wind conditions. Our con-
tributions lie in several aspects. Firstly, we introduce a physical fidelity model of
the wind field for realistic tree animations. Secondly, we provide simplifications
for both the geometric model and physical rules, which greatly reduces the sim-
ulation cost. Lastly, we exploit novel LOD techniques which efficiently simplifies
the computation involved in tree animations.

2 Related Work

There are a variety of well-established approaches for modeling trees. Linden-
mayer and Prusinkiewicz[1] introduced the L-system to construct the geometric
models of plants. Thereafter, Aono and Kunii[2] improved this method for 3D
cases. The fractal approach by Oppenheimer[3] provides another solution for
plant modeling. All these methods are based on the common assumption that
complex plant geometry may be approximated with simple rules plus stochas-
tic variation. Emphasizing the overall geometrical structure of tree, Weber and
Penn[4] presented a parameterized procedural model which provides a more di-
rect and intuitive control interface over the shape of trees.

Image-based rendering techniques have demonstrated advantage that the re-
sultant models are independent of the geometric complexity. Recently, the Bill-
board Clouds technique was introduced to simplify the plant models by
Bromberg[5]. Though they achieve high image quality, they cannot support dy-
namic simulations of large-scale forest under different wind conditions.

Much work has been conducted well on the dynamic simulation of trees. Ono[6]
proposed to adopt Perlin noise to generate the turbulence and calculate the mo-
tion of tree based on mass-spring model. Sakaguchi et al [7] assumed branch seg-
ments as rigid sticks, calculated the rotation of each branch independently and
integrate all movements for the motion of a whole tree. By representing the wind
forces as 1/fβ noise, Ota et al [8] modeled branches as cantilever flat-springs and
computed the rotations of leaves by using 1/fβ noise function directly. Coupling
stochastic approaches and dynamics equation, Shinya and Fournier[9] synthe-
sized realistic motion of trees, grass and snow under the influence of the wind
field. Likewise, Stam[10] synthesized turbulence by filtering a white noise in the
Fourier domain and solve the displacements directly. Giacomo et al [11] com-
bined procedural approach and physically based method to animate a moderate
sized forest. Recently developed commercial software SpeedTree[12] provides ap-
pealing results for real-time walk-through of large-scale forest scenes.

3 Construction of the Wind Field

We derive a wind field model from the wind engineering. The key component of
our model is a stochastic process that faithfully mimics the stochastic properties
of the wind field. This contributes to the visual and physical realism of the trees
swaying in the wind.
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Wind Velocity Vector: From the viewpoint of the mechanics, the velocity
vector of a three-dimensional air flow is composed of three orthogonal com-
ponents [13], namely, the longitudinal component U(t) along the mean wind
direction, the lateral component V (t), and the vertical component W (t). U(t) is
the sum of the mean component, denoted by Ū(z) and fluctuating component,
while V (t) and W (t) have only fluctuating components. The wind velocity at
point Q(x, y, z) can be represented as:

U(Q; t)= Ū(z)+u(Q; t), V (Q; t)=v(Q; t), W (Q; t)=w(Q; t) (1)

Cross-Power Spectrum Density Matrix: We model each fluctuating com-
ponent of the velocity vector by a stationary Gaussian stochastic process. Their
spatial-temporal properties in the frequency domain are represented by Cross-
Power Spectral Density Matrix(CPSDM):

Sε(ω) =

⎡⎢⎢⎢⎣
sε1ε1(ω) sε1ε2(ω) . . . sε1εn(ω)
sε2ε1(ω) sε2ε2(ω) . . . sε2εn(ω)

...
...

. . .
...

sεnε1(ω) sεnε2(ω) . . . sεnεn(ω)

⎤⎥⎥⎥⎦ (ε = u, v, w) (2)

where ω is the angular frequency, and sεjεk
is the cross-power spectrum density:

sεjεk
(ω)=

√
sεjεj (ω)sεkεk

(ω) Coh(Qj ,Qk; ω) (3)

Each sεjεj is normally represented by various formula which serve different
applications[14]. After investigating all representations collected by Solari et
al [15], we derive a new unified form: which serves for assessing and choosing
the coefficients suitable to our case.

sεjεk
(ω) =

U2∗Aεν
γ

(ω/2π)[1 + Bενα]β
(4)

where ν =ωz/2πŪ(z) is the Monin coordinate, U∗ is the shear velocity, and Aε,
Bε, α, β, γ are adjustable coefficients.

The coherence function (Coh) in Equation 3 is expressed as follows:

Coh(Qj ,Qk; ω)=exp

{
− ω

∑
r Crε | rj − rk |
π
[
Ūj + Ūk

] }
(r=x, y, z) (5)

Here, Crε is the exponential decay coefficient.

Evaluation of Wind Velocity: In most cases, CPSDM is real symmetric and
positive definite. Thus we decompose it using the Choleski method:

Sε(ω)=H(ω)H∗(ω)T (6)
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where H(ω) is a lower triangular matrix. Then the fluctuating component at
time t can be expressed as:

εi(Qi; t) = 2
N∑

j=1

i∑
k=1

[
hik(ωj)G

(k)
j (t)

]√
Δω (ε = u, v, w) (i = 1, 2, ..., n) (7)

where ωj=jΔω , NΔω=ωu is the upper cut-off frequency. G
(k)
j is a random value.

Finally, the wind force at Q(x, y, z) can be calculated as:

F(Q; t) = 1
2ρ ‖T‖ ·T, T = (U, V, W ) (8)

where ρ is the air density.

4 Quasi-physically Based Animation of Trees

Our quasi-physically basedanimation scheme isbasedonahybrid geometry/image
representation of trees.

4.1 The Hybrid Representation of Trees

Conceptually a tree consists of branches and leaves. Branches are represented
by geometry primitives with associated textures. Leaves are clustered and rep-
resented as a list of billboards. Compared with traditional pure geometry based
or pure image based representations, our hybrid tree representation is a good
balance in terms of rendering quality and efficiency. Figure 1(a) illustrates an
example with the proposed hybrid representation.

Models with the hybrid representation can be derived from existing tree mod-
els conveniently. In practice, we build a parametric modeling system to gener-
ate various tree models. The adopted parameters that control the shape of the
branches are similar to those introduced by Weber and Penn[4]. Leaf clusters are
generated around the branches. Each leaf cluster is tied to a branch at a hang-
ing point. The distribution of leaf clusters are determined by global parameters.
The textures for the leaf billboards can be taken from real captured images or
created by artists.

4.2 Quasi-physically Based Animation

We approximate the movement of branches with a set of rigid transformations.
Each branch is split into several segments. Each segment is assumed to be rigid
and can only rotate around the joint which links itself either to its parent branch
or to its predecessor. Each joint defines a local frame in which the z axis directs
to its child segment. We animate the branches by manipulating the local frames
of each joint. The damping angular spring model is adopted to compute the
transformation matrices. Figure 1(b) shows the distortion of a branch with three
segments during the animation.
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Fig. 1. Quasi-physically based animation of trees: (a) the hybrid representation of
trees; (b) branch animation; (c) animation of leaf clusters

The movement of the leaves are primarily driven by that of the host branches.
Furthermore, the leaves may vibrate due to the blowing of the wind. We simply
model this type of motion as a periodically clockwise swaying, i.e., each leaf
swings around its hanging point. Both the frequency and the swing are dependent
on the wind strength, which are estimated with simple empirical formulas. The
animation scheme is demonstrated in Fig.1(c).

4.3 Level of Details

We introduce three kinds of level of detail representations for the scene geometry,
the movement of trees and the wind field. The appropriate level regarding each
aspect is determined by multiple criteria, including the distance to the viewpoint,
the visual importance and the priority of the image quality.

Geometry LOD. We build the LODs for branches and leaf clusters in a sepa-
rate way. Geometry simplification of branches is accomplished by dropping rela-
tively smaller branches. The resultant variance of the overall shapes can hardly
be noticed in practice since small branches are usually covered by the leaves and
hence attract little attentions.

Geometry simplification for leaf clusters are performed by consolidating neigh-
boring leaves, which yields a set of reduced leaves. In order to keep the fullness
of the tree, we enlarge the remaining leaf clusters by an adjustable ratio. For
the sake of performance we use the same leaf textures for lower level models.
Smooth transition of consecutive LODs is obtained using an image-space blend-
ing technique.

Animation LOD. Since the main cost to compute the tree movement lies in
updating the local frames, we simplify the computation by deactivating related
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joints, whose local frames are not recomputed during the animation. Deactivating
a joint means to omit the local distortions caused by its rotation.

We assign a priority to each joint, which is estimated by the total mass of
the branches it controls. When an active joint is to be deactivated or vice versa,
smooth transitions are performed by blending its transformation matrix with
identity matrix.

Wind-Field LOD. We generate the wind fields in a mipmap fashion. For
trees far from the view point, we adopt the coarse version, with which lots of
trees suffer from the same average wind force. This is amenable for instance-
based simulation, which is popular in vegetation rendering. For all instances of
one tree suffering from a same wind force, they share a same distortion. When
zooming in or zooming out, smooth transitions are accomplished by interpolating
corresponding transformation matrices.

5 Experimental Results

We have implemented our approach with OpenGL 1.5. All experiments were
performed on a PC with AMD AthlonXP 3000+ CPU (1.8 GHZ), 512 MB RAM
and NVidia 6600 GT video card.

5.1 Calculation of the Wind Velocity

In our experiments, we employed the Blunt models proposed in[14] to calculate
the wind velocity. The coefficients for the wind power spectrum density are
set to: α=1, β=5/3, γ=1, the other three coefficients for different fluctuating
components are shown in Table 1. The values of exponential decay coefficients
in coherency functions are listed in Table 2.

Table 1. Coefficients for power spectrum density of three components

Au Bu Av Bv Aw Bw

252.625 60.62 53.76 20.16 5.125 4.92

Table 2. Exponential decay coefficients for coherency functions

Cxu Cyu Czu Cxv Cyv Czv Cxw Cyw Czw

3.0 19.7 9.5 6.0 12.0 7.0 0.5 7.5 3.7

We divide the scenes into 100×100 cells and compute the wind velocity vector
at each cell. The time for calculating the array of velocity vectors for one frame
is 50ms. It costs 144 MB memory space to store the data of one wind velocity
field for 1000 frames. Normally, we need pre-compute the wind velocity fields for
1000∼2000 frames and save them as three dimensional arrays.
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5.2 Rendering of Forest Scenes

We have tested four forest scenes (denoted by A, B, C and D)with different scene
complexities. The snapshots for C and D are shown in Fig.2. Under given wind
condition, these scenes can be displayed interactively with physically plausible
behaviors. Table 3 lists the performance statistics for the four scenes. The second
row reports the number of trees. The frame rates achieved by disabling one of
the three LOD techniques are reported in the third, fourth and fifth rows. By
integrating all these techniques, our adaptive rendering scheme achieves up to
1000% performance improvement, as shown in the last row.

Fig. 2. The snapshots of one forest scene at the image resolution of 1024 × 768

Table 3. The rendering performance in FPS. The image resolution is 1024 × 768.

Scene A B C D
#Tree 1000 3000 10000 50000

Without Geometry LOD 15.3 9.5 3.9 1.0
Without Animation LOD 14.9 11.6 7.4 2.1
Without Wind-Field LOD 7.8 3.4 1.1 0.2

With all LODs 20.0 14.5 8.3 2.2

6 Conclusions and Future Work

In this paper we present a quasi-physically based approach for animating large-
scale forest scenes under various wind conditions. Our approach achieves inter-
active frame rates when simulating dynamic forest scenes with tens of thousands
of trees.

In the future, we would like to take the mutual influence of trees into con-
sideration, such as attenuation and reduction of wind forces. In addition, we
want to study more accurate (efficient) animation schemes for close (distant)
trees.
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Abstract. This paper addresses some properties of G1 continuity condi-
tions between two B-spline surfaces with arbitrary degrees and generally
structured knots. Key issues addressed in the paper include necessary G1

continuity conditions between two B-spline surfaces, general connecting
functions, continuities of the general connecting functions, and intrin-
sic conditions of the general connecting functions along the common
boundary. In general, one may use piecewise polynomial functions, i.e.
B-spline functions, as connecting functions for G1 connection of two B-
spline surfaces. Based on the work reported in this paper, some recent
results in literature using linear connecting functions are special cases
of the general connecting functions reported in this paper. In case that
the connecting functions are global linear functions along the common
boundary commonly used in literature, the common boundary degen-
erates as a Bézier curve for proper G1 connection. Several examples for
connecting two uniform biquadratic B-spline surfaces with G1 continuity
are also presented to demonstrate the results.

1 Introduction

Non-uniform rational B-splines (NURBS) are by far the most popular represen-
tation and the de-facto standard for computer aided design and manufacturing
(CAD/CAM). Nevertheless, it is still awkward for practical modelling using
multiple B-spline surfaces with continuity requirement. To our knowledge, most
of the published work on continuity conditions focuses on Bézier surfaces [1]
and only a few directly address the continuity connection of adjacent B-spline
surfaces.

Among the publications in connection of B-spline surfaces, Milroy et al pro-
posed a procedure for achieving approximate global G1 continuity [2]. Ma et
al improved this method in [3] and produced exact and high-order continuity
conditions, except near extraordinary corner positions where approximate G1

continuity condition is achieved. Another approach was developed by Eck and
Hoppe for automatic construction of a special kind of B-spline surfaces from un-
organized points with exact G1 continuity [4]. Piegl and Tiller also presented an
algorithm for generating a collection of Gε continuous NURBS surfaces that fill

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 743–752, 2006.
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an arbitrary n-sided region [5]. More recently, Shi et al discussed the geometric
continuity conditions of biquartic, biquintic and bicubic B-spline surfaces re-
spectively with single interior knots and linear connecting functions [6, 7, 8]. Che
et al also provided the necessary and sufficient conditions of G1 continuity for
connecting two adjacent NURBS surfaces with arbitrary degrees, and presented
two kinds of sufficient conditions with special connecting functions [9].

In this paper, we further study the properties of G1 continuity conditions of
two B-spline surfaces with arbitrary degrees, generally structured knots and gen-
eral connecting functions. We also analyze the continuity of general connecting
functions and the intrinsic conditions imposed to general connecting functions
along the common boundary. The study leads to better understanding of G1 con-
tinuity conditions for B-spline surfaces and the results are also easy to implement.

2 Definitions and Preliminaries

We first define two B-spline surfaces B(u, v) and C(u, s) for later discussions
on G1 continuity conditions. Without the lost of generality, we assume that the
parametric directions of the two surfaces are shown in Fig. 1. We assume that
the two surfaces share the same degree and the same set of knots for the common
u-boundary, B(u, 0) or C(u, 0). In case of incompatible knots for the u-direction,
one may apply degree elevation and knots refinement algorithms before further
processing.

Fig. 1. The layout of two adjacent B-spline surfaces

One of the B-spline surfaces B(u, v) can be defined by the following equation

B(u, v) =
m∑

i=0

n∑
j=0

bi,jNi,p(u)Nj,q(v) (1)

where (u, v) ∈ [0, 1]× [0, 1]. It can be uniquely defined by its degrees p and q, a
set of bidirectional control points {bi,j ∈ R3}m,n

i=0,j=0, and two sets of normalized
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B-spline basis functions Ni,p(u), i = 0, 1, ..., m and Nj,q(v), j = 0, 1, ..., n based
on the following non-periodic knot sequences

U = {u0 = 0, .., 0︸ ︷︷ ︸
p+1

, u1, .., u1︸ ︷︷ ︸
k1

, .., um̃, .., um̃︸ ︷︷ ︸
km̃

, um̃+1 = 1, .., 1︸ ︷︷ ︸
p+1

}

V = {v0 = 0, .., 0︸ ︷︷ ︸
q+1

, v1, .., v1︸ ︷︷ ︸
k̃1

, .., vñ, .., vñ︸ ︷︷ ︸
k̃ñ

, vñ+1 = 1, .., 1︸ ︷︷ ︸
q+1

}

In the above equation, the symbol kl(1 ≤ kl < p) for l = 1, 2, ..., m̃ is the
multiplicity of the interior knot ul with 0 < ul < 1, ul−1 < ul < ul+1 and
m =

∑m̃
l=1 kl + p. The symbol k̃l(1 ≤ k̃l < q) for l = 1, 2, ..., ñ is the multiplicity

of interior knot vl with 0 < vl < 1, vl−1 < vl < vl+1 and n =
∑ñ

l=1 k̃l + q.
In a similar way, one may also define the other B-spline surface C(u, s) for

(u, s) ∈ [0, 1]× [0, 1] as

C(u, s) =
m∑

i=0

g∑
j=0

ci,jNi,p(u)Nj,r(s) (2)

where Nj,r(s), j = 0, 1, ..., g are the basis functions defined on knot sequences
S = {s0 = 0, .., 0︸ ︷︷ ︸

r+1

, s1, .., s1︸ ︷︷ ︸
k̄1

, .., sg̃, .., sg̃︸ ︷︷ ︸
k̄g̃

, sg̃+1 = 1, .., 1︸ ︷︷ ︸
r+1

}

The symbol k̄l(1 ≤ k̄l < r) for l = 1, 2, ..., g̃ is the multiplicity of the interior
knot sl with 0 < sl < 1, sl−1 < sl < sl+1 and g =

∑g̃
l=1 k̄l + r. From [10], we

have

Theorem 1. Let B(u, v) and C(u, s) be two B-spline surfaces defined by equa-
tions (1) and (2) respectively, the sufficient and necessary conditions of G0 con-
tinuity between B(u, v) and C(u, s) is:

bi,0 = ci,0 i = 0, 1, 2, ..., m (3)

Denote R(u) = B(u, 0) = C(u, 0) the common boundary curve of the two
connected B-spline surfaces, see Fig. 1. R(u) is a B-spline curve defined on knot
sequence U

R(u) =
m∑

i=0

bi,0Ni,p(u) u ∈ [0, 1] (4)

Now we define three tangent vector functions on curve R(u) as shown in Fig. 1.

R2(u) = ∂C(u,s)
∂s

∣∣∣
s=0

= r
s1

m∑
i=0

ciNi,p(u) = r
s1

m∑
i=0

(ci,1 − ci,0)Ni,p(u)

R1(u) = ∂B(u,v)
∂v

∣∣∣
v=0

= q
v1

m∑
i=0

biNi,p(u) = q
v1

m∑
i=0

(bi,1 − bi,0)Ni,p(u)

R0(u)= ∂B(u,v)
∂u

∣∣∣
v=0

=p
m−1∑
i=0

di

ūi+p+1−ūi+1
Ni,p−1(u)= p

m−1∑
i=0

(bi+1,0−bi,0)
ūi+p+1−ūi+1

Ni,p−1(u)

(5)
where bi = bi,1 − bi,0, ci = ci,1 − ci,0 and di = bi+1,0 − bi,0. Ni,p−1(u), i =
0, 1, ..., m− 1 are the basis functions defined on nonperiodic knot sequences
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Ū = {0, .., 0︸ ︷︷ ︸
p

, u1, .., u1︸ ︷︷ ︸
k1

, .., um̃, .., um̃︸ ︷︷ ︸
km̃

, 1, .., 1︸ ︷︷ ︸
p

}

Following [9-10], we have the following theorem for B-spline surfaces.

Theorem 2. Let B(u, v) and C(u, s) be two B-spline surfaces defined by equa-
tions (1) and (2) respectively, and satisfy the G0 continuity conditions (3) of
theorem 1. We have then the following sufficient and necessary condition of G1

continuity between the two surfaces, i.e. there exist three piecewise polynomial
functions α(u),β(u) and γ(u),u ∈ [0, 1] such that the following equation holds
along R(u):

α(u)R2(u) + β(u)R1(u) + γ(u)R0(u) = 0 u ∈ [0, 1] (6)

where α(u)β(u) < 0. The knots of the piecewise polynomial functions coincide
with the interior knot sequence of U . The degree of α(u),β(u) and γ(u) are
respectively deg(α(u)) ≤ 2p− 1, deg(β(u)) ≤ 2p− 1 and deg(γ(u)) ≤ 2p.

For convenience, we rewrite equation (6) as follow

R2(u) = f(u)R1(u) + g(u)R0(u) u ∈ [0, 1] (7)

where we denote f(u) = β(u)/α(u) > 0, g(u) = γ(u)/α(u) 	= 0, and call f(u)
and g(u) as connecting functions of two adjacent B-spline surfaces, that is, the
tangent vectors R0(u), R1(u) and R2(u) should be on the same tangent plane
at any point of the common boundary R(u) to ensure G1 continuity. For general
applications, we always select f(u) and g(u) within each knot interval Ul =
[ul−1, ul], l = 1, 2, ..., m̃ + 1 as follows

f(u) = αl > 0, g(u) = βlu + γl u ∈ [ul−1, ul] (8)

We call f(u) and g(u) of (8) as piecewise linear connecting functions.

3 Properties of G1 Connected Two B-Spline Surfaces

3.1 Constraints of the Connecting Functions

Following the properties of B-spline surfaces, R1(u) and R2(u) are continuous
at u = ul up to Cp−kl , and R0(u) is continuous at u = ul up to Cp−kl−1.

Let us assume that kl ≤ p− 1. If the G1 continuity has been achieved using
equations (3) and (7) along the entire common boundary curve 0 < u < 1, as a
result of the C0 continuity of the three tangent vectors ∀u ∈ [0, 1], we have{

R2(u) = f(u+)R1(u) + g(u+)R0(u)
R2(u) = f(u−)R1(u) + g(u−)R0(u) (9)

Further subtracting the two equations leads to the following equation

[f(u+)− f(u−)]R1(u) + [g(u+)− g(u−)]R0(u) = 0 (10)
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As R1(u) and R0(u) are two linearly independent vectors along the common
boundary, we can conclude that the connecting functions f(u) and g(u) are also
C0 continuous functions along the entire common boundary, including at all
interior knots u = ul, for l = 1, 2, ..., m̃, i.e.

f(u−
l ) = f(u+

l ), g(u−
l ) = g(u+

l ) l = 1, 2, ..., m̃ (11)

For j = 1, 2, ..., p−kl−1, we can further evaluate the derivatives of R2(u) versus
u of (9), which yields

∂jR2(u)
∂uj

=
j∑

i=0

Ci
j

∂(j−i)f(u)
∂u(j−i)

∂iR1(u)
∂ui

+
j∑

i=0

Ci
j

∂(j−i)g(u)
∂u(j−i)

∂iR0(u)
∂ui

(12)

where Ci
j = j!/(i!(j − i!)).

As a result of the Cp−kl continuity of R1(u) and R2(u) and Cp−kl−1 continuity
of R0(u) along the entire common boundary 0 < u < 1, and observing (11) and
(12), the connecting functions f(u) and g(u) are C1 continuous functions follow-
ing a similar reasoning to obtain (11). With the results of C0 and C1 continuities
of f(u) and g(u), and observing (11), we further know in a similar way that f(u)
and g(u) are also C2 continuous functions along the entire common boundary.
Continue the reasoning further, we can finally conclude that the connecting
functions f(u) and g(u) are Cj continuous functions, for j = 1, 2, ..., p− kl − 1,
along the entire common boundary including at all interior knots u = ul, for
l = 1, 2, ..., m̃, i.e.

∂jf(u)
∂uj

∣∣∣∣
u=ul−

=
∂jf(u)

∂uj

∣∣∣∣
u=ul+

,
∂jg(u)
∂uj

∣∣∣∣
u=ul−

=
∂jg(u)
∂uj

∣∣∣∣
u=ul+

(13)

Therefore, we have following necessary conditions of G1 continuity.

Theorem 3. Let B(u, v) and C(u, s) be two B-spline surfaces defined by equa-
tions (1) and (2) respectively, and satisfy the G1 continuity conditions (3) and
(7). The connecting functions f(u) and g(u) should also be Cp−kl−1 continuous
along the entire common boundary [0, 1].

As a special case, if kl < p− 1 for l = 1, 2, ..., m̃, the piecewise linear connecting
functions of (8) should be the same across all interior knots as follows.

R2(u) = αR1(u) + (βu + γ)R0(u) u ∈ [0, 1] (14)

where α > 0 and β2 + γ2 	= 0. We call f(u) = α and g(u) = βu + γ of (14)
linear connecting functions. For example, equation (14) is always true if we adopt
single/unique interior knots, kl = 1 for l = 1, 2, ..., m̃, and at least cubic B-spline
at u direction, i.e., p ≥ 3.
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3.2 Intrinsic Conditions of the Common Boundary

By setting j = d = p − kl at an interior knot u = ul in (12), together with the
continuity of functions R1(u), R2(u) and R0(u), and the Cp−kl−1 continuity of
connecting functions f(u) and g(u) in theorem 3, we have(

∂(d)f(u)
∂u(d)

∣∣∣
u=ul+

− ∂(d)f(u)
∂u(d)

∣∣∣
u=ul−

)
R1(ul) +

(
∂(d)g(u)

∂u(d)

∣∣∣
u=ul+

− ∂(d)g(u)
∂u(d)

∣∣∣
u=ul−

)
R0(ul) +

(
∂(d)R0(u)

∂u(d)

∣∣∣
u=ul+

− ∂(d)R0(u)
∂u(d)

∣∣∣
u=ul−

)
g(ul) = 0

(15)
It is clear that if the following conditions hold

∂(d)f(u)
∂u(d)

∣∣∣∣
u=ul−

=
∂(d)f(u)

∂u(d)

∣∣∣∣
u=ul+

,
∂(d)g(u)
∂u(d)

∣∣∣∣
u=ul−

=
∂(d)g(u)
∂u(d)

∣∣∣∣
u=ul+

(16)

then we have
∂(d)R0(u)

∂u(d)

∣∣∣∣
u=ul−

=
∂(d)R0(u)

∂u(d)

∣∣∣∣
u=ul+

(17)

Based on above discussion, we can obtain the so-called intrinsic conditions of
the common boundary R(u).

Theorem 4. Let B(u, v) and C(u, s) be two B-spline surfaces defined by equa-
tions (1) and (2) respectively, and satisfy the G1 continuity conditions (3) and
(7). If single interior knots are adopted, i.e., k1 = k1 = ... = km̃ = 1, and
the connecting functions f(u) and g(u) are Cp−1 continuous, then the common
boundary R(u) is a polynomial function with degree p.

Proof. Let k1 = k1 = ... = km̃ = 1 in equations (15), (16) and (17), we have
then

∂(p−1)R0(u)
∂u(p−1)

∣∣∣∣
u=ul−

=
∂(p−1)R0(u)

∂u(p−1)

∣∣∣∣
u=ul+

(18)

for l = 1, 2, ..., m̃. Following (5), we also have

∂(p)R(u)
∂u(p)

∣∣∣∣
u=ul−

=
∂(p)R(u)

∂u(p)

∣∣∣∣
u=ul+

(19)

�

That is, the common boundary R(u) u ∈ [0, 1] is a Bézier curve of degree p as
follows under the condition (18).

R(u) =
p∑

i=0

b̄iBi,p(u) u ∈ [0, 1] (20)

where {Bi,p(u)}p
i=0 are the Bernstein basis functions with p−th degree. For knot

interval Ul = [ul−1, ul], l = 1, 2, ..., m̃ + 1, we denote them as follows

Rl(t) =
p∑

i=0

b̄l
iBi,p(t) t ∈ [0, 1] (21)
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Then the intrinsic conditions (19) of the common boundary R(u) can also be
expressed as

Δ(p)b̄l+1
0 (ul − ul−1)(p) = Δ(p)b̄l

0(ul+1 − ul)(p) l = 1, 2..., m̃ (22)

where Δb̄l
i = b̄l

i+1 − b̄l
i, Δ

(j)b̄l
i = Δ(j−1)b̄l

i+1 −Δ(j−1)b̄l
i for j = 1, 2, ..., p.

4 Case Study for Two Biquadratic B-Spline Surfaces

In this section, we study the case of two uniform biquadratic G1 connected
B-spline surfaces, that is p = q = 2, with n = m = g ≥ 4. For other cases, one
can obtain similar results using the method of this paper.

In this case, equations (1) and (2) can be written as follows⎧⎪⎪⎨⎪⎪⎩
B(u, v) =

n∑
i=0

n∑
j=0

bi,jNi,2(u)Nj,2(v)

C(u, s) =
n∑

i=0

n∑
j=0

ci,jNi,2(u)Nj,2(s)
(23)

where U = V = S = {0, 0, 0, t3, t4, ..., tn, 1, 1, 1}, h = tl+3 − tl+2 = 1/(n − 1),
l = 0, 1, 2, ..., n− 2.

Suppose R(u) = B(u, 0) = C(u, 0) is the common boundary of two adjacent
B-spline surfaces, then bi,0 = ci,0 for i = 0, 1, ..., n must be hold for G0 continuity.

First, we consider the linear connecting functions, that is

R2(u) = αR1(u) + (βu + γ)R0(u) u ∈ [0, 1] (24)

then equation (5) becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R1(u) = 2
h

n∑
i=0

biNi,2(u)

R2(u) = 2
h

n∑
i=0

ciNi,2(u) u ∈ [0, 1]

R0(u) = 2
n−1∑
i=0

Ni,1(u) di

ti+3−ti+1

(25)

Following Theorem 3 and a similar method described in [6, 7, 8], the con-
straints for G1 continuity become the following intrinsic conditions that make
the common boundary R(u) to be a Bézier curve of degree 2⎧⎨⎩2d1 = 2d0 + d2

2dl = dl+1 + dl−1 l = 2, ..., n− 3
2dn−2 = dn−3 + 2dn−1

(26)

together with (27)⎧⎪⎪⎨⎪⎪⎩
c0 = αb0 + λ0d0, c1 = αb1 + (2λ1d0 + λ0d1)/4
cl = αbl + ((l2 − 3l + 2)λ0 − (l2 − 2l + 1/2)λ1)d0+
((l2 − l)λ1 − (l2 − 2l + 1/2)λ0)d1/2 l = 2, 3, ...n− 2
cn−1 = αbn−1 + (λn−1dn−2 + 2λn−2dn−1)/4, cn = αbn + λn−1dn−1

(27)
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where λi = iβh + γ, i = 0, 1, ..., n− 1.
Therefore, we must first define a quadratic Bézier curve as the common

boundary

R(u) =
2∑

i=0

b̄iBi,2(u) u ∈ [0, 1] (28)

where {
b0,0 = b̄0, bn,0 = b̄2, d0 = b1,0 − b0,0 = (b̄1 − b̄0)/(n− 1)
dn−1 = bn,0 − bn−1,0 = (b̄2 − b̄1)/(n− 1) (29)

It is clear that if we predefine {b0,0, b1,0, bn,0}, from the first three equations of
(29), we can obtain b̄1, and then obtain dn−1. By substituting {d0, dn−1} into
intrinsic conditions (26), we can obtain {di, i = 0, 1, ..., n− 1}.

According to (26), we obtain the control points of the common boundary R(u)
(a Bézier curve in B-spline format){

b0,0 = b̄0, b1,0 = b0,0 + (b̄1 − b̄0)/(n− 1), bn,0 = b̄2

bl+1,0 = bl,0 + 2((b̄0 − 2b̄1 + b̄2)l/(n− 1) + (b̄1 − b̄0))/(n− 1) l = 1, ..., n− 2
(30)

Then, we can only consider (27) with {α, β, γ} for the G1 continuity of two
biquadratic B-spline surfaces.

Fig. 2(a) and Fig. 2(b) demonstrate how to combine two uniform biquadratic
B-spline surfaces with G1 continuity under linear connecting functions (24). We
set n = m = g = 4, and U = V = S = {0, 0, 0, 1/3, 2/3, 1, 1, 1}. Fig. 2(a) shows
two separated B-spline surfaces and the mesh of control points. We obtain G0

connection just by replacing the control points of the left column of the right
surface with the adjacent control point of left surface to achieve (3). Then, we use

(a) (b)

(c) (d)

Fig. 2. G1 connection of two B-spline surfaces: (a) Two separate B-spline surfaces; (b)
G1 with linear connecting functions; (c) G1 with piecewise linear functions I; and (d)
G1 with piecewise linear functions II
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the method discussed above to construct the common Bézier curve R(u) in (28),
where we keep the three control points {b0,0, b1,0, bn,0} unchanged. Fig. 2(b)
shows the final obtained two G1 connected B-spline surfaces with constraints
(30) and (27).

For the piecewise linear connecting functions, the discussion is similar, how-
ever, according to Theorem 3 and Theorem 4, we can adopt piecewise linear
connecting functions as follow

R2(t) = αR1(t) + (λl(1 − t) + λl+1t)R0(t) t = (u− tl+2)/h (31)

for u ∈ [tl+3, tl+2], l = 0, 1, 2, ..., (n− 2), where λi, i = 0, 1, ..., n− 1 are indepen-
dent.

The G1 constraints for the whole common boundary can be expressed as
follow.⎧⎨⎩

c0 = αb0 + λ0d0, c1 = αb1 + (2λ1d0 + λ0d1)/4
cl = αbl + (λldl−1 + λl−1dl)/4 l = 2, 3..., n− 2
cn−1 = αbn−1 + (λn−1dn−2 + 2λn−2dn−1)/4, cn = αbn + λn−1dn−1

(32)

and ⎧⎨⎩
2λ1d0 + (λ0 + λ2 − 4λ1)d1 + λ1d2 = 0
λldl−1 + (λl−1 + λl+1 − 4λl)dl + λldl+1 = 0 l = 2, ..., n− 3
λn−2dn−3 + (λn−3 + λn−1 − 4λn−2)dn−2 + 2λn−2dn−1 = 0

(33)

To construct two biquadratic B-spline surfaces with G1 continuity using piece-
wise linear connecting functions, we must first define piecewise linear connecting
functions and three control points of the B-spline surface along the common
boundary, e. g.

{λi, i = 0, 1, ..., n− 1, b0,0, b1,0, bn,0} (34)

With intrinsic conditions (33), we then obtain the control points of boundary
B-spline curve {bi,0, i = 0, 1, ..., n}.

We then just adopt (32) with {α, λi, i = 0, 1, ..., n− 1} for the G1 continuity
of two biquadratic B-spline surfaces.

In comparison with linear connecting functions, we have more freedoms with
{bi, i = 1, 2..., n − 2} to construct the two G1 connected biquadratic B-spline
surfaces, and the common boundary R(u) is a B-spline curve, not just a Bézier
curve.

Fig. 2(c) and Fig. 2(d) demonstrate two uniform biquadratic B-spline surfaces
with G1 continuity under piecewise linear connecting functions (31). The two
original B-spline surfaces are the same as that in Fig. 2(a). By setting λi, i =
0, 1, ..., n− 1 freely, we obtain G0 connected B-spline surfaces with (33), which
is a B-spline curve constrained by λi, i = 0, 1, ..., n − 1. Fig. 2(c) shows the
final obtained two G1 connected B-spline surfaces with constraints (33) and
(32). Fig. 2(d) is similar to Fig. 2(c). We just choose another set of connecting
functions as (34) to get a different common boundary.
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5 Conclusions

This paper presents some original results on the continuity conditions for smoo-
thly connecting two B-spline surfaces with arbitrary degrees, generally struc-
tured knots and general connecting functions. That is, if two adjacent B-spline
surfaces are connected with G1 continuity under general connecting functions
f(u) and g(u), at each interior knot ul with multiplicity kl, l = 1, 2, ..., m̃, the
connecting functionsf(u) and g(u) have at least Cp−kl−1 continuity, and the
common boundary will be Cp−kl continuous if f(u) and g(u) reach Cp−kl conti-
nuity. According to these conclusions, we provide several construction examples
of two uniform biquadratic B-spline surfaces with G1 continuity. The presented
conclusions of this paper can be applied to, e.g., multiple B-spline surface fitting,
B-spline surface blending and multi-sided region filling. It can also be extended
to support NURBS representation.
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Abstract. Face represents complex, multi dimensional, meaningful visual stim-
uli.  Computational models for face recognition represent the problem as a high 
dimensional pattern recognition problem. This paper introduces an innovative 
facial identification method using eigenface approach on volume-based graph-
ics rather than 2D photo-images.  We propose to convert polygon mesh surface 
to a volumetric representation by regular sampling in a volumetric space.  Our 
motivation is to extend existing 2D facial analysis techniques to a 3D image 
space by taking advantage of use of the volumetric representation.  We apply 
principle component analysis (PCA) for dimensionality reduction.  Face feature 
patterns are projected onto a lower dimensional PCA sub-space that spans the 
known facial patterns.  3D eigenface feature space is constructed for face  
identification. 

1   Introduction 

Face authentication techniques, including both face recognition and discrimination of 
facial expressions, is a typical signal processing and pattern recognition problem with 
many potential applications in fields like human computer interaction, medicine, and 
biometrics.  It has the benefit of being a passive, non-intrusive system for verifying 
personal identity.  Building automated systems that accomplish this task is, however, 
very difficult because of the inherent variability of the image formation process in 
terms of image quality and photometry, geometry, and occlusion, change and dis-
guise.  Recent surveys on face recognition by Bruce [1], Samal [2], and Chellappa [3], 
discuss these challenges and possible solutions in some detail from both psychologi-
cal and computational perspective.  The variety of methods published in the literature 
show that there is not a unique or generic solution to the face recognition problem. 

There have been many attempts at facial recognition systems, and none has shown 
a consistently high rate of accurate identification.  These are all based on 2D video 
photography using fixed cameras.  They suffer from the image content limitations of 
typical video photography and the information content limitation inherent in 2-D 
photography.  These limitations are exacerbated by differences in both the lighting 
and the pose of the subject between the original enrollment photo and the subsequent 
recognition photography.  Studies show, the performance of an individual 3D face is 
better than a 2D face based on basic algorithm such as eigenface [4].  To deal with the 
shortcomings of 3D facial recognition, a 3D range sensor is utilized to increase the 
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amount of information and minimize facial angle and lighting-imposed differences to 
make more robust identification. 

3D face datasets often come from range scanning devices such as laser scanners 
that can capture the 3D geometry and texture information of a facial surface. Most of 
3D face recognition methods were based on three-dimensional geometric models, 
such as polygon meshes, so that curvature and texture features on 3D surface can be 
extracted for matching [5].  As early as a decade ago, Gordon [6] proposed a 3D face 
recognition method using a curvature calculation based on range image data obtained 
from a rotating laser scanner.  The image was first mapped on a cylindrical coordinate 
system.  The magnitude and angle of the minimum and maximum normal curvatures 
for each point were computed as input feature vectors for recognition.  Tanaka et al. 
[7] extended the concept of the free-form curved surface in 3D shape recognition 
problem to 3D face recognition application.  Based on Extended Gaussian Image 
(EGI) representation, they extracted face signatures using principal curvatures and 
their directions.  Beumier and Acheroy [8] used central and lateral facial profiles to 
generate curvature values as feature vectors for face authentication.  Some studies 
suggested fusion of a 2D texture map (intensity image) with Gabor kernel filtering 
and 3D shape information as features, called point signature-based features to im-
prove recognition performance.  Recently, Blanz and Vetter [9] presented a morphable 
3D model that automatically estimates 3D shape, texture, and parameters from a 
given facial image.  The coefficients, which represent intrinsic shape and texture, fit 
the 3D model with a linear combination and are used for recognition.  Based on 
morphable modeling, Blanz’s group [10] proposed component-based recognition 
methods for face recognition.  Their idea was to apply 3D morphable models for cre-
ating many synthetic images with various poses and illumination conditions based on 
only two input images.  These synthetic images were used to train a component-based 
face recognition system. Components were extracted based on the correspondence 
information given by the morphable model.  

Due to the irregular sampling patterns and complex topological structures, many of 
the standard facial analysis techniques called base-line algorithms are difficult to be 
applied to the polygon mesh surfaces.  On the other hand, any polygon mesh surface 
can be converted to a volumetric representation by regular sampling in a volumetric 
space [11]. The resulting volume contains complete 3D geometric information em-
bedded within a 3D image space.  In this paper, we propose a strategy of uniform 
sampling over the surface area of the original model and convert polygon mesh sur-
face into a volumetric representation [12]. A clear advantage of such representation is 
that it allows most of the existing 2D facial analysis techniques to be directly general-
ized to a 3D image space.  Standard image processing and signal processing opera-
tions can also be directly applied with a straightforward 3D extension.  An automatic 
processing algorithm was developed for facial alignment, cropping, and normalization 
process.  The identification method is based on eigenface approach on volume-based 
graphics rather than 2D photo-images.  Principle component analysis (PCA) is used 
for dimensionality reduction and the construction of 3D eigenface feature space [13].  
A standard nearest neighbor classifier using cosine distance serves for face matching. 
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2   Automatic 3D Facemask Cropping and Alignment 

The 3D range scanners utilized for scanning human faces produce dense triangle 
mesh surfaces called ‘raw’ triangle meshes. These raw mesh surfaces need to be proc-
essed to retrieve a clean 3D front central part of the facial mesh that can be used in 
classification algorithms.  This processing of the raw meshes involves excluding out-
liers, irregular boundaries and other parts such as hair, neck or shoulders.  Our auto-
matic face cropping processing is mainly based on the method of Zhang et al. [14]. 

The algorithm relies on the intrinsic geometry of each individual facial raw mesh 
and output a clean mesh of the central part of the 3D face. The first step in the algo-
rithm is to separate the head from the shoulders and discard the mesh corresponding 
to the shoulders, which can be accomplished by performing Principal Components 
Analysis (PCA). 

The raw mesh is intersected with planes parallel to the largest eigen vector and an 
integral is calculated for each point on the intersected curves.  The point S* corre-
sponding to the largest value after the integral is taken to be the point lying roughly 
on the nose.  We find n-rings of neighboring vertices around S* based on the adja-
cency information of vertices in raw mesh.  The Iterative Closest Point (ICP) algo-
rithm [15] is used to refine the position of symmetry plane.  The first feature point SNT  
is the point corresponding to the largest value of an integral as the nose tip.  SNB, the 
nose bridge and SNL, the lowest nose point are found by calculating the local extreme 
curvature values of the symmetry curve.  SN is the midpoint of SNB and SNT.  The top 
point ST and bottom point SB are found by doing curvature analysis of the symmetry 
curve at the extreme local locations within predefined distances above and below the 
nose tip.  The transverse curve is the intersection of raw facial mesh and the plane 
with SN as a point on the plane and the normal vector given by (SNB -SNT)/||SNB-SNT||.  
Three feature points SSL, SSR, and SC identified on this transverse curve represent the left 
nose side point, the right nose side point, and the start point, respectively.  Figure 1a 
illustrates the symmetry plane while Figure 1b illustrates these feature points on a raw 
facial mesh. 
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Fig. 1. (a) symmetry plane and (b) the various feature points defined on the symmetry curve 
and the transverse curve 

a. b. 
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Different facial meshes of an individual obtained by the same scanner are not 
aligned with respect to each other. In order to compare the faces and match them, we 
use the feature points SNB, SNT and SNL to form a new 3D coordinate system. The mesh is 
cut by a 3D ellipse with SN as the center to generate a final clean facial mask. Figure 2 
shows examples of clean masks located at the front central part of the face. 

 

Fig. 2. Example of clean facial masks cut from the original raw mesh 

3   Voxelization 

Voxelization is a process of converting a geometric model, in this case a polygon 
mesh face surface, into a volumetric representation. It is a fundamental operation for 
volume graphics [16]. It is also the first step in our human identification method. A 
large number of voxelization algorithms have been developed for polygonal surfaces 
[17]. Broadly speaking, these algorithms aim to provide extensions of 2D scan con-
version methods to a volumetric domain, but are generally too slow for real-time or 
interactive applications. This is particularly true for 3D scanning data since the  
number of polygons in a dense polygon mesh can be very large. However, in our 
application, fast voxelization is essential as human identification often requires on-site 
scanning and decision making within a matter seconds. 

In the past few years, we have developed a suite of fast voxelization algorithms for 
various types of geometric models using hardware features in modern graphics en-
gines [18][19]. These algorithms attempt to display the geometric surface in a slice by 
slice order, and then collect the resulting framebuffer images to form a volume data-
set. Using hardware assisted voxelization, we will be able to provide fast voxelization 
for each polygon mesh surface, and generate a volumetric image for each face dataset 
for analysis and human identification.  The resulting volume image contains an inten-
sity (gray-level) value within each voxel that represents the existence of surface inside 
the voxel space. 

4   Principle Component Analysis (PCA) for 3D Eigenfaces 

A fundamental problem in digital signal processing is to find a suitable representation 
for a signal.  Usually different signal representations are based on linear  
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transformations of the signals onto different bases.  Several principles have been de-
veloped in statistics, neural computing and signal processing to find a suitable linear 
representation of a random signal. For a volume-based facial recognition, the vulner-
ability of direct matching methods using voxel-based 3D images lies in their attempt 
to carry out the required classification in a space of extremely high dimensionality.  
To overcome the curse of dimensionality, the connectionist equivalent of data com-
pression methods is employed first. Principal Component Analysis (PCA) is a popular 
technique used to derive a starting set of features. Turk and Pentland [20] popularized 
the use of PCA for 2D pixel-based face recognition and defined a subspace whose 
basis vectors, called eigenfaces, are principal components of face database.  Baback 
and Pentland [21] propose a probabilistic method for face recognition based on  
eigenfaces.  

Principal Component Analysis is based on Karhunen-Loève transformation (KLT) 
which was originally introduced as a series expansion for continuous random proc-
esses by Karhunen. Karhunen-Loève transformation is an information theory ap-
proach of coding and decoding face images. In mathematical terms, the principal 
components of the distribution of faces are extracted and are viewed as a set of fea-
tures that together characterize the variation between face images. Hence it is also 
known as Principal Component Analysis (PCA).  The principal components are the 
eigenvectors of the covariance matrix of the set of face images, treating an image as a 
point or vector in a very high dimensional space. These eigenvectors are called eigen-
faces and each individual face image can be represented exactly in terms of linear 
combination of the eigenfaces. Hence, principal components (PCs) are a set of or-
thonormal basis vectors that maximize the scatter of all training samples. It is a stan-
dard decorrelation technique that derives orthonormal projections basis, which lead to 
dimensionality reduction and feature selection. An important property of PCA is 
decorrelation, i.e., the components of the transformation are decorrelated since the 
covariance matrix of transformed data is diagonal and the diagonal elements are the 
variances of the corresponding components. Another property of PCA is its optimal 
signal reconstruction in the sense of minimum Mean Square Error (MSE) when only a 
subset of principal components is used.  

In mathematical terms, a set of m training 3D models T, T=[T1, T2,…,Tm] is nor-
malized and the grand mean is subtracted to form a new data set Y=[Y1, Y2,…,Ym] 
where Yi=(yi1 yi2,…yiN)T, where N is the number of features, i.e., the number of total 
voxels in our case.   Thus the models are viewed as points in ℜ N space. The covari-
ance matrix Ω is defined as  

Ω = E{YYT} and Y = T - E{T} (1) 

where E{·} is the expectation operator.  
The size of matrix Ω, however, is the square of total number of voxels.  It is an  

intractable task to compute such a large size of square matrix and determine the ei-
genvectors and eigenvalues.  The alternative way to solve for this high dimensional 
eigenvectors in this case by solving for the eigenvectors of an m-by-m matrix Φ in-
stead of N-by-N matrix Ω, because of  m<<N. We then compute a m-by-m eigenvector 
matrix v and estimate for N-by-m eigenvectors Ξ for the original N-by-N covariance 
matrix  
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Ξ = YT v (2) 

The principal components are the approximated eigenvectors of Ω. The eigenvec-
tors Ξ are sorted by order of decreasing eigenvalue (Λ) and to then truncate Ξ, keeping 
only the most d significant principal components.  The result is an N-by-d orthogonal 
projection matrix Ξd.  These basis vectors are also known as eigenfaces for face recog-
nition.  The new feature set Z with lower dimensionality d (d<<N) is computed as  

Z=Ξd 
T Y (3) 

The features generated by KL projection are also Most Expressive Features 
(MEFs). When a query image is presented to the system, it is mapped to the same 
PCA space and a nearest neighbor classifier operating in PCA subspace is used for 
verification of face images.  

There are three related arguments for matching images in the subspace of d eigen-
vectors. The first is compression. It is computationally more efficient to compare im-
ages in subspaces with significantly reduced dimensions. The second argument is that 
some axes in the space encode noise. Hence, proper choice of features in the reduced 
space removes noise. The third argument is that since all images are pre-processed by 
subtracting the mean value from each image and scaling them to form unit vectors. 
This projects the images into a subspace where cosine distance is inversely propor-
tional to correlation between the source images. This justifies a nearest neighbor classi-
fier using cosine distance as an efficient estimation of image correlation. 

5   Face Identification Based on Volume Graphic 

Our face identification procedure consists of several steps for both enrollment  
(Figure 3a) and identification (or matching) (Figure 3b) scenarios.  First, range im-
ages are captured by 3D laser sensor.  The 3D shape of facial surface represents the 
facial structure invariant to environmental condition, such as lighting or shadow.  
Totally 39 images were scanned, which are corresponding to 10 different subjects and 
each individual contains multiple faces. 

In order to properly compare 3D facial datasets, all face scans need to be precisely 
aligned in a common coordinate system.  This can be done by the automated face 
mask trimming procedure discussed previously.  After face alignment, the models are 
normalized using the location of eye with constant binocular distance and voxelized 
into 87x128x66 (x-by-y-by-z) volume images.  The resulting volume image contains 
an intensity value within each voxel that represents the existence of surface inside the 
voxel space. The facial data set of 39 examples for 10 individuals (10 classes) are 
randomly partitioned into 26 samples for training and 13 for testing.  The set of the 
eigenfaces is generated based on the training set.  The projections of training data on 
the eigenspace are stored in the database for identification phase.  As a result, the 26 
largest components (eigenvector) are selected.  Figure 4a shows a sample volumetric 
image in the voxel space and figure 4b shows the first reconstructed 3D eigenface that 
retains the most expressive features among those training images. We use the cos 
distance metrics by computing angle between the projections as a measure of the 
similarity to find the exemplar 3D image nearest to the query. 
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The cosine distance θ =cos-1(-XTY / ||X|| ||Y||) indicates a measure of the similarity be-
tween the projection of the testing sample X and the projection of the training sample 
Y in the eigenspace.  The overall performance of our PCA with volumetric 3D facial 
representation ordering in a 26 dimensional space is 76.92%.  3 out of 13 faces are 
misclassified. 

 
 

             

Fig. 3. 3D face identification procedures: (a) subject enrollment (training) phase and (b) identi-
fication (testing) phase 

             

Fig. 4. (a) Voxelized image sample, and (b) The first eigenface calculated from the voxelized 
training face models 

6   Conclusions 

We have introduced in this paper a methodology that integrates signal representation 
and volume-based facial data for 3D facial identification. PCA reduces the dimen-
sionality from original high dimensional feature spaces to 26 principle components 
(PCs).  The experimental results reported indicate that voxelized images generate 
good classification performance.  The resulting feature sets also appear to be robust in 
the sense that they can be used as the basis for building effective classifiers using 
approaches other than simple nearest neighbor classifier based on cosine distance 
measurement.  The volumetric representation allows most of the existing 2D facial 
analysis techniques to be generalized to a 3D image space, therefore the standard 
image processing and signal processing operations can directly applied with a 3D 
extension. 

a. b. 

a. b. 
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Abstract. This paper presents an algorithm for interpolating curves
with predefined cross curvature on subdivision surfaces using polygo-
nal complexes. The cross curvature is defined by a separate 2-D poly-
gon which can be used to generate a complex along the control path.
A straightforward application is the generation of Catmull-Clark sub-
division surfaces that flow nicely along feature curves. Interactive ma-
nipulation of the 2-D polygon will correspond to a variety of features
along the interpolated curves such as ribs, bumps, cavities, or even sharp
creases.

1 Introduction

One of the reasons behind the popularity of subdivision surfaces is the ability
to handle various interpolation constrains. A taxonomy of these constraints has
been outlined by Nasri and Sabin, see [2, 3] and the cited references therein. Of
the remaining constraints was the interpolation of curves with a predefined cross
curvature.

Given a tagged control path on a polyhedron and a value of cross curvature K
we need to generate a Catmull-Clark subdivision surface [1] that interpolates the
curve (called feature) defined by that path with a cross curvature K, see Fig. 1.
Along the feature curve, the mesh topology should be rectangular, giving tensor
product structure. Extraordinary vertices may however fall around the feature,
thus not causing any lateral artifact and leaving the shape to flow nicely along
the feature’s path. Catmull-Clark will be the main subdivision scheme used, thus
the regular region are simply cubic B-splines. For purposes of exposition we also
assume uniform B-splines.

A straightforward application of this problem is in the generation of sub-
division surfaces interpolating feature curves with various shapes along these
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features such as boss/pocket, rib/groove, and bump/cavity. Recent approaches
were devised to add features to surfaces with fewer control parameters, more
flexibility, and closer to the designer’s need. We mention two of them. Cheutet
et al. [7] proposed an approach based on the mechanical force density method
applied to a bar network. They defined two types of constraint lines: A target
line, which is a 3D curve (not on the surface) giving the global direction of
the deformation, and a limiting line which specifies the extent of deformation
and helps define the shape of the feature. Catalano et al.’s approach focused on
the insertion of features by means of generalized sweep operations applied on
subdivision surfaces [6]. The approach is based on the feature taxonomy pro-
posed by Fontana et al. [8]. The deformation consists of propagating a profile
s called section along a specified curve called directrix. Our proposed approach
can also be used to address these features with the capability of cross curvature
control.

Fig. 1. One curve interpolated with predefined cross curvature

The paper is structured as follows. Section 2 gives the formula for controlling
the curvature, and Section 3 gives a brief outlines of the notion of polygonal
complexes. Section 4 describes the main algorithm and the details of the steps
to be followed in constructing a polygonal complex for interpolating the feature
curve. Finally, Section 6 gives conclusions and future work.

2 Controlling the Curvature

The curvature at a point of a uniform cubic B-spline curve can be determined
as shown in Fig. 2 by:

c =
8h

a2 (1)

Expressing h and a in terms of B-spline control point indicates that the curvature
of a cubic B-spline curve at the junction point, Pi, corresponding to Vi can be
actually controlled by the three vertices Vi−1, Vi, and Vi+1.
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Fig. 2. The curvature of a B-spline curve

3 Curve Interpolation by Polygonal Complexes

One major approach for interpolating curves by subdivision surfaces is the polyg-
onal complex approach [4]. Typically, the topology of a polygonal complex de-
pends on the subdivision scheme to be used. A polygonal complex is typically
a control mesh that under subdivision converges to a curve rather than a sur-
face. If such a complex is embodied in the polyhedron defining a subdivision
surface then the limit curve of the complex is automatically interpolated by the
corresponding limit surface.
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Fig. 3. An example of a Catmull-Clark polygonal complex

To be useful, the limit curve of a complex should be identified. In the Catmull-
Clark setting [5], a polygonal complex can be defined by a sequence of triples
(ti, mi, bi) sharing two strips of faces (not necessarily 4-sided), see Fig. 3. If
all shared faces are 4-sided (otherwise one step of Catmull-Clark will guarantee
this), the limit of this complex is simply the uniform cubic B-spline whose control
polygon is given by a set of vertices defined by:

1
6

( 1 4 1 )×

⎛⎝ t0 t1 .. tn−1
m0 m1 .. mn−1
b0 b1 .. bn−1

⎞⎠ (2)

A straightforward application of this property is to constrain a subdivision
surface to interpolate the uniform B-spline curve defined by a tagged control
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polygon (mi) on its polyhedron. This can be achieved by repositioning the triples
(ti, mi, bi) to another (t′i, m

′
i, b

′
i) such that 6mi = 4m′

i + t′i + b′i. Certainly one
can reposition mi only but this will change the embodied curvature.

4 Feature Curves with Cross Curvature

The scenario that we consider here is a tagged control path on a polyhedron
and an initial triple (called curvature triple) defining the cross curvature. Let
the curvature triple be (M, O, N), a = |MN | and h = distance(O, MN), the
corresponding curvature K can then be given by a formula similar to the one
stated in 1.

Our assumption is that along the path the mesh topology should be rectan-
gular. This is in order to avoid lateral artifacts that may spoil the shape of the
surface which ought to flow nicely along the feature’s path. As such, each vertex
Ei on this path is adjacent to two vertices Bi and Hi from either side of the
path, thus forming a triple (Bi, Ei, Hi). These triples need to be repositioned
to form a polygonal complex that can be manipulated to interpolate the curve
defined by the control path (Ei) with a cross curvature K, see Fig. 4. The fol-
lowing gives a general overview of the proposed approach, followed by a detailed
algorithm.

There are two planes of importance in the process of controlling the cross cur-
vature. The plane formed by the triple itself (Bi, Ei, Hi), and the plane perpen-
dicular to the limit curve at the limit point corresponding to Ei. Our approach
is to control the curvature of the cross-section of the limit surface by the second
plane. This is not the same as the curvature of the other isoparametric line,
which can be either smaller (if it crosses the controlled path at other than right
angle), or larger (if its osculating plane does not contain the surface normal.) As
such our goal is to construct a triple in this plane so that the cross curvature
value stemming out is indeed K.

In order to construct a triple of a given curvature K in this plane, we need to
control the rotation of the triple about that tangent. The natural thing to do is
to try to perturb the surface normal as little as possible, which can be achieved
by first projecting the triple into the perpendicular plane giving B′

i, Ei, H
′
i. We
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Fig. 4. Left: A tagged path along a control mesh, the tagged vertices are shown in red.
Right: the mesh after triple construction.
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then shear this triple to get another B′′
i , Ei, H

′′
i to achieve the curvature K,

keeping its base parallel to B′
iH

′
i. After that, B′′

i , Ei, H
′′
i is un-projected back

into the initial plane BiEiHi giving a triple (B′′′
i , Ei, H

′′′
i ).

The process above is repeated recursively, where all vertices generated from
the feature control path are also tagged for triple construction. At the limit the
given curvature K will cover the entire curve and not only isolated points.

The following section explains the various steps in more details, see Figs. 5- 6.

E

H

B

E

ET

i-1

i+1

Fig. 5. The limit curve to be interpolated by the surface is defined by the control poly-
gon of tagged vertices, (Ei). The tangent direction T at the limit point corresponding
to Ei is parallel to Ei+1 − Ei−1.
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Fig. 6. Left: Projection of B and H along the direction T on the perpendicular plane.
Middle: Fixing the curvature ratio. Right: Un-projection back in the plane BEH .

4.1 The Algorithm

The input is a polyhedron P0, a feature path, and a curvature triple whose
corresponding value is K.

1. Apply one Catmull-Clark refinement to P0. This ensures that the path has
adjacent quad facets all the way along.

2. For each tagged vertex Ei on the feature path Do
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(a) Let Ti be the tangent to the surface along the path at the limit point
corresponding to Ei.

(b) Let Qi be the plane perpendicular to the path at the limit point corre-
sponding to Ei.

(c) Let (B′
i, Ei, H

′
i) be the projection of the triple (Bi, Ei, Hi) into Qi along

the tangent Ti.
(d) Shear (B′

i, Ei, H
′
i) into (B′′

i , Ei, H
′′
i ) to adjust the curvature to K.

(e) Un-project the triple (B′′
i , Ei, H

′′
i ) back into the original plane (Bi, Ei, Hi)

and along Ti giving (B′′′
i , Ei, H

′′′
i ).

3. Make a polygonal complex out of the triples (B′′′
i , Ei, H

′′′
i ).

4. Replace the original triples by the triples (B′′′
i , Ei, H

′′′
i ).

5. Perform one Catmull-Clark refinement, except that the new V-vertices cor-
responding to the Ei and the new E-vertices corresponding to the edges of
the control path should be constructed by polygon refinement rather than
the Catmull-Clark construction.

6. Tag all V- and E-vertices corresponding to edges and vertices of the path.
7. Apply the steps from 2 to 6 as many times as needed.

It should be noted that the iteration process can be stopped at any level,
after which normal Catmull-Clark subdivision can be used. This is done after
modifying the polygonal complex as suggested in Section 3.

The essential step is then how to construct the final triple from an original
one which will be discussed in the following section.

4.2 Mapping the Initial Triplet

Let us take a triple1 (B, E, H) on the path as shown in Fig. 5. We need to map
the curvature K at each point of the control path by modifying the triple at
this point as follows (the steps are numbered according to the second item in
Sect. 4.1):

2(a) Let T be the tangent at the limit point of the curve corresponding to E.
This is given by:

T =
Ei+1 − Ei−1

2
2(b) Let Q be the plane perpendicular to T at the limit point.
2(c) Project the triplet (B, E, H) into the plane Q along the direction of T.

This gives a new triplet (B′, E, H ′).
2(d) Typically the triplet (B′, E, H ′) does not have the ratio h to a2 which

is defined by the curvature triple (M, O, N). As such, we need to scale
B′H ′ by a factor of |B′H ′|/a and then move the scaled points within the
perpendicular plane so that it becomes right. The base points of the triple
B′ and H ′ are repositioned to B′′ and H ′′, respectively, as given by:

B′′ = B′ + ε1V and H ′′ = H ′ + ε2V

1 We drop the indices for simplicity.
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where V is a unit vector in the direction of of

[H ′ −B′]× T

with

ε1 = ε2 = [E −B].V − 2h

3

2(e) Since we really want the control points to be as far as possible compatible
with the flow of the original mesh, we un-project B′′ and H ′′ along the di-
rection of T back in the plane (B, E, H). We get B′′′ and H ′′′. Accordingly,
B′′′ and H ′′′ are then given by:

B′′′ = B′′ + αT and H ′′′ = H ′′ + γT

where α and γ are given:

α =
−[B′′ − E].No

T.No
and γ =

−[H ′′ − E].No

T.No

Note that neither T nor No need to be normalized for this purpose.

Fig. 7. Example of curve interpolation with various features
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5 Conclusions and Future Work

It is possible to control a subdivision surface by forcing it to interpolate given
curves, with Hermite conditions (slope, curvature) across the given curve, thus
expanding the taxonomy of interpolation constraints on such surfaces.

A frequent requirement is for the feature to have a constant curvature across
the tagged curve. When this is the case, the design user interface can be signifi-
cantly simplified by having a single 2D polygon (triple curvature) by which the
user controls the desired curvature. The feature curves can be easily turned into
cavities, bumps, or even sharp creases as seen in Fig. 7.

For space reasons we have elaborated the theory in the uniform context. The
extension to the non-uniform case is largely straightforward, though tedious.
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