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Abstract. 3D inter-subject registration of image volumes is important for tasks 
such as atlas-based segmentation, deriving population averages, or voxel and 
tensor-based morphometry. A number of methods have been proposed to tackle 
this problem but few of them have focused on the problem of registering whole 
body image volumes acquired either from humans or small animals. These 
image volumes typically contain a large number of articulated structures, which 
makes registration more difficult than the registration of head images, to which 
the vast majority of registration algorithms have been applied. This paper pre-
sents a new method for the automatic registration of whole body CT volumes, 
which consists of two steps. Skeletons and external surfaces are first brought 
into approximate correspondence with a robust point-based method. Trans-
formations so obtained are refined with an intensity-based algorithm that 
includes spatial adaptation of the transformation’s stiffness. The approach has 
been applied to whole body CT images of mice and to CT images of the human 
upper torso. We demonstrate that the approach we propose can successfully 
register image volumes even when these volumes are very different in size and 
shape or if they have been acquired with the subjects in different positions. 

1   Introduction 

Image registration is an essential tool in order to be able to follow the progression of 
diseases, to assess response to therapy, to compare populations, or to develop atlas-
based segmentation methods. The latter involves segmenting structures in one reference 
volume, commonly called the atlas, and using this reference volume to segment these 
structures in other volumes. This necessitates being able to register the atlas to the 
volumes that need to be analyzed. Because it involves a number of subjects, non-rigid 
registration methods are required to address this problem. A number of methods and 
techniques have been developed over the years to achieve this; chief among them are 
intensity-based techniques and more specifically, methods that rely on Mutual Informa-
tion (MI) [1][2].  However, most automatic methods that have been proposed have been 
applied to head images only. This is because head images are relatively simple 
compared to whole body images. Head images contain one single major identifiable 
structure (the cranium) as opposed to whole body images that contain many articulated 
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structures (the bones). In head images the cranium surrounds the brain, therefore 
constraining the deformation. In whole body images, the situation is the opposite: soft 
tissue surrounds the bones, leading to very large inter-subject size and shape differences. 
All these differences make the registration of whole body images much more difficult 
than the registration of head images. Despite these difficulties non-rigid registration 
techniques for extra-cranial applications have been proposed for specific applications 
such as the registration of breast, abdomen, lung, or prostate images. For instance, 
Camara et al. [3] use a Free-Form Deformation (FFD) approach guided by a gradient 
vector flow combined with a grey-level MI non-linear registration algorithm for thoracic 
and abdominal applications. Rueckert et al. [4] also use FFD to register breast images 
acquired before and after contrast injection; these are image volumes acquired from the 
same subject. Cai et al. [5] present a validation study of CT and PET lung image 
registration and fusion based on the chamfer-matching method; this study also involves 
images acquired from the same subject.  

In general, however, fully automatic inter-subject or even intra-subject registration 
of whole body images remains a challenge. One of the main reasons is that, in 
practice, non-rigid registration algorithms need to be initialized with a rigid or affine 
transformation. If the image volumes do not contain articulated structures, as is the 
case for head images, a single transformation is sufficient. If, on the other hand, these 
image volumes contain a number of bony structures, which are rigid but whose 
relative position changes from acquisition to acquisition, a single transformation is 
insufficient. A number of transformations need to be computed, one for each element 
in the articulated structure. These transformations then need to be somehow 
combined.  This is the approach followed by Little et al. [6]. These authors present a 
technique designed for the intra-subject registration of head and neck images. 
Vertebrae are registered to each other using rigid body transformations (one for each 
pair of vertebrae). Transformations obtained for the vertebrae are then interpolated to 
produce a transformation for the entire volume. One problem with the approach is that 
it requires segmenting and identifying corresponding vertebrae in the image volumes. 
Because corresponding vertebrae are registered with rigid-body transformations, the 
approach is also applicable only to intra-subject registration problems.  Martin-
Fernandez et al. [7] propose a method, which they call articulated registration. This 
approach requires the labeling of landmarks to define wire models that represent the 
bones. A series of affine transformations are computed to register the rods, which are 
the elements of the wires. The final transformation for any pixel in the image is 
obtained as a linear combination of these elementary transformations with a weighting 
scheme that is inversely proportional to the distance to a specific rod. This technique 
has been applied to the registration of hand radiographs.  Arsigny et al. [8] also 
propose an approach in which local rigid or affine transformations are combined. 
They note that simple averaging of these transformations leads to non-invertible 
transformations, and they propose a scheme that permits the combination of these 
local transformations, while producing an overall transformation that is invertible. 
Their method is applied to the registration of histological images. The authors 
comment on the fact that their method could also be used for articulated structures but 
do not present examples. Recently, Papademetris et al. put forth an articulated rigid 
registration method that is applied to the serial registration of lower-limb mouse 
images [9]. In this approach, each individual joint is labeled and the plane in which 
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the axis of rotation for each joint lies is identified. A transformation that blends 
piecewise rotations is then computed. The authors comment of the fact that piecewise 
rigid models often lead to transformations that are discontinuous at the motion boun-
daries, which produces folding and stretching. The approach they propose produces a 
transformation that is continuous at these interfaces. The authors have applied their 
method to the registration of lower limbs in serial mouse images. They suggest that 
their technique could be used to initialize an intensity-based algorithm but do not 
present results.  

In summary, a survey of the literature shows that only a few methods have been 
proposed to register images including articulated structures. The general approach is 
to compute piecewise rigid or affine transformations and to somehow blend and 
combine these transformations. Unfortunately, this approach is often not practical 
because it requires identifying various structures in the images such as joints or 
individual bones. In this paper we propose a method that does not require structure 
labeling. This method can thus be automated, and we demonstrate its performance on 
small animal and human images.  

2   Methods 

There are two steps in the automatic registration method we propose.  In the first step, 
we register only bony structures and the outside body surfaces. The transformation we 
compute in this first step is then used to initialize an intensity-based registration 
algorithm. Because our aim is to develop a fully automatic technique, we have ruled out 
methods that require identifying and labeling homologous structures. These methods 
would indeed require developing general and robust feature extraction algorithms, 
which is not easy to achieve. Hence, in our first step, we have chosen to rely on the 
robust point-based registration algorithm proposed by Chui et al. [10]. This algorithm 
takes as input two clouds of points and iteratively computes a correspondence between 
these points and the transformation that registers them, without requiring manual 
labeling. In addition, the two sets of points also do not need to have the same cardinality 
and the algorithm can deal with the problem of outliers.  Correspondence is computed 
with the softassign algorithm proposed by Gold et al. [11]. Once correspondence is 
determined, a thin plate spline-based non-rigid transformation is computed to register 
the points. Because we use this algorithm as an initial step, the transformation it 
produces does not need to be extremely accurate. Point clouds in the two volumes can 
thus be selected in a somewhat arbitrary fashion.  

In the approach we have tested so far, bone surfaces are first extracted, which can 
be done easily in CT images with a simple threshold. We do this in both image sets 
and sample the two surfaces to create the two clouds of points. Currently, we do not 
use any geometric feature, such as the surface curvature, to select the points. Results 
will show that this approach leads to acceptable results even when the skeletons are in 
very different positions. We then extract the external surface of the body. This is also 
easily achieved with an intensity threshold. As is the case for the bone surfaces, the 
whole body surfaces are sampled to create a second cloud of points that is added to 
the first one. This leads to two clouds of points, one per image volume, that typically 
contain 1000 to 3500 points, which are registered using the robust point-based 
approach of Chui et al.  
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The second step in our approach relies on an intensity-based registration 
algorithm we have proposed recently [12], which we call ABA for adaptive bases 
algorithm, to refine the results obtained in the first step. In this algorithm, the 
deformation field that registers the two images is modeled as a linear combination 
of radial basis functions with finite support. Coefficients for these basis functions 
are computed that maximize the normalized mutual information (NMI) between the 
images. As is often the case for non-rigid registration algorithms based on basis 
functions, our algorithm includes mechanisms designed to produce transformations 
that are topologically correct (i.e., transformations that do not lead to tearing or 
folding). This is done by imposing constraints on the relative value of the 
coefficients of adjacent basis functions. Furthermore, we compute both the forward 
and the backward transformations simultaneously, and we constrain these 
transformations to be inverses of each other. In our experience, this leads to 
transformations that are smooth and regular. 

In our application, there are two broad categories of structures: bones and soft 
tissues. Because we are dealing with inter-subject registration issues, both bones 
and soft tissues need to be deformed (in the intra-subject registration case, 
individual bones can be registered with rigid-body registration methods). However, 
the amount of deformation typically observed for bony and soft tissue structures is 
very different, i.e., two livers can have vastly different shapes and sizes when the 
overall shape and size of individual bones vary little across subjects. This suggests 
using transformations whose physical properties vary spatially. These transfor-
mations should be relatively stiffer for bony structures than they are for soft tissue 
structures.  Our algorithm allows us to do pre-cisely this. As mentioned above, 
regularization of the deformation field in our algorithm is obtained by imposing 
constraints on the relative value the coefficients associated with adjacent basis 
functions. In practice, we impose a threshold on the difference between the values 
of these coefficients. The smaller the threshold, the stiffer the transformation is. We 
can thus define what we call stiffness maps, which are maps that specify the value 
of this threshold in various regions of the image. In previous work [13], we have 
shown that this feature improves atlas-based segmentation results when the patient 
image volume contains very large ventricles or space-occupying lesions. Here, we 
create a simple binary stiffness map: the transformation is constrained to be stiffer 
over bony structures than over soft tissue structures.  Results obtained when using 
two stiffness values, one for the bones and the other for soft tissue, improve when 
compared to those obtained with a single value.  

3   Results 

Our approach has been evaluated on two types of images: whole body mouse 
scans and upper body human scans. We used an  Imtek MicroCAT II small animal 
scanner to generate two 512x512x512 mouse CT volumes, with a voxel resolution of 
0.125x0.125x0.125mm3.  Human data sets are 512x512x184 CT volumes with a voxel 
resolution of 0.9375x0.9375x3mm3. Figure 1 shows results obtained with the skeletons  
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of mouse volumes. The left panel 
shows the two skeletons in their 
original position. The right panel 
shows the same but after point-based 
registration. Figure 2 illustrates results 
obtained when both steps are applied. 
The left panel shows one CT slice in 
one volume (the source) and the right 
panel is the corresponding slice in the 
other volume (the target); note the 
large differences in size, shape and 
posture between these volumes. The 
middle panel shows the results we 
obtain when registering the source 
volume to the target volume. To 
facilitate the comparison, yellow 
contours of the lung have been drawn 
on the target image and copied on all 
the other ones. 

Figures 3 and 4 show results we have obtained with upper torso CT images, and 
they illustrate the advantage of using two stiffness values. In both figures, the left 
panel is the source image, the right panel the target image. The second, third and 
fourth panels show the source volume registered to the target volume using (1) a 
stiff transformation, (2) a very elastic transformation, and (3) a transformation with 
two stiffness values. In figure 3, only bones are shown. In figure 4, the entire 
images are shown. When a stiff transformation is used, bones are deformed in 
physically-plausible ways, but soft tissues are not registered very accurately (arrows 
on the second panel of figure 4). When a more elastic transformation is used, bones 
are deformed incorrectly (regions highlighted in the third panels from the left). 
Using two stiffness values permits transformations to be computed that lead to 
satisfactory results both for the bony and soft tissue regions.  

 

Fig. 2. One coronal slice in the source volume (left); the corresponding slice in the target 
volume (right) , and the transformed source image after registration (middle) 

a) b) c) 

Fig. 1. Bony structures in two CT volumes 
a) before the registration and b) after the 
registration 

a) b) 
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Fig. 3. a) Skeleton of the source image, e) skeleton of the target image. b), c), and d) source 
skeleton registered to target skeleton using a stiff transformation, a very elastic transformation, 
and two stiffness values, respectively. 

 

Fig. 4. a) One coronal slice in the source volume, e) corresponding slice in the target volume, 
b), c), and d) source image registered to target image using a stiff transformation, a very elastic 
transformation, and two stiffness values, respectively 

Figure 5 illustrates results we have obtained with another set of upper torso volumes.  
The left panel shows one sagittal image in one of the volumes (the source). The right 
panel shows the slice with the same index in the second volume (the target) prior to 
registration. The second, third, and fourth panels show results obtained with our 
intensity-based algorithm alone, results obtained with point-based registration alone, 
and results obtained when both approaches are combined, respectively. The second 
panel shows typical results obtained when non-rigid registration algorithms cannot be 
initialized correctly. The overall shape of the registered volume appears correct but  
 

 

Fig. 5. a) One sagittal slice in the source volume, e) the corresponding slice in the target 
volume, b), c), and d) registration results obtained with intensities alone, points alone, and with 
both methods combined, respectively 

a) b
)

c) d
)

e)

a) b) c) d) e)

a) b) c) d) e)
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bones have been deformed incorrectly. A closer inspection of the deformation field 
(not shown here for lack of space) also shows that the deformation field is very 
irregular. The deformation field obtained with the point-based registration is smooth 
but the registration relatively inaccurate, as shown in the third panel.  As can be seen 
in this panel, the shape of the head and its size are not exactly similar to those shown 
in the right panel. Similarly, the sizes of the vertebrae are incorrect. The fourth panel 
shows that the best results are obtained by combining both approaches.  

4   Conclusions 

In this paper, we present what we believe is the first automatic approach for the 
registration of articulated structures applicable to inter-subject registration problems. 
Existing work typically relies on a combination of piecewise rigid body transformations, 
which requires localizing joints in the image accurately. This is time-consuming and 
hard to automate. In our method, the process can be fully automated by registering first 
the entire skeleton using a point-based method that does not require labeling of homo-
logous points. This produces a transformation, which may not be extremely accurate but 
is nevertheless sufficient to initialize an intensity-based non-rigid registration algorithm. 
The second step leads to an accurate registration.   We also show that better results can 
be obtained with two stiffness values than with one. Future work includes improving the 
way points are selected for the point-based registration algorithm and conducting a 
quantitative evaluation and comparison of these algorithms.  
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