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Abstract. In this paper we are concerned with elastic medical image
registration. By spatially varying parameters, a displacement field can
be reached which is adapted to local material properties. In addition,
it enables the introduction of discontinuities within the displacement
field inbetween different anatomical structures, like bones and soft tissue.
The capability of this approach is demonstrated by various academic
examples.

1 Introduction

Nonrigid image registration is a challenging field of growing importance in med-
ical imaging. The task is to find a vector field of displacements such that each
point in a template image can be mapped onto a corresponding point in a ref-
erence image in a ‘meaningful’ manner.

By the notion ‘meaningful’ often a type of constraint is meant which both
preserves the topology and prescribes identical elastic properties throughout the
image domain. However, there exist several cases where changes in topology are
essential and/or where anatomical structures behave different from each other.
For instance, structures which are connected in one image may be disconnected
in the other image, like the brain-skull interface subject to a brain shift. Further-
more, structures may move along each other and thereby causing discontinuities,
like the liver or a joint and their surrounding tissues. In addition, soft tissue is of
different elasticity compared to bone structures and therefore behaves different.
Also, preservation of shape or volume may be a reasonable property.

Typically, the wanted displacement is computed subject to a smoothness con-
straint. For example, the constraint is realized by a regularization based on the
linear elastic potential of the displacement. In general, the constraint is applied
globally with one global regularization parameter and – for the elastic regular-
izer – with elastic properties independent from the image position. Usually, such
a method provides satisfactory results due to the underlying physical model.
Nonetheless it fails in cases described above, since a global regularization does
not allow for any local changes in topology or material properties. Therefore, in
this note a ‘meaningful’ transformation enables changes in topology, supports
local material properties, possibly approximates a shape or volume preservation
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and requires, to this end, a locally varying regularization. As a consequence, fur-
ther a priori knowledge has to be added. This can be achieved by a segmentation
of the template image only.

In the literature one can find several attempts dealing with nonrigid image
registration in conjunction with spatially varying regularization or material pa-
rameters, for example the radial basis functions [1], the Bezier tensor product [2],
the B-spline with subsequent filtering [3], the damped springs [4], the finite ele-
ments [5, 6, 7] or the finite differences [8] based approaches, respectively. However,
these methods either do not reflect the physical behavior of the underlying ma-
terial, or the registration yields a smooth transformation field, allowing for no
discontinuities at all.

In [9, 10] we briefly introduced a new approach which overcomes the above
mentioned shortcomings. In this note we extend the new idea and describe the
method in greater detail. The following section is concerned with its mathemat-
ical formulation whereas Section 3 addresses the numerical treatment. Finally,
we demonstrate its advantages by application to academic examples.

2 Variational Approach

Let R, T : Ω → G denote the reference and the template image, respectively.
Here, G denotes a set of gray values and Ω ⊂ R

d the d-dimensional image
region. In addition, let a meaningful segmentation of T be given. That is, a
decomposition of Ω into disjoint regions Ωl is assumed, such that Ω = ∪m

l=0Ωl.
For convenience, let Ω0 denote the background of image T .

The registration aims at finding a displacement field u : Ω → R
d such that

Tu := T (id + u) is similar to R, where id denotes the identity mapping. In
mathematical terms, the similarity is described by a functional D[u; T, R]. D
can be chosen as any popular distance (or similarity) measure provided its
Gâteaux derivative exists. However, this note is restricted to the common sum
of squared differences, D[u; T, R] =

∫
Ω[R(x) − Tu(x)]2dx =:

∫
Ω LDdx, which

assumes monomodal images.
A registration based on a similarity measure only, may yield a deformed tem-

plate image which perfectly matches the reference image as long as all gray values
are present in both images. However, the problem is ill-posed and the underly-
ing deformation does in general not make sense in a physical context. Therefore,
an additional smoothness constraint (or regularizer) is considered which can be
chosen to model the application specific physical properties. Also, it may be
interpreted as a penalizer. In this note we investigate a regularizer based on
the popular linear elastic potential which is in addition equipped with spatially
varying parameters (the so-called variable elastic regularizer),

S[u; α, λ, µ] =
∫

Ω

αu

(
µu

4

d∑

i,j=1

(∂xj ui + ∂xiuj)2 +
λu

2
(∇ · u)2

)

dx =:
∫

Ω

LSdx,

where αu, λu and µu are defined in analogy with Tu. For other regularizers
including diffusive-, fluidal- or curvature-based approaches we refer to, e.g., [11].
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In contrast to a conventional approach, where α, λ and µ are global con-
stants, all the three parameters are assumed to be spatially dependent. Here,
the positive weighting function α : Ω → R

+ describes the local influence of the
regularizer. By knowing the segmentation of the template image we are now in a
position to reduce the regularization of the displacement field locally and, there-
fore, to allow for local changes in the topology. To this end, α � 1 is set in the
background region Ω0, cf. [10]. The Lamé parameters λ, µ : Ω → R

+ are used to
reflect the material properties. From a qualitative point of view, µ is inversely
proportional to the elastic modulus and λ/µ is proportional to the incompress-
ibility of the material. For a detailed interpretation and a comparison of values
for specific anatomical structures used in the literature we refer to [7]. Again, by
exploiting the segmentation of T , different elastic properties can be assigned to
each subdomain Ωl. Thereby diverse elastic behavior of different materials, like
bones and muscles, can be simulated.

Note, that αu, λu and µu depend on the displacement u. This dependency is
indispensable due to the fact that nonlinear registration approaches mostly em-
ploy an iterative scheme and therefore the material properties at a fixed position
do change in the course of the registration. As a consequence, the parameters at
an intermediate stage can be deduced from u applied to the initial setting which
makes a segmentation of the reference image redundant.

By combining the similarity measure and the regularizing term, the problem
is to find a displacement field u which minimizes the joint functional

J [u] := D[u] + S[u] =
∫

Ω

LDdx +
∫

Ω

LSdx. (1)

The computation of the Gâteaux derivative of (1) yields a necessary condition
for u∗ being a minimizer of (1),

∇uLD + ∇uLS − ∇∇uLS = 0.

Here, ∇u refers to the gradient with respect to (u1, . . . , ud) whereas ∇∇u de-
notes the gradient with respect to the Jacobian of u. The outcome is a system
of nonlinear partial differential equations equipped with associated boundary
conditions,

Au + g(u) + f(u) = 0 on Ω,

∂ui

∂n
= 0 on ∂Ω, i = 1, . . . , d,

(2)

where f (u) := −(R−Tu)∇Tu results from differentiating the similarity measure
and is therefore independent from the choice of a regularizer. For the variable
elastic regularizer a straightforward calculation yields

Au := −∇ · [αuµu(∇u + ∇Tu)] − ∇[αuλu∇ · u] and

g(u) :=
1
4

d∑

i,j=1

(∂xj ui + ∂xiuj)2∇[αuµu] +
1
2
(∇ · u)2∇[αuλu].

(3)
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Here, we collected terms with a linear dependency on u or on its derivatives in
Au and those with a nonlinear dependency in g(u). This allocation will become
handy in the numerical treatment. Note that Au = g(u) + f(u) corresponds
to the Navier-Lamé equations. The boundary conditions in (2) are of Neumann
type but clearly they may be chosen problem dependent.

3 Numerical Treatment

By introducing an artificial time variable, (2) can be linearized as

(id + τA)u(k+1) = u(k) − τf (u(k)) − τg(u(k)), (4)

where u(k+1) := u(x, tk+1) = u(x, tk + τ) and u(0) ≡ 0. Due to the allocation
into A and g, the differential operator id + τA is linear.

The system of partial differential equations (4) can be discretized on a stag-
gered grid using second order finite differences yielding a d × d block matrix. It
turned out to be reasonable to discretize (3) without evaluating the divergence
operator first. Otherwise the matrix will be non-symmetric for varying parame-
ters. As a consequence, the discretized form of (3) requires the evaluation of α, λ
and µ on interlaced grid positions. Whereas λ and µ could be interpolated either
on a full- or on a half-integer grid, the definition of α on a half-integer grid is cru-
cial. For example consider two adjacent anatomical structures. A displacement
independently chosen for both structures requires a reduced regularity inbetween
(i.e. a thin gap of background region). By defining α on the full-integer grid, a
separate row (column) would be needed to incorporate the reduced regularity.
When coarsening the scale the same row (column) would still be needed be-
coming more and more dominating compared to the size of the adjacent image
structures. In contrast, defining α on a half-integer grid does not increase the
dominance of the gap and is therefore recommended for a multiscale approach.
However, a minimum gap size of inter-voxel width is required on the finest image
level.

For stability reasons, derivatives of g are approximated by the minmod slope
technique [12].

The arising system of equations is of size dN (N being the total number of
voxels in Ω). This system has to be solved at every iteration step. The system ma-
trix resembles the Navier-Lamé differential operator and includes the additional
information given by the segmentation and local parameters. The righthand-side
results from both the similarity measure and further derivative terms due to the
dependency of the parameters on u.

Finally, to evaluate the deformed template image Tu(x) and to build up the
linear system of equations for the following iteration step, interpolation for αu,
λu and µu is required.

From a theoretical point of view the variational approach and its numerical
treatment is suitable for any dimension. However, in this note we only report
on results for the more instructive 1D and 2D cases. For a practical treatment,
multiresolution and multigrid techniques are advisable.
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4 Results

The proposed method has been applied to various academic images. Note that
in 1D the variable elastic regularizer simplifies to a variable diffusive regularizer,
cf. [10].

1D gap example. In order to outline some fundamental properties of the new
approach we start with a 1D image consisting of five objects (cf. Fig. 1, top
left, for the template image). Each object (given by an interval with non-zero
gray values) belongs to a single region Ωl, l = 1, . . . , 5, which is encoded in the
segmented template image by assigning an integer value to each region (center
left). For the outer objects there is no change in position during transition from
the template image to the reference image (top of second column). The other
ones are designed, such that they do change their positions in such a way that
gaps between them show up or disappear. From the segmented template image
we deduce the values of the weighting function α (bottom left). By setting α
small in background regions we expect a displacement function which is constant
within each object and inhibits high gradients inbetween.

Fig. 1. The template image together with its segmentation and the deduced values for
α are shown in the first column (from top to bottom). The second column displays
the reference image (top), below the resulting displacement function (center) as well
as the transformed template image (bottom), Tu. In the upper right corner a modified
reference image with added 10% white noise is shown. It serves for the results of
the third and the fourth column where a varying α and a constant α are chosen,
respectively.

As it is apparent from the second column, the variable regularizer applied
with α(x) = 10 and α(x) = 0.01 inside and outside the objects, respectively,
nicely fulfills our expectations. The displacement function (center) indicates a
constant displacement within the objects with abrupt changes inbetween. Below
the transformed template image is depicted. For better comparison we added
the (undeformed) template image (dotted line) as well as the reference image
(light gray; not visible here due to the coincidence with Tu). Note that a similar
result may be reachable when applying a constant but very small α. However,
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this problem is becoming more and more ill-posed the smaller α is and requires,
therefore, a smaller step size τ .

To test the proposed method for a more realistic setting, we modified the
reference image by adding white noise with a standard deviation of 10% of the
previous gray value scale (Fig. 1, top right). The template image and α remain
unchanged. The ideal displacement field for this setting remains the same as
with the unchanged reference image.

Now, the regularizer has been applied with both a varying (third column) and
a constant (fourth column) weighting function. Whereas the constant choice of
α = 0.03 leads to a dissatisfying result due to the presence of noise in the refer-
ence image, a variable weighting (same as for the second column) both supports
a noise-independent smooth displacement within the objects and enables for high
gradients in the gap regions.

2D rotation example. In the second example we consider the shape-
preserving feasibility of the variable elastic regularizer. To this end, a template
image with a square is given. A rotation by 30◦ yields the reference image,
cf. Fig. 2. Whereas in the first experiment all parameters are chosen constant, in
the second experiment µ is multiplied by 1000 in the square region. Although,
after the same number of iterations, both transformed template images almost
match the reference image, the varying parameter case (cf. Fig. 2, right) is clearly
preferred.

Fig. 2. Template (left) and reference image (center left) are displayed together with
visualized displacement fields for a constant µ (center right) and a spatially varying µ
(right)

2D phantom image. The last example considers a 2D phantom image (Fig. 3,
top left) consisting of three objects: a rectangular object representing, for in-
stance, bone structure, a square object modelling some soft tissue and in its
inside a circle object taking the role of, for instance, a tumor. For the transi-
tion from the template to the reference image (Fig. 3, top right) we model a
shrinking of the tissue object without affecting the bone object, which is usually
a problem in registration approaches. The second problem regards the behavior
of the circle object. Due to its invisibility in the reference image a conventional
registration approach will tend to shrink its size in order to relate it as much as
possible to a circle of zero size.
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Fig. 3. Below the template and reference image (first row), the results from four dif-
ferent settings are depicted columnwise with respect to Tu (second row), the overlayed
displacement field (third row; data are thinned out for better recognition) and the
volume preservation indicator |1 + ∇u| (last row), cf. text for further details

The variable elastic regularizer has been employed with four different param-
eter settings. For the first setting, all parameters are constant (α ≡ 0.1, λ ≡ 0.1,
µ ≡ 4), cf. the first column of Fig. 3. For the remaining settings α is reduced
locally for all background regions (α = 0.015). In addition, for the circle object µ
(cf. third column) and λ (cf. fourth column) are multiplied by 1000, respectively.

The resulting deformation fields have been compared with respect to the
deformed template image (second row in Fig. 3) and for a zoomed region around
the square object with respect to the displacement field (third row) and the
quantity |1+∇u| (last row). Here, a volume preserved region (corresponding to
|1 + ∇u| = 1) is depicted by medium gray, whereas a contracting (expanding)
region appears in light gray (dark gray).

Recalling the first problem, the shrinking of the tissue object without affect-
ing the bone object works properly whenever the weighting of the regularizer
is small inbetween (second to fourth column). For the second problem several
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observations can be made. With no further material knowledge the tumor ob-
ject is shrinked (reduction in volume is 30%), indicated by a light gray of the
circle object in the bottom row. With a large µ or λ either a shape (and vol-
ume) preservation (third column) or an approximated volume preservation only
(fourth column) can be seen. For both cases the change in volume is less than
0.3%.

5 Conclusion and Discussion

We have proposed an elastic potential based registration approach with displace-
ment dependent parameters. It has been shown that this approach enables one to
incorporate pre-knowledge, for instance the knowledge of anatomical structure or
material properties. Whereas a proper choice of the local influence of the regular-
izer may lead to a discontinuous displacement field in order to model topological
changes, different choices for the material parameters allow to mimic different
elastic properties. Clearly, exact values for the parameters are not known in
general and, usually, are guessed for in vivo situations [7].

Compared to our previous results, now, the segmentation of the template
image only is sufficient. This is an important issue for time-critical tasks, like
brain-shift, since an (often time-consuming) segmentation is required for the
pre-operatively generated image only.

However, as a consequence from skipping the intra-operative segmentation,
adjacent anatomical structures require, in order to diverge, a minimum gap of
inter-voxel width inbetween. We are currently working on omitting this draw-
back.
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