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Abstract. Action systems are a framework for reasoning about discrete
reactive systems. Back, Petre and Porres have extended these action sys-
tems to continuous action systems, which can be used to model hybrid
systems. In this paper we define a refinement relation, and develop prac-
tical data refinement rules for continuous action systems.

The meaning of continuous action systems is expressed in terms of
a mapping from continuous action systems to action systems. First, we
present a new mapping from continuous action systems to action systems,
such that Back’s definition of trace refinement is correct with respect to
it. Second, we present a stream semantics that is compatible with the
trace semantics, but is preferable to it because it is more general. Al-
though action system trace refinement rules are applicable to continuous
action systems with a stream semantics, they are not complete. Finally,
we introduce a new data refinement rule that is valid with respect to
the stream semantics and can be used to prove refinements that are not
possible in the trace semantics, and we analyse the completeness of our
new rule in conjunction with the existing trace refinement rules.

1 Introduction

Action systems [4, 5] can be used to model discrete systems. Back, Petre and
Porres extended action systems to continuous action systems, so that they could
be used to model hybrid systems [1]. A hybrid system is one in which both
continuous and discrete behaviour are modelled. In continuous action systems,
variables are modelled as continuous timed streams and a special variable that
represents the current time is introduced. Discrete (instantaneous) actions are
used to update the continuous timed streams.

In the work of Back et al. [1], the behaviour of a continuous action system is de-
fined in terms of an equivalent action system. This means that the definition of ac-
tion system trace refinement [2] may be applied to continuous action systems. With
respect to the definition of trace refinement, there are problems with the mapping
from continuous action systems to action systems given by Back et al. [1]:

– It allows aborting action systems to be refined by ones that modify past
behaviours.

– It requires the future values of output streams after every action to be pre-
served by refinement.
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The first problem allows a continuous action system to be refined by one that we
consider to not faithfully preserve the behaviour of the continuous action system
with respect to the intended interpretation. The second problem overly restricts
allowable refinements. We provide a variation on their mapping from continuous
action systems that addresses these problems.

Even though the new mapping avoids these problems the definition of action
system trace refinement [2] is still overly restrictive because it requires the timing
of actions to be preserved by refinement. To overcome this problem we introduce
the notion of stream semantics. In our stream semantics, the behaviour of a
continuous action system is expressed in terms of the set of continuous timed
streams that it generates. We formally define stream semantics for continuous
action systems in terms of their trace semantics, and compare trace and stream
semantics. We find that trace refinement implies stream refinement, but that the
converse does not hold. As a result, we argue that stream semantics should be
used instead of the trace semantics because it is more general.

Practical refinement rules (simulation and cosimulation rules) exist for prov-
ing trace refinements between action systems [2]. Since trace refinement implies
stream refinement, we may use these to prove stream refinements between contin-
uous action systems. However, because stream semantics are more general than
trace semantics, the trace refinement rules alone are incomplete for continuous
action systems with a stream semantics. We introduce a new data refinement rule
for continuous action systems that is able to prove refinements that are valid in
the stream—but not the trace—model. For a subclass of continuous action sys-
tems, we demonstrate that our new rule in conjunction with the standard data
refinement rules are as complete for continuous action system stream refinement
as the action system data refinement rules are for standard action system trace
refinement.

The following three sections contain background information relevant to the
paper: the structure and semantics of action systems is described in Sections 2
and 3, Sect. 4 describes continuous action systems and their interpretation as
action systems. In Sections 5, 6 and 7 we examine the semantics of continuous
action systems in detail: an alternative mapping from continuous action systems
to action systems is defined, a stream semantics for continuous action systems
is given, and we perform a comparison between the stream and trace semantics.
In Sect. 8 an algebra for reasoning about the semantics of continuous action
systems is constructed and used to develop a new stream data refinement rule,
and we discuss the completeness of the data refinement rules.

2 Action Systems

An action system [4, 5] is of the form:

| [ var x1 : X1; ...; xn : Xn ; S0; do S od] |:< z1 : Z1, ..., zm : Zm >

where each xi is a local variable, and each zj is a global variable. S0 is an
initialisation action that initialises the local variables without modifying the
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global variables. S is an action that operates on the combined local and global
state space. The following syntax is used to represent commands used in actions.

S ::= {g} | [g ] | x := e | S1; S2 | S1 � S2 | �i : T • Si | Sω | S∗ | S∞

Here g is a predicate, x is a variable in the state space, and e is an expression
on the state space. The semantics of our actions are described using conjunctive
predicate transformers. A predicate transformer is a function from predicates
on the output state space Γ to predicates on the input state space Σ. Given a
predicate transformer S : (Γ → B) → (Σ → B) and a predicate q, S .q returns
the weakest precondition of S to achieve q. The conjugate of S .q is written S .q,
and is defined as ¬S .(¬q). Informally, S .q specifies the set of states from which
S may possibly achieve q (but is not necessarily guaranteed to achieve q). A
predicate transformer S , is conjunctive if it distributes over nonempty meets,
i.e., if S .(

∧
i : I • qi) = (

∧
i : I • S .qi). Conjunctivity implies monotonicity. A

predicate transformer S2 is said to be a refinement of S1 if, for all predicates q, the
weakest precondition of S2 to achieve q is implied by the weakest precondition
of S1 to achieve q:

S1 � S2 � ∀ q • S1.q ⇒ S2.q

More detailed information about predicate transformers and program refinement
can be found elsewhere [3, 13, 9].

Assertion : ({g}).q g ∧ q
Coercion : ([g ]).q g ⇒ q
Assignment : (x := e).q q [x \ e]
Sequential composition : (S1; S2).q S1.(S2.q)
Nondeterministic choice : (S1 � S2).q S1.q ∧ S2.q
General nondet. choice : (�i : T • Si).q

�
i : T • Si .q

Strong iteration : (Sω).q (μT • S ; T � skip).q
Weak iteration : (S∗).q (νT • S ; T � skip).q
Infinite iteration : (S∞).q (μT • S ; T ).q
skip : skip [true]
magic : magic [false]
abort : abort {false}

Fig. 1. Predicate transformer semantics of actions

In Fig. 1 we give a semantics for commands in which we identify a command
with its predicate transformer. Assignment, assertion, coercion, nondeterministic
choice, and sequential composition have the usual definitions. The unary opera-
tors (∗,ω ,∞) have the highest precedence, followed by “;”, and then “�”. We use
the iteration constructs of Back and von Wright [6, 3]. Informally, weak itera-
tion S ∗ performs the operation S any finite number of times. Strong iteration Sω
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either performs S any finite or any infinite number of times. Infinite iteration
S∞ performs S an infinite number of times. Strong and infinite iteration are
defined using the least fixed point operators, while weak iteration is defined
using the greatest fixed point operator. skip has no effect on the state. In terms
of the refinement lattice, the least predicate transformer is abort, while the
greatest predicate transformer is magic. abort is not guaranteed to terminate
or produce any particular output. Infinite iterations of predicate transformers
are considered to be aborting: for example, skip∞ = skipω = abort. magic is
miraculous, it can achieve everything, but it cannot be implemented.

We refer to the state space of an action system A as ΣA, which is a mapping
from the names of variables in A, to the types of the variables (in each σ : ΣA
each variable name must be mapped to a value in the corresponding type for
that variable). The local and global parts of this space are referred to as local .ΣA

and global .ΣA respectively, where local .ΣA and global .ΣA must have disjoint
domains. For any state σ : ΣA, we have that

local .σ � dom.(local .ΣA) � σ

global .σ � dom.(global .ΣA) � σ

where “�” represents domain restriction. Given an action system A, we refer to
the initialisation action of A as A0 and the action as A. The guard of action A
is denoted by g.A, and t .A denotes the states from which action A terminates,

g .A � ¬A.False

t .A � A.True

We write A = g1 → S1 [] ... [] gm → Sm , to mean that A = [g1]; S1�...�[gm ]; Sm ,
where each gi is a predicate and each Si is a predicate transformer. For an
action A of this form, we also refer to each predicate transformer “[gi ]; Si” as
an action (an action can be viewed as a nondeterministic choice between a finite
set of actions). If all predicate transformers Si are non-miraculous for A = g1 →
S1 [] ... [] gm → Sm , then g.A is simply

∨
i • gi , and t .A is

∧
i • t .([gi ]; Si).

3 Action System Trace Semantics

Back and von Wright have given a semantics for action systems in terms of
traces [2]. The trace semantics of an action system A is given in terms of sets of
behaviours that A may produce, beh.A : P(seq.ΣA). Each behaviour is a finite
or infinite sequence of states from ΣA (the state space of A) that may be either
terminating, nonterminating, or aborting. Each behaviour b : beh.A must satisfy
the following conditions:

– The first state of b must be reachable by executing A0 from a global initial
state.

– For every pair of adjacent states in b, the second state must be reachable
from the first by action A.
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– For every state in b other than the final (for infinite behaviours there is no
final state), g.A and t .A must hold.

– If b is finite then either ¬g.A or ¬t .A must hold in the final state.

A behaviour is defined to be terminating if it is finite and ¬g.A holds in its
final state; it is aborting if it is finite and its last final state satisfies ¬t .A, it is
nonterminating if it is neither terminating or aborting.

term.b � finite.b ∧ last .b ∈ ¬g .A (1)

aborting .b � finite.b ∧ last .b ∈ ¬t .A (2)

nonterm.b � ¬finite.b (3)

Note that action systems are reactive, hence their behaviour differs from that
of predicate transformers. In reactive systems, the behaviour of the system up
until an aborting action is executed is preserved. This means that nonterminat-
ing reactive systems that don’t contain aborting actions generate behaviours of
infinite length, while nonterminating predicate transformers are considered to
be aborting.

An action system A is refined by another action system C, if the globally
visible behaviour of C is permitted by A. In standard action systems, the globally
visible view of a behaviour b is a trace tr .b of type seq.(global .ΣA). A trace of a
behaviour is simply the behaviour with all finite sequences of stuttering steps and
local states removed: a stuttering step is a step which does not modify the global
state. Formally, the trace refinement relation �tr between two action systems A
and C is defined as follows [2]

A �tr C � ∀ bC : beh.C • (∃ bA : beh.A • bA 	tr bC )

where bA �tr bC if, neither tr .bA nor tr .bC is aborting and tr .bA = tr .bC , or
tr .bA is aborting and is a prefix of the sequence tr .bC .

4 Continuous Action Systems

Continuous action systems have the same form as action systems, however all
variables are represented as timed streams. For some type VAL we define the
set of all timed streams on VAL, Stream.VAL, as the set of total functions from
Time to VAL:

Stream � λ VAL • Time → VAL

where Time is defined to be the set of non-negative real numbers. For any
s : Stream.VAL, and time interval I , we refer to the stream s over time interval
I as s ↓ I . We write s � s ′ to mean that s is a stream prefix of s ′.

An implicit variable τ of type Time is used to refer to the current time.
Actions that are performed on the continuous state space are atomic and they
take no time to execute: time is allowed to pass between the execution of actions.
Actions are constrained such that they cannot change the past: they are only
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allowed to change future values of timed streams. The initialisation command
and the action may refer to the implicit variable τ however they may not update
it. This variable is implicitly initialised and updated.

Given a variable x and an expression on the state space, the future update
statement x :−e [1] is defined as

x :−e � x := λ t • if t < τ then x .t else e.t

This assignment statement is used instead of “:=” in order to ensure that actions
do not change the past. We express nondeterministic future assignment as

x :∈ E � �e : E • x :−e

where E is a set of expressions on the state.
Any discrete (non-stream) variable, may be given a stream interpretation. For

example a variable x of type N may be interpreted as a variable of type Stream.N,
the occurrence of x in expressions may be replaced by x .τ , and assignments
x := v can be taken to mean x : −(λ t : Time • v). In later examples, for
brevity, we define some continuous action system variables to be of discrete
types.

The meaning of a continuous action system is expressed by Back et al. [1]
using an equivalent action system.

Definition 1 (actSysOLD). Given a continuous action system CA, with local
variables xi : Stream.Xi for i ∈ [1..n], global variables zj : Stream.Zj for j ∈
[1..m], initialisation action A0, and action A, actSysOLD .CA is defined as

| [ var τ : Time, x1 : Stream.X1; ...; xn : Stream.Xn ;
τ := 0; A0; N ; do A; N od

] |:< z1 : Stream.Z1, ..., zm : Stream.Zm >

where

N � (τ := next .(g .A).τ )

next .gg .t �
�

min{t ′ | t ′ ≥ t ∧ gg .t ′}, if (∃ t ′ • t ′ ≥ t ∧ gg .t ′)
t , otherwise

In this mapping the variable τ is introduced, and initialised to zero. After the
execution of each action τ is advanced to the earliest time the action will be
enabled, if such a time exists; τ is not modified if no more commands will ever
be enabled, or if a command is currently enabled. Although a continuous action
system CA may map to a terminating action system, continuous action systems
themselves have no termination time. Termination of actSys .CA merely signifies
that from the termination time onwards, the stream variables evolve according
to their last assignment.

Apart from satisfying these constraints, continuous action systems are not
allowed to contain Zeno-behaviour: only a finite number of iterations are allowed
in a finite period of time.
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5 Continuous Action System Trace Semantics

Given the mapping from continuous action systems to action systems (Defini-
tion 1), we consider the definition of trace refinement to be invalid and overly
restrictive for continuous action systems. We interpret it to be invalid because it
allows aborting action systems to be refined incorrectly by action systems that
modify past behaviours.

Continuous action systems should not modify past values of streams. This
means that a behaviour that aborts at time t should not be refined by one
that produces different output streams in the interval [0..t), nor should it be
refined by one that aborts at an earlier time. However, in Fig. 2 we can see
that CJ is a trace refinement of CI: from initial state y = y0, CI produces
global trace 〈y0, f 〉, and then aborts, while CJ produces global output trace
〈y0, f , f ↓ [0..1)�g ↓ [1..∞)〉. (Where “�” is the stream concatenation operator.)
CI aborts at time 2. CJ does not abort, however, it produces a different output
stream in the interval [0..2). This problem arises because the time of program
abortion is irrelevant to the definition of trace refinement.

CI �
| [ var n : N;

n := 0;
do (τ = n = 0) → y :−f ; n := n + 2
[] (τ = n = 2) → abort
od

] |:< y : Stream.N >

CJ �
| [ var n : N;

n := 0;
do (τ = n = 0) → y :−f ; n := n + 1
[] (τ = n = 1) →

y :−g ; n := n + 2
[] (τ = n = 3) → n := n + 1
od

] |:< y : Stream.N >

Fig. 2. Continuous action systems CI and CJ. f and g are functions of type Stream.N.

We also consider the definition of trace refinement to be overly restrictive
because the global stream variables are defined over all time: therefore the traces
that describe the visible behaviour of the action system include information
about the future values of output streams after each action. Since the future
values of output streams may be modified by further actions, they should not
have to be preserved by refinements. For example, we have that CE and CF
(Fig. 3) produce the same overall output stream for y but, according to mapping
actSysOLD (Definition 1), they are not trace equivalent: CE is not a valid trace
refinement of CF, although CF is a valid trace refinement of CE. After each
action, the set of possible future values of the streams are not the same, even
though both of these programs produce the same output streams. (Both systems
produce the same global stream y = f .) From initial state y = y0, CE produces
the set of global traces of the form 〈y0, g1, g2, g3...〉, where ∀ i : N • gi ↓ [0..i ] =
f ↓ [0..i ], while CF produces the global trace 〈y0, f , f , f , ...〉.
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CE �
| [ var n : N;

n := 0;
do (τ = n) →

n := n + 1;
y :∈ {g : Stream.N | g ↓ [0..n] = f ↓ [0..n]}

od
] |:< y : Stream.N >

CF �
| [ var n : N;

n := 0;
do (τ = n) →

n := n + 1;
y :−f

od
] |:< y : Stream.N >

Fig. 3. Continuous action systems CE and CF. f is a function of type Stream.N.

A simple modification to the mapping from continuous action systems to
action systems alleviates these problems. In our modification the global variables
are redefined as partial streams: they are used to describe the output streams
that have already been produced (and cannot be modified by further actions).
Future values of global variables are stored as local variables. At the end of an
action, if no future actions will be enabled then the global variables are defined
over all time; if future actions are enabled then the global variables are defined
over the half-open interval [0..τ). A half-open interval is used in this last case
because future actions may change the values of variables at time τ .

We define Stream∗.VAL to be the set of all partial streams on VAL defined
over both half-open and closed intervals, and Streamω.VAL to be set of all partial
and total streams on VAL.

Stream∗ � λ VAL •
{s : Time 
→ VAL | ∃ r : R • (dom.s = [0..r) ∨ dom.s = [0..r ])}

Streamω � λ VAL • Stream.VAL ∪ Stream∗.VAL

Definition 2 (actSys). Given a continuous action system CA, with local vari-
ables xi : Stream.Xi for i ∈ [1..n], global variables zj : Stream.Zj for j ∈ [1..m],
initialisation action A0, and action A, let z � 〈z1, ..., zm〉, z ′ � 〈z ′

1, ..., z
′
m〉.

We define actSys .CA as

| [ var τ : Time; x1 : Stream.X1; ...; xn : Stream.Xn ;
z ′
1 : Stream.Z1; ...; z ′

m : Stream.Zm ;
τ := 0; A0[z \ z ′]; M ;
do A[z \ z ′]; M od

] |:< z1 : Streamω .Z1, ..., zm : Streamω .Zm >

where

M � τ := next .(g .A[z \ z ′]).τ ;

z1 := znext .(g .A[z \ z ′]).z ′
1.τ ; ...; zm := znext .(g .A[z \ z ′]).z ′

m .τ

next .gg .t �
�

min{t ′ | t ′ ≥ t ∧ gg .t ′}, if (∃ t ′ • t ′ ≥ t ∧ gg .t ′)
t , otherwise

znext .gg .z ′ .t �
�

z ′ ↓ [0..t), if gg .t
z ′ otherwise
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As before, the variable τ is introduced, and initialized to zero, and after the
execution of each action τ is advanced to the earliest time an action will be
enabled, if such a time exists. For each global variable zj , a new local variable
z ′
j : Stream.Zj is introduced. This variable is used in actions A0 and A instead

of zj . Each global variable zj is redefined to be of type Streamω.Zj . After each
action the global variables are updated so that they are defined either: over all
time if no further actions are enabled, or just up until the current time if future
actions are enabled.

Using our new mapping actSys, it is trivial to show that CJ is not a trace
refinement of CI (Fig. 2). CI produces global trace 〈f ↓ [0..0), f ↓ [0..2)〉, while
CJ produces global trace 〈f ↓ [0..0), f ↓ [0..1), f ↓ [0..1)� g ↓ [1..∞)〉. We are also
able to prove that continuous action systems CE and CF (Figure 3) are trace
equivalent. We have that

E � actSys.CE =
| [ var τ : Time,n : N, y ′ : Stream.N;

τ,n, y := 0, 0, y ′ ↓ [0..0);
do (τ = n) →

n := n + 1;
y ′ :∈ {g : Stream.N |

g ↓ [0..n] = f ↓ [0..n]};
τ, y := n, y ′ ↓ [0..n)

od
] |:< y : Streamω .N >

F � actSys.CF =
| [ var τ : Time,n : N, y ′ : Stream.N;

τ,n, y := 0, 0, y ′ ↓ [0..0);
do (τ = n) →

n := n + 1;
y ′ :−f ;
τ, y := n, y ′ ↓ [0..n)

od
] |:< y : Streamω .N >

where we have simplified expressions next and znext. It can be seen that both E
and F produce the nonterminating global trace 〈f ↓ [0..0), f ↓ [0..1), f ↓ [0..2), ...〉,
hence they are trace equivalent.

The parallel composition operator that Back et al. [1] defined for continuous
action systems is performed at the continuous action system level (before map-
ping the continuous action systems to action systems), and hence it remains the
same despite our modifications to the action system mapping actSysOLD.

6 Continuous Action System Stream Semantics

Trace refinement is valid with respect to our new mapping actSys (Definition 2)
from continuous action systems to action systems, however it is still overly re-
strictive: this is because trace refinement requires the timing of actions to be
preserved by refinement. This information should not have to be preserved, be-
cause it does not influence the set of global output streams that may be produced.
In this section we define a stream semantics for continuous action systems that
overcomes this problem. The stream semantics that we construct is a better
choice of semantics than the trace model because it is more general.

Instead of using discrete traces over the continuous state variables to describe
continuous action system semantics, we may describe its semantics in terms of
the continuous timed streams that are generated by the program. We can express
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this alternative semantics in terms of the trace semantics of action systems. We
define the set of streams that may be produced by a continuous action system
CA as behStreams .(actSys .CA), where

behStreams.A � {b : beh.A • behStream.b} (4)

behStream.b � (λ var : (dom.ΣA − τ ) • lim getSeq .b.var) (5)

getSeq .b.var �

��
�

(λ i : dom.b • b.i .var ↓ [0..b.i .τ ))
�〈last .b.var ↓ Time〉, if term.b

(λ i : dom.b • b.i .var ↓ [0..b.i .τ )), otherwise
(6)

Each stream is defined as the limit of a sequence of partial streams. (Back et al.
[1] observed that the streams produced by continuous action systems could be
defined in this way, although they did not specify that aborted sequences should
be treated in the way we have done, nor do they define a refinement relation on
sets of streams.) If the non-Zeno property holds (as assumed), then the limit of
the sequence of partial streams getSeq.b.var is defined over all time if b is not
aborting, and is defined up until the time of abortion if b is aborting. Aborted
behaviours produce partial timed streams that have an open interval at the end.
Aborted streams do not define the value of the stream at the time of abortion
because refinements may modify this value. Given a continuous action system
CA and s : behStream.(actSys .CA),

aborting .s � ∃ r : Time • (∀ var : dom.s • dom.(s.var) = [0..r)) (7)

The global behaviour of a stream s : behStreams .CA is referred to as tr .s , where

tr .s � global .s (8)

If this semantics is adopted then a suitable notion of stream refinement, �str,
between continuous action systems may be defined. Given two continuous ac-
tion systems CA and CB, we say that CB is a stream refinement of CA if
actSys .CA �str actSys .CB, where

A �str B � ∀ sB : behStreams.B • (∃ sA : behStreams.A • sA 	str sB ) (9)

where
sA 	str sB �

�
tr .sA � tr .sB , if aborting .(sA)
tr .sA = tr .sB if ¬aborting .(sA)

Since our stream semantics is derived from the trace semantics, this definition
of refinement is equivalent to the following: given action systems A and B,

A �str B � ∀ bB : beh.B • (∃ bA : beh.A • behStream.bA 	str behStream.bB ) (10)

This definition of refinement is used in later proofs. We write CA �
str CB to
mean that CA is stream equivalent to CB.

7 Correspondence Between Trace and Stream Semantics

Simple refinement rules exist for proving trace refinements between action sys-
tems. It would be useful if we could use these to prove stream refinements
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between continuous action systems. In this section, we show that if a refine-
ment is valid using trace semantics then it is also valid using stream semantics.

Lemma 3. For any continuous action system CA, and b : beh.(actSys .CA),
we have that: aborting .b ⇔ aborting .(behStream.b).

Proof. This follows from the definition of aborting for behaviours (2) and
streams (7), the definitions of behStream (5), and actSys (Definition 2)), and
the non-Zeno property for continuous action systems. �

Lemma 4. For any continuous action system CA, and b : beh.(actSys .CA),

tr .(behStream.b) = trStream.(tr .b)

where

trStream.(tr .b) � λ var : dom.(global .ΣA) • lim(λ i : dom.(tr .b) • (tr .b).i .var)

Proof. This follows directly from behStream (5), tr for both behaviours and
streams (8), and actSys (Definition 2). �

Lemma 5. For continuous action systems CA and CB with the same global
state space, and bA : beh.(actSys .CA), bB : beh.(actSys .CB),

(bA 	tr bB ) ⇒ (behStream.bA 	str behStream.bB )

Proof. We prove this by cases.

Case 1: aborting.bA
(bA 	tr bB )

⇒ (Definition 	tr and aborting .bA)
∃n : dom.bB • (∀ var : dom.(global .ΣA) • last .bA.var = bB .n.var)

⇔ (actSys (Definition 2) and aborting .bA)
∃n : dom.bB • (∀ var : dom.(global .ΣA) •

last .bA.var ↓ [0..last .bA .τ ) = bB .n.var ↓ [0..bB .n.τ ))
⇔ (getSeq (6))

∃n : dom.bB • (∀ var : dom.(global .ΣA) •
lim getSeq .bA.var = bB .n.var ↓ [0..last .bB .τ ))

⇒ (actSys (Definition 2) and getSeq (6). Note that from actSys and the
constraints on continuous action systems, we have that actions cannot
change the past.)
∀ var : dom.(global .ΣA) • lim getSeq .bA .var � lim getSeq .bB .var

⇔ (behStream (5) and tr (8))
tr .(behStream.bA) � tr .(behStream.bB )

⇔ (aborting .bA and Lemma 3)
tr .(behStream.bA) � tr .(behStream.bB ) ∧ aborting .(behStream.bA)

⇔ ( 	str)
behStream.bA 	str behStream.bB
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Case 2: ¬aborting .bA

(bA 	tr bB )
⇔ (Definition 	tr and ¬aborting .bA)

tr .bA = tr .bB

⇒ (Lemma 4)
tr .(behStream.bA) = tr .(behStream.bB )

⇔ (¬aborting .bA and Lemma 3)
tr .(behStream.bA) = tr .(behStream.bB ) ∧ ¬aborting .(behStream.bA)

⇔ (	str)
behStream.bA 	str behStream.bB

�

Theorem 6. For all continuous action systems CA and CB,

(actSys .CA �tr actSys .CB) ⇒ (actSys .CA �str actSys .CB)

Proof. We have that,

bB ∈ beh.(actSys.CB)
⇒ (actSys.CA �tr actSys.CB)

∃ bA ∈ beh.(actSys.CA) • bA 	tr bB

⇒ (Lemma 5)
∃ bA ∈ beh.(actSys.CA) • behStream.bA 	str behStream.bB

Hence, by the definition of stream refinement (10), actSys .CA �str actSys .
CB. �

The converse does not hold. That is, it is not true for all continuous action
systems CA and CB that

(actSys.CA �str actSys.CB) ⇒ (actSys.CA �tr actSys.CB)

For example we have that CM and CN (Fig. 4) are stream equivalent, but
not trace equivalent. In CN, the action from CM has been decomposed into
two steps. Both CM and CN produce global output stream f , however, CM
produces global trace 〈f ↓ [0..0), f ↓ [0..1), f ↓ [0..2), ...〉, while CN produces
global trace 〈f ↓ [0..0), f ↓ [0..0.5), f ↓ [0..1), f ↓ [0..1.5), ...〉. Both traces are not
aborting, but they are not equal. However, their limits are the same.

8 Data Refinement

As mentioned in the previous section, trace refinement is incomplete for contin-
uous action systems with a stream semantics: that is, there exist valid stream
refinements that are considered to be invalid in the trace model. In this sec-
tion we derive a new simulation rule for proving stream refinements between
continuous action systems. This rule can be used to prove refinements that are
valid in the stream semantics, but may not be valid in the trace semantics. We
then analyse the completeness of our new rule in conjunction with the action
system data refinement rules. For our proofs we make use of algebraic properties
of action systems.
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CM �
| [ var n : R;

n := 0;
do τ = n → z :∈ {g : Stream | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]};

n := n + 1
od

] |:< z : Stream.N >

CN �
| [ var n : R, b : B;

n, b := 0, true;
do τ = n ∧ b → z :∈ {g : Stream | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]};

n, b := n + 1
2 , false

[] τ = n ∧ ¬b → n, b := n + 1
2 , true

od
] |:< z : Stream.N >

Fig. 4. Continuous action systems CM and CN. f is a function of type Stream.N.

8.1 An Algebra for Continuous Action Systems

Algebraic theories are frequently used for reasoning about iterative program
constructs: for example, Back and von Wright [6] have used results from fixed
point theory to derive transformation rules for loop constructs, Hayes has used a
similar approach to reason about execution paths in programs [11], and iterative
real-time programming constructs [10], Cohen [7] and Kozen [12] performed early
work on the Kleene algebra with tests. Here we define an algebra to describe sets
of behaviours, and develop transformation rules for manipulating these sets of
behaviours. These rules are used to derive a refinement rule for continuous action
systems. Our algebra is closest to the concrete predicate transformer algebra of
Back and von Wright [6]1 (the approach taken by Cohen [7] is and Kozen [12] is
abstract-algebraic).

Behaviour Set Primitives and Composition Operators. Given a state
space Σ, we use the primitives in Fig. 5 to describe sets of traces of type Σ.
〈〈A0〉〉 defines a set of traces of length one such that the first value in the trace
is reachable by A0 from any global state. 〈| A |〉 defines a set of traces of length
two, where the first element may be any possible state, and the second element is
reachable from the first by executing action A (recall from Sect. 2 that A0 is the
conjugate of A0). Note that if A aborts, then every possible state is reachable
from any initial state, hence 〈| abort |〉 equals {〈σ1, σ2〉 : seq.Σ | true}. A
coercion primitive [g] produces a set of traces of length one where the first value
in a trace is any input from the state space that satisfies g. {g} produces the set
of all non-empty traces such that the first element of each trace does not satisfy
1 Note that von Wright [14] later showed how to work with loop refinement in an

abstract-algebraic setting.
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Initialisation Action : 〈〈A0〉〉 {〈σ1〉 : seq .Σ |
(∃σ0 : global .Σ • A0.(λ σ • σ = σ1).σ0)}

Action : 〈| A |〉 {〈σ1, σ2〉 : seq .Σ | A.(λ σ • σ = σ2).σ1}
Coercion : [g ] {〈σ1〉 : seq .Σ | g .σ1}
Assertion : {g} {s : seq .Σ | ¬g .(first .s)} ∪ {〈σ1〉 : seq .Σ | g .σ1}
Bottom : abort {false}
Top : magic [false]
Skip : skip [true]

Fig. 5. Trace set primitives. A0 is an initialisation action, A is an action, and g is a
predicate.

Nondeterministic choice : X � Y X ∪ Y
General nondet. choice : �i : T • Xi

�
i : T • Xi

Sequential composition : X ; Y {b : X | ¬finite.b}∪
{b, b′ : seq .Σ, s : Σ | b � 〈s〉 ∈ X ∧

〈s〉 � b′ ∈ Y • b � 〈s〉 � b′}
Strong iteration : Y ω (μX • Y ; X � skip)
Weak iteration : Y ∗ (νX • Y ; X � skip)
Infinite iteration : Y ∞ (μX • Y ; X )

Fig. 6. Trace set composition operators

g, combined with the set of all traces of length one such that the first element of
each trace satisfies g. The bottom set of traces is abort, which is the set of all
possible traces, while the top set of traces is magic, which defines the empty set
of traces. Note that abort is not equal to 〈| abort |〉. Much of the notation we use
here is overloaded, i.e., assertions are represented the same way for both actions
and sets of traces. The meaning of statements should be clear from the context.

The trace set composition operations are defined in Fig. 6. We reuse the
definition of weak, strong and infinite iteration used by Back and von Wright
[6, 3]. The definition of weak iteration is equivalent to the Kleene star iterator
of Kozen and Cohen [12, 7]2. Informally, Y ∗ produces the set of traces that
are constructed by sequentially composing Y any finite number of times, Y ∞

produces the set of traces that are constructed by sequentially composing Y an
infinite number of times, and Y ω produces the trace set Y ∗ ∪Y ∞. Note that for
programs represented using the predicate transformer semantics from Sect. 2,
we have that nonterminating behaviour is equivalent to abort; here this is not
the case, nontermination generates traces of infinite length. In this sense the
meaning of our infinite iteration operator is most similar to that used by Hayes
[10]. (Cohen has also constructed an infinite iteration operator (Y ∞) that is
applicable to trace-based models [8].)

The set of trace sets satisfies all the properties of an an idempotent semiring
under (“�”, “; ”, magic, skip), except that X ; magic �= magic does not hold

2 This equivalence is described by the Kleene star equivalence property.
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in general if X does not terminate. Additionally, the trace composition operators
satisfy the following properties.

Theorem 7. The following properties hold for both conjunctive predicate trans-
former semantics and the semantics of sets of traces.

X ω = X ; X ω � skip and X ω = X ω; X � skip (unfold strong iteration)

X ∗ = X ; X ∗ � skip and X ∗ = X ∗; X � skip (unfold weak iteration)

X ∞ = X ; X ∞ (unfold infinite iteration)

X ω = X ∗ � X ∞ (decompose strong iteration)

X ∞ = X ω; magic (infinite iteration equivalence)

X ∗ = �i : N • X i (Kleene star equivalence)

X ; (Y ; X )ω = (X ; Y )ω; X (leapfrog)

(X � Y )ω = X ω; (Y ; X ω)ω (decomposition)

[g1] � [g2] = [g1 ∨ g2] (guard disjunction)

[g1]; [g2] = [g1 ∧ g2] (guard conjunction)

Here X 0 = skip and X i+1 = X ; X i for i ∈ N.

All of the properties in Theorem 7, apart from Kleene star equivalence, have been
verified by by Back et al. to be correct for conjunctive predicate transformers
[6, 3]: they are also applicable to sets of traces. The Kleene star equivalence
property may be simply verified for both conjunctive predicate transformers
and sets of traces. (Induction rules also exist, however they are not required
except to prove Theorem 7).

Theorem 8. The following properties hold for sets of traces:

〈| [g ]; A |〉 = [g ]; 〈| A |〉 (shift guard)

〈| A � A′ |〉 = 〈| A |〉 � 〈| A′ |〉 (shift nondet. choice)

〈| �i : T • Ai |〉 = �i : T • 〈| Ai |〉 (shift general nondet. choice)

Lemma 9. Given action A such that Aω is terminating, i.e., Aω.True = True,

〈| A |〉ω = 〈| A |〉∗ and Aω = A∗

Proof. If Aω is terminating A∞ = magic (from Theorem 7 (infinite iteration
equivalence)), and so from Theorem 7 (decompose strong iteration) we have that
Aω = A∗ � magic = A∗. A similar argument applies for 〈| A |〉ω. �

Defining Action System Behaviours. The behaviours of an action system
may then be expressed using our primitives and composition operators as follows.

beh.A � 〈〈A0〉〉; ([t .A]; 〈| A |〉)ω; [¬g .A ∨ ¬t .A] (11)

We express guarded loops using iteration constructs in the same way as Back
and von Wright [6].
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For action systems with trace semantics, it well known that we can merge to-
gether two actions A and B as long as B is a stuttering action, without changing
the set of global traces that are produced by the action system. For continuous
action systems (using stream semantics) we are also able to merge together two
actions A and B as long as B does not abort (B may be non-stuttering), without
changing the set of streams that are produced by the action system. It is this
property that enables us to introduce a new data refinement rule for continuous
action systems. We write X =str Y , where X and Y are set of traces, to mean
that behStreams .X = behStreams .Y .

Lemma 10. For action A, initialisation action A0, and terminating action B,
we have that

〈| A |〉; 〈| B |〉 =str 〈| A; B |〉 and 〈〈A0〉〉; 〈| B |〉 =str 〈〈A0; B〉〉

Proof. We show that if B is not aborting then 〈| A |〉; 〈| B |〉 =str 〈| A; B |〉.
The proof of 〈〈A0〉〉; 〈| B |〉 =str 〈〈A0; B〉〉 is similar. From the definition of the
behaviour set primitives and sequential composition we have that

〈| A; B |〉 = {〈σ1, σ3〉 | (A; B).(λ σ • σ = σ3).σ1}
〈| A |〉; 〈| B |〉 = {〈σ1, σ2, σ3〉 | A.(λ σ • σ = σ2).σ1 ∧ B .(λ σ • σ = σ3).σ2}

And from the definition of predicate transformer sequential composition and
conjugates, we have

(A; B).(λ σ • σ = σ3).σ1 ⇔ ∃σ2 • A.(λ σ • σ = σ2).σ1 ∧ B .(λ σ • σ = σ3).σ2

Hence 〈σ1, σ2, σ3〉 ∈ 〈| A |〉; 〈| B |〉, iff 〈σ1, σ3〉 ∈ 〈| A; B |〉. Since all traces from
〈| A |〉; 〈| B |〉 and 〈| A; B |〉 are finite, and each trace b from either 〈| A |〉; 〈| B |〉
or 〈| A; B |〉, has a corresponding trace b′ from the other set in which last .b′ =
last .b, from behStream (5) we have that behStream.b = behStream.b′, and hence
(from the definition of stream refinement (10)), 〈| A |〉; 〈| B |〉 =str 〈| A; B |〉. �

Lemma 11. 〈| skip |〉 =str skip, where the first occurrence of skip is a predicate
transformer, and the second occurrence is a set of traces.

Lemma 12. Given terminating action A,
〈| A |〉∗ =str 〈| A∗ |〉

Proof.

〈| A |〉∗

= (Theorem 7 (Kleene star equivalence))
�i : N • 〈| A |〉i

=str (Lemma 10 and 11)
�i : N • 〈| Ai |〉

= (Theorem 8 (shift general nondet. choice))
〈| �i : N • Ai |〉

= 〈| A∗ |〉
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8.2 Stream Refinement Rules

In this section we derive new stream data refinement rules for continuous action
systems using the rules developed in the previous section. First we construct an
equivalence rule, that shows how possibly non-stuttering actions may be merged
with other actions in a continuous action system without changing the output
streams that are generated by it. We then combine this rule with existing action
system trace refinement rules to generate new useful stream refinement rules.

Given a continuous action system CA, let A = actSys .CA. For an action
decomposition A = A� � A�, we define action system A(A�,A�) as follows.

A(A�,A�) � | [ var x : X ; A0; DO(A�,A�); do A�; DO(A�,A�) od] |:< z : Z >

where the local and global variables are the same as those of CA. Program
DO(A�,A�) may perform action A� for as long as it is enabled and an aborting
action isn’t enabled, and it may terminate when either the guard of A� holds or
the guard of A� ceases to hold:

DO(A�,A�) � ([t .A]; A�)ω; [¬g .A� ∨ g .A�]

Theorem 13 (Stream Equivalence). If DO(A�,A�) is terminating (note that
this implies that A� must not be aborting), we have that

A ��str A(A�,A�)

Proof. We show that beh.A is stream equivalent to beh.A(A�,A�).
beh.A(A�,A�)

= (11)
〈〈A0; DO(A�,A�)〉〉; ([t .(A�; DO(A�,A�))]; 〈| A�; DO(A�,A�) |〉)ω;
[¬g .(A�; DO(A�,A�)) ∨ ¬t .(A�; DO(A�,A�))]

= 〈〈A0; DO(A�,A�)〉〉; ([t .A�]; 〈| A�; DO(A�,A�) |〉)ω; [¬g .A� ∨ ¬t .A�]
= (DO(A�,A�) is terminating, and Lemma 9)

〈〈A0; ([t .A]; A�)∗; [¬g .A� ∨ g .A�]〉〉;
([t .A�]; 〈| A�; ([t .A]; A�)∗; [¬g .A� ∨ g .A�] |〉)ω; [¬g .A� ∨ ¬t .A�]

=str (Lemmas 10 and 12, Theorem 8 (shift guard), and
Theorem 7 (guard conjunction))
〈〈A0〉〉; 〈| [t .A]; A� |〉∗; [¬g .A� ∨ g .A�];
([t .A� ∧ g .A�]; 〈| A� |〉; 〈| [t .A]; A� |〉∗; [¬g .A� ∨ g .A�])ω; [¬g .A� ∨ ¬t .A�]

= (Theorem 7 (leapfrog))
〈〈A0〉〉; 〈| [t .A]; A� |〉∗; ([¬g .A� ∨ g .A�]; [t .A� ∧ g .A�]; 〈| A� |〉; 〈| [t .A]; A� |〉∗)ω;
[¬g .A� ∨ g .A�]; [¬g .A� ∨ ¬t .A�]

= (Theorem 7 (guard conjunction), ¬g .A = ¬g .A� ∧ ¬g .A�, ¬t .A� ⇒ g .A�)
〈〈A0〉〉; 〈| [t .A]; A� |〉∗; ([t .A� ∧ g .A�]; 〈| A� |〉; 〈| [t .A]; A� |〉∗)ω; [¬g .A ∨ ¬t .A�]

= (DO(A�,A�) is terminating, Lemma 9 and Theorem 8 (shift guard))
〈〈A0〉〉; ([t .A]; 〈| A� |〉)ω; ([t .A�]; 〈| A� |〉; ([t .A]; 〈| A� |〉)ω)ω; [¬g .A ∨ ¬t .A�]

= (Theorem 7 (decomposition))
〈〈A0〉〉; ([t .A]; 〈| A� |〉 � [t .A�]; 〈| A� |〉)ω; [¬g .A ∨ ¬t .A�]

= (Theorem 8 (shift nondet. choice), t .A = t .A� ∧ t .A� and t .A� = true)
〈〈A0〉〉; ([t .A]; 〈| A� � A� |〉)ω; [¬g .A ∨ ¬t .A]

= (11)
beh.A

�
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Since trace refinement implies stream refinement (Theorem 6), we are able to
combine the stream equivalence rule (Theorem 13) with standard action system
trace refinement rules in order to generate new stream refinement rules. From the
standard trace simulation rule for action systems [2] we have that A is refined
by B if there exists a valid representation program rep such that

A0; rep � B0

A; rep � rep; B

g .A ∧ t .A ⇒ rep.gB

We say that a representation program is valid if it does not modify the global
state and it is non-miraculous.

Theorem 14 (Stream Simulation). For any continuous action systems CA
and CB with the same global state space, let A be actsys.CA and B be act-
sys.CB. If there exists a decomposition A = A� � A� and B = B� � B� such that
programs DO(A�,A�) and DO(B�,B�) terminate and there exists a valid represen-
tation program rep, such that

A0; DO(A�,A�); rep � B0; DO(B�,B�) (12)

A�; DO(A�,A�); rep � rep; B�; DO(B�,B�) (13)

g .A� ∧ t .A� ⇒ rep.(gB�) (14)

then CA �str CB.

Proof. This follows directly from Theorems 13 and 6, and the standard action
system simulation rule. �

A corresponding stream cosimulation rule exists. The stream simulation rule
may be used to prove refinements (using stream semantics) that are not possible
using the standard simulation and cosimulation rules. We demonstrate this by
showing that CN is a valid refinement of CM (Fig. 4). Recall from Sect. 7 that
in CM, one action from CN has been decomposed into two separate actions.

Example. CM �str CN (Figure 4)

Proof. Let M and N be actSys .CM and actSys .CN, respectively. Then
M0 = n, τ := 0, 0; z := z ′ ↓ [0..0)
N0 = n, b, τ := 0, true, 0; z := z ′ ↓ [0..0)
The proof obligations of the stream simulation rules can easily be shown to

hold given the following action decompositions (proof steps elided). Program
intr introduces the local variable b.

rep � intr ; b := true
M� � [τ = n]; z ′ :∈ {g : Stream.N | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]};

n := n + 1; τ := n; z := z ′ ↓ [0..τ )
M� � magic
N� � [τ = n ∧ b]; z ′ :∈ {g : Stream.N | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]}

n, b := n + 1
2 , false; τ := n; z := z ′ ↓ [0..τ )

N� � [τ = n ∧ ¬b]; n, b := n + 1
2 , true; τ := n; z := z ′ ↓ [0..τ )
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We have that
DO(M�,M�) � skip
DO(N�,N�) � [τ = n ∧ ¬b]; n, b := n + 1

2 , true; τ := n; z := z ′ ↓ [0..τ )
� [(τ = n) ⇒ b]

�

8.3 Completeness of Data Refinement Rules

A set of rules is complete with respect to a chosen semantics if all valid refine-
ments in the semantics can be proven using the specified rules. As mentioned ear-
lier, the standard action system data refinement rules alone are incomplete with
respect to the stream semantics for continuous action systems. Here we prove a
completeness result for our new stream refinement rules in conjunction with the
action system data refinement rules, with respect to our stream semantics.

For any continuous action system CA such that actSys .CA is nonterminating,
and CA only contains terminating actions, we show that it is possible to use
our new stream refinement rules to convert actSys .CA to a stream equivalent
canonical form can.(actSys .CA). For any two such continuous action systems,
CA and CB, we show that both trace and stream refinement are equivalent for
can.(actSys .CA) and can.(actSys .CB). This means that, for this case, the usual
completeness results for action system data refinement apply.

Using our new stream simulation rule (Theorem 14), we can show that any
continuous actions system CA is stream equivalent to

CAcheck �
| [ var x : Stream.X , check : Time;

CA0; check := 0; CHECK ;
do CA; CHECK [] check = τ → check := check + p od

] |:< z : Streamω >

where
CHECK �
if (∃ t : Time • t ≥ τ ∧ (g .CA).t) → skip
[] ¬(∃ t : Time • t ≥ τ ∧ (g .CA).t) → check := −1
fi

check is a fresh variable and p is a defined non-zero time period. (It is assumed
that x and z are the local and global variables of CA respectively.) The action
“[check = τ ]; check := check +p” occurs every p seconds until the action system
terminates or aborts:

Acheck � actSys.CAcheck =
| [ var τ : Time, x : Stream.X , z ′ : Stream.Z , check : Time;

(τ := 0; CA0; check := 0; CHECK )[z \ z ′ ]; M ;
do (CA; CHECK )[z \ z ′ ]; M [] check = τ → check := check + p; M od

] |:< z : Streamω .Z >

For a continuous action system CA such that action CA terminates and
actSys .CA is nonterminating, we define the canonical form of actSys .CA,
can.(actSys .CA), to be
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| [ var τ : Time, x : Stream.X , z ′ : Stream.Z , check : Time;
Acheck0 ; DO(Acheck�

,Acheck�
);

do Acheck�
; DO(Acheck�

,Acheck�
) od

] |:< z : Streamω .Z >

(15)

where

Acheck�
� [check = τ ]; check := check + p; M

Acheck�
� (CA; CHECK )[z \ z ′ ]; M

The action of can.(actSys .CA) occurs every p seconds. It performs all the actions
in actSys.CA that occur between τ and τ + p. The variable check is used to
regulate the period of the actions. For any two non-aborting, nonterminating
action systems in canonical form, the timing of their actions is the same.

Lemma 15. Given continuous action system CA such that action CA is ter-
minating,

can.(actSys.CA) =str actSys.CA

Proof. The stream equivalence rule (Theorem 13) can be used to verify that
actSys .CAcheck is equivalent to can.(actSys .CA) (note that because action CA
is terminating, Acheck�

is terminating). Theorem 14 can be used to prove the
equivalence between CAcheck and CA. �

Lemma 16. For any two continuous action systems CA and CB such that
actions CA and CB are terminating and actSys.CA and actSys.CB are nonter-
minating,

(can.(actSys.CA) �str can.(actSys.CB)) = (can.(actSys.CA) �tr can.(actSys.CB))

Proof.

1. (can.(actSys .CA) �str can.(actSys .CB)) ⇒
(can.(actSys .CA) �tr can.(actSys .CB))
This follows from the fact that the semantics of continuous action systems are
trace extending (actSys (Definition 2)), and that actions in can.(actSys .CA)
and can.(actSys .CB) occur at the same regular interval for all time.

2. (can.(actSys .CA) �tr can.(actSys .CB)) ⇒
(can.(actSys .CA) �str can.(actSys .CB))
There exists a continuous action system CAcan such that actSys .CAcan =
can.(actSys .CA), so implication in this direction follows from Theorem 6.

�

Theorem 17. For any two continuous action systems CA and CB such that
actions CA and CB are terminating,

(actSys.CA �str actSys.CB) = (can.(actSys.CA) �tr can.(actSys.CB))
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Proof. This follows from Lemma 15 and Lemma 16. �

This theorem demonstrates that, for a restricted class of continuous action sys-
tems (those that do not contain aborting behaviours, and that are associated
with nonterminating action systems), our new stream refinement rules in con-
junction with the action system trace refinement rules are as complete with
respect to our stream semantics, as the action system trace refinement rules
are with respect to the trace semantics. For action systems with neither infinite
stuttering nor terminating behaviours, Back and von Wright have proved that
any trace refinement can be proved by a combination of backward and forward
simulation [2].

9 Conclusion

We have identified how the mapping from continuous action systems to action
systems may be adjusted such that action system trace semantics are valid for
continuous action systems, and we have defined a stream semantics that is com-
plementary to the trace semantics, but is more general. Our results indicate that
action system data refinement rules are applicable to continuous action systems
with stream semantics, but they are not complete. Subsequently, we constructed
and verified a new stream refinement rule that is capable of proving stream
refinements that are not possible in the more restrictive trace semantics. For
a certain subclass of continuous action systems we have shown that our new
stream refinement rule, in conjunction with the existing action system data re-
finement rules, are as complete (with respect to our stream semantics) as the
data refinement rules are for action systems with trace semantics. This work
enables the continuous action systems formalism to be used to reason about the
derivation of hybrid systems.
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